

Learning
Android Game
Programming

The Addison-Wesley Learning Series is a collection of hands-on programming

guides that help you quickly learn a new technology or language so you can

apply what you’ve learned right away.

Each title comes with sample code for the application or applications built in

the text. This code is fully annotated and can be reused in your own projects

with no strings attached. Many chapters end with a series of exercises to

encourage you to reexamine what you have just learned, and to tweak or

adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and

leave you with the ability to walk off and build your own application and apply

the language or technology to whatever you are working on.

Visit informit.com/learningseries for a complete list of available publications.

Addison-Wesley Learning Series

Learning
Android Game
Programming

A Hands-On Guide to Building

Your First Android Game

Rick Rogers

UpperSaddleRiver,NJ•Boston•Indianapolis•SanFrancisco
NewYork•Toronto•Montreal•London•Munich•Paris•Madrid

Capetown•Sydney•Tokyo•Singapore•MexicoCity

Manyofthedesignationsusedbymanufacturersandsellerstodistinguishtheirproducts
areclaimedastrademarks.Wherethosedesignationsappearinthisbook,andthe
publisherwasawareofatrademarkclaim,thedesignationshavebeenprintedwithinitial
capital letters or in all capitals.

Theauthorandpublisherhavetakencareinthepreparationofthisbook,butmakeno
expressedorimpliedwarrantyofanykindandassumenoresponsibilityforerrorsor
omissions.Noliabilityisassumedforincidentalorconsequentialdamagesinconnection
withorarisingoutoftheuseoftheinformationorprogramscontainedherein.

Thepublisheroffersexcellentdiscountsonthisbookwhenorderedinquantityforbulk
purchasesorspecialsales,whichmayincludeelectronicversionsand/orcustomcovers
andcontentparticulartoyourbusiness,traininggoals,marketingfocus,andbranding
interests.Formoreinformation,pleasecontact:

U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com

ForsalesoutsidetheUnitedStates,pleasecontact:

InternationalSales
international@pearson.com

VisitusontheWeb:informit.com/aw

Library of Congress Cataloging-in-Publication data is on file.

Copyright©2012PearsonEducation,Inc.

Allrightsreserved.PrintedintheUnitedStatesofAmerica.Thispublicationisprotected
bycopyright,andpermissionmustbeobtainedfromthepublisherpriortoanyprohibited
reproduction,storageinaretrievalsystem,ortransmissioninanyformorbyanymeans,
electronic,mechanical,photocopying,recording,orlikewise.Toobtainpermissiontouse
materialfromthiswork,pleasesubmitawrittenrequesttoPearsonEducation,Inc.,
PermissionsDepartment,OneLakeStreet,UpperSaddleRiver,NewJersey07458,
oryoumayfaxyourrequestto(201)236-3290.

ISBN-13:978-0-321-76962-6
ISBN-10: 0-321-76962-7

TextprintedintheUnitedStatesonrecycledpaperatRRDonnelleyin
Crawfordsville,Indiana.
Firstprinting,December2011

Editor-in-Chief

MarkL.Taub

Acquisitions Editor

TrinaMacDonald

Development Editor

Songlin Qiu

Managing Editor

JohnFuller

Full-Service

Production

Manager

JulieB.Nahil

Copy Editor

JillE.Hobbs

Indexer

TedLaux

Proofreader

RebeccaRider

Technical Reviewers

James Becwar

StephanBranczyk
Jason Wei

Cover Designer

ChutiPrasertsith

Compositor

LaurelTech

v

For Susie, my muse and my partner

“Let us be grateful to people who make us happy, they are

the charming gardeners who make our souls blossom.”

—Marcel Proust

v

This page intentionally left blank

Contents at a Glance

Foreword xix

 Preface xxi

Acknowledgments xxiii

 AbouttheAuthor xxv

 1 MobileGames 1

 2 GameElementsandTools 15

 3 TheGameLoopandMenus 33

 4 Scenes,Layers,Transitions,andModifiers 53

 5 DrawingandSprites 87

 6 Animation 109

 7 Text 129

 8 UserInput 149

 9 TileMaps 173

10 ParticleSystems 199

11 Sound 219

12 Physics 243

13 ArtificialIntelligence 279

14 Scoring and Collisions 299

15 MultimediaExtensions 325

16 GameIntegration 347

 17 TestingandPublishing 365

 A ExerciseSolutions 381

 Index 429

This page intentionally left blank

Contents

Foreword xix

Preface xxi

Acknowledgments xxiii

About the Author xxv

1 Mobile Games 1

TheMobileGameMarket 1

TheWorldofComputerGames 2

Game Genres 2

GamesforMobilePhones 4

ComponentsofaTypicalGame 5

Virgins Versus Vampires 7

DesignofV3 8

AndEngineExamples 10

Summary 12

Exercises 12

2 Game Elements and Tools 15

SoftwareDevelopmentTools 15

AndroidSoftwareDevelopmentKit 16

AndEngineGameEngineLibrary 17

AndEngineGameConcepts 18

Box2DPhysicsEngine 19

GraphicsTools 20

VectorGraphics:Inkscape 20

BitmapGraphics:GIMP 22

AnimationCapture:AnimGet 22

TileMapCreation:Tiled 23

TrueTypeFontCreationandEditing:FontStruct 24

AudioTools 24

SoundEffects:Audacity 25

BackgroundMusic:MuseScore 25

x Contents

GettingOurFeetWet:TheSplashScreen 26

CreatingtheGameProject 26

AddingtheAndEngineLibrary 27

AddingtheSplashScreenCode 28

RunningtheGameintheEmulator 31

RunningtheGameonanAndroidDevice 31

Summary 31

Exercises 32

3 The Game Loop and Menus 33

Game Loops in General 33

TheGameLoopinAndEngine 34

EngineInitialization 35

OtherEngines 36

AddingaMenuScreentoV3 37

MenusinAndEngine 37

BuildingtheV3OpeningMenu 40

CreatingtheMenu 40

MainMenuActivity 46

Constants and Fields 46

onLoadResources() 46

onLoadScene() 47

createMenuScene()andcreatePopUpScene() 47

onKeyDown()andonMenuItemClicked() 48

SplashtoMenu 48

MemoryUsage 50

TheQuitOption 51

Summary 51

Exercises 52

4 Scenes, Layers, Transitions, and Modifiers 53

ScenesinAndEngine 53

TheEntity/ComponentModel 53

Entity 54

Constructor 55

Position 55

Scale 56

Color 57

Contents xi

Rotation 57

ManagingChildren 58

ManageModifiers 58

OtherUsefulEntityMethods 59

Layers 59

Scenes 60

BackgroundManagement 60

ChildSceneManagement 61

LayerManagement 61

ParentManagement 61

TouchAreaManagement 61

SpecializedScenes 62

EntityModifiers 63

CommonMethods 63

Position 64

Scale 66

Color 67

Rotation 68

Transparency 69

Delay 69

ModifierCombinations 70

EaseFunctions 71

CreatingtheGameLevel1Scene 79

Summary 85

Exercises 85

5 Drawing and Sprites 87

QuickLookBackatEntity 87

Drawing Lines and Rectangles 88

Line 88

Rectangle 89

Sprites 89

Textures 89

AWordaboutPerformance 101

Compound Sprites 101

Summary 106

Exercises 107

xii Contents

6 Animation 109

RequirementsforAnimation 109

AnimationTiledTextures 110

AnimationinAndEngine 111

AnimatedSprite 111

AnimationExample 113

AddingAnimationtoLevel1Activity 118

AnimationProblems 126

AdvancedTopic:2DAnimationsfrom3DModels 127

Summary 127

Exercises 128

7 Text 129

FontsandTypefaces 129

Loading Fonts 130

Font 131

StrokeFont 131

FontFactory 132

FontManager 132

Typeface 132

TextinAndEngine 133

TextAPIsinAndEngine 133

Toast 136

Custom Fonts 137

CreatingYourOwnTrueTypeFonts 137

Adding Custom Fonts to V3 139

Summary 146

Exercises 146

8 User Input 149

AndroidandAndEngineInputMethods 149

KeyboardandKeypad 150

Touch 151

Custom Gestures 156

On-Screen Controllers 157

Accelerometer 158

Location and Orientation 158

Speech 163

Contents xiii

AddingUserInputtoV3 167

Summary 171

Exercises 172

9 Tile Maps 173

WhyTileMaps? 173

TypesofTileMaps 173

OrthogonalTileMaps 175

IsometricTileMaps 175

StructureofTileMaps 176

TileMapsinAndEngine 176

TMXandTSXFiles 176

TMXLoader 177

TMXTiledMap 177

TMXLayer 178

TMXTile 178

TheTileEditor:Tiled 179

TMXFiles 180

OrthogonalGame:Whack-A-Vampire 181

WAVTileMap 181

CreatingtheWAVTileSet 183

CreatingtheWAVTileMap 183

Whack-A-Vampire:TheCode 186

IsometricTileMaps 196

Summary 197

Exercises 197

10 Particle Systems 199

WhatIsaParticleEmitter? 200

HowDoParticleSystemsWork? 200

TheAndEngineParticleSystem 201

ParticleSystem 201

ParticleEmitters 202

ParticleInitializers 203

ParticleModifiers 204

UsefulParticleSystemMethods 205

CreatingParticleSystems 206

ParticleSystemstheTraditionalWay 206

ParticleSystemswithXML 207

xiv Contents

ParticleEmittersinV3 211

V3ExplosiontheTraditionalWay 211

V3ExplosiontheXMLWay 215

Summary 216

Exercises 217

11 Sound 219

HowSoundIsUsedinGames 219

Music 219

SoundEffects 220

SourcesofMusicandEffects 220

ToolsforMusicandEffects 221

Sound Codec Considerations 221

SoundinAndEngine 222

MusicClass 223

Sound Class 223

MusicFactory 224

SoundFactory 224

Adding Sound to V3 225

CreatingtheSoundEffects 225

CreatingtheBackgroundMusic 228

MakingtheCodingChangestoV3 231

Summary 241

Exercises 241

12 Physics 243

Box2DPhysicsEngine 244

Box2DConcepts 244

SettingUpBox2D 246

BuildingLevelsforPhysicsGames 246

AndEngineandBox2D 248

DownloadandAddthe
AndEnginePhysicsBox2DExtension 248

Box2DAPIs 250

SimplePhysicsExample 253

Level Loading 258

IrateVillagers:APhysicsGameletforV3 261

Contents xv

ImplementingIV 261

Creating a Level 262

CreatingIVActivity.java 266

Summary 276

Exercises 277

13 Artificial Intelligence 279

GameAITopics 279

Simple Scripts 279

DecisionTrees,MinimaxTrees,andState
Machines 280

ExpertorRule-BasedSystems 282

Neural Networks 283

GeneticAlgorithms 285

PathFinding 285

DynamicDifficultyBalancing 287

ProceduralMusicGeneration 287

ImplementingAIinV3 287

ImplementingA* 288

Summary 297

Exercises 297

14 Scoring and Collisions 299

Scoring Design 300

UpdatetheScoresfromAnyGamelet 300

TracktheFiveHighestScores 301

DisplaytheScoreontheGamelet’sScene 302

ScoresPageDisplay 303

CollisionsinAndEngine 306

AndEngineShapeCollisions 306

Box2DCollisions 307

LettingthePlayerScore 308

Graveyard(Level1) 308

Constants and Fields 308

onLoadEngineandonLoadResources 311

onLoadScene 312

mStartVamp 314

xvi

Whack-A-Vampire 315

Constants and Fields 316

onLoadScene 316

openCoffinandcloseCoffin 317

IrateVillagers 318

Constants and Fields 318

onLoadScene 319

onLoadComplete 321

addStake 322

Summary 322

Exercises 322

15 Multimedia Extensions 325

DownloadingExtensions 325

Live Wallpapers 326

Android Live Wallpapers 326

CreatingaLiveWallpaperforV3 327

MODMusic 332

FindingMODMusic 333

XMPMODPlayer 333

MultiplayerGames 336

Multi-TouchinAndEngine 337

AugmentedReality 339

Summary 343

Exercises 344

16 Game Integration 347

DifficultyBalancing 348

DifficultyParameterStorage 348

DifficultyParameterSetting 349

Completion 350

Level1:TheMainGame 352

Whack-A-Vampire 358

IrateVillagers 360

OptionsMenu 363

Summary 363

Exercises 363

Contents

Contents xvii

17 Testing and Publishing 365

ApplicationBusinessModels 365

TestingandGettingReady 366

TesttheGameonActualDevices 367

ConsiderAddinganEndUserLicense
Agreement 367

AddanIconandaLabeltothe
Manifest 369

TurnOffLoggingandDebugging 370

AddaVersionNumbertotheGame 370

ObtainaCryptoKey 371

CompileandSigntheFinal.apkFile 372

TesttheFinal.apkFile 372

Publishing 373

AndroidMarket 373

AmazonAppStore 375

Promoting Your Game 376

App Store Promotion 377

Game Review Sites 379

MobileAdvertising 379

WordofMouth 379

Social Networking 380

Summary 380

A Exercise Solutions 381

Index 429

This page intentionally left blank

Foreword

In early 2010 the availability of powerful and free 2D game engines for the Android

platform was an almost empty field. Today, developers can pick from a few engines

that best fit the purpose of unleashing their individual creativity.

With currently more than 500,000 Android devices being activated daily, every

single one of those is reachable from the minute the device is turned on. Literally,

every day counts. This market is shifting the world of successful business models away

from big companies toward individual developers, where any developer could create

the “Next Angry Birds” in just one night.

I created AndEngine to fulfill the need for a free, easy-to-use game development

framework, one capable of allowing even inexperienced game developers quick access

to this incredibly fast-growing market without limiting the creativity of expert game

developers.

Today more than two hundred games powered by AndEngine have been shipped

and the AndEngine code has been executed over one million times. AndEngine

has allowed developers to create games that successfully reach millions of customers

and provide steady income for the developer. And since Zynga hired me mid-2011,

AndEngine has been brought to a whole new level of professionalism.

More and more developers are demanding knowledge about game development on

the Android platform, which means there is, and will continue to be, a strong need

for solid instructional literature. Rick Rogers has written an excellent book covering

general game development topics in simple language, using AndEngine as the power-

ful back end that brings game development to life. Rick guides the reader through the

construction of a complete game example, covering all essential topics for beginners

while providing useful tips and hints even for experienced game developers. Enjoy

the book!

—Nicolas Gramlich

Creator, AndEngine

This page intentionally left blank

Preface

Key Features of This Book

This is a book about writing games for Android mobile devices. If you have at least some

experience developing applications for Android, this book will tell you how to use that

experience, combined with an open-source game engine called AndEngine, to write

your own 2D mobile games. Whatever genre of game you want to write, examples

are provided and explained step by step. The goal is for you to become familiar with

AndEngine and publish your game as quickly as possible. Many of the examples support

the development of an example game, “Virgins Versus Vampires” (V3).

The book begins by presenting an overview of mobile games, their popularity,

the types of games, and an example of planning a game in Chapter 1. The following

chapters then expand on a single topic related to developing your game:

n Chapter 2, Game Elements and Tools, describes the tools that are used to

develop games, including code development, artwork, and sound.

n Chapter 3, The Game Loop and Menus, introduces the concept of a game loop

and shows you how to start development with AndEngine.

n Chapter 4, Scenes, Layers, Transitions, and Modifiers, dives into graphics and

uncovers the scene transitions and entity modifiers that AndEngine provides to

make a game come alive.

n Chapter 5, Drawing and Sprites, goes deeper into developing bitmap and vector

graphics for your game, and shows you how to display sprites.

n Chapter 6, Animation, introduces easy ways to build animated sprites for your

game, and really get things moving.

n Chapter 7, Text, gives examples of ways to use AndEngine to display text in

your game.

n Chapter 8, User Input, explores the many user input options available for

Android games, including touch, multi-touch, keyboard, voice recognition,

accelerometer, location, and compass.

n Chapter 9, Tile Maps, describes how AndEngine loads and works with tile maps

and their tile sets to build virtual worlds that can be of infinite size.

n Chapter 10, Particle Systems, demonstrates the particle system built into And-

Engine and shows how to define and save particle effects as XML files.

n Chapter 11, Sound, shows you how to find, acquire, modify, and use back-

ground music and sound effects with AndEngine.

Prefacexxii

n Chapter 12, Physics, explores the physics engine, Box2D, which works with

AndEngine to facilitate building games based on the physical interaction of objects.

n Chapter 13, Artificial Intelligence, examines some of the artificial intelligence

techniques you can use to make your game smarter and more fun to play.

n Chapter 14, Scoring and Collisions, builds a scoring framework based on

collisions between elements of your game.

n Chapter 15, Multimedia Extensions, investigates some of the extensions that

are available for AndEngine to perform tasks such as creating Android live

wallpapers, playing MOD music files, creating augmented reality games, and

communicating among players in multiplayer games.

n Chapter 16, Game Integration, finishes off the example game by completing or

adding features to make it playable.

n Chapter 17, Testing and Publishing, describes what you need to do to ensure

your game is ready for publication, and then tells you how to publish and

promote your game.

n The Appendix, Exercise Solutions, provides the solutions to the end-of-chapter

exercises.

This book is best read in order, but if skipping around suits you better, that will

work as well. Each topic is presented mostly as a stand-alone concept, but if references

to other chapters are needed, they are provided.

Mostly, the goal of this book for readers is a simple one: Have fun. The book was writ-

ten in the spirit that games should be fun to play and that developing games should be fun

in itself. May your game top the Android Market “Most Frequently Downloaded” list.

Target Audience for This Book

If you have a burning desire to create your own 2D game for Android devices, and at

least a little background in developing Android applications using the Android SDK

and Java, this is your book. It introduces basic topics in mobile games, and shows how

those topics are implemented using the AndEngine game engine. You don’t need to be

an expert Android developer to follow the examples, but you do need to be familiar

with the basic Android concepts (e.g., Activity, Service, Intent), and need to be

comfortable with reading and writing Java and with using the Android SDK.

Code Examples for This Book

The code listings in this book are available through this book’s website:

http://www.informit.com/title/9780321769626

They are also available from the companion github site:

https://github.com/portmobile/LAGP-Example-Code

http://www.informit.com/title/9780321769626
https://github.com/portmobile/LAGP-Example-Code

Acknowledgments

The list is long of people I’m indebted to for helping me create this book.

n Nicolas Gramlich created the AndEngine game engine on his own, just

because he wanted a world-class game engine for Android. He then shared his

hard work with the world as an open-source project, and now he’s sharing it

with you. Nicolas graciously allowed us to use AndEngine as the basis of this

book and also volunteered to review the drafts. He continues to improve and

extend AndEngine and make those enhancements available to all of us.

n Trina MacDonald has been the Acquisitions Editor for this book, and she was

the one who suggested the idea of a book on developing Android games. Trina

is an awesome manager of projects, and this book could never have been com-

pleted without her tireless efforts to bring it all together.

n James Becwar, Stephan Branczyk, and Jason Wei were the Technical

Editors for the book. You won’t find a better group of technical reviewers

anywhere. This trio of folks kept me honest as I was writing the book, making

sure that the technical content was accurate and that the example code really

worked.

n Songlin Qiu was the fantastic Development Editor for the book. If you find the

book clear and easy to read, it is due to the many valuable suggestions Songlin

made as she reviewed the drafts. If you find it difficult to read, it is likely due to

those few suggestions that I declined.

n The book would not have made it into print without the diligent and tireless

efforts of Julie Nahil, our Production Manager, and Jill Hobbs, the copy

editor. They both deserve a lot of credit for suffering through the author’s short

attention span to persist in getting the project completed.

n As the Editorial Assistant, Olivia Basegio is the one who actually gets things

done. It was she who made sure the drafts got to the right reviewers and to

Rough Cuts, she who organized the illustrations and licenses, and she who

remembered to do the things that I had forgotten. Without Olivia, we wouldn’t

have a book—we’d have a bunch of loose ends.

n I don’t have space to list the large collection of friends and family who have

encouraged me through the sometimes difficult process of writing a book. I’d

especially like to thank our daughters, Allison Jackson and Katie Kehrl, for

their unfailing optimism that I’d actually get the book done someday, and the

examples they set for me with their own lives.

Acknowledgmentsxxiv

n Susie Jackson, my wife, is the inspiration for everything I do, including this

book. She is an incredible person and I am very lucky to be married to her. The

confidence and positive attitude she brings to our lives are what give me the

strength to sit down in my office and create. Thanks, Susie, again.

About the Author

Rick Rogers has been developing software for more than thirty years, and has

focused on software for mobile devices for the last twelve years. He is the author of

numerous technical magazine articles and a previous book on introductory Android

application development. He has developed mobile device software for large and

small companies, and participated in international consortia that have shaped the

evolution of mobile devices.

He lives with his wife in the bucolic town of Harvard, Massachusetts, and on

Cape Cod.

This page intentionally left blank

1

Mobile Games

Perhaps nothing is as universal as the spirit of play—almost everyone likes to play games

of some sort. Furthermore, if—as the cliché goes—everyone has at least one good

novel in them, it’s fair to say that everyone has at least one good game idea as well. You

 probably have an idea for a mobile game, or you wouldn’t have picked up this book.

The aim of the book is to show you how to write your own game to run on Android

mobile phones. Whether your game is very similar to the example game or quite

 different from it, this book will show you how to use the popular AndEngine game

engine1 to produce your very own 2D mobile game and publish it on Android Market.

For many of us, writing software itself is also a game—an endless puzzle in which

we try to figure out the best way to implement application ideas, and more puzzles in

which we debug what we wrote initially. When the application is itself a game, we

enjoy the process at multiple levels. Come and play the software game, and develop

that idea that’s been burning in the back of your mind all this time.

The Mobile Game Market

Games are the killer applications for smartphones today. According to one analyst,2

more than 23% of all mobile phone users older than 13 years of age in the United

States play games on their phones—and that percentage is increasing, especially for the

60 million-plus smartphone users. According to another analyst,3 65% of smartphone

users have played a mobile game on their phones at some point. Doing the math, that

means approximately 40 million people today play games on their smartphones.

Creating mobile games can be a very profitable business. It’s very difficult to

 predict which games will be hits, but a quick scan of Android Market shows that

 hundreds of thousands of users have downloaded certain games. Even at a few dollars

per download, that adds up to serious money. People also tend to get tired of games

once they’ve played them for awhile, opening up opportunities for new games.

1. The AndEngine website can be found at http://www.andengine.org.

2. comScore (http://www.comscore.com/Press_Events/Press_Releases/2010/12/

comScore_Reports_October_2010_U.S._Mobile_Subscriber_Market_Share).

3. nielsenwire (http://blog.nielsen.com/nielsenwire/online_mobile/

the-state-of-mobile-apps/).

http://www.andengine.org
http://www.comscore.com/Press_Events/Press_Releases/2010/12/comScore_Reports_October_2010_U.S._Mobile_Subscriber_Market_Share
http://www.comscore.com/Press_Events/Press_Releases/2010/12/comScore_Reports_October_2010_U.S._Mobile_Subscriber_Market_Share
http://blog.nielsen.com/nielsenwire/online_mobile/the-state-of-mobile-apps/
http://blog.nielsen.com/nielsenwire/online_mobile/the-state-of-mobile-apps/

Chapter 1 Mobile Games2

I’m part of the games-loving public: Games are some of my favorite mobile applica-

tions. Whether I’m killing time waiting to see someone, riding public transportation,

or just in the mood to escape for a few minutes, playing a game on my mobile phone

can be an enjoyable way to pass the time.

I think every game should be fun, but that doesn’t mean games cannot be instruc-

tive as well. Games are often used as instructional or advertising vehicles—and why

not? If students or potential customers have a good time playing a game that teaches

them something valuable, that’s a good thing.

The World of Computer Games

People have been playing games on computers for almost as long as electronic comput-

ers have existed, and a rich variety of games has been invented. In her book Reality Is

Broken, Jane McGonigal says that most games have four attributes:

 n A goal: Games clearly define a goal for the players to achieve. It’s important that the

goals be challenging, yet achievable. Ideally, players are always playing at the leading

edge of their ability. Goals give the players a sense of purpose in playing the game.

 n Rules: Games have rules that all the players agree to follow. The rules often make

achievement of the goal difficult, which in turn encourages players to be creative.

 n Feedback: A game has to tell the players how they are doing. Indeed, an interest-

ing, creative feedback system is key to making a game enjoyable.

 n Voluntary participation: It just isn’t a game unless you really want to play. This aspect

of games implies the players’ acceptance of the goal, rules, and feedback system.

Before we create a new game, we want to think about which types of games exist, as

well as which types work well on mobile devices and which don’t. We also want to

take a look at the components that are common to all computer games.

Game Genres

Game developers didn’t start out categorizing their games, and there is no standard list

of categories. Nevertheless, over time games have been grouped into classes by different

people in different ways. The categories identified in this section are not meant to be

canonical, and they admittedly overlap in a number of areas. The exact categorization

really isn’t important—the point is that numerous types of games can be developed.

Skill or Action Games

Action game players typically have to use some real-time skill (e.g., jump a barrel

at the right time, shoot at a moving target) to be successful. Subtypes with some

 examples include the following:

 n Maze games

 n Platform games where the player moves platforms around either to get

 somewhere or to stop adversaries

The World of Computer Games 3

 n Tower defense games: the player defends something (the tower) from an

 oncoming horde of bad guys

 n Shooters: with the playing field either fixed, sliding, or scrolling

 n One-on-one fighting games: where two opponents battle it out

 n One-to-many fighting games: where the player fights through a gang of

 opponents (often martial arts related)

 n First-person shooters (FPS): where the player’s view is that of the shooter

 n Third-person shooters: same as FPS, but the point of view is that of a third

person

Strategy Games

Strategy games are less about reacting to real-time events, and more about devising

and implementing a strategic plan to overcome obstacles. They include the following

types of games:

 n Turn-based games: including traditional board games

 n Timed strategy games: where each move occurs in a fixed time

 n Massively multiplayer online role-playing games (MMORPs): an extension of

the old Dungeons and Dragons genre, in which players assume roles and play

against others online

Adventure or Storytelling Games

Adventure and storytelling games are built around a rich storyline, with well-

developed characters and a story that defines the player’s purpose in playing the

game.

 n Simpler 2D story games often involve mazes and interactions with other game

entities.

 n Complex 3D story games can show different points of view as the game is played

and the story spun. Some have been turned into Hollywood movies.

Simulation Games

Typically, simulation games depict some real situation, such as a vehicle that the player

can operate. The games reproduce the physics of the real situation and can be good

enough to use for instruction as well as for just playing a game. They include the fol-

lowing types of games:

 n Sports simulators

 n Flight or space simulators

 n Driving or racing simulators

 n Boat or submarine simulators

 n Life simulators (overlap with strategy games)

Chapter 1 Mobile Games4

Puzzle Games

Many puzzle games are direct translations of printed puzzles (e.g., crosswords), but the

genre also includes matching and hidden object games. Complex games often include

smaller puzzle games to solve as part of the larger game. Examples of puzzle games

include those based on the following concepts:

 n Word based (e.g., crosswords)

 n Number/math based (e.g., Sudoku)

 n Visual matching

 n Hidden object (e.g., Minesweeper)

 n Construction from a set of pieces

Augmented-Reality Games

It’s fine to play games just for the fun of it, but sometimes there’s a bigger motive. As

Jane McGonigal’s Reality Is Broken points out, some games are intended to augment

reality in such a way that our real lives are made easier. Examples of augmented-reality

games (ARGs) include the following games:

 n Jetset: a game that simulates the security line at an airport (to help you pass the

time while you wait in the real line)

 n Chore Wars: a game that turns household chores into creative competition

 n World Without Oil: a game that encourages energy conservation by simulating a

world where oil products are in very short supply

Games for Mobile Phones

With this rich variety of game types to choose from, we need to focus on those

that are most appropriate for mobile platforms such as phones and tablets. We also

need to focus on those games whose development by a small group of people is

feasible.

Given the potential size of the mobile device games market, it’s not surprising that

a substantial amount of research and thought have been put into what makes a good

mobile game. The usual principles of good computer game design still apply, along

with special characteristics of good mobile games:

 n Don’t waste the player’s time.

 n Provide help on playing the game.

 n Make the game goals easy to understand.

 n Show game status clearly.

 n Mobile users typically play games in short sessions.

 n Players need to easily pause and resume a game, and the phone should be able to

pause and resume games when necessary (e.g., for an incoming call).

 n Players should be able to make game progress in a short period of time.

The World of Computer Games 5

 n Mobile devices have physical constraints that affect games:

 n Small screen size and a variety of screen sizes, resolutions, and pixel densities

 n Variety of user input methods (e.g., one- and two-handed operation, touch,

keypad, multi-touch, keyboard, Dpad, trackball)

 n Limited computational power

 n Limited battery (a factor that limits power-intensive graphics and computing)

Even if you had the development resources to create a really snazzy 3D first-person

shooter game like Halo, players are unlikely to sit with their smartphone and play it

for hours the way they might with the XBox version. Users are much more likely to

play mobile games in short sessions, pausing and resuming the game perhaps days later.

Speaking of resources, what does it take to create a commercial game? A typical

console game for a single console can easily take $10 million to develop, and two or

three times that amount for multiple-console development (it has been estimated that

some complex games cost as much as $100 million to create). The software develop-

ment kit (SDK) and license to create a console game alone can cost thousands of dol-

lars. If you think about what goes into a professional 3D console game, it’s easy to see

where the costs mount up—3D artwork, motion capture, animation, game play, user

testing, and software development are all both time consuming and expensive.

This book is about you and maybe one or two friends creating your own mobile game

for the Android platform. The Android SDK is free, and as of this writing, it costs only

$25 to sign up for Android Market and sell your game to anyone with an Android device.

We’ll stick to 2D (two-dimensional) games, which makes the artwork and the program-

ming simpler. As you’ll see, the basic game structure and components of any 2D game are

pretty much the same no matter what the genre, but we need to pick one as an example.

Components of a Typical Game

Before we look at the specifics of the example game, let’s examine the general compo-

nents that we need to work into the game and implement in the code. Here are some

components that will be part of our game.

Opening (Splash) Screen

To maximize performance as the game is being played, the graphics needed for a game

level are often loaded before the level is started. During the loading process, which can

take several seconds, you don’t want to leave the user with a blank screen, so you dis-

play a splash screen. It lets the user know that the game is working as it should. Splash

screens are optional, but we’ll include one in our game, just to show how it’s done.

Menu Screen

Once the game is ready to run, we’ll need a place for the user to enter various options

(e.g., turn the sound on/off, get help in playing the game). This is typically done with

a graphical menu screen that presents the options and either implements the option or

calls another screen (such as Help) to do so.

Chapter 1 Mobile Games6

Music

For most of us, music has strong emotional inf luence. Background music is very

important for setting the mood of your game, and helping with the transitions

between parts of the game.

Sound Effects

Sound effects can make a game a lot more fun. When two objects collide, players

expect to hear a sound of some kind—whether it’s a clang, a thud, or a boing. Our

example game also incorporates sound effects for each of the game characters. Each

villain has a characteristic sound effect accompanying his or her presence in a scene.

Time

Most games will incorporate time—either clock time (scoring completion of a puzzle

based on the time taken to solve the puzzle) or playing against moves the computer

(or computer-driven adversaries) makes in real time. In our game Virgins Versus

Vampires (V3), this factor takes the form of killing the villains before they can reach

the virgins.

Lives

Games have to be challenging to be fun, so the player has to fail every once in a

while. Killing the player off (in a virtual way) is a convenient way to give failure a

consequence. Some games give the player multiple lives per session, whereas others

(and V3) give the player only one life.

Obstacles

Obstacles are used in different ways in different games. In many games, the player is

trying to achieve some goal, and obstacles are thrown in the player’s path. In tower

defense games (and V3), it’s the adversaries who are trying to reach a goal, so the

player throws obstacles in their paths.

Levels

Challenging games are fun, but it’s important to provide a range of challenges, so that

players can start with easy challenges and gradually ramp up to higher challenges as

their game-playing skills and experience improve. Levels are a proven way to achieve

this effect—the player learns how to play the game in the first few levels, and his or

her skills have to continue to improve as new levels are presented. This is also a great

way to add some variety to the game.

Adversaries

The adversaries in a game are sometimes referred to as entities (although AndEngine

uses that word to mean something else). These characters are the villains (or other

players) that the player must overcome to win. They are distinct from obstacles in that

they take action against the player—obstacles are more passive. We’ve listed the entities

for V3 later in this chapter, along with an outline of their behavior.

The World of Computer Games 7

Player

Of course, the player is the most important component of any game. The whole point

is to keep the player engaged and interested so he or she will keep playing the game.

The player has to be challenged by the game, but not too challenged to give up in

frustration. The game has to include enough variety to maintain the player’s interest,

and rewards have to be doled out to recognize success in playing the game.

Scenes

If you think of the game as something like a movie, each screen that is displayed to the

player is something like a movie scene. Each scene has background graphics that don’t

change much (although the player’s point of view might change). Animated graph-

ics are then added to the scene to implement the entities and obstacles that interact to

make the game.

Virgins Versus Vampires

A popular genre on mobile devices is the tower defense. These games are fairly simple to

understand (stop the bad guys), they lend themselves to interrupted playing (pause/resume),

they fit well on a small screen, and they don’t require a lot of computer horsepower. On

the production side, the artwork for a tower defense game is relatively simple, and it makes

good use of the major elements of computer game programming. We also want the game

to be fun to play, of course, so we’ll try to inject some humor and challenge into the genre.

We need a “tower” to protect. Offhand, I can’t think of anything that’s been

 protected more vigilantly over the course of history than virginity, so we’ll make

that the target of the bad guys. Vampires are the trendy bad guys these days, so we’ll

 incorporate them as well. Maybe we can even find a way to fit in the theme of the

“vampire with a heart of gold”—ambivalence always adds interest.

Figure 1.1 shows what the screen will look like during a session of our game, which

we’ll call Virgins Versus Vampires.

Figure 1.1 Screenshot of Virgins Versus Vampires game

Chapter 1 Mobile Games8

The V3 game is available for free on Android Market. Take a few minutes right now

to download it to an Android device and play with it for awhile. At least finish Level 1

of the game, which you should do fairly quickly, to get an idea of the f lavor of the game.

We need a variety of obstacles that we can use to impede the vampires’ progress.

We’ll use the items described next for this purpose.

Bullets

We’ll have a bullet weapon that players can fire by placing it on the playing field and

letting it go:

 n Kills: anything it hits

 n Life: from where it is launched until it goes off the screen

 n Scoring: not so high (per vampire), because it’s easy to kill a whole line of vampires

Hatchets

The hatchet weapon is also placed by the player and thrown when they let go of it:

 n Kills: the first vampire it hits

 n Life: from launch until it hits the first vampire

 n Scoring: higher, as it kills only one vampire

Crucifix

The crucifix just stays where the player puts it, and waits for a vampire to trip over it.

 n Kills: the first vampire who runs into it

 n Life: from placement until it kills a vampire

 n Scoring: highest, as it depends on a vampire stumbling into it

The virgins will be held in Miss B’s Girls’ School on the left of the screen, with bad

guys coming from the right. The game player’s task is to throw obstacles in the way of the

marauding bad guys to keep them from reaching the castle. We need to give the player a

way of earning obstacles, placing obstacles, and watching the progress of the bad guys. We

want multiple levels, so players can start off with easy games and progress as their strategies

and talents improve. And, of course, we want to be able to assign scores and track them.

Design of V3

Once you have a game concept outlined, the next step in designing a game is to envi-

sion the scenes needed and describe the f low among them. Screenwriters and many

creative writers do this by making a storyboard with pencil and paper, using an index

card or drawing a rectangle for each scene, and creating a very rough sketch of the

scene and a few words to describe what’s going on there. You can show the transitions

between scenes with an arrow and a brief description of when the transition takes place.

Figure 1.2 shows the storyboard I drew for V3, which is intentionally a very short

game. The storyboard for a complete game will likely spread to multiple pages.

The World of Computer Games 9

Figure 1.3 Index card for Level 1 of the storyboard

I also created a separate index card for each scene of the game, with a rough sketch

of the graphics to be included. If you are creating your storyboard on a large piece of

paper, you can just include the sketches right on the f low diagram. Figure 1.3 shows

the index card for Level 1 of V3.

Figure 1.2 Preliminary game storyboard flow diagram

Start

Help Back
Win

Done

Quit

Play

Done No

LoseYes

V3 Storyboard

Menu

Save

Splash

Play Again?

Level 1

Help High Score

Level 2

End

Chapter 1 Mobile Games10

AndEngine Examples

We will be using the AndEngine game platform in the rest of this book, so now

would be a good time for you to get a taste of what that game engine can do. Scores

of games built using AndEngine are available on Android Market, but instead of

downloading another game, let’s download an example program that demonstrates

many of the features of AndEngine.

Nicolas Gramlich, the lead developer for AndEngine, created the example program,

and has made it available on Android Market for free. Go to Android Market from

an Android device, and search for “AndEngine Example.” You should get the screen

shown in Figure 1.4.

Figure 1.4 AndEngine download from Android Market

AndEngine Examples 11

Figure 1.5 AndEngine start-up screen

Nicolas has generously made the source for AndEngine Examples available as well

(at http://code.google.com/p/andengineexamples/). These resources are excel-

lent references for how features can be used. If you prefer (or if you don’t have access

to Android Market for some reason), you can download the .apk installation file from

that site, and load it onto your Android device (or the emulator) using adb (Android

Debug Bridge). We’ll get into building source in more detail in Chapter 12. For now,

just install the app on your phone, and start it up. You will see a menu of features, as

shown in Figure 1.5.

http://code.google.com/p/andengineexamples/

Chapter 1 Mobile Games12

The menu items form a hierarchy of options, each of which demonstrates one aspect

of the AndEngine platform. Take some time now to just play with the examples to get

a taste of what AndEngine can enable your game to do.

Summary

This chapter was all about introductions. We covered the basics that we’ll need to talk

about games and the fundamental concepts that are part of all mobile games:

 n We talked about the various types of games, or genres, and surveyed the types

that have been invented so far. Of course, you can invent a new genre of your

own, but there are already a lot of options to consider for inspiration.

 n We looked at what makes a mobile game successful (and fun!). Throughout the

rest of this book, we’ll try to keep in mind that the point is for the player to

have fun playing the game, and we’ll try to build on the experiences passed on

by previous game inventors regarding what works and what doesn’t.

 n We started looking at an example tower defense game that we will use to

 illustrate the tools and techniques discussed in this book. The game concept is

quite simple at this point, but it incorporates most of the elements of a typical

mobile game.

 n We defined some basic game terminology, so we can talk about the typical com-

ponents of a game.

 n We laid the groundwork to talk about the development of your own Android

mobile game. We have the terminology necessary to discuss the different com-

ponents of the game, and we can move on to investigate the tools needed to cre-

ate them and the techniques needed to implement them.

Exercises

1. Write a description of the game you’d like to build. Don’t be too concerned

with getting all the details right (you’ll think of new details as you implement

and test your game), but write down the important elements of the game.

Pretend you are writing a proposal aimed at a game publishing company,

suggesting development of a new game.

2. Get some friends to review your game proposal. Do they think the game would

be fun to play? Which changes or suggestions do they have to make it better? Be

prepared for a range of responses, depending on the mood of the group and the

beverages available: Some of the suggestions will be practical and some will be

“creative.” After the review, see how many of the suggestions you can incorpo-

rate into your game proposal.

Exercises 13

3. Develop a storyboard for your own game. There are no real standards for story-

boards, so you can use whatever conventions seem natural to you. Try to include

the following elements:

 n Scenes you think the game requires

 n The way the player transitions from scene to scene

 n Any special characteristics of each scene

 n A rough graphical layout of each scene

4. Start a list of artwork that you will need for your game. Some games don’t need

elaborate artwork; just geometric drawings will suffice. Other games need an

entire staff of artists to create complicated virtual worlds.

This page intentionally left blank

2

Game Elements and Tools

From the overview in the last chapter, it’s obvious that creating a good mobile game

involves writing some rather complex software, and also requires the creation of other

components, such as graphics, animation, sound effects, and music. To be able to offer

your game for others to play, you need to have commercial rights to all of this intel-

lectual property, and the easiest way to get the rights is to create the game all yourself.

Fortunately, tools are available for all of these components, and many of them are

available for free. If you’ve got an Internet connection and a development machine,

you’ve got access to just about all you need.

The example game used in this book, Virgins Versus Vampires, was written

using the Java programming language, which runs in the Dalvik virtual machine

on Android devices. The game makes use of an open-source game engine called

 AndEngine and a physics engine called Box2D, both of which have been ported to

Android. The game and all of its intellectual property were created using freely avail-

able software development tools, graphics tools, and audio. All of these items are

described in this chapter, which also offers our first exposure to actually writing some

code— specifically, a splash screen for the game.

It’s important to realize that the games we are writing are normal Android appli-

cations. They are written in Dalvik/Java, with full access to the Android application

programming interfaces (APIs), and their activities have all the characteristics that

we expect of Android activities (e.g., pause, resume). Our games will link to the

 AndEngine library, and each will include a copy of the library in the Android applica-

tion package file (.apk) for the game.

Software Development Tools

We need software development tools to write software. As luck would have it, excel-

lent tools are available for writing mobile software in general and games in particular.

Even luckier for us, many of these tools are free to download and use, even if we’re

creating a game we plan to sell.

Chapter 2 Game Elements and Tools16

Android Software Development Kit

If you are not already familiar with the Android SDK, stop right here and take the

time needed to become familiar with it. The first step is to go through the download

and installation instructions at the following website: http://developer.android.com.

The Android SDK uses Eclipse for its integrated development environment (IDE)

and tools that come with Oracle’s Java Development Kit (JDK). The installation

instructions on the Android website will lead you through their installation (if that

step is required). As of this book’s writing, the SDK is componentized. The examples

and figures you see in the book were all built using the following versions of its

components:

 n Android SDK

 n Android SDK Platform Components through 4.0

 n Android SDK Tools, r14

 n ADT Plugins for Eclipse 14.0.0

 n Eclipse Helios (the version recommended for this version of the SDK)

 n Oracle/Sun Java Development Kit (JDK 6, also called JDK 1.6)

You may be using later versions than the ones identified here, but the example code

is relatively independent of version. If something doesn’t work, take a look at the book’s

companion website at https://github.com/portmobile/LAGP-Example-Code

and see if updates have been published for later versions. As this is being written, the

current version of Android is 4.0, also known as Ice Cream Sandwich.

You should also have created Android Virtual Devices (AVDs) for each type of

device you intend to support, using the Android SDK and AVD Manager that comes

with the SDK. For the examples shown in the book, we created an AVD that is a lot

like the HTC EVO smartphone:

 n Name: EVO

 n Target: Android 2.2 (API level 8)

 n Skin: HVGA

 n SD Card: 128M

 n SdCard: yes

 n Accelerometer: yes

 n LCD.density: 160

 n AudioOutput: yes

 n Camera: no (not supported on this version of the emulator, and not needed)

 n Battery: yes

You should have also at least gone through the tutorials that are provided for the

SDK and be familiar with the processes of creating Android projects, editing code,

http://developer.android.com
https://github.com/portmobile/LAGP-Example-Code

Software Development Tools 17

building projects, running them on the Android emulator, and debugging projects

using the Eclipse debugger, LogCat, and the other tools provided in the SDK. If you

plan to publish your game to Android Market, you need to make sure it runs well on

actual phones, so you should also have some experience loading and running .apk

files on an Android phone.

The documentation on the Android developer site is excellent and very thorough.

If you need a gentler introduction or more examples, many excellent Android pro-

gramming books are also available, including Sam’s Teach Yourself Android Application

Development in 24 Hours by Lauren Darcey and Shane Conder.

AndEngine Game Engine Library

AndEngine is a game engine library that makes it easier to write two-dimensional

games for Android devices. Nicolas Gramlich led the effort to create AndEngine and

wrote much of its code. The project is open source, so you are encouraged to go to

the project website and join in the development effort for AndEngine yourself.

We could, of course, write our own routines in Java, using the Android APIs to

implement the components of a game. Nevertheless, there are good reasons for lever-

aging a game engine that is already written:

 n We leverage the work of others. As an extreme example, we could also write our

own IDE for Android if we really wanted to, or even our own Java compiler, but

unless we really need some special functionality, doing so makes no sense.

 n With open-source code, like that used in AndEngine, we always have the option

of extending the engine functionality any way we like. If the extension might

be useful to others, we can contribute the changes back into the open-source

repository and improve the engine for everyone.

 n When we run into problems, we can access a community of developers using the

same technology. It’s likely that someone else has already dealt with our problem

and knows how to solve or work around it.

 n We get the benefit of many developers’ optimizations. Games use a fair amount

of computer resources to draw graphics, animate the graphics, compute object

physics, render sounds, and keep up with the user input. By using a game

engine, we have ready access to optimizations that have already been tuned.

Other game engines are currently under development for Android, but this book

will focus on AndEngine. Important websites for AndEngine are listed here:

 n The source code repository for AndEngine: http://code.google.com/p/

andengine/

 n The source code repository for examples: http://code.google.com/p/

andengineexamples/

 n The AndEngine community forum: http://www.andengine.org/forums/

 n The AndEngine wiki: http://wiki.andengine.org/AndEngine

http://code.google.com/p/andengine/
http://code.google.com/p/andengine/
http://code.google.com/p/andengineexamples/
http://code.google.com/p/andengineexamples/
http://www.andengine.org/forums/
http://wiki.andengine.org/AndEngine

Chapter 2 Game Elements and Tools18

These locations may have changed by the time you read this book. If they have, just

use your browser to search for “AndEngine Android,” and you should be able to find

the current locations.

AndEngine comes as a .jar file—that is, a Java archive. You’ll see how to use that

archive with your Android SDK project when we start our game coding later in this

chapter. The engine is provided under the GNU Lesser GPL License, which allows

you to use the source code and link to the binaries for just about any reasonable pur-

pose. (Note: I am not a lawyer—you or your lawyer can read the text of the license in

the file that is referenced on the repository website.)

AndEngine Game Concepts

The movie analogy we referred to earlier is a good way to approach AndEngine. Your

game is like a movie, and the game engine includes concepts that are analogous to

those involved in making a movie.

Camera

The “camera” of the game determines the view of the game that is presented to play-

ers. It is very much like a movie camera in two-dimensional space. The camera can

pan and zoom across the scene to change the view presented. The panning and zoom-

ing can either be under the player’s control or be driven programmatically.

Scene

A game, like a movie, consists of a series of scenes where the action takes place. In a

movie, the scenes are edited together in a fixed way. In games, the sequence of scenes

is driven by the play of the game. Games are like movies edited on the f ly.

Layer

Scenes are composed of layers of graphics. The layers are superimposed on one another,

much like the animation cels used to create cartoons in the old days. Layers can also

be used to introduce 2½D effects, where, as the camera pans, closer layers move faster

than more distant layers.

Sprite

Sprites are the visual representation of the actors in our movie, whether those actors

are people or objects. Sprites can be animated or not, but they often move about the

scene during the course of game play. Sprite textures are often loaded from one large

image that comprises a collection of sprite images, called a sprite sheet.

Entity

In AndEngine, entities are just about anything that’s drawn to the screen. Sprites

are entities, as are tiles, geometric shapes, and lines drawn on the screen. All entities

have properties, such as color, rotation, scale and position, that can be changed by

modifiers.

Software Development Tools 19

Modifier

Modifiers change the properties of an entity, and they are very powerful in

 AndEngine. They can be used on any entity, and the change they cause can either

be immediate or occur gradually over a specified duration. In our game, we’ll use

modifiers frequently to create effects with sprites and other entities.

Texture

A texture is a 2D, generally bitmapped graphic that can be applied to objects to give

them, well, texture. Textures define the way entities look, and much of the OpenGL

graphics environment is built around the use of textures.

Texture Region

A texture defines a complete bitmap graphic, and a texture region defines a subset of

that region. We’ll talk a lot about performance optimizations of 2D graphics later, and

using texture regions to map small pieces of a large combined bitmap is one of the key

tricks used to create these optimizations.

Engine

An engine runs a scene. It takes care of letting animations and modifiers know when to

update the presented graphics, coordinates the actual drawing, handles user input events

(touch, keys, sensors), and generally manages the progress of the game. The engine is a

lot like the producer/director of our movie, telling everyone what they need to do.

BaseGameActivity

This class, which extends the Android Activity class, will be the basis of each scene

in our game. BaseGameActivity does all the work common to all scenes, setting up

the game engine, conforming to the Android Activity Lifecycle requirements, and

enabling sensors. We’ll explore this class in more depth in Chapter 3.

Physics Connector

AndEngine includes basic physics capabilities in the base engine, but the Box2D phys-

ics engine expands greatly on those capabilities. We connect AndEngine objects with

Box2D through a physics connector. If your game doesn’t use Box2D physics, you

won’t have a physics connector.

Box2D Physics Engine

AndEngine includes the open-source JBox2D port of the Box2D physics engine. It

can be used to realistically simulate the interaction of physical objects in the following

ways (among others):

 n Simulation of the physics of rigid bodies

 n Stable stacking

 n Gravity

Chapter 2 Game Elements and Tools20

 n User-defined units

 n Efficient solving for collisions/contacts

 n Sliding friction

 n Boxes, circles, and polygons

 n Several joint types: distance, revolute, prismatic, pulley, gear, mouse

 n Sleeping (removes motionless bodies from simulation until touched)

Graphics Tools

Creation of any video game requires the generation of quite a bit of graphics. Back-

grounds have to be drawn, sprites rendered, and animations of some sprites created.

Many tools are available to manage computer graphics, and the professional tools are

incredibly sophisticated. If you are a graphic designer and know how to use Adobe

Illustrator or other professional tools, you can safely skip this section.

In contrast, if you are like me, with little graphics experience (or talent) and less

money to devote to game creation, this section will describe the (mostly free) tools

that I used to create the graphics for V3. These tools are all very good and widely used

by professionals. A wide variety of online support for using them is available as well. If

you do end up using these “free” tools, please contribute what you can to the projects

that create and maintain them. If you can help with coding, testing, bug fixes, sup-

port, or documentation, that’s great. If you can’t, please consider contributing money

to help keep the projects going.

You may be tempted to acquire your game graphics directly from the wide variety

of graphics available on the Internet. If you do, make sure you obtain the rights to use

those graphics from their owners. Just because you can download a graphic doesn’t

mean you have the rights to use it. If you plan to charge money for your game, “com-

mercial” use of someone else’s graphics is a particularly thorny issue.

As you probably know, there are two main classes of graphic programs for draw-

ing pictures: those that allow you to draw and manipulate graphical objects as vectors

(sometimes referred to as “draw programs”), and those that let you create a bitmap of

colors on a canvas (sometimes called “paint programs”). Each class has its uses, and

both were used in creating V3.

Vector Graphics: Inkscape

I find drawing with vector graphics convenient primarily for two reasons:

 n Each component of a drawing is treated as an object. Objects can be individually

repositioned, scaled, rotated, and edited as you create the final drawing.

 n Components and the whole drawing can be easily scaled without losing any

resolution. This capability is particularly important for sprites, which tend to be

Graphics Tools 21

small in their final form. Scaling vector graphics is not without its pitfalls, so you

should draw components as close to their final size as you can, but it’s nice to

have the f lexibility to scale them when necessary.

Inkscape (http://www.inkscape.org) is a very popular vector drawing package.

It is included with many Linux distributions and also runs on all variants of Windows

and Mac OS X as well. The download includes extensive Help and tutorials. If you

already know what you’re doing, you’ll be up and running very quickly. If you are

closer to standing in my shoes (no experience, no talent), it will take you a little lon-

ger, but it’s much quicker than trying to learn something like Adobe Illustrator. And

did I mention that it’s free? Figure 2.1 shows Inkscape open with a drawing of a bat.

The basic AndEngine game engine doesn’t know how to render vector graphics,

although we will explore an extension that does. In V3, my practice was to create

graphics using Inkscape, edit them to my heart’s content, scale them to an appropriate

pixel size, save the vector (.svg) version, export them as a .png (Portable Network

Graphics) file, and, if necessary, use GIMP (discussed in the next section) to create a

transparent background. The resulting bitmap image (still in .png format) is just what

basic AndEngine wants for image files.

Figure 2.1 Inkscape vector drawing editor

http://www.inkscape.org

Chapter 2 Game Elements and Tools22

Figure 2.2 GIMP bit map graphics editor

Bitmap Graphics: GIMP

GIMP (GNU Image Manipulation Program; http://www.gimp.org) is a venerable

cross-platform bitmap paint program used by many people worldwide. It ships with

most Linux distributions, and it’s free. The GIMP group itself does not support

 Windows and Mac OS X, but download packages are readily available for both of

those operating systems.

Figure 2.2 shows the same image of a bat as appears in Figure 2.1. Here the bat is

rendered as a bitmap (the rendering was done by saving the vector drawing as a .png

file in Inkscape). The result, as you see, is a bit grainier at this size, with a transparent

background, which is just what we want for a sprite animation cel. As we display the

sprite, the background will show through the transparent (checkerboard) areas.

Animation Capture: AnimGet

Generating animations can be tedious, time-consuming work. You need to create a

drawing for each cel of animation, for each viewpoint, and for each pose that you will

be using in the game.

A neat shortcut is to create 3D animations, using one of the many 3D tools avail-

able (Blender is a widely used open-source tool; 3Ds Max, Poser, and Maya are some

of the more popular commercial tools). You can then render 2D animations in each of

the views you need. You’ll end up with an AVI or animated GIF file, which you then

http://www.gimp.org

Graphics Tools 23

need to break into separate frames (so you can reassemble them into a sprite sheet).

Michael Menne created a utility called AnimGet that does the breakdown for you.

The utility is available at several places on the Internet (just Google “AnimGet”), and

it runs only under Windows.

The concept underlying AnimGet is ingenious. Rather than doing something

complicated, such as parsing the animation file, this utility simply watches a defined

area of your screen. It snaps a copy of the starting pixels and then comes back every

10 milliseconds to look again. If the pixels in the defined area have changed, AnimGet

snaps a new copy of the area, and keeps it for a new file. The snapshots are all taken in

memory, so the process can be fast, but you do need to be careful to choose the area

so it contains only the animation you’re interested in. When you tell AnimGet to stop

capturing views, the images are written out to individual files.

TileMap Creation: Tiled

Tiles are often used in computer games to create a regular array of graphics, such as

a map or, in the case of V3, the f ield for the invading vampires and obstacles. The

Tiled map editor (available at http://www.mapeditor.org/), which is available for

free, was written using the Qt cross-platform library, so it runs on Windows, Linux,

and Mac OS X. We’ll talk more about the way tiles are used in Chapter 9 on tiles,

but Figure 2.3 shows what Tiled looks like in the middle of editing a tile map.

Figure 2.3 Tiled tile map editor

http://www.mapeditor.org/

Chapter 2 Game Elements and Tools24

Figure 2.4 FontStruct TrueType font editor

TrueType Font Creation and Editing: FontStruct

Android supports the use of TrueType fonts, which we will use in our game. Many

fonts are available (either for free or for purchase), along with tools to create and

edit TrueType fonts. Notably, FontShop’s web-based tool called FontStruct is offered

through an open community for sharing the fonts you’ve created. Fonts are available for

download, and the associated license (often Creative Commons) is shown for each font.

Creating your own font is a lot of work. I wouldn’t recommend it unless you can’t find

a readymade font that will work for your game—or you like creating fonts. Figure 2.4

shows the FontStructor window of the website, where you create and edit your fonts.

Audio Tools

The V3 game will include two types of audio assets, and we need tools to create and

edit both of them. Effects are short-duration sounds (5 seconds maximum, but typi-

cally less than 3 seconds) that accompany some event in the game. Music files are used

to produce longer-duration sounds and are typically played in the background as a

scene is being displayed and played.

Audio Tools 25

Figure 2.5 Audacity sound editor

Sound Effects: Audacity

What would a game be without sound effects? You’ll want to create stunning sound

effects for your game, and Audacity (http://audacity.sourceforge.net/) is a

world-class sound editing tool that is freely available for Windows, Mac OS X, and

Linux. Audacity lets you import or capture sound files, edit them, and output them in

various audio formats. Android prefers AAC, MP3, MIDI, Ogg Vorbis, or WAV files,

and Audacity can deal with all of them. Figure 2.5 shows the Audacity console editing

a sound effect.

Background Music: MuseScore

Your game will also need background music, in the form of either an MP3 file,

an OGG file, or a MIDI file. You could create the needed music in many ways, of

course. For example, you might be talented enough to play the music on an instru-

ment and record your performance. Alternatively, you might be able to find music

files online that are free for commercial use.

Having minimal musical talent, I elected to use an open-source music creation

package called MuseScore (http://www.musescore.org) for the V3 game. This soft-

ware lets you create or edit music using either the computer keyboard or an attached

MIDI keyboard. Figure 2.6 shows the main screen of MuseScore in the middle of

editing a piece of music.

http://www.musescore.org
http://audacity.sourceforge.net/

Chapter 2 Game Elements and Tools26

Once you’ve composed your opus, MuseScore lets you render and save the music as

a MIDI, MP3, OGG, or WAV file, any of which Android knows how to play.

Getting Our Feet Wet: The Splash Screen

We’ve devoted a lot of space to game concepts and tools, but now it’s time to start

writing some code, so we can get into the development groove. The model will be

that we create a basic Android project here and add to it in each of the following

 chapters until we’ve developed the complete game.

To get going, let’s display the splash screen for the program (Figure 2.7). This

screen appears for 5 seconds and then transitions to a blank screen.

Creating the Game Project

We use the Android SDK throughout this book. To begin working on the V3 game

using the SDK, create a new Android Project. The New > Android Project dialog asks

you for the following information:

1. Project Name: V3

2. Select “Create New Project in Workspace”

3. Use default workspace location (or any place you want)

Figure 2.6 MuseScore

Getting Our Feet Wet: The Splash Screen 27

4. Select “Android 1.6” Build Target

5. Application Name: V3

6. Package Name: com.pearson.lagp.v3

7. Create Activity: StartActivity

8. Min SDK Version: 4

These steps create the project for the example game, including the StartActivity,

which for now is a dummy “Hello, World” activity. We’ll fix its content when we

begin to add code in a later section in this chapter.

Adding the AndEngine Library

If you haven’t already downloaded the AndEngine library from the AndEngine web-

site, do so now. As of this writing, the best place to get the AndEngine .jar file was

from the AndEngineExamples repository on Google:

http://code.google.com/p/andengineexamples/

Under the source tab, you can either browse for the .jar file (in the lib folder)

or clone the entire source tree to your local machine. The latter approach is recom-

mended, as that way you’ll have ready access to the example code. AndEngine uses the

Mercurial source code control system. If you don’t already have Mercurial installed,

instructions on the website explain how to do so. Once you have the .jar file on your

machine, you then need to import the source:

 n In the Eclipse Package Explorer, expand the V3 project (if it’s not already

expanded). Right-click on the V3 project, and create a lib folder by selecting

New Folder and filling in the dialog.

Figure 2.7 Splash screen for the example game, Virgins Versus Vampires

http://code.google.com/p/andengineexamples/

Chapter 2 Game Elements and Tools28

 n Right-click the lib folder and select “Import…” from the pop-up menu.

 n Choose General > File System from the next dialog box, and use the Browse

button to navigate to the directory where you downloaded the AndEngine .jar

file. Click on the directory name (e.g., …/AndEngineExamples/lib).

 n The Import dialog box should now show the directory with an empty check box.

The right pane shows the files in the directory, which should include anden-

gine.jar. Click on the check box next to the filename and then click Finish.

 n To include the .jar file in your build path, right-click on the .jar file in the

Eclipse Project Explorer pane, and then select Build Path > Add to Build Path.

The .jar file will now also appear directly under the project folder.

Adding the Splash Screen Code

We need to modify the automatically generated StartActivity.java file so it

 displays the splash screen while game components are loaded. Eventually we’ll want

to move on to the game menu once everything has loaded, but for now we’ll just

leave the splash screen visible until the user returns to the Home screen. Listing 2.1

shows the modified version of StartActivity.java.

Listing 2.1 StartActivity.java

package com.pearson.lagp.v3;

import org.anddev.andengine.engine.Engine;

import org.anddev.andengine.engine.camera.Camera;

import org.anddev.andengine.engine.options.EngineOptions;

import org.anddev.andengine.engine.options.EngineOptions.

 ScreenOrientation;

import org.anddev.andengine.engine.options.resolutionpolicy.

 RatioResolutionPolicy;

import org.anddev.andengine.entity.scene.Scene;

import org.anddev.andengine.entity.sprite.Sprite;

import org.anddev.andengine.entity.util.FPSLogger;

import org.anddev.andengine.opengl.texture.Texture;

import org.anddev.andengine.opengl.texture.TextureOptions;

import org.anddev.andengine.opengl.texture.region.TextureRegion;

import org.anddev.andengine.opengl.texture.region.TextureRegionFactory;

import org.anddev.andengine.ui.activity.BaseGameActivity;

public class StartActivity extends BaseGameActivity {

 // ===

 // Constants

 // ===

 private static final int CAMERA_WIDTH = 480;

 private static final int CAMERA_HEIGHT = 320;

Getting Our Feet Wet: The Splash Screen 29

 // ===

 // Fields

 // ===

 private Camera mCamera;

 private Texture mTexture;

 private TextureRegion mSplashTextureRegion;

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 @Override

 public Engine onLoadEngine() {

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT),

 this.mCamera));

 }

 @Override

 public void onLoadResources() {

 this.mTexture = new Texture(512, 512,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 this.mSplashTextureRegion = TextureRegionFactory

 .createFromAsset(this.mTexture,

 this, “gfx/Splashscreen.png”, 0, 0);

 this.mEngine.getTextureManager().loadTexture(this.mTexture);

 }

 @Override

 public Scene onLoadScene() {

 this.mEngine.registerUpdateHandler(new FPSLogger());

 final Scene scene = new Scene(1);

 /* Center the splash on the camera. */

 final int centerX =

 (CAMERA_WIDTH - this.mSplashTextureRegion.getWidth()) / 2;

 final int centerY =

 (CAMERA_HEIGHT -

 this.mSplashTextureRegion.getHeight()) / 2;

 /* Create the sprite and add it to the scene. */

 final Sprite splash = new Sprite(centerX,

 centerY, this.mSplashTextureRegion);

 scene.getLastChild().attachChild(splash);

Chapter 2 Game Elements and Tools30

 return scene;

 }

 @Override

 public void onLoadComplete() {

 }

}

This may seem like a lot of code to display on one screen, but in AndEngine a

splash screen is like any other sprite. Thus what we’ve really done is to set up the ini-

tialization of the entire game. Let’s look at the code section by section:

 n After the imports are complete, we immediately declare our class to be a subclass

of BaseGameActivity. This class performs all of the common AndEngine initial-

ization and provides us with some methods that we’ll override later.

 n We then set up the dimensions of the camera viewpoint. Because this is just

a splash screen, we want to display the whole scene. The splash screen image,

Splashscreen.png, is 480 × 320 pixels in size, corresponding to the default

Android display dimensions.

 n We next define some fields for the camera, the texture we will use, and the tex-

ture region.

 n We now override three methods from the superclass BaseGameActivity. Each

method corresponds to a point in the loading process:

 n The onLoadEngine() method is called when the game engine is loaded

for this activity. We initialize the camera and the engine here. There are

two things to note about the engine initialization. First, we set the screen

 orientation to LANDSCAPE. Most mobile games run in landscape orientation.

Second, we asked for a Resolution Policy termed RatioResolutionPolicy. With

this policy, the engine will adjust for different screen geometries by scaling

 features while maintaining the original aspect ratio.

 n The onLoadResources() method is called to load required resources. Here

we create the Texture we will use and load it from the splash screen image,

 Splashscreen.png. That file must be found in the folder named assets/gfx

in our project workspace, or the application will not run. Don’t worry about the

TextureOptions settings for now; we’ll talk about them more in Chapter 5 on

drawing and sprites. Finally, we load the texture into the engine’s TextureManager.

 n The onLoadScene() method is called when the engine is ready for the

scene. We initialize the frames per second logger, create the scene, center the

camera on the scene, create the sprite for the splash, attach it to the scene, and

return the scene to the engine. AndEngine actually provides a special type of

scene for splash screens (called SplashScene), but the way we’ve handled the

matter also gets the job done.

Summary 31

Once we’ve filled in the code needed in StartActivity.java, we need to import

the graphics file for the splash into assets/gfx. This takes just a few steps:

 n Right-click on the assets folder under the V3 project in Project Explorer.

Select New > Folder, and create the subfolder gfx.

 n Right-click on the new gfx subfolder and import the file Splashscreen.png.

Having the image under the assets folder makes it available for the create-

FromAsset() method we used to load it into a Texture.

Running the Game in the Emulator

Running the game in the Android Emulator is as simple as choosing Run > Run from

the Eclipse menu. If you’re prompted to choose an AVD, do so; you should then see

the splash screen displayed in an emulator window. If you need to rotate the emulator

to landscape orientation, pressing the key combination Ctrl + F12 will achieve that

effect. If the application died with a forced close, you are probably missing one of the

needed assets. LogCat will tell you exactly what was not found.

Running the Game on an Android Device

You’ll need to consult your device manufacturer’s developer site to get it properly

connected for Android development work. Just make sure that the version of Android

running on your device is at least as high as the one you picked when creating the

project (in the example, we picked API Level 4, which is equivalent to Android 1.6).

Now when you choose Run > Run from the Eclipse menu, you should have the

option of running on the device itself. The Android SDK will install the application

on the device and start it running. You can use the Back or Home buttons to return

to the home screen, but as with all Android applications, your game will keep run-

ning in the background. It’s not actually doing much, because the display is not visible,

and Android is smart enough to not spend cycles updating an invisible screen, but the

game is still burning some cycles. To actually stop or uninstall the application, use the

Settings > Application > Manage Applications dialog on your device.

Summary

This chapter covered a lot of ground. We took a quick look at the Android SDK and

were introduced to Android and the components of a game:

 n Camera

 n Scene

 n Layer

 n Sprite

 n Entity

 n Modifier

Chapter 2 Game Elements and Tools32

 n Texture

 n Texture region

 n Engine

 n BaseGameActivity

 n Physics connector

We looked at a collection of tools that can be used to generate the components of a

mobile game, including the following:

 n Inkscape: for scalable vector graphics

 n GIMP: for bitmap graphics

 n AnimGet: for animation capture

 n Tiled: for editing tile maps

 n Audacity: for audio editing

 n MuseScore: for creating music

Finally, we started putting together the V3 game. We created an Android Project

using the Android SDK Wizard, added the AndEngine library, added code to perform

appropriate AndEngine initialization, and displayed a splash screen for the game.

Exercises

1. Use Inkscape, GIMP, or your favorite graphics tool to design your own splash

screen for your own game. You can start with vector graphics or a bitmap image

(whichever you prefer), but you want to end up with a rectangular image in

PNG format, 480 pixels wide by 320 pixels high. Substitute your splash screen in

StartActivity.java and run the “game.”

2. Following the instructions on the repository, clone the AndEngine and AndEngine-

Examples repositories onto your development computer. You’ll need the Mercurial

source code management system (which itself is open source) to handle the cloning

process. Together the two repositories will take around 40MB of space.

3. In Chapter 1, you drew a storyboard for your game. For each scene in your

 storyboard, write down a list of the elements:

 n Layers

 n Sprites, noting animations

 n Textures

 n Sounds

4. Find a musical theme for your game. Decide whether you will pay someone for

music they’ve created or whether you will create your own music.

3

The Game Loop and Menus

The game loop is often called the heartbeat of a computer game, and indeed it is what

gives life to our games. As a game is being played, inputs to the game, status, and outputs

all need to proceed in a regular cycle. The game loop is the implementation of that cycle,

so an efficient, high- performance game loop is essential for a playable computer game.

Game Loops in General

Computer games are all based on a cycle of operations. The typical steps in such a

cycle include the following actions:

 n Acquire input from the player.

 n Update the game status as a result of user input.

 n Update the game status as a result of time.

 n Check for collisions among objects.

 n Update objects based on game physics.

 n Update the user display based on the updated game status.

 n Render the updated display.

 n Play appropriate sounds.

In this list of steps, “game status” includes not only variables such as the level the

player is on and the current score, but also the position and animation of every object

being displayed. For games with many objects, getting through this loop more quickly

than the desired animation frame rate can be a daunting task.

Depending on the nature of the game, time may or may not be a factor in the

cycle. Board and puzzle games may or may not have a time element, for example. If

time is used in these types of games, it often takes the form of something like the time

needed to solve the puzzle, which then becomes the player’s score. The player uses the

user interface (UI) to make a move in the game; in turn, the computer calculates a

response and updates the game status to ref lect the computer’s move. The result is then

Chapter 3 The Game Loop and Menus34

displayed to the user, and the cycle continues. The computer is really concerned only

with tracking the total time taken to achieve the goal.

In games like V3, in which animations and entities other than the player are active

in the game, time is more of a factor. The game must now regularly update the user

interface, including the positions of entities and the animations shown, based on time. It

has to accomplish this feat predictably on a variety of hardware platforms characterized

by different clock speeds, different computing capabilities, and different UI hardware. It

also has to perform the updates on schedule despite the completion of occasional garbage

collection operations. And if the game is going to be fun to play, it has to be efficient in

performing the updates, such that many objects can be updated each animation cycle.

Getting everything right is hard to do, but luckily for us, AndEngine is ready to

perform the work for us. All we need to do is use the game loop that comes embedded

in the AndEngine library.

The Game Loop in AndEngine

AndEngine includes a component called Engine, which works with the Android run-

time to implement the game loop for our games. The Engine is the center of activity

from the moment we start the game until the moment we shut it down. One of the first

things that happens in an AndEngine game is the override of the onLoadEngine()

method, as shown in Listing 3.1. In our override, we create the Engine for our game

and set the optional parameters of that Engine.

Listing 3.1 Engine Initialization

. . .

 @Override

 public Engine onLoadEngine() {

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT), this.mCamera));

. . .

The Engine does a number of things for game developers:

 n It directs the initialization and ongoing maintenance of the OpenGL Surface-

View that we use to draw to the screen.

 n It manages user input from the keyboard and touch screen.

 n It manages sensor inputs from the accelerometer and orientation (compass direc-

tion) sensors.

 n It manages the library of text fonts.

The Game Loop in AndEngine 35

 n It creates and manages the loading and playing of both sound effects and music.

 n It manages the interface to the device’s vibrator.

 n It updates the rest of AndEngine periodically to advance the state of the game

that is being played.

Engine Initialization

The default constructor for the Engine object is

public Engine(final EngineOptions pEngineOptions)

The EngineOptions class has the following constructor:

public EngineOptions(final boolean pFullscreen,

final ScreenOrientation pScreenOrientation,

final IResolutionPolicy pResolutionPolicy, final Camera pCamera)

The parameters passed to new EngineOptions() tell AndEngine how we want to

set up the Engine for this game:

 n pFullscreen: we will almost always set true, as we want the game to take the

full device screen.

 n ScreenOrientation can take one of two values:

 n LANDSCAPE: which is the preferred orientation for mobile games

 n PORTRAIT: in case we need that orientation

 n pResolutionPolicy tells Engine how you want to deal with different screen

geometries:

 n RatioResolutionPolicy says to expand the graphics to fill as much of the

screen as possible, while maintaining the original aspect ratios of the graphics.

This is the approach that we will always use in this book.

 n FillResolutionPolicy says to fill the screen, ignoring aspect ratios.

 n FixedResolutionPolicy says to use the original fixed dimensions, and not

try to scale the graphics to fit different screen sizes.

 n RelativeResolutionPolicy says to use a fixed scale on the original dimen-

sions. You could use this policy if you wanted to optimize for specific devices.

pCamera is the camera object that determines the view the player sees of the

scenes. The constructor for Camera is

public Camera(final float pX, final float pY, final float pWidth,

final float pHeight)

where pX and pY are the coordinates for the origin, and pWidth and pHeight are the

dimensions of the viewable scene. All of the dimensions are in pixels.

Chapter 3 The Game Loop and Menus36

Other Engines

In this book, we will always use the default Engine described previously, but you

could also use several other Engines for your own games if you wish. All of these are

subclasses of the default Engine, so you inherit all the base characteristics of that class.

FixedStepEngine

FixedStepEngine(EngineOptions pEngineOptions, int pStepsPerSecond)

The default Engine executes the game loop as fast as it can and then starts the loop again

immediately. This strategy provides the highest step and frame rates possible, and the Engine

keeps track of elapsed time so it can progress translations and other operations f luidly and

consistently. You might still want to use a fixed-step engine if, for some reason, you needed

the game to progress in fixed time steps, no matter which device was running it.

LimitedFPSEngine

LimitedFPSEngine(EngineOptions pEngineOptions, int pFramesPerSecond)

As mentioned previously, the default Engine will run as fast as it can, resulting in a vari-

able frame rate. You can have AndEngine log the frame rate to LogCat (details appear

in a later example in this chapter) if you like, and the Engine takes account of the actual

elapsed time between frames when computing the positions of moving objects and the

like. If for some reason you want to use a fixed frame rate, no matter which device the

game is running on, LimitedFPSEngine will try to meet that requirement. This sub-

class is called “Limited” instead of “Fixed” because it might not be able to achieve the

desired frame rate on a given device, so it is really setting an upper limit on frame rate.

SingleSceneSplitScreenEngine

SingleSceneSplitScreenEngine(EngineOptions pEngineOptions,

Camera pSecondCamera)

The default Engine displays one scene at a time, and has one camera view of that

scene. Some games may benefit from having two views of the current scene displayed

in separate windows on a split screen, and that’s what this Engine does for you. For

example, a two-player, first-person shooter game might show two scenes, each assum-

ing one of the players’ current point of view.

DoubleSceneSplitScreenEngine

DoubleSceneSplitScreenEngine(EngineOptions pEngineOptions,

Camera pSecondCamera)

If your game needs a split screen showing separate scenes, then this is the Engine you

want to use. For example, suppose you are developing a first-person shooter game

where one scene shows the current player’s view and another shows a global aerial

view of the whole battle scene. The “first” scene is shown in the left-hand part of the

split, while the “second” is shown in the right-hand split.

Adding a Menu Screen to V3 37

Adding a Menu Screen to V3

Next, we would like to add an opening menu screen to the game that we’ve been

developing. Two menu architectures are available to us. Android has a MenuView,

of course, and a whole set of APIs around building and displaying menus, respond-

ing to the Menu button, and accepting menu inputs. AndEngine provides an

alternative menu system, which integrates the menus into the game. This system

includes text menus and graphical menus, both using the same OpenGL interfaces

that are used to draw the rest of a game. We’ll look at both of those options in this

section, as well as ways to capture the Menu button keypresses to trigger a pop-up

menu presentation. The Android MenuView system is effectively disabled while a

scene is being shown. You actually could still use the Android MenuView layered on

the SurfaceView that AndEngine uses, but that would be pretty confusing for your

players.

Menus in AndEngine

Menus are a special type of Scene in AndEngine. They’re special because they arrange

text or graphics in an ordered list, and they accept touch inputs from the player to

select one of the items on the list. They also provide for animation of the menu items

as the menu is being displayed.

MenuScene.java

The MenuScene.java class is a subclass of Scene, and the one we use when we want

to instantiate a menu scene. There are four constructors for the class:

 n MenuScene()

 n MenuScene(final Camera pCamera)

 n MenuScene(final IOnMenuItemClickListener

pOnMenuItemClickListener)

 n MenuScene(final Camera pCamera, final IOnMenuItemClick-

Listener pOnMenuItemClickListener)

The parameters are as follows:

 n pCamera: the camera to use when displaying the scene. This is usually the same

Camera we declared in onLoadEngine(), but it can be any Camera.

 n pOnMenuItemClickListener(): a method to receive notification when the

user clicks on an item.

The values for pCamera and pOnMenuItemClickListener() can also be set

via getter/setter methods. The class also includes methods that work with the class

instance variables:

 n mMenuItems: an <Array List> of menu items

 n mMenuAnimator: an animator to use when the scene is displayed

Chapter 3 The Game Loop and Menus38

Menu Items and Scenes Attached to MenuScene

The methods are as follows:

 n addMenuItem(final IMenuItem pMenuItem)

This method adds pMenuItem to the list of menu items to be displayed and

clicked on.

 n getMenuItemCount()

This method returns the number of menu items on the list.

 n setChildScene(final Scene pChildScene, final boolean pModal-

Draw, final boolean pModalUpdate, final boolean pModalTouch),

getChildScene(), clearChildScene()

This method addresses a scene that can be attached to the menu scene, as a child

of the scene. We’ll go into more detail about these methods when we talk about

scenes in Chapter 4.

 n setMenuAnimator(final IMenuAnimator pMenuAnimator)

This method sets the menu animator to be used with the menu scene.

TextMenuItem.java

This class defines menu items composed of text. It has a single constructor:

TextMenuItem(final int pID, final Font pFont, final String pText)

The parameters to the constructor are as follows:

 n pID: a unique integer ID that you can use to identify the menu item in the

onClick() callback, or anywhere else required.

 n pFont: the font you want to use when displaying the text. We’ll delve further

into fonts in Chapter 7. For now, simply recognize that this parameter identifies

the typeface (e.g., Courier), the size, and any style.

 n pText: the text to be displayed for this menu item.

SpriteMenuItem.java

This class defines graphical menu items, and the sprite that is displayed for them. It

also has a single constructor:

SpriteMenuItem(final int pID, final TextureRegion pTextureRegion)

This constructor has the following parameters:

 n pID: unique integer ID; the same as for TextMenu items.

 n pTextureRegion: the sprite texture to be used to display the menu item. We talk

a lot more about textures and texture regions in Chapter 5, where we cover sprites.

Adding a Menu Screen to V3 39

AnimatedSpriteMenuItem.java

The third class encompasses menu items that are displayed as animated sprites. It has a

single constructor:

AnimatedSpriteMenuItem(final int pID,

final TiledTextureRegion pTiledTextureRegion)

The parameters are similar to those for SpriteMenuItem.java:

 n pID: unique integer ID.

 n pTiledTextureRegion. We’ll see in Chapter 6 that tiled texture regions are

used for animated sprites; this parameter tells AndEngine what to display for this

menu item.

ColorMenuItemDecorator.java

Menu item decorators change the appearance of a menu item brief ly when it is selected.

As you might expect, this class changes the item’s color. It has one constructor:

ColorMenuItemDecorator(final IMenuItem pMenuItem,

final float pSelectedRed, final float pSelectedGreen,

final float pSelectedBlue, final float pUnselectedRed,

final float pUnselectedGreen, final float pUnselectedBlue)

That long string of parameters looks pretty horrible until you realize it’s just the menu

item to be modified and two colors—one for the item when it is selected by the user

and one for the same item when it is unselected. Color values are usually represented

in AndEngine as a series of three f loating-point numbers, one each for red, blue, and

green. The f loating-point values may vary from 0.0f (for the color not present) to 1.0f

for color fully present. See the example code later in this chapter to see a demonstra-

tion of how ColorMenuItemDecorator is used.

ScaleMenuItemDecorator.java

Another way to indicate on the display that a menu item has been selected is to change

the item’s size brief ly. That’s what this class does, and as you’ve probably guessed, it

has one constructor:

ScaleMenuItemDecorator(final IMenuItem pMenuItem,

final float pSelectedScale, final float pUnselectedScale)

We pass three parameters to this constructor:

 n pMenuItem: the menu item to be decorated

 n pSelectedScale: the size multiplier when the item is selected

 n pUnSelectedScale: the size multiplier when the item is unselected

(usually 1.0f)

Chapter 3 The Game Loop and Menus40

Building the V3 Opening Menu

We’ll start with a text version of the main menu for V3 and will include a small

 graphical pop-up menu attached to the Menu button. The main (static) menu will pro-

vide options for the main functions the game player would want. The pop-up menu

will display the About page, and the pop-up will include a Quit option (although the

Back button does exactly the same thing). To demonstrate menu animation, we’ll slide

the pop-up menu in from the left. Figure 3.1 shows a screenshot of the main menu,

without the pop-up.

Creating the Menu

We need to do two things to add the main menu:

1. Create the menu scene that we want to show.

2. Modify StartActivity so the splash screen is displayed for a few seconds, followed

by the menu scene.

To create the menu scene, we will create a new Activity called MainMenu Activity.

In that Activity, we’ll make use of a subclass of the AndEngine Scene class called

 MenuScene. The code for the scene is shown in Listing 3.2.

Figure 3.1 V3 opening menu

Adding a Menu Screen to V3 41

Listing 3.2 MainMenuActivity.java

package com.pearson.lagp.v3;

+imports

public class MainMenuActivity extends BaseGameActivity implements

IOnMenuItemClickListener {

 // ===

 // Constants

 // ===

 private static final int CAMERA_WIDTH = 480;

 private static final int CAMERA_HEIGHT = 320;

 protected static final int MENU_ABOUT = 0;

 protected static final int MENU_QUIT = MENU_ABOUT + 1;

 protected static final int MENU_PLAY = 100;

 protected static final int MENU_SCORES = MENU_PLAY + 1;

 protected static final int MENU_OPTIONS = MENU_SCORES + 1;

 protected static final int MENU_HELP = MENU_OPTIONS + 1;

 // ===

 // Fields

 // ===

 protected Camera mCamera;

 protected Scene mMainScene;

 private Texture mMenuBackTexture;

 private TextureRegion mMenuBackTextureRegion;

 protected MenuScene mStaticMenuScene, mPopUpMenuScene;

 private Texture mPopUpTexture;

 private Texture mFontTexture;

 private Font mFont;

 protected TextureRegion mPopUpAboutTextureRegion;

 protected TextureRegion mPopUpQuitTextureRegion;

 protected TextureRegion mMenuPlayTextureRegion;

 protected TextureRegion mMenuScoresTextureRegion;

 protected TextureRegion mMenuOptionsTextureRegion;

 protected TextureRegion mMenuHelpTextureRegion;

 private boolean popupDisplayed;

Chapter 3 The Game Loop and Menus42

 // ===

 // Constructors

 // ===

 // ===

 // Getter and Setter

 // ===

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 @Override

 public Engine onLoadEngine() {

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT), this.mCamera));

 }

 @Override

 public void onLoadResources() {

 /* Load Font/Textures. */

 this.mFontTexture = new Texture(256, 256,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 FontFactory.setAssetBasePath("font/");

 this.mFont = FontFactory.createFromAsset(this.mFontTexture,

 this, "Flubber.ttf", 32, true, Color.RED);

 this.mEngine.getTextureManager().loadTexture(this.mFontTexture);

 this.mEngine.getFontManager().loadFont(this.mFont);

 this.mMenuBackTexture = new Texture(512, 512,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 this.mMenuBackTextureRegion =

 TextureRegionFactory.createFromAsset(this.mMenuBackTexture,

 this, "gfx/MainMenu/MainMenuBk.png", 0, 0);

 this.mEngine.getTextureManager().loadTexture(this.mMenuBackTexture);

 this.mPopUpTexture = new Texture(512, 512,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 this.mPopUpAboutTextureRegion =

 TextureRegionFactory.createFromAsset(this.mPopUpTexture,

 this, "gfx/MainMenu/About_button.png", 0, 0);

Adding a Menu Screen to V3 43

 this.mPopUpQuitTextureRegion =

 TextureRegionFactory.createFromAsset(this.mPopUpTexture,

 this, "gfx/MainMenu/Quit_button.png", 0, 50);

 this.mEngine.getTextureManager().loadTexture(this.mPopUpTexture);

 popupDisplayed = false;

 }

 @Override

 public Scene onLoadScene() {

 this.mEngine.registerUpdateHandler(new FPSLogger());

 this.createStaticMenuScene();

 this.createPopUpMenuScene();

 /* Center the background on the camera. */

 final int centerX = (CAMERA_WIDTH -

 this.mMenuBackTextureRegion.getWidth()) / 2;

 final int centerY = (CAMERA_HEIGHT -

 this.mMenuBackTextureRegion.getHeight()) /

 2;

 this.mMainScene = new Scene(1);

 /* Add the background and static menu */

 final Sprite menuBack = new Sprite(centerX,

 centerY, this.mMenuBackTextureRegion);

 mMainScene.getLastChild().attachChild(menuBack);

 mMainScene.setChildScene(mStaticMenuScene);

 return this.mMainScene;

 }

 @Override

 public void onLoadComplete() {

 }

 @Override

 public boolean onKeyDown(final int pKeyCode,

 final KeyEvent pEvent) {

 if(pKeyCode == KeyEvent.KEYCODE_MENU &&

 pEvent.getAction() == KeyEvent.ACTION_DOWN) {

 if(popupDisplayed) {

 /* Remove the menu and reset it. */

 this.mPopUpMenuScene.back();

 mMainScene.setChildScene(mStaticMenuScene);

 popupDisplayed = false;

 } else {

Chapter 3 The Game Loop and Menus44

 /* Attach the menu. */

 this.mMainScene.setChildScene(

 this.mPopUpMenuScene, false, true, true);

 popupDisplayed = true;

 }

 return true;

 } else {

 return super.onKeyDown(pKeyCode, pEvent);

 }

 }

 @Override

 public boolean onMenuItemClicked(final MenuScene pMenuScene,

 final IMenuItem pMenuItem,

 final float pMenuItemLocalX,

 final float pMenuItemLocalY) {

 switch(pMenuItem.getID()) {

 case MENU_ABOUT:

 Toast.makeText(MainMenuActivity.this,

 "About selected",

 Toast.LENGTH_SHORT).show();

 return true;

 case MENU_QUIT:

 /* End Activity. */

 this.finish();

 return true;

 case MENU_PLAY:

 Toast.makeText(MainMenuActivity.this,

 "Play selected", Toast.LENGTH_SHORT).show();

 return true;

 case MENU_SCORES:

 Toast.makeText(MainMenuActivity.this,

 "Scores selected",

 Toast.LENGTH_SHORT).show();

 return true;

 case MENU_OPTIONS:

 Toast.makeText(MainMenuActivity.this,

 "Options selected",

 Toast.LENGTH_SHORT).show();

 return true;

 case MENU_HELP:

 Toast.makeText(MainMenuActivity.this,

 "Help selected", Toast.LENGTH_SHORT).show();

 return true;

 default:

 return false;

 }

 }

Adding a Menu Screen to V3 45

 // ===

 // Methods

 // ===

 protected void createStaticMenuScene() {

 this.mStaticMenuScene = new MenuScene(this.mCamera);

 final IMenuItem playMenuItem = new ColorMenuItemDecorator(

 new TextMenuItem(MENU_PLAY, mFont, "Play Game"),

 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f);

 playMenuItem.setBlendFunction(GL10.GL_SRC_ALPHA,

 GL10.GL_ONE_MINUS_SRC_ALPHA);

 this.mStaticMenuScene.addMenuItem(playMenuItem);

 final IMenuItem scoresMenuItem =

 new ColorMenuItemDecorator(

 new TextMenuItem(MENU_SCORES, mFont, "Scores"),

 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f);

 scoresMenuItem.setBlendFunction(GL10.GL_SRC_ALPHA,

 GL10.GL_ONE_MINUS_SRC_ALPHA);

 this.mStaticMenuScene.addMenuItem(scoresMenuItem);

 final IMenuItem optionsMenuItem =

 new ColorMenuItemDecorator(

 new TextMenuItem(MENU_OPTIONS, mFont, "Options"),

 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f);

 optionsMenuItem.setBlendFunction(GL10.GL_SRC_ALPHA,

 GL10.GL_ONE_MINUS_SRC_ALPHA);

 this.mStaticMenuScene.addMenuItem(optionsMenuItem);

 final IMenuItem helpMenuItem = new ColorMenuItemDecorator(

 new TextMenuItem(MENU_HELP, mFont, "Help"),

 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f);

 helpMenuItem.setBlendFunction(GL10.GL_SRC_ALPHA,

 GL10.GL_ONE_MINUS_SRC_ALPHA);

 this.mStaticMenuScene.addMenuItem(helpMenuItem);

 this.mStaticMenuScene.buildAnimations();

 this.mStaticMenuScene.setBackgroundEnabled(false);

 this.mStaticMenuScene.setOnMenuItemClickListener(this);

 }

 protected void createPopUpMenuScene() {

 this.mPopUpMenuScene = new MenuScene(this.mCamera);

 final SpriteMenuItem aboutMenuItem =

 new SpriteMenuItem(MENU_ABOUT,

 this.mPopUpAboutTextureRegion);

Chapter 3 The Game Loop and Menus46

 aboutMenuItem.setBlendFunction(GL10.GL_SRC_ALPHA,

 GL10.GL_ONE_MINUS_SRC_ALPHA);

 this.mPopUpMenuScene.addMenuItem(aboutMenuItem);

 final SpriteMenuItem quitMenuItem = new SpriteMenuItem(

 MENU_QUIT, this.mPopUpQuitTextureRegion);

 quitMenuItem.setBlendFunction(GL10.GL_SRC_ALPHA,

 GL10.GL_ONE_MINUS_SRC_ALPHA);

 this.mPopUpMenuScene.addMenuItem(quitMenuItem);

 this.mPopUpMenuScene.setMenuAnimator(

 new SlideMenuAnimator());

 this.mPopUpMenuScene.buildAnimations();

 this.mPopUpMenuScene.setBackgroundEnabled(false);

 this.mPopUpMenuScene.setOnMenuItemClickListener(this);

 }

 // ===

 // Inner and Anonymous Classes

 // ===

}

This is a lot of code at one whack, but we’ll break it down into sections to see

what’s going on. Many of the topics are covered in more detail later in the book, so

we’ll just introduce them here.

