Learn to:

- Develop fun and interactive games
for Android-based smartphones

 Apply fundamental game design
principles to create realistic animation

« Make use of Android’s rich feature set
in your games

+ Publish your game, keep it current,
and make some money

Derek James

Get More and Do More at Dummies.com®

Start with FREE Cheat Sheets
() .
C\\z x } Cheat Sheetsinclude
9\1&0 « Checklists
« Charts

« Common Instructions
« And Other Good Stuff!

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/androidgameprogramming

g \

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s

of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
«Videos
« [llustrated Articles
- Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
- Digital Photography
« Microsoft Windows & Office
« Personal Finance & Investing
+ Health & Wellness
« Computing, iPods & Cell Phones
- eBay
« Internet
« Food, Home & Garden

Find out”"HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

http://www.dummies.com/cheatsheet/androidgameprogramming
http://www.dummies.com
http://www.dummies.com

Android”
Game

Programming

FOR

DUMMIES

Android’
Game

Programming

FOR

DUMMIES

by Derek James

WWWWW
John Wiley & Sons, Inc.

Android™ Game Programming For Dummies®
Published by

John Wiley & Sons, Inc.

111 River Street

Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2013 by John Wiley & Sons, Inc., Hoboken, New Jersey
Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!,
The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates
in the United States and other countries, and may not be used without written permission. Android is a
trademark of Google Inc. All other trademarks are the property of their respective owners. John Wiley &
Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ. FULFILLMENT OF EACH COUPON OFFER IS THE SOLE RESPONSIBILITY OF THE OFFEROR.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http: //booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2012950501

ISBN 978-1-118-02774-5 (pbk); 978-1-118-23599-7 (ebk); ISBN 978-1-118-26083-8 (ebk);
ISBN 978-1-118-22218-8 (ebk)

Manufactured in the United States of America
109 8 7654321

WILEY

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

About the Author

Derek James is the founder and owner of Polyclef Software, one
of the most successful Android indie game developers on Google
Play. His apps and games have garnered over 1 million combined
downloads, with multiple games receiving four-star or better rat-
ings and holding top-ranking positions in their categories for many
months. He was an early adopter of the Android platform and has
been developing Android apps and games since the first device
was released. He lives in Lafayette, Louisiana. You can follow
Derek on Polyclef’s Twitter feed (@polyclefapps), his blog
(http://polyclefsoftware.blogspot.com), and his website
(polyclefsoftware.com).

http://(@polyclefapps
http://polyclefsoftware.blogspot.com
http://polyclefsoftware.com

Dedication

To Jenna, who was there by my side throughout the writing
of this book.

Author’s Acknowledgments

Thanks to Acquisitions Editor Kyle Looper for contacting me to
work on this book. I'm grateful for the opportunity.

Thanks for Project Editor Pat O’Brien for all the valuable and
timely feedback in helping get this book put together.

Jeremy Breaux provided invaluable feedback as technical editor,
helping to make sure that the code and examples worked well and
were clear.

Finally, thanks to Laurie, as well as my friends and family for being
supportive throughout the writing process.

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments at http://dummies.custhelp.com.
For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:
Acaquisitions, Editorial, and Composition Services
Vertical Websites

Project Editor: Pat O’Brien

Project Coordinator: Katherine Crocker

Layout and Graphics: Carrie A. Cesavice,

Acquisitions Editor: Kyle Looper Joyce Haughey, Christin Swinford

Copy Editor: Barry Childs-Helton Proofreaders: Melissa Cossell,

Technical Editor: Jeremy Breaux Shannon Ramsey

Editorial Manager: Kevin Kirschner Indexer: BIM Indexing & Proofreading Services

Editorial Assistant: Leslie Saxman

Sr. Editorial Assistant: Cherie Case

Cover Photo: © iStockphoto.com / Cary Westfall
Cartoons: Rich Tennant (www . the5thwave . com)

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Acquisitions Director
Mary C. Corder, Editorial Director
Publishing for Consumer Dummies
Kathleen Nebenhaus, Vice President and Executive Publisher
Composition Services

Debbie Stailey, Director of Composition Services

http://dummies.custhelp.com
http://www.the5thwave.com

Contents at a Glance

JOEFOAUCEION «eeeeeaeeaaeeeeeeeeeennnaaeaeeeeeeesnnnnaaaseeeeeeennnnnaes |

Part I: Adopting the Android Gaming Mindset................ 7

Chapter 1: Getting to Know Android Gaming..........cccceeceevervierniinniennienneniienienieseeneenne 9
Chapter 2: Designing YOUY GAIME..........ccceevieeierieniienieniienieeieesieestessseseesseesseesseessessens 27
Chapter 3: Setting Up Your Development Environment..........c..cccocevininininicnnennens 51

Part 1I: Starting to Programccccceeeeeecaeesveneaee 17

Chapter 4: Dissecting an Android APP......cceeieeieriieiiereeieeie e 79
Part I1I: Making Your First Game: Crazy Eights.......... 109
Chapter 5: Creating a Simple Title SCreenccccevevieirciecieceneneceeeeeeeee e 111
Chapter 6: Creating a Basic Play SCreen..........ccccoovvevienieninciinniieieeieciesieseeseesieenne 135
Chapter 7: Finishing Your First Gameccccocoveieninininnieeeececeteeeeeee 181

Part IU: Moving On to Your Second Game:
Whack-a-Mole...............uueeeeeaeaaaaannneeeaaaacaaannnneeeeaaas 199

Chapter 8: Creating a Complex Title Screen..........ccocceeveeveriiinciinciencieniecieseeseeseene 201
Chapter 9: Creating an Animated Play Screencccocovvieiiieninenincnceneeseee 217
Chapter 10: Storing and Retrieving Game Information............cccocevirvvrveerenienennnne. 245
Part U: Managing Your Game in the Market.................201
Chapter 11: Making Money with Your Game...........ccccooceeviriiiniiniieniienienienieneeneenne 263
Chapter 12: Publishing and Updating Your Game............cccccceevvirvveriencieneeneeneeneenne 277
Part UL:The Part of Tensccccecceeecceecaecesaseaeseeeans 295
Chapter 13: Ten Open-Source Game Projects........cccccevevieienienenenenieieeesesieeeene 297
Chapter 14: Ten Game Engines and TOOIS...........ccccooveeieiieciieciieieciecee e 307
Chapter 15: Ten More Places to Distribute Your Game..........c..cccoeeveeveeeenveneenneene 317
Chapter 16: Ten Websites for Android Game Developers..........cccocevevervvenveneenennne 327

Table of Contents

JOEPOAUCEION a..aeeeeeeeeeeeaaaeaeeeeeeeennnnnseseeeeeessnnnnseeeeees]

Why You Need This BOOK.......cceoierieiiiiiiinieeiecterteseeseeseeie e eve e 1
Conventions Used in This BOOK.........cccccecieiiiniininiiniiniinienieeeeeeeee, 2
Technical Considerations..........cccoceevieriieniiniiinieneeeeeeeeee e 2
How This Book Is Organizedccceecveeiiiienienieneeeeeeeee e 3
Part I: Adopting the Android Gaming Mindset...........ccccccceverenuennne. 3
Part II: Starting to Program..........cccoceevieevieeiiiniesieceeceeieeieeve e 4
Part IIIl: Making Your First Game: Crazy Eightsccccccvvvirviennuennnn. 4
Part IV: Moving On to Your Second Game: Whack-a-Mole 4
Part V: Managing Your Game in the Marketccccceverviennienninnnen. 4
Part VI: The Part of TENS......ccccoeererieineniinereereneeeeieeeeenieeeeneene 5
Icons Used in This BOOKccccooviiiiiiiiiiiiiiceeeeceeeee e 5
Where to GO from Here.........cocveiiiiieiiieiiciececteeteee sttt 6

Part I: Adopting the Android Gaming Mindset 7

Chapter 1: Getting to Know Android Gaming 9
Seeing the Potential of the Android Platformcccoeoeeevieciieciencieniennenn, 9
Where Android came fromccceevveecieeienciieieeeeseeceese e 10

And where it’s GOINGccceeieriiiieieeeeee et 10
What You Must Know about the Mobile Gaming Industry....................... 11
Handhelds and smartphones............c.cccccoeeiieeiiieciecceeceeeeeee, 11

10S OF ANAYOId......ooiiiiiieietcteteteecee et 11

How Android Is Suited to Mobile Gamingc.cccceeeveevveecieeieeceeeeeeneennen. 13
GIOWEN...cciticeecee ettt et ae e e 13

|0 T<Ta (o) 1o ORI 14
Potential.......ccoociiiiiniiieeeeeeeece e 14
Thinking Through Your Game Project..........cccceverviinnienviniiniiinieneeeenen. 14
DeSigning firSt........ccceeieieieiiiieresee et 15
Following a structured development processccccoceevuveeeurenee. 19
Deciding on distributionccccceevieevieeieniecieceeeeeeeee e 20
Knowing What Tools You Need.........ccccevueeiieciiecieeieeieeieeieeeeeeeseeee e 21
Capitalizing on YOUr GAmE.........cccceevuierieeniienieeieeieeieeieeteseeseeseeseeesaeeeees 22

The tried-and-true approaches...........cccccoeevveeiiiecieeiie e, 22

xi(/ Android Game Programming For Dummies

Chapter 2: Designing YourGame.ccvvieevninnnnn. 27
Deciding What Kind of Game to Makeccccceceeviieviiecieecienieeieeeeeenenn 27
GEIITE ..ottt ettt et et e st s e s te e s e e te et e e be e beesbeentesssesssasssasssenssenses 28
NUMDET Of PLAYETYS ...oviiiiiiiiiieieeieeieeetctee et 29
Thinking about how and when people will play your game........... 31
Identifying Your Target AUdIienceccccuveeeeeiiieciiecieecieeeee e 34
The Android USer Dase.........ccccecveeiieiieieciecieceeceee e 35
Casting a wide net or finding a nicheccccoeeeeeiiecincicieciene, 36
Targeting DEVICEScccuevuieciiiiieieeieeteeteetese ettt st aeesaeeeees 37
FIrMWATE ..ottt st st 38
HardWare........ooiiiieiieieitcteece ettt sttt 39
Designing the interface and controlsccccceeeveeiiiecieecieecieeee, 43
Finding and/or creating resources (graphics and sound).............. 46
Chapter 3: Setting Up Your Development Environment. 51
Starting at the Beginningcocoeoieiininininiieeeeeeee e 51
Downloading and Installing EClIPS€ccccceeeeiiiniiiiiiiieeieeeeeeeeeeee 53
Installing the SOftWarecccooieieieieeceeeeeeeee s 57
Installing the SDK.........cccoieiiiriiiieceeeeeeeee et 57
Installing the ADTcoeoievieieeceeeeeeeeese ettt 58
Connecting Eclipse to the SDK.........ccccoeiieiieieececceceeeeeeeee 61

The Android Virtual Device (AVD) Manager..........cccecoecerveeveeneneneneeneenns 61
Creating a virtual deViCe.........ccceevverierieiiieieeee e 62
Launching a virtual device..........ccccoeeeviriiieniineeeciecieeeeeeeee e 66
Creating an Android Projectcocceevevvieiiiniiniienienieniestesteeeeseeeeeen 67
Running an Android APDcocevierienienienienteteeee ettt 71
Manual launch controlccccocovviiiiiiininnncceereeceeeeee 71
STATTING APPS. e eveeeeerieeieieiete ettt ettt s sbe ettt eens 73

Part II: Starting to Programcccceeccuecceeicencace 17

Chapter 4: Dissecting an Android App cv v v ieviieeiinens. 19
Creating a New Projectccooievieiiiiiiiiiieciecieceeeeteetestest et 79
Taking the Bird’s Eye View of a Project.........coccevveeeiiencinecieeieeceeeeae 83
Editing the Manifestcccooieiiieiiieeceeeeeeeee e 83

Naming and versioning your game..........ccccccoevvereereesieecieesuessvesnenes 84
Targeting VErSiONSccccvevveviereiieeieeetesereee ettt seeseesnens 85
Declaring aCtiViti€sccevvevierereeieieiesienese ettt 85
Setting PErmiSSIONScceeviirieiiiiriiinieriertertee et 86

Targeting different screen Sizes...........cccceeevveecieecieeciecceeeeeee, 87

Table of Contents ¢/

Organizing RESOUICESccveeeeciieiiieieeieeteete ettt e e reerees 88
DIAWADIESooeuiieiiiciieiecieeeeeeie ettt eebe b e ae b e e saeenaenns 89
LaYOULS ...ccutieiieiieiecteetet ettt teete et e e st e e e aeebeebeessaesaassnesnnenns 91
SEEINZS . ceuteeteeieeieeteetert ettt et st e e e s e st e teebeebe st e esbesabesanenas 93
SEYLES ettt et sttt abe s ane e 94
TREIMES ...c..eiiiiieeteettee ettt ettt ettt 94
SOUNAS ...ttt ettt 95

Organizing the Source Directoryccooveviiniiiininireeeeeeeeeene 95

Understanding ACtiVItiesc.cccueevueeieriiinieceeeeeceee e 97
The lifecycle of an activity......ccccocervierviencieniiiniiccceceeee 98

USING VIBWS ...ttt sttt ettt et st s e e saaenaeenee 101
Differences between View and SurfaceView............cccevvrvieruenncnn. 101
Instantiating a CuStoOmM VIEW.........c.coccvieeiiiiiieeieceeeeee e 102
Drawing in @ VIEWcceecuieriieniiecieeie ettt et seeesaeeve e evesnesnnens 103
Handling inPUL.......cccoeiiiieiieieece et 106

Part I1I: Making Your First Game: Crazy Eights 109

Chapter 5: Creating a Simple Title Screen m
Creating a CUSTOM VIEW.......ccveeuieiiieiiieiieiececte ettt ae e 111
Loading the Title GraphicC.........ccocevieiriiirineieieeeeeee e 113
Drawing the Title GraphicCc.ccceceevieriiiiienieneceeeeeee e 115
Handling Screen Orientation...........ccccoecievienienieneeniienieeciecieeeeseeseeseenne 119
Controlling Screen TimeoULccocveviiirieriiiiiienierieeeetesee st 121
Making the Game Full-Screen.............cooeoviviiniiiniiiniinenieniecteeeeseeeee 122
Adding DULLONS ...cc.eeiiiiecieee e e 124
Handling Button Statesccoocovirieieiieniieieeeee e 127
Launching the Play SCreencccevvevievieeciieiiieiecieeieeee et saeenee 129

INEENES. .ttt et 133
BUNAIES...c..ooiiiiiiiiee et 134

Chapter 6: Creating a Basic Play Screen........................ 135

Displaying Cards.........ccecveeecierieriineeeeieiesiesieseeeeeessessessessesseessessessessessenns 135
Loading the card images..........ccecverieriereririeeieieneee e seseens 135
Dealing the cardscceeoiieeiiiceee e 139
Displaying the game State.........cccccceecieevieeienierieceeceeeee e 141

TaKiNg YOUT TUIT ..ccuiiivieeeeieieieete ettt ettt ve e saeaessesaeerens 152
Handling tUINS........cocveieiiiiceeeeeeeeseee et sae e eeeees 152
Picking UP CArdS.......ccoeovevierieriieieieieeeeeeeeetete e 156
Playing Cardsccoevieviiniiiniiieieeieeeetete et 161
Showing dialog boxes (and t0asts)........cccceceervereerererrerrienenerenenne 164
Taking cards from the draw pile.........ccoceeieiiiiiniininiieeereee 172

AdVaNCINg PlAYccecvveeiiiieeiereeieeceeeee ettt 175

X(/i Android Game Programming For Dummies

Chapter 7: Finishing Your FirstGame 181
Ending Hands and Games.............cccceeierierienieneenieesieesieeieeeeeseeseeseesaeenes 181

Ending a hand........c.ccoocoiiiiinieiicicecceeee e 181

Ending @ amecccooviiiiiiniiiiieieeiecieeetese et 189

Wrapping Up the Game..........cccooveeviiriiniiinienietctctceeeee e 192

Coding the opponent Al...........ccooveiieeiieiieiieieeeee e 192

Making your own launcher icon...........ccocvevieviiecieeciieciieieeieceeeeee 195

Part IV

Moving On to Your Second Game: Whack-a-Mole 199

Chapter 8: Creating a Complex Title Screen..................... 201
USING SUITACEVIEW ...ttt st 202
Adding an Options MeNU...........coceevuerviiriiiniienienierieneeseeie et sae s 212
Toggling the Sound OPtion..........cocceeieriiniiniiniieceeee e 213

Chapter 9: Creating an Animated Play Screen................... 217
Handling Images for the Play Screen............ccocevvirvinniniiniiniiinienieneee 217
Making Simple ANIMAationscccceeivieiierieeiiieie e 223
Handling User INteractioncocceeceeiiniiniiniiniiieeeeeneceeceeeeeeeee 228
Loading and Playing SOUNAScccceerierieriieiiieiieieeieeie e eeeseesaeeseeenes 234
Handling End of Game...........cccoovuieiiieiiniiiiinicececiceeeie e eseeenee 239

Chapter 10: Storing and Retrieving Game Information 245
Using Shared Preferences for Data Storagecccceeeeveevienciencienceenennns 246
Using XML for Data Storagecccceevveeiinienienieieeeeeeieeeeseeseeseesaeenne 249
Using a SQLite Database for Data Storage..........cccoocevvevvieriieniieniienienennns 253

Part U: Managing Your Game in the Market201

Chapter 11: Making Money with Your Game 263
Knowing Your COmpetition.........cccocvverienieeciiniiiniiinieeieeie st seeseeseeenne 263
Monetization MOAEIS.........c.ueeiieiieiiiiiiiiieieeeeee e 269

FHOE ot en 269
o1 U (SRRSO 270
Free-to-Paid........cooommieiiiiiiieeeee s 272
A-DASEA ..o 274
IN-apP PUIChASES.......coeieiiiieeceeeeeeeeee et 275

Alternatives to GOOGIE Playccccveeviiriiiniiiniiiniinienteeceeieeieeieeae e 276

Table of Contents X(/ii

Chapter 12: Publishing and Updating Your Game 217
Creating a developer account for Google Playcccccceeevivvereeneennenns 277
Generating a Key with Keytoolccccovieciiiiniiiniieeciececceeeeeeeee 278
Exporting a Signed Applicationccoccoeievieneiiinninnienienieceeseeseeseene 279
Uploading Your Game to Google Play.........ccoceeviivinieniieniinienienceneene 282

Uploading the APK........cccoiiiiniiricieeenceenieseeeeeeeeeee e 283
Adding product detailscoceverininiiieee e 284
Supporting and Updating Your Game After Publication 292

Part Ul: The Part of Tens..........cccccceeeccceeeccaeeecsaeeeess 295

Chapter 13: Ten Open-Source Game Projects.................... 297
Lunar Lander ..ottt 297
Replica ISIand.........cccueouiiiieciieiiciecececee ettt 299
Alien Blood Bathcccueeiiiiiiiieiciececececteteeee et 299
OPENSUAOKUoiiieieeiieeieeteetesterie ettt steesteeteeteeteesaesaseseesreesseesseeaeanes 300
LEXIC 1uveeuiieieeieetest ettt ettt s te st e st e st e st e s et e ae et e e be e be e besatesatessaenaeenaeenee 301
Newton’s Cradle.........oceoviiieiiiiniiiienieeertetee ettt 302
Vector PInball.......ccoioeiiininiineeneee e 303
ASGATE...uveeereeereeereeeeesseesseesseesseeseeseeseassessaesssassaesseesseseesasssasssesssessaesseesseene 303
HIEINAZES ettt te et ae e b e e ae e st e e e e saeenseenes 304
GL ES QUAKE ...ttt sttt et e st s s saaeeen 305

Chapter 14: Ten Game Enginesand Tools 307
TIDGAX ..ttt 308
ANAENGINE.oiiiiiiiiiieteteeeee ettt ettt 309
UNEEY ¢ttt sttt ettt et s e st s e saeesaeenee 309
OPENFEINT ...t et ae e ereeens 310
FIUTTY oottt ettt e s te et e e te e te e b e e sbessaessaessneseanes 310
AUAACTEY .ttt ettt et e e te et e e beeaaeeneeas 311
SER ettt et ettt et e et e e e e saeenaeenee 312
GIMP .ttt sttt 313
INKSCAPE ...ttt ettt et e e e s ae e e eeba e era e e tbe e nraenareas 314
AAWRITL ..ottt 314

Chapter 15: Ten More Places to Distribute Your Game. 317
AMAZON ..ttt 318
HaNAANGO.......cociieiieeiieieeeee ettt et e re e ae et e s ea e s e e reenae e 319
Opera Mobile APD StOTEccuecieeiieiieieieeeeie ettt seesae s 320
LCC 1 | G USROS SRRt 321
SHAEME ...ttt sttt 322

X'(/iii Android Game Programming For Dummies

APPBIAIN ... e st 324
J:N 3 T o) 51 o WS PR 325
YOUE WEDSIEE....oviiiieiiiiieeieeeee ettt et e s eaaee s 326
BItTOITENE SItES.....uvviiiiiiiiiieeee ettt e eebae e enes 326
Chapter 16: Ten Websites for Android Game Developers 327
SEACK OVEITIOW ...ttt ce e et eebaeeeenes 328
Android DeVEIOPETccvvieiiicieeeeeeeee et 329
ANAAEV.OTG ... ettt ettt ettt ettt te st e st e sae e s e e saeesaeenee 330
Android Developers BlOg..........cccooieiiiiiciieciece et 331
APPOLICIOUS ..ottt sv e et ebe e beeaaeenaa s 332
PN o Ta o) U I -1 0] o U TR PP 333
|8 0 T 1 s Lo 1 6 U AR 334
XAQ AEVEIOPETS........oicviiiieieetieteeteee et ettt teeereeereeteebeebeeaneeanaas 335
Dr0oid GAIMETSccvvvieieiiiie ettt ettt et e e e e eeeteeeeeeareeeeebeeeeenes 336
ANndroid and Me.ooooiiiieieieee et e 337

GlOSSALYnnneanaeeaaaeeacaannnreeeaaecaaannnnseeesasecassnneneeees 339

JRACK «...eeeeaeeeaaeaeaaaeeeeeeeaeaeaaaaneneeeeesaaaaasanceeeeeeeees 303

Introduction

Tlere’s something special about games. The best games, the ones we
remember, don’t just relieve our boredom from time to time. They teach
us new things, stretch our brains, or make us feel happy, excited, and some-
times angry! Social games can even bring us closer to our friends and family.
We all have games that we think of fondly, that added something to our lives.
Now, with the advent of smartphones, we can carry that experience around
in our pockets and purses.

[still remember when my parents hooked up our first video game, Pong, to
the family television. At the time that luminescent “ball” traversing the blurry
screen was the coolest thing I'd ever seen. I've played a lot of games on a lot
of platforms in the intervening years, but when my friend Philip gifted me
with the first Android phone, the G1, [was skeptical that it would make a very
good gaming platform. Who wants to play games by staring at a tiny screen
on a device whose primary function is to make phone calls? Then again, the
iPhone had by that time already proven that people were not only willing to
play games on their smartphones, they were absolutely ravenous for games
on their smartphones.

When the Android market launched, it took a little while to get some traction.
[developed and published some of the first games on the market, when not
many other developers were flocking to the platform. The G1 was a clunky,
first-generation device, they said. It’ll never compete with the iPhone, they
said. Open platforms are never good for gaming, they said. Well, I was able

to make enough games that generated enough income to let me develop for
Android full-time. And the platform has come a long way in the meantime;
now Google doesn’t have a problem attracting game developers.

When [was approached to write this book, I jumped at the chance to write
about a subject that blends my two passions of gaming and programming. I'm
guessing you share those passions as well, and want to make cool, compel-
ling games. I'm going to help you make that happen.

Why You Need This Book

Obviously you want to make games for Android, but you may not know
where to get started. You may not even have any programming experience —
if you do, great! — but [don’t make too many assumptions about your level

2 Android Game Programming For Dummies

of experience. By default, Android apps are written in Java. All the examples
in this book are also in Java, so it’s helpful, but not necessary, to have some
working knowledge of Java. However, even someone with little or no experi-
ence should be able to work through this book.

By the end, you’ll have a good understanding of Android, two complete,
working and playable games, and a solid foundation for developing and pub-
lishing your own games. Along the way, I also talk a bit about how you might
get more downloads and actually make money from your games. If any or all
of that interests you, this book is a great place to start.

Conventions Used in This Book

Code examples are all in the Java programming language. Android also uses
XML files to define layouts and preferences in projects. I use a monospaced
font to show examples of the content that lurks in these types of files. The
idea is to set the examples apart from other text; they look like this:

System.out.println("Hello") ;
Java and XML are case-sensitive (it matters whether letters are capitalized),
so be sure to capitalize letters in any code example from the book exactly as
you see them. If you don’t, you'll see compile errors in Eclipse.
URLs for websites will also appear in monospaced font
http://www.google.com
If you are ever confused about the contents of a given file in any of the proj-

ects discussed in this book, you can always refer to the actual source files
here:

www . dummies.com/go/androidgameprogramming

Technical Counsiderations

To develop games for Android, you need a PC running a version of either
Linus, Windows, or Mac OS that meets the requirements for both the Android
SDK and the Java Development Kit (JDK). Both the SDK and JDK are freely
available from their respective websites, where you can find more detail
about specific system requirements:

http://www.dummies.com/go/androidgameprogramming

Introduction 3

http://developer.android.com/sdk

http://www.oracle.com/technetwork/java/javase/downloads/
index.html

Android also uses the Eclipse IDE (integrated development environment),
which we will be using throughout this book. Installation of all this software
is covered in Chapter 3.

As I stated earlier, a working knowledge of Java and XML are helpful, but

not necessary. If you're familiar with any high-level language and develop-
ment environment, you should be fine. If not, you should still be able to work
through the examples and put together workable games, but you’ll likely
have a bit more of a tussle.

If you're interested in developing for Android, you probably have an Android
device, but you don’t necessarily need one. The Android SDK provides an
emulator which lets you configure virtual devices to test your games without
the actual hardware.

But testing playability without actual devices is not advised. Especially if
you're designing for multiple form factors, such as both phones and tablets,
you’ll probably want to invest in at least a couple of test devices.

How This Book Is Organized

Android Game Programming For Dummies is divided into six parts. The follow-
ing section describes the contents of each part.

Part I: Adopting the Android
Gaming Mindset

Part I provides you with a history of Android and mobile gaming to this point
in time. I contrast Android game development with other platforms and dis-
cuss its pros and cons. This part also helps you think through all the neces-
sary decisions before you begin to program, including the basics of designing
a mobile game for Android.

http://developer.android.com/sdk
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

4

Android Game Programming For Dummies

Part [I: Starting to Program

Part Il walks you through setting up your development environment and
installing all the necessary frameworks and tools for building Android games.
I show you how to create a simple Android project and run the resulting

app on both virtual and real devices. I then walk you through the guts of an
Android project to get a closer look at what all the pieces are and how they
all fit together to make a game.

Part [11: Making Your First
Game: Crazy Eights

Part Il involves making your first game, the two-player card game Crazy
Eights. You create a title screen, load and display graphics, and implement Ul
elements such as buttons. You implement all the elements for a card game,
including such tasks as loading, shuffling, and dealing a virtual deck of cards.
You implement all the logic for playing cards and taking turns, and also con-
jure up a computer opponent to play against. By the end of this part, you’ll
have a complete, playable card game for Android.

Part IU: Moving On to Your Second
Game: Whack-a-Mole

Part IV shows you how to make a second complete game, Whack-a-Mole. I use
a different approach than our first game that’s slightly more complex, but
provides the additional rendering speed we need for real-time arcade games.
I cover how to generate simple animations and how to load and play sounds
in response to events in the game. I also show you how to store and retrieve
data, allowing you to manage game states between sessions. By the end of
this part, you’ll have a second complete playable game.

Part U: Managing Your
Game in the Market

Part V discusses how to make money from your game, if that interests you.
I also discuss the nuts and bolts of exporting and digitally signing your

game for upload to Google Play. I walk you through the process of creating
an uploadable application file, but also all the promotional resources you’ll

Introduction

need for the market listing. | then show you how to upload your game to the
market and update it when it’s there.

Part Ul: The Part of Tens

Part VI provides you with some handy resources to help you develop your
own games while working through this book and moving beyond it. I dis-
cuss some intriguing open-source game projects that cover genres and
approaches that the two sample games here don’t cover — such as side-
scrolling platformers and word games. Then I point you to game engines
you can leverage to save you lots of time, and point out some features like
physics engines that handle chores like gravity and movement and would
take months to implement otherwise. I also talk about free tools to help you
create your own graphics and sound resources, as well as frameworks to
help you promote and monetize your game.

Icons Used in This Book

3

This icon indicates useful information you should pay attention to.

This icon represents important overriding concepts that frame all the content
in a particular section.

This icon indicates information that dives a bit deeper into the technical
aspects of a particular subject. Usually it’s not essential to your understanding
of the associated material, but is provided to give you a better handle on the
topic.

This icon points out potential problems you might encounter when you're
dealing with a particular aspect of development. Pay particular attention to
these and try to avoid these pitfalls when possible.

These links connect you to valuable internet resources.

5

6 Android Game Programming For Dummies

Where to Go from Here

Are you ready to start developing games for Android? [hope you enjoy the
process as much as [enjoyed putting this book together for you. I tried my
best to make the subject informative and entertaining, but if you have any
additional questions, you can contact me via e-mail at polyclefsoftware@
gmail.com. If there are updates, they’ll be posted at

www . dummies .com/go/androidgameprogrammingfordummies

http://polyclefsoftware@gmail.com
http://polyclefsoftware@gmail.com
http://www.dummies.com/go/androidgameprogrammingfordummies

Part|
Adopting the
Android Gaming
Mindset

The 5th Wave By Rich Tennant
[@NNETH PIVS HIS FIRST SMART PHObE[
O RicpTErrANT

T.Yercise move,
/X%

In this part . . .

art | gets you ready to build amazing games by giving
you the background you need to understand
Android as a gaming platform — and then by walking you
through all the necessary steps for designing your game.
I discuss the history of Android and mobile gaming, then I
talk about all the things you need to consider before firing
up your computer to start coding.

Chapter 1
Getting to Know Android Gaming

In This Chapter
Learning the background of Android
Approaching Android as a gaming platform
Planning your first game

ou love games and now want to make some of your own, specifically for

smartphones and tablets. You're in luck! These are exciting times for
the mobile game industry. Mobile device adoption is exploding, and mobile
games are the hottest segment of mobile applications.

Android in particular is experiencing enormous growth. That means your
games will be available to millions of users around the world. Android is also
a great platform for developers, with flexibility and freedom unparalleled on
other mobile platforms.

Seeing the Potential of
the Android Platform

Whether you want to make games for Android as a personal project or as
part of a plan to launch your own game studio, the platform has a lot of
things going for it. For starters:

v Android is an open platform.

That means fewer restrictions on what you have access to and what you
can do.

v Android is the fastest-growing mobile platform.

That means more people to download and play your games.

1 0 Part I: Adopting the Android Gaming Mindset

Where Android came from

Android started out as a secretive startup in 2003, and luckily got bought by
Google in 2005 as a way to enter the mobile software market. The first ver-
sion of Android was released on the G1 (also known as the HTC Dream) in
late 2008.

Hard to believe there was a time when there was only one version of Android
running on one phone. Now there are hundreds of different models running
Android!

Android was built using Linux at its core, and the philosophy was simple:
Make a powerful mobile operating system that is free and open-source.

v Manufacturers can focus more on hardware when they don’t have to
develop their own OS.
v Anyone can take Android and customize it any way they want!

Google bet big on this strategy to lead to widespread adoption, and it has
worked like a dream.

And where it’s going
As of this writing, Android is big and growing:

v Over 300 million people worldwide own Android devices.
v Over 850,000 new devices are activated every day. That’s about another
300 million added per year.

Android is in version 4.0 (codename Ice Cream Sandwich), soon to release a
new major version.

In just a few short years, the advances in screen size and resolution and
processing power are staggering. Even though it started out on a single
smartphone, Android is now used in phones, tablets, and even television!

The future is bright, and Android shows no signs of slowing:

v Market share is expected to continue to grow

v More powerful multi-core devices will continue to allow for richer, more
sophisticated gaming.

Chapter 1: Getting to Know Android Gaming

What You Must Know about
the Mobile Gaming Industry

\\3

Smartphones and app stores have revolutionized the way people play games,
as well as how developers make them. The game industry has continued to
boom, with the budgets of games for the PC and consoles sometimes exceed-
ing those of Hollywood blockbusters. Teams of dozens or hundreds of profes-
sionals, working for months or years, are required to make such big-budget
productions.

But mobile gaming has gone a long way in returning game development to its
early roots, when lone developers working in their basements could churn
out fun, cool games in their spare time and possibly hit it big.

Handhelds and smartphones

With the release of the Game Boy in the late '80s, Nintendo changed the way
people play video games, allowing them to play on the go. The Game Boy
ushered in a new era of handheld gaming devices, electronic gadgets that fit
in the palm of your hand, dedicated to playing video games. The introduction
of smartphones lets people game wherever they are, but without buying a
specialized device.

Developing for smartphones is also a lot easier than for the handheld market,
which usually requires an expensive software development kit (SDK) and
authorization from the manufacturer. Smartphones have democratized mobile
game development, lowering the bar of entry for those interested in making
mobile games:

v Anyone can develop for Android

v Other than the expense of a computer and fees associated with selling
through a market, it’s free!

i0S or Android

These days smartphone users and developers usually fall into one of two
camps when it comes to smartphones:

v i0S
v+ Android

11

1 2 Part I: Adopting the Android Gaming Mindset

They are both great platforms, with their own advantages and drawbacks for
development.

iOS development has several advantages:

v Tight integration of software and hardware
v Fewer hardware/software configurations to develop for

v Apple actively checks applications for quality
But there are drawbacks to developing for iOS:

v Mac-only development environment
1 More restrictive ecosystem

v Apple may reject applications for confusing or arbitrary reasons
Android development has a different balance of advantages and drawbacks.
Android is much easier and (in most cases) more flexible to develop for:

v Java development environment runs on Linux, Mac, or PC
v Less restrictive ecosystem
1 No screening process to block releases
Okay, Android development also has a few drawbacks:
v May make less money than on iOS, because Android users generally buy
fewer apps.
v Many more hardware/software configurations to worry about
v Absence of screening process, which can lead to
® More spam
¢ Lower-quality apps and games on the market

v~ If starting a business is your focus, you may have varying results
between the platforms

¢ Some studies have suggested that Android users are less willing
than iOS users to purchase apps.

¢ In-app purchases and advertising are other ways to monetize apps
and may find more success on Android.

Chapter 1: Getting to Know Android Gaming 13

I've had great success on Android with both
e Selling apps
¢ Generating ad revenue.
v Android has lots of other markets besides Google Play.

The most notable at this time is the Amazon App Store. Like iTunes, it
requires quality screening. I've had good success there, as have other
developers, so it looks like a solid complement to Google’s official
market.
¥ If you have a great game idea, consider developing your game for both of the
dominant smartphone platforms. See Chapter 14 for tools that make cross-
platform development easier.

How Android Is Suited to Mobile Gaming

The biggest advantage to developing games for Android is the low level of
investment needed to get started:

v The SDK and all associated development tools are free.

\&Q,N\BER v A number of game engines are free.
<
&
All you really need is a computer and an idea!

But there are some aspects of Android that make it particularly appealing as
a platform.

Growth

For the past few years Android has been the fastest-growing mobile gaming
platform. The number of activations per day has risen steadily each quarter
and continues to rise.

v A recent report showed that nearly 50 percent of cellphones in the US
are smartphones. That means smartphone adoption will continue in
the US.

v For the global market, Android is poised for even more growth.

1 4 Part I: Adopting the Android Gaming Mindset

Freedom

You want to develop

v The next great physics-based game?
v Alocal multiplayer game?
v An asynchronous multiplayer game?

With the standard SDK and the ability to use any number of third-party librar-
ies to develop your games, the sky is the limit.

And (as mentioned earlier) with no review process for the official Android

* market, the moment you choose Submit your app is live.
o‘

Developing and publishing on Android is probably the easiest end-to-end pro-
cess of any platform in gaming today.

Potential

Because Android is an open platform, it’s going to be adapted to more and
more uses:

v Although Google TV (which also runs on Android) has not panned out
so far as a viable market for developers, potential exists for gaming with
undreamed-of new systems running Android.

v With the rapid cycle of hardware and software development, gadgets
sprout new

¢ Interfaces
® Mechanisms
¢ Form factors
That means all sorts of interesting possibilities for game design, such as aug-

mented reality games (those that blend the digital and real worlds), which
currently make up only a small percentage of games on the mobile market.

Thinking Through Your Game Project

Before you download the SDK or even boot up your development machine,
the first thing you should do is flesh out your game plan. You have a lot of
decisions to make before coding your game, and they are all important.

Chapter 1: Getting to Know Android Gaming

Chapter 2 delves into these questions more deeply and guides you through
more specific design issues:

+ What kind of game do you want to make?

v Who is your target audience?

v What range of devices are you going to target?

v Do you want to focus on tablets?

v Do you want to Target as wide a variety of devices as possible?

v How will a player navigate through your game?

v How will a player control what happens?

v Do you want to try to make money with your game?

0 v+ How can you monitize your game?
A

Initially, one of the best ways to think through a lot of design issues related to
your game is to sketch out what the game might look like with either
v Pen and paper

v Your favorite graphics program

Designing first
Let’s consider the broad design questions first:

<MBER
S

& v Simple turn-based games have been popular throughout history.

The simpler they are, the wider their audience and appeal.

So let’s start with a simple card game that even kids can learn and play.
v We also want to learn how to make faster-paced games.

Let’s stick with the simple-is-better mantra and design a single-player

game that can also be for all ages.

The games chosen for this book can be

v Played by one player
v Learned in only a few minutes

v Controlled with a purely touchscreen interface to promote universal
compatibility.

15

Part I: Adopting the Android Gaming Mindset

Rules for Crazy Eights

Crazy Eights is a turn-based card game played
with a standard 52-card deck. The goal of each
hand is to get rid of all of your cards.

v~ Each player is dealt seven cards.
v The remaining cards become the draw pile.

v The top card is turned over to start the dis-
card pile.

In turn, each player must discard exactly one
card face up on the discard pile.

Except when an 8 is on top of the pile, the dis-
carded card can be either

v The same rank as the topmost card on the
discard pile.

If the top card were the 6 of clubs, you
could discard any 6.

v The same suit as the topmost card on the
discard pile.

If the top card were the 6 of clubs, you
could discard any club.

v Any 8.

You may discard an 8 at any time, and name
a suit for the next player to play.

When an 8 is on top of the pile, the next
player must discard a card of the named
suit.

If a player doesn't have an appropriate card
to discard, the player must continue drawing
cards from the draw pile until an appropriate
card is drawn and played.

This book walks you through the development of two complete, fully func-

tional games:

v Crazy Eights, the children’s card game.

This card game is played against a computer opponent.

v Whack-a-Mole, a fast-paced action game.

For our initial design considerations, let’s mock up the two main screens in

the game:

1 A title screen

v A play screen.
A title screen should have

v The name of the game

v The main menu

Chapter 1: Getting to Know Android Gaming

|
Figure 1-1:
Mockup title
screen.
|

Figure 1-1 shows my title screen mockup for Crazy Eights:

CRAZY
s

(NEW GAME |
(CReDITS |

My mockup only has two buttons for

v~ Starting a new game

v Displaying credits
For now, keep it simple. However, you may also want buttons for something
like

v High scores

v A feature for sharing information about the game via e-mail or a social

networking site

The other mockup is for the play screen (Figure 1-2), and we have a lot more
decisions to make when designing this screen.

We’'ll definitely want to display the core game components,such as

v Each player’s score
v Each player’s hand
v The draw pile

v The discard pile

17

1 8 Part I: Adopting the Android Gaming Mindset

My Score: 87
Computer Score: 34

computer's hand

u !
,

|

Figure 1-2:

Mook |7aa) e/ [a,[a[a]>>
play screen. L Vv
|

In this mockup, text by each set of cards indicates how many cards are in
that set.

In terms of playing the game, some of this information isn’t all that useful
(such as how many cards are in the discard pile), but when you’re initially
laying things out, it’s often a good idea to include too much — with an eye
toward paring down to essentials later.

Probably the biggest design decision is how to display the user’s hand:

v In Crazy Eights, players must draw until they can play, so their hand size
may grow very large.

A player could hold more than 20 cards! How do we want to display very
large hands? There is simply not enough space on the screen to display
more than 20 cards, unless we stack them or shrink them — both of
which make them more difficult to interact with via a touch interface.

v My initial proposal is to only display seven cards at a time. If the hand
gets larger than seven cards, the user may use an arrow button to cycle
through his or her hand in “carousel” fashion. This may not be the best
way to do this task, but we can always change it later.

\\3

Just get your initial ideas down somewhere, and you’ll save yourself a lot of
headache down the road when you start to code.

Chapter 1: Getting to Know Android Gaming ’ 9

Following a structured
development process

If you're working on a team, even a small one, most likely you’ll want to use
some form of software version control, such as

v Subversion (SVN)
v Concurrent Versions System (CVS)
N These tools help organize any revisions made to your source code; it’s a great

help in keeping things straight if you need to roll back to a previous working
build of your code.

Even if you work alone, you may want to consider using such a system:

v Games can often be very complex

»* You may find yourself in a situation where something breaks and you
may want to backtrack instead of banging your head against a particu-
larly nasty bug.

<P Try to follow standard conventions for naming your packages, files, and
variables. For variables, use mixed-case names that are descriptive, such as
highScore instead of x1. Even if you don’t extensively comment your code,
naming elements in your code in an intuitive way will help others who may
need to work with your code. If you revisit your code after a long period of
time, good naming conventions will help you understand your own code
as well!

Oracle maintains a resource on naming conventions at http: //www.
oracle.com/technetwork/java/codeconv-138413.html.

Whether or not you use formal source control, you will definitely need some
way to back up and restore versions of your code. In terms of workflow,
whether or not you follow a formal software development process, you will
definitely want to follow some version of the following steps:

1. Think about what you want the user to experience.

2. Design with that experience in mind.

3. Build your game based on this design.

4. Test the build incrementally.

5. Revise based on testing.

http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html

20 Part I: Adopting the Android Gaming Mindset

You will end up iterating through a lot of changes late in the process, and
with games especially you will want to do a lot of testing. Get the game into
the hands of your friends and family (or random strangers if you can!) and let
them play it.

The most important question is: Is it fun? But you might not even get there
if the interface is confusing and the users can’t figure out how to play your
game.

Of course, playing games should be fun, and most of the time making games
is fun, too. But the more disciplined you are about the development process,
the better your game will be when you launch it into the world.

Deciding on distribution

How you distribute your game will depend on your goals. Do you want to
make money?
v 1If you make your game available for free, life becomes a lot simpler:
® You just upload it for free to every market you can find.
e you may want to distribute it directly from your website.

v~ If you want to make money, things become a bit more complicated in
terms of distribution.

Some markets have restrictions on how much you can sell your game for
(such as stating that the app can’t sell for less on their store and more
on another).

Chapter 11 is all about monetizing your games, but it is an issue you’ll need
to think seriously about up front, as it can drastically affect the design of
your game:

v If you want to monetize using ads, you will have less room on the screen
for game content.
V&“\NG! » You want to think about where the best place to put your ads might be.

You might annoy users if ads are easily clickable because they’re too
close to game controls (advertisers won'’t like that either!).

Chapter 1: Getting to Know Android Gaming 2 ’

Knowing What Tools You Need

a\\J

When you’re building games for Android, you need the following essential
tools.

Required
Besides the PC, everything is free:

v Development computer

Any PC will do, since the development environment is Java. Faster is
better, of course. The Android SDK comes bundled with emulation capa-
bilities so you can create virtual Android devices on your PC, but they
run extremely slowly.

v Java Development Kit (JDK)
v An integrated development environment (IDE)
v Android SDK

Chapter 3 walks you through where and how to download and install all the
software you need to get started.

That’s all you need to start making games for Android, but there are a
number of other items you’ll probably want in your toolkit as well.

Recommended

1 At least one Android device.

Google continues to make improvements to the emulator, but there
really is no comparison in testing between an emulated device and a
real one:

¢ You'll save time waiting for the emulator to start up.

¢ Testing your game with a mouse is very different from playing it on
an actual device.

You don't strictly have to own an Android device in order to develop for
Android, but it’s really not a good idea.

The more devices you can add to your test suite, the better. Especially
if you want your game to look and perform well on higher-resolution
devices like tablets, you should invest in at least one.

22 Part I: Adopting the Android Gaming Mindset

v A good graphics program.

e Even if you hire an artist to create the graphics for your game, at
some point you will likely need to crop, resize, or otherwise edit
them.

¢ If you don’t hire someone, you’ll need to create all the graphics on
your own, even as placeholders.

GIMP is a free graphics editor with a lot of power, though not very user-
friendly. Otherwise, purchasing a good, user-friendly graphics editor will
be a sound investment.

v Sound-editing software.

\3
‘\ Audacity (audacity.sourceforge.net) is a wonderful, free piece of

sound-editing software that should take care of all your needs, whether
you purchase or create your own sound effects and music.

Capitalizing on Your Game

A'lot of game developers make games just for fun. If you want to take it one
step further — and try to turn your ideas into a business — you will need to
think about how you plan to do so.

Chapter 11 is all about monetizing your game, but this section will give an
overview of the ways in which you can make money from a game (and poten-
tially help you think of new ways!).

The tried-and-true approaches

The traditional (and obvious) way to make money from your app is to sell it!
When you publish to a market, list the price at what you think is a good price
point. Most paid games sell between $0.99 and $2.99 USD, but big-budget or
high-demand games might ask for even more.

The price point is something you can experiment with as you try to optimize
sales. If you're going this route, there are really no particular design deci-
sions that will affect development. Just build a great app! (Simple, right?
Maybe so. Just stick with this book.) Realize, however, that paid apps get far
fewer downloads than their free counterparts, so if what you're seeking is as
wide an audience as possible, asking the players to pay isn’t the best option.

http://audacity.sourceforge.net

Chapter 1: Getting to Know Android Gaming 23

\NG/
Vg,“

\NG/
Vg,“

You may want to run a sale on your for-pay app periodically, or during holi-
days. But be aware:

1 Most markets have a minimum price (usually $0.99 USD).

v Some markets (such as Google Play) don’t allow you to switch to free

and then back to paid!

Another option for making money from games is to give them away. Wait a
second . . . how do you make money from a game if you don’t charge for it?
The so-called freemium model has been mastered by the creators of Android.

v Google gives away most of its products and services, most of which are
incredibly useful and high-quality. How does it make billions of dollars in
revenue a year then? Advertising.

You can do the same with your game. Give it away for free and place
advertising in the app. You can either

¢ Try to find your own advertisers.
¢ Use one of the many ad providers to serve ads in your app.

Typically you'll only get paid when someone clicks one of the ads, but if
your game is popular, you can profit quite well from this approach.

If you want to serve ads in your game, some users won't like the ads,
and you’ll need to be careful about how you place them so they don’t
interfere with play.

v Another freemium model is to give the game away for free, but then
charge users to upgrade to a full version, which might include more fea-
tures or remove ad visibility. This could be either

¢ A one-shot payment
e A subscription model

Incorporating such a system is a little more complicated than serving
ads, so be aware of the technical issues.

v In-app purchases offer a rich potential revenue stream. While the game
itself could be offered for free, in-game upgrades such as virtual goods
or level unlocks can be sold to the player in exchange for real money.
Some developers have made a fortune employing this monetization
strategy.

Some games are naturally suited to this model, such as
¢ Simulation
¢ Role-playing games

In general, you shouldn’t try to shove a round peg in a square hole. If
your game isn’t a good fit with in-app purchases, don’t try to force it.

24

Part I: Adopting the Android Gaming Mindset

An experiment in game design

In case you were wondering, | did attempt to
come up with a new form of monetization. It
didn't work for me, but you never know whether
it might be worth trying some new approach,
and maybe this (ahem) adventure will inspire
you to invent a whole new way to make money
from games.

In 2009, Google announced the second itera-
tion of the Android Developers Challenge, a
contest to spur development on the Android
platform by offering cash prizes and exposure
to developers for creating innovative new apps
and games.

For the contest, | developed a game called
Relativia, a hybrid puzzle and role-playing
game. | also thought it would be interesting to
incorporate location-based technology (think
GPS), so when the player first starts a game,
the world map is generated dynamically, based
on their locale

v Dungeons and markets in the game would
be linked to real-world locations, such as
supermarkets or coffee shops.

v To enter a dungeon in the game, the players
would have to travel physically to specific
retail locations, at which point the game
would allow them to enter the dungeon and
progress.

The idea was to
v Give the game away for free

v Charge retail locations a sponsorship fee to
be mapped to in-game locations.

I thought | had come up with a brilliant new way
to make money in the mobile game sector!

Unfortunately, there was a major flaw in this
concept. Most people who downloaded and
commented on the game said that they enjoyed
the game play, but didn’t want to have to physi-
cally travel to other locations to play the game.

From this experience, | realized that location-
based games or apps probably work best if they
enrich the player's experience by providing
additional value when the user is already going
places he or she would normally go, rather than
compelling the player to go somewhere.

3

With many of my games, | have used a two-pronged attack, offering most of

them as both free and paid.

v The free versions contain ads and are sometimes feature-limited.

v The paid versions have no restrictions.

Chapter 1: Getting to Know Android Gaming

The free versions point to the paid versions as a form of advertising. I've
tried releasing just one version or the other, but this particular strategy has
served well.

The moral of the story: Even though my idea didn’t pan out, you shouldn’t
necessarily constrain yourself to existing models. If your game is innovative
enough, there just may be a novel way to make money from it, and you just
may be hailed as a pioneer in mobile gaming!

25

26 Part I: Adopting the Android Gaming Mindset

Chapter 2
Designing Your Game

In This Chapter
Understanding mobile games
Getting into the mind of your audience

Designing user interfaces for games

ou may already know what kind of games you want to make. Most of

the time, game developers work on the kinds of games that they love to
play. But not all genres and formats of games fit well on the mobile platform,
while some are perfectly suitable for games on the go.

Even though the hardware and software for Android devices continues to get
more sophisticated and powerful, bleeding-edge games that strain the limits
of these devices’ memory and processing power may not be the best way

to go. You need to keep in mind that most people won’t have the latest and
greatest devices, and if you want to target a wide part of the market, your
games will need to run on older devices.

In a word, the short answer to the question of what kinds of games are best for
mobile is: Short!

Deciding What Kind of Game to Make

Choosing the kind of game you want to make isn’t just a matter of deciding
what type of game you like to play, or which type of game you think will be
the most marketable (although both of these are important).

We consider genre first, though, before moving on to other factors (such as
number of players) that affect design.

28

Part I: Adopting the Android Gaming Mindset

Genre

Currently Google Play has eight subcategories in Games, each one corre-
sponding to a game genre:

v Arcade & Action: fast-paced games where timing and reflexes are usually
important, such as

* Pac-Man
¢ Pinball
¢ Fighting games
v Brain & Puzzle: games you have to think to be good at, such as
¢ Crosswords
¢ Sudoku
¢ Chess

v Cards & Casino: usually games with dice or cards with a random ele-
ment, such as

e Slot simulator
e Poker
¢ Mahjongg

v Casual: generally easy-to-learn, easy-to-play games for a broad audience,
such as

¢ Connect the dots
e Music games
v Live Wallpaper

I’'m not sure why this category is in Games, but it includes backgrounds
for your Home screen that are animated.

v Racing: cars, motorcycles, that sort of thing
v Sports Games: football, baseball, and so on
v Widgets

Another strange subcategory for games, refers to miniature apps with
their own Uls that reside on your Home screen

Discounting Live Wallpaper and Widgets, there are six actual game categories.

Chapter 2: Designing Your Game 29

\\3

\\3

3

One of the first things you should do is browse these categories to get a sense
of what games are currently available and which are the most popular. If you
haven’t already, you’ll also want to download and play a few.

One of the upsides to being a game developer is that playing games is consid-
ered research!

Market position matters. You're providing a product to users who have many
alternatives:
v An important consideration is how crowded a particular subcategory is.

Arcade & Action is probably the most fiercely competitive game cat-
egory on Google Play at the moment. You might consider developing a
game that falls into a less competitive genre.

If you want to go up against the toughest competition, you’ll need to at
least be familiar with it and try to bring something of value that your
competitors don’t, such as

* Lower cost
¢ More features
¢ A better interface
v+ Be mindful about how neatly your game may fall into a particular genre.

If you've just come up with a mind-bending hybrid of a game (say, a
racing word game)

e Which category would it fit in better?

e Which category might face less competition and garner more
usage?

Category membership is one aspect of your game that you can update
dynamically, so just as with choosing a price point, you may want to
experiment if your game doesn’t fall neatly into one particular category.

Number of players

The number of players for your game may depend on your goals and on the
nature of the game.

Single player

Single-player games may be games that are either

v Naturally are played alone, like solitaire

v Played against a computer version of the usual human opponent

30 Part I: Adopting the Android Gaming Mindset

A\

Single-player games a couple of advantages for players and developers:

v The virtue of generally not requiring data connectivity to play means
the game won’t rely on a potentially spotty Internet connection — which
means that it can be played anywhere, anytime.

v If you're not dealing with data connectivity, the game is also generally
going to be less complex, so single-player games are a good idea for the
first games you make.

Multiple players

Multiplayer games involve two or more players interacting with one another:

v Most often this interaction is via the internet. Players may either
e Interact in real time, such as a fighting game

¢ Play asynchronously, making a move at their leisure, which alerts
the opponent it’s his or her turn to make a move.

A multiplayer chess game might work this way.

v Another form of multiplayer game is local multiplayer. Instead of playing
someone sight unseen, you play someone sitting in the same room:

¢ Devices can still communicate via the Internet.

* You might also have the option of using a local communication
protocol such as Bluetooth or Wi-Fi.

This multiplayer format is generally less popular than non-local multi-
player, but in some cases it may be the perfect format for your game.

v Yet another version of multiplayer is pass-and-play, where players use a
single device, physically handing it off to one another to make plays.

This form of multiplayer is a bit clunky, but does have the advantage of

not requiring device-to-device communication.
\NG/
gg‘“ It’s probably not a good idea to implement pass-and-play as the only

way to play your game, but you might consider it as an additional
feature.

Most developers starting out in games aren’t members of huge teams with
million-dollar budgets, so your best bet is to avoid trying to make a large,
complex game right out of the chute. Completing even a simple game can be
difficult, but gives you invaluable experience and a sense of accomplishment.

Once you've successfully developed a single-player game, it makes sense to
try your hand at multiplayer games, if that’s your ultimate goal.

Chapter 2: Designing Your Game

A\\S

QUING/
S

A good intermediary is the asynchronous multiplayer game. Some of the most
popular mobile games on the market today fall into this category, in which
one player updates the game state locally, then sends those updates to
another player.

Asynchronous games have a couple of advantages:

v This type of game is less complex and requires less fault tolerance than
one that needs to be updated in real time.

If an update to the game state doesn’t go through on the first click
because of a spotty connection, just allow them to attempt again.

v Asynchronous games also allow players to engage with the game at their
convenience, rather than having to coordinate a time when both players
are available simultaneously.

This format works beautifully for mobile gaming, in which a player can
make a move in a game when they have a pause in their busy day, wait-
ing in line at the supermarket or in the dentist’s office.

Alot of new game developers overreach. They may love playing MMORPGs
(Massively Multiplayer Online Role-Playing Games) and have a dream design
for one. Often they underestimate the time, energy, complexity, and resources
involved in creating such a game:

v Role-playing games, even the simplest ones, usually require a large
amount of graphical resources.

Most players of RPGs want to find a variety of armor and weapons, as
well as face off against a wide variety of bad guys. You can heavily reuse
the same graphics, but then the game becomes monotonous.

v MMORPGs or multiplayer FPSs (first-person shooters) are played in real
time, which requires sophistication in handling how the game state is
updated between players.

Mobile connectivity is generally less reliable than wired data connec-
tions, so this can make your game unplayable unless you are really
savvy at handling the limitations of mobile technology.

Thinking about how and when
people will play your game

Mobile games, as opposed to those played on a console or PC, are generally
played

31

32 Part I: Adopting the Android Gaming Mindset

v On smaller screens
v On devices with fewer memory and processing resources

v For shorter periods of time
Some important ramifications of this to your game design are

1 The duration of game play. Typically players won’t want to stare at and
click a small screen for hours at a time.

Think about how sessions of your game might work as “bite-sized”
chunks. As a reference point, most of my games have a median session
length of about six minutes.

v~ Fat fingers! The size of the screen is crucial in mobile game develop-
ment. Android devices may have a variety of input hardware:

e The G1, the first Android device, had a trackball.
¢ Some have hardware keyboards, others don’t.

MBER The most consistent input method for your game will likely be the touch-
&N screen.

Make buttons for your application
e Large enough for easy interactivity

e Spaced far enough so that the player does what they want to, when
they want to do it

v Size of text and graphics. You'll want to make sure any text is clearly

readable, especially on smaller devices.

Q,N\BEB 3 . .
D The Android SDK lets you scale text according to screen size, but

any text embedded in graphics will need to be readable across all
resolutions.

One other important design decision that is often overlooked especially

by beginning game developers: colorblindness. Up to 10 percent of males

can have some form of colorblindness, and if your game relies on color to
differentiate between game elements, it may be difficult or unplayable to a
significant segment of your market. Not long after I published my puzzle-RPG
hybrid Puzzle Lords, 1 received an e-mail from someone who was colorblind,
asking if [could add a colorblind mode. The game requires the player to
match gems of the same shape by dropping them in a grid. Figure 2-1 shows a
sample combat screen without colorblind mode enabled.

Chapter 2: Designing Your Game

Figure 2-1:
The main
combat
screen

for Puzzle
Lords.
|

|
Figure 2-2:
The main
combat
screen for
Puzzle Lords
in colorblind
mode.
|

Figure 2-2 is the same combat screen, with colorblind mode enabled. As you
can see, [added symbols (X, square, circle, and triangle) to the circular gems:

v The circular gems are much more important for matching than the
square gems

v | determined that adding symbols to all the gems would look overly
busy.

This intermediate solution lets players play comfortably in colorblind mode,
and the person who originally e-mailed me was happy with the addition.

0o
Ao

© o

No matter what you do, you won’t make all of your players happy. Design
decisions are often tradeoffs in which you try to

v Please the largest number of players.

1 Reach the widest audience.

33

34

Part I: Adopting the Android Gaming Mindset

Issues such as localization (making your game playable in other countries
and locales) and accessibility (making your game playable to those with spe-
cial needs) often depend on how much time and how many resources you are
willing to spend versus keeping your target player base happy.

Identifying Vour Target Audience

Android is becoming more and more popular every day, and so the demo-
graphics of the users are becoming larger and more varied. As of this writing,
the demographics are still skewed in particular directions, possibly enough
to impact some of your design decisions. In any case, it never hurts to have
more information about the audience for your games.

I'd encourage you to use some form of analytics to learn more about your
player base and how they are using your app. Google Play has some built-in
analytics, breaking down a lot of useful information about your game and its
users, such as

v Downloads versus active installs. Five thousand people may have down-
loaded your app, but only 500 of those decided to keep it installed.

+* You'll want to know what your retention rate is, since it’s one good indi-
cator of the quality of your game.

v Google Play also breaks down active installs and downloads for a par-
ticular time frame, as well as by

* OS version
¢ Device
e Country
¢ Language
e App version
e Carrier
Even though there is a wealth of information through the developer console

on Google Play, you may want to install a third-party analytics package or
even implement your own.

Some app analytics provide information such as session length and fre-
quency of sessions. Typically user behavior follows a long-tail distribution.
That is, you’ll usually have

Chapter 2: Designing Your Game

v Some small number of users that play your game a lot

v Alot of users that don’t play your game that much

But keeping an eye on average play length for a given session or average ses-
sions per week will give you some insight into how engaging your game is and
how you might update it to make it more appealing to players.

Besides particular information you might gather about the audience for
your particular game, there are a number of general demographic trends for
Android users that might be of interest.

The Android user base

Because Android was first presented as an open, more technically customiz-
able alternative to iOS, early adopters tended to make up a larger percentage
of the user base. These days they still do, but to a lesser extent; with the wide
array of devices on every carrier in the US (and many around the world),
attracting fans of cutting-edge tech is less of a factor in a game’s success.

v The Android user base continues to skew slightly more toward males.

¢ Their median income tends to be lower than that of iOS users,
probably due to the fact that Android offers a wide array of
devices, including budget ones.

* Some research indicates that Android users are less likely to pur-
chase apps or make in-app purchases, but may be more likely to
click in-app ads.

This kind of information may guide how you choose to monetize
your app.

v For some game genres, such as casual game formats like hidden-object
(where the player tries to find objects in a scene), the demographic for
PC players skews slightly toward older and female.

If you decide what kind of game to develop based solely on maximizing your
potential audience, you may want to consider the particular makeup of the
Android user base. However, a good rule of thumb is to make a game that
appeals to a wide spectrum of users.

You can’t go too wrong with a game that everyone wants to play!

35

36 Part I: Adopting the Android Gaming Mindset

A\

Casting a wide net or finding a niche

Making a game with widespread appeal might be a strong decision. However,
you might find success by targeting a specific demographic that is under-
served. As of this writing, Google Play has around 500,000 apps.

When I started developing for Android, I had to contend with only a handful
of apps on the market, so competition was far less severe. These days it’s dif-
ficult to find a segment of the user base that isn’t already being served, but
it’s still possible. And if you can do that, you might find a group of players
that will become loyal to you and your brand:

v~ Historically, females are underserved by the video gaming industry. One
way you might stand out from your competition is by bucking the demo-
graphics and making games specifically for females.

That doesn’t necessarily mean filling your game with the first thing you
think of that seems “girlish.” (Okay, depending on the game, pink uni-
corns and such might be a good idea! Making hasty assumptions isn’t.)
More importantly, it means understanding what your audience wants
out of a game experience.

A social game focused more on collaboration than competition might
be more suited to a female player base. If you can tap in to what makes
a particular subset of gamers tick — and give them what they want —
they’ll come back for more.

v Another potential niche is kids’ games. More and more smartphones and
tablets are being used to either augment kids’ early education and devel-
opment, or at least keep them occupied for a while in the car.

