Android Studio to Zipalign

Android

Developer
Tools

O’REILLY" Mike Wolfson

Android Developer Tools Essentials

Android development can be challenging, but through the effective use
of Android Developer Tools (ADT), you can make the process easier and
improve the quality of your code. This concise guide demonstrates how
to build apps with ADT for a device family that features several screen
sizes, different hardware capabilities, and a varying number of resources.

With examples in Windows, Linux, and Mac OS X, you'll learn how to set
up an Android development environment and use ADT with the Eclipse
IDE. Also, contributor Donn Felker introduces Android Studio, a Google
IDE that will eventually replace Eclipse.

m Learn how to use Eclipse and ADT together to develop Android code

m Create emulators of various sizes and configurations to test your
code

m Master Eclipse tools, or explore the new Android Studio
B Use Logcat, Lint, and other ADT tools to test and debug your code

m Simulate real-world events, including location, sensors, and
telephony

m Create dynamic and efficient Uls, using Graphical Layout tools

m Monitor and optimize your application performance using DDMS,
HierarchyViewer, and the Android Monitor tool

B Use Wizards and shortcuts to generate code and image assets

m Compile and package Android code with Ant and Gradle

Get the ebook edition of this O'Reilly title at oreilly.com and receive free
updates for the life of the edition. Our ebooks are optimized for several
electronic formats, including PDF, EPUB, Mobi, and DAISY—all DRM-free.

Twitter: @oreillymedia
facebook.com/oreilly

i 8.’.55"-”

Us $24.99 CAN $26.99
ISBN: 978-1-449-32821-4

7814491328214

Android Developer Tools
Essentials

Mike Wolfson

O’REILLY"

Beijing = Cambridge + Farnham - Koln - Sebastopol + Tokyo

Android Developer Tools Essentials
by Mike Wolfson

Copyright © 2013 Mike Wolfson. All rights reserved.
Printed in the United States of America.
Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Andy Oram and Rachel Roumeliotis Indexer: Ellen Troutman
Production Editor: Rachel Steely Cover Designer: Randy Comer
Copyeditor: Gillian McGarvey Interior Designer: David Futato
Proofreader: Charles Roumeliotis lllustrator: Rebecca Demarest
August 2013: First Edition

Revision History for the First Edition:

2013-08-13: First release
See http://oreilly.com/catalog/errata.csp?isbn=9781449328214 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’'Reilly logo are registered trademarks of O'Reilly
Media, Inc. Android Developer Tools Essentials, the image of a cassowary, and related trade dress are trade-
marks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade-
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-32821-4
[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449328214

Table of Contents

Preface......ooovueiiii iX
1. Getting Started.oovvirinnii i i i i i i e 1
Minimum Requirements 1
Installing Java 2
Installing the Android Software Development Kit 3
Installing the ADT Bundle 3
Developing Without Eclipse 5
Command-Line Usage 6
Using a Different IDE 6
Configuring a Device for Development 7

2, Essential Tools.ooonnii n
SDK Manager 11
SDK Components 11
Starting the SDK Manager 12
Viewing Installed and Available Components 13
ADT Preview Channel 15
Android Debug Bridge (ADB) 17
Starting ADB 17
Querying for Device Instances 18
Issuing Commands 19

The Shell Command 20
ADB Does a Lot More 22
Resetting the ADB Server 23
Additional Resources 24

3. Configuring Devicesand Emulators.cooviuiiiiiiiiiiriiinennennnnns 25

Using a Physical Device for Development 25

Capabilities and Limitations

Configuring a Physical Device for Development
Using an Emulator for Development

Supported Features
Android Virtual Devices

Creating AVDs

Emulator Options
Advanced Emulator Configuration

Using Hardware Acceleration

Disabling the Boot Animation

On Windows: Dedicating a Core to the Emulator

Using Devicesand Emulators.oovvniiiniieieeiiiiiierennenneennnnns
Using the Emulator
Starting the Emulator
The Emulator Application
The Devices Tool
Keyboard Shortcuts
File Explorer
Developer Tools Application

Developing with Eclipse.........coviuiiiiiiiii i

Anatomy of the Eclipse Workspace
Uncovering Additional Tools and Views
Quick Button

Code Templates

Properties Editors

XML Formatter

The Android Key

Quick Outline for XML

Other Essential Eclipse Shortcuts

Refactor Menu

Developing with Android Studio.ccovviiiiiiiiiiiiiii i
Installing Android Studio

Bundled SDK

Default Project Location
Anatomy of the Android Studio IDE

Panels

Toolbars

Useful Actions in Android Studio

Navigation

25
26
26
27
28
28
32
33
33
37
37

39
39
40
47
48
50
50
52

55
55
57
59
59
65
67
67
68
69
70

n
71
72
74
74
74
75
76
76

iv

| Table of Contents

The New Structure of an Android Project
A Tour Around the New Structure
Running and Debugging an Android Project

Creating New Android Components

Layout Designer and Layout Preview
Layout Designer
Layout Preview

Generating an APK

Interacting with Maven and Gradle
Interacting with Maven
Interacting with Gradle

Version Control Integration

Migrating from Eclipse

Android Studio Tips and Tricks
Refactoring and Code Generation
Miscellaneous Shortcuts

cTestingYour€ode. . ..ovvveenii i i i

Logcat
Viewing the Logcat File
Anatomy of a Log Message
Filtering Based on Logging Level
Using Tags to Filter Output
Getting the Most Out of Logcat
Viewing Alternative Log Buffers
Predefined Output Formats
Logcat Viewer in Eclipse
Logcat Example

Debugging
Setting Your App to Debuggable
Setting a Debug Point
The Eclipse Debug Perspective
Debugging Example

Lint
Command-Line Usage
Running in Eclipse

. Simulating Bvents.ooiiiii
Simulating Location and Routes

Simulating Telephony Operations

Changing Networking Parameters

Using a Device with Sensor Emulation

77
77
78
79
80
80
81
82
83
83
84
85
86
86
87
87

89
89
89
89
91
92
92
93
93
93
94
98
99
99
100
101
107
108
110

115
115
118
121
122

Table of Contents

10.

Advanced Sensor Testing
Supported Sensors
Simulating Sensor Events in Real Time
Recording Sensor Scenarios
Developer Options Menu

BUuildTools.ooveeeiee ettt ittt eeenenes

Compiling Your Code
Packaging an APK for Release
Signing Your App
Building from the Command Line Using Ant
Setting Up Your Project
Building in Debug Mode
Building an App to Release to the Play Store
Additional Ant Commands
Advanced Packaging Steps
ProGuard
Zipalign
Gradle-Based Build Tools
Installing Gradle
Creating Multiple Build Variations
Build File
Build Tasks
Generating a Gradle Build from Eclipse
Using the Maven Tools

Monitoring System Resources.cooovviiiiiiiiniiinnne

Memory Usage in Android

Dalvik Debug Monitor Server (DDMS)
Launching the DDMS Perspective
Analyzer Tool
Threads
Heap
Traceview

Memory Analyzer Tool (MAT)
Generating an HPROF File
HPROF File
Installing MAT into Eclipse
Launching MAT from Within Eclipse
Using MAT to Analyze HRPOF Files
The MAT Overview Screen

122
123
123
124
126

129
129
130
130
133
135
136
136
138
139
139
144
144
144
145
147
148
148
149

151
151
152
152
154
155
156
157
159
160
160
160
160
161
162

vi

| Table of Contents

1.

12.

13.

Viewing a Report

Working with the User Interface.covvviiiiiiiiiiiiiiiii i nenen
Android Layout Basic Concepts
Defining Layouts Using XML
Views and ViewGroups
Resources
Leveraging ADT to Build Great Uls
Editing XML Files Directly
Using Templates
Editing XML Directly
Working with Graphics
The Asset Tool
Using Nine-Patch Images
Asset Studio Website

Using the Graphical Editor.............cooviiiiiiiiiiiiii it iieeennn,
Generating Layouts Using the Graphical Layout Editor
Palette
Canvas
Layout Actions
Context-Sensitive Menu
Outline View
Properties Editor
Configuration Chooser

Optimizing the User Interface.c.covvriiiiiiiiiii ittt ennn,
Introduction to UTI Performance

How Android Draws Views, and How It Affects UI Performance
Hierarchy Viewer

Starting the Hierarchy Viewer

Loading the View Hierarchy into the Tools

Navigating the Tree Hierarchy

Gathering View Information

Gathering View Rendering Details

Example: Debugging a UI Using the Hierarchy Viewer
Fixing Problems Using Lint
Application Exerciser Monkey

Grooming the Monkey
Monkeyrunner

Using Python to Create the Script

162

165
165
165
167
170
171
172
172
173
182
183
185
187

189
189
191
192
194
194
196
196
197

201
201
201
203
203
203
203
205
207
208
218
219
220
221
221

Table of Contents

vii

Thanks for Reading! 222
INAEX. .o 223
viii | Table of Contents

Preface

If you are reading this book, it’s likely that you already know a little about Android
development and how challenging it can be. Learning to effectively use the standard
Android Developer Tools (ADT) can make the development process easier and improve
the quality of your code, thereby producing a more refined and robust end product.

Requirements for Android Developer Tools

Android is very different from other mobile platforms currently available. It is not
managed by a single organization, but by a group of companies named the “Open
Handset Alliance,” which is committed to providing a mobile OS that is free, complete,
and open source. While this approach ensures decentralized control of the platform, it
does create some complexities. These include:

Multiple screen sizes
Android devices come in a multitude of different screen sizes. Success of your app
can hinge upon how your app looks across devices.

Fragmentation
It is up to the carrier and manufacturer to update their devices when a new version
of the OS and runtime are released, which doesn’t always happen in a timely manner.
It is therefore necessary to support older versions of the OS and runtime.

Different hardware capabilities
Android phones come in all shapes, sizes, and capabilities. It is necessary to ensure
that you degrade unsupported features gracefully when the hardware is limited.
Another important consideration is the particular hardware components on which
you can or cannot rely (for instance, some devices don't have cameras, GPS sensors,
or keyboards).

Resource limitations
Developing applications targeted to the mobile environment is different from de-
veloping for the desktop. CPU speed and memory are limited compared to desktops
or servers. Mobile device users don’t put up with apps that tie up their devices
(blocking the UT), consume too many resources, or crash their devices.

Development Process for Android Developer Tools

Google manages ADT development, as well as the standard Android platform. However,
the two products are managed very differently, particularly in regards to the open-
source nature of the products. The ADT project is developed by a different group from
the one that manages the main platform. The tools are released separately from the
standard SDK and follow their own release cycle, which is frequently (but not always)
tied to the platform release.

The standard OS is developed behind closed doors—contributions are not accepted to
the current code base. The source code is released to the public at some point after the
group releases it to manufacturers and other insiders.

The first line on the ADT website makes it clear that this project is different. It reads:
“The Developer Tools for Android are being developed entirely in the open and [the
project] is accepting contributions.” ADT is developed as a series of open source projects
with publicly accessible Git repositories and a public bug tracker. The management
group solicits contributions from the community and considers them for implemen-
tation in current releases. You can find information on how to contribute on their
website.

Development on a Variety of 05 Platforms

Just as Android is designed to run on many different devices, it is also possible to use
many different computer configurations when developing Android applications. This
book provides examples based on the Windows 7 64-bit OS and Mac OS X, using the
Eclipse Integrated Development Environment (IDE). One chapter introduces the new
Gradle-based Android Studio. But you should be able to follow along with any OS and
IDE, as the tools have been ported to work on a large variety of platforms. It is also worth
noting that it is possible to develop for the Android platform without using an IDE at
all, as most of the tools can be run directly from the command line.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLSs, email addresses, filenames, and file extensions.

x | Preface

http://tools.android.com/
https://android.googlesource.com/
http://b.android.com
http://tools.android.com

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, data types, and XML keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

i A

e This icon signifies a tip, suggestion, or general note.
L)
'\‘T‘ 5

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in your programs and documentation. You do not need
to contact us for permission unless you're reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Android Developer Tools Essentials by Mike
Wolfson (O’Reilly). Copyright 2013 Mike Wolfson, 978-1-449-32821-4”

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/mwolfson/ToolsDemo.

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Preface | xi

https://github.com/mwolfson/ToolsDemo
mailto:permissions@oreilly.com

Safari® Books Online

Safari Books Online (www.safaribooksonline.com) is an on-

Sa fa rl demand digital library that delivers expert content in both book and

BooksOntine yideo form from the world’s leading authors in technology and
business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O'Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/Android_Essentials.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xii | Preface

http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/Android_Essentials
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments

Special thanks to my wife Dana. Without your support and encouragement, this book
(and many other things in my life) wouldn't be possible. I love you and appreciate ev-
erything you do for me.

Thanks to the tech reviewers who stuck with me and provided great feedback through-
out the long writing process: Jason Douglas, Maija Mednieks, Charlie Meyersohn, and
especially Peter Van Der Linden, whose thorough review and excellent comments im-
proved the quality of the book and made my job much easier. I couldn't have done it
without you.

Thanks to Donn Felker for your last-minute help on Android Studio. Your content really
improves the quality of this book. Looking forward to shipping more products together!

Shout-out to Heatsync Labs in Mesa, AZ and CO+HOOTS in Phoenix, AZ for providing
spaces that foster creativity.

Preface | xiii

CHAPTER1

Getting Started

It’s fairly easy to set up the Android developer environment. The steps are basically the
same for all supported platforms (with small variations on each OS). T'll describe them
in detail so you can be sure you have everything configured correctly.

=

Installation instructions might change over time. These basic steps are
consistent with the latest release. However, they might change, so you
should always check the online documentation to make sure you are
installing and using the most up-to-date version.

The basic steps are:

Al

Make sure your computer meets minimum requirements.
Install the Java Development Kit (JDK).

Install the Android SDK.

Install the Eclipse Integrated Development Environment (IDE).
Install the Android Developer Tools (ADT) plug-in for Eclipse.

Minimum Requirements

To develop for Android, you'll need a reasonably responsive computer. You will likely
be running a few memory-intensive processes (including emulators) and IO-intensive
things (such as building your code or packaging a release artifact). The published base
requirements for Android make it possible to develop on a variety of very low-powered
devices (such as netbooks), but for practical purposes I suggest using a development
environment with more widely available resources. Guidelines for practical minimum
requirements are listed in Table 1-1.

http://bit.ly/XUepi1

Table 1-1. Practical minimum hardware requirements

05 Version Windows XP (32-bit) | Ubuntu, RedHat, and others | 0S X (10.4.9 +)
Hard Disk Space | 25GB 25GB 25GB

System Memory | 3GB 2GB 4GB

Processor Dual Core + Dual Core + x86 Only

UsB USB 2.0+ USB 2.0+ USB 2.0+
Installing Java

The Android development platform is built on the standard Java framework. Android
applications are built on top of the Java platform, so you will need to install it in order
to do anything with Android. Make sure you get the Java Developer Kit (JDK) as op-
posed to the Java Runtime Environment (JRE) (which may already be installed on your
system). The JDK has the compiler, debugger, and other tools you will use to develop
software; the JRE is a runtime for executing those tools. Download the latest version,
choosing the default settings (it is not necessary to have any of the optional packages
that are available).

Currently, Android is designed to target Java version 1.6. If you down-
. load a version newer than this (which is likely), you will need to set
- the Java Compiler level to be compliant with 1.6. In Eclipse, a Java
Compiler option in the properties of your Android project allows you
to set this.

You can download the JDK installation packages for each supported OS from the Java
download site.

Optionally, if you are on Linux, you can use a package manager (such
. as apt or yum) to download and install Java. For instance, on Ubun-
2% tu or Debian, use the following command:

sudo apt-get install sun-javaé6-jdk

In general, Mac OS X developers aren’t required to install Java manually. On the Mac
OS, Java comes preinstalled, with a custom packaged version directly from Apple.
Updating to newer versions of Java is only possible when Apple releases an update
through their own channels. To confirm that the correct version of Java is installed, the
following command can be run from any terminal window to display this information:

2 | Chapter 1: Getting Started

http://bit.ly/TEA7iC
http://bit.ly/TEA7iC

java -version

More information about Java on Mac OS X is available here: Mac OS Java site.

Installing the Android Software Development Kit

The Android Software Development Kit (SDK) is the collection of libraries, tools, doc-
umentation, and samples that are required to run and develop Android apps and to use
the tools. It is not a complete development environment, and contains only the base
tools needed to download the rest of the necessary components. Downloading tools and
components will be discussed in detail in the section about using the “SDK Manager”
on page 11.

In order to get started, you will need to download the “ADT Bundle” This is a new
packaging style (as of ADT version 21) that includes all the components required to
develop for Android packaged as a single, integrated download. Previous to this release,
it was necessary to download and install each of the required components separately,
and then set them up to work together. This manual approach is more error-prone, but
is still supported, particularly if you wish to use an IDE other than Eclipse. The manual
procedure is described on the Android Developers web page titled Setting Up an Ex-
isting IDE. I strongly recommend you use the ADT Bundle to install the tools. It
streamlines the process, minimizes the chances of error, and creates a standard directory
structure for the tools. The bundle includes each of these components:

o The Eclipse IDE, including the ADT plug-ins, and all the required extensions
o The SDK Tools
o The Platform Tools

o The latest Android Platform
« A CPU image compatible with the latest platform

Installing the ADT Bundle

The most recent release of the tools provides a convenient single package containing
everything necessary to develop Android. It makes installation easy.

Downloading the ADT bundle

On the main page of the SDK site, you will notice a button to download the package,
which currently looks like Figure 1-1. This link will automatically download the version
for the OS you are using. Make sure you have good Internet connectivity (it is a large
download—at the time of this writing, over 400MB).

Installing the Android Software DevelopmentKit | 3

http://bit.ly/15U7ZkF
http://bit.ly/13LJtmy
http://bit.ly/13LJtmy
http://bit.ly/XUepi1

800 Android SDK | Android Developers

J.:, Andraid SDK | Android Develoni: . [REL
'i' Developers ~ Design Develop Distribute Q
Training API Guides Reference Tools Google Services
Developer Tools Get the Android SDK
Download
- The Android SDK provides you the API libraries and
Setting Up the ADT developer tools necessary to build, test, and debug
Bundle apps for Android.
Setting Up an .
Existing IDE Ifyou're a new Android developer, we recommend you

download the ADT Bundle to quickly start developing

Exploring the SDK apps. Itincludes the essential Android SDK
Download the NDK components and a version of the Eclipse IDE with
built-in ADT (Android Developer Tools) to streamline
Workflow v your Android app development.
Tools Help . With a single download, the ADT Bundle includes
everything you need to begin developing apps: Download the S
Revisions v
« Edlipse + ADT plugin ADT Bundle for Mac
Extras > © Android SDK Tools
® Android Platform-tools
Samples .
e The latest Android platform
ADK ~ s The latest Android system image for the emulator

If you prefer to use an existing version of Eclipse or another IDE, you can instead take a more customized approach to
installing the Android SDK. See the following instructions.

¥ USE AN EXISTING IDE
SYSTEM REQUIREMENTS
 DOWNLOAD FOR OTHER PLATFORMS

Figure 1-1. Downloading the ADT Bundle

Extracting the tools to Android Home

The next step in the installation is to extract the artifacts to an appropriate location on
your filesystem. You will need to select the location to install the tools, which can be
wherever you wish. I suggest placing this directory at a high level in the filesystem, in
order to make it easier to reference, locate, and back up. Here are some suggestions:

If you are on a single-user machine or want to put everything in a common location,

you could use the following locations:

o Windows: C:\android
e Linux or Mac OS X: /usr/dev/android

It is common and perfectly acceptable to put Android in your home directory. For

instance:

4 | Chapter 1: Getting Started

« Windows: C:\Users\youruserid\android
o Mac OS X: /Users/youruserid/android

o Linux: /home/youruserid/android

Unzip the downloaded artifact to the Android folder

Use the appropriate utility (such as WinZip on Windows, tar on Linux, or just double-
click the file on Mac OS X) to extract the Bundle into the folder you chose in the previous
step. If you do this correctly, you should see the android-sdk folder in the Android
Home folder you created in the previous section. On Windows, this is C:\android\sdk,
and on Mac OS X or Linux, it’s /usr/dev/android/sdk.

Setting your PATH variable

Next, you will need to append the location of the Android executables to your PATH
environment variable. This is not strictly required, but makes it much easier to use the
Android tools from anywhere on your system (and will be assumed in the examples in
this book). All the executables we want to use from the command line can be found in
the platform-tools and the tools directories in your Android installation.

Setting your PATH is different on each OS. Instructions about how to do this can be
found on the help pages of each operating system, or in this article, which contains a
great overview of how to set and use PATH and other environment variables.

You can verify that your path is set correctly by opening a new terminal window and
typing android at the command prompt. This will launch the SDK Manager, which
signifies you did everything correctly and that you have successfully installed the An-
droid SDK. You will use the SDK Manager to download additional components, but
won't need to use it now, since the ADT Bundle already has the current platform
included.

Validating the installation

To validate that everything was installed correctly, launch the Eclipse executable by
clicking on or running ${android.sdk}\eclipse\eclipse. Eclipse will start, and prompt you
to enter the location of the workspace. This is the location where your project-specific
assets (source code, images, build scripts, and so on) will be stored. You can select
whatever location you prefer, or just use the default value supplied. Eclipse will start,
and you will see a customized version of the tool (named the Android Developer
Tools - ADT). Congrats, your installation was successful.

Developing Without Eclipse

Although it is recommended that you use an IDE to help in the development process,
the tools provided in the SDK can also be used on the command line or with other IDEs.

Developing Without Edipse | 5

http://bit.ly/14smsVa

You will be able to do almost anything you need (including compiling, building and
packaging artifacts, launching emulators, and using the tools) strictly using the com-
mand line or other tools.

Command-Line Usage

To start using the tools from the command prompt, simply start a terminal window,
and type the name of the tool you want to start at the command prompt. If you set your
PATH variable properly (according to the instructions in “Setting your PATH vari-
able” on page 5), you will be able to execute the various command from anywhere on
your filesystem. Some examples of command-line usage can be found in “Android De-
bug Bridge (ADB)” on page 17. The main way you will access the tools is through Eclipse,
but you can also access them from the command line. This is useful for scripting or
automation. It is not recommended to use them exclusively, as the tools integrated into
Eclipse are excellent, make a lot of tasks simpler, and will likely make your coding more
efficient.

o ..‘1
Windows users can use Explorer to navigate to their C:\android\sdk
fs“ . \tools folder, highlight the full address, and simply replace it with cmd.
% Press Enter, and the command prompt starts at the location.

Using a Different IDE

Itis not strictly necessary to use Eclipse for development. Many people have had success
using Netbeans or Intelli]. At the time of this writing, the officially supported IDE is
Eclipse, which is the tool we will focus on for this book. In general, I suggest using the
officially supported tools. This will ensure that you are able to get the latest updates and
are using the most stable tool. Another important reason to stick with the suggested
tools is that you will be using the same tools as a majority of the development community,
so bugs you come across will likely be easier to fix because they’ll be encountered by a
larger community of users.

The open-source nature of the Tools projects means that they are designed to be
platform- and tool-agnostic. This means the development team takes care to ensure the
tools run well everywhere. If you do have a preference for other development tools, you
most likely will be able to use them for your Android projects. There are robust com-
munities supporting various platforms, and in many cases, the alternate tools do things
better than Eclipse.

At Google I/0 2013, the Android tools team announced support for a new IDE named
“Android Studio” (Chapter 6 describes how to use it). This looks like an exciting alter-
native for the future. However, it is currently a very early release, so it is not ready for
production usage.

6 | Chapter1: Getting Started

The NetBeans IDE also supports Android development. Information about using this
can be found on the Android Plug-in for NetBeans page on the Kenai website.

Configuring a Device for Development

The simplest way to test your applications is often by using an Android device. You can
use almost any Android device for development, as long as you make a few changes in
order to enable communication with the development tools.

1. Configuring a Physical Device for Development.

The instructions for setting up your device to be used as a development device are
covered in “Configuring a Physical Device for Development” on page 26.

2. Change phone settings.

Launch the Settings app on your phone, then select Applications - Development
— USB-Debugging. Check the box next to “USB debugging” to enable this func-
tionality. The result should look like Figure 1-2.

3. Download the ADB driver.

In order to connect an Android-powered device for testing on Windows machines,
it is necessary to install the appropriate USB driver. This is not necessary on Mac
OS X or Linux.

You can find drivers at the website of the manufacturer of your phone. You may be
able to find a driver through the Android Document website, which contains a list
of links to software for many original equipment manufacturers (OEMs).

4. Validate debugging on the phone.

Connect your device to your computer. If everything went well, you will see a no-
tification (B) from your operating system, indicating that the device is installed and
ready to use.

You will also notice two new entries in the notification drawer of your device (shown
in Figure 1-3). These will show that you are successfully connected. You can select
them to launch the Settings application.

Configuring a Device for Development | 7

http://bit.ly/14cHF1f
http://bit.ly/18gFmi4

F Developer options

Take bug report

Desktop backup password
Desktop full backups aren't currently protected

NEVEWELE
Screen will never sleep while charging

Protect USB storage

Apps must request permission to read USB
storage

DEBUGGING

USB debugging

Debug mode when USB is connected
Power menu bug reports
Include option in power menu for taking a

bug report

Allow mock locations
Allow mock locations

Ay |

Figure 1-2. Debugging enabled for testing apps on a phone

8 | Chapter 1: Getting Started

_I OOZ SAT, MARCH 2

& USB debugging connected
Touch to disable USB debugging.

"P Connected as a media device

Touch for other USB options.

T-MOBILE

Figure 1-3. Debugging notification

Congratulations! You have successfully installed everything you need to develop and
test Android applications.

Configuring a Device for Development | 9

CHAPTER 2
Essential Tools

This chapter describes the fundamental tools that you need in order to start developing
Android applications. In it, I will show you how to use the SDK Manager to download
various development resources, and discuss using the command-line tools (in particular
the Android Debug Bridge — ADB).

SDK Manager

The SDK Manager is a GUI tool designed to make it easy to download and install the
required components. It is likely the first tool you will encounter, and the one you will
use most often. The SDK Manager allows you to update the Android SDK and install
additional components.

SDK Components

The Android SDK has a modular structure, which means that the major components
of the SDK are collected into separate packages. This makes it easy to install only the
components you need for your particular unique use case. The packages you install are
determined by the version of the OS you are targeting, if you use third-party services
(like Google Maps or Analytics), and if you plan to support specific hardware (like a
particular chipset or a dual screen). The modular structure has two important benefits.
The first is that disk storage is not wasted on downloading unnecessary components.
This is important because each platform requires at least 100MB of space, and this can
grow rapidly when optional packages are included. The other advantage is that man-
aging dependencies within a project is streamlined because it is possible to control
exactly which software you are working with, and install only the components you
require.

It is important to understand the various components that are available. They are or-
ganized into categories:

1

SDK Tools
These include the various utility tools you will use to develop apps. These are es-
sential tools required by all developers. You can think of them as the core system
tools of the platform. These include android, ddms, apkbuilder, and emulator,
among others. You can find these in the android-sdk/tools directory.

Platform Tools
These are additional tools that are developed alongside the core platform, and are
typically updated in concert with the release of a new version of the platform. These
include adb, fastboot, dx, aidl, and others. You can find these in the android-sdk/
platform-tools directory.

Android Platform
An SDK platform is released for every version of Android. Each release includes a
compliantlibrary, system image, emulator skins, and platform-specific tools. Patch-
es and point releases to the platform are also located here.

Google APIs
The additional libraries required to use Google-specific services such as Google
Cloud Messaging or Maps.

Drivers
This contains driver files that allow an Android device to communicate with a
computer. USB drivers here can be or downloaded from here.

Samples and documentation
Here you’ll find the sample code and documentation for each platform release. This
includes example projects containing documented code that can and should be used
when designing your own code. As with the SDK, it is generally a good idea to use
the latest release because updates include the best examples with the least bugs.

Third-party add-ons
This category includes tools and libraries for third-party add-ons, including the
Android support package and the Analytics SDK. This also includes third-party
add-ons such as a Samsung Galaxy Tab skin, Motorola SDK add-ons, and the Nook
Color SDK add-ons. You can also find customized, fully compliant Android system
images representing particular devices.

Starting the SDK Manager

The SDK Manager can be launched as an independent application, directly from the
OS or from inside Eclipse. Follow these steps depending on how you will be launching
the SDK Manager:

12 | Chapter 2: Essential Tools

http://bit.ly/1ccVmY5

Windows
Start - All Programs - Android SDK Tools - SDK Manager

Linux/Mac OS X
Open a terminal, and run android.

Eclipse (all platforms)
Look for the & icon in your Eclipse toolbar. Click on it to launch the SDK Manager.

On all platforms, you can also launch directly from the menu: Window - Android
SDK Manager.

The SDK Manager GUI launches, as shown in Figure 2-1.

® O O Android SDK Manager
SDK Path: /Users/mwolfson/Downloads/adt-bundle-mac-x86_64/sdk
Packages
| Name API Rev. [Status
™ v Tools
M I Android SDK Tools 21.0.1 - Update available: rev. 2
™ % Android SDK Platform-tools 16.0.1 - Update available: rev. 1
[| ¥izlTools (Preview Channel)
= I Android SDK Tools 21.1 rc 4 Not installed
[| ¥i:/Android 4.2 (APl 17)
= | Documentation for Android SDK 17 2 & Not installed
@ SDK Platform 17 1 ., Update available: rev. 2
= &5 Samples for SDK 17 1 vinstalled
4 # ARM EABI v7a System Image 17 1 . Update available: rev. 2
- # Intel x86 Atom System Image 17 1 4 Not installed
J # MIPS System Image 17 1 4 Not installed
4 & Google APIs 17 1 . Update available: rev. 2
UJ Sources for Android SDK 17 1 & Not installed
| VizlAndroid 4.1.2 (API 16)
0 SDK Platform 16 4 vinstalled
- & Samples for SDK 16 1§ Notinstalled
U # ARM EABI v7a System Image 16 3 Minstalled
Show: @Updates/New @Installed [| Obsolete Select New or Updates \ Install 6 packages... \
Sort by: (o) API level () Repository Deselect All | Delete 6 packages... |
) a
Done loading packages.

Figure 2-1. SDK Manager

Viewing Installed and Available Components

After launch, the SDK Manager will present a list of all the packages available for down-
load from the SDK repository. The components are organized into those defined in

SDK Manager | 13

“SDK Components” on page 11. You can click on the white triangle () next to any
particular platform to expand the tree and see more detail about the compatible re-
sources available. Figure 2-1 shows the Android 4.2 and 4.1.2 sections expanded to
expose more details about the compatible downloads available. In this view, you will see
additional information about a particular package (this is the column on the right). This
includes version information and install status. If there is a newer version of a compo-
nent available, it will appear in the status column. In Figure 2-1, you will notice that
there is an update available for the Tools.

Selecting packages

Next, select the packages you want to download. Place a checkmark next to each indi-
vidual component that interests you, or select every package in a release by marking the
top-level package. After you have selected the packages you want to download, you are
ready to proceed. The button on the bottom right (marked “Install X packages...”) now
indicates the number of selected packages. Confirm that this number matches what you
expect, as it is common to have packages marked for download that you didn’t expect,
and this is not always obvious (especially if something is marked in a platform that is
not expanded).

The various packages can take up a lot of space on your computer (for
_ instance, each of the core platforms are around 100MB, without the
' docs or samples). It is important to decide which packages you want
to support, and limit your downloads to those that are important to
you. There are a lot of things to consider when making this decision,
and a discussion of this is outside the scope of this book. This discus-
sion covers it well, and is recommended reading.

Installing packages

Click the Install Packages button to finalize your selections and start the installation
process. You are then prompted to accept the “Terms Of Service” for the software you
are downloading. Make sure to click the Accept All button, or else all the components
may not install. After you have accepted them, the downloads will begin.

The packages are downloaded to your computer and automatically stored in the ap-
propriate folder in the location where you installed Android (see “Extracting the tools
to Android Home” on page 4). The components are downloaded into the following
subdirectories:

14 | Chapter 2: Essential Tools

http://bit.ly/13THhp6
http://bit.ly/13THhp6

Platforms platforms/android-API_level
Add-ons add-ons

Samples samples/android-API_level

Documentation | docs (there is only one copy, because old docs are replaced)

In some cases (such as when installing device drivers), you need to run the software you
downloaded to complete the installation. Other components, including the Platform
components, are automatically installed during the download process and don’t require
additional installation steps.

Deleting and updating components

In order to delete a package, follow the same process as you did when you installed it.
Select the packages to delete, and then click the Delete Packages button. If there are
packages that need to be updated, select them and click the Install Packages button.
Don'’t forget to confirm that the number of packages shown on the button is correct, so
you don’t accidentally remove something you need.

Managing dependencies

For the most part, Android developers don’t need to worry about package dependencies
too much. For the most part, the components are designed to run independently of each
other. As long as you are extra careful and double-check which packages you are in-
stalling or removing, you shouldn't have many problems managing installed compo-
nents. If you do make an error, you now know how easy it is to use this tool to manage
your installed components.

ADT Preview Channel

The ADT team releases new code frequently. This can include bug fixes, or previews of
new features. You may want to try a particular release if it has a particular bug fix you
require or new tools that you would like to try. The ability to download and install a
preview is integrated directly into the “SDK Manager” on page 11, which makes switch-
ing to it very simple. For the most part, you should use the officially released tools,
because they are more stable, but having the ability to switch to the newest tools can be
useful in some situations.

Enable the Preview Channel

The Preview Channel is not enabled by default. You can access this setting (as shown
in Figure 2-2) from the following menu: Tools - Options - Check “Enable Preview
Tools”

SDK Manager | 15

® OO0 Android SDK Manager - Settings

Proxy Settings
HTTP Proxy Server 17| |

HTTP Proxy Port

Manifest Cache

Directory: /Users/mwolfson/.android/cache
Current Size: 203 KiB

¥ Use download cache | Clear Cache |

Others

[| Force https://... sources to be fetched using http://...
|| Ask before restarting ADB

(v Enable Preview Tools

~ Close

Figure 2-2. Enabling the Preview Channel

Installing Preview Tools

After enabling this option, you will see the Preview Channel option, shown in
Figure 2-3, appear in the list under the “Tools (Preview Channel)” heading. To install
it, select it, then click the Install Packages button to use that version of the tools.