MainMenuActivity

After the imports, we declare the MainMenu Activity class to be a subclass of Base-

GameActivity, as usual. We also say that it implements the IOnMenuItemClickListener

interface, which we need to respond to user clicks on the menu.

Constants and Fields

We then define a bunch of constants. The MENU_xxx constants are IDs that we’ll use

later to identify the different menu items, both when we create them and in the click

listener. We’ve separated them into two groups (one for the static menu and one for

the pop-up), but that’s really an arbitrary decision.

onLoadResources()

After declaring the fields we’ll use in the Activity, we specify the usual set of override

methods. This version of onLoadEngine() looks exactly like the version we used

with StartActivity, demonstrating the pattern that we will use for most of the Activi-

ties we create in the book.

Adding a Menu Screen to V3 47

In onLoadResources(), we want to load the textures and anything else we need

in the way of resources. Given that we plan to display a text menu, we’ll need a font

for the text; thus the first thing we do is load a font. We create a Texture to hold the

font texture, and use FontFactory.createFromAsset() to actually load the font

into a Font object. Before compiling the game, we create a subfolder of assets called

font and import a TrueType font file there, Flubber.ttf. In createFromAsset(),

we tell the method that we want to load the Flubber font and have it render text that is

32 pixels high and colored in red. Chapter 7 provides a lot more information on fonts

and text in general.

Still in onLoadResources(), we create a Texture and TextureRegion for the

background of the static menu scene. As shown in Figure 3.1, our menu includes

a black background, the words “Choose Your Poison,” and a strip of grass on the

 bottom. We created a PNG image of that screen separately and stored it in a f ile,

MainMenuBk.png, which we then imported into assets/gfx. We load the Texture

into the Texture Manager. We’ll explore Textures and the Texture Manager in

depth in Chapters 4 and 5.

We also create and load a Texture and TextureRegions for the two items in the

pop-up menu. Because our game will use a graphical menu, we load the Textures

from PNG files we’ve prepared and imported for each of the menu buttons.

onLoadScene()

We’re also overriding onLoadScene(). To do so, we first enable the frames

per second logger, just as we did in StartActivity. We then call two methods to

 create the two menu scenes—one for the static menu that appears when the scene

is f irst displayed, and one for the scene that we’ll superimpose if the user presses

the Menu key. We create the MainScene that we’ll hang everything off of and

 center the camera on it. Finally, we create a sprite for the background of the scene,

attach the sprite to the scene, and set the static menu scene as a child scene of

MainScene.

createMenuScene() and createPopUpScene()

Before we look at onKeyDown() or onMenuItemClicked(), let’s skip down

to the menu scene creation methods—that is, createStaticMenuScene() and

 createPopUpScene(). For createStaticMenuScene(), we begin by creating the

scene and then create four TextMenu Item objects for the four menu options. We pass the

constructors an ID that we can use to identify the item when clicked, a font to use, and

a string to display. At this point, the font that we loaded in onLoadResources() comes

in handy. We tell OpenGL how to blend the rendered text menu item with the rest

of the scene, and add each item to the menu scene. We call two methods—build-

Animations() and setBackgroundEnabled()—that make the scene display the way

we want it, and add onMenuItemClicked() as the callback method to be used when

the user clicks on the menu item.

Chapter 3 The Game Loop and Menus48

The createPopUpMenuScene() method is very similar, except that now we’re

creating a graphical menu. We create SpriteMenu Items and load them with Textures

that we loaded earlier under onLoadResources().

onKeyDown() and onMenuItemClicked()

Now that our menu scenes are set up, let’s look at the two methods that respond to

user actions—onKeyDown() and onMenuItemClicked().

onKeyDown() checks whether the user pressed the Menu key. If not, it passes the

key back to Android for further processing. The user uses the Menu key to both dis-

play and remove the pop-up menu. Thus, if the Menu key was pressed, onKeyDown()

determines whether the pop-up menu is being displayed. If it is being displayed, this

menu is removed and the static menu is again set as the child scene of the main scene.

If the pop-up is not being displayed, it is added to the main scene.

onMenuItemClicked() is a switch statement using the IDs that we created for

each of the menu items. We can use one method and one switch statement for both

menus, as the IDs are unique. For now, we cannot take the player to any other scenes, so

we just display a Toast for each menu item. The exception is Quit, which doesn’t really

quit the application; instead, it just ends this Activity and takes us back to the splash

screen.

Splash to Menu

The next thing we need to do is modify the game so that the splash screen displays

for 3 seconds and moves on to the menu scene. Eventually we’ll want to use the splash

display time to load graphics and sounds, but we don’t have any to load yet. Listing 3.3

shows the modified version of StartActivity.java.

Listing 3.3 StartActivity.java

package com.pearson.lagp.v3;

+imports

public class StartActivity extends BaseGameActivity {

 // ===

 // Constants

 // ===

 private static final int CAMERA_WIDTH = 480;

 private static final int CAMERA_HEIGHT = 320;

 // ===

 // Fields

 // ===

Adding a Menu Screen to V3 49

 private Camera mCamera;

 private Texture mTexture;

 private TextureRegion mSplashTextureRegion;

 private Handler mHandler;

 // ===

 // Constructors

 // ===

 // ===

 // Getter and Setter

 // ===

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 @Override

 public Engine onLoadEngine() {

 mHandler = new Handler();

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT), this.mCamera));

 }

 @Override

 public void onLoadResources() {

 this.mTexture = new Texture(512, 512,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 this.mSplashTextureRegion =

 TextureRegionFactory.createFromAsset(this.mTexture,

 this, "gfx/Splashscreen.png", 0, 0);

 this.mEngine.getTextureManager().loadTexture(this.mTexture);

 }

 @Override

 public Scene onLoadScene() {

 this.mEngine.registerUpdateHandler(new FPSLogger());

 final Scene scene = new Scene(1);

 /* Center the splash on the camera. */

 final int centerX = (CAMERA_WIDTH -

 this.mSplashTextureRegion.getWidth()) / 2;

Chapter 3 The Game Loop and Menus50

 final int centerY = (CAMERA_HEIGHT -

 this.mSplashTextureRegion.getHeight()) / 2;

 /* Create the sprite and add it to the scene. */

 final Sprite splash = new Sprite(centerX, centerY,

 this.mSplashTextureRegion);

 scene.getLastChild().attachChild(splash);

 return scene;

 }

 @Override

 public void onLoadComplete() {

 mHandler.postDelayed(mLaunchTask,3000);

 }

 private Runnable mLaunchTask = new Runnable() {

 public void run() {

 Intent myIntent = new Intent(StartActivity.this,

 MainMenuActivity.class);

 StartActivity.this.startActivity(myIntent);

 }

 };

 // ===

 // Methods

 // ===

 // ===

 // Inner and Anonymous Classes

 // ===

}

All we’ve done is ask Android to post a delayed Intent to start MainMenuActivity

after 3 seconds. AndEngine treats scenes as normal Android Activities—one of the advan-

tages of doing so is that we can invoke the scenes like we would any other Activity.

If you now run the application (either in the emulator or on a real phone), the splash

screen will display for 3 seconds, and then the static menu will appear. If you touch one of

the menu items, a Toast will appear confirming your selection. If you press the Menu key,

the About and Quit buttons will be displayed. If you click on About, you will get another

Toast. If you click on Quit, you will be taken back to the splash screen, where you will

remain forever; onLoadComplete() is not called because the Activity is already loaded.

Memory Usage

This is a good opportunity to take a minute and mention a topic that is important

to any mobile software design—namely, memory usage and garbage collection. If

Summary 51

you’ve developed any mobile software at all, you know that one key issue differentiates

 desktop and mobile applications: Resources are limited on a mobile device. Resources

include battery power, memory, permanent storage, screen size, and processor cycles,

among other things. As we create our mobile game, we need to constantly be thinking

of ways to conserve those resources.

For example, memory usage and garbage collection are a big deal for Android

mobile games. As you know, our Java code executes on the Dalvik virtual machine.

When it runs out of available memory, the virtual machine calls a garbage collector to

recycle objects that are no longer referenced. That action solves most of our potential

memory leak problems, but it also introduces a delay in the execution of the game

while the garbage collector does its thing. Naturally, we want to minimize garbage

collection as much as possible, which we can do by reusing as many objects as possible.

If you look at the source code for AndEngine, you’ll see that it makes very good use of

pools of objects that it assigns for use and then recycles. That approach isn’t a panacea

for reducing garbage collection, but when used wisely it can be very beneficial.

The Quit Option

Now I have to share a dirty little secret. Well, maybe not so dirty, but it’s about the

“Quit” option that we just put in that last menu. As you may know, Android applica-

tions never have a true “Quit” option. When a user wants to stop (really suspend)

an application, the Android standard calls for the user to press the “Back” button,

at which point Android displays the user’s home screen. If this all sounds like Greek

to you, take a look at the Android Developer documentation (http://developer

.android.com). Search for “Activity Lifecycle.” The application gets a chance to

shut down any services used and stop any timers in the current Activity’s onPause()

method.

In keeping with Android practices, moving forward we will eliminate the “Quit”

option from the menu.

Summary

The chapter began by describing game loops in general, then focused on the way the

game loop is implemented in AndEngine. For the most part, the AndEngine game

loop is hidden—the code that we write tells the game loop what we’d like to happen,

and it executes that plan for us automatically.

AndEngine provides several classes related to menus. We looked at the methods

provided for creating and managing text menus, graphical (sprite) menus, and ani-

mated sprite menus.

The next step in creating our example game was to create a main menu that the

player would see once the display of the splash screen ends. Along the way, we saw the

AndEngine menu classes in action. We created a text menu that lists the menu items,

and we saw the default behavior for text menus. We also created a pop-up graphical

http://developer.android.com
http://developer.android.com

Chapter 3 The Game Loop and Menus52

menu with a few options, and showed how its creation is both similar to and different

from the creation of a text menu.

We now have the basic structure in place to create our AndEngine-based game. We

have a way to start the game, a way to choose different menu items, and a way to end

the game. We know the pattern for creating new scenes and new avenues for the play-

ers. It’s time we got into the game itself, and the specifics of the elements that make it

up. That’s where we’re headed, beginning in Chapter 4.

Exercises

1. We used a SlideAnimator on the pop-up menu in the MainMenuActivity

example. What happens if you attach a SlideAnimator to the static menu in the

example? Explain why the static menu doesn’t slide in as you might expect.

2. Modify MainMenuActivity.java so each line of the menu appears in a differ-

ent color.

3. Modify MainMenuActivity.java so the items on the main menu “bloom”

slightly in size when they are selected (instead of changing to a gray color).

4

Scenes, Layers, Transitions,
and Modifiers

In a movie or play, a scene is a setting where some action takes place over a constrained

period of time. Computer games are also organized around scenes, and scenes are

composed of layers of graphics. If you’ve ever edited your own video, you know that

there are many ways to transition from scene to scene, to make the f low more inter-

esting for the viewer. Similarly, in a computer game, we want to transition between

scenes, and we want to be able to modify graphical elements in a uniform way. We’d

like to be able to modify their position, scale, color, rotation, transparency, and

 perhaps path. This chapter looks at how AndEngine lets us create and modify scenes

and graphical objects.

Scenes in AndEngine

In AndEngine, virtually all of the visible elements in a game are subclasses of the

class Entity. Entities can be modified with Modifiers, and in particular scenes can be

 modified to produce transitions. We’re focused on scenes in this chapter, but given that

the other visible elements of the game (e.g., sprites, tiles, shapes, particles, and text) are

all Entities, the Modifiers we discuss here apply to them as well.

We will go through the characteristics of the Entity class and take an in-depth look

at all the Modifiers and Ease functions that are available to change Entities. I apologize

in advance if this material gets a bit tedious. There are a lot of Modifiers available,

with a lot of options, and a number of Ease functions. If the explanations become too

repetitive, feel free to skip ahead and use these sections as a reference to the Modifiers

and Ease functions in the future.

The Entity/Component Model

We could take many different approaches when designing a game engine such as

AndEngine. Because we know Android application development is mostly done in

Java, our first inclination might be to stick to an object-oriented approach. With this

Chapter 4 Scenes, Layers, Transitions, and Modifiers 54

strategy, each character in the game would have its own class, and an inheritance

 hierarchy would exist among those classes, with abstract classes used to group func-

tionality. For example, in V3 there would likely be a Vampire class, maybe a Virgin

class, and classes for each of the things that interact during the game (e.g., Bullet,

Hatchet, Cross, Tombstones). There might be an abstract Character class that both

Vampire and Virgin inherit from. Bullet, Hatchet, and Cross might be subclasses of an

abstract Weapons class. Each class would contain the representation and behaviors for

that class.

That approach certainly works, but it can quickly grow difficult to manage. If we

never changed our minds about what certain characters should do, we could design

an object-oriented hierarchy where everything is logical and just implement that

hierarchy. Of course, if you’ve done any software development at all, you know it

doesn’t work that way. New ideas emerge as the code is being developed, and changes

continue to occur in maintenance releases of the game. The strictly object-oriented

approach can become quite brittle to ad hoc changes and become difficult to keep

refactoring.

One way to build some f lexibility into game design is through entity/component

design, which is the way AndEngine games are built. Instead of developing a class for

each thing in the game, all things are considered Entities. Entities are then dynamically

assigned attributes (or components) that describe how the Entity should be displayed

(its TextureRegion), how it should move over time (Modifiers), and how its appear-

ance should change. Interactions between the Entities (e.g., collisions) and with the

player (e.g., touch events) are built into the Activity where the interaction takes place.

Both approaches (object-oriented and entity/component) have some drawbacks, and

AndEngine strikes a fair compromise between them. AndEngine games are designed

around Entities, but, as we’ll see in this chapter, the Entity class defines a lot of instance

variables that are common to visible elements of the game.

If this discussion seems a bit abstract right now, it will be clearer as we develop

more details of the V3 example game. You can also search the Internet for “entity

component game design”; you should get quite a few hits to help explain the concepts.

Entity

As the superclass of virtually all things visible, including Scene, Entity contains the

properties common to visible things. These properties are accessed via getter and setter

methods, and are the means by which Entities are modified by Modifier classes. These

properties include the following:

 n float mX, mY: the current position of the Entity

 n float mInitialX, mInitialY: the initial position of the Entity

 n boolean mVisible: whether the Entity is currently visible

 n boolean mIgnoreUpdate: whether the Entity should pay attention to updates

 n int mZindex: where the Entity appears in the stack of Entities to be displayed

Scenes in AndEngine 55

 n IEntity mParent: the parent of this Entity

 n SmartList<IEntity> mChildren: a list of Entities who are children of this

Entity

 n EntityModifierList mEntityModifiers: a list of Modifiers to apply to this

Entity

 n UpdateHandlerList mUpdateHandlers: a list of Update Handlers to apply

to this Entity

 n float mRed, mGreen, mBlue: the color or tint of this Entity

 n float mAlpha: the transparency of this Entity

 n float mX, mY: the current position of the Entity

 n float mRotation: the current rotation of the Entity

 n float mRotationCenterX, mRotationCenterY: the point about which the

Entity rotates

 n float mScale: the current scaling factor for the Entity’s size

 n float mScaleCenterX, mScaleCenterY: the point about which to scale the

Entity

Constructor

You will rarely have to use a constructor for Entity (you typically use the constructor

for one of the subclasses), but two exist:

Entity()

Entity(final float pX, final float pY)

The second constructor provides a position that serves as both the initial and current

positions of the Entity.

Position

The position of an Entity in AndEngine is the position of its center. Entities keep

track of their initial position as well as their current position. The following methods

are provided:

float getX()

float getY()

Return the components of the current position of the Entity.

float getInitialX()

float getInitialY()

Return the components of the initial position of the Entity.

Chapter 4 Scenes, Layers, Transitions, and Modifiers 56

void setPosition(final float pX, final float pY)

Sets the current position.

setPosition(final IEntity pOtherEntity)

Sets the current position to be the same as that of the passed Entity.

void setInitialPosition()

Sets the current position to the initial position. (Note: This method does not change

the initial position, as you might expect.)

Scale

Entities have a scale factor that’s multiplied by the Entity dimensions when each Entity

is displayed. They also have a scale position, which serves as the center point for the

scaling; the center point is the only point that doesn’t move between the unscaled and

scaled versions of the Entity. A scale of 2.0f means the Entity should be displayed at

twice its “normal” size. Methods related to scaling are summarized here:

boolean isScaled()

Returns true if the current scale is not 1.0f.

float getScaleX()

float getScaleY()

Return the scale multiplier in each dimension.

void setScaleX(final float pScaleX)

void setScaleY(final float pScaleY)

Set the scale in the indicated direction separately.

void setScale(final float pScale)

Sets the same scale in both the X and Y directions.

void setScale(final float pScaleX, final float pScaleY)

Sets the scales to (possibly) different values, but both at once.

float getScaleCenterX()

float getScaleCenterY()

Return the scale center point positions.

void setScaleCenterX(final float pScaleCenterX)

void setScaleCenterY(final float pScaleCenterY)

Set the scale center point position values separately.

void setScaleCenter(final float pScaleCenterX, final float pScaleCenterY)

Sets the scale center point position.

Scenes in AndEngine 57

Color

In AndEngine, the color of an Entity is a multiplier that is applied to any color that

the underlying graphics might include. If the Entity is a sprite, for example, and it has

a texture applied to it, these colors are multiplied by the sprite colors to result in a

combination. You can think of these colors as tinting the Entity.

Colors in AndEngine are most commonly separated into Red, Green, Blue,

and Alpha, and have values ranging from 0.0f, for no intensity, to 1.0f, for full

intensity.

float getRed()

float getGreen()

float getBlue()

float getAlpha()

Each method returns the corresponding component of the Entity color.

void setColor(final float pRed, final float pGreen, final float pBlue)

Sets all three components of the current color.

void setColor(final float pRed, final float pGreen, final float pBlue, final float

pAlpha)

Sets the current color and transparency all at once.

Rotation

Much as with Scale, Entities maintain a value and a center position for Rotation. The

Rotation value is always in degrees, and can be less than 0 or greater than 360. Posi-

tive rotation moves in a counterclockwise direction.

float getRotation()

Returns the current Rotation value.

setRotation(final float pRotation)

Sets the current Rotation value.

float getRotationCenterX()

float getRotationCenterY()

Return the components of the current Rotation center position.

void setRotationCenterX(final float pRotationCenterX)

void setRotationCenterY(final float pRotationCenterY)

Set the components of the Rotation center position separately.

void setRotationCenter(final float pRotationCenterX, final float pRotationCenterY)

Sets the complete Rotation center point all at once.

Chapter 4 Scenes, Layers, Transitions, and Modifiers 58

Managing Children

Many a book has been written on the topic of managing children—but here we’re

 talking about the children of Entities. Entities are often arranged in a hierarchy so they

can be modified collectively. Then if a parent Entity is modified, the modification passes

automatically to all of its children. Conversely, modifications to the child do not auto-

matically pass to the parent. The methods provided for managing children include the

following options:

IEntity IEntity getFirstChild()

IEntity getLastChild()

Get the first or last child attached to this Entity. The last child is also the point where

you want to attach new children [see attachChild()].

void attachChild(final IEntity pEntity)

Adds a child to this Entity, which is normally the last child added. The pattern is as

follows:

parent.getLastChild().attachChild(newchild);

void detachChildren()

boolean detachChild(final IEntity pEntity)

Detach all the children or a specific child of this Entity.

int getChildCount()

Returns the number of children currently attached.

IEntity getChild(final int pIndex)

Returns the nth child attached.

void sortChildren()

Sorts the Entity’s children by z-index [see setZindex()].

Manage Modifiers

Modifiers are used to programmatically change the key parameters for an Entity. You

use Modifiers to change the position, scale, color, rotation, or transparency of an Entity,

either all at once or gradually over a specific duration. The major Modifiers are described

in detail later in this chapter. The Entity methods for managing Modifiers include the

following:

void registerEntityModifier(final IEntityModifier pEntityModifier)

Registers a Modifier with the Entity so it will apply when the Entity is displayed.

Scenes in AndEngine 59

boolean unregisterEntityModifier(final IEntityModifier pEntityModifier)

Removes the specified Modifier so it is no longer applied (the return value is true if

this operation is successful).

void clearEntityModifiers()

Removes all the Modifiers registered with this Entity.

Other Useful Entity Methods

Some other Entity methods don’t fall neatly into the categories listed previously. They

control the visibility of the Entity, the order in which it is rendered, and a wildcard,

where you can attach any Object you like to the Entity.

void setVisible(final boolean pVisible)

boolean isVisible()

Set and return whether the Entity is visible or invisible. This property is independent

of the Alpha value, so if you set an Entity to be invisible and then set it to be visible,

the Alpha value remains unchanged.

void setZIndex(final int pZIndex)

int getZIndex()

Sets or gets the z-index value for the Entity. Entities with a higher z-index are displayed

on top of those with a lower z-index. This method sets the z-index, but you have

to call sortChildren() on the Entity’s parent to actually rearrange the drawing

order.

void setUserData(final Object pUserData)

Object getUserData()

Sets or retrieves an arbitrary object defined by the user. You can use this technique to

attach anything you like to an Entity, for whatever reason.

Layers

A Layer in AndEngine is a subclass of Entity. It adds almost nothing to its superclass,

but it allows you to layer the graphics that make up a Scene and to assign z-indexes

and other properties to the Layers. There are two constructors:

Layer()

Layer(final float pX, final float pY)

The first is equivalent to the second, with pX and pY both being 0.0f. Both construc-

tors call the superclass constructor—and that’s all there is to Layers.

Chapter 4 Scenes, Layers, Transitions, and Modifiers 60

Scenes

AndEngine provides a Scene class that we can instantiate to create each scene of our

game. Scenes have the following properties:

 n Scene mParentScene: Every Scene can have an optional parent Scene.

 n Scene mChildScene: Every Scene can have an optional child Scene.

 n SmartList<ITouchArea> mTouchAreas: Scenes know how to accept user

touches and have a list of touch areas.

 n IOnSceneTouchListener mOnSceneTouchListener: A listener can be

 registered to be called when the Scene is touched.

 n IOnAreaTouchListener mOnAreaTouchListener: A separate listener can

be registered to be called when a touch area is touched.

 n RunnableHandler mRunnableHandler: A Scene can have a

RunnableHandler.

 n IBackground mBackground: Every Scene has a background, which is a solid

black color by default.

 n boolean mOnAreaTouchTraversalBackToFront: This f lag indicates the

order in which touches should be processed.

 n Layers of graphics can be attached to a Scene as children of the Scene.

Constructor

There is one constructor for Scene:

Scene(final int pLayerCount)

We can’t change the layer count once the Scene is created, so if you edit your game

to add a Layer at some point, you may have to go back and change the count given to

the constructor.

Background Management

Several methods are used to set and get the Scene’s background, and to set and test

whether the background is enabled.

IBackground getBackground()

void setBackground(final IBackground pBackground)

void setBackgroundEnabled(final boolean pEnabled)

boolean isBackgroundEnabled()

As mentioned earlier, the background defaults to a black ColorBackBackground

until you set it to something else.

Scenes in AndEngine 61

Child Scene Management

Scenes can have one special child that is not a Layer. This child Scene has several

methods associated with it:

void setChildScene(final Scene pChildScene)

void setChildScene(final Scene pChildScene, final boolean pModalDraw,

final boolean pModalUpdate, final boolean pModalTouch)

void setChildSceneModal(final Scene pChildScene)

Scene getChildScene()

boolean hasChildScene()

void clearChildScene()

If the Boolean values returned by the second setChildScene() method are true,

they make the child Scene modal, meaning the parent Scene will pause while the child

has focus. The third method is equivalent to the second with the Boolean values all set

to true.

Layer Management

Layers are managed using the child management methods inherited from Entity. Only

one additional method is defined in Scene:

void sortLayers()

It sorts the Layers who are children of the Scene according to their z-index.

Parent Management

Scenes can have a parent Scene, which is set automatically when a child Scene is added

to a Scene. Alternatively, it can be set through the following method:

void setParentScene(final Scene pParentScene)

There is no getter equivalent, and the instance variable is protected, but the value is

used in managing the back Scene transition.

Touch Area Management

Scenes know how to respond to touch events, and there are methods to create and

respond to touch areas in the Scene:

void registerTouchArea(final ITouchArea pTouchArea)

boolean unregisterTouchArea(final ITouchArea pTouchArea)

boolean unregisterTouchAreas(final ITouchAreaMatcher pTouchAreaMatcher)

void clearTouchAreas()

ArrayList<ITouchArea> getTouchAreas()

Chapter 4 Scenes, Layers, Transitions, and Modifiers 62

boolean onSceneTouchEvent(final TouchEvent pSceneTouchEvent)

boolean onAreaTouchEvent(final TouchEvent pSceneTouchEvent,

final float sceneTouchEventX, final float sceneTouchEventY,

final ITouchArea touchArea)

boolean onChildSceneTouchEvent(final TouchEvent pSceneTouchEvent)

We’ll cover the details of TouchAreas and response to touches in Chapter 8, on user

input, but for now recognize that you can set up TouchAreas for a Scene and override

the onXTouchEvent methods to respond to touches.

Specialized Scenes

There are subclasses of Scene that define specialized types of Scenes. We’ll use the

constructors to list them:

CameraScene(final int pLayerCount)

CameraScene(final int pLayerCount, final Camera pCamera)

Add a Camera for the Scene.

SplashScene(final Camera pCamera, final TextureRegion pTextureRegion)

SplashScene(final Camera pCamera, final TextureRegion pTextureRegion,

final float pDuration, final float pScaleFrom, final float pScaleTo)

Create a splash screen (simplifying all that we did to create our splash screen in

 Chapter 2).

MenuScene()

MenuScene(final IOnMenuItemClickListener pOnMenuItemClickListener)

MenuScene(final Camera pCamera)

MenuScene(final Camera pCamera, final IOnMenuItemClickListener

pOnMenuItemClickListener)

Create a MenuScene, like the one we used in Chapter 3.

PopupScene(final Camera pCamera, final Scene pParentScene,

final float pDurationSeconds)

PopupScene(final Camera pCamera, final Scene pParentScene,

final float pDurationSeconds, final Runnable pRunnable)

TextPopupScene(final Camera pCamera, final Scene pParentScene,

final Font pFont, final String pText, final float pDurationSeconds)

TextPopupScene(final Camera pCamera, final Scene pParentScene,

final Font pFont, final String pText, final float pDurationSeconds,

final IEntityModifier pShapeModifier)

TextPopupScene(final Camera pCamera, final Scene pParentScene,

final Font pFont, final String pText, final float pDurationSeconds,

final Runnable pRunnable)

Scenes in AndEngine 63

TextPopupScene(final Camera pCamera, final Scene pParentScene,

final Font pFont, final String pText, final float pDurationSeconds,

final IEntityModifier pShapeModifier, final Runnable pRunnable)

Create a variety of Scenes that pop up temporarily over the current Scene.

Entity Modifiers

In the previous section, we said you could attach Modifiers to Entities to control param-

eters such as position, scale, color, rotation, and transparency. This section explores

the Modifiers themselves, with descriptions of the ones available and the ways they can

be combined into sequences of Modifiers.

Modifiers for Entities are subclasses of EntityModifier and are created and registered

with the Entity they affect using the registerEntityModifier() method described

earlier. A typical pattern would be

entity.registerEntityModiier(new XxxModiier(p1, p2, …);

where entity is some previously defined Entity, and XxxModifier is one of

the Modifier classes listed in the next subsection. If the Modifier has a duration

 parameter, it is usually the first parameter passed. The other parameters vary

by Modifier.

Common Methods

Some methods that are common to the Entity Modifiers are especially useful.

XxxModifier clone()

Returns a copy of the Modifier. This method is useful if you need two Entities to behave

the same way, but not be driven by the identical Modifier. Each Modifier executes its

own animation sequence during the duration, and you might not want the Entities’ ani-

mations linked, for example.

boolean isFinished()

Returns true if the Modifier has finished its action.

void setRemoveWhenFinished(final boolean pRemoveWhenFinished)

boolean isRemoveWhenFinished()

Sets or gets a f lag saying whether the Modifier should remove itself once it’s

finished.

void setModifierListener(final IModifierListener<T> pModifierListener)

IModifierListener<T> getModifierListener()

Sets or gets a listener routine that is called when the Modifier is finished. Only one

such ModifierListener can be registered.

Chapter 4 Scenes, Layers, Transitions, and Modifiers 64

Position

These Modifiers change the current position of the Entity. They are not methods, but

rather are classes that are instantiated as shown in the pattern earlier, under “Entity

Modifiers.”

MoveModifier(final float pDuration, final float pFromX, final float pToX,

final float pFromY, final float pToY, final IEntityModifierListener

pEntityModifierListener, final IEaseFunction

pEaseFunction)MoveModifier(final float pDuration, final float pFromX,

final float pToX,

final float pFromY, final float pToY, final IEntityModifierListener

pEntityModifierListener, final IEaseFunction pEaseFunction)

MoveModifier(final float pDuration, final float pFromX, final float pToX,

final float pFromY, final float pToY, final IEntityModifierListener

pEntityModifierListener, final IEaseFunction pEaseFunction)

MoveModifier(final float pDuration, final float pFromX, final float pToX,

final float pFromY, final float pToY, final IEntityModifierListener

pEntityModifierListener, final IEaseFunction pEaseFunction)

All of these methods cause the Entity to move in both the X and Y directions

at the same time. In each case pDuration is the length of time, in seconds, that

you want the movement to last. We will talk about EaseFunctions in the next

section, but for the moment think of them as “modif iers to the Modif iers.”

 EntityModif ierListeners are callbacks that are initiated when the Modif ier is

 f inished with its action.

MoveXModifier(final float pDuration, final float pFromX, final float pToX)

MoveXModifier(final float pDuration, final float pFromX, final float pToX, final

IEaseFunction pEaseFunction)

MoveXModifier(final float pDuration, final float pFromX, final float pToX, final

IEntityModifierListener pEntityModifierListener)

MoveXModifier(final float pDuration, final float pFromX, final float pToX, final

IEntityModifierListener pEntityModifierListener, final IEaseFunction

pEaseFunction)

MoveXModifier(final MoveXModifier pMoveXModifier)

MoveYModifier(final float pDuration, final float pFromY, final float pToY)

MoveYModifier(final float pDuration, final float pFromY, final float pToY, final

IEaseFunction pEaseFunction)

MoveYModifier(final float pDuration, final float pFromY, final float pToY, final

IEntityModifierListener pEntityModifierListener)

Scenes in AndEngine 65

MoveYModifier(final float pDuration, final float pFromY, final float pToY, final

IEntityModifierListener pEntityModifierListener, final IEaseFunction

pEaseFunction)

MoveYModifier(final MoveYModifier pMoveYModifier)

These Modifiers move the Entity in only the X direction or the Y direction, as indi-

cated. Otherwise, they are the same.

Path

Moving from one point to another is all well and good, but AndEngine also allows us

to specify a multipoint path and have an Entity follow that Path. What’s more, we can

 register a callback to be initiated whenever the Entity reaches each waypoint in the Path.

There are three constructors for Paths:

Path(final int pLength)

Path(final float[] pCoordinatesX, final float[] pCoordinatesY)

Path(final Path pPath)

The first constructor says that the Path will consist of pLength points. The actual

Path is then constructed using the to method to add each segment:

to(inal loat pX, inal loat pY)

The second constructor uses arrays of x and y coordinates to construct the Path, and

the third simply uses a Path that already exists.

The constructors for PathModifier are as follows:

PathModifier(final float pDuration, final Path pPath)

PathModifier(final float pDuration, final Path pPath,

final IEaseFunction pEaseFunction)

PathModifier(final float pDuration, final Path pPath,

final IEntityModifierListener pEntityModiferListener)

PathModifier(final float pDuration, final Path pPath,

final IEntityModifierListener pEntityModiferListener,

final IEaseFunction pEaseFunction)

PathModifier(final float pDuration, final Path pPath,

final IEntityModifierListener pEntityModiferListener,

final IPathModifierListener pPathModifierListener)

PathModifier(final float pDuration, final Path pPath,

final IEntityModifierListener pEntityModiferListener,

final IPathModifierListener pPathModifierListener,

final IEaseFunction pEaseFunction)

Listing 4.1 shows a brief example of creating a Path and registering a PathModifier

with a callback method.

Chapter 4 Scenes, Layers, Transitions, and Modifiers 66

Listing 4.1 PathModifier Example

. . .

 final Path path = new Path(5).to(10, 10).to(10, 50).to(50, 50).

 to(50, 10).to(10, 10);

 entity.registerEntityModifier(new LoopEntityModifier(new PathModifier(30,

 path, null, new IPathModifierListener() {

 @Override

 public void onWaypointPassed(final PathModifier pPathModifier,

 final IEntity pEntity, final int pWaypointIndex) {

 switch(pWaypointIndex) {

 case 0:

 entity.setColor(1.0f, 0.0f, 0.0f);

 break;

 case 1:

 entity.setColor(0.0f, 1.0f, 0.0f);

 break;

 case 2:

 entity.setColor(0.0f, 0.0f, 1.0f);

 break;

 case 3:

 entity.setColor(1.0f, 0.0f, 0.0f);

 break;

 }

 }

));

 scene.getLastChild().attachChild(entity);

. . .

Scale

ScaleModifiers modify the displayed scale of the Entity. The set of constructors is

similar to the set we saw for Position:

ScaleModifier(final float pDuration, final float pFromScale, final float pToScale)

ScaleModifier(final float pDuration, final float pFromScale, final float pToScale,

final IEaseFunction pEaseFunction)

ScaleModifier(final float pDuration, final float pFromScale, final float pToScale,

final IEntityModifierListener pEntityModifierListener)

ScaleModifier(final float pDuration, final float pFromScale, final float pToScale,

final IEntityModifierListener pEntityModifierListener, final

IEaseFunction pEaseFunction)

All of these methods cause the Entity to be scaled for display around its scale position

over some specific duration. The parameters are straightforward. A scale of 1.0f is the

same size as the original.

ScaleModifier(final float pDuration, final float pFromScaleX, final float

pToScaleX, final float pFromScaleY, final float pToScaleY)

Scenes in AndEngine 67

This Modifier scales the Entity immediately and allows the scaling to be different in

the X and Y directions.

ScaleAtModifier(final float pDuration, final float pFromScale, final

float pToScale, final float pScaleCenterX, final float pScaleCenterY)

ScaleAtModifier(final float pDuration, final float pFromScale, final

float pToScale, final float pScaleCenterX, final float pScaleCenterY,

final IEaseFunction pEaseFunction)

ScaleAtModifier(final float pDuration, final float pFromScale, final

float pToScale, final float pScaleCenterX, final float pScaleCenterY,

final IEntityModifierListener pEntityModifierListener)

ScaleAtModifier(final float pDuration, final float pFromScale, final

float pToScale, final float pScaleCenterX, final float pScaleCenterY,

final IEntityModifierListener pEntityModifierListener,

final IEaseFunction pEaseFunction)

ScaleAtModifier(final float pDuration, final float pFromScaleX, final

float pToScaleX, final float pFromScaleY, final float pToScaleY,

final float pScaleCenterX, final float pScaleCenterY)

ScaleAtModifier(final float pDuration, final float pFromScaleX, final

float pToScaleX, final float pFromScaleY, final float pToScaleY,

final float pScaleCenterX, final float pScaleCenterY,

final IEaseFunction pEaseFunction)

ScaleAtModifier(final float pDuration, final float pFromScaleX, final

float pToScaleX, final float pFromScaleY, final float pToScaleY,

final float pScaleCenterX, final float pScaleCenterY,

final IEntityModifierListener pEntityModifierListener)

ScaleAtModifier(final float pDuration, final float pFromScaleX, final

float pToScaleX, final float pFromScaleY, final float pToScaleY,

final float pScaleCenterX, final float pScaleCenterY,

final IEntityModifierListener pEntityModifierListener,

final IEaseFunction pEaseFunction)

These Modifiers are the same as the ScaleModifiers given previously, but they scale

around a point different from the current ScaleCenter position.

Color

The ColorModifiers change the color, as you would expect. All color values range

from 0.0f (zero intensity) to 1.0f (full intensity).

ColorModifier(final float pDuration, final float pFromRed, final float pToRed,

final float pFromGreen, final float pToGreen, final float pFromBlue,

final float pToBlue)

ColorModifier(final float pDuration, final float pFromRed, final float pToRed,

final float pFromGreen, final float pToGreen, final float pFromBlue,

final float pToBlue, final IEaseFunction pEaseFunction)

Chapter 4 Scenes, Layers, Transitions, and Modifiers 68

ColorModifier(final float pDuration, final float pFromRed, final float pToRed,

final float pFromGreen, final float pToGreen, final float pFromBlue,

final float pToBlue, final IEntityModifierListener

pEntityModifierListener, final IEaseFunction pEaseFunction)

ColorModifier(final float pDuration, final float pFromRed, final float pToRed,

final float pFromGreen, final float pToGreen, final float pFromBlue,

final float pToBlue, final IEntityModifierListener

pEntityModifierListener, final IEaseFunction pEaseFunction)

All of these methods cause the Entity color to change over the duration. The EaseFunction

and EntityModifierListener function just as with the other Entity Modifiers.

Rotation

RotationModifiers rotate an Entity about a point—either the current RotationCenter

position or some other point. Rotations are always given in degrees.

RotationModifier(final float pDuration, final float pFromRotation,

final float pToRotation)

RotationModifier(final float pDuration, final float pFromRotation,

final float pToRotation, final IEntityModifierListener

pEntityModifierListener)

RotationModifier(final float pDuration, final float pFromRotation,

final float pToRotation final IEaseFunction pEaseFunction)

RotationModifier(final float pDuration, final float pFromRotation,

final float pToRotation, final IEntityModifierListener

pEntityModifierListener, final IEaseFunction pEaseFunction)

These Modifiers are the ones to use when you want the Entity to rotate around the

current RotationCenter over a given duration.

RotationAtModifier(final float pDuration, final float pFromRotation,

final float pToRotation, final float pRotationCenterX,

final float pRotationCenterY)

RotationAtModifier(final float pDuration, final float pFromRotation,

final float pToRotation, final float pRotationCenterX,

final float pRotationCenterY, final IEntityModifierListener

pEntityModifierListener)

RotationAtModifier(final float pDuration, final float pFromRotation,

final float pToRotation, final float pRotationCenterX,

final float pRotationCenterY, final IEaseFunction pEaseFunction)

RotationAtModifier(final float pDuration, final float pFromRotation,

final float pToRotation, final float pRotationCenterX,

final float pRotationCenterY, final IEntityModifierListener

pEntityModifierListener, final IEaseFunction pEaseFunction)

Scenes in AndEngine 69

These Modifiers are used when you want rotation to occur about a point that is

not the current RotationCenter for a duration. This technique avoids changing the

 RotationCenter, which you might not want to do.

RotationByModifier(final float pDuration, final float pRotation)

RotationByModifier(final RotationByModifier pRotationByModifier)

These Modifiers rotate an Entity about the current RotationCenter immediately. You

could do the same thing with RotationModifier and a pDuration of 0.0f, but these

methods are clearer (and more efficient).

Transparency

Transparency of an Entity is controlled through its Alpha value. These Modifiers

include the ones used to cause an Entity to fade in or out.

AlphaModifier(final float pDuration, final float pFromAlpha, final float

pToAlpha)

AlphaModifier(final float pDuration, final float pFromAlpha, final float

pToAlpha, final IEntityModifierListener)

AlphaModifier(final float pDuration, final float pFromAlpha, final float

pToAlpha, final IEaseFunction pEaseFunction)

AlphaModifier(final float pDuration, final float pFromAlpha, final float

pToAlpha, final IEntityModifierListener pEntityModifierListener,

final IEaseFunction pEaseFunction)

The parameters are straightforward. Alpha values range from 0.0f (invisible, or com-

pletely transparent) to 1.0f (opaque).

FadeInModifier(final float pDuration)

FadeInModifier(final float pDuration, final IEaseFunction pEaseFunction)

FadeInModifier(final float pDuration, final IEntityModifierListener

pEntityModifierListener)

FadeInModifier(final float pDuration, final IEntityModifierListener

pEntityModifierListener, final IEaseFunction pEaseFunction)

These Modifiers are used to fade Entities in and out. They are convenience classes that

wrap the AlphaModifier classes given earlier with Alpha values of 0.0f and 1.0f.

Delay

It may not be obvious why you would ever want a DelayModifier, but in the next

 section we will talk about combining Modifiers into sequences. In those cases,

the ability to delay for a given time is a requirement.

DelayModifier(final float pDuration)

DelayModifier(final float pDuration, final IEntityModifierListener

pEntityModifierListener)

Chapter 4 Scenes, Layers, Transitions, and Modifiers 70

These Modifiers simply delay their action for the specified duration, and optionally

call the EntityModifierListener when finished.

Modifier Combinations

We often want to combine Modifiers to create an effect with an Entity. For example,

we might want to move the Entity while we change its scale and color all at the

same time. Alternatively, we might want to move an Entity, then change its scale, and

then change its color. We can easily generate complex sequences of Modifiers with

 AndEngine using some special Modifiers. The pattern for combining Modifiers using

one of these is shown in Listing 4.2.

Listing 4.2 Modifier Combinations

. . .

entity.registerEntityModifier(

 new SequenceEntityModifier(

 new ParallelEntityModifier(

 new MoveYModifier(3, 0.0f, CAMERA_HEIGHT - 40.0f),

 new AlphaModifier(3, 0.0f, 1.0f),

 new ScaleModifier(3, 0.5f, 1.0f)),

 new RotationModifier(3, 0, 720)

)

);

. . .

Any of the combination Modifiers will throw an IllegalArgumentException if you

pass them anything other than a Modifier where a Modifier is required.

ParallelEntityModifier

When we want to apply two or more Modifiers to an Entity at the same time, we use

the following Modifier:

ParallelEntityModifier(final IEntityModifier… pEntityModifiers)

ParallelEntityModifier(final IEntityModifierListener pEntityModifierListener,

final IEntityModifier… pEntityModifiers)

This combination Modifier runs its parameters in parallel on the Entity where it is

registered. It calls the EntityModifierListener when the last Modifier is finished.

SequenceEntityModifier

When we want to run several Modifiers in sequence, one after the other, we use this

Modifier:

SequenceEntityModifier(final IEntityModifier… pEntityModifiers)

SequenceEntityModifier(final IEntityModifierListener pEntityModifierListener,

final IEntityModifier… pEntityModifiers)

Scenes in AndEngine 71

SequenceEntityModifier(final IEntityModifierListener pEntityModifierListener,

final ISubSequenceShapeModifierListener

pSubSequenceShapeModifierListener, final IEntityModifier…

pEntityModifiers)

The first two SequenceEntityModifiers are similar to their Parallel counterparts. The

final one is a little different, and it allows the creation of SubSequence.

Ease Functions

So what about those EaseFunctions we’ve been allowing for throughout the descriptions

of the Modifiers? What exactly do they do, and which ones are available? There is a

great example application for EaseFunctions that is part of AndEngine Examples, avail-

able from the main AndEngine website (http://www.andengine.org). If you haven’t

already done so, download it now and play with the EaseFunctions a bit to get a feel

for them.

EaseFunctions change the way a Modifier’s action progresses. The default (i.e., where

no EaseFunction is assigned) is for a Modifier to progress linearly. For example, if a

MoveModifier is moving an Entity from point A to point B, the velocity of that move-

ment will be the same at the beginning, middle, and end of the movement.

EaseFunctions allow you to change the Modifiers so they progress at different rates

(maybe even backward) at different times in the duration of the Modifier. Think of those

fancy elevators in high-rise hotels that move quickly between floors, but ease themselves

to a stop when they arrive so you don’t feel a thing.

The naming convention for EaseFunctions is something like

Ease<Type><End>

where <Type> describes the easing function (e.g., back, bounce, circular, cubic, qua-

dratic), and <End> says which end of the duration is affected. “In” functions affect

the beginning of the duration, “Out” functions affect the end, and “InOut” functions

affect both ends. Let’s look at each of the types in turn.

In the following descriptions, the diagram in each case shows the progress for the

“InOut” case.

EaseBack Functions

EaseBack functions go below the starting point and/or beyond the endpoint, as shown

in Figure 4.1.

EaseBackIn

EaseBackOut

EaseBackInOut

http://www.andengine.org

Chapter 4 Scenes, Layers, Transitions, and Modifiers 72

Figure 4.1 EaseBackInOut

EaseBounce Functions

EaseBounce functions have a bouncing start and/or finish, as shown in Figure 4.2.

An obvious use for this ease function is when you want to simulate something bounc-

ing on the ground (without using the Physics extension discussed in Chapter 12).

There are three options:

EaseBounceIn

EaseBounceOut

EaseBounceInOut

Figure 4.2 EaseBounceInOut

Scenes in AndEngine 73

EaseCircular Functions

EaseCircular functions produce a slow start and/or finish following circular

 acceleration, as shown in Figure 4.3:

EaseCircularIn

EaseCircularOut

EaseCircularInOut

EaseCubic Functions

EaseCubic functions create a slow start and/or finish using a cubic equation, as shown

in Figure 4.4. If you are simulating the elevator deceleration movement we talked

about earlier, you might use one of these functions:

EaseCubicIn

EaseCubicOut

EaseCubicInOut

Figure 4.3 EaseCircularInOut

Chapter 4 Scenes, Layers, Transitions, and Modifiers 74

Figure 4.4 EaseCubicInOut

EaseElastic Functions

EaseElastic functions simulate the action of a rubber band or spring, as shown in

 Figure 4.5:

EaseElasticIn

EaseElasticOut

EaseElasticInOut

Figure 4.5 EaseElasticInOut

Scenes in AndEngine 75

EaseExponential Functions

EaseExponential functions produce an exponentially slow start and/or finish, as shown

in Figure 4.6:

EaseExponentialIn

EaseExponentialOut

EaseExponentialInOut

EaseLinear Function

Yes, there is an EaseLinear function, which duplicates the default action (with no

EaseFunction), as shown in Figure 4.7. This function can be useful when sequencing

through EaseFunctions.

Figure 4.6 EaseExponentialInOut

Figure 4.7 EaseLinearInOut

Chapter 4 Scenes, Layers, Transitions, and Modifiers 76

EaseQuad Functions

EaseQuad functions create a slow start and/or stop using a quadratic equation, as

shown in Figure 4.8:

EaseQuadIn

EaseQuadOut

EaseQuadInOut

EaseQuart Functions

EaseQuart functions produce a slow start and/or stop using a quartic equation, as

shown in Figure 4.9:

EaseQuartIn

EaseQuartOut

EaseQuartInOut

Figure 4.8 EaseQuadInOut

Scenes in AndEngine 77

Figure 4.9 EaseQuartInOut

EaseQuint Functions

EaseQuint functions create a slow start and/or stop using a quintic equation, as shown

in Figure 4.10:

EaseQuintIn

EaseQuintOut

EaseQuintInOut

Figure 4.10 EaseQuintInOut

Chapter 4 Scenes, Layers, Transitions, and Modifiers 78

EaseSine Functions

EaseSine functions produce a slow start and/or stop using a sine function, as shown in

Figure 4.11:

EaseSineIn

EaseSineOut

EaseSineInOut

EaseStrong Functions

Although they are separately implemented, mathematically EaseStrong functions are

the same as the EaseQuint functions, as shown in Figure 4.12:

EaseStrongIn

EaseStrongOut

EaseStrongInOut

Figure 4.11 EaseSineInOut

Creating the Game Level 1 Scene 79

Figure 4.12 EaseStrongInOut

Creating the Game Level 1 Scene

Now that we have this vast, detailed knowledge of scenes, layers, transitions, modifier,

and ease functions, it’s time to make use of a little of our new knowledge to move

our game development forward. When the player selects the menu option to start the

game, Virgins Versus Vampires will open on the scene shown in Figure 4.13, which

represents the graveyard next to Miss Blossom’s Home for Wayward Virgins.

Figure 4.13 V3 opening game scene

Chapter 4 Scenes, Layers, Transitions, and Modifiers 80

The scene will eventually need to receive touch inputs to select obstacles (from the

list in the lower-left corner of the scene) and to place objects in the graveyard. We

won’t start implementing the touch part yet—just the user interface to this scene.

Listing 4.3 shows the changes to MainMenuActivity.java, and Listing 4.4 shows

Level1Activity.java, which implements the first level of the game. For now, when

the player touches “Play Game” on the main menu, the menu shrinks, and Level 1

grows into view. Each of the initial weapons then drops into the Weapons Cache and

does a brief spin as it settles into place.

At this point, this code should be pretty easy to follow. We create the scene and

layer as usual, and then it’s just a matter of adding the different children to the layer.

The appearance of the weapons is orchestrated through a sequence of modifiers, and

the MoveModifiers are eased with EaseQuadOut, so the weapons fall quickly and then

slow down as they reach the Weapons Cache.

Listing 4.3 MainMenuActivity.java

. . .

 protected Handler mHandler;

. . .

 @Override

 public Engine onLoadEngine() {

 mHandler = new Handler();

. . .

 @Override

 public void onResumeGame() {

 super.onResumeGame();

 mMainScene.registerEntityModifier(new ScaleAtModifier(0.5f,

 0.0f, 1.0f, CAMERA_WIDTH/2, CAMERA_HEIGHT/2));

 mStaticMenuScene.registerEntityModifier(

 new ScaleAtModifier(0.5f, 0.0f, 1.0f,

 CAMERA_WIDTH/2, CAMERA_HEIGHT/2));

 }

. . .

 @Override

 public boolean onMenuItemClicked(final MenuScene pMenuScene,

 final IMenuItem pMenuItem, final float pMenuItemLocalX,

 final float pMenuItemLocalY) {

 switch(pMenuItem.getID()) {

. . .

 case MENU_PLAY:

 mMainScene.registerEntityModifier(

 new ScaleModifier(1.0f, 1.0f,

 0.0f));

 mHandler.postDelayed(

 mLaunchLevel1Task,1000);

 return true;

Creating the Game Level 1 Scene 81

 case MENU_SCORES:

. . .

 private Runnable mLaunchLevel1Task = new Runnable() {

 public void run() {

 Intent myIntent = new Intent(MainMenuActivity.this,

 Level1Activity.class);

 MainMenuActivity.this.startActivity(myIntent);

 }

 };

. . .

The two changes to the MENU_PLAY case in the switch statement drive the other

changes to MainMenuActivity.java:

 n We’ve added a Modifier that will shrink the two displayed scenes (mMainScene

and mMainMenuScene) in 1 second.

 n To give that Modifier time to play, we’ve asked Android to start the Level1Activity

after a delay of 1 second. The mechanism is the same one we used in StartActivity—

namely, posting a delayed Runnable to actually send the Intent requesting the start.

 n We’ve overridden the onGameResume() method, so we can grow the main

menu scene back to full size if the player backs up from Level1Activity.

Listing 4.4 Level1Activity.java

package com.pearson.lagp.v3;

. . .

public class Level1Activity extends BaseGameActivity {

 // ===

 // Constants

 // ===

 private static final int CAMERA_WIDTH = 480;

 private static final int CAMERA_HEIGHT = 320;

 private String tag = "Level1Activity";

 // ===

 // Fields

 // ===

 protected Camera mCamera;

 protected Scene mMainScene;

 private Texture mLevel1BackTexture;

 private BuildableTexture mObstacleBoxTexture;

Chapter 4 Scenes, Layers, Transitions, and Modifiers 82

 private TextureRegion mBoxTextureRegion;

 private TextureRegion mLevel1BackTextureRegion;

 private TextureRegion mBulletTextureRegion;

 private TextureRegion mCrossTextureRegion;

 private TextureRegion mHatchetTextureRegion;

 // ===

 // Constructors

 // ===

 // ===

 // Getter and Setter

 // ===

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 @Override

 public Engine onLoadEngine() {

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT),

 this.mCamera));

 }

 @Override

 public void onLoadResources() {

 /* Load Textures. */

 TextureRegionFactory.setAssetBasePath("gfx/Level1/");

 mLevel1BackTexture = new Texture(512, 512,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 mLevel1BackTextureRegion =

 TextureRegionFactory.createFromAsset(

 this.mLevel1BackTexture,

 this, "Level1Bk.png", 0, 0);

 mEngine.getTextureManager().loadTexture(

 this.mLevel1BackTexture);

 mObstacleBoxTexture = new BuildableTexture(512, 256,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 mBoxTextureRegion =

 TextureRegionFactory.createFromAsset(

 mObstacleBoxTexture,

 this, "Obstaclebox.png");

Creating the Game Level 1 Scene 83

 mBulletTextureRegion =

 TextureRegionFactory.createFromAsset(

 mObstacleBoxTexture,

 this, "Bullet.png");

 mCrossTextureRegion =

 TextureRegionFactory.createFromAsset(

 mObstacleBoxTexture,

 this, "Cross.png");

 mHatchetTextureRegion =

 TextureRegionFactory.createFromAsset(

 mObstacleBoxTexture,

 this, "Hatchet.png");

 try {

 mObstacleBoxTexture.build(

 new BlackPawnTextureBuilder(2));

 } catch (final TextureSourcePackingException e) {

 Log.d(tag, "Sprites won’t fit ");

 }

 this.mEngine.getTextureManager().loadTexture(

this.mObstacleBoxTexture);

 }

 @Override

 public Scene onLoadScene() {

 this.mEngine.registerUpdateHandler(new FPSLogger());

 final Scene scene = new Scene(1);

 /* Center the camera. */

 final int centerX = (CAMERA_WIDTH -

 mLevel1BackTextureRegion.getWidth()) / 2;

 final int centerY = (CAMERA_HEIGHT -

 mLevel1BackTextureRegion.getHeight()) / 2;

 /* Create the sprites and add them to the scene. */

 final Sprite background = new Sprite(centerX, centerY,

 mLevel1BackTextureRegion);

 scene.getLastChild().attachChild(background);

 final Sprite obstacleBox = new Sprite(0.0f, CAMERA_HEIGHT -

 mBoxTextureRegion.getHeight(), mBoxTextureRegion);

 scene.getLastChild().attachChild(obstacleBox);

 final Sprite bullet = new Sprite(20.0f,

 CAMERA_HEIGHT - 40.0f,

 mBulletTextureRegion);

 bullet.registerEntityModifier(

 new SequenceEntityModifier(

 new ParallelEntityModifier(

 new MoveYModifier(3, 0.0f,

Chapter 4 Scenes, Layers, Transitions, and Modifiers 84

 CAMERA_HEIGHT - 40.0f,

 EaseQuadOut.getInstance()),

 new AlphaModifier(3, 0.0f, 1.0f),

 new ScaleModifier(3, 0.5f, 1.0f)

),

 new RotationModifier(3, 0, 360)

)

);

 scene.getLastChild().attachChild(bullet);

 final Sprite cross = new Sprite(bullet.getInitialX() +

 40.0f, CAMERA_HEIGHT - 40.0f, mCrossTextureRegion);

 cross.registerEntityModifier(

 new SequenceEntityModifier(

 new ParallelEntityModifier(

 new MoveYModifier(4, 0.0f,

 CAMERA_HEIGHT - 40.0f,

 EaseQuadOut.getInstance()),

 new AlphaModifier(4, 0.0f, 1.0f),

 new ScaleModifier(4, 0.5f, 1.0f)

),

 new RotationModifier(2, 0, 360)

)

);

 cross.registerEntityModifier(new AlphaModifier(

 10.0f, 0.0f, 1.0f));

 scene.getLastChild().attachChild(cross);

 final Sprite hatchet = new Sprite(cross.getInitialX() +

 40.0f,

 CAMERA_HEIGHT - 40.0f, mHatchetTextureRegion);

 hatchet.registerEntityModifier(

 new SequenceEntityModifier(

 new ParallelEntityModifier(

 new MoveYModifier(5, 0.0f,

 CAMERA_HEIGHT - 40.0f,

 EaseQuadOut.getInstance()),

 new AlphaModifier(5, 0.0f, 1.0f),

 new ScaleModifier(5, 0.5f, 1.0f)

),

 new RotationModifier(2, 0, 360)

)

);

 hatchet.registerEntityModifier(new AlphaModifier(

 15.0f, 0.0f, 1.0f));

 scene.getLastChild().attachChild(hatchet);

Exercises 85

 scene.registerEntityModifier(new AlphaModifier(10, 0.0f,

 1.0f));

 return scene;

 }

 @Override

 public void onLoadComplete() {

 }

}

Summary

We covered a lot of ground in this chapter, and there’s no way you could remember all

the Scenes, Modifiers, and EaseFunctions discussed here. Don’t worry about it: You’ll

always have this chapter as a reference when you want to find just the right transition

or modifier to make something happen in your game.

 n Scenes are the basic building blocks of an AndEngine game.

 n Because Scenes are Entities in AndEngine, we took a deep-dive look at Entity

.java and the constructors and methods it provides. We looked at each of the

key properties of an Entity, and described the way they are used by AndEngine.

 n A variety of Modifiers can be applied to any Entity (e.g., Scenes, Sprites) to change

the way an Entity is displayed. We looked at each of the Modifiers that AndEngine

provides to see how we might use them to change the Entities in our game. Modifiers

can be combined if necessary, either running in parallel or in sequence.

 n AndEngine provides a variety of EaseFunctions that can be used to change the

progress of the Modifiers.

 n We used some of our new knowledge to make a little progress in creating the

Virgins Versus Vampires game. We created and loaded the main game screen and

started the action, which, for the moment, is not very active.

In the next chapter, we’ll look at Sprites in detail. That will start to give us the

tools we need to make V3 come alive—or undead, anyway.

Exercises

1. Write a small Activity that you can use to test Modifier combinations. Display

a white background with one Entity, a Sprite (you can use the face in the

mathead.png file, which is included in the downloaded code for this chapter in

the Modifiers project).

Chapter 4 Scenes, Layers, Transitions, and Modifiers 86

2. Construct a combination of Modifiers that change an entity according to the

following timeline:

0 second 1 second 2 seconds 3 seconds 4 seconds 5 seconds

Move From origin to center of screen No change

Color White to blue Blue to red Red to green

Scale No change Full size to half size Half size to full size No change

Rotate No change 720 degrees No change

3. Right now when MainMenu shrinks, it shrinks into the location given by the

coordinates (0.0f, 0.0f). Change the code so it shrinks into the middle of the

screen. [Hint: Use the setScaleCenter() method.]

4. If none of the 34 EaseFunctions provided by AndEngine meets the needs for

your game, write your own! Create a new EaseFunction—call it EaseWiggle

.java—that has a profile something like that shown in Figure 4.14. [Hint:

Start with EaseLinear.java from the AndEngine sources, and modify the

 getPercentageDone() method, using the FloatMath.sin() function.]

Figure 4.14 EaseWiggle

5

Drawing and Sprites

We’ve been using Sprites all along in our examples and in the development of V3,

but now we’ll spend some time exploring them in much more detail. As this chapter

explains, AndEngine has methods for creating Sprites, Animated Sprites, and Tiled

Sprites. We also want to take a brief look at the methods for drawing primitive graphic

objects, such as lines and rectangles.

Most of the objects that are drawn on the screen during your game are Sprites.

The term “sprite” originally referred to independent graphical objects that were

positioned and animated on top of a game background. As computer games evolved,

however, the term came to be used for just about any graphical object. For example,

the backgrounds for our AndEngine scenes are loaded into Sprite objects to be

displayed.

AndEngine uses OpenGL to render objects to the screen. On most Android

devices, OpenGL is implemented with hardware accelerators, so that’s the setup

that we’ll assume in our discussion. Using AndEngine frees you from most of the

details of working with OpenGL, but we’ll also cover some of what’s going on

under the covers.

Quick Look Back at Entity

In AndEngine, Sprite is a subclass of the abstract class BaseSprite, which in turn is a

subclass of the abstract class BaseRectangle, which in turn is a subclass of the abstract

class RectangularShape, which in turn is a subclass of the abstract class Shape, which

in turn is a subclass of the class Entity. If that seems confusing, perhaps a picture will

help. A simplified class diagram of the Entity class and some subclasses is shown in

Figure 5.1.

We could go through each class and determine which capabilities are added at

each level, but we don’t really need to understand that level of detail to write a game.

It’s good to know how everything fits together, however, and as we describe drawing

and Sprites, we’ll cover the important relationships and methods we need to get our

game built.

Chapter 5 Drawing and Sprites88

Drawing Lines and Rectangles

AndEngine doesn’t provide a lot of drawing features. For most games, the artwork is

created as a series of bitmaps, and drawing complicated graphics at runtime is rarely

necessary. AndEngine gives us a way to draw both Lines and Rectangles.

Line

In addition to the variables that Line inherits from Entity, it has a second position (the end-

point of the line) and a line width. These parameters can be seen in the Line constructors:

Line(final float pX1, final float pY1, final float pX2, final float pY2)

Line(final float pX1, final float pY1, final float pX2, final float pY2,

final float pLineWidth)

Figure 5.1 Entity simplified class diagram

Entity

Layer

Line

Scene
Shape

áAsbtractàIShape

áInterfaceà

SplashScene CameraScene

RectangularShape

áAsbtractà

BaseRectangle

áAsbtractà

BaseSprite

áAsbtractà

Sprite TiledSprite

AnimatedSprite

Rectangle

Sprites 89

If you don’t pass in a pLineWidth, the value defaults to 1 pixel. The first set of

coordinates is taken as the “position” of the Line, and the last set of coordinates is

the “other end” of the Line. Attributes such as color and transparency are handled

by the Entity superclass.

Rectangle

AndEngine also provides a Rectangle drawing primitive that has the following

constructors:

Rectangle(final float pX, final float pY, final float pWidth, final float pHeight)

Rectangle(final float pX, fina float pY, final float pWidth, final float pHeight,

final RectangleVertexBuffer pRectangleVertexBuffer)

Here, the X and Y values mark the upper-left corner of the Rectangle; the width and

height are self-explanatory. Once again, color and transparency are handled by the

superclass, and the Rectangle is drawn with a fill that corresponds to them (to draw an

outline rectangle, you draw four lines).

The optional RectangleVertexBuffer parameter can be used to improve the

drawing speed if a bunch of Rectangles are needed, or it can be used to distort the

displayed rectangle. These capabilities are an OpenGL topic that is beyond the scope of

this book, but if you’re interested, Google “OpenGL vertex buffer”; you should find

plenty of online reference material.

Sprites

Looking toward the bottom of Figure 5.1, we see AndEngine provides three different

kinds of Sprites:

 n A Sprite uses a single texture, extracted from a TextureRegion.

 n A TiledSprite chooses a texture, taken from a regular array of textures in a

TiledTextureRegion.

 n An AnimatedSprite is a subclass of TiledSprite, whose texture changes at a

 regular frame rate to show an animation.

Textures

Before we get into Sprites and all their variations, we need to develop some

 background about the way AndEngine treats textures. If you haven’t done much

graphics programming, it’s helpful to understand that textures are just bitmaps that

are “painted” onto objects like Sprites as they are displayed. AndEngine stores

 collections of textures in memory as instances of the Texture class. There is a class

Texture, and a singleton TextureManager manages all the Textures for your game.

Chapter 5 Drawing and Sprites90

Each Texture can have multiple TextureRegions inside it, which identify bitmaps in

the Texture. AndEngine has two fundamental types of TextureRegions:

 n A TextureRegion usually contains one image, with a unique height and width.

An example TextureRegion image is shown in Figure 5.2.

 n A TiledTextureRegion usually contains more than one image, where each image

has the same height and width. The images are organized as an array of tiles

that can be referenced by their position in the array. An example TiledTexture-

Region image is shown in Figure 5.3.

Texture

A few constructors are supplied to create a new Texture:

Texture(final int pWidth, final int pHeight)

Texture(final int pWidth, final int pHeight, final ITextureStateListener

pTextureStateListener)

Texture(final int pWidth, final int pHeight, final TextureOptions

pTextureOptions)

Texture(final int pWidth, final int pHeight, final TextureOptions

pTextureOptions, final ITextureStateListener pTextureStateListener)

All of them create a blank canvas with the given dimensions into which you can load

textures for your Sprites. The dimensions of the Texture—that is, pWidth and

pHeight—must be powers of 2 (32, 64, 128, …), and the dimensions must be large

enough to hold all of the textures you intend to load into the Texture. If these values

Figure 5.3 TiledTextureRegion image

Figure 5.2 TextureRegion image

Sprites 91

are not powers of 2, AndEngine will throw an IllegalArgumentException. If you try

to load a bitmap that doesn’t fit in your Texture, you will also get an exception. Either

type of exception will force your game to close, if it is not caught, with a log message

being entered in LogCat.

The optional TextureStateListener parameter, in the second and fourth

 constructors, is triggered when a texture is loaded into the Texture, or unloaded, or

when an error occurs during loading. We won’t use that feature in our work here, but

if you’re interested, there is an example for using it, ImageFormatsExample.java,

included in the AndEnginesExample source.

The optional TextureOptions parameter controls the way OpenGL displays the

textures. We will often use the default, but the following options are also available:

 n TextureOptions.NEAREST

 n TextureOptions.BILINEAR

 n TextureOptions.REPEATING

 n TextureOptions.REPEATING_BILINEAR

 n TextureOptions.NEAREST_PREMULTIPLYALPHA (the default)

 n TextureOptions.BILINEAR_PREMULTIPLYALPHA

 n TextureOptions.REPEATING_PREMULTIPLYALPHA

 n TextureOptions.REPEATING_BILINEAR_PREMULTIPLYALPHA

Each of these options sets the OpenGL texture filters according to patterns defined

in TextureOptions.java, which is part of the AndEngine sources. Describing

the effect of each option is an OpenGL topic beyond the scope of this book, but the

 differences are real, especially as you scale or rotate textures. If you are concerned

about the details of texture rendering, I encourage you to read up on the topic. In

 particular, an excellent discussion of texture rendering can be found at http://www

.opengl.org/wiki/Texture.

For most of the examples in the book we will use BILINEAR_ PREMULTIPLYALPHA,

which asks OpenGL to use the following properties:

 n GL_LINEAR: use linear interpolation in each (x, y) direction to determine the

color of pixels when magnifying or minimizing a texture.

 n GL_CLAMP_TO_EDGE: textures don’t wrap around, so clamp-normalize texture

coordinates to [0.1].

 n GL_MODULATE: combine textures by multiplying them.

 n Use premultiplied alpha blending, which usually creates more realistic

 combinations of textures when they overlap.

TextureRegionFactory

So far, all we’ve done is to create a blank storage area for textures. To load images

into the Texture, we use TextureRegionFactory. We’ve been using this approach all

http://www.opengl.org/wiki/Texture
http://www.opengl.org/wiki/Texture

Chapter 5 Drawing and Sprites92

along to create textures for the Sprites in V3, but now we want to look at all of the

 capabilities that are possible. TextureRegionFactory knows how to create Texture-

Regions and TiledTextureRegions from three types of sources:

 n Assets: bitmap files stored under the assets folder in your game project. This is

the method we’ve been using so far.

 n Resources: drawable files stored as resources under the res folder of your game

project.

 n TextureSources: a more generic name for drawable resources and assets. The

 factory methods for resources and assets are implemented with these methods,

and they might also be useful if you’re reusing a TextureSource.

A method is available for each of these sources, and for each type of texture region

(tiled or not). Another set is available for BuildableTextures, which we’ll discuss in the

next section. Here are the basic methods for the previously mentioned sources:

TextureRegion createFromAsset(final Texture pTexture,

final Context pContext, final String pAssetPath,

final int pTexturePositionX, final int pTexturePositionY)

TiledTextureRegion createTiledFromAsset(final Texture pTexture,

final Context pContext, final String pAssetPath,

final int pTexturePositionX, final int pTexturePositionY,

final int pTileColumns, final int pTileRows)

TextureRegion createFromResource(final Texture pTexture,

final Context pContext, final int pDrawableResourceID,

final int pTexturePositionX, final int pTexturePositionY)

TiledTextureRegion createTiledFromResource(final Texture pTexture,

final Context pContext, final int pDrawableResourceID,

final int pTexturePositionX, final int pTexturePositionY,

final int pTileColumns, final int pTileRows)

TextureRegion createFromSource(final Texture pTexture,

final ITextureSource pTextureSource, final int pTexturePositionX,

final int pTexturePositionY)

TiledTextureRegion createTiledFromSource(final Texture pTexture,

final ITextureSource pTextureSource, final int pTexturePositionX,

final int pTexturePositionY, final int pTileColumns, final int pTileRows)

The parameters for these methods are defined as follows:

 n Texture pTexture: the Texture you’re loading into.

 n Context pContext: the Activity Context for the current Activity.

 n String pAssetPath: the filename for the asset, referenced to the assetPath,

which is the assets folder by default. (The setAssetPath() method is discussed

later in this chapter.) AndEngine currently knows how to load PNG, JPG, and

BMP images.

Sprites 93

 n pDrawableResourceID: the integer assigned to the resource in R.java, usually

referenced as R.drawable.<resourcename>.

 n ITextureSource pTextureSource: the TextureSource to be loaded.

 n int pTexturePositionX, int pTexturePositionY: the location on the

Texture where the image should be loaded. It identifies the position for the

upper-left corner of the image, and the Texture must be large enough to hold

the image at that position. Images should not overlap, unless you’re doing some-

thing strange.

 n int pTileColumns, int pTileRows: for TiledTextureRegions, the number

of columns and rows in the tiled image.

TextureRegionFactory also contains a useful method for setting the base asset path

to something beneath the assets folder. This method is helpful if you keep your

images in separate subfolders, and you want to avoid typing the whole path name for

every image:

void setAssetBasePath(inal String pAssetBasePath)

The parameter is the partial path name, and it must end in “/”. If it doesn’t, or if it’s

zero length, an exception will be thrown.

Example: Creating a TextureRegion from an Asset

We used setAssetBasePath() and TextureRegionFactory.createFrom Asset()

in Chapter 4 when we set up the TextureRegions for Level 1 of the V3 game. Listing 5.1

is an excerpt from that code showing the normal pattern for creating a Sprite from an

image file in the assets folder.

Listing 5.1 Level1Activity.java Excerpt Using TextureRegionFactory.createFromAsset()

. . .

 @Override

 public void onLoadResources() {

 /* Load Textures. */

 TextureRegionFactory.setAssetBasePath("gfx/Level1/");

 mLevel1BackTexture = new Texture(512, 512,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 mLevel1BackTextureRegion =

 TextureRegionFactory.createFromAsset(

 this.mLevel1BackTexture,

 this, "Level1Bk.png", 0, 0);

 mEngine.getTextureManager().loadTexture(

this.mLevel1BackTexture);

. . .

}

Chapter 5 Drawing and Sprites94

We start out by setting the asset base path to "gfx/Level1/" because that’s the way

we’ve chosen to structure the assets subfolder. All of the graphics are located in sub-

folder gfx, and the graphics for each level will placed in a separate subfolder under gfx.

Remember to include the final “/”; if you omit it, AndEngine will throw an exception.

We then create a Texture big enough to hold the background for Level 1. The

background is a PNG file, 480 × 320 pixels in size. The next highest power of 2 is

512 in each case, so we create the Texture as a 512 × 512 pixel space. I’ve chosen a

 TextureOption of BILINEAR_PREMULTIPLYALPHA in imitation of the examples.

We then create the TextureRegion from the PNG file stored under assets and

add it to the Texture at position (0, 0). If we were loading other TextureRegions into

this Texture, we would load them at positions that did not conf lict with the back-

ground Texture.

Finally, we ask the singleton TextureManager to load the Texture into its cache of

Textures. Now our new Texture will be available for our game.

Example: Creating a TextureRegion from a Resource

There is one big advantage to creating TextureRegions from resources, rather than

assets. As you may know, Android defines three screen resolutions (hdpi, mdpi, and

ldpi) and manages graphic resources for them, so as to manage the problem of working

with different screen resolutions. When you place images in res/drawable-hdpi,

res/drawable-mdpi, and res/drawable-ldpi and subsequently reference them

in an Android application (as R.drawable.<filename>), Android will use the

image that most closely matches the screen geometry of the device your application is

 running on. That capability can be a big help in managing screen geometries.

Listing 5.2 shows an example of using resources instead of assets for the obstacle

textures in Level1Activity.java.

Listing 5.2 Level1Activity.java Excerpt Modified to Use createFromResource()

package com.pearson.lagp.v3;

. . .

 @Override

 public void onLoadResources() {

 /* Load Textures. */

 mLevel1BackTexture = new Texture(512, 512,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 mLevel1BackTextureRegion =

 TextureRegionFactory.createFromResource(

 this.mLevel1BackTexture, this, R.drawable.level1bk,

 0, 0);

 mEngine.getTextureManager().loadTexture(

this.mLevel1BackTexture);

. . .

}

Sprites 95

To make this process work, you first have to populate the res/drawable-xdpi

 folders with images suitable for those resolutions. The filenames have to be all lowercase

(“level1bk.png” in this case), and the method takes a reference to the resource—that is,

“R.drawable” plus the filename with no extension. The images need to be PNGs or JPGs

(Android can deal with GIFs, but AndEngine cannot—PNG should be your first choice).

Example: Creating a TextureRegion from a Vector (SVG) Source

An extension to AndEngine allows you to render SVG vector graphics files at runtime.

This is a very useful addition to the basic game engine, particularly for games that may

be run on high-definition (HD) screens. When the vector file is rendered at runtime,

the rendering can be optimized for the available screen resolution without any com-

promise in the graphics’ appearance. Typically, if you render SVGs at development

time, you create at least three bitmap images—one for low-resolution screens, one for

mid-resolution screens, and one for high-resolution screens.

To use the extension, you need to load its .jar (Java archive) file from the

 following website:

http://code.google.com/p/andenginesvgtextureregionextension

Place the .jar file in the lib folder in your AndEngine project, right-click on the

.jar filename, and choose Build Path > Add to Build Path from the pop-up menu. Once

the addition is available, you can load textures from SVG graphics as shown in Listing 5.3.

Listing 5.3 Level1Activity.java Excerpt Using SVG Graphics

. . .

 @Override

 public void onLoadResources() {

 /* Load Textures. */

 mLevel1BackTexture = new Texture(512, 512,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 mLevel1BackTextureRegion =

 mLevel1BackTextureSource = new SVGAssetTextureSource(

 this, "svg/hatchet40.svg", 1.0f);

 TextureRegionFactory.createFromSource(

 this.mLevel1BackTexture,

 this.mLevel1BackTextureSource, 0, 0);

 mEngine.getTextureManager().loadTexture(

this.mLevel1BackTexture);

. . .

BuildableTexture

The preceding set of methods works well for building TextureRegions and loading

them into Textures. If you’ve actually used these methods, however, you probably

noticed one drawback: You have to tell TextureRegionFactory specifically where you

want each image loaded into the Texture.

http://code.google.com/p/andenginesvgtextureregionextension

Chapter 5 Drawing and Sprites96

Suppose you have three images to load:

 n One.png: 50 × 121 pixels

 n Two.png: 78 × 324 pixels

 n Three.png: 233 × 43 pixels

You have to figure out how you want to pack these images into a Texture, and then

carefully compute coordinates and dimensions to come up with the parameters for

the TextureRegionFactory calls. That’s kind of a pain—so AndEngine provides a set

of methods that do the math for us. We used a BuildableTexture and these methods

in Chapter 4, within Level1Activity.java. Listing 5.4 is a part of that file that

 illustrates how these methods are used.

Listing 5.4 Level1Activity.java Excerpt Using BuildableTexture

package com.pearson.lagp.v3;

. . .

 @Override

 public void onLoadResources() {

 /* Load Textures. */

. . .

 mObstacleBoxTexture = new BuildableTexture(512, 256,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 mBoxTextureRegion =

 TextureRegionFactory.createFromAsset(mObstacleBoxTexture,

 this, "Obstaclebox.png");

 mBulletTextureRegion =

 TextureRegionFactory.createFromAsset(mObstacleBoxTexture,

 this, "Bullet.png");

 mCrossTextureRegion =

 TextureRegionFactory.createFromAsset(mObstacleBoxTexture,

this, "Cross.png");

 mHatchetTextureRegion =

 TextureRegionFactory.createFromAsset(mObstacleBoxTexture,

 this, "Hatchet.png");

 try {

 mObstacleBoxTexture.build(

 new BlackPawnTextureBuilder(2));

 } catch (final TextureSourcePackingException e) {

 Log.d(tag,

 "Sprites won’t fit in mObstacleBoxTexture");

 }

 this.mEngine.getTextureManager().loadTexture(this
.mObstacleBoxTexture);

 }

. . .

}

Sprites 97

The constructors for BuildableTexture are exact analogs of the constructors

listed earlier for Texture, and they have the same constraints (i.e., must have power

of 2 dimensions, must be big enough to hold all the textures). The createFrom …

 methods are also exact analogs to their previously mentioned counterparts, with the

Texture parameter replaced with a BuildableTexture, and no coordinate parameters.

The main difference becomes apparent after you’ve created all of the TextureRegions.

Before you make use of the BuildableTexture, you must build the TextureRegions into

it by calling the BuildableTexture’s build method, using a builder class such as Black-

PawnTextureBuilder (the only builder provided right now, but that could change). If the

build succeeds, the TextureRegions are all packed into the BuildableTexture and you can

access them by name. If the build does not succeed (e.g., the textures don’t all fit in the

allocated space), you can catch the exception, as shown in the excerpt in Listing 5.3.

Another Way to Build Textures

Perhaps you don’t want to build your Textures at runtime. If so, you might want to

use the popular tool called Zwoptex for building Textures (or sprite sheets, as they are

sometimes called). You can’t import a Zwoptex sprite sheet directly into AndEngine,

but you can use it to arrange images and identify what those images’ coordinates

should be. Zwoptex comes in two f lavors:

 n An older, web-based (Adobe Flash) version is still freely available but is no lon-

ger supported (http://zwoptexapp.com/flashversion).

 n The supported, more fully featured version, which runs on only Mac OS X

(10.6 or later), is available for a small fee (http://zwoptexapp.com/buy).

Either version can be used to automatically combine images into a single, larger

sprite sheet, or Texture. The result is a sprite sheet image file and an XML list of

coordinates. AndEngine does not yet know how to import the image and list (perhaps

someone will have added that capability by the time you read these words), but you can

look at the XML list and easily find the coordinates needed for createFromAsset()

without having to do the calculations yourself.

As an example, I’ve used Zwoptex Flash to combine the images for the Obstacle

Box in Level 1 of V3. Figure 5.4 shows the resulting sprite sheet. Listing 5.5 provides

the relevant part of the resulting XML file.

Figure 5.4 Texture for obstacle box

http://zwoptexapp.com/flashversion
http://zwoptexapp.com/buy

Chapter 5 Drawing and Sprites98

Listing 5.5 Level1Activity.java Excerpt Using BuildableTexture

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>texture</key>

 <dict>

 <key>width</key>

 <integer>256</integer>

 <key>height</key>

 <integer>128</integer>

 </dict>

 <key>frames</key>

 <dict>

 <key>Bullet.png</key>

 <dict>

 <key>x</key>

 <integer>45</integer>

 <key>y</key>

 <integer>1</integer>

 <key>width</key>

 <integer>11</integer>

 <key>height</key>

 <integer>33</integer>

 <key>offsetX</key>

 <real>0</real>

 <key>offsetY</key>

 <real>0</real>

 <key>originalWidth</key>

 <integer>11</integer>

 <key>originalHeight</key>

 <integer>33</integer>

 </dict>

 <key>Cross.png</key>

 <dict>

 <key>x</key>

 <integer>1</integer>

 <key>y</key>

 <integer>1</integer>

. . .

 </dict>

 </dict>

</dict>

</plist>

Sprites 99

For each image, the pX and pY coordinates are given as the values of the keys

x and y, respectively. You can easily use Zwoptex to illustrate what the assembled

 Texture will look like, to identify the coordinates for each image, and to ensure the

Texture is large enough to hold all the images.

The Sprite Class

Now that we have TextureRegions with the images we’d like to use for our Sprites,

we can create the Sprites themselves. The Sprite class has four constructors:

Sprite(final float pX, final float pY, final TextureRegion pTextureRegion)

Sprite(final float pX, final float pY, final float pWidth, final float pHeight,

final TextureRegion pTextureRegion)

Sprite(final float pX, final float pY, final TextureRegion pTextureRegion,

final RectangleVertexBuffer pRectangleVertexBuffer)

Sprite(final float pX, final float pY, final float pWidth, final float pHeight,

final TextureRegion pTextureRegion,

final RectangleVertexBuffer pRectangleVertexBuffer)

All of the constructors require an initial position for the Sprite, given by the param-

eters pX and pY. All of them also require a TextureRegion that tells AndEngine and

OpenGL which texture to paint for the Sprite. Optionally, you can specify a width

and height for the Sprite (otherwise, it will default to the width and height of the

 TextureRegion). You can also specify a RectangleVertexBuffer, just as you could

for Rectangle.

Because Sprite is a subclass of Entity, all of the Entity methods are part of Sprites as

well. One new method is also introduced:

TextureRegion getTextureRegion()

This method returns the Sprite’s TextureRegion, as you might expect. Note that there

is no method to set the Sprite’s TextureRegion. That task must be completed when

the Sprite is created, unless the Sprite is associated with a tiled map of textures (as

described in the next section).

TiledSprites

We can use a TiledSprite to create a sprite that is associated with an array of textures

stored in a TiledTextureRegion. A TiledTextureRegion usually has more than one

texture, all of the same size, stored in one big array. We saw how TiledTextureRegions

are created earlier, in the section on TextureRegionFactory. We can now create the

TiledSprites themselves with constructors analogous to the Sprite constructors:

TiledSprite(final float pX, final float pY, final TiledTextureRegion

pTiledTextureRegion)

TiledSprite(final float pX, final float pY, final float pTileWidth,

final float pTileHeight, final TiledTextureRegion pTiledTextureRegion)

Chapter 5 Drawing and Sprites100

TiledSprite(final float pX, final float pY, final TiledTextureRegion

pTiledTextureRegion, final RectangleVertexBuffer

pRectangleVertexBuffer)

TiledSprite(final float pX, final float pY, final float pTileWidth,

final float pTileHeight, final TiledTextureRegion pTiledTextureRegion,

final RectangleVertexBuffer pRectangleVertexBuffer)

The parameters here are very similar to those for the Sprite constructors. Instead of

a TextureRegion, however, we pass a TiledTextureRegion, as you would expect.

Instead of a Sprite width or height, we have the option to pass tile dimensions.

TiledSprites also add some unique methods to BaseSprite, including these four:

int getCurrentTileIndex()

void setCurrentTileIndex(final int pTileIndex)

void setCurrentTileIndex(final int pTileColumn, final int pTileRow)

void nextTile()

The first three methods get and set the current tile index for the TiledSprite. They enable

you to determine which texture is being shown now, or to change it if you like. The last

method advances to the “next” tile. AndEngine orders the tiles as shown in Figure 5.5.

AnimatedSprites

If we want a Sprite to be animated, we must supply all the animation textures that we

want AndEngine to apply to the Sprite. As shown in the simplified class diagram in

Figure 5.1, AnimatedSprite is a subclass of TiledSprite—an arrangement that enables

us to get the needed animation textures from a TiledTextureRegion. The constructors

for AnimatedSprite are exactly analogous to those for TiledSprite:

AnimatedSprite(final float pX, final float pY, final TiledTextureRegion

pTiledTextureRegion)

AnimatedSprite(final float pX, final float pY, final float pTileWidth,

final float pTileHeight, final TiledTextureRegion pTiledTextureRegion)

AnimatedSprite(final float pX, final float pY, final TiledTextureRegion

pTiledTextureRegion, final RectangleVertexBuffer

pRectangleVertexBuffer)

Figure 5.5 Tile order

Sprites 101

AnimatedSprite(final float pX, final float pY, final float pTileWidth,

final float pTileHeight, final TiledTextureRegion pTiledTextureRegion,

final RectangleVertexBuffer pRectangleVertexBuffer)

We’ll see a lot more of AnimatedSprites in Chapter 6, where we talk about

 animation in more depth.

A Word about Performance

As you develop your game, and you begin asking the Android device to do more and

more, performance may get to be an issue. Displaying a lot of graphics, running modi-

fiers on them, and implementing the game logic all take computer cycles and affect the

rate at which your game runs.

In each of the code examples provided so far in this book, we’ve included the

AndEngine standard frame rate counter FPSLogger, which logs the frame rate to Log-

Cat. The log messages look like this:

D/AndEngine(448): FPS: 9.73 (MIN: 96 ms | MAX: 134 ms)

This example message was made with the Android emulator, so the frame rate is quite

low—less than 10 frames per second (at this point, the game is simply displaying a bitmap).

We’d like the frame rate to be as high as possible, so play can be as natural as possible.

The way a Sprite is created affects the total game performance. When Sprites are

bound to individual Textures, a series of things must happen for AndEngine to render

them. In pseudocode:

<loop over all Sprites to be displayed>
 <initialize OpenGL rendering>
 <render a Sprite>
 <clean up rendering engine>
<end loop>

When multiple Sprites are bound to images contained within a single Texture, the

initialization and cleanup occur outside the loop. That is, they happen only once for

all the Sprites to be displayed, and the game can perform much better:

<initialize OpenGL rendering>
<loop over all Sprites to be displayed>
 <render a Sprite>
<end loop>
<clean up rendering engine>

Games typically display a lot of Sprites, so using combined Textures speeds up ren-

dering and, therefore, increases the frame rate of your game.

Compound Sprites

All of the Sprites we’ve seen so far have been childless. As with any Entity, however,

you can attach children to a Sprite, and treat the whole collection as a group. Such an

arrangement can be essential if, for example, you want to attach a weapon to an actor

in your game. If you then move or rotate the actor, the weapon should move with

Chapter 5 Drawing and Sprites102

him, of course. The method for attaching a child node to a Sprite is the same as it is

for any other Entity:

Entity.attachChild(inal IEntity pEntity)

where pEntity is the child Sprite. Now if a Modifier is registered with the parent

Sprite, it will also apply to any children of that Sprite.