If you can develop games with an educational bent, or that have particu-
lar appeal to young children, you just might have a hit on your hands.

v Those with special needs, such as the blind, are very underserved by
gaming. Designing games without visual input is especially challenging,
but it might also flex your creativity in ways you never imagined.

You may choose to find a niche based on something entirely different. For
instance, I live in southern Louisiana where a card game called Boo-Ray is
fairly popular. Last time I checked, there was no Boo-Ray app on Google Play.
Granted, the user base would be small, but possibly highly dedicated if you
chose to implement a regional game that has a strong following.

The simultaneous advantage and disadvantage to developing for a niche is
that your audience will necessarily be smaller:

Chapter 2: Designing Your Game

v This lets you tailor your app for that user base.
v A targeted game may engender more loyalty than a game with wide-
spread appeal, but it may ultimately be too limiting.

Either way, it’s a good idea to think hard about what kind of player base you
want to develop for.

Targeting Devices

3

When designing your game, you’ll need to determine which devices you are
willing to support. This is nearly always a tradeoff between increasing your
audience size at the expense of using the latest, greatest features of devices,
including enhancements in performance and new features in the OS. Of
course, if you do target only the latest devices, eventually the industry will
catch up, but it may take some time.

From time to time, the dreaded “F” word rears its head in discussions of
Android: Fragmentation refers to the proliferation of different Android
devices and firmware versions, potentially leading to a disjointed ecosystem
where users don’t have a consistent experience between Android devices,
and developers face the nightmare of developing for way too many different
configurations.

iPhone developer advocates like to point out that there are far fewer hardware
and software versions to worry about when you’re developing for iOS. Okay,
technically this is true, but variety is both the boon and the bane of Android.
The wide spectrum of OS versions can lead to inconsistent user experiences,
but it also entails a rapid release cycle, so innovation marches on at a break-
neck pace. The wide spectrum of hardware allows buyers to choose options
in all price ranges. You can get a budget Android phone with less power and
fewer features, or you can spend more money and get the latest and greatest.
The headaches to developers can be mitigated by

v (Cleverly managing resources
v Following Google’s guidelines for supporting multiple devices
Meanwhile, offering Android in a variety of shapes, sizes, and costs means

that it will penetrate the market at all levels, which means a bigger audience
for your games.

In general, I like to try to support as wide a swath of devices as possible, so
the examples in this book will follow that principle.

37

38 Part I: Adopting the Android Gaming Mindset

Firmware

The term firmware refers to the operating system of a smartphone. The ver-
sion of Android that a given device runs will determine what features are
available, its speed, and many other important factors.

You'll need to think about which versions you want to support:

v A big part of that decision is what kinds of features you want to use in
your game — and the difficulty in making your game compatible with all
the versions you want to support.

» You should test on all supported versions, and that can be a headache,
so you'll probably want to try to support a subset of the versions in use.

Android versions

Google maintains a website (http://developer.android.com/about/
dashboards/index.html) which shows a monthly snapshot of Android
versions currently used worldwide.

Historically, the Android ecosystem has had a large number of versions avail-
able at any given time:

v Though two or three versions tend to make up the vast majority (75 per-
cent or more) of the current user base, and those tend to be the more
recent versions.

v Some small percentage of users will still be running much older versions
of Android. You would certainly make those users happy if you offered
games that ran on those devices, but if development and testing time
are at a premium and you have to leave those versions out, the loss is
negligible.

When you’re making decisions about which OS versions to support, it gener-
ally makes sense to prepare for the future, rather than try to cling to the past.
You and your user base will be happy if you

v Avoid using APIs that vary (or are nonexistent) between versions.

v Keep things simple.

v Develop in a way that enables your game to play happily regardless of
OS version.

Custom ROMs

Because Android is open-source, anyone can take it, modify it, and release
a custom version. Manufacturers often “skin” Android to give it a particular
look and feel on their particular lines of devices. Some examples include

http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html

Chapter 2: Designing Your Game

»* Motorola Blur
v HTC Sense

v Samsung Touchwiz

Though these modifications typically only manipulate the main user interface
of the device, rarely the changes made may affect apps run on these devices.

Ideally you would want to test your game across a wide variety of devices,
including those that run manufacturers’ custom versions. Of course, an
indie developer may not be able to afford a test suite of dozens of devices,
in which case you may have to make do by downloading emulated versions
from manufacturers’ websites, or simply crossing your fingers when you
release and trying to fix problems after you get feedback from players.

Another, smaller segment of your player base will be those users who have
installed custom Read-Only Memory. An avid community of ROM developers
is always ready to take the latest builds of Android, modify them, and make
them available for anyone who wants to take the risk of rooting their phone
and installing a non-factory build of the OS.

There are a surprising number of users with custom ROMs installed, though
they can be more difficult to track. Testing for compatibility with custom
ROMs is even more difficult than with the normal variety of standard configu-
rations, but be ready for the occasional support e-mail from players using cus-
tomized ROM.

Hardware

Along with the variety of OS versions, Android is available on a dazzling array
of hardware. Before developing and certainly before publishing a game on
the platform, you should be mindful of the different types of hardware and
how they might affect the way your game looks and plays.

Processors

The first Android device sported a 528-MHz processor and anyone who had
one probably remembers the interface being a little sluggish, certainly com-
pared to other smartphones at the time. The hardware has advanced a great
deal in a short time, and new devices are now coming with multi-core proces-
sors, each in the GHz range.

More powerful devices mean better performance for games, but not without
a price. Even playing a relatively simple 2D game can drain the battery pretty
quickly, due to

39

Part I: Adopting the Android Gaming Mindset

v Increased CPU power
v Larger, denser displays

NNG/ - . .
gg‘ Games that use a lot of juice can tend to make a device generate a fair amount
of heat as well. So while you can make more CPU-intensive games, you might
not want to.
Screen sizes
An important distinction to make is between
v Screen size (the actual physical measurement of the screen)
v Density (which is the number of pixels in a given area).
Current screen sizes are lumped into one of four categories, based on the
length of their diagonals, as shown in Figure 2-3.
Platform Codename API Level Distribution
283 — Android 1.5 Cupcake 3 0.3%
Android 16 Donut 4 07%
s Android 2.1 Eclair 7 6.0%
— Android 2.2 Froyo 8 231%
Android 23 - Gingerbread 9 0.5%
E—— = Android 2.3.2
. Android 2.3 § - 10 63.2%
Figure 2-3: o . e
Screen - Android 30 Honeycomb " 01%
. f Android 3.1 12 1.0%
SIzes Or Android 3.2 13 22%
And rOId Android 40 - Ice Cream Sandwich 14 05%
devices Android 4.0.2
) Android 4.0.3 15 24%
|

The densities of screens are classified in Table 2-1.

Table 2-1 Screen Density

Name Pixels Abbreviation
Low-density 120 Idpi
Medium-density 160 mdpi
High-density 240 hdpi

Extra-high density 320 xhdpi

Chapter 2: Designing Your Game

As with processors, increased innovation in hardware is resulting in higher
density screens with crisper graphics. A good rule to follow when developing
across different screen sizes and densities is to

v~ Target the largest screens and make sure your game looks good on
those.

1 Scale down to the smallest screens you're willing to support.

This book lays out the graphical elements so that our games will be playable
on every device. Supporting multiple screens can be a daunting and complex
subject, though. Google maintains a website specifically for supporting mul-
tiple screen sizes:

http://developer.android.com/guide/practices/screens_
support.html

You should bookmark this page, study it, and refer to it often.

Input types

Along with the variety of Android devices comes a variety of input methods.
You can safely bet that most devices will have a touchscreen, but they may
include the following forms of input:

v Keyboard

v Trackball/Trackpad

v Microphone

v Camera

v Accelerometer (senses movement)

v GPS (detects location)

You may have an innovative idea for a game that uses one or more of these
forms of input. The entire class of augmented reality (AR) apps and games
generally rely on camera input as they meld real-world images and locations
with overlays on the device. Some very popular games use the accelerometer
for control inputs, allowing the player to tilt the device to manipulate on-
screen elements.

[have a prototype of a game that uses voice input as part of casting spells, which
requires a microphone. If the device is a phone (as many Android devices are),
that’s fine. Just be aware that not all Android devices may have the particular
kinds of input your game requires. Luckily, the Android SDK includes ways of let-
ting you specify what hardware is required for your app — and that’s covered in

41

http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html

4 2 Part I: Adopting the Android Gaming Mindset

SMBER

ANG/
S

Chapter 4. For now, just be aware that in the planning stages, the less standard
your input types are, the more you might be limiting your potential audience.
Keep in mind whether this is something your game really requires, and whether
or not more than one set of control options might be available. For example, you
might make your game use the touchscreen as input by default, but also make it
playable via microphone.

Phones

There are dozens of Android phones available now, and they will likely be the
primary target for your games for a long time to come.

Accordingly, while designing your game, keep in mind that phones typically
have smaller screens than other devices; you’'ll want to use inputs and graph-
ics that are easily visible and interactive on small screens.

Tablets

Android has not currently penetrated the market for tablets nearly as effec-
tively as it has for smartphones. A notable exception is the Kindle Fire by
Amazon, which has sold extremely well.

The most sensible plan for prioritizing for Android devices is to develop for
phone first, then tablet. If your goal is to try to do well financially, you may
have a difficult time targeting tablets as the primary device. However, as the
Android tablet market grows, you will definitely want to make sure your game
runs and plays well on larger screens.

Tablets have the luxury of large, often very-high-resolution displays. So
games will generally be easier to play because game elements will be easier
to see and inputs will be easier to interact with.

One potential drawback is that many Android tablets don’t have the same
auxiliary hardware that many smartphones do. The Kindle Fire doesn’t have
a camera, microphone, or any location-based services. If your game only uses
touch input, that’s fine. But take these factors into consideration before you
begin to code.

TV and beyond

Google TV, which at its core is Android-powered, has been released in stand-
alone set-top boxes as well as integrated into televisions and DVD players. So
far it has not caught on, but Google seems intent on continuing to push and
support TV as a platform for Android.

While many apps may run on Google TV, the input system is completely
different from those of other devices. Currently, Google TV supports input

Chapter 2: Designing Your Game

WMBER
@ﬁ
&

through a remote keyboard device, which has a touchpad. A game designed
specifically for touch input would probably have to be modified significantly
for use on Google TV, although some games may be more amenable to the
format. Right now, if your game doesn’t run in that format, the size of the
audience doesn’t justify putting in the extra developmental effort. But this
may change in the future, so it’s a good potential market to keep an eye on.

Other — more speculative — markets may include cars. Some major car man-
ufacturers are working on pre-installed Android devices for playing media
and navigating via GPS. Of course, you wouldn’t want to design a game that
the driver would need to interact heavily with, but games for road trips (like

I Spy or singing games) could be designed for existing devices, and may port
easily over to car systems when they begin to become popular.

And because Android really can run just about anywhere, there are other
uses and markets that are likely to arise in the future. Flexible screens will

be hitting the market soon, allowing for wearable devices such as armbands!
Google’s Project Glass is a design in the works for wearable glasses that carry
out many smartphone functions. Be ready for thinking about how you might
design for such devices.

The more streamlined and intuitive your interface and controls are, the easier
it will be to adapt them to future devices. Technology moves rapidly, and if
you want to stay in front, you’ll need to stay informed and be thinking ahead!

Designing the interface and controls

You’ve got a lot of important choices to make when it comes to designing
how players will change what happens in the game by interacting with it.

Some of the most important factors when considering interface design are to
be sure that game elements and controls are

v~ Intuitive: After you've completed a workable version of the game, one
of the first things you’ll want to do is give “The Grandmother Test”. This
doesn’t mean actually giving it to your grandma to play (though that
may not be a bad idea if she’s up for it). Here “grandmother” refers to
someone who is generally not a hardcore game player. The idea is to see
how quickly they “get it” when trying to navigate and play your game.

e If they pick up how to play your game right away, you're doing
something right.

43

44

Part I: Adopting the Android Gaming Mindset

SMBER
é‘,\“

3

e If anything is confusing or frustrating, you’ll want to try to ask
targeted questions to figure out just what about the interface you
need to change.

v Clean: Make sure that the players can easily see what they need to see
and click the things they’re trying to click.

If your users can’t find their health bar or habitually click one button
when they mean to click another, you'll need to think about revision.

v Pretty: If you want your players to spend a lot of time with your game,
you’ll want it to look (and sound) good. Nice production values go a long
way in making a game popular and keeping it that way.

A big difference between some games that do well and those that don’t
is often the amount of polish. After coding your game for weeks or
months (or even years!), you may not feel like making a lot of cosmetic
changes, but the extra effort is often rewarded with happier users who
are more willing to play your game — and recommend it to others.

Hardware controls

Depending on the type of game you’re planning on implementing, you may
want to use hardware, such as the keyboard or trackball/trackpad, for input.
If the player is not using the touchscreen for input, there’s the added advan-
tage that fingers or thumbs won’t be obscuring the screen, leading to a more
natural game experience. In practice, this approach isn’t always feasible
because of the inconsistency among hardware configurations of Android
devices.

Prototype your control scheme early in the development process to get a
feel for

v Whether it’s going to work

v Whether a wide variety of Android devices will support it

Virtual controls

Sometimes you want to mimic the functionality of hardware controls such as
buttons or joysticks when the hardware just isn’t available. Virtual controls
are emulated versions of hardware controls implemented in software.

For example, you may want your game to use a directional pad (d-pad) for
moving a character through the game. If you wanted to implement this
feature on a phone or tablet that doesn’t have a d-pad, you could draw
something that looks like a d-pad in one corner of your game, using the
touchscreen to capture inputs so that portion of the touchscreen functions
like a d-pad.

Chapter 2: Designing Your Game 45

\NG/
Vg,“

I'll just come right out and say it. I don’t like virtual controls. I've never played
a game with virtual controls that I like:

v In general, the response time — not to mention the touch and feel — of
virtual controls will be far inferior to what you get from actual hardware.

v They take up a lot of screen space. Real estate on small screens is at a
premium. If you clutter the screen with controls, you have less space to
show other elements.

For some games, virtual controls make the most sense. An implementation
of Pac-Man without a joystick and buttons, even virtual ones, just wouldn’t
be the same. They do have the advantage of working on any device with a
touchscreen.

Other cultures and languages

App stores are global markets, and Google Play is able to offer your apps in
dozens of countries around the world. You might want to consider localizing
your game so that players around the world can enjoy it:

v A number of freelancers and companies will charge you to localize the
language in your game.

v If you have a friend who'’s a fluent speaker of a particular language with
a large demographic, that’s even better!

As a general rule, you’ll want to maintain the text of all your user interface
(UD elements (such as buttons, titles, and warnings) in a separate file.
Chapter 4 will go into more detail about how this is done in practice.

One other thing to consider is cultural differences. Think about how your
game might be perceived by particular cultures. If the enemies in your game
are WWII Japanese soldiers and they're portrayed very negatively, your game
might not go over very well in Japan. You don’t need to be overly fussy about
political correctness, but your game really is going to be available to a global
audience as soon as you hit that Publish button.

Players with special needs

Consider players who are blind, deaf, or unable to use traditional modes of
input to Android devices. Designing playable games for these types of users
can be extremely difficult. But if you specifically target such an underserved
demographic, you will probably develop a particularly loyal fanbase.

46 Part I: Adopting the Android Gaming Mindset

a\\J

Tutorials

One way to make your game more playable, especially if it introduces new or
unfamiliar concepts, is to include a tutorial.

If your game is novel, you’ll want the learning curve to be gentle at first,
ramping slowly up in difficulty as you introduce more concepts:

v A practice mode is one possible way to implement assistance as the
player becomes familiar with your game.

v A dedicated “tips” window can appear when the player enters a new
screen.

» You can display tips on loading screens, a popular practice on many
modern games because it works extremely well.

Pay close attention when you give the game to friends or family for the first
time, and see how easily they pick it up:

v~ If they are having difficulty, it could be an issue with the interface or an
inherent problem with the game design.

v It could be that your game is just new and complex enough that new
players need your help to figure out how to engage with it.

Most beginning game designers don’t think of themselves as teachers —
they just want to make a cool game! — but sometimes a little teaching
goes with the territory.

Your game may be extremely intuitive to you because you’ve spent so
much time tweaking it in your head. Try to be objective and think about
what it’s like to see and play your game for the first time. Testers will
help you with this, of course, but train yourself to think this way as well.
When you do, you’ll often find that familiar aspects of the game — obvi-
ous to you, the maker (of course) — must be pointed out to many of
your potential players. That’s where tutorials come in.

Finding and/or creating resources
(graphics and sound)

Unless you’re designing a game that doesn’t require graphics or sounds,
you're going to need some visual and audible whiz-bang. Even if your game
doesn’t require graphics, you'll still need an icon and a banner for the market
listing. You've really got two choices for these resources: buy them or make
them yourself.

Chapter 2: Designing Your Game

Create your own

As a game developer, you're already going to have to wear a lot of hats. If
you're an indie, you’ll probably have to handle all the business, support,
marketing and PR, and any other day-to-day business of running a small game
company. Rare is the person who can do all that and produce quality art,
sound effects, and music.

If your game is not very graphics- or sound-intensive, you might be able to
get away with doing everything yourself. If you're working on something
like a card game or an abstract physics puzzler, you might be just fine open-
ing up your favorite graphics program and creating resources yourself. But
be warned: Some in the game development community have come to refer
to bad graphics as “developer art”. Even so, a lot of indies don’t have the
budget to hire an artist, and even making do by themselves they can enjoy a
fair amount of success.

If you do tackle your own game art, you should at least invest some time and
effort in learning some basics about art and graphic design. Your game is
going to be available to millions of people around the world. You want it to
look good! Your icon is especially important in making a first impression to
prospective players; the appeal of a good-looking icon can’t be overstated.
Find some books on art and graphic design, and consider taking a course or
two at a community college or in continuing education.

Hiving creative contractors

The ideal situation is to hire artists to create wonderful art and music for
you. In addition to getting a higher-quality product, you're less likely to
stretch yourself thin, giving you more time to develop and make your game
more playable and fun.

Even on a relatively small budget, you can take some steps to maximize your
return on the money you spend on art and music. The stereotype of the
starving artist is, unfortunately, too often true; you can often find students or
artists just starting out who are willing to work with you to provide you with
affordable art and music for your game.

Art

You’'ll want nice art in whatever game you develop, but if you're working

in a genre like hidden objects or any genre with lush, full-screen art, you’ll
definitely want to invest in a good artist. If you don’t know one personally,
you can try to find one either online or in your local community. As with any
type of contracting, face time has a lot of value. If you can sit down with your
artist over coffee and work through sketches and ideas, meetings can gener-
ally be more productive than they’d be over the phone or online:

b7

48 Part I: Adopting the Android Gaming Mindset

NG/
Vg\\\

» You might want to consider posting flyers at local colleges, in the mail-
rooms or cafeterias, and of course wherever art classes are held. You
might be surprised at the amount of interest. A lot of aspiring art stu-
dents may be willing to collaborate just to help build a portfolio.

v Online, you can find a great resource for indie game developers in the
forums at Indiegamer.com (http://forums.indiegamer.com/). A
wide range of both artist and music and sound people post samples of
their work, as well as posts of availability for projects. You can contact
artists via e-mail and ask for hourly or project quotes if you like their
work.

v Another place to scout out for artists is deviantART. com. Amateur and
professional artists showcase their work here, and it’s a great place to
scout them out and approach them with offers to work.

Sound and Music

In many ways, sound and music are generally less prominent for the mobile
platform (hint: tiny speakers), but they can still be a key ingredient of a suc-
cessful game.

Because people will likely be playing your game when they’re out in public

or otherwise surrounded by other people, often they may be inclined to

play your game without sound or music, even if those features are available.
(Imagine, say, a user not wanting to wake up the sleeping baby in the next seat
on the plane.)

Sound effects or music in your game should be slightly lower on your priority
list, and if you do implement them, always offer the option to disable them.

As for finding quality people to generate art and music for you, a lot of the
same advice as for finding graphical artists applies: Scout your local colleges
for students, as well as the forums at Indiegamer.com.

You obviously want great resources for as little money as you want to spend.
But everyone values their time and talent, so try to use tact when dealing with
creative contractors. I've seen many complaints in game development forums
about how many artists are flaky and don’t follow through with contract work,
but that’s probably because you're more likely to hear when something goes
wrong than when it goes right. I've personally dealt with a number of creative
contractors, and overall I've had very good experiences.

http://forums.indiegamer.com/
http://deviantART.com
http://Indiegamer.com

Chapter 2: Designing Your Game 4 9

WMBER
“&
&

A good policy for contracting work, even for relatively small projects, is to
make everything clear in writing up front. A simple contract works well, but
at the very least draw up some kind of document that states what is expected
of each party, with realistic deadlines. With this approach, there’s much less
chance of confusion and disagreement down the line.

Treat people with professional courtesy and respect, and they will be much
more likely to reciprocate

50 Part I: Adopting the Android Gaming Mindset

Chapter 3

Setting Up Your Development
Environment

In This Chapter

Getting familiar with the Eclipse development tool
Using the Android SDK
Running your first Android app

l he tools for developing Android are freely available for download and
use. Even if you've never used an IDE (integrated development environ-
ment) like Eclipse, it won’t take long for you to get your feet wet.

Starting at the Beginning

Android and all its associated tools run on Java, so the first thing you’ll need
to do is make sure your development machine meets the supported system
requirement. Then you’ll need to install the Java Development Kit (JDK).

The following operating systems are currently supported:

v Windows XP (32-bit)
v Windows Vista (32- or 64-bit)
v Windows 7 (32- or 64-bit)
v Mac OS X 10.5.8 or later (x86 only)
v Linux (tested on Ubuntu Linux and Lucid Lynx)
¢ Gnu C Library (glibc) 2.7 or later is required
e For Ubuntu Linux, version 8.04 or later is required

¢ 64-bit distributions must be able to run 32-bit applications

52

Part I: Adopting the Android Gaming Mindset

After you've verified that your machine is up to snuff, the next order of busi-
ness is to install the latest version of the JDK.

Follow these steps:

1. Point your browser to www.oracle.com/technetwork/java/

ORACLE’ { Sian In/Registes for Account | Help) United States ~ Communities = lama.. v lwantto. v | Q
Products and Services | Soluions | Downloads = Store | Support Training | Partners | About Oracle Technology Network
Oracle Technology Network Java Java SE Dow
Java SE Oveniew || Downloads | Documentation | Gommunity | Technologies || Training o Ll LI
Java EE LB
Java E Java SE Downloads # Java EE ano Glassfish
I .
Java SE Support # JavaME
- Latest Release Next Release (Early Access| Embedded Use Previous Releases &
Flgure 3-1: Java SE Advanced & Sute ¥ JavaFx
U e’ Java Embedded # Java Card
racie s lavaFX # NetBeans IDE
dOWﬂ|Oad JavaDB Java Resources
page Wieb Tier vaFx | Q? ﬂ__lﬂls & Newto Java?
Java Card & APIs
for Java oamiad 3t & Code Samples & Apps
prOdUCtS. Java Platform (JOK) 7u3 JavaFx203 DK 7u3 + Netgeans JOK Tu3 + Java EE # Developer Training
—— Commudy % Documentation
2. Click the download icon for Java Platform (JDK).
The page listing downloads for specific platforms appears (See Figure 3-2).
Java SE Development Kit Tu3
You must accept the Oracle Binary Code License Agreement for Java SE to download this
software.
Accept License Agreement © Decline License Agreement
Product / File Description File Size Download
Linux x86 (32-bit) 63.65 MB # jdk-7u3-linux-i586.rpm
Linux x86 (32-bit) 78.66 MB # |dk-7u3-linux-I586.tar.qz
EE— | Linux x64 (64-bit) 6453 MB ¥ [gk-7u3-linucx6d.rom
Linux xG4 (§4-bi 77.3MB ¥ jdk-Ful-linucxB4tarqz
Figure 3-2: | Solaris x86 (32-bif) 135.96 MB ¥ |dk-Tu3-solaris-i586 tar 7
D | d Solaris x86 (32-bit) 81.4 MB # jdk7u3 solaris 586 tar gz
ownloa Solaris SPARC (32-bit) 138.92 MB # [dk 7u3 solaris-sparctar?
page fOf' Solaris SPARC (32-bit) 86.07 MB ¥ jdk 7u3 solaris-sparctar.gz
. Solaris SPARC (64-bit) 16.14 MB # jdk-Tu3-solaris-sparcyddar?
SpelelC Solaris SPARC (64-bit) 12.31MB ¥ jdk-Tu3-solaris-sparcyddar.az
: Solaris xG4 (64-bit) 14.46 MB ¥ jdk 7u3 solarisxf4tar?
operatlng Solaris xG4 (G4-bit) 9.25 MB # jgiTu3-solarisxEdtaraz
Systems, windows x86 (32-bit) 84.12 MB ¥ jdi-7u3-windows-i536.exe
Wwindows x84 (54-bit) 87.41MB ¥ jdk-7ul-windows-x64 exe
I

javase/downloads/index.html

You should see something like the page in Figure 3-1.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 3: Setting Up Your Development Environment 53

3. Click the Accept License Agreement radio button and then click the
specific download link for your operating system.

For example, the download for Windows 32-bit systems is
jdk-7u3-windows-1i586. exe.

4. When the file has downloaded, double-click the file to begin the
installation process.

On Windows, you're prompted by a message such as Do you want to
allow the following program to make changes to your computer?

Click the Yes button to continue with the installation and follow any
instructions provided by the installer.

That’s it! After the JDK is installed, you can run all the tools required to start
building Android games.

The next step is to install Eclipse.

Downloading and Installing Eclipse

Eclipse is an infegrated development environment (IDE), but what is that
exactly? If you've never used an IDE before, it’s a piece of software that
makes software development a whole lot easier and enjoyable.

If you're an ace programmer with a photographic memory and robotic con-
centration, all you really need to write code is a simple text editor. Coding in
a high-level language like Java is just writing text in a file. But an IDE provides
an interface to your projects that makes carrying out simple, repetitive tasks
much easier, as well as helping with debugging and troubleshooting.

Android Development Tools (ADT) is a plug-in that integrates with Eclipse to
enable Android app development.

3

Android Development Tools have not always been compatible with the latest
version of Eclipse. Double-check here for compatibility before installing
Eclipse: http://developer.android.com/sdk/eclipse-adt.html.

The recommended version of Eclipse to use with the ADT is Classic. To
install Eclipse Classic, follow these steps:

1. Point your browser to www.eclipse.org/downloads.

You should see something like the page in Figure 3-3.

http://developer.android.com/sdk/eclipse-adt.html
http://www.eclipse.org/downloads

54

Part I: Adopting the Android Gaming Mindset

|
Figure 3-3:
Download
page for
Eclipse.
|

a\\J

ﬁ Visit other Eclipse Sites
5 o) =
mp ‘ﬁ O

Home Downloads Users Members Committers Resources Projects About Us

Packages Developer Builds Projects

‘Compare Packages Older Versions Eclipse Indigo (3.7.2) Packages for LT LI [~]

Nk

@+

pse Do pad

Eclipse IDE for Java EE Developers, 212 uB gL Windows 32 Bit
Downloaded 2,471,708 Times Details Windows 64 Bit

Eclipse Classic 3.7.2, 172 u8 Q Windows 32 Bit
Downloaded 1,238 277 Times. Details Other Downloads Windows 64 Bit

Eclipse IDE for Java Developers, 128 w8 Windows 32 Bit
Downloaded 902,840 Times. Details Windows 64 Bit

JBoss Developer Studio Promoted Download Download
Early Access! Download JBoss Developer Studio 6.0 with packages for Mac, Windows or Linux. e

Eclipse IDE for C/IC++ Developers (includes Incubating components), Jgl. Windows 32 Bit
108 MB == Windows 64 Bit

Downloaded 366,212 Times Details

2.

If you are using Windows, click the appropriate download link (such
as “Windows 32-Bit” next to Eclipse Classic 3.7.2).

If you are using an OS other than Windows, click the name of the pack-
age (such as Eclipse Classic 3.7.2) directly, which opens a page with
downloads for other operating systems.

Eclipse is downloaded as a compressed . zip file.

. After the file has downloaded, extract the . zip file into your desired

directory (for example, c: \Program Files\Eclipse in Windows).

. Launch Eclipse by double-clicking the eclipse.exe icon.

You probably also want to create a shortcut on your desktop or Start
menu.

When you launch Eclipse on Windows, you may be prompted by a mes-
sage such as Do you want to allow the following program to
make changes to your computer?

Click the Yes button to continue with the installation and follow any
instructions provided by the installer.

Java is required for Eclipse, so if Java is not properly installed, Eclipse won’t
work. When Eclipse starts for the first time, you're prompted to select a

workspace.

are stored.

This is the location on your computer where the working files for your project

Chapter 3: Setting Up Your Development Environment 5 5

Check the “Use this as the default and do not ask again” check box (Figure 3-4)
after selecting the location for your desired workspace.

= Workspace Launcher
Select a workspace
Eclipse stores your projects in a folder called a workspace,
Choose a workspace folder to use for this session.
Workspace: C\Users\Derelworkspace - Browse...
|
Figure 3-4:
Selecta
workspace
in Eclipse. ok | [cancel
|
When you've selected a workspace, the Eclipse welcome screen appears, as
shown in Figure 3-5.
e ' ' |
File Edit Run Navigate Search Project Refactor Window Help
s fHoocsE-")
%_ Welcome to the Eclipse IDE for Java Developers
®
|
| |
Figure 3-5: ‘
The Eclipse |
welcome
screen. The
arrow icon
on the right
launches
the work-
bench view. | =5
U
|

56 Part I: Adopting the Android Gaming Mindset

A\

|
Figure 3-6:
The Eclipse
workbench.
|

Click the arrow icon on the right to launch the workbench view, which
should look something like Figure 3-6.

Eclipse is extremely customizable, so you can move views around to organize
your workbench however you like. If you're new to Eclipse, though, you’ll
probably want to leave the default organization in place. This screen is where
you’ll spend most of your time:

v The Package Explorer on the left displays the directory structure for
your projects.

At this point, you don’t have any projects yet, so there’s nothing to
display.

v The views at the bottom are typically used to analyze problems and
output related to your project.

v The outline view shows an ordered list of the elements in the currently-
selected file.

It can be very useful for navigating the structure of a given file.

v The big gray space in the middle is the code view, which is where you’ll
be entering all your brilliant code!

= Java - Eclipse ===
File Edit Run Navigate Search Project Refactor Window Help
- A B HB-0~Q- B~ &0 &~ 5] - - i [Tava)
[£ Package Explorer 52 =i = O || Bl Taskekist 23 ST
0 s = - EE e xB 8~
Find Q] b Al P Activate..
& Uncategorized
= Outline &2 o (S
An outline is not available.
[Problems 52 @ Javadoc| [, Declaration A
0 items
Description = Resource Path Location | Type
= @D &

Chapter 3: Setting Up Your Development Environment

A\

Make line numbers visible in the Eclipse code view:
1. Select Windowr>Preferences.
2. Select General=~>Editors=>Text Editors.
3. Check the Show line numbers check box.

The Android SDK and ADT still need to be installed before you can develop
for Android in Eclipse. Read on to find out how.

Installing the Software

You have to have the Android SDK, which consists of libraries, documenta-
tion, and other code, in order to develop Android apps and games.

Note that the Android development tools are updated frequently, so the instal-
lation process may vary.

Installing the SDK

Follow these steps to download and install the SDK:
1. Point your browser to http://developer.android.com/sdk/
index.html.
You should see something like the page in Figure 3-7.
2. Click the download link for your platform.
For Windows, Google recommends the installer (. exe) download.
3. Double-click the downloaded . exe file.
Follow the installation wizard instructions.

¢ If you use the self-extracting installer, at some point during the
installation process it will prompt you for a path in which to
extract the files.

¢ If you are not using the installer, but a compression tool to extract
the files, you will need to choose a location.

In either case, use c: \android (or whatever the root directory on your
hard drive is, if you're on another operating system). This will be the
default location used throughout this book.

4. Start the SDK Manager.

57

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

58

Part I: Adopting the Android Gaming Mindset

|
Figure 3-7:
Google's
download
page for

the Android
SDK.
|

Home

Android SDK Starter Package

Download
Installing the SDK

Downloadable SDK Packages
Adding SDK Packages

id 4.0.x Platform
2 Platiorm
1 Platiorm
0 Platiorm

SDK Tools, 118
Google USB Driver, 14
Support Package, 17

ADT Plugin for Eclipse
ADT 18.0.0

Native Development Tools
Android NDK, r7e nee!
Whatis the NDK?

More Information

OEM USB Drivers
SDK System Requirements
SDK Archives

Dev Guide Reference Resources Videos Blog

Download the Android SDK

Welcome Developers! ff you are new to the Android SDK, please read the steps below, for an oveniew of how to set up the SDK

If you're already using the Android SDK. you should update to the |atest tools or platform using the Android SDK and AVD Manager, rather th;

Windows android-sdk_r18-windows zip 37448775 bytes bfbfdf8b2d0fdecc2a621544d706fa98

installer_r18-wind exe (R ded) 37456234 bytes 48b1fe7bd31afebbIcBad92b75dd898

Mac OS X (intel) android-sdk_r18-macosx.zip 33903758 bytes B326e8a5531c9d6fGa0261cbI7af36

29731463 bytes 6cd716d0e04624b865ffed3c25b3485¢

Linux (i386) android-sdk_r18-linux tgz

Here's an ovenview of the steps yau must follow ta set up the Android SOK.

1. Prepare your development computer and ensure it mests the system requirements
2. Install the SDK starter package from the table above. (If youre on Windows, download the installer for help with the initial setup.)
3. Install the ADT Plugin for Eclipse (it you'll be developing in Eclipse)

4. Add Android platforms and other packages to your SDK.

5. Explore the contents of the Android SDK (aptional)

To get started, download the appropriate package from the table above, then read the guide to Installing the SDK

Upon completing the SDK installation, the final screen of the wizard has a
check box which reads “Start SDK Manager”.

Leave it checked and click Finish.

5. Install the latest Android API (application programming interface).

By default, the SDK Manager will select the packages you need to begin
developing with the latest available version of Android. [recommend
that you leave the defaults checked, then click Install. A license window

will appear.

6. Review the packages to install and their licenses, make sure the
Accept radio button is selected, then click Install.

It may take a while to install all the necessary packages.

When the SDK Manager has finished downloading the packages, you may

close it.

Installing the ADT

Follow these steps to install the Android Development Tools (ADT) plug-in.

1. Start Eclipse, then select Help=>Install New Software.

The Install window appears.

Chapter 3: Setting Up Your Development Environment

2. Click the Add button.
The Add Repository dialog box will appear.

3. Enter “ADT Plugin” for the name and https://dl-ssl.google.
com/android/eclipse/ for the location.

The dialog box should look like Figure 3-8. Click OK.

|
Figure 3-8:
Google's
download
page for

the Android
SDK.

|
Figure 3-9:
The Install
dialog box,
pointing at
the Android
software
site, with
Developer
Tools
selected.
|

= Add Repository

=

MName: ADT Plugin

Location: https://dl-ssl.google.com/android/eclipse/

Local...
Archive...

0K Cancel

4. In the Install dialog box, click the check box next to Developer Tools.

The dialog box should look something like Figure 3-9.

= Install

Available Software
Check the items that you wish to install.

Work with: https://di-ssL.google.com/android/eclipse/ - Add.. |

type filter text

MName
4 [7]000 Developer Tools
% Android DDMS

% Android Development Tools
ndroid Hierarchy Viewer

ndroid Traceview

SelectAll | | Deselect Al

Details

(] Show only the latest versions of available software

[7] Group items by category

[7] Contact all update sites during install to find required software

@

4 items selected

Find mere software by working with the "Available Software Sites” preferences.

Version

18.0.0.v201203201601-306762
18.00.v201203301601-306762
18.0.0.v201203301601-306762
18.0.0.v201203301601 -306762

|1 Hide items that are already installed

What is alreacly installed?

[cancel

59

https://dl-ssl.google.com/android/eclipse/
https://dl-ssl.google.com/android/eclipse/

60 Part I: Adopting the Android Gaming Mindset

5. Click Next.
A list of the tools you selected for download appears on the next screen.
6. Click Next.

You're prompted to review the licenses for the software to be installed.
You may select the license on the left to read its text in the box on the
right.

7. To accept the license and continue, click the radio button that says
I accept the terms of the license agreement and then click
Finish.
Upon completion of the installation, you may see a Security Warning

dialog box, indicating that you are about to install unsigned content.
This sounds scary, though it’s perfectly fine. Click OK.

8. When the installation is complete, you’ll need to restart Eclipse.

Upon re-launching Eclipse, you should see two new icons in your tool-
bar, if the ADT was successfully installed in Eclipse. Figure 3-10 shows
an example.

Figure 3-10:

The toolbar | = Java- Eclipse
in Eclipse File Edit Refactor Run MNavigate Search Project Window Help

after install- R B ¥ 2R B-0-Q%-
ing the ADT.

The two new icons launch these parts of the development environment:

v Android SDK Manager (the icon with the down arrow).
The Android SDK manager is what you use to update the SDK.

" V\BER v Android Virtual Device Manager (AVD).
<
&

New versions of the Android SDK are released periodically. These updates
may include

v Bug fixes

v Enhanced performance for Android tools

v New functionality

Chapter 3: Setting Up Your Development Environment 6 ’

It’s a good idea to read blogs or forums related to Android development

to stay up to date. Things move fast in the world of Android! These venues
usually indicate when any new development tools are available for update.
Otherwise you can just launch the tools from within Eclipse every couple of
months and check manually.

Connecting Eclipse to the SDK

As it happens, you're not done integrating Android into Eclipse yet. You need
to tell Eclipse where you installed the SDK. To do so, follow these steps.
1. In Eclipse, select Window=>Preferences.
The Preferences window appears.
2. Select Android from the list in the left panel.

Your Android preferences appear, including a text box labeled SDK
Location, which should be empty.

3. For the SDK Location, enter c : \android or click Browse and navigate
to the location of the SDK.

4. Click Apply, then OK.

Now the Android tools should be successfully integrated into Eclipse. You're
ready to create your first virtual device.

The Android Virtual Device
(AUD) Manager

This tool allows you to create one or more virtual Android devices that will
run on your desktop and behave like actual Android devices.

There are a couple of drawbacks to emulation:
v Virtual Android devices are very slow, even though Google has put effort

into increasing the performance on emulated devices.

Speed is the major difference between an emulated device and a real
one. Performance is worse as the size of the display increases. Trying to

W test apps or games for devices with very large displays is very difficult.

Invest in a hardware device if you intend to target tablets.

62 Part I: Adopting the Android Gaming Mindset

v+ Emulation is a poor test for certain input features.

¢ Interacting with a virtual device by using a mouse is almost noth-
ing like interacting with the same device using your fingers and/or
thumbs. On more than one occasion, I've initially tested an inter-
face on a virtual device, only to realize that Ul elements needed to
be larger and better-spaced after 1 loaded the Ul onto a hardware
device.

e If your game uses the accelerometer or some other form of input
that is difficult or impossible to emulate, you're better off testing
on hardware.

That said, the emulator can come in handy if you’re on a budget and can’t
afford a wide array of test devices.

An AVD is a good first-cut at testing your game. Nothing beats play-testing on
an actual device, but if you're testing the initial look and feel of the game, early
use of an AVD can be very helpful.

Creating a virtual device

To create a virtual device, follow these steps:

1. In Eclipse, click the Android Virtual Device Manager icon, or select
Windowr>AVD Manager.

The Android Virtual Device window appears, as shown in Figure 3-11

Android Virtual Device Manager ===
List of existing Android Virtual Devices located at C:\Users\Derek\.android\avd
AVD Name Target Name: Platform APILevel CPU/ABI New... :
- No AVD available - -
I
Figure 3-11:
The Android
Virtual
Device [Refresh |
Manager. Avalid Android Virtual Device. =} A repairable Android Virtual Device.
3 An Android Virtual Device that failed to load. Click 'Details' to see the error.
I

Chapter 3: Setting Up Your Development Environment 63

Figure 3-12:
The Create
new

Android
Virtual
Device
(AVD)
window.
|

\NG/
&éb“

2. Click New.

The Create new Android Virtual Device (AVD) window appears, as
shown in Figure 3-12.

< Create new Android Virtual Device (AVD) (=
MName: |
Target: | v‘
CPU/ABL
5D Card:
@ Size: MiE -
File: Browse
Snapshot:
Enabled
Skin:
@ Built-in:
Resolution: 3
Hardware:
Property Value New...
Override the existing AVD with the same name
Cancel

3. Enter a name for your new virtual device.

Since you may have a lot of virtual devices, you’ll want to use a descrip-
tive name (“AVD1” is a bad idea!). Let’s create a device that runs
Android 2.1 with an HVGA screen. A good descriptive name for such a
device would be “2.1HVGA”.

Android naming conventions usually only allow
e Letters a through z (upper- or lowercase)
e Numbers 0 through 9
e Symbols period (.), dash (-), or underscore ().

These limitations also apply not only for the names of virtual devices,
but also for many names you use throughout Android projects (such as
names for resources).

64 Part I: Adopting the Android Gaming Mindset

A\\S

4. Select an Android version to target from the Target drop-down menu.

The versions you selected when installing the SDK will be visible.

In this case, select Android 2.1 — API Level 7.

. Enter a size for the virtual SD card in the Size field.

Your game may or may not use the SD card on a device in order to store
information like saved games and high scores. There are a number of
ways to store information, and not all require the SD card.

This is optional on virtual devices, but it’s a good idea to always imple-
ment a virtual SD just in case you need one.

A good size for a virtual SD card is 1 gigabyte (GB). Enter “1000” in the
Size field.

. Select a resolution.

® Most of the time you’ll want to test on the built-in resolutions,
available from the Built-in drop-down menu.

e Occasionally you may want to test for a device with a non-standard
display. In that case, you can enter whatever custom values you
want.

In this case, select HVGA. This was the standard resolution for most
early Android devices.

Many devices are being released with higher resolution, but you should
still test for HVGA as a baseline.

Review your settings. They should look like those in Figure 3-13.
The hardware fields allow you to

¢ Further customize the attributes of the devices you're using (such
as virtual memory).

¢ Provide support for other hardware such as an accelerometer or
GPS device.

Okay, relax. No need to make any adjustments to these settings just
now, but as you can see, virtual devices are highly customizable.

. Click Create AVD.

Your new virtual device will now show up in your list of available virtual
devices, as shown in Figure 3-14

You're ready to launch your first virtual device and see it in action!

Figure 3-13:
The Create
new
Android
Virtual
Device
(AVD)
window
with values
filled in.
|

Figure 3-14:
The AVD
with a newly
created
virtual
device.
|

"2 Create new Android Virtual Device (AVD)

Name: 21HVGA

Target: Android 21 - API Level 7

CPU/ABL | ARM (armeabi)

Chapter 3: Setting Up Your Development Environment

3D Card:
@ Size: 1000 MiE -
) Files B
Snapshot:
[7] Enabled
Skin:
@ Built-in: HVGA R
() Resolution: x
Hardware:
Property Value | Newl
Abstracted LCD density 160 T
elet
Max WM application hea... 24
Override the existing AVD with the same name
Create AVD | ‘ Cancel
Android Virtual Device Manager =l ===
List of existing Android Virtual Devices located at C:\Users\Derek\.android\avd
AVD Name Target Name Platform API Level CPU/ABI i New..
’ 21HVGA Android 21 21 7 ARM (armeabi) Edit
Delete...
Repair...
Details...
Start...

Refresh

+ Avalid Android Virtual Device. A repairable Android Virtual Device.
X An Android Virtual Device that failed to load. Click ‘Details' to see the error.

65

66

|
Figure 3-15:
The AVD
launch
options
window.
|

\\3

3

Part I: Adopting the Android Gaming Mindset

Launching a virtual device

To launch a virtual device, from the AVD Manager, follow these steps:

1.

Highlight the virtual device in the list by clicking the entry, then click
Start.

You'll see the Launch Options window (Figure 3-15).

Skin:

= Launch Options

Density: Medium (160)

Wipe user data

Launch from snapshot

Save to snapshot

=

HVGA (320x480)

[

J|

Launch Cancel

Give it some time. A virtual device typically takes several minutes to
completely start up. When the virtual device is finished loading, you
should see a home screen similar to that of a hardware device (see
Figure 3-16).

If your virtual device has an extremely large display, or you are develop-
ing on a smaller screen (like a laptop), you may want to select the Scale
display to real size check box and enter the display size, in inches, that
the virtual device will show you on your monitor.

From this option window, you may also select Wipe user data, which
clears any saved information related to your game. This is handy and
important to use in testing, as you will want to test your game with a
clean install, just as if a user were installing the game for the first time.

. Click Launch.

You don’t need to re-launch a virtual device every time you run your
app. Launching a virtual device usually takes several minutes. When you
launch one, leave it running for as long as you intend to test. This is a
common mistake of beginning Android developers.

Chapter 3: Setting Up Your Development Environment 6 7

—— (]
Figure 3-16: a w
An Android [_T—W_TFTW_
vitua ; 212 e oo o o | fo
device. | mf_T rwf—'m

The look and feel of a virtual device will depend on the Android version. The
one shown in Figure 3-16 is for Android 2.1. Take some time to get familiar
with the virtual device by launching sample apps and navigating through the
various screens and menus. You'll notice that the interface will probably be
slow and laggy compared to what you’d get from the real thing.

Just be patient, and remember: It’s a free Android device running on your PC!

Creating an Android Project

When Eclipse is up and running with the Android SDK installed (you’ll know
it’s correctly installed if you've been able to create and run a virtual Android
device), you're ready to create your first Android project.

Follow these steps:
1. In Eclipse, select File>"New=>Android Project, or right-click the
Package Explorer and select New=>Android Project.
The New Android Project window appears, as shown in Figure 3-17
2. Enter a name for your project in the Project Name field.

For your first project name, enter “Hello World.”

68 Part I: Adopting the Android Gaming Mindset

Figure 3-17:
The New
Android
Project
window.
|

A\

= New Android Project o |2]

Create Android Project
& Project name must be specified \ J

Project Name: | |

@ Create new project in workspace
~\ Create project from exsting source

) Create project from existing sample
[¥] Use default location
C\Users\Derek\workspace?
Werking sets

"] Add project to working sets

@ < Back Next Einish Cancel

3. Click Next.

The New Android Project window prompts you to select a build target,
as shown in Figure 3-18.

The build target refers to the version of the SDK used to develop the app,
not the version of target devices. You’'ll usually want to select the high-
est available build target.

If there are no build targets showing in your list of available build tar-
gets, try closing and restarting Eclipse before starting another Android
project.

4. Click Next.

The New Android Project window prompts you to enter application info,
as shown in Figure 3-19.

Figure 3-18:
The New
Android
Project
window,
prompting
for a build
target.
|

Chapter 3: Setting Up Your Development Environment 69

= New Android Project o |[-=- =]
Select Build Target
Choose an SDK to target ﬁ}
T
Build Target
Target Name Vendor Platform APL...
[7] Andreid1.5 Android Open Source Project 15 3
7] Android1.8 Android Open Source Project 1.6 4
Android 21 Android Open Source Project 21 T
Android 2.2 Android Open Source Project 2.2 &
Google APTs GoogleInc. 22 g
~| GALAXY Tab Addon Samsung Electronics Co,, Ltd, 2.2 &
Android 23.1 Android Open Source Project 233 9
Google APIs GoogleInc. 231 a

Android 23.3 Android Open Source Project 233 10
Google APIs Google Inc. 233 10
Android Honeyco... Android Open Source Project Honeyc.. Hon..
~| Android 3.0 Android Open Source Project 3.0 1
| Google APIs GoogleInc, 3.0 B il
Android 3.1 Android Open Source Project 31 12
Android 3.2 Android Open Source Project 3.2 13
Android 4.0 Android Open Source Project 4.0 14
Google APIs GoogleInc, 4.0 14
/| Android 4.0.3 Android Open Source Project 4.03 15

Standard Android platform 3.2

@ <Back |I Net> Finish Cancel

The application name is populated by default with the project name.
Just leave that the way it is. You’'ll need to enter a new package name,
though.

A package name is a unique identifier with hierarchical structure,
typically like a domain name for a website, only in reverse. Package
names are always in lowercase to avoid collisions with class names.
Throughout this book you'll find it uses the domain agpfd (Android
Game Programming for Dummies) — so, for this example, enter com.
agpfd.helloworld.

This window also allows you to create an activity by default. Don’t make
any changes there.

The Minimum SDK drop-down menu allows you to specify the oldest ver-
sion of Android you want your app to target. Select 4 (Android 1.6) for
this example.

70 Part I: Adopting the Android Gaming Mindset

= New Android Project o B =]

Application Info
& Package name must be specified. \]

Application Name: Hello World
Package Name: your.package.namespace
[¥] Create Activity: HelloWorldActivity

Minimum SDK: 15 -

[Create a Test Project
Hello WorldTest

Hello- World Test

Hello WorldTest

|
Figure 3-19:
The New
Android
Project
window,
prompting
for applica-
tion info. @ Next Cancel
|
5. Click Finish.
Your newly created project should appear in the Package Explorer.
Use the arrows next to each project element to expand or collapse
the hierarchy. Your project should look like Figure 3-20, and you
should be able to expand the package to see the default activity,
HelloWorldActivity.
[% Package Explorer &% =0
o & -
4 122 Hello World
a [src
I 4 B} com.agpfd.helloworld
. - [3] HelleWorldActivity java
Figure 3-20: . €8 gen [Generated Java Files]
> Android 1.6
PaCkage : Android Dependencies
Explorer & assets
view of your : jg o
nery cre- 2| AndroidManifestxml
H [El proguard-project.bd
ated prolECt project.properties
|

Chapter 3: Setting Up Your Development Environment 7 ’

Running an Android App

Before you run the app, you’ll want to set up your run configurations, which
are options for how the app launches.

Your run configuration for a given project can determine whether the app
is launched automatically, finding a best match among available devices, or
whether you may manually choose a device for launch.

If you leave the default configuration, when you run an app the Android tools
will try to find the best match from either your virtual devices or physical
devices attached to your computer. If no virtual devices are open, it will
launch one.

Manual launch control

I like more fine-grained control over what launches and when, especially
since I often have more than one available device that can run the app.

To set up manual launching, follow these steps:

1. In Eclipse, select Run~>Run Configurations.
The Run Configurations window appears.

2. Select Android Application, then click the New Launch Configurations
button.

Configuration options for an Android project appear, as shown in
Figure 3-21.

3. Click Browse, select your Hello World project, then click OK.
You should now see the name of your project in the Project field.

You can enter a custom name for this run configuration if you like, but
leaving the default name New_configuration is fine.

4. Select the Target tab.

The Automatic option is selected by default. Click the Manual radio
button.

Your window should look something like Figure 3-22.

/2

Figure 3-21:
The Run
Configura-
tions
window.
|

Figure 3-22:
The Target
tabin

the Run
Configura-
tions
window.
|

Part I: Adopting the Android Gaming Mindset

< Run Configurations

Create, manage, and run configurations

@ Project Name s required!

type filter text

[Android Application

Name: New_configuration
= Android

Project

Target| = Common

] Mew._co
5 Android JUnit Test
BlackBerry Android Application
1] Java Applet

[T Java Application
Ju Unit
Juy Task Context Test

il . ¥

Filter matched 8 of & items

Launch Action:
@) Launch Default Activity
Launch:

| Do Nothing

Browse...

spply [Revet |

= N —
@ [Rin][Close |
= Run Configurations
Create, manage. and run configurations
Android Application
% = = .
| = X | B e || Name: Mew_configuration
type filter text [=] Android | E) Target .) Commen
[Android Application Deployment Target Selection Mode A
[@] New_configuration @ Manual
73 Android JUnit Test e
2: BlackBerry Android Applicatior
) Java Applet
(] Java Application AVD Name Target Name Platform APILevel CPU/ABI
Ju JUnit] 24H A 21 21 7 ARM (arme

Juy Task Context Test

< i

Filter matched 8 of & items

Emulator launch parameter

Network Speed: [Full =

Network Latency: [Nene +|
[7]Wipe User Data

[] Disable Boot Animation

Additional Emulator Command Line Options

m

spply | [Reert

R | Close

Chapter 3: Setting Up Your Development Environment 73

5. Click Apply, then Close.

Your run configuration is now set up to let you manually select which
device you want to upload and launch your game to when you choose to
run it.

Starting apps

When you’ve got a sample project and you've set up the run configuration for
that project, you're finally ready to start an app and run it.

Launching an app on a physical device is similar to running one on the emu-
lator. The rest of this chapter shows how to start apps on virtual devices and
real devices.

Virtual devices
If you don’t have a virtual device running, launch one now by following these

steps:
1. Click the AVD button.
2. Select the device, then click Start.
3. Click the Launch button.

When your virtual device is running, follow these steps to launch your Hello
World app:

1. Select the project to run, then the Run button in the Eclipse toolbar,
or right-click the project name in the Package Explorer and select Run
as>Android Application.

The Android Device Chooser window appears, as shown in Figure 3-23.
2. Select your virtual device from the list and click OK.

Your app should be running on the virtual device, as shown in Figure 3-24.

Real devices

Testing with a real device requires connection to your device to your devel-
opment machine; most commonly that’s done via USB.

Depending on the device model and your operating system, you may need to
install additional drivers. The Android SDK provides a large number of driv-
ers, but there is such a wide array of devices that you may find it necessary
to seek out specific drivers for your device. Even with some popular device
models, I've had to install additional drivers to get them to work with my
development machine.

/4 Partl: Adopting the Android Gaming Mindset

= Android Device Chooser
Select device compatible with target Android 1.6
® Choose a running Android device
Serial Number VD Narme Target Debug State
Bl emistor 555 SIFNVGA Andreid 21 Vs Bniine
) Launch & new Andreid Virtus! Device
AVD Hame Target Hame Platform APllevel CPU/ARI
|
= No AVD avsilable =
Figure 3-23:
The Android
Device Refresh
Chooser Maags
window. [ke Beake Tor fatire lorches oK.
|

7] 5554:2.1HVGA

Hello World

|
Figure 3-24:
The Hello
World app
running on

a virtual
device.
|

The installation process for drivers can vary widely depending on your
Android device and your development operating system:

+ In a best-case scenario, you’d just plug your Android device into your
development machine via USB and the drivers would be automatically

installed.

v~ If the best case is not an option, you might need to visit your Android
device manufacturer’s website, download the drivers, and follow their

installation process.

Chapter 3: Setting Up Your Development Environment 75

Figure 3-25:
Motorola
Droid
running
Android
223is
shown as

an available
device.
|

Apps and games are typically meant to be downloaded and installed from
Google Play — so most Android devices are not configured by default to
allow apps to be installed from anywhere else. This is a security measure

to keep malware from being installed on your Android device without your
knowledge. As a developer, you’ll want to change this default setting to allow
you to install the games you develop from your development machine to
your Android device.

To install non-market apps on your device, you’'ll need to open
Settings>Application Settings. Two settings are required:

v Check the Unknown sources check box.
v Click Development, then check the USB debugging check box.
This allows your computer to read the log output of your device when

connected, rather than enabling file transfer by default.

When your device is connected and ready, you can launch your app. The
steps to launch your app on a real device are similar to the steps for launch-
ing your app on a virtual device:

1. Click the Run button in the Eclipse toolbar, or right-click the proj-
ect name in the Package Explorer and select Run as=>Android
Application.

When the Android Device Chooser window appears, you should see
your device listed, as shown in Figure 3-25.

< Android Device Chooser ==
Select a device compatible with target Android 1.6
@ Ehaose a running Android device
Serial Number AVD Name Target Debug State
8 0403682007012014 N/A 223 Online
Launch a new Android Virtual Device
AVD Name Target Name Platform APllevel CPU/ABI Details
21HVGA Andraid 21 21 7 ARM (armeabi)
Use same device for future launches OK Cancel

76 Part I: Adopting the Android Gaming Mindset

3

If your device doesn’t show up in the list of available devices, you could
have a problem with the connection or with the drivers.

2. Select your device from the list and click OK.
Your app should be running on the device, as shown in Figure 3-24.

If you tried your app on an emulator, you should see the same output on
your device.

You can view the log output of your device from a view within Eclipse, but

[prefer to launch a separate command-line window (Windows key + R in
Windows). Type adb logcat from the command line. Doing so enables the
Android Debug Bridge (ADB) and displays the log output from either your
virtual or physical device. When debugging, analyzing the log output can be
crucial in finding and fixing problems.

Part I

Starting to
Program

T_he Sth Wave By Rich Tennant

| Tue FUTURE OF AD PLACEMENT |
L\\N VIDEO GAMES
N VIDEO LAMES

RICHTENNANT

“Watch out for the Necromancev behmd ‘ohe
Toyota with the Sunapple in his hand.”

In this part . . .

p art Il gets you started on your development machine,
installing and configuring all the tools you need to

get started. I walk you through how to install the Eclipse
development tool and the Android Software Development
Kit (SDK). Then I show you how to create a sample project
and give you a closer look at its pieces so you have a foun-
dation for how Android projects are put together and
work. Then you get a chance to create a view and start
drawing stuff to the screen.

Chapter 4

Dissecting an Android App

In This Chapter

Creating a new Android project
Understanding the parts of a project

Modifying the manifest and adding image resources

Wlen you’ve got your development environment set up, you're ready
to start building the next great addictive blockbuster game. This

chapter gives you the tools you need to understand how to create a project
from the ground up, understand how all the parts fit together, and modify the
right settings so that everything works the way it’s supposed to.

An Android project is a lot like a standard Java project, but with some impor-
tant differences. The Android SDK does most of the work for you in building
the project structure and adding the necessary files — but as you work on
your game, you'll often need to add to this structure and make modifications,
so it’s important to know where everything is and how it works.

Before you do anything else, you'll have to create a new project, which is
really only a few clicks away. So . . . first things first.

Creating a New Project

The Android SDK and Eclipse make it simple to create a new Android project,
with a wizard that walks you through the process. Most of the important
parts of your game (such as its name and its range of targeted devices) are
defined in this creation process.

80

Part ll: Starting to Program

<MBER
é"\&

|
Figure 4-1:
New
Android
Project/
Create
Android
Project
window.
|

To create a new project, follow these steps:

1. Select File=>New=>Android Project.

The New Android Project Window (Figure 4-1) will display.

Notice the default location of the workspace. This directory is where all
the project files will be located.

2. In the Project Name field type Crazy Eights, and then click Next.

The project name is a unique identifier for your project in the Eclipse
workspace.

3. Click Android 4.0 for the Target Name, and then click Next.

The New Android Project/Select Build Target window appears, as shown
in Figure 4-2.

The build target refers to the SDK level you will be using to develop your
game. For example, if you choose a build target of Android 2.2, you can
use only the features included in that and earlier levels.

= New Android Project =3 e |

Create Android Project
@ Project name must be specified 5 J

Project Mame:
@ Create new project in workspace
"' Create project from existing source

) Create project from existing sample

[7] Use default location

Working sets

"] Add project to working sets

C:fUsers/Derek/workspace

Cancel

Chapter 4: Dissecting an Android App 8 ’

= New Android Project o B =]
Select Build Target
Choose an SDK to target A]
Build Target
Target Name Vendor Platform APL...
] Android1.5 Android Open Source Project 15 3
| Android16 Android Open Source Project 1.6 4
Android 21 Android Open Source Project 21 T
Android 2.2 Android Open Source Project 2.2 &
[] Google APIs GoogleInc. 22 g
[T] GALAXY Tab Addon Samsung Electronics Co,, Ltd, 2.2 &
[”] Android 23.1 Android Open Source Project 233 9
[T] Google APIs GoogleInc. 231 9
| Andreid 23.3 Android Open Source Project 233 10
| Google APIs Google Inc. 233 10
Android Honeyco... Android Open Source Project Honeyc.. Hon..
[Z] Android 3.0 Android Open Source Project 3.0 1
| Google APIs GoogleInc. 3.0 B il
Android 3.1 Android Open Source Project 31 12
|
Andreid 3.2 Android Open Source Project 3.2 i3
Figure 4-2: Android 4.0 Android Open Source Project 4.0 14
[7] Google APIs GoogleInc, 4.0 14
The New -
Android
Project/
Select Build
Target
window. @ <Back || Next> Finish Cancel
|
s

Choose the latest SDK available to develop with. You don’t always have
to use new features included in the latest SDK, but using the latest ver-
sion as your build target gives you that option.

-

In the Package Name field type com.agpfd.crazyeights, then click
Finish.

The package name is used to identify the Java package of your app.
Once published to the Android Market, two apps cannot have the same
package name, so this must be unique.

Package naming for Android follows a general convention established
for Java package names:

¢ Typically, a package name is organized like a reverse URL, with
com or org appearing first, followed by the domain name of the
authoring organization.

e When you choose a package name for your own apps, you might
want to use your company name or website domain (if you have
one). Otherwise you can simply choose a domain name that is
unique and meaningful to you.

82 Part II: Starting to Program

The Minimum SDK option (see Figure 4-3) is the minimum version of
Android that a user’s device must be running in order to see your app
in the market, install it, and run it. In general, you want this option to be
set to the lowest possible value to target as many devices as possible.

2 New Android Project o ==

Application Info
Configure the new Android Project 5 y

Application Mame: Crazy Eights

Package Name: com.dummies.androidgame. crazyeights|
[¥] Create Activity: CraryFightsActivity

Minimum SDK: 14 -

|| Create a Test Project

Crazy Eight

Craz

com.dummies.androidgame. crazyeights.test

|
Figure 4-3:
The New
Android
Project/
Application
Info win-

dow. @ [<Back Jext > Fish | [Cancel

Your new project is now created! The package and its associated structure
shows up in Eclipse’s Package Explorer and should look something like

Figure 4-4.
|
. . [# Package Explorer i3 = <fg>| ¥ =8
Flgure 4-4' 4 1= Crazy Eights
A neWIy & src
GE? gen [Generated Java Files]
creatEd - =, Android 4.0
projectin o assets
. y a
Eclipse’s &> bin
= res
Package Gl AndroidManifestxml
proguard.cfg
EXplorer project.properties

Chapter 4: Dissecting an Android App 83

Taking the Bird’s Eye Uiew of a Project

An Android project is organized similar to other Java projects, with a few
important exceptions. The Android SDK automatically generates certain fea-
tures specific to an Android project. As with any other Java project, this one
has a source directory where all the Java files that handle all the logic of your
game are located.