16 | Chapter 2: Essential Tools

® O 0 Android SDK Manager
SDK Path: /Users/mwolfson/Downloads/adt-bundle-mac-x86_64/sdk
Packages
| %' Name API Rev. Status
[| ¥ ITools
OJ I Android SDK Tools 21.0.1 4 Update available: rev. 2
J % Android SDK Platform-tools 16.0.1 - Update available: rev. 1
| &% v 8 Tools (Preview Channel)
™ I Android SDK Tools 21.1 rc 4 Not installed
[vizlAndroid 4.2 (API 17)
LJ) Documentation for Android SDK 17 2 & Not installed
O # SDK Platform 17 1! 4 Update available: rev. 2
() /> Samples for SDK 17 1 “9installed
Show: @ Updates /New [Q] Installed | | Obsolete Select New or Updates | Install 4 packages... |
Sort by: (*) APl level () Repository Deselect All | Delete 3 packages... |
\ . | el
Done loading packages.

Figure 2-3. Verifying that the Preview Channel is enabled

Reverting to released tools

If you would like to revert to the released version, simply reinstall that version by se-
lecting it and then clicking the Install Packages button again.

Android Debug Bridge (ADB)

ADB is the main tool that allows you to interact with your emulator or a connected
device. The ADB process is actually a client/server program. The server component
communicates with a variety of clients (such as the command line or DDMS). The
daemon process on the device facilitates communication of activities such as:

Push/pull of data or apps

Issuing shell commands

Restarting the device

 Reading system logs

Starting ADB

Start the ADB client using the command line. To start the process, simply execute the
following command:

adb

Android Debug Bridge (ADB) | 17

Querying for Device Instances

The ADB server automatically connects to all of the devices or emulators that are cur-
rently connected to your computer. If you have only one device connected, it will au-
tomatically connect to that single instance. If you have more than once device connected,
you will need to direct commands to a specific instance.

Find connected devices

You can get a list of all devices that ADB is able to communicate with by issuing the
following command:

adb devices
The response will include:

Serial number
The unique ID of each connected device. You will need the serial number to connect
directly. The format of the serial number includes information about the device
itself (namely, the type of device and the port on which it is listening).

State
The connection state of the device. This will be offline if the device is connected but
not responding. It will be device if is available and connected. Otherwise, the re-
sponse will be no devices, which indicates there are no active devices that ADB can
communicate with currently.

Directing a command to a specific device

Now that you know what devices are on your system, you can direct a command to a
specific instance by issuing the following command:

adb -s serialNumber
command

The example below shows how you would target a command to a particular device,
when more than one is connected. The first step is to issue the devices command to
display a list of connected devices. The list shows two connected devices: the first is a
physical device, and the second is an emulator (which is clear from the name). The next
step is to use the -s option to target the preferred device. In this example, we are using
ADB to find the ADB version number of the attached emulator.

$ adb devices

List of devices attached
emulator-5556 device
emulator-5554 device

$ adb -s emulator-5556 version
Android Debug Bridge version 1.0.31
$

18 | Chapter 2: Essential Tools

If there is only one device connected, ADB automatically defaults to
_ use that instance. I usually keep only one device connected at a time.
" This makes issuing ADB commands simpler because I don’t need to
specify a device argument anymore (ADB will default to the only run-
ning device). For example, you can eliminate the targeting step dur-
ing the deploy cycle, which speeds up this common task.

Issuing Commands

Now that ADB knows which device to target, we can interact with it. It is possible to do
a variety of useful things with this interface. Let’s walk through a few examples:

Transferring files

It is very easy to transfer files between your computer and your device using the push
and pull commands. push goes from your computer to the device, whereas pull does the
opposite. You can include additional path parameters if you would like to specify a
particular location for the files. If a path is not specified, the commands will use the
current directory of your computer for the local location and the data folder on the
device for the remote location. push and pull can also copy complete directories
(recursively), which can be very useful.

The syntax of push is:

adb push local-directory
remote

An example of using this command is shown here. We are using ADB to push a file
named foo.txt from the current directory to the SD card. The syntax for this is:

adb push foo.txt /sdcard/foo.txt

To move the file off the SD card and back onto your machine, in a new directory and
with a new name, type:

adb pull /sdcard/foo.txt C:/tmp2/foo2.txt
This looks like this, when executed from the command line:

$ adb push foo.txt /sdcard/

0 KB/s (8 bytes in 0.019s)

$ adb pull /sdcard/foo.txt /tmp/foo2/txt
1 KB/s (8 bytes in 0.004s)

$

Managing applications on a device
A very common process is to install or remove applications from a device. This is easy

to accomplish using ADB. Simply issue the install command and supply a valid APK
file. This installs the app on your device.

Android Debug Bridge (ADB) | 19

The syntax of the command is:
adb install foo.apk

The syntax is similar to remove an app, except that you need to supply the package name
instead of the APK filename as an argument.

The syntax of the command is:

adb uninstall com.example.masterd

$ adb install foo.apk

2134 KB/s (222527 bytes in 0.101s)
pkg: /data/local/tmp/foo.apk

Success

$ adb uninstall com.tools.demo

Success

$

The Shell Command

The Android Framework is built upon a modified Linux kernel. The creators of Android
added their own middleware, libraries, and APIs to the Linux kernel to develop the
framework. This means that it includes a command-line interface that will look familiar
to Linux users. The shell interface will have many of the same tools developers are used
to, but not all of them. Additionally, the tools themselves may be different, and likely
won't support every operation you expect. For instance, the Is -/ command works, but
Is -x does not.

The binaries for the included tools are stored on the device in the /system/bin folder. I
suggest you look in that folder to familiarize yourself with the commands that are avail-
able. Some frequently used commands that are not available include more, less, cp, and
file. Some common tools that are included are Is, ps, and rm. It is definitely worth re-
viewing the contents of the /system/bin/ directory. It contains not just the standard
command-line tools, but also a variety of additional tools designed specifically for An-
droid development (like monkey, logcat, dumpstate, etc.). You may get frustrated by the
limitations of the Android shell, especially if you are used to the more feature-rich
options available in full Linux distributions. You should spend some time learning how
to use these tools effectively; they may be limited, but they still are still very useful.

You can use ADB to access the command shell of a device directly. You can issue com-
mands as one-line executables, or interact with the shell interactively by issuing a series
of commands.

Interactive mode

Interactive mode allows you to execute more than one command successively on the
device. To start interactive shell mode, type:

adb shell

20 | Chapter2:Essential Tools

You will see a # symbol, which indicates that you are in shell mode. When you are ready
to exit the remote shell, you can use [Ctrl+D) or type exit to end the shell session.

The example belows shows accessing the shell, using common Linux commands to
navigate the directory structure, reading the contents of a file, and finally, exiting the
shell back to the command prompt.

$ adb shell

root@android:/ # pwd

/

root@android:/ # cd [system/etc
root@android:/system/etc # pwd

/system/etc
root@android:/system/etc # cat ./hosts
127.0.0.1 localhost
root@android:/system/etc # exit
$

One-off mode

It is also possible to execute commands noninteractively. To do this, type the command
you want to execute after the shell keyword.

adb shell command

The next example shows how you would read the /system/etc/hosts tile by issuing a single
command that executes, but does not maintain, an open connection to the remote shell.

$ adb shell cat /system/etc/hosts
127.0.0.1 localhost
$

Retrieving system data

There are many cases in which you need detailed information about the various systems
on your device. Some useful commands can dump huge amounts of information about
the system, including service status, system statistics, and error logs. You may want to
collect these statistics if you are trying to analyze trends or specific details about your
application.

adb shell dumpsys
Outputs data about specific system services to the screen. For example, adb shell
dumpsys alarm will output details about all the alarms currently registered on the
system.

adb shell dumpstate
Detailed system data representing a device at a particular state in time (includes
dumpsys information as well).

adb shell dmesg
Outputs the contents of the kernel’s ring buffer to the screen. This output is quite
verbose, and contains a lot of key information from the system kernel, including

Android Debug Bridge (ADB) | 21

information about the CPU, memory, OS version, system mount points, and lots
more. It can be useful, especially when trying to debug hardware issues, or when
writing software that interacts directly with the system hardware.

adb shell logcat -b radio
This command provides access to the cellular radio log. This information is useful
when interacting with the networking stack. Some of the information available in
this log includes time of events, a listing of commands used by the system to com-
municate, SMS information, IP information, and cellular network data.

Using the Activity Manager

Shell access allows much more granular access to the device. You can use this to start
applications or even single activities in a controlled way. This can be very useful if you
need to test different entry points to an application that may be hard to simulate by
stepping through the UL Use the Activity Manager to launch a specific screen with a
specific set of Intent parameters.

An example of starting an activity named com.foo.FooActivity directly would be:
adb shell am start -n com.foo/.FooActivity

In Figure 2-4, I start my app at a particular activity (MemDemoActivity), which is not
the activity defined in the manifest as the main launcher activity.

adb shell am start com.tools.demo/.MemDemoActivity

ADB Does a Lot More

The ADB tool has a variety of additional functionality that is beyond the scope of this
book. It is worth becoming familiar with these additional features, as they provide a lot
of useful and important functionality.

Some functionality worth highlighting includes:

o Modify network configuration options like port forwarding (example: adb forward
tep:7101 tcp:8101)

o Access your device as the root user (example: adb shell su)

o Restart the device in alternate modes, such as recovery mode (example: adb reboot
recovery)

o View system logs, such as the radio or event buffers (example: adb logcat -b events)
o Show kernel debug info (example: adb shell dmesg)

« Examine system utilization (example: adb shell tail | top)

22 | Chapter2: Essential Tools

Figure 2-4. Activity Manager example

There is a lot of other functionality we aren’t able to cover. For a complete list of all
available commands and their parameters, type adb -help without any additional argu-
ments to get a listing of all options.

Resetting the ADB Server

There will be times when ADB loses connectivity, or encounters other issues that require
resetting the process. To do so, stop the existing ADB process, and then restart it by
issuing the following two commands in order:

1. adb kill-server

2. adb start-server

$ adb kill-server
$ adb start-server

Android Debug Bridge (ADB) | 23

* daemon not running. starting it now on port 5037 *
* daemon started successfully *

$ adb devices

List of devices attached

emulator-5554 device

$

Additional Resources

There are many features of the ADB tool that I am not able to cover in this chapter. If
you would like to learn more about the advanced capabilities of this tool, there are a few
excellent resources.

Command Reference
The command reference on the official Android page has a listing of all the com-
mands and their options.

XDA Devs ADB Guide
The XDA Devs website has a very complete explanation of how to get started using
the advanced features of ADB, and is targeted towards people wanting to root their
devices.

Embedded Android Book
This book by Karim Yaghmour contains in-depth explanations relating to the in-
ternals of the ADB tool and using it to control embedded environments.

24 | Chapter2: Essential Tools

http://bit.ly/1extzNM
http://bit.ly/13LJZko
http://bit.ly/embedded-android

CHAPTER 3
Configuring Devices and Emulators

When developing mobile applications, it is necessary to test your code on many different
devices. Because there is such a large variety available for Android (at the time of this
writing, there are over 3,000 devices supported in the Google Play Store), this can be
particularly challenging. It is necessary to test your app to ensure it runs well on the
majority of devices; you also need to test out a few different screen sizes. You may also
need to account for different hardware capabilities, including OS levels, existence of
sensors, amount of memory, or CPU. Fortunately, ADT provides tools that make han-
dling these challenges easier. I'll describe how to test on real devices, and also how to
use emulators when the devices you need aren't available.

Using a Physical Device for Development

For many activities, it's important not to rely completely on an emulator, but to check
your app on an actual device. For instance, this is particularly useful when you are testing
advanced graphics rendering, utilizing location services, or making use of advanced
sensors. It is not strictly necessary to own an Android device to develop for Android
(see “Using Hardware Acceleration” on page 33 for details), but itisacommon and simple
way to start testing with minimal effort. This section will go through the steps required
to use an Android device as a development aid.

If you don’t already have a device, it is easy to acquire a cheap used handset; check
Craigslist or eBay for older devices. Other alternatives are outlined later in this chapter
(including HAXM and Genymotion).

Capabilities and Limitations

As I mentioned, there are reasons to use a physical device instead of an emulator. Here
is an overview of the most important capabilities and limitations:

25

Capabilities

o Making real phone calls and sending real SMS text messages.
o Using multitouch on a screen.
« Having access to actual location data, in multiple locations and when in motion.

o Using advanced sensors, such as a compass, gyroscope, or barometer.
Limitations

o Certain core services of a phone might be locked down by the device manufacturer
or service provider. It might be difficult to change networking parameters or access
resources as the root user.

o Testing on a device, particularly if it is one you rely on, could mess up your phone.

o Simulating distant locations is a no-go (for example, if you want to test a location
in Egypt and your device is in Belize).

Configuring a Physical Device for Development

Almost any Android phone can be used for development. In order to configure a device,
enable the option in the Settings app on the device. To do this, open the Settings app,
then select Applications - Development. Place a checkmark next to USB debugging (if
you are running a device with OS 4.0+, the setting is located in a slightly different place
within the Settings app, namely “Developer options”). The result should look like
Figure 3-1.

Using an Emulator for Development

We all agree that it is necessary to test Android apps on a variety of different devices
and hardware. As it is practically impossible to own every physical device, you will need
to use an emulator to check configurations of hardware you don't have. Some of the
important reasons to use emulators include:

o Testing on different hardware configurations
« Validating on different versions of the Android OS
o Simulating load or other stress tests

« Viewing your Ul on various screen sizes and resolutions

26 | Chapter3: Configuring Devices and Emulators

(o] |“j|

== Developer options

USB debugging

Debug mode when USB is connected

Development device ID
OUWS-5R03-DKX2-H

NEVEVWELG
Screen will never sleep while charging

Allow mock locations
Allow mock locations

Desktop backup password

Desktop full backups aren't currently protected.

USER INTERFACE

Strict mode enabled

Flash screen when apps do long
operations on main thread

Pointer location

Screen overlay showing current touch
data

Figure 3-1. Enable USB debugging on a physical device

Supported Features

The emulator included in the standard toolkit is feature-rich, however there are some

constraints.

Supported features

o Simulating telephony, including latency and connectivity

o Simulating text messaging

Using an Emulator for Development

27

o Simulating both a single location or a path

« Simulating a variety of hardware configurations (see “Emulator Options” on page
32 for options)

« Modifying networking (including port redirection, DNS settings, and proxy set-
tings)

o Simulating various processor types, including ARM and Intel (see “Using Hardware
Acceleration” on page 33)

« Using multimedia (video only, not audio)
Unsupported features

« Cannot make real phone calls or send real text messages

o No accessing of Google services such as Gmail, Google Play Store, and other
Google-specific applications

» No advanced graphics support without using native x86 processor support; see
“Using Hardware Acceleration” on page 33 for a workaround

 No simulating of touch events (in particular multitouch, or gestures); see Chap-
ter 4 for a workaround that allows you to use a device to simulate sensors

 No accessory integration (USB, headphones, or other peripherals)

 No support for performance-sensitive applications—the standard emulator does
not reliably perform as a real device would in all situations

Android Virtual Devices

To testa variety of devices, you will want to create different emulator images (to represent
different devices). These configurations are stored in files with the avd extension, which
stands for Android Virtual Device (AVD). Itallows you to specify hardware and software
options that will be used by the emulator to model an actual device.

Creating AVDs

There are two primary ways to create AVDs. The easiest way is to use the graphical AVD
manager. It is also possible to configure AVDs from the command line by passing con-
figuration parameters to the androidtool. For the most part, you will likely want to use
the graphical tool, as it is simple to use. You would use the command-line option when
working with scripts or other noninteractive operations (for instance, if you are creating
emulator images on a build server, or using a batch operation to test your code on
multiple device configurations).

28 | Chapter3: Configuring Devices and Emulators

AVD Manager

Next, let’s look at the AVD Manager, a GUI tool designed to make configuring AVDs
simple. Start it by clicking on the & icon or running the android tool from the command
line. The first time you launch it, you will see something similar to Figure 3-2. The screen
will display a list of existing emulator configurations. You will be able to create, edit,
repair, start, or see details of the various AVDs you have configured.

800 Android Virtual Device Manager

| Devices Device Definitions

List of existing Android Virtual Devices located at /Users/mwolfson/.android /favd

AVD Name Target Name Platform APl Level CPU/ABI _ |_New___ |
~ OriginalDroid Android 2.1 2.1 7 ARM (armeabi) —_——
" NexusOne Android 2.2 2.2 8 ARM (armeabi) | Edit... |
~ Gingerbread Android 2.3.3 233 10 ARM (armeabi) |E|K|
~ GNexHaxm Android 4.1.2 4.1.2 16 Intel Atom (x86) —

] Nexus? Android 4.1.2 I 6 Intel Atom (x86) QGG T

| Details... |

| Start...

Refresh |

" Avalid Android Virtual Device.

A repairable Android Virtual Device.

X An Andreid Virtual Device that failed to load. Click 'Details' to see the error.

Figure 3-2. AVD Manager

To create a new emulator configuration, click the New button to launch the “Create new
Android Virtual Device (AVD)” wizard (see Figure 3-3). You will then use this simple
form to set the various configuration options necessary.

Android Virtual Devices | 29

B O 1 Create new Android Virtual Device (AVD)
AVD Name: | Essentialsf\\c’[ﬂ]
Device: | Galaxy Nexus (4.65", 720 x 1280: xhdpi) = |
Target: | Android 4.1.2 - API Level 16 =
CPU/ABI: | ARM (armeabi-v7a) 2]
Keyboard: [21 Hardware keyboard present
Skin: Lg Display a skin with hardware controls
Front Camera: I: None |
Back Camera: | None 5|
Memaory Options: RAM: 1024 | WM Heap: |64
Internal Storage: | 200 [miB
50 Card: -
(=) Size: | | mig s
() File: Browse...
Emulation Options: ¥ snapshot || Use Host GPU
Override the existing AVD with the same name
| Cancel | [OK |

Figure 3-3. Create AVD wizard

To configure an AVD, you need to supply a variety of configuration parameters. They
will be used to define the specific hardware parameters you wish to emulate. The options
include:

Name
Identifies your current configuration image. This can be anything you like, but you
should choose a name that lets you identify the specific options offered by the AVD.
I usually name these according to the device I am trying to emulate, e.g., Galaxy-
Nexus, SamsungS4, or HTCOne.

Device
Allows you to select a preconfigured image based on a variety of common devices.

Target
Specifies the version of the platform the device will run. The tool will allow you to
specify only those platforms that you have downloaded to your environment. In
other words, if you have not used the SDK Manager (Chapter 1) to install the API
you wish to use, you will not be able to create an emulator running that version.

30 | Chapter3: Configuring Devices and Emulators

CPU/ABI
Specifies a particular hardware configuration to use (currently either ARM or Intel
Atom). See “Using Hardware Acceleration” on page 33 for information on how to
enable it.

SD Card
Simulates an SD card. You can specify the size and location on your local disk (the
default is the ~/.android folder).

Snapshot
Enabling this feature gives you the ability to save and restore an emulator’s state to
a “snapshot” file. This can be useful for saving the state of an emulator, allowing you
to quickly boot to a specific state, avoiding lengthy boot times. For more informa-
tion, see “Using the Emulator” on page 39.

Skin
Allows you to specify a particular screen size and resolution. It provides a set of
standard screen configurations for a particular platform, or you can specify custom
values.

Creating AVDs from the command line

It can be useful to generate AVD images from the command line when you are scripting
or using an environment where employing the GUI isn’t practical. To create AVDs using
this method, you need to pass command-line parameters to the android tool.

To create an AVD, run the android create avd command and include parameters that
specify the particular configurations. Required parameters are a name for the AVD and
the system image that should run on the emulator when it is invoked. If you want, you
can also specify other options, such as SD card size, OS platform, skin, or a specific
location in which to store user data files. The syntax of the command is:

androild create avd -n name -t targetID/ [option value] ...

As an example, if we wanted to create an AVD named ToolsAvd, targeting the Android
2.3 Platform, with a WGA800 display, the command would look like this:

android create avd -n ToolsAvd -t 5 --skin WVGA800
Location of the AVD files

When you create an AVD image (regardless of whether you do it using the GUI tool or
command line), a variety of files are stored on your system in a default directory
named .android. This directory contains the AVD configuration files, the user data
image, the SD card image (if configured), and any other relevant files. The root of this
directory will also contain a file named AVD_name.ini. This file contains the location of
the directory containing the AVD files.

The default location of this directory is:

Android Virtual Devices | 31

o ~/.android/avd on Linux or a Mac
o« C:\Documents and Settings\user\.android on Windows XP

e C:\Users\user\.android on Windows 7 or Vista

If you would like to specify a different default location for this directory, you can create
an environment variable named ANDROID_HOME and set it to the new default loca-
tion. It is also possible to specify a different location for a specific AVD by including
-p path as an option when you create the AVD. If you do set a custom location for
the .android folder, make sure you put it on a local directory and not a network drive.

Emulator Options

There are many options available when creating an AVD. I will describe a few of the
most common ones you will likely want to set for each emulator you create. If you want
to learn about all the available options, this AVD Command Reference is an excellent
source.

Device RAM size
Sets the amount of physical RAM available on a device (in MB or megabytes). The
default value is 96, which is quite low. I suggest increasing this value substantially
to improve emulator performance. I generally set it to 512, but you can set it higher
if your hardware can support it.

Keyboard support
Defines whether the device will support the physical keyboard on your computer.
I always set this to “yes,” because it makes interacting with the device easier. You
will be able to use your computer keyboard to interact directly with the Android
OS, which makes typing much easier than trying to use the onscreen keyboard with
your mouse.

Camera support
Defines whether your emulator will support camera functionality. If your app re-
quires a camera, make sure to set this value, as the default is “no.” You can specify
if your emulator will support front, back, or both cameras.

GPS support
Will allow your device to support location functionality. The default for this is “yes,”
soyouwill need to change it only if you specifically want to disable this functionality.

Cache partition size
This value is used by the Google Play Store to determine whether a device can
download an app from the market. This value differs greatly between devices (for
instance on an HTC Wildfire, it is 30 MB, and on the Nexus S, the size is 500 MB).
It is worth testing with a variety of settings to make sure your app will work on

32 | Chapter3: Configuring Devices and Emulators

http://bit.ly/1bwMSJX

many different devices. I suggest setting this to 1024 MB, especially if you see
Installation error: INSTALL_FAILED_INSUFFICIENT_STORAGE messages when
trying to install an app.

Advanced Emulator Configuration

Working with the emulator can be frustrating. Some of the most common tasks (like
starting or deploying an app) can take a long time. There are a few simple things you
can do to make it faster, including using VM hardware acceleration, eliminating un-
necessary functionality, and dedicating a CPU core to the emulator.

Using Hardware Acceleration

People running development machines on Intel processors can use the Hardware Ac-
celerated Execution Manager (Intel HAXM) to speed up the Android emulator on the
host computer. Using it can improve performance significantly, but there are also lim-
itations to consider.

Benefits
Key benefits of HAXM include:

 Improved emulator performance, in particular, quicker startup and shorter deploy
times.

o Better performance of graphics-intensive applications, particularly those that make
use of OpenGL.

o Better use of native hardware: if your development computer is robust, using
HAXM will allow you to use it to its full potential.
Limitations

There are also some limitations to consider:

o HAXM doesn’t support Google APIs, which means you can’t test apps (such as Maps
or Cloud Messaging) using this code.

o The performance characteristics of the emulator are not the same as you would find
in the real world, because most current Android devices use different (ARM-based)
processors.

o HAXM offers support only for certain API levels: currently only APIs 10, 15, 16,
and 17.

o It has very specific hardware requirements: your processor must support VT-x,
EMG64T, and the Execute Disable Bit.

Advanced Emulator Configuration | 33

Downloading the components

In order to use HAXM, you need to install some software on your host computer. The
easiest way to do this is using the SDK Manager (see “SDK Manager” on page 11).
Download and install the following components:

 Android SDK Platform that supports HAXM (the only supported API levels are 10
and anything over 15)

« Intel Atom x86 System Image (consistent with the platform version)

o Intel Hardware Accelerated Execution Manager Driver (from the Extras section)

As an example, if you want to create a HAXM enable emulator compliant with API 16,
you need to ensure your selections look like those in Figure 3-4.

Installing the HAXM software

It is not enough to just download the tool; you also need to install it. On Windows and
Mac OS X, you can do this by running the executable available in the ${android.sdk}/
extras/intel/Hardware_Accelerated_Execution_Manager directory. You need to launch
the installer process and accept the license agreement to complete the installation.

In order to use this functionality on Linux, you also need to install the KVM software
package. Instructions for this vary based on the particular version of the OS being used.
The official documentation, HAXM Linux Install Guide, describes the additional steps
required for running on Linux.

Configuring an AVD

Once you have downloaded and installed the correct components, follow the usual
procedure to creating an AVD. You will see additional options for using the Intel-based
system for your emulator. When you create an AVD and specify a compatible Target (in
this case API 16), you will be able to specify a particular CPU/ABI image to use. Select
the “Intel Atom (x86)” option to enable HAXM. The dialog should look like Figure 3-5.

34 | Chapter3: Configuring Devices and Emulators

http://intel.ly/19S6mbE

800

Android SDK Manager.

SDK Path: /Users/mwolfson/Downloads/adt-bundle-mac-x86_64/sdk

Packages

_ B Name AP Rev. Sg_tus
|| [zl Android 4.1.2 (API 16)
™ i SDK Platform 16 4 Sinstalled
| & Samples for SDK 16 1 & Not installed
&) ‘% ARM EABI v7a System Image 16 3 Shinstalled
™ W Intel x86 Atom System Image 16 1 Sinstalled
(i) ' MIPS System Image 16 4 4 Notinstalled
] & Google APls 16 3 vinstalled
= Sources for Android SDK 16 2 + Not installed
|| »[ZlAndroid 4.0.3 (API 15)
[» iz Android 4.0 (APl 14)
"1 » £ Android 3.2 (AP 13)
[»[ZlAndroid 3.1 (APl 12)
[_] P [ZlAndroid 3.0 (AP 11)
[» iz Android 2.3.3 (API 10)
"1 [Android 2.2 (APl 8)
[P2l Android 2.1 (APl 7)
[_] ®[ZlAndroid 1.6 (AP 4)
[» iz Android 1.5 (APl 3)
[] ¥[Extras
& [Android Support Repository & + Not installed
= [Android Support Library 13 Spinstalled
(i) [# Google AdMob Ads SDK 11 4 Not installed
| [Google Analytics App Tracking SDK 3 & Notinstalled
& [# Google Cloud Messaging for Android Library 3 4 Not installed
= [Google Play services 7§ Notinstalled
)| [# Google Repository 1 4§ Not installed
| [Google Play APK Expansion Library 3 & Notinstalled
&) {8 Google Play Billing Library 4 « Not installed
= [Google Play Licensing Library 2§ Notinstalled
(i) [# Google USB Driver 7 ¥ Not compatible with Mac C
™| [Google Web Driver 2 ¥ Not installed
™ [@ Intel x86 Emulator Accelerator (HAXM) 2 -+ Update available: rev. 3
Show: (¥ Updates/New (M Installed [| Obsolete Select New or Updates | Install 1 package... |

Sort by: (=) API level

() Repository

Done loading packages.

Deselect All

Delete 3 packages...

Figure 3-4. Example of selecting necessary components to run HAXM

Advanced Emulator Configuration

35

8.00 Create new Android Virtual Device (AVD)

AVD Name: | HAXM_emulator !
Device: | Galaxy Nexus (4.65", 720 x 1280: xhdpi) 2]
Target: | Android 4.1.2 - API Level 16 =
CPU/ABI: | Intel Atom (x86) 2
Keyboard: [21 Hardware keyboard present
Skin: @ Display a skin with hardware controls
Front Camera: [None &l
Back Camera: | None]
Memaory Options: RAM: 1024 | vM Heap: &4
Internal Storage: 1200 | [miB 2]
50 Card:

() Size: | | mig 2]

() File: Browse...
Emulation Options: || Snapshot E Use Host GPU

Override the existing AVD with the same name
| Cancel | E—m_i

Figure 3-5. Configuring an AVD to use HAXM

Select the “Use Host GPU” option for your image. HAXM executes most CPU instruc-
tions natively in the processor, so this option enables OpenGL to be accelerated by the
host GPU.

Do not select the Snapshot option. Snapshots are not supported for emulators with
graphics acceleration enabled.

Validating that HAXM is running

After you have installed all the correct components and started your correctly config-
ured AVD, you can easily validate that everything is running correctly. If it is, a notifi-
cation indicating success is displayed in the console during startup (Figure 3-6).

36 | Chapter3: Configuring Devices and Emulators

8no Starting Android Emulator

Starting emulator for AVD 'HAXM_emulator'

N | cancel |

Starting emulator for AVD 'HAXM_emulator'
HAX is working and emulator runs in fast virt mode|

Figure 3-6. Validating that HAXM is running

Disabling the Boot Animation

When the emulator starts up, it displays a boot animation. Generally this isn’t something
you need to see, and it’s preferable not to waste precious seconds while it displays. You
can disable the boot animation by adding the -no-boot-anim option to your AVD start
command. For example:

emulator -avd myAvd.ini -no-boot-anim

On Windows: Dedicating a Core to the Emulator

If you are running on a Windows machine and have a multicore processor, it is possible
to dedicate one of the CPU cores to a running emulator process. This prevents it from
contending for a CPU with other resource-intensive processes (such as Eclipse). To do
this, start the Windows Task Manager, select the Processes tab, right-click on the running
emulator process, and click on “Set Affinity option ().” Then you will be able to check
or uncheck the CPU processor core(s) on which you want to run the application (see
Figure 3-7). Finally, click OK to finish the setup.

Advanced Emulator Configuration | 37

_l.rl Windows Task Manager

-

m

File Options View Help
Applications | Processes | services | Performance | Networking | Users |
=
Image Name User Mame CPU Memory (... Description
AdobeARM.e... Mike 0o 420K AdobeRe...
atiedxx.exe [ili} 3,028 K
btplayercirl.e... Mike [ili} 2,084K Bluetooth...
CCC.exe Mike i} 2,252K Catalyst...
CLMLSvc.exe ... Mike 0o 368K Cyberlink...
conhost.exe Mike i} 1,880K Console ...
CSMSS,EXE oo 2,784K
dmhkcore.exe... Mike oo 875K EasyDispl...
Dropbox.exe .., Mike (ili} 56,080 K Dropbox
dwm.exe Mike 01 41,440 K. Desktop ...
EasySpeedUp... Mike [ili} 330K
edipse.exe Mike i} 1,428 K
i eﬁ'lu‘atcf nail, 44 4.4 T

I::I'ECNHMIN Open File Location
ETDCtriH

End Process
@'S‘OU\ End Process Tree

Debug

Processes: 10 v UAC Virtualization ical Memory: 40%
- Create Dump File

Set Priority 2

Set Affinity...

Properties

Go to Service(s)

Figure 3-7. Dedicating a core to the emulator

38 | Chapter3: Configuring Devices and Emulators

CHAPTER 4
Using Devices and Emulators

Using the Emulator

In the previous chapter, we learned how to create emulators. Now we’ll discuss their
use. An emulator is a very powerful tool that makes testing easier and allows the de-
veloper to simulate a variety of things that would be difficult to accomplish under real-
world conditions. For instance, if you are writing a mapping application, you might
need to test locations all over the world, and it would be impractical (although quite a
bit of fun) to actually travel to each of these locations. The emulator provides the ca-
pability to simulate networking configurations, hardware/software configurations, and
sensor events. It eliminates the need to have physical devices to represent each config-
uration that you need to test. For instance, you will use emulators to mock various screen
sizes and memory configurations. This chapter describes how to use the emulator to
effectively test various parameters.

For the most part, emulators and physical devices interact with the ADT tools in the
exact same way. In other words, the operations we discuss in this chapter perform the
same way on an emulator as they will on a physical device. In most cases, a physical
device is more limited, because options (such as changing network configurations) are
locked down by the service provider.

You will likely use many different combinations of physical devices and emulators to
test thoroughly. You can run as many different emulators and devices as you like. If you
plan on running a lot of emulator instances, you will need a powerful computer to
support it (depending on configuration, each emulator can require 1 GB+ of dedicated
memory). It is common for a developer to have many different emulator and physical
devices running at the same time, then use each of them throughout the test cycle. It is
worth noting that the emulator doesn’t support certain actions, such as simulating ac-
celerometer activity, or simulating some sensor activity (such as the magnetometer).

39

You should review the “Capabilities and Limitations” on page 25 discussion to determine
whether the emulator suits your needs.

Starting the Emulator

In the previous chapter, we discussed using the AVD Manager to create AVDs (“Creating
AVDs” on page 28). This tool is also used to start the emulator instances as well. It
provides options to control runtime parameters of the emulators you created.

To start it from within Eclipse, click the & icon from the main toolbar.
Or start it from the command line with the following command:
android avd

When you launch the AVD Manager, you will see a screen similar to Figure 4-1. This
screen displays a list of all the AVDs you have configured on your system, and some
options for managing them. To start an emulator, select a particular AVD and click the
Start button.

800 Android Virtual Device Manager

 Android Virtiial Devicesh [T S T IC I

List of existing Android Virtual Devices located at /Users/mwolfson/.android favd

(AVD Name _'I"';Ee‘t Name Platform AP! Level CPU/ABL | New... |
~ OriginalDroid Android 2.1 2.1 7 ARM (armeabi) —_——
" NexusOne Android 2.2 2.2 8 ARM (armeabi) | Edit... |
~ Gingerbread Android 2.3.3 233 10 ARM (armeabi) |E|K|
~ GNexHaxm Android 4.1.2 4.1.2 16 Intel Atom (x86) —

Nexus? Android 4.1.2 I 6 Intel Atom (x86) QGG T

| Details... |

| Start...

Refresh

~ Avalid Android Virtual Device. | A repairable Android Virtual Device.

X An Andreid Virtual Device that failed to load. Click 'Details' to see the error.