To illustrate this point, the example code for this chapter consists of one Activity,

called SpriteTestActivity. It features a new character, Mad Mat, who wields a hatchet.

Figure 5.6 shows a screenshot of the application as it is running.

Mad Mat on the left—we’ll call him Mad Mat0, because that’s what he’s called in

the code—does not move. Mad Mat in the middle (also known as Mad Mat 1) rotates

in place, and his hatchet also rotates in place. Mad Mat on the right (also known as

Mad Mat 2) rotates with his hatchet, which is what you’d normally want to happen.

Listing 5.6 shows the relevant code.

Listing 5.6 SpriteTestActivity.java and Compound Sprites

package com.pearson.lagp.v3;

import org.anddev.andengine.engine.Enginatq e;

import org.anddev.andengine.engine.camera.Camera;

Figure 5.6 SpriteTestActivity screenshot

Sprites 103

import org.anddev.andengine.engine.options.EngineOptions;

import org.anddev.andengine.engine.options.EngineOptions
 .ScreenOrientation;

import org.anddev.andengine.engine.options.resolutionpolicy
 .RatioResolutionPolicy;

import org.anddev.andengine.entity.modifier.RotationModifier;

import org.anddev.andengine.entity.scene.Scene;

import org.anddev.andengine.entity.scene.background.ColorBackground;

import org.anddev.andengine.entity.sprite.Sprite;

import org.anddev.andengine.entity.util.FPSLogger;

import org.anddev.andengine.opengl.texture.BuildableTexture;

import org.anddev.andengine.opengl.texture.TextureOptions;

import org.anddev.andengine.opengl.texture.builder
 .BlackPawnTextureBuilder;

import org.anddev.andengine.opengl.texture.builder.ITextureBuilder
 .TextureSourcePackingException;

import org.anddev.andengine.opengl.texture.region.TextureRegion;

import org.anddev.andengine.opengl.texture.region.TextureRegionFactory;

import org.anddev.andengine.ui.activity.BaseGameActivity;

import android.util.Log;

public class SpriteTestActivity extends BaseGameActivity {

 // ===

 // Constants

 // ===

 private static final int CAMERA_WIDTH = 480;

 private static final int CAMERA_HEIGHT = 320;

 private String tag = "SpriteTestActivity";

 // ===

 // Fields

 // ===

 protected Camera mCamera;

 protected Scene mMainScene;

 private BuildableTexture mTestTexture;

 private TextureRegion mMadMatTextureRegion;

 private TextureRegion mHatchetTextureRegion;

 // ===

 // Constructors

 // ===

Chapter 5 Drawing and Sprites104

 // ===

 // Getter and Setter

 // ===

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 @Override

 public Engine onLoadEngine() {

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT),

 this.mCamera));

 }

 @Override

 public void onLoadResources() {

 /* Load Textures. */

 TextureRegionFactory.setAssetBasePath("gfx/SpriteTest/");

 mTestTexture = new BuildableTexture(512, 256,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 mMadMatTextureRegion =

 TextureRegionFactory.createFromAsset(mTestTexture,

 this, "madmat.png");

 mHatchetTextureRegion =

 TextureRegionFactory.createFromAsset(mTestTexture,

 this, "hatchet40.png");

 try {

 mTestTexture.build(

 new BlackPawnTextureBuilder(2));

 } catch (final TextureSourcePackingException e) {

 Log.d(tag,

 "Sprites won’t fit in mTestTexture");

 }

 this.mEngine.getTextureManager().loadTexture(

 this.mTestTexture);

 }

 @Override

 public Scene onLoadScene() {

 this.mEngine.registerUpdateHandler(new FPSLogger());

 final Scene scene = new Scene(1);

 scene.setBackground(new ColorBackground(0.0f, 0.0f, 0.0f));

Sprites 105

 /* Center the camera. */

 final int centerX = CAMERA_WIDTH / 2;

 final int centerY = CAMERA_HEIGHT / 2;

 /* Create the sprites and add them to the scene. */

 final Sprite madMat0 = new Sprite(centerX -

 (mMadMatTextureRegion.getWidth() / 2) -

 100.0f,

 centerY - (mMadMatTextureRegion.getHeight()

 / 2),

 mMadMatTextureRegion);

 scene.getLastChild().attachChild(madMat0);

 final Sprite hatchet0 = new Sprite(madMat0.getInitialX() +

 44.0f,

 madMat0.getInitialY() + 20.0f,

 mHatchetTextureRegion);

 scene.getLastChild().attachChild(hatchet0);

 final Sprite madMat1 = new Sprite(centerX -

 (mMadMatTextureRegion.getWidth() / 2),

 centerY - (mMadMatTextureRegion.getHeight()

 / 2),

 mMadMatTextureRegion);

 scene.getLastChild().attachChild(madMat1);

 final Sprite hatchet1 = new Sprite(madMat1.getInitialX() +

 44.0f,

 madMat1.getInitialY() + 20.0f,

 mHatchetTextureRegion);

 madMat1.registerEntityModifier(

 new RotationModifier(3, 0, 360)

);

 hatchet1.registerEntityModifier(

 new RotationModifier(3, 0, 360)

);

 scene.getLastChild().attachChild(hatchet1);

 final Sprite madMat2 = new Sprite(centerX -

 (mMadMatTextureRegion.getWidth() / 2) +

 100.0f,

 centerY - (mMadMatTextureRegion.getHeight()

 / 2),

 mMadMatTextureRegion);

 final Sprite hatchet2 = new Sprite(44.0f, 20.0f,

 mHatchetTextureRegion);

 madMat2.attachChild(hatchet2);

 madMat2.registerEntityModifier(

 new RotationModifier(3, 0, 360)

);

Chapter 5 Drawing and Sprites106

 scene.getLastChild().attachChild(madMat2);

 return scene;

 }

 @Override

 public void onLoadComplete() {

 }

}

The bits of interest are all found in onLoadScene(). For each of the three Mad

Mats, we create a Sprite for Mat and a Sprite for the hatchet. For Mad Mat 1, we add

an EntityModifier to each of the Sprites, so they rotate. They rotate in their individual

positions, however—which is not the behavior normally desired for a character

 carrying something.

In Mad Mat 2, we add the hatchet Sprite as a child of the Mad Mat 2 Sprite. Then

we add the Modifier only to Mad Mat, and we add only the Mad Mat Sprite to the

Scene (it brings its children with it). When that Modifier executes, it rotates the

whole compound Sprite as a unit. Note that the positions we specified when creating

the Sprite for hatchet2 are relative to the Parent, not relative to the Scene, like the

 positions for hatchet0 and hatchet1. In fact, Sprite positions are always relative to the

Parent; we emphasize this point because all of the other Sprites we’ve seen have the

Scene as their Parent.

Summary

This chapter provided an in-depth look at Sprites and the Entity class. We didn’t

advance the V3 game in this chapter but instead took a closer look at the way we’ve

been creating and displaying Sprites for the game.

Now that we know more about how Sprites fit into the class hierarchy of AndEngine,

and the constructors and methods used to create them, let’s summarize the steps needed

to place a Sprite on the game screen:

1. All Sprites need a TextureRegion, and TextureRegions are loaded into Textures.

In the onLoadResources() method, we create a Texture large enough to hold

all our TextureRegions. If we want AndEngine to build the Texture for us as we

add TextureRegions, we create a BuildableTexture.

2. The TextureRegions we need for our Sprite are loaded into the Texture using

TextureRegionFactory.createFrom . . . () methods. TextureRegions

can be loaded from image files under the asset folder, from images that have

been created as Android resources, or from other TextureRegions.

3. If we used a BuildableTexture, we call BuildableTexture.build() to

 complete the process of building the Texture.

4. We ask the TextureManager to load our new Texture into its cache, using the

Engine.getTextureManager().loadTexture() method.

Exercises 107

5. In the onLoadScene() method, we actually create the Scene, including the

Sprites that are part of the Scene. Sprites are created using the TextureRegions

we loaded into the Texture, any needed Modifiers are created and registered

with the Sprites, and the Sprites are attached to the Scene as children.

6. When we return the Scene at the end of the method, AndEngine will display it.

Exercises

1. Create a simple program that draws a red, five-pointed star (in outline). Make

the star spin around its center point. You’ll need to use the idea of compounding

to make the star spin properly.

2. Change SpriteTestActivity.java so that it creates all of its TextureRegions

from SVG files instead of PNGs.

3. Try using Zwoptex to create a Texture image from your own set of game images.

Zwoptex includes a number of options we didn’t explore in this chapter (e.g.,

spacing, different packing strategies). Use Zwoptex to create a TiledTexture

image by assembling images that are all the same size.

This page intentionally left blank

6

Animation

Now the fun begins in earnest as we take a look at animating our sprites. Although

some games don’t use animations, almost any game can be enhanced by introducing

animated figures.

Requirements for Animation

When we talk about animation in games, we’re talking about sprites that change form

as they move during the game’s action. In the context of AndEngine, animations are

distinct from simple translation and rotation of objects, where the form of the object

doesn’t change, even though it’s moving. Rotation and translation were covered in the

discussion of Modifiers in Chapter 4.

To animate an object, we need to display frames that represent the object’s form—

one frame at a time, with each frame shown for a set time. Our eyes and brain blend

this series of pictures into a moving scene. The higher the frame rate, the better the illu-

sion. Television in the United States produces images at a speed of 30 frames per second;

movies deliver 24 frames per second. While some people claim they can detect varia-

tions in higher frame rates, others can’t see any difference between 30 fps and 60 fps.

We’ll use an animated bat for the first example in this chapter. The frames in the

animation sequence are shown in Figures 6.1, 6.2, and 6.3.

These images were created by hand, using Inkscape (okay, so I’m not Andy Warhol),

but they could have been created with just about any drawing package. If you’re an

experienced animation artist, you probably know more about the image creation process

than I do. If you’re not, you can get a lot of insight into effective animations by looking

at sprite sheets from other games. If you investigate the resources available online, you’ll

note that many of the sprite sheets for games have been stripped from the game images

and made available for study. You are not free to use these sprite sheets in your own

game, of course, but you are free to look at them and use them to better understand

how to animate your own sprites.

Chapter 6 Animation110

You can also create images (frames) with animation software, such as Anime Studio

for Windows, or Pixen for Mac OS X. These packages can make you much more pro-

ductive by generating the “tween” frames that appear between key frames of animation.

In the bat example, we have only three frames, but in general you may have more for

your games.

Some of the animation packages allow you to export the individual frames of

 animation to separate files (as we’ve done here). Others don’t have that ability, but

produce animated GIF files or Adobe Flash SWF files. To capture frames from one of

these programs, you can use the AnimGet utility described in Chapter 2. It watches

an area of the screen and records a snapshot of that area whenever pixels change,

which, of course, happens for every animation frame.

Animation Tiled Textures

From our discussion of sprite performance in Chapter 5, we know that it’s a good idea

to collect all of our animation frames on a common sheet. From what we’ve learned,

we recognize that it will be faster to load the single sheet, and the resulting images can

be displayed more rapidly.

I’ve used GIMP (the open-source bitmap editor) to put together the tiled bat Texture

for the animation in Figure 6.4. AndEngine prefers a complete matrix of tiles, each

the same size, so I placed each bat image on a 100 × 100 pixel transparent canvas, and

stuck the images together on the larger (200 × 200 pixel) image. I duplicated bat0.png

to fill out the matrix, although I could also have gone with a 1 × 3 set of tiles and not

 introduced the duplicated frame. We’ll see how to do that in the second animation

example.

Now is a good time to point out the differences between TiledTextureRegions

and sprite sheets. You may be familiar with other game engines that use sprite sheets,

and perhaps you have already looked at them as animation examples. Images on a

sprite sheet can be placed in any position, in any orientation, and the engine will extract

and use them. Images in a TiledTextureRegion are all the same size and are placed

in order of the animation sequence. As of this writing, AndEngine doesn’t make

use of sprite sheets. Animation frames are all taken from TiledTextureRegions.

Figure 6.3 bat2.pngFigure 6.2 bat1.pngFigure 6.1 bat0.png

Animation in AndEngine 111

Animation in AndEngine

AndEngine includes a special class for animated sprites, called AnimatedSprite.

It expects to receive animation frames for the sprite from a TiledTextureRegion.

 Otherwise, an AnimatedSprite behaves like any other Sprite, and all the Modif iers

we talked about in Chapter 4 can be applied to transform an AnimatedSprite.

AnimatedSprite

Four constructors for AnimatedSprite are available:

AnimatedSprite(final float pX, final float pY,

final TiledTextureRegion pTiledTextureRegion)

AnimatedSprite(final float pX, final float pY, final float pTileWidth,

final float pTileHeight, final TiledTextureRegion pTiledTextureRegion)

AnimatedSprite(final float pX, final float pY,

final TiledTextureRegion pTiledTextureRegion,

final RectangleVertexBuffer pRectangleVertexBuffer)

AnimatedSprite(final float pX, final float pY, final float pTileWidth,

final float pTileHeight, final TiledTextureRegion pTiledTextureRegion,

final RectangleVertexBuffer pRectangleVertexBuffer)

The parameters used are as follows:

 n float pX and float pY: the position of the Sprite. As we saw in Chapter 5,

this is the position of the Sprite with respect to its Parent.

Figure 6.4 bat_tiled.png

Chapter 6 Animation112

 n TileTextureRegion pTiledTextureRegion: The texture region holding

the animation frames for the Sprite. As with Sprites, the TextureRegion was

created from an image using TextureRegionFactory and then loaded into a

 Texture; in turn, the Texture was loaded using the TextureManager.

 n RectangleVertexBuffer pRectangleVertexBuffer: As we saw with

Sprites in Chapter 5, this OpenGL structure can be used to modify the way the

Sprite is displayed.

 n float pTileWidth and float pTileHeight: Optionally, the width and

height, respectively, of each tile in the TiledTextureRegion. If these values

are not given explicitly, AndEngine assumes that the matrix of tiles fills the

TiledTextureRegion.

Animate Methods

AnimatedSprite adds a number of methods you can use to control the way it animates

the Sprite. The usage pattern is to create an AnimatedSprite using one of the con-

structors above, and then use its animate() method to start the animation. For con-

venience, let’s separate the animate() methods into those where the frame duration is

the same for all frames, and those for which the frame duration varies by frame. First

we present the constant-duration animates:

AnimatedSprite animate(final long pFrameDurationEach)

AnimatedSprite animate(final long pFrameDurationEach, final boolean pLoop)

AnimatedSprite animate(final long pFrameDurationEach, final int pLoopCount)

AnimatedSprite animate(final long pFrameDurationEach, final boolean pLoop,

final IAnimationListener pAnimationListener)

AnimatedSprite animate(final long pFrameDurationEach, final int pLoopCount,

final IAnimationListener pAnimationListener)

The common parameters are as follows:

 n long pFrameDurationEach: This parameter identifies the duration, in

 milliseconds, for which each frame will be displayed. The duration is a goal.

Note that we’re asking for this frame rate, but given the resources on the

 runtime platform, we may or may not be able to achieve it.

 n boolean pLoop: If this parameter’s value is true, the animation will loop

 continuously; if it is false, the animation plays only once. The default is true.

 n int pLoopCount: If you want the animation to play a specific number of

times, use this constructor, and pass the number of animation loops here.

 n IAnimationListener pAnimationListener: This parameter is a class that

implements IOnAnimationListener, which has a single callback method

called at the end of the animation:

void onAnimationEnd(final AnimatedSprite pAnimatedSprite)

Animation Example 113

If you want the frame durations to be different for different frames, you can use

similar constructors that pass an array of frame durations. The following methods

also give you more f lexibility with the array of tiles. If the length of pFrame-

Durations is not equal to the number of frames in the animation, an exception is

thrown.

AnimatedSprite animate(final long[] pFrameDurations)

AnimatedSprite animate(final long[] pFrameDurations, final boolean pLoop)

AnimatedSprite animate(final long[] pFrameDurations, final int pLoopCount)

AnimatedSprite animate(final long[] pFrameDurations, final boolean pLoop,

final IAnimationListener pAnimationListener)

AnimatedSprite animate(final long[] pFrameDurations, final int pLoopCount,

final IAnimationListener pAnimationListener)

AnimatedSprite animate(final long[] pFrameDurations, final int pFirstTileIndex,

final int pLastTileIndex, final boolean pLoop)

AnimatedSprite animate(final long[] pFrameDurations, final int pFirstTileIndex,

final int pLastTileIndex, final int pLoopCount)

AnimatedSprite animate(final long[] pFrameDurations, final int[] pFrames,

final int pLoopCount)

These constructors also allow you to specify both the first tile in the Tiled-

TextureRegion to be used in the animation and the last tile. This ability can be con-

venient, both to display a shortened version of an animation and in case the tiles don’t

completely fill the TiledTextureRegion. Frame numbers start at 0 and end with the

frame count minus 1.

Other Methods

AnimatedSprite also includes two methods you may use to stop the animation (which

also call the pAnimationListener if you’ve set one):

void stopAnimation()

void stopAnimation(final int pTileIndex)

The first method stops the animation wherever it is and leaves the current frame

 displayed. The second method stops the animation and displays the indicated tile.

Animation Example

To demonstrate how to animate the bat, we’ll add it to the splash screen that is shown

whenever the game starts. The new splash screen is shown in Figure 6.5. The figure is

a static screenshot, but in the running application the bat f laps its wings and bobs up

and down.

Chapter 6 Animation114

The new version of StartActivity.java that adds the f lying bat is shown in

 Listing 6.1.

Listing 6.1 StartActivity.java with Animated Bat

package com.pearson.lagp.v3;

import org.anddev.andengine.engine.Engine;

import org.anddev.andengine.engine.camera.Camera;

import org.anddev.andengine.engine.options.EngineOptions;

import org.anddev.andengine.engine.options.EngineOptions.ScreenOrientation;

im port org.anddev.andengine.engine.options.resolutionpolicy

.RatioResolutionPolicy;

import org.anddev.andengine.entity.scene.Scene;

import org.anddev.andengine.entity.sprite.AnimatedSprite;

import org.anddev.andengine.entity.sprite.Sprite;

import org.anddev.andengine.entity.util.FPSLogger;

import org.anddev.andengine.opengl.texture.Texture;

import org.anddev.andengine.opengl.texture.TextureOptions;

import org.anddev.andengine.opengl.texture.region.TextureRegion;

import org.anddev.andengine.opengl.texture.region.TextureRegionFactory;

import org.anddev.andengine.opengl.texture.region.TiledTextureRegion;

import org.anddev.andengine.ui.activity.BaseGameActivity;

Figure 6.5 Splash screen with flying bat

Animation Example 115

import android.content.Intent;

import android.os.Handler;

public class StartActivity extends BaseGameActivity {

 // ===

 // Constants

 // ===

 private static final int CAMERA_WIDTH = 480;

 private static final int CAMERA_HEIGHT = 320;

 // ===

 // Fields

 // ===

 private Camera mCamera;

 private Texture mTexture, mBatTexture;

 private TextureRegion mSplashTextureRegion;

 private TiledTextureRegion mBatTextureRegion;

 private Handler mHandler;

 // ===

 // Constructors

 // ===

 // ===

 // Getter and Setter

 // ===

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 @Override

 public Engine onLoadEngine() {

 mHandler = new Handler();

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH, CAMERA_HEIGHT);

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH, CAMERA_HEIGHT),

 this.mCamera));

 }

 @Override

 public void onLoadResources() {

 TextureRegionFactory.setAssetBasePath(“gfx/Splash/”);

 this.mTexture = new Texture(512, 1024,

Chapter 6 Animation116

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 this.mSplashTextureRegion =

 TextureRegionFactory.createFromAsset(this.mTexture,

 this, “Splashscreen.png”, 0, 0);

 this.mBatTexture = new Texture(256, 256,

 TextureOptions.DEFAULT);

 this.mBatTextureRegion =

 TextureRegionFactory.createTiledFromAsset(

 this.mBatTexture, this, “bat_tiled.png”, 0, 0, 2,

 2);

 this.mEngine.getTextureManager().loadTexture(this.mTexture);

 this.mEngine.getTextureManager().loadTexture(this.mBatTexture);

 }

 @Override

 public Scene onLoadScene() {

 this.mEngine.registerUpdateHandler(new FPSLogger());

 final Scene scene = new Scene(1);

 /* Center the splash on the camera. */

 final int centerX = (CAMERA_WIDTH -

 this.mSplashTextureRegion.getWidth()) / 2;

 final int centerY = (CAMERA_HEIGHT -

 this.mSplashTextureRegion.getHeight()) / 2;

 /* Create the background sprite and add it to the scene. */

 final Sprite splash = new Sprite(centerX, centerY,

 this.mSplashTextureRegion);

 scene.getLastChild().attachChild(splash);

 /* Create the animated bat sprite and add to scene */

 final AnimatedSprite bat = new AnimatedSprite(350, 100,

 this.mBatTextureRegion);

 bat.animate(100);

 scene.getLastChild().attachChild(bat);

 return scene;

 }

 @Override

 public void onLoadComplete() {

 mHandler.postDelayed(mLaunchTask,5000);

 }

 private Runnable mLaunchTask = new Runnable() {

 public void run() {

 Intent myIntent = new Intent(StartActivity.this,

Animation Example 117

 MainMenuActivity.class);

 StartActivity.this.startActivity(myIntent);

 }

 };

 // ===

 // Methods

 // ===

 // ===

 // Inner and Anonymous Classes

 // ===

}

The important changes are in onLoadResources(), onLoadScene(), and

onLoadComplete().

onLoadResources()

 n mBatTexture: We’ve introduced another Texture to hold the TiledTexture-

Region that contains the bat animation frames. Our tile image is 100 × 100 pixels,

so we choose the next larger power of 2 for the dimensions of the Texture.

 n mBatTiledTextureRegion: We create this TextureRegion from the tiled image

of animation frames, noting that there are two columns and two rows of tiles.

 n Finally, we load the Textures using TextureManager as before.

onLoadScene()

 n bat: We create the AnimatedSprite for the bat, positioning it by the tombstone

in the background image.

 n We animate the bat, asking for 100 milliseconds between frames (10 frames per

second).

 n We attach the bat to the current Scene so it will appear.

onLoadComplete()

 n We’ve extended the viewing time of the splash from 3 to 5 seconds, so you have

a little longer to view the bat.

The way AndEngine uses TiledTextureRegions for animation images, all images

have to be the same size, and it’s best if they completely fill the region. When

AndEngine displays the animation, it takes the images in sequence, from left to right,

top to bottom, starting over after the last frame in the sequence. In the simplest create-

TiledFromAsset() method (and in the related Resource and Source methods),

you don’t tell AndEngine the dimensions of the tiles but simply indicate how many

Chapter 6 Animation118

columns and how many rows of tiles are present in the region. AndEngine then divides

the region into that many subimages and assumes those are the dimensions for the tiles.

With the more complicated createTileFromXX() methods, you can specify a tile

width and height—but that’s just more calculation needed at runtime.

Adding Animation to Level1Activity

Back to Level 1 of our game: Let’s add some animations that bring some bad guys in

from the right of the screen, moving toward the house. Because we don’t have a way

to detect collisions yet, we’ll just have the villains keep walking until they reach the

left side of the screen, and have them then pile up there. We’ll start 10 of these charac-

ters at random times and have them take random paths through the graveyard.

First we need the animation frames for a bad guy. Here I confess I took the easy

way out: I purchased an animation from a third party that provides animations for

Anime Studio (the animation, which was taken from the Anime Studio website, cost

about $12), ran the animation against a blank background in that package, and cre-

ated a QuickTime movie (.mov) of the result. I then used AnimGet to capture frames

as I played the movie. The animation has a lot more detail than we need for the small

sprites in V3, but that’s okay. I edited each frame in GIMP, scaled the images down

to 60 × 60 pixels, and created a transparent background for each one. I also f lipped

the images, because the animation happened to be walking left to right, and all of our

sprites will be moving the other way.

Using the images and GIMP to combine them, I created the sprite sheet shown in

Figure 6.6.

Figure 6.6 Scrum tiled texture

Adding Animation to Level1Activity 119

The modified version of Level1Activity.java is shown in Listing 6.2.

Listing 6.2 Level1Activity with Animated Vampires

package com.pearson.lagp.v3;

import java.util.Arrays;

import java.util.Random;

import org.anddev.andengine.engine.Engine;

import org.anddev.andengine.engine.camera.Camera;

import org.anddev.andengine.engine.options.EngineOptions;

import org.anddev.andengine.engine.options.EngineOptions.ScreenOrientation;

import org.anddev.andengine.engine.options.resolutionpolicy

 .RatioResolutionPolicy;

import org.anddev.andengine.entity.modifier.AlphaModifier;

import org.anddev.andengine.entity.modifier.DelayModifier;

import org.anddev.andengine.entity.modifier.FadeInModifier;

import org.anddev.andengine.entity.modifier.MoveModifier;

import org.anddev.andengine.entity.modifier.MoveYModifier;

import org.anddev.andengine.entity.modifier.ParallelEntityModifier;

import org.anddev.andengine.entity.modifier.RotationModifier;

import org.anddev.andengine.entity.modifier.ScaleModifier;

import org.anddev.andengine.entity.modifier.SequenceEntityModifier;

import org.anddev.andengine.entity.scene.Scene;

import org.anddev.andengine.entity.sprite.AnimatedSprite;

import org.anddev.andengine.entity.sprite.Sprite;

import org.anddev.andengine.entity.util.FPSLogger;

import org.anddev.andengine.opengl.texture.BuildableTexture;

import org.anddev.andengine.opengl.texture.Texture;

import org.anddev.andengine.opengl.texture.TextureOptions;

import org.anddev.andengine.opengl.texture.builder.BlackPawnTextureBuilder;

import org.anddev.andengine.opengl.texture.builder.ITextureBuilder-

 .TextureSourcePackingException;

import org.anddev.andengine.opengl.texture.region.TextureRegion;

import org.anddev.andengine.opengl.texture.region.TextureRegionFactory;

import org.anddev.andengine.opengl.texture.region.TiledTextureRegion;

import org.anddev.andengine.ui.activity.BaseGameActivity;

import org.anddev.andengine.util.modifier.ease.EaseQuadOut;

import android.content.Intent;

import android.os.Handler;

import android.util.Log;

public class Level1Activity extends BaseGameActivity {

 // ===

 // Constants

 // ===

Chapter 6 Animation120

 private static final int CAMERA_WIDTH = 480;

 private static final int CAMERA_HEIGHT = 320;

 private String tag = “Level1Activity”;

 // ===

 // Fields

 // ===

 private Handler mHandler;

 protected Camera mCamera;

 protected Scene mMainScene;

 private Texture mLevel1BackTexture;

 private Texture mScrumTexture;

 private BuildableTexture mObstacleBoxTexture;

 private TextureRegion mBoxTextureRegion;

 private TextureRegion mLevel1BackTextureRegion;

 private TextureRegion mBulletTextureRegion;

 private TextureRegion mCrossTextureRegion;

 private TextureRegion mHatchetTextureRegion;

 private TiledTextureRegion mScrumTextureRegion;

 private AnimatedSprite[] asprVamp = new AnimatedSprite[10];

 private int nVamp;

 Random gen;

 // ===

 // Constructors

 // ===

 // ===

 // Getter and Setter

 // ===

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 @Override

 public Engine onLoadEngine() {

 mHandler = new Handler();

 gen = new Random();

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

Adding Animation to Level1Activity 121

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT),

 this.mCamera));

 }

 @Override

 public void onLoadResources() {

 /* Load Textures. */

 TextureRegionFactory.setAssetBasePath(“gfx/Level1/”);

 mLevel1BackTexture = new Texture(512, 512,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 mLevel1BackTextureRegion =

 TextureRegionFactory.createFromAsset(

 this.mLevel1BackTexture, this, “level1bk.png”, 0,

 0);

 mEngine.getTextureManager().loadTexture(

 this.mLevel1BackTexture);

 mObstacleBoxTexture = new BuildableTexture(512, 256,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 mBoxTextureRegion =

 TextureRegionFactory.createFromAsset(

 mObstacleBoxTexture,

 this, “obstaclebox.png”);

 mBulletTextureRegion =

 TextureRegionFactory.createFromAsset(

 mObstacleBoxTexture,

 this, “bullet.png”);

 mCrossTextureRegion =

 TextureRegionFactory.createFromAsset(

 mObstacleBoxTexture,

 this, “cross.png”);

 mHatchetTextureRegion =

 TextureRegionFactory.createFromAsset(

 mObstacleBoxTexture,

 this, “hatchet.png”);

 try {

 mObstacleBoxTexture.build(

 new BlackPawnTextureBuilder(2));

 } catch (final TextureSourcePackingException e) {

 Log.d(tag,

 “Sprites won’t fit in mObstacleBoxTexture”);

 }

 this.mEngine.getTextureManager().loadTexture(

 this.mObstacleBoxTexture);

 mScrumTexture = new Texture(512, 256,

Chapter 6 Animation122

 TextureOptions.DEFAULT);

 mScrumTextureRegion =

 TextureRegionFactory.createTiledFromAsset(

 mScrumTexture,

 this, “scrum_tiled.png”, 0, 0, 8, 4);

 mEngine.getTextureManager().loadTexture(

 this.mScrumTexture);

 }

 @Override

 public Scene onLoadScene() {

 this.mEngine.registerUpdateHandler(new FPSLogger());

 final Scene scene = new Scene(1);

 /* Center the camera. */

 final int centerX = (CAMERA_WIDTH -

 mLevel1BackTextureRegion.getWidth()) / 2;

 final int centerY = (CAMERA_HEIGHT -

 mLevel1BackTextureRegion.getHeight()) / 2;

 /* Create the sprites and add them to the scene. */

 final Sprite background = new Sprite(centerX, centerY,

 mLevel1BackTextureRegion);

 scene.getLastChild().attachChild(background);

 final Sprite obstacleBox = new Sprite(0.0f, CAMERA_HEIGHT -

 mBoxTextureRegion.getHeight(), mBoxTextureRegion);

 scene.getLastChild().attachChild(obstacleBox);

 final Sprite bullet = new Sprite(20.0f, CAMERA_HEIGHT -

 40.0f,

 mBulletTextureRegion);

 bullet.registerEntityModifier(

 new SequenceEntityModifier(

 new ParallelEntityModifier(

 new MoveYModifier(3, 0.0f, CAMERA_HEIGHT -

 40.0f, EaseQuadOut.getInstance()),

 new AlphaModifier(3, 0.0f, 1.0f),

 new ScaleModifier(3, 0.5f, 1.0f)

),

 new RotationModifier(3, 0, 360)

)

);

 scene.getLastChild().attachChild(bullet);

 final Sprite cross = new Sprite(bullet.getInitialX() +

 40.0f,

Adding Animation to Level1Activity 123

 CAMERA_HEIGHT - 40.0f, mCrossTextureRegion);

 cross.registerEntityModifier(

 new SequenceEntityModifier(

 new ParallelEntityModifier(

 new MoveYModifier(4, 0.0f, CAMERA_HEIGHT -

 40.0f, EaseQuadOut.getInstance()),

 new AlphaModifier(4, 0.0f, 1.0f),

 new ScaleModifier(4, 0.5f, 1.0f)

),

 new RotationModifier(2, 0, 360)

)

);

 cross.registerEntityModifier(new AlphaModifier(10.0f, 0.0f,

 1.0f));

 scene.getLastChild().attachChild(cross);

 final Sprite hatchet = new Sprite(cross.getInitialX() +

 40.0f,

 CAMERA_HEIGHT - 40.0f, mHatchetTextureRegion);

 hatchet.registerEntityModifier(

 new SequenceEntityModifier(

 new ParallelEntityModifier(

 new MoveYModifier(5, 0.0f, CAMERA_HEIGHT -

 40.0f, EaseQuadOut.getInstance()),

 new AlphaModifier(5, 0.0f, 1.0f),

 new ScaleModifier(5, 0.5f, 1.0f)

),

 new RotationModifier(2, 0, 360)

)

);

 hatchet.registerEntityModifier(new AlphaModifier(15.0f,

 0.0f,

 1.0f));

 scene.getLastChild().attachChild(hatchet);

 scene.registerEntityModifier(new AlphaModifier(10, 0.0f,

 1.0f));

 // Add first vampire (which will add the others)

 nVamp = 0;

 mHandler.postDelayed(mStartVamp,5000);

 return scene;

 }

 @Override

 public void onLoadComplete() {

 }

Chapter 6 Animation124

 private Runnable mStartVamp = new Runnable() {

 public void run() {

 int i = nVamp++;

 Scene scene = Level1Activity.this.mEngine.getScene();

 float startY = gen.nextFloat()*(CAMERA_HEIGHT - 50.0f);

 asprVamp[i] = new AnimatedSprite(CAMERA_WIDTH - 30.0f,

 startY,

 mScrumTextureRegion.clone());

 final long[] frameDurations = new long[26];

 Arrays.fill(frameDurations, 500);

 asprVamp[i].animate(frameDurations, 0, 25, true);

 asprVamp[i].registerEntityModifier(

 new SequenceEntityModifier (

 new AlphaModifier(5.0f, 0.0f, 1.0f),

 new MoveModifier(60.0f,

asprVamp[i].getX(), 30.0f,

 asprVamp[i].getY(),

 (float)CAMERA_HEIGHT/2)));

 scene.getLastChild().attachChild(asprVamp[i]);

 if (nVamp < 10){

 mHandler.postDelayed(mStartVamp,5000);

 }

 }

 };

}

When you run the game, you’ll see the vampires come to life, one by one, moving

across the screen to the left side, where they all pile up like the marching band in

 Animal House. Notice that the sprites are visible wherever they walk. They were the

last items added to the Scene, so they appear as the uppermost objects in the layers that

make up the scene.

Let’s look at code in more detail. First we define some new variables that we’re

going to need:

 n Handler mHandler: an Android Handler we can use to post runnable

 routines. If you aren’t familiar with Android Handlers and Runnables, see the

note “Android Handlers and Runnables.”

 n Texture mScrumTexture: a new Texture to hold the animation frames.

 n TiledTextureRegion mScrumTextureRegion: the region within

mScrumTexture.

 n AnimatedSprite[] asprVamp[10]: an array of AnimatedSprites we’ll use for

the vampire sprites.

 n int nVamp: a counter for vampires.

 n Random gen: a random number generator.

Adding Animation to Level1Activity 125

Note: Android Handlers and Runnables

Android applications are thread based and centered on a message loop executed by the

“main” or “UI” thread. Handlers are used to interact with the message queue. Handlers

can post either a Message or a Runnable for the thread to execute, with the Message or

Runnable being set to run immediately or after a delay.

This mechanism is used in a number of ways in Android applications, and we use it for

two tasks in V3:

1. We use it in StartActivity and MainMenuActivity to start other Activities running. We

use a Handler to post a Runnable that executes the startActivity() method

with an Intent that describes the Activity we wish to run.

2. We use it here in Level1Activity to delay the running of a method. If we want some-

thing to happen at some later time, we can’t stop the Android message loop and

force it to wait until it’s the desired time; instead, we post a delayed Runnable whose

run() method is the one we want to execute. The Handler queues the message for

us and Android executes it when the delay ends.

onLoadEngine()

Only a few additions are made in this method:

 n Handler mHandler: We create the Handler that we can use to delay running

of the mStartVampire Runnable until later.

 n Random gen: We initialize the random number generator we can use to

 stagger the vampires—er, send the vampires staggering across the graveyard.

onLoadResources()

The following additions are made to load the textures needed for the vampire

animation:

 n Texture mScrumTexture: We create a new Texture just for our new

animation.

 n TiledTextureRegion mScrumTextureRegion: We create this region to

hold the animation tiles and load them from the tiled bitmap image scrum_

tiled.png, which we’ve placed in assets/gfx/Level1. Because we’re creat-

ing a TiledTextureRegion, we use the createTiledFromAsset() method and

pass the number of columns and rows in the tiled image.

 n As usual, we ask the TextureManager to load the Texture once we’re done.

onLoadScene()

Nothing changes here until we reach the “//Add first vampire…” comment.

 n int nVamp: We’ll use this counter to track the number of vampires we’ve

started, so we initialize it to 0.

Chapter 6 Animation126

 n We set up our Handler to post a request to run the mStartVampire Runnable

in 5 seconds. We’ll restart mStartVampire every 5 seconds until 10 vampires

appear on the screen.

mStartVampire

mStartVampire is a new Runnable whose run() method will create a vampire,

send it walking onto the screen, and post a request for the next vampire:

 n int i: We copy the nVamp counter and increment it—mostly because I’m lazy

and I know I’m going to have to type the index a lot of times in this method.

 n Scene scene: We recover the current Scene from the Engine, as it is otherwise

out of scope in this method.

 n float startY: We compute a starting position for this vampire using the ran-

dom number generator. The vampire will appear at some random Y location on

the right screen margin.

 n AnimatedSprite asprVamp[i]: We create the sprite for this vampire at the

computed location and pass it a clone of the mScrumTextureRegion. The

cloning step is important. Without cloning, all the vampires would animate in

lockstep, and that’s not what we want. By cloning the TiledTextureRegion used,

we ensure that each vampire will be animated independently of the others.

 n asprVamp[i].animate: Recall that the Scrum tiles don’t completely fill the

tile array in scrum_tiled.png (see Figure 6.6). We create the animation using

a version of .animate() that allows us to pass in a pFirstTileIndex and a

pLastTileIndex (the second and third parameters, respectively). This method

requires the use of a pframeDurations array, so we create that array first and

fill in each element with the same duration, given in milliseconds. The final

parameter (true) says to loop the animation when it’s done.

 n We register some Modifiers to the vampire that will make it fade in and walk to

the center left of the screen (in front of Miss B’s door).

 n We attach the vampire to the current Scene.

 n If 10 vampires are not yet walking around, we ask Android to schedule the Run-

nable in another 5 seconds to start another vampire animation.

Animation Problems

Animation is famously difficult to get right. It’s an art, and even with all the new tools

that make it easier and faster to generate animations, it still takes a lot of time and

effort to achieve smooth, believable action.

A lot of information is available for free on the Internet about creating good anima-

tions and about debugging bad animations. If your characters seem to jump and jerk

Summary 127

around in odd ways (and you didn’t intend for them to do that), and you can’t figure

out how to make them behave properly, step back for a few minutes and browse the

tips and hints, and then go back and look carefully at your frames.

If you can afford to use an animation package, its capabilities will greatly facilitate

your own work. The process of getting from artwork to game can involve many steps

(render, frame grab, insert alpha channel, resize, load into Eclipse project, …), and the

earlier in that process that you can fix problems, the better.

Advanced Topic: 2D Animations
from 3D Models

With the popularity of 3D games and 3D illustration in general, it has been said that 3D

computer artists might outnumber 2D artists. I’m not so sure that’s true, but using 3D

models to generate 2D animation sequences certainly has other advantages. You often

need animation sequences for your characters in which characters must move in differ-

ent directions. At one point, they might be running from left to right; at another point,

they might need to run away from you; and at yet another point, they might need to

run toward you. If you’re generating animations from 2D art, you would have to come

up with at least three animation sequences to support moving in these different direc-

tions (you can usually just f lip the left-to-right sequence to get the right-to-left version).

If you start with a 3D model, however, it’s a simple task to reposition the model or

the camera and generate 2D animation sequences from any number of angles. You just

need to render each version as a 2D film, and then use AnimGet to collect the frames

for your game.

The learning curve for 3D animation packages can be steep. Nevertheless, if you

already know how to use one, or if you have a friend who knows how to use one, you

might think of tapping into this option as a way to generate the animation sequences

for your characters.

Summary

This chapter provided our first look at animation and covered just about everything

we will need to know for all the animations we’ll need in our V3 game. The book

isn’t devoted to animation art, but we talked about different ways of creating anima-

tion sequences, ways of loading those sequences into the TiledTextureRegion, and

ways of using the animate() method to create the actual animations.

Recapping the process of preparing and animating a sprite:

 n Load the animation frames from a tiled image into a TiledTextureRegion, and load

that region into a Texture. Ask TextureManager to load the Texture into its cache.

 n Create the AnimatedSprite object, being careful to clone the TiledTexture-

Region if you are using the region with multiple sprites and you want them to be

animated independently.

Chapter 6 Animation128

 n Animate the sprite using whichever version of the animate() method is most

applicable.

 n Add the sprite to the Scene where it will be shown.

Now we know how to create sprites for characters and entities in our game, and

we know how to make them move and animate them as they move. Next we want to

take a closer look at using text in our game.

Exercises

1. On the V3 splash screen, make the animated bat f ly back and forth, instead of

just hovering by the tombstone. Make it f ly in front of the tombstone. What

would you need to do to make it f ly behind the tombstone?

2. Draw a series of animation frames for a character walking. If you’re artisti-

cally challenged (like) me, create a stick figure—it really doesn’t matter for our

purposes here. The point is to get a feel for what it takes to generate animation

frames and get them into a suitable form for use in a game.

3. Repeat Exercise 2 using an animation software package (most companies offer-

ing such packages have trial editions that they make available for a limited time

for free) to see how much effort it saves in producing animation frames. Where

is the tradeoff point for you, between creating frames by hand and using an ani-

mation package to do the tweening?

4. Change Level1Activity so the vampires disappear when they get to Miss B’s door.

7

Text

We used text when we were creating the text menus in Chapter 3. In this chapter,

however, we look at the ways text is used in AndEngine in more detail. We examine

fonts, we look at the game elements that use text, and we learn how to create and use

our own unique fonts with AndEngine.

Fonts and Typefaces

The terms “font” and “typeface” are sometimes used interchangeably, but they have

distinct meanings. A typeface is something like Arial or Droid Sans, each of which

defines a set of characters that map to the character codes for ASCII and Unicode. A

font combines a typeface with a size (e.g., 16 points, where a point is 1/72nd of 1 inch)

and a style (e.g., bold or italic).

Three basic methods can be used to generate the physical representation of

characters:

 n Bitmap: In bitmap fonts, a bitmap image is created for each character.

Because bitmaps do not scale well, a separate bitmap is usually available for

each font size. As a result, bitmap fonts can be large and can consume of

precious memory.

 n Outline or vector: In a vector font, a vector representation is provided for each

character, which can be scaled to different font sizes. Just storing the vectors

typically means vector fonts can be stored in less space.

 n Stroke: Stroke fonts as meant by most artists (AndEngine is different) are similar

to vector fonts, defining each character as a set of strokes. They are particularly

well suited to East Asian languages, which are stroke based. These fonts can

reduce the size of a large font image (such as the 5,000 or so commonly used

Chinese characters) to a significant extent.

Just as we saw with graphics in general, vector typefaces tend to scale well to

 different sizes (particularly larger sizes), and bitmap fonts have the advantage of being

precisely tailored at each font size. AndEngine supports vector fonts. As we’ll see,

Chapter 7 Text130

Figure 7.1 Standard Android typefaces

AndEngine fonts called StrokeFont are available, but they are really the outlines of

vector fonts, so they are not the same as the stroke fonts mentioned earlier. You could

add your own classes to handle bitmap and real stroke fonts, but that is beyond the

scope of this book.

Android uses vector typefaces for all of its text components. Every Android

device (so far) ships with three typefaces installed: Droid Sans, Droid Sans Mono,

and Droid Serif. “Sans” means “sans serif ”; the serif is that little line at the base

of characters that is drawn with a serif font. “Mono” means monospaced; each

 character in such a typeface has the same width as every other character, much like

the type you get from a typewriter. Figure 7.1 shows the three standard Android

typefaces.

Android also allows you to load your own custom typefaces and fonts. It knows

how to load TrueType fonts and OpenType fonts, although some developers have

reported having issues with particular OpenType fonts. AndEngine works closely with

the Android Typeface class. We’ll look at an example of using a custom TrueType font

later in this chapter.

Loading Fonts

Before you can create any text-based entities in AndEngine, you need to load a font.

AndEngine entities are all displayed using OpenGL; thus, even if you’re using a

 standard Android font, you will need to load it into a Texture before AndEngine can

use it. AndEngine provides a Font class (distinct from the Android Font class) and a

FontManager to load and manage fonts.

Loading Fonts 131

Font

In AndEngine, the Font class is part of the OpenGL code. From our game developer

point of view, the only thing we need to know about is the constructor:

Font(final Texture pTexture, final Typeface pTypeface,

final float pSize, final boolean pAntiAlias, final int pColor)

The parameters to this call are described here:

 n Texture pTexture: This parameter points to the Texture where the font

image will be stored (discussed in the next section).

 n Typeface pTypeface: This parameter specifies the Android Typeface that is

the source of the font images.

 n float pSize: This parameter gives the size (height) of the font in pixels (not

points).

 n boolean pAntiAlias: If this parameter is true, the font will be anti-aliased

when displayed. If you’re not familiar with anti-aliasing, it can improve the way

a font looks when displayed.

 n int pColor: The color to use when displaying the font. Note there are not

separate fill and stroke colors, but rather just one color for both.

We’ll see an example of using a Font with standard Android fonts in Listing 7.1

later in this chapter. Fonts are displayed as filled characters with no outline.

StrokeFont

AndEngine provides a StrokeFont class that extends Font. These fonts draw each

 character in outline, but they can also draw the characters with a different fill color,

or with the outline alone. The constructors are similar to those for Font. The most

complete constructor is

StrokeFont(final Texture pTexture, final Typeface pTypeface, final float pSize,

final boolean pAntiAlias, final int pColor, final float pStrokeWidth,

final int pStrokeColor, final boolean pStrokeOnly)

The parameters that do not appear in the Font constructor are:

 n float pStrokeWidth: This parameter specifies the width of the stroke to be

painted

 n int pStrokeColor: The strokes will be painted with this color.

 n boolean pStrokeOnly: If this parameter is true, only the outline (strokes) will

be painted, and not the fill for each character. This parameter is optional and

defaults to false if not given.

Chapter 7 Text132

FontFactory

Rather than using the constructors for Font and StrokeFont, there is another way

to create new instances of the classes. The FontFactory class has a number of create

 methods, the most versatile of which are these two:

Font createFromAsset(final Texture pTexture, final Context pContext,

final String pAssetPath, final float pSize, final boolean pAntiAlias,

final int pColor)

StrokeFont createStrokeFromAsset(final Texture pTexture,

final Context pContext, final String pAssetPath, final float pSize,

final boolean pAntiAlias, final int pColor, final int pStrokeWidth,

final int pStrokeColor, final boolean pStrokeOnly)

The parameters are the same as for the constructors, except that now we can access

Typefaces in the assets folder. We’ll make use of these methods to create fonts from

custom Typefaces.

FontManager

AndEngine provides a FontManager analogous to the TextureManager we’ve seen

 earlier. AndEngine creates this singleton FontManager for us, and we then use it to

manage our library of fonts. The pattern for loading a Font is

this.mEngine.getFontManager().loadFont(this.mFont);

where mFont is the Font we are loading. We’ll see the FontManager code in

 Listing 7.1.

Typeface

In our game, we will use the Android Typeface class to access the standard Android

fonts. Typeface is very well documented in the Android developer documents, but

here is a quick refresher on the methods and constants we’ll be using.

Typeface.create(Typeface family, int style)

We’ll use this method when we want to use one of the default Android fonts.

 n The family in that case can just be one of the following:

 n Typeface.DEFAULT

 n Typeface.DEFAULT_BOLD

 n Typeface.MONOSPACE

 n Typeface.SANS_SERIF

 n Typeface.SERIF

 n The style is one of the following:

 n Typeface.NORMAL

 n Typeface.BOLD

Text in AndEngine 133

 n Typeface.ITALIC

 n Typeface.BOLD_ITALIC

Text in AndEngine

Other than in MenuItems (which we discussed in Chapter 3), AndEngine uses text in

three ways:

 n Text: Creates a label with a fixed message.

 n ChangeableText: Creates a label whose message can change.

 n TickerText: Creates a fixed label whose message appears letter by letter. It does

not scroll, the way a tickertape does, but it’s an interesting effect.

The Android Views are also available, of course, and AndEngine games often make

use of Toast, in particular. We’ll cover that View brief ly, as a refresher.

Text APIs in AndEngine

We use the Text class to create labels that we don’t expect to change. There are three

constructors for Text, each a bit more specific, as explained next:

Text(final float pX, final float pY, final Font pFont, final String pText)

Text(final float pX, final float pY, final Font pFont, final String pText,

final HorizontalAlign pHorizontalAlign)

Text(final float pX, final float pY, final Font pFont, final String pText,

final HorizontalAlign pHorizontalAlign, final int pCharactersMaximum)

The common parameters are as follows:

 n float pX, pY: The position of the label on the screen.

 n String pText: The text string itself. The string can be multiline, with

 embedded \n’s.

 n HorizontalAlign pHorizontalAlign: There are three choices, with the

default being LEFT:

 n HorizontalAlign.LEFT

 n HorizontalAlign.CENTER

 n HorizontalAlign.RIGHT

 n int pCharactersMaximum: The number of characters in pText, not

 counting newlines. When you use one of the first two constructors, this value

is computed for you.

A short example of creating and displaying a Text is shown in Listing 7.1.

Chapter 7 Text134

Listing 7.1 Text Example

. . .

public class TextExample extends BaseGameActivity {

 // ===

 // Constants

 // ===

 private static final int CAMERA_WIDTH = 720;

 private static final int CAMERA_HEIGHT = 480;

 // ===

 // Fields

 // ===

 private Camera mCamera;

 private Texture mFontTexture, mStrokeFontTexture;

 private Font mFont;

 private StrokeFont mStrokeFont;

 @Override

 public Engine onLoadEngine() {

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT), this.mCamera));

 }

 @Override

 public void onLoadResources() {

 this.mFontTexture = new Texture(256, 256,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 this.mStrokeFontTexture = new Texture(256, 256,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 this.mFont = new Font(this.mFontTexture,

 Typeface.create(Typeface.DEFAULT,

 Typeface.BOLD), 32, true, Color.BLACK);

 this.mStrokeFont = new StrokeFont(this.mStrokeFontTexture,

 Typeface.create(Typeface.DEFAULT,

 Typeface.BOLD), 32, true, Color.RED, 2.0f,

 Color.WHITE, true);

 this.mEngine.getTextureManager().loadTexture(

 this.mFontTexture);

Text in AndEngine 135

 this.mEngine.getTextureManager().loadTexture(

 this.mStrokeFontTexture);

 this.mEngine.getFontManager().loadFont(this.mFont);

 this.mEngine.getFontManager().loadFont(this.mStrokeFont);

 }

 @Override

 public Scene onLoadScene() {

 this.mEngine.registerUpdateHandler(new FPSLogger());

 final Scene scene = new Scene(1);

 scene.setBackground(new ColorBackground(0.1f, 0.6f, 0.9f));

 final Text textCenter = new Text(100, 60, this.mFont,

 "Show this centered \n on two lines.",

 HorizontalAlign.CENTER);

 final Text textStroke = new Text(100, 160,

 this.mStrokeFont,

 "Stroke font example \n also on two lines.",

 HorizontalAlign.CENTER);

 scene.getLastChild().attachChild(textCenter);

 scene.getLastChild().attachChild(textStroke);

 return scene;

 }

 @Override

 public void onLoadComplete() {

 }

}

Listing 7.1 produces the screen shown in Figure 7.2. Most of the code is self-

explanatory, but there are a few points to note:

 n The font Texture, mFontTexture in this case, has to be big enough to hold

the entire font we are loading. If the Texture is not big enough, you won’t get

an error, but some characters will be missing when you display some text. The

size needed depends on the typeface and on the size of the characters. The

size used here (256 × 256 pixels) works fine for the DEFAULT, SANS, and

 MONOSPACE typefaces at 32 pixels. For the SERIF font at 64 pixels, you’ll

need a Texture size of 256 × 512 pixels (recall that Texture dimensions always

have to be a power of 2). For larger fonts, you’ll have to make the Texture

dimensions correspondingly larger (although you have to be careful, because

some Android devices are limited to Textures as small as 512 × 512 pixels).

 n We need separate Textures for the Font and StrokeFont, even though they are

the same typeface and size.

Chapter 7 Text136

Figure 7.2 Text example

 n When we create mFont, we ask for the default font (usually Droid Sans), at 32 pixels,

with anti-aliasing, and in the color black. mStrokeFont is the same, with colors for

fill and stroke, and a Boolean value that says “just show the stroke.”

 n We load the Textures using the TextureManager, and then load the Fonts using

the FontManager.

 n In onLoadScene(), we asked that the text be displayed at position (100, 60) with

an alignment of HorizontalAlign.CENTER. That meant we wanted all the lines

aligned at the center of the text block, not at the center of the screen, as shown in

Figure 7.2.

Toast

Toast is a standard Android widget. We mention it here because it is so often used as a way

to display quick messages for the game player. The pattern for creating a Toast message is

Toast.makeText(context, text, duration).show();

The parameters are as follows:

 n Context context: The current application context (e.g., StartActivity.this).

 n String text: The text to be displayed.

 n Int duration: There are two duration options for a Toast:

 n Toast.LENGTH_SHORT (the default)

 n Toast.LENGTH_LONG

If we add a Toast to our Text Example (in the overridden onLoadComplete() method),

we get the screen shown in Figure 7.3, on which the Toast appears for a few seconds.

Custom Fonts 137

Figure 7.3 Text with Toast

Custom Fonts

As mentioned earlier, Android comes with a few TrueType fonts. AndEngine examples

include a few more, but you may want to use a font that you find on the Internet or

even create your own font. As with any other intellectual property, if you plan to use

a downloaded font for your game, make sure it comes with a license that allows you

to use it. If you plan to sell your game, be particularly cautious, as many “free” fonts

don’t come with a commercial license.

Creating Your Own TrueType Fonts

In V3, I’ve made use of a TrueType font called Flubber, which I downloaded from

www.1001fonts.com. The Flubber download comes with a very lenient license that

says, “You use this font in any way that you see fit.” All that the font artist, Ben

McGehee, asks in turn is that we include the license file that gives him credit for

 creating the font.

I don’t have a need to edit Flubber, but if I did, many TrueType font editors are

available. Some are expensive, professional font creation tools; others are free or

 inexpensive basic font editing tools.

If you want to create your own font from scratch (as opposed to editing someone

else’s font), the tool for doing so—as mentioned in Chapter 2—is FontStruct (www

.fontstruct.com). FontStruct is a free service offered by fontshop.com. To use it,

you establish a free account at the website and use the web application to build your

font from a set of predefined building blocks. You can clone one of the existing fonts

to start with, as long as the license allows it, and license the result back to the com-

munity with any of several Creative Commons options, which are explained on the

www.1001fonts.com
www.fontstruct.com
www.fontstruct.com

Chapter 7 Text138

website. In Figure 7.4, I’ve cloned a font called SwiftedStrokes, which was created by

Mike Lee.

I used FontStruct to make the clone, and, as you can see in Figure 7.5, I’m now free

to edit the font. Here I’m looking at the character for the letter ‘A’; I can change any

of the blocks that make up that character—or any other character, for that matter. I

can then save the font, make it available to others if I wish, or just keep it for myself.

Figure 7.4 Clone of the SwiftedStrokes TrueType font

Figure 7.5 FontStruct used to edit a clone of the SwiftedStrokes

TrueType font

Adding Custom Fonts to V3 139

Adding Custom Fonts to V3

So far in V3, we’ve embedded labels into the graphics that we’ve used, either for

 backgrounds or for items such as the obstacle box. One screen we haven’t implemented

yet is the Options screen, which will contain just a few menu items to perform the

 following tasks:

 n Turn music on and off

 n Turn sound effects on and off

For consistency, we’d like the Options screen text to be displayed in the Flubber

font, and we’ll display the on/off status by changing the text in the menu items.

Because we don’t actually have any sound in the game yet (we’ll add audio features

in Chapter 11), we’ll just f lip a Boolean toggle switch and set the menu item text for

now. We want the Options screen to appear as shown in Figure 7.6.

We implement this screen by making a few changes to our game program. First,

in MainMenuLayer.java, we need to add the code that will start the OptionsMenu-

Activity class when that item is chosen (before we just had a Toast for a stub).

 Listing 7.2 shows the changed code.

Listing 7.2 Changes to MainMenuLayer.java to Add OptionsActivity

. . .

 @Override

 public boolean onMenuItemClicked(final MenuScene pMenuScene,

 final IMenuItem pMenuItem, final float pMenuItemLocalX,

Figure 7.6 Options screen

Chapter 7 Text140

 final float pMenuItemLocalY) {

 switch(pMenuItem.getID()) {

. . .

 case MENU_OPTIONS:

 mMainScene.registerEntityModifier(

 new ScaleModifier(1.0f, 1.0f, 0.0f));

 mStaticMenuScene.registerEntityModifier(

 new ScaleModifier(1.0f, 1.0f, 0.0f));

 mHandler.postDelayed(mLaunchOptionsTask,

 1000);

 return true;

. . .

}

. . .

 private Runnable mLaunchOptionsTask = new Runnable() {

 public void run() {

 Intent myIntent = new Intent(MainMenuActivity.this,

 OptionsActivity.class);

 MainMenuActivity.this.startActivity(myIntent);

 }

. . .

We also need to add the OptionsMenuActivity to our manifest file, as shown in

Listing 7.3.

Listing 7.3 New Version of AndroidManifext.xml with the Added OptionsActivity

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.pearson.lagp.v3"

 android:versionCode="1"

 android:versionName="1.0">

 <application android:icon="@drawable/icon"

 android:label="@string/app_name">

 <activity android:name=".StartActivity"

 android:label="@string/app_name">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER"

 />

 </intent-filter>

 </activity>

 <activity android:name="MainMenuActivity"></activity>

 <activity android:name="Level1Activity"></activity>

 <activity android:name="OptionsActivity"></activity>

 </application>

 <uses-sdk android:minSdkVersion="4" />

Adding Custom Fonts to V3 141

 <uses-permission android:name="android.permission.WAKE_LOCK">

 </uses-permission>

</manifest>

We implement OptionsActivity as usual, by adding a class to our project that

extends BaseGameActivity. The new class is shown in Listing 7.4.

Listing 7.4 OptionsActivity.java

package com.pearson.lagp.v3;

. . .

// imports here

. . .

public class OptionsActivity extends BaseGameActivity implements

 IOnMenuItemClickListener {

 // ===

 // Constants

 // ===

 private static final int CAMERA_WIDTH = 480;

 private static final int CAMERA_HEIGHT = 320;

 protected static final int MENU_MUSIC = 0;

 protected static final int MENU_EFFECTS = MENU_MUSIC + 1;

 // ===

 // Fields

 // ===

 protected Camera mCamera;

 protected Scene mMainScene;

 protected Handler mHandler;

 private Texture mMenuBackTexture;

 private TextureRegion mMenuBackTextureRegion;

 protected MenuScene mOptionsMenuScene;

 private TextMenuItem mTurnMusicOff, mTurnMusicOn;

 private TextMenuItem mTurnEffectsOff, mTurnEffectsOn;

 private IMenuItem musicMenuItem;

 private IMenuItem effectsMenuItem;

 private Texture mFontTexture;

 private Font mFont;

Chapter 7 Text142

 public boolean isMusicOn = true;

 public boolean isEffectsOn = true;

 // ===

 // Constructors

 // ===

 // ===

 // Getter and Setter

 // ===

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 @Override

 public Engine onLoadEngine() {

 mHandler = new Handler();

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT), this.mCamera));

 }

 @Override

 public void onLoadResources() {

 /* Load Font/Textures. */

 this.mFontTexture = new Texture(256, 256,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 FontFactory.setAssetBasePath("font/");

 this.mFont = FontFactory.createFromAsset(this.mFontTexture,

 this, "Flubber.ttf", 32, true, Color.WHITE);

 this.mEngine.getTextureManager().loadTexture(

 this.mFontTexture);

 this.mEngine.getFontManager().loadFont(this.mFont);

 this.mMenuBackTexture = new Texture(512, 512,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 this.mMenuBackTextureRegion =

 TextureRegionFactory.createFromAsset(

 this.mMenuBackTexture, this,

 "gfx/OptionsMenu/OptionsMenuBk.png", 0, 0);

 this.mEngine.getTextureManager().loadTexture(

 this.mMenuBackTexture);

Adding Custom Fonts to V3 143

 mTurnMusicOn = new TextMenuItem(MENU_MUSIC, mFont,

 "Turn Music On");

 mTurnMusicOff = new TextMenuItem(MENU_MUSIC, mFont,

 "Turn Music Off");

 mTurnEffectsOn = new TextMenuItem(MENU_EFFECTS, mFont,

 "Turn Effects On");

 mTurnEffectsOff = new TextMenuItem(MENU_EFFECTS, mFont,

 "Turn Effects Off");

 }

 @Override

 public Scene onLoadScene() {

 this.mEngine.registerUpdateHandler(new FPSLogger());

 this.createOptionsMenuScene(true, true);

 /* Center the background on the camera. */

 final int centerX = (CAMERA_WIDTH −

 this.mMenuBackTextureRegion.getWidth()) / 2;

 final int centerY = (CAMERA_HEIGHT −

 this.mMenuBackTextureRegion.getHeight()) / 2;

 this.mMainScene = new Scene(1);

 /* Add the background and static menu */

 final Sprite menuBack = new Sprite(centerX, centerY,

 this.mMenuBackTextureRegion);

 mMainScene.getLastChild().attachChild(menuBack);

 mMainScene.setChildScene(mOptionsMenuScene);

 return this.mMainScene;

 }

 @Override

 public void onLoadComplete() {

 }

 @Override

 public boolean onMenuItemClicked(final MenuScene pMenuScene,

 final IMenuItem pMenuItem, final float pMenuItemLocalX,

 final float pMenuItemLocalY) {

 switch(pMenuItem.getID()) {

 case MENU_MUSIC:

 if (isMusicOn) {

 isMusicOn = false;

 } else {

 isMusicOn = true;

 }

Chapter 7 Text144

 createOptionsMenuScene();

 mMainScene.clearChildScene();

 mMainScene.setChildScene(mOptionsMenuScene);

 return true;

 case MENU_EFFECTS:

 if (isEffectsOn) {

 false);

 isEffectsOn = false;

 } else {

 true);

 isEffectsOn = true;

 }

 createOptionsMenuScene()

 mMainScene.clearChildScene();

 mMainScene.setChildScene(mOptionsMenuScene);

 return true;

 default:

 return false;

 }

 }

 // ===

 // Methods

 // ===

 protected void createOptionsMenuScene() {

 this.mOptionsMenuScene = new MenuScene(this.mCamera);

 if (isMusicOn) {

 musicMenuItem = new ColorMenuItemDecorator(

 mTurnMusicOff, 0.5f, 0.5f, 0.5f, 1.0f,

 0.0f, 0.0f);

 } else {

 musicMenuItem = new ColorMenuItemDecorator(

 mTurnMusicOn, 0.5f, 0.5f, 0.5f, 1.0f,

 0.0f, 0.0f);

 }

 musicMenuItem.setBlendFunction(GL10.GL_SRC_ALPHA,

 GL10.GL_ONE_MINUS_SRC_ALPHA);

 this.mOptionsMenuScene.addMenuItem(musicMenuItem);

 if (isEffectsOn) {

 effectsMenuItem = new ColorMenuItemDecorator(

 mTurnEffectsOff, 0.5f, 0.5f, 0.5f,

 1.0f, 0.0f, 0.0f);

 } else {

Adding Custom Fonts to V3 145

 effectsMenuItem = new ColorMenuItemDecorator(

 mTurnEffectsOn, 0.5f, 0.5f, 0.5f,

 1.0f, 0.0f, 0.0f);

 }

 effectsMenuItem.setBlendFunction(GL10.GL_SRC_ALPHA,

 GL10.GL_ONE_MINUS_SRC_ALPHA);

 this.mOptionsMenuScene.addMenuItem(effectsMenuItem);

 this.mOptionsMenuScene.buildAnimations();

 this.mOptionsMenuScene.setBackgroundEnabled(false);

 this.mOptionsMenuScene.setOnMenuItemClickListener(this);

 }

}

. . .

This code looks a lot like MainMenuLayer.java, which we saw in Chapter 3.

The difference is that now we know why it works:

 n onLoadEngine() is the same as always.

 n In onLoadResources(), we load the font resources for Flubber.ttf.

 n The Texture size is 256 × 256 pixels: We’ve tried the 32-pixel font in

 TextExample, and it fits in that size Texture.

 n The font asset base path is set as “/font”, because we want to keep font assets

separate from the rest of our assets, and because we’ve imported a copy of

Flubber.ttf into asset/font.

 n We create the Font and use TextureManager and FontManager to load the

Texture and Font, respectively.

 n The Texture for the Scene background is loaded in the way we’ve seen

before.

 n We define four TextMenuItems for the Options menu. We’ll use two of these

at a time, depending on the current status of two methods that return Bool-

ean values, isMusicOn() and isEffectsOn(). (I apologize for the verb/

subject disagreement, but Boolean-returning methods just have to start with

“is” somehow.)

 n In onLoadScene(), we invoke the createOptionsMenuScene() method to

create the menu. We’ll also use this method to re-create the menu with appro-

priate TextMenuItems as they change. Recall that the text in a TextMenuItem

 cannot be changed once it is created.

 n In onMenuItemClicked(), we catch touches on the menu items, set the

 Boolean values appropriately, and call createOptionsMenuScene() again to

re-create the menu. Then we clear away the old menu and add the new version

to the Scene.

Chapter 7 Text146

 n The createOptionsMenuScene() method uses the Boolean values to put the

right text in each menu item and uses ColorMenuItemDecorators to set the text

to red when not selected and gray when selected.

If you run the changed code, selecting Options from the Main Menu now takes

you to the Options Menu, where you can select Music or Effects to turn those sounds

on or off. Of course, we don’t have any sound yet, but the Boolean values are set for

our sound methods—to be created in Chapter 11—to access.

Summary

In this chapter, we learned the most important stuff about Text in AndEngine games.

We can create Text labels in our choice of styles, use custom vector fonts, make Toasts,

and use them all in our games.

A pattern should be emerging by now in the way AndEngine treats objects that it

will display with OpenGL:

 n Create a Texture big enough to hold all the image options for the displayable

Entity.

 n Load the Texture with the images for the Entity. The images might come from

an Android object (Typeface), an asset (custom TrueType font), or a resource

(as we saw with Sprites).

 n Use the singleton TextureManager to cache the Texture.

 n Sometimes use an Entity manager (such as FontManager) to cache the Entity.

 n Create the displayable object (e.g., Sprite, Text), and attach it to a Scene for

display.

We’ve seen that pattern over and over, and we’ll see a lot more of it as we continue

to develop our example game.

Exercises

1. Change one Boolean value in TextExample.java to get the screen shown in

Figure 7.7.

2. Make some modifications to the original TextExample.java:

 n Change the size of mStrokeFont to 64 pixels.

 n Change the position of textStroke to (60, 160).

 n Change both fonts to use Typeface.SERIF.

 n When you run the program, you should see a screen like that shown in

Figure 7.8. What happened to the “i” in lines?

 n Fix the program so the “i” displays properly with the larger font.

Exercises 147

Figure 7.8 TextExample with changes

Figure 7.7 TextExample with filled stroke

3. Add an option to the Options Menu to access the Help screen (which is only a

Toast right now) directly, without returning to the Main Menu.

4. Use Toasts as debug messages to follow the change in value of the music and

effects Boolean values in OptionsMenuActivity.

This page intentionally left blank

8

User Input

There wouldn’t be much point to a computer game if there weren’t user input to the

game. Android and AndEngine together have a particularly rich set of input capabili-

ties that developers can take advantage of to make their games more interesting. Let’s

first take a look at each of the user input features and see how AndEngine makes use

of the underlying Android features. You might also want to use Android features that

are not directly supported by AndEngine (EditText Views, for example), so we’ll take

a look at those capabilities as well.

Android and AndEngine Input Methods

Android has a very f lexible user interface, anticipating a wide variety of Android

devices with different styles of user input. It is likely that the users who play our

games will do so on many different devices, so we need to support as many of them

as possible. So far, Android devices have shipped with the following input methods

(and undoubtedly more):

 n Hard QWERTY keyboards (for various languages)

 n Soft QWERTY keyboards (for various languages)

 n D-Pad (up/down/left/right/select)

 n Keypad (dedicated buttons or touch points):

 n Send

 n Home

 n Back

 n End

 n Vol+/−

 n Search

 n Menu

Chapter 8 User Input150

 n Trackball

 n Single-touch screen

 n Single-touch pad

 n Multi-touch screen

 n Speech recognition

 n Accelerometer

 n Location (GPS or AGPS)

 n Orientation (compass heading)

You might not normally think of the last three as user input methods, but they are

used that way, particularly for games.

Keyboard and Keypad

Android simplifies programming for the plethora of keyboard types and layouts to

 produce standard key events that applications can use. In addition to the key event

type (up, down, or multiple keys), Android passes a keycode that indicates which key

was pressed. The key events are completely accessible to AndEngine games.

There are currently more than 200 keycodes, including the ones you would expect

to see on a keyboard, as well as media control keys, camera keys, TV keys, and more.

The keycodes are listed in the Android developer documentation at the following site:

http://developer.android.com/reference/android/view/KeyEvent.html

Android activities, including AndEngine games, can register themselves as listeners

for key events, and notification of key events will then be passed to them. Flags may

be set for each event that tell whether the event was generated by a hard key, by a soft

key, or by a program (not by a key at all).

Android will also handle the details of key events in relation to standard Android

Views. If an application creates a Text View that is editable, for example, Android will

take care of collecting the user’s keystrokes and make a string available to the applica-

tion once the user is done. If an Android View is collecting the keystrokes, those data

are not passed on as key events.

A typical snippet of code for capturing a key stroke is shown in Listing 8.1.

Listing 8.1 Capturing Keystrokes

 @Override

 public boolean onKeyDown(final int pKeyCode,

 final KeyEvent pEvent) {

 if(pKeyCode == KeyEvent.<insert keycode> &&

 pEvent.getAction() == KeyEvent.ACTION_DOWN) {

 // Do something because key was pressed

 return true;

http://developer.android.com/reference/android/view/KeyEvent.html

Android and AndEngine Input Methods 151

 } else {

 return super.onKeyDown(pKeyCode, pEvent);

 }

 }

The onKeyDown() method overrides the default method in the Activity class; it is

called when a key is pressed, and no Android View handles the key press. Returning

a value of true indicates that your method has handled the key press, and it shouldn’t

be propagated to other key handlers that might be part of the chain. AndEngine games

use this same API, just as with any Android application.

Touch

Android originally had only a single-touch interface, which is what we’ve used so

far in the example game. Android quickly evolved to include multi-touch capabili-

ties, however—first for gestures such as zooming, and then to include a more general

gesture interface. AndEngine wraps Android’s basic touch capabilities with code that

manages touch events and makes it easier to use touch in games.

Single-Touch Mode

In the single-touch mode, when the user touches a point on the touchscreen, a

MotionEvent is generated for listening applications. The standard Android API lets

you register OnTouchListener() methods to Views. When the View is touched,

the appropriate MotionEvents (down, drag, and up) are propagated to that method.

Listing 8.2 is a snippet of code showing the capture of touch events in a standard

Android application.

Listing 8.2 Android Touch Capture

package com.pearson.lagp.example;

. . .

public class TouchExample extends Activity implements OnTouchListener {

 private LinearLayout linear;

 private ImageView image;

. . .

 @Override

 public boolean onTouch(View v, MotionEvent e) {

 if (e.getAction() == MotionEvent.ACTION_DOWN) {

 Toast.makeText(this, "Down",

 Toast.LENGTH_SHORT).show();

 }

 return false;

 }

}

Chapter 8 User Input152

This approach is great for working with standard Android Views, but our AndEn-

gine games may have only one View (the GLSurfaceView that serves as the canvas for

all of our OpenGL drawing). To make effective use of touch in such a case, we would

have to keep track of where everything is on the screen and map the touch event

coordinates to different Entities.

Fortunately, AndEngine does all of this work for us. The Android touch paradigm

is extended so we can declare a touch listener for any object (including a Sprite) that

inherits from the Shape class. We can also declare a touch listener for any Scene. The

relevant methods are shown here:

void Scene.setOnSceneTouchListener(final IOnSceneTouchListener

pOnSceneTouchListener)

boolean Shape.onAreaTouched(final TouchEvent pSceneTouchEvent,

final float pTouchAreaLocalX, final float pTouchAreaLocalY)

The parameters are self-explanatory. The TouchEvent passed to

onAreaTouched() is an AndEngine TouchEvent. It’s very much like an Android

MotionEvent, but to minimize garbage collection AndEngine manages a pool of

TouchEvents for us.

Listing 8.3 shows an example of capturing both Scene and Sprite touch events.

Listing 8.3 AndEngine Touch Capture

. . .

public class AndEngineTouchExample extends BaseGameActivity {

. . .

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

. . .

 @Override

 public void onLoadResources() {

 mIconTexture = new BuildableTexture(128, 128,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 mIconTextureRegion =

 TextureRegionFactory.createFromAsset(

 this.mIconTexture, this, "icon.png");

 try {

 mIconTexture.build(

 new BlackPawnTextureBuilder(2));

 } catch (final TextureSourcePackingException e) {

 Log.d(tag, "Sprites won’t fit in mIconTexture");

 }

Android and AndEngine Input Methods 153

 this.mEngine.getTextureManager().loadTexture(

 this.mIconTexture);

 }

 @Override

 public Scene onLoadScene() {

 final Scene scene = new Scene(1);

 scene.setBackground(new ColorBackground(0.1f, 0.6f, 0.9f));

 scene.setOnSceneTouchListener(new IOnSceneTouchListener() {

 @Override

 public boolean onSceneTouchEvent(

 final Scene pScene,

 final TouchEvent pSceneTouchEvent) {

 switch(pSceneTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

 Toast.makeText(

 AndEngineTouchExample.this,

 "Scene touch DOWN",

 Toast.LENGTH_SHORT).show();

 break;

 case TouchEvent.ACTION_UP:

 Toast.makeText(

 AndEngineTouchExample.this,

 "Scene touch UP",

 Toast.LENGTH_SHORT).show();

 break;

 }

 return true;

 }

 });

 mIcon = new Sprite(100, 100, this.mIconTextureRegion) {

 @Override

 public boolean onAreaTouched(

 final TouchEvent pAreaTouchEvent,

 final float pTouchAreaLocalX,

 final float pTouchAreaLocalY) {

 switch(pAreaTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

 Toast.makeText(

 AndEngineTouchExample.this,

 "Sprite touch DOWN",

 Toast.LENGTH_SHORT).show();

 break;

 case TouchEvent.ACTION_UP:

 Toast.makeText(

 AndEngineTouchExample.this,

 "Sprite touch UP",

Chapter 8 User Input154

 Toast.LENGTH_SHORT).show();

 break;

 }

 return true;

 }

 };

 scene.getLastChild().attachChild(mIcon);

 scene.registerTouchArea(mIcon);

 scene.setTouchAreaBindingEnabled(true);

 return scene;

 }

 @Override

 public void onLoadComplete() {

 }

}

When this application runs on an Android device, it displays a light blue background

with an Android icon. If you touch the icon, Toasts describing the Sprite touch events

appear. If you touch anywhere else, Toasts describing Screen touch events appear.

Notice the method setTouchAreaBindingEnabled() found almost at the end

of the program. It notifies AndEngine that you want any additional area touch events

(e.g., Move, Up) to be associated with this same Sprite. This action can be very useful

if you are using a Move event to reposition the Sprite, for example. It would be easy

for the update lag to cause the user’s finger to stray outside the Sprite area. By using

this method, however, you ensure that AndEngine associates events with the Sprite

until the next Down event. To demonstrate this feature, touch the icon (you’ll get a

“Sprite touch DOWN” Toast), drag your finger, and then let up: You’ll get a “Sprite

touch UP” Toast, instead of the “Scene touch UP” that you might expect, because

you’re now off the Sprite.

Multi-Touch Mode

To handle multiple touches, Android uses the single-touch actions for the first touch

event, and MotionEvent.ACTION_POINTER events for subsequent touches and moves.

AndEngine does not add anything to the standard Android multi-touch APIs. These

APIs are well documented on the Android developer site, in case you want to use

them in your game.

Gestures

In addition to simple touches, we’d like to be able to generate gesture events for touch

motion sequences. Single touch gestures have been part of Android since API level 4

was introduced (Android 1.6), and limited support for multi-touch gestures was

Android and AndEngine Input Methods 155

introduced with API level 8 (Android 2.2). The multi-touch support is limited to the

two-finger zoom gesture.

As of this writing, the AndEngineExamples do not include any examples for

 gestures. Listing 8.4 shows a short example of the basic Android API that generates

a Toast for each of the available gestures.

Listing 8.4 Android Gestures Example

. . .

public class GestureExample extends BaseGameActivity {

. . .

 @Override

 public Engine onLoadEngine() {

 mGestureDetector = new GestureDetector(this,

 new ExampleGestureListener());

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT), this.mCamera));

 }

. . .

 @Override

 public boolean onTouchEvent(MotionEvent event) {

 if (mGestureDetector.onTouchEvent(event))

 return true;

 else

 return false;

 }

 class ExampleGestureListener extends

 GestureDetector.SimpleOnGestureListener{

 @Override

 public boolean onSingleTapUp(MotionEvent ev) {

 Toast.makeText(GestureExample.this,

 "Single tap up.", Toast.LENGTH_SHORT).show();

 return true;

 }

 @Override

 public void onShowPress(MotionEvent ev) {

 Toast.makeText(GestureExample.this,

 "Show press.", Toast.LENGTH_SHORT).show();

 return true;

Chapter 8 User Input156

 }

 @Override

 public void onLongPress(MotionEvent ev) {

 Toast.makeText(GestureExample.this,

 "Long press.", Toast.LENGTH_SHORT).show();

 return true;

 }

 @Override

 public boolean onScroll(MotionEvent e1, MotionEvent e2,

 float distanceX, float distanceY) {

 Toast.makeText(GestureExample.this, "Scroll.",

 Toast.LENGTH_SHORT).show();

 return true;

 }

 @Override

 public boolean onDown(MotionEvent ev) {

 Toast.makeText(GestureExample.this, "Down.",

 Toast.LENGTH_SHORT).show();

 return true;

 }

 @Override

 public boolean onFling(MotionEvent e1, MotionEvent e2,

 float velocityX, float velocityY) {

 Toast.makeText(GestureExample.this,

 "Fling.", Toast.LENGTH_SHORT).show();

 return true;

 }

 }

}

If you run this app (preferably on a real Android device—not on the emulator),

you’ll see that multiple events are generated for each gesture. The Android ges-

ture interface is very f lexible. As this book was being written, work was ongoing

to simplify some of the gestures for use in games. You can follow this work on the

AndEngine forum:

http://www.andengine.org/forums

Custom Gestures

The Android SDK comes with Gestures Builder, an application that makes it easy to

create and record single-touch gestures. Although you can run Gestures Builder on

the emulator, the easiest way to create a gesture is to run it on an Android device. The

http://www.andengine.org/forums

Android and AndEngine Input Methods 157

resulting gestures library is stored on the device’s sdcard using the filename gestures.

If the phone is connected via USB you can retrieve it with the adb command

adb –d pull /sdcard/gestures

The gestures file will be pulled into your current directory, and will need to

be loaded into assets for use in your game. We won’t be using any custom gestures

in V3, but you can think of many ways it might be used to make a game more fun

to play. If you want to use custom gestures in your game, take a look at this Android

Developer site article:

http://developer.android.com/resources/articles/gestures.html

On-Screen Controllers

One very neat feature of AndEngine is the ability to show and use simulated game

controllers on the game screen. These controllers are usually shown transparently

f loating above the game, and they respond to touch inputs to realistically simulate a

toggle-type game controller. Two f lavors of on-screen controllers are available:

 n Analog controllers, where the distance of the toggle from center is an analog

value that can be used to control the game

 n Digital controllers, which are more like a D-Pad, where the toggle value is just

up, down, left, or right

Figure 8.1 shows the analog controllers, as demonstrated in the AndEngineExam-

ples program AnalogOnScreenControlsExample.java.

Figure 8.1 AndEngineExamples on-screen controller

http://developer.android.com/resources/articles/gestures.html

Chapter 8 User Input158

The controllers are very realistic, but even though they are semi-transparent, they

take up quite a bit of screen space. We won’t include controllers in V3, but if you’re

interested in using them in your own game, take a look at the examples in AndEngine-

Examples or at the answer to Exercise 1 in the Appendix.

Accelerometer

Most Android devices include an accelerometer, and AndEngine makes it readily avail-

able for use in our games. As a user input method, the accelerometer is often used to

measure the tilt of the Android device. A popular mode of operation is to have some-

thing apparently rolling around the screen and to have the user tilt the phone to make

it roll to a target while avoiding obstacles.

The accelerometer features in AndEngine are most often used in combination with

the Physics modules, which we will discuss in detail in Chapter 12. For now, Exercise 3

at the end of this chapter (and its solution in the Appendix) shows brief ly how to use the

accelerometer.

Location and Orientation

Most Android devices also include sensors for location (usually GPS or AGPS) and

orientation (a magnetometer to produce a compass heading). These items aren’t often

thought of as user input methods, but they can be used as inputs to a game. AndEngine

wraps the basic Android APIs with classes that simplify their use in a game.

To use the orientation APIs, you need to say that your Activity implements

 IOrientationListener, and override the following method:

void onOrientationChanged(final OrientationData pOrientationData)

The OrientationData returned includes a lot of information, with the most fre-

quently used pieces of data being roll, pitch, and yaw—the three axes of rotation.

Their values range from 0.0 to 360.0, and there are getters for each item.

The AndEngine ILocationListener interface requires us to implement more

methods:

void onLocationChanged(final Location pLocation)

void onLocationLost()

void onLocationProviderDisabled()

onLocationProviderStatusChanged(final LocationProviderStatus

pLocationProviderStatus, final Bundle pBundle)

Of these methods, onLocationChanged() is the most often used, as it is where

we can find out the new location of the device. Just as with any Android program that

uses location information, we need to request the appropriate permissions and obtain

access to a location provider by creating a new Location object (see the notes follow-

ing Listing 8.5). Listing 8.5 shows a simple example of using location and orientation

within AndEngine.

Android and AndEngine Input Methods 159

Listing 8.5 Location and Orientation Example

package com.pearson.lagp.example;

import org.anddev.andengine.engine.Engine;

import org.anddev.andengine.engine.camera.Camera;

import org.anddev.andengine.engine.options.EngineOptions;

import org.anddev.andengine.engine.options.EngineOptions

 .ScreenOrientation;

import org.anddev.andengine.engine.options.resolutionpolicy

 .RatioResolutionPolicy;

import org.anddev.andengine.entity.scene.Scene;

import org.anddev.andengine.entity.scene.background.ColorBackground;

import org.anddev.andengine.entity.sprite.Sprite;

import org.anddev.andengine.opengl.texture.BuildableTexture;

import org.anddev.andengine.opengl.texture.TextureOptions;

import org.anddev.andengine.opengl.texture.builder

 .BlackPawnTextureBuilder;

import org.anddev.andengine.opengl.texture.builder.ITextureBuilder

 .TextureSourcePackingException;

import org.anddev.andengine.opengl.texture.region.TextureRegion;

import org.anddev.andengine.opengl.texture.region.TextureRegionFactory;

import org.anddev.andengine.sensor.location.ILocationListener;

import org.anddev.andengine.sensor.location.LocationProviderStatus;

import org.anddev.andengine.sensor.location.LocationSensorOptions;

import org.anddev.andengine.sensor.orientation.IOrientationListener;

import org.anddev.andengine.sensor.orientation.OrientationData;

import org.anddev.andengine.ui.activity.BaseGameActivity;

import org.anddev.andengine.util.Debug;

import android.location.Criteria;

import android.location.Location;

import android.location.LocationManager;

import android.os.Bundle;

import android.util.Log;

import android.widget.Toast;

public class AndEngineSensorExample extends BaseGameActivity implements

IOrientationListener, ILocationListener {

 // ===

 // Constants

 // ===

 private static final int CAMERA_WIDTH = 480;

 private static final int CAMERA_HEIGHT = 320;

 private String tag = "AndEngineSensorExample";

 // ===

 // Fields

 // ===

Chapter 8 User Input160

 protected Camera mCamera;

 private Location mUserLocation;

 protected Scene mMainScene;

 protected Sprite mIcon;

 private BuildableTexture mIconTexture;

 private TextureRegion mIconTextureRegion;

 private Location mLocation ;

 // ===

 // Constructors

 // ===

 // ===

 // Getter and Setter

 // ===

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 this.mLocation = new Location(

 LocationManager.GPS_PROVIDER);

 }

 @Override

 public Engine onLoadEngine() {

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT), this.mCamera));

 }

 @Override

 public void onLoadResources() {

 mIconTexture = new BuildableTexture(128, 128,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 mIconTextureRegion =

 TextureRegionFactory.createFromAsset(

 this.mIconTexture, this, "icon.png");

 try {

 mIconTexture.build(new BlackPawnTextureBuilder(2));

Android and AndEngine Input Methods 161

 } catch (final TextureSourcePackingException e) {

 Log.d(tag, "Sprites won’t fit in mIconTexture");

 }

 this.mEngine.getTextureManager().loadTexture(

 this.mIconTexture);

 }

 @Override

 public Scene onLoadScene() {

 final Scene scene = new Scene(1);

 scene.setBackground(new ColorBackground(0.1f, 0.6f, 0.9f));

 mIcon = new Sprite(100, 100, this.mIconTextureRegion);

 scene.getLastChild().attachChild(mIcon);

 return scene;

 }

 @Override

 public void onLoadComplete() {

 }

 @Override

 protected void onResume() {

 super.onResume();

 this.enableOrientationSensor(AndEngineSensorExample.this);

 final LocationSensorOptions locationSensorOptions =

 new LocationSensorOptions();

 locationSensorOptions.setAccuracy(

 Criteria.ACCURACY_COARSE);

 locationSensorOptions.setMinimumTriggerTime(0);

 locationSensorOptions.setMinimumTriggerDistance(0);

 this.enableLocationSensor(AndEngineSensorExample.this,

 locationSensorOptions);

 }

 @Override

 protected void onPause() {

 super.onPause();

 this.mEngine.disableOrientationSensor(this);

 this.mEngine.disableLocationSensor(this);

 }

 @Override

 public void onOrientationChanged(

 final OrientationData pOrientationData) {

Chapter 8 User Input162

 float yaw = pOrientationData.getYaw() / 360.0f;

 mIcon.setPosition(CAMERA_WIDTH/2, yaw * CAMERA_HEIGHT);

 }

 @Override

 public void onLocationChanged(final Location pLocation) {

 String tst = "Lat: " + pLocation.getLatitude()+

 " Lng: " + pLocation.getLongitude();

 Toast.makeText(AndEngineSensorExample.this, tst,

 Toast.LENGTH_LONG).show();

 }

 @Override

 public void onLocationLost() {

 }

 @Override

 public void onLocationProviderDisabled() {

 }

 @Override

 public void onLocationProviderEnabled() {

 }

 @Override

 public void onLocationProviderStatusChanged(

 final LocationProviderStatus pLocationProviderStatus,

 final Bundle pBundle) {

 }

}

The important points about this example include the following:

 n To access location information, your application must have the proper permissions.