Here are a few other Android-specific aspects of the project, with a brief
description of each:

v The R. java file: An auto-generated index that assigns unique variables
to all the resources in your app. If you open this file, you’ll notice a
warning saying that you shouldn’t manually modify this file.

\3
P Sometimes the R. java file can get out of sync with the actual resources

you’ve declared, causing errors. A quick way to resolve common errors
of this type is to

¢ Delete the R. java file.
¢ Clean the project (Project=>Clean).
Doing so regenerates the R. java file and sometimes fixes the problem.

1 Resources: The resources directory is where things like graphics,
sounds, layouts, and strings are typically located:

e Graphics are located in one or more drawable subdirectories,
typically organized by their intended screen size.

¢ XML resources for layouts are located in the layout subdirectory.
e Strings and styles are in the values subdirectory by default.

+* The Manifest: This file, called AndroidManifest.xml, is located in the
root directory of the project. The file is where you specify the app name,
all activities, permissions, and device targeting.

Editing the Manifest

The manifest is generated automatically when a new Android Project is
created.

The New Android Project wizard prompts you for some options that are
included in the manifest, but this section demonstrates how to manually edit the
manifest file, a useful task that will come up often as you work on your game.

84

Part ll: Starting to Program

<P Think of the manifest as a specification of everything important about your
app. In maritime travel, a ship’s manifest describes everything important

about that ship: A list of all the crew and passengers, details about the cargo,
its country of origin, places it has traveled, and where it is headed. Believe it

or not, your app has a lot in common with a ship! When it’s ready, you'll be

launching it into the high seas of one or more app stores. The manifest will tell

everyone what’s inside and what devices it is headed for.

View the contents of the manifest by double-clicking the file in the Package

Explorer, which will open the file in Eclipse’s editor view. Select the

AndroidManifest.xml tab in the editor view to see the XML, which should

look something like the following code:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/

res/android"
package="com.dummies.androidgame.crazyeights"
android:versionCode="1"
android:versionName="1.0">
<uses-sdk android:minSdkVersion="3" />
<application android:icon="@drawable/icon"
android:label="@string/app_name">
<activity android:name=".CrazyEights"
android:label="@string/app_name">
<intent-filter>
<action
android:name=
"android.intent.action.MAIN" />
<category
android:name=
"android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Naming and versioning your game

The <manifest> tag has attributes that indicate what the package name,
version code, and version name are.

Every time you update your game

v+ The package name remains the same.
v Increment the version code by 1.

v Change the version name to a higher value.

Chapter 4: Dissecting an Android App 85

ANG/
S

3

For example, your second version could be version code “2” with a version
name of “1.1”.

The Android Market allows apps with the same app name, but not the same
package name. If the package name of your app is already in use by an existing
app, you'll need to rename your package.

Targeting versions

The <uses-sdk> tag indicates the minimum version of the Android OS that can
run your game. Currently, Android SDK versions range from 3 (Android 1.5) to
13 (Android 3.2). A lower value for this attribute will allow your app to be visible
to Android devices running older versions of the OS.

The wider the range of devices you target, the larger your potential audience,
so you’ll only want to specify a higher minimum SDK if your game uses fea-
tures of the SDK that aren’t available in older versions.

None of the examples in this book use such features, so you can safely use a
value of “3” to target as many devices as possible.

You can designate a target SDK version, to indicate that your game has been
extensively tested and is therefore targeted for that version. Add the following
attribute to the <uses-sdk> tag:

android:targetSdkVersion="8"

Declaring activities

The <application> tag contains attributes indicating the image used for
v Your game’s icon (android: icon), which points to an image in your
project’s drawable directory
v Your game’s name (android: label), which points to a string in your

project’s values directory.

All the activities within your application are declared within the <applica-
tion> tag:
» When you create a new project, there is only one activity by default.

v As you add new activities in your source, you must declare each one in
the manifest file, or an error will occur.

86

Part ll: Starting to Program

\\3

For each activity, you can define attributes that control the behavior of the
activity. When a device is rotated 90 degrees, by default an app changes ori-
entation to try to match the device.

Often you want to prevent this automatic rotation with games, usually
because a game looks and plays well in a specific orientation.

For the Crazy Eights example, edit the main activity so that it will always dis-
play in portrait mode, even when the device is rotated, by adding the follow-
ing attribute to the main activity:

android:screenOrientation="portrait"
Your edited main activity should look like this:

<activity
android:label="@string/app_name"
android:name=".CrazyEightsActivity"
android:screenOrientation="portrait">
<intent-filter >
<action
android:name="android.intent.action.MAIN" />
<category
android:name=
"android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

Each activity may also have an <intent-filter> which further defines
what it can and cannot do. By default, the activity created when you make a
project from scratch has the action MATN and the category LAUNCHER. This
tells an Android device that this activity should be started when the app is
launched.

Setting permissions

Sometimes you may want your app to use certain features that require per-

missions. For security reasons, some features need to be declared explicitly
in the manifest so that upon installation, a user can see that an app is doing
certain things behind the scenes. They can then decide whether or not they
are comfortable installing such an app.

For example, your game may want to display all the user’s contacts so that
they can choose a contact to invite to a multiplayer game. If so, the following
permission would need to be added to the manifest:

Chapter 4: Dissecting an Android App 8 7

<MBER
S

3

<uses-permission
android:name="android.permission.READ_CONTACTS" />

If you don’t have this permission declared in your manifest, your game won’t
work properly. In fact, you’ll see a runtime error.

Always check the log output when you run your game to check for errors. You
can either

v View the output in the LogCat view in Eclipse.
v+ Open a command prompt and type adb logcat.

If the error is due to the lack of proper permissions, the log will let you know,
and you can then simply add the appropriate permission to fix the problem.

For a full list of permissions see

http://developer.android.com/reference/android/Manifest.
permission.html

Targeting different screen sizes

Declarations for the specific screen sizes your game is intended to be played
on aren’t generated by default. Chapter 2 discusses the wide variety of
Android hardware configurations.

Once you decide which screen sizes you want to try to target, a good practice
is to explicitly declare that information in your manifest.

The following is an example of using the <supports-screens> tag:

<supports-screens
android:smallScreens="false"
android:normalScreens="true"
android:largeScreens="true"
android:xlargeScreens="true"
android:anyDensity="true"
</supports-screens>

v Small screens generally refer to devices such as QVGA, which are gener-
ally 320x240.

1 Normal screens are most often HVGA, with a screen size of 480x320.

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html

88 Part II: Starting to Program

v Large screens are WVGA, and are most typically 800x600 or 854x600.
v X-large screens are typically XWVGA, usually tablet-size.

The following website is the official Android resource for developing for mul-
tiple screen sizes:

http://developer.android.com/guide/practices/screens_
support.html

And that’s it! You can either

v~ Edit parts of the manifest by clicking the appropriate tabs at the bottom
of the editor view (as shown in Figure 4-5).

v~ Edit the XML directly, which is what we do throughout this book as

needed.
= Java - CrazyFights/AndroidManifestxml - Eclipse = |-G
File Edit Refactor Run Source Navigate Search Project Window Help
il glR:a Bad F-0-Q- HE- B F- EE =5 v & 1 DoMs [§Tava |
18 Package Explorer 5% = 0|4 CrazyEights Manifest i = 0| B TaskList &2 =0
R 2l 1 J-|Eel e xB|49~
g -
= CrazyEights Find Q| » Al P Activate.
(2% Uncategorized
8= Outline 22 =@ Y708
22.xml
€] manifest sminsiandroid=http://sche.
‘ v
[=] Manifest pplication | (F] issions | (1] I = « »
37 Prablems | @ Jovaidon | 165 Declaration| B} Corsole 72 47 Search whi #B-ry~—0
EE— Android
Figure 4-5:
Viewing the
Android
Manifest. !
xml.
7 Android SDK Content Loader
|

Organizing Resources

The resources directory of a project is where all images and sounds are
located, along with files that modify the look and feel of your game. The
directory is abbreviated res and is located in the root directory of your
project.

http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html

Chapter 4: Dissecting an Android App 89

Figure 4-6 shows the resources directory expanded, with each of its

subdirectories.
= Java - Eclipse = | -E [
File Edit Refactor Run Source Navigate Search Project Window Help
il |@ 8 Brd: B-0-Q%~ BE~- OB &~ -5 i & 1 Doms [§lhava |
I3 Package Explorer 3 =i = O | B TaskList 52 =0
BR[& T I-EelexB|d7
g . -
4 &= Crazyights Find Q| > Al Adivate..
@ src —
88 gen [Generated Java Files] £ Uncategorized
=, Android 32
2 assets
4 @ res
(= drawable-hdpi 5E Outline 7 =08
(> drawable-ldpi An outline is not available.
= drawable-mdpi
& layout
= values
o AndroidManifestml
EE— E) defauit properties
| proguard.cfy
Flgl.ll'e 4-6: &1 Problems | @ Javadoc [Declaration| B Console 2% "~_47 Search wpl| # B-rj-=0
Android
The
resources
directory,
expanded
to view sub-
directories.
Android SDK Content Loader
|

Depending on the SDK version you used to create your project, your
resources directory might look a little different. But the basic structure
should be the same.

Drawables

There should be at least one drawable subdirectory in the /res directory.
This is where all images, including your game’s icon, should be placed.

In the preceding example, three subdirectories were automatically generated:

v drawable-hdpi will hold images for high-density screens.
v drawable-1dpi will hold images for low-density screens.
v drawable-mdpi will hold images for medium-density screens.
If your directory structure is set up the same way, you’ll notice that the

Android SDK placed the default Android app icon of the appropriate size in
each directory:

90

Part ll: Starting to Program

A\\S

|
Figure 4-7:
Sample icon
for Crazy
Eights.
|

v The 1dpi icon is 36x36.

v The mdpi icon is 48x48.

v The hdpi icon is 72x72.
If you want to target tablets and other very high-resolution devices, you
should create another directory at the same level as the three just mentioned
(1dpi, mdpi, and hdpi):

1. Right-click the res directory.

2. Select New=>Folder.

3. Type "drawable-xhdpi" as the Folder name.

4. Click Finish.

The dimensions for an extra-high-density icon should be 96x96.

The first thing you’ll want to do with regard to drawables is create your own
icons and replace the default ones.

For the Crazy Eights example, I've provided a sample icon in four different
sizes for you to use (as shown in Figure 4-7). However, I'd encourage you to
create your own, using your favorite graphics software.

Once you have your new icons, place them in the appropriate drawable
directory. Delete the icons provided by the SDK and rename each of your
icons "icon.png".

=

When you design your game, one of the first decisions you need to make is
the range of device hardware you want to target. If you want to target as wide
arange as possible in order to maximize your audience size, you'll need to
develop your game so that it explicitly supports specific screen sizes, or so
that it scales automatically to whatever screen sizes you want to support.

Render graphics to the screen in a relative way, so that no matter what the
screen size, the game will have a consistent look and feel:

Chapter 4: Dissecting an Android App 9 ’

v Include images that look good on the highest-resolution device you want
to support.

v Scale the images down when they’re viewed on lower-resolution devices.

Layouts

A layout file is an XML document that defines how a given view looks. The
layout

v Specifies all the elements that will be displayed, such as
o Text
¢ Images
¢ Input fields

v Determines how they are laid out with respect to each other.

You're not going to be using layouts in game development as much as an
Android developer who is building other types of apps, since you’re going to
be creating your own custom view and directly drawing text and images to
the screen. But you will be using layouts for some things, like the layouts of
dialog boxes, so you’ll need to know how they work.

In the res/layout directory of your project, you'll see that there is a file
called main.xml, . as shown in Figure 4-8. This file was automatically gen-
erated when you created the project. Double-click the file in the Package
Explorer to view it in Eclipse.

= Java - CrazyEights/res/layout/mainxm! - Eclipse o o=
File Edit Refactor Run Source Wavigate Search Project Window Help
5 &8 B $-0-G- #@- S F oo ra- [1 0oms (G Tava

[# Package Explorer

= 0| d) CrazyEights Manifest) mainaml = O || B TaskList 2 =g
e < i AR IR B
5 ez 2 chemas.android. com/apk,
4 12 Cranyfights 5 Find Q| b Al b Adivate.

@8 src

@8 gen [Generated Java |
&8 gen [Generate
= Android 3.2

& assets

5 Uncategorized

aBres
(& drawable-hdpi
b (= drawable-ldpi
= drawable-mdpi
4 & layout 12 </L
%) mainxml

8% Outline £ ¥ =8

b @ values
| AndroidManifestml ‘ I] ’
[/ default properties =] Graphical Layout | | =] mainami

proguard.cfg = =
[£(Problems | @ Javadoc [[2, Declaration | Bl Console 2 ™47 Search Bl B-r5-=0
Android

|

Figure 4-8:

The layout

file for main. |
xml. | L d '

Android SDK Content Loader

92

Part ll: Starting to Program

A\\S

When you open a layout file, there are two tabs at the bottom of the file in the
editor view in Eclipse. One is the Graphical Layout, which lets you view and
modify the layout in a graphical mode, allowing you to drag and drop differ-
ent interface elements to and from your layout. If you click the tab with the
filename, you'll see the XML code itself (Figure 4-8).

Get used to modifying things like your manifest and your layout files directly
in XML. With layouts, you can preview them using the Graphical Layout tab,

but editing the XML directly will give you a better understanding of how the

code actually works.

In the case of the default main.xml layout file, you should only see two
elements: LinearLayout and TextView. The different types of layouts are

v FrameLayout. Generally for holding a single element, like an image.

v LinearLayout. Aligns elements in one direction, either horizontally or
vertically.

v~ TableLayout. Arranges elements according to a table configuration, with
rows and columns.

+* RelativeLayout. Gives the most flexibility, allowing you to align specific
elements relative to one another.

LinearLayout is sufficient for most simple cases, but if you're interested in
learning more about other layouts, check out:

http://developer.android.com/guide/topics/ui/
layout-objects.html

In the case of the default XML generated for main.xml, the LinearLayout
element includes an orientation attribute, which can be either horizontal or
vertical for linear layouts. In your case, it should be vertical by default. This
means that all the elements inside the LinearLayout tag will be displayed
vertically down the screen next to each other.

The LinearLayout also includes attributes determining its width and
height, both of which are “fill_parent”. This means that this layout will
stretch itself to fit the height and width of whatever screen it is displayed on.

The layout only has one child element, a TextView, which also has width
and height attributes. The width is "fi11_parent", but the height is
"wrap_content", which means that this element will only fill up as much
vertical space as its contents, in this case the text it is displaying. The text
attribute references a string called "hello".

http://developer.android.com/guide/topics/ui/layout-objects.html

http://developer.android.com/guide/topics/ui/layout-objects.html

Chapter 4: Dissecting an Android App

|
Figure 4-9:
Default
contents of
strings.
xml.
|

You'll see where that string is stored in the next section, but for now,
try making some small changes to this file and either previewing it in the
Graphical Layout tab of the editor view, or running it on a device or emulator.

Some suggested changes include these:
v Copy the TextView and paste a copy just below the current one, so that

you have two exact copies of the same TextView.

v Change the orientation attribute of the LinearLayout tag from "ver-
tical" to "horizontal".

v Use the android: textColor attribute for the TextVview to change the
default color of the text.

Strings

All the text that appears in your game that is not part of an image, from
button text to tutorials, can be specified in the strings.xml file located by
default in the res/values directory.

You can hard-code the text into either your Java or layout files, and this is
usually okay as long as you don’t intend to reuse text much or target more
than one language. Hard-coding text is generally not a recommended practice,
though you’ll still find a lot of apps and games that do it.

The recommended practice is to keep all text in the strings.xml file, giving
each string a unique name, then referencing the strings from your code. By
default, two strings are generated when you create a new app:

hello

app_name

For the example, open the strings.xml file in your new Crazy Eights proj-
ect under res/values. You should see something like Figure 4-9.

<1 stringsaml 1

ml version="1.0" encoding="utf-8"?>

name="hello">Hello World, CrazyEightsACTAvVIty!</string>
name="spp_nams">Crazy Eights</string>

93

94

Part ll: Starting to Program

A\

The "hello" string is used to display sample text when an app is first run.
The "app_name" string is used to display the name of the app under the
icon in the launcher.

Any time you want to add new text to your game, add another entry into this
file, which can then be referenced from your code.

If you reuse the same text in multiple places in your game, you only have to
change it once in the strings.xml file. This organization also makes local-
izing your game a lot easier. For each other language, you add a new values
directory appended with the country code for that locale. For example, if you
wanted to add support for Spanish, you would create a new directory in res/
called values-es (for Espanol). You would need a file called strings.xml
in that directory, with the same string names, though the contents would be
in Spanish. For example:

<string name="app_name">Los Ochos Locos</string>

If a player on a device has its locale settings set to ES, then when they play
your game, all the text will be populated from the contents of the values-es
directory. You can add support for as many languages as Android supports,
and as many as you want to get translations for.

Check supported locales in the Android documentation on their website
before you invest in a translator.

Styles

Styles allow you to apply a particular look and feel throughout your app.
Styles are applied to views, and work a lot like cascading stylesheets (CSS)

in web design. You define styles in XML, and they reside in the res/values
directory of your project. You then reference them from other views to apply
the style to that view.

Themes

A theme is just a broader use of styles, applying them across an entire activ-
ity or application. If you apply a style as a theme, every view in an activity
will have that style automatically applied to it.

We won'’t be using styles or themes in this book, but if your game takes a dif-
ferent tack from the one covered here you might want to explore this topic
more on your own. See the official Android documentation on Styles and
Themes at

Chapter 4: Dissecting an Android App

A\

http://developer.android.com/guide/topics/ui/themes.html

Sounds

You may or may not want to include sound effects and music in your game. A
lot of games work fine without them, especially on the mobile platform where
players often play games in public areas where they may not want to be
heard. If you do use sounds in your game, by default they should be located
in the res/raw directory. If it doesn’t exist, you’ll need to create it.

You can find a list of supported media types at

http://developer.android.com/guide/appendix/media-
formats.html

For sounds, I always use Ogg Vorbis (. ogg), which is an open audio-
compression format. The compression and quality are excellent, and . ogg
files are supported by a large number of sound-editing software programs.

Organizing the Source Directory

The source directory (/src) contains the Java files where you will write all
the logic that makes your games go. Source files reside in a package. When
you create an Android project, a default package is created, but you can add
as many new packages as you like. If your game is particularly complicated,
you may want to separate your source files into logical groupings, such as
files that handle persisting data, sounds, or other subcategories.

To create a new package in Eclipse

1. Right-click the /src directory.
2. Select New>Package.

The New Java Package dialog box will appear, as shown in Figure 4-10.

Just enter a name for the package with the same domain name as your other
packages, with the new extension name — here’s an example:

"com.agpfd.crazyeights.sound"

95

http://developer.android.com/guide/topics/ui/themes.html
http://developer.android.com/guide/appendix/media-formats.html
http://developer.android.com/guide/appendix/media-formats.html

96 Part II: Starting to Program

Figure 4-10:
The New
Java
Package
dialog box.
|

Figure 4-11:
The source
directory of
an Android
project.
|

= New Java Package = \EI
Java Package
Create a new Java package.
Creates folders corresponding to packages.
Source folder: Crazy Eights/src Browse...
Mame: |
I]

You can then add or move source files to this new package. The games we
work on in this book won’t be that complex, so we’ll keep all the source files
in one package. But if your project starts piling up Java files, you can save
yourself a lot of headache by organizing them in a logical, easy-to-find way.
Anyone else who looks through your code will appreciate the effort as well!

Below the source directory (see Figure 4-11), you may have also noticed the
/gen directory. This directory contains files automatically generated for you
by the Android SDK.

4 T Crazy Eights
PR
a4 [3 com.dummies.andreidgame.crazyeights
. CrazyFightsActivity.java
4 0\5 gen [Generated Java Files]
4 com.dummies.androidgame.crazyeights
. BuildCenfigjava
e Rjava

v The BuildConfig. java file contains settings for build configurations.
You shouldn’t encounter any issues with this file and you should never
have to look at it.

Chapter 4: Dissecting an Android App

v The R. java file contains references to all your resources (layouts,
images, etc.). Every time you add a new resource it is automatically
added to this file, assigning a unique identifier to the resource. The
R.java file acts as a master index for your resources.

QMING/ Don’t modify the contents of generated files yourself. Doing so can often lead
R to nasty bugs if these files get out of sync with your project. You may encoun-
ter problems with the R. java file in particular. Although you don’t want to
modify it manually, sometimes a good practice is to delete it and clean your
project (Project~>Clean), which causes the file to be generated again.

Understanding Activities

An activity is a running process within an application. One of the first big
decisions you’ll make as an Android developer is how to design how your
game will handle transitions — for example, moving from the title screen to
the main play screen, or to a new level after completing the previous one.
Your game will always have at least one activity, the one that is the first to
start when your game launches.

If you look in the AndroidManifest.xml of one of your apps, you'll see this
XML nested inside one activity:

<intent-filter >
<action android:name=
"android.intent.action.MAIN" />
<category android:name=
"android. intent.category.LAUNCHER" />
</intent-filter>

This XML designates that activity as the main activity, the first one to be

started when the app is launched. You can have multiple activities in your

NG/ game, but only one main activity.

<
Every activity in your game must be declared in the manifest. If you don’t
declare one of your activities in the manifest, you’ll get a runtime error.

v A new activity can be launched from within the main activity, and
another after that, so that you can have a stack of activities running in
your game.

v Another option is to only have one activity, while transitioning between
views. This is the approach we’ll take in this book, but it doesn’t mean
it’s the only (or the best) way of doing things.

98 Part II: Starting to Program

The lifecycle of an activity

Each activity has its own lifecycle as it is created, started, used, then killed.
Figure 4-12 shows this lifecycle and when transitions are made between
states.

It’s important to understand what happens when with activities, since they're
the backbone of any Android app or game. Figure 4-12 shows when each
method within an activity is called (for example, onCreate is called when
the activity is launched).

launched

[User navigates to activity]—» onCreate()

onStart() onRestart()

‘ Activity ’

Apps process Activity
killed running
Another activity

comes to the foreground

onRestart()

‘ The activity is no longer visible ’

onStop()
Apps with higher priority The activity is finishing]—»[User navigates to activity]
I need memory 7
Figure 4-12:
The life- onDestroy()
cycle of an _
activity. ‘ Activity ’

I shutidown

Chapter 4: Dissecting an Android App

Figure 4-13:
Default con-
tents of the
main activity
of a new
Android
project.

An activity can be running in the background, still using system resources
even though the user can’t see it. If too many activities are running in the
background, and the system runs out of memory, Android will prioritize them
and kill off the less important ones.

You’ll want to consider the kinds of cases a player may encounter when
playing your game. Since many Android devices are phones, they may get a
phone call while playing your game. In this case, the phone activity will get
priority, become visible to the user, and your game and all its activities will
be put in the background. How will your game handle this? You’ll want to
strongly consider

v Saving the game state when onPause () is called

1 Restoring the game state in one of the early methods, such as
onResume ().

Get familiar with the lifecycle of activities, and when you test, make sure you
think about what kind of scenarios your game needs to handle. When some-
one is playing your game on a mobile device, they're using that device for
lots of other things besides playing games!

Creating an activity

Whenever you make a new Android project in Eclipse, the main activity
will be generated with a single class with a single method, onCreate(), as
shown in Figure 4-13.

7] CrazyEightsActivity.java &3
) 1 backage com.dummies.androidgame.crazyeights;

3% import android.app.Activity:[

£ public class CrazyEightshActivity extends RActivity {

SN 1en the activity is first created

% 9 public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
secContentView (R. layout.main) ;

The onCreate () method takes a Bundle as input.

A Bundle is an object that maps string values to parcelable types. Basically it’s
a way for you to store certain types of information to pass between activities.

99

’ 00 Part II: Starting to Program

\\3

The onCreate () method is where the content view is set, which determines
what the user sees on the screen. In this case, this is done by the line:

setContentView (R.layout.main) ;

This sets the content of the current view to the main.xml file in the res/
layout directory.

v For games, we’ll be creating our own custom views and setting the con-
tent view to those.

v Because onCreate () is the first method called in any activity, it’s
the place where you’ll want to initialize variables used throughout this
activity.

Resuming an activity

Suppose someone is playing your game and gets a phone call. Follow the
flow in Figure 4-12, starting with Activity Running. Your game will call
onPause (), which is typically where you’ll want to store any information
(such as the game state).

When someone opens or closes a hardware keyboard or reorients a device,
this action causes a configuration change that also interrupts your applica-
tion. Make sure you test your game to handle these cases.

If the user finishes a phone call and then navigates back to your game, note
that

V¥ onRestart (), onStart (), and onResume () are all called before the
activity actually starts again. Any code that restores saved information
could be placed in one of these methods.

v onStart () and onResume () are called whenever the activity is started
from scratch.

You’ll want to be careful about when and how you try to restore the game
state.

If this all seems overwhelming, don’t worry. In the case of Crazy Eights, I
show you how to handle your game state in the context of the activity lifecy-
cle. For now, just make sure you're familiar with the basic flow in Figure 4-12.

Destroying an activity

The onDestroy () method is called when the activity is finished and ready
to shut down.

Chapter 4: Dissecting an Android App 1 0 ’

WMBER
@&
&

This can happen in a number of instances, such as when your game is not vis-
ible, running in the background, and the Android OS runs out of memory and
kills your activity:

v~ If the player is playing your game and presses the Home button on their
device, this will not actually kill your activity; instead, it displays the
Home screen.

v~ If the player presses the Back button, doing so Kills the current activity.

In most game-development environments, the developer customarily
includes menu items to allow the user to quit the game to return to the Home
screen of whatever platform the game is being played on.

This question is sometimes asked in forums by beginning game developers
new to mobile platforms. While you can include a Ul element that kills the
activity, such as a Quit button, this approach is not recommended by the
Android development guidelines.

Android apps and games should be developed to work similarly; the default
behavior should be to leave an activity running in the background by pressing
the Home button on the device and to kill the activity by pressing the Back
button. Thus you don’t need to explicitly include a Quit menu item or button
in your game.

Using Views

The view object in Android is the basic class for drawing and handling input.

Views can be defined using XML, but for our games, we’re going to implement
our own custom views so that we can have more control over what is drawn
and how the player interacts with our game.

Differences between Uiew
and Surfaceliew

The view object is the simplest way to handle drawing and user interaction
in Android, and the official documentation recommends using it if you're
implementing a game without heavy animation.

’ 02 Part II: Starting to Program

\\3

For simplicity’s sake, we're going to use the View object for the first full game
we implement, Crazy Eights. The game does not require significant anima-
tion, so it should be well-suited to the simplest case. In the View object, the
drawing is handled in the same thread as all other processing, which is not
particularly efficient.

The SurfaceView is a special type of view that handles drawing in a dedi-
cated thread, so that it can draw whatever is on the Canvas concurrently
with other things happening. This makes SurfaceVview more efficient than
View, and better at handling heavy drawing demands, such as in a real-time
arcade-style game. Using the SurfaceView is also more complicated than
using a normal view, so consider the tradeoff when implementing your own
game.

We’'ll be using surfaceview for the second game covered in this book,
Whack-a-Mole.

Instantiating a custom view

Okay, let’s get back to developing your game. To create a custom view, all
you need to do is create a new class and have it extend View.

1. Right-click the package (com.agpfd.crazyeights) in which you
want to create the new view.

2. Select Newr>Class.

3. Enter a name, such as MyView and then click Finish.

Naming conventions for classes in Java use uppercase for each word,
with no spaces.

Listing 4-1: Starting Custom View for Crazy Eights

package com.agpfd.crazyeights

import android.content.Context;
import android.view.View;

public class CrazyEightsView extends View {
public CrazyEightsView (Context context) ({

super (context) ;
// TODO Auto-generated constructor stub

3

4. Next to the class name in the code view, add extends View.

You'll need to add

¢ Imports for both Context and View

e A constructor

Chapter 4: Dissecting an Android App

Eclipse will add these automatically if you click the warning symbols on
the left margin of the code view and select the appropriate items to add.

Your bare-bones custom view should look something like the one in Listing 4-1.

Drawing in a view

Once we have a custom view, to draw what we want in it, all we need to do is
override the onDraw () method. We'’re going to modify our custom view to
draw a red circle.

To do so,

add the code from Listing 4-2 to your custom view.

Listing 4-2: Custom View Modified to Draw a Red Circle

package com.agpfd.crazyeights

import
import
import
import
import

public
pri
pri
pri

pri

pub

android.content.Context;
android.graphics.Canvas;
android.graphics.Color;
android.graphics.Paint;
android.view.View;

class CrazyEightsView extends View {

vate Paint redPaint;
vate int circleX;
vate int circleY;
vate float radius;

lic CrazyEightsView(Context context) {
super (context) ;

redPaint = new Paint () ;
redPaint.setAntiAlias (true) ;
redPaint.setColor (Color.RED) ;

circleX = 100;

circley = 100;

radius = 30;

—3

—11
—12

—18

(continued)

103

’ 04 Part II: Starting to Program

Listing 4-2 (continued)

@Override
protected void onDraw (Canvas canvas) {
canvas.drawCircle(circleX, circleY, radius,
redPaint) ; —28

Lines 3-7: These are the imports you need for the various classes from
the Android graphics package we’ll be using.

Line 11: We need a Paint object that defines the attributes of how our
circle will be painted on the canvas.

Lines 12-14: Variable declarations for the size and location of the circle.

Lines 18-23: In the onCreate () method we’re going to initialize our vari-
ables with the desired values. The coordinate system in Android places
the origin (0,0) in the upper-left corner. These values will draw our circle
100 pixels to the right and 100 pixels down from the upper left corner of
the screen, with a radius of 30 pixels.

Line 28 actually draws the circle. The drawCircle () method takes in
the x and y coordinates, the radius, and the Paint object.

The last thing we need to do is modify our main activity to set our custom
view as the content view. Modify the contents of your main activity to look
like Listing 4-3.

Listing 4-3: Main Activity Setting the Content View to a Custom View

package com.agpfd.crazyeights;

import android.app.Activity;
import android.os.Bundle;

public class CrazyEightsActivity extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;
CrazyEightsView myView = new
CrazyEightsView (this) ; —11
setContentView (myView) ; —12

}

Chapter 4: Dissecting an Android App 1 05

Line 11 creates a custom view, passing in the main activity as context. Line 12
sets the content view to our custom view. And that’s it! Run this app, either
in an emulator or on an Android device, and you should see something like
the screenshot in Figure 4-14.

. Crazy Eights

Figure 4-14:
Screenshot
of a Galaxy
Nexus run-
ning the
“red circle”
app.

’ 06 Part II: Starting to Program

Your results may vary. We're not controlling for screen sizes or densities at
all, so your circle may look smaller or larger relative to the display properties
of the device you're using. But this simple example shows the basics of how
something is drawn to the screen. When we begin handling user input and
changing the state of the screen in response to the input, we’re well on our
way to making a game!

Handling input

There are many potential input methods for Android devices. The touchscreen
is the most common and reliable method for input for games. So while it’s pos-
sible to use the keyboard, accelerometer, trackball, and such for input, we're
going to keep things simple and focus on the touchscreen for our games.

You can always refer to the official Android site (developer.android.com)
for insight into how to implement other input methods, but let’s look at how
to use the touchscreen for input.

Add the code from Listing 4-4 to CrazyEightsView. java, just after the
onDraw () method

Listing 4-4: Bare-bones Method for Handling Touch Events

public boolean onTouchEvent (MotionEvent event) ({

int eventaction = event.getAction() ; —2
int X = (int)event.getX(); —3
int Y = (int)event.getY();

switch (eventaction) { —6

case MotionEvent .ACTION_DOWN :
break;

case MotionEvent.ACTION_MOVE:
break;

case MotionEvent.ACTION_UP:
break;
}
invalidate () ; —17
return true;

Chapter 4: Dissecting an Android App 1 0 7

3

Line 2: Gets an integer associated with whatever action the user is taking
(for example, pressing down on the screen).

Lines 3-4: These lines get the x and y coordinates on the screen for where
the event is happening.

Lines: 6-15: We're using a switch to handle three possible cases, when
the user

Puts a fingertip down on the screen (ACTION_DOWN)
Drags the fingertip across the screen (ACTION_MOVE)
Removes the finger from the screen (ACTION_UP)

Line 17: Invalidate is the command to the view to tell it that a change has
occurred and that the canvas needs to be redrawn.

Let’s add some logic that will change the location of our red circle when the
user touches the screen. Modify your ACTION_UP case to look like the fol-
lowing:

case MotionEvent.ACTION_UP:
circleX = X;
circleY = Y;
break;

What these two lines do is assign the coordinates for the center of our circle
to the point on the screen where you lifted your finger. After adding this
code, save your project, then run it and see the results. If you're using an
emulator, wherever you click the screen, the dot should move. With a real
device, wherever you touch the screen, the dot should move. Cool, huh?

You might find that you’ll want to make changes based on ACTION_UP,
because if you make them on ACTION_DOWN the finger can obscure what’s
being displayed on the screen at that point. You can always experiment and
see what feels the most intuitive to you.

Try moving the logic we just added to the ACTION_MOVE case and see how
the app behaves as you drag your finger across the screen. Get familiar with
this logic; it gets a lot of use in our games.

’ 08 Part II: Starting to Program

Part Il

Making Your First
Game: Crazy Eights

The 5th Wave By Rich Tennant

e

“This program’s veally helped me learn 2 new
language. Tt’s so buggy T’'m constantly talking
with overseas service reps.”

In this part . . .

p art Il gets you to start building your first game! I show
you how to configure a view to behave the way you

want it, and then how to load and render all the necessary
images. You get the word on how to handle user interac-
tivity to launch the play screen, and then you build all the
working pieces of a functioning single-player card game.

[even show you how to code a halfway decent computer
opponent. In the end, voilda — you have your first com-
plete Android game.

Chapter 5
Creating a Simple Title Screen

In This Chapter

Handling graphics for backgrounds
Making functional buttons

Transitioning between screens

Wlat will be the first thing your game’s players see when they launch
your game? Some games go straight into play mode, but most com-

monly the player sees a title screen or splash page. Sometimes the game
shows credits preceding a title screen, or credits listed right on the title page.
Either way, almost all games (including the very first video games) have
some sort of initial screen that gives the player a place to start a new game,
resume an old game, change options, and/or view high scores.

This common feature of games — including mobile games — is a logical place
to start building your own version of Crazy Eights. You’ll want a screen that
looks good on as many different devices as possible, displays the name of the
game, and includes buttons for starting or resuming a game.

You can download sample files for this chapter at www.dummies.com/go/
androidgameprogramming.

Creating a Custom Uiew

The title screen needs a custom view. To create that view, first you create a
new class that extends view:

1. Right-click the package name in your Crazy Eights project and select
New=>Class.

2. Name the new class TitleView and click Finish.

http://www.dummies.com/go/androidgameprogramming
http://www.dummies.com/go/androidgameprogramming

’ ’ 2 Part lll: Making Your First Game: Crazy Eights

3. Modify the contents of the new file so that it matches the code in
Listing 5-1.

Listing 5-1: The Initial Custom View for the Title Screen

package com.agpfd.crazyeights;
import android.content.Context;
import android.graphics.Canvas;
import android.view.MotionEvent;
import android.view.View;

public class TitleView extends View { —8
public TitleView(Context context) {
super (context) ;

}

@Override
protected void onDraw (Canvas canvas) { —15

}

public boolean onTouchEvent (MotionEvent event) { —19
int eventaction = event.getAction() ;

int X = (int)event.getX();
int Y = (int)event.getY () ;
switch (eventaction) {

case MotionEvent .ACTION_DOWN :
break;

case MotionEvent .ACTION_MOVE:
break;

case MotionEvent .ACTION_UP:
break;

}

invalidate() ;

return true;

}

Here is a brief explanation of what the various lines do:

—8 The class has to extend view because you're making your own
custom view.

Chapter 5: Creating a Simple Title Screen 1 ’3

—15 Here you override the onDraw () method. That’s because you’ll
be adding the logic to draw your title graphic and buttons a little
later on.

—19 This logic is for handling cases where the player touches the
screen. It’s empty for now, but you add some logic later on to
handle interactions with the button.

Before loading and drawing any graphics to the screen, you need to add a
couple of other important pieces of logic to your fledgling game:

+* How the game handles screen orientations

v How the game handles idle time (that is, what happens if the player
doesn’t interact with the device for a while)

You also see how to make your game full-screen to maximize space.

Loading the Title Graphic

\NG/
&&\

You'll have to load and draw graphics, and to do that you need some images!
You can make your own, of course. But I've provided some default images
for you.

The res directory of your project might or might not have a default draw-
able directory. If it doesn’t, add one:

1. Right-click the res directory.
2. Select Newc>Folder.
3. Name the new folder drawable.

Put your graphical resources there.

A common problem with loading and drawing bitmaps in Android is the
dreaded Out of memory error, which occurs while an app is running on a
device or emulator. If you make any number of games for Android, you will
probably encounter this error at some point, especially if you're attempting
to load and draw very large images, draw a lot of images, or both. There are
many potential solutions to this problem, but it’s best to try to prevent it in
the first place by not going overboard with your graphical resources. Try to
load and draw only what you need at the time.

Figure 5-1 shows the graphic that appears on the title screen.

’ ’ 4 Part Ill: Making Your First Game: Crazy Eights

Figure 5-1:
Graphic for
title screen

for Crazy
Eights.

Now modify your TitleView file to look like Listing 5-2.

Listing 5-2: Loading a Bitmap

import android.graphics.BitmapFactory;
import android.graphics.Bitmap;

public class TitleView extends View {
private Bitmap titleGraphic; —6
public TitleView(Context context) ({
super (context) ;
titleGraphic =
BitmapFactory.decodeResource (getResources () ,—10

R.drawable.title_graphic) ;
}

Here is a brief explanation of what the various lines do:

—6 Here you declare the bitmap object for your title graphic.

—10 This line actually loads the bitmap into memory so that you can
draw it to the screen. You're loading it in the constructor for the
view. BitmapFactory creates bitmaps from various sources. In
this case, the bitmap is being decoded from the file you just put in
your drawable directory.

Keep in mind that you're not supposed to touch the R. java file (described
earlier) that’s automatically generated by the Android SDK. Whenever you
place a file in one of your resource directories, when the project is built, it
looks in those directories and creates references to your resources. That’s
how you can pass in the parameter that tells BitmapFactory which image
to load — namely, R.drawable.title_graphic.

Chapter 5: Creating a Simple Title Screen

Because you’re only loading a few images in this view, you load them all in
the constructor. Games often have lots of graphical resources, so you might
end up writing a separate method or class to handle the loading.

Drawing the Title Graphic

Here’s where you draw the graphic to the screen; it works much like drawing
a circle to the screen (described in Chapter 4), except what you’re drawing
this time is your loaded bitmap.

Modify your onDraw () method to look like Listing 5-3.

Listing 5-3: Drawing a Bitmap to the Screen

@Override
protected void onDraw (Canvas canvas) {
canvas.drawBitmap (titleGraphic, (0, 0, null);

}

The coordinate system in Android places the origin in the upper-left corner
of the screen. For now, all you draw is the graphic with x and y coordinates
(0,0) — which places it in the upper-left corner.
v+~ Edit the CrazyEightsActivity.java to replace the lines:
CrazyEightsView myView = new CrazyEightsView(this) ;
with:
TitleView tView = new TitleView(this) ;
1 Replace:
SetContentView (myView) ;
With:
SetContentView (tView) ;
Once you’ve modified your TitleView and CrazyEightsActivity based

on the previous two sections of this chapter, launch the game in an emulator
or on a device.

What you see onscreen should look something like Figure 5-2.

115

’ ’ 6 Part Ill: Making Your First Game: Crazy Eights

|
Figure 5-2:
Title graphic
drawn in the
upper-left
corner of
the screen.
|

. Crazy Eights

Okay, this doesn’t look all that great, but don’t worry — you’ll get to improve
it in a minute. First you center the graphic horizontally. Then, in the next few
sections of the chapter, you make sure the screen appears in your preferred
orientation, maximize the screen space by making the game full-screen, and
(eventually) update the game with your own custom icon. For now, you’'ve
got a handle on loading and drawing your own images to the screen.

Chapter 5: Creating a Simple Title Screen 1 ’ 7

The first item of business is to figure out how to center the graphic hori-
zontally on the screen. If you were using one of Android’s default views, of
course, the SDK would provide some built-in functionality for centering ele-
ments onscreen. Because this is your own custom view, however, you get to
wrestle those elements into place on your own.

Okay, get a grip: Modify your TitleView to look like Listing 5-4.

Listing 5-4: Determining the Screen Dimensions and Centering the Graphic

public class TitleView extends View {

private Bitmap titleGraphic;
private int screenW; —4
private int screenH;

super (context
titleGraphic
BitmapFactory.decodeResource (getResources (),
R.drawable.title_ graphic) ;

public TitleView(Context context) {
) 7

}
@Override
public void onSizeChanged (int w, int h, int oldw,
int oldh) { —14
super.onSizeChanged(w, h, oldw, oldh);
screenW = w;
screenH = h;
}
@Override
protected void onDraw (Canvas canvas) {
canvas.drawBitmap (titleGraphic, —22
(screenW-titleGraphic.getwWidth())/2, 0, null);
}

Here is a brief explanation of what the various lines do:

—4 These lines add variable declarations to keep track of the width
and height of the screen.

—14 Here you're overriding the onsizeChanged method, which is
called by a view after the constructor but before anything is
drawn. All you're doing is grabbing the values of the width and
height of the screen. Don’t use the height yet; just grab it for
future reference anyway.

’ ’ 8 Part Ill: Making Your First Game: Crazy Eights

—22 Now, when you draw your graphic, you replace the x position with
a little math. First, you subtract the width of the graphic from the
screen width, to find out how much space is available. Then you
divide that by two to put equal amounts of space on either side of
your graphic.

Run the game again. This time it should look something like Figure 5-3.

. Crazy Eights

AZ),

|
Figure 5-3:
Title graphic
drawn on
the screen,
centered
horizontally.
|

Chapter 5: Creating a Simple Title Screen

\\3

Getting better. At least now the graphic is centered horizontally.

For practice, you might want to figure out how to center the graphic vertically
on the screen. Just make sure you change it back before you add the buttons
later in the chapter!

Handling Screen Orientation

\\3

<MBER
S

Because the vast majority of Android devices are handheld, they can be
easily reoriented by the player (either on purpose or accidentally!). You need
to think about how your game will handle this. The two orientations are

v Portrait (the longer edge of the screen is vertical)

v Landscape (the shorter edge is vertical)

One approach is to make your game compatible with both orientations,
which involves adding logic for laying out Ul elements for both orientations.
Also, when the screen orientation changes in Android, the current activity is
destroyed and restarted — requiring additional logic to handle those tasks.

Right now your game allows the screen orientation to change when the
device is rotated. Launch the game on either a device or emulator and rotate
the device (whether in hand or onscreen).

You can switch between orientations in the emulator by pressing Ctrl+F11 (on
a PC) or Ctrl+Fn+F11 (on a Mac).

When you rotate the device, you should see the title graphic displayed
upright to be consistent with the new orientation. But if you did allow this
orientation to occur, if Ul elements were laid out below the title graphic,
you’d need to provide logic to draw them to the right of the title graphic or
they wouldn’t be visible.

Often games have their best playability in a particular orientation. Handling
orientation changes makes your code more complex and might even be more
frustrating and confusing for your users. So to keep things as simple as pos-
sible for your first game, you add logic that specifies a particular screen orien-
tation and disables the ability to change it.

Crazy Eights will be fixed in portrait orientation, so that when the player rotates
the device, no orientation changes occur. Okay, equal time here: You get to
design the second game in this book (Whack-a-Mole) in landscape mode.

119

’ 20 Part lll: Making Your First Game: Crazy Eights

You can accomplish what you want with only two lines of code. Open the
AndroidManifest.xml file and modify it to look like the code in Listing 5-5.

Listing 5-5: Manifest Modified for Portrait Orientation

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/
res/android"
package="com.agpfd.crazyeights"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk android:minSdkVersion="5" />

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >
<activity
android:label="@string/app_name"
android:name=".CrazyEightsActivity"

android:screenOrientation="portrait" —15
android:configChanges=

"orientation|keyboardHidden" —16
>

<intent-filter >
<action android:name=
"android.intent.action.MAIN" />
<category android:name=
"android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

Two lines added in this code — 15 and 16 — keep the game in portrait
orientation:
v Line 15 specifies the screen orientation for the app.
v Line 16 makes sure that screen orientations do not occur when either
¢ The hardware keyboard is slid open or closed on a device

¢ The software keyboard is enabled or disabled.

Chapter 5: Creating a Simple Title Screen 1 2 ’

Android devices with hardware keyboards typically treat the opening or clos-
ing of the keyboard the same as an orientation change. With these two lines
of code, you're cementing your game in portrait mode no matter what the
users do with their devices.

Once you've made these changes to your game’s manifest file, launch the
game once more and rotate the screen. This time you should notice that the
title graphic launches in portrait orientation, and stays in that orientation no
matter which way you orient the device. Cool, huh?

Controlling Screen Timeout

If you own an Android device, you may have noticed that after a certain
period of inactivity, the screen times out and the device goes to sleep. The
interval for this timeout is modifiable in the OS settings.

Many of the people who play your games might not even be aware that the
timeout interval is something they can change. What they will care about is
the hassle if they’re concentrating on making a play or in the middle of an
exciting point in your game and the screen goes dark because they haven’t
touched it lately.

This little surprise happened with my word game WordWise. Players would be
studying the tiles in their rack, trying to think up a great word to play, and the
screen would go dark. The default setting for my own device is five minutes (I
was annoyed at the small default interval of time, so [changed it). In testing,
this was something I overlooked, since my own timeout interval was so large.

This isn’t as big an issue with games where the player is constantly interact-
ing with the screen, but it can be annoying when the screen darkens in the
middle of a game, so you’ll want to mull your options.

Luckily, the Android SDK gives us the option of toggling whether or not the
screen timeout kicks in. One line of code and two new imports will do it.

Modify your CrazyEightsActivity file to look like Listing 5-6.

’ 22 Part lll: Making Your First Game: Crazy Eights

A\

Listing 5-6: Disabling Screen Timeout for a View

package com.agpfd.crazyeights;

import android.app.Activity;
import android.os.Bundle;

import android.view.Window;

import android.view.WindowManager ;

public class CrazyEightsActivity extends Activity {

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) ({
super .onCreate (savedInstanceState) ;
TitleView tView = new TitleView(this) ;
tView.setKeepScreenOn (true) ; —14
setContentView (tView) ;

}

Line 14 toggles the KeepScreenOn setting for a particular view. In this case,
you're setting KeepScreenOn to true for your title view. You can go ahead
and delete the CrazyEightsView. You won’t need it anymore. Just right-
click the file name and select Delete.

Try it out with and without this line of code by launching the app and waiting
for the screen to time out. Set your screen time out to something low like 30
seconds (SettingseoDisplay=Sleep). If the screen stays active after your time-
out setting, you know it’s working.

This approach has its tradeoffs, of course. For a lot of people, the display is
what uses up the most battery life. When you disable the timeout for an app,
you're also effectively draining the user’s battery faster. No matter how you
design and develop your game, you're likely to get some negative feedback.
You can’t please all the people all the time. Sometimes you just need to do
what you think is best and what will generate the fewest negative e-mails.

Making the Game Full-Screen

Games designed for consoles and PCs have the luxury of space. Most are
played on large displays with either keyboards and mice or game controllers

Chapter 5: Creating a Simple Title Screen 1 23

with fine-grained controls. Most games on Android devices are played on a
very small screen, using fingers or thumbs (not very fine-grained) for input.
Space is at a premium in mobile games, so I try to maximize available screen
space by making most games full-screen. As with the timeout issue, some
players won’t be happy, but most probably will, and many won’t even notice.

If you decide to make your game full-screen, here’s how you do it. Modifying
the code of your CrazyEightsActivity to look like Listing 5-7.

Listing 5-7: Making a View Display Full-Screen

package com.dummies.androidgame.crazyeights;

import
import
import
import

public

android.app.Activity;
android.os.Bundle;
android.view.Window;
android.view.WindowManager;

class CrazyEightsActivity extends Activity {

/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {

}

super .onCreate (savedInstanceState) ;

TitleView tView = new TitleView(this) ;

tView.setKeepScreenOn (true) ;

requestWindowFeature (Window.FEATURE_NO_TITLE) ; —15

getWindow () .setFlags
(WindowManager . LayoutParams . FLAG_FULLSCREEN, —16
WindowManager .LayoutParams . FLAG_FULLSCREEN) ; —17

setContentView (tView) ;

Line 15 tells the activity not to show the title of the app, and lines 16-17 set
the window to full-screen. After you make these changes, launch the game. It
should look something like Figure 5-4.

’ 24 Part lll: Making Your First Game: Crazy Eights

|
Figure 5-4:
Title screen
without app
title, set to
full-screen.
|

Adding buttons

Displaying non-interactive graphics is great and all, but at some point you
need to let the player actually click the screen and do things. So here’s the
drill on how to add a button to your title screen. There are three important
tasks:

Chapter 5: Creating a Simple Title Screen 1 25

v Draw the button where you want it to be.
v+ Handle the down state when the user touches it.

The up state is when the button is not being interacted with; the down
state is what the button looks like while it is being pressed.

Websites often have an over state as well, but that’s not generally rel-
evant for a touchscreen.

v Actually perform a relevant function when touched. In this case, launch
another view where the game will be played.

Figure 5-5 shows the default state of the button you use.

Figure 5-5:
Default

state of the
Play button pLay
for the title
screen.
|

The steps to load and draw the button graphics are similar to those you take
for loading and drawing the title graphic:

1. Add the following line along with your other variable declarations in
TitleView:

private Bitmap playButtonUp;

2. Load the bitmap by adding the following line in the Titleview
constructor:

playButtonUp =
BitmapFactory.decodeResource (getResources (),
R.drawable.play button_up) ;

3. Draw the button on the screen by adding the following line of code to
your onDraw () method:

canvas .drawBitmap (playButtonUp,
(screenW-playButtonUp.getWidth()) /2,
(int) (screenH*0.7), null);

Here you used the same logic as you did when drawing the title image to
center the image horizontally. With the height, you draw the top of the image
at a height that is 70 percent of the screen height, so no matter what display

’ 26 Part lll: Making Your First Game: Crazy Eights

you're using, the button will always be about three quarters from the top of
the screen.

When you run the game, it should now resemble Figure 5-6.

|
Figure 5-6:
Title screen
with the
Play button
added.

Chapter 5: Creating a Simple Title Screen 1 2 7

<MBER
ég“

Throughout this book, you use relative placement for graphics like this one. If
you place graphics by hard-coding pixel values (for example, 500 pixels from
the top of the screen), you'll get radically different results on different devices.
If you don’t like where you’ve placed the button, feel free to experiment by
modifying the percentage value. For example, try 0.6 or 0.8 instead of 0.7. Just
remember to always try to use relative positioning.

Handling Button States

SMBER
é’s‘ A good practice in Ul design is to provide the users with feedback when they
are interacting with a Ul element.
You’ve got the button where you want it, but right now it doesn’t do any-
thing.
In the case of a button, you’d like the users to know they’ve successfully
touched the button by providing an alternate state when the button is
pressed. That’s what you’ll do here.
Figure 5-7 shows the graphic for the down state of the button you’ll be using.
|
Figure 5-7: x
Down state
of the Play L pLay y
button.
|

The steps that load the graphic for the down state of the button are similar to
those for loading the up state:

1. Add the following line along with your other variable declarations to
TitleView.
private Bitmap playButtonDown;
2. Load the bitmap by adding the following line to the Titleview
constructor.

playButtonDown =
BitmapFactory.decodeResource (getResources (),
R.drawable.play button_down) ;

’ 28 Part lll: Making Your First Game: Crazy Eights

Now you’ve got the bitmap loaded and you’re ready to draw it, and you know
where you want to draw it. But you only want to draw this state when the
user is actually clicking the button. Here’s how to do that:

1. Add in a boolean variable to keep track of whether the button is cur-
rently being pressed. Add the following line along with your other
variable declarations:

private boolean playButtonPressed;

2. In the onTouchEvent () method, modify the case of MotionEvent.
ACTION_DOWN to look like Listing 5-8.

Listing 5-8: Detecting a Button Press

case MotionEvent .ACTION_DOWN :
if (X > (screenW-playButtonUp.getWidth()) /2 &&
X < ((screenW-playButtonUp.getWidth())/2) +
playButtonUp.getWidth()) &&
Y > (int) (screenH*0.7) &&
Y < (int) (screenH*0.7) +
playButtonUp.getHeight ()) {
playButtonPressed = true;

}

break;

The conditional checks to see whether the player is touching the screen
within the bounds of the Play-button graphic

e The first two conditions check for the horizontal bounds.
¢ The last two conditionals check for the vertical bounds.

If you determine that the touch event is within the bounds of the
graphic, you set your boolean to true.

3. Set the same boolean to false when the user lifts the fingertip from
the screen. Add the following line to the MotionEvent . ACTION_UP
case:

playButtonPressed = false;

4. Draw the up state if the boolean is false and the down state if the
boolean is true. Modify your onDraw () method to look like Listing 5-9.

Chapter 5: Creating a Simple Title Screen 7 29

Listing 5-9: Drawing Button States

@Override
protected void onDraw(Canvas canvas) {
canvas.drawBitmap (titleGraphic, (screenW-
titleGraphic.getWidth()) /2, 0, null);
if (playButtonPressed) {
canvas .drawBitmap (playButtonDown,
(screenW-playButtonUp.getWidth()) /2,
(int) (screenH*0.7), null);
} else {
canvas.drawBitmap (playButtonUp,
(screenW-playButtonUp.getWidth()) /2,
(int) (screenH*0.7), null);

}

Here you’re drawing both graphics in the same location, but which one you
draw depends on whether the button is being pressed.

Now launch the game and try out your new button! It still doesn’t do much
when pressed, but it should at least change states.

Launching the Play Screen

If you want the Play button on your title screen to launch the play screen,
you need a game screen to launch! So before you add functionality to your
button, create an empty game screen:

1. Create a new class by right-clicking the package and selecting
Newr>Class.

2. Enter GameView for the name, then click Finished.

3. Modify the contents of this new class to match Listing 5-10.

You need all the same methods here as in your TitleView, but for now
they won’t do anything meaningful. Without anything to draw, this view
displays a blank screen — which is fine as a placeholder for now.

Listing 5-10: The Initial Custom View for the Game Screen

package com.agpfd.crazyeights;
import android.content.Context;
import android.graphics.Canvas;
import android.view.MotionEvent;
import android.view.View;

public class GameView extends View { —8

(continued)

’30 Part lll: Making Your First Game: Crazy Eights

Listing 5-10 (continued)

public GameView (Context context) {
super (context) ;

}

@Override
protected void onDraw(Canvas canvas) { —15

}

public boolean onTouchEvent (MotionEvent event) { —19
int eventaction = event.getAction() ;
int X = (int)event.getX();
int Y = (int)event.getY();

switch (eventaction) {

case MotionEvent .ACTION_DOWN :
break;

case MotionEvent.ACTION_MOVE:
break;

case MotionEvent.ACTION_UP:
break;
}
invalidate() ;
return true;

}

You have a couple of choices about how you display this view:

v Replace the current content view with the GameView instead of the
TitleView

v Launch a new activity for the game.

What’s the difference? If you launch a new activity, it will go on a stack

above the main activity. If the player is in a game, when they hit the back

button on their device, instead of the game closing, the game activity

will be destroyed. But since the main activity is still running, the player

will simply return to the title screen. You’'ll go with this implementation
&Q,N\BER to show you how to launch multiple activities within your game.

There’s almost always more than one way to do things.

Chapter 5: Creating a Simple Title Screen 13 ’

If you're going to launch a new activity, you have to create it first:

1. Right-click the package.

2. Select Newr>Class.

3. Enter "GameActivity" as the name of the new class
4. Click Finished.

Modify the contents of this class to look like Listing 5-11.

Listing 5-11: The Initial Game Activity

package com.agpfd.crazyeights;

import android.app.Activity;
import android.os.Bundle;

import android.view.Window;

import android.view.WindowManager;

public class GameActivity extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;
GameView gView = new GameView (this) ;
gView.setKeepScreenOn (true) ;
requestWindowFeature (Window.FEATURE_NO_TITLE) ;
getWindow () .setFlags
(WindowManager . LayoutParams . FLAG_FULLSCREEN,
WindowManager .LayoutParams .FLAG_FULLSCREEN) ;
setContentView (gView) ;

}

This should look familiar. The contents are almost the same as your main
activity, but instead of creating a Ti t1eView and setting it as the content
view, you're creating a GameView and setting that as the content view
instead. You've also got the logic here for keeping the screen on and setting
the view to full-screen.

Every activity in your app must be declared in the manifest; if you tried to
launch this activity now, you’d get an error. So open the AndroidManifest.
xm] file for your game and add the declaration for the new activity, as seen in
Listing 5-12.

’32 Part lll: Making Your First Game: Crazy Eights

Listing 5-12: AndroidManifest.xml Declaring GameActivity

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/
res/android"
package="com.agpfd.crazyeights"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk android:minSdkVersion="5" />

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >
<activity
android:label="@string/app_name"
android:name=".CrazyEightsActivity"
android:screenOrientation="portrait"
android:configChanges=
"orientation|keyboardHidden"
>
<intent-filter>
<action android:name=
"android.intent.action.MAIN" />
<category android:name=
"android. intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity
—23
android:label="@string/app_name"
android:name=".GameActivity"
android:screenOrientation="portrait"
android:configChanges=
"orientation|keyboardHidden"
>
</activity>
</application>

</manifest>

Lines 23 — 29 are the declaration for your new activity. Notice that you've
added the proper lines for fixing the orientation in portrait mode. You'll need
to do this for each activity you add.

When you’ve got a new GameView and GameActivity, and the manifest is
squared away, you're ready to launch your new activity when the Play button
is clicked.

Intents

An intent is a request from an app to the Android system to perform an oper-
ation. It’s most commonly used to launch a new activity, which is what you’ll
be using them for.

An intent takes in the current context as a parameter, so you’ll need to store
a copy of the context in TitleView:

1. Add the following declaration to your variable declarations:

private Context myContext;

2. Modify the constructor of TitleView to assign the context to your
new local copy, so that it looks like Listing 5-13.

Listing 5-13: Holding a Reference to Context

Chapter 5: Creating a Simple Title Screen 133

public TitleView(Context context) {
super (context) ;
myContext = context;
titleGraphic =
BitmapFactory.decodeResource (getResources (),
R.drawable.title_graphic) ;
playButtonUp =
BitmapFactory.decodeResource (getResources (),
R.drawable.play button_up) ;
playButtonDown =
BitmapFactory.decodeResource (getResources (),
R.drawable.play button_down) ;
}

Now that you have a copy of the context, you can create and fire your intent
to start a new activity. You want to do that when the player has clicked the
Play button, so modify the ACTION_UP case of your onTouch () method to
look like Listing 5-14.

Listing 5-14: ACTION_UP Case Launching a New Activity

case MotionEvent .ACTION_UP:
if (playButtonPressed) {
Intent gameIntent = new Intent (myContext,
GameActivity.class) ; —69
myContext.startActivity (gameIntent) ; —70
}
playButtonPressed = false;
break;

734 Part lll: Making Your First Game: Crazy Eights

Lines 69-70 are only executed if the Play button has been determined to have
been pressed in the ACTION_DOWN case:

v Line 69 creates the new intent, passing in the local copy of the context
and the class name of the activity you want to launch (GameActivity.
class).

v Line 70 calls startActivity () and passes in the intent you just cre-
ated, which will launch the new activity.

After adding these lines, you’ll need a new import along with the others in
this file; it looks like this:

import android.content.Intent;

When you’ve made these changes, launch the game and click the Play button.
When you let your finger up from the button, you should be taken to a new
blank screen: your empty GameView. It’s blank because you haven’t put any-
thing there yet! Click the back button on whatever devices you're using and
you should be returned to the title screen.

Now you've got a functional title page that launches a new activity holding
the view where all of game play will take place. In the next chapter, you build
the interface for playing the game; first, however, here’s a quick word about
bundles and their relationship to intents.

Bundles

When you launched your new activity and its associated view, you didn’t
pass any information between the old activity and the new one; you can do
that when you need to:

v Before you launch the new activity, you can simply call the putEx-
tras () method on the new intent and pass in a key-value pair.

v When the new activity is created, you can then call getExtras () to
extract the information.

It isn’t time yet to use this technique, since you have no need to pass infor-
mation between your title screen and game screen, but it’s worth mentioning
because at some point you will probably want to do this. Consult the official
Android documentation for examples and more information if you find that
this technique is something you need to do.

Chapter 6
Creating a Basic Play Screen

In This Chapter

Loading multiple images
Handling logic, taking turns, and advancing the game

Making a simple computer opponent

A fter the title screen is functional, it’s time to build the meat of the
game — the play screen. You need images for each of the cards in the
deck. I've provided the images for you in the digital resources. You can see
how to load them in bulk, shuffle, and deal.

Picking up, moving, and dropping cards in the right spots are all impor-
tant tasks, as is displaying the current game state. You’ll also implement a
random Al to test against initially, and then refine it later to provide more of
a challenge to players.

You can download sample files for this chapter at

www . dummies.com/go/androidgameprogramming

Displaying Cards

To make your game realistic, players need to see the cards in their own
hands and in the discard pile. This requires several steps of programming.

Loading the card images

Before you load the card images, you have to create a new class for cards.
Follow these steps:

http://www.dummies.com/go/androidgameprogramming

’36 Part lll: Making Your First Game: Crazy Eights

1. Right-click the package and then select New=>Class.
2. Name the new class Card and click Finish.

3. Modify the contents of the new class to look like Listing 6-1.

Listing 6-1: The New Card Class

package com.agpfd.crazyeights;
import android.graphics.Bitmap;
public class Card {

private int id;
private Bitmap bmp;

public Card(int newId) ({ —10
id = newld;

}

public void setBitmap (Bitmap newBitmap) { —14
bmp = newBitmap;

3

public Bitmap getBitmap () {
return bmp;

}

public int getId() { —22
return id;

}
}

Here’s a brief explanation of various lines of code in this listing:

—10-12 The constructor takes in the unique id for the card.