Figure 4-1. AVD Manager tool

You are then presented with a secondary screen (Figure 4-2) that has a variety of options
specific to running an emulator instance.

40 | Chapter4: Using Devices and Emulators

® O M Launch Options.

Skin: B00x1280
Density: 213
Eﬂ Scale display to real size

Screen Size (in): | 7.3

Monitor dpi: 72
Scale: 0.35

[21 Wipe user data
Launch from snapshot

Save to snapshot

| cancel | [‘Launch]

Figure 4-2. AVD launch options

AVD launch options

It is important to understand the launch options, and what they do. Using them allows
you to change the size, performance, and data of your emulator.

Scale factor
This allows you to adjust the size of the emulator on your computer screen. To
specify a particular screen size, place a checkmark in the Scale Factor box. Next,
click the ? next to the dpi option to set the particular resolution of your computer.
Enter the resolution and size of your display. Then type a number in the Screen Size
box. Your emulator will be started with the screen size you entered.

Snapshot
This lets you save an emulator’s state to a snapshot file and restore it later. This can
be useful if you would like to preconfigure an emulator to start in a particular state
every time, or would like to avoid the lengthy boot process when starting from
scratch. This is a great way to speed up the time to boot an emulator, and will save
a lot of time. Emulator boot times can be reduced from many minutes to just
seconds.

Starting an emulator from the command line

It’s not absolutely necessary to use the AVD Manager to start an emulator. You can also
start it from the command line. This is useful when using scripts, or if you would like
to run an emulator without the overhead of Eclipse. There are a variety of configuration
options you can use when starting an emulator this way. There are options relating to
networking, graphics acceleration, sensor abilities, and more. To see a complete list of
options, type:

emulator -help

Using the Emulator | 41

The command to start an emulator has the following syntax:

emulator -avd avd_name
[option
[value]]...
For example, you could start an emulator with graphics acceleration turned on and boot
animation disabled (two good options you can use to improve performance). This would
look like:

emulator -avd Nexus7 -gpu on -no-boot-anim
Using snapshots to improve performance

The snapshot is a view of your emulator including all data, the current UI being dis-
played, or any other sensor or data currently being used. This snapshot can be very
useful if you wish to start your emulator with a certain configuration or state multiple
times. In order to use snapshots with a particular AVD, it needs to be configured ap-
propriately. Reread “Creating AVDs” on page 28 to review how to do this.

You will notice three options in the snapshot section of the launch configuration tool.

Wipe user data
Refreshes your emulator image to remove all data and resets it to a clean configu-
ration (just as if it were started for the very first time).

Launch from snapshot
Allows you to restore your emulator to the state it was in when the last snapshot
was taken. If there is no snapshot in memory, this option is not enabled.

Save to snapshot
Triggers the system to save a snapshot of the current state of the emulator when you
close it.

I use snapshots as a way to save a clean emulator that I can recover
. quickly. I save a snapshot the first time I start the emulator, right af-
2% ter it has completed the boot sequence. From that point forward, I
make sure I don’t check the “Save Snapshot” box. If I need a clean
emulator image, I can just restart this emulator and thanks to snap-
shots, I will have a fully booted clean emulator ready to go.

Saving and retrieving a snapshot

Snapshots are such a great way of speeding up your emulator usage, it is worth going
through an example to show exactly how they work. Let’s step through setting up an
emulator using snapshots so you can actually see it for yourself.

42 | Chapter4: Using Devices and Emulators

The first step when using this functionality is to enable it for the AVD you are using. If
you haven’t done this already, review “Creating AVDs” on page 28 to do it.

When you start your emulator, the options for snapshots will be enabled. The first time
you start your emulator, you should select the “Wipe user data” and “Save to snapshot”
options (as shown in Figure 4-3). This starts the emulator with a brand new image, and
allows you to save your state when you close it down. Once you have these checkmarks
selected, you can press the Launch button to start the emulator. Depending on the speed
of your hardware, this can take a long time (anywhere from 90 seconds to many mi-
nutes). After the wait, you have an emulator booted to its clean state (Figure 4-4).

® O O Launch Options

Skin: 720x1280
Density: 320

[] Scale display to real size

Screen Size (in): 4.7
Monitor dpi: 72 ?

Scale: default

E"I Wipe user data
Launch from snapshot

EI Save to snapshot

[cCancel | [Launch]

Figure 4-3. Enabling the options to save the initial snapshot

Using the Emulator | 43

® OO 5556:GalaxyNexus

¥

Make yourself at home

You can put your favorite apps here

To see all your apps, touch the circle.

Figure 4-4. AVD snapshot initial instance

44 | Chapter4: Using Devices and Emulators

Now configure your device to a state you would like. In this example, the state we’ll save
is the emulator started with the main Activity of an app displayed (see Figure 4-5). Now
close the process; in this case, that means clicking the red circle on the top left to kill
the window. This will take a little bit of time (maybe up to a minute) because a “snapshot”
of the current state of the emulator is being saved, which will allow you to recover to
this state easily.

80 nMn 5554 :GalaxyNexus

o0
o000

Bad Ul Demo \':U
Good Ul Demo

Memory Demo

Logcat Demo

Image Demo

Fragment Demo

Localization Demo

Figure 4-5. AVD snapshot saved state

Using the Emulator | 45

The next time you start your emulator, you can select the middle selection: “Launch
from snapshot” (see Figure 4-6). When you select this option, and press the Launch
button, instead of the emulator starting from scratch (which takes many minutes), it
starts up to the state we saved when we shut down the emulator in the previous step.
Because the emulator doesn’t need to go through the entire boot process, startup time
is drastically improved (the emulator will start to a snapshot state in around 10 seconds).
You will see your emulator booted right to the same place (as shown in Figure 4-7).

® O O Launch Options

Skin: 720x1280
Density: 320

[;_*‘I Scale display to real size

Screen Size (in): 4.7

Monitor dpi: 72

Scale: 0.23

[] Wipe user data
[EI Launch from snapshot

[| Save to snapshot

[Cancel | [Launch]

Figure 4-6. Enabling the options to launch from snapshot

46 | Chapter4: Using Devices and Emulators

80 M 5554:CalaxyNexus

104 "o @
o000

Bad Ul Demo ":’
Good Ul Demo

Memory Demo

Logcat Demo

Image Demo

Fragment Demo

Localization Demo

Figure 4-7. AVD after loading snapshot state

The Emulator Application

The emulator you start will look similar to the one in Figure 4-8. The emulator consists
of a screen and optionally a keyboard or navigation buttons, if they were enabled when
you created your AVD (“Creating AVDs” on page 28). The emulator runs like a native
application in your operating system, and can be closed or minimized just like any other

window (by clicking an X or red button at the top of the window).

Using the Emulator

47

1800 5554:Nexus?

Figure 4-8. Emulator anatomy

The Devices Tool

So how do you keep track of the emulators or devices you have hooked to your com-
puter? You can use the Devices tool (shown in Figure 4-9), which allows you to see and
control the various devices or emulators connected to your computer. This will be the
central location where you control your devices. You will start a variety of important
operations from this window (including memory inspection, location and network
simulation, and Ul inspection). I cover these operations in the DDMS section (“Dalvik
Debug Monitor Server (DDMS)” on page 152).

I'll also highlight frequently used, essential functionality you that you will access directly
from this tab.

The primary way to access the Devices tool is from a tab at the bottom of your screen
(see Figure 4-9). The devices tab should be there by default. If it is not there, you can
add it from the menu: Window — Show View — Other — Android — Select Devices
from list.

48 | Chapter4: Using Devices and Emulators

= problems | & Console |5 LogCat | @ Devices 22 | = 0|
| #6m0[s2[c]al@r -
Name
v E Mexus? [emulator-5554] Online Nexus7 [...
com.android.exchange 1254 B600
com.android.inputmethod.latin 1135 BEOL
com.android.deskclock 1305 8602
com.android.email 1425 8603
android.process.acore 1181 8604
com.android.launcher 1369 8605
com.android.guicksearchbox 1532 8606
com.android.pheone 1168 8607
com.android.systemul 1117 BE08
android.process. media 1352 BB09
system_process 1007 8610
com.android.contacts 1382 8611
com.android.mms 1485 8612
com.android.calendar 1274 8613
com.android.settings 1180 8614
com.android.providers.calendar 1318 8615
Pgemulalor—ﬁsﬁ Online GNexHax...
Q 003e0flcch51a895 Online 4.2.2

Figure 4-9. Viewing running devices using the Devices tool

There is also a version of the tool that can be run from the com-
. mand line without Eclipse. This is particularly useful for team mem-
-+ bers that might not have the full development suite installed, but could
still benefit from using these tools. The tool is named Android Debug
Monitor, and can be started with the following command:

{$Sandroid.sdk}\tools $ monitor

The upper left corner contains the Devices view. This will show you all the devices (both
physical devices and emulators) that are currently connected and available. You can use
the arrow on the left to collapse or expand a particular device tree in order to see details
about the current running processes. In Figure 4-9, you'll see different devices connec-
ted. The first two are emulators (the icon and their name both signify this), and the last
one in the list (with the funny name that is a mix of letters and numbers) is a physical
device.

There are a variety of useful operations that can be launched from this tab, including:

Debugging
The first button on the top (#) allows you to enter debugging mode. In this mode,
you can attach the debugger to an application that is already running. This means
that you can start an application, run it until it gets to the place you would like to
test,and then start debugging from that point. This can be an efficient way to directly
debug exactly the code you want and avoid other code paths.

Using the Emulator | 49

Heap
The second set of buttons allows you to start inspection of the memory (heap) of a
running application. See Chapter 10 for more information.

Device screen capture
The next button (&) launches a utility that allows you to take a screenshot of what
is currently displayed on your device. Pressing this will launch the dialog in
Figure 4-10. The dialog shows an image of whatever is currently displayed on the
screen of your device, along with buttons across the top that will enable you to save,
rotate, or refresh the image.

Reset ADB
The upside-down triangle (*) is a particularly important button. Pressing this al-
lows you to access the controls to reset the ADB process. This resets connectivity
between the computer and the devices. You can use it if you encounter connectivity
issues between your computer and device.

Keyboard Shortcuts

If you enabled keyboard support when you created your AVD (see “Emulator Op-
tions” on page 32), a variety of keys will be mapped between your computer keyboard
and the emulator. I have listed some of the more useful mappings in Table 4-1. A de-
scription of each option can be found in the emulator documentation on the Android
developer website.

Table 4-1. Popular shortcuts

Key Effect

Home Android Home

F2 Menu

Esc Back

Ctrl-F11 (Cmd-F11 on Mac) Rotate landscape/portrait
Keypad 4/6/5/8/2 D-Pad: left/right/center/up/down
Ctrl-F8 Toggle Cell Network On/Off
File Explorer

ADT provides a GUI tool that makes exploring and interacting with the files on the
device very easy. It allows you to navigate the file system to discover which files are on
the device, move files onto and off the device, and modify the file system by adding and
rearranging folder locations. To use this tool, open the DDMS perspective, select a de-
vice, and select the File Explorer () tab. This allows you to do a variety of things,
including:

50 | Chapter4:Using Devices and Emulators

http://bit.ly/14cIuY2

a Device Screen Capture

Refresh Rotate Save Copy Done

Captured image:

!
r

Select an option to start the demo

Good UI Demo

Memory Demo

Logcat Demo

Image Demo

Fragment Demo

Figure 4-10. Capturing a screenshot using the Devices tool

o Push files to a device (8)
o Pull files from the device (E)

File Explorer | 51

o Delete a file from the device (=)

o Create a new directory/folder (#)

Developer Tools Application

One more important tool that we need to explore is the “Developer Tools” application.
It is installed by default on all system images included with the SDK, and is preinstalled
on your emulator.

This application allows you to enable various settings on your device that will make it
easier to test and debug.

The application incudes some of the basic items you might expect (such as “Stay Awake
When Connected” or “Allow Mock Location”).

In addition to the standard debugging options, there are many other tools designed to
help debug applications by enabling visuals when certain events occur (such as touch
events, or the Ul thread being locked). These tools are very useful when you are testing
on a real device, as you can quickly visualize many system operations.

You can find the icon (labeled “Developer Tools”) to launch the application in the main
app drawer. It allows you to do a large variety of activities relating to testing, instru-
menting, and inspecting the state of various systems on your device. A brieflist of some
of the core functions follows:

i A

= If you are running a device with Android 4.2 and up, the developer
&
'\“‘I]

_ options are hidden by default. You will need to know the “secret” way
% to enable them.

To enable them, open the Settings app, scroll to the bottom, then click
“About phone” (or “About tablet”) and then tap on the Build number
at the bottom of the screen seven times. After doing this, you will see
a message that says “Congratulations, you are now a developer,” and
the “Developer options” will be available.

Accounts Tester
Allows you to access and configure a variety of user accounts on the emulator. Very
useful if you need to test logins or similar authorization functionality.

Bad Behavior
Allows you to simulate a variety of issues, like creating ANR (Activity Not Re-
sponding) events, or crashing key systems (like the main app thread or the system
server).

52 | (Chapter4: Using Devices and Emulators

Configuration
Displays the current configuration values for the keyboard and display parameters.
You can also see things like system locale, keyboard type, and display metrics (such
as density). This can be extremely useful when trying to determine how your app
looks on different resolution devices.

Connectivity
Allows you to modify the networking parameters or modify the WiFi connectivity
of the device. This is useful when you need to test connectivity issues or how your
app will perform without connectivity.

Development Settings
Does a variety of things such as enable debugging, show system statistics (such as
running processes, CPU, and memory usage) or display UT hints (like showing the
coordinates of touch points or flashing the screen during updates).

Instrumentation
Runs unit tests directly on the device.

Media Scanner
Scans the media folder of your SD card and identifies any media available for use.

Package Browser
This tool should look familiar, as it is the same tool you use to manage apps from
the Android Settings app installed on your device. It serves the same purpose
(managing applications) here as well.

Pointer Location
Displays visible lines and coordinates that allow the developer to closely determine
specific touch points.

Running Processes
Presents a list of processes currently running.

Sync Tester
Tests third-party sync adapters.

Terminal Emulation
Opens a terminal, allowing command-line access to the Linux shell.

Developer Tools Application | 53

This application relies on many system-level permissions that aren’t
available to third parties. If you would like to run this on an actual
" physical device, it is necessary to build a custom system image and sign
the Dev Tools APK with the same key as the system image. After
signing the app correctly, you will be able to install it and run it on a
device. This means that you can only run it on a rooted device, or on
a device for which you built the system image. The system image
signing key is generally only available to the hardware manufacturer.

54 | Chapter4: Using Devices and Emulators

CHAPTER 5
Developing with Eclipse

ADT provides a robust and powerful development environment in which to build An-
droid applications. Designed as a plug-in to the Eclipse IDE, it leverages many Eclipse
features including code completion, syntax highlighting, and JUnit integration. There
is also a rich ecosystem of plug-ins and additional features available to download and
install from third-party developers. In addition to the standard IDE, there are a variety
of Android-specific tools that have been integrated. These include wizards for resource
creation, the logcat Viewer, the Hierarchy Viewer, and the Visual GUI Builder, among
others.

The close integration makes developing easier, so I recommend ADT as the fastest way
to get started with Android development. Throughout this section (and this book), I
highlight many of the ways you can leverage the IDE to improve your experience writing
Android code.

Anatomy of the Eclipse Workspace

You will be spending a lot of your development time within Eclipse, so youll need to
familiarize yourself with how it is organized. Figure 5-1 shows the standard Eclipse
layout. Lets look at a few key areas:

55

Java - ToolsDemoActivity/src/com/tools/demo/UIDemoActivity.java - ADT - fUsers/mwolfson/android/madtdemo

it EEEE B0 QS @ @R e vy Q Quick Access [

12 Package Explorer & | = O | [upemeActivityjava 3 | = O || 8z outiine 5 |]
5% | package con.tools.deno; R e u v|
wid " a:
& Tools DemoActivity @ inport android.app.Activitys[] e ided
» =i Android 2.3.3 » “= import declarations
¥ =i Android Dependencies public closs UlDemoActivity extends Activity { v @ uDemoActivity
V’;Bsr(private boolean DEVELOPER_MODE = true; o DEVELOPER_MODE : boolean
¥ [H com.tools.demo @ aOnCreate(Bundle) : void
¥ [J) DemoFragment.java /%% Called when the activity is first created. */ ¥ @ InitializeViews(: void
b [J] FragmentHostActivity java || @“‘ﬁf'“dg‘d . _— it . » (G new OnClickListener() {...}
¥ [J] GoodUIDemoActivity java i P :; Z‘;;VE‘E;PE;”;;EE;" 4 savadinstorcattate) { » G new OnClickListener®) {...}
¥ [1] ImagesDemoActivity java StrictMods. enableefaults(); doStuffonul) - void
» [1] LocalizationDemoActivity.java Super.onCreate(savedInstanceStatedi » @ DoStuffOffUiTask
¥ [J] LogcatDemoActivity java initializeViews();
P [J] MemDemoActivity java 1
¥ [J] ToolsDemoActivity.java
¥] UibemoActivity.java = private void initializeViews() {
¥ £8 gen [Generated Java Files] setContentView(R. Layout . uideme);
a.
A Button onUiButton = (Button) FindViewByld(R.id.on ui_btn);
P g bin Button of flUliButton = (Button) findViewById(R.id.off ui_btr
&,
» & libs
¥ res - onliButton.setOnClickListenerCnen View.OnClickListener(d {
] AndroidManifest.xml |= = public void onClick(View v) {
1] AndroidManifest.xm| doStuffOnUIC);
& new_image-wab.png ¥
=] proguard-project.txt i
il Droject properties of fUiButton.setOnClickListener(new View.OnClickListener()
|5 README public void onClick(View v) {

adoc| [2 Declaration S)
| rs, 21 warnings, 0 others
| Description » Resource Path Location Type
¥ & Warnings (21 items)

s, The import android.annotation.SuppressLint is never used LocalizationD... [ToolsDemoActivit... line 5 Java Probl
Us, The impart android.app.Notification Is never used LocalizationD... /ToolsDemoActivit... line 7 Java Probl

| U The impert android.app.NotificationManager is never used LocalizationD... (ToolsDemoActivit... line 8 Java Probl |
U The import android.app.PendingIntent is never used LocalizationD... (ToolsDemoActivit... line 9 Java Probi
U The import android.content.Context is never used GoodUlDemo. . /ToolsDemoActivit... line 4 Java Probl |
i The import android.content.Context is never used LocalizationD... [ToolsDemoActivit... line 10 Java Probl|

‘ U3, The import android.content.Intent is never used LocalizationD... /ToolsDemoActivit... line 11 Java Probl |
Ui, The import android.content Intent is never used _ MemDemoAc.. fToolsDemoctivit... line 6 Java Probi

| writable | Smart Insert 1T s0Mof227M |

Figure 5-1. Standard Eclipse layout

Package Explorer
The window on the far left allows you to view all the code components included in
your project. You can click on the small triangles (¥) to expand or minimize a
particular tree, which will expand or minimize that section of the code
appropriately.

Code Editor
Seen in the middle of the screen, this is the area where you make changes to your
code. The source code is color-coded to highlight different elements of syntax. For
instance, variable definitions are displayed in blue, and method modifiers are dis-
played in purple.

Outline
The view on the far right displays the main sections of the code in a structured way.
You can click on the triangles to expand and minimize certain sections, just as in

the Package Explorer view. Refer to “Quick Outline for XML’ on page 68 for an
alternate way to view this.

56 | Chapter5: Developing with Eclipse

Problems
This tab appears at the bottom of the screen and displays any warnings or errors in
your project. If there is an error in your code, it will be listed here (in red). You can
click on any of the messages that appear here. This will open the code with the error
and place the cursor at the location where the problem exists.

Uncovering Additional Tools and Views

The default layout for Eclipse likely won't have all the components you need to use.
Several additional tools are available, as well as a few different ways to customize what
is displayed (Figure 5-2).

[Window [XY

| Minimize workspace
Zoom Q, Quick Access
Toggle Full Screen ~3F
New Window
New Editor
Hide Toolbar
Open Perspective >

& Ant
Customize Perspective... Ell Console. _%Q c
Save Perspective As... (€, Declaration -_'ng D
Reset Perspective... @ Error Log X&QL
Close Perspective @ Javadoc X 38QJ
Close All Perspectives t=. Navigator
— N o= Outline X#8QO0
i f# Package Explorer X 3QP
4 Android SDK Manager
5 [£! Problems N#QX

Android Virtual Device Manager
| Run Android Lint >
Bring All to Front

&3 Progress

{5 Project Explorer

<’ Search X8QS
¥ Tasks

k= Templates

fe Type Hierarchy X38QT

con.png” width="0.121in"/> Other... X#QQ

Figure 5-2. Adding views to Eclipse layout

Anatomy of the Eclipse Workspace | 57

You can display the additional Android tools by selecting Window — Show View —
Other - Android.
This displays a long list of tools under the Android section, as shown in Figure 5-3. To

add one of these to your Eclipse layout, select it from the list. Once it is placed in your
screen, you can drag and drop the tab to move it wherever you would like.

800 Show View

L type filter text

¥ == LEnerar
¥ = Android
[Allocation Tracker
Q Devices
@ Emulator Control
1§51 File Explorer
Heap
'-:é Layout View
& Lint Warnings
3 LogCat
>§§§&< LogCat {deprecated)
= Network Statistics
A, Pixel Perfect
A, Pixel Perfect Loupe
A, Pixel Perfect Tree
@ Resource Explorer
% Threads
"%2 Tree Overview
2 Tree View
'!lfi View Properties
Q Windows
P = Ant
P EC/Cr+

| cancel | | oK]

Figure 5-3. Viewing the options available in the Android menu

The perspectives concept in Eclipse is a collection of tabs and tools organized in a pre-
defined way. Android comes with a few preconfigured perspectives: DDMS, the Hier-
archy Viewer, and the Pixel Perfect View. We will cover each of these in detail later in

the book.

The steps to open a perspective (shown in Figure 5-4) are:

1. Select Window — Open Perspective.
2. Select the perspective you would like to display.

58 | Chapter 5: Developing with Eclipse

-a

i Minimize space
Zoom Q, Quick Access
Toggle Full Screen ~3F
New Window
New Editor
Hide Toolbar
Open Perspective & DDMS

 Show View “{Esa Debug 1
Customize Perspective... E Hierarety _/1ew
Save Perspective As... < Java Browsing
Reset Perspective... A Pixel Perfect

Close Perspective

Close All Perspectives Other...

Figure 5-4. Eclipse perspectives

Quick Button

There is a small button at the top of the menu bar (@~) that is easy to overlook. This
button is a shortcut to run your project. It has the same functionality that is executed
by invoking the Run as... menu (which you can access by right-clicking on your project).
This button is the simplest way to run your app, as it is just a single button click (as
opposed to navigating a menu). It is important to note that this works only if you are
editing a Java file. If you are editing an XML file, nothing happens when you click the
button (not even an error dialog).

Code Templates

It can be difficult to understand the proper way to create Android classes. You need to
know the proper naming standards, which methods are required, how to tie various
resources together, and other patterns for creating proper classes.

Code Templates | 59

ADT now provides the “Code Templates and Wizards” tools to assist in creating these
base resources so the developer doesn’t need to start from scratch. This ensures that the
basic format of the classes is correct and that they match the standard style for Android.
The different templates make it easy to get started quickly and are available for a variety
of different classes. You should use these to create your initial classes to ensure that you
are starting with properly designed code.

Generating code this way has a few important benefits. The first is that the code is written
to Android and Java coding standards, so you are starting with the best code possible.
The second is that generating this code automatically is generally faster than writing it
from scratch, which can be tedious and error-prone. The last benefit is that the generated
code works properly from the start, so you won't need to spend time fixing errors and
can start implementing your business-specific code sooner.

There are a variety of templates available, ranging from the template for creating a new
project to templates for creating individual resource components.

To access a menu of code templates (Figure 5-5), select File > New - Other - Android.

This displays many options for creating a variety of resources and code. You can create
anew Application Project, Icon Set (see “Working with Graphics” on page 182 for details
on using this), or code snippets. This tool allows you to launch wizards that will guide
you through creating these various components. After the wizard walks you through
the process, the system generates all the required code, resources, and dependencies
and puts them directly in your project.

As an example, I will show how you would use a code template to generate a master/
detail flow. This is a common UI pattern where there is a list of items on one side of the
screen and a detail view of that item is displayed in a panel on the other side when it is
selected.

1. First, select the desired option from the templates option screen.

60 | Chapter5: Developing with Eclipse

806 New

Select a wizard —
Create an Android Activity r
Wizards:

{ type filter text !

P = General
¥ = Android
@Aﬂdmid Application Project
ﬁﬁmdmid lcon Set

[f|android Object

@Aﬂdmid Project from Existing Code
@Aﬂdmid Sample Project

JﬁAndroid Test Project

|cif Android XML File

|dil Android XML Layout File

|dil Android XML values File
J%'Template Development Wizard

P = CIC++

@ < Back E—Haﬁl—H [Cancel Finish

Figure 5-5. Viewing Code Templates menu

2. Enter the details about your code in the wizard (Figure 5-6).

Code Templates | 61

8 00 Maw Activity

New Master/Detail Flow

Creates a new master/detail flow, which is two columns on tablets, and one column on
smaller screens, This creates a master fragment, detail fragment, and two activities,

Project: | com.toolsdemo

Object Kind ﬂl Item

Object Kind Plural 8| items

Title | Items

8 [| Launcher Activity

Hierarchical Parent 8| Optional

; Other examples are 'Person’, 'Book’, etc.

@ [<Back || Mext> | | cancel | [Finish |

Figure 5-6. Using a code template to generate a Master/detail flow

3. Review and confirm the data you have entered. Accept your entries to complete the
wizard (as shown in Figure 5-7).

62 | Chapter5: Developing with Eclipse

8 00 New Activity

Preview

Optionally review pending changes

Changes to be performed

V] 28 AndroidManifest.xml - com.toolsdemo

[ﬂ gastrings,xml - com.toolsdemo/res /values

] %E' refs.xml| - com.toolsdemo/res /values-large

L By

|0 AndroidManifest.xmi

Original Source Refactored Source

0 <action android: 25 <activity

21 26 android:name="com

22 <category androic 27 android:label="@s

23 < intent-filters 28 </activity=

24 </activity= 29 <activity [I
25 </applications EY:] android: name="com

26 31 android: label="@s

27 </manifest> 32 android:parentAct
® | <Back | Next > | cancel | [Finish |

Figure 5-7. Confirming the generated code

4. Thesystem then automatically generates the appropriate code. For the master/detail
flow, quite a bit of code is created. All of the activities, fragments, layouts, and
resources that are shown in Figure 5-8 were created using this template.

Code Templates | 63

YIDG- com.toolsdemao
¥ #src
¥ 4 com.toolsdemo
> m ItemDetail Activity.java
> m ItemDetailFragment.java
> m ItemListActivity. java
» m ItemlListFragment. java
> m MainActivity. java
¥ {1 com.toolsdemo.dummy
[J] DummyContent.java
G@gen [Generated Java Files]
P =i Android 4.2
b =i, Android Dependencies
2 assets
b libs
v E'@ res
P = drawahble-hdpi
P = drawable-ldpi
P = drawable-mdpi
P (= drawahle-xhdpi
¥ = layout
|1 activity_item_detail.xmil
1) activity_item_list.aml
|1 activity_item_twopane.xml
1) activity_main.xml
21| fragment_item_detail xml
b = menu
¥ (= values
1l strings.xml
1l styles.xml
P = values-large
¥ = values-swe00dp
|1 refs.xml
b= values-v11
b= values-v14
14| AndroidManifest.xmil

Figure 5-8. Viewing the code generated from the Master/detail

You should explore each of the code templates that are available. There are many dif-
ferent possibilities including various activity types, Android-specific XML files, and unit
testing assistance. Having the ability to create framework code that is written correctly
and works is something I can’t reccommend enough. It will eliminate time spent debug-
ging and ensure that your code is written to standards.

64 | Chapter5: Developing with Eclipse

You are not limited to using only the existing templates. There is a
. syntax that allows you to create your own templates. There is a good
" article by Roman Nurik titled ADT Template Format Documentation
that outlines how to do this.

Properties Editors

ADT includes editors designed to create XML files without requiring direct editing of
the file. You can use these editors to enter values into a form, which is easier than trying
to enter the properly formatted XML tags manually.

A good example of this is the Manifest Editor. Every Android application has a manifest
file (which must be named AndroidManifest.xml). This file contains information about
the application that the Android system must have before it can execute the code. The
manifest file contains information about application permissions, the components of
the application (activities, services, etc.), API level, instrumentation classes used by
profilers, and a variety of other important data. This file is critically important to An-
droid development, and is modified frequently.

The Manifest Editor tool makes editing this file easy, and less error-prone. This tool is
launched when you edit AndroidManifest.xml (which is located in your project root
directory). The tools will look like Figure 5-9.

The manifest wizard groups common elements together. Each can be accessed by click-
ing its tab on the bottom of this window. The tabs are organized as follows:

Manifest
Allows you to change general information about your app (like OS level, screen
support, package name, version number, etc.)

Application
Describes application-level components, as well as general application attributes.
You will list the components you use (activities, services, etc.) here, and can specify
a variety of parameters specific to the app execution: for instance, whether it is
debuggable, or information relating to optional backup configurations.

Permissions
Lists the Android permissions your app requires. For instance, android.permis
sion.INTERNET grants the app the ability to send or receive data over the Internet
in your application.

Properties Editors | 65

http://bit.ly/15WgRc1

= = —= = PR
= Java- dotd/AndroidManifestxml - Eclipse SDK “
File Edit Refactor Run MNavigate Search Project Window Help
Y- I =] [R 2 A [@ DDMS 35 Debug &Y Team Synchr...
H-0O-Q- G- S
e
| d dotd Manifest 3 =& I
= - = (=
. . = % 3
= | i@ Android Manifest =l =
~ Manifest General Attributes @
Defines general information about the AndroidManifest.aml @
Package com.tools.demo Browse... 57}
Version code 1 g
=4
Version name 1.0 Browse... E
Shared user id
Shared user label Browse.., %
=2
Install location - &
| 5 e
Manifest Extras @@@@@@Az (|
(@ Uses Sdk 3 |
Add... &
(8) Supports Screens :‘l o=
| Remove... | =
E (l
Up
Down
: U
|
~ Exporting
To export the application for distribution, you have the following options:
® Use the Export Wizard to export and sign an APK |
® Export an unsigned APK and sign it manually
- Links |
The content of the Android Manifest is made up of three sections. You can also edit the XML directly.
[E] Application: Activities, intent filters, providers, services and receivers.
[P] Permission: Permissions defined and permissions used. -
Mamfe;tl [A] Application ‘ [F) Permi;;ion;i (1] Instrumentation | |=| AndroidManifestxml

Figure 5-9. Android Manifest Editor

Instrumentation
Allows a developer to designate a class that will be instantiated before any other
component in the application. This class can be used to monitor an app’s interaction
with the system, or set up test functionality.

AndroidManifest.xml
Allows you to edit the XML directly, if you prefer that.

66 | Chapter5: Developing with Eclipse

XML Formatter

You probably know that the layout files in Android are designed using a hierarchy of
XML tags to describe the various views in your interface. These files can get complicated
quickly, and often become disorganized and difficult to read. ADT provides a very useful
key sequence that allows you to quickly format XML files. In addition to aligning the
whitespace, the tools go a step further, and reorder the attributes within each tag.

On Windows or Linux, you will use the keys|Ctrl[+Shift+[F and on Mac OS X, you will
use [(Command+{ShiftH+F.

By default, this will reorder the attributes to a default standard that the Android team
has determined is best for a wide variety of developers. This default order should work
for most people, but it is possible to specify your own order if you prefer. You can specify
your own preferences in the following location: Window — Preferences - XML —
XML Files — Editor.

You can learn more about this in “XML formatting” on page 178.

The Android Key

This keyboard combination is worth mentioning because it provides quick access to a
few operations that are frequently used. Using this shortcut makes performing these
tasks quicker, and speeds up the development workflow. You can access these shortcuts
with the following keystrokes: on Windows and Linux, use [Alt+Shift+/A], and on Mac

OS X, use [Option}+Shift}+A]

When you use this key combo, a small dialog opens at the bottom right of your IDE (as
seen in Figure 5-10) that contains three shortcuts allowing you to do the following
things:

following way:</para=

Debug Android Application | {:"CA .

— Extract Android String TNAS
Run Android Application AR

Android SCw

Figure 5-10. Using the Android key to access shortcuts

XML Formatter | 67

Run Android Application
Launches your app to a running emulator (or starts one if necessary).

Debug Android Application

Launches your app in debug mode.

Extract Android String

Launches a dialog allowing you to extract a string out of any file and place it in the

strings.xml file.

Quick Qutli

Use this key sequence to launch a UI (as shown in Figure 5-11) that shows the structure
of the current XML document or Java class you are editing inline with your editor. You
can then quickly navigate to any location in the file. This is a giant time saver, and is my
primary way of navigating within my files. On Windows and Linux, use [Ctrl+O}, and

on MacOS X, u

ne for XML

se Command}+{O]

Figures 5-11 and 5-12 show how the outline looks in XML and Java classes.

Java - ToolsDemoActivity/ res/layout/memdemo.xml - ADT - /Users/mwolfson/android/workspace

26

28 </LinearLayout>

] Graphical Layout | =]

memdemo.xml

| 1s2mof saom [Android SOK Content Loader

Ci- CleE2aBBY e 0 WHE & Ke G o
% Quick Access I li=8 |3;Jmm £9Team Synchronizing @ DDMS
| memdemo.eml 52 | =8|s
[8]7 1 <?xml version="1.8" encoding="utf-"7 Ll
lo| 2 <LinearLayout xmlns:android="http://schemas.android. conapk/res/android” 2
. android: layout_width-"fill_parent” §

B 4 android: layout_height="fill_parent” 2]
@l s android:orientation="vertical” >
il =]

7 <TextView =]

8 android:id="6+id/tool_demo_text”

9 android: layout_width-"wrap_content" |

10 android: layout_height="wrap_content"” | ~B

11 android: Layout_marginLeft="12dp" i

12 android: Layout_marginRight-"12dp ¥ [T tinezrtayoie

13 android:layout_marginTop="8dp .