For this example (asking for the GPS location provider), the manifest includes

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION">

 n We need to override onCreate(), which we normally leave to BaseGameActivity,

but we need to enable the location provider before onResume() runs.

 n We usually leave the calls to onPause() and onResume() to BaseGameActivity,

but we need to override these methods here so we can turn orientation and loca-

tion listening off and on as necessary. This approach allows Android to optimize

power consumption by disabling the sensors if no application is listening.

 n The ILocationListener interface requires that we implement all of the location

listener methods, most of which we leave as stubs.

Android and AndEngine Input Methods 163

Speech

Android provides a generalized voice recognition API that makes use of programs that

run on Google’s servers. Because the raw speech must go back to the server and the

recognized text must return to the Android device, you need to factor a bit of latency

into any use of speech in your game. Another point to consider is that the default

speech recognition user interface obscures most of the screen while it is running.

 Listing 8.6 provides some example code so you can give voice recognition a try.

Listing 8.6 Android Speech Recognition

package com.pearson.lagp.example;

import java.util.ArrayList;

import org.anddev.andengine.engine.Engine;

import org.anddev.andengine.engine.camera.Camera;

import org.anddev.andengine.engine.options.EngineOptions;

import org.anddev.andengine.engine.options.EngineOptions

 .ScreenOrientation;

import org.anddev.andengine.engine.options.resolutionpolicy

 .RatioResolutionPolicy;

import org.anddev.andengine.entity.scene.Scene;

import org.anddev.andengine.entity.scene.background.ColorBackground;

import org.anddev.andengine.entity.sprite.Sprite;

import org.anddev.andengine.input.touch.TouchEvent;

import org.anddev.andengine.opengl.texture.BuildableTexture;

import org.anddev.andengine.opengl.texture.TextureOptions;

import org.anddev.andengine.opengl.texture.builder

 .BlackPawnTextureBuilder;

import org.anddev.andengine.opengl.texture.builder.ITextureBuilder

 .TextureSourcePackingException;

import org.anddev.andengine.opengl.texture.region.TextureRegion;

import org.anddev.andengine.opengl.texture.region.TextureRegionFactory;

import org.anddev.andengine.ui.activity.BaseGameActivity;

import android.content.Intent;

import android.speech.RecognizerIntent;

import android.util.Log;

import android.widget.Toast;

public class VoiceRecExample extends BaseGameActivity {

 // ===

 // Constants

 // ===

 private static final int CAMERA_WIDTH = 480;

 private static final int CAMERA_HEIGHT = 320;

Chapter 8 User Input164

 private String tag = "VoiceRecExample";

 private static final int VOICE_RECOGNITION_REQUEST_CODE = 1234;

 // ===

 // Fields

 // ===

 protected Camera mCamera;

 protected Scene mMainScene;

 protected Sprite mIcon;

 private BuildableTexture mIconTexture;

 private TextureRegion mIconTextureRegion;

 // ===

 // Constructors

 // ===

 // ===

 // Getter and Setter

 // ===

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 @Override

 public Engine onLoadEngine() {

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT), this.mCamera));

 }

 @Override

 public void onLoadResources() {

 mIconTexture = new BuildableTexture(128, 128,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 mIconTextureRegion =

 TextureRegionFactory.createFromAsset(

 this.mIconTexture, this, "icon.png");

 try {

 mIconTexture.build(

 new BlackPawnTextureBuilder(2));

Android and AndEngine Input Methods 165

 } catch (final TextureSourcePackingException e) {

 Log.d(tag, "Sprites won’t fit in mIconTexture");

 }

 this.mEngine.getTextureManager().loadTexture(this.mIconTexture);

 }

 @Override

 public Scene onLoadScene() {

 final Scene scene = new Scene(1);

 scene.setBackground(new ColorBackground(0.1f, 0.6f, 0.9f));

 mIcon = new Sprite(CAMERA_WIDTH/2, CAMERA_HEIGHT/2,

 this.mIconTextureRegion) {

 @Override

 public boolean onAreaTouched(

 final TouchEvent pAreaTouchEvent,

 final float pTouchAreaLocalX,

 final float pTouchAreaLocalY) {

 switch(pAreaTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

 startVoiceRecognitionActivity();

 break;

 case TouchEvent.ACTION_UP:

 break;

 }

 return true;

 }

 };

 scene.getLastChild().attachChild(mIcon);

 scene.registerTouchArea(mIcon);

 scene.setTouchAreaBindingEnabled(true);

 Toast.makeText(VoiceRecExample.this,

 "Touch icon and say move left/right/up/down",

 Toast.LENGTH_SHORT).show();

 return scene;

 }

 @Override

 public void onLoadComplete() {

 }

 // ===

 // Methods

 // ===

Chapter 8 User Input166

 private void startVoiceRecognitionActivity() {

 Intent i ntent = new Intent(RecognizerIntent

.ACTION_RECOGNIZE_SPEECH);

 intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,

 RecognizerIntent.LANGUAGE_MODEL_FREE_FORM);

 intent.putExtra(RecognizerIntent.EXTRA_PROMPT,

 "Speech recognition demo");

 startActivityForResult(intent, VOICE_RECOGNITION_REQUEST_CODE);

 }

 @Override

 protected void onActivityResult(int requestCode, int resultCode,

 Intent data) {

 if (requestCode == VOICE_RECOGNITION_REQUEST_CODE &&

 resultCode == RESULT_OK) {

 ArrayList<String> matches = data.getStringArrayListExtra(

 RecognizerIntent.EXTRA_RESULTS);

 for (String match : matches){

 if (match.equalsIgnoreCase("move left")){

 mIcon.setPosition(mIcon.getX()-10.0f,

 mIcon.getY());

 }

 if (match.equalsIgnoreCase("move right")){

 mIcon.setPosition(mIcon.getX()+10.0f,

 mIcon.getY());

 }

 if (match.equalsIgnoreCase("move up")){

 mIcon.setPosition(mIcon.getX(),

 mIcon.getY()-10.0f);

 }

 if (match.equalsIgnoreCase("move down")){

 mIcon.setPosition(mIcon.getX(),

 mIcon.getY()+10.0f);

 }

 }

 }

 super.onActivityResult(requestCode, resultCode, data);

 }

 // ===

 // Inner and Anonymous Classes

 // ===

}

If the Voice Recognizer application is installed on your Android device (as it is on

all recent devices, for Voice Search), when you touch the icon you will see the speech

Adding User Input to V3 167

recognition UI. If you say, “Move left,” “Move up,” or something similar, you will see

the icon move once the speech is recognized and the speech UI goes away.

Adding User Input to V3

We’d like to add some user input capabilities to the example game we’re developing.

Recall the scene we’ve developed for Level 1 of the game, with vampires walking

toward Miss B’s and a box of obstacles (see Figure 8.2). We want to make it possible

for the player to touch a weapon Sprite and drag it into the graveyard to hold back the

vampire attack. We won’t implement the weapons’ effects just yet; we’ll just allow the

player to move them around.

The changes to implement this ability are all made in Level1Activity.java, as

shown in Listing 8.7.

Listing 8.7 Changes to Level1Activity.java

package com.pearson.lagp.v3;

. . .

 @Override

 public Scene onLoadScene() {

 this.mEngine.registerUpdateHandler(new FPSLogger());

Figure 8.2 V3 Level 1 scene

Chapter 8 User Input168

 final Scene scene = new Scene(1);

 /* Center the camera. */

 final int centerX = (CAMERA_WIDTH -

 mLevel1BackTextureRegion.getWidth()) / 2;

 final int centerY = (CAMERA_HEIGHT -

 mLevel1BackTextureRegion.getHeight()) / 2;

 /* Create the sprites and add them to the scene. */

 final Sprite background = new Sprite(centerX, centerY,

 mLevel1BackTextureRegion);

 scene.getLastChild().attachChild(background);

 final Sprite obstacleBox = new Sprite(0.0f, CAMERA_HEIGHT -

 mBoxTextureRegion.getHeight(), mBoxTextureRegion);

 scene.getLastChild().attachChild(obstacleBox);

 final Sprite bullet = new Sprite(20.0f, CAMERA_HEIGHT -

 40.0f, mBulletTextureRegion){

 @Override

 public boolean onAreaTouched(

 final TouchEvent pAreaTouchEvent,

 final float pTouchAreaLocalX,

 final float pTouchAreaLocalY) {

 switch(pAreaTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

 Toast.makeText(Level1Activity.this,

 "Sprite touch DOWN",

 Toast.LENGTH_SHORT).show();

 break;

 case TouchEvent.ACTION_UP:

 Toast.makeText(Level1Activity.this,

 "Sprite touch UP",

 Toast.LENGTH_SHORT).show();

 break;

 case TouchEvent.ACTION_MOVE:

 this.setPosition(pAreaTouchEvent.getX() -

 this.getWidth() / 2,

 pAreaTouchEvent.getY() -

 this.getHeight() / 2);

 break;

 }

 return true;

 }

 };

 bullet.registerEntityModifier(

 new SequenceEntityModifier(

 new ParallelEntityModifier(

 new MoveYModifier(3, 0.0f,

Adding User Input to V3 169

 CAMERA_HEIGHT - 40.0f,

 EaseQuadOut.getInstance()),

 new AlphaModifier(3, 0.0f, 1.0f),

 new ScaleModifier(3, 0.5f, 1.0f)

),

 new RotationModifier(3, 0, 360)

)

);

 scene.registerTouchArea(bullet);

 scene.setTouchAreaBindingEnabled(true);

 scene.getLastChild().attachChild(bullet);

 final Sprite cross = new Sprite(bullet.getInitialX() +

 40.0f, CAMERA_HEIGHT - 40.0f, mCrossTextureRegion){

 @Override

 public boolean onAreaTouched(

 final TouchEvent pAreaTouchEvent,

 final float pTouchAreaLocalX,

 final float pTouchAreaLocalY) {

 switch(pAreaTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

 Toast.makeText(Level1Activity.this,

 "Sprite touch DOWN",

 Toast.LENGTH_SHORT).show();

 break;

 case TouchEvent.ACTION_UP:

 Toast.makeText(Level1Activity.this,

 "Sprite touch UP",

 Toast.LENGTH_SHORT).show();

 break;

 case TouchEvent.ACTION_MOVE:

 this.setPosition(pAreaTouchEvent.getX() -

 this.getWidth() / 2,

 pAreaTouchEvent.getY() -

 this.getHeight() / 2);

 break;

 }

 return true;

 }

 };

 cross.registerEntityModifier(

 new SequenceEntityModifier(

 new ParallelEntityModifier(

 new MoveYModifier(4, 0.0f,

 CAMERA_HEIGHT - 40.0f,

 EaseQuadOut.getInstance()),

 new AlphaModifier(4, 0.0f, 1.0f),

Chapter 8 User Input170

 new ScaleModifier(4, 0.5f, 1.0f)

),

 new RotationModifier(2, 0, 360)

)

);

 cross.registerEntityModifier(

 new AlphaModifier(10.0f, 0.0f, 1.0f));

 scene.registerTouchArea(cross);

 scene.getLastChild().attachChild(cross);

 final Sprite hatchet = new Sprite(cross.getInitialX() +

 40.0f, CAMERA_HEIGHT - 40.0f, mHatchetTextureRegion){

 @Override

 public boolean onAreaTouched(

 final TouchEvent pAreaTouchEvent,

 final float pTouchAreaLocalX,

 final float pTouchAreaLocalY) {

 switch(pAreaTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

 Toast.makeText(Level1Activity.this,

 "Sprite touch DOWN",

 Toast.LENGTH_SHORT).show();

 break;

 case TouchEvent.ACTION_UP:

 Toast.makeText(Level1Activity.this,

 "Sprite touch UP",

 Toast.LENGTH_SHORT).show();

 break;

 case TouchEvent.ACTION_MOVE:

 this.setPosition(pAreaTouchEvent.getX() -

 this.getWidth() / 2,

 pAreaTouchEvent.getY() -

 this.getHeight() / 2);

 break;

 }

 return true;

 }

 };

 hatchet.registerEntityModifier(

 new SequenceEntityModifier(

 new ParallelEntityModifier(

 new MoveYModifier(5, 0.0f,

 CAMERA_HEIGHT - 40.0f,

 EaseQuadOut.getInstance()),

 new AlphaModifier(5, 0.0f, 1.0f),

 new ScaleModifier(5, 0.5f, 1.0f)

),

Summary 171

 new RotationModifier(2, 0, 360)

)

);

 hatchet.registerEntityModifier(

 new AlphaModifier(15.0f, 0.0f, 1.0f));

 scene.getLastChild().attachChild(hatchet);

 scene.registerTouchArea(hatchet);

 scene.registerEntityModifier(

 new AlphaModifier(10, 0.0f, 1.0f));

 // Add first vampire (which will add the others)

 nVamp = 0;

 mHandler.postDelayed(mStartVamp,5000);

 return scene;

 }

. . .

}

There are basically two changes to the onLoadScene() method:

1. As each weapon Sprite is created, we add an onAreaTouched() listener method

that will capture touches. For the moment, we’re displaying the Toasts for the up

and down events, just as we did in the touch example in Listing 8.3, but we’ll

want to take these Toasts out eventually. The onAreaTouched() methods are

exactly alike at this point, and we could factor them out, but we want to keep

them separate to do different things later. In each one we’ve added a case for

ACTION_MOVE and reset the position each time to drag the Sprite along.

2. For each weapon Sprite, we registered the touch area with the Scene, so the

touches would be propagated to us. Once we enable touch area binding (with

the bullet Sprite registration), the move events will follow the Sprite.

Summary

We can see from this chapter that Android and AndEngine offer a wide variety of user

input capabilities. The variety is almost too complex, and given that most inputs are

touch based at their core, it can be a challenge to keep track of how touches are propa-

gated and where they should be captured.

As game designers, our first task is to map the available input methods with the

player’s inputs to our game, thereby providing the most natural user interface. Let’s

recap the available Android and AndEngine input methods:

 n Touch

 n Scene touches

 n Area (Sprite) touches

Chapter 8 User Input172

 n Multi-touch

 n Gesture

 n On-screen controller

 n Analog controller

 n Digital controller

 n Speech recognition

 n Accelerometer

 n Location

 n Orientation

For most of these methods AndEngine provides wrappers that not only make the

input easier to gather, but also manage pools of object resources, so inputs don’t gen-

erate a bunch of objects that need to be garbage collected. Having those wrappers at

hand puts us ahead of the curve in creating killer games.

Exercises

1. Write a small example game that moves a Sprite around the screen based on

inputs from a single on-screen controller.

2. Write an example that uses an on-screen analog controller to move a Sprite

around the screen. Have the Sprite wrap around when it hits the edge of the

screen in any direction.

3. Write a simple game that changes the screen (background) color depending on

the whether the Android device is held f lat or is held up (i.e., the way a phone is

normally used). Have it be green if f lat and red if upright.

9

Tile Maps

Whether you know it or not, you’ve seen tile maps in other games that you’ve played.

Many of the original arcade games were tile based, as well as many games for game

consoles. Tiles are a good fit for a variety of game situations.

In this chapter, we look at the way AndEngine manages tiles. We also examine a

tile editor for AndEngine, which enables you to make your own tiles or to adapt tile

sets that you get from others. We’ll implement tiles for the V3 game by incorporating

a small game within the game.

Why Tile Maps?

Tile maps have two principal advantages that were critical to early computer games

and remain valuable in today’s games:

 n For many games, the designer wants the playing field to be large and possibly

extensible. Rather than having to create huge bitmaps for those large fields, tiles

make it possible to construct seemingly endless fields on the f ly, using just a few

tiles that are repeated to build the larger image. Tile maps save both memory and

time, as the same tile images are rendered repeatedly. In a related (non-game) area,

that is exactly the reason why tiles are used in geographic mapping applications—

they make it unnecessary to have the whole map in memory at once.

 n Tiles can facilitate collision detection. Several types of collision detection are

used in modern games, but you can detect collisions with tiles using very few

computing resources.

Types of Tile Maps

A tile map is just an image formed from an array of repeating polygons. For simple

tile maps, the polygons are usually squares. Thus the tile map is a grid, with each cell

showing one of a small set of tiles, and collectively all of the cells creating a whole

image. Figure 9.1 shows an example tile map that comes with the tile map editor we’ll

discuss later in this chapter; this figure shows a desert scene from above. The entire

scene was created using just the tiles shown in its tile set, as depicted in Figure 9.2.

Chapter 9 Tile Maps174

Figure 9.2 Tile set for desert example

Figure 9.1 Desert example from Tiled

Types of Tile Maps 175

Using just the 48 tiles in this tile set, a game designer can create as large a desert

scene as needed, complete with varied features and obstacles. The game simply needs

to store the images for the tiles, along with a map that tells it which tile to render in

each location of the grid.

Orthogonal Tile Maps

The tile map we looked at in the last section is an orthogonal tile map. The view

of the territory is from directly overhead, and the tiles are most commonly square,

although some orthogonal tile maps use rectangular tiles. Orthogonal tile maps were

the first type created and perhaps the most popular type of tile map used in games.

They are the simplest type of tile map, as tile images never overlap. We’ll use orthogo-

nal tiling in our “game within a game.”

Isometric Tile Maps

Another popular style of tile map uses isometric tiles. The idea behind isometric maps is

to create a pseudo-3D effect by effectively moving the location of the viewing camera.

Instead of viewing the territory from directly overhead, we view it from about 45 degrees

off vertical. Figure 9.3 shows an example forest scene that comes with the Tiled editor.

Figure 9.3 Isometric tile set

Chapter 9 Tile Maps176

With the change in viewpoint, two things happen:

 n The square tiles of the orthogonal view are transformed into a rhombus (dia-

mond) shape.

 n Features of nearer tiles will overlap the tiles that are farther away. In the example

in Figure 9.3, the closer trees overlap tiles that are farther away.

The 3D effect of isometric tiling doesn’t match what can be achieved with OpenGL

and a real 3D game, but for the cost it’s very effective. We won’t develop a detailed

isometric tile example for V3, but you should recognize that the basic techniques for

orthogonal tiling apply to isometric tile maps as well.

Structure of Tile Maps

A tile map consists of three parts: the map, the tile set, and the image that provides the

textures for the tiles. The map itself is structured hierarchically:

 n Each tile has its characteristics, including its ID (its position in the map) and a

global ID (which identifies the tile texture from the tile set that should be dis-

played there).

 n Tiles are mapped into layers, each of which is a complete map of the 2D area

covered by the tiles.

 n The layers combine to make the map.

Tile maps also allow for construction of object groups, which are contiguous groups

of tiles that the user wants to treat as a single entity for some reason. Object groups are

implemented as rectangular areas on the map. Maps, layers, tiles, and object groups can

all have their own properties assigned. Properties are just name–value pairs that can be

set in the Tiled Qt editor (as we’ll see later) and retrieved at runtime.

Tile Maps in AndEngine

Tile maps have been used for a long time in games, and standard formats have been

developed for storing the tile sets and the resulting tile maps. Tile map utilities are

freely available to build and edit tile maps based on these standards.

TMX and TSX Files

Two very popular XML-based formats for tile maps are TMX, for tile maps, and

TSX, for tile sets. The two go together, as most TMX files reference a TSX file to

obtain the tile set information. We’ll look at these file formats in more detail later in

this chapter, when we look at the Tiled tile map editor.

TMX tile maps integrate very easily into AndEngine. They can be loaded, manipu-

lated, and rendered using a rather straightforward API that is detailed in the next

few sections.

Tile Maps in AndEngine 177

TMXLoader

AndEngine includes a TMXLoader class that knows how to parse and load TMX and

TSX files into TMXTiledMap objects. You use TMXLoader by first creating a new

object using one of its constructors. The most complete constructor is

TMXLoader(final Context pContext, final TextureManager pTextureManager,

final TextureOptions pTextureOptions,

final ITMXTilePropertiesListener pTMXTilePropertyListener)

The Context and TextureManager parameters are required, whereas Texture

Options and ITMXTilePropertiesListener are both optional. TextureOptions

tells OpenGL how to render the tile textures, just as it did for Sprites. If not otherwise

specified, TextureOptions defaults to NEAREST_PREMULTIPLYALPHA.

ITMXTilePropertiesListener gives us a chance to do something when a tile

with properties is loaded. In the description of the Tiled Qt editor in a later section,

we’ll see that these properties are just name–value pairs. An example using the listener

method also appears later in this chapter.

Once we have a TMXLoader object, we can use it to load the tile map with one of

the load methods:

TMXTiledMap loadFromAsset(final Context pContext, final String pAssetPath)

TMXTiledMap load(final InputStream pInputStream)

The first method, loadFromAsset(), is more convenient, unless you happen to have

the .tmx file open for some other reason. Both loaders will throw a TMXLoadExcep-

tion if anything goes wrong with parsing and loading the tile map. The returned TMX-

TileMap is the root node that we will use to access all of the tile map information.

TMXTiledMap

TMXTiledMap is the AndEngine class corresponding to a whole tile map, with all its

layers, tiles, and properties. You normally won’t have to use the constructor to create

the entire map, but rather will get the object by loading a tile map as mentioned previ-

ously. Instead, we typically use TMXTiledMap getter methods to access the contents

of the tile map:

int getTileColumns()

int getTileRows()

int getTileWidth()

int getTileHeight()

These methods retrieve dimensional information that might be of use. The width and

height are the pixel width and height, respectively, of a single tile.

ArrayList<TMXTileSet> getTMXTileSets()

ArrayList<TMXLayer> getTMXLayers()

ArrayList<TMXObjectGroup> getTMXObjectGroups()

Chapter 9 Tile Maps178

These methods retrieve lists of the layers, tile sets, and object groups in the tile map.

Each of these objects has methods that provide more detailed information about that

part of the map.

TMXProperties<TMXTileProperty> getTMXTilePropertiesByGlobalTileID(

final int pGlobalTileID)

TMXProperties<TMXTiledMapProperty> getTMXTiledMapProperties()

TMXProperties<TMXTileProperty> getTMXTileProperties(

final int pGlobalTileID)

These methods retrieve lists of properties that can be associated with the map, with a

layer, or with a tile.

TextureRegion getTextureRegionFromGlobalTileID(final int pGlobalTileID)

This method allows us to retrieve the resulting TextureRegion that was created when

the tile map was loaded.

TMXLayer

Tile maps are composed of layers, with each layer having its own map of tiles from the

tile set. We saw earlier that we can retrieve the list of layers in a map from the TMX-

TiledMap object. We can select a particular layer and use its methods to retrieve or set

information about that layer of the map:

String getName()

int getTileColumns()

int getTileRows()

These methods retrieve basic information about the layer. The name can be set in the

Tiled Qt editor.

TMXTile[][] getTMXTiles()

TMXTile getTMXTile(final int pTileColumn, final int pTileRow)

TMXTile getTMXTileAt(final float pX, final float pY)

These three methods retrieve tiles. The first places all of the tiles in an array of TMX-

Tiles, the second retrieves a tile by its row/column position in the grid, and the last

one gets the tile that intersects with the given scene coordinates.

TMXProperties<TMXLayerProperty> getTMXLayerProperties()

This method provides a list of properties associated with the layer.

TMXTile

Once we have a reference to a TMXTile object, we can use its getter/setter methods

to access all the interesting things about it:

int getTileRow()

int getTileColumn()

The Tile Editor: Tiled 179

int getTileX()

int getTileY()

int getTileWidth()

int getTileHeight()

TextureRegion getTextureRegion()

These methods are straightforward. You might think you would use getTexture

Region() to figure out which tile image was mapped to this tile, but there’s actually a

better way. Remember the global ID?

int getGlobalTileID()

void setGlobalTileID(final TMXTiledMap pTMXTiledMap, final int pGlobalTileID)

Global IDs are assigned by Tiled Qt when you build the tile map (discussed in the

next section). Although you can tell Tiled Qt where to start the numbering, the

default is to start at 0, and each tile image in the tile set has its own unique global ID.

When you set the global ID with setGlobalTileID(), doing so also sets the tile’s

texture to match. Thus you can use this approach to manipulate the images shown

at runtime.

The Tile Editor: Tiled

AndEngine knows how to parse tile map files that are created by an editor called

Tiled Qt. We encountered that editor brief ly in Chapter 2, but now we’d like to look

at it in detail and use it to build some tile maps for our game. Tiled knows how to

edit both orthogonal and isometric tile maps. We’ll focus on an orthogonal tile map

example for V3.

If you haven’t already done so, download Tiled (from www.mapeditor.org) and

install it on your computer. Be sure you’re installing “Tiled Qt,” which is based on the

Qt library from Nokia and written in C++. An earlier version of Tiled, which you

may also run across, was written in Java and is no longer supported. For the examples

in this book, we’re using Tiled Qt 0.6.0.

When you open Tiled and open the desert.tmx example (in the examples sub-

directory), the workspace shown in Figure 9.4 will appear.

The default editing tool is the “stamp.” You can edit the tile map by picking tiles

from the tile set in the lower-right corner of the screen and then clicking a grid posi-

tion in the main work area to stamp that location with the selected tile. When you’re

ready to save your work, use either the File > Save or Save As… menu command to

create a .tmx file that AndEngine can use to render your tile map. Right-clicking on

the Tile Sets pane brings up a menu that lets you edit or save the tile set you’re using

into a .tsx file.

The Layers pane in the upper-right corner of the Tiled workspace shows the lay-

ers in the map. This view says there is only one layer in this tile map, it is named Tile

Layer 1, and it is currently being displayed.

www.mapeditor.org

Chapter 9 Tile Maps180

TMX Files

The file format used by Tiled and AndEngine is TMX, and the tile map files all have

a file extension of .tmx. The set of tile images is found in an accompanying .png

file. TMX files are XML based. They include the map indicating which tile appears

in which location, for which compression is used to reduce the tile map data to a very

small footprint. The TMX file for the desert landscape shown in Figure 9.4 is just 845

bytes long. Listing 9.1 provides the complete file.

Listing 9.1 desert.tmx

<?xml version="1.0" encoding="UTF8"?>

<map version="1.0" orientation="orthogonal" width="40" height="40"

tilewidth="32" tileheight="32">

<tileset firstgid="1" name="Desert" tilewidth="32" tileheight="32"

spacing="1" margin="1">

 <image source="tmw_desert_spacing.png" width="265" height="199"/>

 </tileset>

 <layer name="Ground" width="40" height="40">

 <data encoding="base64" compression="zlib">

eJztmNkKwjAQRaN9cAPrAq5Yq3Xf6v9/nSM2VIbQJjEZR+nDwQZScrwztoORECLySBcIgZ7nc2

y4KfyWDLx+Jb9nViNgDEwY+KioAXUgQN4+zpoCMwPmQAtoAx2CLFbA2oDEo9+hwG8DnIDtF/

Figure 9.4 Tiled workspace

Orthogonal Game: Whack-A-Vampire 181

2K8ks086Tw2zH0uyMv7HcRr/6/EvvhnsPrsrxwX7rwU/0ODig/eV3mh3N1ld8eraWPaX6+

64s9McesfrqcHfg1MpoifxcVEWjukyw+9AtFPl/I71pER3Of6j4bv7HI54s+MChhqLlPdZ/

P3qMmFuo5h5NnTOhjM5tReN2yT51n5/v7J3F0vi46fk+ne7aX0i9l6If7mpufTX3f5wsqv9

TAD2fJLT9VrTn7UeZnM5tR+v0LMQOHXwFnxe2/warGFRWf8QDjOLfP

 </data>

 </layer>

</map>

A few interesting bits about the contents of the file are worth highlighting:

 n width and height are both measured in tiles, so Desert is 40 tiles wide and

40 tiles high.

 n The <tileset> entity describes a tile set, and the <image source> is the file-

name for the tile set—tmw_desert_spacing.png, in this case. Tile sets can

also be described by a separate XML file, called a TSX file. We’ll use a TSX file

when we build onto our V3 game later in this chapter.

 n tilewidth and tileheight are both measured in pixels, so each tile in Desert

is 32 × 32 pixels.

 n There’s only one <layer> entity, so there’s only one layer in Desert; its name is

Ground.

 n The tile data for layer Ground has been compressed using zlib compression

(compression="zlib").

Orthogonal Game: Whack-A-Vampire

To demonstrate the use of tile maps in AndEngine, we will introduce a small, tiled

subgame into V3. Between game layers (anywhere we like, really), we will ask the

user to play a separate game that uses orthogonal tiling.

The game within a game will be called Whack-A-Vampire (WAV); it will be played

on a 15 × 10 grid. When the game begins, the player will see a map of tiles, some of

which contain closed caskets. At random times a closed casket will pop open to reveal

a vampire. The player should whack (touch) each vampire as the casket opens.

WAV Tile Map

Fire up Tiled and use the menus on the opening screen (File > New …) to create a

new tile map. Figure 9.5 shows the resulting New Map dialog.

We need to change a few of the fields to match the map we want to create. Make

the following changes, and then click OK:

 n Orientation: Orthogonal

 n Map size: width: 15; height: 10

 n Tile size: width: 32; height: 32

The Tiled workspace now appears as shown in Figure 9.6.

Chapter 9 Tile Maps182

Figure 9.6 Tiled empty workspace

Figure 9.5 Tiled New Map dialog

Orthogonal Game: Whack-A-Vampire 183

Figure 9.7 WAV tile set image

Creating the WAV Tile Set

You can use your favorite graphics editor to create the tiles you need for your game.

For WAV, I used Inkscape to create six 32 × 32 pixel tiles. Tiled Qt expects tile sets

to be in an image (.png) file, all piled together like a sprite sheet. Zwoptex (www

.zwoptex.com) is a great tool for creating these mini-sprite sheets, or you can just use

your favorite graphics editor to put all the tiles together in one .png file. The tile set

texture (.png) file I created for WAV is shown in Figure 9.7.

Creating the WAV Tile Map

We import the tile set into Tiled by selecting Map > New Tileset … from the menu.

The dialog shown in Figure 9.8 then appears.

Using this dialog, you can browse for the image file that contains your tile set

image, and Tiled will fill in the Name to match that filename. Make sure the tile

Figure 9.8 Tiled New Tileset dialog

www.zwoptex.com
www.zwoptex.com

Chapter 9 Tile Maps184

Figure 9.9 Tiled Tile Properties dialog

sizes, margin, and spacing match the way you created the tiles. You can import as

many tile sets as you’d like to build your map. We’ll use just one tile set for WAV.

If you right-click on the closed coffin tile in the Tile Sets pane (second tile from

the right), you should see a pop-up menu that includes Tile Properties…. Click on this

menu item to bring up the dialog shown in Figure 9.9.

We need to insert a new property for this tile, so click on “<new property>” and

fill in the Name coffin and the Value true. We will use this property in the game

as we load the tiles to identify which tiles are coffin images. Click OK.

If you now right-click again anywhere in the Tile Sets pane, you’ll see a pop-up

menu including Export Tileset As…. Selecting this menu item creates the TSX file

that describes the tile set, and which you are asked to name. For WAV, we’ve cleverly

titled it WAVTileset.tsx.

With the tile set in place, you can use the editing tools in Tiled to build your map.

The final result for WAV is shown in Figure 9.10.

To create the map, I f irst used the fill tool (paint can) to paint the entire map

with the plain black tile. I then selected the stamp tool and used it to create the grass

paths (or maybe they’re hedges—it’s hard to tell from this angle). You can use the

click-and-drag technique to fill in a whole string of tiles with the selected tile image.

Next, I used the stamp tool to insert coffins, graves, and headstones at random points

Orthogonal Game: Whack-A-Vampire 185

Figure 9.10 Tiled WAV tile map

on the map. I did not add any open coffin tiles, as we’ll add those dynamically during

the game.

We won’t need object groups for WAV, but we could also identify object groups

on the map. Object groups in Tiled are invisible rectangular regions that you plan to

identify later in your application. Objects exist in their own layers, which are created

with the Layer > Add Object Layer… command.

Properties are not just limited to tiles, of course. Any of the components in a TMX

tile map (map, layer, tile, object group) can have associated properties, which are just

name–value pairs of strings. For example, if you click the Layer > Layer Properties

sequence, you will see the dialog shown in Figure 9.11.

At some point, we will want to save our tile map, but first we have to make sure

Tiled uses gzip compression for the tile map. Click on Edit > Preferences… and you

will see the dialog shown in Figure 9.12.

You just need to ensure that the item “Store the layer data as:” is set to Base64 (gzip

compressed). That’s not the default, at least on the version I’m using. Now we can save

the map with File > Save. This action creates the WhackAVampire.tmx file, which

we will import into the assets folder for our game.

Chapter 9 Tile Maps186

Whack-A-Vampire: The Code

So far, we don’t have a way to actually complete levels in V3, so we’ll need a way to

get to the WAV game. We’ll add an access point for this game to the Options Menu

for the moment, and wire it in between layers when we can actually complete them.

Figure 9.11 Tiled set Layer Properties dialog

Figure 9.12 Tiled Preferences dialog

Orthogonal Game: Whack-A-Vampire 187

Adding WAV to OptionsActivity

The new version of OptionsActivity is shown in Listing 9.2, where the changes appear

in bold. The modifications should be largely self-explanatory, given our experience

with menus from Chapter 3.

Listing 9.2 OptionsActivity with WAV Added

package com.pearson.lagp.v3;

import javax.microedition.khronos.opengles.GL10;

import org.anddev.andengine.engine.Engine;

import org.anddev.andengine.engine.camera.Camera;

import org.anddev.andengine.engine.options.EngineOptions;

import org.anddev.andengine.engine.options.EngineOptions

 .ScreenOrientation;

import org.anddev.andengine.engine.options.resolutionpolicy

 .RatioResolutionPolicy;

import org.anddev.andengine.entity.modifier.ScaleModifier;

import org.anddev.andengine.entity.scene.Scene;

import org.anddev.andengine.entity.scene.menu.MenuScene;

import org.anddev.andengine.entity.scene.menu.MenuScene

 .IOnMenuItemClickListener;

import org.anddev.andengine.entity.scene.menu.item.IMenuItem;

import org.anddev.andengine.entity.scene.menu.item.TextMenuItem;

import org.anddev.andengine.entity.scene.menu.item.decorator

 .ColorMenuItemDecorator;

import org.anddev.andengine.entity.sprite.Sprite;

import org.anddev.andengine.entity.util.FPSLogger;

import org.anddev.andengine.opengl.font.Font;

import org.anddev.andengine.opengl.font.FontFactory;

import org.anddev.andengine.opengl.texture.Texture;

import org.anddev.andengine.opengl.texture.TextureOptions;

import org.anddev.andengine.opengl.texture.region.TextureRegion;

import org.anddev.andengine.opengl.texture.region.TextureRegionFactory;

import org.anddev.andengine.ui.activity.BaseGameActivity;

import android.content.Intent;

import android.graphics.Color;

import android.os.Handler;

public class OptionsActivity extends BaseGameActivity implements

IOnMenuItemClickListener {

 // ===

 // Constants

 // ===

Chapter 9 Tile Maps188

 private static final int CAMERA_WIDTH = 480;

 private static final int CAMERA_HEIGHT = 320;

 protected static final int MENU_MUSIC = 0;

 protected static final int MENU_EFFECTS = MENU_MUSIC + 1;

 protected static final int MENU_WAV = MENU_EFFECTS + 1;

 // ===

 // Fields

 // ===

 protected Camera mCamera;

 protected Scene mMainScene;

 protected Handler mHandler;

 private Texture mMenuBackTexture;

 private TextureRegion mMenuBackTextureRegion;

 protected MenuScene mOptionsMenuScene;

 private TextMenuItem mTurnMusicOff, mTurnMusicOn;

 private TextMenuItem mTurnEffectsOff, mTurnEffectsOn;

 private TextMenuItem mWAV;

 private IMenuItem musicMenuItem;

 private IMenuItem effectsMenuItem;

 private IMenuItem WAVMenuItem;

 private Texture mFontTexture;

 private Font mFont;

 public boolean isMusicOn = true;

 public boolean isEffectsOn = true;

 // ===

 // Constructors

 // ===

 // ===

 // Getter and Setter

 // ===

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 @Override

 public Engine onLoadEngine() {

Orthogonal Game: Whack-A-Vampire 189

 mHandler = new Handler();

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH, CAMERA_HEIGHT);

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT), this.mCamera));

 }

 @Override

 public void onLoadResources() {

 /* Load Font/Textures. */

 this.mFontTexture = new Texture(256, 256,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 FontFactory.setAssetBasePath("font/");

 this.mFont = FontFactory.createFromAsset(

 this.mFontTexture, this, "Flubber.ttf", 32,

 true, Color.WHITE);

 this.mEngine.getTextureManager().loadTexture(this.mFontTexture);

 this.mEngine.getFontManager().loadFont(this.mFont);

 this.mMenuBackTexture = new Texture(512, 512,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 this.mMenuBackTextureRegion =

 TextureRegionFactory.createFromAsset(

 this.mMenuBackTexture, this,

 "gfx/OptionsMenu/OptionsMenuBk.png", 0, 0);

 this.mEngine.getTextureManager().loadTexture(this.mMenuBackTexture);

 mTurnMusicOn = new TextMenuItem(MENU_MUSIC, mFont,

 "Turn Music On");

 mTurnMusicOff = new TextMenuItem(MENU_MUSIC, mFont,

 "Turn Music Off");

 mTurnEffectsOn = new TextMenuItem(MENU_EFFECTS, mFont,

 "Turn Effects On");

 mTurnEffectsOff = new TextMenuItem(MENU_EFFECTS, mFont,

 "Turn Effects Off");

 mWAV = new TextMenuItem(MENU_WAV, mFont,

 "Whack A Vampire");

 }

 @Override

 public Scene onLoadScene() {

 this.mEngine.registerUpdateHandler(new FPSLogger());

 this.createOptionsMenuScene();

Chapter 9 Tile Maps190

 /* Center the background on the camera. */

 final int centerX = (CAMERA_WIDTH

 this.mMenuBackTextureRegion.getWidth()) / 2;

 final int centerY = (CAMERA_HEIGHT

 this.mMenuBackTextureRegion.getHeight()) / 2;

 this.mMainScene = new Scene(1);

 /* Add the background and static menu */

 final Sprite menuBack = new Sprite(centerX, centerY,

 this.mMenuBackTextureRegion);

 mMainScene.getLastChild().attachChild(menuBack);

 mMainScene.setChildScene(mOptionsMenuScene);

 return this.mMainScene;

 }

 @Override

 public void onLoadComplete() {

 }

 @Override

 public boolean onMenuItemClicked(final MenuScene pMenuScene,

 final IMenuItem pMenuItem, final float pMenuItemLocalX,

 final float pMenuItemLocalY) {

 switch(pMenuItem.getID()) {

 case MENU_MUSIC:

 if (isMusicOn) {

 isMusicOn = false;

 } else {

 isMusicOn = true;

 }

 createOptionsMenuScene();

 mMainScene.clearChildScene();

 mMainScene.setChildScene(mOptionsMenuScene);

 return true;

 case MENU_EFFECTS:

 if (isEffectsOn) {

 isEffectsOn = false;

 } else {

 isEffectsOn = true;

 }

 createOptionsMenuScene();

 mMainScene.clearChildScene();

 mMainScene.setChildScene(mOptionsMenuScene);

 return true;

 case MENU_WAV:

 mMainScene.registerEntityModifier(

 new ScaleModifier(1.0f, 1.0f, 0.0f));

Orthogonal Game: Whack-A-Vampire 191

 mOptionsMenuScene.registerEntityModifier(

 new ScaleModifier(1.0f, 1.0f, 0.0f));

 mHandler.postDelayed(mLaunchWAVTask,1000);

 return true;

 default:

 return false;

 }

 }

 // ===

 // Methods

 // ===

 protected void createOptionsMenuScene() {

 this.mOptionsMenuScene = new MenuScene(this.mCamera);

 if (isMusicOn) {

 musicMenuItem = new ColorMenuItemDecorator(

 mTurnMusicOff, 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f);

 } else {

 musicMenuItem = new ColorMenuItemDecorator(

 mTurnMusicOn, 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f);

 }

 musicMenuItem.setBlendFunction(GL10.GL_SRC_ALPHA,

 GL10.GL_ONE_MINUS_SRC_ALPHA);

 this.mOptionsMenuScene.addMenuItem(musicMenuItem);

 if (isEffectsOn) {

 effectsMenuItem = new ColorMenuItemDecorator(

 mTurnEffectsOff, 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f);

 } else {

 effectsMenuItem = new ColorMenuItemDecorator(

 mTurnEffectsOn, 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f);

 }

 effectsMenuItem.setBlendFunction(GL10.GL_SRC_ALPHA,

 GL10.GL_ONE_MINUS_SRC_ALPHA);

 this.mOptionsMenuScene.addMenuItem(effectsMenuItem);

 WAVMenuItem = new ColorMenuItemDecorator(mWAV, 0.5f, 0.5f,

 0.5f, 1.0f, 0.0f, 0.0f);

 WAVMenuItem.setBlendFunction(GL10.GL_SRC_ALPHA,

 GL10.GL_ONE_MINUS_SRC_ALPHA);

 this.mOptionsMenuScene.addMenuItem(WAVMenuItem);

 this.mOptionsMenuScene.buildAnimations();

 this.mOptionsMenuScene.setBackgroundEnabled(false);

 this.mOptionsMenuScene.setOnMenuItemClickListener(this);

Chapter 9 Tile Maps192

 }

 private Runnable mLaunchWAVTask = new Runnable() {

 public void run() {

 Intent myIntent = new Intent(OptionsActivity.this,

 WAVActivity.class);

 OptionsActivity.this.startActivity(myIntent);

 }

 };

 // ===

 // Inner and Anonymous Classes

 // ===

}

Creating the Activity for Whack-A-Vampire

We create WAVActivity.java in the usual manner, remembering to add it to the

Manifest, so Android will know there is a new Activity. The code is shown in

 Listing 9.3, with a detailed explanation to follow.

Listing 9.3 WAVActivity.java

package com.pearson.lagp.v3;

+imports

public class WAVActivity extends BaseGameActivity {

 // ===

 // Constants

 // ===

 private static final int CAMERA_WIDTH = 480;

 private static final int CAMERA_HEIGHT = 320;

 private String tag = "WAVActivity";

 // ===

 // Fields

 // ===

 private Handler mHandler;

 protected Camera mCamera;

 protected Scene mMainScene;

Orthogonal Game: Whack-A-Vampire 193

 private TMXTiledMap mWAVTMXMap;

 private TMXLayer tmxLayer;

 private TMXTile tmxTile;

 private int[] coffins = new int[50];

 private int coffinPtr = 0;

 private int mCoffinGID = 1;

 private int mOpenCoffinGID = 1;

 private Random gen;

 // ===

 // Constructors

 // ===

 // ===

 // Getter and Setter

 // ===

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 @Override

 public Engine onLoadEngine() {

 mHandler = new Handler();

 gen = new Random();

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT), this.mCamera));

 }

 @Override

 public void onLoadResources() {

 }

 @Override

 public Scene onLoadScene() {

 this.mEngine.registerUpdateHandler(new FPSLogger());

 final Scene scene = new Scene(1);

 try {

 final TMXLoader tmxLoader = new TMXLoader(

 this, this.mEngine.getTextureManager(),

Chapter 9 Tile Maps194

 TextureOptions.BILINEAR_PREMULTIPLYALPHA,

 new ITMXTilePropertiesListener() {

 @Override

 public void onTMXTileWithPropertiesCreated(

 final TMXTiledMap pTMXTiledMap,

 final TMXLayer pTMXLayer,

 final TMXTile pTMXTile,

 final TMXProperties<TMXTileProperty>

 pTMXTileProperties) {

 if(pTMXTileProper

 ties.containsTMXProperty("coffin", "true")) {

 coffins[coffinPtr++] =

 pTMXTile.getTileRow() * 15 +

 pTMXTile.getTileColumn();

 if (mCoffinGID<0){

 mCoffinGID =

 pTMXTile.getGlobalTileID();

 }

 }

 }

 });

 this.mWAVTMXMap = tmxLoader.loadFromAsset(this,

 "gfx/WAV/WAVmap.tmx");

 } catch (final TMXLoadException tmxle) {

 Debug.e(tmxle);

 }

 tmxLayer = this.mWAVTMXMap.getTMXLayers().get(0);

 scene.getFirstChild().attachChild(tmxLayer);

 scene.setOnSceneTouchListener(new IOnSceneTouchListener() {

 @Override

 public boolean onSceneTouchEvent(

 final Scene pScene,

 final TouchEvent pSceneTouchEvent) {

 switch(pSceneTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

 /* Get the touched tile */

 tmxTile = tmxLayer.getTMXTileAt(

 pSceneTouchEvent.getX(),

 pSceneTouchEvent.getY());

 if((tmxTile != null) &&

 (tmxTile.getGlobalTileID() == mOpenCoffinGID)) {

 tmxTile.setGlobalTileID(mWAVTMXMap, mCoffinGID);

 }

 break;

 }

 return true;

Orthogonal Game: Whack-A-Vampire 195

 }

 });

 mHandler.postDelayed(openCoffin,gen.nextInt(2000));

 return scene;

 }

 @Override

 public void onLoadComplete() {

 }

 private Runnable openCoffin = new Runnable() {

 public void run() {

 int openThis = gen.nextInt(coffinPtr);

 int tileRow = coffins[openThis]/15;

 int tileCol = coffins[openThis] % 15;

 tmxTile = tmxLayer.getTMXTileAt(tileCol*32 + 16,

 tileRow*32 + 16);

 tmxTile.setGlobalTileID(mWAVTMXMap, mOpenCoffinGID);

 mHandler.postDelayed(openCoffin,gen.nextInt(4000));

 }

 };

}

After the usual imports, variable declarations, and Engine setup, the serious dif-

ferences in this module start in onLoadScene(). We try to load the tile map into

AndEngine by creating a new TMXLoader object and asking it to create the map

from an asset. As we create the TMXLoader, we override the onTMXTileWithProp

ertiesCreated() method and use it to track whenever a tile is created whose cof

fin property is set to true. When we load a coffin tile, we keep track of its position

in an array, int coffins[].

AndEngine will expect to find the named .tmx file in the assets folder, as modi-

fied by the setAssetBasePath() call in onLoadResources(). If you are using

subfolders, as we are here, you will also need to manually edit the.tmx and .tsx files

produced by Tiled to add the complete path from assets. See, for example, the source

attributes in the edited versions of WAVmap.tmx and WAVTileset.tsx in Listing 9.4

and Listing 9.5, respectively, where we’ve added the complete paths. This filename

juggling can get a little tricky, especially if you are creating the TMX and TSX files in

another directory.

Listing 9.4 WAVmap.tmx with Edits for Subfolders

<?xml version="1.0" encoding="UTF8"?>

<map version="1.0" orientation="orthogonal" width="15" height="10"

 tilewidth="32" tileheight="32">

Chapter 9 Tile Maps196

<tileset firstgid="1" source="gfx/WAV/WAVTileset.tsx"/>

 <layer name="Tile Layer 1" width="15" height="10">

 <data encoding="base64" compression="gzip">

H4sIAAAAAAAAC5VQQQ4AMAQTG/9/8rKDpBFlO/RAldYWkQ3wVF9o0QtYw6E2zylBd3cV+6ueD5

4nZG38pMvqoK2yoL6b+fX28mv0xjJMXhhvhDtug+XEWAIAAA==

 </data>

 </layer>

</map>

Listing 9.5 WAVTileset.tsx with Edits for Subfolders

<?xml version="1.0" encoding="UTF8"?>

<tileset name="WAVTileset" tilewidth="32" tileheight="32" spacing="2"

 margin="2">

<image source="gfx/WAV/WAVTileSet.png" width="256" height="64"/>

<tile id="4">

 <properties>

 <property name="coffin" value="true"/>

 </properties>

</tile>

</tileset>

With the tile map loaded, we retrieve Layer 0 (the only layer we created in Tiled)

and attach it as a child of the current Scene. We can now create an onScene

TouchListener() method to capture user touch events. When an ACTION_DOWN

touch event occurs, we retrieve the touched tile from the layer, using the get

TileAt() method. We check the global ID of the tile to see if it’s showing an open

coffin image. If it is, we change it to show a closed coffin.

After that setup, we can post a delayed runnable, openCoffin, to actually start

opening coffins. openCoffin picks a coffin at random from the coffins array, and

changes its image to that of an open coffin. openCoffin’s final act is to post itself to

run again at some random time between now and 4 seconds from now.

When you run the Activity, coffins start popping open at random intervals. If you

touch an open coffin, it closes immediately. Right now, WAV is not a terribly chal-

lenging gamelet, but we will improve it later by adding sound and some distractions to

make it more difficult to keep track of the coffins.

Isometric Tile Maps

Isometric tile maps can make a game more interesting, providing a sense of “3Dness”

without going to the expense of creating 3D models and animations. They can be

quite tricky to create and debug, however. The first challenge relates to the issue of

drawing the tiles from the appropriate perspective. Then there are the z-ordering

Exercises 197

issues that can either make or break the illusion of 3D. Some graphic artists like to cre-

ate isometric tiles using 3D models, then position the virtual camera in the appropriate

position and render a 2D representation. That’s not unlike the technique we discussed

earlier for creating animation sequences from 3D models.

We don’t use any isometric tile maps in V3, but they are fully supported by And-

Engine. You can create your own isometric tiles with your favorite graphics editor, use

Zwoptex to create a tile set, and use Tiled Qt to create tile maps. AndEngine knows

how to parse the resulting .tmx and .tsx files to create the map, and you use the

same TMXLayer methods to access individual tiles.

Summary

Tile maps are an important part of game programming. As discussed in this chapter,

AndEngine provides support that makes it easy to integrate into a game both tile sets

and tile maps created with a set of standard, easy-to-use tools (and did I mention the

tools are all available at no charge?).

The steps in building a tile map are as follows:

1. Create the tiles needed using your favorite graphics editor. For an orthogonal tile

map, the end result should be a series of uniform tile images in .png files.

2. Using the tile images, create a tile set using a specialized utility such as Zwop-

tex or your favorite graphics program. Make the minimum-size sheet (whose

dimen sions should always be a power of 2), set the spacing as you like (I use

2 pixels), and save the texture as your tile set image.

3. Using Tiled Qt, create a tile map that is the size you need, with tile sizes that

match those of the tiles in the tile set. Import the tile set you created in step

2 and build your tile map using the tiles. Use Tiled Qt to create an external

.tsx file describing the tile set.

4. Use Tiled Qt to save the tile map in a TMX file, with gzip compression of the

tile data. Import the .tmx file and the tile set .tsx and .png files into your

Android assets folder.

5. Now you’re ready to rock and roll. Load the tile map and use the TMX…

 methods to access individual tiles and get or set their characteristics.

Exercises

1. Using Tiled Qt, add a property to the tombstone tile in WAVTileset.tmx, with

name = “tombstone” and value = “true”.

2. Using the property added in Exercise 1, change WAVActivity so that when the

user touches a tombstone tile, it is brief ly replaced by a tile that says “Boo!” To

make this modification, you’ll have to create the tile, create a new tile set, and

use Tiled Qt to add the new tile to the map.

This page intentionally left blank

10

Particle Systems

Particle systems are another aspect of computer games that you have seen many times

before, even if you didn’t explicitly recognize them. Particle systems solve a funda

mental problem with the representation of effects that involve a whole bunch of small

particles generating patterns. Think of fire, or smoke, or rain, where many particles

are needed to create a convincing effect. The particles can behave according to rules,

but usually a random element is present as well to make them look realistic.

The particle system provides the environment to create particle emitters, which are

the individual effects. Particle systems are most common in 3D game environments,

but AndEngine provides some example particle emitters as part of its examples pack

age, and you can also create your own. We’ll look at example and custom emitters in

this chapter, and show how particle emitters are integrated into the V3 game program.

An example of a particle system effect is shown in Figure 10.1. This screenshot, which

is taken from V3, illustrates the particle effect enhancements we’ll add later in this chapter.

Figure 10.1 Explosion particle effect

Chapter 10 Particle Systems200

What Is a Particle Emitter?

The AndEngine particle subsystem provides the environment to create and run par

ticle emitters. A particle emitter creates a pattern of particles and issues them from a

position on the screen.

Trying to represent those particles as sprites would create far too much overhead for

a typical game engine, including AndEngine. What is needed instead is a special sub

system that can start with a representative texture and modify it over time, mimicking

the physics of particles to produce a convincing animation.

Creating a convincing particle emitter is as much an art as a science. The coding for

a particle effect is not difficult, but creating a truly convincing effect typically takes

a lot of trial and error, and even the subtlest of changes can make a huge difference

in the outcome. To complicate matters, the animation for particle emitters typically

doesn’t run especially well on the Android emulator. The emulator, after all, doesn’t

take advantage of any hardware graphics on the host platform, so animation is

 performed via software, in an emulated instruction set. It is very difficult to debug

a particle emitter using just an emulator.

How Do Particle Systems Work?

The art in particle systems comes in part from the nature of the phenomena they

model. We all know what a fire looks like, but any real fire also features a lot of ran

domness. Think of a candle f lame. It usually has a dark inner f lame, a brighter outer

f lame, and a gradation of color from bluish to bright yellow. The heat of the f lame

causes the wax molecules to evaporate from the wick and eventually ignite, creating

more or less random currents that affect other luminous wax molecules and contribut

ing to what we recognize as a candle f lame.

When modeling that behavior in a particle emitter, there are some things we know

concretely and some things we would like to randomize. For example, we know all

the wax molecules will start at the wick and travel away from it, generally upward.

The exact angle at which they leave the wick, however, needs to be randomized. In

addition, we know the color of a wax molecule over time, as it first leaves the wick

(dark—really transparent), then bluish as it ignites, bright yellow at peak illumination,

and fading to red and finally black smoke. We know that all the particles don’t change

color in exactly the same way, so there needs to be some randomization in this behav

ior as well. Finally, we know something about the path of the molecule—rising faster

as it gets hotter—but once again that factor needs randomization.

Particle systems allow us to generate a mass (thousands) of particles, establish some

basic parameters, and apply variances to those parameters to inf luence their randomiza

tion. Particles can respond to gravity, positive or negative or absent. They can have an

associated life span, speed, direction, and acceleration. Their size, color, and spin may all

change. We can also select the way the particles blend into the background or replace it.

The AndEngine Particle System 201

The AndEngine Particle System

A particle system in AndEngine is a hierarchy of components:

 n ParticleSystem: This component comprises the whole effect, including a Particle

Emitter, a small OpenGL texture, and some parameters that control the rate and

quantity of particle generation.

 n ParticleEmitter: This component generates and displays the particles, modifying

them as required for their lifetimes. The type of ParticleEmitter (Circle, Circle

Outline, Point, Rectangle, RectangleOutline) defines the shape of the area

where particles will be generated. For each particle, the ParticleEmitter random

izes its initial position, velocity, acceleration, rotation, gravity, color, and trans

parency within the limits that we define in ParticleInitializers.

 n Particle: Particles are the individual elements generated and displayed by the

Particle Emitter. All Particles for an effect share the same OpenGL texture,

which can be any (small) texture. At the same time, each Particle has its own

lifetime and its own set of parameters, such as color, transparency, rotation and

scale, which can be modified over its lifetime using ParticleModifiers.

 n ParticleInitializers: These components set the initial conditions for all Particles

in the effect. They provide a range of values (minimum and maximum) for the

velocity, acceleration, rotation, gravity, color, and transparency of the Particles.

The ParticleEmitter then picks random values within the given range for each

Particle as it is generated.

 n ParticleModifiers: These components tell the ParticleSystem how to modify each

particle over its lifetime. Modifiers exist for the Particle’s lifetime, color, trans

parency, rotation, and scale, and they define a start time, an end time, and mini

mum and maximum values. During each update, the ParticleEmitter adjusts the

values for each Particle so they fit the directions in the ParticleModifiers. The

transitions are gradual. Thus, if a particle’s ColorModifier asks to change from

reddish to bluish starting at 0 seconds and ending at 1 second, the color of each

Particle changes gradually (and individually) over that time.

ParticleSystem

ParticleSystem has one constructor, which simply passes in the needed parameters:

ParticleSystem(final IParticleEmitter pParticleEmitter, final float pMinRate,

final float pMaxRate, final int pMaxParticles,

final TextureRegion pTextureRegion)

The parameters are quite straightforward. The rates are given in particles per second,

and the ParticleSystem randomly varies the generation rate through that range. The

TextureRegion will be used for every Particle in this system. Obviously, you have to

Chapter 10 Particle Systems202

load the TextureRegion before calling this constructor, using the methods we’ve seen

used with Sprites and other AndEngine elements.

AndEngine doesn’t come with particle textures, but several are included with

AndEngineExamples, and we’ve added a few more to the assets/gfx/particles

file. For most effects, specialized particle shapes are used that have a color and trans

parency that have been modified to create the desired effect, but you can use any small

texture for particles. You can easily create a fountain of Androids, for example, as we’ll

see in the Exercises at the end of this chapter.

ParticleEmitters

If we want to create a ParticleSystem, we need a ParticleEmitter. Separate classes have

been developed for each type of ParticleEmitter based on the desired shape of the

effect. Each emitter generates particles at random positions in the shape. AndEngine

uses the Java Random utilities to randomize particles and provide a uniform distribu

tion of particles within the shape.

CircleParticleEmitter

This set of methods would have been better named EllipseParticleEmitter—but no

matter. It’s the emitter you use when you want the particles to emanate from an ellip

tical or circular region on the screen.

CircleParticleEmitter(final float pCenterX, final float pCenterY,

final float pRadius)

CircleParticleEmitter(final float pCenterX, final float pCenterY,

final float pRadiusX, final float pRadiusY)

The first constructor uses a circular area with the center at (pCenterX, pCenterY),

the second uses an elliptical one. Particles are generated from random positions any

where inside the circle or ellipse. The ellipse can be rotated to any angle with a

RotationInitializer.

CircleOutlineParticleEmitter

This emitter also uses a circular or elliptical shape but generates particles only on the

outer rim of the shape.

CircleOutlineParticleEmitter(final float pCenterX, final float pCenterY,

final float pRadius)

CircleOutlineParticleEmitter(final float pCenterX, final float pCenterY,

final float pRadius)

The parameters are the same as they are for CircleParticleEmitter.

PointParticleEmitter

All the particles emerge from a single point with this emitter. The format is as follows:

PointParticleEmitter(final float pCenterX, final float pCenterY)

The AndEngine Particle System 203

RectangleParticleEmitter

This time the emitting shape is a rectangle, which, obviously, can also be a line if one

of the dimensions is 0.

RectangleParticleEmitter(final float pCenterX, final float pCenterY,

final float pWidth, final float pHeight)

As with the elliptical emitters, the initial angle of the rectangle or line can be adjusted

with a RotationInitializer.

RectangleOutlineEmitter

As with the circles, this emitter generates particles on the rim of the rectangle. If the

shape is really a line (pWidth or pHeight equal 0), this method is equivalent to

 RectangleParticleEmitter. It follows this format:

RectangleOutlineParticleEmitter(final float pCenterX, final float pCenterY,

final float pWidth, final float pHeight)

ParticleInitializers

When creating a ParticleSystem, ParticleInitializers can be created and added to the

ParticleSystem to control the initial setup of the Particle Emitter. Initializers are avail

able for the acceleration, alpha (transparency), color, gravity, rotation, and velocity

characteristics. All of the initializers allow you to either set a fixed value or define a

range for the ParticleEmitter to randomize.

AccelerationInitializer

This group of methods sets the starting acceleration for the particles generated by the

ParticleSystem:

AccelerationInitializer(final float pAcceleration)

AccelerationInitializer(final float pAccelerationX, final float pAccelerationY)

AccelerationInitializer(final float pMinAccelerationX,

final float pMaxAccelerationX, final float pMinAccelerationY,

final float pMaxAccelerationY)

The first two constructors create initializers with fixed (not random) values. The third

constructor is more f lexible, allowing us to specify ranges for the acceleration values.

The X and Y directions are relative to the ParticleEmitter.

AlphaInitializer

These two methods specify the beginning transparency of particles:

AlphaInitializer(final float pAlpha)

AlphaInitializer(final float pMinAlpha, final float pMaxAlpha)

Again we have the option of setting a fixed value or specifying a range for

randomization.

Chapter 10 Particle Systems204

ColorInitializer

These methods set the beginning color for all the particles:

ColorInitializer(final float pRed, final float pGreen, final float pBlue)

ColorInitializer(final float pMinRed, final float pMaxRed, final float pMinGreen,

final float pMaxGreen, final float pMinBlue, final float pMaxBlue)

The first constructor initializes the particle color, which is a tint, multiplied onto the

texture colors for each particle. The second constructor uses a different random tint for

each particle.

GravityInitializer

This convenience method can be used only to turn gravity on (which is the same as

setting acceleration to the fixed value of earth’s gravity).

RotationInitializer

These methods set the initial rotation of the ParticleEmitter, which can range from

0 .0 to 360.0 degrees:

RotationInitializer(final float pRotation)

RotationInitializer(final float pMinRotation, final float pMaxRotation)

VelocityInitializer

This set of methods specifies the initial velocity of the particles being generated:

VelocityInitializer(final float pVelocity)

VelocityInitializer(final float pVelocityX, final float pVelocityY)

VelocityInitializer(final float pMinVelocityX, final float pMaxVelocityX, final float

pMinVelocityY, final float pMaxVelocityY)

VelocityInitializer is very similar to AccelerationInitializer, except that now we’re set

ting the initial velocities of the particles. Again the X and Y directions are relative to

the ParticleEmitter.

ParticleModifiers

Now that we’ve initialized the ParticleSystem, we need to tell it how the particles

change over their lifetimes. We do so using ParticleModifiers, which unfortunately

have the same names as their Entity counterparts. It’s not a big deal and makes them

easy to remember, but it does mean that we need to use fully qualified class names

if we plan to sue both Entity and Particle modifiers in the same class. We’ll see that

arrangement later in the V3 example for this chapter.

AndEngine provides ParticleModifiers for the particle’s alpha, color, lifetime, rota

tion, and scale values. Most of the modifiers include a start time and an end time for

the modification to occur, both of which are defined relative to the time the particle

was created.

The AndEngine Particle System 205

AlphaModifier

AlphaModifier gradually modifies the transparency of particles from pFromAlpha to

pToAlpha over the indicated portion of each particle’s lifetime:

AlphaModifier(final float pFromAlpha, final float pToAlpha,

final float pFromTime, final float pToTime)

ColorModifier

ColorModifier gradually changes the color tint applied to each particle’s texture over

the indicated time:

ColorModifier(final float pFromRed, final float pToRed, final float pFromGreen,

final float pToGreen, final float pFromBlue, final float pToBlue,

final float pFromTime, final float pToTime)

ExpireModifier

This modifier defines the lifetime of a particle. It is the only modifier that does not

include start or end times.

ExpireModifier(final float pLifeTime)

ExpireModifier(final float pMinLifeTime, final float pMaxLifeTime)

The first constructor gives all particles the same lifetime, whereas the second provides

a range of lifetimes, with each particle randomly assigned a lifetime in that range.

RotationModifier

This method rotates each particle’s texture over the indicated time:

RotationModifier(final float pFromRotation, final float pToRotation,

final float pFromTime, final float pToTime)

ScaleModifier

The ScaleModifier methods gradually change each particle’s scale over the indicated time.

ScaleModifier(final float pFromScale, final float pToScale,

final float pFromTime, final float pToTime)

ScaleModifier(final float pFromScaleX, final float pToScaleX,

final float pFromScaleY, final float pToScaleY, final float pFromTime,

final float pToTime)

The first constructor modifies the scale uniformly in both the X and Y directions (i.e.,

it doesn’t change the aspect ratio), whereas the second allows you to change the par

ticle size asymmetrically.

Useful ParticleSystem Methods

ParticleSystem includes some builtin methods that are useful for dealing with particle

effects in our code. We can start and stop a ParticleSystem, and set the way it blends

with other textures.

Chapter 10 Particle Systems206

Starting and Stopping the Effect

ParticleSystem includes a method that starts or stops the spawning of particles:

void setParticlesSpawnEnabled(final boolean pParticlesSpawnEnabled)

Just set the parameter as true to start spawning particles, or as false to shut it off.

You can also test whether spawning is currently on or off:

boolean isParticlesSpawnEnabled()

Setting the OpenGL Blend Function

We’ve seen this approach before when looking at Sprites. Again, OpenGL is beyond

the scope of this book, but basically this method sets the way the particle textures will

be blended with the other textures on the screen:

void setBlendFunction(final int pSourceBlendFunction,

final int pDestinationBlendFunction)

The blend function values are defined in the following file:

javax.microedition.khronos.opengles.GL10

Creating Particle Systems

When this book was written, AndEngine required game developers to create each

ParticleSystem from scratch, using the initializers and modifiers described earlier. This

approach has some problems, however:

 n The particle effect created from a combination of texture, initializers, and modi

fiers is not at all obvious.

 n It can be difficult to reuse particle systems across projects, as doing so involves

cutting and pasting code that is not packaged separately.

 n Particle effect development is tedious: You have to recompile and download the

project every time you make the smallest change to the particle effect parameters.

My solution to some of those problems was to introduce XMLbased particle effects

to AndEngine. By the time you read these words, this functionality may be incorpo

rated into AndEngine as an extension. I’ve given the XML files the extension .px, and

included all of the needed code with the example code for this book. As we add particle

effects to V3, we’ll show both methods so you can get an idea of which you’d prefer.

ParticleSystems the Traditional Way

The original way of creating an AndEngine ParticleSystem is to follow these steps:

1. Create a TextureRegion that contains the Texture you want to use for the

particles in your system, and use TextureManager to load it. This process is the

same as that for creating any other TextureRegion.

Creating Particle Systems 207

2. Create a new ParticleEmitter using the constructor for the shape you need for

your emitter.

3. Create a ParticleSystem, passing it the ParticleEmitter, Texture, minimum rate,

maximum rate, and maximum number of particles.

4. Optionally, set the ParticleSystem’s OpenGL blend function.

5. Add initializers to the ParticleSystem.

6. Add modifiers to the ParticleSystem.

7. Add the ParticleSystem as a child of the current Scene.

ParticleSystems with XML

The steps when using an XML file are the same in principle, but the PX classes carry

out many of these tasks for you. The process is similar to the steps we saw when load

ing a TMX tile map:

1. Create a PXLoader object, as described in the next section.

2. Use the PXLoader to create the ParticleSystem from the PX file that describes

the ParticleSystem.

3. Optionally, set conditions such as the OpenGL blend function.

4. Attach the ParticleSystem as a child of the Scene.

We won’t look at all the code for PXLoader and its associated classes. The

 complete source is included with downloadable code for this chapter (and may be on

 AndEngineExtensions by the time you read this book). We do need to look at the

interfaces we will use, however.

PX Files

The XML files that describe a ParticleSystem are fairly straightforward. XML ele

ments are used for each component, initializer, and modifier. A complete list of XML

elements can be found in PXConstants.java, along with the example code. An

example of a typical PX file (and the one we’ll use with V3) is shown in Listing 10.1.

Listing 10.1 PX File explo.px

<ParticleConfig>

 <emitter

 shape="circle"

 center_x="0.0"

 center_y="0.0"

 radius_x="40.0"

 radius_y="40.0">

 </emitter>

 <system

 texture="particle_fire.png"

 min_rate="100"

Chapter 10 Particle Systems208

 max_rate="100"

 max_particles="500">

 <init_color

 min_red="1"

 max_red="1"

 min_green="0"

 max_green="0"

 min_blue="0"

 max_blue="0">

 </init_color>

 <init_alpha

 min_alpha="0"

 max_alpha="0">

 </init_alpha>

 <init_velocity

 min_velocity_x="-2"

 max_velocity_x="2"

 min_velocity_y="-2"

 max_velocity_y="-2">

 </init_velocity>

 <init_rotation

 min_rotation="0.0"

 max_rotation="360.0">

 </init_rotation>

 <mod_scale

 from_scale_x="1.0"

 to_scale_x="2.0"

 from_scale_y="1.0"

 to_scale_y="2.0"

 from_time="0"

 to_time="5">

 </mod_scale>

 <mod_color

 from_red="1"

 to_red="1"

 from_green="0"

 to_green="0.5"

 from_blue="0"

 to_blue="0"

 from_time="0"

 to_time="2">

 </mod_color>

 <mod_color

 from_red="1"

 to_red="1"

 from_green="0.5"

Creating Particle Systems 209

 to_green="1"

 from_blue="0"

 to_blue="1"

 from_time="2"

 to_time="4">

 </mod_color>

 <mod_alpha

 from_alpha="0"

 to_alpha="1"

 from_time="0"

 to_time="1">

 </mod_alpha>

 <mod_alpha

 from_alpha="1.0"

 to_alpha="0"

 from_time="3"

 to_time="4">

 </mod_alpha>

 <mod_expire

 min_lifetime="2"

 max_lifetime="4">

 </mod_expire>

 </system>

</ParticleConfig>

The file is easy enough to read without a reference, and you can readily guess the

names of the other elements if you don’t want to browse through PXConstants.java.

Editing PX Files: PXEditor

Also included with the downloadable code are the binaries for an editor you can use to

easily edit PX files. At some point (maybe by the time you read this book), we’ll add a

particle viewer, so you can edit and view particles in real time. For now, you can still

create and edit ParticleSystems without having to handcode all the initializers and

modifiers you need in the traditional manner.

Figure 10.2 shows a screenshot of PXEditor, whose use is fairly straightforward.

The File menu lets you create a new PX file or load and edit an existing one. The

spinners allow you to adjust the parameters, and the image shows you the texture for

the ParticleSystem.

ParticlePlayer

In the downloadable code for this chapter, there is a particle viewer application that

knows how to load and display PX files. One line of ParticlePlayer.java has to be

edited for each new PX file you want to view. This line is in onLoadScene():

String pxFileName = "gfx/particles/explo.px";

Chapter 10 Particle Systems210

You just put the PX file you want to view under assets and edit the string to tell

ParticlePlayer where to find it. The particle texture images in your PX file should be

imported as referenced to assets/gfx.

When you run ParticlePlayer, touch the screen anywhere and the particle effect

should appear there. If any errors occur while loading or displaying the particle effect,

you will see them in LogCat. If the PX file contains an error, the LogCat error will

tell you the line in which it appears and the type of parsing error.

Figure 10.3 shows a snapshot of the explo.px particle system in various stages.

PXLoader

PXLoader is the class that knows how to load .px files that describe a ParticleSystem.

Creating a PXLoader is just like creating a TMXLoader for a tile map:

PXLoader(final Context pContext, final TextureManager pTextureManager)

PXLoader(final Context pContext, final TextureManager pTextureManager,

final TextureOptions pTextureOptions)

If you don’t include any TextureOptions, the PXLoader uses TextureOptions

.DEFAULT.

Figure 10.2 PXEditor

Particle Emitters in V3 211

PXLoader has two methods that are of use to us in loading ParticleSystem definitions:

ParticleSystem createFromAsset(final Context pContext,

final String pAssetPath)

ParticleSystem load(final InputStream pInputStream)

The first method is the one we would normally use to load a particle definition from

a subfolder of assets. The second method can be used to load a particle definition

from some other InputStream. In both cases, a complete ParticleSystem is

returned. If a problem occurs while loading the definition, a PXLoadException

or a PXParseException will be thrown.

Particle Emitters in V3

Let’s incorporate some particle emitters into V3 to help liven up the game. We don’t

have real collision detection enabled yet, but we do effectively have the vampires

walking into Miss Bliss’s school on the left side of the screen. We will add an effect to

the main graveyard scene: When the player touches a vampire, that vampire will burst

into f lame and disappear from the screen (nice job, Buffy!).

V3 Explosion the Traditional Way

To create this particle effect, we’ll use both the traditional method of creating Particle

Systems and the XML method. First let’s look at the traditional approach. Listing 10.2

shows the changes to Level1Activity.java from the version we saw last in Chapter 9.

Figure 10.3 ParticlePlayer showing explo.px

Chapter 10 Particle Systems212

Listing 10.2 Level1Activity.java with Particle Effects: Traditional Way

package com.pearson.lagp.v3;

. . .

public class Level1Activity extends BaseGameActivity {

. . .

 private TextureRegion mParticleTextureRegion;

 private ParticleSystem particleSystem;

 private CircleParticleEmitter particleEmitter;

. . .

 @Override

 public void onLoadResources() {

 /* Load Textures. */

. . .

 TextureRegionFactory.setAssetBasePath("gfx/particles/");

 mParticleTexture = new Texture(32, 32,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 mParticleTextureRegion =

 TextureRegionFactory.createFromAsset(

 this.mParticleTexture, this,

 "particle_fire.png",

 0, 0);

 mEngine.getTextureManager().loadTexture(

 this.mParticleTexture);

 }

 @Override

 public Scene onLoadScene() {

. . .

 particleEmitter = new CircleParticleEmitter(

 CAMERA_WIDTH * 0.5f, CAMERA_HEIGHT * 0.5f + 20, 40);

 particleSystem = new ParticleSystem(particleEmitter,

 100, 100, 500, this.mParticleTextureRegion);

 particleSystem.addParticleInitializer(

 new ColorInitializer(1, 0, 0));

 particleSystem.addParticleInitializer(

 new AlphaInitializer(0));

 particleSystem.setBlendFunction(GL10.GL_SRC_ALPHA,

 GL10.GL_ONE);

 particleSystem.addParticleInitializer(

 new VelocityInitializer(-2, 2, -2, -2));

 particleSystem.addParticleInitializer(

 new RotationInitializer(0.0f, 360.0f));

 particleSystem.addParticleModifier(

 new org.anddev.andengine.entity.particle.modifier- .

ScaleModifier(1.0f, 2.0f, 0, 5));

Particle Emitters in V3 213

 particleSystem.addParticleModifier(

 new org.anddev.andengine.entity.particle.modifier-

 .ColorModifier(1, 1, 0, 0.5f, 0, 0, 0, 3));

 particleSystem.addParticleModifier(

 new org.anddev.andengine.entity.particle.modifier-

 .ColorModifier(1, 1, 0.5f, 1, 0, 1, 2, 4));

 particleSystem.addParticleModifier(

 new org.anddev.andengine.entity.particle.modifier- .

AlphaModifier(0, 1, 0, 1));

 particleSystem.addParticleModifier(

 new org.anddev.andengine.entity.particle.modifier-

 .AlphaModifier(1, 0, 3, 4));

 particleSystem.addParticleModifier(

 new ExpireModifier(2, 4));

 particleSystem.setParticlesSpawnEnabled(false);

 scene.getLastChild().attachChild(particleSystem);

 return scene;

 }

 @Override

 public void onLoadComplete() {

 }

 private Runnable mStartVamp = new Runnable() {

 public void run() {

 int i = nVamp++;

 Scene scene = Level1Activity.this.mEngine.getScene();

 float startY = gen.nextFloat()*(CAMERA_HEIGHT - 50.0f);

 asprVamp[i] = new AnimatedSprite(CAMERA_WIDTH - 30.0f,

 startY, mScrumTextureRegion.clone()) {

 @Override

 public boolean onAreaTouched(

 final TouchEvent pAreaTouchEvent,

 final float pTouchAreaLocalX,

 final float pTouchAreaLocalY) {

 switch(pAreaTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

 /* Is there a vampire close by? */

 for (int j=0; j<nVamp; j++){

 if (

(Math.abs(asprVamp[j].getX() + (asprVamp[j].getWidth()/2) -

pAreaTouchEvent.getX()) < 10.0f) &&

 (Math.abs(asprVamp[j].getY() +

(asprVamp[j].getHeight()/2) - pAreaTouchEvent.getY()) < 10.0f)) {

 particleEmitter.setCenter(

 pAreaTouchEvent.getX(),

Chapter 10 Particle Systems214

 pAreaTouchEvent.getY());

 particleSystem.setParticlesSpawnEnabled(

 true);

 mHandler.postDelayed(mEndPESpawn,3000);

 asprVamp[j].clearEntityModifiers();

asprVamp[j].registerEntityModifier(

 new AlphaModifier(1.0f, 1.0f, 0.0f));

 asprVamp[j].setPosition(

 CAMERA_WIDTH,

 gen.nextFloat()*

 CAMERA_HEIGHT);

 }

 }

 break;

 }

 return true;

 }

 };

 scene.registerTouchArea(asprVamp[i]);

. . .

 private Runnable mEndPESpawn = new Runnable() {

 public void run() {

 particleSystem.setParticlesSpawnEnabled(false);

 }

 };

}

Let’s look at each of the methods in turn to understand how particle effects are

 displayed in the traditional way:

 n In onLoadResources(), we load the Texture we need for the ParticleSystem.

We’ve previously placed the image in assets/gfx/particles. The rationale

for using a separate folder is that ParticleSystems can apply to multiple places in

our game.

 n In onLoadScene(), we create a CircleParticleEmitter with which we will cre

ate our ParticleSystem, and assign an appropriate number of particles and rates

(“appropriate” is determined by trial and error for the most part).

 n We add “appropriate” initializers and modifiers to our ParticleSystem to create

the desired effect, and for the moment setSpawnEnabled(false). We don’t

need to generate any particles until a vampire is touched, but we go ahead and

attach the ParticleSystem to the Scene.

 n In the Runnable mStartVamp, we add an onAreaTouched() listener, so we can

capture touches. This method tells us when a vampire is touched, but it doesn’t tell

us which vampire was touched, so we iterate through the vampires that have been

launched so far. We can get away with that because we know there are no more

Particle Emitters in V3 215

than 10 vampires on the screen at any given time. In a game with potentially

 hundreds of active sprites, of course, we would want to use a more sophisticated

collision detection strategy (which we discuss in Chapter 12). The formatting is a

little messy in Listing 10.2, but is much easier to read in the real source.

 n If the touch point is within 10 pixels of the vampire’s position, we’ll call it a hit.

 n When we find a hit, we position the particle emitter at that vampire and turn on

spawning to generate the explosion effect. We position the effect at the hit point.

We could have chosen the vampire’s position, but somehow having the f lame

where you touch is more appropriate.

 n We ask Android to run a Runnable that will stop the explosion effect in 3 seconds.

 n We remove the modifiers from the vampire sprite, so we’re not wasting cycles

in trying to move it to a new starting position, and we set an alpha modifier to

make it disappear from the screen in 1 second.

 n We tell Android that we’ve handled the touch by returning true at this point

and don’t waste time looking at the other vampires.

 n The Runnable mEndPESpawn()shuts off particle generation to end the particle

effect.

V3 Explosion the XML Way

A modified version of the same particle effect is included with the downloadable source

code as V310PX. In this version, we replace the ParticleSystem creation code in

 Listing 10.2 with the equivalent code that creates the ParticleSystem from the explo.px

file we showed in Listing 10.1. These changes are shown in Listing 10.3.

Listing 10.3 Level1Activity.java with Particle Effects: XML Way

package com.pearson.lagp.v3;

. . .

public class Level1Activity extends BaseGameActivity {

. . .

 private ParticleSystem particleSystem;

 private BaseParticleEmitter particleEmitter;

. . .

 @Override

 public Scene onLoadScene() {

. . .

 try {

 final PXLoader pxLoader = new PXLoader(this,

 this.mEngine.getTextureManager(),

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 particleSystem = pxLoader.createFromAsset(this,

 "gfx/particles/explo.px");

 } catch (final PXLoadException pxle) {

Chapter 10 Particle Systems216

 Debug.e(pxle);

 }

 particleSystem.setBlendFunction(GL10.GL_SRC_ALPHA,

 GL10.GL_ONE);

 particleSystem.setParticlesSpawnEnabled(false);

 particleEmitter =

 (BaseParticleEmitter) particleSystem.getParticleEmitter();

 scene.getLastChild().attachChild(particleSystem);

. . .

Looking at the changes from the last (traditional) approach:

 n We don’t need to declare a Texture or TextureRegion for the particle in this

version, as that task is handled by PXLoader. We do need to import the tex

ture image into wherever the PX file says PXLoader should expect it. The file

explo.px says that a texture particle_fire.png should appear in the cur

rent Texture asset path (which we set to gfx/Level1 for all the Textures in this

activity). We declare our ParticleEmitter as class BaseParticleEmitter because we

don’t know which type of emitter it is yet.

 n We no longer need to load the TextureRegion or Texture in

onLoadResources().

 n In onLoadScene(), we create a PXLoader and use its createFromAsset()

method to create the ParticleSystem described in the file explo.px. We previously

imported this file into assets/gfx/particles. We retrieve the ParticleEmitter

from our ParticleSystem using the getParticleEmitter() method so that we

can use it later to reset its position.

 n Everything else is the same. The sprite touch detection logic is unchanged from

the traditional version. The ParticleSystem created by PXLoader is like any other

ParticleSystem. Thus you can add modifiers, reposition the emitter, and do any

thing you would do with a ParticleSystem created in the traditional way.

Summary

Particle effects can make our games more interesting, and just plain more fun, by

implementing complex, lifelike effects. The AndEngine particle system makes this

happen without consuming a huge amount of computing resources, as would be

required if we tried to duplicate the same effects with animations.

Particle effects are rather easy to include in your game, and not that difficult to

invent. You can add particle systems to your games in at least three ways:

1. Code the particle system into your game using the initializer and modifier

classes provided by AndEngine.

Exercises 217

2. Create a PX file that describes a particle system and use the PXLoader classes to

load it into your application at runtime.

3. Use a particle system that’s been created and debugged by someone else. It can

consist of code that you cut and paste or a PX file that you build into your

project.

However you choose to create the particle system, it can be positioned and triggered

based on any event in your game that you choose. In Chapter 11, we’ll see how to make

the special effects even more compelling by introducing sounds that go with them.

Exercises

1. Working with the traditional way of creating particle effects (as shown in Listing

10.2), change particleSystem so the effect looks more like a puff of smoke.

Use the particle_smoke.png image file (found in the assets/px folder in

the downloadable code) and appropriate colors. Adjust the particle system until

you think the effect is convincing.

2. Repeat Exercise 1, using the PXLoader approach to building particle effects

(as in Listing 10.3). You can either create your smoke.px file by hand or use

PXEditor to create it. Either way, it’s easiest to start from explo.px.

3. Create a brandnew effect of your own, illustrating falling rain. Create the

particle system using PXLoader, and show your effect using the ParticlePlay

application.

This page intentionally left blank

11

Sound

Sound enhances the mood of a game and can help bring the action to life. It provides

an emotional connection that can’t be achieved any other way. Filmmakers have rec-

ognized this fact ever since talkies started with The Jazz Singer, and they invest huge

sums of money in creating just the right background music, and just the right sound

effects, for their films. You probably don’t have their budget, and you may not be as

gifted as John Williams, but sound will be important for your game. The AndEngine

library for Android provides APIs that build on Android’s native multimedia capabili-

ties and make it easy to incorporate these features.

How Sound Is Used in Games

An entire profession is built around the design of sounds for video games. There are

even trade conferences devoted to the subject (e.g., http://www.gamesoundcon.com/).

Although we certainly won’t become game sound experts in the next few paragraphs,

we will learn some basic principles that will guide our work.

There are two basic types of sound in a video game:

 n Music, which is usually background music

 n Sound effects that accompany events in real time within the game play

Music

Music is important for setting the mood of the game. Somber music creates a subdued

game-playing mood, whereas music that is reminiscent of happy times (carousels, hurdy-

gurdys) sets a happy mood. The tempo of the background music often ref lects the current

tempo of the game. In a game that features every increasing layers of difficulty, the tempo

might increase as the challenges get harder and villains are attacking faster and faster.

There don’t seem to be any hard-and-fast rules about what makes a piece of music

ref lect a particular emotion. Major keys are usually associated with “happy” music,

and minor keys with “sad” music, but there are exceptions to those rules. The best

http://www.gamesoundcon.com/

Chapter 11 Sound220

advice seems to be “You’ll know it when you hear it.” When picking background

music for your game, it is important to listen to a lot of other games, and to music in

general. Try to pick background music that won’t become too boring or annoying

when it’s played over and over.

Increasingly, especially on mobile devices, players don’t listen to the music you pick

while they’re playing your game. Instead, they prefer to listen to their own music files

that they’ve loaded onto the device. Android devices do a great job of allowing the

device music player to keep playing while the user activates other applications, includ-

ing games, so there’s nothing you have to do to enable that use case.

Sound Effects

Whereas music generally plays continuously in the background, sound effects are short

sounds that play coincident with events in the game. If a gun is fired, the player should

hear a bang. If a villain bumps into an object, there should be a bump noise, and

maybe an “Ugh!” from the villain. If a vampire goes up in f lames, the player should

hear the sound of a fiery explosion.

The tools used to create and edit sound effects overlap those used for music, but they

are different, in that sound effects are short and the focus is on trimming and filtering

to enhance the effect. Music, by comparison, is, well, music. The emphasis is more on

the succession of tones and silences that make up a musical composition, along with the

 timbres of the musical instruments that are used to play it.

Sources of Music and Effects

Companies building professional games for game consoles or the PC spend hundreds

of thousands of dollars creating unique sounds and getting these sounds just right.

They often have an in-house composer who is charged with creating new music for

their games. You probably don’t have pockets quite that deep, but you can still create

great sound for your game.

A wide variety of music and sound files are available on the Internet, but be very

careful about license restrictions. The same kinds of considerations exist for music

and sound effects as apply to images and animations. The last thing you want to do is

publish a game and have somebody’s lawyer come after you because you don’t have a

license to use the client’s intellectual property.

When looking for sources of music for your game, you have the following

options:

 n Make your own music and sound effects. If you have the talent and the

 equipment and can record your own original composition for your game, that

option is by far the best choice. With this approach, you own all the rights to

your own creation and performance.

 n Use a friend’s music. If you have a friend with musical talent and the equipment

to create an original musical background, that’s almost as good. Just make sure

Sound Codec Considerations 221

you have a clear agreement with your friend about the use of the music—and it’s

best to put that agreement in writing.

 n License someone else’s music. This can be expensive if “someone else” is the

Rolling Stones, but there are also websites where you can purchase a license to

use professionally created music for a reasonable fee. The following sites offer

such services, for example:

 n http://www.partnersinrhyme.com: includes both music and sound effects

 n http://www.5alarmmusic.com/

 n http://www.mymusicsource.com

 n Use music and sound effects that are in the public domain. We used this option

for the background music in V3, using a J. S. Bach composition to set the mood

for the main game screen. The MIDI file for this piece of music was found at

http://www.midiworld.com.

Tools for Music and Effects

Music and sound effects files are both audio files, so the toolsets used to manipulate

them overlap to some extent. Sound development can happen in several different ways,

and the most appropriate tools depend on exactly what you need to do. Examples of

different approaches include the following:

 n If you are capturing music being played live, many professional music editing

programs are available, such as Sony Sound Forge, M-Audio Pro Tools, Cubase,

and Adobe Soundbooth. None of these programs are free, but most offer a “lite”

version for a token amount of money.

 n If you are adapting an existing composition, you can use tools such as MuseScore

and MakeMusic Finale to make minor edits, change voices, alter tempo, and even

transpose notes. We’ll see an example of the use of MuseScore later in this chapter.

 n If you are creating sound effects, an audio editor, such as Audacity, will likely be suf-

ficient. These kinds of programs don’t have the musical flexibility of the tools men-

tioned previously, but they’re great for capturing and editing raw audio. We’ll also see

a detailed example of using Audacity to capture sound effects later in this chapter.

Sound Codec Considerations

The Android media player knows how to interpret a wide variety of media types.