Suits are ranked in order by suit, and the numbering system for
card ids consists of a base value for the suit plus the value of the
rank of each card, as shown in this list:

* Diamonds (100)
* Clubs (200)

* Hearts (300)

* Spades (400)

Chapter 6: Creating a Basic Play Screen

The cards are ranked from 2 to 14, from the deuce to the ace
(high): The 14 for the deuce of diamonds is 102, the three of dia-
monds is 103, the ace of spades is 414, and so on.

When you name your own image files, follow this convention:
card102.png. You're using the prefix “card” because Android
doesn’t allow only numeric values for the names of resource files.

—14-20 You have set and get methods for the bitmap image for a particu-
lar card.

—22-25 These lines return the id of the card.
The card class becomes a little more complex later in this chapter. All you

need to do now is pass in the id when you create a card to be able to set/get
the bitmap associated with it.

Now you’re ready to add the logic to create a deck and load all cards with

their associated images in GameView. You can start by adding new variable
declarations (as shown in Listing 6-2).

Listing 6-2: New Variable Declarations for cameview

private Context myContext;

private List<Card> deck = new ArrayList<Card> () ;
private int scaledCardw;

private int scaledCardH;

Here are the functions of Listing 6-2:
v The first line is a local copy of the context, which you need in order to
load bitmaps.
v The second line is a list of Card objects that will hold your deck.

v The last two lines are variables for the scaled width and height for each
card.

The card images that are provided are rather large. You scale them to fit
the game display size.

To store a local copy of the context, add the following line to the Gameview
constructor:

myContext = context;
Now you’re ready to create a new method in GameView that creates a deck

of 52 playing cards and loads their associated images. Add the method in
Listing 6-3 to your GameView.

137

’38 Part lll: Making Your First Game: Crazy Eights

Listing 6-3: Initializing a 52-Card Deck

private void initCards () {
for (int 1 = 0; 1 < 4; 1i++) { —2
for (int j = 102; j < 115; j++) {
int tempId = j + (1*100); —4
Card tempCard = new Card(tempId) ; —b5

}

int resourceId = getResources () .getIdentifier
("card"+ tempId, "drawable",
myContext .getPackageName ()) ; —6
Bitmap tempBitmap = BitmapFactory.
decodeResource (myContext .getResources () ,

resourceld) ;
scaledCardw = (int) (screenW/8) ; —10
scaledCardH = (int) (scaledCardw*1.28);

Bitmap scaledBitmap = Bitmap.

createScaledBitmap (tempBitmap,

scaledCardW, scaledCardH, false);
tempCard.setBitmap (scaledBitmap) ;
deck.add (tempCard) ; —15
}

Here’s a brief explanation of various lines in this listing:

—2

—4

—5

—6

—10

—15

The outer loop cycles through the four suits (diamonds, clubs,
hearts, spades), and the inner loop cycles through each of the
card ranks (deuce through ace).

You get the id for a particular card based on the convention men-
tioned earlier in this section.

You create a new card and pass in its id.

You get the resource id of your image based on the filename and
then load the bitmap.

The scaled width is % the screen width, allowing seven cards to fit
comfortably side by side horizontally.

The height of each card is 1.28 times the width. You use these
scaled values to create a scaled bitmap and then set that bitmap
for your card.

Finally, you add the newly created card to your deck.

Chapter 6: Creating a Basic Play Screen 139

\\3

You'll also need to add the following imports:

import android.graphics.Bitmap;
import android.graphics.BitmapFactory;

This code cycles through all 52 cards, loads their images, and adds them to
the deck.

If the cycling is processor-intensive on your test device, use smaller images to
reduce the load time. (On higher-resolution devices, the images may not be as
clear.)

Call your new method by adding the following line to your
onSizeChanged () method:

initCards () ;

To test whether the cards are loaded correctly, you can temporarily add the
following line to the onDraw () method:

canvas .drawBitmap (deck.get (0) .getBitmap(), 0, 0, null);

The get () method on an ArraylList retrieves the object at that index, so
you can load any of the 52 cards by passing an index value of 0 through 51.
The preceding line loads the deuce of diamonds and draws it in the upper
left corner of the screen. Give it a try, but delete this line of code before you
move on.

Dealing the cards

After the deck is initialized, you're ready to deal the cards to each player’s
hand and draw the cards to the screen. You create two new ArrayLists,
one for each player’s hand.

Add the following variable declarations to Gameview:

private List<Card> myHand = new ArrayList<Card>();
private List<Card> oppHand = new ArrayList<Card>() ;
Private List<Card> discardPile = new ArrayList<Card> () ;

In the preceding declarations

v The first declaration is used to hold the human player’s cards.
v The second declaration is for the computer opponent’s hand.

v The third declaration is for the discard pile.

’ 4 0 Part lll: Making Your First Game: Crazy Eights

Now you add two new methods to GameView, each with its own task:

v A method that deals the first seven cards to each player

v A reusable method for drawing a single card from the deck and adding it
to the hand

Add the two methods shown in Listing 6-4 to GameView.

Listing 6-4: Methods for Dealing and Drawing Cards

private void drawCard(List<Card> handToDraw) { —1
handToDraw.add (0, deck.get(0)) ;
deck.remove (0) ;
if (deck.isEmpty()) { —4
for (int i = discardPile.size()-1; i > 0 ; i--) {
deck.add(discardPile.get (i)) ;
discardPile.remove (i) ;
Collections.shuffle(deck,new Random()) ;

}

private void dealCards () {
Collections.shuffle(deck,new Random()) ; —14
for (int 1 = 0; 1 < 7; 1i++) { —15

drawCard (myHand) ;
drawCard (oppHand) ;

}

Here’s a brief explanation of various lines in this listing:

—1 This is the method for drawing a single card from the deck and
adding it to a particular list of cards. The method passes in the
hand to which the card will be added. The card at index 0 of the
deck is then added to the hand in line 92 and removed from the
deck in line 93.

—4 In Crazy Eights, when the draw pile is empty, you shuffle back into
it all cards of the discard pile, except for the top one. If the deck is
empty after a draw, you loop through all cards except the first one
in the discard pile, add the first one to the deck, and then remove
it from the discard pile.

Chapter 6: Creating a Basic Play Screen 1 4 ’

—14 Java provides a utility function for collections to randomize the
order of a list, so you're using this function to shuffle the deck.

—15 You loop seven times to add a card to each player’s hand, calling
the method you just created.

You'll also need the following import:
import java.util.Random;

Call your new method by added the following line to your onSizeChanged ()
method:

dealCards () ;
Each player’s opening hand now has seven cards, though you can’t see them.

Next, you display the state of the game and then handle control interactions.

Displaying the game state

Chapter 1 presents a mock-up of the play screen. Figure 6-1 revisits that
screen as a starting point.

My Score: 57
Computer Score: 34

computer's hand

'
)

|
Figure 6-1:
Mock-up

of the play
screen

el QD QYN Db
Eights, |kl Sl 3l S 2

’ 42 Part lll: Making Your First Game: Crazy Eights

Keep the background black for now. Rather than display both scores at the
top, orient the scores with the top and bottom of the screen so that the oppo-
nent’s score is at the top and your score is at the bottom.

Before you display the scores, you have to add in another variable to
help scale the Ul elements. Add the following variable declaration to your
GameView:

private float scale;

This variable lets you scale elements on the screen, such as the text size. You
can set the value in your constructor by using this line:

scale = myContext.getResources () .getDisplayMetrics() .
density;

This line sets the scaling factor to the density settings you've chosen for
whatever device the game appears on. You use this line to scale such

onscreen elements as text size.

First things first: Draw some text on your canvas. You need a Paint object,
which defines the properties for drawing the text to the screen:

v Add the following variable declaration to GameView:

private Paint whitePaint;

v You'll also need the following import:

import android.graphics.Paint;

Next, in your constructor, you have to define the properties of the Paint
object. Modify your GameView constructor to look like Listing 6-5.

Listing 6-5: Designating the Properties of paint

public GameView (Context context) {
super (context) ;
myContext = context;

scale =

myContext .getResources () .getDisplayMetrics () .density;
whitePaint = new Paint () ; —5
whitePaint.setAntiAlias (true) ; —6

whitePaint.setColor (Color .WHITE) ;

whitePaint.setStyle (Paint.Style.STROKE) ;
whitePaint.setTextAlign (Paint.Align.LEFT) ;
whitePaint.setTextSize(scale*15) ; —10

Chapter 6: Creating a Basic Play Screen 1 43

Here’s a brief explanation of various lines in this listing:

—5 This line creates the new Paint object.

—6-9 Anti-aliasing attempts to make the text look smoother. You're set-
ting the color to white and aligning it to the left of wherever you
start drawing the text.

—10 This is the line where you use your scale variable. You set the text
size to 15 times the scaling factor. On displays with a density of 1,
the font appears in size 15. When the density changes, so does the
font size, to maintain a consistent look across devices.

You'll also need to add the following import:
import android.graphics.color
Now you add the code for drawing the scores to the screen:

v Add declarations for the variables to hold scores:

private int oppScore;
private int myScore;

v Modify the onDraw () method to include the code in Listing 6-6.

Listing 6-6: Drawing Scores to the Screen

@Override
protected void onDraw (Canvas canvas) {
canvas.drawText ("Computer Score: " +

Integer.toString (oppScore), 10,

whitePaint.getTextSize()+10, whitePaint);
canvas.drawText ("My Score: " +

Integer.toString (myScore), 10,

screenH-whitePaint.getTextSize()-10,

whitePaint) ;

You use the drawText () method of canvas to draw text, passing in the
parameters you want to use:

v In the case of the computer’s score, you're drawing it 10 pixels from the
left of the screen and 10 pixels from the top, which you get by adding
the size of the text to 10.

»* You pass in the Paint object that you defined in your constructor.
With your score, everything is much the same as drawing the opponent’s

score, except that you're drawing on the bottom of the screen and subtract-
ing the text size and 10 pixels from the height of the screen.

’ 44 Part lll: Making Your First Game: Crazy Eights

After you add the code in this section, run the game to see how it appears. It
should look similar to Figure 6-2.

Computer Score: 0

|
Figure 6-2:
The game
el My Score: 0
displays
players’

scores. @

Chapter 6: Creating a Basic Play Screen

You've started displaying the game state on your screen, so now you display
the respective hands. Modify the onDraw () method to include the code in
Listing 6-7.

Listing 6-7: Drawing Cards in a Hand

for (int 1 = 0; 1 < myHand.size(); i++) {
if (1 < 7) {
canvas .drawBitmap (myHand.get (i) .getBitmap (),
i* (scaledCardw+5) ,
screenH-scaledCardH-
whitePaint.getTextSize()- (50*scale),
null) ;

}

These lines display your hand. Loop through the first seven cards, and lay
them out horizontally, 5 pixels apart. The y position of each card subtracts
v+ The height of the card
v The height of your score text

v 50 scaled pixels from the bottom edge of the screen
Run the game. It should look similar to Figure 6-3.

Now you display the computer opponent’s hand. Because the game’s player
can’t see an opponent’s cards, there’s no need to lay out those cards in the

same way. You can let them overlap much more than the player’s cards do,

because the player sees only the backs of the opponent’s cards.

First, you load the graphical image for the back of the card. Create a local
Bitmap variable in GameView by adding the following line to your variable
declarations:

private Bitmap cardBack;

You load this bitmap in the onSizeChanged () method to take advantage of
the screen width and height information updated at run time.

145

’ 46 Part lll: Making Your First Game: Crazy Eights

Computer Score: 0

8
*

Figure 6-3:
The game
eyl My Score: 0
displays
the player’s

hand. @

Modify the onSizeChanged () method to include the code in Listing 6-8.

Chapter 6: Creating a Basic Play Screen

Listing 6-8: Loading the Card Back Graphic

Bitmap tempBitmap =
BitmapFactory.decodeResource
(myContext.getResources (),
R.drawable.card_back) ;

scaledCardw = (int) (screenW/8) ;

scaledCardH = (int) (scaledCardw*1.28);

cardBack = Bitmap.createScaledBitmap
(tempBitmap, scaledCardw,
scaledCardH, false) ;

Just as you load the original graphic for each card front and scale it based on
the dimensions of the current screen, you load and scale it for the card-back
graphic.

Now modify the onDraw () method to include the code in Listing 6-9.

Listing 6-9: Drawing the Opponent’s Hand

for (int 1 = 0; 1 < oppHand.size(); i++) {
canvas .drawBitmap (cardBack,
i* (scale*5),
whitePaint.getTextSize()+ (50*scale),
null) ;
}

You add these lines to draw the card-back graphic for each card in the oppo-
nent’s hand:

»* You space them only 5 pixels apart so that they overlap.

» You draw them at the height of your text plus 50 pixels from the top of
the screen.

When you run the game, it should look like Figure 6-4.

Next, you show the draw and discard piles. You can represent the draw
pile with a single card-back image. Simply add the following line to your
onDraw () method:

canvas .drawBitmap (cardBack,
(screenW/2) -cardBack.getWidth()-10,
(screenH/2) - (cardBack.getHeight () /2), null);

You're drawing the draw pile roughly centered on the screen, so the x
position starts with half the screen width, minus the width of the card and
another slight offset of 10 pixels.

147

’ 48 Part lll: Making Your First Game: Crazy Eights

You're doing this because you want to draw the discard pile next to the draw
pile with a little space between them. The y coordinate is half the screen
height minus half the height of the card image.

When you run the game, it should look like Figure 6-5.

Computer Score: 0

Figure 6-4:
The game
screen VARSI H]
displays the
opponent’s
hand.
|

Chapter 6: Creating a Basic Play Screen ’ 4 9

Computer Score: 0

3
[
£

|
Figure 6-5:
The game [WAASIHel(=H1]
screen
displays the) =
draw pile. 0 [] !

’50 Part lll: Making Your First Game: Crazy Eights

Drawing the discard pile is slightly trickier. Add the lines in Listing 6-10 to
your onDraw () method.

Listing 6-10: Drawing the Discard Pile

if (!discardPile.isEmpty()) {
canvas .drawBitmap (discardPile.get (0) .getBitmap (),
(screenW/2)+10,
(screenH/2) - (cardBack.getHeight () /2),
null) ;
}

You're checking to see whether the discard pile contains cards. If it does, you
display the top card (index 0) slightly to the right of the draw pile and at the
same height.

If you were to run this code now, you wouldn’t see anything, because you
haven’t added cards to the discard pile. In Crazy Eights, you start the discard
pile by adding the top card from the draw pile, after both players have been
dealt their cards.

To add a card to the discard pile, you can reuse the method for drawing
cards. You deal both players their cards in the onSizeChanged () method.
After the dealCards () call, add this line:

drawCard (discardPile) ;

This line moves the top card from the draw pile to the discard pile. When you
run the game now, you should see a screen similar to Figure 6-6.

Chapter 6: Creating a Basic Play Screen ’5 7

Computer Score: 0

s [0/,

|
Figure 6-6:
The game [WAASIHel(=H1]
screen
displays the)
discard pile. 0

’52 Part lll: Making Your First Game: Crazy Eights

Taking Your Turn

After you display the vital game elements displayed on the play screen (both
scores, both hands, the draw pile, and the discard pile), you can move on

to handling the game logic, such as determining who plays first and how to
alternate turns.

Handling turns

To handle turns, you

v Add a boolean variable to GameVview that keeps track of the player’s
turn.

v Enable or disable certain logic based on the value of that boolean.
Add the following declaration to your other variable declarations:
private boolean myTurn;
Then, in the constructor, add this line:
myTurn = new Random () .nextBoolean () ;

This value randomly decides who goes first — the computer opponent or the
player. You toggle this value every time either player makes a valid play.

The next couple of sections show you how to

v Enable players to draw and pick up cards to make valid plays.

v Enable the computer opponent to make valid plays.
Crazy Eights has only two valid plays:

v Play a card that matches either the suit or rank of the card on top of the
discard pile (or an eight).

v Draw a card.
Before you move on, make a simple computer opponent that returns legal

moves. Later in this chapter, | show you how to make the opponent more
sophisticated.

Chapter 6: Creating a Basic Play Screen 153

Because you need to get both the rank and suit from a card to evaluate
valid plays, you need to modify the Card class. Modify its code to look like
Listing 6-11.

Listing 6-11: Handling Ranks and Suits

package com.agpfd.crazyeights;
import android.graphics.Bitmap;
public class Card {

private int id;
private int suit;
private int rank;
private Bitmap bmp;

public Card(int newId) ({
id = newId;
suit = Math.round((id/100) * 100); —14
rank = id - suit; —15

}

public void setBitmap (Bitmap newBitmap)
bmp = newBitmap;

}

public Bitmap getBitmap () {
return bmp;

}

public int getId() {
return id;

}

public int getSuit () {
return suit;

}

public int getRank () {
return rank;

}

754 Part lll: Making Your First Game: Crazy Eights

In Listing 6-11, you've added

1 Integer variables to hold both the rank and suit

v Logic to determine the values of these variables from the id of the card
The value of the card is calculated from the id:

v Line 14 rounds the id to the nearest hundred to get the suit.

For example, if the card id were 309 (the nine of hearts), line 14 would
round it to 300 to get the suit (hearts, in this case).

v Line 15 subtracts the rounded value from the id to get the rank.
If the card id were 309, Line 15 would subtract the suit value from the
id (309-300) to get the rank value of 9.

You've also added a getSuit () and getRank () method to return these
values.

When you have the right logic in the Card class, you're ready to create the
computer player. Here’s how:

1. Right-click the package in Eclipse and select Newr>Class.
2. Enter ComputerPlayer for the class name and click OK.

3. Modify the contents of your newly created class to match Listing 6-12.

Listing 6-12: A Simple Computer Opponent

package com.agpfd.crazyeights;
import java.util.List;
public class ComputerPlayer {

public int makePlay (List<Card> hand, int suit,
int rank) {
int play = 0;
for (int 1 = 0; i < hand.size(); i++) { —9
int tempId = hand.get (i) .getId(); —10
int tempRank hand.get (i) .getRank () ;
int tempSuit hand.get (i) .getSuit () ;
if (rank == 8) {
if (suit == tempSuit) ({
play tempId;

Chapter 6: Creating a Basic Play Screen 155

3

} else if (suit == tempSuit || —17
rank == tempRank ||
tempId == 108 || tempId == 208 ||
tempId == 308 || tempId == 408) {

play = tempId;
}

}
return play;

}

public int chooseSuit (List<Card> hand) {
int suit = 100;
return suit;

}

You have only two methods for now:

V¥ makePlay():

¢ Takes in the computer player’s hand and the valid suit and/or rank
to play

e Returns the id for a valid play from its hand

MBER V¥ chooseSuit ():Is called only if the computer opponent plays an 8.
N
Q

« Eights are wild. When one is played, its owner gets to name a suit that the

opponent also must then play.
Lines 9-21 loop through each card in the computer player’s hand:

1. Lines 10-12 determine the rank and suit of each card.

2. Line 13 checks to see whether the rank of the top card of the discard
pile is an 8.

If so, it checks for the suit to be played. If a card in the computer play-
er’s hand matches the valid suit, the id of that card is set as the card to
be played.

3. If the top card isn’t an 8, lines 17-20 check to see whether each card in
the computer player’s hand matches either the rank or suit of the card
that’s played.

If it matches, that card’s id is set to return as the one to play.

4. If none of the conditions in either loop is met, there’s no valid play
among the cards in the computer opponent’s hand.

’56 Part lll: Making Your First Game: Crazy Eights

By setting the default value of the play variable to 0, when a valid play
isn’t found, 0 is returned when this method is called, indicating that a
card must be drawn.

For the chooseSuit () method, for now you always return 100 (diamonds).
This value is sufficient only to produce a playable computer opponent. In
Chapter 7, you can see how to analyze the game state and make the com-
puter player a little more sophisticated — and challenging.

Now your game has a playable opponent. Before you begin alternating plays
between the player and the opponent, you must ensure that you've handled
all logic for the human player interacting with cards and making valid plays,
as explained in the following three sections.

Picking up cards

Because you’re working on the human side of the game’s turns while you
implement and test this code, you set the myTurn variable to true rather
than let it be set randomly:

v Comment out the following line (the following sidebar shows you how):

myTurn = new Random() .nextBoolean () ;

v Insert the following line:
myTurn = true;

It ensures that the game screen always starts with the human player’s
turn active.

Now the game should detect whether the user touches the screen in an area
that contains a playable card. First you add a few more variables to draw the
card as it’s being moved across the screen. Add the following lines to your
variable declarations in GameVview:

private int movingCardIdx = -1;
private int movingX;
private int movingY;

The preceding code has these functions:

v The first variable keeps track of the index of the card that’s being
moved.

v The other two variables

Chapter 6: Creating a Basic Play Screen 15 7

¢ Keep track of the user’s finger on the screen.

e Make that information available to all methods in GameView.

Now modify the onTouchEvent () method to look like Listing 6-13.

Listing 6-13: Picking Up and Moving Cards

public boolean onTouchEvent (MotionEvent event) {
int eventaction = event.getAction() ;

int X = (int)event.getX();
int Y = (int)event.getY();
switch (eventaction) {

case MotionEvent.ACTION_DOWN :
if (myTurn) { —8
for (int 1 = 0; 1 < 7; 1i++) { —9
if (X > i*(scaledCardwW+5) &&
X i* (scaledCardw+5)
+ scaledCardwW &&
Y > screenH-scaledCardH-
whitePaint.getTextSize() -
(50*scale)) {
movingCardIdx = 1i;
movingX = X;
movingY = Y;

A

}
}
break;

case MotionEvent .ACTION_MOVE:

movingX = X; —24
movingY = Y;

break;

case MotionEvent.ACTION_UP:
movingCardIdx = -1; —29
break;

}

invalidate() ;

return true;

’58 Part lll: Making Your First Game: Crazy Eights

WMBER
@&
&

Commenting code

In most programming languages, comments
allow programmers to include text thatisn't live
code within a program file. Usually, these are
messages about the file as a whole, or specific
lines or sections of code, helping to make the
code more understandable. A special charac-
ter may begin or end the comment. However,
the same commenting function can allow you
to disable lines and sections of code while you
develop.

Commenting and uncommenting code through-
out the development process is a routine, help-
ful practice that lets you enable and disable
logic, depending on what you're testing or
working on.

Use double forward slashes (//) to comment out
a single line of code, like this:

//myTurn =
new Random ()nextBoolean() ;

Use the combination forward-slash-and-aster-
isk (/*) to comment out blocks of code, letting it
open the block to be commented out. Use the
reverse combination — the asterisk-and-slash
(*/) —to close the block:

/*

myTurn =

new Random ()nextBoolean() ;
System.out.println("hello") ;
=)

Here’s a brief explanation of various lines in this listing:

A player should be able to pick up and move cards only on

Loop through the first seven cards in the player’s hand (the

ones being displayed), and check to see whether the player has
touched the screen on a card that’s being displayed. If so, you

assign the index of that card to movingCardIdx as well as to the
current x and y positions to the movingX and movingY variables.

As the player moves his or her finger across the screen, you keep

track of the x and y. You use this information when drawing the

—8
their turn.
—9
—24
bitmap for the card being moved.
—29

When the player lifts the finger from the screen, you reset the

movingCardIdx to indicate that no cards are being moved.

The previous logic keeps track of picked-up and moving cards, but has no
visual impact until you update the onDraw () method. Modify this method to

look like Listing 6-14.

Chapter 6: Creating a Basic Play Screen 159

Listing 6-14: Drawing Moving Cards

@Override
protected void onDraw(Canvas canvas) {
canvas .drawText ("Computer Score: " +

Integer.toString (oppScore), 10,
whitePaint.getTextSize()+10, whitePaint) ;
canvas .drawText ("My Score: " +
Integer.toString (myScore), 10,
screenH-whitePaint.getTextSize()-10,
whitePaint) ;
for (int i = 0; i < oppHand.size(); i++) {
canvas .drawBitmap (cardBack,
i* (scale*5),
whitePaint.getTextSize()+ (50*scale),
null) ;
}
canvas .drawBitmap (cardBack,
(screenW/2) -cardBack.getWidth()-10,
(screenH/2) - (cardBack.getHeight () /2), null);
if (!discardPile.isEmpty()) {
canvas.drawBitmap (discardPile.get (0) .getBitmap (),
(screenw/2)+10,
(screenH/2) - (cardBack.getHeight () /2),
null) ;
}
for (int i = 0; i < myHand.size(); i++) {
if (i == movingCardIdx) { —22
canvas .drawBitmap (myHand.get (i) .getBitmap () ,
movingX,
movingY,
null) ;

} else { —27

canvas .drawBitmap
(myHand.get (i) .getBitmap (),
i* (scaledCardw+5),
screenH-scaledCardH-
whitePaint.getTextSize() -
(50*scale), null);
}
}
invalidate() ;
}

Note that you’ve moved to the end of the method the code for drawing your
own hand. Why? Because the order in which items are drawn in this method
determines whether they’re drawn above or below other items. The reason
didn’t matter when you weren’t moving elements around, but now that you're
moving a card that you’ve picked up, you want it to appear above all other

’ 60 Part lll: Making Your First Game: Crazy Eights

elements on the screen. In other words, you don’t want a card that you're
dragging across the screen to appear underneath the draw pile. Experiment
with the order in which items are drawn to get a feel for what I'm talking
about. Trust me — this particular ordering works best.

Here’s a brief description of a couple of lines in this listing:

—22 You check to see whether the index of a given card in your hand
matches the movingCardidx. If so, you draw the card at the cur-
rent x and y position of the player’s finger.

—27 If the movingCardIdx doesn’t match any index values for cards
in your hand (for example, when it’s —1), you draw the rest of your
hand as you did before.

Run the game, and try picking up and moving cards around the screen. You'll
probably notice that the picked-up card is drawn with the upper left corner
of the card at the position where your finger is touching the screen. So the
card is drawn under your finger, obscuring it.

This is an issue when displaying Ul elements in a touchscreen environment.
You can improve this aspect of the Ul by modifying the movingX and mov-
ingY values. Though you can center the bitmap on the point where the player
is touching the screen, I like for the element offset to appear above and to the
left of the point that’s touched.

Test on a real device. Testing your game only on an emulator can give you a
false sense of screen interaction using touch:

» When you run a game on an emulator, you interact with the Ul elements
using your mouse and the pointer icon, which is much smaller and finer-
grained than interacting with a screen using your finger.

»* When you’re picking up and moving Ul elements, the mouse pointer typi-
cally doesn’t obscure whatever element you're moving, and your finger
does.

Have a look at Listing 6-15, where I've added offsets to the x and y positions
for the card being picked up and moved.

Listing 6-15: Adding an Offset to Moving Cards

public boolean onTouchEvent (MotionEvent event) {
int eventaction = event.getAction() ;
int X = (int)event.getX();
int Y = (int)event.getY();

switch (eventaction) {

Chapter 6: Creating a Basic Play Screen 1 6 ’

A\

case MotionEvent.ACTION_DOWN :
if (myTurn) {
for (int 1 = 0; i < 7; 1i++) {

if (X > i*(scaledCardw+5) &&
X < i*(scaledCardw+5)
+ scaledCardW &&
Y > screenH-scaledCardH-
whitePaint.getTextSize () -
(50*scale)) {

mov1ngCardIdx = ig
movingX = X-(int) (30*scale); —16
movingY = Y- (int) (70*scale); —17
}
}
}
break;
case MotionEvent.ACTION_MOVE:
movingX = X-(int) (30*scale) ; —24
movingY = Y- (int) (70*scale) ; —25

break;

I've only modified four lines here, 16-17 and 24-25. I've added a 30-pixel
offset to the left and a 70-pixel offset up. This way, the card is generally

v Centered horizontally at the point of touch
1 Offset vertically so that the user can see the rank and suit of the card as

it moves

You can use different offset values, but do not draw the card completely under
the player’s finger as the card moves. Experiment with offset values that you
like until they feel intuitive and user-friendly to you. Then you can move on to
handling the logic for playing valid cards on the discard pile.

Playing cards

Before allowing a dragged card to be played on the discard pile, you need to
know whether it’s a valid play.

To keep track of valid plays, add these two variables to your variable
declarations.

’ 62 Part lll: Making Your First Game: Crazy Eights

private int validRank

8;
private int validSuit 0;

You initialize the valid rank as an 8 because an 8 is always legal to play.
These values are updated every time a card is played. You get the initial
values from the first card that’s placed face-up in the discard pile, which is
done with the initialization of the deck and hands in the onSizeChanged ()
method. Modify that method to look like Listing 6-16.

Listing 6-16: Getting Valid Suit and Rank Values

@Override
public void onSizeChanged (int w, int h, int oldw,
int oldh) {

super.onSizeChanged(w, h, oldw, oldh);

screenW = w;

screenH = h;

Bitmap tempBitmap = BitmapFactory.
decodeResource (myContext .getResources (),
R.drawable.card_back) ;

scaledCardw = (int) (screenW/8) ;

scaledCardH = (int) (scaledCardw*1.28);

cardBack = Bitmap.createScaledBitmap (tempBitmap,
scaledCardW, scaledCardH, false);

initCards () ;

dealCards () ;

drawCard (discardPile) ;

validSuit = discardPile.get (0) .getSuit () ; —15
validRank = discardPile.get (0) .getRank() ; —16

}

Lines 15-16 get the suit and rank of the first card placed on the discard pile.
With that information in hand, you're ready to see whether a dragged card is
a valid play:

v~ A valid play: Add it to the discard pile.

+ Not a valid play: Do nothing, “returning” it to the player’s hand.

You check in the ACTION_UP case of onTouchEvent (). Modify the ACTTION_
UP case to look like Listing 6-17.

Chapter 6: Creating a Basic Play Screen 1 63

Listing 6-17: Checking for Valid Plays

case MotionEvent.ACTION_UP:

if (movingCardIdx > -1 && —2
X > (screenW/2)-(100*scale) && —3
X < (screenW/2)+(100*scale) &&

Y > (screenH/2)-(100*scale) &&
Y < (screenH/2)+(100*scale) &&
(myHand.get (movingCardIdx) .getRank() == 8 |
myHand.get (movingCardIdx) .getRank () == —8
validRank | |
myHand.get (movingCardIdx) .getSuit () == —9
validSuit)) {
validRank = myHand.get —10
(movingCardIdx) .getRank () ;
validSuit = myHand.get —11
(movingCardIdx) .getSuit () ;
discardPile.add (0, myHand. —12
get (movingCardIdx)) ;
myHand . remove (movingCardIdx) ; —13
}
movingCardIdx = -1;
break;

Here’s a brief explanation of various lines in this listing:

—2 This line checks to see whether a card is being moved.

—3-6 The only action the player can take with a card in hand is to play
it on the discard pile, so you don’t have to worry about accuracy.
You're simply verifying that the player has dropped the card
within an area of 200 x 200 pixels in the center of the screen. If you
want to adjust the drop area by changing these values, go for it.

—8-9 These lines check to see whether the card being dragged is a valid
rank or suit.

—10-11 If the dragged card meets the right conditions, you get the rank
and suit of the card and set the current valid values.

—12-13 Then you add the dragged card to the discard pile at index 0 and
remove it from the player’s hand.
Try it out. You should be able to
v Drag cards that match either the suit or the rank of the top card in the
discard pile.

v Drop cards in the middle of the screen, adding them to the discard pile.

’ 64 Part lll: Making Your First Game: Crazy Eights

Playing an 8 requires special handling because you get to choose the valid
suit. You can set the valid rank as 8 because it’s always playable, but you
need a way for the player to choose a particular valid suit: the dialog box.

Showing dialog boxes (and toasts)

The dialog box (also known as a dialog) is an onscreen element that offers
choices to the user; it’s among the most common and widely used Ul ele-
ments in games.

In your game, you use dialog boxes to

v Display end-of-hand and end-of-game states
v Let players choose the suit when an 8 is played, which is what you're
using one for now

The dialog box will contain three elements:

»” Some text
v A spinner (or drop-down menu, in Android),
The spinner is populated with four values — strings for the four suits.
v A button
Before you do anything else, create a new file in your resource folder from

which you can reference the names of the suits. They’re held in a string
array, so you need to create a new file for it.

1. Right-click the res>values folder in your project and select
Newo>File.

2. Name the new file arrays .xml.
3. Click Finished.

Modify the contents of your newly created file to match Listing 6-18.

Listing 6-18: The arrays.xm1 File

<resources>
<string-array name="suits">
<item>Diamonds</item>
<item>Clubs</item>
<item>Hearts</item>
<item>Spades</item>
</string-array>
</resources>

Chapter 6: Creating a Basic Play Screen 1 65

This file is straightforward. You're naming the array “suits,” and each item is
the name of a suit.

The next file you need to create is a layout file for the dialog box:

1. Right-click the res>layout folder.

2. Choose NewrFile.

3. Name the new file choose_suit_dialog.xml.
4. Click Finished.

Modify the contents of the new file to match Listing 6-19.

Listing 6-19: The choose suits_dialog.xml File

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
android:id="@+id/chooseSuitLayout"
android:layout_width="275dp"
android:layout_height="wrap_content"
android:orientation="vertical"
android:layout_gravity="top"
xmlns:android="http://schemas.android.com/apk/res/android"
>

<TextView
android:id="@+id/chooseSuitText"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Choose a suit."
android:textSize="16sp"
android:layout_marginLeft="5dp"
android:textColor="#FFFFFF"

>

</TextView>

<Spinner
android:id="@+id/suitSpinner"
android:layout_width="£fill_ parent"
android:layout_height="wrap_content"
android:drawSelectorOnTop="true"

/>

<Button

android:id="@+id/okButton"
android:layout_width="125dp"
android:layout_height="wrap_content"
android: text="0OK"

>

</Button>

</LinearLayout>

’ 66 Part lll: Making Your First Game: Crazy Eights

|
Figure 6-7:
Graphical
preview of
the Choose
Suits dialog
box.
|

As mentioned, the layout contains three Ul elements: text, spinner, and
button. All three are contained in a LinearLayout (the simplest layout
format in Android), which lays out elements in a straight line. In this case,
you've set the orientation for the layout as "vertical™", so the elements are
laid out from top to bottom.

Note that each element has an id, which is how you reference them from the
Java files. Also note the use of dp for pixel dimensions and sp for text size.
These density-independent units scale with the size of the display. You can
preview a layout on the Graphical Layout tab. Yours should look similar to
Figure 6-7.

Choose a suit

Item 1

Though you can customize dialog boxes, don’t do anything fancy with this
one. For your own game, experiment with themes and styles to make your
dialog boxes more visually appealing. For now, simply implement the basics
so that you can get a playable game up and running.

When you have the proper resource files, you can add code to display your
dialog box at the right time (when the human player plays an 8). In your
GameView, add the new method showChooseSuitDialog () with the con-
tent shown in Listing 6-20.

Chapter 6: Creating a Basic Play Screen 1 6 7

Listing 6-20: The showChoosesuitsbialog() Method

private void showChooseSuitDialog() {
final Dialog chooseSuitDialog = —2
new Dialog (myContext) ;
chooseSuitDialog.requestWindowFeature
(Window.FEATURE_NO_TITLE) ;
chooseSuitDialog.setContentView
(R.layout.choose_suit_dialog) ;

final Spinner suitSpinner = (Spinner) —5
chooseSuitDialog. findvViewById(R.id.suitSpinner) ;
ArrayAdapter<CharSequence> adapter = —7

ArrayAdapter.createFromResource (
myContext, R.array.suits,
android.R.layout.simple_spinner_item) ;
adapter.setDropDownViewResource
(android.R.layout.simple_spinner_dropdown_item) ;
suitSpinner.setAdapter (adapter) ;

Button okButton = —11
(Button) chooseSuitDialog.findViewById
(R.id.okButton) ;

okButton.setOnClickListener
(new View.OnClickListener ()

public void onClick(View view) {
validSuit = (suitSpinner.
getSelectedItemPosition()+1)*100;
String suitText = "";
if (validSuit == 100) {
suitText = "Diamonds";
} else if (validSuit == 200) {
suitText = "Clubs";
} else if (validSuit == 300) {
suitText = "Hearts";
} else if (validSuit == 400) {
suitText = "Spades";
}
chooseSuitDialog.dismiss () ;
Toast .makeText (myContext, —27
"You chose " + suitText,
Toast .LENGTH_SHORT) .show () ;

{

}
1)
chooseSuitDialog.show() ;

}

Here’s a brief explanation of various lines in this listing:

—2 First you create a final instance of a dialog box. Then you set the
attribute of having no title before setting the content view to the
choose_suit_dialog.xml file you just created.

’ 68 Part lll: Making Your First Game: Crazy Eights

—5

—7

—11

—27

This line creates a final instance of a spinner, referencing the id of
the spinner in your layout file.

An ArrayAdapter supplies data to a view and determines its
format. This line creates an ArrayAdapter using the suits array
in your resource directory. You use default layout parameters for
spinner items (how items are displayed when the spinner hasn’t
been clicked) and for spinner drop-down items (how items are dis-
played when the spinner has been clicked). Then you set this new
adapter as the one for your spinner.

You reference the button in your layout file and set an onClick-
Listener (), which performs whatever logic you designate when
onClick () is called by the user clicking the button. Line 168 sets
the validsuit by getting the index of the selected spinner item,
adding 1, and multiplying by 100. This provides the proper value
for the suit based on the selected item. The suit names in the suit
array must be in the proper order, or else this process doesn’t
work correctly.

To reinforce the player’s choice, a Toast (a brief system message)
flashes on the screen. You can use a Toast to display certain types
of information that require neither a dedicated dialog box nor a
player’s selection.

In this case, you display the chosen suit:

v The lines immediately preceding line 27 declare a text variable to hold
the text for the chosen suit. The if statements

e Check the validsuit variable.

¢ Assign the proper text to the suitText variable.

v Line 26 dismisses the dialog box. You can control the display time of the
Toast by using the last parameter. In this case, the Toast flashes on the
screen for a couple of seconds.

You'll also need the following import statements:

import android.widget.ArrayAdapter;
import android.widget.button;

Chapter 6: Creating a Basic Play Screen 1 69

You should show the dialog box only when the player has just played an 8
and needs to choose which suit the opponent must play. To do so, modify
the ACTION_UP case of onTouchEvent () (see Listing 6-21).

Listing 6-21: Launching the Choose Suits Dialog box

case MotionEvent.ACTION_UP:
if (movingCardIdx > -1 &&
X > (screenW/2)-(100*scale) &&
X < (screenW/2)+ (100*scale) &&
Y > (screenH/2)-(100*scale) &&
)

Y < (screenH/2)+(100*scale) &&
(myHand.get (movingCardIdx) .getRank() == 8 ||
myHand.get (movingCardIdx) .getRank () ==

validRank ||
myHand.get (movingCardIdx) .getSuit () ==
validSuit)) {
validRank =
myHand.get (movingCardIdx) .getRank () ;
validSuit =
myHand.get (movingCardIdx) .getSuit () ;
discardpPile.add (0,
myHand . get (movingCardIdx)) ;
myHand . remove (movingCardIdx) ;

if (validRank == 8) { —14
showChooseSuitDialog () ; }

}

movingCardIdx = -1;

break;

You've added lines 14-16. If an 8 has been played, call your new method for
displaying the Choose Suits dialog box. As always, give it a try. The dialog
box, when launched, should look similar to Figure 6-8.

When you click the spinner, the list of items should open, as shown in
Figure 6-9.

If you want to test without having to play an 8, simply comment out that
condition so that the dialog box displays for all valid plays. In the following
section, you handle an important case: a player who cannot make a valid play
having to draw until a valid play is possible.

’ 70 Part lll: Making Your First Game: Crazy Eights

Choose a suit.

Diamonds v

|
Figure 6-8:
Displaying
the Choose
a Suit dialog
box.
|

Chapter 6: Creating a Basic Play Screen 7 7 ’

Diamonds

|
Figure 6-9:
List items for
the Choose
a Suit
spinner.
|

’ 72 Part lll: Making Your First Game: Crazy Eights

Taking cards from the draw pile

Adding a card from the draw pile to the human player’s hand is simple
enough. After all, you already have a simple drawCard () method. But you
have a number of other issues to consider in addition to adding a card to the
player’s hand.

In Crazy Eights, a player who can’t make a valid play must continue draw-

ing until they can make one — which means that the player may have seven
cards or more. In your initial game screen mock-up, you use an arrow key

to rotate through the hand, displaying only seven cards at a time. From a Ul
perspective, you can handle this task in many different ways; in this instance,
you implement an arrow key.

Add the following bitmap to your variable declarations:
private Bitmap nextCardButton;

Now you need to load it, so add the following line of code to the
onSizeChanged () method:

nextCardButton = BitmapFactory.decodeResources ()
(getResources (),
R.drawable.arrow next) ;

Now you need to modify the part of the onDraw () method that draws your
hand. Replace the code that draws your hand with the contents of Listing 6-22.

Listing 6-22: Drawing a Hand with More than Seven Cards

if (myHand.size() > 7) { —1
canvas .drawBitmap (nextCardButton,
screenW-nextCardButton.getWidth () -
screenH-nextCardButton.getHeight ()
scaledCardH- (90*scale) ,
null) ;

(30*scale),

}
for (int 1 = 0; 1 < myHand.size(); i++) { —7
if (i == movingCardIdx) {
canvas .drawBitmap (myHand.get (i) .getBitmap (),
movingX,
movingyY,
null) ;
} else {
if (1 < 7) { —14

Chapter 6: Creating a Basic Play Screen 1 73

canvas .drawBitmap (myHand.get (i) .getBitmap (),
i* (scaledCardw+5),
screenH-scaledCardH-
whitePaint.getTextSize()-(50*scale),
null) ;

}

Here’s a brief explanation of most of the lines in this listing:
—1-6 This block of code draws the next button, but only if your hand
size is greater than 7.

—7-12 Loop through all cards in your hand. If the index value matches
the moving card index, you draw that moving card.

—14-19 Otherwise, the card is drawn in its normal position in the hand,
but only if its index value is one of the first seven cards.

Now you can visually handle a hand holding more than seven cards. Before
you enable the drawing functionality, however, you need a way to determine
whether the player should be allowed to draw a card.

In your GameView, add the method shown in Listing 6-23.

Listing 6-23: Checking for Valid Draws

private boolean checkForValidDraw () {
boolean canDraw = true;
for (int 1 = 0; 1 < myHand.size(); i++) {
int tempId = myHand.get (i) .getId() ;
int tempRank myHand.get (i) .getRank () ;
int tempSuit myHand.get (i) .getSuit () ;

if (validSuit == tempSuit || validRank == tempRank
|
tempId == 108 || tempId == 208 ||
tempId == 308 || tempId == 408) {
canDraw = false;

}
}

return canDraw;

}

This chunk of code should look familiar — similar logic is used in your simple
computer opponent to check for valid plays. This method is checking to see
whether the player’s hand contains a card that either matches the current
rank or suit or contains an 8:

’ 74 Part lll: Making Your First Game: Crazy Eights

v If so, it returns true.

v If not, it returns false.

Now add the code, shown in Listing 6-24, for drawing a card to the ACTION_
UP case of your onTouchEvent () method.

Listing 6-24: Drawing a Card Into a Hand

if (movingCardIdx == -1 && myTurn &&

> (screenW/2)-(100*scale) &&
< (screenW/2)+(100*scale) &&
> (screenH/2)-(100*scale) &&
<)
)

KO X

(screenH/2)+ (100*scale)) {

if (checkForValidDraw()) {
drawCard (myHand) ;

} else {
Toast .makeText (myContext, "You have a
valid play.", Toast.LENGTH_SHORT) .show() ;

}

If the player has no card in hand, they click the draw pile (or anywhere near
it). As with playing, you're detecting only whether the player clicks in the
middle of the screen, near the draw pile:

» When they do, you call your checkForvalidDraw () method

v~ If it returns true, you draw a card and add it to the hand.

v~ If the player has a valid play, you inform them with a Toast.
Finally, you add the logic for rotating the cards displayed in the player’s hand
if it contains more than seven cards. Luckily, Collections in Java provide a

built-in method for rotating lists. You call this method when the player holds
more than seven cards and clicks the Next Card button.

Add the code in Listing 6-25 to the ACTION_UP case of your onTouch-
Event () method.

Listing 6-25: Cycling Through Cards in a Large Hand

if (myHand.size() > 7 &&
X > screenW-nextCardButton.getWidth()-(30*scale) &&
Y > screenH-nextCardButton.getHeight () -scaledCardH-
(90*scale) &&
Y < screenH-nextCardButton.getHeight () -scaledCardH-
(60*scale)) {
Collections.rotate (myHand, 1);

Chapter 6: Creating a Basic Play Screen

The conditional statement determines whether the player has more than
seven cards and is clicking the button.

If so, the indices of the cards are shifted upward by 1, and the last card in the
list is moved to the front. Try it out. You should now be able to make valid
plays, and when you can’t, you should be able to draw. When your hand

size is larger than seven, you should be able to use the Next button to cycle
through the cards.

In previous sections, you leave the turn toggled to the human player while
you implement all possible actions they can take. After you have that logic
implemented, you can see in the following section how to alternate turns so
that you can feel like you're playing an actual game.

Advancing play

Though earlier sections show you how to work on the functionality for play-
ing and drawing cards for the human player, you've left the myTurn variable
toggled to true. It’s time to return it to initialize randomly. You handle the ini-
tialization in the onSizeChanged () method — the same place you initialize
nearly everything else.

Modify your onSizeChanged () method to match the contents of Listing 6-26.

Listing 6-26: Initializing Player Turns

@Override
public void onSizeChanged
(int w, int h, int oldw, int oldh) {
super .onSizeChanged(w, h, oldw, oldh);

screenW = w;

screenH = h;

Bitmap tempBitmap = BitmapFactory.
decodeResource (myContext .getResources (),
R.drawable.card_back) ;

scaledCardw = (int) (screenW/8) ;

scaledCardH = (int) (scaledCardw*1.28);

cardBack = Bitmap.createScaledBitmap (tempBitmap,
scaledCardW, scaledCardH, false);

nextCardButton = BitmapFactory.
decodeResource (getResources (),
R.drawable.arrow next) ;

initCards() ;

dealCards () ;

drawCard (discardPile) ;

(continued)

175

’ 76 Part lll: Making Your First Game: Crazy Eights

Listing 6-26 (continued)

validSuit discardPile.get (0) .getSuit () ;
validRank discardPile.get (0) .getRank() ;
myTurn = new Random() .nextBoolean() ; —19
if (!myTurn) {
makeComputerPlay () ;

}
}

You see in line 19 that you've returned to randomizing the myTurn variable:

v~ If that value is false, you call the new method makeComputerPlay ().
v~ If the value is true, you simply wait for user input.

We commented out the line initializing myTurn in the constructor. To keep
the code clean, you can delete that commented line from the constructor.

To implement the new method for making computer plays, you add the
method in Listing 6-27 to your GameView. First you'll need to add a variable

for the computer player along with your other variable declarations at the
top of the file:

private ComputerPlayer computerPlayer = new
ComputerPlayer () ;

Listing 6-27: Handling Computer Opponent Plays

private void makeComputerPlay () {
int tempPlay = 0; —2
while (tempPlay == 0) { —3
tempPlay = computerPlayer.makePlay (oppHand,
validsSuit, wvalidRank) ;

if (tempPlay == 0) {
drawCard (oppHand) ;

}
}
if (tempPlay == 108 || tempPlay == 208 ||

tempPlay == 308 || tempPlay == 408) {
validRank = 8;
validSuit = —12

computerPlayer.chooseSuit (oppHand) ;
String suitText = "";
if (validsuit == 100) {

Chapter 6: Creating a Basic Play Screen

suitText = "Diamonds";

} else if (validSuit == 200) {
suitText = "Clubs";

} else if (validSuit == 300) {
suitText = "Hearts";

} else if (validSuit == 400) {
suitText = "Spades";

}
Toast .makeText (myContext, "Computer chose " +
suitText, Toast.LENGTH_SHORT) .show() ;

} else {
validSuit = Math.round((tempPlay/100) * 100); —26
validRank = tempPlay - validSuit;

}
for (int i = 0; i < oppHand.size();
Card tempCard = oppHand.get (i) ;
if (tempPlay == tempCard.getId()) {
discardPile.add (0, oppHand.get(i));
oppHand.remove (1) ;

i++) { —29

}
}
myTurn = true; —36

}

Here’s a brief explanation of various lines in this listing:

—2 You initialize a temporary variable to hold the id of the played
card.
-3 A value of 0 for the id indicates no matching cards. The computer

player needs to draw a card, so you set up a while loop. As long
as the computer player indicates that it needs to draw, you draw
a card into its hand. A valid id for a card to be played escapes the
loop.

—12 If the computer chooses to play an 8, you call its chooseSuit ()
method, which for now is set to always return diamonds. You then
notify the user of the chosen suit via a Toast. Though you may
want to always display the current valid suit on the screen, for
now, stick with a temporary notification.

—26-27 If the computer player doesn’t play an 8, you simply reset the
valid rank and valid suit to whatever the played cards’ values are.

—29 Loop through the opponent’s hand, adding the played card to the
discard pile and removing it from their hand.

—36 Finally, you toggle the turn back to the human player.

’ 78 Part lll: Making Your First Game: Crazy Eights

You need to add a last bit of code before turns are properly alternated
throughout a game. When the human player makes a move, you call the
method you just made. The human player makes a move after dropping a
card on the discard pile; that’s what you need to modify.

Modify the section of code in the ACTION_UP case of onTouchEvent (va),
as shown in Listing 6-28.

Listing 6-28: Passing the Turn to the Computer Opponent

case MotionEvent.ACTION_UP:
if (movingCardIdx > -1 &&
X > (screenW/2)-(100*scale) &&
X < (screenW/2)+ (100*scale) &&
)
)

Y > (screenH/2)-(100*scale) &&

Y < (screenH/2)+(100*scale) &&

(myHand.get (movingCardIdx) .getRank () == 8 ||
myHand.get (movingCardIdx) .getRank () == validRank

|
myHand.get (movingCardIdx) .getSuit () =
validSuit)) {
validRank =
myHand.get (movingCardIdx) .getRank () ;
validSuit =
myHand.get (movingCardIdx) .getSuit () ;
discardPile.add (0, myHand.get (movingCardIdx)) ;
myHand . remove (movingCardIdx) ;
if (myHand.isEmpty()) {
//handle end of hand
} else {
if (validRank == 8) { —17
showChooseSuitDialog () ;
} else {
myTurn = false;
makeComputerPlay () ;

}

In Lines 17-19, you simply check to see whether the player played an 8.

v If so, you call the showChooseSuitsDialog () method.

v If not, you toggle the turn variable and call the method for the computer
to play.

If the human player plays an 8 and the Choose Suits dialog box is displayed,
the computer should play only after the dialog box is dismissed, so you need
to update the showChooseSuitsDialog () method.

Chapter 6: Creating a Basic Play Screen 1 79

Modify your showChooseSuitsDialog () method to match Listing 6-29.

Listing 6-29: Passing the Turn After Choosing a New Suit

private void showChooseSuitDialog() {
final Dialog chooseSuitDialog = new Dialog (myContext) ;
chooseSuitDialog.requestiWindowFeature
(Window.FEATURE_NO_TITLE) ;
chooseSuitDialog.setContentView
(R.layout.choose_suit_dialog) ;
final Spinner suitSpinner = (Spinner)
chooseSuitDialog.findViewById(R.id.suitSpinner) ;
ArrayAdapter<CharSequence> adapter =
ArrayAdapter.createFromResource (
myContext, R.array.suits,
android.R.layout.simple_spinner_item) ;
adapter.setDropDownViewResource
(android.R.layout.simple_spinner_dropdown_item) ;
suitSpinner.setAdapter (adapter) ;
Button okButton = (Button)
chooseSuitDialog.findViewById(R.id.okButton) ;
okButton.setOnClickListener (new View.OnClickListener ()
{
public void onClick(View view) {
validSuit =
(suitSpinner.getSelectedItemPosition()+1)*100;
String suitText = "";
if (validSuit == 100) {

suitText = "Diamonds";

} else if (validSuit == 200) {
suitText = "Clubs";

} else if (validSuit == 300) {
suitText = "Hearts";

} else if (validSuit == 400) {
suitText = "Spades";

}
chooseSuitDialog.dismiss () ;
Toast .makeText (myContext, "You chose " +
suitText, Toast.LENGTH_SHORT) .show() ;
myTurn = false; —30
makeComputerPlay () ; —31
}
Y
chooseSuitDialog.show() ;

}

Lines 30-31 are added, toggling the turn variable and making the computer
play.

’ 80 Part lll: Making Your First Game: Crazy Eights

Now, whenever you launch the game screen, the player who goes first

is chosen randomly, and you can make plays with the computer player
responding. You may notice that the opponent plays instantly after the
human player makes a move. Of course, computers are fast, so they don’t
need much time to think about plays (especially your rather unsophisticated
player). Because it doesn’t feel much like players’ turns are alternating when
the computer responds so quickly, consider implementing either

v A Toast indicating the played card
v A delay between the human player’s play and the computer’s play
Also, you're not handling the case of either player running out of cards, in

which case the hand should end. I tell you how to handle this task, and how
to improve your computer opponent and scoring, in Chapter 7.

Chapter 7
Finishing Your First Game

In This Chapter

Handling the end of a hand and the end of a game
Developing a more sophisticated player Al

Using your own launcher icon

A fter you have every core element that enables you to represent the

game state and make plays from both hands, your only remaining tasks
are to handle the ends of hands and games — and to make a few improve-

«\\‘WE ments. You're almost finished with your first game!

[~ =2

',p You can download sample files for this chapter at

1("’#5

www . dummies .com/go/androidgameprogramming

Ending Hands and Games

You've got all the logic for making plays within a game, but hands and games
can’t go on forever, right? You need to make sure the game can recognize
states when the hand or game should come to an end so that scores can be
tallied so the game can either

v Progress to the next hand

1 Determine who won and who lost

Ending a hand

The hand should end when either player plays their last card. But then these
three things should happen:

http://www.dummies.com/go/androidgameprogramming

’ 82 Part lll: Making Your First Game: Crazy Eights

v Update the scores.

v Display a dialog indicating that the hand is over.

v~ Start a new hand.
To handle the scoring first, you add a new variable to keep track of how
many points were earned by a given player for the hand. You reset this vari-

able after each hand. Add the following line to your variable declarations in
GameView:

private int scoreThisHand = 0;
To handle the scoring value for each card, you update the Card object. Open
the Card class and add the following variable declaration along with the
others:

private int scoreValue = 0;
Now modify the constructor of Card to match Listing 7-1, and add the new

getScoreValue() method.

Listing 7-1: Tracking the Score Values of Cards

public Card(int newId) ({
id = newId;

suit = Math.round((id/100) * 100);

rank = id - suit;

if (rank == 8) —5
scoreValue = 50;

} else if (rank == 14) {

scoreValue = 1;
} else if (rank > 9 && rank < 14) {
scoreValue = 10;
} else {
scoreValue = rank;
}
}

public int getScoreValue() { —16
return scoreValue;

}

Chapter 7: Finishing Your First Game 1 83

Here’s a brief explanation of what the various lines do:

—5-10 These lines check the rank of the card and assign a score value
to your variable when the card is created. In Crazy Eights, eights
that remain in a player’s hand at the end of the game are worth
50 points to the opponent. Face cards are worth 10 points; aces, 1
point; and all other cards, their face values. There are other scor-
ing conventions, so feel free to use your own, though you'll stick
with this standard one for now.

—16 You then need a method to get the score value when you tally the
scores.

Next, you add the new method updateScores () to your GameView with the
contents of Listing 7-2.

Listing 7-2: The New updatescores () Method

private void updateScores () {

for (int i = 0; 1 < myHand.size(); i++) {
oppScore += myHand.get (i) .getScorevValue() ;
scoreThisHand += myHand.get (i) .getScorevValue() ;

}

for (int 1 = 0; 1 < oppHand.size(); i++) {
myScore += oppHand.get (i) .getScorevalue() ;
scoreThisHand += oppHand.get (i) .getScoreValue() ;

}

This listing loops through the hand that still has cards:

+* One hand is empty, so only one of these loops even does anything. If
your hand is empty, you increment the score with the value of each card
in your opponent’s hand.

v You also increment the scoreThisHand variable, which you use to
inform the player of how many points were earned from this hand.

v Likewise, when your opponent’s hand is empty, they get the point value
of each card in your hand.

Now that the scores are updated, you display a new dialog to indicate that
the hand has ended. It needs

v Text to tell the player who ran out of cards and how many points were
awarded

v A button to dismiss the dialog and advance to the next hand

’ 84 Part lll: Making Your First Game: Crazy Eights

If you're making a new dialog with different Ul elements, you need a new
layout. Follow these steps:

1. Right-click the res/layout folder and select Newr>File.
2. Name the file end_hand_dialog.xml and click OK.
3. Modify the contents to match Listing 7-3.

Listing 7-3: The end_hand_dialog.xml File

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
android:id="@+id/endHandLayout"
android:layout_width="275dp"
android:layout_height="wrap_content"
android:orientation="vertical"
android:layout_gravity="top"
xmlns:android="http://schemas.android.com/apk/res/android"
>

<TextView
android:id="@+id/endHandText"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text=""
android:textSize="16sp"
android:layout_marginLeft="5dp"
android:textColor="#FFFFFF"

>

</TextView>

<Button
android:id="@+id/nextHandButton"
android:layout_width="125dp"
android:layout_height="wrap_content"
android: text="Next Hand"

>

</Button>

</LinearLayout>

This listing is an even simpler version of the Choose Suit dialog layout. Again,
you're using a LinearLayout to align the elements vertically within the
dialog, and you have only two elements:

V¥ TextView

You leave the default text for the TextView empty for now because you’ll
modify it by informing the player who ran out of cards on a given hand
and how many points they earned from their opponent’s remaining cards.

¥ Button.

The button has the default text Next Hand.

Chapter 7: Finishing Your First Game 1 85

Now you add the method that gets called when a given hand is finished. Add
the method shown in Listing 7-4 to your GameView.

Listing 7-4: The endHand () Method

private void endHand () {
final Dialog endHandDialog = new Dialog (myContext) ;
endHandDialog.requestWindowFeature
(Window.FEATURE _NO_TITLE) ;
endHandDialog.setContentView (R.layout.end _hand dialog) ;

updateScores () ; —5

TextView endHandText = (TextView) —6
endHandDialog. findViewById (R.i1d.endHandText) ;

if (myHand.isEmpty()) {

endHandText .setText ("You went out and got " +
scoreThisHand + " points!");
} else if (oppHand.isEmpty()) {
endHandText .setText ("The computer went out and got "
+ scoreThisHand + " points.");

}
Button nextHandButton = (Button) —15
endHandDialog.findViewById(R.id.nextHandButton) ;
if (oppScore >= 300 || myScore >= 300) {
nextHandButton.setText ("New Game") ;
}

nextHandButton.setOnClickListener
(new View.OnClickListener () {
public void onClick (View view) {
initNewHand () ;
endHandDialog.dismiss () ;
}
)
endHandDialog.show () ;
}

This listing is similar to the method that displays the Choose Suits dialog. It
follows this process of events:

1. You create a new dialog, ensure that it doesn’t display a title, and then
set the content to the new layout file.

2. You then call the updateScores () method in line 5 to display the
scoring information in the dialog. Line 6 creates a reference to the
TextView, and then the next few lines set the text, depending on who
ran out of cards and how many points were earned.

’ 86 Part lll: Making Your First Game: Crazy Eights

3. Reference the button (starting with line 25), and set the onClickLis-

tener () and its associated logic. You call a new method, initNe-

wHand (), which you haven’t written yet, and then dismiss the dialog.

You'll also need the import:

import android.widget.TextView;

Now put in the initNewHand () method. Add the code in Listing 7-5 to your

GameView.

Listing 7-5: The initNewHand () Method

private void initNewHand () {
scoreThisHand = 0;
if (myHand.isEmpty()) {
myTurn = true;
} else if (oppHand.isEmpty ()) {
myTurn = false;

}

deck.addall (discardPile) ;
deck.addAll (myHand) ;
deck.addAll (oppHand) ;
discardPile.clear () ;
myHand.clear () ;
oppHand.clear () ;
dealCards () ;

drawCard (discardPile) ;

validSuit = discardPile.get (0) .getSuit() ;
validRank = discardPile.get(0) .getRank() ;

if (!'myTurn) {
makeComputerPlay () ;
}
}

—2
—3

—8

—14

—18

Here’s a brief explanation of the lines in the listing:

—2 Reset the points earned for the hand.

—3-7 Determine who will play first in the next hand. The player who
goes out gets to play first in the next hand, so you check to see
whose hand is empty and set the myTurn variable accordingly.

Chapter 7: Finishing Your First Game 1 8 7

—8-13 These lines add the discard pile and both players’ hands back to
the deck, and then clear the lists for the hands and the discard
pile. You're essentially putting all cards back into the deck.

—14-17 Deal the cards and add the top card to the discard pile, setting the
valid suit and rank based on that card.

—18-20 Finally, if it isn’t the human player’s turn, you instruct the com-

puter to play. Otherwise, the game simply waits for play input
from the player.

Now that you have all the associated logic to handle the end of a hand, you
need to call it when either player runs out of cards. Check in the two places
where the human and computer make their play — for the human, in the
ACTION_UP case of onTouchEvent ().

Modify the relevant code in ACTION_UP that handles dropping a card onto
the discard pile to match the code in Listing 7-6.

Listing 7-6: Checking for End-of-Hand on the Human'’s Turn

case MotionEvent .ACTION_UP:
if (movingCardIdx > -1 &&
X > (screenw/2

)-(100*scale) &&
X < (screenW/2)+ (100*scale) &&
Y > (screenH/2)-(100*scale) &&
Y < (screenH/2)+(100*scale) &&

(myHand.get (movingCardIdx) .getRank () == 8
myHand.get (movingCardIdx) .getRank () =
validRank | |
myHand.get (movingCardIdx) .getSuit () ==
validsSuit)) {
validRank = myHand.get (movingCardIdx) .getRank() ;
validSuit = myHand.get (movingCardIdx) .getSuit() ;
discardPile.add (0, myHand.get (movingCardIdx)) ;
myHand . remove (movingCardIdx) ;

if (myHand.isEmpty()) { —14
endHand () ;
} else {
if (validRank == 8) {

showChooseSuitDialog () ;

(continued)

’ 88 Part lll: Making Your First Game: Crazy Eights

Listing 7-6 (continued)

} else {
myTurn = false;
makeComputerPlay () ;

}

Starting with line 14, you simply add a check to see whether the player’s
hand is empty:

v~ If the player’s hand is empty, you call the endHand () method.

v Otherwise, you continue the game by either calling the Choose Suits
dialog or passing the turn to the computer.