14 android: text="Memory Demo” E|TextView: @-1d/tool_demo._text

15 android:textSize="14dp" /> [2x]Button: @+id/eat_mem_btn

16

17 <Button

18 android:id-"8+id/eat_mem_btn"

19 android:layout_width-"250dp"

20 android: Layout_height="58dp"

21 android:layout_gravity="center_horizontal "

22 android:layout_marginTop-"28dp"

android:text="Eat Memory”
24 android:textSize="18sp"
25 android:textStyle-"bold" />

Figure 5-11. Viewing the Quick Outline in an XML file

68 | Chapter 5: Developing with Eclipse

Java - lcclsDemoActrwwfqrcfcom,ftools.fdemanemDemoActlwtyJava - AOF - [Users/mwolfson/andr
MHae e P dEIAE I dns 0 G # G i ey o
L,';C_!m(l{_)\c_cc_ss [et |anava £0Team Synchranizing @) DDMS
& | 1] *MemDemoActivity.java 23| =8 |5
] 1 package com.tools.demo; E_
= Wi 3@ import javu‘util,\fectm-;[l £
= 12 =
'ﬁi 132 public claoss MemDemoActivity extends Activity { =
14
15 private Button eatl = =]
w1t private Vector vec
17 # com.tools.demo
18 /*% Called when +h| "53 MemDemoActivity
193 BOverride o eatMemory @ Button
220 public void onCread 4@ vect: Vectar
“1 super.onCreate| ¥ ;2 s onCreate(Bundle) : void
23 setContentViel hﬁ new OnClickListener() {...}
24
tR2S vect = new
26 eatMemory =)
285 catMemory. setD
ol] public voi|
3@ byte B
@31 vect.a
32
33 Runtim|
34 Log. vl Press "BO' to show Inherited members §393
35 ¥ L
36 i
37 1
28
9 3
44
| 166Mof41aM ||
Writable Smart Insert 26 66 |

Figure 5-12. Viewing the Quick Outline in a Java class

Other Essential Eclipse Shortcuts

It is worth mentioning a few other key shortcuts that make development easier, but
aren’t Android-specific.

ICtrl/Command)+{Shift+R]
Open any file quickly without browsing using the package manager or navigator.

Ctrl/Command+Q

Go to the last location you edited (particularly useful for going right back to the last
place you were working).

Ctrl/Command}+F6|

Quickly navigate to any open editor.

There are a lot more than I have space to mention here. You can access the full list of
shortcuts from the following menu: Help - Help Contents — Java Development User
Guide - Reference - Menus and Actions.

Other Essential Eclipse Shortcuts | 69

Refactor Menu

There is one more top-level menu with some useful options that I want to mention in
this chapter. As the name implies, this allows you to do a variety of useful refactors to
your project. These are great shortcuts to help rearrange or clean up your code. For
example, one provides a way to extract strings and there are convenience utilities that
allow you to modify your layout when you are editing a layout file. You should use these
shortcuts to modify your layouts. This can be much less error-prone and quicker than
editing the XML directly. You can access this feature from the menu by selecting
Refactor - Android — Extract Style.

“Extract Style” is an example of a useful feature available through this menu. This is a
useful pattern in Android, which allows you to keep your style independent of your
layouts. This convenient shortcut makes it simple to extract elements from your layout
into styles.xml (Figure 5-13).

Java - ToolsDemoActivity/res/layout/memdemo.xml - ADT - /Users/mwolfson/android /workspace
ri~ G REIEEL- N O HEG®S - o o
)\ Quick Access | Ef|&1_\m &8Team Synchronizing @ DDMS
= | [d memdemo.xml 28| S s
| 1 <?xml version="1.8" encoding="utf-4"2> o
o 2 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"”
it 3 : 5 F @
android:layout_width="fill_parent =
& android: layout_height="Fill_parent” 8neoe Extract Style [
@ ° android:orientation="vertical” » ! =)
p| - Style Name: | toolsDemastyle)
<TextView ™ Remove extracted attributes =
8 android:id="8+id/tool_demo_text” 2 5
I8 o Gndroid: Layout widthe "Wrop_ content® 1) Remove all extracted attributes regardless of value
18 i St " -
|10 undra}d._ﬁayuut,he_g}_wt wra;i,:onfent ¥ Extend android-Widget TextView =
11 android:layout_marginLeft="12dp
12 android:layout_marginRight="12dp" @j Set style attribute on extracted elemeants
13 android:layout_marginTop="8dp”
14 s g i Choose style attributes to extract:
15 android:textSize-"Tddp" /> iz
16 '™ layout_marginLeft - 12dp
17 <Button [/ layout_marginRight = 12dp
18 android:id="8+id/eat_men_btn" [layout_marginTop = Bdp
19 android:layout_width="258dp" [textSize = 1adp
20 android:layout_height="50dp"
21 android:layout_gravity="center_horizontal "
22 android:layout_marginTop="28dp"
23 android:text="Eat Memory" |:/—|
24 android:textSizes="18sp" Select All || Deselect All
25 android:textStyle="bold" />
26
27
28 </LinearLayouts
| =] Grashical Layout | =] memdemo.xmi | i [Preview> | [cance | [ok] r

Figure 5-13. Using the tools to extract style information

ADT version 21.1 included some additional functionality that makes it easier to rename
item IDs. Previously this was challenging, as the developer was responsible for manually
changing the namesin each file where it occurs. This makes it easier to rename aresource
XML file, drawable name, field name, or ID. If you are using the layout editor, renaming
any of these resources will automatically launch a refactoring routine that updates all
resource references.

70 | Chapter 5: Developing with Eclipse

CHAPTER 6
Developing with Android Studio

Donn Felker

Android Studio (shown in Figure 6-1) is the IDE for Android that was announced in
May 2013 at the Google I/O developers event, and is intended as an alternative to Eclipse.
At the time of this writing, Android Studio is currently in Early Access Preview, with
the most recent version being 0.0.5. At this time, Android Studio is not ready for full
end-to-end Android application development, but should be ready in the coming
months. I highly advise you review this chapter, as this is where Android development
is migrating to in the future. Android Studio is based on the Java IDE called Intelli]. If
you've worked with other products by JetBrains (developer of Intelli]), such as RedMine,
PyCharm, PhpStorm, WebStorm, or AppCode, you will find yourself at home. All In-
telli] products share the same shell IDE, which you'll see as soon as you open up Android
Studio. In this chapter, I intend to familiarize you with Android Studio and show how
you can use it for Android development.

Although Android Studio is a brand new IDE, it is important to note that most of your
IDE skills from Eclipse apply to Android Studio as well. Most of the tooling in Android
Studio is very similar to Eclipse, such as shortcuts, designers, and code editors. You'll
still export signed APKs, view logcat, and edit code virtually the same way in Android
Studio as if you were in Eclipse. Think of Android Studio like this: if Eclipse were a
trusty old power drill used in construction, Android Studio is the new cordless high-
powered version of that same drill. Android Studio has some of the same options, and
some new ones that you'll need to familiarize yourself with. In the end, you’ll still feel
comfortable enough to use the tool to get the desired result—an Android app.

Installing Android Studio

Google has made installing Android Studio as simple as possible. Just visit the Android
Studio page and download the installer for your platform. Supported platforms include
Windows, Mac OS X, and Linux. Follow the installation instructions for your platform

n

http://bit.ly/1cQuSJE
http://bit.ly/1cQuSJE

__® Android Studio _File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Hel)
800 5] LoginActivity.java —) - = ioProj — Android Studio (1/O Preview) Al-130.687321 o
=0 =] i | bampleapp-Examplepp ¥ | B Mk 0k % @ B B W 7
ExampleApp ExampleApp [src main Java com donnfelker exampleapp = LoginActivity
E 61 Project =l @ == #- |- | ©loginxml x (€ LoginActivityjava x | ® strings_activity_loginxml x | =
g En T s
& g
el > [O.idea S
= v CiExampleApp [ExampleApp-ExampleApp] B
o > Bbuid ic class LoginActivity extends Activity { 2
E > Ellibs
£ v Poe * 4 henticati re containing known user names a m
i v Plmain . e e after connecting to a real authentication sys 5
v v Eljava private static final Stringl] DUMMY_CREDENTIALS = new String[1{ %
¥ [com.donnfelker.exampleapp "'foo@example. com: hello", 8
£ LoginActivity = “'bar@example.com: world™ ®
., H :
© AndroidManifest.xml
il ic_launcher-web.png * T
2 build.gradle o < s 3 . : &
T public static final String EXTRA_EMAIL = " L droid .extra.EMAIL";
" example.keystore -
> lgradle
Android DDMS * L
Devices | logcat ADBlogs —+* Log level: | Verbose 3| Q- | No Filters 4| | Clearlog |
5 i Devices i F—
N
W
- Nothing to show
£
5
5
i
21000 | 4 & Android 7, EventLog
= for AnAction with it Jang Clas y ids s, GradieP... (59 G5 307 LF: UTF83: w @ @ [14eMof71iM

Figure 6-1. Android Studio with the Editor, Project, and Android panels

to install the application. Installation instructions are not provided in this chapter be-
cause installation instructions change often. If you encounter issues, please visit the
Android Studio installation page.

Bundled SDK

Android Studio comes bundled with its own version of the Android SDK, which is
preconfigured to be used with Android Studio upon installation. On Mac OS X, it is
located in the package contents for the application, as I determined by choosing Android
Studio - Show Package Contents (see Figure 6-2) and checking the resulting screen (as
shown in Figure 6-3). This means that if you already have an SDK installed, Android
Studio will not use the previously installed SDK by default. If you would like to use the
existing SDK on your machine, follow these steps from Stack Overflow.

72 | Chapter6: Developing with Android Studio

http://bit.ly/1cQuSJE
http://bit.ly/135ZsgO

8o0e (5] Applications
22
Back A &
FAVORITES 8 Adium
:5 Dropbox (£ Adobe %
Ell Adobe Bridge CS5.1 »
(3 copy [l Adobe Device Central C55.5 ©
'.'5\: All My Fi... E Adobe Download Assistant
@ AirDrop E Adobe Exte.._anager C55.5
e Bl Adobe Photoshop €S5.1 L
¥ Adobe Reader
[.] Desktop L Amazon MP3 Downloader
M Docume... & Android File Transfer
0 e | e _Android Stu ” Open
B o | @ roncoce
J7 Music (£ Audacity Move to Trash
B0 & Automator
Pictures =l Base (1054) Get Info
{1 Google... | [Calculator ~ Compress “Android Studio”
(@ Calendar Burn "Android Studio” to Disc...
B Ccamtasia 2 Duplicate
9l Cardea-IU- pake Alias
Il Cardea-IU- qyick Look "Android Studio”
- Charles Share S
» CheatSheet
4. Chess Copy "Android Studio”
w» Cloud
@ Colloquy Show View Options
|\ Contacts
i Copy Label:
Qcs3Toong X SBUENEE
@ Dashboard
B Dictionary Services >
» DiffMerge T

| (=] osx b [Applications

115 items, 29.21 GB availabie

Figure 6-2. Showing the package contents of the Android Studio application

Installing Android Studio

3

80e [sdk
<Ir] (2 =l m) (%] (8] (2] (2]
Back. View Action Dropbox Arrange Share

FAVORITES [bin » [add-ons ”
22 Dropbox Igl_ build.txt |___J build-tools "
= [Contents * |l extras v
[Copy i lib + [platform-tools -
= All My Fi... | [license P Lj platfarms [
ng AirDrop Igl_ LICENSE.txt |___J system-images [

y || plugins + | (@ temp [

e heplct B ool ,.
[Desktop
|ﬁj Docume...
€3 Downloads
H Movies
JJ Music
[Z] Pictures
[C] Google...

Figure 6-3. The SDK folder in the Android Studio package contents

Default Project Location

After installing Android Studio, you can create a new project and define a destination
location for the project files. If you don’t explicitly define a location for your project,
Android Studio will place your files into the ~/AndroidStudioProjects folder in the cur-
rent user’s folder on your machine.

Anatomy of the Android Studio IDE

The Android Studio IDE is comprised of a vast array of panels, tools, and functions to
help youbecome as productive as possible at developing Android applications. I'll cover
the most common panels, windows, and toolbars with which you’ll be interacting.

Panels

The main panels that you will interact with during your day-to-day development of
Android apps appear in Table 6-1.

Table 6-1. Important panels in Android Studio

e heapion

Project Panel Allows you to navigate through the file hierarchy of your project and select, open, edit, and perform
various other actions on your files.

File Editor The main editing window in Android Studio. This is where you write your code.

74 | Chapter6: Developing with Android Studio

N

Android Panel Presents the devices (emulators and physical devices) connected to your system, and allows you to view
the logcat output, filter the output, and view ADB logs.

Messages Panel | Here you'll find any important messages that the IDE presents, such as compilation errors.

TODO Panel Shows all the TODO comments sprinkled throughout your project’s code.

Find Results Panel | Here you can examine the results of any find command that you execute. Examples include the Find
Results command (Edit — Find — Find) and the Find Usages command (Edit — Find — Find Usages).

Maven Panel If your project is Maven-based, interact with this panel to perform Maven activities.
Gradle Panel If you're utilizing the new Gradle build system, you can find the tools necessary to interact with Gradle
here.

Event Log Panel | At times, the Android Studio IDE may encounter an unexpected error or have important events that need
to be visible to you, the developer. This panel will show you these events.

The final area, which is of utmost importance, is the status bar at the bottom of Android
Studio, shown in Figure 6-4. This is where the majority of status updates will occur when
background processes run. Some of these background processes include updating in-
dices on the files, Maven or Gradle background processing, and event errors. The right-
most box shows the IDE’s memory usage.

| Compilation completed successfully in 8 sec (2 minutes agn) = 3:44 |LF 5 UTF-8 = | & &= | 147Mof 711M

Figure 6-4. The Android Studio status bar

Toolbars

Android Studio ships with a highly customizable toolbar that is easily accessible from
the top of the display. The default toolbar that ships with Android Studio is shown in
Figure 6-5.

4 | ExampleApp-Exampleapp v | B #E [3 @ § B B w7

[
o
S
C
o

Figure 6-5. The default toolbar in Android Studio

Table 6-2 describes each set of tools from left to right.
Table 6-2. Tools in the default toolbar

File Actions Actions such as Open, Save, and Synchronize.
Undo/Redo Undo and redo the previous action.
Cut/Copy/Paste Quickly cut, copy, and paste from the toolbar.

Anatomy of the Android Studio IDE | 75

Find/Replace

Find and replace values in the project files.

Navigation

Navigate forward and backward in the most recent files that you've accessed or edited recently.

Build/Run/Debug/
Attach

These buttons are some of the most common buttons that you will use in Android Studio, as they
allow you to build, run, debug, and attach to a running Android process for debugging.

Settings These access the IDE Preferences and Project Structure.

Android Actions The Android Action Group allows you to sync your project with the Gradle files, open the AVD or
SDK Manager, and open the Android Monitor application.

Help Where you can go for help in using Android Studio.

Useful Actions in Android Studio

In addition to the various panels and toolbars, Android Studio has a wide feature set
that is accessible via the top menu and various contextual menus. Table 6-3 shows a few
of the common actions that you’ll want to familiarize yourself with.

Table 6-3. Common actions

New Module/ You can easily add a new Android Module, Android Library, or Java Library to your application by simply
Library/Java choosing the File - New Module or File — Import Module file option and following the wizard through
Library the process.

Preferences At times, you may want to customize Android Studio. You can do this by accessing the Preferences through
the Android Studio — Preferences menu. Some options you can edit are the theme of the IDE, font sizes,
keymap, toolbars, and many other options.

Project Structure | An Android project is comprised of modules and libraries, and at times you may need to edit the settings
for these modules and libraries. To do so, you'll need to enter the project structure by visiting the File —
Project Structure menu.

Showing Although the default windows that ship with Android Studio are usually sufficient for day-to-day Android

Additional development, there may come a time when you need to get into the gritty details of the IDE. To explore

Windows the various other windows that are available to you (such as file structure, commander, VCS changes, etc.),
visit the View — Tool Windows menu.

Right-Click to Anytime you're unaware of the actions you can perform in the IDE, simply right-click the area in which

Explore you would like to see the various options. Android Studio will present you with the array of options (if
available) that are possible in the given context of the IDE panel in which you're working.

Navigation

Navigation shortcuts are used for navigating around your code base at the speed of light.
Master the shortcuts in Table 6-4 and you’ll increase your productivity immensely.

76 | Chapter 6: Developing with Android Studio

Table 6-4. Keystroke shortcuts in Android Studio

Shortcut on Mac 0S X Shortcut on Windows\Linux

Go to Class Command + 0 Crl+0

Go to File Command + Shift + 0 Ctrl + Shift + 0
Go to Definition Command + B Ctrl +B

Back / Forward Command + [or] Ctrl +[or]
Code Editor Tab Nav | Command + Alt + Left or Right | Ctrl + Alt + Left or Right
File Switcher Ctrl + Tab Ctrl + Tab

Find Usages Alt + F7 Alt + F7

Find Command + F Ctrl +F
Replace Command + R Ctrl +R

Find in Path Command + Shift + F Ctrl + Shift + F
Replace in Path Command + Shift + R Ctrl + Shift + R

The New Structure of an Android Project

When you first open up Android Studio and create your first new project in the IDE,
you'll notice that Android Studio introduces a new paradigm in regards to folder and
file placement that is not congruent with what you may be used to in Eclipse. Almost
all of your files are located in the src directory. The new file structure is in place in order
to support the new Gradle build system.

A Tour Around the New Structure

As noted, the new file structure puts the majority of your files in the src folder, as shown
in Figure 6-6. The files in this folder are the source files for your project. These are the
files you'll be editing the majority of the time. This file structure provides more flexibility
and will eventually provide the ability to provide multiple build variants (different types
of builds with the same project). Everything in your project will still behave the same
for the most part.

The New Structure of an Android Project | 77

v [iExampleApp (~/AndroidStudioProjects/ExampieApp)
b [.idea
v [ZExampleApp [Exi leApp-ExampleApp]
» Cbuild
| 2 1libs
v src
v [Imain
v [Cjava
» [“1com.donnfelker.exampleapp
¥ Dres
=1 drawable-hdpi
=1 drawable-mdpi
“1drawable-xhdpi
1 drawable-xxhdpi
=1 layout
= menu
“lvalues
“1values-large
“Ivalues-vll
= lvalues-vl4
@ AndroidManifest.xml
| ic_launcher-web.png
build.gradle
| 2 igradle

Y ¥ Y Y Y YVYYYY

Figure 6-6. An example of the Android folder structure in Android Studio

Build variants are not implemented at the time of this writing.

Running and Debugging an Android Project

When you're ready to deploy your app to a device or an emulator to test and/or debug
it (see “Debugging” on page 98), you can easily do so with Android Studio. The three
various methods for this are Run, Debug, and “Attach Debugger to Android Process.”
All three of these commands are available via the Run menu or the main toolbar in
Android Studio, as shown in Figures 6-7' and 6-8.

1. The “Attach Debugger to Android Process” item is at the very bottom of this long menu and has been removed
from this screenshot for brevity.

78 | Chapter 6: Developing with Android Studio

LT Tools WCS Window Help

| P Run'ExampleApp-ExampleApp' ~R |
| #¢ Debug 'ExampleApp-ExampleApp' ~D
P Run... ~XR |
#k Debug... ~D

[Edit Configurations...

Figure 6-7. The Run menu

i | ¥ ExampleApp-Exampleapp ¥ | B 8 [l

Figure 6-8. The toolbar run actions

To run an Android app on the currently connected device, select Run from the Run
menu or press the Run button in the toolbar. This command will build the Android
application and deploy it to the currently attached device.

To debug an Android app on the currently connected device, select Debug from the
Run menu or click the debug icon in the toolbar. This command will build the Android
app and deploy it to the currently attached device, and attach the debugger to it. At this
point, if any breakpoints are set, Android Studio will stop execution so that you can
inspect your runtime environment for debugging.

Another wildly useful tool is the “Attach Debugger to Android Process” command. This
is mainly used when you need to start your app and navigate through a series of steps
before attaching the debugger at a particular execution point (perhaps right before you
click a button or before you navigate to a new screen). This tool allows you to quickly
flow through your app and then set the breakpoint, instead of having the debugger
running the entire time. To attach the debugger to your currently running app, install
the app with the run command as outlined earlier and then select Run — Attach De-
bugger to Android Process or press the “Attach Debugger to Android Process” icon in
the toolbar.

Creating New Android Components

A very common task during Android development is to create new components for the
app. You can quickly accomplish this in Android Studio by right-clicking on the package
name and selecting New - Android Component, as shown in Figure 6-9, or by pressing

‘CommandHN|on Mac OS X, or [Ctr]+]N|on Windows\Linux while your package name

is highlighted in the src directory.

Creating New Android Components | 79

¥ [Csrc

¥* [CImain
v [java
¥ [icom.donnfelker.exam="——— %
© LoginActivity _ 2]
v Cares a6 Cut BX | £ package
i B L5 :
» [1drawable-hdpi Copy Path G8Cc 1
» [1drawable-mdp| Copy Reference XGRC | il HTMLFile \
» [F1drawable-xhdpi Iiﬁ Paste Y I|
» [2)drawable-xxhdpi }
v [Flayout Find Usages XF7
% login.xml Find in Path... {-38F

Figure 6-9. New Android component creation

Layout Designer and Layout Preview

Android Studio ships with two graphical tools to help you lay out your user interface:
Layout Designer and Layout Preview. Layout Designer lets you arrange Views on the
screen by dragging and dropping, while Layout Preview lets you see how your screen
looks while you are editing your XML resources. I'll provide a brief introduction to both
tools in this section.

Layout Designer

When you first open an Android layout file, you'll see the Android designer with the
Design tab selected, as shown in Figure 6-10. The other tab is Text, which allows you to
hop into the XML that defines the layout. I will cover that in the next section.

[ExampleApp - [ExampleApp [“isrc [main [ires [layout ' loginxml

Paletie Companent Tree = &

#- 1 | B loginxml x | & strings_activity_loginxml

== ProgressBar (Large)
== ProgressBar (Small)

== ProgressBar (Normal)

== ProgressBar (Horizontal) Properties

< = s
g| £ tayours = Ty v merge o
4| [FrameLayout [7] Lineartayout (Horizontal) oo i B Ry » [llogin_status (LinearLayout) (vertica) §
& []LinearLayout (Vertical) [] TableLayout ez} q & 2 B v [llogin_form (Scroliview) 2
o = Tablerow [l GridLayout w [[]LinearLayout (vertical) &
5| [fRelatveLayout [lemail (EditTex)
5| £ widgers , 1 password (EditText) m
7| a0l plain Textview a6 Large Text ’ Exampl eApp |+ Isign_in_button (Button) - @string/actio| g
7| [AElmedium Text [at| small Text 3
< Button + Small Butcon -z
2l| @ RadioButton || checkBox ’é
§ = Switch — ToggleBution
} & imageButton & imageview
= g
E

<0+ SeekBar # RatingBar
~* Spinner @ WebView
| [Text Fields layoutheight wrap_content
.| Plain Text | |Person Name > layoutgravity [right]
| | Password || Password (Numeric) » layoutmargin 77 16dp, 7,7, 7, 7
g| [Ce-mai I Phone IRyeicweight
| [IPostal Address 1| Multline Text
5 style
3| [[1Time || Date
2| Inumber I Number (Signed) alphe
'; || Number (Decimal) background
[Containers capitalize
g [Z]RadioGroup = Listview clickable o
5| [cridview = ExpandableListView ellipsize
| [lscroiview [HorizontalScrollView) 3
;“ 9, searchView [TabHost focusable ‘i‘
[SheingDrawer o Gatery Design ~ Text — =
S TODO i 6 Android 3 Event Log

Figure 6-10. The Android Layout Designer

80 | Chapter6: Developing with Android Studio

Android Studio’s Layout Designer allows you to easily drag and drop controls onto the
layout surface to quickly create a prototype of the layout that you need. Select one of
the controls from the palette and drag it to the layout. Once the control is in place, you
can edit the various properties of the control by selecting the control and editing the
properties on the right, as shown in Figure 6-10. Layout Designer automatically creates
the underlying XML code that represents the layout you created. The component tree
shows you how the layout is organized in a hierarchical fashion.

To view the XML of a particular control, simply select it in the designer and click
Command}+B| on Mac OS X, or [Ctrll+B| on Windows\Linux. You can also right-click
and choose “Go To Definition.” This will open the Text tab of the layout designer and
you are navigated to the XML snippet that defines that control.

In Layout Designer, you can select various devices to emulate, themes, API levels, and
orientations. I highly advise you to peruse the various options in the designer, as it is a
very powerful tool.

If you love graphical editors, the Layout Designer is great for whipping up a user inter-
face quickly. However, some of us love to get as close to the metal as possible, and in
order to do that you need to edit the XML. To edit the XML, click the Text tab at the
bottom of the Layout Designer.

Layout Preview

Assoonas you enter the XML layout, you will notice that the control palette, component
tree, property editor, and drag-and-drop designer are gone and replaced with a slew of
XML code and a layout preview. This is shown in Figure 6-11. The preview shown here
is the Layout Preview tool. You can turn this panel on and off by selecting the Preview
button on the right side of the screen. This panel is shown only when the XML editor
is in use.

The Layout Preview will update any time you make changes to the layout XML. As an
example, if you change a TextView or Button to a bold font style, the Layout Preview
will show the bolded text. If you like being closer to the XML, this is the view for you.
I often hop back and forth between the Layout Designer and Layout Preview tools during
my day-to-day Android development.

Layout Designer and Layout Preview | 81

Exampleapp [ExampleApp [src [imain’ Cires [layout & loginxmi
& loginuxmi x | & stri

| preview # 1
&

“match_parent"
5 ="wrap_content"
= android: inputType="textEnailAddress"

E android: hint="gstring/pronpt_enail"/>

il Nexus 4+ 1= (M AooTheme ~ LoainActivity- €+ 1117+

JopuRLILIO] 1§

<EditText
android: id="g+: Jd/nasswvrd

@ android: singleL
android:maxLine:

Woaia G | swelos vanew

e . e+id/log
a android: ineOptions: cunnunspeﬂheﬂ“ s Signin

<Button android:id="@+id/sign_in button"
android: Layout s
android: Layout_height:
android: Layout_margin’
android: text="Sign in"
android: paddingLeft="32dp"
android: paddingRigl p"
android:layout_gravity=" ngm ’»

p_content”
content"
o

</LinearLayout>

</ScrolWiew
1< /merge>

2 Favorites

Design | Text

7T0D0 i & Android £, EventLog

Figure 6-11. The Layout Preview with the XML layout editor

Generating an APK

Generating an APK in Android Studio is a snap. Follow these steps:

1. Select Generate Signed APK from the Build menu. This will display the Generate
Signed APK Wizard.

2. Select your module and click Next.

3. Either supply the path to your keystore that you're currently using for your Android
application, or create a new keystore.

4. (Optional) Once your keystore values are provided, click “Remember Password”
and Android Studio will keep track of your entered password in a local password
database so you don’t have to enter it again. You will be required to provide a master
password for this password database, so be sure you remember this password. Tools
like LastPass.com are very useful for keeping track of numerous passwords safely.
The remember password feature is very useful if you create or maintain a lot of
Android applications.

5. Click Next.

6. At this point you can define the destination for your APK. You can also specify
whether you'd like to run ProGuard (described in “ProGuard” on page 139), and
where the ProGuard configuration file is located.

7. Click Finish and your APK will be generated in the destination folder.

82 | Chapter6: Developing with Android Studio

http://lastpass.com

Interacting with Maven and Gradle

Maven (see “Using the Maven Tools” on page 149) and Gradle (see “Gradle-Based Build
Tools” on page 144) are build systems that are very popular within the Android commu-
nity. Android Studio ships with support for Maven and Gradle right out of the box. This
is great considering that in Eclipse you had to use a plug-in that was often buggy and
not entirely reliable. Given that Android Studio ships with support for both tools, you
can easily work with projects that use either technology via a panel in Android Studio.

Interacting with Maven

Projects that use Maven are easy to open in Android Studio. Simply start Android Studio
and open the pom.xml file. Android Studio walks you through the Maven project import
process. Once the import is complete, you can open pom.xml and edit it if needed for

any reason, or you can open the Maven panel. The Maven panel is now populated with
various options, as shown in Figure 6-12.

Maven Projects ¥

G kitibird = B2 ",
v [Lifecycle
4 clean
4 validate
4 compile
& test
£ package
£ install
4 site
4 deploy
» [@Plugins
¥ LgDependencies
» [} com.google.android:android:2.1.2 (provided)
iil] com.google.android:support-v4:r7
Il org.modelmapper:modelimapper:0.5.6
B @il junit:junit4.10 (test)
1l org.hamcresthamerest-library: 1.3.RC2 (test)

siafoid uaney = | sepurwiwod

Figure 6-12. The Maven panel expanded

Once the Maven panel is expanded, you will be able to explore the lifecycle, various
plug-ins, and dependencies. To refresh the Maven project, click the refresh icon in the
top right of the panel. This loads all of the dependencies, plug-ins, etc., that are defined
in the pom.xml file. To execute a lifecycle goal, simply select it and then press the play
button in the top part of the panel. I recommend that you explore the panel and its
options, because you can configure Maven and perform various other actions within it.

Interacting with Maven and Gradle | 83

You can build a Maven project in Android Studio in a couple of ways. One way is to
execute and build the task you want through the Maven panel. You can also set up a
Maven build configuration (Run/Debug Configuration). Finally, you can build through
the Build menu. I prefer to build through the Build menu because Android Studio caches
the files and only builds off of changesets, so I'm not running through an entire Android
Maven build every time (which can be very time consuming).

Interacting with Gradle

As with Maven, projects that use the Gradle build system are very easy to work with in
Android Studio. There are a couple of panels that you should be familiar with. These
panels include the Gradle panel and the Build Variants panel as shown in Figures 6-13
and 6-14. Once your project is loaded, you can open the Gradle panel and interact with
the various tasks. You can also open the build.gradle file in the editor and edit anything
necessary.

! Gradle tasks *-

%]

a|im9 .'J |

Recent tasks

l%]

Loading...

All tasks

s13aloid uanep

Mothing to show

Figure 6-13. The Gradle task panel

84 | Chapter6: Developing with Android Studio

Bulld Variants - 2l i
Module Build Variant
AnotherExample debug

¢ Build Variants |

Figure 6-14. The Gradle Build Variants panel

Building your application is quite easy with Gradle. I recommend that you use the Build
menu to build your application because it is the simplest way. If for any reason your
application Gradle files become out of sync with your Android application, you can
select the “Sync Project with Gradle Files” option from the toolbar, as shown in
Figure 6-15. This will update your project with the settings defined in the Gradle file.

ile] - AnotherExample - [~/Documents/android/Ano

Pk Do RALEw ?
IS\rnc Project with Gradle Files]

= build.gradle »* |

=] renncitnriec §

Figure 6-15. Sync Project with Gradle Files

Version Control Integration

Android Studio ships with numerous built-in Version Control System (VCS) integra-
tions. These integrations allow you to perform VCS operations (commit, pull, push,
update, etc.) within Android Studio:

Git
GitHub
Mercurial

Version Control Integration | 85

SVN (Subversion)
CVS

If youre using something that is not listed here, plug-ins are available for various other
VCS systems such as Team Foundation Server, Perforce, and others.

To configure your VCS system, select “Enable Version Control Integration” from the
VCS menu and follow the steps. Once it is set up, you will be able to perform various
VCS commands for all the files in Android Studio.

Migrating from Eclipse

Although Android Studio is not ready for prime time yet, it will be shortly and 'm sure
a lot of folks are going to be moving to Android Studio from Eclipse. When the time
comes for you to make the move, you can easily export your project from Eclipse using
the Gradle export tool, and importitinto Android Studio. The Android team has written
an easy-to-follow guide on how to migrate from Eclipse.

Android Studio Tips and Tricks

Android Studio is packed with great keyboard shortcuts that allow you to be much more
productive than previous Android development environments (except for Intelli],
which is what Android Studio is based on). In this section, I'm going to show you some
ofthe most common keyboard shortcuts that you’ll use on a daily basis while developing
Android applications.

When in doubt about what you can do in a particular scenario, place your cursor in the
area of interest and press|AltH+Enter|to see the various options, as shown in Figure 6-16.

private String foo;
. Remove field 'foo' 2 3
. Create getter and setter for 'foo' »
*4 _ Create getter for 'foo’
| & Create setter for 'foo’
Log level: | | = Make 'protected’
5 Make 'public'
= Make package-local

ult &

(S

Figure 6-16. Context-specific options

86 | Chapter6: Developing with Android Studio

http://bit.ly/14Cc5Bi

Errors can also be refactored and edited. To do so, place your cursor on the error in the
Android Studio file editor and press |Alt+Enter] (on all platforms) to view the available
options.

Refactoring and Code Generation

Many of the important code refactoring options available in Eclipse (see “Refactor
Menu” on page 70) are also available in Android Studio. I advise you to review the
“Refactor This ...” option in Table 6-5 as well as the other options in the Refactor menu
in Android Studio. Learning common refactorings, such as generating getters and
setters, will save you valuable time and ensure the code you generate is standards-
compliant.

Table 6-5. Refactoring options

Shortcut on Mac 05 X Shortcut on Windows\Linux

Refactor This ... Ctrl + T (after placing cursor on area of Ctrl + T (after placing cursor on area of
interest) interest)

Rename Shift + F6 (to rename files, resources, Shift + F6 (to rename files, resources,
variables—anything) variables—anything)

Generate: Create Constructor, | Command + N in a file Ctrl + N in afile

New File, Layout, Getters/
Setters, Override Methods,
Copyright

Miscellaneous Shortcuts
Table 6-6 shows a few other miscellaneous shortcuts that I use day to day.