Some of these (as of Android 3.0) are listed here, along with pros and cons for using

that codec for game sound files:

 n AAC: Including this option in the list is a bit misleading. As of Android 3.0, the

media player does know about AAC-encoded audio, but only when it is embed-

ded in 3GP and MP4 video. AAC isn’t an option for Android games (yet).

http://www.partnersinrhyme.com
http://www.5alarmmusic.com/
http://www.mymusicsource.com
http://www.midiworld.com

Chapter 11 Sound222

 n MP3: MP3 is the old standby for psycho-acoustically encoded audio, and it

works quite well for game music and sound effects. It is not supported by all

tools, due in part to the need for encode licensing. Many Android devices

include hardware MP3 decoders that stream MP3 directly from a file, saving

precious memory and processor cycles.

 n MIDI: Rather than compressing an audio waveform, MIDI lists the notes to

be played for a piece of music, along with metadata such as which instrument

should be playing which notes. MIDI files are very compact compared with

any other alternative, but the sound can be rather mechanical. MIDI does

have limited provision for support of sound effects—by naming instruments

for “gunshot,” “applause,” and so on. On most Android devices, MIDI is

 computation and memory intensive compared with MP3, Ogg, and WAV, as the

processor streams the file and calculates the waveform from wavetables that are

kept in memory.

 n Ogg Vorbis: This codec is the open licensed equivalent of MP3 and is quite

widely supported. It offers the same advantages as MP3, with the addi-

tional advantage of being freely available. As is true for MP3, most Android

devices contain dedicated hardware to stream and decode Ogg-encoded

sound files.

 n WAV: The WAV format is really digitized audio, most often digitized using

linear pulse code modulation (LPCM), and most often uncompressed. The

 digitization can take on different parameters, but WAV files can quite liter-

ally offer “CD quality”: WAV is the format used on commercial music CDs.

Because it is uncompressed, this codec also results in the largest files (by far),

which is an important consideration in a mobile game, particularly for the

 background music.

Sound in AndEngine

The AndEngine interfaces refer to music as “music,” and to sound effects as

“sounds.” As a rule of thumb, think of music as a piece of audio lasting more than

5 seconds, and sound effects as lasting less than 5 seconds, and preferably less than

3 seconds.

Most game developers settle on one musical theme per activity, and AndEngine

uses objects of the Music class and keeps them around. Sound effects, in contrast, come

and go, so AndEngine uses Android SoundPool objects that facilitate management

of the short clips. All of that work occurs behind the scenes, so you don’t have to

worry about it as a game developer—but it’s nice to know that Nicolas and the other

 AndEngine developers have thought through the differences for us.

From our point of view, there are four classes we need to know about:

1. Music: This class represents a stream of music.

2. Sound: This class represents a sound effect.

Sound in AndEngine 223

3. MusicFactory: This singleton class knows how to extract a musical stream

from a file.

4. SoundFactory: This singleton class loads sound effects.

The music and sound APIs in AndEngine are very similar to the Android Media-

Player APIs, if you are familiar with them. AndEngine uses the MediaPlayer beneath

the covers, so it makes sense that they are consistent. There are also MusicManager,

SoundManager, and SoundLibrary classes, but we don’t need to deal with them

directly just to play and control music and sounds.

Music Class

We don’t normally use the constructor provided for Music; instead, we let the

 MusicFactory create Music objects for us (see the next section). Once we have a

Music object, the class provides a set of methods that let us control the playing of

the piece:

void play()

void stop()

void pause()

void resume()

void release()

These methods do just what they say. If you release() a Music object, it is no longer

available for playing.

void setLooping(final boolean pLooping)

void setVolume(final float pLeftVolume, final float pRightVolume)

void seekTo(final int pMilliseconds)

boolean isPlaying()

These methods control aspects of playing the music. Again they’re pretty obvious. The

isPlaying() method returns false if the music is paused or stopped.

void setOnCompletionListener(final OnCompletionListener pOnCompletionListener)

Using this method, you can register a listener method to run when the musical piece is

finished playing.

Sound Class

The methods provided for the Sound class are very similar to those for the Music class,

as you’d expect. There are a few important differences, all due to the fact that sound

effects are short bursts of sound:

 n There is no seekTo() method.

 n There is no isPlaying() method.

 n There is no way to set a completion listener.

Chapter 11 Sound224

Some additional methods come easily because Sound uses the Android SoundPool

class to manage the sound effects,

void setLoopCount(final int pLoopCount)

This method works together with setLooping(). If setLooping() is set to true,

the effect loops until you stop() it. If setLooping() is false, and setLoopCount

is non-zero, it loops that number of times. Oddly enough, pLoopCount is zero based,

so if you want an effect to play 5 times, you should set pLoopCount to 4.

void setRate(final float pRate)

You can use this method to vary the playback rate. A pRate of 1.0f is normal playback

speed. The allowable range is 0.5f (playback at half the speed) to 2.0f.

MusicFactory

As with some of the other AndEngine media factory classes, MusicFactory provides a

group of createfrom… methods to load music from various sources:

Music createMusicFromFile(final MusicManager pMusicManager,

final Context pContext, final File pFile)

Music createMusicFromAsset(final MusicManager pMusicManager,

final Context pContext, final String pAssetPath)

Music createMusicFromResource(final MusicManager pMusicManager, final

 Context pContext, final int pMusicResID)

These methods work just like the factory classes we’ve seen for Textures, TMX files,

and PX files. Some developers have reported issues with the createMusicFrom-

Resource() method. For creation from assets, MusicFactory provides a method to set

a default assets subfolder path, just like TextureFactory and the other classes:

void setAssetBasePath(final String pAssetBasePath)

SoundFactory

An analogous group of methods come with SoundFactory, this time taking advantage

of some SoundPool capabilities:

Sound createSoundFromPath(final SoundManager pSoundManager,

final Context pContext, final String pPath)

Sound createSoundFromAsset(final SoundManager pSoundManager,

final Context pContext, final String pAssetPath)

Sound createSoundFromResource(final SoundManager pSoundManager,

final Context pContext, final int pSoundResID)

Sound createSoundFromFileDescriptor(final SoundManager pSoundManager,

final FileDescriptor pFileDescriptor, final long pOffset,

final long pLength)

Adding Sound to V3 225

In this book we will always load media assets from the assets folder, but it’s good to

know the other methods are there, should you need to load items from a file or other

resource. SoundFactory has the same setAssetBasePath() method provided by the

other factory classes in AndEngine.

Adding Sound to V3

We want to create background music and sound effects for V3. In this section we will

look at examples of both:

 n Creating and implementing the background music for the game. We

want the music to start when we start the game and to play in the background

until we enter a game-playing level (e.g., Level1Activity). If the game pauses, the

music should stop, and then resume when the game resumes. If the player turns

the music off on the Options page, it should stop and not play again until the

player turns it back on. The music and effects on/off settings should be persis-

tent, even if our Android device is turned off.

 n Creating and implementing a sound effect for the particle effect we

added in Chapter 10. When the user touches the screen to blow away a

 vampire, a blast sound should accompany the player’s triumph. If the player

has turned sound effects off on the Options page, then no sound effects

should play. The music and the sound effects can be turned on and off

independently.

 n Adding sound effects to the game weapons. In Chapter 10, we made

it possible for the player to reposition weapons from the Weapons box to the

 playing field. Now we’d like to have the weapon do something when the

player releases the touch. We’ll need sound effects to accompany those actions

(i.e., firing the bullet and throwing the hatchet).

Creating the Sound Effects

We need a sound effect for the blasts that immolate the vampires, and I selected a

public domain WAV file from the PartnersInRhyme site mentioned earlier in this

chapter. This site includes both public domain sound effects and royalty-free licensed

sound effects. The difference between the two is that the public domain effects have

no restrictions on their use. The royalty-free sound effects are sold for a small fee and

come with a license that defines how they may be used, including no need to pay

 royalties for their use.

I selected a public domain effect: Fireball3.wav. This f ile is not very big

(18KB) and has a good whoomph to it, but I’d like to tune it a bit. I’ll f irst

import it into Audacity, using File > Open. The screen shown in Figure 11.1

appears.

Chapter 11 Sound226

The length of the clip is short (less than 1 second), which is appropriate for a sound

effect, and it fades in and out nicely. Audacity gives you tools to do an amazing amount

of waveform analysis. As an example, let’s look at the audio spectrum of the file by choos-

ing Analyze > Plot Spectrum… . The resulting screen (Figure 11.2) shows us the relative

amplitudes of the waveform across the spectrum but does not factor in the nonlinearity of

human hearing. Even so, this spectrum plot is still useful to help us adjust the sound effect.

Figure 11.1 Audacity, with Fireball3.wav loaded

Figure 11.2 Audacity, showing Fireball3.wav spectrum

Adding Sound to V3 227

There’s some good rumble at the low end of the spectrum, but we’d like to

add some more. We want these f ireballs to be worthy of a truly vile vampire

going up in f lames. One way Audacity lets us make these adjustments is with

the Effects menu (not to be confused with game sound effects—these effects

are various changes Audacity can help you make to the waveform you are

 editing). Just pulling down the Effects menu, you can see the long list of effects

types that Audacity provides. A few of the more interesting ones for effects are

listed here:

 n Amplify: makes the sound louder

 n Bass boost: boosts the low end sounds—just what we want in the

example case

 n Change pitch

 n Compressor: compresses the amplitude of the waveform in a nonlinear way

 n Echo

 n Equalization

 n Fade In

 n Fade Out

 n Inverter: inverts the waveform (its amplitude, not its duration)

 n Leveller: levels out the peaks in a waveform

 n Noise Removal

 n Normalize: adjusts the amplitude to remove DC offset and normalize to a given

volume

 n Reverse: reverses the waveform in time

 n Truncate Silence

For the fireball sound effect, I will boost the bass using the Bass Boost effect, as

shown in Figure 11.3.

Figure 11.3 Audacity: bass boost of Fireball3.wav

Chapter 11 Sound228

I can try different boost points by adjusting the frequency and boost sliders and lis-

tening to Preview until the sound is just the way I’d like it to be. We could apply any

of the other effects, and when we’re done tweaking, we can save it, using File > Save

Project. This step creates an Audacity project file (.aup) and saves all our changes, but

it does not create a new WAV file. To do that, we use File > Export…, which allows

us to save the waveform in its original WAV format, or to change codecs and save the

file in MP3, Ogg/Vorbis, or many other formats.

Saving the file in the .wav format results in a file that is 18.01KB—not too bad,

but we’re going to import a bunch of these files for different sound effects, so col-

lectively they could add up. To save a sound file as an MP3, at least on Windows,

Audacity will ask you to download an encoder library, lame_enc.dll. The legal

implications of using the LAME libraries are unclear, at least in the United States,

where I live. As a practical matter, it’s unlikely that the MP3 license holders would

come after me for creating a game (or a book) using MP3, but there is an alternative

that involves no risk at all—namely, Ogg/Vorbis.

Ogg/Vorbis does psycho-acoustic compression of audio files, just like MP3, but it

is open-source format, with no licenses required for its use. Audacity comes with an

Ogg/Vorbis encoder standard. Using File > Export… and selecting the Ogg/Vorbis

format from the Save As Type drop-down menu produces a file, fireball.ogg, that

is 9.73KB—a bit more than half the size of the uncompressed WAV file. Listening to

the .ogg file, I can’t hear any difference from the original, so I’ll elected to use that

format in V3.

In a similar way, I created sound effects for firing the bullet (gunshot.ogg) and

throwing the hatchet (whiffle.ogg). All of these are loaded into the assets/mfx

folder for use in the game.

Creating the Background Music

As mentioned earlier, we picked a J. S. Bach composition, Fugue in G Minor, as the

background music for the main screen of the game. The rights to this composition

have long been in the public domain, so there’s no problem there. The rights to spe-

cific performances of the composition are a different matter, however: The rights to a

performance would be licensed separately.

Fortunately, this composition is available in a form that is also in the public domain—

namely, as a MIDI file. Not all MIDI files are in the public domain, but it happens

that a public domain version is available at MIDIWorld (its URL was given earlier in

the section “Sources of Music and Effects”).

To use this file with cocos2d for Android, I downloaded it and used MuseScore

to open it up and edit it, as shown in Figure 11.4. The author was apparently Jason

Fortunato, but there is no contact information for him on the website. Thanks, Jason,

for taking the time to enter Bach’s score.

Adding Sound to V3 229

As you can see, MuseScore (and similar software, such as MakeMusic’s Finale

products) provides a user interface that is much more “music friendly.” Instead of

manipulating waveforms, as in Audacity, here we are manipulating notes and rests

on staves. MuseScore is very music oriented and knows about musical interfaces,

such as MIDI.

After listening to the piece, there were two things I wanted to change—the tempo

and the voicing, or which instrument was assigned to each of the staves in the piece.

MuseScore will easily let me change both voicing and tempo. I could have used Audac-

ity to change just the tempo, but it makes sense to make all of the changes in one

place.

In MuseScore, the voicing for a MIDI file is available from the menu under Display >

Mixer. The panel that comes up is titled “MuseScore:Part List,” as shown in Figure 11.5,

and you can see the “Sound:” pull-down options for each staff. For this file the voices all

default to “Strings CLP.”

Figure 11.4 MuseScore with Bach Fugue opened

Chapter 11 Sound230

Figure 11.6 MuseScore Play Panel

Figure 11.5 MuseScore mixer panel

Using the mixer panel, I changed the voicing of each staff. There are many voices

to choose from (128 or so), and I chose a set that sounded good to me. I don’t claim to

have a musical ear.

To change the tempo using MuseScore, you select the menu commands Display >

Play Panel. This brings up the panel shown in Figure 11.6.

Adding Sound to V3 231

Table 11.1 Bach Fugue File Sizes

Format Size (KB)

MIDI 12

Ogg/Vorbis 1979

WAV 23,537

The large numbers are the current playback position in measures (on top) and the

current playback position in time (on the bottom). To the upper right of the total time,

you can see the tempo, in beats per minute (bpm). The horizontal slider near the bottom

of the dialog tracks the current play point in the piece, while the vertical sliders adjust

the tempo and volume. The MuseScore Help doesn’t explain the pull-down options

(Straight/Swing/Shuff le), but we don’t need them. I adjusted the tempo down to 70 bpm

to slow the piece down and make it a bit more dirge-like. With the slowdown, the total

time of the piece is slightly less than 4 minutes.

Choosing File > Save from the menu allows us to save a MuseScore project file.

Choosing File > Save As… gives us the same dialog, but now the “Save As Type” pull-

down menu allows us to save the file in a variety of audio formats. For comparison

purposes, I saved the file as MIDI (.mid), Ogg/Vorbis (.ogg), and WAV (.wav) files.

The results are shown in Table 11.1.

The WAV file is huge—and out of the question for our application. We really

don’t want to increase the size of our game file by 20MB for each piece of music. We

could go with the tiny MIDI file, but Android doesn’t have all the MIDI voices that

are in MuseScore, so the result sounds a little too mechanical. With the Ogg/Vorbis

version, we can use all the power of MuseScore to adjust the music, and the file size

is still quite small. We’ll go with that option. As with the sound effects, the result is

imported into assets/mfx.

Making the Coding Changes to V3

We need to make a number of changes to V3 to incorporate the sounds into the game:

 n We need global Boolean functions to signify music on/off and effects on/off.

In earlier chapters, we just toggled local Boolean values in OptionsActivity

.java to achieve this kind of outcome, but now we need the results available on

a game-wide basis. Fortunately, Android provides an easy way to do this with

SystemPreferences.

 n The Music and Sound objects need to be managed in the activities’ onPause()

and onResume() methods so that the sound works properly as we start and stop

the game, or move between activities.

 n The background music and sound effects must be loaded before they are played.

Chapter 11 Sound232

 n If music is turned on, the background music begins to play as StartActivity

starts, and then stops when we enter Level1Activity.

 n The weapons animations need to be enhanced to actually shoot the bullet and

throw the hatchet (crosses don’t do much except wait for a vampire to bump into

them). If effects are turned on, appropriate sound effects should sync with the

animations.

 n If effects are turned on, the fireball sound effect must be triggered whenever we

register a touch hit on a vampire in Level1Activity.

Listing 11.1 (StartActivity.java), Listing 11.2 (OptionsActivity.java), and

Listing 11.3 (Level1Activity.java) show the primary changes that are required.

Listing 11.1 Changes to StartActivity.java

package com.pearson.lagp.v3;

. . .

public class StartActivity extends BaseGameActivity {

. . .

 static protected Music mMusic;

 private SharedPreferences audioOptions;

 private SharedPreferences.Editor audioEditor;

. . .

 @Override

 public Engine onLoadEngine() {

 mHandler = new Handler();

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 audioOptions = getSharedPreferences("audio", MODE_PRIVATE);

 audioEditor = audioOptions.edit();

 if (!audioOptions.contains("musicOn")){

 audioEditor.putBoolean("musicOn", true);

 audioEditor.putBoolean("effectsOn", true);

 audioEditor.commit();

 }

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT), this.mCamera).setNeedsMusic(true));

 }

 @Override

 public void onLoadResources() {

. . .

Adding Sound to V3 233

 MusicFactory.setAssetBasePath("mfx/");

 try {

 StartActivity.mMusic = MusicFactory.createMusicFromAsset(

 this.mEngine.getMusicManager(),

 getApplicationContext(),

 "bach_fugue.ogg");

 StartActivity.mMusic.setLooping(true);

 } catch (final IOException e) {

 Debug.e(e);

 }

 }

 @Override

 public Scene onLoadScene() {

. . .

 //Start the music!

 mMusic.play();

 if (!audioOptions.getBoolean("musicOn", false)) {

 mMusic.pause();

 }

 return scene;

 }

 @Override

 public void onGamePaused() {

 super.onGamePaused();

 StartActivity.mMusic.pause();

 }

 @Override

 public void onGameResumed() {

 super.onGameResumed();

 if (audioOptions.getBoolean("musicOn", false))

 StartActivity.mMusic.resume();

 mHandler.postDelayed(mLaunchTask,3000);

 }

. . .

}

The changes are shown in bold, and here is a description of each:

 n We added a static variable for the Music object. This is a bit of a kludge, but we

need to have access to the object across our game, and SharedPreferences doesn’t

provide an interface for storing and retrieving Objects. In a very un-object- oriented

Chapter 11 Sound234

fashion, we will access mMusic directly from other activities. We can get away with

this strategy because there is only one Music object, so management is easy.

 n We also added private variables for SharedPreferences and its editor. As men-

tioned at the beginning of this section, we will use SharedPreferences for the

Boolean values that track whether music and sound effects are turned on.

 n In onLoadEngine(), we initialize the SharedPreferences, allowing for the fact

that they may already exist from a previous run of the game.

 n Also in onLoadEngine(), we add a method call, setNeedsMusic(true) to

the EngineOptions constructor, which informs AndEngine that this module will

be referencing the Music methods.

 n In onLoadResources(), we use the MusicFactory to create and load the Music

object with the music file we’ve previously installed in assets/mfx.

 n We setLooping(true) so the music will keep playing until the player loses his

or her mind and throws the Android device against the nearest wall.

Listing 11.2 Changes to OptionsActivity.java

package com.pearson.lagp.v3;

. . .

public class OptionsActivity extends BaseGameActivity implements
IOnMenuItemClickListener {

. . .

 private SharedPreferences audioOptions;

 private SharedPreferences.Editor audioEditor;

. . .

 @Override

 public Engine onLoadEngine() {

 mHandler = new Handler();

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 audioOptions = getSharedPreferences("audio", MODE_PRIVATE);

 audioEditor = audioOptions.edit();

 return new Engine (new EngineOptions (true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT, this.mCamera));

 }

. . .

 @Override

 public void onGamePaused() {

 super.onGamePaused();

 StartActivity.mMusic.pause();

 }

Adding Sound to V3 235

 @Override

 public void onGameResumed() {

 super.onGameResumed();

 if (audioOptions.getBoolean("musicOn", false))

 StartActivity.mMusic.resume();

 mMainScene.registerEntityModifier(new ScaleAtModifier(0.5f,

 0.0f, 1.0f, CAMERA_WIDTH/2, CAMERA_HEIGHT/2));

 mOptionsMenuScene.registerEntityModifier(

 new ScaleAtModifier(0.5f, 0.0f, 1.0f,

 CAMERA_WIDTH/2, CAMERA_HEIGHT/2));

 }

 @Override

 public boolean onMenuItemClicked (final MenuScene pMenuScene,

 final IMenuItem pMenuItem, final float pMenuItemLocalX,

 final float pMenuItemLocalY) {

 switch(pMenuItem.getID()) {

 case MENU_MUSIC:

 if (audioOptions.getBoolean("musicOn",

 true)) {

 audioEditor.putBoolean("musicOn", false);

 if (StartActivity.mMusic.isPlaying()) {

 StartActivity.mMusic.pause();

 } else {

 audioEditor.putBoolean("musicOn", true);

 StartActivity.mMusic.resume();

 }

 audioEditor.commit();

 createOptionsMenuScene();

 mMainScene.clearChildScene();

 mMainScene.setChildScene(mOptionsMenuScene);

 return true;

 case MENU_EFFECTS:

 if (audioOptions.getBoolean("effectsOn", true)) {

 audioEditor.putBoolean("effectsOn", false);

 } else {

 audioEditor.putBoolean("effectsOn", true);

 }

 audioEditor.commit();

 createOptionsMenuScene();

 mMainScene.clearChildScene();

 mMainScene.setChildScene(mOptionsMenuScene); return true;

. . .

 }

 }

. . .

}

Chapter 11 Sound236

 n We again establish a local variable for SharedPreferences and its editor, so we

can get and put the contents. We initialize those variables in onLoadEngine().

 n We override onGamePaused() and onGameResumed() so we can shut the

music on and off should the game be paused. These methods are also called

every time the activity is run. When we resume playing the game, we don’t

want to turn the music on unless it was playing when the game was paused, so

we check the preference values.

 n The switch in onMenuItemClicked() takes care of changing the options on

the menu and taking the appropriate action, such as turning off any music that is

playing when the player selects “Music Off.” The case is simpler for sound effects,

because we assume they don’t continue to play. (We don’t use setLoop(true)

anywhere in this game for sound effects.) If you’re not familiar with Shared-

Preferences, note that we have to call the commit() method before any changes

are propagated to the shared storage.

Listing 11.3 Changes to Level1Activity.java

package com.pearson.lagp.v3;

. . .

public class Level1Activity extends BaseGameActivity {

. . .

 private Sound mExploSound, mGunshotSound, mWhiffleSound;

 private SharedPreferences audioOptions;

. . .

 @Override

 public Engine onLoadEngine() {

 mHandler = new Handler();

 gen = new Random();

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 audioOptions = getSharedPreferences("audio", MODE_PRIVATE);

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT),

 this.mCamera).setNeedsSound(true));

 }

 @Override

 public void onLoadResources() {

. . .

 SoundFactory.setAssetBasePath("mfx/");

 try {

Adding Sound to V3 237

 this.mExploSound = SoundFactory.createSoundFromAsset(

 this.mEngine.getSoundManager(),

 getApplicationContext(), "fireball.ogg");

 this.mGunshotSound = SoundFactory.createSoundFromAsset(

 this.mEngine.getSoundManager(),

 getApplicationContext(), "gunshot.ogg");

 this.mWhiffleSound = SoundFactory.createSoundFromAsset(

 this.mEngine.getSoundManager(),

 getApplicationContext(), "whiffle.ogg");

 } catch (final IOException e) {

 Debug.e(e);

 }

 }

 @Override

 public Scene onLoadScene() {

. . .

 bullet = new Sprite(20.0f, CAMERA_HEIGHT - 40.0f,

 mBulletTextureRegion){

 @Override

 public boolean onAreaTouched(

 final TouchEvent pAreaTouchEvent,

 final float pTouchAreaLocalX,

 final float pTouchAreaLocalY) {

 switch(pAreaTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

 break;

 case TouchEvent.ACTION_UP:

 fireBullet(pAreaTouchEvent.getX(),

 pAreaTouchEvent.getY());

 break;

 case TouchEvent.ACTION_MOVE:

 this.setPosition pAreaTouchEvent.getX() -

 this.getWidth() / 2,

 pAreaTouchEvent.getY() -

 this.getHeight() / 2);

 break;

 }

 return true;

 }

 };

. . .

 hatchet = new Sprite(cross.getInitialX() + 40.0f,

 CAMERA_HEIGHT - 40.0f, mHatchetTextureRegion){

 @Override

 public boolean onAreaTouched(

Chapter 11 Sound238

 final TouchEvent pAreaTouchEvent,

 final float pTouchAreaLocalX,

 final float pTouchAreaLocalY) {

 switch(pAreaTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

 break;

 case TouchEvent.ACTION_UP:

 throwHatchet(pAreaTouchEvent.getX(),

 pAreaTouchEvent.getY());

 break;

 case TouchEvent.ACTION_MOVE:

 this.setPosition(pAreaTouchEvent.getX() -

 this.getWidth() / 2,

 pAreaTouchEvent.getY() -

 this.getHeight() / 2);

 break;

 }

 return true;

 }

 };

. . .

 }

 @Override

 public void onGamePaused() {

 super.onGamePaused();

 mGunshotSound.stop();

 mExploSound.stop();

 }

 private void fireBullet(float pX, float pY){

 // rotate bullet sprite 90 degrees cw,

 // move rapidly to right, and play gunshot effect

 bullet.registerEntityModifier(new SequenceEntityModifier (

 new IEntityModifierListener() {

 @Override

 public void onModifierFinished(

 final IModifier<IEntity>

 pEntityModifier,

 final IEntity pEntity) {

 Level1Activity.this.runOnUiThread(

 new Runnable() {

 @Override

 public void run() {

 bullet.setVisible(false);

 bullet.setPosition(0,0);

 }

Adding Sound to V3 239

 });

 }

 },

 new RotationModifier(0.5f, 0.0f, 90.0f),

 new MoveXModifier(0.5f, pX, CAMERA_WIDTH),

 new AlphaModifier(0.1f, 1.0f, 0.0f)));

 mHandler.postDelayed(mPlayGunshot, 500);

 }

 private void throwHatchet(float pX, float pY){

 // hatchet flies to right, rotating about eccentric point

 hatchet.registerEntityModifier(new ParallelEntityModifier (

 new IEntityModifierListener() {

 @Override

 public void onModifierFinished(

 final IModifier<IEntity>

 pEntityModifier,

 final IEntity pEntity) {

 Level1Activity.this.runOnUiThread(

 new Runnable() {

 @Override

 public void run() {

 hatchet.setVisible(false);

 hatchet.setPosition(0,0);

 }

 });

 }

 },

 new RotationAtModifier(5.0f, 0.0f, 5.0f*360.0f,

 20.0f, 20.0f),

 new MoveXModifier(5.0f, pX, CAMERA_WIDTH)));

 playSound(mWhiffleSound);

 }

 private Runnable mPlayGunshot = new Runnable() {

 public void run() {

 playSound(mGunshotSound);

 }

 };

 private Runnable mStartVamp = new Runnable() {

 public void run() {

. . .

 asprVamp[i] = new AnimatedSprite(CAMERA_WIDTH - 30.0f,

 startY, mScrumTextureRegion.clone()) {

 @Override

Chapter 11 Sound240

 public boolean onAreaTouched(

 final TouchEvent pAreaTouchEvent,

 final float pTouchAreaLocalX,

 final float pTouchAreaLocalY) {

 switch(pAreaTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

 /* Is there a vampire close by? */

 if (. . .

 playSound(mExploSound);

. . .

 };

. . .

 private void playSound (Sound mSound){

 if (audioOptions.getBoolean("effectsOn", false)) {

 mSound.play();

 }

 }

}

 n We create variables for the Sound objects, and for SharedPreferences. We don’t

need the SharedPreferences.Editor in this activity, as we’re only getting

values, not putting any.

 n In onLoadEngine(), we again run an EngineOptions method, but this time it

is setNeedSound(true), so we can access the sound effects methods.

 n In onLoadResources(), we use the SoundFactory.createFromAsset()

method to load all three sound effects.

 n In onLoadScene(), we want to modify the TouchEvent switch statements for

both the bullet and the hatchet. The modifications are slightly different:

 n For the bullet, when the user lets it go (after dragging it from the weapons

cache), we want it to rotate 90 degrees clockwise and then “fire,” by shooting

across the screen and playing the gunshot sound effect. We create the method

fireBullet() to make all action this happen.

 n For the hatchet, when the player lets it go, we want it to immediately start

rotating eccentrically and moving to the right of the screen, while playing the

whiff le sound effect. We’ve artfully coordinated the whiff le sound and the

animation of the hatchet so there are seven swoops as it crosses the screen. We

create the method throwHatchet() for this action.

 n We’ve overridden onGamePause() to stop any sound effects (although they

would stop themselves in a few seconds anyway). We don’t really need onGame-

Resumed() in this activity, as we never shrink the activity, and there are no

“sub” activities.

Exercises 241

 n The fireBullet() method uses a collection of modifiers to carry out the

movement and rotation we want. We don’t want the sound effect to start until

after the rotation, so we post a delayed runnable, mPlayGunshot(), timed to

match the time taken by the rotation. We could have also used a listener on the

rotation modifier, but this approach seemed simpler. After the routine, we set

the bullet to invisible and park it at the coordinates (0, 0). The idea is that in the

finished game, we’ll cause the bullet to come to life at some random later time,

so the player can use it again.

 n The throwHatchet() method is similar to fireBullet(), but here the sound

effect can take place immediately.

 n Finally, we created a playSound() method so we don’t have to check the sound

effects preference throughout the rest of the code.

Summary

This chapter really just scratched the surface of sound in games development. Creating

effective background music and convincing sound effects that add to the game play are

arts in themselves. If you are building a team of people to put together a game, you

should definitely try to attract an expert to the team who can concentrate on just the

aural aspects of the game.

The discussion here barely touched on the subject of moods in music. It’s a particularly

hot topic of research lately, as ventures would like to be able to characterize the mood of

recorded music without having people listen to it. For now, you need a person to select or

create music that fits your game.

Sound effects are similarly subjective, and difficult to get right. A strong case can

be made for paying the modest licensing fees necessary to obtain sound effects that

professionals have already refined for you.

The good news is that a wealth of tools to support music and sound effect creation

and editing are available, and the capabilities of even the open-source tools are prob-

ably beyond what you have time to learn to use. The commercial tools are more

 sophisticated, (arguably) better supported, and available at a very reasonable cost.

An AndEngine interface is not available that would allow game developers to take

advantage of Android features such as the JetPlayer audio engine, which knows about

segments of a musical composition and can combine those segments to create dynamic

compositions. Making full use of the Android capabilities such as JetPlayer represents

a great opportunity to expand upon the work that’s been done for AndEngine so far.

Exercises

1. I don’t know about you, but I’m feeling a little guilty about enhancing the bullet

and the hatchet in this chapter, but leaving the cross with nothing to do except

sit there. Why don’t you fix that shortcoming by having the cross play a short

Chapter 11 Sound242

tune after it is dragged from the Weapons box? A short chorus of “Onward

Christian Soldiers” will do.1 You don’t need to get fancy with the audio—just

sing it into your development laptop and record it with Audacity (you can sing

it with audacity, too, if you like). You will then need to add music-playing

capability to Level1Activity; right now, it is set up to play only sound effects.

2. A MIDI version of the Bach Fugue music is included in assets/mfx. Change

StartActivity to use this MIDI file. Notice that the tempo is quite a bit faster,

but unfortunately the MediaPlayer doesn’t give us control of the playback tempo.

3. As the Android developers guide points out, SharedPreferences are useful for

things other than user preferences. When StartActivity starts up, create a Shared-

Preference called “scores” that maintains key–value pairs for each game screen

(“WAV” and “Level1” for now). Change the ScoresActivity to just display those

values for now.

1. “Onward Christian Soldiers” has an interesting history, by the way. Originally a processional written

by Sabine Baring-Gould, the music was later rewritten by none other than Sir Arthur Sullivan, of Gilbert

and Sullivan fame. G&S were early proponents of international copyright laws, as many of their operettas

were used by others who did not bother to obtain or pay for the rights. It’s worth reminding ourselves of

the need to secure proper rights to any intellectual property we’re using in our games. (For the record,

“Onward Christian Soldiers” has long been in the public domain, and the version used in the Exercise

Solutions was performed [badly] by yours truly.)

12

Physics

In game development, “physics” is the collection of effects that mimic the physics of

the real world. Physics don’t enter into every type of game, of course. For example,

you generally won’t need physics if you are developing a board game. Other games

are almost entirely physics based, with missiles of various kinds following natural arcs,

crashing into piles of objects that then break or fall down under the inf luence of gravity.

As we’ll see, a very complete physics engine for use in our games is available as an

extension to AndEngine. We’ll investigate that engine and related tools in this chapter,

and then build a little physics-based gamelet to augment our V3 example game. We

won’t come anywhere close to investigating all that the physics engine can do for us,

but we’ll make a start at understanding it.

The gamelet we’ll end up with is shown in Figure 12.1. The player can launch

wooden stakes at the objects in the gamelet by touching, dragging, and letting go of

the stakes. The idea is to get the vampire heads to touch the ground.

Figure 12.1 Physics gamelet in V3

Chapter 12 Physics244

Box2D Physics Engine

The physics engine used by AndEngine is called Box2D. The Box2D engine was

originally written in C++ by Erin Catto as part of a tutorial on physics engines. It has

since been expanded considerably, ported to a number of other languages, and incor-

porated into many 2D game engines.

We have space in this book to explore only a small part of Box2D, but the informa-

tion and examples in this chapter should give you a head start in exploring the rest.

We’ll describe what you need to know to create Box2D-based worlds in AndEngine,

but for a more complete discussion, I highly recommend the Box2D Manual, which

you should be able to find at the following website:

http://www.box2d.org/manual.html

Box2D Concepts

To talk about a physics engine such as Box2D, we first need to define some terms.

These terms are more fully defined in the Box2D Manual, in case you want to explore

them more deeply.

Units

The physics simulation that Box2D performs is sensitive to the units we use for mass,

velocity, and other quantities. Box2D is tuned for MKS (meter–kilogram–second)

units, and is designed to simulate “normal-sized” objects as they interact. In this case

“normal-sized” means moving objects between 0.1 and 10 meters long, and static

objects as much as 50 meters long. We’ll see later that AndEngine provides a useful

constant, PIXEL_TO_METER_RATIO_DEFAULT, that we can use to translate between

pixel and physics world coordinates. If you use pixel units directly with Box2D, the

resulting simulations won’t look realistic.

World

Box2D enables us to build virtual worlds where bodies behave much like the physical

objects we encounter in real life. A Box2D world consists of bodies, fixtures, joints,

and constraints that add up to a physical simulation of that world.

Rigid Body

Bodies are the basic simulation objects in Box2D. They have only a few characteristics

of their own, but can take on more complex physical attributes through association

with shapes, fixtures, and constraints, as described later in this section. The

primary restriction that Box2D places on the bodies is that they are all rigid bodies,

meaning their shapes never become distorted. To quote from the Box2D Manual, a

rigid body is

A chunk of matter that is so strong that the distance between any two bits of

matter on the chunk is completely constant. They are hard like a diamond.

http://www.box2d.org/manual.html

Box2D Physics Engine 245

Bodies have a type, which can be any of three values:

1. Static: Bodies that are normally fixed in place. The user can move these bodies,

but they are not moved as part of the physics simulation. Static bodies act as

though they have infinite mass (represented by a mass of zero when we create

them), and they collide only with dynamic bodies.

2. Kinematic: Bodies that move only by virtue of their velocity. Kinematic bod-

ies are not part of the physics simulation, and don’t respond to forces. They also

behave as though they have infinite mass, and collide only with dynamic bodies.

3. Dynamic: The moving, fully simulated bodies in a physics world. Dynamic bod-

ies always have a finite, non-zero mass, and can collide with static, kinematic,

and dynamic bodies. If you try to set the mass of a dynamic body to zero, it is

automatically reset to 1 kilogram.

Shape

Box2D supports two basic shapes that approximate the shape of two real objects—

namely, a circle and a polygon. When we create a Box2D body, we normally associate a

shape with it through a fixture (discussed next). When Box2D is simulating the physics

of bodies interacting, it uses the shape of the body to determine when collisions occur.

Fixture

Bodies and shapes become associated through a fixture. In addition to giving a body a

shape, a fixture provides values for the body’s density, elasticity, and friction. The same

fixture values are typically used by multiple bodies, so it’s easiest to define them once

and reuse them as we create bodies.

Constraint

A constraint prevents a body from moving in some dimension. An unconstrained body

in 2D really has three degrees of freedom: x, y, and rotation. Constraints are used to

remove one or more of those degrees of freedom.

Joint

In Box2D, a joint is a constraint that connects two bodies together. Joints can have

limits (such as an elbow, which cannot bend backward) and motors, which can drive

movement of the joint. Box2D supports revolute, prismatic, distance, pulley, mouse,

line, and weld joints, all of which are further explained in the Box2D Manual.

Sensor

Perhaps your game needs a body that detects collisions, but doesn’t respond to them.

Sensors fill that need, and we’ll see that you can declare any body to be a sensor.

Bullet

Box2D normally looks for collisions between dynamic and static bodies by sweeping

through the motion of the dynamic bodies between simulation frames (referred to

as continuous collision detection). This practice ensures that a dynamic body cannot

Chapter 12 Physics246

tunnel through a static body between frames. For performance reasons, Box2D does

not normally do this when detecting collisions between dynamic bodies. If you label

a dynamic body as a bullet, however, Box2D will perform continuous collision detec-

tion for that body with other dynamic bodies. If your game includes a fast-moving

body that will collide with other dynamic bodies, you should label it a bullet.

Running the physics engine on the Android emulator is problematic, because the

frame rate is so slow in emulation. If tunneling is a problem in your testing, you can

turn on continuous collision detection for everything. If mPhysicsWorld is the world

you’ve created, then you would use this line:

mPhysicsWorld.setContinuousPhysics(true);

Of course, now everything will run even more slowly, as more calculation is being

done. It’s best to test this capability on a real device.

Setting Up Box2D

The pattern for building a physics world and starting the simulation includes the fol-

lowing steps:

1. Create a PhysicsWorld, using that class’s constructor. In the constructor, you can

optionally create a gravitational acceleration vector. You can also tell the newly

created world to save cycles by not simulating inactive objects (“allow sleeping”).

2. Create the static objects in the simulation, which might include a f loor, some

walls, and a ceiling, to keep objects from f lying off out of screen range. We’ll do

this in two steps:

 n Create the shapes for the objects (usually Sprites).

 n Create the bodies, attaching the bodies to our world, and attaching shapes to

the bodies through an appropriate fixture.

3. Attach the shapes to the AndEngine Scene so they will be displayed.

4. Connect the Sprites to the Physics with PhysicsConnectors.

5. Register the Box2D PhysicsWorld as an UpdateHandler for our Scene, so it can

update Sprite positions.

We’ll put this pattern into practice in the example code toward the end of this chapter.

Building Levels for Physics Games

Physics games often contain many levels. In each level, the player is presented with an

arrangement of physical bodies that represents a puzzle. The player resolves that puzzle

and gets a score. As game developers, we have several approaches we can use to put

together the needed levels:

 n Create levels in code: We can always write Dalvik code that will create bod-

ies and position them appropriately in the physical world. You, as the developer,

Building Levels for Physics Games 247

must mentally do the translation from code to physical space in such a case, and

this translation is vulnerable to errors. This approach quickly becomes a lot of

work, and I don’t recommend it.

 n Use an available Box2D level editor: Generous developers have created level

editing programs and made them available on the Internet. The editors are typi-

cally visual in nature—you create and size bodies by dragging them onto the

canvas and assigning them the desired properties. Once the level is arranged the

way you want it, the editor can produce an XML file that describes all of the

bodies in that physical world. Your game can then read the XML file to dynam-

ically create the level.

 n Create your own custom level editor: Many developers prefer to have an editor

customized for their particular game. Creating one is not particularly hard to do,

but it is a task beyond the scope of this book.

In this book, we will use one of the available Box2D level editors, Bison Kick,

which was created by Jacob Schatz. This Flash application runs in your favorite web

browser. You can find the beta version of Bison Kick at the following website:

http://www.jacobschatz.com/bisonkick-beta/

A typical screen from Bison Kick is shown in Figure 12.2. In the examples pro-

vided later in this chapter, we show how to use Bison Kick, and how to create the

code needed to load Bison Kick levels into AndEngine.

Figure 12.2 Bison Kick level editor

http://www.jacobschatz.com/bisonkick-beta/

Chapter 12 Physics248

AndEngine and Box2D

Physics is an extension to the basic AndEngine game engine. It must be downloaded

and installed separately. AndEngine uses the libgdx JNI wrapper library, which pro-

vides a very complete interface to the underlying C++ Box2D libraries; Mario Zech-

ner is the lead developer for libgdx. AndEngine provides an API layer that makes it

easy to use the libgdx interfaces in an AndEngine game.

Download and Add the AndEnginePhysicsBox2DExtension

You need to add two libraries to your Eclipse project to use Box2D physics. The first

library is the AndEngine extension that contains the libgdx wrappers and the AndEn-

gine API extensions. The second is an ARM library that contains the Box2D C++ code.

The easiest way to get the libraries is to copy them from the AndEngineExamples proj-

ect. (If you want to build the AndEngine extension library from scratch, see the sidebar

titled “Building AndEngine Extensions from Source.”)

andenginephysicsbox2dextension.jar

The AndEngineExamples website (http://code.google.com/p/andengine-

examples/) includes several physics-based activities. If you look in the lib folder of

the project, you will see the .jar file for each of the AndEngine extensions, includ-

ing andenginephysicsbox2dextension.jar. The AndEngine team (particularly

Nicolas) is very good about keeping these .jar files up-to-date.

1. Download the physics extension .jar file to your development system.

2. Import the .jar file into your project’s lib folder.

3. In the Eclipse Project Explorer, right-click on the .jar file, and select Build

Path > Add to Build Path.

armeabi

In the same AndEngineExamples project, there is another folder called libs. In this

folder you will find a subfolder, armeabi.

1. Download the shared library libandenginephysicsbox2dextension.so

from the armeabi subfolder to your development system.

2. Create a new first-level folder under your Eclipse project named libs (right-

click on project in Project Explorer, select New > Folder). Create a subfolder

under libs called armeabi.

3. Import the shared library into the armeabi subfolder.

4. You do not have to add the shared library to the build path—it’ll get sucked in

automatically.

Building AndEngine Extensions from Source

The .jar files in AndEngineExamples are kept very up-to-date by the AndEngine main-

tainers, but sometimes you may want to build your own from scratch. After all, one of

http://code.google.com/p/andengine-examples/
http://code.google.com/p/andengine-examples/

AndEngine and Box2D 249

the advantages of open-source programs is that you can change the sources if neces-

sary and then rebuild the .jar file for use in your project.

The steps are the same, no matter which extension you are building (or for that matter,

if you are building AndEngine itself):

1. Use your favorite form of Mercurial (usually TortoiseHg for Windows, or the com-

mand-line interface from Linux or Macintosh OS X) to download the sources from

the appropriate code.google.com site. Separate sites are maintained for

AndEngine and for each of the extensions. Mercurial will create a clone reposi-

tory on your development machine.

2. In Eclipse, create a new Android project. On the New Android Project dialog,

select Create Project from Existing Source, and then navigate the “Location:”

box to the repository created by Mercurial. When you are done, click Finish.

Eclipse will create the project with a long name that reflects the extension’s

package name.

3. Right-click on the project name in the Project Explorer, and select Export…

from the pop-up menu. In the resulting Export dialog, select Java > JAR

file, and click the Next button. The resulting JAR Export dialog is shown in

Figure 12.3.

Figure 12.3 JAR Export dialog box

Chapter 12 Physics250

4. You must deselect (uncheck) all of the boxes in the right-hand pane under

“Select the resources to export.” In addition, you must indicate a destination

(complete filename, not just the directory) for the box under “Select the export

destination.”

5. Click Finish, and Eclipse will create the .jar file for you.

Box2D APIs

The Box2D physics extension adds 16 classes to AndEngine. It also adds the Box2D

classes themselves, which are part of the libgdx library. For most game development,

we need to know about only three classes:

 n PhysicsWorld: which represents Box2D worlds

 n PhysicsFactory: which helps us generate Box2D bodies and fixtures

 n PhysicsConnector: which connects Box2D bodies with AndEngine entities

Creating Worlds: PhysicsWorld

We use the PhysicsWorld class to create the physics world where our game action takes

place. After we create it, we add it to our AndEngine Scene so it will be displayed.

There are two constructors:

PhysicsWorld(final Vector2 pGravity, final boolean pAllowSleep)

PhysicsWorld(final Vector2 pGravity, final boolean pAllowSleep, final int

pVelocityIterations, final int pPositionIterations)

The parameters are not difficult to figure out:

 Vector2 pGravity: This parameter sets the gravity acceleration vector for

the world. This is the first time we’ve seen the Vector2 type, which is used by

Box2D to represent two-dimensional vectors. If you want your world to include

gravity, you’ll normally set this vector as follows:

new Vector2(0, SensorManager.GRAVITY_EARTH)

 Here we’ve taken advantage of the gravity constant that Android makes available

to us, which is conveniently in MKS units. If you don’t want gravity, you just

pass the following parameters:

new Vector2(0, 0)

 Android provides gravity constants for the moon, the sun, all of the planets (even

Pluto), and GRAVITY_DEATH_STAR_I. I’m not sure how they figured that last

one out, but it’s there.

 n boolean pAllowSleep: If this value is true, Box2D will skip the simulation

calculations for any body that is at rest. That’s generally a good thing to do, as it

saves simulation cycles and improves performance.

AndEngine and Box2D 251

 n int pVelocityIterations: This parameter sets the number of itera-

tions Box2D will go through when it does its velocity calculations. If you

use the f irst constructor, pVelocityInterations defaults to 8. You can

improve performance (at the cost of accuracy) by setting this value lower

than 8.

 n int pPositionIterations: Similarly, this parameter sets the number of itera-

tions when calculating position. It also defaults to 8.

We’ll also use PhysicsWorld methods to create and manage joints between bodies.

Those methods are covered in the Joints section later in this chapter. Many other

methods in the class can also be used to set and read other aspects of our model world.

If you’re interested in them, take a look at the PhysicsWorld.java sources at this site:

http://code.google.com/p/andenginephysicsbox2dextension/source/browse/src/

org/anddev/andengine/extension/physics/box2d/PhysicsWorld.java

Creating Bodies: PhysicsFactory

Now that we have a world, we can start creating bodies, shapes, fixtures, and joints to

create the objects in our model. AndEngine provides the PhysicsFactory singleton class

to facilitate these tasks. We don’t have to instantiate PhysicsFactory; instead, AndEn-

gine creates one for us. We use it much in the same way that we have been using

TextureRegionFactory, SoundFactory, and other classes. PhysicsFactory defines the

following methods to create physics bodies:

Body createBoxBody(final PhysicsWorld pPhysicsWorld, final IShape pIShape, final

BodyType pBodyType, final FixtureDef pFixtureDef)

Body createCircleBody(final PhysicsWorld pPhysicsWorld, final IShape pIShape,

final BodyType pBodyType, final FixtureDef pFixtureDef)

Body createLineBody(final PhysicsWorld pPhysicsWorld, final Line pLine, final

 FixtureDef pFixtureDef)

Body createPolygonBody(final PhysicsWorld pPhysicsWorld, final IShape pIShape,

final Vector2[] pVertices, final BodyType pBodyType, final FixtureDef

pFixtureDef)

Body createTrianglulatedBody(final PhysicsWorld pPhysicsWorld, final IShape

pIShape, final List<Vector2> pTriangleVertices, final BodyType pBodyType,

final FixtureDef pFixtureDef)

Each of these methods also has a variation with an additional parameter (the

last parameter), float pPixelToMeterRatio, in case you need to set your own

pixel scaling, different from the default value (32.0f). The other parameters are as

follows:

 n PhysicsWorld pPhysicsWorld: The world that the body will be in. Usually

it will be the world we just created with PhysicsWorld.

http://code.google.com/p/andenginephysicsbox2dextension/source/browse/src/org/anddev/andengine/extension/physics/box2d/PhysicsWorld.java
http://code.google.com/p/andenginephysicsbox2dextension/source/browse/src/org/anddev/andengine/extension/physics/box2d/PhysicsWorld.java

Chapter 12 Physics252

 n IShape pIShape or Line pLine: The shape that we want to attach to the

body. Shapes are just geometric shapes—either Sprites or geometric shapes cre-

ated with something like the AndEngine Rectangle method.

 n BodyType pBodyType: The parameter in which we tell Box2D which type

the body is:

 n BodyType.StaticBody

 n BodyType.KinematicBody

 n BodyType.DynamicBody

 n FixtureDef pFixtureDef: The fixture we want to use with the body. Fix-

ture creation is described in the next section.

 n TrianglulatedBody: Let’s hope the spelling of this method name is fixed by

the time you use AndEngine. Here we pass a list of triangle vertices as Vector2

variables: List<Vector2> pTriangleVertices.

Creating Fixtures: PhysicsFactory

The PhysicsFactory class also includes some methods that create fixtures for us:

FixtureDef createFixtureDef(final float pDensity, final float pElasticity, final float

pFriction, final boolean pSensor)

FixtureDef createFixtureDef(final float pDensity, final float pElasticity, final float

pFriction, final boolean pSensor, final short pCategoryBits, final short

pMaskBits, final short pGroupIndex)

The parameters to the first method are obvious except perhaps for boolean pSen-

sor, which is optional. If this parameter is included and true, the fixture is a sensor

as defined earlier in the “Box2D Concepts” section.

PhysicsConnector

The PhysicsConnector class allows us to bridge the divide between AndEngine entities

(such as Sprites) and Box2D bodies. That way we can use all of the AndEngine good-

ies, such as Modifiers, on the combined object, and Box2D will do the physics simula-

tion for us.

There are four constructors for PhysicsConnector:

PhysicsConnector(final IShape pShape, final Body pBody)

PhysicsConnector(final IShape pShape, final Body pBody, final float

pPixelToMeterRatio)

PhysicsConnector(final IShape pShape, final Body pBody, final boolean pUdatePosition,

final boolean pUpdateRotation)

PhysicsConnector(final IShape pShape, final Body pBody, final boolean pUdatePosition,

final boolean pUpdateRotation, final float pPixelToMeterRatio)

AndEngine and Box2D 253

The first two parameters in each case are just the shape (Sprite) and the body that we

want to connect. Note that creating and registering this connection is required, even

though you might have used the Sprite as the shape when you created the body.

The pPixelToMeterRatio is optional; it has the same meaning as for

 PhysicsFactory methods, and the same default (32.0f). The two boolean parameters

specify whether Box2D will update the Sprite’s position and rotation as it simulates the

 physical world. Usually we want both of those characteristics updated, so the defaults

are true.

Simple Physics Example

If this is the f irst time you’ve encountered Box2D, the material presented so

far probably seems overwhelming. Matters will become clearer if we look

at a simple physics game that demonstrates how to put everything together.

 Figure 12.4 shows an activity we’ll call Demolition; it is a simplif ied version of

one of the AndEngineExamples activities. As you touch the screen, objects are

added. As you tilt the device, the objects fall to the lowest corner of the screen.

They bounce off one another as they collide. Listing 12.1 provides the code for

the activity.

Figure 12.4 Demolition screenshot

Chapter 12 Physics254

Listing 12.1 Demolition: A Simple Physics Application

package com.pearson.lagp.demolition;

+imports . . .

public class Demolition extends BaseGameActivity implements

 IAccelerometerListener, IOnSceneTouchListener {

 // ===

 // Constants

 // ===

 private static final int CAMERA_WIDTH = 480;

 private static final int CAMERA_HEIGHT = 320;

 private static final FixtureDef FIXTURE_DEF =

 PhysicsFactory.createFixtureDef(1, 0.5f, 0.5f);

 private static final int MAX_BODIES = 50;

 // ===

 // Fields

 // ===

 private Texture mTexture;

 private TextureRegion mTStoneTextureRegion;

 private TextureRegion mMatHeadTextureRegion;

 private PhysicsWorld mPhysicsWorld;

 private int mBodyCount = 0;

 @Override

 public Engine onLoadEngine() {

 Toast.makeText(this, "Touch the screen to add objects.",

 Toast.LENGTH_LONG).show();

 final Camera camera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 final EngineOptions engineOptions = new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT), camera);

 engineOptions.getTouchOptions().setRunOnUpdateThread(true);

 return new Engine(engineOptions);

 }

 @Override

 public void onLoadResources() {

 /* Textures. */

AndEngine and Box2D 255

 mTexture = new Texture(64, 128,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 /* TextureRegions. */

 mTStoneTextureRegion =

 TextureRegionFactory.createFromAsset(mTexture,

 getApplicationContext(), "tombstone.png",

 0, 0); // 50x50

 mMatHeadTextureRegion =

 TextureRegionFactory.createFromAsset(mTexture,

 getApplicationContext(), "mathead.png", 0, 50); // 32x32

 this.mEngine.getTextureManager().loadTexture(mTexture);

 this.enableAccelerometerSensor(this);

 }

 @Override

 public Scene onLoadScene() {

 this.mEngine.registerUpdateHandler(new FPSLogger());

 final Scene scene = new Scene(2);

 scene.setBackground(new ColorBackground(0, 0, 0));

 scene.setOnSceneTouchListener(this);

 this.mPhysicsWorld = new PhysicsWorld(new Vector2(0, 0),

 true);

 final Shape ground = new Rectangle(0, CAMERA_HEIGHT - 2,

 CAMERA_WIDTH, 2);

 final Shape roof = new Rectangle(0, 0, CAMERA_WIDTH, 2);

 final Shape left = new Rectangle(0, 0, 2, CAMERA_HEIGHT);

 final Shape right = new Rectangle(CAMERA_WIDTH - 2, 0, 2,

 CAMERA_HEIGHT);

 final FixtureDef wallFixtureDef =

 PhysicsFactory.createFixtureDef(0, 0.5f, 0.5f);

 PhysicsFactory.createBoxBody(mPhysicsWorld, ground,

 BodyType.StaticBody, wallFixtureDef);

 PhysicsFactory.createBoxBody(mPhysicsWorld, roof,

 BodyType.StaticBody, wallFixtureDef);

 PhysicsFactory.createBoxBody(mPhysicsWorld, left,

 BodyType.StaticBody, wallFixtureDef);

 PhysicsFactory.createBoxBody(mPhysicsWorld, right,

 BodyType.StaticBody, wallFixtureDef);

 scene.getFirstChild().attachChild(ground);

 scene.getFirstChild().attachChild(roof);

 scene.getFirstChild().attachChild(left);

 scene.getFirstChild().attachChild(right);

Chapter 12 Physics256

 scene.registerUpdateHandler(mPhysicsWorld);

 return scene;

 }

 @Override

 public void onLoadComplete() {

 }

 @Override

 public boolean onSceneTouchEvent(final Scene pScene,

 final TouchEvent pSceneTouchEvent) {

 if(mPhysicsWorld != null) {

 if(pSceneTouchEvent.isActionDown()) {

 addBody(pSceneTouchEvent.getX(),

 pSceneTouchEvent.getY());

 return true;

 }

 }

 return false;

 }

 @Override

 public void onAccelerometerChanged(

 final AccelerometerData pAccelerometerData) {

 final Vector2 gravity =

 Vector2Pool.obtain(pAccelerometerData.getY(),

 pAccelerometerData.getX());

 mPhysicsWorld.setGravity(gravity);

 Vector2Pool.recycle(gravity);

 }

 // ===

 // Methods

 // ===

 private void addBody(final float pX, final float pY) {

 final Scene scene = this.mEngine.getScene();

 if (mBodyCount >= MAX_BODIES) return;

 mBodyCount++;

 final Sprite matSprite;

 final Body body;

 if(mBodyCount % 2 == 0) {

 matSprite = new Sprite(pX, pY,

 mTStoneTextureRegion);

 body = PhysicsFactory.createBoxBody(mPhysicsWorld,

AndEngine and Box2D 257

 matSprite, BodyType.DynamicBody,

 FIXTURE_DEF);

 } else {

 matSprite = new Sprite(pX, pY,

 mMatHeadTextureRegion);

 body = PhysicsFactory.createCircleBody(

 mPhysicsWorld, matSprite,

 BodyType.DynamicBody, FIXTURE_DEF);

 }

 scene.getLastChild().attachChild(matSprite);

 mPhysicsWorld.registerPhysicsConnector(

 new PhysicsConnector(matSprite, body, true, true));

 }

 // ===

 // Inner and Anonymous Classes

 // ===

}

Here are some key things to note in the code:

 n In the Constants section, we define the fixture that we will use for the dynamic

bodies in the application. We’ll define a different fixture for the static walls,

f loor, and ceiling.

 n The onLoadEngine() and onLoadResources() methods should look very

familiar by now. At the end of onLoadResources(), we enable the Acceler-

ometer and tell it that the listener method onAccelerometerChanged() is in

this class.

 n The onLoadScene() method includes a few twists we haven’t seen yet:

 n We create the PhysicsWorld and pass it a gravity vector of [0, 0] for now.

We’ll update it as the Accelerometer tells us how our device is tilted. The

application can skip simulation calculations for bodies at rest.

 n We define the walls, f loor. and ceiling shapes as slim rectangles. We cre-

ate a f ixture to use for these static bodies; the difference between this f ix-

ture and the one we created earlier is that we set density = 0 here, which

is what Box2D would do anyway (static bodies have infinite mass, so they

are not accelerated by forces on them). The walls, f loor, and ceiling don’t

have to be on screen, but we will keep them where we can see them for

our examples.

 n We create box bodies for the walls, f loor, and ceiling and attach them to the

Scene, so they’ll be displayed.

 n We register our PhysicsWorld as an update handler for our Scene, so it can

update the bodies with new positions each time the Scene is rendered.

Chapter 12 Physics258

 n We override onSceneTouchEvent() so we can add a body every time the

screen is touched.

 n We override onAccelerometerChanged() to reset the gravity vector each

time we get a new reading on the tilt of our Android device. We recycle

the Vector2 variables that we use, so we don’t end up doing a lot of garbage

collection.

 n The addBody() method handles that task, alternating between Mat Heads

and Tombstones. In addition to adding the new Sprite to our scene, we

 create a PhysicsConnector that connects the Sprite to the new physics body

we created.

Level Loading

In our earlier discussion of levels, we noted that you would probably want to load

physics game levels from an XML file created by a level editor. AndEngine provides

some classes that help you build the level loading code that you need to parse the

XML file and use it to build Box2D objects.

SAX Parsing

AndEngine uses a SAX (Simple API for XML) parser to read XML files. The parser

comes as part of Android, so it only makes sense to use it. If you’re not familiar with

SAX, you can get a quick overview with the following document:

http://www.saxproject.org/quickstart.html

If you want to delve more deeply into SAX, there is a lot of documentation avail-

able on that same site and around the Internet. For our purposes, we need just a few

basic concepts and methods:

 n SAX parsers are event-driven sequential access parsers that take a stream of XML

data and generate callbacks to your code when they find XML elements. The

callbacks are made in order as the parser reads the stream.

 n For each element, the parser reports which XML element it found, the attributes

of that element, and the values assigned to those attributes.

 n The parser also indicates when it reaches the end of an element.

We will access the SAX library through two sets of APIs provided by AndEngine:

 n LevelLoader, a class that handles the details of setting up the parser and forward-

ing the callback data

 n SAX Utilities, which simplify the retrieval of attributes from the SAX callbacks

LevelLoader

LevelLoader is a class that’s analogous to the TMXLoader class we used to load tile

maps in Chapter 9. Both classes set up the SAX parser to read in an XML data file,

http://www.saxproject.org/quickstart.html

AndEngine and Box2D 259

but there is one big difference between them. TMXLoader does all of the parsing for

us, because it knows exactly what is in a TMX file. LevelLoader is designed to work

with a variety of level editors, which makes it more f lexible, but it also means that

some of the parsing is left up to the user. In the Irate Villagers example that follows

this section, we will show how to write the parsing code for the XML schema used by

Bison Brick.

Creating an instance of LevelLoader couldn’t be simpler. There are no parameters

to the constructor:

LevelLoader()

Another constructor accepts an asset path as its only parameter, or you can set the asset-

Path (as we did with Textures, Sounds, and TMX files) by using a LevelLoader method:

void setAssetBasePath(final String pAssetBasePath)

We can register XML entities with a LevelLoader instance by using one of the

registerEntityLoader() methods:

void registerEntityLoader(final String pEntityName, final IEntityLoader

pEntityLoader)

void registerEntityLoader(final String pEntityNames, final IEntityLoader

pEntityLoader)

The only difference between the two methods is whether we pass in a single entity

name or an array of entity names. For the second parameter, in either case we will pass

an inner class that overrides the onLoadEntity() method.

The other LevelLoader method we will use is the one that actually connects the

SAX parser to the XML stream:

void loadLevelFromAsset(final Context pContext, final String pAssetPath)

The parameters for this method are just the Application Context and the path to the

XML file from the asset base path.

SAXUtils

The SAXUtils class provides methods that make it easier to extract attribute values

from the SAX callbacks. The methods we use to extract attribute values are all of the

following form:

xxx SAXUtils.getXXXAttribute(final Attributes pAttributes, final String pAttribute-

Name, final xxx pDefaultValue)

The actual method names substitute a class type (Double, Float, Long, Int, Short,

Byte, String, Boolean) for the XXX, and the related primitive type for the xxx return

and pDefaultValue. If that sounds confusing, take a look at the calls in Listing 12.2,

and the usage should be clearer. The first parameter, pAttributes, is the list of attri-

butes passed to the onLoadEntity() method by SAX.

Chapter 12 Physics260

In addition, another set of getXXXAttribute methods will throw an exception if

the attribute is not found:

xxx SAXUtils.getXXXAttributeOrThrow(final Attributes pAttributes, final String

 pAttributeName, final xxx pDefaultValue)

In all other respects, these methods are identical to the methods that don’t throw an

exception.

Still other SAXUtils methods append values to the list of attributes, but we don’t

need them for what we want to do.

Using LevelLoader

To use LevelLoader, we first define and register all the XML entities that we want

SAX to find, and then connect SAX to the XML input stream (usually a file). As we

register each XML entity, we override the onLoadEntity() method of the unnamed

IEntity class that is a parameter. In onLoadEntity(), we use SAXUtils methods to

examine the attributes for the entity and build appropriate Box2D objects. Level-

Loader takes care of all the underlying SAX work for us. Listing 12.2 is a short exam-

ple of using LevelLoader to extract the entities in a simple XML file. The XML file is

shown first, followed by the AndEngine code.

Listing 12.2 Using LevelLoader to Parse a Simple XML file

. . .XML file. . .

<level>

 <entity x="40.0" y="100.0" width="20.0" height="10.0"

 isDynamic="true">

 </entity>

</level>

. . .AndEngine game code. . . .

final LevelLoader levelLoader = new LevelLoader();

levelLoader.registerEntityLoader("level", new IEntityLoader() {

 @Override

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes) {

 mLevels++;

 }

});

levelLoader.registerEntityLoader("entity", new IEntityLoader() {

 @Override

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes) {

 final float x = SAXUtils.getFloatAttributeOrThrow(

 pAttributes, "x");

 final float y = SAXUtils.getFloatAttributeOrThrow(

 pAttributes, "y");

Implementing IV 261

 final float width = SAXUtils.getFloatAttributeOrThrow(

 pAttributes, "width");

 final float height = SAXUtils.getFloatAttributeOrThrow(

 pAttributes, "height");

 final boolean isDyn = SAXUtils.getBooleanAttributeOrThrow(

 pAttributes, "isDynamic");

 if (isDynamic) bodyType = BodyType.DynamicBody;

 . . .

 try {

 levelLoader.loadLevelFromAsset(this, "ex");

 } catch (final IOException e) {

 Debug.e(e);

 }

Irate Villagers: A Physics Gamelet for V3

To demonstrate game physics, collisions, and level loading, let’s add another gamelet to

V3. In Chapter 9, we used the Whack-A-Vampire gamelet to show tile maps, and now

we’ll add a typical physics gamelet called Irate Villagers (IV—somehow appropriate for

a vampire game).

The idea is that the villagers of the town where Miss B’s is located have surrounded

a vampire, Mad Mat (remember Mat from the discussion of Sprites in Chapter 5?),

and his clones, who have gathered in a heap of rubble—boards, glass, and rocks. The

villagers are using a slingshot to hurl wooden stakes at the vampires. In this case, the

wooden stakes don’t actually have to pierce the vampires to kill them; instead, the

vampires expire when they touch the ground. We’ll give the villagers all the stakes

they want to hurl. The first illustration in this chapter, Figure 12.1, is a screenshot of

the IV gamelet.

Implementing IV

We need to add a number of things to V3 to implement IV:

 n We need artwork for the vampires, the wooden stakes, the wooden barriers, and

the pieces of glass and stone that will be part of the vampires’ pile of rubble.

 n OptionsActivity.java must change so we can select IV as an option from the

menu. Eventually we’ll chain all these gamelets together, but for now we just

want to run them.

 n A new Activity, IVActivity.java, will create the IV world and facilitate the

simulation. IV must perform the following tasks:

 n Create our physics world and populate it with a level that we create using the

Bison Kick level editor

Chapter 12 Physics262

 n Handle updates from Box2D

 n Implement the slingshot that is used to launch wooden stakes at the vampires

Creating a Level

We’ll use the Bison Kick level editor to create a level for our gamelet. Figure 12.5

shows the Bison Kick screen as it opens.

The toolbar just above the drawing area gives us the tools with which to draw our

level. Figure 12.6 is a close-up of the left end of that toolbar as shown in Figure 12.5.

Figure 12.6 Bison Kick toolbar, left end

Figure 12.5 Bison Kick opening screen

Implementing IV 263

Here’s a quick rundown on the icons shown in Figure 12.6:

 n Clicking on one of the first three icons creates a new rectangle, circle, or poly-

gon, respectively. For our gamelet, we will use only circles and rectangles. You

can also create objects by typing on the keyboard—that is, by entering r for a

rectangle, and c for a circle.

 n You can save your level at any time. The fourth icon lets you open a saved level,

and the fifth lets you save the current level.

 n The sixth icon (containing the text “xml”) shows the XML version of what is

currently in the drawing area. We’ll use this icon to extract the XML file that

we will include in our gamelet.

 n We can ignore the next two icons, which are used when creating levels for

Box2D and Flash (ActionScript).

 n The magnifying glass icons allow us to zoom in and out.

 n The red X icon deletes the currently selected object from the drawing area.

 n The connector icon lets us create joints between bodies. Unfortunately, the

joints are not ref lected in the XML descriptions, but having them here makes it

easier to visualize what happens when we run the level.

 n The right arrow icon starts the simulation for the drawing area. This simulation

continues to run until you click on the X button in the upper-right corner of the

simulation screen.

Continuing toward the right in that same toolbar (refer back to Figure 12.5):

 n If you check the “dynamic” check box, the current object will be marked as a

dynamic body. Otherwise, it is assumed to be static (there is no provision in this

version of Bison Kick for kinematic bodies).

 n A similar check box is used to mark the body as a “follower.” The idea behind a

follower body is that the camera will attempt to follow this body as the simula-

tion plays out. We haven’t implemented followers for AndEngine.

 n The next three spinners, labeled “restitution,” “friction,” and “density,” allow

you to set the fixture parameters for the current object. Restitution is equivalent

to elasticity.

 n The next two icons allow you to copy and paste objects.

 n The “id” edit box allows us to enter an identifier for the current object. We will

use this feature to specify the material the object is made from—either “wood,”

“stone,” or “glass.” Stone is unbreakable, wood will break if hit hard enough, and

glass will shatter easily. We’ll use a circle with the id “vamp” for a vampire head.

 n The rightmost button is used by Flash developers.

We’ve used the tools in Bison Kick to put together the level shown in Figure 12.7.

Chapter 12 Physics264

We click on the XML icon to bring up a listing of the XML output for the level, as

shown in Figure 12.8. You must select the text in the window and then press the key

combination Ctrl-C to actually copy it. You can then paste the copy into your favorite

editor to actually create the XML file.

Figure 12.7 Bison Kick showing Level 1

Figure 12.8 Bison Kick XML copy window

Implementing IV 265

Listing 12.3 shows the beginning of a listing of the resulting file.

Listing 12.3 XML Version of IV Level 1

<level>

 <completeShape>

 <xprop>15.0000</xprop>

 <yprop>272.5000</yprop>

 <height>525.00</height>

 <width>10.00</width>

 <rotation>0.0000</rotation>

 <isDynamic>false</isDynamic>

 <shape>SQUARE</shape>

 <physicsandID>0.5,0.5,0.5,'stone'</physicsandID>

 <verts>'()'</verts>

 </completeShape>

 <completeShape>

 <xprop>423.0000</xprop>

 <yprop>533.0000</yprop>

 <height>10.00</height>

 <width>802.00</width>

 <rotation>0.0000</rotation>

 <isDynamic>false</isDynamic>

 <shape>SQUARE</shape>

 <physicsandID>0.5,0.5,0.5,'stone'</physicsandID>

 <verts>'()'</verts>

 </completeShape>

. . .

</level>

Notice that the XML file consists solely of entities. The LevelLoader class cannot

parse this file properly, as it is set up to read entities with attributes, like those found in

the equivalent XML file in Listing 12.4.

Listing 12.4 XML Version of IV Level 1 with Attributes

<level>

 <completeShape>

 xprop=15.0000

 yprop=272.5000

 height=525.00

 width=10.00

 rotation=0.0000

 isDynamic='false'

 shape=SQUARE

 physicsandID='0.5,0.5,0.5,stone'

 verts='()'

 </completeShape>

Chapter 12 Physics266

 <completeShape>

 xprop=423.0000

 yprop=533.0000

 height=10.00

 width=802.00

 rotation=0.0000

 isDynamic='false'

 shape=SQUARE

 physicsandID='0.5,0.5,0.5,stone'

 verts='()'

 </completeShape>

. . .

</level>

Unfortunately, LevelLoader doesn’t give us a way to retrieve the non-attribute con-

tents of an XML entity. No problem: We’ve created a special loader for our Bison Kick

files, called BKLoader. We use it much the same way we used LevelLoader, but in our

onLoadEntity() method, we’ll also return the text contents of the entity loaded. We

also need one more change: We don’t want onLoadEntity() to be called until we

reach the end of the entity. That way, for example, we’ll know that all the parameters

are loaded when onLoadEntity() is called for the <completeShape> tag.

BKLoader extends LevelLoader and creates a new Interface, IBKEntityLoader,

which in turn extends IEntityLoader. We’ve added and overridden the necessary

methods so that BKLoader can give us the entity text. We’ve also created a BKParser

class that extends LevelParser, again with the needed methods and overrides. If you are

curious, the complete source is included with the download for this chapter.

Creating IVActivity.java

We’ll skip looking at the changes to OptionsActivity.java. They are much the

same as the additions we made previously to add the Whack-A-Vampire gamelet in

Chapter 9. The sources are there in the download if you want to take a look at them.

IVActivity.java is more interesting. The code is found in Listing 12.5, parts 1 to 7,

along with explanations of the key changes.

Listing 12.5 IVActivity.java: Part 1

package com.pearson.lagp.v3;

+imports. . .

public class IVActivity extends BaseGameActivity implements

IOnSceneTouchListener, BKConstants {

 // ===

 // Constants

 // ===

Implementing IV 267

 private static final int CAMERA_WIDTH = 480;

 private static final int CAMERA_HEIGHT = 320;

 private static final FixtureDef FIXTURE_DEF =

 PhysicsFactory.createFixtureDef(1, 0.5f, 0.5f);

 // ===

 // Fields

 // ===

 private BuildableTexture mTexture;

 private TextureRegion mStakeTextureRegion;

 private TextureRegion mGlassTextureRegion;

 private TextureRegion mWoodTextureRegion;

 private TextureRegion mStoneTextureRegion;

 private TextureRegion mMatHeadTextureRegion;

 private Sprite stakesprite;

 private Scene mScene;

 private PhysicsWorld mPhysicsWorld;

 private boolean isStakeSpawning = false;

 private float stakeX, stakeY;

 private float velX, velY;

 private Line stakeLine;

 private Vector2 gravity;

 private Body stake;

 private float mX, mY;

 private float mWidth, mHeight;

 private float mRotation;

 private boolean mIsDynamic;

 private BodyType mBodyType;

 private String mShape;

 private String mPhysicsAndID;

 private float mDensity;

 private float mFriction;

 private float mElasticity;

 private String mID;

 private String mVerts;

 private float PtoM =

 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT;

Chapter 12 Physics268

Not much new in Part 1—just initializing the needed variables and one constant.

Listing 12.5 IVActivity.java: Part 2

 @Override

 public Engine onLoadEngine() {

 final Camera camera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 final EngineOptions engineOptions = new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT), camera).setNeedsSound(true);

 engineOptions.getTouchOptions().setRunOnUpdateThread(true);

 return new Engine(engineOptions);

 }

 @Override

 public void onLoadResources() {

 /* Textures. */

 this.mTexture = new BuildableTexture(512, 512,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 TextureRegionFactory.setAssetBasePath("gfx/IV/");

 /* TextureRegions. */

 this.mStakeTextureRegion =

 TextureRegionFactory.createFromAsset(this.mTexture,

 getApplicationContext(), "stake40.png");

 this.mGlassTextureRegion =

 TextureRegionFactory.createFromAsset(this.mTexture,

 getApplicationContext(), "glass.png");

 this.mWoodTextureRegion =

 TextureRegionFactory.createFromAsset(this.mTexture,

 getApplicationContext(), "wood.png");

 this.mStoneTextureRegion =

 TextureRegionFactory.createFromAsset(this.mTexture,

 getApplicationContext(), "stone.png");

 this.mMatHeadTextureRegion =

 TextureRegionFactory.createFromAsset(this.mTexture,

 getApplicationContext(), "mathead.png");

 try {

 mTexture.build(

 new BlackPawnTextureBuilder(2));

 } catch (final TextureSourcePackingException e){

 Log.d("V3",

 "Sprites won’t fit in mTexture");

 }

 this.mEngine.getTextureManager().loadTexture(this.mTexture);

 }

Implementing IV 269

The code in Part 2 should look fairly familiar by now. We’ve created a Buildable-

Texture and loaded in the textures we’ll use for the different bodies.

Listing 12.5 IVActivity.java: Part 3

 @Override

 public Scene onLoadScene() {

 this.mEngine.registerUpdateHandler(new FPSLogger());

 mScene = new Scene(2);

 mScene.setOnSceneTouchListener(this);

 /* Center the camera. */

 final int centerX = CAMERA_WIDTH / 2;

 final int centerY = CAMERA_HEIGHT / 2;

 mScene.setBackground(new ColorBackground(0.0f, 0.0f,

 0.0f));

 mPhysicsWorld = new PhysicsWorld(new Vector2(0,

 SensorManager.GRAVITY_EARTH), false);

 final BKLoader bkLoader = new BKLoader();

 bkLoader.setAssetBasePath("level/iv/");

In Part 3, things start to get more interesting. We’ve created a BKLoader and we’ll start

registering entities with it. Every time BKLoader finds one of the registered entities, it will

call the onLoadEntity() method of the IBKEntityLoader we registered with it. The tag

definitions (TAG_LEVEL, TAG_BODY, and so on) are found in the file BKConstants.java.

Listing 12.5 IVActivity.java: Part 4

 bkLoader.registerEntityLoader(TAG_LEVEL,

 new IBKEntityLoader() {

 @Override

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes,

 final String pValue) {

 }

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes) {

 }

 });

 bkLoader.registerEntityLoader(TAG_BODY,

 new IBKEntityLoader() {

 @Override

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes,

Chapter 12 Physics270

 final String pValue) {

 if(mShape.equals(TAG_SHAPE_VALUE_SQUARE)) {

 final TextureRegion mTR = selectTexture(mID);

 final Sprite bodyShape = new Sprite(mX - mTR.getWidth()/2,

 mY - mTR.getHeight()/2, mTR);

 bodyShape.setScaleX(mWidth/mTR.getWidth());

 bodyShape.setScaleY(mHeight/mTR.getHeight());

 if (mRotation != 0.0f) {

 bodyShape.setRotation(mRotation);

 }

 final Body mBody =

 PhysicsFactory.createBoxBody(mPhysicsWorld,

 bodyShape, mBodyType,

 PhysicsFactory.createFixtureDef(mDensity,

 mElasticity, mFriction));

 mScene.getLastChild().attachChild(bodyShape);

 mPhysicsWorld.registerPhysicsConnector(

 new PhysicsConnector(bodyShape, mBody, true,

 true));

 } else if(mShape.equals(TAG_SHAPE_VALUE_CIRCLE)) {

 final TextureRegion mTR = mMatHeadTextureRegion;

 Sprite bodyShape = new Sprite(mX - mTR.getWidth()/2,

 mY - mTR.getHeight()/2, mTR);

 bodyShape.setScaleX(mWidth/mTR.getWidth());

 bodyShape.setScaleY(mHeight/mTR.getHeight());

 if (mRotation != 0.0f) {

 bodyShape.setRotation(mRotation);

 }

 final Body mBody =

 PhysicsFactory.createCircleBody(mPhysicsWorld,

 bodyShape, mBodyType,

 PhysicsFactory.createFixtureDef(mDensity,

 mElasticity, mFriction));

 mScene.getFirstChild().attachChild(bodyShape);

 mPhysicsWorld.registerPhysicsConnector(

 new PhysicsConnector(bodyShape, mBody, true,

 true));

 } else if(mShape.equals(TAG_SHAPE_VALUE_POLYGON)) {

 // Unimplemented

 } else {

 throw new IllegalArgumentException();

 }

 }

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes) {

 }

 });

Implementing IV 271

The onLoadEntity() method for TAG_BODY is the most interesting element in

Part 4. It will be called after BKLoader has loaded a completeShape definition, includ-

ing the final tag. At this point all the parameters for the body have been encountered

and set, so we can create the body and fixture we need to make it part of our scene.

Here’s a breakdown of what’s going on:

 n We figure out whether the body is a rectangle (SQUARE) or a circle. Polygons

are not implemented because, well, polygons are hard. There’s no Shape class to

create polygons. Thus, if you plan to use them, you need a texture that is custom

made for each polygon type.

 n If the body is rectangular, we select the appropriate texture, based on the ID of

the body, which tells us whether it’s made of wood, stone, or glass. The method

selectTexture() is defined later in Listing 12.5, for convenience. If the body

is circular, we use the texture that is Mad Mat’s head.

 n We scale and rotate the Sprite according to the width, height, and rotation

parameters retrieved from the XML file.

 n We create an appropriate body and, as we’re doing so, fill in the fixture param-

eters based on the information retrieved from the XML file.

 n We add our Sprite as a child of the current Scene and create a PhysicsConnector

that connects the Sprite to the body we just created.

 n Finally, we include a stub onLoadEntity() method without the pValue

parameter to satisfy the IBKEntityLoader interface.

Listing 12.5 IVActivity.java: Part 5

 bkLoader.registerEntityLoader(TAG_X, new IBKEntityLoader() {

 @Override

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes, final String pValue) {

 mX = new Float(pValue);

 }

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes) {

 }

 });

 bkLoader.registerEntityLoader(TAG_Y, new IBKEntityLoader() {

 @Override

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes, final String pValue) {

 mY = new Float(pValue);

 }

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes) {

 }

 });

Chapter 12 Physics272

 bkLoader.registerEntityLoader(TAG_WIDTH, new IBKEntityLoader() {

 @Override

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes, final String pValue) {

 mWidth = new Float(pValue);

 }

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes) {

 }

 });

 bkLoader.registerEntityLoader(TAG_HEIGHT, new IBKEntityLoader() {

 @Override

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes, final String pValue) {

 mHeight = new Float(pValue);

 }

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes) {

 }

 });

 bkLoader.registerEntityLoader(TAG_ROTATION, new IBKEntityLoader() {

 @Override

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes, final String pValue) {

 mRotation = new Float(pValue);

 }

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes) {

 }

 });

 bkLoader.registerEntityLoader(TAG_ISDYNAMIC, new IBKEntityLoader() {

 @Override

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes, final String pValue) {

 mIsDynamic = true;

 if (pValue.equals("false")) mIsDynamic = false;

 mBodyType = BodyType.StaticBody;

 if (mIsDynamic) mBodyType = BodyType.DynamicBody;

 }

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes) {

 }

 });

 bkLoader.registerEntityLoader(TAG_SHAPE, new IBKEntityLoader() {

 @Override

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes, final String pValue) {

Implementing IV 273

 mShape = pValue;

 }

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes) {

 }

 });

 bkLoader.registerEntityLoader(TAG_PHYSICSANDID,

 new IBKEntityLoader() {

 @Override

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes, final String pValue) {

 mPhysicsAndID = pValue;

 final String[] physTokens = mPhysicsAndID.split(",");

 mDensity = Float.valueOf(physTokens[1]).floatValue();

 mFriction = Float.valueOf(physTokens[0]).floatValue();

 mElasticity = Float.valueOf(physTokens[2]).floatValue();

 mID = trimQuotes(physTokens[3]);

 }

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes) {

 }

 });

 bkLoader.registerEntityLoader(TAG_VERTS, new IBKEntityLoader() {

 @Override

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes, final String pValue) {

 }

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes) {

 }

 });

 try {

 bkLoader.loadLevelFromAsset(getApplicationContext(), "iv1.lvl");

 } catch (final IOException e) {

 Debug.e(e);

 }

 mScene.registerUpdateHandler(this.mPhysicsWorld);

 return mScene;

 }

 @Override

 public void onLoadComplete() {

 this.mPhysicsWorld.setContactListener(new ContactListener() {

 @Override

 public void beginContact(Contact contact) {

 }

Chapter 12 Physics274

 public void endContact(Contact contact) {

 }

 });

 }

The rest of the onLoadEntity() methods shown in Part 5 just extract each param-

eter from the XML information. Some of them, such as PhysicsAndID, have to be

parsed out of the string.

Listing 12.5 IVActivity.java: Part 6

 @Override

 public boolean onSceneTouchEvent(final Scene pScene,

 final TouchEvent pSceneTouchEvent) {

 if(this.mPhysicsWorld != null) {

 final Scene scene = this.mEngine.getScene();

 if(pSceneTouchEvent.isActionDown()) {

 isStakeSpawning = true;

 stakeX = pSceneTouchEvent.getX();

 stakeY = pSceneTouchEvent.getY();

 return true;

 }

 if (pSceneTouchEvent.isActionMove()){

 if (isStakeSpawning){

 // Draw line, angle stake

 if (stakeLine == null){

 stakeLine = new Line(pSceneTouchEvent.getX(),

 pSceneTouchEvent.getY(), stakeX, stakeY);

 } else{

 stakeLine.setPosition(pSceneTouchEvent.getX(),

 pSceneTouchEvent.getY(), stakeX, stakeY);

 }

 scene.getLastChild().attachChild(stakeLine);

 return true;

 }

 }

 if (pSceneTouchEvent.isActionUp()){

 // Launch stake

 velX = (stakeX - pSceneTouchEvent.getX())/6.0f;

 velY = (stakeY - pSceneTouchEvent.getY())/6.0f;

 this.addStake(stakeX, stakeY, velX, velY);

 if (stakeLine != null) stakeLine.setPosition(0.0f, 0.0f,

 0.0f, 0.0f);

 isStakeSpawning = false;

 return true;

 }

Implementing IV 275

 }

 return false;

 }

The section of code found in Part 6 handles touch events so we can create f ly-

ing stakes for the player. It does not contain anything particularly unusual: We note

where the player touches first and where the touch ends, and we create a velocity vec-

tor in that direction, with magnitude relative to the distance from ACTION_DOWN to

ACTION_UP.

Listing 12.5 IVActivity.java: Part 7

 // ===

 // Methods

 // ===

 private void addStake(final float pX, final float pY, float velX,

 float velY) {

 final Scene scene = this.mEngine.getScene();

 stakesprite = new Sprite(pX, pY, this.mStakeTextureRegion);

 stakesprite.registerEntityModifier(new RotationModifier(0.1f, 0.0f,

 (float) ((360.0f/Math.PI)*Math.atan(velY/velX))));

 stake = PhysicsFactory.createBoxBody(this.mPhysicsWorld,

 stakesprite, BodyType.DynamicBody, FIXTURE_DEF);

 stake.setBullet(true);

 stake.setLinearVelocity(new Vector2(velX, velY));

 stake.setSleepingAllowed(true);

 scene.getLastChild().attachChild(stakesprite);

 this.mPhysicsWorld.registerPhysicsConnector(

 new PhysicsConnector(stakesprite, stake, true, true));

 }

 private TextureRegion selectTexture(String id){

 if (id.equals("wood")){

 return mWoodTextureRegion;

 } else if (id.equals("stone")){

 return mStoneTextureRegion;

 } else {

 return mGlassTextureRegion;

 }

 }

 public static String trimQuotes(String value)

 {

 if (value == null)

Chapter 12 Physics276

 return value;

 value = value.trim();

 if (value.startsWith("\’") && value.endsWith("\’"))

 return value.substring(1, value.length() - 1);

 return value;

 }

}

The final bits in Part 7 include some methods that make the previous calculations a

little easier. Again, there is nothing unusual here.

Summary

We covered a lot of ground in this chapter, introducing both game physics and level

loading. Even so, we merely scratched the surface of game physics. There is much

more to investigate, including the following topics:

 n Joints:

 n Distance joint

 n Revolute joint

 n Prismatic joint

 n Pulley joint

 n Gear joint

 n Mouse joint

 n Line joint

 n Weld joint

 n Collision filtering

 n Fixed-step physics

 n Damping

 n Fixed rotation

 n Activation

 n User data

The best place to start exploring these other features is the Box2D manual.

Exercises

1. Use Bison Kick or your favorite level editor to create a new level (Level 2) for

Irate Villagers. Substitute it for lvl1, and run the gamelet. Adjust the density,

friction, and restitution parameters until the level performs in the desired way.

Exercises 277

2. As the gamelet now stands, the user can launch a stake from anywhere on the

screen. Create a slingshot Sprite toward the left of the screen that is static.

Change the stake creation code in IVActivity.java so you can create stakes

only near the slingshot.

This page intentionally left blank

13

Artificial Intelligence

Games are more fun when the player has to use his or her intelligence to outwit an

opponent. The opposing intelligence might be another player, as in a multiplayer

game, or it might be built into the game by the developer and displayed through the

actions of the other characters in the game. In games, the latter approach is often

called artificial intelligence (AI), and it can make the games a lot more fun to play.

We can draw a distinction between AI in games and the research field of AI,

though the distinction gets fuzzier as games progress. AI in research and AI in

games have different goals. AI research has the aim of reproducing aspects of human

 intelligence using computers. AI in games aims to make a game more fun to play,

and is usually limited to relatively simple strategies that the computer can devise for

 characters. But even at the frontiers of AI research games and research can come

together. Consider IBM’s Watson, whose deductive powers were recently showcased

on the television game Jeopardy.

This chapter discusses some of the more popular AI strategies and algorithms used

in games. AndEngine provides no special support for AI, but we will implement one

of those strategies for the V3 example game using Java.

Game AI Topics

There will never be a definitive list of game AI algorithms and strategies, because new

ones are devised and included in games every day. In this section, we consider some

of the more classic strategies, including how they have been used in different types

of games.

Simple Scripts

The simplest and most pervasive game artificial intelligence isn’t very intelligent at

all; it is just the defining of a character’s behavior based on one or more scripts. The

script can tell the character where to move, which noises to make, and so on, but the

point is that the behaviors are fixed and usually triggered by a small group of events.

Chapter 13 Artificial Intelligence280

Everything we’ve done so far in V3 falls into this category, although instead of some

scripting language, we’ve coded the behaviors into Java.

Decision Trees, Minimax Trees, and State Machines

The next step up the algorithmic ladder is to use more complicated software algorithms

that can take advantage of a character’s current and previous states to make more com-

plicated (and therefore more interesting) decisions. If you aren’t already familiar with

these type of algorithms, here’s a quick overview.

Decision Trees

In a decision tree, we progress through a series of choices until we reach a conclusion.