What about the computer player? Find your makeComputerPlay () method
in GameView and modify it to match Listing 7-7.

Listing 7-7: Checking for End-of-Hand on the Computer’s Turn

private void makeComputerPlay () {
int tempPlay = 0;
while (tempPlay == 0) {

tempPlay = computerPlayer.makePlay (oppHand,
validSuit, wvalidRank) ;
if (tempPlay == 0) {
drawCard (oppHand) ;
}

if (tempPlay == 108 || tempPlay == 208 || tempPlay ==
308 || tempPlay == 408) {
8 .

’

validRank =
validSuit = computerPlayer.chooseSuit (oppHand) ;
String suitText = "";

if (validSuit == 100) {

suitText = "Diamonds";

} else if (validSuit == 200) {
suitText = "Clubs";

} else if (validSuit == 300) {
suitText = "Hearts";

} else if (validSuit == 400) {
suitText = "Spades";

3

Toast .makeText (myContext, "Computer chose " +
suitText, Toast.LENGTH_SHORT) .show() ;

} else {
validSuit = Math.round((tempPlay/100) * 100) ;
validRank = tempPlay - validSuit;
}
for (int i = 0; 1 < oppHand.size(); i++) {
Card tempCard = oppHand.get (i) ;
if (tempPlay == tempCard.getId()) {

discardPile.add (0, oppHand.get(i)) ;
oppHand.remove (i) ;
}
}
if (oppHand.isEmpty()) { —35
endHand () ;
}
myTurn = true;

}

You've added a check from line 35 after playing a card, to see whether the
opponent’s hand is empty. If so, you call the endHand () method. You should
be able to launch the game and play out a real-life hand of Crazy Eights!

If you go out first, you should see a dialog similar to the one in Figure 7-1.

In this case, the human player ran out of cards first and earned 46 points
from the opponent’s hand. Note also that the scores displayed at the top and
bottom of the screen have been updated. At this point, you can play end-
less rounds of Crazy Eights, with the scores updating after every hand. But
there’s no way for the game to end. Typically, a game ends when one player’s
score reaches a predetermined goal. In this case, you use 300 points.

Ending a game

If you end the game when one player reaches or exceeds 300 points, you
don’t need to do much other than modify the endHand () method. Points
are accumulated only at the conclusion of a hand, so you simply need to add
some additional logic to detect end-of-game conditions and display different
information in your existing End Hand dialog.

Chapter 7: Finishing Your First Game 1 89

’ 90 Part lll: Making Your First Game: Crazy Eights

You went out and got 46 points!

|
Figure 7-1:
Displaying
the end-of-
hand dialog.
|

Modify your endHand () method to match Listing 7-8.

Chapter 7: Finishing Your First Game 1 9 ’

Listing 7-8: Handling the End of the Game

private void endHand () {
final Dialog endHandDialog = new Dialog (myContext) ;
endHandDialog.requestWindowFeature
(Window.FEATURE_NO_TITLE) ;
endHandDialog.setContentView (R.layout.end _hand_dialog) ;
updateScores () ;
TextView endHandText = (TextView)
endHandDialog. findvViewById (R.1id.endHandText) ;
if (myHand.isEmpty()) {
if (myScore >= 300) { —9
endHandText .setText ("You reached " + myScore +
" points. You won! Would you like to play again?");
} else {
endHandText .setText ("You went out and got " +
scoreThisHand + " points!");

}
} else if (oppHand.isEmpty()) {
if (oppScore >= 300) {
endHandText .setText ("The computer reached " +
oppScore + " points. Sorry, you lost. Would you
like to play again?");

} else {
endHandText .setText ("The computer went out and
got " + scoreThisHand + " points.");
}
}
Button nextHandButton = (Button)
endHandDialog.findViewById(R.id.nextHandButton) ;
if (oppScore >= 300 || myScore >= 300) { —27
nextHandButton.setText ("New Game") ;
}

nextHandButton.setOnClickListener
(new View.OnClickListener ()
{public void onClick(View view) {

if (oppScore >= 300 || myScore >= 300) { —32
myScore = 0;
oppScore = 0;

}

initNewHand () ;

endHandDialog.dismiss () ;
}

1)
endHandDialog.show () ;

’ 92 Part lll: Making Your First Game: Crazy Eights

Here’s a brief explanation of various lines in the listing:

—9-24 You've added conditionals to check whether either score equals
or exceeds 300. If so, you display a different message, indicating
that the game is over and who won, and asking whether the player
wants to play another game.

—27 Detect whether either score exceeds 300, and if so, set the text on
the button to New Game instead of the default Next Hand.

—32-35 The only other modification is zeroing out both players’ scores if
the game is over before initializing a new hand.

Wrapping Up the Game

After you have all the necessary logic for playing not just one game but also
starting new games, all the essential nuts and bolts are in place. However, the
computer player is still not a capable opponent.

You’ll make improvements to make the game more competitive before updat-
ing the launcher icon and wrapping everything up.

Coding the opponent Al

You aren’t doing anything particularly sophisticated to the Al Crazy Eights
is a simple game, and its strategy, accordingly, isn’t complicated. Some
games warrant different levels of strength for computer players, but that’s
not necessary here. You simply want the computer player to provide a
decent challenge.

There’s no need to make the game play optimally, because it’s a relatively
simple game. Your players may not appreciate a computer that plays better
than they do!

When I first released my Dominoes game, I coded a fairly simple Al. All it does
is look for the highest possible point gain on its turn. If it can’t score on its
turn, it plays a random legal move. I thought that this difficulty level was rea-
sonable for an Al because it doesn’t play defensively or consider the remain-
ing point totals if the human player runs out of cards first. But I still received
complaints that the game was too difficult to play against. One user wrote
that he had played it dozens of times and simply couldn’t beat it. He might
simply have been unlucky, but the moral of the story is that you need to find

Chapter 7: Finishing Your First Game

a reasonable balance for your computer opponents, and not worry about
how well they’re playing. You'll likely get complaints that your computer play-
ers are both too good and not good enough.

In the case of the Crazy Eights player, you make only two significant changes
to improve it, which should make it suitable for average play. Both have to do
with playing an 8:

v Ensure that the computer plays an 8 only when it has no other legal
play.

v Be smart about which suit the computer chooses when it plays an 8.

Open your ComputerPlayer class and modify the makePlay () method to
match Listing 7-9.

Listing 7-9: Updated makeplay () Method for the Computer Player

public int makePlay(List<Card> hand, int suit, int rank) {
int play = 0;
for (int i = 0; i < hand.size(); i++) { —3
int tempId = hand.get (i) .getId() ;
int tempRank = hand.get (i) .getRank() ;
int tempSuit = hand.get (i) .getSuit() ;
1

if (tempRank != 8) {
if (rank == 8) {
if (suit == tempSuit) {

play = tempId;
}
} else if (suit == tempSuit || rank == tempRank)
{
play = tempId;

3

if (play == 0) { —17
for (int 1 = 0; 1 < hand.size(); i++) ({
int tempId = hand.get (i) .getId() ;
if (tempId == 108 || tempId == 208 || tempId ==
308 || tempId == 408) {

play = tempId;

}
}

return play;

193

’ 94 Part lll: Making Your First Game: Crazy Eights

In the previous version of this method, you loop through the computer

player’s hand, and if a given card is a legal play, set it as the play to make and
then return it. Here, you separate out the logic for playing an 8 and a non-8:

v Lines 3-16 loop through the computer’s hand the first time, determining
whether each card that isn’t an 8 is a legal move.

If a legal non-8 move is found, it’s set to the current play.

v Lines 17-25 are executed only if a non-8 legal play is found. If not, this
loop looks for an 8 in the computer player’s hand, and if one is found,

it’s set to the current

play.

v If no legal play is found, 0 is returned, indicating that the computer must

draw a card.

This change means that the computer player is holding its 8 cards longer and
playing them only when necessary, which is generally a smart way to play.

Next, you modify the chooseSuit () method, as shown in Listing 7-10.

Listing 7-10: Updated choosesuits () Method for the Computer Opponent

public int chooseSuit (List<Card> hand) {

int suit = 100;
int numDiamonds
int numClubs = 0
int numHearts
int numSpades
for (int i = 0;
int tempRank
int tempSuit
if (tempRank

I K oo~

0;

7
’

< hand.size(); i++)

hand.get (i) .getSuit (
1= 8) {

if (tempSuit == 100) {
numDiamonds++;

} else if (tempSuit == 200) {
numClubs++;

} else if (tempSuit == 300) {
numHearts++;

} else if (tempSuit == 400) {
numSpades++;

}
}
}

if (numClubs > numDiamonds &&

{
hand.get (i) .getRank() ;
) I

—3

—7

—22

Chapter 7: Finishing Your First Game

\NG/
$

numClubs > numHearts &&
numClubs > numSpades) {
suit = 200;
} else if (numHearts > numDiamonds && numHearts >
numClubs && numHearts > numSpades) {
suit = 300;
} else if (numSpades > numDiamonds && numSpades >
numClubs && numSpades > numHearts) {
suit = 400;
}
return suit;

}

When the computer player plays an 8 and chooses a suit, it should choose
the suit that is most prevalent in its hand. Before, it always picked diamonds
(which isn’t an effective strategy).

Follow the steps below to improve the suit choice when the computer player
plays an 8:
1. Add four variables to track the number of each suit (lines 3-6).

2. In Lines 7-21, loop through the computer player’s hand and count the
number of each suit.

3. From line 22 on, check to see which suit count is greater than all the
others.

e If it’s greater, set it to the suit to be returned.
e Otherwise, the default of diamonds is returned.

Give it a shot. You should find that this version of the computer player is a
reasonably good challenge.

You could continue to make improvements, but as I mention earlier in this
chapter, be careful — the more casual the game, the less likely your play-
ers will want to face a difficult challenge. If you're designing a chess app, use
strong Al and give a number of different skill levels to your computer oppo-
nents. But with Crazy Eights, a modestly good computer player works well.

Making your own launcher icon

After the game is finished, you still haven’t updated the launcher icon from
the default. Designing good-looking icons is harder than you might think.

195

’ 96 Part lll: Making Your First Game: Crazy Eights

|
Figure 7-2:
The Crazy
Eights icon
for each
screen
density.
|

Your launcher icon should be simple, visually appealing, and instantly recog-
nizable. If you have money in the budget, consider hiring a graphic designer
to make your icon.

The icon should look good at different sizes because you’ll provide a resized
icon for the four current screen densities. Figure 7-2 shows the Crazy Eights
icon at each of the four generalized screen densities.

8@

From left to right, the icons are for

v+ xhdpi (96 x 96)
v hdpi (72 x 72)
»* mdpi (48 x 48)
v 1dpi (36 x 36)

The icon graphic has to be located in the proper res/drawable folder,

and each file must have the same name. The default launcher is named
ic_launcher, so I typically replace that graphic with my own and name it
the same as the old default graphic. For example, you should have an icon
graphic named ic_launcher sized at 96 x 96 pixels in your res/drawable-
xhdpi folder, one named ic_launcher sized 72 x 72 pixels in your res/
drawable-hdpi folder, and so on for all four icons.

If you decide to name your icon graphic differently, update your manifest.
If you open it, you see in the application tag the android: icon attribute,
which points to the appropriate image file for a particular screen density.

After you’ve updated the icon, launch the game and return to the app direc-
tory to see the updated icon.

Chapter 7: Finishing Your First Game

Whew — now your game is finished! The preceding few chapters give you the
basic functionality to make a simple, turn-based game. You can use it as a
basis for more complex games of the same type, including multiplayer turn-
based games. However, you may be more interested in more graphics-inten-
sive, real-time games, such as side-scrollers or action and arcade games.

In the following chapters, I walk you through the steps to implement the pop-
ular carnival game Whack-a-Mole, which provides a strong basis for develop-
ing games of this type.

197

’ 98 Part lll: Making Your First Game: Crazy Eights

Part IV

Moving On to Your

Second Game:
Whack-a-Mole

The Sth Wave By Rich Tennant
Gricpmennany

=

. £ Y/ ,.
= £ / < - :\\;2&:
“So, what’s this breakthrough in virtualization
ygou wanted to show me?”

In this part . . .

p art IV walks you through the development of your
second full game, a virtual version of the arcade

action game Whack-a-Mole. You cover concepts similar to
those of the first game, but use the more efficient (and
more complex) SurfaceView. You also get a look at how
to load and play sounds in your game, as well as how to
save and load data. By the end of Part IV you have a sec-
ond complete, playable game — and the experience of
building it.

Chapter 8
Creating a Complex Title Screen

In This Chapter
Starting Whack-a-Mole
Implementing a title screen with Surfaceview
Adding options menus to your games
Enabling and disabling sound

Tlis chapter sets you on your way toward making an arcade-style game
with animations and sounds: a mobile-game version of the classic carni-
val game Whack-a-Mole. In case you’'ve never heard of the game or played it
yourself, it typically has a play area littered with a series of holes. When the
game starts, a pesky mole pops up from one or more of the holes. The play-
er’s task is to whack the mole on the head as fast as possible, using a hand
or a striking object, such as a mallet. The game ends after a set time limit
expires or when the player doesn’t whack the moles fast enough.

In your digital version, the play screen displays a field of seven holes, with
moles popping up at random locations. You start slowly and then increase
the rate at which the moles appear. Figure 8-1 shows a mock-up of the play
screen.

When a mole pops up from a hole, the player’s score is rendered in the lower
left corner; the game timer, in the lower right corner. Like Crazy Eights, this
game is simple, but implementing it introduces you to some vital program-
ming concepts. Unlike Crazy Eights, this game has animation, so it needs a
more efficient drawing process. If you were to implement this game using
the approach presented in the first half of this book, the game’s performance
would be quite choppy.

202 Part IV: Moving On to Your Second Game: Whack-a-Mole

Figure 8-1: m
&

Mock-up

of the play
screenin

Whack-a-
Mole.

You also implement important sound and menu options in this game.
Between the two games, you should be able to glean enough information to
jump-start your own game.

You can download sample files for this chapter at

www . dummies.com/go/androidgameprogramming

Using Surfaceliew

The official Android documentation for 2-D graphics is at the Android
Developers’ site:

http://developer.android.com/guide/topics/graphics/
2d-graphics.html

The “Canvas and Drawables” overview page notes that if your app or game
doesn’t require a high frame rate (a chess game is used as an example), the
recommended practice is to extend the view class and call draws on the
Canvas via the onDraw () method — which is exactly what you do with the
Crazy Eights game. A card game isn’t particularly graphics-intensive, and you
don’t implement animation (though you certainly could, to give it polish).

http://www.dummies.com/go/androidgameprogramming
http://developer.android.com/guide/topics/graphics/2d-graphics.html
http://developer.android.com/guide/topics/graphics/2d-graphics.html

Chapter 8: Creating a Complex Title Screen

You might be perfectly content to implement your game using only View. If
you're making a board game, card game, or even a word game, the program-
ming approach you take to Crazy Eights in this book will probably work just
fine. However, if you want to make a side-scroller (such as Super Mario Bros.)
or a shoot-em-up (like Asteroids), or even a pinball game, the standard View
isn’t likely to work well for you.

One common problem with using View in fast-paced games is that it handles
user interaction in the same thread it uses for drawing graphics. Therefore,

if a player touches the screen (for example, to whack a mole on the head),
the interaction is handled in the same thread that’s drawing. Suppose that
you want to draw an Ouch! word balloon over the mole’s head and animate
him withdrawing into his hole after he gets whacked. With view, all that logic
is queued up in the same thread. The result is either a delayed effect in the
intended action or “laggy” rendering of the animation — or both. Overall, the
experience is likely to be choppy and unappealing (and not fun).

However, the surfaceview subclass of View handles drawing to canvas in
a separate thread, so user interaction (such as touching the screen) happens
in one thread and drawing happens in another. This arrangement makes the
process more efficient and leads to a smoother game experience.

Using SurfaceView is quite a bit more complicated than vView, but it’s vital
if you want to make games that provide a satisfying user experience. Don’t
worry: I'll walk you through it.

Before you start working with Surfaceview, create a new project and all its
relevant infrastructure for your new game.

To create a new Android project for your Whack-a-Mole game, follow these
steps:
1. Select File=>New=>Android Project.
The New Android Project Window appears.
2. In the Project Name field, type WhackAMole and then click Next.
3. Select Android 4.0 as the target name and then click Next.

4. In the Package Name field, type this line, and then click Finish:
com.agpfd.whackamole
First, modify the manifest. For Crazy Eights, the layout is in portrait mode. In

this game, however, you fix the screen in landscape mode because you’ll be
laying out game elements more along the horizontal axis.

203

204 Part IV: Moving On to Your Second Game: Whack-a-Mole

Open the AndroidManifest.xml file in your new WhackAMole project and
modify it to look like Listing 8-1.

Listing 8-1: Manifest File for Whack-A-Mole

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/
res/android"
package="com.agpfd.whackamole"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk android:minSdkVersion="7" />
<application

android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >

<activity
android:name=".WhackAMoleActivity"
android:screenOrientation="1landscape" —14
android:configChanges=

"orientation|keyboardHidden" —15
android:label="@string/app_name" >
<intent-filter>

<action android:name=
"android.intent.action.MAIN" />
<category android:name=
"android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

Listing 8-1 controls the screen orientation:

v Line 14 specifies landscape as the screen orientation.

v~ Line 15 prevents the screen from reorienting when the device is rotated
or the physical keyboard opens or closes.

Next, you implement WhackAMoleView, the primary class for handling inter-
actions and drawing to the screen. You have to handle these tasks differently
from the way they work in Crazy Eights (which has two activities, each with
its own view). Here, you take an alternative approach: You have only one
activity and one view, so you need a variable to keep track of them.

Chapter 8: Creating a Complex Title Screen

To create the WhackaAMoleView, follow these steps:

1. Right-click the package in Eclipse.

2. Select Newr>Class.

3. Enter whackAMoleView as the name.
4. Click Finish.

The contents of this class should match Listing 8-2. It’s long, so bear with me!

Listing 8-2: WhackAMoleView Extending SurfaceView

package com.agpfd.whackamole;

import android.content.Context;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;
import android.graphics.Canvas;

import android.os.Handler;

import android.os.Message;

import android.util.AttributeSet;
import android.view.MotionEvent;
import android.view.SurfaceHolder;
import android.view.SurfaceView;

public class WhackAMoleView extends SurfaceView implements
SurfaceHolder.Callback {

private Context myContext; —16
private SurfaceHolder mySurfaceHolder;

private Bitmap backgroundImg;

private int screenW = 1;

private int screenH = 1;

private boolean running = false;

private boolean onTitle = true;

private WhackAMoleThread thread;

public WhackAMoleView (Context context, —25
AttributeSet attrs) {
super (context, attrs);

SurfaceHolder holder = getHolder() ;
holder.addCallback(this) ;

thread = new WhackAMoleThread (holder, context,
new Handler () {
@Override

(continued)

205

206 Part IV: Moving On to Your Second Game: Whack-a-Mole

Listing 8-2 (continued)
public void handleMessage (Message m) {

}
1)

setFocusable (true) ;

public WhackAMoleThread getThread() {

—40
return thread;
}

class WhackAMoleThread extends Thread ({ —44
public WhackAMoleThread (SurfaceHolder
surfaceHolder, Context context,
Handler handler) {
mySurfaceHolder = surfaceHolder;
myContext = context;
backgroundImg =
BitmapFactory.decodeResource

(context.getResources () ,R.drawable.title) ;
}

@Override
public void run() {
while (running) {
Canvas ¢ = null;

try {
c = mySurfaceHolder.lockCanvas (null) ;
synchronized (mySurfaceHolder) {

draw(c) ;
}
} finally {

if (¢ !'= null) {
mySurfaceHolderunlockCanvasAndPost (c) ;

}

}

private void draw(Canvas canvas) {
try {
canvas .drawBitmap (backgroundImg, 0, O,
null) ;

} catch (Exception e) {
}

Chapter 8: Creating a Complex Title Screen

}

boolean doTouchEvent (MotionEvent event) ({ —78
synchronized (mySurfaceHolder) {
int eventaction = event.getAction() ;

int X = (int)event.getX();
int Y = (int)event.getY () ;
switch (eventaction) {

case MotionEvent.ACTION_DOWN:
break;

case MotionEvent.ACTION_MOVE:
break;

case MotionEvent.ACTION_UP:
if (onTitle) {
backgroundImg =
BitmapFactory.decodeResource
(myContext.getResources() ,
R.drawable.background) ;
backgroundImg =
Bitmap.createScaledBitmap (backgroundImg,
screenW, screenH, true);
onTitle = false;
}
break;
}

return true;

}

public void setSurfaceSize (int width, —104
int height) {
synchronized (mySurfaceHolder) ({

screenW = width;

screenH = height;

backgroundImg = Bitmap.createScaledBitmap (
backgroundImg, width, height,
true) ;

}

public void setRunning (boolean b) ({
running = b;
}
}

@Override
public boolean onTouchEvent (MotionEvent event) ({

(continued)

207

208 Part IV: Moving On to Your Second Game: Whack-a-Mole

Listing 8-2 (continued)

}

return thread.doTouchEvent (event) ;

@Override
public void surfaceChanged (SurfaceHolder holder, int
format, int width, int height) {
thread.setSurfaceSize (width, height) ;
}

@Override
public void surfaceCreated(SurfaceHolder holder) {
thread.setRunning (true) ;
if (thread.getState() == Thread.State.NEW) {
thread.start () ;
}
}

@Override
public void surfaceDestroyed (SurfaceHolder holder) {
thread.setRunning (false) ;

}

Here’s a brief explanation of various lines in this listing:

—16-23 Declare all variables here. You need a local reference to the

—25

—40

—44

context for tasks such as loading images. You have a handle to
the surface manager object, which lets you interact with impor-
tant elements of the Surfaceview. You also have variables to
hold the screen width and height, a boolean to track whether
the thread that’s drawing is running, a boolean to track whether
you're on the title screen, and a reference to the thread that
draws everything.

Your constructor gets the surface holder, assigns a callback, and
creates an instance of the thread.

This method returns the thread in case you need to control it
from the activity.

This line holds the main thread. In the constructor, you load the
title screen image, which renders when the game starts up. The
run () method calls draw (). The draw () method, which now
draws only the background image, is surrounded by a try/catch
statement, in case there are any issues creating or destroying the
canvas.

Chapter 8: Creating a Complex Title Screen 209

—78 The doTouchEvent () method is the same as onTouchEvent ()
in Crazy Eights. Here, the only event you're handling is when the
user lifts their finger from the screen (ACTION_UP). You're simply
loading the game screen background, setting it as the default
background, and then toggling the boolean to indicate that the
player is no longer on the title screen.

—104 This line, which is invoked when the surface dimensions change,
is initially used to get and set the width and height of the screen.

The remaining methods are used to handle changes in the state of the sur-
face. The code may look daunting, but in the end, its effects are worth your
time and trouble.

Whew! You've set up the view, which is one difficult task, and now you need
to declare a layout to hold this view and implement the activity to run it.

To create the XML layout file that will hold your view, follow these steps:

. Right-click the res>layout directory in your project
. Select Newc>File.

. Name the file whackamole_layout .xml.

. Click Finish.

. Edit the contents of the file to match Listing 8-3.

G A W N

Listing 8-3: Layout File for WhackAMoleView

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/
apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical" >

<com.agpfd.whackamole.WhackAMoleView
android:id="@+id/mole"
android:layout_width="fill_ parent"
android:layout_height="fill_parent"/>

</LinearLayout>

This listing embeds your custom view in a LinearLayout. You reference
this XML from your activity when you load your custom view.

2 ’ 0 Part IV: Moving On to Your Second Game: Whack-a-Mole

Open your WhackAMoleActivity file and modify its contents to match
Listing 8-4.

Listing 8-4: WhackAMole Activity Loading WhackAMoleView

package com.agpfd.whackamole;

import
import
import
import

public

android.app.Activity;
android.os.Bundle;
android.view.Window;
android.view.WindowManager;

class WhackAMoleActivity extends Activity {

private WhackAMoleView myWhackAMoleView;

/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) ({

}

super .onCreate (savedInstanceState) ;

requestWindowFeature (Window.FEATURE_NO_TITLE) ; —16

getWindow () .setFlags
(WindowManager . LayoutParams .FLAG_FULLSCREEN,
WindowManager .LayoutParams .FLAG_FULLSCREEN) ;

setContentView (R.layout .whackamole_layout) ; —19

myWhackAMoleView = (WhackAMoleView)
findvViewById(R.id.mole) ; —20

myWhackAMoleView. setKeepScreenOn (true) ; —21

Here’s a brief explanation of various lines in this listing:

—16-17 You remove the title bar from the window to maximize screen

—19
—20
—21

space and make the app appear in full-screen mode.
Set the content view to the XML layout file you just defined.
This line gets a handle to the view defined in your XML layout file.

You're disabling the screen time-out while the game is being played.

At this point, you're ready to run the game for the first time. It simply dis-
plays the title screen and, when you touch the screen, toggles to the empty
game screen. Figure 8-2 shows the title screen in your game.

Make sure that all appropriate graphics files are in your res>drawable
directory. Feel free to design your own graphics, or see the link in the section
“Using SurfaceView,” at the beginning of this chapter.

Chapter 8: Creating a Complex Title Screen 2 7 ’

& ‘o
MOLE

|
Figure 8-2:
Title screen
in Whack-a- m
Mole. *
|

If you run the game and then touch the screen, the initial game screen
appears, showing only a field with seven holes, as shown in Figure 8-3.

|
Figure 8-3:
Empty game
screenin
Whack-a-
Mole.
|

You're on your way to producing a fast-paced arcade game! Because this
game has sound, [show you how to add an options menu to let the user
toggle the sound option.

2 ,2 Part IV: Moving On to Your Second Game: Whack-a-Mole

Adding an Options Menu

You have a few choices in the design of the Options menu. You can make
your own button and draw the Options button on one or more screens using
the canvas.

After a player clicks the Options button, your own, custom Options menu
appears. Figure 8-4 shows what it might look like.

o

|
Figure 8-4:
Mock-up of
the Options
button and
Options
menu.
|

The Options button is drawn in the upper left corner as a gear icon. Clicking
the Options menu opens it with whatever options you want to provide. In this
example, it has only a check box for toggling the sound on or off.

Another approach, if the menu shows sound as the only configurable option,
is to display the speaker icon on the screen and allow the user to toggle the
sound on and off without having to open a secondary menu. This concept
might look like Figure 8-5.

When the sound is toggled on, the screen appears as shown earlier, in
Figure 8-4. If the user clicks the speaker icon, you can then draw the same
icon with a slash through it to indicate that the sound is turned off, and
toggle it back on after every click.

Another approach, the preferred one in this example, is to use the default
menu functionality of Android.

Chapter 8: Creating a Complex Title Screen 2 ’3

<)

Figure 8-5:
Mock-up of
the game m
screen with *
the Sound
option vis-
ible directly

onscreen.
|

Toggling the Sound Option

Older Android devices had a hardware Menu button that launched any
menus defined by an app. Newer devices and versions of Android have gen-
erally done away with the hardware Menu button in favor of software menu
buttons. You create your menu options in the WhackaAMoleActivity. Open
that file and add the two following variable declarations:

private static final int TOGGLE_SOUND = 1;
private boolean soundEnabled = true;

Then add the two methods shown in Listing 8-5.

Listing 8-5: Defining an Option Menu in WhackAMoleActivity

public boolean onCreateOptionsMenu (Menu menu) { —1
MenuItem toggleSound = menu.add (0, TOGGLE_SOUND,
0, "Toggle Sound") ;
return true;

}

public boolean onOptionsItemSelected (Menultem item) { —6

switch (item.getItemId()) {
case TOGGLE_SOUND:
String soundEnabledText = "Sound On"; —9

(continued)

2 ’4 Part IV: Moving On to Your Second Game: Whack-a-Mole

Listing 8-5 (continued)

if (soundEnabled) {
soundEnabled = false;
soundEnabledText = "Sound Off";
} else {
soundEnabled = true;
}
Toast .makeText (this, soundEnabledText,
Toast . LENGTH_SHORT) .show () ;
break;
}
return false;

}

Here’s a brief explanation of various lines in the listing:

—2 Override the onCreateOptionsMenu () method, and define a
menu item for toggling the sound. To keep it simple, simply insert
text in the button — later, you can add icons or other images and
fully customize the menu options.

—6 The onOptionsItemSelected () method handles the selection
of menu items. In this example, you have only one option, so you
have only one case in your switch. If you had more options, you
would add more cases.

—9-16 When the user toggles the sound option, a toast is displayed that
indicates a change; default to a string with the text "Sound on".
If the sound is enabled, you toggle off both the boolean and the
text. Otherwise, you toggle both of them on. Then you display the
toast.

You'll also need the following import statements:

import android.view.Menu;
import android.view.Menultem;
import android.widget.Toast;

Don’t do anything with the sound setting yet. When you add sounds, you’ll
have the infrastructure in place.

Figure 8-6 shows how the menu looks in Android 4.0.

The menu is designated by the three dots in the upper right corner (though
the appearance of menus may vary depending on Android version or device).
Clicking those dots makes the menu appear. In this case, a player has only
one option. When the player clicks the option, a toast appears, indicating
whether the sound is now on or off. Give it a try.

Chapter 8: Creating a Complex Title Screen 2 ’5

|
Figure 8-6:
The Sound
option menu
running in
Android 4.0.
|

|
Figure 8-7:
Iconsin
Whack-a-
Mole.
|

Toggle Sound

Your nonfunctional game screen already appears when the title screen is
clicked. Now you simply implement the logic for playing the game.

One other thing you need to do before you move on, though, is to update the
launcher icons for your new game. Figure 8-7 shows the four screen density
icons.

%%

2)
=02

Here are the screen density sizes, from left to right:

v xhdpi: 96 x 96 pixels
v hdpi: 72 x 72 pixels
v mdpi: 48 x 48 pixels
v 1dpi: 32 x 32 pixels

2 ’6 Part IV: Moving On to Your Second Game: Whack-a-Mole

Each image needs to be in its corresponding folder in the res directory of your
project. For example, the 72 x 72 icon needs to be in the res/drawable-hdpi
folder. They all should have the same name, ic_launcher.png, and you
should delete the default icon image used for starter Android projects. You can
find the image files, along with all code referenced in this section, at the link in
this chapter’s introduction.

Chapter 9
Creating an Animated Play Screen

In This Chapter

Implementing simple animations
Using sounds in your game
Handling real-time interactivity

u nderstanding how to layer images to create the visual effects you want
in your game, animate elements on the screen, handle real-time inter-
activity, and load and play sounds are all critical skills necessary to develop
many types of games. This chapter will teach you the basic approach to

all these skills and put you well on your way to developing your own game
using these effects.

On to the meat of the Whack-a-Mole game!

Handling Images for the Play Screen

You actually want your players to be able to whack those onscreen moles.
That’s the point of the game. To do that, you need moles to pop out of holes.
Figure 9-1 shows what your mole image looks like.

o9
*

Figure 9-1:
Mole image.
|

2 ’8 Part IV: Moving On to Your Second Game: Whack-a-Mole

|
Figure 9-2:
Play screen
with mole
and mask
for Hole
One.
|

|
Figure 9-3:
Mask image
for obscur-
ing moles.
|

Scary, isn’t he? The basic approach you take is to have three layers of graph-
ics: the background, the moles, and masks that the mole images sit behind.
To make more sense of this, look at Figure 9-2.

o0
%

I've made the mask transparent in this figure to give you an idea of how
things are going to work:

1. The background image will be drawn first.

2. The moles will be drawn on top of the background images.

3. The masks will be drawn on top of the moles, obscuring them from view.

Figure 9-3 is the image you’re using for the real mask, which has the same
color and pattern as the grass in the background image.

WMBER
@?«
&

Chapter 9: Creating an Animated Play Screen 2 ’ 9

When you animate your moles, modifying their y-position, they’re drawn on
the canvas “between” the background and the mask — which makes them
appear to rise up out of the holes and pop back into them.

Being a game programmer is a bit like being a stage magician. You are often
creating pleasant optical illusions for your audience. You have to think about
the visual effect that you want the player to experience, and then brainstorm
about how you might bring that effect to life. In this case, [decided to use three
layers of images to produce the desired visual effect of a mole popping out of a
hole, but there’s almost always many ways of accomplishing the same goal.

You've already got the background image rendered, so the next thing to draw
is your moles. Because you're rescaling the background image and trying to
place your masks and moles relative to the resized image, you need a number
of variables to track the scaling for both resizing and placement.

In WhackAMoleView, add the following scaling variables, as well as new bit-
maps for your mask and mole graphics.

private int backgroundOrigW;
private int backgroundOrigH;
private float scaleW;
private float scaleH;
private float drawScaleW;
private float drawScaleH;
private Bitmap mask;

private Bitmap mole;

You'll load your new graphics and set all your scaling variables in ACTION_
UP, after the player touches the title screen for the first time.

Modify the ACTION_UP case of your doTouchEvent () method to match
Listing 9-1.

Listing 9-1: Modified ACTION_UP Loading Mole and Mask Graphics

case MotionEvent.ACTION_UP:
if (onTitle) {

backgroundImg =
BitmapFactory.decodeResource
(myContext .getResources (),
R.drawable.background) ;

backgroundImg =
Bitmap.createScaledBitmap (backgroundImg,
screenW, screenH, true);

mask = BitmapFactory.decodeResource
(myContext.getResources (), —7

(continued)

220 Part IV: Moving On to Your Second Game: Whack-a-Mole

Listing 9-1 (continued)

R.drawable.mask) ;
mole = BitmapFactory.decodeResource

(myContext.getResources (), R.drawable.mole); —9
scaleW = (float) screenW/ (float)

backgroundOrigW; —11
scaleH = (float) screenH/ (float)

backgroundOrigH; —12

mask = Bitmap.createScaledBitmap (mask, (int)
(mask.getWidth () *scaleWw) ,
(int) (mask.getHeight () *scaleH), true); —13
mole = Bitmap.createScaledBitmap (mole, (int)
(mole.getWidth () *scaleW) ,
(int) (mole.getHeight () *scaleH), true);
onTitle = false;
}

break;

Here is a brief explanation of what the various lines do:

—7-10 Here you're just loading in the images for the mask and the mole.

—11-12 These lines determine the scaling variables you’ll use to resize
images based on how much you scaled the background. You just
divide the screen width/height of whatever device you're on by
the original width/height of your background image.

—13-16 The createScaledBitmap () method allows us to create new
bitmaps for your mask and mole images by multiplying their origi-
nal width and height by the image scaling factor.

Now that you've got the images loaded, how do you know where to draw
them? Figure 9-4 shows the x and y values for the seven holes in your game
background image.

But these coordinates are for your original image. You’ll also need a set of
scaling factors for where to draw images to the screen, based on how much
you scaled the background. You also need variables for the x and y position
of each of your seven moles.

|
Figure 9-4:
Thexandy
values for
locations

of holes on
the game
screen
background.
|

Chapter 9: Creating an Animated Play Screen 22 ’

50 150 250 350 450 550 650

400

450

Add the following 16 variable declarations to the rest of your global variables
in WhackAMoleView.

private int molelx, mole2x, mole3x, moled4x, moleb5x,
molebx, mole7x;

private int molely, mole2y, mole3y, moledy, moleby,
moleby, mole7y;

Now you modify the setSurfaceSize () method, since that’s where you
capture the screen width and height of the device the game is running on.
Modify the setSurfaceSize () method of your WhackAMoleView to match
Listing 9-2.

Listing 9-2: Modified setSurfaceSize() Method Setting Mole Locations

public void setSurfaceSize(int width, int height) {
synchronized (mySurfaceHolder) {
screenW = width;
screenH = height;
backgroundImg =
Bitmap.createScaledBitmap (backgroundImg, width,
height, true);

drawScaleW = (float) screenW / 800; —7
drawScaleH = (float) screenH / 600;
molelx = (int) (55*drawScaleW) ; —9

(continued)

222 Part IV: Moving On to Your Second Game: Whack-a-Mole

Listing 9-2 (continued)

mole2x = (int) (155*drawScaleW) ;
mole3x = (int) (255*drawScaleW) ;
moledx = (int) (355*drawScaleW) ;
mole5x = (int) (455*drawScaleW) ;
mole6bx = (int) (555*drawScaleW) ;
mole7x = (int) (655*drawScaleW) ;
molely = (int) (475*drawScaleH) ;
mole2y = (int) (425*drawScaleH) ;
mole3dy = (int) (475*drawScaleH) ;
moledy = (int) (425*drawScaleH) ;
moleby = (int) (475*drawScaleH) ;
moleby = (int) (425*drawScaleH) ;
mole7y = (int) (475*drawScaleH) ;

}

This is pretty straightforward:

—7-8 Setting the scaling factors for drawing images to the screen.

— 9-22 Setting the initial positions for each mole. They don’t line up
exactly with the coordinates for the holes, because you want the
mole images slightly below the hole position and centered.

The values listed here, once scaled, should work fine for you.
Now you’re ready to draw both your moles and your masks, as shown in

Listing 9-3.

Listing 9-3: Modified draw() Method for Drawing Moles and Masks

private void draw(Canvas canvas) {
try {
canvas .drawBitmap (backgroundImg, 0, 0, null);
if (!onTitle) {
canvas .drawBitmap (mole, molelx, molely, null)
canvas.drawBitmap (mole, mole2x, mole2y, null)
canvas.drawBitmap (mole, mole3x, mole3y, null)
canvas .drawBitmap (mole, moledx, moledy, null)
canvas.drawBitmap (mole, mole5x, moleby, null)
canvas.drawBitmap (mole, mole6x, moleby, null)
canvas .drawBitmap (mole, mole7x, mole7y, null)
canvas.drawBitmap (mask, (int) 50*drawScaleW,
(int) 450*drawScaleH, null) ;
canvas .drawBitmap (mask, (int)150*drawScaleWw,
(int) 400*drawScaleH, null) ;
canvas.drawBitmap (mask, (int)250*drawScaleWw,
(int) 450*drawScaleH, null) ;

Chapter 9: Creating an Animated Play Screen 223

canvas.drawBitmap (mask, (int)350*drawScaleW,
(int) 400*drawScaleH, null) ;

canvas .drawBitmap (mask, (int)450*drawScaleWw,
(int) 450*drawScaleH, null);

canvas .drawBitmap (mask, (int)550*drawScaleWw,
(int) 400*drawScaleH, null) ;

canvas.drawBitmap (mask, (int)650*drawScaleW,
(int) 450*drawScaleH, null) ;

}
} catch (Exception e) {

}

Remember that the order in which bitmaps are drawn in this method deter-
mines what will be drawn on top or bottom:

1. The background is your first layer, so it needs to be drawn first.

2. Your moles are drawn on top of the background image, using the vari-
ables you just initialized.

3. The masks are drawn last, and their coordinates are fixed, since they
won’t be moving.

If you run the game, as long as everything is done correctly, it won’t look any
different from before! But your new mole and mask images should be there.

<P If you want to check the proper positions of your moles, comment out the lines
above that draw the masks and run the game again. You should see the moles
in their proper starting positions, ready to pop up and get whacked. Just make
sure you include the mask drawing lines back in before you move on.

You jump right into game play when the player touches the title screen. The
next section will walk you through how to decide when and where the moles
pop up, and how to make them come to life.

You can download sample files for this chapter at

http://www.dummies.com/go/androidgameprogramming

Making Simple Animations

Just as with most of your previous functionality, when you add something
new, you need some new variables.

Add the following variable declarations to your WwhackaAMoleView.

http://www.dummies.com/go/androidgameprogramming

224 Part IV: Moving On to Your Second Game: Whack-a-Mole

3

private int activeMole = 0;

private boolean moleRising = true;
private boolean moleSinking = false;
private int moleRate = 5;

private boolean moleJustHit = false;

The preceding code keeps track of the movement of moles:

v The first variable will keep track of which mole is currently moving.

You'll only have one mole moving at a time.

In an alternate version of the game, you could have multiple moles
emerge from their holes at the same time, but quite a few older devices
don’t support multi-touch (the capability to capture touch inputs from
more than one point on the screen), and you'd really want that capabil-
ity if you were subjecting your players to multiple moles. So, for now,
stick to having them deal with only one mole at a time. The activeMole
variable tracks that.

v You've also got booleans indicating whether a mole is sinking or rising.

You're not handling this with a single variable because sometimes you
want all the moles to be neither sinking nor rising. The moleRate vari-
able will handle the speed at which moles are moving. Here’s where you
make the game more difficult as it progresses, upping the speed of the
moles after every ten successful whacks.

You’'ll want to experiment with the starting value of this variable:
e If it’s too low, the game may seem boring at first.
¢ Too high, and it may get too difficult too quickly.

Play around with it and see what works for you.

v You're also adding the moleJustHit variable to track when a player suc-

cessfully whacks a mole. When you get to user interactions, you’ll begin to
use it, but for now you’ll add it in so that you have it ready to use later.

The first new method you’ll add to handle the animation of the moles will
be called whenever you need to pick a mole to move. You'll call it pick-
ActiveMole (). Add this new method to the WhackAMoleThread in your
WhackAMoleView and make sure it matches the contents of Listing 9-4.

Listing 9-4: The pickActiveMole() Method

private void pickActiveMole() {

activeMole new Random () .nextInt(7) + 1;
moleRising true;
moleSinking = false;

Chapter 9: Creating an Animated Play Screen 225

When this method is called, you set the activeMole variable to a random
integer between 1 and 7. You set moleRising to true and moleSinking to
false. You'll update the moleRate variable here later when you start han-
dling whether the user is successfully hitting or missing moles.

You'll also need the import:
import java.util.Random;
When do you want to call this new method?

v+ When the play screen is launched
»* When a mole is successfully whacked

» When the player misses the mole and it makes it safely back to its initial
position in the hole.

Let’s deal with the first case, when the play screen is launched. Add a call
to the pickActiveMole () method in the ACTION_UP case of doTouch
Event (), just after the line where you toggle onTitle to false (refer to
Listing 9-1 for reference).

onTitle = false;
pickaActiveMole () ;

This gives us an active mole, but it’s still not doing anything! To make
those moles pop up, add a new method within the WhackAMoleThread in
WhackAMoleView (just after the setRunning () method is fine). Call it
animateMoles () and make the contents match Listing 9-5.

Listing 9-5: The animateMoles() Method

private void animateMoles () {
if (activeMole == 1) {
if (moleRising) {
molely -= moleRate;

} else if (moleSinking) {
molely += moleRate;

}

if (molely >= (int) (475*drawScaleH) || moleJustHit) {
molely = (int) (475*drawScaleH) ;
pickActiveMole () ;

}

if (molely <= (int) (300*drawScaleH)) ({
molely = (int) (300*drawScaleH) ;
moleRising = false;
moleSinking = true;

(continued)

226 Part IV: Moving On to Your Second Game: Whack-a-Mole

Listing 9-5 (continued)

}
if (activeMole == 2) {
if (moleRising) {
mole2y -= moleRate;
} else if (moleSinking) {
mole2y += moleRate;
}
if (mole2y >= (int) (425*drawScaleH) || moleJustHit)
mole2y = (int) (425*drawScaleH) ;
pickActiveMole () ;
}
if (mole2y <= (int) (250*drawScaleH)) ({
mole2y = (int) (250*drawScaleH) ;
moleRising = false;
moleSinking = true;
}
}
if (activeMole == 3) {
if (moleRising) {
mole3dy -= moleRate;
} else if (moleSinking) ({
mole3dy += moleRate;
}
if (mole3dy >= (int) (475*drawScaleH) || moleJustHit)
mole3dy = (int) (475*drawScaleH) ;
pickActiveMole () ;
}
if (mole3dy <= (int) (300*drawScaleH)) {
mole3dy = (int) (300*drawScaleH) ;
moleRising = false;
moleSinking = true;
}
}
if (activeMole == 4) {
if (moleRising) {

moledy -= moleRate;
} else if (moleSinking) {
moledy += moleRate;

}

if (moledy >= (int) (425*drawScaleH) || moleJustHit)
moledy = (int) (425*drawScaleH) ;
pickActiveMole () ;

}

if (moledy <= (int) (250*drawScaleH)) ({
moledy = (int) (250*drawScaleH) ;
moleRising = false;
moleSinking = true;

}

{

Chapter 9: Creating an Animated Play Screen 22 7

if (activeMole == 5) {
if (moleRising) ({
mole5y -= moleRate;

} else if (moleSinking) {
moleby += moleRate;

}

if (moleSy >= (int) (475*drawScaleH) || moleJustHit) {
molebSy = (int) (475*drawScaleH) ;
pickActiveMole () ;

}

if (moleby <= (int) (300*drawScaleH)) ({
moleby = (int) (300*drawScaleH) ;
moleRising = false;
moleSinking = true;

}

}
if (activeMole == 6) {
if (moleRising) {
moleby -= moleRate;
} else if (moleSinking) ({
moleby += moleRate;
}
if (moleby >= (int) (425*drawScaleH) || moleJustHit) {
moleby = (int) (425*drawScaleH) ;
pickActiveMole () ;
}
if (moleby <= (int) (250*drawScaleH)) {
moleby = (int) (250*drawScaleH) ;
moleRising = false;
moleSinking = true;
}
}
if (activeMole == 7) {
if (moleRising) {
mole7y -= moleRate;
} else if (moleSinking) {
mole7y += moleRate;
}
if (mole7y >= (int) (475*drawScaleH) || moleJustHit) {
mole7y = (int) (475*drawScaleH) ;
pickActiveMole () ;
}
if (mole7y <= (int) (300*drawScaleH)) {
mole7y = (int) (300*drawScaleH) ;
moleRising = false;
moleSinking = true;
}
}

228 Part IV: Moving On to Your Second Game: Whack-a-Mole

This method is long, but it’s got a lot of repetition, so it’s not that difficult to
follow. You've got a conditional for each active mole ID, and they’re all doing
the same thing:

1. If a mole is moving, it will either be rising (moving up) or sinking
(moving down). You'll use two variables to track those states:

e [f moleRising is true, you decrement the y-position of that par-
ticular mole, which makes it move toward the top of the screen.
Remember that y=0 is at the top of the screen.

¢ [f moleSinking is true, you increment the y-position of the mole,
pushing it toward the bottom of the screen.

2. You check to see if the mole has either been hit or returned to its origi-
nal y-position.
In either of those cases you call pickActiveMole ().

3. The final conditional is to check if the mole has reached its highest posi-
tion on the screen (that is, it has fully popped out of its hole).

If so, you toggle the moleRising and moleSinking variables so that
the mole will move toward the bottom of the screen.

You should be able to run the game now and see the moles popping up and
returning to their holes, one at a time. Again, play with the mole rate to see
what you think is a good starting speed. Next you specify how the game
responds when the player touches the screen on a mole out of its hole.

Handling User Interaction

To handle when the player whacks a mole, you need to detect when their
finger touches the screen in the region where an active mole is out of its hole.
You also want a snazzy graphic to display to give the feeling of whacking a
mole some real punch, something like Figure 9-5.

You also want a nice sound for the whack to give that satisfying feedback of
hitting a mole on the head, but that’s a topic for the next section.

Figure 9-5:
Image to
display
when the
user whacks
a mole.
|

Chapter 9: Creating an Animated Play Screen 229

For now, you need to load a new bitmap, and you also need a few more vari-
ables for detecting an active whack, as well as tracking how many moles
the player has hit or missed. Add the following variable declarations to

WhackAMoleView.
private Bitmap whack;
private boolean whacking = false;
private int molesWhacked = 0;

private

int molesMissed = 0;

You'll load the whack image when the player transitions to the play screen
after touching the title screen. Modify your ACTTION_UP case of doTouch-
Event () again so that it matches Listing 9-6.

Listing 9-6: The animateMoles() Method

case MotionEvent .ACTION_UP:

if

}

(onTitle) {

backgroundImg = BitmapFactory.decodeResource
(myContext .getResources (),
R.drawable.background) ;

backgroundImg =
Bitmap.createScaledBitmap (backgroundImg,
screenW, screenH, true);

mask = BitmapFactory.decodeResource

(myContext.getResources (), R.drawable.mask) ;
mole =

BitmapFactory.decodeResource

(myContext.getResources (), R.drawable.mole) ;
whack = BitmapFactory.decodeResource

(myContext.getResources (), R.drawable.whack) ;
scaleW = (float) screenW/ (float) backgroundOrigW;
scaleH = (float) screenH/ (float) backgroundOrigH;

mask = Bitmap.createScaledBitmap (mask,
(int) (mask.getWidth () *scaleWw) ,
(int) (mask.getHeight () *scaleH), true);
mole = Bitmap.createScaledBitmap (mole,
(int) (mole.getWidth () *scaleWw) ,
(int) (mole.getHeight () *scaleH), true);
whack = Bitmap.createScaledBitmap (whack,
(int) (whack.getWidth () *scaleWw) ,
(int) (whack.getHeight () *scaleH), true);
onTitle = false;
pickActiveMole () ;

whacking = false;
break;

230 Part IV: Moving On to Your Second Game: Whack-a-Mole

All the lines do here is load the whack bitmap and set the whacking variable
to false. You do this because you only want the graphic to display when the
player has a fingertip down on the screen. Whenever the finger lifts, you want
the game to stop displaying the graphic.

Now you need the logic for detecting whether the player’s finger is touching
the region where an active mole is present. For that, you need two global
variables to track where the user touched the screen. Add the following two
variables to your WhackaAMoleView.

private int fingerX, fingerY;

Add a new method called detectMoleContact () (just after pickActive
Mole () is fine). Make sure the contents match Listing 9-7.

Listing 9-7: The detectMoleContact() Method

private boolean detectMoleContact () {
boolean contact = false;
if (activeMole == 1 &&

fingerX >= molelx &&
fingerX < molelx+ (int) (88*drawScaleW) &&
fingerY > molely &&
fingerY < (int) 450*drawScaleH) ({
contact = true;
moleJustHit = true;
}
if (activeMole == 2 &&
fingerX >= mole2x &&
fingerX < mole2x+ (int) (88*drawScaleW) &&
fingerY > molely &&
fingerY < (int) 400*drawScaleH) {
contact = true;
moledJustHit = true;
}
if (activeMole == 3 &&
fingerX >= mole3x &&
fingerX < mole3x+ (int) (88*drawScaleW) &&
fingerY > mole3y &&
fingerY < (int) 450*drawScaleH) {
contact = true;
moleJustHit = true;
}
if (activeMole == 4 &&
fingerX >= moledx &&
fingerX < mole4dx+ (int) (88*drawScaleW) &&
fingerY > moledy &&
fingerY < (int) 400*drawScaleH) {

Chapter 9: Creating an Animated Play Screen 23 ’

contact = true;
moleJustHit = true;
}
if (activeMole == 5 &&
fingerX >= moleb5x &&
fingerX < molebx+ (int) (88*drawScaleW) &&
fingerY > moleby &&
fingerY < (int) 450*drawScaleH) {
contact = true;
moleJustHit = true;
}
if (activeMole == 6 &&
fingerX >= molebx &&
fingerX < mole6bx+ (int) (88*drawScaleW) &&
fingerY > moleby &&
fingerY < (int) 400*drawScaleH) {
contact = true;
moleJustHit = true;
}
if (activeMole == 7 &&
fingerX >= mole7x &&
fingerX < mole7x+ (int) (88*drawScaleW) &&
fingerY > mole7y &&
fingerY < (int) 450*drawScaleH) {
contact = true;
moleJustHit = true;
}
return contact;

}

This method returns a boolean indicating whether contact was found:
1. For each active mole ID, you check to see whether the coordinates of the
finger position are both
e Between the mole’s x-position and its width
e Between its current y-position and the bottom lip of its hole
2. If those conditions are met, you set contact and moleJustHit to true.
Remember that the moleJustHit variable is used in your animate

Moles () method to pick a new mole if one has just been whacked.

You call your new animateMoles () method from the run () method of
your thread, so that it updates every time the canvas is redrawn. Modify the
run () method to match Listing 9-8.

232 Part IV: Moving On to Your Second Game: Whack-a-Mole

Listing 9-8: Modified run() Method

@Override
public void run() {
while (running) {
Canvas c = null;
try {
¢ = mySurfaceHolder.lockCanvas (null) ;
synchronized (mySurfaceHolder) {
animateMoles () ;
draw (c) ;

}
} finally {
if (¢ !'= null) {
mySurfaceHolder.unlockCanvasAndPost (c) ;

3

}

Detection needs to take place when the player touches the screen, so you
need to modify the ACTION_DOWN case of doTouchEvent (). Modify the case
to match Listing 9-9.

Listing 9-9: Modified ACTION_DOWN Case

case MotionEvent.ACTION_DOWN:
fingerX = X;
fingery = Y;

if (!'onTitle && detectMoleContact()) {
whacking = true;
molesWhacked++;

}

break;

Here you capture the x and y positions of the finger. Then, if you are not on
the title screen and your detectMoleContact () method returns true, you
set whacking to true and increment the number of moles whacked.

You want to draw the whack image while whacking is true, so add the fol-
lowing few lines to your draw () method. Make sure they’re last, because you
want this graphic always drawn on top of everything else:

if (whacking) {
canvas .drawBitmap (whack, fingerX -
(whack.getwidth() /2),
fingerY - (whack.getHeight()/2), null);

A\

Chapter 9: Creating an Animated Play Screen 233

By drawing the graphic shifted half the width from the finger position’s x and
half the height from the finger position’s y, you center it directly under the
finger, giving the illusion of an explosion splaying out from underneath the
player’s finger. Give it a try!

The last thing to do before working with sounds is to display the number of

whacks and misses. The game isn’t tracking misses yet, so add that function-
ality to your pickActiveMole () method, as seen in Listing 9-10.

Listing 9-10: Modified pickActiveMole() Method

private void pickActiveMole() {
if (!moleJustHit && activeMole > 0) {
molesMissed++;

}

activeMole = new Random() .nextInt(7) + 1;
moleRising = true;

moleSinking false;

moledJustHit false;

moleRate = 5 + (int) (molesWhacked/10) ;

}

You added a few lines at the beginning of this method to increment the
molesMissed variable if you're picking a new mole and one wasn’t just hit
and an active mole has been selected.

Notice that I also added a line at the end to adjust the rate at which the moles
move. Basically this logic increments the speed the moles move by 1 pixel for
every 10 moles whacked. Again, depending on how quickly you want the diffi-
culty of the game to ramp up, you can adjust this rate to whatever you think is
the most fun.

Now that you're tracking the number of whacked and missed moles, draw
that information to the screen. Remember that to draw text to the canvas you
need a Paint object. Let’s draw the text in black, so add the following vari-
able declaration to your WhackAMoleView.

private Paint blackPaint;

Then instantiate it and initialize its parameters by added the following lines
at the end of the setSurfaceSize () method.

blackPaint = new Paint () ;
blackPaint.setAntiAlias (true) ;
blackPaint.setColor (Color.BLACK) ;
blackPaint.setStyle (Paint.Style.STROKE) ;
blackPaint.setTextAlign (Paint.Align.LEFT) ;
blackPaint.setTextSize (drawScalewW*30) ;

234 Part IV: Moving On to Your Second Game: Whack-a-Mole

You'll need the following imports as well:

import android.graphics.Paint;
import android.graphics.Color;

You're initializing your Paint parameters here so that you can get the scal-
ing factor to adjust the text size when it’s drawn to the screen. To draw the
text, modify your draw () method to include the following two lines before

the ones that draw the mole and mask images.

canvas .drawText ("Whacked: " + Integer.toString(molesWhacked),
10, blackPaint.getTextSize()+10, blackPaint) ;

canvas.drawText ("Missed: " + Integer.toString(molesMissed),
screenW- (int) (200*drawScaleWw) ,
blackPaint.getTextSize()+10, blackPaint) ;

These two lines draw the Whacked and Missed mole counts at the top of the
screen. Now that you’'ve got all the major game elements drawn, animated,
and working the way you want, you’ll add a couple of sounds to enhance the
play experience before finishing up the game.

Loading and Playing Sounds

For sound resources, you have a number of options. You can purchase pre-
made sound effects, hire a contractor to make them specifically for your
game, or make your own. Obviously the last option is the cheapest, but it can
also be fun.
o For your first few games, I'd advise against spending a ton on art and music
resources, and while making your own can seem less professional, it’s cer-
tainly a safer investment.

The freeware audio editing program Audacity (audacity.sourceforge.net) is a
great resource for producing and editing your own sound effects. I used them
to generate the two effects you’re using in your game. You’ve got one for a
successful whack event and one for a miss.

Chapter 9: Creating an Animated Play Screen 235

Android supports a wide range of audio formats but you're using the Ogg
Vorbis (. ogg) format. It has excellent compression quality and tends to

have fewer technical issues in Android in my experience. For a comprehensive
list, see

http://developer.android.com/guide/appendix/media-
formats.html

Sound resources reside in the res/raw directory of your project. If this
directory doesn’t exist, create it:

1. Right-click the res directory.

2. Select Newr>Folder

3. Name the new folder raw.
You can either download the resources for the game via the link provided
at the beginning of this chapter, or produce your own. Either way, you need

to have two sound files named miss.ogg and whack.ogg in your res/raw
directory before you begin modifying the code for sound effects.

There’s an arcane art to making your own sound effects. I kept it pretty
simple:

v The whack noise was made simply by snapping a piece of paper in front
of a microphone (I held both ends of the paper, moved them together,
then quickly snapped the sheet flat).

v The miss noise is simply a high-pitched “hee-hee” sound produced by
voice.

Feel free to purchase or produce your own if you don’t like mine.

You use the SoundPool object in Android to load and play your
sounds, so you need to declare more variables at the beginning of your
WhackAMoleView.

private static SoundPool sounds;
private static int whackSound;
private static int missSound;
public boolean soundOn = true;

You'll also need the import statement:

import android.media.SoundPool;

http://developer.android.com/guide/appendix/media-formats.html
http://developer.android.com/guide/appendix/media-formats.html

236 Part IV: Moving On to Your Second Game: Whack-a-Mole

You'll instantiate the SoundPool and load your sounds from file
in the WhackAMoleThread constructor. The final version of your
WhackAMoleThread constructor should match Listing 9-11.

Listing 9-11: WhackAMoleThread Constructor Loading Sounds

public WhackAMoleThread (SurfaceHolder surfaceHolder,

Context context, Handler handler) {

mySurfaceHolder = surfaceHolder;

myContext = context;

backgroundImg = BitmapFactory.decodeResource
(context.getResources (), R.drawable.title);

backgroundOrigW = backgroundImg.getWidth () ;

backgroundOrigH = backgroundImg.getHeight () ;

sounds = new SoundPool (5,

AudioManager .STREAM MUSIC, 0); —9
whackSound = sounds.load (myContext, R.raw.whack, 1); —10
missSound = sounds.load (myContext, R.raw.miss, 1); —11

}

The SoundPool is instantiated on Line 9, and your two sound effects are
loading into the pool via Lines 10 and 11. You want to play the whack sound
whenever the player successfully touches a region with an active mole, the
same place in the code where you draw the whack graphic, and that’s in your
ACTION_DOWN case of doTouchEvent ().

The final version of your ACTION_DOWN case should match Listing 9-12.

Listing 9-12: Playing the Whack Sound Effect

case MotionEvent.ACTION_DOWN:
fingerX = X;
fingerY = Y;
if (!onTitle && detectMoleContact()) {
whacking = true;
if (soundOn) {
AudioManager audioManager = (AudioManager)
myContext.getSystemService
(Context .AUDIO_SERVICE) ;
float volume = (float)
audioManager .getStreamVolume
(AudioManager .STREAM_MUSIC) ;
sounds.play (whackSound, volume, volume, 1, O,
1);

}
molesWhacked++;

}

break;

Chapter 9: Creating an Animated Play Screen 23 7

You create an instance of AudioManager to get the volume for the music
stream. There are volume levels for other streams, such as the device’s ring
tone, but you've set up your SoundPool to use the same stream as the one
for music, which is the recommended practice for sound effects in games.
You get the volume for that stream, then use it to play the sound.

The other sound effect should be played when the player misses a mole
and it reaches the bottom of its hole. You can play the sound in your pick
ActiveMole () method, the same place you check that a mole made it to
its minimum height. Modify your pickActiveMole () method to match
Listing 9-13.

Listing 9-13: Playing the Miss Sound Effect

private void pickActiveMole() {
if (!moledJustHit && activeMole > 0) {
if (soundOn) {
AudioManager audioManager = (AudioManager)
myContext .getSystemService
(Context .AUDIO_SERVICE) ;
float volume = (float)
audioManager .getStreamVolume (AudioManager . STREAM_MUSIC) ;
sounds.play (missSound, volume, volume, 1, 0, 1);
}

molesMissed++;

}

activeMole = new Random() .nextInt(7) + 1;

moleRising true;
moleSinking = false;
moleJustHit = false;

moleRate = 5 + (int) (molesWhacked/10) ;
}

You insert the same logic as you did for playing the whack sound, in the same
location where you're incrementing the molesMissed variable. These addi-
tions result in the sound effects playing when you want them to, but there are
a couple more things you need to do with regard to sounds.

The first is to enable your game to control the correct volume stream using
the device hardware buttons. If you load up the game on a device, you’ll
probably notice that if you press the up or down hardware buttons that con-
trol volume, by default they adjust the ring volume and not the volume of the
sound in your game. To remedy this, you need to tell your game to adjust the
music stream volume with the hardware buttons. This is done with a single
line of code in the WhackAMoleActivity. Modify the onCreate () method
of WhackAMoleActivity to match Listing 9-14.