Table 6-6. Other useful shortcuts

Shortcut on Mac 0S X Shortcut on Windows\Linux

Go to Line Command + L Crl +L

Reformat Code | Alt + Command + L Alt+ Curl + L

Run/Debug Ctrl+RorD Ctrl+RorD

Hiding Panels | Make sure the panel is active, then press Shift + Esc | Make sure the panel is active, then press Shift + Esc

Android Studio Tips and Tricks | 87

Android Studio is packed with a ton of great features. Having used Intelli] for Android
for the last two years, I can honestly say I'm twice as fast at developing Android appli-
cations and I've become a better developer because of it. I believe that Android Studio
will be an extension of that same strength and I hope you feel the same way about it
after you use it for a while.

Additional training resources are available on my website, Donn Felker—Android
Studio Training. I will update these tutorials as Android Studio evolves, so I encourage
you to check it out if you would like to learn more.

88 | (Chapter6: Developing with Android Studio

http://bit.ly/17cmdfQ
http://bit.ly/17cmdfQ

CHAPTER 7
Testing Your Code

Logcat

The Android platform provides a logging mechanism called logcat for collecting and
viewing system information. Logs from the system and various apps are output to a
series of buffers, which can then be filtered with the logcat command. If you have ex-
perience working with Log4] or the java.util.logging package, this will seem very fa-
miliar. You can review output from many different systems in a single location and filter
it to view information relevant to your application. It is worth getting a good under-
standing of all the options, as this tool will make your life much easier.

Android logs pretty much everything in the system to a common log file. Information
about garbage collection, various system activities, and app output are all sent to the
same file. This provides a central location to gather a broad range of information in a
single place. It is also important to note that this single file is shared by all apps installed
on the device. Therefore, you should be careful not to output sensitive information to
thelogs. You can use the Proguard utility to obfuscate your code and hide certain details.
It can also be used to remove log statements when packaging your app for release (details
about using this tool can be found in “ProGuard” on page 139.

Viewing the Logcat File
To view the entire log file (without any filters), issue the command:

adb logcat

This outputs a very verbose log, which includes information about all processes on the
system.

Anatomy of a Log Message

Each log message includes a variety of metadata that can be used to filter the output.

89

Log level
Indicates the severity of the message being reported from the app’s point of view.

Log tag
Defines a process or ID associated with a message.

Log message
The content being reported.

Reading logcat output

Each line in the logcat contains a variety of important information. I want to highlight
what they mean, so you can understand where to find relevant information in the
statement.

Here are a few lines from a logcat file:

E/PowerManagerService(170): Excessive delay setting brightness: 101ms, mask=2
V/PhoneStatusBar(308): setLightsOn(true)

I/ActivityManager(170): No longer want com.android.contacts (pid 598): hidden
I/ActivityManager(170): Displayed com.tools.demo/.LogcatDemoActivity: +955ms
D/UI (897): The user has pressed the button

D/UI (897): The user entered a value: value from the call is: 24324

Let’s look at one statement to get an understanding of exactly what information it con-
tains. The first statement we will look at is one generated from the system (remember
both system and custom messages are output to the same file). This statement comes
from the Android component that manages activity interaction with the core OS, and
records how long the Activity Manager took to render the LogcatDemoActivity:

I/ActivityManager(170): Displayed com.tools.demo/.LogcatDemoActivity: +955ms

This statement can be broken down to understand the exact information it contains:

I
This is the severity level (see “Filtering Based on Logging Level” on page 91). This
log statement was marked to be output when the Info level is being output.

ActivityManager
This is the tag (see “Using Tags to Filter Output” on page 92) used when creating the
log message. It tells us which system (in this case, Activity Manager) was responsible
for generating this message.

(170)
This is the “Process ID” of the application that originated this message. This is a
unique identifier assigned to an application during runtime, and can be a great way
to filter messages.

Displayed com.tools.demo/.LogcatDemoActivity: +955ms
This is the custom content entered in the log statement. In this case, the message
tells us that an activity was started, and how many milliseconds it took to be created.

90 | Chapter7:Testing Your Code

To be clear, all this content was entered as custom text by the application that gen-
erated original log statement.

We can look at another statement; this time, it is output as a result of a statement I placed
in my code. You can see the output from a custom statement looks exactly like a system
message and contains the same information.

D/UI (897): The user entered a value: value from the call is: 24324
The information in a custom statement is exactly the same as the system messages:
D

Using the Debug severity level for this message.

U1
A tag I created to keep track of user interaction events.

(897)
The ID assigned to my application by the OS.

The user entered a value: value from the call is: 24324
Tracks that the user entered 24324 into a form field.

There is a lot of information in the logcat, which can be difficult to manage. Next I will
discuss some strategies for generating and filtering logs that will make this easier.

Filtering Based on Logging Level

It is possible to filter logging output based on the severity of a message. Log messages
are displayed based on their debug priority. You can specify a minimum level, and the
output will be filtered to include only messages with that level or higher.

It is important to know the different log levels. You want to ensure that the level you are
viewing is appropriate for the type of message you are looking for. Refer to Table 7-1
for a breakdown of the log levels.

Table 7-1. Logging levels shown by priority

Vv Verbose (show everything) | 1 (lowest)
D Debug

Info

Error

Fatal

2
3
Warning 4
5
6
7

Vwlm | m| =

Silent (Show Nothing)

Logaat | 91

To view all of the messages with a certain level (and everything with a higher priority),
enter:

adb logcat *:Identifier (ID)
As an example, if you wanted to see everything with a priority of Error or higher, enter:

adb logcat *:E

It is a good idea to use the D level for most of your log statements. As
. the Android Log API states: “Debug logs are compiled in but strip-
-+ ped at runtime.” This means that any logs you create with the D level
will not be output in your production app. Therefore, it is safest to use
this level for most of your log statements, in order to make sure that
sensitive data doesn’t accidentally get output into the field.

Using Tags to Filter Qutput

It is possible to apply filter expressions from logcat so you see only the messages that
are most interesting to you. The filter expressions have the format tag:level. You can
apply more than one filter at a time to isolate the specific information you need.

The procedure for finding messages of interest to you, therefore, is to create custom
tags in your Java code and filter using these tags. The syntax for this follows:

Log. level("CustomTag", "Log message")
An example of this in use is:
Log.D("UI", "User entered a value: " + myEditText.getText());
You can then view only the specific messages you're interested in by typing:

adb logcat UI:D *:S

Getting the Most Out of Logcat

As you have seen, there are many ways to filter the logcat output, making it easy to
ensure you are seeing the messages you need to see. You can apply as many different
filter expressions to your logcat command as you need to fine-tune what is being
displayed.

To apply multiple filter expressions, simply append them to your logcat command in

the following format:

adb logcat TAG1: level
TAG2: level
TAG3: level

92 | Chapter7:Testing Your Code

For instance, if you want to see all statistics from the Activity Manager, use the Activi
tyManager: * tag. To see only messages with a severity level of Error or higher from the
Power Manager component, use the PowerManagerService:E tag. To see messages
about the custom User Interface tag, use: UL : *. Don’t forget to silence the other messages
with the tag *: s (this means silence everything else). The combination of filters in this
paragraph would look like this:

adb logcat ActivityManager:* PowerManagerService:E UI:D *:s

Viewing Alternative Log Buffers

The logging system keeps multiple buffers for log messages. For certain content (such
as the radio or events), output will be left in an alternative buffer instead of the default
one. To see the additional log messages, start logcat with the -b option and specify the
alternate buffer you wish to view. For example, to view the radio buffer, enter:

adb logcat -b radio

Predefined Output Formats

Log messages include a variety of metadata fields, such as level, time, process ID, ap-
plication, tag, and the error text. There are a variety of predefined output formats that
can be specified in order to include the specific metadata field you want to see in the
display. You can do this by including the -v option and one of these predefined output
formats.

brief
Displays the tag and the PID of process

raw
Displays just the raw log message without other metadata

time
Displays date, time information, tag, and the PID

long
Displays all of the metadata fields and puts blank lines between messages.

For example, to generate output data in the time format, enter:

adb logcat -v time

Logcat Viewer in Eclipse

In the standard Java perspective in Eclipse, you will notice a logcat tab (#) in the col-
lection of tabs on the bottom of the screen (see Figure 7-1). This tool allows you to
navigate the logcat of the currently connected device using some additional UI
assistance.

Logcat | 93

There can be a lot of noise in the system log files. To make things easier,
. you can create an exclusion filter to exclude common system infor-
' mation that you don’t want to see. To create a filter:

1. Select the plus icon (¥*) icon to create a new filter.
2. Specify a “Filter Name?”

3. Enter your filter value in the “by Log Tag” section: A(?lexclude-
terml|excludeterm2|excludeterm3).*$.

4. T use the following filter as a good starting point: A(?!dalvikvm|
ActivityManager|SystemServer|BackupManagerService). *$.

|8 LogCat 2 =S
Saved Filters # = & | Searchfor messages, Accepts Java regexes. Prefix with pid;, app, tag: or text: to limit scope, H E[@E

All messages (no filters) (10)

e Al i) [Nzt Tine B0 0 T | Apmfication = L

D 12-26 0 1646 1646 com.example.masterd dalvikvm Not late-enabling Checi
E 1646 1646 com.example.masterd Trace error opening trace £i
D 09:20: 154 1646 1653 com.example.masterd dalvikvm Debugger has detached;
D 09:20:32.245 1646 1646 com.example.masterd 1ibEGL loaded /system/lib/eql,
D 09:20:32.259 1646 1646 com.example.masterd HostConnecticn::get() 1
id 1646
D 09:20:32.353 1646 1646 com.example.masterd 1ibEGL loaded /system/lib/egl.
D

09:20:32.353 1646 1646 com.example.masterd 1ibEGL loaded /system/lib/egl,

1646 1646 com.example.masterd Enabling debug mode 0

< I | v

Figure 7-1. The Logcat tool

Logcat Example

Logcat is a very powerful Android feature, but it can be hard to find what you need in
it sometimes due to the amount of information that is output to the common log. Let’s
step through a simple example to demonstrate how to filter verbose system logs to find
the information you want and get a better understanding of your code output.

For this example, I created code that takes an input value from the user in US dollars
and sends this value to a web service, which returns the value in Euros. Finally, the value
is converted to a custom formatted style and displayed on the user interface.

Determining areas to monitor

It is important to think about the specific characteristics of the code you are logging.
You want to separate your logic into distinct areas (which will be represented with
custom tags). This will make it easy to concentrate on specific areas because you will be
able to isolate log statements based on functionality. In this case, there are a few

94 | Chapter7: Testing Your Code

particular functional areas, which should be tracked independently. The areas I want to
monitor include:

User Interface
Check the values entered by the user, check the values actually displayed on the
screen, monitor when the user presses a button, etc.

Network
Validate the URL I'm sending, monitor connectivity errors, display request/
response values, etc.

JSON Parsing
Output JSON values at various points during the parsing, etc.

Formatting
Check the algorithm I use to format the values for my application.

AsyncTasks
Track a call through the lifecycle of this code.

Creating log statements

After determining the categories I want to log, I create custom tags to represent each of
them, in this case:

o Ul

« NETWORK
« JSON

o FORMAT

o ASYNC

I create a utility class with constants (e.g., public static final
. String TAG_UI = "my_tag_uil";) to represent common categories I
" use. Then I use this tag in my code (e.g., Log.d(LogUtil.TAG_UI, "UI
Log message");). That way, I can easily look at a particular subsys-
tem even across multiple activities, by filtering for that particular tag.

Then I put log statements in my code and use the custom tags as appropriate. The
following code snippet shows how I used custom tags to track Web, JSON, and format-
ting functionality:

public static String ConvWebCall(String amount) {
// To save space, I removed code not important to the example

try {

Logcat | 95

HttpClient client = new DefaultHttpClient();
HttpGet request = new HttpGet();

sb.append(amount);
Log.d("NETWORK", "The URL we are sending is: " + sb.toString());

request.setURI(new URI(sb.toString()));
HttpResponse response = client.execute(request);
Log.d("NETWORK", "Response received");

Log.d("NETWORK", "The return String is: " + retStr.toString());
String page = retStr.toString();
} catch (URISyntaxException e) {
Log.e("NETWORK", "URISyntaxException", e);
e.printStackTrace();

}
Log.d("NETWORK", "Return value is: " + page);
return page;

}

public static String parseConvedValue(String page) {

String curr = "";

try {
JSONObject jso = new JSONObject(page);
Log.d("JSON", "JSON Value: " + jso);
curr = jso.optString("v");

} catch (JSONException e) {
Log.e("JSON", "Parsing exception:

,; e);

}

Log.d("JSON", "JSON Value: currency element is " + curr);
return curr;

}

private String formatEuroForDisplay(String amount, String name) {
String euro = "Euro 00.00";
Log.d("FORMAT", "Before formatEuroForDisplay: " + amount);
if (amount != null) {
int index = amount.indexOf(".");
String euros = amount.substring(0, index + 3);
Log.d("FORMAT", "Euros back from NETWORK: " + amount);

euro = "Euro " + euros;
}
Log.d("FORMAT", "After formatEuroForDisplay: " + euro);
String euroString = euro;
return euroString;

96 | Chapter7:Testing Your Code

Verbose logging

You can run the logcat tool without any filters (using the command adb logcat) to
view the unfiltered output. As the following printout shows, this output can contain a
lot of information and be difficult to understand. The following output is what you
would see from a single execution of our currency conversion workflow. You can look
at the tags to see how the process progresses: first the Ul messages, then the FORMAT
ones, then the NETWORK ones, and so on.

I/ActivityManager(170): START {cmp=com.tools.demo/.LogcatDemoActivity u=0}
from pid 897

W/WindowManager(170): Failure taking screenshot for (328x583) to layer 21010
D/dalvikvm(170): WAIT_FOR_CONCURRENT_GC blocked Oms

D/dalvikvm(170): GC_EXPLICIT freed 114K, 39% free 13611K/22023K, paused 10ms
+9ms, total 267ms

I/Choreographer(897): Skipped 35 frames! The application may be doing too
much work on its main thread.

E/PowerManagerService(170): Excessive delay setting brightness: 101ms, mask=2
V/PhoneStatusBar(308): setLightsOn(true)

I/ActivityManager(170): No longer want com.android.contacts (pid 598): hidden
I/ActivityManager(170): Displayed com.tools.demo/.LogcatDemoActivity: +955ms
D/UI (897): The user has pressed the button

D/UI (897): The user entered a value: value from the call is: 24324
D/FORMAT (897): formatForWebcall() before: 24324

D/FORMAT (897): formatForWebcall() after: 243.24

D/ASYNC (897): onPreExecute()

D/NETWORK (897): URL to send: http://rate-exchange.appspot.com/currency?
from=USD&to=EUR&Qq=243.24

D/dalvikvm(897): GC_CONCURRENT freed 121K, 2% free 11063K/11271K, paused 17ms
+32ms, total 78ms

D/NETWORK (897): Response received

D/NETWORK (897): The return String is: {"to": "EUR", "rate": 0.756258035,
"from": "USD", "v": 183.9522044334}

D/ASYNC (897): doInBackground(): {"to": "EUR", "rate": 0.756258035, "from":
"Usb", "v'": 183.9522044334}

D/JSON (897): Json Object is:
{"to":"EUR","v":183.9522044334,"from":"USD","rate":0.756258035}

D/JSON (897): Json parsed currency value: 183.9522044334

D/ASYNC (897): onPostExecute(): result is: 183.9522044334

D/FORMAT (897): Before formatEuroForDisplay: 183.9522044334

D/FORMAT (897): Euros back from call: 183.9522044334

D/FORMAT (897): After formatEuroForDisplay: Euro 183.95

D/UI (897): Setting value on screen to: Euro 183.95

I/ActivityManager(170): START {act=android.intent.action.MAIN cat=[android.in-
tent.category.HOME] flg=0x10200000 cmp=com.android.launcher/com.android.launch-
er2.Launcher u=0} from pid 170

W/WindowManager(170): Failure taking screenshot for (328x583) to layer 21015
W/IInputConnectionWrapper(897): showStatusIcon on inactive InputConnection
I/Choreographer(489): Skipped 42 frames! The application may be doing too
much work on its main thread.

Logat | 97

Filtering the logcat

I use the unfiltered view to get an overview of my entire process, but I often need to get
a more granular view. To do this, I use the custom tags I created to view the specific
categories I want to see. Because only the information I care about is displayed, it is
much easier to understand the specific operations I am interested in.

For instance, if I wanted to see only information related to user interactions, I could
filter based on the UT tag. In this case, I have an * next to the Ul tag (specifying I want
to see all messages), and an *:s to specify that I want to silence all other messages:

$ adb logcat UI:* *:s

D/UI (897): The user has pressed the button
D/UI (897): The user entered a value: value from the call is: 24324
D/UI (897): Setting value on screen to: Euro 183.95

Another example of something I need to track is the logic related to making the web
call and parsing the response. For this, I use a combination of NETWORK and JSON
categories to see the logic:

$ adb logcat JSON:* NETWORK:* *:s

D/NETWORK (897): URL to send: http://rate-exchange.appspot.com/currency?
from=USD&to=EUR&Qq=243.24-->

D/NETWORK (897): Response received

D/NETWORK (897): The return String is: {"to": "EUR", "rate": 0.756258035,
"from": "USD", "v": 183.9522044334}

D/JSON (897): Json Object is:
{"to":"EUR","v":183.9522044334,"from":"USD","rate":0.756258035}

D/JSON (897): Json parsed currency value: 183.9522044334

Debugging

Debugging is an important step in the development process, and can often take longer
than actually writing the code. Debugging Android apps can be particularly difficult
due to the various subsystems integrated into the OS. The ADT tools provide an inte-
grated debug environment that makes this process easier.

A common method for debugging code is to create “breakpoints” that are triggered
when code takes a certain execution path. The program execution pauses at that point,
allowing you to inspect the state of the system (including current variable values and
application status). You can use this information to analyze how code operates and locate
errors.

98 | Chapter7: Testing Your Code

Setting Your App to Debuggable

In order to debug an app, it is necessary to specify that your app is debuggable in the
application manifest. If you are deploying your app using the ADT tools (from Eclipse
or another IDE), this is done for you automatically. If you aren’t building your project
using those tools, you need to set this value manually. To specify that your app is de-
buggable, add the android:debuggable="true" attribute to the application element
in your AndroidManifest.xml file. It should look similar to this:

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:debuggable="true">

If you set the debug flag manually, don’t forget to remove it before
releasing the app to production. You don’t want this enabled in pro-
duction, as it will negatively impact your performance. If you forget to

remove it, there is a Lint checker (see “Lint” on page 107) that warns you
that this is set when you are doing a release build.

Setting a Debug Point

The starting place in debugging is usually to set a breakpoint in the source code of your
app. In Eclipse, this is done by clicking in the “alley” next to a code path and selecting
“Toggle Breakpoint” You can also set the breakpoint by pressing [Ctrl+Shift{+B| on
Windows or Linux, or Command)+Shift{+B|on a Mac. Either way; this triggers your IDE
to show the “Debug perspective” when that particular code path is reached during ex-
ecution. For example, in Figure 7-2, we set a breakpoint in the onCreate() method of
the LogcatDemoActivity. The small caret next to line 12 shows the location of the
breakpoint. During the execution of this code, when this code path is executed (in this
example, when the intializeView() method is reached), the Debug perspective will
automatically be launched, and the code execution will pause at this statement.

Debugging | 99

:e Java - Tmols_?_emoprﬁjww'sf /Lngcaﬁ)uemnktm[)‘java - Ecli pse
File Edit Refactor Source Mavigate Search Project Run Window Help
e e |E~ & dls-o0r-a-|y|Her|EGe 9~
e BRGNS e R
Quick Access | i | £5 Team Synchronizing % Debug @ DDMS @ Hierarchy View
5 | 1| ch0dxml wrlj *UlDemoActiv.. [3] ToolsDemoAc... L—Jj MemDemoActiv.., ﬂj LogcatDemoic.. &2 = & 5
i}] B;GI'TDDISDEmoProjEct b iHsic b [com.tools.demo b (C] LogcatDemoActivity b = |
e 1 package com.tools.demo; B
& 2 =
i@ % 3%import android.app.Activity;[] L
! @
2 public class LogcatDemoActivity extends Activity { 3 |
9 3 ¢
10 /** Called when the activity is first created. */ = |
11% @0verride B
«12 public veoid onCreate(Bundle savedInstanceState) { | ;
13 super.onCreate(savedInstanceState); =
014 initializeViews();
15 gt
16
178 private void initializeViews() {
18 setContentView(R.layout.logcatdemo); i
19
2e /fGenerate a bunch of different logcat messages i
21 Log.v("ToolsDemo", "Verbose"); %
4 ’ : r
1]
‘ Writable | Smart Insert ‘ & i |

Figure 7-2. Setting a debug breakpoint

The Eclipse Debug Perspective

After you have successfully configured your environment and set a breakpoint, the
Debug perspective will automatically be launched. It can also be launched manually by
selecting Window — Open Perspective - Debug. The Debug perspective will look sim-
ilar to Figure 7-3. Some sections on the screen are worth highlighting:

Debug
Shows the Android app that is being debugged and its currently running threads.

Variables
Shows the values of variables during code execution at the particular breakpoint.

Breakpoints
Contains a list of all breakpoints currently set in your app. In this view, you are able
to control them, including enabling or disabling them.

100 | Chapter7:Testing Your Code

Logcat
Displays the system log messages.

Code and outline tabs

Displays the currently executing source code, and an outline view.

2 Debug - Tool:DemeProject/sre/com/taolsfdemo/LageatDemoActivityjava - Eclipze

File Edit Refactor Source Mavigate Search Project Run Window ﬁ-elp
([= glad a8 d| 0% x| ®

B e s | eo s RBsEn Sl sees

Quick Access [| &' Java £ Team Synchronizing (%5 Debug | &5 DDMS (B Hierarchy View [
%5 Debug &2 2| & T = O =Variables 22 LB Y=0
4 [ToolsDemoProject [Android Application] -
4 &% DalvikVM(localhost8615] ‘
4 4® Thread [<1> main] (Suspended (brezkpoint at line 14 in LogcatDemoActivity)) |4
5] <VM does not provide monitor information> 13
= LogeatDemoActivity.onCreate(Bundle) line: 14 ‘7
= Instrumentation.callActivity OnCreate(Activity, Bundie) line: 1047
= ActivityThread performLaunchActivity(Activity ThreadSActivity ClientRecord, Intent) fin
= ActivityThread.handleLaunchActivity(Activity ThreadS Activity ClientRecord, Intent) line:
= ActivityThread.accessS1500(Activity Thread, Activity ThreadSActivityClientRecord, Inten .
= ActivityThread$H.handleMessage(Message} line: 931 -~ =
0= RIF v v
x| chbdxml [3] ToolsDemoActivityjava 1] MemDemoActivityjava [1] LogeatDemoActivityjava 52 [=]8 | 5 outline 32 =H
1 package com.tools.demo; s PEER Y et ¥
2 ‘ # com.tools.demo
% 3% import android.app.Activity;[] | 4 ® LogcatDemoActivity
7 .1 onCreate(Bundie) ; void
& public class LogcatDemoActivity extends Activity { B initiaizeViews() : void
5
10 /** Called when the activity is first created. */
11= @0verride
12 public void onCreate(Bundle savedInstanceState) {
13 super.onCreate(savedInstanceState);
®1a initializeViews();
| TR .
‘)
D LogCat 3 = 0 | Console 53 | & Tasks BBl Erir= 0O
DDMS
SavedFilters | Scarch for messages. Accepts Java regeres, Preficwitl [verbose = Il B} () &
All messages
Level Time PD TID Application 2
v RS i e 7 ayatem proces o
D 07-16 09:23:5... 233 233 com.andreid. launcher -
P F—— v
- il . 8
Writable Smertlnsert | 14:1

Launching ToolsDemaProject

Figure 7-3. The Debug perspective

Debugging Example

Let me take you through an example to show you exactly how to debug a specific element
of code. I created a very simple bit of code (see Figure 7-4) demonstrating how to use
the debugger to inspect a value at different points in the execution cycle. The function-
ality of the code is simple. It takes a value input by the user, stores the value to an internal
variable, and displays it back to the screen after a button has been pressed. Running the

app will look similar to Figure 7-5.

Debugging |

101

| [¥] DebugDemoActivityjava 3 | |
1 package com.tools.demo;

i@ import android,app,Actiuity;D

14 public class DebugDemoActivity extends Activity {

11 private TextView tv;
12 private EditText et;
13 private Button btn;
14

15 private String VALUE;

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R. layout . debug_layout);

tv = (TextView) FindViewById{R.id.debug_textview);
et = (EditText) findViewById(R.id.debug_edittext);
btn = (Button) findViewById(R.id.debug_button);

btn.setOnClicklistener{new View.OnClicklListener() {

public void onClick{View v) {
String entered = et.getText().toString();
VALUE = entered;
tv.setText(VALUE);

2 F

Figure 7-4. Debug example source code

Setting the debug points

The first step in debugging the app is to determine the appropriate points in the code
to create debug points. For this example, I would like to know the value of the VALUE
variable at two execution points. The first is before the user has entered anything, which
in this case is Line 28. I would also like to check the value after it has been set, so I'll set
another debug point at Line 30. Remember, to set a breakpoint, just right-click on the
line number and select “Toggle Breakpoint.” Notice (in Figure 7-4) the little blue indi-
cators next to each line number: these show that the debug points have been set.

102 | Chapter7:Testing Your Code

Stare / Display Value

Figure 7-5. Running the debug example

Starting the debugger

After setting the debug points, I start the debugger by right-clicking on my project and
selecting Debug As - Android Application (see Figure 7-6).

Profile As > Ji 2 Android JUnit Test 4

Validate = 3 Android Native Application f
Team i > 4 Java Applet ANHDA
3 Eo"l’pa"iv‘f‘::“ » &5 Java Application AX®D)
; eplace Wi " : SHEE
| Restore from Local History... b Mt Test AHOT f
| @ JAutodoc > Debug Configurations... E
Android Tools > |EEE </medicobject>
I igires
Properties 1 /para>
Resource Configurations > </s

a=S%how how tn start the

Figure 7-6. Starting debugging with the right-click menu

Debugging | 103

This is basically the normal routine I use to run my app. I must select a device from the
Android Device Chooser, and will navigate through my app to the point where I want
to start debugging. At this point, I am presented with a dialog (see Figure 7-7) asking if
it is OK to launch the Debug perspective. I click yes (and also select the checkbox on
the bottom to authorize this for next time). This launches the Debug perspective.

a.n.n - Confirm Perspective Switch

1 This kind of launch is configured to open the Debug perspective when it suspends.
This Debug perspective is designed to support application debugging. It
incorporates views for displaying the debug stack, variables and breakpoint
managerment.

Do you want to open this perspective now?

ET Remember my decision

Figure 7-7. Debug confirmation dialog

Stepping through the code

Atthis point, the Debug perspective is displayed, and the debugger has paused execution
at my first breakpoint (see Figure 7-8). Notice the first debug point (Line 28) is high-
lighted. I can now use the other tools to learn more about my code at this point. In
particular, I will use the Variables tab (on the top right) to determine the current state
of my VALUE variable. At this point, it is null because I have not entered the value as a
user.

To proceed to the next debug point, I need to tell the debugger to proceed. To do this,
I use the debug toolbar () to Resume (see Figure 7-9) and move to the next debug
point.

If you hover your mouse pointer over these buttons, their functional-
. ity will be displayed and you can discover advanced options for step-
-+ ping through your code.

104 | Chapter7:Testing Your Code

800 Debug - ToolsDemoActivity/src/com/tools/demo/DebugDemoActivity.java — ADT - /Users /mwolfson/android/workspace P
Tie L O I e
Q, Quick Access.) [B ‘aljava E0Team Synchronizing #3DOMS {5 Hierarchy View € Tracer for OpenGL ES | %5 Debug |
%5 Debug £ | 8 e e T | 5% T 2 O | 09 variables 32 | % Bmakpomls! 5 |F4 i
¥ [ToolsDemoActivity [Android Application] ‘Name Value .
¥ & DalvikvM{localhost:8517) ¥ @ mToken BinderProxy (id=83002:
¥ o Thread [<1> main] { ded kpoint at line 28 in Deb th b @ mUThread Thread (id=830012999
= DebugDemoActivity$ L.onClick(View) line: 28 4 mVisibleFromClient true
Button{View).performClick(} line: 4084 4 mvisibleFromserver true
ViewsPerformClick.run{) line: 16966 b = mWindow PhoneWindow (id=8300
Handler.handleCallback(Message} line: 615 & mWindowAdded true
3 Handler).dispatc|)i » @ mWindowManager Window$ LocalWindowM:
Looper.loop() line: 137 P E TextView (id=8300242;
ActviyToread maintutng(ne 4745
Methed.invokeNative(Object, Object(], Class, Class(l, Class, int, boolea | » G v Button (id=830024304¢
Method.invoke(Object, Object...) line: 511 WUt
ZygotelnitsMethodAndArgsCaller.run() line: 766
= 2Zygotelnit.main(String(l) line: 553

1

[J] DebugDemoActivity.java 52 |l chog.xm ‘

Gtowine | AV et Y= 0O

package com.tools. demo;

3@ import android.app.Activity;[]

com.tools.demo
v ©, > DebugDemoActivity
o tv: TextView

public class DebugDemoActivity extends Activity {

public void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);

9
10
11 private TextView tv;
1z private EditText et;
13 private Button btn;
14
15 private String VALUE;
16

~l7
18
19

setlontentView(R. layout. debug layout);
tv = (TextView) findvienById(R.id.debug_textvien);
et - (EditText) findViewByld(R.id.debug_edittext);
btn = (Bukton) FindViewById(R.id.debug buttom);

et ! EditText
btn : Button
VALUE : String

¥ @ .onCreate(Bundle) ' void
¥ new OnClickListener() {...}
@ .onClick(View) : void

btn.setOnClicklistenerCnen View.OnClickListener() {

public void onClick(View v} {
String entered - et.getText().toString();
VALUE = entered;
tv.setText(VALUE);

32 i

Z Tasks | 8B LogCat 3% | [Problems | () Executables |

saved Filters o = ff

Search for messages. Accepts Java regexes. Prefix with pid:, app:, tag: or text: to limit scope.

| eaMof175M |[] Android SDK Comtent Loader

| | verbose

Figure 7-8. First debug point

&7 O

IEEY Y

_ﬁzvzﬁ

Figure 7-9. Debug toolbar

After I press the Resume button, the debugger executes the code and stops at the next
debug point (in this case, Line 30). The view has changed (see Figure 7-10), because the
code has executed to the next debug point. Execution stops at this point, and I can
inspect my code again to determine how the values of my components have changed.

Looking at the Variables tab now, I see that the contents of the VALUE variable have
changed, and it now has the value New Text Entered.

Debugging |

105

¥ Thread [<1> main] (Suspended (breakpoint at line 30 in DebugDemoActi

[E] <VM does net provide monitor information>

DebugDemoActivity$ LonClick{View) line: 30
Button(View).performClick() line: 4084
ViewSPerformClick.run{) line: 16966
Handler.handleCallback(Message} line: 615
RootHandler(Handler).dispatct

Looper.loop(line: 137
ActivityThread.main(String[J} line: 4745
Method invokeNative(Object, Object(], Class, Class(], Class, int, boolea
Method invoke(Object, Object...) line: 511
2ZygotelnitsMethodAndArgsCaller.run() line: 786
2ygotelnit.main(String(]) line: 553

= NativeStart.main(String(]) line: not available [native method]

¥ = mToken
¥ @ mUiThread

» = mWindow

> L
» = VALUE
|New Text Entered

& mTitleReady
& mVisibleFromClient
& mVisibleFromServer

4 mwindowAdded
¥ m mWindowManager

8006 Debug - ToolsDemoActivity/src/com/teols/demo/DebugD: Activity.java - ADT - /Users/ on/android/ kspace e
- RO G (B o
W l B ‘%’j.wa £0Team Synchronizing E¥DOMS B Hierarchy View € Tracer for OpenGL ES | %5 Debug
45 Debug 3 | B Mz@ 2= [3 %= 0 |/e varables % | % Breakpoints| < B [t == 10
Name Value

true

BinderProxy (id=830024228560)

Thread (id=830012999016)

true

true

PhoneWindow (id=830024231272)

true

WindowSLocalWindowManager (d=83002423..
TextView (id=830024241288)

“New Text Entered" {id=830024178408)

J] DebugDemoActivityjava &2 | chobxml |

S0|Eomne | DR o T= 0O

1 package com.tools.demo;

3@ import android.app.Activity:[]

10 public class DebugDemoActivity extends Activity {

11 private TextView tv;
12 private EditText et;
13 private Button btn;
14
15 private String VALUE;
16
4175 public void onCreate(Bundle savedInstanceState) {
18 super.onCreate(savedInstanceState);
18
20 setContentView(R. layout. debug_layout);
21 tv = (TextView) findViewByld(R.id.debug textview);
22 et = (EditText) findviewByld(R.id.debug edittext);
2 btn = (Button) FindViewById(R.id.debug_button);
24
255 btn.setOnClickListener(nen View.OnClickListener() {

public void onClick(View v) {
String entered - et.getText().toString();
VALUE = entered;
tv.setText(VALUED;

b
33 1

£ com.twols.demo
v ©,; > DebugDemoActivity

oty TextView
o et: EditText
o btn : Button
o VALUE : String

¥ ®.onCreate(Bundle) ' void
v @& new OnClickListener() {...}

@ = onClick{View) : void

T = T T
= console 38 | & Tasks & LogCat | {2 problems ! 2 Executables

B[E-r-= o

Android

[2013-06-12 19:49:48 - ToolsDemoActivity] Attempting to connect

debugger to 'com.tools.demo' on port 8617

L11M of 191M Android SDK Content Loader

Figure 7-10. Second debug point

I can inspect other values at this point as well. If I click the “tv” component in the
Variables tag (representing the TextView from our code), I can get a variety of infor-
mation about this component (see Figure 7-11). I can get information about Android
attributes (such as padding, animations, or formatting) or state information (such as
the text content currently displayed). It is very useful to explore the various values
at different execution points in order to understand detailed properties of your

components.