The choices are characterized as nodes on a graph, and the conclusion is a leaf node on

that graph. The thought process is similar to what you commonly see in troubleshooting

charts or biology identification keys. A simple example for a hypothetical game is shown

in Figure 13.1.

The implementation for a decision tree can be as simple as a chain of if-else statements

(for binary decisions) or as complex as a chain of switch statements for (multivalued

decisions).

Minimax Trees

Minimax trees are graphs that are often used to calculate the computer player’s best

move in a zero-sum game such as a board game. In other words, they help the com-

puter pick the best action from a graph of possible actions. Part of a small minimax

tree is illustrated in Figure 13.2; it shows the first few moves in a Tic-Tac-Toe game

(Naughts and Crosses, if you’re British). Each level in the tree corresponds to a move

by one player. The levels are commonly called “plies” for minimax trees.

Figure 13.1 Simple decision tree

Are Enemies Visible?

Are Enemies Strong?

We Are In

Danger

We Are

Threatened

We Are

Threatened

We Are Safe

Are Enemies Strong? Are Enemies Strong?

We Are Safe

Yes

Yes

YesYes

No

No

No
No

Game AI Topics 281

Typically, values are assigned to each outcome (let’s say, +10 if Player X wins

and −10 if Player O wins). A value is then assigned to each intermediate node using

some kind of heuristic (or guess) that assigns a level of “goodness” to that path.

The algorithm’s goal is reduced to either maximize (for Player X) or minimize (for

Player O) the node value as the game progresses (hence the name “minimax”). The

graphs and resulting search spaces can become very large very quickly, so schemes

have been developed to prune the search.

Minimax trees are most useful when the computer has perfect and complete

 information about the game state. They are less useful in a card game, for example,

where you can’t see your opponent’s hand. Minimax is a well-studied algorithm, with

many examples of its application available on the Internet.

State Machines

Scripts and trees are pretty much unidirectional. The decision or play proceeds down

the tree, resulting in a decision to take an action (although computation of values

for the tree nodes often proceeds in a bottom-up direction). Finite state machines

(FSMs), in contrast, model situations where there are known states and known events

that cause transitions between states. The current state of the machine is a result of

the history of transition events that have occurred up until now. The events might

be known with certainty, or they might be triggered based on some probability

 distribution. In parsers, state machines are commonly used for lexical and syntactic

analysis of source code.

We didn’t implement a state machine for the vampires in V3. If we had, and if we’d

included the behavior described in Exercise 2 at the end of this chapter (where the

vampires try to evade weapons), it might look something like the diagram shown in

Figure 13.3.

Figure 13.2 Partial minimax tree

Chapter 13 Artificial Intelligence282

Expert or Rule-Based Systems

Moving closer to the academic field of artificial intelligence, expert systems attempt to

distill the expertise of an expert player into a set of if-then rules that the computer can

follow to derive an optimal strategy. Such a rule-based system typically consists of the

following elements:

 n The set of rules coded in a rule-based language, each of which has a condition

(or predicate) and an action.

 n A working memory, which provides state for the rules and can be modified by the

actions.

 n An inference engine, which iterates over the set of rules and determines which

rule should “fire” or execute. Typically only one rule is allowed to fire on

each pass, so if there are multiple rules whose conditions are satisfied, a conf lict

 resolution policy is established to decide which will fire.

 n An interface for getting events and data into the rule-based system and getting

decisions out.

You could achieve the same ends by applying brute force, with if-then-else

 statements, but the result would be inefficient, messy, and difficult to maintain.

 Rule-based systems provide a clear structure and an efficient way of resolving the

rule set. Rule-based languages are said to be “declarative” instead of “imperative.”

Sprite

Created

Start

Move Done

Find Path

To Target

Target

Reached

Threat

Detected

Move Up

or Down

(Random)

Move To

Target

Game

Over

Path

Found

Figure 13.3 Vampire state machine

Game AI Topics 283

In other words, you tell the rule engine what you know to be true and which rules

you know to be true, and it reaches conclusions by combining those facts.

Some rule-based systems (e.g., OPS5 and JESS) are forward-chaining: “If these

things are true, what is the resulting action?” Others (e.g., Prolog) are backward-

chaining: “Is this thing true?” Most newer systems use both forward- and backward-

chaining. Some rule-based systems can “learn” by creating and including rules

dynamically.

Rule-based systems oriented toward computer games were popular some time ago,

but lately most of the work in this area has been devoted to business rules. A Java

 standard, JSR-94 has been created for such systems, and several Java implementations

are available, such as JESS and Drools (also known as JBoss Rules).

Listing 13.1 gives some sense of the way a rule-based language is used. To really

make use of such a system, you’d need to learn the syntax of a complete language

and connect the system to Android. That effort might be worth it if you need to

 implement some complex reasoning.

Listing 13.1 Prolog Example

. . . Prolog . . .

Vampire(Igor).

Ghoul(X) :- Vampire(X).

?- Ghoul(Igor).

Yes

?- Ghoul(X).

X = Igor

The Prolog lines translate as follows:

 n Igor is a Vampire.

 n Anything that is a Vampire is a Ghoul.

 n Is Igor a Ghoul? The answer (yes) is printed by the Prolog engine.

 n What Ghouls are there? The answer (Igor) is printed by the Prolog engine.

Just glancing at the rule syntax doesn’t do justice to the major change in thinking

required to adopt a rule-based approach. If you’re interested, take a look at some of the

many examples and tutorials on the Internet that show how rules are configured and

used to solve complex problems.

Neural Networks

Neural networks are yet another approach to tackling problems that are difficult to

solve with procedural languages such as Java. These networks are particularly good at

pattern recognition. The idea is to establish a network of nodes that simulate simple

Chapter 13 Artificial Intelligence284

0.5

Input Hidden Output

5.2

-4.3

0.4

0.5

0.6

3.3

1.0

0.1

1.0

0.8

Figure 13.4 Simple neural network

neuron behavior (hence the name). The nodes are organized in layers and intercon-

nected by weights. As each node fires, its firing propagates to the connected nodes,

modified by the associated weight. Each node has a threshold, and if the sum of the

incoming stimuli exceeds the threshold, that node in turn fires.

Figure 13.4 shows a simple neural network. There must always be an input layer

and an output layer, but there can be any number of hidden layers.

The interesting thing about neural networks is that you don’t program the weights

or thresholds directly yourself, but rather train the network by introducing training

inputs and comparing the output of the neural net with the correct output patterns.

The differences are then “back-propagated” to the hidden and input layer weights.

As the network is trained, it becomes increasingly better at recognizing similar input

patterns. The mathematics needed to perform back-propagation is all well worked out

and is part of what you get with neural network software. The ideal sizing of the net-

work (how many nodes reside at each layer) is an active topic of research, but a vague

rule of thumb is that most pattern recognition can be done with a single hidden layer

(some sources argue for two layers), and the number of nodes at each layer should be

one less than the number of patterns to be matched.

I’m not aware of a neural net package that’s been ported to Android, but there are

many good references and open-source implementations available on the Internet.

Here are a couple of sites to point you in the right direction:

 n Neuroph: http://neuroph.sourceforge.net/download.html

 n The Encog Framework: http://www.heatonresearch.com/encog

http://neuroph.sourceforge.net/download.html
http://www.heatonresearch.com/encog

Game AI Topics 285

Genetic Algorithms

Genetic algorithms are another approach to training software to solve problems

that are too diff icult to solve procedurally. More accurately, if there is a space

containing potential solutions to a given problem, we can use a genetic algorithm

to search that space for a solution that meets some criterion of “good enough.”

The idea is to mimic biological evolution, including the concepts of mutation and

selection, to arrive at a solution. Genetic software typically includes the following

elements:

 n Encoding: The algorithm requires some way of representing components of the

solution as a “chromosome” or coded string. Typically this is a string of bits, but

it could be more complicated (e.g., strings of integers, letters).

 n Selection: The algorithm needs some way to select the “best” parent solutions

from each generation. We can create a new population of possible solutions by

crossbreeding the most successful solutions from each generation; that is, each

pair of selected parents combines to form two offspring solutions for the next

generation.

 n Crossover: We need some technique to combine chromosomes from successful

parents to create the new generation. A simple way of combining chromosomes

selects a “crossover point” randomly somewhere in the middle of the chromo-

some. One offspring inherits the first n bits from Parent A, and the last bits from

Parent B. The other offspring inherits the first n bits from Parent B, and the last

bits from Parent A.

 n Mutation: Just as in biological evolution, it is desirable to have some random

changes introduced to the chromosomes between generations in the algorithm.

This technique can help our search avoid getting stuck at a local optimum.

 n Termination: We don’t want to continue searching forever, so there must be

some definition of when we’ve found a solution that is “good enough.” The

 termination condition could be manual inspection, for example.

We aren’t using any genetic algorithms in V3, and it’s difficult to give a concise

example here. If you’re interested, some good examples can be found on the Internet.

One that includes an animation showing the evolution of generations of solutions can

be found at the following address:

http://www.obitko.com/tutorials/genetic-algorithms/example-function-
minimum.php

Path Finding

Path finding is a common problem in computer games that AI algorithms can solve.

Typically a character is at a known position and would like to get to another known

position, but it faces obstacles that block the way. Path finding can find the optimal

route for the character to take.

http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php
http://www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php

Chapter 13 Artificial Intelligence286

The A* (“A Star”) path finding algorithm divides the playing space into a grid, something

like that shown in Figure 13.5. The idea is to find the (near) optimal path for a character to

get from S to T, avoiding any obstacles in between. The algorithm is fairly simple:

 n Mark the grid locations where it is “legal” for the character to go (where there is

no obstacle).

 n Beginning at the S location:

 n Consider the adjacent legal grid locations (up to 8).

 n Compute values for each adjacent location:

F = G + H

F: is the location’s value.

G: is the location’s distance from S, where vertical and horizontal moves

count 1.0, and diagonal moves count 1.4.

H: is a heuristic that approximates the distance to T.

A commonly used heuristic is “Manhattan,” which is the distance from the

location to T when you are making only vertical or horizontal moves, ignoring

obstacles. It is just the number of rows to T, plus the number of columns to T.

 n The algorithm then calls for moving to the location with the lowest value of F,

and iterating this cycle until you reach T. The path of visited locations is the

near optimal path for getting from S to T. We say “near” because the choice of

 heuristic can cause the path to be a bit suboptimal in certain situations.

S

T

Figure 13.5 A* example grid

Implementing AI in V3 287

If you’d like to see an animation of the A* algorithm in action, a good one can

be found on the Wikipedia page for A* (at least there was as this book was written—

Wikipedia changes):

http://en.wikipedia.org/wiki/A*_search_algorithm

Dynamic Difficulty Balancing

Another possible use of AI techniques in games is in dynamically modifying the

 diff iculty of a game to match the ability of the current player. Ideally a game should

be rewarding for the novice as well as the expert player, providing just enough chal-

lenge for both so that rewards are achievable, but not too easy. If we look at a player’s

scores on a given level over a period of time (it can be a relatively short period),

we can view those data as a pattern that represents the player’s ability at playing the

game. Any of the AI techniques described previously could be used to assess that

 pattern and dynamically adjust variables, such as the number of antagonists, the time

between threats, and the number of distractions, to make the game either easier or

harder to play.

Procedural Music Generation

At the leading edge of current AI research are topics such as the automatic generation

of appropriate music, which could also be introduced into games. These algorithms are

very large and burn a lot of cycles, so we probably wouldn’t want to have them run-

ning on a mobile Android device. Instead, we’d call on server-based AI processing to

generate appropriate music given the parameters we pass to the program, which might

include key, mood, tempo, and other musical attributes.

Once you have the power of the cloud at your disposal, many things become pos-

sible. We’ve already seen how Google’s speech recognition can be used as an input

method, and Microsoft Research has an application called Songsmith that will generate

backup music for any tune you care to sing. There just has to be a way to work that

into your game.

Implementing AI in V3

Let’s add a bit of AI to the V3 game. We won’t be so ambitious as to try adding a

rule-based system or implementing procedural music generation, but we can make the

game more interesting with some moderate AI.

Consider the part of the game we’ve been calling Layer1, which is shown in

 Figure 13.6. Right now, the vampires start at random positions on the right-hand

side of the screen, and they walk straight toward Miss B’s, trampling on the tomb-

stones that have been placed in their way. Furthermore, when the player positions a

bullet, hatchet, or cross in front of a vampire, the villain keeps walking straight for

Miss B’s door, making no attempt to dodge the weapon.

http://en.wikipedia.org/wiki/A*_search_algorithm

Chapter 13 Artificial Intelligence288

Let’s make some changes so that the vampires are a little smarter:

 n Overlay an invisible grid that we can use to compute each vampire’s A* path to

Miss B’s.

 n If there’s a tombstone in the way, make the vampire walk around it. To be

really effective, we’d change the vampire animation so it looks like the vam-

pires are walking either toward us or away us from when they’re going around

a tombstone, but we won’t try to be that fancy here.

Implementing A*

The Internet offers many implementations of A*, written in many languages. We

won’t try for the most efficient implementation here, but rather seek out the most

understandable, so you can clearly see what’s happening as the paths are computed.

A* is relatively expensive in terms of computing resources, so we will limit our

path computations to events that require them—either a vampire Sprite is created on

the right of the screen, or a weapon causes a path recalculation.

We’ll divide the playing area by setting up a 24 × 16 grid to match the aspect

ratio we’ve been using for the game example. We will manually map the tombstone

obstacles onto that grid. Note that if we were using a tiled map scene, the gridding

and mapping would have already been done for us. Figure 13.7 shows the scene with

the background omitted for clarity, and the grid superimposed on the contents. When

we create the A* grid in our program, we will note each location containing an obstacle

(the shaded areas in Figure 13.7).

Figure 13.6 Level 1 in midplay

Implementing AI in V3 289

GridLoc Class

We’ll create a class, GridLoc, that represents each location on the grid. Listing 13.2

shows the essentials of GridLoc. It’s really more of a structure than a class; in other

words, it’s a place to hold the pertinent parameters of a grid location.

Listing 13.2 GridLoc.java

package com.pearson.lagp.v3;

public class GridLoc {

 public float g = 0.0f; // dx from start (measured)

 public float h = 0.0f; // dx to target (heuristic)

 public boolean obstacle = false;

 public boolean footprint = false;

}

The variables are pretty obvious, but to avoid confusion we’ll summarize them here:

 n float g: The measured distance from the starting location. As noted earlier,

horizontal and vertical moves are valued at 1.0f and diagonal moves at 1.4f

(roughly the square root of 2).

 n float h: The heuristic value for the Manhattan distance to the target, ignoring

obstacles.

Figure 13.7 Level 1 with A* grid

Chapter 13 Artificial Intelligence290

 n boolean obstacle: A value that is true only if this grid location is part of an

obstacle.

 n boolean footprint: A value that is true if we’ve already visited this grid

location in our path finding. It helps prevent the program from getting stuck in

loops or “dancing.”

AStar Class

We also need a class that implements the A* algorithm, finding a path from any start-

ing location on the grid to any target location. We’ll call that class AStar, and the code

for it is shown in Listing 13.3.

Listing 13.3 AStar.java

package com.pearson.lagp.v3;

import java.util.ArrayList;

import org.anddev.andengine.entity.modifier.PathModifier.Path;

import android.util.Log;

public class AStar {

 // ===

 // Constants

 // ===

 // ===

 // Fields

 // ===

 private GridLoc[][] grid;

 private int rowMax, colMax;

 private int cellWidth, cellHeight;

 private String tag = "AStar:";

 // ===

 // Constructors

 // ===

 public AStar(int pRows, int pCols, int pWidth, int pHeight) {

 // pWidth = total width in pixels

 // pHeight = total height in pixels

 grid = new GridLoc[pRows][pCols];

 rowMax = pRows-1;

 colMax = pCols-1;

 cellWidth = pWidth/pCols;

 cellHeight = pHeight/pRows;

 for (int i=0; i<pRows; i++) {

 for (int j=0; j<pCols; j++) {

 grid[i][j] = new GridLoc();

Implementing AI in V3 291

 }

 }

 }

 // ===

 // Getter and Setter

 // ===

 public void setObstacle(int pObstacleRow, int pObstacleCol){

 if (grid != null){

 grid[pObstacleRow][pObstacleCol].obstacle = true;

 }

 }

 public Path getPath(float pStartX, int pTargetCol, float pStartY,

 int pTargetRow, float pSpriteWidth, float pSpriteHeight){

 // Use A* pathfinding to find the near optimal path

 int nextCol, nextRow;

 int startCol, startRow;

 ArrayList<Integer> pathCols = new ArrayList<Integer>();

 ArrayList<Integer> pathRows = new ArrayList<Integer>();

 startCol = (int)pStartX/cellWidth;

 startRow = (int)pStartY/cellHeight;

 int currCol = startCol;

 int currRow = startRow;

 float[] f = new float[8];

 grid[currRow][currCol].g = 0.0f;

 grid[currRow][currCol].h =

 pTargetCol - currCol + pTargetRow - currRow;

 grid[currRow][currCol].footprint = true;

 while ((currCol != pTargetCol) || (currRow != pTargetRow)){

 //Consider the eight surrounding locations

 for (int i=0; i<8; i++) f[i] = 0;

 f[0] = fComp(currRow, currCol, -1, -1, 1.4f,

 pTargetRow, pTargetCol);

 f[1] = fComp(currRow, currCol, 0, -1, 1.0f,

 pTargetRow, pTargetCol);

 f[2] = fComp(currRow, currCol, +1, -1, 1.4f,

 pTargetRow, pTargetCol);

 f[3] = fComp(currRow, currCol, -1, 0, 1.0f,

 pTargetRow, pTargetCol);

 f[4] = fComp(currRow, currCol, +1, 0, 1.0f,

 pTargetRow, pTargetCol);

 f[5] = fComp(currRow, currCol, -1, +1, 1.4f,

 pTargetRow, pTargetCol);

 f[6] = fComp(currRow, currCol, 0, +1, 1.0f,

 pTargetRow, pTargetCol);

Chapter 13 Artificial Intelligence292

 f[7] = fComp(currRow, currCol, +1, +1, 1.4f,

 pTargetRow, pTargetCol);

 int lowidx = 0;

 float pos = 10000.0f;

 for (int j=0; j<8; j++){

 if (f[j]<pos){

 pos = f[j];

 lowidx = j;

 }

 }

 nextCol = currCol;

 nextRow = currRow;

 switch (lowidx){

 case (0):

 nextRow = currRow - 1;

 nextCol = currCol - 1;

 break;

 case (1):

 nextRow = currRow;

 nextCol = currCol - 1;

 break;

 case (2):

 nextRow = currRow + 1;

 nextCol = currCol - 1;

 break;

 case (3):

 nextRow = currRow - 1;

 nextCol = currCol;

 break;

 case (4):

 nextRow = currRow + 1;

 nextCol = currCol;

 break;

 case (5):

 nextRow = currRow - 1;

 nextCol = currCol + 1;

 break;

 case (6):

 nextRow = currRow;

 nextCol = currCol + 1;

 break;

 case (7):

 nextRow = currRow + 1;

 nextCol = currCol + 1;

 break;

 }

Implementing AI in V3 293

 //Add next location to Path,

 //set footprint and update currCol, currRow

 pathCols.add(nextCol);

 pathRows.add(nextRow);

 grid[currRow][currCol].footprint = true;

 currCol = nextCol;

 currRow = nextRow;

 }

 float[] xArray = new float[pathCols.size()+1];

 float[] yArray = new float[pathRows.size()+1];

 xArray[0] = pStartX;

 yArray[0] = pStartY;

 for (int i = 1; i < xArray.length; i++) {

 Float tmpX = (float)pathCols.get(i-1) * cellWidth

 - pSpriteWidth/2;

 xArray[i] = (tmpX != null ? tmpX : 0.0f);

 Float tmpY = (float)pathRows.get(i-1) * cellHeight

 - pSpriteHeight/2;

 yArray[i] = (tmpY != null ? tmpY : 0.0f);

 }

 return (new Path(xArray, yArray));

 }

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 // ===

 // Methods

 // ===

 private float fComp(int pCurrRow, int pCurrCol, int pRowDiff,

 int pColDiff, float pDx, int pTargetRow, int pTargetCol){

 // Computes the A* values for a grid location:

 // g: distance from start

 // h: distance to target

 // returns f = g + h

 // If the grid location is marked as an obstacle,

 // footprint is true; if it is outside the grid,

 // returns a high number (5,000)

 if (((pCurrRow + pRowDiff) > rowMax) ||

 ((pCurrCol + pColDiff) > colMax) ||

 ((pCurrRow + pRowDiff) < 0) ||

 ((pCurrCol + pColDiff) < 0)) {

 return 5000.0f;

 }

Chapter 13 Artificial Intelligence294

 if((grid[pCurrRow + pRowDiff]

 [pCurrCol + pColDiff].obstacle) ||

 (grid[pCurrRow + pRowDiff]

 [pCurrCol + pColDiff].footprint)){

 return 5000.0f;

 }

 grid[pCurrRow + pRowDiff][pCurrCol + pColDiff].g =

 grid[pCurrRow][pCurrCol].g + pDx;

 grid[pCurrRow + pRowDiff][pCurrCol + pColDiff].h =

 Math.abs(pTargetRow - (pCurrRow + pRowDiff)) +

 Math.abs(pTargetCol - (pCurrCol + pColDiff));

 return (grid[pCurrRow + pRowDiff][pCurrCol + pColDiff].g +

 grid[pCurrRow + pRowDiff][pCurrCol + pColDiff].h);

 }

 // ===

 // Inner and Anonymous Classes

 // ===

}

This code is not difficult to follow. The significant details are highlighted here:

 n We set up for the algorithm by declaring a variable grid, which is a two-

dimensional array of GridLoc locations. This is an exact analogy of the grid

we laid over our scene in Figure 13.7.

 n The constructor for AStar initializes that grid, along with some other useful

variables that let us test for things like array bounds easily. We will create an

AStar object for each Path that we want to find.

 n We’ll use the setObstacle() to tell the A* algorithm where the obstacles are

located in the grid. We’ll call setObstacle() for each location in the grid that

is part of an obstacle we want to avoid.

 n The getPath() method is where we actually implement the A* algorithm. It’s

worth looking at the return value and the parameters, so we’re clear about what

we’re dealing with:

 n Path: The return from the method is a PathModifier Path. Recall that we can

attach a PathModifier to a Sprite, and the Sprite will then follow that path to

its conclusion. That’s exactly what we want here. We don’t know how long

the Path will be, but we do know that it will have two arrays, one for the x

coordinates and one for the y coordinates.

 n float pStartX and float pStartY: These parameters set the coordinates

of the starting location in pixels. We need the pixel location so we can create

a path where the Sprite doesn’t jump at the beginning. This information gets

prepended to the Path that we find from the starting grid location.

Implementing AI in V3 295

 n int pTargetCol and int pTargetRow: The column and row for the tar-

get location. The target is expressed in column by row dimensions, because

the algorithm can only find paths to a cell.

 n float pSpriteWidth and float pSpriteHeight: We will f ind a path

consisting of a series of grid locations, and we need to convert those data

into a pixel path for a Sprite. To do so, we need the dimensions of the

Sprite.

 n The getPath() method starts by initializing some variables. We use

ArrayList<Integer> variables to develop the Path, as we don’t know how

long it will be in advance.

 n The while loop continues looping until we reach the target location. On each

pass of the loop, it adds one location to the Path. As we add each location, we

take a number of steps:

 n We initialize an array to hold the A* values (F in the equation F = G + H)

and call a method, fcomp(), that will compute those values for each of the

eight locations that surround the current location. If the test location is an

obstacle, or if we’ve already been there, or if the location is outside the grid,

the method will return a large number (5000.0f). Otherwise, it returns the

A* value calculated as the sum of the distance from the starting point and the

Manhattan distance to the target.

 n Once we have all eight values, we use a for loop to find the smallest value.

That value indicates the direction in which we’d like to move—and now it’s

clear why we were returning 5000 as the value for locations where we don’t

want to go in the last step.

 n A switch statement updates the next row and column, matching the row

and column difference parameters that we fed to fcomp() for the index that

turned out to have the lowest value.

 n We add the next row and column to the path ArrayLists, and mark the cur-

rent location as one that we’ve visited (footprint = true).

 n We advance the current row and column to the next row and column.

 n When we return from the while loop, we’ve found our complete path; thus

we can create the arrays of pixel locations needed to construct a Path for

 PathModifier. We initialize the arrays, fill them from the grid location path

ArrayLists, and return the completed Path to the caller.

 n The fcomp() method is also straightforward. We check the test location to see

whether it is outside of the grid, part of an obstacle, or a place we’ve already

visited. If any of those conditions is true, we return a large value, so the loca-

tion will be out of the running for the chosen direction in which to move. If it’s

otherwise legal, we just compute the values for g (distance from the start) and h

(Manhattan heuristic for distance to the target), and we return their sum, f.

Chapter 13 Artificial Intelligence296

Adding Path Finding to Level1Activity

Just a few changes to Level1Activity are needed to take advantage of the path finding

algorithm for the vampire Sprites. The changes are shown in Listing 13.4.

Listing 13.4 Changes to Level1Activity.java

. . .

public class Level1Activity extends BaseGameActivity {

. . .

 // ==

 // Fields

 // ==

 private AStar[] aStar = new AStar[10];

 private Path[] pathVamp = new Path[10];

. . .

 @Override

 public void onLoadResources() {

. . .

 for (int i=0; i<10; i++) {

 aStar[i] = new AStar(16, 24,

 CAMERA_WIDTH, CAMERA_HEIGHT);

 aStar[i].setObstacle(12,0);

 aStar[i].setObstacle(13,0);

 aStar[i].setObstacle(14,0);

 aStar[i].setObstacle(15,0);

 aStar[i].setObstacle(8,5);

 aStar[i].setObstacle(8,6);

 aStar[i].setObstacle(8,7);

 aStar[i].setObstacle(9,5);

 aStar[i].setObstacle(9,6);

 aStar[i].setObstacle(9,7);

 aStar[i].setObstacle(10,5);

 aStar[i].setObstacle(10,6);

 aStar[i].setObstacle(10,7);

 aStar[i].setObstacle(6,13);

 aStar[i].setObstacle(7,13);

 aStar[i].setObstacle(8,13);

 aStar[i].setObstacle(6,14);

 aStar[i].setObstacle(7,14);

 aStar[i].setObstacle(8,14);

 aStar[i].setObstacle(6,15);

 aStar[i].setObstacle(7,15);

 aStar[i].setObstacle(8,15);

 aStar[i].setObstacle(10,17);

 aStar[i].setObstacle(11,17);

 aStar[i].setObstacle(12,17);

 aStar[i].setObstacle(10,18);

Exercises 297

 aStar[i].setObstacle(11,18);

 aStar[i].setObstacle(12,18);

 aStar[i].setObstacle(10,19);

 aStar[i].setObstacle(11,19);

 aStar[i].setObstacle(12,19);

 }

. . .

 private Runnable mStartVamp = new Runnable() {

 public void run() {

. . .

 pathVamp[i] = aStar[i].getPath(asprVamp[i].getX(), 1,

 asprVamp[i].getY(), 10, asprVamp[i].getWidth(),

 asprVamp[i].getHeight());

 asprVamp[i].registerEntityModifier(

 new SequenceEntityModifier (

 new AlphaModifier(5.0f, 0.0f, 1.0f),

 new PathModifier(60.0f, pathVamp[i])

));

. . .

}

The steps again are easy to follow:

 n We declare grids and paths for each of the 10 possible vampire Sprites.

 n For each of the grids, we tell AStar where the obstacles are. The grids must remain

separate so the Sprites don’t interfere with one another as they are calculating their

individual paths.

 n In the mStartVamp() Runnable, as each vampire Sprite is created it asks its grid

for the best path from the starting point to the target location. The resulting

Path is attached to the Sprite with a PathModifier, replacing the previous

 MoveModifier, which simply moved the Sprite in a straight line.

Summary

This chapter took a very high-level view of some of the AI techniques that can be

applied to mobile games and a specific look at one of those techniques, A* path

 finding. Volumes have been written about AI techniques, and volumes more about the

way those techniques can be used in games. This chapter should give you a starting

point for exploring the algorithms that might be of use in your own games.

Exercises

1. If you’ve run the example code for this chapter, you’ll see an issue with it. Yes, all of

the vampires find their way to Miss B’s door, no matter where they start from, and

no matter which obstacles are in the way. But because of the way the tombstones

Chapter 13 Artificial Intelligence298

and weapons box are positioned, the vampires tend to funnel themselves into a

single line leading across the screen.

Change Level1Activity.java so that each vampire moves straight to the left

for some random period of time before creating a path to Miss B’s door. Does

that strategy help spread the vampires out on the screen?

2. The vampires are still pretty dumb. When faced with a weapon, they just con-

tinue on their pre-computed path, even if it leads straight into the teeth of the

weapon. Change Level1Activity.java so vampires react to a player’s place-

ment of a bullet or hatchet by moving laterally a few steps and then calculating a

new path to Miss B’s.

14

Scoring and Collisions

Scores are key to most games, giving the players feedback on how well they are

 playing the game and a measurement they can strive to improve.

Scoring systems can be very complicated or very simple. A simple scoring system

should at least meet these needs:

 n Keep track of the current score as a game is being played

 n Record some number of highest scores

 n Display the current score to the player

 n Display the list of highest scores

More complicated scoring systems could include these functions:

 n Keep track of scores for players on other (connected) clients, perhaps with rank-

ing systems and tournament play.

 n Keep track of scores for multiple players on a single device.

 n Record the time and date of high scores.

 n Provide scoring by time (e.g., time to solve a puzzle), rather than points.

 n Give out in-game rewards based on reaching a given score. You might award the

player a new weapon, for example, after the player has achieved a given score, to

make the game more interesting.

 n Reward achievements that are not directly tied to game play (awards could

include anything from a trophy to special found objects). Achievements are

being used increasingly in mobile games to extend the playability of games

beyond the basic play of the game.

We will tend toward simpler score keeping and leave the more complicated scoring

and achievements to your inventiveness.

Collisions of one kind or another are the most frequently scored events in games.

We’ve used a bit of collision detection in V3 examples so far, but in this chapter

Chapter 14 Scoring and Collisions300

we explore the two major methods of collision detection for AndEngine as part of

 implementing our scoring enhancements:

 n Collisions using AndEngine’s collidesWith() methods for Sprites and Shapes

 n Collisions using the Box2D Physics Engine

Scoring Design

AndEngine doesn’t provide any special APIs or structures for scoring, so we’ll have to

create some. Of course, we will take advantage of AndEngine’s display capabilities and

use Android’s APIs to build a simple scoring system that works well with AndEngine.

We did a little of this work in Exercise 3 of Chapter 11 (you can see the details in the

Exercise Solutions Appendix), but we will expand that effort greatly here.

Here is the list of requirements for our scoring system:

 n Update scores from any gamelet.

 n Track the five highest scores.

 n Display the five highest scores for each gamelet on the Scores page, ranked from

highest to lowest.

 n Display a gamelet’s current score as part of the gamelet’s Scene.

 n Have scores persist across invocations of the game.

Update the Scores from Any Gamelet

We will use Android SharedPreferences as the storage location for our scores. Recall

that we used SharedPreferences for the on/off Boolean values associated with music

and sound effects in Chapter 11. Android creates one SharedPreferences object for our

entire application, and we access that object using code like that shown in Listing 14.1.

Listing 14.1 SharedPreferences Reading

 scores = getSharedPreferences("scores", MODE_PRIVATE);

 highScores[4] = scores.getInt("Level1-4", 0);

 highScores[3] = scores.getInt("Level1-3", 0);

 highScores[2] = scores.getInt("Level1-2", 0);

 highScores[1] = scores.getInt("Level1-1", 0);

 highScores[0] = scores.getInt("Level1-0", 0);

. . .

We’ve labeled the SharedPreference for scores as “scores”; it contains key–value

pairs, where the key is a String and the value is an integer (the score). We’ll keep five

such values for each gamelet to record the highest five scores. The getInt() method

parameters are just the key String and a default value to return in case the key String

Scoring Design 301

is not found. Thus, in the calls shown in Listing 14.1, scores.getInt() will return a

value of 0 if the key is not found.

Putting the score values into the SharedPreference is just as easy, as shown in

 Listing 14.2.

Listing 14.2 SharedPreferences Loading

 scores = getSharedPreferences("scores", MODE_PRIVATE);

 scoresEditor = scores.edit();

 scoresEditor.putInt("Level1-4", highScores[4]);

 scoresEditor.commit();

. . .

There is one caveat to using SharedPreferences to store scores: If you are attaching

any real values to scores, you need to be careful. Players who have rooted their phones

(gained Linux root user access by loading alternative system firmware) can load your

game, and then access and edit the information in SharedPreferences in any way they

like. In the V3 case, the scores are just scores, so it’s okay to use SharedPreferences.

The same concern applies to SQLite files: If you need to hide some persistent piece of

information from all players, you’ll need to encrypt it.

Track the Five Highest Scores

Inside each gamelet, we’ll retrieve the five highest scores at the beginning of the game

and update them at the end if they change. The list of scores will change only if the

player wins the gamelet and his or her score is higher than one of the scores already in

the list. Listing 14.3 shows typical code for the end of a gamelet, for the case when the

player has won and might have a score higher than one already on the list.

Listing 14.3 End-of-Gamelet Coding for Scores

 int[] newHighScores = {0,0,0,0,0};

 for (int i=4; i>-1; i--){

 if (thisScore > highScores[i]){

 newHighScores[i] = thisScore;

 for (int j=i-1; j>-1; j--){

 newHighScores[j] = highScores[j+1];

 }

 if (i==4) newHigh = true;

 break;

 } else {

 newHighScores[i] = highScores[i];

 }

 }

 for (int i=0; i<5; i++) highScores[i] = newHighScores[i];

 scoresEditor.putInt("Level1-4", highScores[4]);

Chapter 14 Scoring and Collisions302

 scoresEditor.putInt("Level1-3", highScores[3]);

 scoresEditor.putInt("Level1-2", highScores[2]);

 scoresEditor.putInt("Level1-1", highScores[1]);

 scoresEditor.putInt("Level1-0", highScores[0]);

 scoresEditor.commit();

. . .

Coming into this code, the previous high scores are held in the integer array

 highScores[], and the score for this gamelet is found in thisScore. We create a new

array, newHighScores[], where we’ll create the potentially modified list. We copy values

from highScores[] into newHighScores[] as long as they are larger than or equal to

thisScore. If we come to a highScore[] value that is smaller than thisScore, we

insert thisScore and continue copying the remaining scores into newHighScores[].

Once we have the new list of high scores, we copy it back into highScores[]

and update the SharedPreferences. Note that we must commit the changes once we’re

done, or the putInt() methods will not have any effect.

Display the Score on the Gamelet’s Scene

We examined Text entities in Chapter 7. At this point, we need to use a Changeable-

Text entity to display the current score while a gamelet is running. We’ll always display

the score in the upper-right corner of the screen, and we’ll keep it up-to-date by using

a private method that updates both the thisScore integer and the display. A short

example and the private method are shown in Listing 14.4.

Listing 14.4 Score ChangeableText

 // Score display

 mCurrScore = new ChangeableText(0.75f*CAMERA_WIDTH, 10.0f,

 mFont32, "Score: 0", "Score: XXXXXX".length());

 scene.getLastChild().attachChild(mCurrScore);

. . .

 mAddScore(BULLET_VAMP_SCORE);

. . .

 private void mAddScore(int pAdder){

 thisScore += pAdder;

 mCurrScore.setText("Score: " + thisScore);

 }

. . .

We’ve allowed for a six-digit score in our ChangeableText, and we’ve positioned

it in the upper-right corner of the screen. We loaded mFont32 from the Flubber

 TrueType font earlier in the activity. Whenever a game event occurs that results

in updating the score, we call the method mAddScore(), which updates both the

 internal thisScore variable and the mCurrScore display.

Scoring Design 303

Scores Page Display

Nothing fancy is needed here—we just want a simple list of scores for each gamelet,

displayed in our Flubber typeface so that it matches the rest of our game. We continue

to navigate to the Scores page from the Options Menu, just as we have been doing

ever since we added preliminary scoring in Chapter 11, Exercise 3. Figure 14.1 shows a

screenshot of the Scores page filled with some high scores.

The updated version of ScoresActivity.java is shown in Listing 14.5.

Listing 14.5 ScoresActivity.java with Highest Score Lists

package com.pearson.lagp.v3;

+imports

public class ScoresActivity extends BaseGameActivity {

 // ===

 // Constants

 // ===

 private static final int CAMERA_WIDTH = 480;

 private static final int CAMERA_HEIGHT = 320;

 // ===

 // Fields

 // ===

Figure 14.1 Scores page

Chapter 14 Scoring and Collisions304

 protected Camera mCamera;

 protected Scene mScoresScene;

 private Text mTitle, mHeaders;

 private Text[] mScoreL = new Text[5];

 private Text[] mScoreW = new Text[5];

 private Text[] mScoreI = new Text[5];

 private Texture mFontTexture;

 private Font mFont;

 private SharedPreferences scores;

 private SharedPreferences.Editor scoresEditor;

 // ===

 // Constructors

 // ===

 // ===

 // Getter and Setter

 // ===

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 @Override

 public Engine onLoadEngine() {

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 scores = getSharedPreferences("scores", MODE_PRIVATE);

 scoresEditor = scores.edit();

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT), this.mCamera));

 }

 @Override

 public void onLoadResources() {

 /* Load Font/Textures. */

 this.mFontTexture = new Texture(256, 256,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 FontFactory.setAssetBasePath("font/");

 this.mFont = FontFactory.createFromAsset(this.mFontTexture,

 this, "Flubber.ttf", 32, true, Color.RED);

 this.mEngine.getTextureManager().loadTexture(

this.mFontTexture);

Scoring Design 305

 this.mEngine.getFontManager().loadFont(this.mFont);

 }

 @Override

 public Scene onLoadScene() {

 /* Center the background on the camera. */

 final int centerX = (CAMERA_WIDTH) / 2;

 final int centerY = (CAMERA_HEIGHT) / 2;

 this.mScoresScene = new Scene(1);

 /* Add the background and scores */

 mScoresScene.setBackground(new ColorBackground(

 0.0f, 0.0f, 0.0f));

 mTitle = new Text(centerX − 200, centerY − 120, mFont,

 "Scores");

 mScoresScene.getLastChild().attachChild(mTitle);

 mHeaders = new Text(centerX − 150, centerY − 80, mFont,

 "Level1 WhAV IV");

 mScoresScene.getLastChild().attachChild(mHeaders);

 for (int i=0; i<5; i++){

 mScoreL[i] = new Text(centerX − 150,

 (centerY − 40) + (4-i)*40, mFont, "" +

 scores.getInt("Level1-"+i, −1));

 mScoreW[i] = new Text(centerX, (centerY − 40) +

 (4-i)*40, mFont, "" +

 scores.getInt("WhAV-"+i, −1));

 mScoreI[i] = new Text(centerX + 150,

 (centerY − 40) + (4-i)*40, mFont, "" +

 scores.getInt("IV-"+i, −1));

 mScoresScene.getLastChild().attachChild(mScoreL[i]);

 mScoresScene.getLastChild().attachChild(mScoreW[i]);

 mScoresScene.getLastChild().attachChild(mScoreI[i]);

 }

 return this.mScoresScene;

 }

 @Override

 public void onLoadComplete() {

 }

}

The code is very straightforward, so we won’t belabor it. It’s worth pointing out

that the positions are fairly well hard-coded for the 480 × 320 display size. If your

game is going to be more f lexible with respect to screen size than the example V3

game, you might want to improve that part of the code.

Chapter 14 Scoring and Collisions306

Collisions in AndEngine

We’ve largely ignored collision detection so far, but now we need to get a better handle

on this issue so that we can score our gamelets properly. As mentioned brief ly at the

beginning of this chapter, there are two ways of detecting collisions in an AndEngine

game, depending on whether you are using physics in your game:

 n If you’re not using the Box2D physics engine, AndEngine provides a collision

detection method for Sprites and Shapes in your game. This method allows you

to test whether two objects are currently colliding, and the recommendation is

that this test take place in an UpdateHandler routine that you register with the

current Scene.

 n If you are using Box2D, you can take advantage of its embedded collision

 detection system, which is a bit more f lexible than the AndEngine capability

and can be more efficient. You can register a ContactListener method with the

 PhysicsWorld you have defined, and Box2D will then call beginContact()

and endContact() methods in that ContactListener every time any two objects

collide in that world. You can even use the Box2D collision detector if you’ve

excluded the objects from the physics simulation, although we won’t be doing

that for V3 (see the Box2D manual [referenced in Chapter 12] if you want to

find out more).

AndEngine Shape Collisions

Detecting collisions between AndEngine Shapes (including Sprites) is really easy. The

detection operation just has to be performed at the right time, after the Scene has done

all its position updates and you can compare a snapshot of where all the Shapes are

located. Listing 14.6 shows the pattern for testing for collisions.

Listing 14.6 AndEngine Shape Collision Testing

 scene.registerUpdateHandler(new IUpdateHandler() {

 @Override

 public void reset() { }

 @Override

 public void onUpdate(final float pSecondsElapsed) {

 if (spriteA.collidesWith(spriteB)){

 //Do something as a result of collision

 }

 });

That’s all there is to it! You just have to test for every collision of interest to you.

Collisions in AndEngine 307

Box2D Collisions

Box2D collision detection can get much more complicated, however. By default,

Box2D will call your ContactListener methods for every collision that occurs in each

frame of the physics simulation. A collision filtering system is also included, through

which you can specify bitmasks that filter out unimportant collisions. For our scoring

purposes, we won’t need these kinds of filters.

Listing 14.7 shows the setup for the ContactListener methods. Both methods

[beginContact() and endContact()] are passed a single parameter, a Contact. That

parameter contains all the details of the collision:

 n Which two Fixtures collided, and their characteristics:

 n Density

 n Friction

 n Elasticity (restitution)

 n Which Bodies are attached to those Fixtures, and their characteristics:

 n Mass

 n Density

 n Linear velocity

 n Angle

 n Angular velocity

In short, a Contact contains just about any information you’d need to know to chara-

cterize the collision. You can also get the UserData for each Body in the collision, which

is any object you care to assign to the Body. We will use that as a way of identifying the

type of Body.

Listing 14.7 Box2D Collision Listening

 this.mPhysicsWorld.setContactListener(new ContactListener() {

 @Override

 public void beginContact(Contact contact) {

 Body bodyA = contact.getFixtureA().getBody().;

 Body bodyB = contact.getFixtureB().getBody();

 }

 public void endContact(Contact contact) {

 }

 });

Notice one thing about the code in Listing 14.7: Given the method that Box2D

uses to detect collisions, you can never be sure which Body will be bodyA and which

will be bodyB. If you’re looking for a collision between two Body types, you will

have to test both ways (the example later in this chapter for IVActivity does just that).

Chapter 14 Scoring and Collisions308

Letting the Player Score

Now that we have a mechanism for viewing and recording scores, we need to

give players a way to actually score some points. The scoring will be different for

each gamelet, and we’ll assume that a Level 1 point is somehow equivalent to a

Whack-A-Vampire point. We’ll go through each gamelet and point out the places

where we’ve added code that implements player scoring.

Graveyard (Level 1)

The Level 1 gamelet is the most complex of the ones in V3, and it should include

many ways to score. Here’s a list of the things we need to do to add scoring to this

gamelet:

 n Ways to score: We need to implement the scoring mechanism described in

the previous section so the player receives a score for the number of vampires

killed.

 n Vampire deaths: The player can currently kill a vampire by touching it. We also

need the weapons to kill vampires as they collide with them. When a vampire

dies, that event should prompt an update of the score (we’ll give the player

50 points for killing a vampire by touching it, 100 points for killing it with a

bullet, 200 points for using a hatchet, and 500 points for killing the vampire

with a cross). To add some interest, and some justification for the different

scores, we’ll say that a bullet kills everything in its path, the hatchet kills only

the first vampire in its path, and the cross just sits there and waits for the first

vampire to run into it.

 n Gamelet completion: To have a final score, the gamelet must end. The Level 1

gamelet will end either when a vampire reaches Miss B’s door (the vampires

win) or when all the vampires are dead (the player wins). Upon completion of

the gamelet, the player should be presented with a results screen, along with

the choice to play again or go back to the main menu. The completion scene in

Figure 14.2 depicts the case in which the player wins. The scene in Figure 14.3

appears when the vampires win.

This is a rather large activity (approximately 700 lines), so let’s take it section by

section.

Constants and Fields

The changes to the Constants and Fields sections of the activity are shown in

Listing 14.8.

Graveyard (Level 1) 309

Figure 14.2 Level 1: “the player wins” scene

Figure 14.3 Level 1: “the vampires win” scene

Listing 14.8 Level1Activity.java Scoring Additions: Constants and Fields

public class Level1Activity extends BaseGameActivity {

 // ===

 // Constants

 // ===

Chapter 14 Scoring and Collisions310

. . .

 private static final int TOUCH_VAMP_SCORE = 50;

 private static final int BULLET_VAMP_SCORE = 100;

 private static final int HATCHET_VAMP_SCORE = 200;

 private static final int CROSS_VAMP_SCORE = 500;

 private static final int NUKE_BULLET = 1;

 private static final int NUKE_HATCHET = NUKE_BULLET+1;

 private static final int NUKE_CROSS = NUKE_HATCHET+1;

 private static final int NUKE_TOUCH = NUKE_CROSS+1;

 private static final int MAX_VAMPS = 10;

 private static final int VAMP_RATE = 2000;

 private static final boolean PLAYER_WINS = true;

 private static final boolean VAMPIRES_WIN = false;

 // Location of MissB's front door

 private static final Rectangle MissBs = new Rectangle(

 35.0f, 195.0f, 15.0f, 35.0f);

 // ===

 // Fields

 // ===

. . .

 private Texture mPopUpTexture;

. . .

 private TextureRegion mEndBackTextureRegion;

 private TextureRegion mAgainButtonTextureRegion;

 private TextureRegion mQuitButtonTextureRegion;

 private TextureRegion mNextButtonTextureRegion;

 private TextureRegion mNewHighTextureRegion;

 private Texture mFontTexture;

 private Font mFont32;

 private ChangeableText mCurrScore;

 private Sprite endBack, newHigh, againButton, quitButton,

 nextButton;

 private int nVamp, nVampsKilled;

. . .

 private SharedPreferences scores;

 private SharedPreferences.Editor scoresEditor;

 private int[] highScores = new int[5];

 private int thisScore = 0;

. . .

Graveyard (Level 1) 311

First, we create some constants for the score values, along with a set of f lags we’ll

use later when killing vampires. We want to put the vampire killing code in a separate

method, as it is much the same no matter how the vampire got killed. We’ll use the

f lags NUKE_BULLET, NUKE_HATCHET, and so on to tell the method how the vampire

was killed, so it can apply the correct score.

Next, we create constants for the number of vampires on the screen at any one

time and the rate at which they appear. In a previous version of the gamelet, we hard-

coded these values as numbers before; the changes here represent the first step toward

 making them become variables so we can modify the difficulty of the gamelet. We

won’t implement difficulty balancing until Chapter 16.

Finally in the Constants section, we define some Boolean values for indicating whether

the player or the vampires won. We also define a Rectangle that overlays the front door

of Miss B’s. We’ll use this Rectangle to identify when a vampire reaches its target.

The Fields additions are mostly intended to support the pop-up completion

scenes (shown in Figures 14.2 and 14.3, respectively) and the score display. We’ve

also added an integer to count the number of vampires killed (so we’ll know when

they’re all dead and the player has won), and the variables needed for the scores

SharedPreferences.

onLoadEngine and onLoadResources

The only change to onLoadEngine() is to add the code for the scores SharedPref-

erences, as shown in Listing 14.1. The current values of the high scores are just read

into the integer array highScores[].

The changed section of code for onLoadResources() is shown in Listing 14.9.

Listing 14.9 Level1Activity.java Scoring Additions: onLoadResources()

 @Override

 public void onLoadResources() {

. . .

 mPopUpTexture = new Texture(512, 512,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 mEndBackTextureRegion =

 TextureRegionFactory.createFromAsset(

 this.mPopUpTexture, getApplicationContext(),

 "endback.png", 0, 0);

 mAgainButtonTextureRegion =

 TextureRegionFactory.createFromAsset(

 this.mPopUpTexture, getApplicationContext(),

 "againbutton.png", 0, 330);

 mQuitButtonTextureRegion =

 TextureRegionFactory.createFromAsset(

 this.mPopUpTexture, getApplicationContext(),

 "quitbutton.png", 50, 330);

Chapter 14 Scoring and Collisions312

 mNextButtonTextureRegion =

 TextureRegionFactory.createFromAsset(

 this.mPopUpTexture, getApplicationContext(),

 "nextbutton.png", 100, 330);

 mNewHighTextureRegion =

 TextureRegionFactory.createFromAsset(

 this.mPopUpTexture, getApplicationContext(),

 "newhigh.png", 100, 400);

 mEngine.getTextureManager().loadTexture(

 this.mPopUpTexture);

 this.mFontTexture = new Texture(256, 512,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 FontFactory.setAssetBasePath("font/");

 mFont32 = FontFactory.createFromAsset(this.mFontTexture,

 this, "Flubber.ttf", 32, true, Color.RED);

 mEngine.getTextureManager().loadTexture(this.mFontTexture);

 mEngine.getFontManager().loadFont(this.mFont32);

. . .

No real mysteries here. We’ve added the bitmaps that will go into the completion

screens and the Font that we need to write the scores.

onLoadScene

As usual, life gets more interesting in the onLoadScene() method. We’ll use this method

to add the collisions with weapons that kill the vampires, create and add the score display,

and create the Sprites for the completion scenes. Listing 14.10 shows the additions.

Listing 14.10 Level1Activity.java Scoring Additions: onLoadScene()

 @Override

 public Scene onLoadScene() {

. . .

 scene.registerUpdateHandler(new IUpdateHandler() {

 @Override

 public void reset() { }

 @Override

 public void onUpdate(final float pSecondsElapsed) {

 for (int i=0; i<nVamp; i++){

 if (asprVamp[i].collidesWith(bullet)){

 mNukeVamp(i, NUKE_BULLET);

 }

 if (asprVamp[i].collidesWith(hatchet)){

 mNukeVamp(i, NUKE_HATCHET);

 }

Graveyard (Level 1) 313

 if (asprVamp[i].collidesWith(cross)){

 mNukeVamp(i, NUKE_CROSS);

 }

 if (asprVamp[i].collidesWith(MissBs)){

 //gamelet over, vampires win

 mGameOver(VAMPIRES_WIN);

 }

 if ((touchActive) &&

 (asprVamp[i].collidesWith(touchRect))){

 mNukeVamp(i, NUKE_TOUCH);

 }

 }

 }

 });

 // Score display

 mCurrScore = new ChangeableText(0.75f*CAMERA_WIDTH,

 10.0f, mFont32, "Score: 0",

 "Score: XXXXXX".length());

 scene.getLastChild().attachChild(mCurrScore);

 // Create Sprites for result screens − don’t attach yet

 endBack = new Sprite(

 (CAMERA_WIDTH − mEndBackTextureRegion.getWidth()) / 2,

 (CAMERA_HEIGHT − mEndBackTextureRegion.getHeight()) / 2,

 mEndBackTextureRegion);

 newHigh = new Sprite(0.0f, 0.0f, mNewHighTextureRegion);

 againButton = new Sprite(0.0f, 0.0f,

 mAgainButtonTextureRegion){

 @Override

 public boolean onAreaTouched(final TouchEvent

 pAreaTouchEvent, final float pTouchAreaLocalX,

 final float pTouchAreaLocalY) {

 switch(pAreaTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

 //TBD

 }

 return true;

 }

 };

 nextButton = new Sprite(0.0f, 0.0f,

 mNextButtonTextureRegion){

 @Override

 public boolean onAreaTouched(final TouchEvent

 pAreaTouchEvent, final float pTouchAreaLocalX,

 final float pTouchAreaLocalY) {

 switch(pAreaTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

Chapter 14 Scoring and Collisions314

 //TBD

 }

 return true;

 }

 };

 quitButton = new Sprite(0.0f, 0.0f,

 mQuitButtonTextureRegion){

 @Override

 public boolean onAreaTouched(final TouchEvent

 pAreaTouchEvent, final float pTouchAreaLocalX,

 final float pTouchAreaLocalY) {

 switch(pAreaTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

 //TBD

 }

 return true;

 }

 };

 return scene;

 }

Here we’ve added an UpdateHandler to check for collisions at each update. We

loop through the current set of vampires and check whether each of them has collided

with the bullet, the hatchet, the cross, Miss B’s front door, or the spot that the player is

touching. If the answer is yes in the first three cases or the last case, we declare a nuked

vampire and call mNukeVamp(), which we define later. If the collision occurred with

Miss B’s door, we declare the game over and the vampires the victors by calling the

mGameOver() method, also defined later.

We then create the ChangeableText for the score display, plus the Sprites for the

buttons that will go on the completion screens. Right now, the buttons won’t do

 anything. We will save that work for Chapter 16.

mStartVamp

Recall that mStartVamp() is the method we use to start up each of the vampires.

The only thing we want to do here is change what happens when the player touches a

vampire. We alter that behavior in the onAreaTouched() override that is part of the

AnimatedSprite definition for the vampire, as shown in Listing 14.11.

Listing 14.11 Level1Activity.java Scoring Additions: mStartVamp()

 private Runnable mStartVamp = new Runnable() {

 public void run() {

. . .

 asprVamp[i] = new AnimatedSprite(CAMERA_WIDTH − 30.0f,

 startY, mScrumTextureRegion.clone()) {

 @Override

Whack-A-Vampire 315

 public boolean onAreaTouched(

 final TouchEvent pAreaTouchEvent,

 final float pTouchAreaLocalX,

 final float pTouchAreaLocalY) {

 switch(pAreaTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

 /* Is there a vampire close by? */

 touchRect = new Rectangle (

 pAreaTouchEvent.getX(),

 pAreaTouchEvent.getY(), 20.0f, 20.0f);

 touchActive = true;

 break;

 case TouchEvent.ACTION_UP:

 touchActive = false;

 }

 return true;

 }

 };

Earlier, in the onAreaTouched() method, we checked for collision by comparing

the touch point with the position of the Sprite. We’ve modified that a bit here so that

we can make use of our mNukeVamp() method for touches as well as weapons. This

approach also simplifies the code.

Whack-A-Vampire

The Whack-A-Vampire gamelet is simpler than the graveyard gamelet described in the

last section. We do need to add the scoring mechanism and to define completion of

the WAV gamelet to finish it, however.

 n Ways to score: We will reuse much of the code from the last section to imple-

ment scoring based on the number of coffins the player successfully closes. We’ll

also say that if a coffin stays open for more than some time limit without being

touched, the player loses points.

 n Coffin closings: We’ll set up two time constants (in anticipation of making them

variables when we start adjusting game difficulty in Chapter 16). The first time

constant, OPEN_RATE, will be the average time between coffin openings. The

second constant, OPEN_TIME, will be the time for which a coffin stays open and

the player can touch and close it. A third constant, OPENS_PER_GAME, will set

the maximum number of coffins opened for the game.

 n Gamelet completion: The gamelet will end when OPENS_PER_GAME coffins

have been opened and closed (either by touch or by time-out). The player does

not actually win or lose in this gamelet, so we’ll just present the results using the

“player wins” screen, as shown in Figure 14.2.

Chapter 14 Scoring and Collisions316

Again, we’ll break down the changes by examining them in sections and refer back

to the Level 1 changes where we do very similar things in Whack-A-Vampire.

Constants and Fields

In addition to the fields we introduced for the results screens in Level 1, we add some

constants and fields to support the Whack-A-Vampire scoring, as shown in Listing 14.12.

Listing 14.12 WAVActivity.java Scoring Additions: Constants and Fields

. . .

 private static final int CLOSE_COFFIN_SCORE = 100;

 private static final int OPEN_RATE = 4000;

 private static final int OPENS_PER_GAME = 10;

 private static final int STAY_OPEN = 2000;

. . .

 private int mNumClosed = 0;

 private ArrayList<Integer> openCoffins = new ArrayList<Integer>();

. . .

We talked about the constants earlier. Here, we’ve introduced two variables to keep

track of open coffins. The ArrayList openCoffins keeps a FIFO (first in, first out)

list of coffins that have been opened.

We’ll skip over the revisions to onLoadEngine() and onLoadResources(). The

changes are very similar to what we did in Level 1, including getting the current high

scores from the SharedPreferences and loading the textures needed for the results screen.

onLoadScene

The onLoadScene() method is where the scoring action happens, so let’s take a look

at the way the ArrayList is used to keep track of the open coffins in Listing 14.13.

Listing 14.13 WAVActivity.java Scoring Additions: onLoadScene()

 @Override

 public Scene onLoadScene() {

. . .

 scene.setOnSceneTouchListener(new IOnSceneTouchListener() {

 @Override

 public boolean onSceneTouchEvent(

 final Scene pScene,

 final TouchEvent pSceneTouchEvent) {

 switch(pSceneTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

 /* Get the touched tile */

 tmxTile = tmxLayer.getTMXTileAt(

Whack-A-Vampire 317

 pSceneTouchEvent.getX(),

 pSceneTouchEvent.getY());

 if((tmxTile != null) &&

 (tmxTile.getGlobalTileID() ==

 mOpenCoffinGID)) {

 mAddScore(CLOSE_COFFIN_SCORE);

 tmxTile.setGlobalTileID(

 mWAVTMXMap, mCoffinGID);

 }

 break;

 case TouchEvent.ACTION_UP:

 break;

 }

 return true;

 }

 });

. . .

The onSceneTouchEvent() override was found in WAVActivity.java in earlier

versions of the gamelet. We’ve actually added only one new line (the rest of the listing

is shown for context):

mAddScore(CLOSE_COFFIN_SCORE);

openCoffin and closeCoffin

Let’s look at the methods we’ll use to open a coffin and close a coffin. The complete

updated methods are shown in Listing 14.14.

Listing 14.14 WAVActivity.java Scoring Additions: openCoffin() and closeCoffin()

 private Runnable openCoffin = new Runnable() {

 public void run() {

 int openThis = gen.nextInt(coffinPtr);

 int tileRow = coffins[openThis]/15;

 int tileCol = coffins[openThis] % 15;

 tmxTile = tmxLayer.getTMXTileAt(tileCol*32 + 16,

 tileRow*32 + 16);

 tmxTile.setGlobalTileID(mWAVTMXMap, mOpenCoffinGID);

 openCoffins.add(openThis);

 int openTime = gen.nextInt(OPEN_RATE);

 mHandler.postDelayed(openCoffin, openTime);

 mHandler.postDelayed(closeCoffin, openTime+STAY_OPEN);

 }

 };

Chapter 14 Scoring and Collisions318

 private Runnable closeCoffin = new Runnable() {

 public void run() {

 int closeThis = openCoffins.get(0);

 openCoffins.remove(0);

 int tileRow = coffins[closeThis]/15;

 int tileCol = coffins[closeThis] % 15;

 tmxTile = tmxLayer.getTMXTileAt(tileCol*32 + 16,

 tileRow*32 + 16);

 tmxTile.setGlobalTileID(mWAVTMXMap, mCoffinGID);

 if (++mNumClosed > OPENS_PER_GAME) mGameOver(PLAYER_WINS);

 }

 };

The openCoffin() method is much the same as before, but now we’ve added the

scheduling of closeCoffin() to close the coffin after the STAY_OPEN time.

The closeCoffin() method is new. It takes the first coffin from openCoffins

and closes it (even if it was already “closed” by the player by touching it). We know

the first coffin is the next to be closed, because all coffins have the same STAY_OPEN

time. This is the only place where we check for the end of the game.

The changes to the rest of WAVActivity.java are almost exactly the same as the

ones we made to Level1Activity.java in the last section.

Irate Villagers

For the Irate Villagers gamelet, once again we need to introduce the scoring

 mechanism and define game completion:

 n Scoring: In IV, the player advances the score by causing a vampire head to hit

the f loor. We’ll give the player 200 points for each successful concussion.

 n Gamelet completion: The gamelet should end either when the last vampire

head hits the f loor (the player wins) or when a set number of stakes have been

launched (the vampires win). We’ll display results screens similar to the ones that

we used in the other gamelets.

Constants and Fields

The constants and fields we need to add for the IV gamelet are shown in

Listing 14.15.

Listing 14.15 IVActivity.java Scoring Additions: Constants and Fields

 // ===

 // Constants

 // ===

. . .

Irate Villagers 319

 private static final int VAMPIRE_FLOORED = 200;

 private static final boolean PLAYER_WINS = true;

 private static final boolean VAMPIRES_WIN = false;

 private static final int MAX_STAKES = 5;

. . .

 // ===

 // Fields

 // ===

 private Texture mPopUpTexture;

 private TextureRegion mEndBackTextureRegion;

 private TextureRegion mAgainButtonTextureRegion;

 private TextureRegion mQuitButtonTextureRegion;

 private TextureRegion mNextButtonTextureRegion;

 private TextureRegion mNewHighTextureRegion;

. . .

 private Texture mFontTexture;

 private Font mFont32;

 private ChangeableText mCurrScore;

 private Sprite endBack, newHigh, againButton, quitButton,

 nextButton;

. . .

 private int numStakes = 0;

. . .

 private int numHeads = 0;

 private ArrayList<Body> deadHeads = new ArrayList<Body>();

 private SharedPreferences scores;

 private SharedPreferences.Editor scoresEditor;

 private int[] highScores = new int[5];

 private int thisScore = 0;

The field most worthy of mention in Listing 14.15 is the ArrayList<Body>

deadHeads. We will use that field to keep track of which vampire heads have hit the

f loor. The danger is that a head will bounce, registering multiple collisions with the

f loor—we want to count only the first of those hits.

The onLoadEngine() and onLoadResources() methods change much the same

way they did for Level1Activity.java and WAVActivity.java, so we won’t dwell

on them here.

onLoadScene

Recall that the onLoadScene() method is where we load levels into the gamelet,

using the level loader routines. We need to identify the number of vampire heads we

load, and note which of the physics bodies is the f loor. We’ll do so by using the ID

tag. Vampire heads will be marked with the ID “vamp” and the f loor marked with the

tag “f loor.” Listings 14.16 and 14.17 show the needed changes.

Chapter 14 Scoring and Collisions320

Listing 14.16 IVActivity.java Scoring Additions: onLoadScene(), Part 1

 @Override

 public Scene onLoadScene() {

. . .

 bkLoader.registerEntityLoader(TAG_BODY,

 new IBKEntityLoader() {

 @Override

 public void onLoadEntity(final String pEntityName,

 final Attributes pAttributes,

 final String pValue) {

 if(mShape.equals(TAG_SHAPE_VALUE_SQUARE)) {

. . .

 final Body mBody =

 PhysicsFactory.createBoxBody(

 mPhysicsWorld, bodyShape,

 mBodyType,

 PhysicsFactory.createFixtureDef(

 mDensity, mElasticity,

 mFriction));

 mBody.setUserData(mID);

. . .

 } else if(mShape.equals(

 TAG_SHAPE_VALUE_CIRCLE)) {

. . .

 final Body mBody =

 PhysicsFactory.createBoxBody(

 mPhysicsWorld, bodyShape,

 mBodyType,

 PhysicsFactory.createFixtureDef(

 mDensity, mElasticity,

 mFriction));

 mBody.setUserData(mID);

. . .

 } else if(mShape.equals(

. . .

Listing 14.16 shows the part of onLoadScene() that actually creates the physics

bodies from the data that have already been collected from the XML level file. Here,

we simply load the ID (previously stored in mID) into the UserData for each body.

We can retrieve that ID easily later when the bodies collide.

The other change in onLoadScene() occurs a little later, where we’re setting up

the loading of ID tags, as shown in Listing 14.17. The addition here is to bump the

number of heads whenever we see a “vamp” ID on a tag.

Irate Villagers 321

Listing 14.17 IVActivity.java Scoring Additions: onLoadScene(), Part 2

 bkLoader.registerEntityLoader(TAG_PHYSICSANDID,

 new IBKEntityLoader() {

 @Override

 public void onLoadEntity(final String pEntityName,

. . .

 mID = trimQuotes(physTokens[3]);

 if (mID.equals("vamp")) numHeads++;

 }

onLoadComplete

The other change for the IV gamelet is to expand the beginContact() override in

onLoadComplete() so that we register a score whenever a vampire head hits the

f loor. The new version is shown in Listing 14.18.

Listing 14.18 IVActivity.java Scoring Additions: onLoadComplete()

 @Override

 public void onLoadComplete() {

 this.mPhysicsWorld.setContactListener(

 new ContactListener() {

 @Override

 public void beginContact(Contact contact) {

 Body bodyA = contact.getFixtureA().getBody();

 Body bodyB = contact.getFixtureB().getBody();

 String idA = (String)bodyA.getUserData();

 String idB = (String)bodyB.getUserData();

 if ((idA.equals("vamp")) && (idB.equals("floor"))) {

 if (!deadHeads.contains(bodyA)) {

 deadHeads.add(bodyA);

 }

 mAddScore(VAMPIRE_FLOORED);

 if (deadHeads.size() == numHeads) }

 mGameOver(PLAYER_WINS);

 }

 }

 if ((idB.equals("vamp")) && (idA.equals("floor"))) {

 if (!deadHeads.contains(bodyB)) {

 deadHeads.add(bodyB);

 }

 mAddScore(VAMPIRE_FLOORED);

 if (deadHeads.size() == numHeads) }

Chapter 14 Scoring and Collisions322

 mGameOver(PLAYER_WINS);

 }

 }

 public void endContact(Contact contact) {

 }

 });

 }

When we are notified of a physics collision, we check whether either body was a vam-

pire head, and whether the other body was the f loor. In case of a head–f loor collision,

we credit the player with the score and check whether all the heads have hit the f loor. As

mentioned at the beginning of the section, we record each head that hits the f loor in the

ArrayList deadHeads, so we won’t count bounces or multiple hits of the same head.

addStake

The only other change (other than adding to IV all of the scoring code we added to

the other gamelets) is to count the number of stakes launched and declare the game

over after the last one is launched. That change consists of a one-line addition to the

addStake() method, as shown in Listing 14.19.

Listing 14.19 IVActivity.java Scoring Additions: addStake()

 private void addStake(final float pX, final float pY, float velX,

 float velY) {

 /* If player has used up the stakes, game is over */

 if (numStakes++ > MAX_STAKES) mGameOver(VAMPIRES_WIN);

. . .

With that, the changes to include collisions and scoring are complete. V3 is

now a more playable game. After we take a look at some AndEngine extensions in

 Chapter 15, we’ll finish off the V3 game in Chapter 16.

Summary

In this chapter, we looked at two related features, scoring and collisions. There are

two ways to detect collisions in AndEngine games, with the method used depending

on whether we are using the Box2D physics engine. We also built a scoring structure

using the display elements available in AndEngine and the SharedPreferences storage

APIs from Android.

Exercises

1. You may have noticed that a sound file called oof.ogg is included in the down-

loadable code (in the assets/mfx folder). Change Level1Activity.java

so that the “oof” sound is played whenever a vampire’s head hits the floor.

Exercises 323

2. Many games take special notice when the player achieves a new high score

for a gamelet. Change the results screen on the three gamelets so “New High

Score” will be displayed only when the player’s score is higher than any other

score on the high scores list. The graphic for “New High Score” is already in

the downloadable code, in the assets/gfx/scoring folder, and an example

screen is shown in Figure 14.4.

Figure 14.4 High score indication

This page intentionally left blank

15

Multimedia Extensions

AndEngine is a growing, evolving platform for building Android games. As new
 features are developed, they are often introduced to the platform as extensions.
Extensions are not bundled into the base AndEngine code but are readily available
for download. The source for all the extensions can be reached from the main
AndEngine URL:

http://code.google.com/p/andengine/

As of this book’s writing, there were seven extensions available for AndEngine,
some of which we have already used earlier in the book:

 n Live wallpaper: lets you use AndEngine to build Android live wallpapers

 n MOD player: enables the play of MOD and other music files, using the
XMP player

 n Multiplayer: uses a special protocol to enable multiplayer games over
IP connections

 n Multi-touch: incorporates multi-touch capabilities for those Android devices that
have them

 n Physics Box2D: a physics engine (discussed at length in Chapter 12)

 n Augmented reality: allows the overlay of AndEngine Scenes over the device’s
camera preview

 n SVG TextureRegions: supports scalable vector graphics (discussed in Chapter 5)

This chapter devotes a section to each of the extensions that we have not yet inves-
tigated. We will develop five short example programs that show the basic features of
each extension and leave it up to you to investigate further if you are interested.

Downloading Extensions

Each of the AndEngine extensions has its own source repository. The downloadable
code for the book includes the .jar files for each of the extensions, which were
current as the book was written. Later versions of the .jar files may be available in the

http://code.google.com/p/andengine/

Chapter 15 Multimedia Extensions326

lib folder on each source repository by the time you read these words. Alternatively,
you can clone the sources for the repositories and build the .jar files yourself, using
the pattern covered in Chapter 12.

The source repositories for the extensions are found at the following URLs:

http://code.google.com/p/andenginelivewallpaperextension/

http://code.google.com/p/andenginemodplayerextension/

http://code.google.com/p/andenginemultiplayerextension/

http://code.google.com/p/andenginemultitouchextension/

http://code.google.com/p/andenginephysicsbox2dextension/

http://code.google.com/p/andengineaugmentedrealityextension/

http://code.google.com/p/andenginesvgtextureregionextension/

Live Wallpapers

The AndEngine Live Wallpapers extension helps us create Android live wallpapers
that take advantage of all the display capabilities of AndEngine games. We can create
and display Sprites, Shapes, Animations, Modifiers, Particle Effects, Text, Tilemaps,
and everything else we’ve used in creating games, and make them part of the device
 wallpaper that is displayed as the background for the home screen.

You can download an example wallpaper activity from the following site:

http://code.google.com/p/andenginelivewallpaperextension/

This wallpaper simulates a lit cigarette, with copious clouds of smoke rising out of
the cigarette. When you tilt the Android device, the smoke always f loats “up.” To
run the example, download it, create a new Android Project in Eclipse using the
downloaded project files, build and install the files using the Run command, and use
the Android Settings > Personalize > Home wallpaper dialog to change the device
 wallpaper. “Cigarette Live-Wallpaper” will be one of the choices in the list of available
 wallpapers. Figure 15.1 shows the home screen with the example wallpaper running.

Android Live Wallpapers

Android version 2.1 added support for live wallpapers. From our point of view, that
means users running previous versions of Android will not be able to load and use any
live wallpapers we create. The older devices are quickly being replaced, however, so
it’s a temporary issue.

Live wallpapers in Android run as a Service. If you plan to create one, you should
take a look at the developer blog entry at this URL:

http://android-developers.blogspot.com/2010/02/live-wallpapers.html

As the blog points out, live wallpapers can be real battery eaters, because they run all
the time. In particular, you must ensure that the wallpaper stops executing when it
is covered by another Activity—that is, when another Activity takes over the screen.

http://code.google.com/p/andenginelivewallpaperextension/
http://code.google.com/p/andenginemodplayerextension/
http://code.google.com/p/andenginemultiplayerextension/
http://code.google.com/p/andenginemultitouchextension/
http://code.google.com/p/andenginephysicsbox2dextension/
http://code.google.com/p/andengineaugmentedrealityextension/
http://code.google.com/p/andenginesvgtextureregionextension/
http://code.google.com/p/andenginelivewallpaperextension/
http://android-developers.blogspot.com/2010/02/live-wallpapers.html

Live Wallpapers 327

Otherwise, you’re just wasting battery power by churning out graphics that no one
will see.

Creating a Live Wallpaper for V3

You might want to create a live wallpaper out of the elements of your game. As an
example, we’ll create such an element for V3. We’ll compose a small scene in which
vampires walk through a dark graveyard, as shown in Figure 15.2.

Figure 15.1 Example wallpaper

Chapter 15 Multimedia Extensions328

Listing 15.1 shows the interesting parts of the V3LiveWallpaper.java source file
(the complete source is included with the download).

Listing 15.1 V3LiveWallpaper.java

. . .

public class LiveWallpaperService extends BaseLiveWallpaperService {

. . .

 private static final int VAMP_RATE = 2000;

 private static final int MAX_VAMPS = 10;

Figure 15.2 V3 wallpaper

Live Wallpapers 329

 // ===

 // Fields

 // ===

 private Handler mHandler;

 private Texture mScrumTexture;

 private Texture mBackgroundTexture;

 private TextureRegion mBackgroundTextureRegion;

 private TiledTextureRegion mScrumTextureRegion;

 private AnimatedSprite[] asprVamp = new AnimatedSprite[10];

 private int nVamp;

 private ScreenOrientation mScreenOrientation;

 private Random gen;

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 @Override

 public org.anddev.andengine.engine.Engine onLoadEngine() {

 mHandler = new Handler();

 gen = new Random();

 return new org.anddev.andengine.engine.Engine(

 new EngineOptions(true, this.mScreenOrientation,

 new FillResolutionPolicy(), new Camera(0, 0,

 CAMERA_WIDTH, CAMERA_HEIGHT)));

 }

 @Override

 public void onLoadResources() {

 TextureRegionFactory.setAssetBasePath("gfx/Wallpaper/");

 mBackgroundTexture = new Texture(512, 512,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 mBackgroundTextureRegion =

 TextureRegionFactory.createFromAsset(

 this.mBackgroundTexture, getApplicationContext(),

 "V3Wallpaper.png", 0, 0);

 mEngine.getTextureManager().loadTexture(

 this.mBackgroundTexture);

 mScrumTexture = new Texture(512, 256,

 TextureOptions.DEFAULT);

 mScrumTextureRegion =

 TextureRegionFactory.createTiledFromAsset(

 this.mScrumTexture, getApplicationContext(),

 "scrum_tiled.png", 0, 0, 8, 4);

Chapter 15 Multimedia Extensions330

 mEngine.getTextureManager().loadTexture(

 this.mScrumTexture);

 this.getEngine().getTextureManager().loadTexture(

 this.mScrumTexture);

 }

 @Override

 public Scene onLoadScene() {

 final Scene scene = new Scene(1);

 //Load background

 Sprite bg = new Sprite(0,0,mBackgroundTextureRegion);

 scene.getLastChild().attachChild(bg);

 // Add first vampire (which will add the others)

 nVamp = 0;

 mHandler.postDelayed(mStartVamp,3000);

 scene.registerUpdateHandler(new IUpdateHandler() {

 @Override

 public void reset() { }

 @Override

 public void onUpdate(final float pSecondsElapsed) {

 for (int i=0; i<nVamp; i++){

 if (asprVamp[i].getX() < 30.0f){

 //move vampire back to right side of screen

 float startY =

 gen.nextFloat()*

 (CAMERA_HEIGHT − 50.0f);

 asprVamp[i].clearEntityModifiers();

 asprVamp[i].registerEntityModifier(

 new MoveModifier(40.0f,

 CAMERA_WIDTH − 30.0f, 0.0f,

 startY, 340.0f)

);

 }

 }

 }

 });

 return scene;

 }

 // ===

 // Methods

 // ===

 private Runnable mStartVamp = new Runnable() {

 public void run() {

 int i = nVamp;

 Scene scene = LiveWallpaperService.this.mEngine.getScene();

Live Wallpapers 331

 float startY = gen.nextFloat()*(CAMERA_HEIGHT − 50.0f);

 asprVamp[i] = new AnimatedSprite(CAMERA_WIDTH − 30.0f,

 startY, mScrumTextureRegion.clone()) ;

 nVamp++;

 scene.registerTouchArea(asprVamp[i]);

 final long[] frameDurations = new long[26];

 Arrays.fill(frameDurations, 500);

 asprVamp[i].animate(frameDurations, 0, 25, true);

 asprVamp[i].registerEntityModifier(

 new SequenceEntityModifier (

 new AlphaModifier(5.0f, 0.0f, 1.0f),

 new MoveModifier(60.0f,

 asprVamp[i].getX(), 0.0f, startY,

 340.f)

));

 scene.getLastChild().attachChild(asprVamp[i]);

 if (nVamp < MAX_VAMPS){

 mHandler.postDelayed(mStartVamp,VAMP_RATE);

 }

 }. . .

 @Override

 public void onGamePaused() {

 mHandler.removeCallbacks(mStartVamp);

 }

 @Override

 public void onGameResumed() {

 mHandler.postDelayed(mStartVamp,VAMP_RATE);

 }

. . .

If you’ve been following the coding so far in the book, you can see that what we
have done in Listing 15.1 is to lift and adapt code from the Level1Activity.java
game and put it inside a class that extends BaseLiveWallpaperService. We don’t try to
detect collisions or create paths; instead, we simply let the vampires walk from right to
left. When they reach the left side of the screen, the update handler repositions them
to the right side of the screen.

Most of the changes to the code are intended to accommodate the difference in
screen orientation. Unlike in our games, wallpapers usually run in portrait orientation
(for some phones and most Android tablets using Honeycomb or later, however, you’ll
have to provide for the wallpaper shifting between the portrait and landscape orienta-
tions as the screen is reoriented). It’s just a small matter of adjusting the graphics and
coordinates used to match that orientation.

Chapter 15 Multimedia Extensions332

The manifest also needs some changes. The manifest for our V3Wallpaper is shown
in Listing 15.2. Note particularly the need for BIND_WALLPAPER permission and the
intent filter for android.service.wallpaper.WallpaperService.

Listing 15.2 AndroidManifest.xml for V3Wallpaper

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.pearson.lagp.v3livewallpaper"

 android:versionCode="4"

 android:versionName="1.0">

 <uses-sdk android:minSdkVersion="7" />

 <uses-feature android:name="android.software.live_wallpaper" />

 <uses-permission android:name=

 "android.permission.WRITE_EXTERNAL_STORAGE" />

 <application android:icon="@drawable/icon"

 android:label="@string/app_name">

 <service

 android:name="LiveWallpaperService"

 android:enabled="true"

 android:icon="@drawable/icon"

 android:label="@string/service_name"

 android:permission=

 "android.permission.BIND_WALLPAPER">

 <intent-filter android:priority="1" >

 <action android:name=

 "android.service.wallpaper.WallpaperService" />

 </intent-filter>

 <meta-data

 android:name="android.service.wallpaper"

 android:resource="@xml/wallpaper" />

 </service>

 </application>

</manifest>

MOD Music

I was not familiar with the MOD music format before I heard about the MOD Player
extension to AndEngine. It turns out there is a whole subculture of digital artists who
create “demos,” which are noncommercial artistic demonstrations of what computers
are capable of showing and playing. These artists compete to develop demos that are
the most artistic and best show off the capabilities of the device they run on. One of

MOD Music 333

their favorite audio file formats is called MOD, which derives from the format of the
same name that was popular on Amiga computers in the 1980s. The demos are created
and played with programs called “trackers” or “modplayers,” and these programs are
available for Android devices.

Finding MOD Music

Many of the artists creating demos are part of communities. One of the more popular com-
munities seems to be Demoscene, which you can check out at www.demoscene.info.
The related archive of MOD files can be found at the following URL:

http://modarchive.org

Hundreds of megabytes of demos are available, ready to play on an appropriate
tracker. The audio from many older games is also available in MOD or one of the
other demo formats that are playable with the extension.

You must be careful if you decide to include these f iles in a commercial game.
The licenses for most of the MOD files say they are licensed for your personal reuse
and redistribution; for commercial use (such as inclusion in a game), however, you
must obtain the explicit permission of the author. Some MOD files explain how
to contact the author in the information that is displayed by players such as XMP
(see the next section). Others do not, or the information is out-of-date. A very
good discussion of the rights granted to downloads from modarchive can be found
at this URL:

http://modarchive.org/index.php? faq-licensing

XMP MOD Player

The AndEngine extension for MOD files uses the player engine from a MOD player
called XMP. XMP is available for free on Android Market, and it’s worth installing
it to get an idea of the many demo files available. Figure 15.3 shows the screen for
XMP as its playing a demo; the bar graph in the middle of this screen is an animated
 frequency display.

XMP is actually much more than a MOD player. It can read and play more than
90 different audio f ile formats, including many of the formats that were used in
the original electronic games. XMP does the work of decoding and playing the
 format. The AndEngine extension allows our games to access the XMP player via
the Native Development Kit and to direct what it is doing. You don’t have to install
the XMP player on the target device, as the XMP code is included in the extension
.jar library. Although MOD files are freely distributed on a number of Internet
archives, that fact does not necessarily give you the right to use them in your game.
As with all other intellectual property, you need to read the license agreement that is
available with the f ile to determine whether you can include the f ile in a commer-
cial game.

www.demoscene.info
http://modarchive.org
http://modarchive.org/index.php?faq-licensing

Chapter 15 Multimedia Extensions334

An interesting wrinkle is that XMP expects to find the sound files on the SD card
of the Android device. If you have a .mod file in your assets folder, how do you get
it to the SD card so that XMP can find it? Fortunately, Nicolas has provided some file
utility functions to help with just such a case and a MOD example program to show
us how to use them. The example source is located at this URL:

http://code.google.com/p/andengineexamples/source/browse/src/org/anddev/

andengine/examples/ModPlayerExample.java

Figure 15.3 XMP screen

http://code.google.com/p/andengineexamples/source/browse/src/org/anddev/andengine/examples/ModPlayerExample.java
http://code.google.com/p/andengineexamples/source/browse/src/org/anddev/andengine/examples/ModPlayerExample.java

MOD Music 335

Listing 15.3 is a simplified version of the file relocation code in that example.

Listing 15.3 Moving a File to SD Storage

. . .

 private final ModPlayer mModPlayer = ModPlayer.getInstance();

. . .

 if(FileUtils.isFileExistingOnExternalStorage(this,

 "mfx/8bit.mod")) {

 this.startPlayingMod();

 } else {

 this.doAsync(R.titleResouceID, R.messageResourceID,

 new Callable<Void>() {

 @Override

 public Void call() throws Exception {

 FileUtils.ensureDirectoriesExistOnExternalStorage(

 ModPlayerExample.this, "mfx/");

 FileUtils.copyToExternalStorage(

 ModPlayerExample.this, "mfx/8bit.mod",

 "mfx/8bit.mod");

 return null;

 }

 }, new Callback<Void>() {

 @Override

 public void onCallback(final Void pCallbackValue) {

 ModPlayerExample.this.startPlayingMod();

 }

 });

. . .

 // ===

 // Methods

 // ===

 private void startPlayingMod() {

 this.mModPlayer.play(FileUtils.getAbsolutePathOnExternalStorage(

 this, "mfx/8bit.mod));

 }

. . .

If the file already exists on the SD card, the code just calls startPlayingMod() to
pass the absolute filename to XMP via the ModPlayer object. Otherwise, in code that
runs asynchronously to the game, the utilities make sure the target directory exists and
then copy the file from assets/mfx to the target directory. When the copy operation is
complete, the startPlayingMod() method is invoked to pass the filename to XMP.

Chapter 15 Multimedia Extensions336

Multiplayer Games

Another AndEngine extension gives us the basic capability for communicating between
multiple Android devices for multiplayer games. The communication approach taken
by the extension is to use stream sockets to create a client/server relationship between
devices. If you’re not familiar with sockets, the idea originated with TCP/IP communi-
cation, and you can think of a socket as a virtual numbered port to a device. One way
sockets can be used is to exchange streams of data. The devices agree on a set of port
numbers to use (“well-known” port numbers exist for common protocols such as POP3
and SMTP for email), and then send and receive messages to and from these ports.

With this multiplayer extension, one Android device takes the role of server, and the
other assumes the role of client. The two devices can then freely exchange messages
over Wi-Fi or WAN (3G, 3G, EDGE, GPRS), or even Bluetooth.

Nicolas has written an excellent example program showing the messaging capability,
which you can find at the following location:

http://code.google.com/p/andengineexamples/source/browse/src/org/anddev/

andengine/examples/MultiplayerExample.java

This example is set up to send messages back and forth between one Android device
that declares itself to be the client, and another that declares itself to be the server. In
the version of the example that was available as this book was being written, the IP
addresses had to be entered manually. This requirement poses a problem when using
the extension, as the IP addresses for the other players must either be fixed (so they can
be written into the program) or entered by hand. Right now, the plan is to improve
the extension so it can perform address discovery, which will make it easier to use.
This fix may have been made by the time you read these words.

Reading or writing messages from or to a socket is something that has to be done
in a thread separate from your main UI thread. You don’t want the UI to freeze while
you’re waiting for messages to be exchanged. The extension handles this requirement,
as you can see in the source and example code, by creating a SocketServer that does
the actual communication, connected to your game through callbacks.

Finding Your IP Address on an Android Device

If you need to find the IP address of your device, either for the multiplayer extension

or for some other reason, it’s easy. On the Android device, go to Settings > Wi-Fi Set-

tings and touch the name of the network where you have a current connection. A small

dialog box will display the IP address and other information, such as the channel being

used and the MAC address.

Figure 15.4 shows a screenshot from the example program. Once you set up the
client/server connection, a face will show up wherever you touch the screen on the
server device. The server sends a message to the client, and the same face shows up in
the same spot on the client screen.

http://code.google.com/p/andengineexamples/source/browse/src/org/anddev/andengine/examples/MultiplayerExample.java
http://code.google.com/p/andengineexamples/source/browse/src/org/anddev/andengine/examples/MultiplayerExample.java

337Multi-Touch in AndEngine

Multi-Touch in AndEngine

The AndEngine multi-touch extension makes it possible to collect and make use of
multi-touch gestures in games. Of course, it can perform this feat only if the Android
device it is running on supports multi-touch capabilities. Unfortunately, there is no
magic that can circumvent this requirement. Most Android devices running version 2.0
(Éclair) or later will support multi-touch.

The AndEngine extensions greatly simplify the use of multi-touch in games.
As mentioned in Chapter 8 in the discussion of touch inputs, Android deals with
multi-touch cases by returning additional simultaneous touch events with ACTION_
POINTER_DOWN, ACTION_POINTER_MOVE, or ACTION_POINTER_UP as the action
parameter. Android programs can then get details from the event:

 n int getPointerCount(): returns the number of active pointers (fingers on
the screen)

 n float getX(int pointerIndex): analogous to the getX() method in the
single-touch case

 n float getY(int pointerIndex): analogous to getY() in the single-
touch case

The pointer index is not guaranteed to remain consistent from event to event (e.g.,
pointer index 1 in one event may or may not refer to the same finger as pointer 1 in
the next event). Pointer IDs are provided to ensure that continuity, and many other
bits of information are available from the events, but the key point is that with this
extension, you don’t have to worry about any of those issues.

Figure 15.4 Multiplayer screen

Chapter 15 Multimedia Extensions338

Listing 15.4 was adapted from the example activity MultiTouchExample.java
written by Nicolas Gramlich.

Listing 15.4 Multi-Touch Example Code: Part 1

. . .

 @Override

 public Engine onLoadEngine() {

. . .

 try {

 if(MultiTouch.isSupported(this)) {

 engine.setTouchController(

 new MultiTouchController());

 if(MultiTouch.isSupportedDistinct(this)) {

 mMultiTouchDistinct = true;

 } else {

 mMultiTouchDistinct = false;

 }

 } else {

 Toast.makeText(this,

 "Sorry your device does NOT support " +

 "MultiTouch!\n\n(Falling back to " +

 "SingleTouch.)", Toast.LENGTH_LONG).show();

 }

 } catch (final MultiTouchException e) {

 Toast.makeText(this, "Sorry your Android " +

 "Version does NOT support MultiTouch!\n\n" +

 "(Falling back to SingleTouch.)",

 Toast.LENGTH_LONG).show();

 }

 return engine;

 }

. . .