238 Part IV: Moving On to Your Second Game: Whack-a-Mole

Listing 9-14: Controlling Volume

@Override
public void onCreate (Bundle savedInstanceState) ({
super .onCreate (savedInstanceState) ;
requestWindowFeature (Window.FEATURE_NO_TITLE) ;
getWindow () .setFlags
(WindowManager . LayoutParams . FLAG_FULLSCREEN,
WindowManager .LayoutParams .FLAG_FULLSCREEN) ;
setContentView (R.layout .whackamole_layout) ;
myWhackAMoleView = (WhackAMoleView)
findvViewById(R.id.mole) ;
myWhackAMoleView. setKeepScreenOn (true) ;
setVolumeControlStream (AudioManager . STREAM_MUSIC) ;

}

That last line of code sets the volume control for the hardware buttons to the
music stream while your game is running. The last thing you need to handle
with regard to sound is enabling and disabling it via your menu option.
Modify the onOptionsItemSelected () method in WhackAMoleActivity
to match Listing 9-15.

Listing 9-15: Enabling and Disabling Sound

public boolean onOptionsItemSelected (Menultem item) {

switch (item.getItemId()) {
case TOGGLE_SOUND:
String soundEnabledText = "Sound On";

if (soundEnabled) {
soundEnabled = false;

myWhackAMoleView.soundOn = false; —7
soundEnabledText = "Sound Off";
} else {
soundEnabled = true;
myWhackAMoleView.soundOn = true; —11

}
Toast .makeText (this, soundEnabledText,

Toast . LENGTH_SHORT) .show () ;
break;
}

return false;

}

All you did was add Lines 7 and 11 to toggle the sound setting in your
WhackAMoleView when the user changes the setting in the options menu.

Try it out and see how you like the sounds. Make sure you test toggling the
sound from the options menu.

Chapter 9: Creating an Animated Play Screen

A quick word about music

You won’'t be adding music to this particu- For reference on how to use MediaPlayer, see
lar game (at least not in this example), but if
you decide to go this route, you'll want to use
MediaPlayer for your music files.

http://developer.android.com/
reference/android/media/
MediaPlayer.html

SoundPool is more appropriate for sound

effects, but is not effective for long music files

or those that need to loop for many iterations.

Handling End of Game

The last thing you need to do to make the game playable is to handle the end
of game state. Let’s do that when the player misses their fifth mole.

Instead of using the pre-built dialog boxes as in Crazy Eights, here you draw
your own custom dialog box onscreen when the game ends, and prompt the
player to start a new one. Figure 9-6 shows what your custom dialog box will
look like.

GAME OVER!

Figure 9-6: TOUCH THE SCREEN

Custom

Game Over TO PLAY AGAIN

dialog box.
|

You need a boolean variable to track when the end-game state is reached and
a bitmap for your dialog box, so add the following declarations to your vari-
ables in WhackAMoleView.

private boolean gameOver = false;
private Bitmap gameOverDialog;

239

http://developer.android.com/reference/android/media/MediaPlayer.html
http://developer.android.com/reference/android/media/MediaPlayer.html
http://developer.android.com/reference/android/media/MediaPlayer.html

24 0 Part IV: Moving On to Your Second Game: Whack-a-Mole

You'll detect the game over condition in the pickActiveMole () method,
where you increment the number of missed moles. Modify your pick
ActiveMole () method to match Listing 9-16.

Listing 9-16: Detecting the End of a Game

private void pickActiveMole() {
if (!moledJustHit && activeMole > 0) {
if (soundOn) ({
AudioManager audioManager = (AudioManager)
myContext .getSystemService
(Context. AUDIO_SERVICE) ;
float volume = (float)
audioManager .getStreamvolume
(AudioManager .STREAM_MUSIC) ;
sounds.play (missSound, volume, volume,
1, 0, 1);
}
molesMissed++;
if (molesMissed >= 5) {
gameOver = true;

—11

}
}

activeMole = new Random() .nextInt(7) + 1;
moleRising = true;

moleSinking = false;

moledJustHit = false;

moleRate = 5 + (int) (molesWhacked/10) ;
}

You added the check starting at Line 11 to see if the number of missed moles
is equal to or greater than 5. If so, you toggle your gameOver variable. You
only want to be updating the game state and animating moles if the game is
still going, so let’s modify the run () method of your thread to only animate

the moles if gameOver is true.

Modify the run () method in WhackAMoleThread to match Listing 9-17.

Listing 9-17: Modified run() Method

@Override
public void run() {
while (running) ({
Canvas ¢ = null;
try {
¢ = mySurfaceHolder.lockCanvas (null) ;
synchronized (mySurfaceHolder) {

if (!gameOver) ({ —8

Chapter 9: Creating an Animated Play Screen 24 ’

animateMoles () ;
}
draw(c) ;
}
} finally {
if (¢ != null) {
mySurfaceHolder.unlockCanvasAndPost (c) ;

}

}

You just added a conditional on Line 8 to call animateMoles () only when
gameOver is not true. Next you'll only check for mole whacks if gameOver
is false when the user touches the screen.

Modify the ACTION_DOWN case of doTouchEvent () to match Listing 9-18.

Listing 9-18: Modified ACTION_DOWN for End of Game

case MotionEvent.ACTION_DOWN:
if (!gameOver) {
fingerX = X;
fingerY = Y;
if (!onTitle && detectMoleContact()) {
whacking = true;
if (soundOn) {
AudioManager audioManager = (AudioManager)
myContext .getSystemService
(Context .AUDIO_SERVICE) ;
float volume = (float)
audioManager .getStreamVolume
(AudioManager .STREAM MUSIC) ;
sounds.play (whackSound, volume, volume,
1, 0, 1);

}
molesWhacked++;
}
}

break;

Here you just wrapped all the logic in ACTION_DOWN in a conditional so that
it only works if gameOver is false. You'll load your dialog-box graphic along
with your other play screen graphics in ACTION_UP. You also add a check to
see whether the game has ended. If it has, you reset all the relevant variables
and set gameOver to false so the user can play another round.

242 Part IV: Moving On to Your Second Game: Whack-a-Mole

Listing 9-19: Modified ACTION_UP for End of Game

case MotionEvent.ACTION_UP:
if (onTitle) {

backgroundImg = BitmapFactory.decodeResource
(myContext.getResources (),
R.drawable.background) ;

backgroundImg = Bitmap.createScaledBitmap
(backgroundImg, screenW, screenH, true);

mask = BitmapFactory.decodeResource
(myContext.getResources (), R.drawable.mask) ;

mole = BitmapFactory.decodeResource

(myContext.getResources (), R.drawable.mole) ;
whack = BitmapFactory.decodeResource
(myContext.getResources (), R.drawable.whack) ;

gameOverDialog = BitmapFactory.decodeResource
(myContext.getResources (),
R.drawable.gameover) ;
scaleW = (float) screenW/ (float) backgroundOrigW;
scaleH = (float) screenH/ (float) backgroundOrigH;
mask = Bitmap.createScaledBitmap (mask, (int)
(mask.getWidth () *scalew) ,
(int) (mask.getHeight () *scaleH), true);
mole = Bitmap.createScaledBitmap (mole, (int)
(mole.getWidth () *scaleWw) ,
(int) (mole.getHeight () *scaleH), true);
whack = Bitmap.createScaledBitmap (whack, (int)
(whack.getWidth () *scalew), (int)
(whack.getHeight () *scaleH), true);
gameOverDialog = Bitmap.createScaledBitmap
(gameOverDialog,
(int) (gameOverDialog.getWidth () *scaleW) ,
(int) (gameOverDialog.getHeight () *scaleH) ,

true) ;
onTitle = false;
pickActiveMole () ;

}

whacking = false;

if (gameOver) {
molesWhacked = 0;
molesMissed = 0;
activeMole = 0;
pickActiveMole () ;
gameOver = false;

}

break;

As with your other images, you load the dialog box when the play screen
is viewed for the first time, and you resize it based on your scaling factor.

Chapter 9: Creating an Animated Play Screen 2&3

Figure 9-7:
Play screen
when the
game is
over.
|

The last few lines you added reset molesWhacked, molesMissed, and
activeMole, then call pickActiveMole () and reset gameOver to false.

Next you want to draw the dialog box if gameOver is true. Add the following
lines to your draw () method (make sure you add them at the end, so that
the game draws the dialog box on top of everything else).

if (gameOver) {
canvas .drawBitmap (gameOverDialog, (screenW/2) -
(gameOverDialog.getWidth () /2), (screenH/2) -
(gameOverDialog.getHeight () /2), null);
}

That should be it! When the player misses the fifth mole, the screen should
look like Figure 9-7.

Whacked: 0 Missed: 5

GAME OVER!

TOUCH THE SCREEN
TO PLAY AGAIN

When the player touches the screen, a new game should start, with all the
variables reset to zero. You've got another playable game now, although
there are still lots of improvements that could be made to make the game
more enjoyable and user-friendly. For example, the game starts immediately
when you transition from either the title screen or the Game Over dialog
box. Typically for arcade games (especially fast-paced ones) there will be a

244 Part IV: Moving On to Your Second Game: Whack-a-Mole

3

“Ready!” message on the screen with a brief pause, a countdown, or both.
This gives the player a chance to get ready for the oncoming wave.

As an exercise, I'd encourage you to implement such a pre-game pause in
Whack-a-Mole, using what you’ve learned so far, and pay attention to how it
affects the flow of the game after it’s implemented. Tiny improvements add up.
There’s often an impulse to immediately upload your game when it’s in a play-
able state, but you really should give it to friends and family to test, while
paying attention to how they interact with the game. The smoother and more
playable your game is, the more fun it will be, and the more people will want
to play it.

As the game stands, it’s pretty one-note. Most players, including kids, would

get bored fairly quickly. Think of ways you might add variety and complexity
to the game. You could add birds flying by in the sky for the player to whack
as well, or super-moles that take two whacks to tackle. You could also divide
the game into stages, resetting the speed to a lower rate with the next stage.

I'm sure you can think up more variations that would carry your simple base
game to another level.

But you're not quite done with Whack-a-Mole yet. Another important thing
you’ll probably want to be doing in your games is persisting data. That’s
what Chapter 10 is all about.

Chapter 10

Storing and Retrieving
Game Information

In This Chapter

Using Android’s SharedPreferences file
Reading and writing XML
Creating SQLite databases

naying games on a mobile device comes with the inherent issue that the
device is often used for other things — like phone calls — which means
your game is more likely to be interrupted at some point than it would be

on devices like PCs or consoles. Even when the game itself is not disrupted,
there’s usually information that you would like to persist (store between ses-
sions), even if the gaming sessions are bite-size.

Common examples of data you’d want to persist include

v Options (such as sound/music settings)

v High scores

v The state of an individual game (where game elements were located;
what the score was, and so on)

When it comes to storing and retrieving data, you have several options:

v SharedPreferences (key-value pairs for primitive data types)
v Write to file (either on internal or external storage)
v Database (the default supported database type for Android is SQLite)

v The cloud (you can use the network to store the data remotely)

246 Part IV: Moving On to Your Second Game: Whack-a-Mole

For practicality’s sake, this chapter deals only with the first three options.
Networked games include a lot of popular types of games on mobile plat-
forms, but they’'re beyond the scope of this book. However, I do show you
how to persist the sound option across user sessions, using the first three
data-storage mechanisms. You can choose which one is right for the type of
information you choose to store.

You can download sample files for this chapter at http: //www.dummies.
com/go/androidgameprogramming

Using Shared Preferences
for Data Storage

The SsharedPreferences framework in Android allows you to store primi-
tive data types such as int, float, and boolean, as key-value pairs. The
storage is sandboxed (isolated) relative to your app and isn’t visible to other
applications (including those that access your storage).

This arrangement makes SharedPreferences ideal for storing a handful of
user settings. Information stored in SharedPreferences persists between
sessions, so users don’t have to keep changing settings every time they open
the app. This approach will work great for your game’s sound option.

The first item to specify is a String value for the name of your
SharedPreferences file. Add the following variable declaration to your
WhackAMoleActivity.

public static final String PREFERENCES_NAME =
"MyPreferences";

Here’s where you store the setting for sound whenever the player selects the
option to toggle the sound from the Options menu: You add a few lines to the
TOGGLE_SOUND case of your onOptionsItemSelected () method. Make
sure your modified method matches Listing 10-1.

Listing 10-1: Storing the Sound Setting When Changed

public boolean onOptionsItemSelected(Menultem item) {

switch (item.getItemId()) {
case TOGGLE_SOUND:
String soundEnabledText = "Sound On";

if (soundEnabled) {

http://www.dummies.com/go/androidgameprogramming
http://www.dummies.com/go/androidgameprogramming

Chapter 10: Storing and Retrieving Game Information 24 7

soundEnabled = false;
myWhackAMoleView.soundOn = false;
soundEnabledText = "Sound Off";
} else {
soundEnabled = true;
myWhackAMoleView.soundOn = true;
}
SharedPreferences settings =
getSharedPreferences (PREFERENCES_NAME, 0); —13
SharedPreferences.Editor editor =

settings.edit () ; —15
editor.putBoolean ("soundSetting",

soundEnabled) ; —16
editor.commit () ; —17

Toast .makeText (this, soundEnabledText,
Toast . LENGTH_SHORT) .show () ;
break;

}

return false;

}

Here is a brief explanation of what the various lines do:

—13 Creates a reference to your SharedPreferences file.

—15 Calls edit () on the settings instance to get an editor, which you
need to make changes.

—16 Puts your key-value pair in the settings file. You updated the
setting earlier in this case and changed the value in your
WhackAMoleView.

—17 Here the commit () method must be called on the editor to final-
ize the changes in the file.

You'll also need the following import:
import android.content.SharedPreferences;
That’s how you save the settings with SharedPreferences.
How do you retrieve the information? You want to load the settings values

when the application is launched, so you modify your onCreate () method
in WhackAMoleActivity to match Listing 10-2.

248 Part IV: Moving On to Your Second Game: Whack-a-Mole

Listing 10-2: Retrieving the Sound Setting When the Game is Launched

@Override
public void onCreate (Bundle savedInstanceState) ({
super .onCreate (savedInstanceState) ;
requestWindowFeature (Window.FEATURE_NO_TITLE) ;
getWindow () .setFlags
(WindowManager . LayoutParams . FLAG_FULLSCREEN,
WindowManager .LayoutParams .FLAG_FULLSCREEN) ;
setContentView (R.layout .whackamole_layout) ;
myWhackAMoleView = (WhackAMoleView)
findvViewById(R.id.mole) ;
myWhackAMoleView. setKeepScreenOn (true) ;
setVolumeControlStream (AudioManager . STREAM MUSIC) ;
SharedPreferences settings =
getSharedPreferences (PREFERENCES_NAME, 0); —11
soundEnabled =
settings.getBoolean ("soundSetting", true) ;
myWhackAMoleView.soundOn = soundEnabled;
}

Here’s the process in Listing 10-2:

1. Starting with Line 11, you get an instance of your SharedPreferences
file to work with.

2. You retrieve the sound setting from the file using your key and set your
local variable to the retrieved value.

The true in the getBoolean () method is the default setting for the
value.

3. In the last line, you set the value of soundOn in your view to the
retrieved value.

The first time the game is run, if the preferences file does not exist, the
default value for sound is used. In this case the default is on. After you've
made these changes, fire up the game and try toggling the sound settings.
Now, if you toggle the sound off, and then completely kill the game by back-
ing out with the Back button, the sound setting should be saved when you
re-launch the game.

<P You can use SharedPreferences for many kinds of information, including
most of the common usages for games discussed at the beginning of this chap-
ter. But storing a list of high scores or even more complex information will
probably get tedious. Read on for an efficient approach to storing and retriev-
ing the information from a file, using a common data structure known as XML.

Chapter 10: Storing and Retrieving Game Information 249

Using XML for Data Storage

The second method this chapter covers for reading and writing data is
using XML.

A\

If you want to see how this method works, comment out the code just added
(using SharedPreferences) in Listing 10-2.

XML stands for eXtensible Markup Language. It’s basically a generalized
markup language (like HTML) that allows you to make up your own custom
tags. One nice advantage of XML documents is that they are both human- and
machine-readable (provided the designer named the tags sensibly!).

The data can be organized hierarchically (grouped with parent and child
nodes), but to keep things simple, here you only tell your code to read and
write in a single piece of data — the sound setting.

For more complex examples, visit www.w3schools.com/xml.

Again, all your changes will be in the WhackAMoleActivity. You start by
adding a writeXML () method with the contents shown in Listing 10-3.

Listing 10-3: Storing Data with writeXML() Method

public void writeXML () {
try { —2
String profileFileName = "settings"; —3
FileOutputStream fOut =
openFileOutput (profileFileName + ".xml",
MODE_WORLD_WRITEABLE) ;

StringBuffer profileXML = new StringBuffer(); —b
profileXML.append ("<sound_setting>" +
soundEnabled + "</sound_setting>\n"); —6
OutputStreamWriter osw = new
OutputStreamWriter (fOut) ; —8
osw.write (profileXML.toString()) ; —9

osw.flush () ;
osw.close() ;
} catch (IOException ioce) {
ioe.printStackTrace () ;

http://www.w3schools.com/xml/

250 Part IV: Moving On to Your Second Game: Whack-a-Mole

Here is a brief explanation of what the various lines do:

—2

—3

—5

—6

—8

—9-11

The logic is surrounded by an I/O try/catch.

Here you create a name for your output file, and then create an
output stream.

Here you create a StringBuf fer which allows us to produce a
variable-length string.

Next you append your actual sound setting, wrapped in XML tags
you have called "sound_setting". For each piece of data, you
need a separate append statement such as this.

The OutputStreamiWriter allows you to write out the file. You
create an instance here, passing in your FileOutputStream.

These three lines actually write out your file; then they flush and
close the stream.

You'll also need the following imports:

import java.io.FileOutputStream;
import java.io.OutputStreamWriter;

At this point, you call your new method when the user toggles the sound
option from the menu, just as you did with SharedPreferences. Modify
your onOptionsItemSelected () method to match Listing 10-4

Listing 10-4: Modified onOptionsitemSelected() Method

public boolean onOptionsItemSelected(Menultem item) {
switch (item.getItemId()) {
case TOGGLE_SOUND:

}

String soundEnabledText = "Sound On";

if (soundEnabled) {
soundEnabled = false;
myWhackAMoleView.soundOn = false;
soundEnabledText = "Sound Off";

} else {
soundEnabled = true;
myWhackAMoleView. soundOn = true;

}

writeXML () ; —13

Toast .makeText (this, soundEnabledText,

Toast . LENGTH_SHORT) . show () ;
break;

return false;

Chapter 10: Storing and Retrieving Game Information 25 ’

All the code in Listing 10-4 does is add Line 13 to call your writeXML ()
method.

Next you need a method for reading the XML data from file and updating your
sound setting. Add the readxML () method to your WhackAMoleActivity
with the contents matching Listing 10-5.

Listing 10-5: The readXML() Method

private void readXML () throws XmlPullParserException,
IOException {

String tagName = ""; —2
XmlPullParserFactory factory =
XmlPullParserFactory.newInstance() ; —3

factory.setNamespaceAware (true) ;
XmlPullParser xpp = factory.newPullParser () ;
try {

InputStream in =
openFileInput ("settings.xml") ; —7

InputStreamReader isr = new
InputStreamReader (in) ;

BufferedReader reader = new BufferedReader (isr) ;

String str;

StringBuffer buf = new StringBuffer();

while ((str = reader.readLine()) != null) {

buf .append(str) ;

}

in.close() ;

xpp.setInput (new StringReader (buf.toString())) ;

int eventType = xpp.getEventType() ;

while (eventType != XmlPullParser.END_DOCUMENT) {
if (eventType == XmlPullParser.START_DOCUMENT) {
} else if (eventType ==
XmlPullParser .END_DOCUMENT) {

} else if (eventType == XmlPullParser.START_ TAG)
{
tagName = xpp.getName () ;
} else if (eventType == XmlPullParser.END_TAG) {
} else if(eventType == XmlPullParser.TEXT) {
if (tagName.contains ("sound_setting")) {
soundEnabled =

Boolean.parseBoolean
(xpp.getText () .toString()) ;
}
}
eventType = Xpp.next() ;
}

(continued)

252 Part IV: Moving On to Your Second Game: Whack-a-Mole

Listing 10-5 (continued)

}

}
}

catch (Exception FileNotFoundException) {
System.out.println("File Not Found") ;

Here is a brief explanation of what the various lines do:

—2

—3-5

—7

You need a String to hold the current tag being read.

This line creates a factory for generating a pull parser, which is an
interface for parsing an XML document. The next couple of lines
create the parser with the correct parameters.

Starting here, you create the necessary components to read in
the document as a stream and parse it one line at a time. The
conditionals look at what part of the document you’re parsing,
and detect whether you come across a tag that contains "sound_
setting". If the tag is found, the parser reads the contents of
that tag, parses it as a boolean data type, and sets your current
sound setting to the value of the boolean.

You'll also need the following imports:

import
import
import
import
import
import
import
import

org.xmlpull.vl.XmlPullParser;
org.xmlpull.vl.XmlPullParserException;
org.xmlpull.vl.XmlPullParserFactory;
java.io.IOException;
java.io.InputStream;
java.io.InputStreamReader;
.java.io.BufferedReader;
java.io.StringReader;

You can obviously structure your XML documents much more elaborately to
store complex game states and use this basic example as a starting point for
parsing them.

The last piece is to call your readxML () method, and you want to do that
right when the game is launched. Modify your onCreate () method to match
Listing 10-6.

Listing 10-6: Modified onCreate() Calling readXML()

@Override

public void onCreate (Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;
requestWindowFeature (Window.FEATURE_NO_TITLE) ;

Chapter 10: Storing and Retrieving Game Information 253

getWindow () .setFlags
(WindowManager . LayoutParams . FLAG_FULLSCREEN,
WindowManager .LayoutParams .FLAG_FULLSCREEN) ;
setContentView (R.layout.whackamole_layout) ;
myWhackAMoleView = (WhackAMoleView) findvViewById
(R.id.mole) ;
myWhackAMoleView. setKeepScreenOn (true) ;
setVolumeControlStream (AudioManager . STREAM MUSIC) ;
try {
readXML () ;
} catch (XmlPullParserException e) {
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace () ;
}
myWhackAMoleView. soundOn = soundEnabled;
}

The readxML () method throws two types of exceptions, so you need to sur-
round your call with a try and two catches, one for each exception type. After
calling readXML (), your local soundEnabled variable will have the stored
value, so you can then just set the variable in your view and everything
should work fine.

Using this method of storing and retrieving data is overkill for something
simple like a sound setting, but it makes more sense for things like high
scores or complex game states, much like the next method this chapter goes
over: databases.

Using a SOLite Database
for Data Storage

The officially supported database for Android is SQLite, which means that
functionality for creating and manipulating SQLite databases is built into
Android.

SQLite is a smaller version of full-blown SQL databases, but they should have
all the functionality you really need. The information in SQLite databases
created from a particular application are sandboxed, which means the data is
only available to that application, and not outside the application.

254 Part IV: Moving On to Your Second Game: Whack-a-Mole

To create and interact with a SQLite database, you need to create a new
class that handles typical database operations. It’s going to extend the
" SQLiteOpenHelper class that’s part of the Android SDK.
;‘
[include some methods that you won'’t be using right away, but which come in
handy if you find your code has to do a lot more heavy lifting with databases.

To create the new class, right-click the package icon in Eclipse and select

Newr>Class. Name the class DatabaseAdapter, and then modify the con-
tents to match Listing 10-7.

Listing 10-7: DatabaseAdapter Class

package com.agpfd.whackamole;

import android.content.ContentValues;

import android.content.Context;

import android.database.Cursor;

import android.database.SQLException;

import android.database.sglite.SQLiteDatabase;
import android.database.sglite.SQLiteOpenHelper;
import android.util.Log;

public class DatabaseAdapter
{
public static final String KEY _ROWID = "_id";
public static final String KEY_ SOUND_SETTING =
"sound_setting";
private static final String TAG = "DBAdapter";
private static final String DATABASE NAME =
"settingsdata";
private static final String SETTINGS_TABLE =
"settings";
private final Context context;

private DatabaseHelper DatabaseHelper;
private SQLiteDatabase db;

public DatabaseAdapter (Context context) ({
this.context = context;
DatabaseHelper = new DatabaseHelper (context) ;
}

private static class DatabaseHelper extends
SQLiteOpenHelper { —27

private static final int DATABASE_VERSION = 1;

Chapter 10: Storing and Retrieving Game Information 255

public

private static final String
CREATE_SETTINGS_TABLE = —31
" create table " + SETTINGS_TABLE +
" (_id integer primary key
autoincrement, " +
" sound_setting text not null);";

public DatabaseHelper (Context context) {
super (context, DATABASE_NAME, null,
DATABASE_VERSION) ;

}

@Override

public void onCreate (SQLiteDatabase database) {
database.execSQL (CREATE_SETTINGS_TABLE) ;

}

@Override

public void onUpgrade (SQLiteDatabase database,
int oldVersion, int newVersion) {
Log.w(TAG, "Upgrading database from

version" + oldVersion + " to "+
newVersion + ", which will destroy all
old data") ;

database.execSQL ("DROP TABLE IF EXISTS
todo") ;onCreate (database) ;

}

}

DatabaseAdapter open() throws

SQLException ({ —53
db = DatabaseHelper.getWritableDatabase() ;
return this;

}

public void close() {
DatabaseHelper.close() ;

}

public long insertRecord

(String newSoundSetting) { —60

ContentValues initialValues = new
ContentValues () ;

initialvalues.put (KEY_SOUND_SETTING,
newSoundSetting) ;

return db.insert (SETTINGS_TABLE, null,
initialvValues) ;

(continued)

256 Part IV: Moving On to Your Second Game: Whack-a-Mole

Listing 10-7 (continued)
}

public boolean updateRecord(long rowId, String
newSoundSetting) {
ContentValues args = new ContentValues() ;
args.put (KEY_SOUND_SETTING, newSoundSetting) ;
return db.update (SETTINGS_TABLE, args,
KEY _ROWID + "=" + rowId, null) > 0;
}

public void insertOrUpdateRecord (String
newSoundSetting) { —73
String INSERT_OR_UPDATE_RECORD =
"INSERT OR REPLACE INTO " + SETTINGS_TABLE + "
(" + KEY_ ROWID + "," + KEY_ SOUND_SETTING + ")
LI
"WALUES (1," + "'" + newSoundSetting + "');";
db.execSQL (INSERT _OR_UPDATE_RECORD) ;
}

public boolean deleteRecord(long rowId) {
return db.delete (SETTINGS_TABLE, KEY_ROWID +
"=" + rowId, null) > 0;

}

public Cursor getAllRecords () {
return db.query (SETTINGS_TABLE, new String[] {
KEY_ROWID,
KEY_SOUND_SETTING
} I
null,
null,
null,
null,
null) ;
}

public Cursor getRecord(long rowId) throws
SQLException {
Cursor mCursor =
db.query (true, SETTINGS_TABLE, new String[] {
KEY_ROWID,
KEY_SOUND_SETTING

Chapter 10: Storing and Retrieving Game Information 25 7

KEY ROWID + "=" + rowld,
null,
null,
null,
null,
null) ;

if (mCursor != null) {

mCursor .moveToFirst () ;
}

return mCursor;

}

The Android documentation recommends this approach for using SQLite.
You create this separate class to assist with database operations. Although
you won't be using all the methods in this class, here’s a brief overview of
what’s in this class:

—27 After specifying your imports and global variable declarations,
you define a DatabaseHelper class.

—31 This variable holds a string that defines the raw SQL command for
creating the only table your database will have, the settings table.
For reference on SQLite syntax and queries, visit http: //www.
sglite.org/.

—53 This is a method for opening the database, which is necessary for
reading and writing from it. The following method is for closing
the database, which should be done only when your code is fin-
ished interacting with the database.

—60 The next two methods, insertRecord () and updateRecord()
do what they say. You want to insert a record if you already know
that one doesn’t exist, and update a record if you already know
that one exists. But what do you do if you don’t know whether the
record exists? That’s why you have the next method.

—73 This method executes a raw SQL command on the database, pass-
ing in your sound setting as text and setting the value of the first
row in the database to the value of the sound setting. If the record
exists, it’s updated; if not, it’s created. This is the method you use
when your game has to access the database.

http://www.sqlite.org/
http://www.sqlite.org/

258 Part IV: Moving On to Your Second Game: Whack-a-Mole

The rest of the methods are fairly straightforward. I include them for your
convenience if your game has to handle more extensive interaction with a
database and needs them. For the moment, you need use only one more of

them, the getRecord () method.

Here’s a closer look at how your code interacts with the database from
WhackAMoleActivity. First you want to update or insert a new record
into the database when the user changes the sound setting. Modify your

onOptionsItemSelected () method in WhackAMoleActivity to match

Listing 10-8.

Listing 10-8: Modified onOptionsitemSelected() Using the Database

public boolean onOptionsItemSelected(Menultem item)

switch (item.getItemId()) {
case TOGGLE_SOUND:

String soundEnabledText = "Sound On";

if (soundEnabled) {
soundEnabled = false;

myWhackAMoleView.soundOn = false;

soundEnabledText = "Sound Off";
} else {

soundEnabled = true;

myWhackAMoleView.soundOn = true;

3

DatabaseAdapter db = new DatabaseAdapter (this) ;

try {
db.open /() ;
}catch (SQLException sqgle) {
throw sqgle;
}
db.insertOrUpdateRecord (Boolean.
toString (soundEnabled)) ;
db.close() ;

Toast .makeText (this, soundEnabledText,

Toast . LENGTH_SHORT) .show () ;
break;

}

return false;

}

—13

—19

Here’s what happens with Listing 10-8:

1. The game starts its interaction with the database when Line 13 creates

an instance of your DatabaseAdapter class.

Chapter 10: Storing and Retrieving Game Information 259

2. The code opens the database before calling the insertOrUpdateR-
ecord () method on Line 19.

3. The code closes the database and shows the Toast, just as it does with
your other data-storage methods.

You need to retrieve the information stored in the database when the game
launches, so the next order of business is to modify your onCreate ()
method in WhackaMoleActivity to fetch the sound setting. Modify your
onCreate () method to match Listing 10-9.

Listing 10-9: Retrieving Data From the Database

@Override
public void onCreate (Bundle savedInstanceState) ({
super .onCreate (savedInstanceState) ;
requestWindowFeature (Window.FEATURE_NO_TITLE) ;
getWindow () .setFlags
(WindowManager . LayoutParams . FLAG_FULLSCREEN,
WindowManager .LayoutParams .FLAG_FULLSCREEN) ;
setContentView (R.layout .whackamole_layout) ;
myWhackAMoleView = (WhackAMoleView)
findvViewById(R.id.mole) ;
myWhackAMoleView. setKeepScreenOn (true) ;
setVolumeControlStream (AudioManager . STREAM_MUSIC) ;

DatabaseAdapter db = new DatabaseAdapter (this) ; —11
try {
db.open() ; —13

}catch (SQLException sgle) {
throw sqgle;
}
Cursor c¢ = db.getRecord(1l) ; —17
startManagingCursor (c) ;
if (c.moveToFirst())
{
do {
soundEnabled =
Boolean.parseBoolean((c.getString (1))
} while (c.moveToNext());
}
db.close() ;
myWhackAMoleView. soundOn = soundEnabled;

260 Part IV: Moving On to Your Second Game: Whack-a-Mole

A\

Here’s what happens in Listing 10-9:

1. Line 11 creates an instance of your DatabaseAdapter.
2. Line 13 opens the database.

3. Line 17 calls getRecord () from your DatabaseAdapter, passing in a
row number of 1.

You only have one row, so you can use this as the default.

4. The method returns a Cursor, a standard data structure for traversing
records in a database.

The startManagingCursor () method enables the current activity to
handle the lifecycle of the cursor; moveToFirst () moves to the first
record.

5. The code stores the string in your single row and parses it as a boolean
data type, setting your soundEnabled variable to the value of the string.

If the game were fetching more information from the database, this logic
would loop through as many records as needed.

6. The code closes the database.

If you’ve worked through the last six chapters, you've got two playable games
under your belt after some hands-on experience with

v Implementing games with simple interactions with a touchscreen
interface
v Implementing more complex real-time games with Surfaceview
v+ Handling images and sounds
v Storing and retrieving data in your game
At this point, if you've done all that wrestling, you've got the chops to dive
into developing your own game. Chapter 11 discusses strategies and tools for

trying to make money with your game; then I show you how to package, pub-
lish, and update your game.

If you don’t plan on monetizing your game, you might just want to skip ahead
to Chapter 12.

PartV
Managing Your
Game in the
Market

The 5th Wave By Rich Tennant
@ RICHTENNANT
\ #

N .
N

—

“So, tell me about this new refinement to your
attack mode.”

In this part . . .

part V covers issues related to your game after it’s
finished and ready for upload. If you want to try to
make money from your game, here’s where you scrutinize
the different monetization models, how they work, and
their various pros and cons. I walk you through the pro-
cess of setting up a developer account on Google Play,
readying your game for upload, and adding all the
resources necessary for your market listing.

Chapter 11
Making Money with Your Game

In This Chapter

Checking out your competitors
Understanding different monetization methods
Choosing the monetization method that’s best for your game

ou've got a great game design, the tools to implement it, and it’s nearly

ready for publication. If you took the long view before you started
designing, you thought about whether you wanted to try to make money from
your game, or even start a fledgling business. Maybe you just want to make
games for fun and share them with the world for free. But if you do want
to try to monetize your game, the first thing to do is to know the market —
especially your direct competition. Then you can decide the best way to
monetize your specific game and implement a plan to do so. In some cases,
this means using a third-party SDK to serve ads in your game. In others it
means using the Android SDK, though some methods don’t require any addi-
tional code at all.

But first things first. How (or even if) you decide to monetize may come down
to an assessment of what else is already in the marketplace, so that’s where
we’ll start.

Knowing Your Competition

The very first thing to do is to fire up Google Play (play.google.com) in
your favorite web browser. Figure 11-1 shows a snapshot of Google Play as of
this writing.

https://play.google.com/store

204

Part V: Managing Your Game in the Market

Figure 11-1: :”
Current §

snapshot
of Google

Play.

> Google play —

SHOP MY MUSIC MY BOOKS MY MAGAZINES MY MOVIES 8 TV MY ANDROID APPS

2012

OLYMPIC GAMES

Official Apps

- a
0
S
MOVIES & TV | TOP i / NEWl :
ANDROID APPS SELLERS JuS { GETNEXUs7
i IN MUSIC
DEVICES |

| MuUsIC

08| sooks

MAGAZINES

BOOKS
SPECIAL
OFFERS

Google Play used to be called the Android Market, but recently Google
rebranded the market and consolidated it into a one-stop shop for many other
types of digital media, including books, music, movies, and television shows.

In general, this move is good for the typical Android developer, because it
means there are other draws that bring customers to the marketplace. Users
may visit Google Play looking for a new song, and in doing so may come
across an interesting-looking app to try out (yours!). Android apps have their
own subsection of Google Play; click Android Apps to browse the various
game categories.

Viewing the top-ranked games in a given category (such as Brain & Puzzle)
will give you an idea of what’s popular in that category. You can go one of
two ways with this information:

v Adopt a strategy of jumping on the bandwagon.

v Take the road less traveled and make a game that is less likely to com-
pete directly with popular existing games.

If you have a very specific game in mind, such as a variant of a popular game,
use Google Play’s search functionality to see if one or more versions already
exist. For example, a current search of “crazy eights” returns at least half a
dozen versions of the game (including a Christmas-themed one!). You may
decide that if the market is already too crowded with versions of the game
you want to implement, you should try something else.

Chapter 11: Making Money with Your Game

If you do want to go head-to-head with existing games, be aware that they’ve
already got a huge head start on you. They may already have built up a sig-
nificant and loyal user base. You’'ll want to look closely at the listing of each
competitor’s game in Google Play. Figure 11-2 shows the current listing of my
game Golf Solitaire Free.

Golf Solitaire Free
Polyclef Software OVERVIEW

Description gt v
2 Tweet
Golf Solitaire Free! Classic golf solitaire action with a fun golf theme!
Classic golf solitaire with a fun golf theme. This version features @ holes and is ad supported ABOUT THIS APP
(permissions are for displaying ads). RATING
* % % %
11862)
Visit Developer's Website » Email Developer UPDATED:
This app is compatible with some May 17,2011
of your devices. + —
App Screenshots S e

REQUIRES ANDROITD:
15 30d up

More from developer

EasyTether Pro
POLYCLEF SOFTWARE
* o % J o (841)
$9.99

Golf Solitaire

— Pt oA
. % ok % o ok (416) last 30 days
Figure 11-2: 5199 s
T92k
Google Play | ey cominces
. . POLYCLEF SOFTWARE z Free
||Stlng Of my ﬁ % % % % & (593) USEF REV\EWS CONTENT RATING:
game Golf $1.99 5star 1.044 Average rating: Low Mepmhy
P 5 4 star 488
Solitaire W. R 3 star [66 4.3
Free. W e ok {1,908 2star 54 ek e
e oo 1 star [100 1.862
|

When looking at your potential competitor’s listings, pay particular attention
to the following points:

v The rating for the app.
This app has an average rating of 4.3 stars, which is very strong.
v Number of ratings and installs.

Very few people take the time to rate and/or comment on an app, so

the number of ratings is always a small fraction of the overall number
of people playing the game. A large number of ratings means the game
is popular. With 1,862 ratings and between 100,000 and 500,000 installs,
this is an indication that the game is solidly popular. Not one of the elite
1 percent, but very solid.

265

266 Part V: Managing Your Game in the Market

Figure 11-3:
Screenshots
of my
crossword
puzzle game
WordWise.
|

v Date of most recent comments and/or updates.

v The graph indicating how the game is trending (that is, are the down-
loads recently increasing or decreasing).

Unfortunately for me, Golf Solitaire Free is trending downward most
recently, but such an indicator can be good for you if your competitor’s
game is waning; it might show you an opening.

Besides looking at the individual listings for your competitor’s game, you
have one more obvious and necessary task: downloading and playing their
games! You might find some competing games so professional and polished
that you decide (as an individual or small team developer) that you might not
be able to make a competitive product. More often than not, though, you’ll
find many games with bugs or deficiencies, and you might decide you can
make a better game. Read through the user comments to get an idea of spe-
cific complaints or feature requests. If you can give people what they want,
you might just win them away from the competition.

I'll end this section with a case study: my multiplayer crossword game
WordWise. Figure 11-3 shows screenshots of the title and play screens for
the game.

gk &
polypla: 13 djames: 16 ‘75
(@ 1 TIRITEITT]
2L au
] | - = = .‘,.IL+_‘
WoryW\se sttt
s
2L D 1
I T 2l 1
P O 4 I‘Ar—q
u 2L 2L
O
i 2L T 2L BEES | 3u
1 = 11 Jad
AL 2L B
T Tat 4 T 11 f 4;[
Go To Marr. [Ecit Account F b = 4
Menu Information. 1+ + I—”ﬂ
au 2L
o . [al ?:m 1 T = == g
w;_y—.‘;“« Les .Jriﬁ-qd: oard
elhe

In early 2010, I realized that there was no multiplayer crossword game of

this kind for Android. Words With Friends was incredibly popular on the
iPhone, and its fans were constantly asking if and when a port to Android was
coming. | thought that if I moved to fill the void quickly, I could build up a
loyal user base and scoop competitors entering the Android market late with
a game of this style. [developed the front end while a friend and fellow devel-
oper implemented the server.

Chapter 11: Making Money with Your Game 26 7

\NG/
&

v Avoid

letter.

I'm not a lawyer, and most likely, neither are So-called “clones” (similar implementations
you. Tread carefully if you decide to make a of popular games) are often a divisive subject
version of a previously existing game. among game developers. Some argue there’s

v~ |fthe gameis old and in the public domain —
chess or checkers come to mind — you're
fine making your own version.

existing game — and implementing even
a similar look and feel may get your game
pulled from the market, or you may find
yourself the recipient of a cease-and-desist

A brief word about intellectual property

nothing wrong with building upon what already
exists and improving it. Others spurn making any
game that is clearly similar to an existing game.

Obviously, similarity is a matter of degree; some
clones are more blatantly similar than others. If
you do decide to make a game that's very much
like another, you'll want to research the legal
implications, and you may want to go so far as
to consult legal counsel.

using the same look and feel as an

We released the Android version in May 2010 and the iPhone version later
that year. We were indeed the first on Android with this style of game, and
the first cross-platform version as well. Revenue was strong for about six
months. We encountered competition from a rival app called WordFeud, but
we had built up a loyal user base that liked some features of our app better.
We had focused less on the social aspect of the game and built it for slightly
more serious players. Most games of this type allow endless attempts at
making correct words. We gave the players two chances at making a legal
play. Failing to make a legal play in two attempts resulted in a forfeited turn.

Everything went reasonably well until Words With Friends was finally ported
to Android in early 2011. Our revenue flatlined overnight. As independent
developers, we were not able to compete directly with a product that had
worldwide name recognition, a built-in audience of millions on the iPhone
platform, and a huge marketing budget.

However, WordWise wasn’t a waste of time or effort. By identifying a gap

in the market, we were able to do reasonably well for about a nine-month
period. We knew all along that there was a danger that a much larger com-
petitor would land in the market and blow us out, but that was a risk we
decided to take. WordWise is still on the market, though it no longer makes
any significant revenue. We leave the server up for existing players, but don’t
actively update the product since it is no longer profitable.

268 Part V: Managing Your Game in the Market

A\\S

\\3

If I had it to do all over again, | would have stressed the social aspect of the
game more aggressively, implementing sharing and chat features from the first
implementation. If you end up working on multiplayer games, don’t underesti-
mate the power of social interactions in spreading the popularity of your game
and making it a more cohesive player experience.

The really important thing to note about this example is that we were aware
of the absence of a particular type of game in the market and an existing
demand. We exploited that knowledge to develop a game that performed well
for a decent stretch of time, making it worth our while to implement it. Now
that Android is a much more popular platform than it was in 2010, finding
gaps is more difficult. Android has also drawn the attention of major game-
industry heavyweights. So competition is much fiercer than it once was. That
doesn’t mean you still can’t make a hit game, just that it’s more difficult than
it was just a couple of years ago.

As of this writing, Google’s management of the market has also made it more
difficult for smaller developers to get seen. New and updated apps used to
show up in a Just In category, but because of abuse (some developers were
publishing meaningless updates just to get an app bumped to the head of the
queue), Google eliminated the category. For now, the market favors popular
ports of existing games from other platforms, or games published by compa-
nies with multi-million dollar marketing budgets.

Your best bet is to search for existing games of the kind that you like to play:

v~ If either you can’t find a game exactly like what you want, or the current
crop just isn’t very good, that situation might signal an exploitable spot
in the market.

v Instead of competing with the game-industry giants, you can also look
for regional or specialty games that might have been overlooked.

For example, I live in Louisiana, and there’s a popular card game specific
to this area called Boo-Ray (bourré, in French). As of this writing, I can’t
find a Boo-Ray app on Google Play. The audience would be small, but it
would likely also be enthusiastic.

v Just come up with a game concept so original and thrilling that it blows
everyone away and becomes the next big hit.

No matter what your strategy, if you're going for the big time, you have to
decide how you're going to make money from your game — and you have
lots of options.

Chapter 11: Making Money with Your Game 269

Monetization Models

3

Finding the right monetization strategy for your game may be more of an art
than a science:

v In some cases, a particular model stands out as a perfect fit for a par-
ticular type of game. For instance, in-app purchases are particularly well
suited to games with lots of items and upgrades, such as farm simulators
or role-playing games.

v Most of the time, the best way to make money from your game may not
be glaringly obvious.

Nothing says these models are mutually exclusive. I've done reasonably well
with a mixed model — releasing free, ad-based versions of most of my games
along with a paid, ad-free version. Throughout the discussion of the various
models, if you have a particular game in mind that you want to develop, think
about which model(s) would be the best fit.

Approach monetization from the perspective of the player. Would you click an
ad if it was related to something you were interested in? Or would ads simply
annoy you? What would get you to spend money on a game, or within a game?
What method is the best fit for your game?

Free

The first option is to give your game away for free.
Wait . . . what?

How do you make money from something that you're giving away? Stay
tuned: The next few sections talk about “free” games that aren’t really free
because they can
v Try directly (within the game itself) to upsell the user to a paid version.
v Serve ads that attempt to generate revenue.
v Sell virtual goods that cost real money. This is known as the “freemium”
model.

Keep in mind that a game doesn’t have to directly solicit money from the
player in order to generate revenue.

2 70 Part V: Managing Your Game in the Market

A\

NG/
‘Q‘“\ '

\NG/
Vg,\\

The first game you make, unless it’s the most mind-bendingly awesome game
in the world, you should release for free. Why?

v~ If you're new to game programming, it’s unlikely that you're going to
hit a home run the first time you step into the batter’s box. More than
likely your game will be a bit rough around the edges, though hopefully
it’s still very good. When you release a game for free, with no strings
attached, it’s going to get a lot more downloads and see a lot more play.
That in turn will give you a lot more feedback on what you can improve.

v It’s going to build up a user base, hopefully one that will seek our future
games that they will be willing to fork out money for.

If you think you’ve got a hit on your hands, by all means monetize your first
game right out of the chute. But if you’re new to the whole game, releasing
that first game for free, without a monetization method but to gain experi-
ence, just might be the best plan.

Paid

The most obvious way to try to make money from something is to sell it! In
Chapter 12, when I talk about publishing through Google Play, you get a look
at how to set the price of an app upon publication. Google automatically han-
dles conversion into foreign currencies for countries where your game will be
available for sale.

If you're going to sell games, you need to be aware of sales tax issues. Sales
tax law for Internet sales and digital goods is still a pretty murky subject, so if
you’re in doubt at all, consult your local government authority, legal counsel,
and/or a CPA. Google Checkout treats you as the vendor, not Google, so for
sales in the US, they aren’t collecting sales tax. You may need to collect and
remit sales tax to your state or municipality.

The two main questions you need to figure out are (a) whether you should
offer a paid version of your game, and (b) if so, how much will you charge?
Paid apps and games are going to have a much smaller audience. People will
be much more willing to download something without the expense or hassle
of paying for it. So the number of people playing your game will be smaller
than it would have been if you'd released the game for free.

When people do pay for something, their expectations are higher. It’s a gen-
eral phenomenon that paid versions of apps and games have higher average
ratings than their free counterparts. This seems a little strange at first glance,
but it seems that people tend to perceive something as having higher quality

Chapter 11: Making Money with Your Game 2 7 ’

if it was more difficult to obtain. This attitude also means that your users may
demand personalized customer support, and they may request additional fea-
tures or changes to the game.

Okay, you should try to develop good standing with your user base when you
can. You may get unreasonable demands, even some harsh criticism, but try
to use that feedback to make your current and future games better. Overall
you’d be surprised how worked up some people can get over something they
paid less than a dollar for, but it certainly happens!

Speaking of which, what are you going to charge for your game? Big-budget
console games go for up to sixty dollars these days. People are certainly will-
ing to spend a significant amount of money on entertainment and gaming.
But something of a double standard is at work when it comes to mobile apps.
Many developers, particularly for the iPhone market, have complained of a
“race to the bottom”: In a bid to be competitive and undercut others on the
market, many games (even very high-quality ones) have priced themselves
down to the minimum, 99 cents. This has almost led to the perception that
one US dollar is right around the standard expected price for a paid game.

v The minimum price for an app on Google Play is $0.99 USD

v The maximum price is $200 USD.

You may not want to go quite as high as the max, but you may not want to
simply default to the minimum. If you do, you may be undercutting yourself.

With my first few games, I experimented with price points ranging from $0.99
to $2.99. I typically ended up settling on $1.99:

v [tended to get more sales when the price was lower, but not enough to
make up for the price cut. Remember, you have to sell twice as many
games at $0.99 as you do at $1.99 for that price point to make sense. That
wasn’t the case for me, so I stuck with the slightly higher price point.

v Of course, $2.99 seemed to be more than most people were willing to
pay, and my sales dropped dangerously low. Don’t be afraid to experi-
QQ,N\BER ment a little.
&

You can’t toggle between an app being paid and free in Google Play:

v If at any time you designate your app as free in the market, you cannot
then make it a paid app.

»* You can change a paid app to free, but once it’s free, it will always be
free (unless you rename the package and completely republish it).

2 72 Part V: Managing Your Game in the Market

Free-to-Paid

A very popular model for monetizing games is to release a free version of the
game with the intent of selling a paid version of the game. Many of the earli-
est games for personal computers used a shareware model, with copies of
the software distributed for free, usually with a pitch for the user to buy a full
licensed version.

However, within this model, there are several possible options for monetiza-
tion, including:
v The free version links to the paid version in the marketplace.

v The free version allows conversion from within the game (via an in-app
purchase) to unlock itself into the full version.

v The game is actually the full version, but users may be prompted to
send the developer money via a donate feature.

I've never heard of this method being used successfully, though that
doesn’t mean it hasn’t been. I'm just including it here for completeness.

Keep in mind that these techniques are not mutually exclusive. Figure 11-4
shows the title screen of my free version of Golf Solitaire.

Compare Chevrolet Aveo
011 Chewy Aveo Compares to the

Figure 11-4:
Title screen
for Golf
Solitaire
Free.
|

Press the Menu button for more options

This version monetizes three ways:

v Ads
v Upselling to the paid version

v Promoting other games

Chapter 11: Making Money with Your Game 2 73

A\

In Figure 11-4, the “Play 18 Holes” button is grayed out. The full version of
the game includes all 18 holes. By teasing the user with this functionality, the
phantom button provides an incentive for the user to buy the full version.

This is a somewhat controversial design. For example, when we tried to pub-
lish this version in the iTunes marketplace, the app was rejected, because
Apple does not allow non-functional Ul elements.

This title screen also includes a button that links to the full, ad-free version
of the game in Google Play. The following code snippet shows how to link to
another app in Google Play.

Intent intent = new Intent (Intent.ACTION_VIEW,
Uri.parse ("market://search?g=pname:com.golfsolitaire
polyclef"));
try {
myContext.startActivity (intent) ;
} catch (Exception e) {

}
The preceding code snippet explains how an active link to Google Play is made:

v First you need to create an intent of the type ACTION_VIEW.

v The second parameter is a link to parse, in this case a market query with
the package name com.golfsolitaire and the publisher polyclef.
We then call startActivity () from the current context, passing in
the new intent.

This code will launch Google Play with the search parameters we speci-
fied, displaying the full version of the game. You'll want to include
similar code attached to a button’s click functionality or your screen’s
onTouch () method.

Deciding what functionality to include?

v Typically you want to give the player enough of a taste to decide
whether they like the game enough to buy the full version. This normally
means the first few levels or rounds of a typical game.

v Another option, which I've never personally used, is time-based (that is,
letting the player play the game for a fixed amount of time).

I'd recommend free-to-paid as a strategy. A free version of a game will see
many more downloads than a purely paid one, so you’ll get a lot more expo-
sure. And hopefully a good amount of that exposure will lead to conversions
to the paid version of your game.

274

Part V: Managing Your Game in the Market

Ad-based

Using ads to monetize your game is another popular strategy. There are sev-
eral appealing reasons to use ads:

v As mentioned earlier, free games get a lot more downloads, and thus
more exposure and play.

v Software piracy is a problem; just how big a problem is controversial,
and you can find arguments on all sides. But ads neatly sidestep the
issue of piracy. In fact, you may even want to upload your game to a tor-
rent site if it’s got ads in it!

v Several mobile market research studies have indicated that Android
users are less likely to pay for apps than their counterparts on other
platforms. This is probably in large part due to the wide penetration of
Android across all demographics. In any case, people do like free con-
tent, and an ad-based solution might fit the bill.

Ads don’t come without risks, though:

v Just as with ad blockers for the web, users may find a way to keep your
ads from displaying, though you’ll find most won'’t care to go to that
trouble.

v Another potential problem just has to do with how much money you can
expect to make. Just as in the early days of Internet advertising, the first
couple of years of mobile advertising saw a big influx of advertisers, and
thus revenue.

Unlike the situation on the web, however, ad providers haven’t done
nearly as good a job at targeting ads to users of games, so (at least in
my experience) the returns are not nearly what they once were. That
doesn’t mean you can'’t still make money from an ad-based game, but
you’re probably going to need the game to have hundreds of thousands
or millions of downloads if you want to make a full-time go at mobile
game development.

Ads in mobile apps and games make money the same way that web-based
ads do

v Per impression (when an ad is simply viewed)

v Per click (when the user actually clicks on an ad)

By far more money is made per click.

Chapter 11: Making Money with Your Game 2 75

Y@\\NG!
S Be careful about how and where you place ads, or you'll end up hurting your-
self and the mobile-ad business as well:

» You don’t want to place ads near Ul elements so that the ads may be
accidentally clicked. These “spurious” clicks may earn you a little more
money in the near term, but since they are accidental, they don’t help
the businesses that placed them. And worse, you may draw lower user
ratings from players, or even get the attention of Google.

v Violating the market’s policies can get you a warning or even have
your app pulled or your account suspended. Even though Google is
less restrictive than most other mobile markets, they still have content
guidelines you need to adhere to:

play.google.com/about/developer-content-policy.html
The technical aspects of integrating ads into your games are usually pretty

easy and straightforward. Each ad provider will supply you with a download-
able SDK with instructions about how to integrate its service into your game.

<P If you want to use more than one ad provider, I'd suggest AdWhirl, which is
known as an ad mediator, a service that lets you use multiple ad providers in a
single app and control the ratio of ads served by each provider. You can also
serve up house ads, banner ads that promote your own games. You can either
»* Promote other games that you have on the market

v Contact fellow developers to promote each other’s games.

In-app Purchases

When a user makes a financial transaction within your app or game, this is
known as an in-app purchase.

The two main uses of in-app purchases with regard to games are to

v Upgrade from a free version to a paid version within the same app.
v Purchase additional levels.
v Purchase virtual goods.

Different markets or services may have different policies regarding how in-app
purchases are used, so be sure you read the guidelines!

http://play.google.com/about/developer-content-policy.html

2 76 Part V: Managing Your Game in the Market

\NG/
Vg,\\

Some games are going to be natural fits for in-app purchases, such as RPGs
(which have lots of in-game items like weapons or armor that could easily be
offered for potential purchase). Sometimes you want to be creative when it
comes to monetization, but you also don’t want to just jump on the bandwagon
because other game companies have had success with a given method, espe-
cially if it doesn’t really fit into how your game plays. Don’t shoehorn in-app
purchases into your game to an irritating extent (for example,

[don’t recommend making people pay extra for a queen in chess!), but you
may want to integrate in-app purchases into your design if it comes naturally.

Alternatives to Google Play

Google Play isn’t the only way to distribute Android games, though it is
the most popular. The reason is that when people get an Android device
and go looking for content, they are usually going to take the path of least
resistance — and that means using the market that’s preinstalled on their
device. In most cases, that’s Google Play, but third-party markets exist

as well.

As of this writing, the second largest market for developers is Amazon’s App
Store. They've successfully entered the tablet market, which enables them to
sell lots of devices with their own app store preinstalled.

Uploading and maintaining your games on multiple markets can be a pain,
especially if those markets have different requirements for promotional
resources like icons, banners, and descriptions. But you just might find that
it’s worth your while if you put in the effort. Chapter 12 walks you through
creating a developer account on Google Play, as well as uploading and updat-
ing your app there. But don’t forget that you have options.

Chapter 12

Publishing and Updating
Your Game

In This Chapter

Exporting a signed application
Setting up your Google Play developer account
Supporting your game after it’s published

our game won’t be seen by anyone until you upload it to a market. I'll

show you how to get your game into Google Play. If you're like me, you
don’t work for a multimillion-dollar game company with a massive marketing
budget. If that’s the case, then your market listing is the most valuable mar-
keting tool you have. The first thing people will see is the name and icon for
your game, but if they visit the market listing, that’s where you need to get
them interested enough to download your game.

So first things first — namely, the nuts and bolts of the upload process, and
then a look at all the different options you have for your listing.

Creating a developer account
for Google Play

You need a regular Google Account in order to register for a Google publisher
account. Odds are you already have a Google Account, but if you don’t, you
can create one during the registration process for a developer account.

To start the developer registration process, go to

https://play.google.com/apps/publish

https://play.google.com/apps/publish

2 78 Part V: Managing Your Game in the Market

Follow these steps:
1. Enter basic contact information about yourself and your company (if
you're associated with one).
2. Read and agree to the Developer Distribution Agreement.
3. Pay a $25 fee.
This requires a Google Checkout account; if you don’t have one, you can

set one up during the process.

When your account has been processed and you've been notified via e-mail,
return to https://play.google.com/apps/publish, which takes you to
your Android Developer Console.

From there, you can do lots of useful things:

v Upload new apps and updates

v View usage statistics and feedback

v Track sales
If you want to sell your games, the first thing to do after your developer
account is approved is to create a Google Checkout Merchant account.
Google Play uses Google Checkout for all financial transactions.

To set up a Google Checkout Merchant account

1. Access the developer console.
2. Click the Edit Profile link at the top
3. Select Setup a Merchant Account at Google Checkout.

You're walked through the steps for setting up a merchant account;
When that’s done, you can use the developer console to

v~ List games for sale

v View sales reports

Generating a Key with Keytool

Google Play requires that each application you upload into their market be
digitally signed with a certificate associated with a private key.

https://play.google.com/apps/publish

Chapter 12: Publishing and Updating Your Game 2 79

The tools required to generate the key are provided in the Java Development
Kit (JDK) installed in Chapter 3.

To make sure that you have the proper Keytool installed and working, you
can type the following from the command line:

S keytool -help

If the Keytool is working, you'll see a list of possible commands. If not, you’ll
need to troubleshoot your JDK installation.

The first thing to do is generate a private key to be stored somewhere on
your local development machine; you use it each time you sign a game
for release. An example of the command for generating a private key with
Keytool is the following:

S keytool -genkey -v -keystore my-release-key.keystore
-alias alias_name -keyalg RSA -keysize 2048
-validity 10000

For reference about what each of these options and parameters do, see

http://docs.oracle.com/javase/6/docs/technotes/tools/
windows/keytool .html.

When you run this command, you're prompted to enter a password that’s at
least six characters long, followed by a number of questions about you and
your organization.

By default, the key should be generated in the same directory where the
Keytool is located, though you may specify the target directory as an input
parameter. You may want to move the newly-generated key to another loca-
tion (such as a password-protected directory).

Exporting a Signed Application

When you have a valid key, you can use it to sign your application at the
same time you compile it into an .apk (Android Application Package) file,
which is the standard file format for Android.

You could export an unsigned . apk file and sign it manually (this is what I
used to do in the early days). But these days you can sign the application the
same time you compile it with Eclipse.

http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

280 Part V: Managing Your Game in the Market

|
Figure 12-1:
The Export
Android
Application
wizard in
Eclipse.
|

Let’s say you want to sign and export your Whack-a-Mole game. Follow these
steps:

1.

Right-click the project in the Package Explorer and select Android
Tools=>Export Signed Application Package...

You should see the wizard for exporting a signed application, which
should look something like Figure 12-1.

< Export Android Application (=] | =] \EI
Project Checks

Performs a set of checks to make sure the application can be exported. 5]
Select the project to export:

Project: WhackaAMole |B!GW’SE...

Mo errors found. Click Next.

Bacl Nest > Finish Cancel

. Click Next.

You're prompted to enter the location of the key you just created, along
with its password (Figure 12-2).

. Enter the location of the key and its password, then click Next.

You're prompted to select the alias and enter the password (Figure 12-3).

. Select the alias and enter the password, then click Next.

The final screen in the wizard prompts you for the location for the
exported file.

. Enter or browse to the location where you want to store the exported

game.

You're notified on this screen that the certificate will expire in 24 years,
which should be plenty of time. If you've already exported the file before,
you’ll get a warning that you’re about to overwrite the existing version.

. Click Finish.

Chapter 12: Publishing and Updating Your Game 28 ’

‘= Export Android Application o [[B=]
Keystore selection
) Enter path to keystore. %
@ Use existing keystore
Create new keystore
i o
Password:
Confirm:
|
Figure 12-2:
Entering the
key location
and pass-
word. @ Next » Einish Cancel
|
P Andmic Apphearion o |2 =]
Key alias selection \
@ Enter key password, ﬁ]
) Use existing key
Alias: ialias_name '|
Password:
| Create new key
|
Figure 12-3:
Selecting
the alias
and pass-
word. | @ [<Back st > Einish Cancel
|

That’s it! You now have a signed . apk file ready for upload into Google Play.
Combine it with a developer account and you're set.

282 Part V: Managing Your Game in the Market

Uploading Your Game to Google Play

When your developer account is set up, you can upload your first game.
The following files and information are required:

v The . apk file for the game.
1 At least two screenshots of your game.
Screenshots must be one of these sizes:
e 320x480
¢ 480x800
¢ 480x854
e 1280x720
e 1280x800

Your screenshots can be either portrait (tall) or landscape (wide), even
though they won’t appear in landscape orientation in the developer
console.

\{
P Include at least one screenshot of actual game play, so prospective

players can get an idea of what playing the game looks like before they
download.

v A high-resolution (512x512) application icon. This is the icon used by
Google Play and should be the same as your application icon.

v An app title and description. The title can be up to 30 characters long,
while the description can be up to 4,000 characters.

[recommend adding these optional items:

v A promotional graphic (180x120), kind of like a small banner for your
game.

v A feature graphic (1240x500). This is the large graphic seen on your
game’s listing in Google Play when viewing in a browser.

A slick, appealing high-resolution graphic on your market listing is the
first thing users will see, so you want to make a good impression.

v A promotional video. You can produce a video and upload it to
YouTube, then submit the link associated with your game in the devel-
oper console. The video will be available to users in Google Play so that
they can view it before deciding whether or not to download your game.

Chapter 12: Publishing and Updating Your Game 283

A\\S

A video can serve two main purposes:

e Showing off your game. Try not to show video clips of confusing
levels or lots of things going on to the point where you can’t see
what’s happening. An opening level is usually good. Try to avoid
cut-scenes or cinematics if you have them. People usually want to
see how the game will play. If the video is too different from the
game experience, players might not be happy with you.

¢ Presenting a sort of tutorial. Especially if your game is novel, play-
ers may need a gentle introduction into how it works. If the game
is especially difficult to understand, you’ll want in-game tips, hints,
and tutorials, but the listing video is also a good place to explain
the basics of the game.

Keep your video short:
¢ A minute or less for just a game play intro.

e Three minutes or less for a more in-depth, tutorial-like video.
Actually capturing video from a device can be difficult:

» You can use an emulator and video screen capture software on your
development machine. Emulator performance is often very choppy, so
the quality of your video might suffer.

v You can try to capture the video from a hardware device, but taking
video of electronic devices is also difficult, usually resulting in poorly-
lighted, grainy video.

v If you have access to studio-quality production of demo videos, go for it!