106 | Chapter7:Testing Your Code

?(’CI= Variables £2 | ®g Breakpointsé

| Name

vE

BEE®B ¢

=

m

P EHEE P

EEEEEFEEFrE T

T

mAccessibilityCursorPosition
mAccessibilityDelegate
mAccessibilinyViewld

maAllowTransformationLengthC. ..

mAnimator
mattachinfo
maAutoLinkMask
mBackground
mBackgroundResource
mBackgroundSizeChanged
mBoring

mEottom

mBufferType
mCachingFailed
mChangeWatcher
mCharWrapper
mContentDescription

> mContext

mCurHintTextColor
mCurrentAnimation
mCursorDrawableRes
mCurTextColor
mDesiredHeightAtMeasure
mDispatchTemporaryDetach

oy Ry

TextView (id=830024244904)

=L

null

-1

false

null

ViewSAttachinfo (id=830024332936)

a

null

1]

true

BoringLayoutSMetrics (id=830024347832)
86

TextViewsBufferType (id=830014612392)
false

null

null

null

DebugDemoActivity (id=830024234016)
-8355712

null

a

-4276546

38

false

Figure 7-11. Inspect other values

Lint

Lint is a static analysis tool introduced in ADT 16 that scans your source code and
identifies potential bugs. You can run it from the command line, use it directly with the
Java or XML editors, and use it with your build tools. It is intended to identify potential
issues based on established rules and patterns. Lint highlights these problems, and in
many cases provides suggestions for remediation or quick fixes. It is a powerful tool and
an easy way to improve the code quality with minimal effort.

Lint checks for a variety of different issues. Examples include:

o Accessibility and internationalization, such as missing translations

User interface optimization, such as highlighting unused views
Security, such as highlighting that you are not using HTTPS
Code errors, such as inconsistent array sizes across classes

Resource problems, such as missing densities for certain icons

You can get a list of every issue currently enabled by issuing the lint --list command.
This outputs a list of the categories currently in use and a complete list of every issue
with a short description of its purpose. It looks like this:

Lint

107

$ lint --list

Valid issue categories:
Correctness
Correctness:Messages
Security
Performance
Usability:Typography
Usability:Icons
Usability
Accessibility
Internationalization

Valid issue id's:

"ContentDescription": Ensures that image widgets provide a contentDescription

"LabelFor": Ensures that text fields are marked with a labelFor attribute

"FloatMath": Suggests replacing android.util.FloatMath calls with
java.lang.Math

"FieldGetter": Suggests replacing uses of getters with direct field access
within a class

Command-Line Usage

The simplest way to get started with Lint is to run it on your project, and then examine
all the errors it reports back to you. This gives you a good overview of the kind of errors
Lint finds.

To run the tool, just execute the lint command, specifying the directory where you have
the source code of an Android project. If you specify a directory that contains multiple
projects, Lint will recursively check every project in the path.

Here’s an excerpt from a sample Lint report I ran on a project of mine. You can get an
idea of some of the items identified:

$ lint ./ToolsDemo

Scanning ToolsSDEMO: . .vitirin e eneeneneenennnnns
Scanning ToolsDemo (Phase 2):ccvvenennns
res/layout/gooduidemo.xml:15: Warning: Should use "sp" instead of "dp" for text
sizes [SpUsage]
android:textSize="20dp" />

res/layout/baduidemo.xml:167: Warning: [I18N] Hardcoded string "Text will go
here", should use @string resource [HardcodedText]
android:hint="Text will go here"

res/layout/baduidemo.xml:120: Warning: Duplicate 1id @+id/imageView2, already
defined earlier in this layout [Duplicatelds]
android:id="@+1d/imageView2"

108 | Chapter7:Testing Your Code

res/layout/imagesdemo.xml:23: Warning: [Accessibility]
Missing contentDescription attribute on image [ContentDescription]

>ImageView
N

res/layout/baduidemo.xml:89: Warning: This tag and its children can be replaced
by one >TextView/< and a compound drawable [UseCompoundDrawables]
>LinearLayout

n

0 errors, 80 warnings

$

The example I've included is only an excerpt, and doesn’t show every error Lint found
on my project. You can see in the last line that Lint found 0 errors—but 80 warnings,
and this project is pretty small. You should run Lint on your own project often, as you
are likely to see a variety of things that will improve the quality of your code.

Excluding issues

You likely will want to omit certain errors from being checked (perhaps you don’t sup-
port internationalization, so do not need to be warned about those issues). You can do
this from the command line by including the --disable list argument. The list is a
comma-separated list of issue IDs or categories you wish to exclude.

For example, I might want to eliminate any errors relating to the Internationalization
category (perhaps my app uses English only), as well as the specific ContentDescription
error (if 'm not worried if my images don’t appear). When I run the same report as
before, but with the - -disable argument in my command, Lint produces fewer items:
26 warnings, which is much fewer than the 80 reported before. This practice allows you
to narrow down the list of issues so you can concentrate on the particular ones that are
most important to you.

$ lint ./ToolsDemo --disable Internationalization,ContentDescription

Scanning ToolsSDEMO: .« .vuirereenenenennenenennnnenans
Scanning ToolsDemo (Phase 2):ccvvvnvnnn.
res/layout/gooduidemo.xml:15: Warning: Should use "sp" instead of "dp" for text
sizes [SpUsage]
android:textSize="20dp" />

0 errors, 26 warnings

$

It is important to mention that the --disable command is permanent, and not per
session. The issues will not be reported on your entire project, even when you test from
within Eclipse, or start a new terminal session. If you intend to disable the options
temporarily, make sure to enable them when you are finished. Simply issue the same
command as before, but use the - -enable option instead. This will rerun the Lint check
and re-enable these issues for future tests. The output will look like:

Lint | 109

$ lint ./ToolsDemo --enable Internationalization,ContentDescription

Scanning ToolsDEMO: . ..vtir i e eneneeneneenennnnns
Scanning ToolsDemo (Phase 2):ccvvenvennnn
res/layout/gooduidemo.xml:15: Warning: Should use "sp" instead of "dp" for text
sizes [SpUsage]
android:textSize="20dp" />

res/layout/baduidemo.xml:167: Warning: [I18N] Hardcoded string "Text will go
here", should use @string resource [HardcodedText]
android:hint="Text will go here"

0 errors, 80 warnings

$

Running in Eclipse

Inside Eclipse, it is very easy to start Lint. Just right-click on your project folder, then
choose Android Tools = Run Lint: Check for Common Errors.

After launching Lint, you will notice a new tab named Lint Warnings (see Figure 7-12).
This is the Lint UI you will use to track and fix the errors. It contains a tree of errors,
organized by issue type. This makes it easy to concentrate on a specific category. The
toolbar has a variety of actions for manipulating the list and options for customizing
the display.

[unewamings 2 S INBREX X%k EEA® =D
| 0 errors, 80 warnings R .
| Description | Category Location | Should use "sp" instead of "dp’ for text sizes
| & <uses-sdk> tag should specify a target API level (the highest v Correctness AndraidManifest.xml:7 ‘T-:u\st‘vuA:Lj s ook o trete o e e sread Ao Wi miom forent
| ¥ & Duplicate id @+idfimageView?, already defined earlier in this la Correctness baduidemo.xm|: 120 in layout (ToolsDa (raae.
| & Duplicate id @+1d /textViewd, already defined earlier in this | Correctness baduidemouxm|-LSS in layout (ToolsDe d: Spusage
» i This tag and its children can be replaced by one <TextView/> aPerformance baguidemo.xmi:89 in layout (ToolsDer|
i This text field does not specify an inputType or a hint Usability debug_layoutximl:15 In layout (Toolspfl "Her Setting text sizes, you shiould narmally use sp, of *scale~

independent pixels”. This is like the dp unit, but it is also scaled by
P iy, 118N] Hardcoded string "Bad UI Form Example:*, should use @s Internationalizatic baduidemo.xml:20 in layout (ToolsDer)| the user's font size preference. It is recommend you use this unit

| & Should use "sp" instead of "dp” for text sizes (6 items) L e A Tarey | when specifying font sizes, so they will be adjusted for both the

screen density and the user's preference.

s, Should explicitly set android:allowBackup to true or false (it's tri Security AndroidManifest.xmi: 10 (ToolsDemoad
| s Set androidbaselineAligned="false" on this element for better [Performance baduidemo.xml:83 in layout (ToolsDer| There are cases where you might need to use dp; typically this
|| » & The resource R.drawable.adt_notif appears to be unused (11 ite Performance adt_notif,png in drawable-hdpi (Toolsl) happens when the text is In a container with a specific dp-size. This
¥ s [Accessibility] Missing contentDescription attribute on image (5 Accessibility biaduidemo.xmi:96 in layout (ToolsDer| Wil Prevent the text from spilling outside the container. Note
mity - s | however that this means that the user's font size settings are not
s This LinearLayout layout or its LinearLayout parent is possibly uPerformance baduidemo.xml:142 in layout (7501204 respecied 5o conser adistng he ayou et to ¢ more flexble.

l http:/ /developer.android.com/training/ multiscreen/
| screendensities.html

Figure 7-12. Lint Warnings tab

110 | Chapter7:Testing Your Code

Lint toolbar menu

When you highlight an error, the toolbar (Figure 7-13) on the top of the tab becomes
enabled. This is the Lint Warnings toolbar, which provides a central place to disable
issues.

Figure 7-13. Lint Warnings toolbar

The buttons, from left to right, offer the following tasks:
Refresh

Reruns the Lint tests and displays new results.
Fix

Launches the XML or Java editor and modifies the source code to fix the issue.
Suppresses the selected error with an annotation/attribute

Suppresses the warning for the selected single instance, by placing the appropriate
notation in the source file.

Ignore in this file
All instances of the selected issue will be suppressed for the entire file.

Ignore in this project
All instances of the selected issue will be suppressed for the entire project.

Always ignore
You will not see the selected error reported from any project or file.

Remove
Deletes the selected issue from this view, but does not disable the issue, so it will
reappear the next time you run Lint.

Remove all
Deletes all issues from this view, but they will reappear the next time you run Lint.

Expand all
Expands every node in the issue tree so you can see every independent issue
reported.

Collapse all
Collapses the issue tree so the items are grouped into categories.

Lint | 1M

Options
Launches a dialog (see Figure 7-14) that contains a few important options. This
dialog provides another way to enable or disable issues and examine the issues that
are enabled. This is also where you set your preferences for how and when Lint

runs.
Mals) Preferences
Default/Global Settings Default/Global Settings

Settings for ToolsDemoActivity

When saving files, check for errors

[g Run full error check when exporting app and abort if fatal errors are found

Issues:

'Q, type filter text (use ~ 1o filter by severity, e.g. ~ignore)

id Name]
¥ Correctness
SdCardPath & Looks for hardcoded references to fsdcard
(®) Finds APl accesses to APIs that are not supported in all targeted...
InlinedApi & Finds inlined fields that may or may not work on older platforms
Override 3 Finds method declarations that will accidentally override metho...
InvalidPackage 3 Finds APl accesses to APIs that are not supported in Android
Duplicateincludedlds & Checks for duplicate ids across layouts that are combined with i...
Duplicateids) Checks for duplicate ids within a single layout
DuplicateDefinition & Discovers duplicate definitions of resources
Unknownld 3 Checks for id references in RelativeLayouts that are not defined... |
Finds APl accesses to APls that are not supported in all targeted APl versions Severity:
This check scans through all the Android API calls in the application and warns | |_E7er
about any calls that are not available on *all* versions targeted by this
application (according to its minimum SDK attribute in the manifest).
| Include All | | Ignore All | | Restore Defaults | | Apply |
@ | Cancel | [——Ql@'—-]

Figure 7-14. Lint options

Java and XML editor integration

By default, Lint runs automatically, so you have likely already seen the errors it flags.
Depending on the option you specified, you will see the errors flagged when you are
typing or when you save your file. When Lint encounters an error, it places a marker at
the line of code with the problem. To learn more about the issue, hover your mouse
over the warning icon, or the line of code (underlined in yellow) to learn more. Figures
7-15 and 7-16 show how this looks in both the XML and Java editors.

12 | Chapter7:Testing Your Code

14 cText\hewl
android:id="8+id/tool_demo_text"
android: layout_width="wrap_content”
android: layout_height="wrap_content"”
android:layout_gravity="center_horizontal "
android: layout_marginTop="8dp"

[118N] Hardcoded string "Bad Ul Form Example:", should use @string resource
android:textSize="28dp" />

23 <Button

Figure 7-15. Lint warnings in XML file

1 backage com.tools.demo;
i‘\b 3@ ‘Multiple markers at this line
12 - The import android.widget. TextView is never used

13 pmo.lhe import android.content.Intent is never used iy, [

|l 15 private Button eatMemory;
|16 private Vector vect;
Bt
18 /** Called when the activity is first created. */
193 Blverride
|28 public void onCreate(Bundle savedInstanceState) {
|21 super.onCreate(savedInstanceState);

Figure 7-16. Lint warnings in Java file

Quick Fix tool

It is likely that you will want to do more than just learn about the errors in your code—
you probably want to fix the problems! There is a “Quick Fix” tool that makes fixing
errors very easy.

The best way to invoke this feature is to select the code with the error, and press|Ctrl+1]

on Windows or Linux, or + on Mac OS X.

After you launch the “Quick Fix” dialog, you will be prompted with a variety of options
for handling the particular warning. These are the same options provided by the Lint
toolbar (see “Lint toolbar menu” on page 111). The options will look like Figures 7-17
and 7-18 in Java, respectively.

It is possible that this functionality won't work for every issue you have. In cases where
the system is unable to provide a “Quick Fix,” you need to debug the code yourself and
determine the way to fix your problem.

Lint | 113

& <TextView

</EditTexts

<Button
android
android

4 android
1@ android:
11 android:
12 android:
a13 android:
14
@15 <EditText
16 android:
17 android:
18 android:
19 android:1
20 android:
android:
android:

<requestFocus />

1id="B+id/debug_textview"”
layout_width="wrap_content"”
layout_height="wrgp_content"”
layout_marginTop="24dp"
text="Initial Texi" />

55 Extract String

i Explain Issue (HardcodedText)
1d="E+1 d‘_/da @Add ignore "HardcodedText' to element
Layout wid Disable Check in This File Only
Disable Check in This Project
layout_marg Disable Check
layout_marg ¥ Clear All Lint Markers
ems="18" > '-@r Extract Android String
F%f Extract Style

= Surround with new element

\Hardcoding text attributes directly in layout files is
bad for several reasons:

*When creating configuration variations {for example
for landscape or portrait)you have to repeat the actual
text (and keep it up to date when making changes)

* The application cannet be translated to other
languages by just adding new translations for existing
string resources.

In Eclipse there is a quickfix to automatically extract
this hardcoded string into a resource lookup.

1id="B+id/debug_button"
:layout_width="wrap_content"”

Figure 7-17. Lint Quick Fix in XML

@0verride

public void onCreate{Bundle saovedInstanceState
super.

1 pockoge com.tools.demo;

—import java.util.Vector;

import qndroid,c_bntgnLIn_t_en_t;

import android.o +* Remove unused import
& import android.u & Organize imports
9 import android.
14 import android.w
import android.w

3
4
5 import android.app.Activity;
£

12 public class Mem

private Butf
private Vect

/** Called w

Press

onCreate(savedInstanceState);

|...
import android.app.Activity;

v " i — limport android.os.Bundie;
@ Add @SuppressWarnings ‘unused’ to MemDemimpon android.util.Log;

Press Tab' from proposal table or click for focus

Figure 7-18. Lint

Quick Fix in Java

14 |

Chapter 7: Testing Your Code

CHAPTER 8
Simulating Events

There are a variety of occurrences you will want to test that are difficult to replicate as
they would happen in real life. In these cases, tools are available that will allow you to
simulate events so you can test effectively.

Simulating Location and Routes

For instance, testing location can be challenging. It is impractical or impossible to travel
to remote locations or simulate the exact same track over and over again. Fortunately,
the DDMS tool provides a way to specify a location you would like your emulator to
simulate (as latitude/longitude coordinates), or a path you would like to simulate (in
the form of GPX or KML).

To simulate location, you need to open the DDMS tool (see “Launching the DDMS
Perspective” on page 152). To launch the Eclipse perspective, select:Window — Open
Perspective... - Other... > DDMS - OK.

Next, open the Emulator Control tab (which looks like Figure 8-1). In this tab, you can
see a section marked Location Controls, where you can enter location attributes. When
you are done entering your personalized data, hit the Send, Load GPX, or Load KML
button (depending on which type of data you are working with). This causes your em-
ulator to simulate the location you specified.

115

— B
= DDMS - Bookz_.rc_hosm- (=l &J
| A A e
File Edit Refactor Mavigate Search Project Run Design Window Help
[EE O B B e e B
‘ - Bt IRt 6 v| “ Quick Access Ef‘ & Java £ Team Synchronizing % Debug
5 %, Threads Heap Allocation Tracker % Metwork Statistics 151 File Explorer | @@ Emulater Control 53 :‘:' | & 5.
et} Location Controls 14 i
B || | Manual [gex [rmL |
= @ Decimal
= ;
E 71 Sexagesimal
Longitude -122.084095
Latitude 37.422006
=
El
Android SDK Content Loader '
‘ -'. droidoftheday@gmail.com

Figure 8-1. Simulating location with the emulator

The following steps demonstrate how to simulate a particular location on your device.
The same process can be used to simulate a path using KML or GPX.

1. Launch the DDMS perspective in Eclipse.

2. Locate a device or emulator you want to work with, and highlight it in the Devices
tab.

3. Select the Emulator Control tab in the right-side pane (as shown in Figure 8-2).

4. In the Telephony Actions section, scroll to the bottom section labeled Location
Controls. In this section, select the Manual tab, and enter a valid latitude and lon-
gitude in the form. The default value (which is the default value that is set) is
Mountain View, California.

116 | Chapter 8: Simulating Events

800 DDMS - Book/ch05a.xml - ADT - /Users/mwolfson/android /workspace i
ri-EHE il B R R SR, =il o= (Q Quick Actess E |33J,Iav;| £0Team Synchronizing |3 DDMS
B Devices 3 | = B || @ emulator Control 52 | =i
i | 5} @3 ’j |%ﬁ %?} @ |E“:|| |@ ‘ m‘ ¥ | Location Controls
Name
| & JBwithGoogle [emulator-5554] __[Onlinel |

system_process 309 (=) Decimal

com.android.browser 852 =

i} () Sexagesimal

com.google.android.apps.maps 718 =

com.android.systemui 466

com.android.inputmethod.latin 405

com.google.process.gapps 594

com.android.phone 534 | Send |

com.android.calendar 8113

android.process.acore 8382

com.android.launcher 667

Com.epocrates.stm 6975

com.android.location.fused 572

com.android.exchange 809

com.google.process.location 756

com.android.mms BEB2

| 164Mof 201M | Android SDK Content Loader

Figure 8-2. Setting up a location simulation

5. You might need to enable Location Settings on your device if it hasn’t been done
already (see Figure 8-3). You will be prompted the first time you try to access your
location if you need to do it.

6. Press the Send button to simulate this location of your device. Your device now

reflects this location.

Simulating Location and Routes

17

® OO 5554:JBwithGoogle

Lalgary
<

&

Vancouner
¢
¥
Washingie Siendana
Oregan
= idaho
Mevada
Unah
San Franciscos,
280 FIBNCISCORyc yifomia
Log Angeles

Asizona

3 Phoenix
San Dweqt

Figure 8-3. Viewing a location simulation

Simulating Telephony Operations

The Emulator Control tab has another section called Telephony Actions (see
Figure 8-4), which can simulate telephone events and radio connectivity functionality.
This is a useful way to interact with the emulator if you need to simulate phone calls or
SMS messaging. It is also useful to adjust radio settings in order to learn your app’s
effectiveness in situations where connectivity is less than optimal. The top of the tab
has a section titled Telephony Status. If you would like to simulate connectivity issues
(such as latency or packet loss), you can adjust these settings. The other section, named
Telephony Actions, is where you simulate phone calls or messages. To simulate either
of these actions, enter a value for the return phone number, select the operation you
want to perform (either phone call or SMS), enter your SMS message content (if ap-
propriate), and click the Send button.

118 | Chapter 8: Simulating Events

= DDMS - Book2/ch05xml - Eclipse . = | =l
. File Edit Refactor Mavigate Search Project Run Design Window Help
e e o= E B e R e e
‘ - Bt IRt 6 v| “ Quick Access Ef‘ & Java £ Team Synchronizing % Debug
& %, Threads Heap Allocation Tracker % Metwork Statistics 11 File Explorer | i@ i = 2 5
= Telephony Status = Mt
=2 Voice: | home | Speed: | Full b
:1' Data: [home '] Latency: [None 'l =
E Telephony Actions
Incoming numben [
@) Voice
SMS
Calll | Hana Lin =
i
Android SDK Content Loader l
-'l droidoftheday@gmail.com

Figure 8-4. Emulator telephony simulation

The following steps demonstrate how to generate an SMS message. This is the same
process used to simulate phone calls.

1. Launch the DDMS perspective in Eclipse.

2. Locate a device or emulator you want to work with, and highlight it in the Devices
tab.

3. Select the Emulator Control tab in the right-side pane (Figure 8-5).

Simulating Telephony Operations | 119

com.android.providers.calendar
SYStem_process
com.android.browser
com.google.android.apps.maps
com.android.systemui
com.android.inputmethod.latin
com.google.process.gapps
com.android.phone
com.android.calendar
android.process.acare
com.android.launcher
comm.epocrates.stm
com.android.lacation.fused
com.android.exchange

Telephony Actions

() Voice

(=) SMS

Message:

| Send |

Location Controls

Incoming number: [5555551212

®00 DDMS - Book/ch05a.xml - ADT - fUsers/mwolfson/android /workspace v
i B & L B R EERE RS =T =E N
Q, Quick Access [E’ | anava EDTeam Synchronizing @DDMS

B Devices 2 y = B || @ emulator Control 52 | = 0
ik | == | |%-:"., %‘?: W |f§l| | Telephony Status
¥ Voice: | home & | Speed: | Full :|
Name S —

E:. JBwithGoogle [emulator-5554] | Data: | home : | Latency: |,L_|

This is an example SM5 message.

Hang Up

| 153Mof37sm |

Figure 8-5. Setting up SMS simulation

4. (Optional) Adjust the Speed and Latency settings if you want to test how your app
will perform with poor connectivity.

example message text.

. In the Telephony Actions section, enter a phone number (without dashes) and your

Press the Send button to send your simulated message, which will show up on your

device or emulator. Your device shows an SMS has come into the system (as shown

in Figure 8-6).

120 | Chapter 8: Simulating Events

® 00 5554:)BwithGoogle

2:10 weo, wancse XX
OO0

(555) 655-1212

oy

Figure 8-6. Viewing SMS simulation

Changing Networking Parameters

You likely will want to change the networking parameters of your device. This can be
useful when you want to forward requests from your computer to your emulator or
device (perhaps you want to test a configuration of the local network on the Android
system).

It is pretty easy to do this using ADB. The syntax will look like this example:
adb forward tcp:9222 tcp:9333

Then, the next time you ping
localhost:9333

from your local desktop, your command will be forwarded directly to your Android
device.

Changing Networking Parameters | 121

Using a Device with Sensor Emulation

It is difficult to simulate certain activities using the emulator, such as when simulating
multi-touch or interacting with motion-based sensors such as the gyroscope. To work
around this challenge, ADT provides the capability to connect a physical device to your
emulator and use the sensors on that device to interact with your emulator. The app
running on the emulator monitors changes in the device sensors, which are transmitted
to the emulator and injected into the system image. This allows you to generate various
sensor events using your physical device, and transmit them to your running emulator.

In order to use this feature, you need the system image for Android version 4.0, release
2 or greater running in your emulator.

The steps to enable sensor emulation are:

1. Edit the AVD you will be using. Add the hardware property “Multi-touch screen
support,” and set it to true. Chapter 3 describes how to do this.

2. Install the SdkControllerSensor application on the device. You can find the source
code for this application in the $SDK/tools/apps/SdkController folder.

Enable “USB debugging” on your device, and connect it to your computer.
Run the SdkControllerSensor application on the device.

Select the particular sensors you wish to emulate using the application.

A A

Enable port forwarding by running adb forward tcp:1968 tcp:2068 from the device’s
shell command line.

7. Start the emulator that you plan to test with.

Port forwarding can be unreliable. If you are not seeing sensor events in the emulator,
run the adb forward tcp:1968 tcp:2068 command again to restore the connection.

Advanced Sensor Testing

If you are writing an app that makes extensive use of sensors, you will likely face many
challenges when testing them. Testing different scenarios can be difficult, even impos-
sible in many situations. It can be impractical to test extreme situations. For instance,
ifyou need to test extreme temperatures, you can’t put your phone in the oven or freezer.
It is also difficult to test the exact precision of other sensors (try holding your phone
still for a long period when testing the gyroscope for instance). SensorSimulator, an
open source project managed by OpenlIntents.org, makes sensor testing much more
practical.

SensorSimulator is a series of applications, including a desktop component and multiple
APKs. You can use the desktop component to send real-time sensor events to your

122 | Chapter 8: Simulating Events

http://bit.ly/16zLVem

device. Having the precise control and ability to reliably trigger sensor interactions is
extremely valuable when writing apps that make use of sensors. This tool also provides
the ability to record a series of sensor events that can be played back on a device. You
can create a scenario (using the desktop app, or by recording events on your device),
then save it to play back. This is an extremely valuable regression tool, as it allows you
to trigger consistent sensor actions over and over.

Supported Sensors

The SensorSimulator project currently supports a variety of sensors including acceler-
ometer, compass, orientation, temperature, light, proximity, pressure, gravity, linear
acceleration, rotation vector, and gyroscope sensors. You can control how each of the
sensors are being simulated using the Sensors tab (the right side of Figure 8-7 shows
this). Sensors can be enabled or disabled in this window (they will be highlighted in blue
when enabled). Only enable the sensors you are testing so you only see the particular
datain which you’re interested. If you want to modify the values of some of these sensors,
you can do that in the Quick Settings and Sensors Parameters tabs.

NI

sensors | Scenario Simulator | Quick ettings | Sensors Parameters | |

(@ yaw & pitch () roll & pitch () move

\ l‘\ Choose Device
>

Medium =

Basic Orientation Environment Sensors
Sensor update: 10.60 ms — T
it temperature
|| accelerometer: 0.00, 6.69, 7.17 il light
magnetic field: 14.73, -15.93, -44.18 mag - (gt)
orientation: 336.00, -43.00, 0.00 I orientation proximity
light: 400.00 S -
ity: 0.00, 6.69, 7. ressure
gravity: 0.00, 6.69, 7.17 ¥ Extended Orientation lp—J
e ———— Other Sensors
linear acceleration -
gravity barcode reader
rotation vector

Write emulator command port and click on set |_gyroscope |
1o create connection. Possible IP addresses:

10.0.2.2
192.168.1.102

—_— |
h Sensor Simulator

Figure 8-7. Optional sensors

Simulating Sensor Events in Real Time

You will download, install, and run this tool the same as any other native application
(the simple instructions are on the project website). Run a desktop Java application (bin/
SensorSimulator.jar) on your computer, install, and run an APK on your device (bin/
SensorSimulatorSettings-x. x. x.apk), and then connect the two processes together using

Advanced Sensor Testing | 123

your WiFi connection. Once connected, use the desktop application to send sensor
events and view them on your device. Figure 8-8 shows an example of what it would
look like to use the accelerometer sensor to simulate moving the phone. You move the
mouse in the desktop to “move” the phone, and can see these interactions on your device.

8 .0.0 5554:GalaxyNexus_phone_4.

@ =
(®) yaw & pitch () roll & pitch () move

}j * Cl

|Sensor update: 10.40 ms

magnetic field: 3.11, -29.23, -39.48
orientation: 7.00, -65.00, 0.00

light: 400.00

gravity: 0.00, 8.89, 4.14

accelerometer: 0.00, 8.89, 4.14 §‘

Write emulator command port and click on set agne eld
1o create connection. Possible IP addresses:

10.0.2.2
192.168.3.33 orientatic
192.168.1.102

| Sensor Simulator (]

Figure 8-8. SensorSimulator accelerometer example

Recording Sensor Scenarios

In addition to simulating events, you can also use this tool to record a series of sensor
events to play back ona device or emulator—called a scenario. This is extremely valuable,
asitenables repeating the exact same sensor events over and over. This makes regression
testing easier. For example, you could record the exact interactions required to pass a
level of your gyroscope controlled game—then play it back against a build to validate
it for production.

The easiest way to create scenarios is to use the Java app to generate them. The righthand
section of Figure 8-9 has a Scenario Simulator tab. To create a scenario, create a sensor
event representing a particular sensor state. You can then create more events, and string
them together to play out a scenario (using the controls on the bottom of the tab).

124 | Chapter 8: Simulating Events

Figure 8-9 shows how this would look if you were trying to simulate rotating the phone.
You can use the simulator to set up your sensors, or modify the values directly by typing
preferred values in the middle tab. After you create a scenario you like, save it, and load
it later to play it back on any device.

8086 Si
0= [a] 7]
sensors | Scenario Simulator | Quick Setings | sensors Parameters | Jl

bl Create I Load It Record I save

IR
? accelerometer: 6.29, -7.51, -0.44
L/ Ton magnetic field: -16.72, 43.33, -16.31
N/ S orientation: 327.00, 50.00, -94.00

temperature: 0.00

light: 400.00

proximity: 10.00

pressure: 0.00

linear acceleration: 0.00, 0.00, -0.00

®

() yaw & pitch @ roll & pitch (O move

Sensor update 10.70 ms gravity: 6.29, -7.51, -0.44
e rotation vector: 0.42, -0.28, -0.73
magnetic field: ~16.72, 43.33, -16.31 £ gyroscape: 0.00, 0.00, 0.00
orientation: 327.00, 50.00, -94.00
temperature: 0.00 |
barcode reader: 1234567890123 — — P — —
light: 400.00 —[A I X F .Y
proximity: 10.00 iy
pressure: 0.00 i —) — —
linear acceleration: 0.00, 0.00, -0.00 . (\/ . .
gravity: 6.29, 7.51, -0.44 : A : .
rotation vector: 0.42, -0.28, -0.73 = = —
roscope: 0.00, 0.00, 0.00 2 - "
ayroscop e " * &
Write emulator command port and click on set 2/ Stop=2
to create connection. Possible IP addresses: L i
1
10.0.2.2 Start=0
192.168.1.102 s
(] (m] Otoop

i Sensor Simulator

Figure 8-9. SensorSimulator recording scenarios

It is worth mentioning that you can record sensor interactions on a physical device. For
complex scenarios, this is a simple way to record a series of Ul actions that you can play
back in the simulator later. Install and run an app on your device (SensorRecordFrom
Device.apk, available in the bin directory) that allows you to record sensor activities.
You can then play back the recorded scenario using the desktop application in the same
manner as if it were created using the tool itself. This makes mapping a complex Ul
interaction pretty simple because you can simply record your interactions and reliably
play them back over and over. For complex scenarios, this might be a more efficient way
to record a series of events than creating them using the Java tool.

Advanced Sensor Testing | 125

Developer Options Menu

The Android 4.0 release included a revamped Developer tool that introduced some very
interesting features. The tool can be accessed by opening the Settings app on your phone,
then selecting “Developer Options” (if you are on a version 4.1 or newer device, see Tip
to enable this option). The app (see Figure 8-10) includes a variety of advanced options
that can help you understand your UI and app performance on a deeper level. These
options include:

Strict mode enabled

This flashes the screen when an app is doing a long operation on the UI thread.
This is useful to help identify UI freezes and discover times when the UT is unre-
sponsive. Mobile users perceive very small delays, so you need to minimize these
whenever possible. This option makes pinpointing these long-running processes
easier so they can be moved to the background and off the UI thread (where they
won't cause your app to freeze).

Pointer location

Figure 8-11 shows how you can highlight a specific location on the screen. You can
place your finger or mouse at any place on the screen to determine the exactlocation
of that touch point. This is useful when you need to identify items that are hard to
touch, determine optimal spacing between targets, or otherwise fine-tune touch
interactivity. You can gather exact locations on your UI based on pixel measure-
ments, which can be useful if you are trying to map your UI components to a very
exact location on the screen (which can be critical in certain types of applications
including games or other graphic-intensive apps).

Show screen updates

This feature flashes independent areas of the screen to highlight when different
components of the screen are repainted. This is useful when trying to improve
performance. You can identify large screen redraws and try to reduce them by
selectively refreshing certain views instead of the entire screen.

Don’t keep activities

Enabling this option forces the Android system to destroy activities as soon as the
user leaves them (under the normal activity lifecycle, they probably would be moved
to the background, but kept alive). This can be useful when trying to debug an issue
that is isolated to a single activity. Normally, if you want to test an activity that is
initialized to a new state, you would be required to quit your application completely
(using the system menu). Using this option allows you to destroy your current
activity, ensuring that when you start it again it is initialized from a clean state.

126

| Chapter8: Simulating Events

()Y -

F Developer options

Take bug report

Desktop backup password
Desktop full backups aren't currently protected

NEVEWELE
Screen will never sleep while charging

Protect USB storage

Apps must request permission to read USB
storage

] 3:10]cle]] e

USB debugging

Debug mode when USB is connected
Power menu bug reports
Include option in power menu for taking a

bug report

Allow mock locations
Allow mock locations

> -

Figure 8-10. Viewing the Developer options

Force GPU rendering

This makes the system use hardware acceleration to render graphics. Enabling this
option will offload graphics rendering to the GPU, which frees up the CPU for other
operations. In many cases, this will improve your application performance, but in
some cases this may cause issues. I suggest you enable this feature, and if your app
performs as expected leave it enabled. If you are testing an app that makes extensive
use of graphics, enabling this option should give you a better idea of how your app
will perform on a modern device (that has a GPU).

Developer Options Menu | 127

800 5554:GalaxyNexus_phone 412 xhdpi

i i b il
o VA e
o leilpilede sl dicdinl
2]z [x e v |5 |n [w]. |e]

L [SYIM

Figure 8-11. Highlighting a specific location with the display pointer

128 | Chapter 8: Simulating Events

CHAPTER 9
Build Tools

When building apps, at some point it will be necessary to compile your code, and pack-
age it into a deployable artifact. This chapter outlines the tools used to do this.