First, assume the library file for the multi-touch extension, andenginemulti touch-
extension.jar, has been loaded into the project in the same way we loaded the
other libraries. The try-catch statement in onLoadEngine() tests whether multi-touch
capabilities are available both on the device and on the version of Android that is running.
MultiTouch is a new class that takes care of testing the underlying hardware and Android
version for multi-touch support. Two types of multi-touch capabilities are currently
available in Android devices:

 n One type of multi-touch supports simple two-finger gestures, such as the pinch
gesture for zooming, but does not track multiple finger moves.

 n “Distinct” multi-touch tracks each finger’s moves separately.

Augmented Reality 339

The code continues in Listing 15.5. In this listing, the onAreaTouched code for the
Sprite is almost exactly like the code that we saw earlier for single-touch events. The only
difference is that we have added the mGrabbed boolean to the Sprite definition, which
allows us to track whether this Sprite has been “grabbed” with an ACTION_DOWN. For
the case where you just want to be able to move multiple Sprites using multiple touches,
using this extension is a lot easier than working with the Android pointer indexes and
pointer IDs.

Listing 15.5 Multi-Touch Example Code: Part 2

. . .

 final Sprite sprite = new Sprite(pX, pY,

 this.mTextureRegion) {

 boolean mGrabbed = false;

 @Override

 public boolean onAreaTouched(final TouchEvent

 pSceneTouchEvent,

 final float pTouchAreaLocalX,

 final float pTouchAreaLocalY) {

 switch(pSceneTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

 this.mGrabbed = true;

 break;

 case TouchEvent.ACTION_MOVE:

 if(this.mGrabbed) {

 this.setPosition(

 pSceneTouchEvent.getX() − Card.CARD_WIDTH / 2,

 pSceneTouchEvent.getY() − Card.CARD_HEIGHT / 2);

 }

 break;

 case TouchEvent.ACTION_UP:

 if(this.mGrabbed) {

 this.mGrabbed = false

 this.setScale(1.0f);

 }

 break;

 }

 return true;

 }

Augmented Reality

The term “augmented reality” has come to mean several different things with
respect to mobile games. In our case, it refers to games that superimpose computer-
generated graphics over the view seen through the device camera preview.

Chapter 15 Multimedia Extensions340

 Figure 15.5 shows a simple augmented reality screen in which vampires walk across
my backyard.

This AndEngine extension adds two new classes when we include the augmented-
realityextension.jar class into our Android game project:

 n BaseAugmentedRealityGameActivity: extends BaseGameActivity to include the
SurfaceView for the device camera preview

 n CameraPreviewSurfaceView: creates the SurfaceView itself

Using the extension couldn’t be easier. The essentials of the code that produced
vampires walking across my backyard are shown in Listing 15.6.

Listing 15.6 Augmented Reality Example Code

package com.pearson.lagp.vinb;

. . .

public class VampiresInBackyard extends BaseAugmentedRealityGameActivity {

 // ===

 // Constants

 // ===

Figure 15.5 Augmented reality—vampires in my backyard

Augmented Reality 341

 private static final int CAMERA_WIDTH = 480;

 private static final int CAMERA_HEIGHT = 320;

 private static final int VAMP_RATE = 2000;

 private static final int MAX_VAMPS = 10;

 // ===

 // Fields

 // ===

 private Camera mCamera;

 private Handler mHandler;

 private Texture mScrumTexture;

 private TiledTextureRegion mScrumTextureRegion;

 private AnimatedSprite[] asprVamp = new AnimatedSprite[10];

 private int nVamp;

 private Random gen;

 // ===

 // Constructors

 // ===

 // ===

 // Getter and Setter

 // ===

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 @Override

 public Engine onLoadEngine() {

 Toast.makeText(this, "If you don’t see a vampire moving " +

 "over the screen, try starting this while already being in " +

 "Landscape orientation!!", Toast.LENGTH_LONG).show();

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 mHandler = new Handler();

 gen = new Random();

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT), this.mCamera));

 }

Chapter 15 Multimedia Extensions342

 @Override

 public void onLoadResources() {

 TextureRegionFactory.setAssetBasePath("gfx/VinB/");

 mScrumTexture = new Texture(512, 256,

 TextureOptions.DEFAULT);

 mScrumTextureRegion =

 TextureRegionFactory.createTiledFromAsset(

 this.mScrumTexture,

 getApplicationContext(),

 "scrum_tiled.png", 0, 0, 8, 4);

 mEngine.getTextureManager().loadTexture(

 this.mScrumTexture);

 this.getEngine().getTextureManager().loadTexture(

 this.mScrumTexture);

 }

 @Override

 public Scene onLoadScene() {

 final Scene scene = new Scene(1);

 scene.setBackground(

 new ColorBackground(0.0f, 0.0f, 0.0f, 0.0f));

 // Add first vampire (which will add the others)

 nVamp = 0;

 mHandler.postDelayed(mStartVamp,3000);

 scene.registerUpdateHandler(new IUpdateHandler() {

 @Override

 public void reset() { }

 @Override

 public void onUpdate(final float pSecondsElapsed) {

 for (int i=0; i<nVamp; i++){

 if (asprVamp[i].getX() < 30.0f){

 //Move vampire back to right

 float startY = gen.nextFloat()*

(CAMERA_HEIGHT − 50.0f);

 asprVamp[i].clearEntityModifiers();

 asprVamp[i].registerEntityModifier(

 new MoveModifier(40.0f,

 CAMERA_WIDTH − 30.0f, 0.0f,

 startY, 340.0f)

);

 }

 }

 }

 });

 return scene;

 }

Summary 343

 // ===

 // Methods

 // ===

 private Runnable mStartVamp = new Runnable() {

 public void run() {

 int i = nVamp;

 Scene scene = VampiresInBackyard.this.mEngine.getScene();

 float startY = gen.nextFloat()*(CAMERA_HEIGHT − 50.0f);

 asprVamp[i] = new AnimatedSprite(CAMERA_WIDTH − 30.0f,

 startY, mScrumTextureRegion.clone()) ;

 nVamp++;

 scene.registerTouchArea(asprVamp[i]);

 final long[] frameDurations = new long[26];

 Arrays.fill(frameDurations, 500);

 asprVamp[i].animate(frameDurations, 0, 25, true);

 asprVamp[i].registerEntityModifier(

 new SequenceEntityModifier (

 new AlphaModifier(5.0f, 0.0f, 1.0f),

 new MoveModifier(40.0f,

 CAMERA_WIDTH − 30.0f, 0.0f, startY, 340.f)

));

 scene.getLastChild().attachChild(asprVamp[i]);

 if (nVamp < MAX_VAMPS){

 mHandler.postDelayed(mStartVamp,VAMP_RATE);

 }

 }

 };

}

Most of this code was grabbed with a cut-and-paste operation from V3LiveWallpaper
.java (which in turn gets a lot of the code from Level1Activity.java). Thus, when
you build a game activity that extends BaseAugmentedRealityGameActivity instead of
BaseGameActivity, you automatically see the device camera preview as the background
of your Scene. You can layer whatever graphics you want on top of that preview to create
your own augmented reality application.

Summary

This chapter reviewed the extensions available for AndEngine. As it happens, they are
all related to multimedia in one way or another. As AndEngine continues to grow and
improve, many other extensions will undoubtedly emerge that give us more ways to
make our games fun and interactive.

Chapter 15 Multimedia Extensions344

New AndEngine extensions are usually announced in the AndEngine forum:

http://www.andengine.org/forums/extensions/

The source and binaries for extensions are always available from the AndEngine
github site:

http://code.google.com/p/andengine/

Exercises

1. Modify V3LiveWallpaper.java so that the vampires disappear in an explosion
when they get to the left side of the screen, as shown in Figure 15.6.

Figure 15.6 V3LiveWallpaper with explosions

http://www.andengine.org/forums/extensions/
http://code.google.com/p/andengine/

Exercises 345

2. Right now, V3’s Whack-A-Vampire gamelet doesn’t play any music. Modify
WAVActivity.java so it plays a MOD file of your choice.

3. Modify VampiresInBackyard.java to indicate the current compass direction
at the top of the screen, as shown in Figure 15.7.

Figure 15.7 Augmented reality: vampires in my backyard with compass

direction (at the top of the screen)

This page intentionally left blank

16

Game Integration

At this point we’ve covered the basic elements of the AndEngine game engine. We’ve

discussed and demonstrated the following topics:

 n The basic game loop

 n Building and displaying menus

 n Creating scenes and making transitions between them

 n Creating sprites and attaching modifiers

 n Animating sprites

 n Drawing text using fonts

 n Getting input from the user

 n Using tile maps as a game canvas

 n Building and displaying particle effects

 n Playing music and sound effects

 n Using the Box2D physics engine

 n Applying artificial intelligence techniques

 n Tracking scores so players can measure their play

 n Multimedia extensions

In the process, we created a fair bit of code around a game we’ve called V3, or

Vampires Versus Virgins. We have also left a number of loose ends as we created that

example game, however. Now we’d like to bring those ends together to create a

better-integrated, more playable game.

This chapter discusses the following areas:

 n Difficulty balancing: We need to be able to adjust the difficulty of each gamelet

so that each is difficult enough to be challenging, yet easy enough to win. Each

gamelet has its own set of adjustable parameters, and we’d like those parameters

to be persistent across game-playing sessions.

 n Gamelet completion: When we implemented scoring in Chapter 14, we created

end Scenes for each gamelet, telling the player his or her score and showing the

Chapter 16 Game Integration348

five highest scores among all players. We also provided three buttons on those

screens that we said we would implement later (specifically, now):

 n Again: meaning “I’d like to play this same gamelet again.”

 n Quit: meaning “I’d like to quit the game entirely.”

 n Next: meaning “I’d like to play the next gamelet.”

We’ll devote a section to each of the generic topics of difficulty balancing and

completion, and then we’ll have sections for the specific changes in each gamelet.

Difficulty Balancing

Difficulty balancing is a function that can make or break your game in terms of its

attractiveness to players. If a game is too easy, players will get bored very quickly

and not play anymore. If a game is too difficult, players will get frustrated and stop

playing. You have to get the balance just right.

To make matters worse, players usually get better as they play, so the balance point

changes over time. No matter which scheme we use to adjust difficulty, we need to be

able to have the level of difficulty persist across game-playing sessions. Once players

get good at a game, they don’t want to have to navigate the “bunny slopes” every time

they play.

Difficulty Parameter Storage

We want to be able to adjust the difficulty of each gamelet, and to maintain that adjust-

ment from run to run. We could put the parameters in a SQLite database, which may

be the appropriate solution for complex games, but doing so is overkill for our game

given the few parameters we need to store.

Instead, we will turn to our old friend SharedPreferences, and create a new prefer-

ences file with the name “difficulty.” Each gamelet will be responsible for storing and

retrieving its own parameters, and Android will take care of preserving the values

between sessions.

Listing 16.1 shows how we’ll handle the SharedPreferences in each gamelet.

Listing 16.1 Difficulty SharedPreferences Generic Code

. . .

 difficulty = getSharedPreferences("difficulty", MODE_PRIVATE);

 diffEditor = difficulty.edit();

 mParam1 = difficulty.getInt("GAMELET.PARAM1", 1000);

 mParam2 = difficulty.getInt("GAMELET.PARAM2", 1);

 mWins = difficulty.getInt("GAMELET.WINS", 0);

 mPlays = difficulty.getInt("GAMELET.PLAYS", 0);

. . .

 private void mSaveDifficulty() {

Difficulty Balancing 349

 diffEditor.putInt("GAMELET.PARAM1", mParam1);

 diffEditor.putInt("GAMELET.PARAM2", mParam2);

 diffEditor.putInt("GAMELET.WINS", mWins);

 diffEditor.putInt("GAMELET.PLAYS", mPlays);

 }

. . .

At the beginning of the gamelet [in onLoadEngine()], we’ll pull the parameters

out of the SharedPreferences. In the string names, GAMELET will be replaced with the

name of the gamelet, and PARAMn with the name of the parameter. At the end of each

game, we’ll save the (possibly updated) parameters back to the SharedPreferences as

shown in the mSaveDifficulty() method.

Difficulty Parameter Setting

Once we have the parameters available to adjust the difficulty, how do we know

where to set them? The answer is simple, but you can spend a career implementing it

properly. You have to test your game with real players. You can then use their actual

game-playing results to properly set the difficulty level of your game. After gathering

and analyzing these data, you can make the difficulty adjustments at several different

levels of integration:

 n Test the game with as many target players as possible, and have them note the

results of their play. Correlate the results and set the degree of difficulty based on

the “sweet spot” of the feedback.

 n Adjust the difficulty as the game is played. You still have to come up with the

initial difficulty settings, but the game should then adjust them based on the

number of wins and losses as the player tries the game. This is the approach we

will use for V3.

 n Adjust the settings remotely, based on automatic feedback from a range of

players. Almost all Android devices are connected to the Internet, and you can

use that connection to gather information from the player’s runs of the game.

You can use the same connection to adjust the difficulty settings of the game.

Data gathering and remote manipulation require the player to grant permission

allowing you to access and tinker with the player’s game, but this can be a

powerful technique, particularly in social games.

To demonstrate our chosen strategy, we will track the total number of game plays

and the total number of losses in our SharedPreferences. At the end of a game, we can

use that information, along with whether the player just won, to adjust the difficulty

of the gamelet for the next play. You might also consider data such as “recent losses

in a row,” although wins and losses are sufficient to demonstrate the idea. For some

games, you might also want to register accelerometer feedback to note how many

times a player threw the Android device across the room in frustration (that’s a joke).

Chapter 16 Game Integration350

The code in Listing 16.1 shows the wins and plays as tracked in the SharedPrefer-

ences (losses are obviously just the difference between plays and wins). We might have

made these values bigger than an integer, but the integer type allows for a play to take

place every second for about 68 years, so it should be big enough.

Each gamelet will include a method called mIncreaseDifficulty() that will

bump up that gamelet’s difficulty by a set amount. We can make that increase as

complicated as we like, but for our purposes, we’ll keep it pretty simple. The details

for each gamelet are given in the gamelet sections later in this chapter.

Completion

To be able to respond to the user pressing the Again button, we need to be able to

restart our game. There are at least two ways we could do so:

 n Cancel any outstanding delayed Runnables, reinitialize any counters used to

keep track of the game’s current status, and call the method that starts things

rolling.

 n Post a Runnable that starts our Activity again, and call finish(), so the current

Activity goes away.

The first method probably makes the best use of computing resources. The textures,

particle effects, and levels don’t have to be reloaded, and many of the objects don’t

have to be re-created; instead, we just have to reinitialize everything properly. The

second method is easier, as the reinitialization is handled for us by the Runnable.

We’ll use the second method in the examples in this chapter, and leave the first

method for you to implement in the exercises at the end of the chapter. You can

always look at the code in the Exercise Solutions Appendix to see the first method.

Listing 16.2 shows the generic completion code that we will adapt for all of the

gamelets in V3.

Listing 16.2 Gamelet Completion Generic Code

. . .

 againButton = new Sprite(0.0f, 0.0f, mAgainButtonTextureRegion){

 @Override

 public boolean onAreaTouched(final TouchEvent pAreaTouchEvent,

 final float pTouchAreaLocalX,

 final float pTouchAreaLocalY) {

 switch(pAreaTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

 mEndCleanup();

 mHandler.post(mPlayThis);

 finish();

 break;

 }

Completion 351

 return true;

 }

 };

 nextButton = new Sprite(0.0f, 0.0f, mNextButtonTextureRegion){

 @Override

 public boolean onAreaTouched(final TouchEvent pAreaTouchEvent,

 final float pTouchAreaLocalX,

 final float pTouchAreaLocalY) {

 switch(pAreaTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

 mEndCleanup();

 mHandler.post(mPlayNext);

 finish();

 break;

 }

 return true;

 }

 };

 quitButton = new Sprite(0.0f, 0.0f, mQuitButtonTextureRegion){

 @Override

 public boolean onAreaTouched(final TouchEvent pAreaTouchEvent,

 final float pTouchAreaLocalX,

 final float pTouchAreaLocalY) {

 switch(pAreaTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

 mEndCleanup();

 finish();

 break;

 }

 return true;

 }

 };

. . .

 private void mEndCleanup() {

 mPlays++;

 if (mPlayerWon) {

 mIncreaseDifficulty();

 mWins++;

 }

 mSaveDifficulty();

 }

 private Runnable mPlayThis = new Runnable() {

 public void run() {

 Intent myIntent = new Intent(ThisActivity.this,

 ThisActivity.class);

 ThisActivity.this.startActivity(myIntent);

Chapter 16 Game Integration352

 }

 };

 private Runnable mPlayNext = new Runnable() {

 public void run() {

 Intent myIntent = new Intent(ThisActivity.this,

 NextActivity.class);

 ThisActivity.this.startActivity(myIntent);

 }

 };

The onAreaTouched() case for ACTION_DOWN for each button is similar:

 n Some common end-of-game processing is done in the method mEndCleanup().

Alternatively, we could have put this code in the mGameOver() method, but this

approach keeps things cleaner.

 n If either this Activity or another is to run next, a Runnable is posted to start it.

 n The finish() method is called to stop this Activity.

The mEndCleanup() method performs three tasks:

 n It increments the number of plays.

 n If the player won this gamelet, it bumps the difficulty by calling mIncrease-

Difficulty() (see the previous section on difficulty balancing for an explana-

tion of what goes on in that method) and increments the number of wins.

 n The difficulty parameters are saved back to SharedPreferences.

The mPlayThis Runnable restarts the current Activity (ThisActivity in the

code in Listing 16.2 is replaced with the actual name of the current Activity). The

mPlayNext Runnable starts the gamelet that should run next.

Level 1: The Main Game

Two difficulty parameters are currently coded as constants for the main (Level 1)

gamelet. We’ll make them into adjustable variables stored as SharedPreferences and

add a third parameter that can contribute a distraction:

 n mMaxVamps: This has been the constant MAX_VAMPS up until now. It is just the

maximum number of vampires the gamelet will put on the screen at any one

time.

 n mVampRate: This is the maximum time between launches of a new vampire. It

was formerly the constant VAMP_RATE.

Level 1: The Main Game 353

 n mDistract: This is a new boolean type that indicates whether distractions

should be enabled. We can make the distractions as complicated as we wish, but

for V3 this variable will be an animated virgin calling for help periodically from

Miss B’s window, as shown in Figure 16.1.

The major changes to Level1Activity.java are shown in Listing 16.3.

Listing 16.3 Completion and Difficulty Balance of Level1Activity.java

package com.pearson.lagp.v3;

+imports

public class Level1Activity extends BaseGameActivity {

 // ===

 // Fields

 // ===

. . .

 private Texture mSarahTexture;

. . .

 private TiledTextureRegion mSarahTextureRegion;

. . .

 private AnimatedSprite[] asprVamp = new AnimatedSprite[40];

 private AnimatedSprite asprSarah;

Figure 16.1 Level 1 with distracting virgin in Miss B’s window

Chapter 16 Game Integration354

. . .

 private Sound mSaveMeSound;

. . .

 private SharedPreferences difficulty;

 private SharedPreferences.Editor diffEditor;

. . .

 private AStar[] aStar = new AStar[40];

 private Path[] pathVamp = new Path[40];

 private int mWins, mPlays;

 private int mMaxVamps;

 private int mVampRate;

 private boolean mDistract;

 private boolean mPlayerWon;

 private boolean mActivityVisible = true;

. . .

 @Override

 public Engine onLoadEngine() {

. . .

 difficulty = getSharedPreferences("difficulty",

 MODE_PRIVATE);

 diffEditor = difficulty.edit();

 mMaxVamps = difficulty.getInt("Lvl1.MAX_VAMPS", 10);

 mVampRate = difficulty.getInt("Lvl1.VAMP_RATE", 4000);

 mDistract = difficulty.getBoolean("Lvl1.DISTRACT", true);

 mWins = difficulty.getInt("Lvl1.WINS", 0);

 mPlays = difficulty.getInt("Lvl1.PLAYS", 0);

. . .

 @Override

 public void onLoadResources() {

. . .

 mSarahTexture = new Texture(256, 64,

 TextureOptions.DEFAULT);

 mSarahTextureRegion =

 TextureRegionFactory.createTiledFromAsset(

this.mSarahTexture, getApplicationContext(),

 "sarahanim.png", 0, 0, 6, 1);

 mEngine.getTextureManager().loadTexture(

this.mSarahTexture);

. . .

 SoundFactory.setAssetBasePath("mfx/");

 try {

. . .

 this.mSaveMeSound = SoundFactory.createSoundFromAsset(

 this.mEngine.getSoundManager(),

Level 1: The Main Game 355

 getApplicationContext(), "saveme.ogg");

. . .

 @Override

 public Scene onLoadScene() {

. . .

 // If distractions are enabled, start the first one

 if (mDistract) {

 mHandler.postDelayed(mStartSarah, 5000);

 }

. . .

//EndScene buttons updated as per Listing 16.2

. . .

 asprSarah = new AnimatedSprite(15.0f, 90.0f,

 mSarahTextureRegion);

 asprSarah.setVisible(false);

 scene.getLastChild().attachChild(asprSarah);

 return scene;

 }

. . .

 @Override

 public void onGamePaused() {

. . .

 mSaveMeSound.stop();

 mActivityVisible = false;

 }

 @Override

 public void onGameResumed() {

 super.onGameResumed();

 mActivityVisible = true;

 }

. . .

 private Runnable mStartSarah = new Runnable() {

 public void run() {

 final long[] frameDurations = new long[6];

 Arrays.fill(frameDurations, 200);

 asprSarah.setVisible(true);

 asprSarah.animate(frameDurations, 0, 5, false);

 playSound(mSaveMeSound);

 mHandler.postDelayed(mStartSarah,

 (long)(gen.nextFloat()*7000.0f + 8000.0f));

 mHandler.postDelayed(mEndSarah, 2000);

 }

 };

Chapter 16 Game Integration356

 private Runnable mEndSarah = new Runnable() {

 public void run() {

 asprSarah.setVisible(false);

 }

 };

. . .

 private void playSound (Sound mSound){

 if ((audioOptions.getBoolean("effectsOn", false)) &&

 (mActivityVisible)){

 mSound.play();

 }

 }

. . .

 private void mIncreaseDifficulty() {

 // Make the gamelet a little harder

 if (mMaxVamps < 40) mMaxVamps += 5;

 if (mVampRate > 500) mVampRate −= 500;

 if (mWins > 5) mDistract = true;

 }

 private void mSaveDifficulty() {

 diffEditor.putInt("Lvl1.MAX_VAMPS", mMaxVamps);

 diffEditor.putInt("Lvl1.VAMP_RATE", mVampRate);

 diffEditor.putBoolean("Lvl1.DISTRACT", mDistract);

 diffEditor.putInt("Lvl1.WINS", mWins);

 diffEditor.putInt("Lvl1.PLAYS", mPlays);

 }

 private void mEndCleanup() {

 mPlays++;

 if (mPlayerWon) {

 mIncreaseDifficulty();

 mWins++;

 }

 mSaveDifficulty();

 }

 private Runnable mPlayThis = new Runnable() {

 public void run() {

 Intent myIntent = new Intent(Level1Activity.this,

 Level1Activity.class);

 Level1Activity.this.startActivity(myIntent);

 finish();

Level 1: The Main Game 357

 }

 };

 private Runnable mPlayNext = new Runnable() {

 public void run() {

 Intent myIntent = new Intent(Level1Activity.this,

 WAVActivity.class);

 Level1Activity.this.startActivity(myIntent);

 finish();

 }

 };

}

The difficulty parameters are loaded and saved to the SharedPreferences, as discussed

in the previous sections. The button changes are exactly as shown in Listing 16.2,

so they aren’t repeated here. The parameters are different, of course, but the method

names—mIncreaseDifficulty(), mSaveDifficulty()—are exactly the same for

all gamelets.

The virgin crying out for help is named Sarah, in case you haven’t guessed. I

purchased the rights to use her image from Content Paradise for $3.99.

There isn’t a whole lot new in this code. We load the TiledTextureRegion

for Sarah just like we did for the vampires, and we load the cry for help effect

the same way we loaded the other effects. If the gamelet starts with distractions

enabled, we post a Runnable to start the f irst Sarah, which will then wait a variable

amount of time before relaunching herself. We create Sarah as an invisible Sprite,

and then turn visibility (and animation) on and off as we need to show her to

the player.

There is one new wrinkle in onGamePaused() and onGameResumed(). We’ve

added a boolean variable that will tell us whether the game is the Activity that is cur-

rently visible. Based on its value, the playSound() method can tell whether it should

play Sarah’s cry. Without that kind of gate, Sarah keeps yelling for help, even when

the game is no longer on the screen.

One other point to note is that we’ve increased the sizes for vampire-related arrays to

40 (the maximum value for mMaxVamps). It would be even better to make this value a

constant that can be changed in one place for the whole gamelet.

The code for mPlayThis() and mPlayNext() are shown in Listing 16.3,

as they are more explicit than the generic versions found in Listing 16.2.

 mPlayThis() restarts the current activity, and mPlayNext() starts the next

one in this chain:

 n Level 1

 n Whack-A-Vampire

 n Irate Villagers

Chapter 16 Game Integration358

Whack-A-Vampire

The three difficulty parameters that are currently constants in Whack-A-Vampire are

summarized here. Again we make them into variables, so we can adjust them and store

them in the “difficulty” SharedPreferences:

 n mOpenRate: Formerly the constant OPEN_RATE, this variable is the maximum

number of milliseconds between coffin openings. Increasing this rate makes the

gamelet easier, while reducing it makes the gamelet harder.

 n mStayOpen: Formerly the constant STAY_OPEN, this variable is the maxi-

mum number of seconds a coff in will stay open. Again, increasing this

parameter makes the gamelet easier, while reducing it makes play more

diff icult.

 n mOpensPerGame: Formerly the constant OPENS_PER_GAME, this variable dic-

tates the number of coffins that are opened in one run of the game. Opening

more coffins makes the game harder (because you have to concentrate longer),

while opening fewer coffins makes it easier.

Listing 16.4 shows the changes needed to complete and add some difficulty balanc-

ing to the Whack-A-Vampire gamelet in WAVActivity.java:

Listing 16.4 Completion and Difficulty Balance of WAVActivity.java

package com.pearson.lagp.v3;

+imports

public class WAVActivity extends BaseGameActivity {

. . .

 // ===

 // Fields

 // ===

. . .

 private int mOpenRate;

 private int mOpensPerGame;

 private int mStayOpen;

 private int mWins, mPlays;

 private boolean mPlayerWon;

. . .

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

Whack-A-Vampire 359

 @Override

 public Engine onLoadEngine() {

. . .

 difficulty = getSharedPreferences("difficulty",

 MODE_PRIVATE);

 diffEditor = difficulty.edit();

 mOpenRate = difficulty.getInt("WhAV.OPEN_RATE", 4000);

 mStayOpen = difficulty.getInt("WhAV.STAY_OPEN", 2000);

 mOpensPerGame = difficulty.getInt("WhAV.OPENS_PER_GAME",

 10);

 mWins = difficulty.getInt("WhAV.WINS", 0);

 mPlays = difficulty.getInt("WhAV.PLAYS", 0);

. . .

// EndScene buttons changes as in Listing 16.2

. . .

 private Runnable openCoffin = new Runnable() {

 public void run() {

. . .

 mHandler.postDelayed(openCoffin, openTime);

 mHandler.postDelayed(closeCoffin, openTime+mStayOpen);

 }

 };

 private Runnable closeCoffin = new Runnable() {

 public void run() {

. . .

 if (++mNumClosed > mOpensPerGame)

 mGameOver(PLAYER_WINS);

 }

 };

 private void mGameOver(boolean pWin){

. . .

 if (pWin){

 mPlayerWon = true;

 scene.setChildScene(mCreateEndScene(newTop,

 "Congratulations!!"), false, true, true);

 } else {

 mPlayerWon = false;

 scene.setChildScene(mCreateEndScene(false,

 "You Suck! \n. . . .blood"));

 }

 }

. . .

 private void mIncreaseDifficulty() {

 // Make the gamelet a little harder

Chapter 16 Game Integration360

 if (mOpenRate > 1000) mOpenRate −= 1000;

 if (mStayOpen > 500) mStayOpen −= 200;

 if (mOpensPerGame < 50) mOpensPerGame += 10;

 }

 private void mSaveDifficulty() {

 diffEditor.putInt("WhAV.OPEN_RATE", mOpenRate);

 diffEditor.putInt("WhAV.STAY_OPEN", mStayOpen);

 diffEditor.putInt("WhAV.OPENS_PER_GAME", mOpensPerGame);

 diffEditor.putInt("WhAV.WINS", mWins);

 diffEditor.putInt("WhAV.PLAYS", mPlays);

 }

. . .

}

Irate Villagers

In physics games such as Irate Villagers, the level of difficulty mostly depends on the

design of each level. As a consequence, difficulty is a bit less under our control while

the game is being played. There are still some things we can adjust:

 n mMaxStakes: This variable consists of the number of stakes the player gets to

throw at the pile of heads and debris before the game is declared over. In earlier

versions of this gamelet, this value was given by the constant MAX_STAKES.

 n mMaxTime: Right now we give players all the time in the world to complete the

level, but we’ll add a timer to put a little pressure on them.

The changes needed to complete the Irate Villagers gamelet and add some difficulty

balancing to IVActivity.java are shown in Listing 16.5.

Listing 16.5 Completion and Difficulty Balance of IVActivity.java

package com.pearson.lagp.v3;

+imports

public class IVActivity extends BaseGameActivity implements

 IOnSceneTouchListener, BKConstants {

 // ===

 // Constants

 // ===

. . .

 private static final int NUM_LEVELS = 4;

Irate Villagers 361

. . .

 // ===

 // Fields

 // ===

. . .

 private ChangeableText mCurrScore, mTimeLeftTxt;

 private float mTimeLeft;

. . .

 private boolean mPlayerWon;

 private int mWins, mPlays;

 private int mMaxStakes;

 private int mMaxTime;

 private boolean [] mLevelComplete = new boolean[NUM_LEVELS];

 private int mCurrentLevel;

 private Handler mHandler;

. . .

 @Override

 public Engine onLoadEngine() {

. . .

 difficulty = getSharedPreferences("difficulty",

 MODE_PRIVATE);

 diffEditor = difficulty.edit();

 mMaxStakes = difficulty.getInt("IV.MAX_STAKES", 10);

 mMaxTime = difficulty.getInt("IV.MAX_TIME", 90);

 mTimeLeft = mMaxTime;

 for (int i=0; i<NUM_LEVELS; i++){

 mLevelComplete[i] =

 difficulty.getBoolean("IV.LEVEL"+i, false);

 }

 mWins = difficulty.getInt("IV.WINS", 0);

 mPlays = difficulty.getInt("IV.PLAYS", 0);

. . .

 }

 @Override

 public void onLoadResources() {

. . .

 // Time display

 mTimeLeftTxt = new ChangeableText(0.2f*CAMERA_WIDTH, 10.0f,

 mFont32, "Secs: 0", "Secs: XXX".length());

 mScene.getLastChild().attachChild(mTimeLeftTxt);

. . .

 mScene.registerUpdateHandler(new IUpdateHandler() {

Chapter 16 Game Integration362

 @Override

 public void reset() { }

 @Override

 public void onUpdate(final float pSecondsElapsed) {

 mTimeLeft −= pSecondsElapsed;

 if (mTimeLeft < 0){

 mGameOver(false);

 }

 mTimeLeftTxt.setText("Time: " +

 (int)mTimeLeft);

 }

 });

 return mScene;

 }

. . .

 private void mIncreaseDifficulty() {

 // Make the gamelet a little harder

 if (mMaxStakes > 1) mMaxStakes −= 1;

 if (mMaxTime > 20) mMaxTime −= 10;

 }

 private void mSaveDifficulty() {

 diffEditor.putInt("IV.MAX_STAKES", mMaxStakes);

 diffEditor.putInt("IV.MAX_TIME", mMaxTime);

 for (int i=0; i<NUM_LEVELS; i++){

 diffEditor.putBoolean("IV.LEVEL"+i, mLevelComplete[i]);

 }

 diffEditor.putInt("IV.WINS", mWins);

 diffEditor.putInt("IV.PLAYS", mPlays);

 diffEditor.commit();

 }

}

In addition to the difficulty parameters, we have introduced two other features to

Irate Villagers:

 n The ability to load, run, and track player success on a series of physics levels,

labeled “iv0.lvl,” “iv1.lvl,” and so on. The maximum number of levels is set in

constant NUM_LEVELS.

 n A timer now counts down on the screen. If the player doesn’t complete the level

before the timer goes off, the gamelet is over and the player loses. The starting value of

the timer is one of the difficulty parameters that are adjusted at the end of each run.

Exercises 363

The first feature is implemented with a boolean array that tracks completion

of the different levels, using the difficulty SharedPreferences. When the gamelet

starts, it looks at this array to determine which level should be run next. When a

level is successfully completed by the player, it is so marked and committed to the

SharedPreferences.

The timing feature is implemented in much the same way as we implemented

the process of showing scores, but now the time is updated by a newly introduced

UpdateHandler. Conveniently, every UpdateHandler is provided with the time since

the last update, so it can keep track of the approximate elapsed time. If the timer runs

out, we call mGameOver with a value of false to indicate the player lost.

Options Menu

Since we’ve chained the gamelets together, we would normally delete Whack-A-

Vampire and Irate Villagers from the options menu. However, for debugging purposes,

it’s convenient to be able to reach a gamelet without going through the whole chain,

so we’ll leave the menu the way it is.

Summary

Our V3 example game is now almost complete. Some housekeeping is needed to

make the code neater and easier to support, but feature-wise the game is ready for beta

testing with real players.

The techniques covered in this chapter aren’t really unique to AndEngine. The

mechanisms we used to parameterize and adjust gamelet difficulty were all Android

APIs and plain old Java code. The method we used to implement the replay and play-

next functionality was built entirely on Android’s startActivity() method.

We’re almost ready to publish our game. In Chapter 17, we’ll discuss beta test-

ing and the publishing process, and then we can make V3 available for the world to

admire!

Exercises

1. In Level1Activity’s onPaused() method, we set the boolean

mActivityVisible to false so playSound() will not play sounds while

we’re working on something off the V3 screen. A slightly better way of

handling this situation would be to cancel all outstanding Runnables while

we’re away, and then restore them in onResume(). With this approach, the

compute resources that would otherwise be devoted to posting and running the

Runnables will be saved. Change Level1Activity.java so Runnables don’t

run when V3 is off the screen.

Chapter 16 Game Integration364

2. Change OptionsActivity.java so the menu items for Whack-A-Vampire and

Irate Villagers are no longer visible. Instead, hide two invisible buttons on the

right side of the splash screen that will trigger those two gamelets.

3. Add a Help screen that appears when the player selects “Help” from the main

menu in MainMenuActivity.java.

17

Testing and Publishing

The V3 game (and your own game, we hope) is now almost feature complete, and

we’d like to get it ready to publish to the world. There is one more feature we’d like

to add to V3—the ability for the user to make in-app purchases. Once we’ve added

this feature, we need to test our game thoroughly, finding and resolving as many bugs

as we possibly can. When users download our game and try it out, we want them to

be pleasantly surprised by how much fun our game is to play and how well it works.

It takes only a few “force close” errors to turn a player off of a game permanently.

Application Business Models

Before we dive into the technical details of implementing different ways to collect

money, let’s take a minute to talk about how you plan to market your game. We’ll dig

into the topic of promoting the game in a later section, but here we need to decide if

and how you might get repaid for your diligent effort in developing the world’s best

mobile game.

Table 17.1 lists a few well-known business models and summarizes their chief

 tradeoffs. There’s no right model for everyone, so take a look at the pros and cons and

decide which one you’d like to use (or come up with your own business model). As

noted in Table 17.1, some of the models require you to add code to your game, but

 others don’t.

Table 17.1 does not represent an exhaustive list of business models, as new ones are

thought up daily. Most of today’s applications, however, use one or more of the models

listed in the table. It’s very common, for example, to offer a basic game for free and an

enhanced game for a download fee.

Our V3 game isn’t really about making money, so we’ll make it available for free

download. If you are interested in finding out more about adding advertisements to your

game, a list of mobile advertising companies appears toward the end of this chapter, and

Google provides an overview of integrating its AdMob service at the following URL:

http://code.google.com/mobile/ads/docs/android/fundamentals.html

http://code.google.com/mobile/ads/docs/android/fundamentals.html

Chapter 17 Testing and Publishing366

If you are interested in providing in-app purchases in your game, Google also

provides a convenient example application for the Android SDK, and an overview.

You can find these items at this address:

http://developer.android.com/guide/market/billing/billing_overview.html

Testing and Getting Ready

We won’t dodge the issue: Testing can be tedious. In fact, most software developers

look at testing as a bore. Playing the part of a user and entering the same commands

over and over to ferret out problems and prove the corrections have fixed the problem

gets old in a hurry.

Of course, it’s also the source of a lot of the fun in software development. At the

beginning of the book we noted that solving puzzles was fun and that software devel-

opment is fun for many of us because it gives us interesting puzzles to solve. The testing

process is one way we discover those puzzles, and devising tests is an interesting problem

in itself.

I know what you’re thinking, and I won’t argue with you: It’s still boring to repeat

the same test processes over and over—but it’s absolutely essential to the success of

your game. You have to find as many bugs as you can before you hand your game over

to beta testers, and you have to get your beta testers to find as many bugs as they can

before you release your game to the world.

Google’s Android developer site offers a very good checklist for preparing any

application for publication:

http://developer.android.com/guide/publishing/preparing.html

Table 17.1 Android Game Business Models

Model Benefit Cost

Free Reaches the widest possible

audience. Can be used to build

your reputation.

Low—just the cost of publication.

Mobile advertising A small fee goes into your

account for every player who

clicks on a mobile ad.

Moderate. Code to present mobile

ads goes into the game. The ads

take up some screen real estate.

Freemium: free plus

 in-app purchases

Can reach a broad audience

by giving away the basic game.

Some revenue can be collected

by offering add-ons for a fee.

Moderate. Code to manage the in-

app purchasing process has to be

added to game.

Pay for play You get revenue immediately

when the user downloads and

installs the game.

Low—just the cost of publication.

http://developer.android.com/guide/market/billing/billing_overview.html
http://developer.android.com/guide/publishing/preparing.html

Testing and Getting Ready 367

We will paraphrase this checklist here, adapting it for games and adapting it for use

with application stores other than Android Market.

Test the Game on Actual Devices

This point can’t be overemphasized: You need to test your game on the actual devices

on which users will run it. The emulators that come with the Android SDK are great,

but emulation on a PC or Mac using a mouse for touch gestures just isn’t the real

thing. If you’re short of Android devices and need to do unit testing using the emula-

tor, that’s fine—but I don’t even do that. I leave an Android device connected to my

development machine and always test and debug on a real Android device.

However, one Android device isn’t nearly enough. Devices can be vastly dif-

ferent, running different versions of Android, with different processors, including

some with graphics processors and some without; some devices with large, high-

resolution screens and others with small, low-resolution screens; and some with only

single-touch capabilities and others with advanced multi-touch support. You need

to test your game on as many Android devices as you can reach. The good news is

that, unlike with some other platforms such as iOS and Windows Phone 7, you can

 sideload your game to as many Android devices as you want to before committing it

to an app store.

Most of us don’t have unlimited funds for buying one of each Android device. Now

is a good time to leverage your friends who have Android devices and ask them to be

beta testers of your new game. You’ll need to send them the APK, of course, but it

doesn’t even have to be signed, as long as they enable sideloads (Settings >

Applications > Unknown Sources) and know how to use adb to load the APK.

Consider Adding an End User License Agreement

For legal reasons, you should include an End User License Agreement (EULA) with

your game that limits your liability. Players who download the game see this agreement

when they install the game and have the option of agreeing or declining the agreement.

We aren’t lawyers, and we’re not in the business of offering legal advice, but for example

EULAs for Android applications, you can take a look at this site:

http://code.google.com/p/apps-for-android/source/browse/trunk/

DivideAndConquer/assets/EULA?r=93

You can also look at the EULA we used for Vampires Versus Virgins, which is included

with the downloadable source code for this chapter.

We need some code that displays the EULA when players first start the game. They

can accept or decline the EULA. If they accept, the game starts, and they are never asked

again. If they decline, the game immediately exits. The EULA acceptance dialog is shown

in Figure 17.1. The code that presents this agreement (and records the fact that the EULA

has been presented in SharedPreferences) is shown in Listing 17.1.

http://code.google.com/p/apps-for-android/source/browse/trunk/DivideAndConquer/assets/EULA?r=93
http://code.google.com/p/apps-for-android/source/browse/trunk/DivideAndConquer/assets/EULA?r=93

Chapter 17 Testing and Publishing368

Listing 17.1 StartActivity.java showEULA Method

. . .

 @Override

 public void onCreate(Bundle pSavedInstanceState){

 super.onCreate(pSavedInstanceState);

 showEULA();

 }

. . .

 public void showEULA() {

 eula = getSharedPreferences("eula", MODE_PRIVATE);

 boolean eulaShown = eula.getBoolean("shown", false);

 if(eulaShown == false){

 String title = this.getString(R.string.app_name);

 String message = this.getString(R.string.updates) + "\n\n" +

 getString(R.string.eula);

 AlertDialog.Builder builder = new AlertDialog.Builder(this)

 .setTitle(title)

 .setCancelable(false)

 .setMessage(message)

 .setPositiveButton(getString(R.string.accept),

 new Dialog.OnClickListener() {

 @Override

 public void onClick(

 DialogInterface dialogInterface, int i) {

 // Mark this version as read.

 eulaEditor = eula.edit();

 eulaEditor.putBoolean("shown", true);

 eulaEditor.commit();

 dialogInterface.dismiss();

 }

 })

Figure 17.1 EULA dialog

Testing and Getting Ready 369

 .setNegativeButton(getString(R.string.decline),

 new Dialog.OnClickListener() {

 @Override

 public void onClick(DialogInterface dialog,

 int which) {

 finish();

 }

 });

 builder.create().show();

 }

 }

The onCreate() override calls the showEULA() method, after calling the super

.onCreate() method so it can do its thing. The showEULA() method creates an

AlertDialog that contains the update message and the EULA text that we’ve added to

strings.xml and displays the dialog. We’ve used setCancelable(false) for the

AlertDialog to ensure that the user can’t use the back button to get around it.

Add an Icon and a Label to the Manifest

We’ll need an icon for V3 to display on the Application Launcher’s menu. Let’s use

the same one we used for the live wallpaper in Chapter 15. We created the icon in

three sizes, for use in the three Android dpi classes. The icon images all have the name

icon.png and are loaded into the three resource folders under res/, as shown in

Table 17.2. These icons all look like the image in Figure 17.2.

Figure 17.2 V3 icon

Table 17.2 V3 Icon Images

Folder Dimensions

drawable-hdpi 128 × 128 pixels

drawable-mdpi 64 × 64 pixels

drawable-ldpi 32 × 32 pixels

Chapter 17 Testing and Publishing370

Turn Off Logging and Debugging

We didn’t make extensive use of logging and debug statements in V3 (at least not

in the versions that are shown in the book). If you do use logging and debug state-

ments as you’re developing your own game, it’s a good idea to conditionalize them,

which makes it easy to turn the statements off or on. We don’t want the player to be

confronted with debug statements, and we shouldn’t waste log space by filling it with

messages that won’t be read.

In the downloaded V3 code, you may have noticed one place where we do need to

turn off debugging—in AndroidManifest.xml. The Android device we have been

using for debugging purposes is a commercial Android smartphone that requires the

debuggable attribute in the manifest file to run the gdb debugger on the game. To

turn off this debugging, we need to change just one line in AndroidManifest.xml.

The new line reads as follows:

<application android:icon="@drawable/icon" android:label= "@string/app_

name" android:debuggable="false">

Add a Version Number to the Game

In case you haven’t already been sold on this concept, versioning is of critical impor-

tance in Android applications, including games. Android itself doesn’t look at the

version number, but Android Market will use this information to let users know that

updates are available for applications you have installed.

In the manifest for your game, you should define two identifiers:

 n android:versionCode: an integer of your choice that monotonically

increases with each version of the game you release. It is suggested that you

start with 1 and increment this number by 1 for every major and minor

release.

 n android:versionName: a String that can be displayed to the user that describes

this release of your game. You can use whatever versioning system you want, but

most developers stick with the major.minor format to indicate how many major

and minor releases have been made.

The versioning part of V3’s manifest file is shown in Listing 17.2.

Listing 17.2 V3’s Manifest File: Versioning Information

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.pearson.lagp.v3"

 android:versionCode="1"

 android:versionName="1.0">

. . .

Testing and Getting Ready 371

Obtain a Crypto Key

While we’ve been developing our game, the Android SDK has been providing us with

a debug cryptographic (crypto) key for all of our APKs. That arrangement worked

well for development, but now we want to distribute our game to other users, so we

need our own private crypto key that we can use to sign the .apk file.

If you haven’t been through this process before, relax: It’s just a matter of walking

through a few steps. The Android SDK comes with a tool called Keytool that knows

how to generate crypto keys, and you just use that tool to create the key you need.

You run Keytool from a Command window. Listing 17.3 shows something like what

you’ll see on the screen. This listing was obviously created on a Windows PC, but the

tool runs the same way on Linux or OS X.

Listing 17.3 Running Keytool to Generate a Key

C:\Users\rick>keytool -genkey -v -keystore V3-release-key.keystore -alias

 V3_alias -keyalg RSA -keysize 2048 -validity 10000

Enter keystore password:

Re-enter new password:

What is your first and last name?

 [Rick]: Rick Rogers

What is the name of your organizational unit?

 [Unknown]: Portmobile Software

What is the name of your organization?

 [Unknown]: Portmobile Software

What is the name of your City or Locality?

 [Unknown]: Harvard

What is the name of your State or Province?

 [Unknown]: MA

What is the two-letter country code for this unit?

 [Unknown]: US

Is CN=Rick, OU=Portmobile Software, O=Portmobile Software, L=Harvard,

ST=MA, C=US correct?

 [no]: yes

Generating 2,048 bit RSA key pair and self-signed certificate

(SHA1withRSA) with a validity of 10,000 days

 for: CN=Rick Rogers, OU=Portmobile Software, O=Portmobile Software,

L=Harvard, ST=MA, C=US

Enter key password for <V3_alias>

 (RETURN if same as keystore password):

[Storing V3-release-key.keystore]

After you run Keytool, the resulting private crypto key is stored in the keystore,

with both the key and the keystore being protected by the password. The alias name is

the handle you use to refer to a specific key in the keystore; it will be used a little later,

Chapter 17 Testing and Publishing372

when we sign the final .apk file. Don’t forget the password, and don’t forget the alias

that you used when creating the key. The recommendation is that you sign every release

of your game with this same certificate throughout its life, which means you may need

the password and alias for a long time. The number after “validity” is the number of

days for which the generated key will remain good. Google requires that all private

keys used for application signing be good at least until October 22, 2033.

Compile and Sign the Final .apk File

Generating a signed .apk file is just a matter of working your way through some

dialog boxes once you have a key saved in the keystore. When you right-click on

the Android project for your game, left-click on Android Tools, and left-click on

Export Signed apk, a series of dialog boxes open that ask you for the following

information:

 n Location of the keystore: Keytool will have created the keystore in whatever

directory you were in when you ran it. In the preceding example, the keystore

V3-release-key.keystore is in C:\Users\rick.

 n Password: The dialogs will ask for the password twice—once for the keystore

and once for the key.

 n Alias: In the preceding example, the alias is V3_alias. To help you determine the

appropriate alias, the dialog box lists all the aliases it finds in the keystore.

 n Destination file: This option allows you to choose where you want to put the

signed .apk file.

You can now install your .apk file on Android devices using adb. For example, if

there is only one Android device connected to your computer via USB, you can use

this command:

adb -d install v3.apk

Your game will be installed on the device. If you change the game and want to

reinstall the signed package, you have to uninstall it first:

adb -d uninstall com.pearson.v3

Test the Final .apk File

It’s entirely possible that something in your game’s code may have changed in the pro-

cess of generating the final .apk file for release to Android Market. Because you’re

going to put your game in front of the world soon, it’s worth a final sanity check to

make sure things still work the way they are supposed to. Download your signed .apk

file to as many Android devices as you can lay your hands on, and make sure the game

still works the way it did when you finished the earlier testing cycle. If you find any

new problems, it’s easy enough to go through the signing process again, now that you

have your private key ready to use.

Publishing 373

Publishing

The number of app stores available for publishing Android applications and games

grows every day. Two of the more popular sites for downloads are these options:

 n Android Market: the original Android app store from Google

 n Amazon App Store: a newer entry into the app store race from Amazon,

currently available only in the United States

At the time of writing, Android Market is by far the larger venue. Just about every

consumer Android device on the planet comes with Android Market pre-installed, so

if you put your game anywhere, you should put it on Android Market.

That said, many Android device owners prefer downloading applications and

games from other app stores, such as Amazon’s site. Whether it’s the convenience of

purchasing from Amazon or the lure of Amazon’s “Free App of the Day,” the Amazon

store appears to be gaining in popularity. Users do have to take the trouble to install

the Amazon App Store application on their Android device to find and download

apps—a consideration that will probably always be an impediment for alternative

stores.

From the developer’s point of view, signing up to peddle games on both stores

is easy (see the details in the next two subsections). There is a difference in fees for

developers, however. Android Market charges a one-time $25 fee “to encourage

higher-quality products.” Amazon App Store charges a $99 yearly fee, but currently

waives the fee for the first year.

Android Market

Google tells us that more than half a million Android devices are activated every day,

and more than 100 million devices have already been activated. Almost every one of

those Android devices has the Android Market application running on it, making it

easy for users to find and download applications and games. By providing developers

with access to this enormous audience, Android Market is an incredible bargain at $25

to publish all the Android applications you can write.

The developer’s introduction to Android Market can be found at the following site:

https://market.android.com/publish/signup

This document tells developers that they must do three things to begin publishing on

Android Market:

 n Create a developer’s profile.

 n Pay the registration fee to Google.

 n Agree to the Android Market Developer Distribution Agreement.

The developer’s profile is very simple, as you aren’t even asked for your name and

address (you do have to enter that information when you pay the registration fee). You

https://market.android.com/publish/signup

Chapter 17 Testing and Publishing374

are asked for an email and phone number in case Android Market needs to contact

you, but the vendor promises not to give that contact information to others.

The registration fee ($25) is payable only through Google Checkout, which accepts

all the normal credit cards.

The Android Market Developer Distribution Agreement is a binding legal document.

I am not a lawyer and would never offer you legal advice. It’s best to have someone with

legal knowledge review anything you are going to commit yourself to, but in the end, if

you want to distribute through Android Market, you have to find a way to agree to it.

Once you’ve completed these three steps, approval of your developer status is generally

granted in minutes, and you gain access to the Developer’s Console. From here, you can

upload new applications and games and manage the ones you’ve already uploaded.

When you upload your signed .apk file, you will be asked to edit the information

about your application, and provide some screenshots, an icon, and optional graphics,

including an optional promotional video. Google has changed the information collected

several times, and will likely change it again, but for the game listing on Android Market

you are currently asked for the following items:

 n The language used by this version of the game.

 n The title of the game (up to 30 characters).

 n A description of the game (in English, up to 4000 characters).

 n Any recent changes to the game (in English, up to 500 characters).

 n A bit of promotional text (in English, up to 80 characters).

 n An application type of either “Applications” or “Games.” This choice determines

in which of those categories your app will be listed on Android Market.

 n Assuming you chose “Games,” a game category. You have six choices:

 n Arcade & Action

 n Brain & Puzzle

 n Cards & Casino

 n Casual

 n Racing

 n Sports Games

 n A content rating for your game:

 n High maturity

 n Medium maturity

 n Low maturity

 n Everyone

 n Pricing.

 n The countries where your game will be offered.

Publishing 375

 n Contact information, such as a website, email, and phone number.

 n Two items of consent:

1. That your game meets the Android Content Guidelines, which are rea-

sonable. To reiterate, I am not a lawyer, so check them out for yourself

(http://www.android.com/us/developer-content-policy.html).

2. That you accept responsibility for the export of your game under U.S. law.

Once all of that information is entered, you are ready to click the Publish button

and have your game served up to the masses of Android gamers.

If you want to charge for the game or enable in-app purchasing, you must also have

a Google Merchant account. This is not a difficult process (a link to sign up is avail-

able on the Edit Application web form), and it involves yet another of those legal con-

tracts that it is best to have a professional review.

Amazon App Store

The Amazon App Store is the up-and-coming new kid on the block when it comes

to distribution of Android applications. The bad news is that Amazon currently has a

much smaller audience of potential game players who could download your game.

The upside is that there are many fewer applications and games on the Amazon site,

so it is easier for your new game to get noticed there. Another upside is that Amazon

seems to be a bit more flexible in the content of applications it accepts. Whereas Google’s

Developer Program Policies explicitly forbid things like nudity and gambling with real

money, Amazon asks that you note these items in the content rating.

The process of publishing on Amazon is similar to the process for Android Market:

 n Go to the App Store Developer’s portal. The portal has a huge, long URL that

will probably change by the time you read this book, so just search for “Amazon

app store developer portal,” and you should be able to find it.

 n Sign in using an existing Amazon account, or create a new one.

 n You’ll be asked to accept yet another legal agreement. (It seems as if the lawyers

are the ones making the real money in this business.)

 n If you plan to charge money for your game, you can enter bank account infor-

mation so Amazon can send you your money.

 n On the MyApps tab, you can add your application. Again, the fields are likely to

change over time, but currently you are asked for the following information:

 n A title

 n The form factor: either Phone, Tablet, or both

 n An optional application SKU (Stock Keeping Unit—in case you want to track

your application sales like the big boys do)

 n Supported languages (English is the default)

 n Optional support contact information: email, phone, website URL

http://www.android.com/us/developer-content-policy.html

Chapter 17 Testing and Publishing376

 n A Merchandising Section includes the following items:

 n A category (e.g., Games) and subcategories (Games currently has 17 subcat-

egories to choose from)

 n Keywords to help searchers find your game

 n A description (up to 4000 characters)

 n List price (or free)

 n A set of dates for original release, visibility, availability, and discontinuation

 n A Content Rating Section includes these selections:

 n Advertisements

 n Culture Intolerance

 n Dynamic Content

 n Nudity

 n Sexual Content

 n Alcohol, Tobacco, or Drugs

 n Designed for Children

 n Gambling

 n Profanity

 n Violence

 n The Upload Multimedia Section is where you can upload screenshots, icons, and

other images.

 n The Upload Binary Section is where you upload your signed game .apk file.

When you have filled in all of the necessary information, click the “Submit App”

button. Amazon will review your information and most likely approve your game and

put it up on its site.

Promoting Your Game

For players to download and enjoy playing your game, they have to know it exists.

The word “promotion” often brings to mind carnival barkers and snake oil salesmen,

but you really do have to promote your game so people will know about it.

There are many ways to promote mobile applications, and entire books have been

written on the subject. We’ll cover a few of the basics but highly recommend that

you seek out as many of those books and articles as you have time to read. The ones

written for other mobile platforms apply in principle to Android games, too. It is also

recommended that you “think outside the box” when it comes to promoting your

game. Which clever ways can you imagine to get your game in front of potential

players?

Promoting Your Game 377

App Store Promotion

When we went through the app store submission processes for Android Market and

Amazon App Store, we saw that both provide you with opportunities to make your

game easy for players to find and download. Let’s look at each of those opportunities

in a bit more detail.

Feature Apps

Both app stores offer lists of featured apps and games for their users. Getting onto

one of the “Top” charts is an obvious benefit—but it means your game has to be one

of the Top Paid, Top Free, Top Grossing, Top New Paid, or Top New Free games.

Android Market also has Featured lists for Trending apps (including games) and Best-

Selling Games. The lists that are not quantitative (e.g., Featured Apps) are developed

by the editors of the respective websites. The best thing you can do is make your game

noticeable and hope to hook one of the editors into playing your game and putting it

on the list. There is no way to buy your way onto this list.

Title

Spend some time coming up with a catchy title that people will remember. V3 isn’t

really intended to become the next blockbuster game, but if it were, having memo-

rable words like “virgin” and “vampire” in the title would be good for sales. The best

names have emotional content that draw potential players’ attention and are hard to

forget. The title is limited to 30 characters on Android Market, so make sure you get

the most out of them. Test potential titles with your friends just the way you test the

actual game.

Keywords

Most players will find your game download from a keyword search. Pick keywords

that are related to your game and its title, and pick keywords that are commonly used.

Unfortunately, mobile app stores haven’t yet developed all of the analytic tools avail-

able to website developers, but don’t let that shortcoming stop you. Google AdWords

has a free keyword tool, available at the following URL:

https://adwords.google.com/o/Targeting/Explorer?__u=1000000000&__c=1000000

000&ideaRequestType=KEYWORD_IDEAS#search.none

The keyword statistics produced by this tool are for the Web, not for mobile game

searches, but they can help you identify popular keywords that might help promote

your game.

Screenshots and Icons

You will need to create an attractive icon that makes players want to download and try

out your game. Should you be fortunate enough to get recognition for your game on

an app store review list, your icon is likely to be all that is displayed on the top page of

the list. Make it a good one.

https://adwords.google.com/o/Targeting/Explorer?__u=1000000000&__c=1000000000&ideaRequestType=KEYWORD_IDEAS#search.none
https://adwords.google.com/o/Targeting/Explorer?__u=1000000000&__c=1000000000&ideaRequestType=KEYWORD_IDEAS#search.none

Chapter 17 Testing and Publishing378

The screenshots you upload for your game should be the most interesting screens

you can muster. You want potential customers to see those screenshots and say, “Wow,

that game looks like it could be fun. I think I’ll download it.” The order in which

you load the screenshots is also important, because not all are displayed on the front

page of your game entry. Pick the most engaging screenshot to be the one searchers

see first.

Description

The description posted on the app store is where you really get to put on your carnival

barker’s hat. One trick that advertising writers use is to focus on the words, sentence

by sentence. For example, the only goal of the first sentence in the copy is to get the

reader to read the second sentence. Write, rewrite, and hone that first sentence until

anyone reading it cannot help but read the next sentence. By the time they’ve read

the second sentence, they should be anxious to complete the first paragraph. The first

paragraph makes them want to read the rest of the copy. Before it ends, you give the

potential players a “call to action,” asking them to download the game.

Content Rating

You might not think of content ratings as a vehicle for marketing your game, but they

are. You should have a target audience in mind for your game, and the content ratings

should ref lect the needs of that target audience. The app stores allow search filtering,

and you want your audience’s filters to select for your game, not against it.

Player Reviews

For some reason, potential customers tend to give considerable weight to reviews writ-

ten by complete strangers on a website. You want to make sure your game is reviewed

favorably, so don’t release it until you’ve thoroughly beta tested it with a variety of

users. Those users should feel free to provide their review comments on the app store

sites, and you should encourage them to do so. Don’t worry too much about the occa-

sional poor review. Instead, focus on having the majority of the reviews give a positive

impression of your game.

Price

Pricing is an art. Even if you read all the books that have been written on this topic,

you still wouldn’t know the right price for your game. Free is always great, and there

are alternative ways to make money other than charging for your game download. If

you do plan to charge for your game, consider offering a “lite” version for free that

can introduce your game to a wider audience.

Aside from free games, mobile games seem to range in price from $0.99 to $4.99 or

so, with the lower-priced games selling better than the higher-priced ones. App store

searchers can filter searches based on price, and again you don’t want your game to be

filtered out.

Whatever price you charge, be aware that you won’t get 100% of the money. The

current Android Market agreement calls for Google to pay you 70% of each sale, and

Promoting Your Game 379

the Amazon App Store agreement calls for the company to pay the greater of 70% of

the sale or 20% of the list price (in case it’s a discounted sale). If you choose to give

your game away, you can’t go back and charge users for it later, but you can offer a

limited free edition and a full-featured edition for a price.

Game Review Sites

Mobile game review websites are an excellent way to get your game noticed and

reviewed. As mentioned earlier, each of the app stores has its own review section, but

there are also sites dedicated to reviewing games. Each site has its own process for sub-

mitting your game. If your game is reviewed, however, it can make a whole new audi-

ence aware that it exists, which is the first step toward them actually downloading and

playing the game.

Here are a few sites specializing in mobile games:

 n http://www.pocketgamer.co.uk/

 n http://www.gamespot.com/mobile/index.html

 n http://www.pocket-arcade.com/

Mobile Advertising

We discussed mobile advertising as a possible way of making money on your game

earlier in this chapter, but it can also be an effective way of marketing your game.

In this case, however, you are paying for the advertising and using it to promote your

game. For example, in the unlikely event that someone does a Google search for “vir-

gins” and “vampires,” I could pay Google a small amount to present the user with a

small ad stating that a game involving both exists for Android devices.

Here are some of the advertising services aimed at mobile users:

 n AdMob (www.admob.com): the largest service, owned by Google

 n inMobi (www.inmobi.com): a strong competitor for AdMob on Android

devices

 n JumpTap (www.jumptap.com): claims to maximize return by carefully targeting

ads at mobile users

 n Millennial Media (www.millennialmedia.com): another strong competitor for

AdMob

All of these are multiple-platform services (Android, iOS, Window Phone 7), but

you can select the target audience you are after.

Word of Mouth

The dream of every game developer is to have his or her game “go viral”—that is

to have people talking about your game as they stand around the water cooler or eat

lunch, spreading awareness to new customers, and telling each other how much fun

http://www.pocketgamer.co.uk/
http://www.gamespot.com/mobile/index.html
http://www.pocket-arcade.com/
www.admob.com
www.inmobi.com
www.jumptap.com
www.millennialmedia.com

Chapter 17 Testing and Publishing380

it is to play. There’s no way to ensure that outcome happens, but fundamentally you

want your game to be played by people who like to spread the news about new things,

and you want to make sure they have fun when they play it.

Tell everybody you know about your new game. Then tell them again, as they may

have forgotten about your news bulletin in the crush of everyday life.

Social Networking

If your game doesn’t have a Facebook site, it should. Why not? Facebook is another

place where people can find out about your game and share their experiences in play-

ing it. Twitter is another way to bring your game to people’s attention, particularly as

you make updates available and want people to download them and try them out.

Summary

If you had a person with an MBA on your staff (or maybe you have an MBA of your

own), that individual would tell you that marketing is all about the four P’s:

 n Product: You have to have a product that fills a need for your customers. In the

ideal scenario, you’ve written a game that is engaging and will entertain players,

help them pass unused time, and maybe even educate them a little.

 n Price: Products have to be priced at what customers are willing to pay. As we’ve

seen, pricing is tricky and involves more than the original purchase price of your

game. This area represents an opportunity to be creative.

 n Place: Place in this sense comprises the marketplace where your customer pur-

chases the product. In our case, that is almost certainly one (or more) of the app

stores that huge companies such as Google and Amazon operate.

 n Promotion: Customers have to be aware of your game, and they have to realize

why it would be fun to download and play your game. By promoting your game

on the app stores, on game review sites, through mobile advertising, by word of

mouth, and through social networking, you can be sure that it reaches the widest

possible audience.

Congratulations! If you’ve read through this book and followed along with the

examples and exercises, you know everything necessary to create and publish your

very own mobile game for the Android platform using the AndEngine game platform.

Create the game of your dreams, offer it to the world, and, most of all, remember to

have a good time while you’re doing it.

Appendix

Exercise Solutions

Chapter 1

The exercises in this chapter don’t have generic solutions. They ask you to use the

tools we’ve talked about to build artwork, music, and plans for your own game. If you

have trouble completing any of the exercises, refer back to the related section in the

text and you should be able to work through the problems.

Chapter 2

The exercises in this chapter don’t have generic solutions. Instead, they ask you to use

the tools we’ve talked about to build or otherwise obtain specific artwork, music, and

plans for your own game. If you have trouble completing any of the exercises, refer

back to the related section in the text and you should be able to work through the

problems.

Chapter 3

1. The static menu scene is added to the main scene in onLoadScene() before

anything is displayed. Adding it at that time doesn’t trigger any animations

to run. The pop-up scene is added later, after the main scene is already being

displayed, so its animations run, and it slides in from the left.

2. The color of the menu items can be set in two places—either when the

font texture regions are loaded in onLoadResources() or with a Color-

MenuItemDecorator. Because we’re already using ColorMenuItemDecorators in

MainMenuActivity.java, the following code shows separate fonts being

loaded in red, white, and blue and their use as the menu items are added.

Appendix Exercise Solutions382

MenuActivity.java Changes for Multicolored Menu

. . .

 @Override

 public void onLoadResources() {

 /* Load Font/Textures. */

 this.mFontTexture = new Texture(256, 256,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 FontFactory.setAssetBasePath("font/");

 this.mFont = FontFactory.createFromAsset(

 this.mFontTexture, this, "Flubber.ttf", 32,

 true, Color.RED);

 this.mEngine.getTextureManager().loadTexture(

 this.mFontTexture);

 this.mEngine.getFontManager().loadFont(this.mFont);

. . .

 protected void createStaticMenuScene() {

 this.mStaticMenuScene = new MenuScene(this.mCamera);

 final IMenuItem playMenuItem =

 new ColorMenuItemDecorator(

 new TextMenuItem(MENU_PLAY, mFont, "Play Game"),

 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f);

 playMenuItem.setBlendFunction(GL10.GL_SRC_ALPHA,

 GL10.GL_ONE_MINUS_SRC_ALPHA);

 this.mStaticMenuScene.addMenuItem(playMenuItem);

 final IMenuItem scoresMenuItem =

 new ColorMenuItemDecorator(

 new TextMenuItem(MENU_SCORES, mFont, "Scores"),

 0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f);

 scoresMenuItem.setBlendFunction(GL10.GL_SRC_ALPHA,

 GL10.GL_ONE_MINUS_SRC_ALPHA);

 this.mStaticMenuScene.addMenuItem(scoresMenuItem);

 final IMenuItem optionsMenuItem =

 new ColorMenuItemDecorator(

 new TextMenuItem(MENU_OPTIONS, mFont, "Options"),

 0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f);

 optionsMenuItem.setBlendFunction(GL10.GL_SRC_ALPHA,

 GL10.GL_ONE_MINUS_SRC_ALPHA);

 this.mStaticMenuScene.addMenuItem(optionsMenuItem);

 final IMenuItem helpMenuItem =

 new ColorMenuItemDecorator(

 new TextMenuItem(MENU_HELP, mFont, "Help"), 0.5f,

Appendix Exercise Solutions 383

 0.5f, 0.5f, 1.0f, 0.0f, 0.0f);

 helpMenuItem.setBlendFunction(GL10.GL_SRC_ALPHA,

 GL10.GL_ONE_MINUS_SRC_ALPHA);

 this.mStaticMenuScene.addMenuItem(helpMenuItem);

. . .

The font loading code stays the same, and the ColorMenuItemDecorators

are changed just slightly, so “Play Game” appears in red, “Scores” in blue,

“Options” in green, and “Help” in red.

3. The ScaleMenuItemDecorator is used much like the ColorMenuItemDecorator.

The following code shows an excerpt using it with one of the menu items in the

main menu.

MenuActivity.java Changes for Blooming Menu Items

. . .

 protected void createStaticMenuScene() {

 this.mStaticMenuScene = new MenuScene(this.mCamera);

 final IMenuItem playMenuItem = new ScaleMenuItemDecorator(

 new TextMenuItem(MENU_PLAY, mFont, "Play Game"),

 1.2f, 1.0f);

 playMenuItem.setBlendFunction(GL10.GL_SRC_ALPHA,

 GL10.GL_ONE_MINUS_SRC_ALPHA);

 this.mStaticMenuScene.addMenuItem(playMenuItem);

. . .

The last two parameters to ScaleMenuItemDecorator are the scales for selected

and unselected options, respectively. In this case, the item will appear 20% larger

when selected, then go back to its original size when deselected.

Chapter 4

1. A simple Activity for trying out different modifiers is shown in the following

listing. The complete Android project is found in the downloads as project

Modifier:

StartActivity.java for Trying Modifiers

package com.pearson.lagp.modex;

import org.anddev.andengine.engine.Engine;

import org.anddev.andengine.engine.camera.Camera;

import org.anddev.andengine.engine.options.EngineOptions;

Appendix Exercise Solutions384

import org.anddev.andengine.engine.options.EngineOptions

 .ScreenOrientation;

import org.anddev.andengine.engine.options.resolutionpolicy

 .RatioResolutionPolicy;

import org.anddev.andengine.entity.modifier.ScaleModifier;

import org.anddev.andengine.entity.scene.Scene;

import org.anddev.andengine.entity.sprite.Sprite;

import org.anddev.andengine.entity.util.FPSLogger;

import org.anddev.andengine.opengl.texture.Texture;

import org.anddev.andengine.opengl.texture.TextureOptions;

import org.anddev.andengine.opengl.texture.region.TextureRegion;

import org.anddev.andengine.opengl.texture.region.TextureRegionFactory;

import org.anddev.andengine.ui.activity.BaseGameActivity;

import android.os.Handler;

public class StartActivity extends BaseGameActivity {

 // ===

 // Constants

 // ===

 private static final int CAMERA_WIDTH = 480;

 private static final int CAMERA_HEIGHT = 320;

 // ===

 // Fields

 // ===

 private Camera mCamera;

 private Texture mTexture;

 private TextureRegion mFaceTextureRegion;

 private Handler mHandler;

 // ===

 // Constructors

 // ===

 // ===

 // Getter and Setter

 // ===

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 @Override

 public Engine onLoadEngine() {

Appendix Exercise Solutions 385

 mHandler = new Handler();

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH, CAMERA_HEIGHT);

 return new Engine(new EngineOptions(true, ScreenOrientation

.LANDSCAPE, new RatioResolutionPolicy(CAMERA_WIDTH, CAMERA_HEIGHT), this

.mCamera).setNeedsMusic(true));

 }

 @Override

 public void onLoadResources() {

 TextureRegionFactory.setAssetBasePath("gfx/");

 this.mTexture = new Texture(512, 1024,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 this.mFaceTextureRegion = TextureRegionFactory

.createFromAsset(this.mTexture, this,

 "mathead.png", 0, 0);

 this.mEngine.getTextureManager().loadTexture(this.mTexture);

 }

 @Override

 public Scene onLoadScene() {

 this.mEngine.registerUpdateHandler(new FPSLogger());

 final Scene scene = new Scene(1);

 /* Center the face on the camera. */

 final int centerX = (CAMERA_WIDTH - this.mFaceTextureRegion

.getWidth()) / 2;

 final int centerY = (CAMERA_HEIGHT - this.mFaceTextureRegion

.getHeight()) / 2;

 /* Create the face sprite and add it to the scene. */

 final Sprite face = new Sprite(centerX, centerY, this

.mFaceTextureRegion);

 face.registerEntityModifier(new ScaleModifier(10.0f, 0.0f, 1.0f));

 scene.getLastChild().attachChild(face);

 return scene;

 }

 @Override

 public void onLoadComplete() {

 }

 // ===

 // Methods

 // ===

Appendix Exercise Solutions386

 // ===

 // Inner and Anonymous Classes

 // ===

}

2. This sequence requires a combination of SequenceEntityModifiers and Parallel-

EntityModifiers. One combination that works is shown here (and can be tested

with the code shown for Exercise 1). This code is also included in project

Modifier.

Combination of Modifiers

. . .

 face.registerEntityModifier(new ParallelEntityModifier(

 new MoveModifier(3.0f, 0.0f, CAMERA_WIDTH/2,

 0.0f, CAMERA_HEIGHT/2),

 new SequenceEntityModifier(

 new ColorModifier(2.0f, 1.0f,

 0.0f, 1.0f, 0.0f,

 1.0f, 1.0f),

 new ColorModifier(2.0f, 0.0f,

 1.0f, 0.0f, 0.0f,

 1.0f, 0.0f),

 new ColorModifier(2.0f, 1.0f,

 0.0f, 0.0f, 1.0f,

 0.0f, 0.0f)

),

 new SequenceEntityModifier(

 new ScaleModifier(1.0f, 1.0f,

 1.0f),

 new ScaleModifier(2.0f, 1.0f,

 0.5f),

 new ScaleModifier(2.0f, 0.5f,

 1.0f)

),

 new SequenceEntityModifier(

 new DelayModifier(2.0f),

 new RotationModifier(2.0f,

 0.0f, 720.0f)

)

)

);

. . .

Appendix Exercise Solutions 387

3. This is a one-line addition to onLoadScene(). Sometimes after you create

mMainScene, you just need to add the following line:

 mMainScene.setScaleCenter(centerX, centerY);

4. One implementation of EaseWiggle.java is shown here.

EaseWiggle.java

public class EaseLinear implements IEaseFunction {

 private static EaseLinear INSTANCE;

 // ===

 // Constructors

 // ===

 private EaseLinear() {

 }

 public static EaseLinear getInstance() {

 if(INSTANCE == null) {

 INSTANCE = new EaseLinear();

 }

 return INSTANCE;

 }

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 @Override

 public static float getPercentageDone(final float pSecondsElapsed,

 final float pDuration, final float pMinValue,

 final float pMaxValue) {

 return (float) (pMaxValue * pSecondsElapsed / pDuration +

 pMinValue + 4.0f * Math.sin(Math.PI *

 pSecondsElapsed * 10.0f/pDuration));

 }

}

Appendix Exercise Solutions388

Chapter 5

1. One solution for the rotating red star is shown here:

StarActivity.java

package com.pearson.lagp.v3;

+imports

public class StarActivity extends BaseGameActivity {

 // ===

 // Constants

 // ===

 private static final int CAMERA_WIDTH = 480;

 private static final int CAMERA_HEIGHT = 320;

 private String tag = "SpriteTestActivity";

 // ===

 // Fields

 // ===

 protected Camera mCamera;

 protected Scene mMainScene;

 // ===

 // Constructors

 // ===

 // ===

 // Getter and Setter

 // ===

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 @Override

 public Engine onLoadEngine() {

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT), this.mCamera));

 }

Appendix Exercise Solutions 389

 @Override

 public void onLoadResources() {

 }

 @Override

 public Scene onLoadScene() {

 this.mEngine.registerUpdateHandler(new FPSLogger());

 final Scene scene = new Scene(1);

 scene.setBackground(new ColorBackground(0.0f, 0.0f, 0.0f));

 /* Center the camera. */

 final int centerX = CAMERA_WIDTH / 2;

 final int centerY = CAMERA_HEIGHT / 2;

 /* Draw the star */

 Line star1 = new Line(centerX-100, centerY-40, centerX+100,

 centerY-40, 3.0f);

 star1.setColor(1.0f, 0.0f, 0.0f);

 Line star2 = new Line(200, 0, 40, 125, 3.0f);

 star2.setColor(1.0f, 0.0f, 0.0f);

 Line star3 = new Line(-160, 125, -100, -75, 3.0f);

 star3.setColor(1.0f, 0.0f, 0.0f);

 Line star4 = new Line(-100, -75, -30, 125, 3.0f);

 star4.setColor(1.0f, 0.0f, 0.0f);

 Line star5 = new Line(-30, 125, -200, 0, 3.0f);

 star5.setColor(1.0f, 0.0f, 0.0f);

 star1.attachChild(star2);

 star1.getLastChild().attachChild(star3);

 star1.getLastChild().attachChild(star4);

 star1.getLastChild().attachChild(star5);

 star1.setRotationCenter(100, 40);

 star1.registerEntityModifier(new RotationModifier(5.0f,

 0.0f, 360.0f));

 scene.getLastChild().attachChild(star1);

 return scene;

 }

 @Override

 public void onLoadComplete() {

 }

}

Notice that the coordinates for the Lines and the Rotation Center are relative to

star1.

Appendix Exercise Solutions390

2. The only changes needed (other than adding the SVG extension .jar library

and the SVG graphics files) are in onLoadResources() in SpriteTest-

Activity.java, which is shown here. This code is also included as V305SVG in

the downloadable code for this chapter.

StarActivity.java

. . .

 @Override

 public void onLoadResources() {

 /* Load Textures. */

 TextureRegionFactory.setAssetBasePath("gfx/SpriteTest/");

 mTestTexture = new Texture(512, 256,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 this.mHatchetTextureSource= new SVGAssetTextureSource(

 this, "svg/hatchet40.svg", 1.0f);

 this.mMadMatTextureSource= new SVGAssetTextureSource(this,

 "svg/Mat.svg", 1.0f);

 mHatchetTextureRegion =

 TextureRegionFactory.createFromSource(mTestTexture,

 mHatchetTextureSource, 0,0);

 mMadMatTextureRegion =

 TextureRegionFactory.createFromSource(mTestTexture,

 mMadMatTextureSource, 50,0);

 this.mEngine.getTextureManager().loadTexture(

 this.mTestTexture);

 }

. . .

3. Each reader will have his or her own solution.

Chapter 6

1. The changes needed to make the bat f ly back and forth are shown in this excerpt

for onLoadScene() in StartActivity.java.

StartActivity.java onLoadScene() with Moving Bat

. . .

 @Override

 public Scene onLoadScene() {

 this.mEngine.registerUpdateHandler(new FPSLogger());

 final Scene scene = new Scene(1);

Appendix Exercise Solutions 391

 /* Center the splash on the camera. */

 final int centerX = (CAMERA_WIDTH -

 this.mSplashTextureRegion.getWidth()) / 2;

 final int centerY = (CAMERA_HEIGHT -

 this.mSplashTextureRegion.getHeight()) / 2;

 /* Create the background sprite and add it to the scene. */

 final Sprite splash = new Sprite(centerX, centerY,

 this.mSplashTextureRegion);

 scene.getLastChild().attachChild(splash);

 /* Create the animated bat sprite and add to scene */

 final AnimatedSprite bat = new AnimatedSprite(350, 100,

 this.mBatTextureRegion);

 bat.animate(100, true);

 bat.registerEntityModifier(new LoopEntityModifier(

 new SequenceEntityModifier (

 new MoveXModifier(2.0f, bat.getX(),

 bat.getX()-60),

 new MoveXModifier(2.0f, bat.getX()-60,

 bat.getX()))));

 scene.getLastChild().attachChild(bat);

 return scene;

 }

We’ve registered a LoopEntityModif ier to keep the bat f lying back and

forth, and used a sequence of MoveXModif iers to do the actual move-

ment. To make the bat f ly behind the tombstone, you’d have to extract the

tombstone from the background and place it on another Layer above the

AnimatedSprite.

2. This answer is reader specific.

3. This answer is reader specific.

4. A solution is shown here. AndEngine allows us to register an UpdateHandler

method that will be executed before each screen update. We register such a

method in onLoadScene() just before we return the Scene to the Engine.

Level1Activity.java onLoadScene() with Disappearing Vampires

. . .

 @Override

 public Scene onLoadScene() {

. . .

 scene.registerUpdateHandler(new IUpdateHandler() {

 @Override

 public void reset() { }

Appendix Exercise Solutions392

 @Override

 public void onUpdate(final float pSecondsElapsed) {

 for (int i=0; i<nVamp; i++){

 if (asprVamp[i].getX() < 35.0f){

 asprVamp[i].setVisible(false);

 }

 }

 }

 });

. . .

We check each of the displayed vampires to see if it has reached Miss B’s. If it

has, we make it invisible.

Chapter 7

1. This is a one-line change. Look in onLoadResources() and find the

StrokeFont constructor call. We just need to change the last parameter (boolean

pStrokeOnly) to false:

this.mStrokeFont = new StrokeFont(this.mStrokeFontTexture,

 Typeface.create(Typeface.DEFAULT, Typeface.BOLD), 32, true,

 Color.RED, 2.0f, Color.WHITE, false);

2. The “i” disappeared because the Texture ran out of room to hold the entire

font. The font images are stored as a matrix, so it’s difficult to predict which

characters will drop out, but if you’re missing characters, the first thing to try

is enlarging the font Texture size. In this case, increasing this size to 512 × 512

pixels is enough to fix the problem.

3. This is a matter of adding the MENU_OPTION constant, and adding the option to both

the menu builder and the menu’s onClickMenuItem() method, as shown here:

OptionsActivity.java Changes to Support Help Option

package com.pearson.lagp.v3;

+imports

public class OptionsActivity extends BaseGameActivity implements

IOnMenuItemClickListener {

 // ===

 // Constants

 // ===

. . .

 protected static final int MENU_MUSIC = 0;

Appendix Exercise Solutions 393

 protected static final int MENU_EFFECTS = MENU_MUSIC + 1;

 protected static final int MENU_HELP = MENU_EFFECTS + 1;

 // ===

 // Fields

 // ===

. . .

 private TextMenuItem mHelp;

 private IMenuItem helpMenuItem;

. . .

 // ===

 // Constructors

 // ===

 // ===

 // Getter and Setter

 // ===

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

. . .

 @Override

 public void onLoadResources() {

 mHelp = new TextMenuItem(MENU_EFFECTS, mFont, "Help");

 }

. . .

 @Override

 public boolean onMenuItemClicked(final MenuScene pMenuScene, final

IMenuItem pMenuItem, final float pMenuItemLocalX, final float

pMenuItemLocalY) {

 switch(pMenuItem.getID()) {

. . .

 case MENU_HELP:

 Toast.makeText(MainMenuActivity.this,

 "Help selected", Toast.LENGTH_SHORT).show();

 return true;

 default:

 return false;

 }

 }

 // ===

 // Methods

 // ===

Appendix Exercise Solutions394

 protected void createOptionsMenuScene() {

. . .

 helpMenuItem = new ColorMenuItemDecorator(mHelp, 0.5f,

 0.5f, 0.5f, 1.0f, 0.0f, 0.0f);

 this.mOptionsMenuScene.addMenuItem(helpMenuItem);

 this.mOptionsMenuScene.buildAnimations();

 this.mOptionsMenuScene.setBackgroundEnabled(false);

 this.mOptionsMenuScene.setOnMenuItemClickListener(this);

 }

. . .

4. Add the Toasts to OptionsMenuActivity.java, as shown here. This is actually

the way I debugged the original code, as keeping track of Boolean f lips can be

an error-prone process.

OptionsActivity.java Changes to Show Boolean Flips

Toast.makeText(context, text, duration).show();

. . .

 @Override

 public boolean onMenuItemClicked(final MenuScene pMenuScene, final

IMenuItem pMenuItem, final float pMenuItemLocalX, final float

pMenuItemLocalY) {

 switch(pMenuItem.getID()) {

 case MENU_MUSIC:

 if (isMusicOn) {

 isMusicOn = false;

 Toast.makeText(this,

 "Music turned off",

 LENGTH_SHORT).show();

 } else {

 isMusicOn = true;

 Toast.makeText(this,

 "Music turned on",

 LENGTH_SHORT).show();

 }

 createOptionsMenuScene();

 mMainScene.clearChildScene();

 mMainScene.setChildScene(mOptionsMenuScene);

 return true;

 case MENU_EFFECTS:

 if (isEffectsOn) {

 isEffectsOn = false;

 Toast.makeText(this,

 "Effects turned off",

Appendix Exercise Solutions 395

 LENGTH_SHORT).show();

 } else {

 isEffectsOn = true;

 Toast.makeText(this,

 "Effects turned on",

 LENGTH_SHORT).show();

 }

 createOptionsMenuScene();

 mMainScene.clearChildScene();

 mMainScene.setChildScene(mOptionsMenuScene);

 return true;

 default:

 return false;

 }

 }

. . .

Chapter 8

1. The following code shows a possible solution:

DCtrlMove.java

package com.pearson.lagp.example;

+imports

public class DCtrlMove extends BaseGameActivity {

 // ===

 // Constants

 // ===

 private static final int CAMERA_WIDTH = 720;

 private static final int CAMERA_HEIGHT = 480;

 // ===

 // Fields

 // ===

 private Camera mCamera;

 private Texture mTexture;

 private TextureRegion mTextureRegion;

 private float centerX, centerY;

 private Sprite face;

 private Texture mOnScreenControlTexture;

 private TextureRegion mOnScreenControlBaseTextureRegion;

Appendix Exercise Solutions396

 private TextureRegion mOnScreenControlKnobTextureRegion;

 // ===

 // Constructors

 // ===

 // ===

 // Getter and Setter

 // ===

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 @Override

 public Engine onLoadEngine() {

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 centerX = CAMERA_WIDTH/2;

 centerY = CAMERA_HEIGHT/2;

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT), this.mCamera));

 }

 @Override

 public void onLoadResources() {

 this.mTexture = new Texture(256, 256,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 mTextureRegion = TextureRegionFactory.createFromAsset(

 mTexture, getApplicationContext(),

 "gfx/mathead.png", 0, 50); // 32x32

 this.mEngine.getTextureManager().loadTexture(

 this.mTexture);

 this.mOnScreenControlTexture = new Texture(256, 128,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 this.mOnScreenControlBaseTextureRegion =

 TextureRegionFactory.createFromAsset(

 this.mOnScreenControlTexture, this,

 "gfx/onscreen_control_base.png", 0, 0);

 this.mOnScreenControlKnobTextureRegion =

 TextureRegionFactory.createFromAsset(

 this.mOnScreenControlTexture, this,

Appendix Exercise Solutions 397

 "gfx/onscreen_control_knob.png", 128, 0);

 this.mEngine.getTextureManager().loadTextures(

 this.mTexture, this.mOnScreenControlTexture);

 }

 @Override

 public Scene onLoadScene() {

 final Scene scene = new Scene(1);

 scene.setBackground(new ColorBackground(0.1f, 0.6f, 0.9f));

 face = new Sprite(centerX, centerY, mTextureRegion);

 scene.getLastChild().attachChild(face);

 final DigitalOnScreenControl digitalOnScreenControl =

 new DigitalOnScreenControl(0,

 CAMERA_HEIGHT -

 this.mOnScreenControlBaseTextureRegion.getHeight(),

 this.mCamera,

 this.mOnScreenControlBaseTextureRegion,

 this.mOnScreenControlKnobTextureRegion, 0.1f,

 new IOnScreenControlListener() {

 @Override

 public void onControlChange(

 final BaseOnScreenControl pBaseOnScreenControl,

 final float pValueX, final float pValueY) {

 face.setPosition(face.getX() + pValueX *

 10, face.getY() + pValueY * 10);

 }

 });

 digitalOnScreenControl.getControlBase().setBlendFunction(

 GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

 digitalOnScreenControl.getControlBase().setAlpha(0.5f);

 digitalOnScreenControl.getControlBase().setScaleCenter(0,

 128);

 digitalOnScreenControl.getControlBase().setScale(1.25f);

 digitalOnScreenControl.getControlKnob().setScale(1.25f);

 digitalOnScreenControl.refreshControlKnobPosition();

 scene.setChildScene(digitalOnScreenControl);

 return scene;

 }

 @Override

 public void onLoadComplete() {

 }

}

Appendix Exercise Solutions398

2. The example program included with the download ACtrlMove is very similar to

DCtrlMove. The following code shows the changes:

ACtrlMove.java

. . .

public class ACtrlMove extends BaseGameActivity {

. . .