A bad video may be worse than no video at all, so try to determine if you can
actually produce something that’s going to showcase your game, rather than
make it look shoddy.

A privacy policy can indicate how you will use any personal information that
may be gathered by your game. This usually isn’t an issue unless your game

is multiplayer and has a login system with usernames and passwords, or is
location-based and somehow uses the player’s location or other information
in game play. If you are gathering any information you will want to link to a pri-
vacy policy, as well as detailing the policy within the app itself.

Uploading the APK

Your APK should be signed and stored in a handy location when you begin
the upload procedures. Follow these steps:

284 Part V: Managing Your Game in the Market

Figure 12-4:
The Upload
new APK
dialog in the
Google Play
developer
console.
|

\\3

1. From the main page in the developer console, click the Upload
Application button.

The first thing you will be prompted to do is upload your .apk file, as
in Figure 12-4.

Required: Select your application's APK
Choose File | No file chosen Upload

Optional: Add an expansion file
If your app exceeds the 50MB APK limit, you can add expansion files. Learn more

Add file

Close

You don’t actually have to upload your .apk at this time. You can close
the dialog and fill out the rest of the information and settings about your
game, and upload the .apk later.

2. To upload your . apk file now, click Choose File, browse to the loca-
tion where you stored the .apk, then once it’s chosen click Upload.

As the dialog states, if your . apk file exceeds Google Play’s limit of 50MB,
you can upload expansion files. For a small game, it’s unlikely that you’ll
exceed 50MB, which can actually encompass an awful lot of images, sound,
and music. If you do have more resources than that, you’ll want to click Learn
more to determine how to use additional files not integrated into your . apk.

Adding product details

When the . apk is uploaded, you’ll need to add other resources and details to
your game’s listing. Some of these will display in the Google Play listing that
users will see, and others will be used by Google.

Creating and uploading screenshots

The Android tools for Eclipse make it easy to take quality screenshots. You
should see a button in the upper-right corner of your Eclipse window that
opens the DDMS (Dalvik Debug Monitor Service) perspective. The DDMS
actually includes a suite of tools that allows you to monitor the performance
of your game as well as spoofing certain features available on hardware
devices. Those uses are too big a topic to cover here, but another handy fea-
ture of the DDMS is screen capture. Follow these steps:

Figure 12-5:
DDMS
perspective
showing a
selected
device.
|

Figure 12-6:
The Device
Screen
Capture
window.
|

Chapter 12: Publishing and Updating Your Game 285

1. Click the DDMS button in Eclipse.
The perspective should show
¢ A window named Devices

¢ Tabs in the main window that display other information about the
current device.

All devices you have attached to your development machine or emula-
tors you have running will display here.

2. Select the device you want to capture a screen shot from by clicking
the device icon and serial number in the Devices window.

When a device is selected, the screen capture icon, which looks like a
camera, should be active (Figure 12-5).

3. To take a screenshot, click the screen capture icon.

Whatever is currently displaying on your device will be captured and
displayed in a new window (Figure 12-6).

File Edit Run Source Refactor Navigate Search Project Window Help

i " |@& B8 B BHdit-0-Q- @B S PloEliH-F-ve-a-
r e 5 = 0% Threads| (3l Heap | (§ Allocation Tracker | i File Explorer 32
B Devices 23 - %, Threads | § Heap | @ All Tracker 15 File Explorer 51
#| 66 0|22 @@ 7| Neme Size Date
Name b B acet 2012-07-25
| 4 [01466E6202019007 Online b (& cache o0R2
com.ragecansutting.android.lightflowlite 595 5] charger 229 1731
b 2 config 2012-07-25
Bd 20120725
b (= data 2012-08-14
2] default.prop 116 1969-12-31
b @ dev 2012-07-25
2 ete 2012-07-25
b & factory 19991231
2 init 98676 1969-12-31
) init.goldfish.rc 2344 19691231
nit.omapdpandaboard.rc 1324 1969-12-31
[initre 17105 1869-12-31
[inittuna.rc 6989 1969-12-31
1) inittuna.usb.rc 3532 1969-12-31
= T =
Device Screen Capture (]
I Refresh l | Rotate J [Save] I Copy I [Done]
Captured image:
Whacked: 0 Missed: 1

286 Part V: Managing Your Game in the Market

A\

Figure 12-7:
The Upload
assets sec-
tion of the
Google Play
developer
console.
|

To rotate the image into landscape, click Rotate. The screen capture
may produce artifacts, especially if your animation is fast and the emula-
tor is running slowly, so you may need to try a number of times before
getting a shot you like. When you click Refresh, the screen capture
updates with whatever is currently on the screen. I find it useful to start
a game and click the Refresh button until I find a shot I like.

When you have a shot you like, click Save and browse to the location
where you would like to save the shot and click the Save button in the
dialog.

Again, you need a minimum of two screenshots. I usually like to include
three to five, but you’ll likely want at least one of your play screen out of
your two shots.

Uploading icons and other graphics

Figure 12-7 shows the Upload assets section of the developer console when

uploading an . apk file.

> Google play

ANDROID DEVELOPER CONSOLE

Edit Application

Product details

Publish

Screenshots Add a screenshot Screenshots:
at least 2 Choose File | No file chosen Upload ?ggu* 4530-1328%5“3035“ x 854
x7 x
24 bit PNG or JPEG (no alpha)
Full bleed, no border in art
You may upload screenshots in
landscape orientation. The thumbnails
will appear to be rotated, but the actual
images and their arientations will be
preserved
High Resolution Application Add a hi-ras application icon High Resolution Application lcon:
lcon Choose File | No file chosen Upload] 212x512

Learn More: _ 32 bit PNG or JPEG

Maximum: 1024 KB
Promotional Graphic Add a promotional graphic Promo Graphic:
optional Choose File | No file chosen Upload | 180w 120h
24 bit PNG or JPEG (no alpha)
No border in art
Feature Graphic Add a feature graphic Feature Graphic:
optional Choose File | No file chosen Upload | 1024 % 500

Learn More

Promotional Video
optional

Privacy Policy
Learn mare:

Marketing Opt-Out

Add a promotional video link:
http://

Add a privacy policy link:
http://

[CINot submitting a privacy palicy URL at this tima

24 bit PNG or JPEG (no alpha)
Will be downsized to mini or micro

Promotional Video:
Enter YouTube URL

Do not promate my application except in Google Play and in any Google-owned online or mobile
properties. | understand that any changes to this preference may take sixty days to take effect

Save

Chapter 12: Publishing and Updating Your Game 28 7

There are buttons for each set of assets that allow you to browse your local
machine to where you stored them, select them, then upload them. For the
hi-res icon (512x512) it’s a good idea to design your icon first using this size,
then scale it down to as low as 32x32 to make sure it still looks good.

<¥ Browse around both the web and device versions of Google Play to look at
other games’ promotional graphics, to see what works and what doesn’t. Try
to look at a wide variety of listings to give yourself ideas about what you think
does and doesn’t work.

Writing your game’s description

The graphics in a listing are the first things that will catch someone’s eye,

but the description is another crucial aspect to marketing your game. You

want to get people interested in downloading and trying your game out. As

long as the game is fun, the hardest part is often getting them to click that
\\3 Install button.

Follow these guidelines for writing a great, alluring description for your game:

v Sound enthusiastic, but not too cheesy. Watch those exclamation points!

v Keep it succinct. In the early days of the market, the description length
was appallingly small. These days, 4,000 characters are quite a lot, but
that doesn’t mean you have to use it all. In fact, a lot of potential down-
loaders might be turned off by a wall of text. You want to hook them, not
give them eyestrain.

v Be descriptive. Don’t think you're going to get people to download your
app by being vague and mysterious.

Let’s try to write some hypothetical descriptions for Whack-a-Mole and see
what might or might not work:

v This is an awesome game that people of all ages will want to play! Do you
like fun!?! This addictive game will keep you or your kids entertained for
hours on end. Go ahead and download it now...you won't be disappointed!

You shouldn’t have too many problems figuring out what’s wrong with
a description like this. About the only thing going for it is its brevity.
The description sounds like a carnival barker, but its biggest sin is that
it doesn’t tell you anything substantive about the game itself, or what
it’s like to play.

288 Part V: Managing Your Game in the Market

A\\S

\NG/
&éb“

v Moles have invaded your back yard! Whack them on the head to knock
them back underground. Whack-a-Mole updates the classic carnival game
with a fully touch-screen interface that looks and plays great on any
Android device. The more moles you whack, the faster they come. Fast-
paced fun for players of all ages!

This is pretty good, though admittedly not perfect. You are doing some
things right here, though: introducing the theme of the game, describ-
ing the actual game play, and describing the interface and compatibility
across a wide range of devices. The description gives a good sense of
what playing the game is like, and does so in a brief, solid paragraph.

If you just don’t feel comfortable with words, or you're distributing the app in
a market in which you don’t speak the native language, get some help. Just as
with other resources, you can hire someone, or find a friend or family member
who can help you out. If you butcher the description, it’s going to result in
fewer downloads, so take the time to do it right.

Don’t clog descriptions with release notes, bug fix comments, or replies to your
users. Google Play now allows dedicated places for each of these. When you do
post version changes or bug fixes, be succinct and descriptive. Users don’t care
about the technical details, only that you fixed the bug that wouldn’t let them
save their high scores. Use your game description space for its intended use:
describing and getting people interested in downloading your game.

In the same section where you enter the game description and recent
changes text, there is a space for promo text, limited to 80 characters. This
is typically used when a game happens to be featured as a top app in a
given category. Hopefully that will happen for you, since it’s a great form of
exposure. Just to be prepared for such an eventuality, you should also have
content for the promo text. Eighty characters isn’t much, so this is almost
like the tag line for a movie, a briefer version of your game description. For
Whack-a-Mole you might try something like this:

Whack the moles! Try this fast-paced carnival action game for Android.

This is 70 characters. As you can see, there’s not much room, but you’ll want
enough to describe the game very briefly and make someone click the link to
the market listing.

Setting other market listing options

When you’ve entered the text for the descriptions, you’ll need to select the
application type and category. The app type you select should be Game. The
Game application type has these subcategories. You’'ll want to choose the
subcategory that best fits your game:

Figure 12-8:
Publishing
options for
your game.

|

Chapter 12: Publishing and Updating Your Game 289

v Arcade & Action

v Brain & Puzzle

v Cards & Casino

v Casual

v Live Wallpaper

v Racing

v Sports Games

v Widgets
The market doesn’t currently support multiple categories, so even if your
game overlaps categories, you can choose only one. You might want to

choose the category with less competition, and thus more visibility. And you
are able to change this setting at any time, so you can experiment a little.

Next you'll need to set the Copy Protection, Content Rating, and Pricing.
Figure 12-8 shows these publishing options in the developer console.

Copy Protection @ Off (Application can be copied from the device)
7 On (Helps prevent copying of this application from the device. Increases the amount of memory on
the phane required to install the application)
The copy protection feature will be deprecated soon, please use licensing senice instead

Content Rating 7 High Maturity
Learn More oM m Maturity
o Low Maturity
o Everyone

Pricing @ Free @ Paid
Setting the price to Free is permanent; you cannot change to a price later. [Learn More

Set a price for each country/region

Default price usD This price excludes tax.

Auto Fill Automatically populate all price fields with a one-time conversion of the default
price into local currencies based on today's exchange rate and the tax rates
defined in the account owner's Google Checkout Merchant Account (if

applicable)

All Countries

[¥] Argentina ¥ Lithuania
[¥] Australia Luxembourg
[¥] Austria WMalta

Copy Protection

Copy Protection was Google’s first pass at keeping apps from being pirated.
It increases the size of your uploaded app and doesn’t actually provide very
much in the way of protection. Besides, as the console notes, it’s being done
away with. Google currently recommends that you use their licensing ser-
vice (see http://developer.android.com/guide/google/play/licensing/index.
html). Remember, these options are for paid apps. While the licensing option

290 Part V: Managing Your Game in the Market

\NG/
Vg\“

might provide marginally more protection than the previous incarnation, the
bottom line is that if people want to pirate your game, they will. You have to

ask yourself whether any kind of copy protection or DRM (digital rights man-
agement) is worth the time and effort required to implement it. I'd argue that
for your first game, or even first few games, the answer is no.

You're probably just not going to get enough exposure, and when you're just
starting out (realistically speaking), it’s unlikely that your first game will be
enough of a hit to make piracy a real issue. If you're really worried about it,
go ahead and implement licensing or your own anti-piracy measures. Just
remember that the time you invest could be spent polishing or marketing
your game.

Content Rating

Content Rating deals with the age-level appropriateness of the content in
your game.

Be careful here. If your game is rated too broadly and users complain to
Google, that might be an issue for you.

The main areas of concern for a game (just as for movies and other media)
are the usual suspects:

v Violence. Per Google’s guidelines, if your game contains cartoon or fan-
tasy violence (such as whacking a mole on the head), the maturity level
should at least be set to Low Maturity. Of course, if you've got zombies
eating brains and entrails, or other gratuitous depictions, you likely
need to go up to High Maturity. Get feedback from beta testers across a
wide range of demographics. In other words, try to get your mom to play
it and see what she says. Moms’ reactions are a good baseline for deter-
mining what the baseline maturity level should be.

v Profanity or crude humor. If your game requires shooting boogers from
a giant nose to kill enemies, or contains any words that are considered
taboo or possibly offensive, rate it at least Medium Maturity.

v Sexual content. It will usually be obvious if your game has a sexual
theme (which I would generally advise against overdoing). But if the
elves in your RPG have substantial cleavage or the dialog in your game
is a little suggestive, you might not offend most folks. Default on the side
of safety and rate your app for more mature audiences if there’s any
kind of question.

Of course, these areas are all subjective, which is why it’s important to get a
lot of input from other people.

Chapter 12: Publishing and Updating Your Game 29 ’

\y
p Steer clear of more mature themes for your first couple of games. You'll avoid

any potential controversy, but the big upside is that your available audience
will be much larger.

Another aspect of maturity levels to note is location. If you happen to be
developing a location-based game (such as a scavenger hunt that uses the
GPS), the game cannot be rated Everyone. It must be rated at least Low
Maturity. This is presumably because of issues related to tracking the loca-
tion of minors.

Pricing
QIING/ The Pricing section is your option to set the price.

$V~
‘ If the game is free, it must always be free.

If you are selling the game, follow these steps: enter a default price in US dol-
lars in the price field. Below that is a list of other countries where you can
make the game available for sale. By default, all locations are checked. After
entering a price in US dollars, you can click the Auto Fill button to convert
the price into values for local currencies in other locations.

a\\J
As of this writing, the Auto Fill feature didn’t quite work right for 99 cents,
rounding certain currencies down below the minimum price so that you had
to edit them manually.
N % The price excludes tax. You can set up automatic tax allocation through

Google Checkout. Just be sure you consult your accountant or attorney about
collecting taxes in your state or region. Google’s not going to do it for you.

Contact information

When you’ve set these options, you’ll need to enter contact information for
you or your company, for support purposes. You don’t need to enter a tele-
phone number unless you want to provide telephone support. There are the
standard acknowledgements that the game meets the proper content guide-
lines at the very bottom of the page. When you check those, return to the top
of the page and click Publish.

Congratulations! Your app will be live on Google Play almost immediately.
However, if there are any issues with your submission, the console will indi-
cate them with warnings to fix them. Otherwise your game is out there for the
whole Android ecosystem to download and play.

When you publish and the listing is visible, you’ll want to check it via both
the web and device versions of Google Play to see how it looks. You'll also

292 Part V: Managing Your Game in the Market

want to test downloading your game to see what the process is like from a
user’s perspective.

When you’ve published a game, it will stay in your developer console forever.
You can’t delete listings. You can unpublish games (by clicking the Unpublish
button for a listing), but the actual listing will always stay in Google’s system
for reference and support.

Supporting and Updating Your Game
After Publication

WBER
‘x&
&

A\

If your game gets any significant amount of downloads, you’ll get e-mails.
Some will be praising you and your game and thanking you for making it.
These will be in the minority, probably about 5 percent. The rest will either
be criticism of varying levels of specificity and helpfulness, or requests for
help. You should try to respond to every e-mail you get, and unless you're
getting millions of downloads, this should be very doable. You represent
your game and to a lesser extent the Android platform, so when you reply to
your users in a professional manner, it reflects well on everyone and can help
boost your reputation and sometimes your game’s user rating.

Some users might be rude. Resist the urge to be rude back. The more profes-

sional you act, the more professional you'll be, and you don’t want comments
on your app that say you insulted someone (even if that someone might have
deserved it).

If there’s a feature request or someone suggests a change to the Ul or other
functionality, make sure to listen. They probably care enough about the game
to want to see it better, and if they took the time to write you then their sug-
gestion warrants some consideration. You can’t please everyone, but if the
suggestion is sound and doable, you probably want to spend the time making
the change. If it’s a bug, you definitely want to spend the time hunting down
the problem and making the change.

I've seen a fair amount of discussion among mobile game developers regard-
ing whether it’s worth the effort to update your game on a regular basis, or
concentrate on that next game you’re working on. A number of developers
have data to indicate that updates don’t affect the bottom line all that much,
in terms of retaining old customers and gaining new ones. It’s certainly a trad-
eoff. In general I'd advise that you update significant bugs and functionality
that won’t take that long to implement, but I wouldn’t prioritize updating an
old game at the expense of working on a new one.

Chapter 12: Publishing and Updating Your Game 293

When you do have a new version, you'll need to increment both the version
code and version name in the manifest file of your project. For example, if

your previous version code was 1, you should increment it to 2. If your ver-
sion name was 1.0, you should update to 1.1, and so on. Follow these steps:

1. You’ll need to export your signed application each time you have a
new updated .apk.

2. When you visit the application listing for your app in the developer
console, click the APK files tab.

Figure 12-9 shows this view for my game Golf Solitaire.

Edit Application
Unpublish Save
APK files
Switch to simple mode »
Active
When you click "Save”, these APKs will be live on Google Play
versionCode: 32 AP level- 3-16+
I versionName: 1.32 Supported screens: normal-xlarge Deactivate
more » OpenGL textures: all
Figure 12-9:) e)
The APK | 1ew
files tab Upload APK
inthe Previously Active
Google Play Qversluncme 3 AP level: 316+ .
v I B eactivate
developer peme: 131 P e emeterge
console. strsinncma 0 AP level: 3-16+
versionName: 1.30 Supported screens: normal-xlarge Reactivate
I more » OpenGL textures: all
You'll see the current active version along with all previously active
versions.
3. Click the Upload APK button to browse to the location where your
new .apk file is stored to upload it.
When uploaded, you can set the new version to the active version,
deactivating the old one.
4. Click Save when you’re done.
@ The new version will become active almost immediately.
;‘

If you need to revert to a previous version, just use the same interface to
deactivate the new version and activate an old one.

294 Part V: Managing Your Game in the Market

Part VI
The Part of Tens

Maze: M10B Goals: 24 Steps: 0

In this part . . .

art VI provides you with a wealth of resources to

help you on your path to creating awesome Android
games. [introduce you to a bunch of open-source games
that other developers have been kind enough to share,
spanning virtually every game genre you can imagine.
[also brief you about game engines and other tools that
help streamline the process of creating games. By the
time you’ve explored this book, dug through the sample
code of these projects, and leveraged some of the tools
discussed, you’ll be well equipped to build great games
yourself.

Chapter 13
Ten Open-Source Game Projects

In This Chapter

Checking out side-scrolling platformers

Seeing sample puzzle and word games
Researching physics-based games and 3D

Often the best way to get where you’re going, especially when develop-
ing games, is to build on what others have done already. Even if you do
start completely from scratch, looking at how someone else already accom-
plished something similar can speed up your development time or give you
new ideas and insights.

The following ten Android game projects are all open-source. That means
the source code and all resources for the game are made freely available. Be
sure to check the license for each, though. Just because they’re free of charge
doesn’t mean that you can simply copy and paste their code over into your
game.

I've included a good cross-section of genres and approaches, so if the two
games built in this book weren’t the kinds of games you necessarily want to
build, chances are that at least one of these free projects fills that bill.

Lunar Lander

The Android SDK comes bundled with example projects that exemplify best
practices with regard to developing certain types of apps. One of the earliest
examples of this is the Lunar Lander game, shown in Figure 13-1. The project
is organized very similarly to our Whack-a-Mole game and uses SurfaceView.
If you're interested in building a 2D simulation game with real-time controls,
you should definitely check this example out.

298 PartVi: The Part of Tens

| @ 12:56

Figure 13-1:
Lunar
Lander.

Like other game samples in the SDK, this game tends to use keyboard input. If
your test device is touchscreen-only, you’ll need to run the sample game in an
emulator.

To load an existing sample from the Android SDK, follow these steps:

1. In Eclipse, right-click the project explorer and select Import.
2. Select Existing Android Code Into Workspace and then click Next.
3. Browse to the directory in which you installed the Android SDK.

Samples are located in /samples/<android-sdk-version>. You
probably want to use samples from the latest version.

4. Click Finish.
If your project includes errors at this point, make sure your build target is the
same as the SDK version the sample is from:

1. Right-click the imported project and select Properties.

2. Select Android from the left menu.

3. Check the box associated with the build version that matches the
sample directory of the project.

Chapter 13: Ten Open-Source Game Projects 2 9 9

Replica Island

We didn’t cover how to implement a side-scrolling platformer. If you're
interested in implementing this type of game, you’ll definitely want to check
out Replica Island, shown in Figure 13-2. The game stars the Android robot
himself, navigating maze-like environments filled with obstacles and items to
gather. The game was developed by Chris Pruett when he worked for Google,
and became a popular free game in the market.

|
Figure 13-2:
Replica
Island.
|

The source and all related project files are here:

http://code.google.com/p/replicaisland.

Alien Blood Bath

This game isn’t nearly as cute and family-friendly as Replica Island, although
it follows in the same side-scrolling platformer genre. Alien Blood Bath
(shown in Figure 13-3) is a rewrite of the Windows game of the same name.

http://code.google.com/p/replicaisland

300 Partvi: The Part of Tens

Figure 13-3:
Alien Blood
Bath.
|

Probably not hard to figure out what the theme and the game play are like on
this one!

The project files are available here:

http://code.google.com/p/alienbloodbath

OpenSudoku

If bathing in the blood of aliens isn’t your thing — but brain-bending puzzles
are — then check out OpenSudoku, an open-source version of the popular
grid-and-numbers game. (See Figure 13-4.) It features 90 puzzles with three
difficulty levels.

Google Play has lots of existing Sudoku games, but working through this code
and implementing your own puzzles and variations will definitely be useful if
you want to build games in this genre.

The project files are available here:

http://code.google.com/p/opensudoku-android

http://code.google.com/p/alienbloodbath
http://code.google.com/p/opensudoku-android

Chapter 13: Ten Open-Source Game Projects 30 ’

ATHPN QMIEE 5]

1 2 2
8(1]3 2|5
4 il B
6/8|3 4 5|97
2 5 2
89 3(6|5
1 7 3 6
Figure 13-4: | 1 2 4 5 \
Open- o
Sudoku. | & 7 8 9 c | =N
|

Lexic

Lexic (see Figure 13-5) is a word game in which the player is given three
minutes to find as many words as possible on a grid of randomized letters
(another popular subgenre of word games).

T @ 1:10 AM

O O |

i< —|C
m [m | X
> = |0

— 6/78 BeD
Figure 13-5: WORDS WEEK
Lexic. 2:11 BEAM

BEE
|

302 Partvi: The Part of Tens

The code isn’t very well commented, but it’s still a useful starting place if you
want to build a word game.

The source code is here:

http://code.google.com/p/lexic

Newton’s Cradle

Newton’s Cradle is the popular desk toy — metal balls suspended from strings
knocking into one another — brought to life on Android. (See Figure 13-6.)
This is a great (and simple) place to start looking into the workings of a
simple physics-based game.

|
Figure 13-6:
Newton's
Cradle.

The source is here:

http://code.google.com/p/newtonscradle

http://code.google.com/p/lexic
http://code.google.com/p/newtonscradle

Chapter 13: Ten Open-Source Game Projects 303

Vector Pinball

With purposefully simple graphics, Vector Pinball gives you an efficient
primer on how to translate arcade classics into cool mobile games. (See
Figure 13-7.) Vector Pinball actually uses a wrapper around the Box2D phys-
ics engine, so it’s a reliable resource for building games with physics.

The source is here:

https://github.com/dozingcat/Vector-Pinball

Figure 13-7:
Vector
Pinball.
|

asqare

Match-3 games make up an incredibly popular genre of casual games: The
player moves simple elements in a grid until three or more of the same kind
are in a row. | have a couple of games that fall into this class or are mashups
of other games that use this concept. Some of the most popular casual games
of all time are match-3. Asqare (don’t know where they got that spelling)
does a great job of showing how to implement this type of game, with simply-
colored sprites. (See Figure 13-8.) Use it as a basis for inspiration for your
own themed match-3 game, and you just might have a hit on your hands!

The source is here: http://code.google.com/p/asqgare/.

https://github.com/dozingcat/Vector-Pinball
http://code.google.com/p/asqare/

304 Partvi: The Part of Tens

| Android Emulatar (5554) (=)|
Bl & 6:06 Pm
Asgare - Bijoux

| e
C X JONey |
commeo
I

Be oon
o Ja |
i BNOCON
7, Score: 46

— Bljotrx - Mo

tiltmazes

Almost everyone has a wooden labyrinth game sitting around in the attic or
the garage: The player uses knobs to tilt the game surface, trying to navigate
a metal ball through the maze. (See Figure 13-9.) This open-source version
uses the accelerometer to allow the player to tilt the device to roll the virtual
ball around to collect tokens.

Maze: M10B Goals: 24 Steps: 0

Figure 13-9:
tiltmazes.
|

Chapter 13: Ten Open-Source Game Projects 305

A\
If you want to incorporate alternate input sensors such as the accelerometer
into your game, this game is a good reference point.

The source code is here:

http://code.google.com/p/tiltmazes

GL ES OQuake

We didn’t cover 3D game development in this book, but if you're feeling
adventurous, this version of the popular id Software game Quake, ported to
the Android platform, might be the place to look. (See Figure 13-10.)

OpenGL ES (for Embedded Systems) is a scaled-down version of the OpenGL
3D graphics API and is the supported standard for Android. It’s a big leap
from 2D to 3D, and the complexity and demands of the hardware increase
quite a bit. But mobile devices do keep getting more and more powerful, so if
this is the direction you want to go, dive right in.

The source code is here:

http://code.google.com/p/glesquake

Figure 13-10:
Quake.
|

http://code.google.com/p/tiltmazes
http://code.google.com/p/glesquake

300 Partvi: The Part of Tens

Chapter 14
Ten Game Engines and Tools

In This Chapter

Finding good game engines
Getting software for creating your own image and sound resources

Investigating tools for promoting and monetizing your games

A game engine is a pre-built set of tools to help you build a game without
having to reimplement tasks that are common to almost every game.

A lot of good game engines are available for Android; I've listed a good sam-
pling here, though it’s certainly not exhaustive.

You also might want to take advantage of some freely available SDKs that
can improve non-game aspects of your game product — such as marketing
and analytics. I've included some tools here that can help you promote your
game to other users and gather information on when and how your game is
being played.

Also, if you want to make your own image and sound resources, you'll need
tools that are up to the task. If you already own great image-editing software
and know how to use it, that’s great. But if not, and you’re on a budget, |
point you toward some formidable free resources that can help you do the
needed world-building.

308 Partvi: The Part of Tens

libgdy

|
Figure 14-1:
libgdx
website.
|

This game engine allows cross-platform game development for both Android
and desktop games. Just a few lines of code allow you to run your game on
your desktop machine, which makes prototyping and testing much easier.
libgdx has Box2D support for physics, and TMX tilemap support, which
allows for easy, rapid development of games that use tiles, such as RPGs.

Some very popular games on Google Play were developed using libgdx, and
[have used it for my physics-based game Save the Egg. It will definitely save
you a lot of time and effort in the making of a professional game, and it is
pretty well documented with a large community of developers. It’s an easy
download (see Figure 14-1.) See

http://code.google.com/p/libgdx

3 Google T @ Uoch - DesktopfandradHT « _|

& — C [ibgdxbadogicgames.com

libGDX B0 MK = e

Desktop/Android/HTMLS Java game development framework

Ziggy’s Games

Neil Rajah by Ziggy's Games

Crossplatform Features Fast In All Respects
White your 20430 game once and deploy to + Cross-platform graphics, audio, input, and « Wite and debug your game on the

http://code.google.com/p/libgdx

Chapter 14: Ten Game Engines and Tools 309

AndEngine

This is another great free game engine for Android, developed by Nicolas
Gramlich (see Figure 14-2). It includes many of the features you want in a
game engine and has an active development community at www . andengine.
org/forums. See

https://github.com/nicolasgramlich/AndEngine

!Eew\;\e || @ ricolssgramlchjancengne - _

€ 5 C (8 b, Inc, (5] https://github.com/ricolasgramiich/AndEngrne:

. =
glthub Signup and Pricing Explore Gitdub Features Blog Sign in
nicolasgramlich / AndEngine & Star w8 | P Fork 32
Code Network Pul Requests 34 Issues 77 Wiki Graphs

Fee Andraid 20 OpenGL Game Engine — Read more =
http:/fwww. andengine.org

A% Clone inWindows G ZIP | HITP GitRead-Only htcps://uithub. dE; 3]
P branch: GLES2 ~ Files Commits. Branches & Tags Downloads
AndEngine / ® 1000+ commits

Merge pull request #172 from kom3UGLES2 =

8 cotesaramich authores 2 rontes o

ouuit Thes3a2498

= et & manths ago Added example seript to generate using
|
ini 8 months ago Building with shared stl [nicolasgramiich]
Figure 14-2: libs 8 months ago Updated buildies. [nicolasgrarmlich]
A d E . res 9 manths ago Fixed compiler error. res/ falder not found [recastrodiaz]
n n g I ne 2 o 2 manths ago Update sre/org/an dengine/entity/spritef AnimatedSprite java [korm3l]
we bSIte B classpath & manths ago Building with ADT 17 and making use of BuildConfig. DEBUG constant to ... [nicolasgrarnlich]

I B gitignore 11 manths ago Ignaring Intelii] IDEA project files for now. [nicalasgramlich] |

Unity

Besides the free engines, powerful proprietary game engines exist for use
with Android. Unity, for example, has been around for a long time and has
extended its game engine for use with Android. The baseline version is free
to use; upgrades to the Pro version are available, as is support for many
more optimizations and higher-level features. See

http://unity3d.com/unity/publishing/android

http://www.andengine.org/forums
http://www.andengine.org/forums
https://github.com/nicolasgramlich/AndEngine
http://unity3d.com/unity/publishing/android

370 Partvi:The Part of Tens

OpenfFeint

Figure 14-3:
OpenFeint
setup
instructions.
|

Often you’ll want to include features that allow players to recommend the
game to one another and compare their performance via shared leader-
boards (ranked listings of scores from other players). OpenFeint is a free SDK
that supports friend recommendations, leaderboards, and achievements.

Social features can often take your game to the next level of popularity (and
profitability!), so using these freely available tools and help files just might be
a very good idea (see Figure 14-3). See

http://support.openfeint.com/dev/welcome

3 Google T 0 Getting Started with OF £ x o} S
€« C [J support.openfeint.com/dev /getting-started-with-of-android- 1-10-2-build-and-run-the-openfeint-sample-application; s
=
2. Buidand run the
OpenFeint Sample Getting Started with OF Android 1.10.2: (@ Bratine: 1 (from 5 vates) J
Application 2. Build and run the OpenFeint Sample Application
3. Get familiar with
OpenFeint features in the Lost Updated: October 29, 2011 Platform: @) v.: 1402 Audience: Developer
sample App
e irbogratiaBoerEdiinth Tags: 1.10.2, android, dev dashboard, developer dashboard, developer support, openfeint, openfeint sdk
your game
8 The sample app lets you experiment with the features you've configured on the OpenFeint dev dashboard before you've begun to write your own app. Once you
AR OBankeint teatures: do begin working with your own app, it is frequently helpful to come back to the sample app to see how individual features work and how they can best be
nto your game hnante
Be BiTHanathedbommur o Build and run the OpenFeint Sample App for Android in Eclipse
i NOTE: The fallowing instructians assume yau are using a standard installatian of the Andraid SDK with the
Eclipse IDE a5 described at http: //deve loper. andrai dkfindex.html [, Adjustments may be required 1f
7. Workwith test users vour development environment is set up differently. The “Hello World” sample app tutorial at
loper.android. dkfindex.html O is a5 @ good way to test that your
8, Obfuscate your code
development environment s et up properly.
with ProGuard
1. Sawe the Contents of the OpenFeint Android SDK package in a convenient location, Everything you need from this package to build the sample app
% LT"E AW’“VHLP'"“ 4 s in the directary called MyOpenFeintSample. You may copy this directory out of the package and rename it if you want to uss it a5 a starting
e more sbout : ;
point for experimental code.
Openfeint
2. To develop in Eclipse:
a. Open Eclipse with an empty workspace. This will present an empty “Project Explorer” pane to which you will add a reference to the sample
app project.
b. Make sure that the path to your Android SDK has been set for this workspace. To set it: -
o Untysetup356.010
~~ 13.1/506 MB, 50 mins left SO, 1

Flurry

As feature-rich as the Google Play developer console is, it’s been slow to offer
native support for a lot of usage statistics and bug reports. Even now, the
console could use some help in that department; there’s still a lot of value in
including analytics in your game to help improve (and possibly monetize) it.
Flurry offers a painless way to build in analytics.

http://support.openfeint.com/dev/welcome

Chapter 14: Ten Game Engines and Tools 3 ’ ’

With just a couple of lines of code, Flurry provides a treasure trove of default
user data — for openers, number of sessions per day per user and length of
sessions. And if that’s not enough information for you, Flurry allows you to
capture information about custom events — say, how many attempts it takes
users on average to defeat a particular level or enemy, or how often they use
a particular set of controls. Information is power, and gathering detailed ana-
lytics may help you improve your game immensely (see Figure 14-4). Flurry
now also provides an ad network and other monetization tools, so that’s
something else you might want to look into. See

http://www.flurry.com

3 Google T @ iy)
i C | [www.flurry.com/AppSpot_smal html#adunits
EFFECTIVE AD UNITS OVERVIEW B
DATA ADVANTAGE
Flurry AppSpot serves high-performing ads from Flurry AppCircle, the leading data-powered mobile application ad network. Each of our
carefully designed ad varieties - AppCircle Recommendations, AppCircle Clips and AppCircle Re-Engagement - is designed to fit FAST, EASY INTEGRATION
seamlessly into the fabric of your agp experience, while providing maximum perfarmance. EFFECTIVE AD UNITS
REWARDED AD UNITS
APPCIRCLE CREATIVES AD SERVING & MEDIATION
FREE AT ANY VOLUME
cuPs RE. T
YIELD REPORTING
INTERSTITIAL BANNER SUPER SUPPORT
I
.) REWARDED AD UNITS
Figure 14-4:
Applications can significantly increase revenue by using their vitual currency ta reward application downloads. Well-executed
F| u rry SR e e L &
< Untysetup-a5.6.6xe x
" 165506 M, 33 mins left R
I

Audacity

Elsewhere in the book, I mention the options of either purchasing sound
effects and music or producing your own. You really should try making your
own sound effects, and read up on the history of sound effects in movies like
Star Wars. You'd be surprised at how some of them are made!

http://www.flurry.com

372 Partvi:The Part of Tens

In any case, if you do go the roll-your-own route, Audacity is a great free tool
for editing audio. (See Figure 14-5.) It’s been around a long time and has a
very avid user base. See

http://audacity.sourceforge.net

=lolx]
jow Transport Tracks Generotes Effect Anobyze Help
[T 2ol T
OB OF)S) o cenipgana
Dl o P g rlla @] o] 9] p‘ﬁ‘p‘p”\/‘g@;
e =] =] A [Werorhore (e G oo e |
-15:00 of 15:00 3000 4500 1:00:00 1:15:00 1:30:00 1:45:00 20000
XImwn40_v] 10 =
Stereo, 441001z
32-bt float 05
vide | Soo
= + | 0o
Lig =
Bl gl |55
A0
10
05
00-
05
= 10
|
Figure 14-5:
Audacity . e
H - Project Rate (H2): Selection Start & Eng C Length Audio Position:
Interface Hlmm = ‘ SnanTo I~ [00h 00 m 00,000 s+ [00h00 m00.000 s “nn h00 m00,000 5%
Ee—— I i

sfrr

This is a cool little tool that [came across a while back. (See Figure 14-6.) You
can use it to create common sound effects from old-school-style video games,
like coin-ups, laser blasts, and jumping sounds. If you're working on retro
games, this is a must. Even if you're not, you may find a place for the kinds of
effects generated by sfxr in your game. See

http://code.google.com/p/sfxr

http://audacity.sourceforge.net
http://code.google.com/p/sfxr

|
Figure 14-6:
sfxr
interface.
|

Chapter 14: Ten Game Engines and Tools 3 ’3

=iolx]

ATTACK Tinc e
susTAIn Tine[—
SUSTRIN FuNCH
pecnY Tine— e
START rReauency e | [oAne enns
NN FREQUENCY E—
SLIDE
DELTA SLIDE | [riay sowns |
VIBRATO DEPTH [
VIBRATO SPEED [
CHANGE AMOUNT [o)
CHANGE SPEED [
SQUARE DUTY o] _
DUTY SWEEF[o]
[neroar srecoee | [SAuE sounn |
[renacn orrsor [|
FHASER SWEEF [
Lr riLTen cuterr——————
LP rILTER cuTerr sweer
LP PILTER Resonnnce e | [saw0 nz |
HP FILTER cuTorr [
HF FILTER CUTOFF SWEEF[_

voLune

GIMP

|
Figure 14-7:
GIMP
workspace.
|

GIMP is short for GNU Image Manipulation Program. It’s a powerful, free
image editor on par with many proprietary programs (see Figure 14-7). The
last time [used it, the learning curve was a bit steep. If you're working with
fairly complex images and effects, you’ll want to invest the time in learning
GIMP. Otherwise you might want to use a simpler, friendlier tool for your
image needs. See

WWW.gimp.org

PEIE
File Edit Select View Image Lawer Colors Took Filters Windows Help - =
CHRNED 2, s, b fiss 23 s i o : Ty
i [El B
: Wi
d
D@ ~ME RS QUA P
b P Seyround
E S BERAERASKHZ /O |
8 &880 ud
-
ol
i cl
b
||
wi] .
&
] £
wn s)
- B i L & & 8
[o]
B I 7| [Jonstos [Jpatens [Jorsions|
3 [rer >
@ 2 b 05159
i [smoothsuke
b
T Moion only.
= o]
Fo oo] B
g
Z

http://www.gimp.org

314 Partvi:The Part of Tens

Inkscape

|
Figure 14-8:
Inkscape
workspace.
|

If you're comfortable working with vector graphics, Inkscape is a great little
tool for image creation and editing. It’s pretty user-friendly and has a lot of
features. (See Figure 14-8.) You can export your creations to .PNG format for
use in your Android games. Work through some of the tutorials and you’ll
find that you can create some pretty nice images even if you're not a profes-
sional artist. See

inkscape.org

= AEIE‘
EEE Y f
T [t Ol |
S ==
v =
af =
P A
® - B
i
E & |
o : =7
B o
’ o
| A =]
Al- Q)
,_,.;ﬂé: Qlu
4 | 25
8- Sl
] =
. ~ e
e W |
FEEEENT T 02 B B D T T
il | ol
e W2 o[t @[nerert =] koot e o tomoveslsedr sty touch . B

AdWhirl

In Chapter 11, I mention ad mediation — the process of using multiple ad
networks in a single app, controlling the ratios to maximize your profit from
ads. At any given time, some networks may be generating more revenue than
others, so it may make sense to monitor and adjust which ad provider’s ads
are being served up by your app. (See Figure 14-9.) This may sound confus-
ing, but it’s really not — especially not when you have a good tool to help
you handle it.

http://www.inkscape.org/

Chapter 14: Ten Game Engines and Tools 3 ’5

T B ibadeforn + | @ Flary & andengie - * @ ricolsgran) | @ UNITY: Do« | @ (18736 uve | G Adwhil V@ rudaciys i+ @ sha-1.2.0 | G Adwhil - |

€« C @ htips://www.adwhir.com/apps/oneApp/create
Yo subscribed threads [Google g1 crap:

House Ads Reports

& Jeloprik [i] Deadspin {24 Softcore Modsls

n = ESPRadio (i3] Deadspin Y BreakingBad 1] Outlook Web Access Y] Cyber Club [softcore source.

Dev Resources

Apnist + Creste App

Add a new App

Platrorm: [Phone <

Figure 14-9: [N —

Add an Transiton amimaton: [Fangom =] L
AdWhirl mowtacaiontecess |

i

A e ey e e T T— (e er—
[N, =" 73.5/73.3M8, 8 ins it b sterlzoa B bl S ieeeinsse e

AdWhirl is a free tool that allows you to use a wide cross-section of ad net-
works in your game, as well as house ads promoting your other apps. If
you're thinking at all about monetizing your game via ads, you’ll want to look
into AdWhirl. See

adwhirl.com

http://adwhirl.com

376 Partvi:The Part of Tens

Chapter 15

Ten More Places to
Distribute Your Game

In This Chapter
Discovering other app markets
Distributing your game yourself through your website
Getting creative with alternative distribution methods

Fe most common and popular way of getting your game seen and down-
loaded is through Google Play, the official Android market administrated
by Google. But it’s definitely not the only place to distribute your game.
Because of Android’s relatively open nature, many third-party app stores
have popped up, eager to give Google competition in the app market
business.

People will tend to default to whatever comes pre-installed on their devices,
so app markets that are bundled with the device have an enormous advan-
tage over others that need to be installed. That doesn’t mean they’re not
viable alternatives to be explored.

This chapter takes a look at some of these third-party app markets, as well
as a couple of other distribution channels that you may not have considered.
Remember that each market may have its own unique resource requirements
(for example, some markets may require five screen shots of your game,
while some may require none). There is some overhead in maintaining your
game in multiple markets, but if you have the time and energy, it may be
worth it.

378 Partvi:The Part of Tens

Amazon

|

Figure 15-1:
Amazon.com.
|

The Amazon market for Android apps (Figure 15-1) is probably the most
viable secondary market for Android apps and games right now. The reason
is that Amazon has its own line of Android devices and preinstalls their own
market on these devices. They’ve also done a great job promoting early
exclusives for popular games to drum up interest. Right now some of my
games sell more copies on the Amazon market than Google Play! Amazon also
features a Free App of the Day promotion which encourages daily visits, and
if you're lucky, your game might be featured. Typically you won’t see direct
sales the day of the promotion, but the increased exposure should boost

your long-term sales. You'll find the Amazon market at:

Www.amazon.com/appstore

amazon

Shop by
Department

Browse

Best Sellers
Top Rated A

A pstore Gift Cards
Android 101
Android Phones
Android Tadlets
Digital Deals
Categories
Boaks & Carmics
City Info
Communication
Caoking
Education
Entertainment
Finance
Games

Search Apps

Appstore for Android BestSelers Deals

Derek's Amazon.com | Todays Deals | GiftCards | Help

Releases TestDriveApps Shop Android Phones Your Apps & Devices Get Staried Help

The Ultimate HD Experience

Amazon Appstore for Android

It's the Great Pumpkin Charlie
Brown

IT'S
THE GREAT.
PUMPKIN;
E BROWN

GHA

WiFi Only

It's the Great Pumpkin Charlie
Brown
by Loud Crow Interacive Inc.

The All-New kindle f

s2c0rree ({9 Getann.

814 o

Oh, great pumpkin! Where are you? This Halloween, hang out with Charlie
Brown and the entire Peanuts gang to find out for yourself! Narrated by Peter
Robbins, the ariginal voice of Charlie Brown, everyone will love this magical
interactive Halloween classic! Wi-Fi only download.

Tellyourtriends: [¥

Featured Categories and Developers

[|
Rovio Entertainment Ltd.

Ire HD $199

http://www.amazon.com/appstore

Chapter 15: Ten More Places to Distribute Your Game 3 ’ 9

Handango

Handango’s been in the mobile app market for a long time, before the smart-
phone revolution. (See Figure 15-2). They’ve adapted pretty well to the explo-
sion in the mobile app and game market, and you should find them fairly
reputable and reliable. You'll find their market here:

www . handango . com

au BROWSE BY DEVICE BROWSE BY PLATFORMS
handango i B B

Welcome to Handango Mobile App Store Home » ANDROID

Browse App C:

Business and Prfessiona Powering the FREE & LARGEST
Communicatons Open Mobile App Marketplace

Datavasen

Development Tools 4 o 2 Ay
o B &
e i T pp—

Entertainment

Games

Top Free Top New Top Updated

Health and Fitness

Hobibies

® o
Hedical

2024561414

Wultimedia
Personal Finance
Produciviy
Software Tools
| Themes

Transiation

Figure 15-2: | ...
Handango. | v

eBooks

http://www.handango.com/

320 Partvi: The Part of Tens

Opera Mobile App Store

Opera is a software company based in Norway that’s best known for their
browser. However, they've also gotten in on the mobile app market and have
a very nice site (see Figure 15-3).

oi Jay 5y De OPERA"

e 5 Whcout FAQ Customerupport Snoppng Cat 0

Viewing software for - EWiam bils Facebook Messenqer 3.4
Ancroid smartphone J DOOK T[T
Status updata o
AlMessages -Yhanks Willam, HNY to
45 Newsfeed Youtoo. ve sent this
H1:1y frionds mossage today. Cheers
6y wal T
B LMy profile (5 wiiam
C nol, Subj: Happy New Year
ogout
i from your fencs.
Sl Hares wishing you
CHANGE DEVICE Heppy New Yenr.
s s o o

Categories

Most Popular
Business & Finance
Communication

S M A e W

Entertainment

Games TapdeLioht Fantasy Kingdom Def Gun BROS ETERNITY WARRIORS billu Facebook Mess:

Health Wil v WX A Wi WAk WA

Lanouages & Transiators }
Mutimedia

organizers @ w (% !ﬁ

Ringtones y

Travel & Hlaps CONTRACTKILLER Twitteronbills Cut the Rope Free bit Cricket Kissing Frenzy

Utiiies TR Fledr ey AR, Rrfedr Rdriedr

New Software
Updated Software
1. 2 3 4 5 6 .49

Figure 15-3: visa [
Opera.

Copyright ® 2004-

er, nc. Al right
er s acauired by Opers

ans rademark of Handster, Inc.
e in September 2011

Opera Mobile App Store is here:

http://apps.opera.com/en_us

http://apps.opera.com/en_us

GetJar

Figure 15-4:
Getdar.
|

Like other mobile app markets, GetJar lets you browse by compatibility with
your device (see Figure 15-4). Installing the market client is easy, making the

process of installing apps from GetJar relatively painless.

Chapter 15: Ten More Places to Distribute Your Game

G LeIORREN) |) (o)
APPSOLUTELY FREES
-l —_—
] i *xXx 4 @
Home: Categories Apps Friends My Apps
i | FREE
G@) | cosnsp Afast coolShS app, |FFeE | El Frinticular - FREE
e Percent O
w 25% Off V
7 m e e Free |
zingly fun & simple life-sharing appfor | |
e | Free |
More.
f Connect with Facebook
Login to see what your friends are downloading
New
Foursquare (
i i ; our friends m: \REEa

The GetJar market is here:

www.getjar.com

321

http://www.getjar.com/

322 Partvi: The Part of Tens

Slide ME

SlideME is the first market in the list that’s dedicated solely to Android apps
and games (Amazon’s app store is dedicated to Android as well, but they
obviously sell other stuff online). As such, users looking for your Android
game may have an easier time navigating a dedicated market. (See

Figure 15-5.)

About Help Parners Blog Contact Login Register

Application search:

Marketplace for android apps

Home | Applications Community

Fun&Games Zombik Rescue

Challenging zombie runner with plenty of over the top traps and lots of mean looking shatp fhings

= Popun 3 e 2
a freegal
|

Read more
Developers Users Partners
Figure 15_5- Need a way to gst your Search, download Free & Paid Looking for a Mobile
- Android applications out Android Apps for all devices Application Store or an
. there? Publish on SlideME Participate in the SideME altemative to Google Play to
S | | d e M E and deliver them globally. drive your business?

community.
Learn more. Learn more. Learn more.

The SlideME market is here:

www.slideme.org

http://www.slideme.org/

Chapter 15: Ten More Places to Distribute Your Game

Appoke

Appoke bills itself as a “social app store” for Android devices. That means
users rely on their social network to find out what apps and games their
friends and family have installed and how those apps and games are rated.
(See Figure 15-6.) Neat!

T [T} Home Applications Pl MR Sien v Losin -

Showing 1- 7 of 6961 apps in this category © All © Free @ Paid Sortby Popularity [=]
Applications
Comics
Comiminteation 5Reader Free-314i) /1251 - 29817 downioads
Entertainment []| ncbeok reader. Supports cpub, oeb and f2(ip) il formats. Vst 5 popular network fbraries for arge set of ¢
Finance books. Download and read a book directly from the program! Or put a file manually into /sdcard/Baoks directory.
Health
Lifestyle ee Apps 365 : 1 A Jour Free-77i) /115 - 21362 downioads
Multimedia 344l Découvrez et recevez chaque jour une nouvelle application gratuite ! Free Apps 365 permet de découwrir chaque jour
News & Weather &g une nowvele spplication Android GRATUITE sur son téléphone. 100 % Gratuit et sans inscription ! Cest a Tére app du
Productivity genre...
Reference
o a Free-20410) /39) - 17661 dowrioads
Shopping
Social Also known as YouTube for ebaoks, Wattpad is now the worlds most popular ebook community where readers and
i it discover, share and connect, delivering bilions of pages from our library, one of the world's largest collec tions
Themes =
Tods, Free-24310) / 241 - 15491 downloads
Tl Free Music MP3 Download Creats Free Ringtones Listen in Advanced Music Player This is the best way to find and
i w download music mp3 for FREE and edit it for your free ringtones. You can search through millions of FREE MP3 available
Software libraries and FREE...
Games
Arcade & Action adio Free-3791) /891 - 14095 downloads
Brain & Puzzle Radio is easy to use, just a few clicks, you can enjoy real internet digital radio (NOT FM) on your mobile phone. You
Cards & Casino can load all valid radio stations (about 1600) from our server. Browse/ search your radio station and add to your favorite
Casual or...
Free- 156101 /33 - 10641 downioads

Lets be back to windows.This is another layer of windows on android. user with in android can have same view of

windows vista and windows 7.let,s move in a diffirent way. In update version cut copy paste and many other fuctions

added This...

. | v Free-9310) / 8) - 9584 downioads
4 If you have a task Killr, exclude Widgetsoid: Please don't put a bad rate, send me an email and | fix your problem.
Figure 15 6_ l“‘ Permissions to read contac ts and make call it because you can add contact on switcher widgets to call/send
-0. sms/email..
pp . «Previous 1 23 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Next»

Find the Appoke market at:

www . appoke . com

http://www.appoke.com/

324 Partvi: The Part of Tens

AppBrain

AppBrain is yet another app market devoted solely to Android. The market
links to feeds with “Hot Apps”, “Latest Apps”, and “Latest Reviews”, as well
as the usual categories like Arcade & Action games and Communication. (See
Figure 15-7.) Find the AppBrain market at:

WwWw . appbrain.com

S) —_— Create account | Sign in
@k‘. AppBrain My Apps | Search

Find the best Android apps Hot today | Hot this week | Aktme populr | Top rated | More v

Folow @HotAndroidapps

Welcome to the AppBrain Latest reviews

Android market Free (R viood srothers () Y

Gl reolv orest game. Dot
reconme:
even... by matte

Discover the best Android apps via
search, rankings and categories
Easily install and manage your apps
directly from the web browser and on
the phone with our free Android app
Tnstall apps with one click from the
web with the Fast Web Installer app.
Share the apps installed on your
phone with your friends

Best app ofits kind,
ths14

by caroline
More » More »
Find us on Facebook Arcade & Action Productivity
” ~'gg Gun Club Best Battery Themes - Lite Free
S B
“ | eiie

ob Board Free
162,552 people ke AppBrain. @ ads

3 D dow i
I 4 b
!h‘ Fothead Zombies Free MicButton Notes Free
(% | o Sesetric e (5), 500 downoads s

| % iri (1),<50 dowrioads
Figure 15-1: Zﬁ.‘
e

AppBrain. e

| Mot

http://www.appbrain.com/

Chapter 15: Ten More Places to Distribute Your Game 325

AndroLib

Figure 15-1:
AndroLib.
|

AndroLib is not so much an alternative market as a browser for Google Play.
This was more relevant in the days before the Google Play web site came
along, but you still may prefer it as an interface into Google Play, especially if
you're frustrated with poor search results in Google Play. (See Figure 15-8.)

10,792,442,211 Estimated number of Applications downloaded in the Android Market

iPhone.

signin

statistics

teows

Games TopoftheDay Scoreboard Forum Videos Wallpapers

Applications

Find an application or an Android game : Free © paid ® all [_ Search
AndroLib Pages Currently Being Browsed More...
Sponsored Applications
Your Application or Game here ’ m_._ 9
Bubble Bl.. Adobe Fla... Barcode S Androbex Barbaross...

News from Androidosphere More...

Latest Games and Applications in the Android Market

Samsung Announces The Galaxy Premier GT-
19260 - Available In November Starting With...

Android Applications Android Games

I Tornado 3D
Bty ‘* Version 1.0
| | ussios

Samsung Smart Dock turn your smartphone into
a desktop

Nexus 7 sales ramping up to 1

per month
<7

Borderlands 2 Official Map
App

Version 1.0

Us$3.01

More...

%8 Plague Inc.

& Version 1.0.7

By Mini
Available in
f) Knights of Pen & Paper
¢ Version 1.08
| ussio0
By®

Available in

Burger Gubble iz -
A} Diet & Food Tracker i, Air Hockey Deluxe
Version 2.1.3 EAPS version 1.1
T ussaos 2
By SparkPeople By
Surger Aivasing A Fres

The AndroLib market browser is here:

www.androlib.com

http://www.androlib.com/

320 Partvi: The Part of Tens

Vour Website

If you have a website for your game business (and I highly recommend that
you get one if you don’t), consider distributing your game there. Ecommerce
solutions exist for selling your app via your website, which can be a little
clunky. However, if your game is free, there’s really no reason not to offer

it freely on your website. It’s just another download point for users to get
your game.

BitTorrent Sites

3

BitTorrent is one of the most popular internet protocols for file sharing,
which is most often used for sharing pirated materials. But you may be able
to leverage file sharing to work in your favor. Especially in the case when
your game is free (and possibly ad-supported), you really don’t care how it’s
distributed.

Get together with other developers and bundle several games together.
Bundled games are generally more popular than single games on such sites.

Chapter 16

Ten Websites for Android
Game Developers

In This Chapter

Finding web resources for Android development

Discovering websites that talk about and review Android games

Keeping up-to-date on the latest Android news and community feedback

3

've tried to give you foundations for creating your own great games for
the Android mobile platform, but what if you have more questions? In
this chapter, I'll point you to some great resources for connecting with other

Android developers who may have already solved whatever issue you're
having, or who can help you troubleshoot. There are thousands of Android
developers out there at various levels of experience; many of them will be
willing to help you out. Don’t overlook this amazing resource! When I first
started, many of these sites were invaluable in helping me learn the basics,
then later to troubleshoot some of the thorniest problems I encountered.

This section will also point you to websites devoted specifically to reviewing
Android apps and games.

Consider approaching some of these sites once your game is completed and
published. A nice review on an established site can go a long way in garnering
downloads.

This section also includes sites for Android news and community forums. to
help you keep up-to-date on the latest in the Android world. In some forums,
it may be appropriate to mention or promote your game. That’s another good
source of exposure.

328 Partvi: The Part of Tens
Stack Overflow

This is an excellent collaborative question and answer site for programming.
A couple of years ago, Google announced that it would be an official support
environment for Android.

Most problems you’ll encounter will probably have an answer somewhere in
the Stack Overflow forums (see Figure 16-1). But if not, post yours and some-
one will probably come along and help. I've used this resource extensively
and it has been invaluable. They also have a cool achievements/incentives
design to let you know who the most trusted commenters are. Check it out at

www . stackoverflow.com

S StackExchange v login careers chat meta about fag | [android]

Ql

(Sl stackoverflow 1 I I
Tagged Questions o | newest [EJteared fau votes actve unanswered 247 522
’

questions tagged

android| about »

Community Bulletin

blog Stack Exchange partners
with Denver Startup Week

Android is Google's software stack for mobile devices. Please use the Android-specific tags such as [android-intent], not

[intent]. For loper questions, see m Related Tags
leam more . | top users | synonyms (6) | android jobs java| x 32547
(Q Cannot install ia32-libs (in order to run Android Emulator) KIS0 * 10826
= | am trying to start my Android Virtual Device(AVD). but | received the following error after | clicked "Start” eclipse | x 6390
! Starting emulator for AVD MyAVD' Failed to start emulator: Gannot run program
0 lishiew| x 6742
ansviers oo « 6140
sqlite | % 6138

Q Specify which view stay visible on soft keyboard [4703

| have this layout- <LinearLayout android-layout_width="match_parent" androic-layout_height="match_parent" *m!| * 4408
votes L andwoid

> <Button androiclayout_width="300

uiator | x 3748
ansuers V@A Kelib et | % 3557
N B Iayout | x 3389
. . . . nonegap| x 3026
0 How to use android accelerometer in flash using AIR for android HINESH
| \oree | amtesting out the accelerometer and I tried using the default AIR for Android example and am now trying to

make my own game in flash. | copied off of the example's code: impor

H 0
H droid | actionscript-3| flash | air
Figure 16-1; | s oo s o

Stack seerticesst

2 How to read local xml file in Android
OVe rﬂOW I my xmi file have 11066 line with item id is 248, so when | try to read file it just can read until tem id 183

wotes s

below is my cade XmiResourceParsr xmiParsss =

gle-maps | x 2451

. 5 sooge |
forums. | .0, e on] 2387

Barbie Smile h—
|

7e2 opengl-es | x 2371

http://www.stackoverflow.com/

Chapter 16: Ten Websites for Android Game Developers 329

Android Developer

This is the official developer website for Android. The site is where you’ll
download the Android SDK, which [mentioned very early on in this book.
But this site has extensive resources on design principles regarding Android
apps, along with tons of helpful videos and downloads, plus the latest news
(see Figure 16-2). Don’t just visit to grab the SDK. Spend some time looking
through the other offerings at

www . developer .android.com

Developers Design Develop Distribute
Jelly Bean now available!
Android 4.1 (Jelly Bean) builds on what' great about
Android with improvements to performance and user
| Tm— experience

New APIs are also available that allow youto build

{) richer and more interactive notifications, transfer

4) larger payloads through NFC, discaver services over

Y Wi-Fi, and much more
4L

Figure 16-2:
The official
Android
developer
website. . i S A o s e e
|

http://www.developer.android.com/

330 Partvi: The Part of Tens

anddev.org

\\3

Figure 16-3:
anddev.org
community
forums.
|

When I first got started in Android development, this was the first site |
found. It was (and still is) an awesome resource. There are forums dedicated
to asking and answering specific problems related to Android programming
(see Figure 16-3), as well as very helpful tutorials covering a wide range of
topics.

Because the website is associated with the 2D game engine AndEngine, you
can also find lots of resources devoted to that tool, if you are interested in
using it.

The site is at

www . anddev.org

i 138
“ B nddev.org
Android Development Community | Android
Tutorials

Board index » FAQ .|Register . Login

Board

eNTS

8 News & Rumors.

8 Open News

s 8 AndEngine

oBLEMS

® SDK/ADT/Emulator Problems

 View, Layout & Resource Problems

B ap Problems

8 Multimedia Problems

B Networking & Database Problems

 NDK Problems :

B Android 20/30 Graphics - OpenGL Problems

B Other Coding-Problems

& Code Snippets f

8 Novice Tutorials

http://www.anddev.org/

Android Developers Blog

Part of being a good game developer is keeping up-to-date on the latest

news and information regarding the platforms you work on. The Android
Developer’s Blog is straight from the horse’s mouth (see Figure 16-4), with
members of the Android development team at Google posting the latest news

3 regarding the platform.

You'll probably want to put this in your feed. Find it at

www . android-developers.blogspot.com

Chapter 16: Ten Websites for Android Game Developers

Developers

SEARCH

ARCHIVE

Figure 16-4:
Messages
from the
Android
develop-
ment team.
|

Search |

Android Developers Blog

Google Play Seller Support in India
Posted by Ibrahim Elbouchikhi, Product Manager on the Google Play team

Over the past year, Android device activations in India have jumped more than 400%, bringing millions of new users to
Google Play and driving huge increases in app downloads. In the last six months, Android users in India downloaded more
appsthan in the previous three years combined, and Indiz has rocketed to become the fourth-largest market worldwide far
app downloads. To help developers capitalize on this tremendous growth, we are launching Google Play seller support in
India.

Starting today, developers in India can sell pad applications, in-app products, and subscriptions in Google Play, with monthly
payouts to their lncal bank accounts. They can take advantage of all of the tools affered by Google Play to monetize their
products in the bestway for their businesses, and they can target their products to the paid ecosystem of hundreds of
millions of users in India and across the world.

Ifyou are an Android dev&\apzrbaszd inlndia, you
can get started right away by siz ur

1sole and setling up a Gagv\e Checkout
your apps are already published

< For new apps, you can
pps as paid, in addition to selling in-app
products or subscriptions,

When you\e prepared your apps and in-app products,
you can price them in any avalable currencies, publish
and then receive payol
local currency. Visit th
complete details

Alongwith seller support we're a\sn adding buyers
currency support evelopers
everywhere to
possible to set pi Y
Rupees and other new currencies {such as Russian
Rubles).

331

http://www.android-developers.blogspot.com/

Part VI: The Part of Tens

Appolicious

This is a Yahoo-sponsored app recommendation and review site with a social

bent (see Figure 16-5). The site is yet another way to

v See what apps are trending.
1 Assess your competition

v Get your own game reviewed.
Find it at

www . androidapps.com

o

EIANDROID APPS

o] conee |
I sizn 1n vith vahos

Already 3 member? Log in

Speed™ Most

ER. .