The automated build tools can also package Android applications. There is support
for a variety of tools, including Ant, Maven, and most recently Gradle. It is beyond the
scope of this book to go into a lot of detail about using these tools, but let’s go through
some basic concepts to get you started.

Compiling Your Code

When writing computer applications, it is necessary to translate the computer language
you are using (in our case Java) to a different computer language that the computer can
understand (in this case, Dalvik Compatible executables, or DEX files). This process is
called compiling. You will need to do this during the coding process in order to validate
your code, and also when you are packaging your code for release.

If you are running the most current version of Java (or anything newer than version
1.6), it is necessary to set the compliance level of your project in order to get Android
to build correctly. To do this:

1. Right-click on your Android project.

2. Select Properties - Java Compiler.

3. Check the “Enable project specific settings” option.
4

. Choose either 1.5 or 1.6 from “Compiler compliance settings.”

The code will then be compiled if you are using Eclipse and have the “Build Automat-
ically” setting selected. To select it, make sure Project - Build Automatically is checked.

129

http://www.gradle.org

Packaging an APK for Release

In order to release your app to the Android market you need to create an Android
application package file (APK). This is a specially formatted ZIP file that contains the
various components of your app (including compiled code, static resources, library
code, and the manifest file). To create an APK, source code is compiled into DEX files,
which are packaged together with the other components, and then signed. The output
of this process will be a file with the .apk extension. This file can then be deployed to
your test devices, or uploaded to the Google Play Store for distribution.

Signing Your App

The Android system requires you to digitally sign all apps with a certificate before
deploying them to the Google Play Store. Android uses the certificate to verify the
identity of the developer, which is used to establish trust relationships between apps and
the framework.

There are some important things to know about these certificates:

+ You must sign your app to install it on an emulator or device.

o When you are developing your app, the build tools will sign your app with a debug
key. This key cannot be used to sign an app for release to end users.

o Self-signed certificates are allowed. They do not need to be signed by a signing
authority such as Verisign.

o It is important to ensure that your key is valid for the entire expected lifespan of
your application. The Android docs specify that you should use 25 years for the
validity term (it must expire after October 22, 2033 if you plan to deploy to the Play
Store).

A A
e It is extremely important to keep track of the key you are using to sign
f‘: _ your app if you plan to deploy to the Play Store. You will need to use
"1l the same key for all updates to your app. If you are not able to sign
your app with the same key, they will never allow you to update it.

130 | Chapter9: Build Tools

You can take care of these tasks through either a wizard or the command line. I'll show
the wizard first because it’s easier.

An Export wizard in the tools can walk you through the process of creating a signed
APK for deployment. It automates a variety of steps and is easy to use. Launch the wizard
by right-clicking on your project and choosing Android Tools - Export Signed Appli-
cation Package. You are presented with a series of screens that walk you through the
process of creating a Java keystore, and building an APK for deployment.

1. Project checks. The wizard performs a variety of checks to ensure the project is valid
and able to be exported. If the checks pass, the user is presented with the initial
screen (see Figure 9-1).

F S
= Export Android Application

Project Checks

Performs a set of checks to make sure the application can be exported.

Select the project to export:

Project: ToolsDemoProject Browse...

No errors found. Click MNext.

| H

[==]
o

Figure 9-1. Launching the Build wizard

Packaging an APK for Release | 131

2. Keystore selection. This screen allows you to select a valid keystore to be used to
sign the app. If a valid keystore doesn't already exist, you can choose the Create New
Keystore selection to generate a new one (Figure 9-2).

i p—
= Export Android Application

Keystore selection

) Use existing keystore
@ Create new keystore

Location: Ch\Temphsample_key Browse...

Password: eessssss

Confirm: esessses

@ | < Back |[Next = J Finish i

e

Figure 9-2. Selecting a keystore and entering credentials

3. Keystore creation. If you want to create a new keystore for signing your app, enter
all the required information into this form (Figure 9-3). The wizard then generates
the key for you. This is easier than using the Java keytool to generate the key.

132 | Chapter9: Build Tools

-
= Export Android Application

Key Creation

Alias tools_alias
Password: sssssssssssen
Confirm: ssssssssnsnen

Validity (years): 30

First and Last Narme: ADT Master
Organizational Unit: BigUnit

Organization: United Future Organization
City or Locality: Some town

|| State or Province: CA

Country Code (XX): U

@J | < Back H Next =] Finish Cancel

e

Figure 9-3. Confirming keystore information

4. Keystore check. The next step in the process is to validate the keystore to ensure it
is valid for the amount of time necessary. If the keystore is valid, the APK is gen-
erated and placed in the location you specify (Figure 9-4).

At this point, you have successfully generated a signed APK that can be deployed to the
Play Store or Android devices.

Instead of using the wizard, you can sign an APK using the standard Java tools, then
use the command line to sign the app. To do this, first compile your project and generate
an APK file (yourApp.apk in the example). Then enter the following command:

jarsigner -keystore your-key.keystore yourApp.apk alias_name

Building from the Command Line Using Ant

Ant is a standard Java build tool that Android uses to build projects under the covers.
Although the ADT team is replacing Ant with Gradle (discussed later in this chapter),
Ant is still the most full-featured build tool for Android. It includes a variety of scripts
that can easily be modified to suit your individual needs. This build tool is very robust,
and can be extended to do many useful things (such as running automated tests or static
analysis tools). You can learn more about it at the Apache Ant home page.

Building from the Command Line Using Ant | 133

http://ant.apache.org/

F S
= Export Android Application

Destination and key/certificate checks

Destination APK file: C\Temp\ToolsDemoProject.apk

Certificate expires in 25 years.

I @ < Back peis [Enish][Concel

e

Figure 9-4. Defining destination location for APK

Ant comes preinstalled with ADT, and will automatically be available if you have cor-
rectly set your PATH (review “Setting your PATH variable” on page 5). There are two
main types of builds you can do.

Debug mode
Used for testing and debugging your app.

Release mode
Used when creating a package for release.

Building an Android app (regardless of the type of build you are doing) involves the
following steps:

1. Compiling the Java code into DEX bytecode.

2. Building the Android project into a deployable APK file.

3. Signing the APK, so it can be deployed to an emulator or device—remember, all
apps must be signed before they can be deployed to a device.

If you are building from Eclipse, these steps are automatically performed by the tool. If
you are using Ant to build from the command line, some of these steps need to be done
manually.

134 | Chapter9: Build Tools

Setting Up Your Project

In order to build, you need to create a build.xml file that provides Ant with the infor-
mation it needs to build the project. This file is where we will set up information about
signing our app, running Lint, or mapping project dependencies.

Creating the Ant build.xml file

Anyone who has experience with Ant knows that these build files aren’t always the easiest
to work with. Build files become large and disorganized quickly.

Fortunately, ADT provides a tool that creates build.xml automatically. To execute this
command, open a command prompt at the base directory of your project, and execute
the Android update command. Its syntax is:
android update project --name project_name --target target_api_id
--path path_to_project
Although you can omit some of the command-line options and leave as-is the command
settings in the existing project files, it is often useful to override these settings in order
to specify support for certain platforms, or to specify path values. For example:
android update project --name YourProject --target 17 --path /Users/yourUserId/
workspace/YourProject

If you don’t want to specify custom values, and are working from the base directory of
your project, you can simply enter:

android update project -path .
Building applications from multiple source libraries

It is very common to use open source libraries and other external sources of code when
writing Android apps. In some cases, you can simply compile that library into a JAR
file and include it directly in your project. In other cases, the library should be compiled
as part of your build process. This is easy to accomplish using the Android tools if you
follow some simple steps.

1. Define your project dependencies and target API. You should have a file in your
project home directory named project.properties. This file contains the listing of
each of the libraries you have as dependencies. A sample file follows.

This file is automatically generated by Android Tools.
Do not modify this file -- YOUR CHANGES WILL BE ERASED!

This file must be checked in Version Control Systems.

"ant.properties"”, and override values to adapt the script to your

#
#
#
#
To customize properties used by the Ant build system edit
#
project structure.

#

#

To enable ProGuard to shrink and obfuscate your code, uncomment this

Building from the Command Line Using Ant | 135

(available properties: sdk.dir, user.home):
proguard.config=S{sdk.dir}/tools/proguard/proguard-android. txt:
proguard-project.txt
Project target.
target=android-17
android.library.reference.1=../shared/libs/android/ActionBarSherlock-4.2.0/
library
android.library.reference.2=../CustomLibrary/YourLibraryName
You will notice that the header mentions that this file is automatically generated. If
you have used the Eclipse tools to create your project, this file should already have
everything you need, but you may want to validate the dependencies or their order.

2. Runthe android update project command, discussed in the previous section, in each
folder you are including as a dependency.

3. Issue the ant command to start the build:

ant debug

This compiles each of the specified libraries, before compiling the application code or
carrying out other build operations.

Building in Debug Mode

This method creates an APK for deployment, signed by the debug key. This app cannot
be deployed to the Play Store, or other places. This mode can be used for quick debugging
or testing when it is not necessary to create a real signing certificate.

The steps to building with this method are:

1. Open a command prompt, and navigate to the base directory of your project.
2. Issue the ant command to start the build:

ant debug

3. This creates an .apk file with the name of your project inside the bin directory of
your project home. The file will be signed with a debug key that is automatically
generated during the build process. This means that the key is different with each
build, so it will restrict you from installing over old instances of your app (because
the signing certificate will not always be the same).

Building an App to Release to the Play Store

The Release mode creates an APK that can be released to the Play Store and installed
on other Android devices. This mode allows you to specify the keystore to use when
signing your app. This is very similar to building in Debug mode, except that you use
a real keystore during the signing process.

136 | Chapter9: Build Tools

Signing an app with a custom keystore

In order to sign with a custom certificate, you need to specify the following information
so the build system knows which parameters to use during the build.

1. Copy your keystore file to a location on your build machine and note the location.
If you have not already created a custom certificate for signing, review “Signing
Your App” on page 130 for instructions on how to create a valid certificate.

2. Create a new file in your project home directory named build.properties.

3. Insert the key.store and key.alias variables into this file to tell the build system
about your custom keystore location and keystore alias. The contents of this file
should look like:

key.store=/path_to_location_of/my.keystore key.alias=my_key alias

4. After creating this file and setting these values, issue the ant release command to
start the process.

5. At the appropriate point in the build process, you will be prompted to enter your
keystore and alias passwords. Enter the information to complete the build.

This creates an application file inside your bin directory. It will be signed properly and
named project_name-release.apk. Because it is signed using a real certificate, you will
be able to release this APK for public consumption.

Storing the password information

It is likely that you will want to store your password information so that your build can
run automatically without requiring human intervention. In order to do this, you need
to store your keystore and keystore alias password information.

You might be tempted to include this information in the build.properties tile we already
created. While this works technically, it's a bad idea. It is generally not suggested that
you check secure information into source control. In fact, many corporate security pol-
icies prohibit doing so. You generally want to control access to these sensitive files by

storing them locally on the build system, and ensuring read permissions are secured on
the file.

1. Create a new file named secure.properties. This will be used to store the password
information, and thus should be stored someplace secure where the information is
not available publicly. The name and location of this file are completely up to you.
Keep track of this information because we will use it in the following steps.

2. Insert two variables into this file to tell the build system about your keystore and
alias passwords. You will use the key.store and key.alias variables for this. The
contents of this file should look like:

Building from the Command Line Using Ant | 137

key.store.password=keystore_password
key.alilas.password=keystore_alias_password
3. Now you need to create yet another file to tie this all together, and inform the build

system where it can get the password information. The new file is named
custom_rules.xml and will be discovered automatically during the build. It should
look like:

<?xml version="1.0" encoding="UTF-8"?>

<project name="custom_rules" default="help"/>

<property file="/path_to_secure_location/secure.properties"/>
</project>

4. At this point, you can issue the

ant release

command again. This time however, instead of stopping to wait for the password
information to be entered, the build finishes without interruption.

5. This application file inside the bin subdirectory of our project home directory will
be signed with your custom key, and named project_name-release.apk. It is signed,
and thus can be released to the public.

Additional Ant Commands

There are a variety of things you can do with Ant. The documentation does a great job
of explaining them. I highlight some of the more useful options here, but I suggest
checking the documentation to learn more about the advanced options available. Many
of these tags can be combined to perform multiple operations in a single build.

ant emma debug
Builds a test project with instrumentation turned on. This is designed to generate
code coverage information during a run.

ant installd
Installs an already compiled debug package to a running device or emulator.

ant test
Runs the tests in your project. This works only if the test .apk files are already
installed.

ant emma debug install test
This is an example of running multiple operations in a single operation. The com-
mand shown will build a test project, install .apk files, and run the tests with code
coverage enabled.

138 | Chapter9: Build Tools

http://bit.ly/13615Lt

Advanced Packaging Steps

At some point, it will be necessary to do some additional things to prepare your artifact
to be released to the public. These things include obfuscating your code, minimizing
the size of the artifact, and signing the app with a correct certificate. The steps to ac-
complish these tasks are outlined in the following sections.

ProGuard

ProGuard is a free Java tool that shrinks, optimizes, and obfuscates your code in prep-
aration for deployment. It does this by removing unused code, replacing class or method
names with semantically distinct ones, and optimizing bytecode. This makes your ap-
plication smaller, more efficient, and harder to reverse engineer. The process protects
against reuse of your code and protects your confidential data.

Enabling Proguard

Itis very easy to run this tool, and mostly automatic, especially if you package your APK
using the Export Signed Application Package wizard shown in “Signing Your App” on
page 130. If your build target is higher than 2.3, this tool is automatically run as part of
the packaging process. A default configuration file is placed in the root directory of your
project, and looks similar to the following example. It is placed at the root level of your
project home and named proguard-project.txt.

To enable ProGuard in your project, edit project.properties

to define the proguard.config property as described in that file.
Add project specific ProGuard rules here.

By default, the flags in this file are appended to flags specified
in ${sdk.dir}/tools/proguard/proguard-android. txt

You can edit the include path and order by changing the ProGuard
include property in project.properties.

For more details, see
http://developer.android.com/guide/developing/tools/proguard.html

Add any project specific keep options here:

If your project uses WebView with JS, uncomment the following

and specify the fully qualified class name to the JavaScript interface
class:

-keepclassmembers class fqcn.of.javascript.interface. for.webview {
public *;

#}

You can enter specific configurations and rules for your project in this file. To enable
ProGuard to run automatically as part of a build, modify the file to remove the #
comment symbol before the following statement:

HOR O KR W R OH R RO RO R ™R R

proguard.config=${sdk.dir}/tools/proguard/proguard-android.txt:
proguard-project.txt

Advanced Packaging Steps | 139

Your file should then look like:

This file is automatically generated by Android Tools.
Do not modify this file -- YOUR CHANGES WILL BE ERASED!

This file must be checked in Version Control Systems.
To customize properties used by the Ant build system edit

"ant.properties"”, and override values to adapt the script to your
project structure.

HORH O OR W™ R ™R

H

To enable ProGuard to shrink and obfuscate your code, uncomment this
(available properties: sdk.dir, user.home):
proguard.config=${sdk.dir}\tools\proguard\proguard-android.txt:
proguard-project.txt

Project target.

target=android-10

Next time you do a release build, Proguard will automatically be run, and your code will
be obfuscated. This means all your error reports (including reports you receive through
the Play Store) will be modified to a format that is hard to read.

Configuring ProGuard

Default ProGuard rules are defined in a file that is external to your project (${an
droid.homej}/tools/proguard/proguard-android.txt). These standard rules are defined by
the Android tools team, and should work for most cases. The standard rules include
basic configurations designed to accommodate most users. You may need to override
these defaults. You should not do this by modifying this file directly, as it will get updated
with the rest of the tools and your changes will not persist. Instead, if you need to define
custom rules, define them in the proguard-project.txt file mentioned in the previous
section, as they will be persisted and won't be overwritten.

There are many different possible rule combinations. The following listing includes a
good starting point. It provides a “safe” configuration that should not break your code
execution, but will still allow you to get the other benefits of ProGuard (including pack-
aging optimization and code obfuscation).

#Does a 5 step optimization
-optimizationpasses 5

#Support for systems - such as Windows that don't care about capitalization
-dontusemixedcaseclassnames

#Don't ignore non-public library classes. Is default on newer ADT builds
-dontskipnonpubliclibraryclasses

The Dex tool does its own optimizations, so we shouldn't do them with Proguard
-dontoptimize
-dontpreverify

140 | Chapter9: Build Tools

-dontwarn android.support.**

#Verbose option - will print stacktrace if build fails
-verbose

#To repackage classes on a single package
#-repackageclasses "'

#Keep annotations (if this is uncommented)
#-keepattributes *Annotation*

#Keep classes with references from the AndroidManifest

-keep public class * extends android.app.Activity

-keep public class * extends android.app.Application

-keep public class * extends android.app.Service

-keep public class * extends android.content.BroadcastReceiver
-keep public class * extends android.content.ContentProvider

-keep public class * extends android.app.backup.BackupAgentHelper
-keep public class * extends android.preference.Preference

-keep public class com.google.vending.licensing.ILicensingService
-keep public class com.android.vending.licensing.ILicensingService

*
*
*
*
*
*

#Keep classes from the Support library
-keep public class * extends android.support.v4.app.Fragment
-keep public class * extends android.app.Fragment

#To maintain custom components names that are used on layouts XML.
#Uncomment i1f having any problem with the approach below
#-keep public class custom.components.package.and.name. **

In Views, keep getters and setters so that animations still work.
-keepclassmembers public class * extends android.view.View {

vold set*(***);

*** get*();
}

#To not obfuscate names of methods invoked in a layout's onClick method.
Uncomment and add specific method names if using onClick on layouts
#-keepclassmembers class * {

public void onClickButton(android.view.View);

#}

#Remove debug, verbose, and warning error messages from Logcat
-assumenosideeffects class android.util.Log {

public static *** d(...);

public static *** v(...);

public static *** w(...);

}

#Keep native Java methods
-keepclasseswithmembernames class * {
native <methods>;

Advanced Packaging Steps

141

}

#Keep custom components names layouts
-keep public class * extends android.view.View {
public <init>(android.content.Context);
}
-keep public class * extends android.view.View {
public <init>(android.content.Context, android.util.AttributeSet);
}
-keep public class * extends android.view.View {
public <init>(android.content.Context, android.util.AttributeSet, int);

}

#Keep enums
-keepclassmembers enum * {

public static **[] values();

public static ** valueOf(java.lang.String);
}

#Keep parcelable classes (when used to serialize objects sent through Intents)
-keep class * implements android.os.Parcelable {
public static final android.os.Parcelable$Creator *;

}

#Keep the R
-keepclassmembers class **.R$* {
public static <fields>;

}

#Uncomment i1f using Serializable
#-keepclassmembers class * implements java.io.Serializable {

private static final java.io.ObjectStreamField[] serialPersistentFields;
private void writeObject(java.io.0bjectOutputStreanm);

private void readObject(java.io.0bjectInputStream);

Jjava. lang.0Object writeReplace();

java. lang.0Object readResolve();

#}

Viewing obfuscated code

The ProGuard technique of renaming variables makes it very difficult to read and debug
your code. This is great when you are trying to keep other people from viewing your
code, but presents challenges if you need to read the code yourself (from a stacktrace
or logs). ProGuard provides a tool named retrace that allows you to switch the non-
sensical names back the real ones.

After ProGuard runs, you will notice some new files in the proguard subdirectory of
your project home directory. These files manage the obfuscation process and the con-
sequent restoration of meaningful names. The files contain:

142 | Chapter9: Build Tools

dump.txt
Includes information relating to the internal structure of the class files in your
project.

mapping.txt
Maps the original names to the obfuscated names. This file will be used to decode

obfuscated messages back into readable format (as described in the following
section).

seeds.txt
Contains a list of all the classes and members that were not obfuscated.

usage.txt
Contains a list of all classes that were stripped from the APK.

In particular, you can use the mapping.txt file to de-obfuscate a stacktrace and read the
output. To decode a stacktrace, run the retrace script with two arguments: the name of
the mapping file, and the name of the text file containing the stacktrace. On Windows,
for example, enter:

{$android.sdk}/tools/proguard/retrace.bat mapping.txt obfuscated_stacktrace.txt
On a Mac or Linux, the command is slightly different:
{$android.sdk}/tools/proguard/retrace.sh mapping.txt obfuscated_stacktrace.txt

As an example, the following error comes from the logcat file of an APK that has been
built using Proguard.

E/AndroidRuntime(1655): FATAL EXCEPTION: main
E/AndroidRuntime(1655): java.lang.NullPointerException

E/AndroidRuntime(1655): at com.tools.demo.f.onClick(Unknown Source)
E/AndroidRuntime(1655): at android.view.View.performClick(View. java:4084)
E/AndroidRuntime(1655): at android.view.View$PerformClick.run(View.java:
16966)

Notice on the third line that the location in the code that encountered the null pointer
is not shown. It has been obfuscated to look like com. tools.demo. f.onClick(Unknown
Source). We are not able to see the name of the file or the line number where the error
is being reported.

Use the mapping.txt file to restore the correct information through a command like:

{$android.sdk}/tools/proguard/bin/retrace.sh
{$project.root}/proguard/mapping.txt proguarded_log.txt

After running this command, you will be able to read the output and determine exactly
where your error is. The output from this command looks like:

E/AndroidRuntime(1584): FATAL EXCEPTION: main
E/AndroidRuntime(1584): java.lang.NullPointerException

Advanced Packaging Steps | 143

E/AndroidRuntime(1584): at com.tools.demo.ToolsDemoActivity
$1.onClick(ToolsDemoActivity.java:36)

E/AndroidRuntime(1584): at android.view.View.performClick(View.java:4084)
E/AndroidRuntime(1584): at android.view.View$PerformClick.run(View. java:
16966)

Zipalign

Zipalign is a tool that optimizes APK archives by aligning all uncompressed data within
the archive relative to the start of a file. This allows the app to consume less RAM when
running. The tool should be run on all APKs before releasing them to the end user. If
you are using the Export wizard to package your code, Zipalign will be run automatically.

It is also possible to run it on the command line. It should only be run after the .apk file
hasbeen signed with your private key. Otherwise, the signing will mess up the alignment.

zipalign inFile.apk alignedFile.apk

Gradle-Based Build Tools

Official support has recently been added in ADT for Gradle, a build tool that many
developers are using to replace such classic utilities as Ant (the original build tool used
in ADT) and Maven (which was never officially supported by the Android team). The
ADT team chose Gradle as the foundation of a new tool set because it embodied many
principles to meet their goals of supporting the reuse of code and resources, creating
multiple specialized variants of applications, and ensuring that the build system is ex-
tensible. The Gradle project works hard to create high-quality documentation. Docu-
mentation about its integration with ADT can be found at the ADT project site.

The Ant build system will be deprecated in Android, and the Tools team has stated that
Gradle is their build tool of choice moving forward. It is strongly suggested that devel-
opers migrate their builds to this tool.

Installing Gradle
In order to use this tool, make you have the proper version downloaded and installed.

You need version 1.6, which you can get from here: Gradle download site. Put Gradle
in your PATH (see “Setting your PATH variable” on page 5) and you will be ready to go.

144 | Chapter9: Build Tools

http://www.gradle.org/documentation
http://bit.ly/1983q7L
http://www.gradle.org/downloads

Key Concepts and Terms

There are a few definitions you need to know to understand building with Gradle.

Product flavor
This specifies a customized version of the application build by the project. The
concept helps manage small variations, such as changing SDK support, version
number, or release signing information.

Build type
This determines how an application is packaged. It’s where you do things such as
specify debug flags, enable ProGuard, or specify native compilation settings. The
system provides two default build types, debug and release, but you can create your
own as well.

Build variant
This is combination of a product flavor and a build type. In fact, this is the only way
to define the output of a build.

Flavor group
This allows you to add even more dimensions to your build. You would use this if
you wanted to package differently for different target environments, such as dif-
ferent GL texture formats based on the chipset you are targeting.

Sourceset
This term is used to define the different source folders you will create for each build
type or product flavor.

Task
This represents an atomic element of work performed during a build. This might
be packaging an APK, signing a JAR, or publishing an archive to a repository.

Creating Multiple Build Variations

The concept of Gradle is that you will put files (Java class files, image resources, XML,
etc.) in a particular folder designed to represent a particular “Product Flavor” The dif-
ferent source folders (known as sourcesets) represent different build variations.

Gradle follows the concept of convention over configuration, which means that if you
don’t explicitly override something, the system defaults to a standard configuration.
This means it is only necessary to include the particular item that is specific to your
build and let the system handle the defaults.

Gradle-Based Build Tools | 145

Example

I will show a few examples that demonstrate how easy it is to customize build types in
Gradle by putting unique files in appropriate directories.

Let’s say you want to change the flavor1 build to contain custom icons and translations
for the app you plan to distribute only to Mexico. You need to replace the launch
er_icon.png, and the strings.xml file (containing my translations), and use the rest of the
defaults from the “main” build. This would look like this:

src/

main/ - standard Android Project files
AndroidManifest.xml
aldl/ - ex. my_1interface.aildl
assets/ - ex. database_preload.db
java/ - ex. com.project.SomeActivity
jni/ - ex. jni_file.c
res/ - ic_launcher.png, main_layout.xml, strings.xml

flavorl/ - files specific to 'flavorl' build
res/ic_launcher.png - (custom icon for Mexico)
res/strings.xml - Spanish translations

As another example, you could provide a unique function that would be available only
for a certain user base (such as to enable an advanced feature available only in a “Pro”
build.). To do this, place your unique activity and its appropriate manifest entry in the
correct sourcesets, which look like this:

src/

main/ - standard Androild Project files
AndroidManifest.xml
aidl/
assets/
java/
jnt/
res/

proVersion/ - files specific to 'Pro' build
AndroidManifest.xml - contain entry for Activity
source/com/myapp/pro/ProActivity.java - class for 'Pro' function
res/pro_activity.xml - the layout file for ProActivity.java

One final example is if you wanted to preload different database data (perhaps to support
different default datasets for different target audiences). To handle this, you would place
specific database resources in each folder, which looks like:

src/
main/ - standard Androild Project files
AndroidManifest.xml
aidl/
assets/db_preload.db - default database file
java/

146 | Chapter9: Build Tools

jni/

res/
dev/ - files specific to 'Developer' build

assets/db_preload.db - database for 'Developer' release
qa/ - files specific to 'Developer' build

assets/db_preload.db - database for 'Quality Assurance' release
prod/ - files specific to 'Developer' build

assets/db_preload.db - contains for 'Production' release

Build File

To use the build tool, you need to configure it in a file called build.gradle in the root
folder of the project. The build file is written using the Groovy syntax.

As I mentioned, Gradle is designed to use convention over configuration. This is why
the basic gradle.build file is actually very simple and provides sensible default options.
The most basic file defines:

« Repositories used to hold build artifacts and dependencies
 Dependencies within your project

o Basic information (API level, etc.) specific to your Android build

o Optional parameters specific to your Android build

The most basic build file looks like:

buildscript {
repositories {
mavenCentral()

}

dependencies {
classpath 'com.android.tools.build:gradle:0.3"

}
}
apply 'android' // Note: do not also use the Java Plug-in
// which will break the build
android {

compileSdkVersion 18

//Optional: Set parameters for a particular buildType
buildTypes {
release {
runProguard true
proguardFile getDefaultProguardFile('proguard-android.txt')

}

Gradle-Based Build Tools | 147

//Optional: Define specific parameters for a flavor
productFlavors {
flavorl {
proguardFile 'flavorl_rules.txt'

}

}
Build Tasks

You can execute Gradle tasks from the command line, similar to how you would run
an Ant task. Enter the gradle command followed by the task you wish to execute, such
as:

gradle build
You can define your own task, or use one of the common default ones:

assemble
Create the output of a project.

check
Run the tests to ensure the validity of the build.

build
Performs both the check and assemble tasks.

clean
Removes files created by a build.

To see a list of all possible tasks and their dependencies, run:
gradle tasks --all

Just as with Ant, you can issue multiple tasks in a single command and they will be
executed in order:

gradle clean build

Generating a Gradle Build from Eclipse

It is possible to generate a Gradle build from your existing Eclipse project. This will not
change your existing project, but will add the appropriate Gradle build files. The steps
to do this are:

148 | Chapter9: Build Tools

A A
e If you use the new Android Studio IDE, you can import a project
f‘: . without generating the Gradle build file. It will successfully build and
"4l run within Android Studio, but you will not be able to use build var-
iants or other advanced features in the future. It is strongly suggested

that you generate a Gradle build file (or write your own) if you plan
to use Android Studio.

1. Update your ADT Plug-in to version 22.0 or higher.

2. Select File > Export.

3. In the next dialog, select Android - Generate Gradle build files.
4

. Select the projects you want to export, and click Finish.

Using the Maven Tools

Aswith most things Android, the developer is not stuck using the supported tools. There
is good support for using other build tools, including Maven.

To learn more about Maven integration, I suggest checking out the great free resources
at Sonatype, and in particular, the Android-specific chapter: Android Application De-
velopment with Maven.

Using the Maven Tools | 149

http://bit.ly/14CcuDy
http://bit.ly/14CcuDy

CHAPTER 10
Monitoring System Resources

Itis important to monitor resource usage on mobile devices because memory is limited.
In this chapter, I show how to use the profiling tools to help you understand your
application’s memory usage.

Memory Usage in Android

Android programmers don’t explicitly allocate free memory, as they do in other lan-
guages like C++. It is still possible to create a “memory leak” This is when code keeps
a reference to an object that is no longer used, which can prevent a large set of objects
from being garbage-collected. This can be a result of improper scoping of variables, not
closing handles to system resources after using them, or long-running processes that
may not expire.

The Dalvik runtime is garbage-collected, which means that unused memory is auto-
matically recovered by the system at certain intervals. This might lead you to think that
you can ignore memory usage entirely because the system will eventually take care of
it. This is not true, as memory issues can manifest in many different ways. Some may
be obvious, such as getting an OutOfMemory exception due to not recycling your bit-
maps correctly.

There are other issues related to memory usage that are far more difficult to debug and
that can impact performance more significantly. These are issues related to inefficient
garbage collection as a result of frequent or large collections that manifest themselves
in ways that aren’t as obvious. Instead of your app force closing with an OutOfMemo-
ry exception, your app continues to run, but with degraded performance, pauses, con-
tinues, or stutters. Garbage collection is an expensive operation for the system to run.
It is best to manage memory efficiently in your code so the process runs less frequently.

Memory issues are very common in Android, so you will likely encounter a variety of
issues throughout your development.

151

Dalvik Debug Monitor Server (DDMS)

The main tool you will use to analyze memory is called the Dalvik Debug Monitor Server
(DDMS). This tool is used to analyze memory consumption over a given time period.
You will use this tool to understand how the footprint of your app grows over time (in
particular relating to memory and thread usage). It offers fine-grained information
about your app in relation to performance by providing statistics about memory and
thread usage. The tool itself will likely look familiar to you by this point, as we already
covered some of its usage earlier in the book (see “The Devices Tool” on page 48). [am
going highlight some of the other tools you might not have used that are particularly
useful for diagnosing resource issues and eliminating performance problems.

Launching the DDMS Perspective

It is useful to have a single view of all the DDMS tools in one place. Fortunately, ADT
has already created this for us. The DDMS perspective organizes the most important
device tools into a single view, which is useful when analyzing performance and device
functionality. To launch this perspective, select: Window — Open Perspective... - Oth-
er... > DDMS - OK.

i A

o There is also a version of the tool that can be run from the com-
:;: . mand line without Eclipse. This is particularly useful for team mem-

- bers that might not have the full development suite installed, but could
still benefit from using these tools. The tool is named Android Debug
Monitor and can be started with the following command:

{$android.sdk}\tools $ monitor

After launching the DDMS or the Device Monitor (see Figure 10-1), you will see a screen
with a few important tools:

152 | Chapter 10: Monitoring System Resources

800 Android Debug Menitor

ag [#3DDMS (@ Hierarchy Vi...

& Devices 2 =0 w Heap| Allo... |@ Net... | File... |® Em... ‘E Sys... ‘@Lﬂq.‘. | Ecan...‘ =0
= Thread updates not enabled for selected client
(use toolbar button to enable)
#loao|s2(ow|o
%
Name
v B GalaxyAc... Online GalaxyAc...
com.svox. .. 374 8600
com.andr... 310 8601
com.googl... 276 8602
com.googl... 231 8603
com.andr... 349 8604
com.andr... | 287 8605
system_pr... 73 8606
android.pr... 250 8607
com.andr... 322 8608
com.andr. 191 8609
com.epocr... 696 8610
android.pr... 189 8611
com.andr... 214 8612
com.andr... 146 8613
com.andr... 245 8614
com.andr... 302 8615
com.andr. 150 8616

|| 12mofzsm O

Figure 10-1. Android Debug Monitor

Analyzer Tool
Used primarily to track memory over a specific time period. You will be able to
track allocation order, size, where the allocation occurred, and a stacktrace showing
the specific classes associated with the memory allocation.

Threads
Offers information about thread usage within your process. You can get informa-
tion about current status, utime, name, and a stacktrace listing all the classes being
accessed by that thread.

Heap
Used to track general information about your heap usage, including its size, how
much space is used, and the number of objects allocated.

Traceview
Tool for tracing method calls, including timing and resource allocation.

Each of these tools serves a unique purpose and has its own usage nuances. I will describe
details about each one.

Dalvik Debug Monitor Server (DDMS) | 153

Analyzer Tool

This tool allows you to track individual memory allocations in an Android app. This
can be extremely useful when analyzing how a particular application flow is consuming
memory.

Running the tool

The steps to run the Analyzer Tool are straightforward:

1. Launch the app you want to profile on a device.

2. If you want to test a particular code path, navigate through your UI until you are
at the point just before the code is executed.

In the Devices tab of DDMS, highlight the process you want to track.
Select the Analyzer Tool tab (8).
Press the Start Tracking button.

Exercise your application to execute the code you wish to analyze.

Ny oW

Click the Get Allocation button to gather metrics. This generates allocation infor-
mation based on that time. You can press this button as many times as you want,
to refresh the allocation information.