 @Override

 public Scene onLoadScene() {

. . .

 final AnalogOnScreenControl analogOnScreenControl =

 new AnalogOnScreenControl(0, CAMERA_HEIGHT -

 this.mOnScreenControlBaseTextureRegion.getHeight(),

 this.mCamera,

 this.mOnScreenControlBaseTextureRegion,

 this.mOnScreenControlKnobTextureRegion, 0.1f, 200,

 new IAnalogOnScreenControlListener() {

 @Override

 public void onControlChange(

 final BaseOnScreenControl pBaseOnScreenControl,

 final float pValueX, final float pValueY) {

 face.setPosition(face.getX()+pValueX * 20,

 face.getY()+pValueY * 20);

 }

 @Override

 public void onControlClick(

 final AnalogOnScreenControl

 pAnalogOnScreenControl) {

 face.registerEntityModifier(

 new SequenceEntityModifier(

 new ScaleModifier(0.25f, 1, 1.5f),

 new ScaleModifier(0.25f, 1.5f, 1)));

 }

 });

 analogOnScreenControl.getControlBase().setBlendFunction(

 GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

 analogOnScreenControl.getControlBase().setAlpha(0.5f);

 analogOnScreenControl.getControlBase().setScaleCenter(0,

 128);

 analogOnScreenControl.getControlBase().setScale(1.25f);

 analogOnScreenControl.getControlKnob().setScale(1.25f);

 analogOnScreenControl.refreshControlKnobPosition();

 scene.setChildScene(analogOnScreenControl);

 return scene;

 }

. . .

Appendix Exercise Solutions 399

3. The following code for AccelColor.java shows a simple application that uses

AndEngine’s extensions of the Android accelerometer APIs to detect changes

in position. If not obvious, it works because the acceleration in the Y direction

(usually the long axis of a smartphone) is near 0 when the device is held f lat,

whereas the acceleration of gravity (approximately 9.8 m/sec) applies when the

device is upright.

AccelColor.java

package com.pearson.lagp.example;

+imports

public class AccelColor extends BaseGameActivity implements

 IAccelerometerListener {

 // ===

 // Constants

 // ===

 private static final int CAMERA_WIDTH = 720;

 private static final int CAMERA_HEIGHT = 480;

 // ===

 // Fields

 // ===

 private Camera mCamera;

 private Scene scene;

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 @Override

 public Engine onLoadEngine() {

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT), this.mCamera));

 }

 @Override

 public void onLoadResources() {

 this.enableAccelerometerSensor(this);

 }

Appendix Exercise Solutions400

 @Override

 public Scene onLoadScene() {

 scene = new Scene(1);

 scene.setBackground(new ColorBackground(0.0f, 1.0f, 0.0f));

 return scene;

 }

 @Override

 public void onLoadComplete() {

 }

 @Override

 public void onAccelerometerChanged(

 final AccelerometerData pAccelerometerData) {

 String message = "X= "+pAccelerometerData.getX()+

 "; Y="+pAccelerometerData.getY()+

 "; Z="+pAccelerometerData.getZ()+";";

 //Toast.makeText(this, message, Toast.LENGTH_SHORT).show();

 if (pAccelerometerData.getY() > 5.0f){

 scene.setBackground(new ColorBackground(1.0f, 0.0f,

 0.0f));

 } else {

 scene.setBackground(new ColorBackground(0.0f, 1.0f,

 0.0f));

 }

 }

}

Chapter 9

1. A revised .tmx file, WAVTilesetEx.tmx, is included with the downloadable

code in project V309Ex. This file includes the assignment of the property, and

the new tile set from Exercise 2.

2. The “Boo!” tile is also included in project V309Ex. It is part of the new tile set

WAVTileSetEx,png. It isn’t assigned anywhere in the tile map, but WAVActiv-

ity.java is changed as shown here:

WAVmap.tmx with Edits for Subfolders

package com.pearson.lagp.v3;

+imports

public class WAVActivity extends BaseGameActivity {

. . .

Appendix Exercise Solutions 401

 // ===

 // Fields

 // ===

. . .

 private int mTombstoneGID = -1;

 private int mBooGID = -1;

 private int mOpenCoffinGID = 1;

. . .

 @Override

 public Scene onLoadScene() {

 this.mEngine.registerUpdateHandler(new FPSLogger());

 final Scene scene = new Scene(1);

 try {

 final TMXLoader tmxLoader = new TMXLoader(this,

 this.mEngine.getTextureManager(),

 TextureOptions.BILINEAR_PREMULTIPLYALPHA,

 new ITMXTilePropertiesListener() {

 @Override

 public void onTMXTileWithPropertiesCreated(

 final TMXTiledMap pTMXTiledMap,

 final TMXLayer pTMXLayer,

 final TMXTile pTMXTile,

 final TMXProperties<TMXTileProperty>

 pTMXTileProperties) {

 if(pTMXTileProperties.containsTMXProperty(

 "coffin", "true")) {

 coffins[coffinPtr++] =

 pTMXTile.getTileRow() * 15 +

 pTMXTile.getTileColumn();

 if (mCoffinGID<0){

 mCoffinGID = pTMXTile.getGlobalTileID();

 }

 }

 if(pTMXTileProperties.containsTMXProperty(

 "tombstone", "true")) {

 if (mTombstoneGID<0){

 mTombstoneGID =

 pTMXTile.getGlobalTileID();

 }

 }

 if(pTMXTileProperties.containsTMXProperty(

 "boo", "true")) {

 if (mBooGID<0){

 mBooGID =

Appendix Exercise Solutions402

 pTMXTile.getGlobalTileID();

 }

 }

 }

 });

 this.mWAVTMXMap = tmxLoader.loadFromAsset(this,

 "gfx/WAV/WAVmapEx.tmx");

 } catch (final TMXLoadException tmxle) {

 Debug.e(tmxle);

 }

 tmxLayer = this.mWAVTMXMap.getTMXLayers().get(0);

 scene.getFirstChild().attachChild(tmxLayer);

 scene.setOnSceneTouchListener(new IOnSceneTouchListener() {

 @Override

 public boolean onSceneTouchEvent(final Scene

 pScene, final TouchEvent pSceneTouchEvent) {

 switch(pSceneTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

 /* Get the touched tile */

 tmxTile = tmxLayer.getTMXTileAt(

 pSceneTouchEvent.getX(),

 pSceneTouchEvent.getY());

 if((tmxTile != null) &&

 (tmxTile.getGlobalTileID() ==

 mOpenCoffinGID)) {

 tmxTile.setGlobalTileID(

 mWAVTMXMap, mCoffinGID);

 } else {

 if((tmxTile != null) &&

 (tmxTile.getGlobalTileID() ==

 mTombstoneGID)) {

 tmxTile.setGlobalTileID(mWAVTMXMap,

 mBooGID);

 }}

 break;

 case TouchEvent.ACTION_UP:

 break;

 }

 return true;

 }

 });

 mHandler.postDelayed(openCoffin,gen.nextInt(2000));

. . .

}

Appendix Exercise Solutions 403

The patterns are much the same as were discussed in the text. We use the tile

properties to find the global IDs for the coffin and tombstone tiles, and then

use those global IDs to go directly to the tile image we want. We can’t find the

“Boo!” tile global ID that way (there are no “Boo!” tiles in the starting map, so

none will ever be loaded), but that’s okay. We know the global IDs from reading

the TSX file, which tells us the first global ID number; we can then just count

them off in the Tiled view of the tile set. It’s safer to look for a property that will

move with the tile if things change, but in this case we have no choice.

Chapter 10

1. The changed lines of code are shown here. Specific lines that changed are in

bold.

Changes to Level1Activity.java for Smoke Effect

package com.pearson.lagp.v3;

. . .

 @Override

 public Scene onLoadScene() {

. . .

 particleEmitter = new CircleParticleEmitter(

 CAMERA_WIDTH * 0.5f, CAMERA_HEIGHT * 0.5f + 20, 40);

 particleSystem = new ParticleSystem(particleEmitter,

 100, 100, 500, this.mParticleTextureRegion);

 particleSystem.addParticleInitializer(

 new ColorInitializer(1, 1, 1));

 particleSystem.addParticleInitializer(

 new AlphaInitializer(0));

 particleSystem.setBlendFunction(GL10.GL_SRC_ALPHA,

 GL10.GL_ONE);

 particleSystem.addParticleInitializer(

 new VelocityInitializer(-2, 2, -2, -2));

 particleSystem.addParticleInitializer(

 new RotationInitializer(0.0f, 360.0f));

 particleSystem.addParticleModifier(

 new org.anddev.andengine.entity.particle.modifier-

 .ScaleModifier(1.0f, 2.0f, 0, 5));

 particleSystem.addParticleModifier(

 new org.anddev.andengine.entity.particle.modifier-

 .ColorModifier(0, 0.5f, 0, 0.5f, 0, 0.5f, 0, 2));

 particleSystem.addParticleModifier(

 new org.anddev.andengine.entity.particle.modifier-

 .ColorModifier(0.5f, 0, 0.5f, 0, 0.5f, 1, 2, 4));

 particleSystem.addParticleModifier(

Appendix Exercise Solutions404

 new org.anddev.andengine.entity.particle.modifier-

 .AlphaModifier(0, 1, 0, 1));

 particleSystem.addParticleModifier(

 new org.anddev.andengine.entity.particle.modifier-

 .AlphaModifier(1, 0, 3, 4));

 particleSystem.addParticleModifier(

 new ExpireModifier(2, 4));

 particleSystem.setParticlesSpawnEnabled(false);

 scene.getLastChild().attachChild(particleSystem);

 return scene;

 }

. . .

}

2. The PX file for a smoke effect is shown here:

smoke.px

<ParticleConfig>

 <emitter

 shape="circle"

 center_x="0.0"

 center_y="0.0"

 radius_x="40.0"

 radius_y="40.0">

 </emitter>

 <system

 texture="particle_fire.png"

 min_rate="100"

 max_rate="100"

 max_particles="500">

 <init_color

 min_red="1"

 max_red="1"

 min_green="1"

 max_green="1"

 min_blue="1"

 max_blue="1">

 </init_color>

 <init_alpha

 min_alpha="0"

 max_alpha="0">

 </init_alpha>

 <init_velocity

 min_velocity_x="-2"

Appendix Exercise Solutions 405

 max_velocity_x="2"

 min_velocity_y="-2"

 max_velocity_y="-2">

 </init_velocity>

 <init_rotation

 min_rotation="0.0"

 max_rotation="360.0">

 </init_rotation>

 <mod_scale

 from_scale_x="1.0"

 to_scale_x="1.0"

 from_scale_y="1.0"

 to_scale_y="1.0"

 to_scale="2.0"

 from_time="0"

 to_time="5">

 </mod_scale>

 <mod_color

 from_red="0"

 to_red="0.5"

 from_green="0"

 to_green="0.5"

 from_blue="0"

 to_blue=".5"

 from_time="0"

 to_time="2">

 </mod_color>

 <mod_color

 from_red=".5"

 to_red="0"

 from_green="0.5"

 to_green="0"

 from_blue=".5"

 to_blue="1"

 from_time="2"

 to_time="4">

 </mod_color>

 <mod_alpha

 from_alpha="0"

 to_alpha="1"

 from_time="0"

 to_time="1">

 </mod_alpha>

 <mod_alpha

 from_alpha="1.0"

 to_alpha="0"

 from_time="3"

Appendix Exercise Solutions406

 to_time="4">

 </mod_alpha>

 <mod_expire

 min_lifetime="2"

 max_lifetime="4">

 </mod_expire>

 </system>

</ParticleConfig>

3. The PX file rain.px is shown here:

rain.px

<ParticleConfig>

 <emitter

 shape="rectangle"

 center_x="0.0"

 center_y="0.0"

 width="480"

 height="2.0">

 </emitter>

 <system

 texture="particle_point.png"

 min_rate="100"

 max_rate="100"

 max_particles="500">

 <init_color

 min_red="1"

 max_red="1"

 min_green="1"

 max_green="1"

 min_blue="1"

 max_blue="1">

 </init_color>

 <init_alpha

 min_alpha="0"

 max_alpha="0">

 </init_alpha>

 <init_velocity

 min_velocity_x="-2"

 max_velocity_x="2"

 min_velocity_y="50"

 max_velocity_y="100">

 </init_velocity>

 <init_rotation

 min_rotation="0.0"

Appendix Exercise Solutions 407

 max_rotation="0.0">

 </init_rotation>

 <init_gravity

 gravity_on="true">

 </init_gravity>

 <mod_scale

 from_scale_x="0.2"

 to_scale_x="0.2"

 from_scale_y="0.3"

 to_scale_y="0.3"

 from_time="0"

 to_time="5">

 </mod_scale>

 <mod_alpha

 from_alpha="0"

 to_alpha="1"

 from_time="0"

 to_time="1">

 </mod_alpha>

 <mod_alpha

 from_alpha="1.0"

 to_alpha="0"

 from_time="3"

 to_time="4">

 </mod_alpha>

 <mod_expire

 min_lifetime="2"

 max_lifetime="4">

 </mod_expire>

 </system>

</ParticleConfig>

Chapter 11

1. All the changes needed to add music to the cross weapon are in

Level1Activity.java:

 n Record the song. I saved mine as an Ogg/Vorbis file, OCS.ogg, and imported

it into assets/mfx.

 n Add a new Music object to Level1Activity.java: Music mOCSMusic.

 n Add .setNeedsMusic() to the Engine options for Level1Activity.java.

 n In onLoadResources(), add the lines to load the new song:
 MusicFactory.setAssetBasePath("mfx/");

Appendix Exercise Solutions408

 try {

 this.mOCSMusic =

 MusicFactory.createMusicFromAsset(

 this.mEngine.getMusicManager(),

 this, "OCS.ogg");

 this.mOCSMusic.setLooping(true);

 } catch (final IOException e) {

 Debug.e(e);

 }

 n In the switch for cross TouchEvents, in the case for ACTION_UP, add the

lines:
 if (audioOptions.getBoolean("musicOn", false)) {

 mOCSMusic.play();

 }

 n In onGamePaused(), add the line:
 mOCSMusic.stop();

2. The change needed to switch to using the MIDI file is in the onLoad-

Resources() method of StartActivity.java. In the try/catch statement that

uses MusicFactory to load the music file, change the line as follows:
 StartActivity.mMusic = MusicFactory.createMusicFromAsset(

 this.mEngine.getMusicManager(), getApplicationContext(),

 "bachfugue2.mid");

3. To add scores to SharedPreferences and the Scores screen, first change

StartActivity.java to add the following lines:

Changes to StartActivity.java for Exercise 3

 private SharedPreferences scores;

 private SharedPreferences.Editor scoresEditor;

. . .

 @Override

 public Engine onLoadEngine() {

. . .

 scores = getSharedPreferences("scores", MODE_PRIVATE);

 scoresEditor = scores.edit();

 if (!scores.contains("WAV")){

 scoresEditor.putInt("WAV", 0);

 scoresEditor.putInt("Level1", 0);

 scoresEditor.commit();

 }

In MainMenuActivity.java, in the MenuItemClicked() method, change the

MENU_SCORES case to read as shown here. Also add the Runnable shown after

the ellipsis.

Appendix Exercise Solutions 409

MainMenuActivity.java for Exercise 3

. . .

 @Override

 public boolean onMenuItemClicked(final MenuScene pMenuScene,

 final IMenuItem pMenuItem, final float pMenuItemLocalX,

 final float pMenuItemLocalY) {

 switch(pMenuItem.getID()) {

. . .

 case MENU_SCORES:

 mMainScene.registerEntityModifier(

 new ScaleAtModifier(0.5f, 1.0f,

 0.0f, CAMERA_WIDTH/2,

 CAMERA_HEIGHT/2));

 mStaticMenuScene.registerEntityModifier(

 new ScaleAtModifier(0.5f, 1.0f,

 0.0f, CAMERA_WIDTH/2,

 CAMERA_HEIGHT/2));

 mHandler.postDelayed(mLaunchScoresTask,

 500);

 return true;

. . .

 private Runnable mLaunchScoresTask = new Runnable() {

 public void run() {

 Intent myIntent = new Intent(MainMenuActivity.this,

 ScoresActivity.class);

 MainMenuActivity.this.startActivity(myIntent);

 }

 };

Then add a new class, ScoresActivity.java, as shown here. Don’t forget to

add it to your manifest, so Android will know the new activity is there.

Scores.java for Exercise 3

import org.anddev.andengine.opengl.texture.Texture;

import org.anddev.andengine.opengl.texture.TextureOptions;

import org.anddev.andengine.ui.activity.BaseGameActivity;

import android.content.SharedPreferences;

import android.graphics.Color;

public class ScoresActivity extends BaseGameActivity {

 // ===

 // Constants

 // ===

Appendix Exercise Solutions410

 private static final int CAMERA_WIDTH = 480;

 private static final int CAMERA_HEIGHT = 320;

 // ===

 // Fields

 // ===

 protected Camera mCamera;

 protected Scene mScoresScene;

 private Text mTitle, mWAV, mLevel1;;

 private Texture mFontTexture;

 private Font mFont;

 private SharedPreferences scores;

 private SharedPreferences.Editor scoresEditor;

 // ===

 // Constructors

 // ===

 // ===

 // Getter and Setter

 // ===

 // ===

 // Methods for/from SuperClass/Interfaces

 // ===

 @Override

 public Engine onLoadEngine() {

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH,

 CAMERA_HEIGHT);

 scores = getSharedPreferences("scores", MODE_PRIVATE);

 scoresEditor = scores.edit();

 return new Engine(new EngineOptions(true,

 ScreenOrientation.LANDSCAPE,

 new RatioResolutionPolicy(CAMERA_WIDTH,

 CAMERA_HEIGHT), this.mCamera));

 }

 @Override

 public void onLoadResources() {

 /* Load Font/Textures. */

 this.mFontTexture = new Texture(256, 256,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

Appendix Exercise Solutions 411

 FontFactory.setAssetBasePath("font/");

 this.mFont = FontFactory.createFromAsset(this.mFontTexture,

 this, "Flubber.ttf", 32, true, Color.RED);

 this.mEngine.getTextureManager().loadTexture(

 this.mFontTexture);

 this.mEngine.getFontManager().loadFont(this.mFont);

 }

 @Override

 public Scene onLoadScene() {

 /* Center the background on the camera. */

 final int centerX = (CAMERA_WIDTH) / 2;

 final int centerY = (CAMERA_HEIGHT) / 2;

 this.mScoresScene = new Scene(1);

 /* Add the background and scores */

 mScoresScene.setBackground(new ColorBackground(0.0f, 0.0f,

 0.0f));

 mTitle = new Text(centerX - 200, centerY - 100, mFont,

 "Scores");

 mWAV = new Text(centerX - 100, centerY - 50, mFont,

 "WAV\t\t" + scores.getInt("WAV", -1));

 mLevel1 = new Text(centerX - 100, centerY, mFont,

 "Level1\t\t" + scores.getInt("Level1", -1));

 mScoresScene.getLastChild().attachChild(mTitle);

 mScoresScene.getLastChild().attachChild(mWAV);

 mScoresScene.getLastChild().attachChild(mLevel1);

 return this.mScoresScene;

 }

 @Override

 public void onLoadComplete() {

 }

 // ===

 // Methods

 // ===

 // ===

 // Inner and Anonymous Classes

 // ===

}

Appendix Exercise Solutions412

Chapter 12

All Exercise solutions are included as part of Project V312 Exercises, in the download-

able code.

1. A second example level is shown here:

iv2.lvl

<level>

 <completeShape>

 <xprop>240.0000</xprop>

 <yprop>1.0000</yprop>

 <height>2.00</height>

 <width>480.00</width>

 <rotation>0.0000</rotation>

 <isDynamic>false</isDynamic>

 <shape>SQUARE</shape>

 <physicsandID>0.5,0.5,0.5,’stone’</physicsandID>

 <verts>’()’</verts>

 </completeShape>

 <completeShape>

 <xprop>240.0000</xprop>

 <yprop>319.0000</yprop>

 <height>2.00</height>

 <width>480.00</width>

 <rotation>0.0000</rotation>

 <isDynamic>false</isDynamic>

 <shape>SQUARE</shape>

 <physicsandID>0.5,0.5,0.5,’stone’</physicsandID>

 <verts>’()’</verts>

 </completeShape>

 <completeShape>

 <xprop>165.0000</xprop>

 <yprop>298.0000</yprop>

 <height>40.00</height>

 <width>40.00</width>

 <rotation>0.0000</rotation>

 <isDynamic>true</isDynamic>

 <shape>CIRCLE</shape>

 <physicsandID>0.5,0.5,0.5,’glass’</physicsandID>

 <verts>’()’</verts>

 </completeShape>

 <completeShape>

 <xprop>260.0000</xprop>

 <yprop>300.0000</yprop>

 <height>40.00</height>

 <width>40.00</width>

Appendix Exercise Solutions 413

 <rotation>0.0000</rotation>

 <isDynamic>true</isDynamic>

 <shape>CIRCLE</shape>

 <physicsandID>0.5,0.5,0.5,’wood’</physicsandID>

 <verts>’()’</verts>

 </completeShape>

 <completeShape>

 <xprop>207.0000</xprop>

 <yprop>276.0000</yprop>

 <height>6.00</height>

 <width>186.00</width>

 <rotation>0.0000</rotation>

 <isDynamic>true</isDynamic>

 <shape>SQUARE</shape>

 <physicsandID>0.5,0.5,0.5,’wood’</physicsandID>

 <verts>’()’</verts>

 </completeShape>

 <completeShape>

 <xprop>155.0000</xprop>

 <yprop>249.0000</yprop>

 <height>50.00</height>

 <width>50.00</width>

 <rotation>0.0000</rotation>

 <isDynamic>true</isDynamic>

 <shape>SQUARE</shape>

 <physicsandID>0.5,0.5,0.5,’wood’</physicsandID>

 <verts>’()’</verts>

 </completeShape>

 <completeShape>

 <xprop>480.2494</xprop>

 <yprop>161.5000</yprop>

 <height>-4.50</height>

 <width>319.00</width>

 <rotation>1.5708</rotation>

 <isDynamic>false</isDynamic>

 <shape>SQUARE</shape>

 <physicsandID>0.5,0.5,0.5,’stone’</physicsandID>

 <verts>’()’</verts>

 </completeShape>

 <completeShape>

 <xprop>234.0000</xprop>

 <yprop>262.0000</yprop>

 <height>24.00</height>

 <width>50.00</width>

 <rotation>0.0000</rotation>

 <isDynamic>true</isDynamic>

 <shape>CIRCLE</shape>

Appendix Exercise Solutions414

 <physicsandID>0.5,0.5,0.5,’vamp’</physicsandID>

 <verts>’()’</verts>

 </completeShape>

 <completeShape>

 <xprop>277.6250</xprop>

 <yprop>268.5000</yprop>

 <height>9.00</height>

 <width>13.25</width>

 <rotation>0.0000</rotation>

 <isDynamic>true</isDynamic>

 <shape>SQUARE</shape>

 <physicsandID>0.5,0.5,0.5,’iq’</physicsandID>

 <verts>’()’</verts>

 </completeShape>

</level>

2. The changes to IVActivity.java are shown here:

IVActivity Changes to Use Vector Graphics

. . .

 @Override

 public void onLoadResources() {

 /* Textures. */

 this.mTexture = new Texture(512, 512,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 TextureRegionFactory.setAssetBasePath("gfx/IV/");

 /* TextureRegions. */

 ITextureSource mSlingTextureSource =

 new SVGAssetTextureSource(this, "gfx/IV/sling.svg", 1.0f);

 ITextureSource mStakeTextureSource =

 new SVGAssetTextureSource(this, "gfx/IV/stake.svg", 1.0f);

 ITextureSource mGlassTextureSource =

 new SVGAssetTextureSource(this, "gfx/IV/glass.svg", 1.0f);

 ITextureSource mStoneTextureSource =

 new SVGAssetTextureSource(this, "gfx/IV/stone.svg", 1.0f);

 ITextureSource mMatHeadTextureSource =

 new SVGAssetTextureSource(this, "gfx/IV/mathead.svg", 1.0f);

 mSlingTextureRegion =

 TextureRegionFactory.createFromSource(this.mTexture,

 mSlingTextureSource, 0, 0);

 mStakeTextureRegion = TextureRegionFactory.createFromSource(

 this.mTexture, mStakeTextureSource, 0, 40);

 mGlassTextureRegion = TextureRegionFactory.createFromSource(

Appendix Exercise Solutions 415

 this.mTexture, mGlassTextureSource, 0, 80);

 mStoneTextureRegion = TextureRegionFactory.createFromSource(

 this.mTexture, mStoneTextureSource, 0, 120);

 mMatHeadTextureRegion = TextureRegionFactory.createFromSource(

 this.mTexture, mMatHeadTextureSource, 0, 160);

 mWoodTextureRegion = TextureRegionFactory.createFromAsset(

 this.mTexture, getApplicationContext(), "wood.png",

 0, 210);

 this.mEngine.getTextureManager().loadTexture(this.mTexture);

Chapter 13

1. The change needed is in the mStartVamp() Runnable, as shown here:

Changes to mStartVamp()

 private Runnable mStartVamp = new Runnable() {

. . .

 asprVamp[i].animate(frameDurations, 0, 25, true);

 float lagTime = gen.nextFloat()*20.0f;

 float startX = asprVamp[i].getX() -

 (lagTime/60.0f) * (asprVamp[i].getX() - 30.0f);

 pathVamp[i] = aStar[i].getPath(startX, 1, asprVamp[i].getY(),

 10, asprVamp[i].getWidth(), asprVamp[i].getHeight());

 asprVamp[i].registerEntityModifier(

 new SequenceEntityModifier (

 new AlphaModifier(5.0f, 0.0f, 1.0f),

 new MoveXModifier(lagTime, asprVamp[i].getX(), startX),

 new PathModifier(60.0f - lagTime, pathVamp[i])

));

 scene.getLastChild().attachChild(asprVamp[i]);

 };

. . .

The variable lagTime predicts where the Sprite will be located when it is ready

to find a path to Miss B’s. The Path is found in advance of setting the Modifiers.

Why couldn’t we use an IEntityModifierListener on the MoveModifier?

2. The changes needed to Level1Activity.java are shown here. You can argue

that the implementation does little to help the poor vampires dodge a bullet—it

goes too fast. The alternative would be to warn the vampires as the player is

moving the weapon, but that would generate a lot of unnecessary path finding.

Maybe you can think of a better way.

Appendix Exercise Solutions416

Adding Vampire Warnings to Level1Activity.java

. . .

 @Override

 public Scene onLoadScene() {

. . .

 bullet = new Sprite(20.0f, CAMERA_HEIGHT - 40.0f,

 mBulletTextureRegion){

 @Override

 public boolean onAreaTouched(final TouchEvent

 pAreaTouchEvent, final float pTouchAreaLocalX,

 final float pTouchAreaLocalY) {

 switch(pAreaTouchEvent.getAction()) {

 case TouchEvent.ACTION_DOWN:

 break;

 case TouchEvent.ACTION_UP:

 mWarnVampires(pAreaTouchEvent.getY());

 fireBullet(pAreaTouchEvent.getX(),

 pAreaTouchEvent.getY());

 break;

 case TouchEvent.ACTION_MOVE:

 this.setPosition(pAreaTouchEvent.getX() -

 this.getWidth() / 2,

 pAreaTouchEvent.getY() - this.getHeight() / 2);

 break;

 }

 return true;

 }

 };

. . .

 private void mWarnVampires(float pThreatY){

 // There’s a potential threat to vampires at pThreatY

 Scene scene = Level1Activity.this.mEngine.getScene();

 for (int i=0; i<nVamp; i++){

 if (Math.abs(asprVamp[i].getY() - pThreatY) < 10.0f) {

 asprVamp[i].clearEntityModifiers();

 pathVamp[i] = aStar[i].getPath(asprVamp[i].getX(), 1,

 asprVamp[i].getY() - 20.0f, 10,

 asprVamp[i].getWidth(), asprVamp[i].getHeight());

 asprVamp[i].registerEntityModifier(

 new SequenceEntityModifier (

 new MoveYModifier(5.0f, asprVamp[i].getY(),

 asprVamp[i].getY() - 20.0f),

 new PathModifier(60.0f, pathVamp[i])

));

 scene.getLastChild().attachChild(asprVamp[i]);

Appendix Exercise Solutions 417

 }

 }

 }

. . .

Chapter 14

1. The needed code changes are shown here:

IVActivity Changes

. . .

 private SharedPreferences audioOptions, scores;

. . .

 public void onLoadResources() {

. . .

 SoundFactory.setAssetBasePath("mfx/");

 try {

 this.mOofSound = SoundFactory.createSoundFromAsset(

 this.mEngine.getSoundManager(), this,

 "oof.ogg");

 } catch (final IOException e) {

 Debug.e(e);

 }

. . .

 @Override

 public void onLoadComplete() {

 this.mPhysicsWorld.setContactListener(

 new ContactListener() {

 @Override

 public void beginContact(Contact contact) {

 Body bodyA = contact.getFixtureA().getBody();

 Body bodyB = contact.getFixtureB().getBody();

 String idA = (String)bodyA.getUserData();

 String idB = (String)bodyB.getUserData();

 if ((idA.startsWith("vamp")) &&

 (idB.equals("floor"))) {

 playSound(mOofSound);

 int vampID = Integer.parseInt(

 idA.substring(4, 5));

 if (!deadHeads.contains(vampID)) {

 deadHeads.add(vampID);

 }

 mAddScore(VAMPIRE_FLOORED);

Appendix Exercise Solutions418

 if (deadHeads.size() == numHeads) {

 mGameOver(PLAYER_WINS);

 }

 }

 if ((idB.startsWith("vamp")) &&

 (idA.equals("floor"))) {

 playSound(mOofSound);

 int vampID = Integer.parseInt(

 idB.substring(4, 5));

 if (!deadHeads.contains(vampID)){

 deadHeads.add(vampID);

 }

 mAddScore(VAMPIRE_FLOORED);

 if (deadHeads.size() == numHeads) {

 mGameOver(PLAYER_WINS);

 }

 }

 }

 public void endContact(Contact contact) {

 }

 });

 }

The sound file is loaded and the ContactListener is modified so the sound plays

(if enabled) when either of the colliding bodies is a vampire head.

2. The following code shows the changes needed in Level1Activity.java,

IVActivity.java, and WAVActivity.java to add the “New High Score” mes-

sage to the final screen for those gamelets.

Changes Made in Level1Activity.java, IVActivity.java, and WAVActivity.java

. . .

 private TextureRegion mNewHighTextureRegion;

. . .

 public void onLoadResources() {

. . .

 mNewHighTextureRegion =

 TextureRegionFactory.createFromAsset(

 this.mPopUpTexture, getApplicationContext(),

 "newhigh.png", 100, 400);

. . .

 public Scene onLoadScene() {

. . .

 newHigh = new Sprite(0.0f, 0.0f, mNewHighTextureRegion);

. . .

 private void mGameOver(boolean pWin){

Appendix Exercise Solutions 419

 // Called when gamelet is over - pWin=true if player won

 Scene scene = WAVActivity.this.mEngine.getScene();

 boolean newTop = false;

 int[] newHighScores = {0,0,0,0,0};

 for (int i=4; i>-1; i--){

 if (thisScore > highScores[i]){

 newHighScores[i] = thisScore;

 for (int j=i-1; j>-1; j--){

 newHighScores[j] = highScores[j+1];

 }

 if (i==4) newTop = true;

 break;

 } else {

 newHighScores[i] = highScores[i];

 }

 }

 for (int i=0; i<5; i++) highScores[i] = newHighScores[i];

 scoresEditor.putInt("WhAV-4", highScores[4]);

 scoresEditor.putInt("WhAV-3", highScores[3]);

 scoresEditor.putInt("WhAV-2", highScores[2]);

 scoresEditor.putInt("WhAV-1", highScores[1]);

 scoresEditor.putInt("WhAV-0", highScores[0]);

 scoresEditor.commit();

 if (pWin){

 scene.setChildScene(mCreateEndScene(newTop, true,

 "Congratulations!!"), false, true, true);

 } else {

 scene.setChildScene(mCreateEndScene(false, false,

 "You Suck! \nblood"));

 }

 }

 private Scene mCreateEndScene(boolean pNewHigh, boolean pWin,

 String pTitle){

 Scene endScene = new Scene(2);

 endScene.getLastChild().attachChild(endBack);

 Text mTitle = new Text(50.0f, 50.0f, mFont32, pTitle);

 endScene.getLastChild().attachChild(mTitle);

 if (pNewHigh) {

 newHigh.setPosition(300.0f, 50.0f);

 endScene.getLastChild().attachChild(newHigh);

 }

 Text mYourScore = new Text(50.0f, 150.0f, mFont32,

 "Your Score: " + thisScore);

. . .

Appendix Exercise Solutions420

A Sprite is created from the “New High Score” texture. As we go through the

high scores at the end of the game, we check whether the current score is higher

than all of the scores in the array. If the new score is the highest, we pass a f lag

to mCreateEndScene(), which includes the Sprite.

Chapter 15

1. This exercise again demonstrates how easy it is to reuse game assets for other

purposes like live wallpaper. The following code shows the changes required to

V3LiveWallpaper.java:

V3LiveWallpaper.java with Explosions

package com.pearson.lagp.vinb;

+ imports

. . .

 // ===

 // Fields

 // ===

 private ParticleSystem particleSystem;

 private BaseParticleEmitter particleEmitter;

. . .

 @Override

 public Scene onLoadScene() {

. . .

 scene.registerUpdateHandler(new IUpdateHandler() {

 @Override

 public void reset() { }

 @Override

 public void onUpdate(final float pSecondsElapsed) {

 for (int i=0; i<nVamp; i++){

 if (asprVamp[i].getX() < 30.0f){

 //Show explosion

 particleEmitter.setCenter(

 asprVamp[i].getX(),

 asprVamp[i].getY());

 particleSystem.setParticles-

 SpawnEnabled(true);

 mHandler.postDelayed(

 mEndPESpawn,2000);

 //Move vampire back to right

 float startY = gen.nextFloat() *

 (CAMERA_HEIGHT - 50.0f);

Appendix Exercise Solutions 421

 asprVamp[i].clearEntityModifiers();

 asprVamp[i].registerEntityModifier(

 new MoveModifier(40.0f,

 CAMERA_WIDTH - 30.0f, 0.0f, startY, 340.0f)

);

 }

 }

 }

 });

 try {

 final PXLoader pxLoader = new PXLoader(this,

 this.mEngine.getTextureManager(),

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 particleSystem = pxLoader.createFromAsset(this,

 "gfx/particles/explo.px");

 } catch (final PXLoadException pxle) {

 Debug.e(pxle);

 }

 particleSystem.setBlendFunction(GL10.GL_SRC_ALPHA,

 GL10.GL_ONE);

 particleSystem.setParticlesSpawnEnabled(false);

 particleEmitter =

 (BaseParticleEmitter) particleSystem.getParticleEmitter();

 scene.getLastChild().attachChild(particleSystem);

. . .

 private Runnable mEndPESpawn = new Runnable() {

 public void run() {

 particleSystem.setParticlesSpawnEnabled(false);

 }

 };

These changes take the explosion particle effect from Level1Activity.java

and add it to the live wallpaper service. The effect is triggered when any vampire

reaches the left side of the screen (Miss B’s). Besides changing this code, there

are some things we need to add to the project:

 n The particle effect loading files must be added to the src folder:

– PXLoader.java

– PXParser.java

– PXConstants.java

– PXLoaderException.java

– PXParserException.java

Appendix Exercise Solutions422

 n The particle effect XML file explo.px must be placed in the folder assets/

gfx/particles.

 n The PNG file for the particle effect, particle_fire.png, must be placed in

assets/gfx/Wallpaper.

2. We don’t have the rights to redistribute any MOD files for this book, but

you can freely obtain files for your own use at sites such as http://modar-

chive.org. The code needed to move your .mod file from assets to the

SD card is given in Listing 15.3. For extra credit, change the method

startPlayingMod()so that it respects the audio SharedPreferences Boolean

values for music being turned on and off.

3. The resulting code is shown here. Note these significant changes:

 n Add implements IOrientationListener to the class declaration.

 n Add the ChangeableText to display the heading.

 n Add the onOrientationChanged() listener.

 n Override onPause() and onResume() methods to stop and start the compass

readings.

 n Use NumberFormat to limit the length of the heading value.

Vampires in Backyard with Compass

package com.pearson.lagp.vinb;

+imports

public class VampiresInBackyard extends BaseAugmentedRealityGameActivity

implements IOrientationListener {

. . .

 // ===

 // Fields

 // ===

. . .

 private Texture mFontTexture;

 private Font mFont32;

 private ChangeableText mCurrHeading;

. . .

 @Override

 public Engine onLoadEngine() {

. . .

 nf = NumberFormat.getInstance();

http://modarchive.org
http://modarchive.org

Appendix Exercise Solutions 423

 nf.setMaximumFractionDigits(2);

 nf.setMinimumFractionDigits(2);

. . .

 }

 @Override

 public void onLoadResources() {

. . .

 this.mFontTexture = new Texture(256, 512,

 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 FontFactory.setAssetBasePath("font/");

 mFont32 = FontFactory.createFromAsset(

 this.mFontTexture, this, "Flubber.ttf",

 32, true, Color.RED);

 mEngine.getTextureManager().loadTexture(

 this.mFontTexture);

 mEngine.getFontManager().loadFont(this.mFont32);

 }

 @Override

 Public void onLoadScene()

. . .

 mCurrHeading = new ChangeableText(0.5f*CAMERA_WIDTH, 10.0f,

 mFont32, "Heading: 0", "Heading: XXXXXX".length());

 scene.getLastChild().attachChild(mCurrHeading);

. . .

 @Override

 protected void onResume() {

 super.onResume();

 this.enableOrientationSensor(VampiresInBackyard.this);

 }

 @Override

 protected void onPause() {

 super.onPause();

 this.mEngine.disableOrientationSensor(this);

 }

 public void onOrientationChanged(OrientationData pOD) {

 // Update compass display

 float head = pOD.getYaw();

 mCurrHeading.setText("Heading: " + nf.format(head));

 }

}

Appendix Exercise Solutions424

Chapter 16

1. The changes needed to Level1Activity.java are shown here:

Changes to Level1Activity.java to Stop Runnables

. . .

 @Override

 public void onGamePaused() {

 super.onGamePaused();

 mGunshotSound.stop();

 mExploSound.stop();

 mOCSMusic.stop();

 mSaveMeSound.stop();

 mActivityVisible = false;

 mHandler.removeCallbacks(mStartSarah);

 mHandler.removeCallbacks(mStartVamp);

 }

 @Override

 public void onGameResumed() {

 super.onGameResumed();

 mActivityVisible = true;

 mHandler.removeCallbacks(mStartSarah);

 mHandler.removeCallbacks(mStartVamp);

 mHandler.postDelayed(mStartVamp,mVampRate);

 if (mDistract) mHandler.postDelayed(mStartSarah,5000);

 }

. . .

The removeCallbacks() calls in onGamePaused() are fairly obvious, but

why are they repeated in onGameResumed()? The answer is that onGame-

Resumed() is also called as part of normal Activity startup. When the gamelet

is first starting, we don’t want Sarah and the vampires to appear until we get to

that point in onLoadScene().

2. The changes to OptionsActivity.java are fairly obvious—just delete the

menuItems for Whack-A-Vampire and Irate Villagers. We’ve commented them

out in the downloadable code in the V316Exercises folder. The changes to

StartActivity.java are shown here:

Changes to StartActivity.java to Add Invisible Buttons

. . . // ===

 // Fields

 // ===

. . .

Appendix Exercise Solutions 425

 private TextureRegion mBlackButtonTextureRegion;

. . .

 @Override

 public void onLoadResources() {

. . .

 this.mBlackButtonTextureRegion =

 TextureRegionFactory.createFromAsset(this.mTexture,

 this, "blackbutton.png", 0, 330);

. . .

 @Override

 public Scene onLoadScene() {

. . .

 /* Create buttons for WAV and IV */

 final Sprite WAVButton = new Sprite(CAMERA_WIDTH - 32,

 CAMERA_HEIGHT - 64, mBlackButtonTextureRegion){

 @Override

 public boolean onAreaTouched(

 final TouchEvent pAreaTouchEvent,

 final float pTouchAreaLocalX,

 final float pTouchAreaLocalY) {

 mHandler.removeCallbacks(mLaunchMenuTask);

 mHandler.post(mLaunchWAVTask);

 return true;

 }

 };

 mScene.registerTouchArea(WAVButton);

 mScene.setTouchAreaBindingEnabled(true);

 mScene.getLastChild().attachChild(WAVButton);

 final Sprite IVButton = new Sprite(CAMERA_WIDTH - 32,

 CAMERA_HEIGHT - 32, mBlackButtonTextureRegion){

 @Override

 public boolean onAreaTouched(

 final TouchEvent pAreaTouchEvent,

 final float pTouchAreaLocalX,

 final float pTouchAreaLocalY) {

 mHandler.removeCallbacks(mLaunchMenuTask);

 mHandler.post(mLaunchIVTask);

 return true;

 }

 };

 mScene.registerTouchArea(IVButton);

 mScene.getLastChild().attachChild(IVButton);

. . .

 @Override

 public void onDestroy() {

 super.onDestroy();

Appendix Exercise Solutions426

 mHandler.removeCallbacks(mLaunchMenuTask);

 mHandler.removeCallbacks(mLaunchWAVTask);

 mHandler.removeCallbacks(mLaunchIVTask);

 }

. . .

 private Runnable mLaunchWAVTask = new Runnable() {

 public void run() {

 Intent myIntent = new Intent(StartActivity.this,

 WAVActivity.class);

 StartActivity.this.startActivity(myIntent);

 }

 };

 private Runnable mLaunchIVTask = new Runnable() {

 public void run() {

 Intent myIntent = new Intent(StartActivity.this,

 IVActivity.class);

 StartActivity.this.startActivity(myIntent);

 }

 };

. . .

3. We can use an Alert Dialog box to display the help string, which we’ve added

to strings.xml in the res folder. The modifications to MainMenuActivity

.java are shown here:

Changes to MainMenuActivity.java to the Help Screen

. . .

 @Override

 public boolean onMenuItemClicked(final MenuScene pMenuScene,

 final IMenuItem pMenuItem, final float pMenuItemLocalX,

 final float pMenuItemLocalY) {

. . .

 case MENU_HELP:

 mShowHelp();

 return true;

. . .

 private void mShowHelp() {

 String title = this.getString(R.string.app_name);

 String message = this.getString(R.string.help);

 AlertDialog.Builder builder = new AlertDialog.Builder(this)

 .setTitle(title)

 .setCancelable(false)

 .setMessage(message)

Appendix Exercise Solutions 427

 .setPositiveButton(R.string.help_dialog_play,

 new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int whichButton) {

 mMainScene.registerEntityModifier(

 new ScaleAtModifier(0.5f, 1.0f, 0.0f, CAMERA_WIDTH/2,

 CAMERA_HEIGHT/2));

 mStaticMenuScene.registerEntityModifier(

 new ScaleAtModifier(0.5f, 1.0f, 0.0f, CAMERA_WIDTH/2,

 CAMERA_HEIGHT/2));

 mHandler.postDelayed(mLaunchLevel1Task,500);

 }

 })

 .setNegativeButton(R.string.help_dialog_cancel,

 new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int whichButton) {

 dialog.dismiss();

 }

 });

 builder.create().show();

 }

This page intentionally left blank

Index

A

A Star (A*) path finding algorithm, 286–287

AAC audio, 221

AccelColor class, 399–400

AccelerationInitializer class, 203

Accelerometers

Android devices, 158

exercise, 399–400

physics example, 257–258

Action games, 2–3

Activities for tile maps, 192–196

ACtrlMove class, 398–399

adb command, 157

Add Object Layer command, 185

addBody method, 256–258

addMenuItem method, 38

addStake method, 275, 322

AdMob service, 365, 379

Adventure games, 3

Adversaries, 6

Advertising, 366, 379

AI. See Artificial intelligence (AI)

Alpha color setting, 57

AlphaInitializer class, 203

AlphaModifier class, 69, 205

Amazon App Store, 375–380

AnalogOnScreenControlsExample.java

 program, 157

AndEngine game engine

animation, 111

Box2D, 248–253

collisions, 306

concepts, 18–19

examples, 10–12

library, 17–18, 27–28

loops, 34–35

menus, 37–39

multi-touch, 337–339

particle systems, 201–206

scenes, 18, 53

sound, 222–225

text, 133–136

tile maps, 176–179

andenginemultitouchextension.jar file, 338

AndEnginePhysicsBox2DExtension, 248–250

AndEngineSensorExample class, 159–162

AndEngineTouchExample class, 152–154

Android Content Guidelines, 375

Android devices

exercise, 399–400

IP addresses, 336

live wallpapers, 326–327

SDK, 16–17

splash screen, 31

Android Emulator, 31

Android Market agreement, 378–379

Android Market application, 373–375

Android Market Developer Distribution

Agreement, 374

Android Project dialog, 26

Android Virtual Devices (AVDs), 16

AndroidManifest.xml file, 140–141, 332, 370

animate method, 112–113

AnimatedSprite class, 89, 100–101, 111–113

AnimatedSpriteMenuItem.java program, 39

Animation, 109

2D from 3D models, 127

AndEngine, 111

bat, 114–118, 390–391

example, 113–118

problems, 126–127

requirements, 109–110

sprites, 111–113

tiled textures, 110–111

Virgins Versus Vampires, 118–126

Anime Studio package, 110, 118

AnimGet utility, 23, 118

.apk files, 11, 15, 17, 372

Application business models, 365–366

ARGs (augmented-reality games), 4,

339–343

armeabi folder, 248

Artificial intelligence (AI), 279

decision trees, 280

dynamic difficulty, 287

expert systems, 282–283

genetic algorithms, 285

minimax trees, 280–281

neural networks, 283–284

path finding, 285–297

procedural music generation, 287

scripts, 279–280

state machines, 281–282

Virgins Versus Vampires, 287–297

assetPath method, 259

Assets for textures, 92–94

AStar class, 290–295

attachChild method, 58

Audacity tool, 25, 221, 226–228

Audio. See Sound

Augmented-reality games (ARGs), 4,

339–343

augmentedrealityextension.jar class, 340

AVDs (Android Virtual Devices), 16

B

Bach, J. S., 228–231

Background management for scenes, 60

Background music

MuseScore, 25–26

selecting, 219–220

Virgins Versus Vampires, 228–231

Backward-chaining, 283

Baring-Gould, Sabine, 242

BaseGameActivity class

AndEngine, 19

splash screen, 30

BaseSprite class, 87–88

Bass Boost effect, 227–228

Bat, animated, 114–118, 390–391

beginContact method

collisions, 306–307

Irate Villagers, 273, 321

sound, 417

Biological evolution, 285

Bison Brick level editor, 259

Bison Kick level editor, 247, 262–264

Bitmap fonts, 129

Bitmap graphics, 22

Blender tool, 22

Blue color setting, 57

Bodies

Box2D, 244–245

PhysicsFactory, 251

Booleans exercise, 394–395

Box2D physics engine, 15, 19–20

AndEngine, 248–253

APIs, 250–253

collision detection, 307

example, 253–258

level loading, 258–261

overview, 244–246

BuildableTexture, 95–99

buildAnimations method, 47

Bullet (gunshot.ogg) sound effect, 228

Bullets

Box2D, 245–246

Virgins Versus Vampires, 8

Buttons, invisible, 424–426

C

call method, 335

Camera class, 35–36

Cameras

AndEngine, 18

splash screen, 30

CameraScene class, 62

Capturing keystrokes, 150–151

Catto, Erin, 244

ChangeableText, 133

Children

Entity, 58

Scene, 61

Chore Wars game, 4

CircleOutlineParticleEmitter class, 202

CircleParticleEmitter class, 202

clearChildScene method, 61

clearEntityModifiers method, 59

clearTouchAreas method, 61

clone method, 63

430 Index

Index 431

closeCoffin method, 318, 359

cocos2d tool, 228

Codecs for sound, 221–222, 228, 231

Collisions, 306

AndEngine, 306

Box2D, 307

Color of Entities, 57

ColorBackBackground background, 60

ColorInitializer class, 204

ColorMenuItemDecorator.java class, 39

ColorModifier class, 67–68, 205

Compiling .apk files, 372

Completion tasks

Irate Villagers, 360–363

overview, 350–353

Virgins Versus Vampires, 353–357

Whack-A-Vampire, 358–360

Components, game, 5–7

Compound Sprites, 101–106

Compression of audio files, 228

Conder, Shane, 17

Constraints in Box2D, 245

ContactListener method, 307

Content ratings, 378

create method, 132–133

createBoxBody method, 251

createCircleBody method, 251

createFixtureDef method, 252

createFromAsset method

fonts, 47, 132

particle systems, 211

splash screens, 31

textures, 92–94, 97

createFromResource method, 92, 94

createFromSource method, 92

createLineBody method, 251

createMenuScene method, 47–48

createMusicFromAsset method, 224

createMusicFromFile method, 224

createMusicFromResource method, 224

createOptionsMenuScene method

fonts, 144–146

text, 394

Whack-A-Vampire, 191–192

createPolygonBody method, 251

createPopUpMenuScene method, 45–46

createPopUpScene method, 47–48

createSoundFromAsset method, 224

createSoundFromFileDescriptor method, 224

createSoundFromPath method, 224

createSoundFromResource method, 224

createStaticMenuScene method, 45, 47, 382–383

createStrokeFromAsset method, 132

createTiledFromAsset method, 92, 117

createTiledFromResource method, 92

createTiledFromSource method, 92

createTrianglulatedBody method, 251

Cross weapon exercise, 407–408

Crossover in genetic algorithms, 285

Crucifix in Virgins Versus Vampires, 8

Crypto keys, 371–372

Cubase tool, 221

D

Dalvik virtual machines, 15

Darcey, Lauren, 17

DCtrlMove class, 395–397

Debugging, 370

Decision trees, 280

Default constructors, 35

DelayModifier modifier, 69–70

Demolition class, 253–258

Descriptions on app store, 378

desert.tmx file, 179–181

detachChild method, 58

detachChildren method, 58

Developer Program Policies, 375

Difficulty balance

Irate Villagers, 360–363

parameters, 348–350

Virgins Versus Vampires, 352–357

Whack-A-Vampire, 358–360

Disappearing vampires, 391–392

Display dimensions for splash screen, 30

Displaying scores, 302–305

DoubleSceneSplitScreenEngine class, 36

Downloading extensions, 325–326

Drawing

lines, 88–89

rectangles, 89

vector graphics, 20–21

Droid Sans font, 130

Droid Sans Mono font, 130

432 Index

Droid Serif font, 130

Drools system, 283

Dynamic bodies in Box2D, 244

Dynamic difficulty in AI, 287

E

EaseBackIn function, 71

EaseBackInOut function, 71

EaseBackOut function, 71

EaseBounce functions, 72

EaseCircular functions, 73

EaseCubic functions, 73–74

EaseElastic functions, 74

EaseExponential functions, 75

EaseFunction method, 68

EaseLinear class, 387

EaseLinear function, 75

EaseQuad functions, 76

EaseQuart functions, 76–77

EaseQuint functions, 77

EaseSine functions, 78

EaseStrong functions, 78–79

EaseWiggle.java program, 387

Eclipse debugger, 17, 249

Editing

particle systems, 209–210

tile maps, 179–180

TrueType fonts, 24

Emitters in particle systems, 200, 202–203,

211–216

Emotion, music for, 219

Encoding genetic algorithms, 285

End User License Agreement (EULA), 367–369

endContact method

collisions, 306–307

Irate Villagers scoring, 322

sound, 418

Engine object initialization, 35

EngineOptions class, 35

Engines, 19

AndEngine. See AndEngine game engine

Box2D. See Box2D physics engine

Entities and Entity class, 53–54

AndEngine, 18

BaseSprite, 87–88

children, 58

color, 57

constructor, 55

Layers, 59

miscellaneous methods, 59

Modifiers. See Modifiers and Modifiers class

position, 55–56, 64–66

properties, 54–55

rotation, 57

scale factor, 56

Entity/Component model, 53–54

EntityModifierListener method, 68

EULA (End User License Agreement), 367–369

ExampleGestureListener class, 155

Expert systems, 282–283

ExpireModifier class, 205

explo.px file, 207–211

Explosions, 199, 211–216

Extensions, downloading, 325–326

F

FadeInModifier modifier, 69

fComp method, 293–295

Featured Apps, 377

Feedback, 2

Finale products, 221, 229

finish method, 350, 352

Finite state machines (FSMs), 281

fireball.ogg file, 228

Fireball3.wav file, 225–227

fireBullet method, 238–239, 241

FixedStepEngine class, 36

Fixtures

Box2D, 245

PhysicsFactory, 252

Flubber font, 137

Flying bat, 114–118, 390–391

Font class, 131

FontFactory class, 132

FontManager class, 132

Fonts, 24, 129–130

creating, 137–138

loading, 130

menus, 47

StrokeFont, 131

Typeface, 132–133

Virgins Versus Vampires, 139–147

Index 433

fontshop.com, 137

FontStruct tool, 24, 138

Fortunato, Jason, 228

Forward-chaining, 283

FPSLogger frame rate counter, 101

Free game business model, 366

Free plus in-app purchases business model, 366

Freemium game business model, 366

FSMs (finite state machines), 281

Fugue in G Minor, 228–231

G

Game integration, 347–348

completion, 350–353

difficulty balancing, 348–350, 352–357

Options menu, 363

Game project creation, 26–27

Game review sites, 379

garbage collector, 51

Genetic algorithms, 285

GestureExample class, 155–157

Gestures, 154–157

getAlpha method, 57

getBackground method, 60

getBlue method, 57

getChild method, 58

getChildCount method, 58

getChildScene method, 61

getCurrentTileIndex method, 100

getFirstChild method, 58

getGlobalTileID method, 179

getGreen method, 57

getInitialX method, 55

getInitialY method, 55

getInstance method, 387

getInt method, 300–301

getLastChild method, 58

getMenuItemCount method, 38

getModifierListener method, 63

getName method, 178

getPath method, 291–295

getPercentageDone method, 387

getPointer method, 337

getRed method, 57

getRotation method, 57

getRotationCenterX method, 57

getRotationCenterY method, 57

getScaleCenterX method, 56

getScaleCenterY method, 56

getScaleX method, 56

getScaleY method, 56

getTextureRegion method, 99, 179

getTextureRegionFromGlobalTileID

method, 178

getTileColumn method, 178

getTileColumns method, 177–178

getTileHeight method, 177, 179

getTileRow method, 178

getTileRows method, 177–178

getTileWidth method, 177, 179

getTileX method, 179

getTileY method, 179

getTMXLayerProperties method, 178

getTMXLayers method, 177

getTMXObjectGroups method, 177

getTMXTile method, 178

getTMXTileAt method, 178

getTMXTiledMapProperties method, 178

getTMXTileProperties method, 178

getTMXTilePropertiesByGlobalTileID

method, 178

getTMXTiles method, 178

getTMXTileSets method, 177

getTouchAreas method, 61

getUserData method, 59

getX method, 55, 337

getXXXAttribute method, 259–260

getXXXAttributeOrThrow method, 260

getY method, 55, 337

getZIndex method, 59

GIMP (GNU Image Manipulation

 Program), 22

Global IDs for tile maps, 179

Goals in computer games, 2

Google Merchant accounts, 375

Gramlich, Nicolas, 10–11, 17

Graphics tools, 20

animation capture, 22–23

bitmap graphics, 22

fonts, 24

tiles, 23

vector graphics, 20–21

Gravity vector, 250, 257

Index434

GravityInitializer class, 204

Green color setting, 57

GridLoc class, 289–290

Gunshot.ogg (bullet) sound effect, 228

H

Handlers, 125

hasChildScene method, 61

Hatchet (whiff le.ogg) sound effect, 228

Hatchets in Virgins Versus Vampires, 8

Help screen, 426–427

Highest scores, 301–302

I

Icons

Bison Kick, 263

manifests, 369

selecting, 377

IDEs (integrated development

 environments), 16

IllegalArgumentException, 91

Import dialog, 28

Initialization of Engine class, 35

Initializers in particle systems, 203–204

Inkscape drawing package, 20–21

inMobi advertising, 379

Input. See User input

Integrated development environments

(IDEs), 16

Invisible buttons, 424–426

IOnAnimationListener class, 112

IOnMenuItemClickListener interface, 46

IP addresses for Android devices, 336

Irate Villagers, 261

completion and difficulty balance, 360–363

exercises, 411–415

implementing, 261–262

levels, 262–266

physics overview, 261

scoring, 318–322

isBackgroundEnabled method, 60

isEffectsOn method, 145

isFinished method, 63

isMusicOn method, 145

Isometric tile maps, 175–176, 196–197

isParticlesSpawnEnabled method, 206

isPlaying method, 223

isRemoveWhenFinished method, 63

isScaled method, 56

isVisible method, 59

ITMXTilePropertiesListener class, 177

IVActivity class

completion and difficulty balance, 360–363

exercise, 414–415

part 1, 266–267

part 2, 268

part 3, 269

part 4, 269–271

part 5, 271–274

part 6, 274–275

part 7, 275–276

scoring, 318–322

sound exercise, 417–418

J

JAR Export dialog, 249–250

.jar files, 248, 325–326

Java Development Kit (JDK), 16

JBoss Rules system, 283

Jetset game, 4

Joints in Box2D, 245

JSR-94 system, 283

JumpTap advertising, 379

K

Keyboards, 150–151

Keypads, 150–151

Keys, crypto, 371–372

Keytool tool, 371–372

Keywords, 377

Kinematic bodies in Box2D, 244

L

Labels for manifests, 369

LAME libraries, 228

Landscape orientation of splash screens, 30

Layers

AndEngine, 18

Entity, 59

Index 435

scenes, 61

tile maps, 178, 185–186

Level1Activity class

AI path finding, 296–297

animation, 118–126

BuildableTexture, 96–99

completion and difficulty balance, 353–357

scoring, 309–315

sound, 236–241

textures, 93–94

user input, 167–171

Virgins Versus Vampires, 81–85, 211–216

LevelLoader class, 258–261, 265–266

Levels

Irate Villagers, 262–266

physics games, 246–247, 258–261

purpose, 6

libgdx library, 248, 250

Libraries

AndEngine, 17–18, 27–28

AndEnginePhysicsBox2DExtension,

248–250

sounds, 228

Licenses

EULA, 367–369

music, 220–221

LimitedFPSEngine class, 36

Line class, 88–89

Linear pulse code modulation (LPCM), 222

Lines, drawing, 88–89

Live wallpaper

exercise, 420–422

extension, 326–332

Lives in games, 6

LiveWallpaperService class, 328–332

Loaders for tile maps, 177

loadFromAsset method, 177

Loading

fonts, 130

levels, 258–261

particle systems, 210–211

loadLevelFromAsset method, 259

Location in user input, 158–162

LogCat tool, 17

Logging, 370

Loops, 33–35

LPCM (linear pulse code modulation), 222

M

M-Audio Pro Tools, 221

Mad Mat character, 102

mAddScore method, 302

MainMenuActivity class

constants and fields, 46

createMenuScene and createPopUpScene,

47–48

Help Screen, 426–427

menu creation, 40–46

onKeyDown and

onMenuItemClicked, 48

onLoadResources, 46–47

onLoadScene, 47

Virgins Versus Vampires, 80–81

MainMenuLayer.java program,

139–140

MakeMusic Finale tool, 221

Manifest files

icon and label, 369

version numbers, 370

Maps, tile. See Tile maps

Market for mobile games, 1–2

Marketing, 376–380

McGehee, Ben, 137

McGonigal, Jane, 2, 4

mCreateEndScene method, 419–420

Memory usage, 50–51

mEndCleanup method, 351–352, 356

mEndPESpawn method

live wallpaper exercise, 421

Virgins Versus Vampires game explosions,

213–214

Menu screens, 5

Menus

AndEngine, 37–39

creating, 40–46

exercises, 381–383

splash screens, 48–50

MenuScene class, 37–38, 40, 62

mGameOver method

scoring, 314, 418–419

Virgins Versus Vampires, 352

Whack-A-Vampire, 359

MIDI (.mid) files

description, 222

exercise, 408

Index436

MIDI (.mid) files (continued)

MuseScore, 231

public domain, 228

MIDIWorld site, 228

Millenia Media advertising, 379

mIncreaseDifficulty method

Irate Villagers difficulty balance, 362

Virgins Versus Vampires, 352, 356–357

Whack-A-Vampire, 359–360

Minimax trees, 280–281

Mixer panel, 229–230

MKS units, 244

mLaunchIVTask method, 426

mLaunchOptionsTask method, 140

mLaunchScoresTask method, 409

mLaunchTask method

animated bat, 116–117

menus, 50

mLaunchWAVTask method, 426

mNukeVamp method, 314–315

Mobile advertising model, 366, 379

Mobile games overview, 1

characteristics, 4–5

components, 5–7

genres, 2–4

market, 1–2

Virgins Versus Vampires. See Virgins

 Versus Vampires (V3) game

MOD music format, 332–335

Modifiers and Modifiers class, 54

AndEngine, 19

ColorModifier, 67–68

combinations, 70–71, 386–387

common methods, 63

DelayModifier modifier, 69–70

Entity class, 58–59

exercises, 383–387

particle systems, 204–206

position, 64–66

RotationModifier, 68–69

ScaleModifiers, 66–67

Transparency, 69

Monospaced fonts, 130

Mood, music for, 219

MoveModifier method, 64

MoveXModifier method, 64

MoveYModifier method, 64–65

MP3 audio, 222

mPLayGunshot method, 239–241

mPlayNext method, 352, 357

mPlayThis method, 351–352, 356–357

mSaveDifficulty method

difficulty balancing, 348–349

Irate Villagers, 362

Virgins Versus Vampires, 356–357

Whack-A-Vampire, 360

mShowHelp method, 426–427

mStartSarah method, 355–356

mStartVamp method

animation, 124, 126

augmented reality, 343

live wallpapers, 330–331

scoring, 314–315

vampire warnings, 415

Virgins Versus Vampires game explosions,

213–214

Multi-touch mode, 154, 337–339

Multimedia extensions, 325

augmented reality, 339–343

downloading, 325–326

live wallpapers, 326–332

MOD music format, 332–335

multi-touch, 337–339

multiplayer games, 336–337

Multiplayer games, 336–337

MuseScore package, 25–26, 221,

229–231

Music, 219–220

background, 25–26, 228–231

MOD format, 332–335

procedural generation, 287

purpose, 6

sources, 220–221

Music class, 222–223

MusicFactory class, 223–224

Mutation in genetic algorithms, 285

mWarnVampires method, 416–417

N

Neural networks, 283–284

New Android Project dialog, 249

New Map dialog, 181–182

New Tileset dialog, 183

Index 437

nextTile method, 100

Normal-sized objects, 244

O

Obstacles, 6

Ogg Vorbis codec, 222, 228, 231

On-screen controllers, 157–158

onAccelerometerChanged method, 256–258,

400

onActivityResult method, 166

onAnimationEnd method, 112

onAreaTouched method

game completion, 350–352

invisible buttons, 425

multitouch, 339

scoring, 314–315

touch, 152–154

user input, 171

vampires, 416

onAreaTouchEvent method, 62

onCallback method, 335

onChildSceneTouchEvent method, 62

onClick method

EULA, 369

menus, 38

onControlClick method, 398

onCreate method, 160, 162, 367–369

onDestroy method, 425–426

onDown method, 156

onFling method, 156

onGamePaused method

difficulty balance, 355, 357

live wallpapers, 331

Runnables, 424

sound, 233–234, 236, 238, 240

onGameResumed method

difficulty balance, 355, 357

live wallpapers, 331

Runnables, 424

sound, 233, 235–236, 240

onKeyDown method

capturing keystrokes, 150–151

MainMenuActivity, 43–44, 48

onLoadComplete method

accelerometers, 400

animated bat, 116–117

animation, 123

Demolition, 256

fonts, 143

Irate Villagers scoring, 321–322

IVActivity, 273–274

MainMenuActivity, 43

menus, 50

modifiers, 385

scores, 305, 411

sound, 417–418

speech recognition, 165

splash screen, 30

Sprites, 397

SpriteTestActivity, 106

StarActivity, 389

TextExample, 135

touch, 154

user input, 161

Virgins Versus Vampires, 85, 213

Whack-A-Vampire, 190, 195

onLoadEngine method

accelerometers, 399

animated bat, 115

animation, 120–121, 125

augmented reality, 341

Demolition, 254, 257

fonts, 142, 145

gestures, 155

Irate Villagers difficulty balance, 361

IVActivity, 268

live wallpapers, 329

MainMenuActivity, 42

menus, 37, 49

modifiers, 384–385

multitouch, 338

overriding, 34

scores, 304, 311, 410

SharedPreferences, 408

sound, 232, 234, 236, 240

speech recognition, 164

splash screen, 29–30

Sprites, 396

SpriteTestActivity, 104

StarActivity, 388

TextExample, 134

user input, 160

VampiresInBackyard, 422–423

Index438

onLoadEngine method (continued)

Virgins Versus Vampires, 80, 82, 354

Whack-A-Vampire, 188–189, 193, 359

onLoadEntity method

Irate Villagers scoring, 320

IVActivity, 269–273

levels, 260–261, 266

onLoadResources method

accelerometers, 399

AI path finding, 296–297

animated bat, 115–117

animation, 121–122, 125

augmented reality, 342

BuildableTexture, 96

Demolition, 254–255, 257

fonts, 142–143

invisible buttons, 425

Irate Villagers, 361–362, 414–415

IVActivity, 268

live wallpapers, 329–330

main game difficulty balance, 354–355

MainMenuActivity, 42–43, 46–47

menus, 49, 381–382

MIDI files, 408

modifiers, 385

scores, 304–305, 311–312, 410–411, 418

sound, 232–233, 236–237, 417

speech recognition, 164–165

splash screen, 29–30

Sprites, 396–397

SpriteTestActivity, 104

StarActivity, 388–390

text, 393

TextExample, 134–135

textures, 93–95

touch, 152–153

user input, 160–161

VampiresInBackyard, 423

Virgins Versus Vampires, 82–83, 212

Whack-A-Vampire, 189, 193, 195

onLoadScene method

accelerometers, 400

animated bat, 116–117

animation, 122–123, 125–126

augmented reality, 342

Demolition, 255–256

f lying bat, 390–391

fonts, 143, 145

invisible buttons, 425

Irate Villagers scoring, 319–320

IVActivity, 269

live wallpapers, 330, 420–421

main game difficulty balance, 355

MainMenuActivity, 43, 47

menus, 49–50

modifiers, 385, 387

particle systems, 209

scores, 305, 312–314, 316–317, 411, 418

smoke effect, 403–404

sound, 233, 237–238, 240

speech recognition, 165

splash screen, 29–30

Sprites, 397–398

SpriteTestActivity, 104–106

StarActivity, 389

TextExample, 135

tile sets, 401–402

touch, 153–154

user input, 161, 167–171

vampires, 391, 416

VampiresInBackyard, 423

Virgins Versus Vampires, 83–85, 212–213,

215–216

Whack-A-Vampire, 189–190, 193–194

onLocationChanged method, 158, 162

onLocationLost method, 158, 162

onLocationProviderDisabled method, 158, 162

onLocationProviderEnabled method, 162

onLocationProviderStatusChanged method,

158, 162

onLongPress method, 156

onMenuItemClicked method

Booleans, 394–395

fonts, 139–140, 143–145

Help screen, 426

MainMenuActivity, 44, 48

SharedPreferences, 409

sound, 235–236

text, 392–395

Virgins Versus Vampires, 80–81

Whack-A-Vampire, 190–191

onOrientationChanged method, 158,

 161–162, 423

onPause method, 161–162, 231, 423

Index 439

onResume method, 161–162, 231, 423

onResumeGame method, 80

onSceneTouchEvent method

Demolition, 256, 258

IVActivity, 274–275

Scene, 62

scoring, 316–317

tile sets, 402

touch, 153

Whack-A-Vampire, 194–195

onSceneTouchListener method, 196

onScroll method, 156

onShowPress method, 155–156

onSingleTapUp method, 155

onTMXTileWithPropertiesCreated method,

194–195, 401

onTouch method, 151

onTouchEvent method, 155

OnTouchListener method, 151

onUpdate method

augmented reality, 342

collisions, 306

Irate Villagers difficulty balance, 362

live wallpapers, 330, 420–421

scoring, 312–314

vampires, 392

“Onward Christian Soldiers,” 242

onWaypointPassed method, 66

openCoffin method, 196, 317, 359

OpenGL

blend function, 206

fonts, 130–131

texture filters, 91

Opening menu in Virgins Versus Vampires,

40–46

Opening screens, 5

OpenType fonts, 130

Options menu, 363

OptionsActivity class

fonts, 141–146

sound, 234–236

text, 392–394

Whack-A-Vampire, 187–192

OptionsMenuActivity, 140

Orientation, user input, 158–162

Orthogonal tile maps, 175, 181–196

Outline fonts, 129

P

ParallelEntityModifier modifier, 70

Parents in Scene, 61

Parsing SAX, 258

Particle systems, 199

AndEngine, 201–206

creating, 206–211

editing, 209–210

emitters, 200, 202–203, 211–216

initializers, 203–204

loading, 210–211

methods, 205–206

modifiers, 204–206

operation, 200

XML, 207–209

ParticleEmitters, 202–203

ParticleInitializers, 203–204

ParticleModifiers, 204–206

ParticlePlayer.java program, 209

PartnersInRhyme site, 225

PathModifier class, 65

Paths

AI, 285–297

Entity, 65–66

pause method, 223

Pay for play business model, 366

Performance of Sprites, 101

Physics, 243

Box2D physics engine, 244–246

example, 253–258

Irate Villagers, 261–276

levels, 246–247, 258–261

PhysicsConnector class, 19, 252–253

PhysicsFactory class, 251–252

PhysicsWorld class, 250

Pixen package, 110

play method, 223

Play Panel, 230

Player reviews, 378

Players, 7

playSound method, 240–241, 356

PointParticleEmitter class, 202–203

pOnMenuItemClickListener method, 37

PopupScene class, 62

Ports, 336

Position in Entity, 55–56, 64–66

Preferences dialog for tile maps, 186

Index440

Pricing, 378–379

Procedural music generation, 287

Prolog system, 283

Promotion, 376–380

Public domain for sound, 221

Publishing, 373

Amazon App Store, 375–376

Android Market, 373–375

promotion, 376–380

putInt method, 302

Puzzle games, 4

PX files

editing, 209–210

explosion effect, 207–209

loading, 210–211

rain effect, 406–407

smoke effect, 404–406

PXConstants.java file, 207

PXEditor, 209–210

PXLoader class, 210–211

Q

Quit option, 51

R

Rain effect, 406–407

Reality Is Broken (McGonigal), 2, 4

Rectangle class, 89

Rectangle method, 252

RectangleOutlineEmitter class, 203

RectangleParticleEmitter class, 203

Rectangles

drawing, 89

emitters, 203

Red color setting, 57

registerEntityLoader method, 259

registerEntityModifier method, 58, 63

registerTouchArea method, 61

Registration fees, 374

release method, 223

removeCallbacks method, 424

reset method

augmented reality, 342

collisions, 306

Irate Villagers difficulty balance, 362

live wallpapers, 330, 420

scoring, 312

Resources for textures, 92, 94–95

resume method, 223

Reviews, 378

Rigid Body for Box2D, 244–245

Rotation

Entity, 57

modifiers, 68–69, 205

red star exercise, 388–390

RotationAtModifier modifier, 68

RotationByModifier modifier, 69

RotationInitializer method, 204

RotationModifier class, 68–69, 205

Rule-based systems, 282–283

Rules in computer games, 2

Runnables

canceling, 424–425

handlers, 125

S

Sam’s Teach Yourself Android Application

 Development in 24 Hours (Darcey and

Conder), 17

Sans serif fonts, 130

SAX (Simple API for XML), 258

SAXUtils class, 259–260

Scale

Entity, 56

fonts, 129

ScaleAtModifier class, 67

ScaleMenuItemDecorator.java class, 39

ScaleModifier class, 66–67, 205

Scenes and Scene class

AndEngine, 18, 53

background management, 60

child, 61

constructor, 60

Layer, 61

parents, 61

properties, 60

purpose, 7

specialized subclasses, 62–63

touch area management, 61–62

Schatz, Jacob, 247

ScoresActivity class, 303–305, 409–411

Index 441

Scoring, 299–300

design, 300

displaying, 302–305

exercises, 409–411, 418–420

highest scores, 301–302

Irate Villagers, 318–322

process, 308

updating, 300–301

Whack-A-Vampire, 308–315

Screenshots, 377–378

Scripts in AI, 279–280

SD Storage, 333–335

seekTo method, 223

Selection in genetic algorithms, 285

selectTexture method, 271, 275

Sensors in Box2D, 245

SequenceEntityModifier modifier, 70–71

Serif fonts, 130

setAssetBasePath method

LevelLoader, 259

MusicFactory, 224

SoundFactory, 225

textures, 93

Whack-A-Vampire, 195

setAssetPath method, 92

setBackground method, 60

setBackgroundEnabled method, 47, 60

setBlendFunction method, 206

setChildScene method, 38, 61

setChildSceneModal method, 61

setColor method, 57

setCurrentTileIndex method, 100

setGlobalTileID method, 179

setInitialPosition method, 56

setLoopCount method, 224

setLooping method, 223

setMenuAnimator method, 38

setModifierListener method, 63

setNeedSound method, 240

setObstacle method, 291, 294

setOnSceneTouchListener method, 152

setParentScene method, 61

setParticlesSpawnEnabled method, 206

setPosition method, 55–56

setRate method, 224

setRemoveWhenFinished method, 63

setRotation method, 57

setRotationCenter method, 57

setRotationCenterX method, 57

setRotationCenterY method, 57

setScale method, 56

setScaleCenter method, 56, 387

setScaleCenterX method, 56

setScaleCenterY method, 56

setScaleX method, 56

setScaleY method, 56

setSpawnEnabled method, 214

setTouchAreaBindingEnabled method, 154

setUserData method, 59

setVisible method, 59

setVolume method, 223

setZIndex method, 59

Shapes

Box2D, 245–246

collisions, 306

SharedPreferences, 240, 408–411

showEULA method, 368–369

Signing .apk files, 372

Simple API for XML (SAX), 258

Simulation games, 3

Single-touch mode, 151–154

SingleSceneSplitScreenEngine class, 36

Skill games, 2–3

Smoke effect, 403–406

Social networking, 380

Software development tools, 15

AndEngine game concepts, 18–19

AndEngine game engine library, 17–18

Android SDK, 16–17

Box2D physics engine, 19–20

Songsmith application, 287

sortChildren method, 58–59

sortLayers method, 61

Sound, 24, 219

AndEngine, 222–225

background music, 25–26, 219–220,

228–231

codecs, 221–222, 228, 231

coding, 231–242

exercise, 417–418

music, 219–221

sound effects, 25, 220–221

sources, 220–221

Virgins Versus Vampires, 225–241

Index442

Sound class, 222–224

Sound effects, 25

purpose, 6

sources, 220–221

Virgins Versus Vampires, 225–228

Sound Forge tool, 221

Soundbooth tool, 221

SoundFactory class, 223–225

SoundPool class, 222, 224

Spectrum plots, 226–227

Speech recognition, 163–167

Splash screens, 26–27

code, 28–31

description, 5

menus, 48–50

SplashScene class, 62

Sprite class, 87–88, 99

SpriteMenuItem.java class, 38–39

Sprites, 87, 89

AndEngine, 18

AnimatedSprite, 100–101, 111–113

compound, 101–106

exercises, 395–398

performance, 101

textures, 89–99

TiledSprite, 99–100

SpriteTestActivity class, 102–106

Stamps for tile maps, 179

StarActivity class, 388–390

StartActivity class

animated bat, 114–118, 390–391

EULA, 368–369

invisible buttons, 424–426

menus, 48

modifiers, 384–387

sound, 232–234

splash screen, 28–31

startActivity method, 125

startPlayingMod method, 335, 422

startVoiceRecognitionActivity method,

166

State machines, 281–282

Static bodies in Box2D, 244

stop method, 223

stopAnimation method, 113

Storytelling games, 3

Strategy games, 3

strings.xml file, 426

Stroke fonts, 129–130

StrokeFont class, 130–131

Sullivan, Arthur, 242

SwiftedStrokes font, 138

T

Termination in genetic algorithms, 285

Testing

.apk files, 372

games, 366–367

Text

APIs in AndEngine, 133–136

exercises, 392–395

fonts and typefaces, 129–133

Text class, 133

TextExample class, 134–136

TextMenuItem.java class, 38

TextPopupScene class, 62–63

Texture class, 89–91

TextureManager class, 89

TextureOptions.java class, 91

TextureRegion class, 90, 92

from assets, 93–94

from resources, 94–95

from vector sources, 95

TextureRegionFactory class, 91–93

Textures

AndEngine, 19

animation, 110–111

BuildableTexture, 95–99

regions, 19

Sprites, 89–99

TextureSources, 92

3D models, 2D animations from, 127

throwHatchet method, 239–241

Tic-Tac-Toe game, 280–281

TickerText, 133

Tile Editor, 179–180

Tile maps, 173, 181–183

advantages, 173

AndEngine, 176–179

code, 186–196

creating, 23, 183–186

editing, 179–180

isometric, 175–176, 196–197

Index 443

orthogonal, 175

structure, 176

TMX files, 180–181

types, 173–175

Tile Properties dialog, 184

Tile sets

creating, 183

exercise, 400–403

Tiled Map editor, 23

Tiled Qt editor, 178–180

Tiled textures, 110–111

TiledSprite class, 89, 99–100

TiledTextureRegion class, 90, 92, 110

Time elements in loops, 33–34

Time in games, 6

Titles, 377

TMX files, 176, 180–181

TMXLayer class, 178

TMXLoader class, 177

TMXProperties class, 178

TMXTile class, 178–179

TMXTiledMap class, 177–178

Toast widget, 136–137

TortoiseHg for Windows, 249

Touch input, 151

multi-touch mode, 154

Scene, 61–62

single-touch mode, 151–154

TouchExample class, 151–152

Transparency class, 69

trimQuotes method, 275–276

TrueType fonts, 130

creating, 137–138

editing, 24

try-catch statement, 338

TSX files, 176

2D animations from 3D models, 127

Typeface class, 132–133

Typefaces, 129–130. See also Fonts

U

Units in Box2D, 244

unregisterEntityModifier method, 59

unregisterTouchArea method, 61

unregisterTouchAreas method, 61

Updating scores, 300–301

User input, 149–150

accelerometers, 158

gestures, 154–157

keyboard and keypad, 150–151

location and orientation, 158–162

on-screen controllers, 157–158

speech recognition, 163–167

touch, 151–154

Virgins Versus Vampires, 167–171

V

V3LiveWallpaper.java program, 343,

420–422

Vampires. See Virgins Versus Vampires (V3)

game

VampiresInBackyard class

augmented reality, 340–343

exercise, 422–423

Vector fonts, 129–130

Vector graphics, 20–21, 95

Velocity calculations, 251

VelocityInitializer class, 204

Version numbers, 370

Virgins Versus Vampires (V3) game, 7–8, 79

AI, 287–297

animation, 118–126

background music, 228–231

completion and difficulty balancing,

352-357

design, 8–9

disappearing vampires, 391–392

exercise, 415–417

explosions, 211–216

fonts, 139–147

game level 1 scene, 79–85

live wallpapers, 327–332

opening menu, 40–46

sound coding, 231-241

sound effects, 225-228

user input, 167–171

Visibility in Entity, 59

Voice recognition, 163–167

VoiceRecExample class, 163–167

Voluntary participation in computer

games, 2

Index444

W

Wallpaper

exercise, 420–422

extension, 326–332

WAV format, 222, 228, 231

WAVActivity class

activities, 192–196

completion and difficulty balance,

358–360

tile sets, 400–403

WAVmap.tmx, 195–196

WAVTileset.tsx file, 196

WAVTilesetEx.tmx file, 400

Weapons

Box2D, 245–246

cache, 80

exercise, 407–408

sound effects, 225–228

touching, 171

Virgins Versus Vampires, 8

Well-known port numbers, 336

Whack-A-Vampire (WAV) game, 181

code, 186–196

completion and difficulty balance,

358–360

exercise, 422

OptionsActivity, 187–192

overview, 315–318

scoring, 308–315

tile map creation, 183–186

tile map overview, 181–183

tile sets, 183

whiff le.ogg (hatchet) sound effect, 228

Word of mouth, 379–380

World in Box2D, 244

World Without Oil game, 4

X

XML

explosions, 215–216

Irate Villagers, 265–266

particle systems, 207–209

SAX parsing, 258

XMP MOD player, 333–335

Z

Z-ordering in tile maps, 196–197

Zwoptex tool, 97, 183

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	1 Mobile Games
	The Mobile Game Market
	The World of Computer Games
	Game Genres
	Games for Mobile Phones
	Components of a Typical Game
	Virgins Versus Vampires
	Design of V3

	AndEngine Examples
	Summary
	Exercises

	2 Game Elements and Tools
	Software Development Tools
	Android Software Development Kit
	AndEngine Game Engine Library
	AndEngine Game Concepts
	Box2D Physics Engine

	Graphics Tools
	Vector Graphics: Inkscape
	Bitmap Graphics: GIMP
	Animation Capture: AnimGet
	TileMap Creation: Tiled
	TrueType Font Creation and Editing: FontStruct

	Audio Tools
	Sound Effects: Audacity
	Background Music: MuseScore

	Getting Our Feet Wet: The Splash Screen
	Creating the Game Project
	Adding the AndEngine Library
	Adding the Splash Screen Code
	Running the Game in the Emulator
	Running the Game on an Android Device

	Summary
	Exercises

	3 The Game Loop and Menus
	Game Loops in General
	The Game Loop in AndEngine
	Engine Initialization
	Other Engines

	Adding a Menu Screen to V3
	Menus in AndEngine
	Building the V3 Opening Menu
	Creating the Menu
	MainMenuActivity
	Constants and Fields
	OnLoadResources()
	OnLoadScene()
	CreateMenuScene() and createPopUpScene()
	OnKeyDown() and onMenuItemClicked()
	Splash to Menu

	Memory Usage
	The Quit Option
	Summary
	Exercises

	4 Scenes, Layers, Transitions, and Modifiers
	Scenes in AndEngine
	The Entity/Component Model
	Entity
	Constructor
	Position
	Scale
	Color
	Rotation
	Managing Children
	Manage Modifiers
	Other Useful Entity Methods
	Layers
	Scenes
	Background Management
	Child Scene Management
	Layer Management
	Parent Management
	Touch Area Management
	Specialized Scenes
	Entity Modifiers
	Common Methods
	Position
	Scale
	Color
	Rotation
	Transparency
	Delay
	Modifier Combinations
	Ease Functions

	Creating the Game Level 1 Scene
	Summary
	Exercises

	5 Drawing and Sprites
	Quick Look Back at Entity
	Drawing Lines and Rectangles
	Line
	Rectangle

	Sprites
	Textures
	A Word about Performance
	Compound Sprites

	Summary
	Exercises

	6 Animation
	Requirements for Animation
	Animation Tiled Textures
	Animation in AndEngine
	AnimatedSprite

	Animation Example
	Adding Animation to Level1Activity
	Animation Problems
	Advanced Topic: 2D Animations from 3D Models
	Summary
	Exercises

	7 Text
	Fonts and Typefaces
	Loading Fonts
	Font
	StrokeFont
	FontFactory
	FontManager
	Typeface

	Text in AndEngine
	Text APIs in AndEngine
	Toast

	Custom Fonts
	Creating Your Own TrueType Fonts

	Adding Custom Fonts to V3
	Summary
	Exercises

	8 User Input
	Android and AndEngine Input Methods
	Keyboard and Keypad
	Touch
	Custom Gestures
	On-Screen Controllers
	Accelerometer
	Location and Orientation
	Speech

	Adding User Input to V3
	Summary
	Exercises

	9 Tile Maps
	Why Tile Maps?
	Types of Tile Maps
	Orthogonal Tile Maps
	Isometric Tile Maps

	Structure of Tile Maps
	Tile Maps in AndEngine
	TMX and TSX Files
	TMXLoader
	TMXTiledMap
	TMXLayer
	TMXTile

	The Tile Editor: Tiled
	TMX Files
	Orthogonal Game: Whack-A-Vampire
	WAV Tile Map
	Creating the WAV Tile Set
	Creating the WAV Tile Map
	Whack-A-Vampire: The Code

	Isometric Tile Maps
	Summary
	Exercises

	10 Particle Systems
	What Is a Particle Emitter?
	How Do Particle Systems Work?
	The AndEngine Particle System
	ParticleSystem
	ParticleEmitters
	ParticleInitializers
	ParticleModifiers
	Useful ParticleSystem Methods

	Creating Particle Systems
	ParticleSystems the Traditional Way
	ParticleSystems with XML

	Particle Emitters in V3
	V3 Explosion the Traditional Way
	V3 Explosion the XML Way

	Summary
	Exercises

	11 Sound
	How Sound Is Used in Games
	Music
	Sound Effects

	Sources of Music and Effects
	Tools for Music and Effects
	Sound Codec Considerations
	Sound in AndEngine
	Music Class
	Sound Class
	MusicFactory
	SoundFactory

	Adding Sound to V3
	Creating the Sound Effects
	Creating the Background Music
	Making the Coding Changes to V3

	Summary
	Exercises

	12 Physics
	Box2D Physics Engine
	Box2D Concepts
	Setting Up Box2D

	Building Levels for Physics Games
	AndEngine and Box2D
	Download and Add the AndEnginePhysicsBox2DExtension
	Box2D APIs
	Simple Physics Example
	Level Loading

	Irate Villagers: A Physics Gamelet for V3
	Implementing IV
	Creating a Level
	Creating IVActivity.java

	Summary
	Exercises

	13 Artificial Intelligence
	Game AI Topics
	Simple Scripts
	Decision Trees, Minimax Trees, and State Machines
	Expert or Rule-Based Systems
	Neural Networks
	Genetic Algorithms
	Path Finding
	Dynamic Difficulty Balancing
	Procedural Music Generation

	Implementing AI in V3
	Implementing A*

	Summary
	Exercises

	14 Scoring and Collisions
	Scoring Design
	Update the Scores from Any Gamelet
	Track the Five Highest Scores
	Display the Score on the Gamelet’s Scene
	Scores Page Display

	Collisions in AndEngine
	AndEngine Shape Collisions
	Box2D Collisions

	Letting the Player Score
	Graveyard (Level 1)
	Constants and Fields
	OnLoadEngine and onLoadResources
	OnLoadScene
	MStartVamp

	Whack-A-Vampire
	Constants and Fields
	OnLoadScene
	OpenCoffin and closeCoffin

	Irate Villagers
	Constants and Fields
	OnLoadScene
	OnLoadComplete
	AddStake

	Summary
	Exercises

	15 Multimedia Extensions
	Downloading Extensions
	Live Wallpapers
	Android Live Wallpapers
	Creating a Live Wallpaper for V3

	MOD Music
	Finding MOD Music
	XMP MOD Player

	Multiplayer Games
	Multi-Touch in AndEngine
	Augmented Reality
	Summary
	Exercises

	16 Game Integration
	Difficulty Balancing
	Difficulty Parameter Storage
	Difficulty Parameter Setting

	Completion
	Level 1: The Main Game
	Whack-A-Vampire
	Irate Villagers
	Options Menu
	Summary
	Exercises

	17 Testing and Publishing
	Application Business Models
	Testing and Getting Ready
	Test the Game on Actual Devices
	Consider Adding an End User License Agreement
	Add an Icon and a Label to the Manifest
	Turn Off Logging and Debugging
	Add a Version Number to the Game
	Obtain a Crypto Key
	Compile and Sign the Final .apk File
	Test the Final .apk File

	Publishing
	Android Market
	Amazon App Store

	Promoting Your Game
	App Store Promotion
	Game Review Sites
	Mobile Advertising
	Word of Mouth
	Social Networking

	Summary

	A: Exercise Solutions
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