Election 2012

Entertainment & Lifestyle

Uideos.

L
Games] e
O Funky 1 Handcent
Kids b Smugglers 5 Halloween
Music MLB.com At Bat 278 SpeedCarll
News 8 Weather e a3
e Bubble Blast [JAW Tracks™
Phatography. M @
Reference =
Shopping
HOT APPS More »
Sports
Choose a category:
Tools . B
ategories
| e ’
Need for @ Uvideos
. FRESH FEED o f Spced™ Most Univision
igure 16-5: Sihogs added Goodle Play G Haloween £~
.. services and 2 other apps to
A Ol icious their app library Bubble Blast Y=g Quil
Boxes
skitles024 added Where
H Ghosts Dwell and 14 other T MARVEL War of Flashlioht HD
advice, i et B e m=

darthkegg added Elixir 2 and
8 other apps to their app
library.

MOntana added AndExplorer
and 3 other apps to their app
library.

backed by B ot Pt s
Yahoo.

TOP REVIEWERS THIS WEEK

mobile_app_junky

0109 rared Celet

G Keyboards | games | action games | arcade games
Android Apps
Directory Recommended Build your library News Reviews Lists Best apps Advertise
BROWSE BY CATEGORY
Appalicious Picks
Apps Popular Among
Art & Design
Books
R — RECOMMENDATIONS More» | APPS IN THE NEWS More »
Communications AL M oo o) '““B Non-partisan Android apps for election
New & Popul season 2012
Customization 2o Topuer
T Need f NYTimes These Android apps help you get in shape

Android apps for improving women's
health

52 D & €@

Mobile gaming is, thankfully, a cheap
hobby

Great apps for cloud storage on your
Android device

~
’/

I Comparing Instapaper to other “read later”
apps on Android

PRICE CUTS
Choose a category
All Catagories =]

More »

SetCPU for Root Users
Was: 52.99 Now: 51.99
SlingPlayer for Phones
Was: $29.99 Now: $14.99

Pocket
Was: 52.99 Now: Free

MLE.com At Bat 1
Was: §6.99 Now:

2
$3.99

Flick Golfl
Was: $1.99 Now.

8

50.99

TOP COLLECTORS THIS WEEK

diboal

e n 1S,
‘more with our Android app!

LATEST VIDEO REVIEW

Plague Inc

TOP CURATORS THIS WEEK

DaliahKaif

1 list toal

Latest: Android Apps : World

Create App List

100 Activity Points

http://www.androidapps.com/

Chapter 16: Ten Websites for Android Game Developers 333

Android Tapp

Android Tapp is a site devoted to reviews for Android apps (see Figure 16-6).

Once your game is completed or near completion, you want to consider sub-
3 mitting the .apk to review sites to stir up initial interest.

The early days after release are the most important.

Android Tapp is one of the more established review sites, so check it out at

www . androidtapp .com

FRAINVNETINIILS) Frei-b
Android App Reviews

*
NS | App
pheviewn | Svope

Oitemsincat W Cl

Trending Content: 40

AndroidTapp is the best Android App Reviews, Android Apps, Android News,
Android App Recommendations, and Interviews with mobile app developers. Atry oo
before you buy or download unbiased Android Apps review service! Read our recently
reviewe: Apps to get started.

Email

Recently Reviewed Android Apps

Password

Hot Off The Press Fresh Apps See

Confirm Password:

|
Figure 16-6: /(]
Reviews = @"B 808
and news <
3 = . Areyou looking to market your'm':z
from sETmB"™H
Android N
Tapp.

http://www.androidtapp.com/

334 Partvi: The Part of Tens
Phandroid

This website is a great place to find the latest news on Android (see

Figure 16-7). In addition, their forums are very active and are a great place
to talk about Android games and gaming and possibly promote your newest
creation. Check it out at

www . phandroid. com

-

|\

PHANDROID
HOME CARRIERS PHONES TABLETS APPS TOPICS FORUM CONTACT
Top Football Apps: [Football Pickem [&] Football Schedule 2012 [College Football 2012 Close X

-
Featured
WikiPad launch delayed

Featured

Huawei Ascend D Quad XL Review

Android News = What's Trending Trendit Foatured Rocant
=t i rending eature ecen

Apple UK updates Samsung
statement, but makes sure peop

Android Overload: leaks, Galaxy S$3 sales, Android
2 and more

112 8t 9:11pm by ntes

stories that didn't make itto our main page, but are stil important enough to

S o
urday night fes starting so let's make sure you get your fix of @l DIV Project: Custom comic book
5! Android news before you head out the door! Android Overload covers all the | cases for your Android d

check out Take a look! Chromium OS ported to Nexus 7 [ChromeSpot] [1 Getthat VIZIO Co-Star while it's in
| A o
- 7. Apple UK updat t but makes e ‘Android Overload: leaks, Galaxy S3
Figure 16-7: e o B s
1)
Fa n fu nan d Apple did not take its loss against Samsung lightly, in the UK. The Cupertino Giant

fa CtS at was forced to posta statement in their UK website, stating that Samsung did not
infringe on Apples patents. Needless to say Apple still went for homerun and

. decided to highlightthe competition's shortcomings and Apple's victories across
PhandI'OId theworld [.]
|

http://www.phandroid.com/

xda developers

Figure 16-8:
Check
xdadevel-
opers for
device-
specific
help.
|

This website is a great resource for developers and users of custom ROMs
and non-factory modifications of the Android OS. Even if you're not interested
in custom ROMs, you should visit the site (see Figure 16-8). They have discus-
sions broken down by device, which is a great resource if you're having par-
ticular issues testing your game on a specific piece of hardware. If you can’t
find an answer to a particularly difficult technical issue, look or post here:

www . Xxda-developers.com

Chapter 16: Ten Websites for Android Game Developers

Created!

LATEST POSTSY

‘(=

much all the useful

Google Nexus 4, 10 Announced; Forums

MORE FEATURES: OPINION | XDA TV

-~ --Mobile-

TOP STORIES

Official CyanogenMod:10:
Nightiies for the Tra...

Samsung Aware of
Exynos Documentation

PAST 72 HOURS

xds ' O &

All-in-One Reference Thread for the T-Mobile Galaxy S III
POSTED NOVEMBER 4, 2012 AT 6:00 PM BY POORCOLLEGEGUY DIFFICULTY: %+ * @

As the development for a device evolves, more and
more guides, tutarials, and so on are released. As time
continues, these threads can get buried in the forums,
forcing members to search through various pages to
find the threads they're looking for. It can be a hassle,
espedially when there are many threads with the same
general keywords, which makes searching difficult. For
T-Mobile Samsung Galaxy S 11T users, there is now only
one thread to remember.

XDA Senior Member techfanatics has posted a thread
that serves as a table of content of sorts for pretty

READ MORE ©

& Youruse | FoLLow EILIKE [37] GOOGLE+

XDA FORUMS
Please log in to access your XDA forum features.
USERNAME | sssesees Login

POPULAR THREADS

ne Family O

3B 4.2 Camer:

[ROM 4.1.2 - 4.2] JellyBar

XDA TV: MOST RECENT VIDEO

POPULAR FORUMS

Samsung Galaxy § 111 19300

Samsung Gal
Samsung Galaxy § 11 19100

Marketplace

335

http://www.xda-developers.com/

330 Partvi: The Part of Tens

Droid Gamers

Andrew Huff runs this great website devoted to all things related to Android
and gaming (see Figure 16-9). You'll find news, reviews, interviews, and more,
specifically for games on Android.

\P
) You should definitely visit and bookmark this one. Drop Andrew an e-mail
if you’ve got a new release coming out or some other Android game-related
news!
Visit them at
www . droidgamers.com
— GAME NEWS . GAME REVIEWS TABLET GAMING . APPS BLOGS & FORUMS . GUIDES " STORE
what's new! what we think android tablets apps & utilities the communtiy read up! the store
Newest Review Newest Interview New in Utilities / Apps
|
. Follow Us and Tips!
Figure 16-9: =
h B TR
Droid BEFES |
G amers DroidGamers on ﬁ Follow
covers e throug do e 4 5@ 7576
gaming from
virtual start
. Download
to virtual J (=% official DroidGamers
finish.

http://www.droidgamers.com/

Chapter 16: Ten Websites for Android Game Developers 33 7

Android and Me

This is another great resource for keeping up with the latest in the Android
world. The site is very slick and well-designed, and up-to-date with the latest
in the Android world (see Figure 16-10). Check out the site at

www . androidandme . com

Androidand Me News Apps Store ContactUs Deals Threads Search Q
Trendling Tags: #Gaming #Summer #Reviews #Samsung #HTC #Motorola #Verizon #T-wobile #Gaiary News BN B BN I H
B Feoer
1P . g
Four reasons I'm buying Family of new Nexus Acloser look at the pre Best unlocked Android
the Nexus 4 devices on the Play Store paid carrier that pays you phone for any budget
#news 4 #Android 4.2 #Nexus 10 #Nexus 4 #solavel #pre-paid #buyers guide

Nov 02 AT 4:13 i Dustin Earley 15 commenT:

Video: Chromium OS ported to
Nexus 7

Android and Me on w Fotlow
£

4 BRI 2o

The Nexus 7 is a very capable little device. With a little tinkering, it is capable of running Hotly debated
MIUI, a highly customized version of Android that takes after iOS, Ubuntu, and coming
soon, Chromium OS. r Giveaway: Leave a comr m

Android developer Hexxeh has posted a video on his blog proving that he has Chromium

NN | OS.the open .. Read Wore »

Figure 16-10:
Android and

Four reasons I'm buying m
Matias Duarte responds m

ek

Me delivers Poll: Is the lack of 4G L n
the latest .
news. Which model of Nexu m

http://www.androidandme.com/

338 Partvi: he Part of Tens

Glossary

Active installs

The number of devices that currently have your app or game installed. Total
installs (installations of the program) includes active installs plus the number
of devices that installed, and then uninstalled, your app or game.

Analytics

Program(s) for gathering information about usage patterns of your app or
game (such as what demographics of users are playing your game, for how
long, where, and when). Google provides some analytics in the developer
console, but you can also use third-party packages such as Flurry (flurry.
com) or write your own.

Asynchronous games

Games played off-line in which one player may take a turn, notify the other
player, and wait for the other player to make a move in response.

Build

A given version of an app or game that has been compiled into an executable
file.

Carrier

A telecommunications company that provides telephone and Internet ser-
vices to mobile devices.

Emulator
Software that simulates the function of another piece of hardware or soft-

ware. An Android emulator, used for testing apps, simulates an Android
device in your desktop environment.

http://flurry.com
http://flurry.com

340 Android Game Programming For Dummies

Fault tolerance

One measure of a system’s robustness — specifically, how well the system
continues to function under a wide range of circumstances, including damage
or partial loss of functionality.

Firmware

Software stored in read-only memory (ROM) and designed not to be routinely
modified.

Health bar

Visual indicator of a character’s life total in a video game.

Integrated Development Environment (IDE)

A software tool for developing software. Usually includes a source code
editor, debugging tools, profiling tools, and other features to increase the
speed and ease of software development.

Iterating

Repeated process of revising and testing to develop an app or game.
Long-tail distribution

A set of things in which there are a large number of a few types, a moderate
number of types with medium frequency, and a “long tail” of many types with
only a few in number. Digital markets allow for long tails to be more profit-
able than traditional markets because inventory space is cheaper and search
is easier. App stores almost universally have a long-tail distribution.

Mobile ecosystem

The current state of the mobile marketplace and user base, including hard-
ware, software, infrastructure, distributers, and users.

Non-market app

An app or game that is distributed and installed from somewhere other than
an app store, such as from a development environment.

Glossary 34 ’

Porting a game

The process of converting a game that runs on one platform (such as PC) to
run on another (such as Android).

Retention rate

Analytic figure that represents the percentage of users who download a game
and continue to keep it installed, rather than uninstalling it.

Rooting

Configuring a hardware device to gain administrator access, allowing the
user greater control over the software that is installed, including the operat-
ing system.

Source code

Instructions in a human-readable computer language that are compiled into a
machine-readable format.

Synchronous games

Games played in real time, in which all players must be playing the game at
the same time.

Virtual controls
Input methods that simulate physical hardware. For example, your game may

have a virtual joystick or buttons that are manipulated via a touchscreen
interface.

342 Android Game Programming For Dummies

Index

o Special Characters
and Numerics ®

* / (asterisk-and-slash), 158

// (double forward slashes), 158
/* (forward-slash-and-asterisk), 158
3D game, 305

o/] o

accelerometer, 41, 304
ACTION_DOWN, 107
ACTION_MOVE, 107
ACTION_UP, 107
activities
creating, 99-100, 131-132
declaring, 85-86
destroying, 100-101
launching with intents, 133-134
lifecycle of, 98-99
overview, 97
resuming, 100
ad mediation
AdWhirl for, 275
explaining, 275
ADB (Android Debug Bridge), 76
adb logcat (command), 76
ad-based monetizing
Google model, 23
means of including, 274
reasons for, 274
risks for, 274
warnings about, 275
ads
in free-to-paid monetizing, 272-273
integrating into games, 275
multiple ad provider, 275

pros and cons of using, 274
screen placement of, 275
ADT (Android Development Tool), 53,
56-61
AdWhirl (ad provider service), 275
Al 192-195
Alien Blood Bath (game), 300
Amazon App Store
market for developers, 276
quality screening, 13
Amazon Kindle Fire, 42
analytics (Google Play), 34-35

Android Application Package (. apk) file,

279, 282-284, 286, 293

Android apps. See also Android projects

installing non-market on device, 75
launching
manually, 71-73
on real devices, 73-76
on virtual devices, 73-74
running, 71
running on Java, 2
Android Debug Bridge (ADB), 76
Android Developers Challenge, 24
Android Developers’ website, 202
Android development, 12-13
Android Development Tool (ADT), 53,
58-61
Android devices
controls, 44
input types, 41-42
phones, 42
processors, 39-40
screen size/density, 40-41
tablets, 42
TV, 42-43
Android firmware versions, 38

Android Game Programming For Dummies

update website, 6

344

Android Game Programming For Dummies

Android games. See Android projects;
Crazy Eights; Whack-a-Mole
Android hardware. See Android devices
Android Market, 85
Android media support website, 95
Android platform
advantages of, 9, 13-14
challenges for developers on, 268
competition on, 264-266, 268
drawbacks, 12-13
Eclipse IDE, use of, 3
growth of, 9-10
hardware, 39-43
history of, 10
versus iOS for targeting device, 37
Linux core, 2, 10
Mac OS requirements for game
development, 2
OS versions, 38-39
PC requirements for game development,
2-3
popularity of, 268
suitability for mobile gaming
freedom, 14
growth, 13-14
potential, 14
version 4.0, 10
Android projects. See also Crazy Eights;
Whack-a-Mole
audio/visuals in, 94-95
creating

versus Java project, 79, 83
layouts, 91-93

localizing, 94

making view full screen, 122-124
Manifest file, 83

mobile device challenges, 99
monetizing, 22-25

naming package, 69, 81, 84-85
opening window for, 67-69
organizing resources, 89-95
organizing source directory, 95-97
Package Explorer, 70

R. java file, 83

recommended tools for games, 21-22
setting permissions, 86-87
SurfaceView, 102, 203

targeting screen size, 87-88
targeting versions, 85

using views, 101-107

versioning, 84-85

View object, 101-102

by name

Alien Blood Bath, 299-300
asquare, 303-304

GL ES Quake, 305

Lexic, 301

Lunar Lander, 297-298
Newton’s Cradle, 302
OpenSudoku, 300-301
Replica Island, 299
Vector Pinball, 302-303

build target for, 68-69, 80
creating package, 95-97
customizing view, 102-105
deciding on distribution, 20
declaring activities, 85-86
designing issues, 15
development process, 19-20
drawing in view, 102-103
ease of development of, 11
editing manifest, 83-84
essential tools for, 21
handling activities, 98-101
initial designing issues, 15-18

resources directory, 83
supports-screens tag, 87-88
tiltmazes, 304-305
Android SDK Manager icon, 60
Android SDK (software development kit)
build target, 66-69, 80-81
choosing latest, 81
controlling timeout with, 121-122
emulation capabilities, 21
emulator, use of, 3
essential tool for games, 21
installing, 57-58
integrating with Eclipse, 61

Minimum SDK option, 82
scaling text with, 32
specifying hardware for app, 41-42
website for, 3
Android styles and themes website, 94-95
Android tablet, 42
Android user base
attitudes to paying for apps, 274
being in good standing with, 271
growth of, 10
habits of, 35
Android versions in use, updates website, 38
Android Virtual Device Manager (AVD)
creating virtual device with, 62-65
icon in toolbar, 60
launching virtual device, 66-67
naming conventions for Android, 63
overview, 61
SD card size, 64
Android websites
ADT compatibility, 53
Developers’, 202
Google Play, 263
input methods, 105
media support, 95
SDK, 3
source files for projects, 2
styles and themes, 94-95
versions updates, 38
AndroidManifest.xml tab, 83, 84
main activity designated in, 97
modified for portrait orientation, 120-121
viewing Manifest with, 84
android:targetSdkVersion= "8"
attribute, 85
animated backgrounds (games), 28
animations (Whack-a-Mole)
adding scaling variables, 219-220
adding variables, 223-224
animating mole, 225-226
picking active mole, 224-225
tracking active mole, 223-224
API (application programming interface),
installing, 58

APK (Android Application Package)
exporting signed application, 279-281
uploading, 283-284
uploading new game version, 293

. apk file (Android Application Package),

95, 279, 282-284, 286, 293
application programming interface (API),
installing, 58
application tag, 85-86
apps (Android). See also Android projects;
Crazy Eights; games; Whack-a-Mole
in-app purchases, 23, 275-276
in Java, 2
running, 71-73
starting, 73-76

AR (augmented reality) apps/games
Android development potential, 14
input types for, 41

Arcade & Action games, 28, 29, 289

artists, contracting, 47-49

artists website, 48

asquare, 303

asterisk-and-slash (* /), 158

asynchronous games, 14, 30-31

attributes
changing color, 93
changing orientation, 93
duplicating text, 93
portrait mode, 86

Audacity (sound-editing software), 22, 234

audience
Android user base, 10, 35, 274
cultures and languages, 45
niche/wide, 36-37
special needs, 45-46
targeting, 34-35

audio/visuals. See also Crazy Eights;
Whack-a-Mole
creating original, 47
hiring audio artists, 48-49
hiring visual artists, 47-48

augmented reality (AR) apps/games
Android development potential, 14
input types for, 41

Index 345

346 Android Game Programming For Dummies

AVD (Android Virtual Device Manager)
creating virtual device with, 62-65
icon in toolbar, 60
launching virtual device, 66-67
naming conventions for Android, 63
overview, 61
SD card size, 64

ol e

battery, draining, 39-40
bitmap
centering horizontally, 117-118
loading, 114
loading to screen, 115-116
problem with loading in Android, 113
BitmapFactory, 114
Boo-Ray (game), 36, 268
Brain & Puzzle games, 28, 289
build target (SDK version), 68-69, 80-81
BuildConfig.java, 96
bundle, 99-100, 134
business approach. See also publishing
game
being aware of cloning, 267
and intellectual property, 267
monetizing models
ad-based, 274-275
free, 269-270
free-to-paid, 272-273
in-app purchases, 275-276
paid, 270-271
and public domain, 267
researching competition, 263-268
buttons
adding, 124-127
detecting press, 128-129
displaying credits, 17
down state, 127-129
handling states, 127-129
loading and drawing for title screen,
125-127

Options (Whack-a-Mole), 212
PLAY, 125-127

starting new game, 17
Unpublish, 292

oo

camera, 41
cards, displaying on screen
dealing/drawing cards, 139-141
loading images, 135-139
Cards & Casino games, 28, 289
cascading stylesheets (CSS), 94
case sensitive language (Java, XML), 2
casual games, 28, 289
charging for game, 271
chess, 28
clones (games), 267
colorblindness, 32-33
commenting code, 158
competitors, researching games of
absence of games, 268
installs, 265
listings, 264-265
rankings, 263-264
ratings, 265
trending, 266
computer player, 154-156, 192-195
Concurrent Versions System (CVS), 19
contact information (developer), 291-292
content rating, 290-291
controls, 44
hardware, 44
virtual, 44-45
copy protection, 289-290
Crazy Eights. See also Android projects
buttons
adding, 124-127
handling states, 127-129
controlling timeout, 121-122
customizing launcher icon, 195-197
displaying user’s hand, 18

Index 34 7

game logic
beginning new hand, 186-187
checking computer player, 176-177
checking end-of-hand, computer,

188-189
checking end-of-hand, human, 187-188
checking valid draws, 173-175
creating computer player, 154-156
displaying end-hand dialog, 183-186
ending game, 189-192
ensuring valid plays, 161-164
handling ranks and suits, 153-154
increasing challenge of computer
opponent, 192-195

passing turn, 178-180
picking up/moving cards, 156-161
showing dialog, 164-171
taking cards from draw pile, 172-173
updating scores, 182-183

game rules, 16

launcher icon, 195-197

overview, 4

play screen
creating class for cards, 135-137
creating deck, 137-139
dealing, 139-141
designing launcher icon, 195-197
displaying draw pile, 147-149
displaying game state, 141
displaying hands, 145-147
displaying scores, 142-144
drawing discard pile, 150-151
initializing randomly, 175-176
launching, 129-132
loading card images, 135-137
mockup, 18, 141
starting custom view, 102-105

rules, 16

title screen

centering graphic horizontally, 116-119

creating custom view, 111-113
drawing title graphic, 115-116
elements in, 16

features of, 111
handling orientation, 119-121
launching play screen using, 129-132
loading title graphic, 113-116
making view full screen, 122-124
mockup, 17
website for sample files, 111
wrapping up, 192-197
crosswords, 28
CSS (cascading stylesheets), 94
customizing launcher icon, 195-197
CVS (Concurrent Versions System), 19

o e

Dalvit Debug Monitor Service (DDMS),
284-286
data retrieval
SharedPreferences, 247-248
SQLite, 259-260
XML, 251-253
data storage
SharedPreferences, 246-248
SQLite, 253-259
XML, 249-251
DDMS (Dalvit Debug Monitor Service),
284-286
declaring
activities, 85-86
permissions, 86-87
screen size, 87-88
density, screen
declaring target in manifest, 87-88
ranges of, 40
targeting game for, 122-124
description, game, 287-289
design questions
capitalizing, 22-25
considering type of game, 15
displaying game components, 17-18
distributing, 20
play screen, 16
process to follow, 19-20

348 Android Game Programming For Dummies

design questions (continued)
title screen, 16
using buttons, 17
using tools, 21-22
designing games. See also Android

projects; Crazy Eights; Whack-a-Mole

Android user base considerations, 35
assembling toolkit, 21-22
choosing genre, 28-29
color blindness and, 32-33
controls, 44-45
creating audio and visuals, 46-49
culture/language considerations, 45
deciding distribution, 20
deciding number of players, 29-31
finding a niche, 36-37
following naming conventions, 19
hardware considerations, 39-43
identifying audience, 34-37
including tutorials, 46
interface considerations, 43-44
localizing, 34, 45, 94
mobile device factors, 31-34, 42
monetizing, 22-25
setting up computer for
connecting Eclipse to SDK, 61
creating virtual device, 62-65
installing ADT, 58-61
installing Eclipse, 53-57
installing JDK, 52-53
installing SDK, 57-58
launching virtual device, 66-67
special needs, 45
supporting operating system versions,
38-39
targeting devices, 37
using Grandmother Test, 43
using software version control, 19
developer account, creating
exporting signed application, 279-281
generating key, 278-279
merchant checkout account for, 278
signing and exporting game, 279-281
starting, 277-278

development process (games)
ensuring backup, 19
using naming conventions, 19
using version control, 19
using workflow process, 19-20
devices, Android
controls, 44
input types, 41-42
phones, 42
processors, 39-40
screen size/density, 40-41
tablets, 42
TV, 42-43
devices for gaming
adapting for screen density, 41
adapting for screen size, 32-40
adjusting for operating systems, 38-39
allowing for text and graphics, 32
considering input forms, 41-42
considering play duration on, 32
designing for colorblindness, 32-33
designing for variety of, 42-43
targeting, 37
touchscreen issues, 32
using processors, 39-40
dialog
choosing suits box, 166-168
creating file for suits, 164-165
creating game over (Whack-a-Mole),
242-243
creating layout file for, 165-171
displaying end-hand (Crazy Eights),
183-186
elements in, 164
launching choose suits box, 169
uses for, 164
dialog box. See dialog
digital rights management (DRM), 290
directional pad (d-pad), 44-45
directories
drawable
adding, 113
graphics in, 83

holding images for screen density, 89-90

rendering images for high-res devices, 90
replacing default icons, 90
layout, 83, 91-93
layout elements, 91-92
layout types, 92-93
for Whack-a-Mole, 209-210
resources, 83
creating for high-resolution devices, 90
drawables, 89-91
layouts, 91-93
subdirectories in, 88-89
values, 93-95
res/raw, 95, 235
source, 83, 95-97
/src (source directory), 83, 95-97
values, 83, 94-95
distribution for games. See also Google Play
donate feature, 272
double forward slashes (//), 158
down state buttons, 127-129
download Java icon, 52
dp (Java), 166
d-pad (directional pad), 44-45
drawable subdirectory
adding, 113
graphics in, 83
holding images for screen density, 89-90
rendering images for high-res devices, 90
replacing default icons, 90
DRM (digital rights management), 290
drop-down menu (Android), 164
duration of mobile game, 32

oF o

Eclipse
downloading, 53-54
as IDE, 51, 53
installing, 53-57
integrating Android tools into, 61
launching, 54-56
making line numbers visible, 57
Package Explorer, 70, 82
screenshots with DDMS, 284-286
toolbar after installing ADT, 60

welcome screen, 55
workbench, 56
workspace, 54-55
Eclipse Classic. See Eclipse
Embedded Systems (ES), 305
emulators. See also AVD (Android Virtual
Device Manager)
creating, 62-65
drawbacks of, 61-62
launching, 66-67
launching apps, 73
switching orientation, 119
testing games on, 21, 160
ending game
Crazy Eights
ending game, 189-192
ending hand, computer, 188-189
ending hand, human, 187-188
Whack-a-Mole
drawing Game Over dialog box, 242-243
loading dialog box, 242
tracking ending, 239-242
errors, checking for, 87
ES (Embedded Systems), 305
eXtensible Markup Language (XML), 2,
249-253
extra high-density screen, 40

ofF e

Fighting (action game), 28
firmware, 38-39
first-person shooters (FPSs), 31
fixed orientation, 119
form factors (devices), 3
forward-slash-and-asterisk (/ *), 158
FPSs (first-person shooters), 31
fragmentation of devices, 37
FrameLayout, 92
freemium monetization, 23, 269
charging subscription, 23
explaining, 23
getting ads, 23
selling virtual goods, 269

Index 349

350 Android Game Programming For Dummies

free-to-paid monetization game programming files website, 111
deciding functionality, 273 game screen. See play screen
linking to as-free version, 273 game websites
options for, 272 asquare, 303

full screen GL ES Quake, 305
Crazy Eights in, 124 Lexic, 301
making view, 123 Newton’s Cradle, 302

OpenSudoku, 301

() G o Replica Island, 299

tiltmazes, 305

G1 (Android phone), 1, 10, 32 Vector Pinball, 302-303

Game Boy, 11 games. See also mobile gaming

game description, writing, 287-289 evolution of, 11

game genres (Google Play) Google Play genres of, 28, 289
Arcade & Action, 28 Google Play listings of, 264-266
Brain & Puzzle, 28 types of
Cards & Casino, 28 asynchronous, 31
Casual, 28 augmented reality, 14, 41
Live Wallpaper, 28 carnival, 197
Racing, 28 fast-paced action, 16
Sports, 28 hidden-object, 35
Widgets, 28 kids’ educational, 36

game logic MMORPGsS, 31
Crazy Eights multiplayer, 30-31, 268

adding offsets, 160-161 multiplayer crossword, 266

advancing play, 175-176 role-playing, 31, 276

alternating plays, 177-178 single-player, 29-30

checking valid draws, 173-175 social, 36

creating computer player, 154-156 in this book, 15-16

handling computer plays, 176-177 turn-based, 15, 197

handling turns, 152-154 value of, 1

handling visual impact, 158-160 gaming, mobile. See also Android projects;

picking up cards, 156-158 specific games

showing dialog, 164-171 advantage of smartphones for, 11-12

source directory for, 83 Android suitability to, 13-14

taking cards from draw pile, 172-173 considering audience

tracking valid plays, 161-164 Android user base, 10, 35, 274
Whack-a-Mole cultures and languages, 45

detecting mole contact, 229-232 niche/ wide, 36-37

drawing Game Over dialog, 242-243 researching market, 29

loading dialog, 242 special needs, 45-46

tracking ending, 239-242 target, 34-35

Index 35 ’

considering devices
adapting for screen density, 41
adapting for screen size, 32, 40
adjusting for operating systems, 38-39
allowing for text and graphics, 32
considering input forms, 41-42
designing for colorblindness, 32-33
designing for variety of devices, 42-43
play duration on, 32
targeting devices, 37
touchscreen issues, 32
using processors, 39-40
designing controls
hardware, 44
interface elements in, 43-44
virtual, 44-45
locating resources
graphics, 46-48
sound, 48-49
planning game
considering design, 16-18
deciding distribution, 20
deciding game type, 15-16
deciding Google Play genre, 28-29
deciding number of players, 29-31
following a process, 19-20
locating tools, 21-22
monetizing, 22-25
GIMP (GNU Image Manipulation Program),
22
GL ES Quake (game), 305
Global Positioning System (GPS), 41, 43
GNU Image Manipulation Program (GIMP),
22
Golf Solitaire Free, 265, 272-273
developer console for, 293
including functionality on, 273
listing on Google Play, 265-266
monetizing on, 272-273
title screen for, 272
Google emulators. See emulators
Google licensing website, 289

Google Play
analytics, use of, 34-35
app installs, 265
app ratings, 265
app trendings, 266
distribution alternatives to, 276
game genres, 28
game listings content, 265-266
installing games and apps from, 75
linking to another app in, 273
most competitive game category on, 29
number of apps for, 36
researching competition on, 264-266
selling restrictions on apps, 271
supporting game, 292
underserved demographic for, 36
updating game, 292-293
website, 263
Google Play, publishing game on
adding product details
contact information, 291-292
content rating, 290-291
copy protection, 289-290
game description, 287-288
icons and graphics, 286-287
market listing options, 288-289
pricing, 291
screenshots, 284-286
creating developer account
creating, 277-278
exporting signed application, 279-281
generating a key, 278-279
merchant checkout account for, 278
signing and exporting game, 279-281
uploading game
adding video, 282-283
options, 282-283
requirements, 282
uploading APK, 283-284
Google Project Glass, 43
Google TV, 42

352

Android Game Programming For Dummies

Google website, 38
GPS (Global Positioning System), 41, 43
Grandmother test, 43
Graphic Layout tab, 93
graphics. See also drawable subdirectory
centering title horizontally (Crazy Eights),
118-119
creating, 47
drawing title (Crazy Eights), 115-117
handling orientation, 119-121
hiring artist for, 47-48
loading title (Crazy Eights), 113-115
uploading to Google Play, 286-287

o/ o

handheld gaming devices, 11
hard-coding, 93, 127
hardware controls, 44
hidden-object games, 35
high-density screen, 40
house ads, 275

HTC Dream (GI), 10

HVGA (screen size), 64, 87

o]e
Ice Cream Sandwich (Android 4.0), 10
icons
Crazy Eights game sample, 90
customizing launcher (Crazy Eights),
195-197
download (Java), 52
launcher
AVD Manager, 60, 62
Eclipse, 54-56
SDK Manager, 60
Whack-a-Mole, 215-216
location of, 85, 89
uploading game to Google play, 286-287
used in book, 5
id (Java), 166

IDE (integrated development
environment). See also Eclipse
Android use of, 3
Eclipse as, 51
explaining, 53
installing, 53-54
required tool for gaming, 21
in-app purchases
explaining, 275
games suited to, 23, 269
RPGs suitability for, 276
Indiegamer website, 48
input methods
accelerator, 41
camera, 41
GPS, 41
microphone, 41
overview, 41-42
touchscreen, 105-107
trackball/trackpad, 41
website for, 105
input types, 41-42
installing
ADT, 58-61
Android apps on non-market on
device, 75
Eclipse, 53-57
JDK, 52-53
SDK, 57-58
installs, number of, 265
integrated development environment.
See IDE
intellectual property, 267
intent-filter tag, 86
intents, 133-134
interface design considerations, 43-44
iOS platform
advantages of, 12
versus Android, 12-13
drawbacks, 12
spectrum of, 37
iPhone, Words With Friends popularity
on, 266

°] °

Java, 2, 79, 83

JDK (Java Development Kit), 2
essential game tool, 21
for generating key, 279
installing, 52-53
website, 3

o o

Keytool, 278-279
Kindle Fire, Amazon, 42

o/ o

landscape orientation, 119
language

localizing 34-35, 94

using strings to support additional, 94
launcher icon

AVD Manager, 60, 62

Eclipse, 54-56

SDK Manager, 60

Whack-a-Mole, 215-216
launching Android apps

manually, 71-73

on real devices, 73-76

on virtual devices, 73-74
layout subdirectory, 83, 91-93

layout elements, 91-92

layout types, 92-93

for Whack-a-Mole, 209-210
layouts website, 92
Lexic (game), 301
LinearLayout, 92, 166
Linux, 10, 51
Live Wallpaper (games), 28, 289
local multiplayer, 30
localizing, 45
location (content rating issues), 291
log output, 76

logic. See game logic

long-tail distribution, 34-35
low-density screen, 40

Lunar Lander (game), 297-298

ol o

Mac OS, 2, 51
Mahjongg, 28
manifest (Android file)
declaring activities in, 97-98
declaring permissions in, 86-87
overview, 83-84
viewing contents of, 84
manifest tag, 84-85
marketing. See monetizing
Massively Multiplayer Online Role-Playing
Games (MMORPGs), 31
media support (Android) website, 95
MediaPlayer, 239
medium-density screen, 40
memory
Out of memory error, 113
ROM (Read-Only Memory), 38-39
methods for handling activities
onCreate(), 98-100, 213-214
onDestroy(), 98, 100
onDraw(), 98, 114, 115, 139, 143
onPause(), 98-100
onRestart (), 98, 100
onResume (), 98, 100
mixed monetizing, 269
MMORPGs (Massively Multiplayer Online
Role-Playing Games), 31
mobile connectivity, 31
mobile gaming. See also Android projects;
specific games
advantage of smartphones for, 11-12
Android suitability to, 13-14
considering audience
Android user base, 10, 35, 274
cultures and languages, 45
niche/ wide, 36-37

Index 353

354 Android Game Programming For Dummies

mobile gaming (continued)
researching market, 29
special needs, 45-46
target, 34-35
considering devices
adapting for screen density, 41
adapting for screen size, 32, 40
adjusting for operating systems, 38-39
allowing for text and graphics, 32
considering input forms, 41-42
designing for colorblindness, 32-33
designing for variety of devices, 42-43
play duration on, 32
targeting devices, 37
touchscreen issues, 32
using processors, 39-40
designing controls
hardware, 44
interface elements in, 43-44
virtual, 44-45
locating resources
graphics, 46-48
sound, 48-49
planning game
considering design, 16-18
deciding distribution, 20
deciding game type, 15-16
deciding Google Play genre, 28-29
deciding number of players, 29-31
following a process, 19-20
locating tools, 21-22
monetizing, 22-25
mockups
Crazy Eights play screen, 18, 141
Crazy Eights title screen, 17
Whack-a-Mole play screen, 202
monetizing
models
ad-based, 274-275
freemium, 23, 269
free-to-paid, 272-273
in-app purchases, 23, 275-276
mixed, 269
paid, 270-271

providing free, 269-270
shareware, 272
overview, 22-25
multiplayer FPSs, 31
multiplayer games, 30-31
multi-touch (screen), 224
music, contracting for, 48-49. See also
sound/music
music games, 28

o\ o

naming conventions (games), 69, 81
Newton’s Cradle (game), 302

niche for games, 36-37, 268
Nintendo Game Boy, 11

o () o

Ogg Vorbis (. ogg), audio format, 95, 235
onCreate() method, 98-100, 213-214
onDestroy () method, 98, 100
onDraw () method, 98, 114, 115, 139, 143
onPause() method, 98-100
onRestart () method, 98, 100
onResume () method, 98, 100
open platform (Android), 10, 14
open-source game projects

Alien Blood Bath, 299-300

asquare, 303-304

GL ES Quake, 305

Lexic, 301

Lunar Lander, 297-298

Newton’s Cradle, 302

OpenSudoku, 300-301

Replica Island, 299

tiltmazes, 304-305

Vector Pinball, 302-303
OpenSudoku (game), 300-301
operating systems (0S), 38-39

i0S§, 12-13

Linux, 10, 51

Mac, 2, 51

supported for Java, 51
Windows, 51
Oracle, 19, 52-53
orientation (screen), 119-121
landscape, 119
portrait, 119
switching on emulator, 119
OS. See operating systems
Out of memory error, 113

oo

Package Explorer
Android project, 70, 82, 84, 91
signing and exporting game with, 280-281
viewing Manifest with, 84
package naming, 69, 81
Pac-Man (game), 28, 45
paid versions of games, 270-271
pay per click, 274
pay per impression, 274
permission website, 87
permissions, 86-87
persisting data
defining, 245
methods for, 245-246
SharedPreferences, 246-248
SQLite, 253-260
types of, 245
XML, 249-253
phones, 42
Pinball, 28
pixels, 40, 166
planning game
considering design, 15-18
deciding distribution, 20
deciding game type, 15-16
deciding Google Play genre, 28-29
deciding number of players, 29-31
following a process, 19-20
getting tools, 21-22
monetizing, 22-25

platforms
Android

advantages of, 9, 13-14

challenges for developers on, 268

competition on, 264-266, 268

drawbacks, 12-13

Eclipse IDE, use of, 3

growth of, 9-10

hardware, 39-43

history of, 10

versus iOS for targeting device, 37

Linux core, 2, 10

Mac OS requirements for game
development, 2

OS versions, 38-39

PC requirements for game development,
2-3

popularity of, 268

suitability for mobile gaming, 13-14

version 4.0, 10

i0S

advantages of, 12
versus Android, 12-13
drawbacks, 12
spectrum of, 37

PLAY button, 125-127
play screen
Crazy Eights

creating class for cards, 135-137
creating deck, 137-139

dealing, 139-141

designing launcher icon, 195-197
displaying discard pile, 150-151
displaying draw pile, 147-149
displaying game state, 141
displaying hands, 145-147
displaying scores, 142-144
initializing randomly, 175-176
launching, 129-132

loading card images, 135-137
mockup, 18, 141

starting custom view, 102-105

Index 355

356 Android Game Programming For Dummies

play screen (continued)
Whack-a-Mole
adding options menu, 212-213
adding scaling variables for images,
219-220
detecting mole contact, 229-232
determining image placement on,
220-222
displaying whacks and misses, 233-234
drawing mole and mask images to,
222-223
drawing whack image, 232-233
handling images in, 217-219
mock-up, 202
updating launcher icons, 215-216
view of empty, 211
players, number of, 29-31
poker, 28
portrait (orientation), 119
pricing apps, 270-271
privacy policy, 283
processors, 39-40
profanity and crude humor (content
rating), 290
profits, generating
models for
ad-based, 274-275
freemium, 23, 269
free-to-paid, 272-273
in-app purchases, 23, 275-276
mixed, 269
paid, 270-271
providing free, 269-270
shareware, 272
overview, 22-25
Project Glass (Google), 43
projects. See also Crazy Eights; Whack-a-
Mole
audio/visuals in, 94-95
creating
build target for, 68-69, 80
considering development process, 19-20
considering mobile device challenges, 99

creating package, 95-97
customizing view, 102-105
deciding on distribution, 20
declaring activities, 85-86
designing issues, 15
drawing in view, 102-103
ease of development of, 11
editing manifest, 83-84
essential tools for, 21
handling activities, 98-101
initial designing issues, 15-18
versus Java project, 79, 83
layouts, 91-93
localizing, 94
making view full screen, 122-124
Manifest file, 83
monetizing, 22-25
naming package, 69, 81, 84-85
opening window for, 67-69
organizing resources, 89-95
organizing source directory, 95-97
Package Explorer, 70
R. java file, 83
recommended tools for games, 21-22
setting permissions, 86-87
SurfaceView, 102, 203
targeting screen size, 87-88
targeting versions, 85
using views, 101-107
versioning, 84-85
View object, 101-102
by name
Alien Blood Bath, 299-300
asquare, 303-304
GL ES Quake, 305
Lexic, 301
Lunar Lander, 297-298
Newton’s Cradle, 302
OpenSudoku, 300-301
Replica Island, 299
Vector Pinball, 302-303
resources directory, 83
supports-screens tag, 87-88
tiltmazes, 304-305

public domain, 267
publishing game. See also Google Play
adding product details
contact information, 291-292
content rating, 290-291
copy protection, 289-290
game description, 287-288
icons and graphics, 286-287
market listing options, 288-289
pricing, 291
screenshots, 284-286
creating developer account
creating, 277-278
exporting signed application, 279-281
generating a key, 278-279
merchant checkout account for, 278
signing and exporting game, 279-281
uploading game
adding video, 282-283
options, 282-283
requirements, 282
uploading APK, 283-284
Puzzle Lords (game), 32-33

OQQ

QVGA (Quarter Video Graphics Array), 87

o R o

R. java file, 83, 97

race to bottom, 271

Racing games, 28, 289

ratings for apps, 265

Read-Only Memory (ROM), 38-39

relative placement, 127

RelativeLayout, 92

Relativia (game), 24

Replica Island (game), 299

res/ layout directory, 91

resolutions, 64

resources directory (Android), 83
creating for high-resolution devices, 90
drawables, 89-91

layouts, 91-93

subdirectories in, 88-89

values, 93-95
res/raw directory, 95, 235
role-playing games (RPGs), 31, 276
ROM (Read-Only Memory), 38-39
RPGs (role-playing games), 31, 276
running Android apps, 2, 71

oS e

sales tax
developer as vendor, 270
Google Checkout, 291
sandboxed storage (data), 246, 253
screen size/density, 40-41
screens. See also play screen,; title screen,;
touchscreen
considerations for mobile, 32
density
declaring target in manifest, 87-88
defining, 40
extra-high, 40
high, 40
low, 40
making game full, 122-124
medium, 40
size
categories, 40-41, 87-88
HVGA, 87
QVGA, 87
targeting, 41
WVGA, 88
XWVGA, 88
website for developing for multiple
screen size, 88
screenshots
creating, 284-286
orientation of, 282
sizes of, 282
SD (Secure Digital) card, 64
SDK (software development kit)
build target, 66-69, 80-81
choosing latest, 81

Index 357

358 Android Game Programming For Dummies

SDK (continued)
controlling timeout with, 121-122
emulation capabilities, 21
emulator, use of, 3
essential tool for games, 21
installing, 57-58
integrating with Eclipse, 61
Minimum SDK option, 82
scaling text with, 32
specifying hardware for app, 41-42
Secure Digital (SD) card, 64
Select Build Target window, 69, 80-81
selling game, 270-271
setting up game-development environment
connecting Eclipse to SDK, 61
creating virtual device, 62-65
installing ADT, 58-61
installing Eclipse, 53-57
installing JDK, 52-53
installing SDK, 57-58
launching virtual device, 66-67
verifying supported system, 51
sexual content (content rating), 290
SharedPreferences
data retrieval using, 247-248
storing data using, 246-248
shareware (monetizing), 272
side-scrolling platformer, 299
single-player games advantages, 29-30
size, screen
codes for, 87-88
four main, 40-41
targeting, 41
slot simulator, 28
smartphones
versus handheld gaming devices, 11
platforms used on, 11
software development kit (SDK). See SDK
software version control, 19
sound/music
Audacity for editing, 22, 234
changing setting using SQLite, 258-259
contracting for, 48-49

controlling volume, 238
creating whack, 235-237
enabling/disabling (SharedPreferences), 238
playing miss, 237
res/raw directory for, 95, 235
retrieving data using SQLite, 259-260
retrieving data using XML, 251-253
retrieving setting (Shared Preferences), 248
storing data using SQLite, 253-258
storing data using XML, 249-251
storing setting, 246-247

SoundPool, 239

source directory, 83, 95-97

source files for projects website, 2

sp unit, 166

spinner (drop-down menu), 164

splash page. See title screen

Sports games, 28, 289

SQLite (database)
data retrieval using, 259-260
data storage using, 253-259
overview, 245

SQLite syntax and queries website, 257

/src (source directory), 83, 95-97

storing data, 245
options for, 245-246
SharedPreferences, 246-248
types of, 245

strings (text), 93-94

strings.xml file, 93-94

styles and themes (Android) website, 94-95

subdirectories (resources directory)
drawables, 89-90
layouts, 91-93
values, 93-95

Subversion (SVN), 19

sudoku, 28

supporting game
handling inquiries, 292-293
releasing new version, 293

SurfaceView, 101-102, 203

SVN (Subversion), 19

system requirements for Java, 51

Index

oJ o

TableLayout, 92
tablets, 42
tabs
Android Manifest, 84
Graphic Layout, 92-93
tags
application, 85-86
intent-filter, 86
LinearLayout, 92-93
manifest, 84-85
supports-screens, 87-88
uses-sdk, 85
targeting
Android versions, 85
audience, 34-37
device, 37-39
screen sizes, 40-41, 87-88
targeting multiple screen sizes website,
41, 88
taxes
developer as vendor, 270
Google Checkout, 291
television, 42-43
text for games
considerations for mobile, 32
keeping in strings, 93-94
localizing, 94
optimizing for language, 94
themes and styles (Android) website,
94-95
tiltmazes (game), 304-305
timeouts, handling, 121-122
title screen
Crazy Eights
centering graphic horizontally, 116-119
creating custom view, 111-113
drawing title graphic, 115-116
elements in, 16
features of, 111
handling orientation, 119-121
key elements in, 16

launching play screen using, 129-132
loading title graphic, 113-116
making view full screen, 122-124
mockup, 17
Whack-a-Mole
creating layout to hold view, 209-210
creating new Android project for, 203
loading view, 210-211
setting landscape orientation, 203-204
setting up view, 204-209
Toast, 168
toggling between app paid and fee, 271
tools for starting game development
Android device, 21
Android SDK, 21
computer, 21
graphics program, 22
IDE (integrated development
environment), 21
JDK (Java Development Kit), 21
sound-editing software, 22
touchscreen
functioning as d-pad, 44-45
using for game input, 105-107
trending for apps, 266
tutorials, 46, 283
TV, 42-43

olf o

Ul (user interface). See also buttons; dialog
ads near, 275
defining, 45
improving elements in touchscreen, 160
uncommenting code, 158
Unpublish button, 292
updating game
steps for uploading new version, 293
version code, 293
uploading game to Google Play
adding graphics and icons, 286-287
adding screenshots, 284-285
contact information, 291-292

359

360

Android Game Programming For Dummies

uploading game to Google Play (continued)
content rating, 290-291
licensing, 289-290
pricing, 291
recommended optional items, 282-283
requirements for, 282
setting market listing options, 288-289
uploading APK, 283-284
writing game description, 287-288
user base, Android
attitudes to paying for apps, 274
being in good standing with, 271
growth of, 10
habits of, 35
user interface. See Ul
uses-sdk tag, 85

oo
values subdirectory, 83, 94-95
Vector Pinball (game), 302-303
video, promotional, 282-283
View object, 101-102, 203
views
custom, 102-103
custom for Crazy Eights, 111-113
modifying custom, 103-104
setting custom as content view, 104-105
SurfaceView, 102
View, 101-102
violence (content rating), 290
virtual controls, 44-45
virtual device
avoiding relaunching, 66
determining resolution, 64
determining size of SD card, 64
launching, 66-67
naming, 63

o[/ o

Wallpaper (game genre), 28, 289
websites
Android Developers’, 202
Android media support, 95
Android SDK, 3

Android styles and themes, 94-95
Android versions in use, updates, 38
artists, 48
asquare (game), 303
Audacity (game engine), 234
Audacity (sound-editing), 22
book updates, 6
for checking ADT compatibility, 53
checking permissions, 87
game programming files, 111
GL ES Quake (game), 305
Google Play, 263
implementing input methods, 105
Indiegamer, 48
JDK (Java Development Kit), 3
Lexic (game), 301
MediaPlayer, 239
Newton’s Cradle (game), 302
OpenSudoku (game), 301
Oracle naming conventions, 19
Replica Island (game), 299
source files for projects, 2
SQLite syntax and queries, 257
tiltmazes (game), 305
Vector Pinball (game), 302-303
Whack-a-Mole
animation
adding scaling variables, 219-220
adding variables for, 223-224
animating mole, 225-228
picking active mole, 224-225
tracking a moving mole, 223-224
considering adding variations to, 244
creating view for, 205-209
data retrieval
SharedPreferences, 247-248
SQLite, 259-260
XML, 251-253
data storage
SharedPreferences, 246-248
SQLite, 253-259
declaring layout for holding view, 209-210
ending game
drawing Game Over dialog box, 242-243
loading dialog box, 242
tracking ending, 239-242

Index 36 7

game logic
detecting mole contact, 229-232
drawing Game Over dialog, 242-243
loading dialog, 242
tracking ending, 239-242
overview, 4, 201-202
play screen
adding options menu, 212-213
adding scaling variables for images,
219-220
detecting mole contact, 229-232
determining image placement on,
220-222
displaying whacks and misses, 233-234
drawing mole and mask images to,
222-223
drawing whack image, 232-233
handling images in, 217-219
mock-up, 202
updating launcher icons, 215-216
view of empty, 211
signing and exporting, 279-281
sound
controlling volume, 237-238
creating directory, 235
creating effects, 235
enabling/disabling, 238
loading, 235-236
playing, 237
retrieving settings, 247-248
running sound options menu, 213-215
storing settings, 246-247
toggling, 213-215

title screen
creating Android project for, 203
creating layout to hold view, 209-210
loading view, 210-211
setting landscape orientation, 203-204
setting up view, 204-209
writing descriptions of, 287-288
Widgets (games), 28, 289
Windows 7, 51
Windows Vista, 51
Windows XP, 51
Wipe user data option, 66
Word Feud (game), 267
Words With Friends, 266-267
WordWise (game)
game history, 266-268
screen timeout, 121
screenshot of play screen, 266
screenshot of title screen, 266
WVGA (screen size), 88

o X o

XML (eXtensible Markup Language)
creating layout (Whack-a-Mole), 209-210
defining styles in, 94
layout file as document, 91-93
retrieving data using, 251-253
storing data using, 249-251
strings.xml file, 93-94

XWVGA (screen size), 88

362 Android Game Programming For Dummies

Apple & Mac

iPad 2 For Dummies,
3rd Edition
978-1-118-17679-5

iPhone 4S For Dummies,
5th Edition
978-1-118-03671-6

iPod touch For Dummies,
3rd Edition
978-1-118-12960-9

Mac 0S X Lion
For Dummies
978-1-118-02205-4

Blogging & Social Media

CityVille For Dummies
978-1-118-08337-6

Facebook For Dummies,
4th Edition
978-1-118-09562-1

Mom Blogging
For Dummies
978-1-118-03843-7

Twitter For Dummies,
2nd Edition
978-0-470-76879-2

WordPress For Dummies,
4th Edition
978-1-118-07342-1

Business

Cash Flow For Dummies
978-1-118-01850-7

Investing For Dummies,
6th Edition
978-0-470-90545-6

Job Searching with Social
Media For Dummies
978-0-470-93072-4

QuickBooks 2012
For Dummies
978-1-118-09120-3

Resumes For Dummies,
6th Edition
978-0-470-87361-8

Starting an Etsy Business
For Dummies
978-0-470-93067-0

Cooking & Entertaining

Cooking Basics
For Dummies, 4th Edition
978-0-470-91388-8

Wine For Dummies,
4th Edition
978-0-470-04579-4

Diet & Nutrition

Kettlebells For Dummies
978-0-470-59929-7

Nutrition For Dummies,
5th Edition
978-0-470-93231-5

Restaurant Calorie Counter

For Dummies,
2nd Edition
978-0-470-64405-8

Digital Photography
Digital SLR Cameras &

Photography For Dummies,

4th Edition
978-1-118-14489-3

Digital SLR Settings
& Shortcuts

For Dummies
978-0-470-91763-3

Photoshop Elements 10
For Dummies
978-1-118-10742-3

Gardening

Gardening Basics
For Dummies
978-0-470-03749-2

Vegetable Gardening
For Dummies,

2nd Edition
978-0-470-49870-5

Green/Sustainable

Raising Chickens
For Dummies
978-0-470-46544-8

Green Cleaning
For Dummies
978-0-470-39106-8

Health

Diabetes For Dummies,
3rd Edition
978-0-470-27086-8

Food Allergies
For Dummies
978-0-470-09584-3

Living Gluten-Free
For Dummies,

2nd Edition
978-0-470-58589-4

Hobbies

Beekeeping

For Dummies,

2nd Edition
978-0-470-43065-1

Chess For Dummies,
3rd Edition
978-1-118-01695-4

Drawing For Dummies,
2nd Edition
978-0-470-61842-4

eBay For Dummies,
7th Edition
978-1-118-09806-6

Knitting For Dummies,
2nd Edition
978-0-470-28747-7

Language &
Foreign Language

English Grammar
For Dummies,

2nd Edition
978-0-470-54664-2

French For Dummies,
2nd Edition
978-1-118-00464-7

German For Dummies,
2nd Edition
978-0-470-90101-4

Spanish Essentials
For Dummies
978-0-470-63751-7

Spanish For Dummies,
2nd Edition
978-0-470-87855-2

Coverstheipad 2, Pad, and 0551

IN FULL COLOR!

Edward C. Baig
Bob “Dr. Mac” LeVitus

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.
Connect with us online at www.facebook.com/fordummies or @fordummies

Math & Science

Algebra | For Dummies,
2nd Edition
978-0-470-55964-2

Biology For Dummies,
2nd Edition
978-0-470-59875-7

Chemistry For Dummies,

2nd Edition
978-1-1180-0730-3

Geometry For Dummies,
2nd Edition
978-0-470-08946-0

Pre-Algebra Essentials
For Dummies
978-0-470-61838-7

Microsoft Office

Excel 2010 For Dummies
978-0-470-48953-6

Office 2010 All-in-One
For Dummies
978-0-470-49748-7

Office 2011 for Mac
For Dummies
978-0-470-87869-9

Word 2010
For Dummies
978-0-470-48772-3

Music

Guitar For Dummies,
2nd Edition
978-0-7645-9904-0

Clarinet For Dummies
978-0-470-58477-4

iPod & iTunes

For Dummies,

9th Edition
978-1-118-13060-5

Pets

Cats For Dummies,
2nd Edition
978-0-7645-5275-5

Dogs All-in One
For Dummies
978-0470-52978-2

Saltwater Aquariums
For Dummies
978-0-470-06805-2

Religion & Inspiration

The Bible For Dummies
978-0-7645-5296-0

Catholicism For Dummies,
2nd Edition
978-1-118-07778-8

Spirituality For Dummies,
2nd Edition
978-0-470-19142-2

Self-Help & Relationships

Happiness For Dummies
978-0-470-28171-0

Overcoming Anxiety
For Dummies,

2nd Edition
978-0-470-57441-6

Seniors

Crosswords For Seniors
For Dummies
978-0-470-49157-7

iPad 2 For Seniors
For Dummies, 3rd Edition
978-1-118-17678-8

Laptops & Tablets

For Seniors For Dummies,

2nd Edition
978-1-118-09596-6

Smartphones & Tablets

BlackBerry For Dummies,
5th Edition
978-1-118-10035-6

Droid X2 For Dummies
978-1-118-14864-8

HTC ThunderBolt
For Dummies
978-1-118-07601-9

MOTOROLA XO0OM
For Dummies
978-1-118-08835-7

Sports

Basketball For Dummies,
3rd Edition
978-1-118-07374-2

Football For Dummies,
2nd Edition
978-1-118-01261-1

Golf For Dummies,
4th Edition
978-0-470-88279-5

Test Prep

ACT For Dummies,
5th Edition
978-1-118-01259-8

ASVAB For Dummies,
3rd Edition
978-0-470-63760-9

The GRE Test For
Dummies, 7th Edition
978-0-470-00919-2

Police Officer Exam
For Dummies
978-0-470-88724-0

Series 7 Exam
For Dummies
978-0-470-09932-2

Web Development

HTML, CSS, & XHTML
For Dummies, 7th Edition
978-0-470-91659-9

Drupal For Dummies,
2nd Edition
978-1-118-08348-2

Windows 7

Windows 7
For Dummies
978-0-470-49743-2

Windows 7

For Dummies,
Book + DVD Bundle
978-0-470-52398-8

Windows 7 All-in-One
For Dummies
978-0-470-48763-1

Job Searching
w:'l.f;l Social Media

Learn to:

Joshua Waldman, MBA
Conaont ndentepenea

igital SLR Cameras

IN FULL COLOR!

David D. Busch

‘th!

& Photography

FOR

DUMMIES

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.
Connect with us online at www.facebook.com/fordummies or @fordummies

Wherever you are
In Life, Dummies
makes It easier.

From fashion to Facebook e,
wine to Windowse,

and everything in between,
Dummies makes it easier.

T Win an
Sl Apple iPad 2!
rems

- FI dl ing Commands on the Excel 2007 Ribbon
X Bestselling Titles in Education

s

i

AN

Visit us at Dummies.com and connect with us online at
www.facebook.com/fordummies or @fordummies

FOR

s DUMMIES

Making everything easier!”

Dummies products
make life easler!

«DIY

«Consumer Electronics

*Crafts
«Software
«Cookware

did

E Tech Support
¥ DUMMIES

,,,,,,,,,,

APROBLEM

iy i [Yo | o i Ao Us

*Hobbies

« Videos

« Music
«Games
«and More!

For more information, go to Dummies.come
and search the store by category.

Connect with us online at

www.facebook.com/fordummies or @fordummies

.....

T pboard
Piano Keyboar:
'Starter Pack

g =
| Home Water Conservation Ki

Learn ukulele
the fun and easy way

Ukulele
starter Pack

With more than 200 million books in print and over 1,600 unique
titles, Dummies is a global leader in how-to information. Now
you can get the same great Dummies information in an App. With
topics such as Wine, Spanish, Digital Photography, Certification,
and more, you'll have instant access to the topics you need to
know in a format you can trust.

To get information on all our Dummies apps, visit the following:

www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

http://www.dummies.com/go/mobile
http://www.dummies.com/go/iphone/apps

	Android Game Programming For Dummies
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	Why You Need This Book
	Conventions Used in This Book
	Technical Considerations
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Adopting the Android Gaming Mindset
	Chapter 1: Getting to Know Android Gaming
	Seeing the Potential of the Android Platform
	What You Must Know about the Mobile Gaming Industry
	How Android Is Suited to Mobile Gaming
	Thinking Through Your Game Project
	Knowing What Tools You Need
	Capitalizing on Your Game

	Chapter 2: Designing Your Game
	Deciding What Kind of Game to Make
	Identifying Your Target Audience
	Targeting Devices

	Chapter 3: Setting Up Your Development Environment
	Starting at the Beginning
	Downloading and Installing Eclipse
	Installing the Software
	The Android Virtual Device (AVD) Manager
	Creating an Android Project
	Running an Android App

	Part II: Starting to Program
	Chapter 4: Dissecting an Android App
	Creating a New Project
	Taking the Bird’s Eye View of a Project
	Editing the Manifest
	Organizing Resources
	Organizing the Source Directory
	Understanding Activities
	Using Views

	Part III: Making Your First Game: Crazy Eights
	Chapter 5: Creating a Simple Title Screen
	Creating a Custom View
	Loading the Title Graphic
	Drawing the Title Graphic
	Handling Screen Orientation
	Controlling Screen Timeout
	Making the Game Full-Screen
	Adding buttons
	Handling Button States
	Launching the Play Screen

	Chapter 6: Creating a Basic Play Screen
	Displaying Cards
	Taking Your Turn

	Chapter 7: Finishing Your First Game
	Ending Hands and Games
	Wrapping Up the Game

	Part IV: Moving On to Your Second Game: Whack-a-Mole
	Chapter 8: Creating a Complex Title Screen
	Using SurfaceView
	Adding an Options Menu
	Toggling the Sound Option

	Chapter 9: Creating an Animated Play Screen
	Handling Images for the Play Screen
	Making Simple Animations
	Handling User Interaction
	Loading and Playing Sounds
	Handling End of Game

	Chapter 10: Storing and Retrieving Game Information
	Using Shared Preferences for Data Storage
	Using XML for Data Storage
	Using a SQLite Database for Data Storage

	Part V: Managing Your Game in theMarket
	Chapter 11: Making Money with Your Game
	Knowing Your Competition
	Monetization Models
	Alternatives to Google Play

	Chapter 12: Publishing and Updating Your Game
	Creating a developer account for Google Play
	Generating a Key with Keytool
	Exporting a Signed Application
	Uploading Your Game to Google Play
	Supporting and Updating Your Game After Publication

	Part VI: The Part of Tens
	Chapter 13: Ten Open-Source Game Projects
	Lunar Lander
	Replica Island
	Alien Blood Bath
	OpenSudoku
	Lexic
	Newton’s Cradle
	Vector Pinball
	asqare
	tiltmazes
	GL ES Quake

	Chapter 14: Ten Game Engines and Tools
	libgdx
	AndEngine
	Unity
	OpenFeint
	Flurry
	Audacity
	sfxr
	GIMP
	Inkscape
	AdWhirl

	Chapter 15: Ten More Places to Distribute Your Game
	Amazon
	Handango
	Opera Mobile App Store
	GetJar
	SlideME
	Appoke
	AppBrain
	AndroLib
	Your Website
	BitTorrent Sites

	Chapter 16: Ten Websites for Android Game Developers
	Stack Overflow
	Android Developer
	anddev.org
	Android Developers Blog
	Appolicious
	Android Tapp
	Phandroid
	xda developers
	Droid Gamers
	Android and Me

	Glossary
	Index