8. Click the Stop Tracking button when you are done to finish the process.

Viewing the results of Analyzer Tool

After running the tool, you will see details about the memory allocations that occurred
(see Figure 10-2). This shows the objects that were allocated and a variety of information
about them. The information includes the allocation order, the amount of memory
allocated, and the type of object created. If you select one of the elements in the list, you
can see the stacktrace containing the names of the classes that were allocated.

If you would like to find a specific class in the list, you can type the name into the Filter
box. The search will happen as you are typing.

154 | Chapter 10: Monitoring System Resources

% Threads Heap “M = Network... Iﬁl File Exp... | @ Emulat... | [system ... |ﬁj LDQCZK‘ = Consnle| =0

| Stop Tracking | | Get Allocations | Filter: || | | Inc. trace
Alloc Order| = Allocation Size |Allocated Class Thread Id Allocated in Allocated in
1 68 charf] 4 android.ddm.DdmHandleHeap handleREAL
10 24 byte(] 4 dalvik.system.NativeStart run
8 24 org.apache.harmony.dalvik.ddmec.Chunk 4 org.apache.harmony.dalvik.d... dispatch
3 24 org.apache.harmeony.dalvik.ddmec.Chunk 4 android.ddm.DdmHandleHeap handleREAQ
5 24 byte[] 4 dalvik.system.NativeStart run
3 24 org.apache.harmeony.dalvik.ddmec.Chunk 4 org.apache.harmony.dalvik.d... dispatch
2 24 java.lang.String 4 android.ddm.DdmHandleHeap handleREAL
7 17 byte[] 4 android.ddm.DdmHandleHeap handleREAQ
9 12 java.lang.Integer 4 java.lang.Ilnteger valueOf
4 12 java.lang.Integer 4 Jjava.lang.Ilnteger valueOf

at org.apache.harmony.dalvik.ddmc.DdmServer.dispatch(DdmServer java: 170)
at dalvik.system.NativeStart.run(Native Method)

Figure 10-2. Viewing output from the Analyzer Tool

To see even more detail about a particular object, highlight it to display a stacktrace in
the second table. This view has more details about the object, including the file, object,
and method where it was created and the stacktrace that led to the allocation.

Threads

When you start an application, the Android system launches a new Linux process with
a single thread of execution. In general, all components of an app run within the same
process and thread, which is commonly called the UI Thread. Because everything runs
off this single process, it is important to identify particular processes that are blocking
execution (and thus locking up the rest of the app). Fortunately, the Threads tool makes
it easy to track a variety of statistics about thread usage.

Running the Threads tool
To run the Threads tool:

1. Launch the application you want to profile on a device.
2. In the Devices tab, highlight the process you would like to track.

3. Click the Update Threads icon (%) to enable profiling (you will click this again after
you are done to stop tracking).

4. Select the Threads tab (%) on the right.

5. Click the Refresh (e=) button once to ensure that you are viewing current threads.

Dalvik Debug Monitor Server (DDMS) | 155

Viewing thread information

The output from running this process should appear as in Figure 10-3. The top tab
includes a variety of information regarding thread status and execution time.

The information on the bottom tab is a stacktrace related to a single thread. To see this
detailed information, highlight a single thread in the top pane.

8 00 DDMS - ADT - /Users/mwolfson/android /workspace "
Che 0 - s = Q Quick Access £ | §ava £0Team synchronizing &5 0DMS
B Devices 3 | = O |[% Threads 32 | HEap| Allu(aliu.u|'=’ Network... | File Exp\m|®Emu\zlum| = 0|=
ﬂ|&@‘ﬁ,'&§|@|@‘@|ﬁﬁ = ||7Ip Tid Status utime stime Name
Name — |1l 1059 native | 107 10SImain _______________________| |
*Z 1062 vmwait 13 0GC
= = .
E NewerGoogle42 [emulator-5554] Online Newe *3 1064 vmwait 0 0 Signal Catcher
com.android.systemui 441 B60C | 4 1065 running 49 196 JoWP
com.android.inputmethod.latin 686 BE01| =5 1066 vmwait 6 7 Compiler
com.android.exchange 788 8602|| *6 1067 wait o 0 ReferenceQueueDaemon
com.google.process.gapps 615 8603 | *7 1068 wait 2 0 FinalizerDaeman
com.google.process.location 545 8604 | "B 1069 wait 0 0 FinalizerWatchdogDaemen
com.tools.demo 1059 B sgos | 9 1070 native 1l 0\Binder_1
e remIETooes 299 BE0E 10 1071 native 1 0 Binder_2
com.goeogle.android.apps.maps 742 B607.
com.android.phone 483 BEOE
com.android.launcher 637 B60S
com.android.location.fused 591 BE1C|| | Refresh | Wed Mar 27 11:13:30 MST 2013
Class Method File Line Native
android.os.Messag... nativePollOnce | MessageQueue.java -2/true
android.os.Messag... next MessageQueue.java 125 false
android.os.Looper loop Locper java 124 false
android.app.Activit... main ActivityThread.java 5039 false
Jjava.lang.reflect.M.. invokeNative Method.java -2 true
Java.lang.reflect.M._ invoke Methad.java 511 false
com.android.intern... run Zygotelnit.java 793 false
com.android.intern... main Zygotelnit.java 560 false
dalvik.system.Nati__. main NativeStart. java -2 true
| 180M .{1 351M |@

Figure 10-3. Viewing information about Heap execution

Heap

The Heap tool makes it easy to view how much heap memory a process is using. This
is useful to track memory usage at certain execution points.

Running the Heap tool

To run the Heap tool:

Launch the application you would like to profile on a device.

In the Devices tab, navigate to your application and highlight the process you plan
to track.

. Click the Update Heap icon (%) to enable profiling (you will click this again after

you are done to stop tracking).

Click the Cause GC button (@) to collect the current heap information.

5. Select the Heap tab (@) on the right.

156

| Chapter 10: Monitoring System Resources

Viewing heap information

The output from running this process should look like Figure 10-4.

@ O O DDMS - ToolsDemoActivity/src/com/tools /demo/MemDemoActivity.java - ADT - /Users/mwolfson/android/workspace)
4~ | B Qr Qe ® - - P oo
Q Quick Access ‘ B | §hava £Team synchroniaing E5DDMS
B pevices 5 | =0 ‘ % Threads (@ Heap 3 | Allnca(iu.‘.l? Network... |§'~ File Expl... :@Emu\a{o...l =g|#s
356 0% 92| @@ @ 7 Heap updates will happen after every GC for this client o
Name T HeapSize Allocated Free %Used # Objects
7 E) NewerGoogle42 [emulator-5554] | Online Newe| 1 6.184 MB 5.573 MB 318.133KB 94.98% 40,920 | CauseGC |
com.android.systemui 441 B60C
com.android.inputmethod.latin 686 8601 | bty [Stats %)
com.android.exchange 788 8602 e
com.google.process.gapps 615 5603} Type Count. Total Size Smallest Largest Median
com.google.process.location 545 8604 :’ee o . ;;5 ;g;'ggé ﬁ: i: : 35"32;2": ’gg:
tools.d 1056 % f§ seos|| daraobiect ' i
com-toqexdan ® || class object 2,753 800.000 K8 1688 40.500 KB 168 B
SR 25 Bl -ovie vy oy, booleani) | 152 3.soamsl a5l _10r5wal s0s |
com.goagle.android.apps.maps 742 8607!| 2-byte array (short(], charl]) 9,597 619.961 KB 24B 28.023K8 48 B
com.android.phone 483 B60E | 4-byte array (object(], int(], float(l) 3,806 280.375 KB 248 16.023K3 408
com.android.launcher 637 8608|| B-byte array (long(l, doublel]) 18 2.211KB 24B 2648 1368
com.android.location.fused 591 861C | non-Java object 128 5.797 KB 168 480 B 408

Count
= 5 848
;
.IL

Size

‘ Aliacation count per size

| 17omofaoim |

Figure 10-4. Heap view

The heap information is displayed in three sections:

o The top section contains overview information about the heap, including size and
how much memory is allocated.

o The center section contains more detail about the objects that are in the heap, in-
cluding details about how much memory they are consuming.

o The bottom panel, “Allocation count per size,” is a graphical representation that
shows when specific objects were created in relation to the overall size of the heap.

Traceview

Traceview is a tool that gives very fine details about the execution path of an application,
including when a method or thread was started, what methods or threads were accessed
while it was running, and when it stopped. This can be useful if you are working on
optimizing particular code paths, as it allows you to track very fine details about your
performance (and understand if your optimizations are effective). The tool includes

Dalvik Debug Monitor Server (DDMS) | 157

support for saving the files it creates, which makes it possible to track optimizations
over time because it is easy to keep a historical record.

To generate a traceview, press the button () in the Devices tab. You will be shown a
dialog with a few options (location of the file, duration to run, max size of the file).
Specify your options and click OK to generate the file. After the traceview has been
generated, the viewer (Figure 10-5) launches automatically.

You can start Traceview from the command line (if you wish to look at an existing file)
using the following command:

traceview filename.trace

® © @ DDMS - fvar/folders/xg/p_gz5y1951b_sq2q8pnlwknjnys9zw/T/ddms1087155466607014143.trace - ADT - (Users/mwolfson/andro... "

Eie BQr A e Q Quick Access [B | @ava £9Team Synchronizing | 00MS
£ i1 ddms1087155466607014143 trace 33 I =88
B msec: 4,794.938 max msec: 4,932 (real time, dual clock) kY
T T T T T T T T T T T T T T T |
4770 4,780 4,79 4,800 4,810 4,820 4,830 4,840 4,850 4,860 4,870 4,880 4,890 4,900 4,910 4,920 =
-
e L m LT T [S
iy @
4] JDWP
Name Incl Cpu Time % Incl Cpu Time Excl Cpu Time % Excl Cpu Time Incl Real Time % Incl Real Time| Excl Rs
T e e P oy e e acuhesiing
» | 44 android /graphics/drawable/Drawable.invalidateSelf (v 10.9% 90234 0.2% 1919 1.4% 250.230
PI45 android os/Trace.cacheEnabledTags () 10.8% B89.468 1.5% 12.264 1.7% 348.878
>I46 android /view/ViewSPerformClick.run (¥ 10.7% 88.104 0.1% 1192 0.7% 145.312
’l'ﬂ' android fview/View.performClick 0Z 10.5% 86.912 0.1% 0.440 0.7% 145.080
PI48 android /widget/TextView.invalidateDrawable (Lan 9.9% 82.148 0.3% 2.619 1.3% 282.160
49 android /view/View.invalidate (IIV 276.726
¥ Parents
l4ﬂ android /widget/TextView.invalidateDrawabl.. 100.0% 76.991 100.0% 276.726
‘¥Children
Iizlf 4.0% 3.074 1.0% 2.726
51 android/view/ViewGroup.invalidateChild (La.. 94.3% 72.627 98.5% 272.653
l320 android fview/View.skiplnvalidate ()Z 0.8% 0.652 0.2% 0.644
323 android/graphics/Rect.set (IIV 0.8% 0.638 0.3% 0.703
}ISU android widget/TextView.onTouchEvent (Landroi... B.8% 72.747 0.1% 0.975 1.3% 269.610
» | 51 android /view/ViewGroup.invalidateChild (Landroi... B.8% 72.627 L5% 12.742 1.3% 272,653
PISZ android (view/View.onTouchEvent (Landroid /view/ . B.6% 70.786 0.2% 1.601 1.3% 267.643
» |53 android/graphics/drawable /Drawable.setVisible (ZZ)Z B.1% 67.026 0.1% 0.838 1.3% 264.934
» l54 android /widget/TextView.onDraw (Landroid/grap... 8.0% 66.327 0.7% 5.439 0.5% 94.824
¥ 55 android/graphics/drawable/DrawableContainer.in... 7.7% 63.612 0.2% 1.687 1.2% 261.521
PISG com ftools/demo/MemDemoActivity$ 1.onClick {La. 7.5% 62.017 3.2% 26.720 0.3% 66.696
» B 57 android (view/ViewSUnsetPressedState.run OV 7.4% 61.402 0.0% 0.223 0.5% 104.767

532M of|944M m Android SDK Centent Loader

Figure 10-5. Example output from Traceview

Traceview output—timeline panel (top section)

The timeline panel (see Figure 10-5) allows you to see detailed information about the
execution path and order of methods within your app. It shows the threads and resources
the app consumes across the time period you were tracking. This includes the classes
and methods that are being used, how often, and how much time is spent in each call.
You can get finely grained detail about parent/child relationships and CPU utilization
metrics. There are two sections of the view, showing different types of information.

158 | Chapter 10: Monitoring System Resources

The timeline is color coded to coordinate with specific process names in the lower pane.
Each method is displayed in its own color-coded column. You can look at this chart and
quickly determine which methods are taking the most time to execute by looking for
areas in the graph with the most color (which represents more time spent in that meth-
od). You might notice some small lines beneath these columns. These are designed to
show the extent (entry to exit) of the calls to the method being tracked.

Profile panel

This panel is designed to show more detailed information about the time spent in a
method, so that you can get fine details about the timing of your method execution. You
can track entry and exit times and the time actually spent in the method. It is even
possible to track executions between methods by clicking on the triangle (¥) next to
the method to expand and see its children.

This table includes a few different columns including information about CPU time, and
actual time spent in a method. You can gather exact times (in milliseconds) or percen-
tages (%, which indicates the ratio of time spent in relation to total execution time.)
There are a few different columns representing different data. The tool shows the data
in two distinct ways:

Exclusive time (Excl)
Time spent within the method

Inclusive time (Incl)
Time spent in the method and time spent in any functions called by that method

The Traceview tool is useful for determining nuanced details about the execution order
of your app, which is useful when debugging applications with complex execution paths.
It is also a great tool for tracking your application performance over time, since you can
easily archive the output files to compare historical data.

Memory Analyzer Tool (MAT)

Another great way to analyze memory is to generate snapshots of the application’s heap
at certain points in time. The Android tooling will generate these files into a common
format named HPROF. The file contains binary data that can be used to find perfor-
mance problems that result from inefficient memory usage in your application. There
are tools available (such as MAT) that allow you to browse the allocated objects when
you supply a valid HPROF file. Having a collection of these files makes it easy to analyze
them, track trends, and identify issues.

Memory Analyzer Tool (MAT) | 159

Generating an HPROF File

There are two primary ways to generate a new HPROF file.

1. Include the code android.os.Debug.dumpHprofData() in your application to trig-
ger a dump at a specific execution point.

2. Use the “Dump HPROF file” button (@), which generates a dump file when you
press it.

HPROF File

Both of these methods generate a file that is slightly different than what the Android
tooling requires. It is necessary to convert the file before it can be analyzed.

To convert it, use the provided conversion tool from the command line. For instance:
hprof-conv dump.hprof dump-converted.hprof

After completing the conversion, you will be able to analyze the dump file in any of the
applications designed to handle this kind of file—like jhat, or MAT, the Eclipse Memory
Analyzer Tool.

Installing MAT into Eclipse

MAT is not available by default and needs to be installed separately. The MAT update
site includes directions on how to install it into Eclipse.

A A
e You might see a “Duplicate Location Exists” warning when you enter
f‘: . the update site URL. In this case, you will find the MAT update site as
-% a subcategory to your main update site. To install MAT, in the Work
With: box, select your main update site (for instance “Eclipse Indigo
Update Site”). Then find “Memory Analyzer” in the list. Place a check-
mark next to it here, and proceed to install as normal.

Launching MAT from Within Eclipse

If you are using Eclipse, there is a DDMS preference that automatically converts the
HPROF file and starts the MAT tool (if it is installed). This happens automatically when
you press the “Dump HPROF file” button (8). If you want to set this as the default
behavior, go to Window — Preferences - Android - DDMS.

If you would like to view historical heap data, you can maintain copies of the HPROF
files (which could be triggered during automated testing or manually).

160 | Chapter 10: Monitoring System Resources

http://bit.ly/12TiQXD
http://www.eclipse.org/mat/
http://www.eclipse.org/mat/
http://bit.ly/18pq4rZ
http://bit.ly/18pq4rZ

Using MAT to Analyze HRPOF Files

Using the MAT tool can be somewhat complicated. It is very feature rich and provides
many ways to identify memory problems. I will discuss the three most commonly used
options. If you would like to learn about other options, the official site is a great resource.

When you launch the MAT wizard, the first screen to appear looks like Figure 10-6. It

provides you three options for viewing your data:

Leak Suspects Report

Analyzes your file to detect leaks automatically. It also reports which objects are

kept alive, and what is stopping them from being garbage-collected.

Component Report

Allows you to analyze certain objects, and to find duplicate strings, unused collec-

tions, weak references, and other memory issues.

Reopen previously run reports
Use the tools to review previously run reports.

8 00 Getting Started Wizard

Getting Started

Choose one of the commaon reports below. Press Escape to close this dialog.

() Leak Suspects Report

Automatically check the heap dump for leak suspects. Report what objects are kept
alive and why they are not garbage collected.

'..:_.' Component Report

Analyze a set of objects for suspected memory issues: duplicate strings, empty
collections, finalizer, weak references, etc.

() Re-open previously run reports

Existing reports are stored in ZIP files next to the heap dump.

Eﬂ Show this dialog when opening a heap dump.

@) < Back MNext = | cancel |

Finish

Figure 10-6. Launching the MAT wizard

Memory Analyzer Tool (MAT)

161

http://www.eclipse.org/mat/

If you would like to learn more details about using MAT, the docu-
. mentation for the tool does a great job. It details different memory
' scenarios and describes ways to use MAT to find them. It is available
at Eclipsepedia.

There is also a great Android-specific write-up on the developers blog.
It is worthwhile reading.

The MAT Overview Screen

The first screen (see Figure 10-7) that appears provides an overview of the memory
footprint of your app, and links to other tools (like Histogram or Top Consumers) that
allows you to learn more about your memory usage. You can get some general infor-
mation about your heap from this screen such as total size, and how many objects and
classes are allocated. This is a great way to get a general overview of your heap, which
you can then use to learn more about specific areas.

Viewing a Report

The reports generated by MAT are very detailed. It is useful to see an example report to
get an idea of the format and kind of information you can get from this tool. I have
included an example Leak Suspects Report (Figure 10-8) to show how easy it is to view
information.

Notice the tool lists information about each of the Problem Suspect classes it has iden-
tified. It outlines very clearly how many instances of the class are causing memory issues,
including how much memory (actual bytes and percentage of total heap), information
about the type of memory (for instance, in Problem Suspect 1 it is a byte array), and
more details about specific locations in code where execution is called.

It is important to note that the items reported in this tool are not necessarily issues, as
there are instances where it makes sense for classes to be instantiated and retained for
a long time. You will notice that Problem Suspect 2 identifies a variety of instances of
java.lang.Class. In many cases, instances of this class are not leaks, but are instantiated
and retained as part of normal program flow.

162 | Chapter 10: Monitoring System Resources

http://bit.ly/15SeyVv
http://bit.ly/15RuIwc

® O O DDMS - /var/folders/xg/p_gz5y1951b_sq2q8pnlwknjnys9zw/T/android2110914989566945525.hprof - A...
9= | QrFe v F=E R (0, Quick Access [1= | &7Java £ Team Synchronizing
@ android2110914989566945525.hprof &2 | | &
iom %o |E & O
i Overview 3]defau\l_repurt org.eclipse.mat.api:suspects
~ Defails
Size: 3.1 MB Classes: 2.8k Objects: 414k Class Loader: 4 Unreachable Objects Histogram
* Eiggest Objects by Retained Size
1.1MB
123.7 KB
97.9 KB
18 ME—
Total: 3.1 MB
android.graphics.Bitmap @ 0Ox40cf04f8
Shallow Size: 48 B Retained Size: 1.1 MB
~ Actions ~* Reports ~ Step By Step
ul Histogram : Lists number of Leak Suspects: includes leak Component Report : Analyze objects
instances per class suspects and a system overview which belong 1o 2 common root
l%g Dominator Tree : List the biggest Top Components : list reports for package or class loader.
objects and what they keep alive. components bigger than 1 percent
Too Consumers : Print the most of the total heap.
expensive objects grouped by
class and by package.
Duplicate Classes: Detect classes
loaded by multiple class loaders.
185M|of 429M ﬁ Android SDK Centent Leader
Figure 10-7. The MAT Overview screen
Memory Analyzer Tool (MAT) | 163

@ O O DDMS - /var/folders/xg/p_gz5y1951b_sq2q8pnlwknjnys9zw/T/android2110014989566945525.hprof - A... f‘]

S | & Q-4 - - S Q, Quick Access [=} |%$Jjava £ Team Synchronizing @DDMS
g android2110914989566945525.hprof &4 | |0 chl0.xml g |5
in

im %ol EL 8O

i Overview deFauIt_report org.eclipse.mat.api:suspects 23

Leak Suspects

Leak Suspects

System Overview
-~ Leaks &

» Overview

- @ Problem Suspect 1

One instance of "android.graphics.Bitmap" loaded by " <system class loader>"
occupies 1,127,584 (34.85%) bytes. The memory is accumulated in one instance of
"byte[]" loaded by "<system class loader>".

Keywords
android.graphics.Bitmap
byte[]

Details =

+ @ Problem Suspect 2

2,753 instances of "java.lang.Class", loaded by "<system class loader>" occupy
1,085,464 (33.55%) bytes.

Biggest instances:

+ class android.text.Html$HtmlIParser @ Ox40b3e650 - 126,632 (3.91%) bytes.
class org.apache.harmony.security.fortress.Services @ 0x40b48788 - 80,120
(2.48%) bytes.
+ class libcore.icu

S

.

TimeZones @ 0x40a6c2b0 - 69,144 (2.14%) bytes.

Aned AlaAd Cdn £70 4 006N baikon

215M of 420M |[J] Android SDK Content Loader

Figure 10-8. MAT Leak Suspects Report

164 | Chapter 10: Monitoring System Resources

CHAPTER 11
Working with the User Interface

The user interface (UI) of any mobile application is important, and Android’s wide-
spread use requires that your software run well on a variety of different target devices.
Generally, the wider range of devices you can support, the larger your potential customer
base.

In almost all mobile applications, the elegance and usability of the user interface are
more important than anything else. Your app has to look good to succeed in today’s
market. However, creating an attractive Ul is made more difficult by the vast profusion
of screen sizes and resolutions in Android. You can’t finesse the problem by restricting
your app to work on only one or a small range of devices; at least, you can’t do that
without giving up a very large number of potential customers.

Thisis where the Android framework comes to the rescue. From the beginning, Android
was designed to support various devices and has thus offered simple ways for the de-
veloper to support them. The developer tools are also designed to make supporting
multiple devices easier.

Android Layout Basic Concepts

In order to leverage all the features of the UL, it is important to understand the funda-
mental concepts of the framework.

Defining Layouts Using XML

Android layouts are conventionally created using XML syntax to define the user inter-
face (UI) of an app. These XML files contain descriptions of various interface widgets,
which could be TextViews, Buttons, or ImageViews (don’t confuse these with “Desktop
Widgets,” which are a different thing). The files contain information defining the widgets

165

you wish to display and detailed information about them (for example, orientation,
spacing, or the specific location of an element on the screen).

The advantage of placing the layout into XML is that it separates the presentation of
your application from the business logic. Your layout definitions are separate from your
application code, so you can modify the layout without needing to change your source
code or recompile. You can create different layouts for multiple device orientations,
screen sizes, or locations.

It is worth noting that almost everything you do in XML can also be done in Java code,
or by using a combination of both. For instance, you might define the placement and
size of a button in XML and then use Java to set the text at runtime, depending on a
particular code path execution.

Terminology

There are a few definitions you need to know to follow the next few chapters.

Widgets

Native controls available to be used by the developer. These include a variety of
elements, such as TextViews, ListViews, Buttons, and other UI components you
will use to create layouts. These built-in components are commonly found in the
android.widget package and are frequently subclasses of the class an
droid.view.View. If the native controls don’t provide the capabilities you need, it
is possible to use custom components imported from libraries or developed as part
of your codebase.

Layout Files
XML files that describe the widgets making up your UL These are located in the res
folder of your project.

Layout
A class whose primary purpose is to contain other controls. These classes (such as
LinearLayout, TableLayout, and FrameLayout) organize widgets (such as Text-
Views, Buttons, etc.) on the screen.

Attributes
Control specific behavior in your components. They have the format (name
space:name=value), which allows you to specify characteristics of your compo-
nents. Some examples of these with which you are probably familiar include
android:width="48dp", android:color="@colors/text_color", and android:
text="Text Value".

Themes and Styles
Allow the developer to define the specific look and feel of a layout in external files.
This is a common way to apply color or text attributes in a single file to apply them
to multiple widgets, and also make changes to multiple screens from a single file.

166 | Chapter 11: Working with the User Interface

Resource Qualifiers
The most common way to support multiple devices in Android is to use different
folders for different resources (described later in “Resources” on page 170). This term
is used to describe the name you add to a folder, which allows this to work.

Views and ViewGroups

Layouts in Android are constructed by combining these two base objects into
hierarchies.

Views
This is the base class for many widgets (such as TextView or Button). It is the
base class (classes.android.view.View) for almost all Ul components in
android.classes.android.view.View.

ViewGroups
This is a view that contains other views. The ViewGroup class (android.view.View
Group) is the base class for many layouts in Android or other specialized compo-
nents such as ListView and WebView.

The first step in visualizing your layout is to define a simple hierarchy. This might look
like Figure 11-1.

ViewGroup:
LinearLayout
ViewGroup: View: View:
LinearLayout TextView Button
View:
Button
View:
Button

Figure 11-1. Layout basics: view hierarchy

Android Layout Basic Concepts | 167

The next step in creating a layout is to describe your hierarchy in code. To do this, create
a layout file and insert the appropriate XML tags describing your Views and View-
Groups. The following XML file below shows a basic layout. It contains two View-
Groups, (the LinearLayout elements) that contain other Views (in this case the Buttons
and a TextView). The order in the XML file matters: it lays out two buttons side-by-side,
with text below them, and then another button below that. The screenshot (see
Figure 11-2) shows how this would look on a device.

Example 11-1. XML file that produces screen in Figure 11-2

<?xml version="1.0" encoding="utf-8"?>

< Layout xmlns:android="http://schemas.android.com/apk/res/android" @
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical" > @

<LinearLayout @
android:id="@+id/button_linear"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:orientation="horizontal" > @

<Button @
android:id="@+id/button1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Buttonl" />

<Button @
android:id="@+id/button2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Button2" />
</LinearLayout> @

<TextView @
android:id="@+1d/textViewl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Lorem ipsum dolor sit amet, consectetur adipisicing elit" />

<Button @
android:1d="@+id/button3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Button3" />

</LinearLayout> @

168 | Chapter 11: Working with the User Interface

r sit amet, co

Figure 11-2. Layout basics: rendered Ul

2]

The outermost layout, filling the screen. The other layout, the TextView, and the
final button are nested inside it.

The vertical orientation ensures that the other layout, the TextView, and the final
button are stacked up in the order in which they are specified from the top down.

We include a second layout, nested in the first, so that we can arrange some
things horizontally in it.

This orientation specifies that the buttons will be side-by-side.

The first button, at the top left of the screen. This is within the second, innermost
layout.

Android Layout Basic Concepts | 169

O The second button, to the right of the first. This also is within the second,
innermost layout.

© This line ends the innermost layout, the one containing two buttons.

© The TextView, which is within the outermost layout but outside the innermost
layout. It is therefore oriented vertically under the first two buttons.

© The third button, which like the TextView is within the outermost layout and
therefore oriented vertically.

® This line ends the outermost layout.

Resources

An Android application consists of much more that just Java files. A variety of other
files (such as images, videos, and colors) are also used to create your interface. These
are known collectively as resources and resource files. The Android framework supports
an easy way to tie different versions of a resource (a different resolution image, or a
different size of icon, or text in a different natural language) to different configurations
on the device (no keyboard, French locale, hi-res screen). For example, in order to
support different screen resolutions, it is necessary to include multiple copies of the
same image, in various resolutions.

Using resources has many advantages, including:

« Source code is separate from resources, which makes customization easier.

» Resources are static and compiled into the application, which means they can be
checked for availability before runtime.

o It is easy to support additional functionality (localization, for instance) by simply
adding the appropriate resources without requiring modification to existing source
code.

Android specifies that you put these items in the res folder at the base level of your
project (see Figure 11-3). You will put resources in unique folders that are determined
by the features you want to support. At compile time, Android scans the folders and
uses the appropriate resource. For instance, when your app is run, the system will know
to use the appropriately sized image and retrieve it from the res folder.

Figure 11-3 shows how to supply a graphic resource that supports different resolutions.
To do this, put aresource with the same name (in this case, ic_launcher.png) in the folder
appropriate for each resolution you support (mdpi for medium resolution, hdpi for
high resolution, etc.). When your app is run, that image will be used by the system
automatically.

170 | Chapter 11: Working with the User Interface

v LS MasteringADTDemo
P =, Android 2.1
b =i Android Dependencies
b e
| G'E‘}gen [Generated Java Files)
= assets
[3 G@ bin
» = libs
v G@ res
¥ (= drawable-hdpi
@ ic_launcher.png
¥ [= drawable-1dpi
'gé ic_launcher.png
¥ = drawable-mdpi
-'_uaic_launcher.png
¥ = drawahle-xhdpi
;@ic_launcher.png
P (= layout
P =values
121 AndroidManifest.xml
|=| proguard.cfg
E| project.properties
5| README

Figure 11-3. Using multiple graphic resources

In the same way that you provide alternate image resources, you can supply layouts,
strings, colors, dimensions, and much more to support specific device configurations.

There are many nuances to externalizing application resources, and understanding
them can really help the development process. The official documentation describes all
the different ways you can customize your application using alternative resources and
is worth reading.

Leveraging ADT to Build Great Uls

Generating Android applications that support multiple devices is one of the more chal-
lenging aspects of working with the platform. Fortunately, ADT provides a robust set
of tools to aid the developer (or designer) in creating the UI layer. There are tools to
create layouts using a drag-and-drop editor, generate code templates, extract resources,
refactor XML, and much more. This chapter (and the next few) will highlight all the
great tools available, and show how you can leverage them to make responsive interfaces
that work well and look good on a variety of devices.

The documentation describing how to handle multiple devices does an excellent job of
explaining what the different resolution formats are, as well as specific strategies for
making the most of this feature. I suggest reading it.

Android Layout Basic Concepts | 171

http://bit.ly/1361xt8
http://bit.ly/17CeIhq

Editing XML Files Directly

In “Code Templates” on page 59, we discussed using the tools to generate code. There
arealso alot of templates you can use to generate XML files. There is support for creating
a variety of different XML files, which makes creating them simple.

Using Templates

The XML templates can be accessed by choosing File - New — Other - Android -
Android XML File. You will be presented with a menu (similar to Figure 11-4) showing
alist of XML files available. There is support for a variety of file types, so it is worthwhile
to know which ones the system can create for you.

- Nals) New Android XML File
New Android XML File
Creates a new Android XML file.

Resource Type ¥ Layout J

Values L
Project: Drawable _|

Menu &
File: Coler List j

Property Animation

Ront Eepenid Tween Animation

/[DialerFilter AppWidget Provider [
(@ DigitalCloc

- Preference
|L |EditText Searchable

= Exp LIsTvTew
D Framelayout

Il Gallery

E‘ CridLayout

[|Gridview

!;I HaorizontalScrolView
|j ImageButton

-_d-“ ImageSwitcher

_ ImageView

I:‘ LinearLayout

® <Back || MNext> | | Cancel | [Finish-]

Figure 11-4. XML editor: code templates

172 | Chapter 11: Working with the User Interface

Editing XML Directly

Editing XML files can be challenging. You have to be careful to match tags, and always
use correct attribute values. Many times, errors don’t show up until compile time or
runtime, which makes the debug cycle long and inefficient. The XML editor that is built
into the tools includes functionality to simplify manually editing layout files. Using these
features makes it easy to write valid XML, use correct attributes, and refactor layouts
without syntax errors.

Code completion

You have probably already used the code completion facilities available when editing
Java files. ADT provides similar capabilities when editing layout XML files. You will be
able to use this functionality to insert UI widget definitions, look up attribute values,
and identify resources (such as drawables, layout elements, string values, or style defi-
nitions). These tools make it much easier to generate XML layout files correctly, so you
won't spent time fixing syntax errors or searching APIs to find acceptable values.

The key combination that launches code completion is the same one you use in Java
and the same on all platforms: Ctrl+Space]. It provides different options depending on
the code you have highlighted.

Inserting new layouts or widgets

If you place your cursor on a blank line or outside an existing tag, when you press this
key combination, you will be provided with a list of elements you can insert (like in
Figure 11-5). Selecting one of the items from the list as shown will create a stubbed item,
which you can extend with your own custom attribute values.

Editing XML Files Directly | 173

@ O O Java - ToolsDemoActivity/res/layout/fragment.xml - ADT - /Users/mwolfson... "

C R T y 5) T = o 5
HHES R EaaBY- R0 HEG ® -

PRI R Q, Quick Access [=] |§anava5§BTeam Synchronizing #3 DDMS
& | |d| *fragment.xml EX] = 8 |8
5] 1 <?wml version="1.8" encoding="utf-§"7= ,1,[;._.
@ 2 <LinearLoyout xmlns:android="http://schemas.android, com/apk/res/android 5

7 3 android: layout_width="fill_parent" ¥
& 4 android: layout_height="fill_parent” =]
[E] : android:orientation="vertical"” > =

7 <TextView Q
8 android:id="@+id titlel"” 5
9 android: layout_width="fill_parent"
14 android: layout_height="wrap_content"”
11 android:text="Bstring/fragment_activity” />
12
13 <Button
14 android:id="B+id /buttonl”
15 android:layout_width="wrap_content"”
16 android:layout_height="wrap_content"
17 android: text="8string/launch_tools_demo" />
18
19
.EU H CAUSUIUELAYUUL > </ AUSUIULELAYOUL>
21 /L4 (8 <AnalogClock />
|a | =AutoCompleteTextView />
<Eutton =
|i|<CheckBo>< /=
[«CheckedTextview /=
@ <Chronometer />
e 'g§.‘._' <DatePicker />
E Graphic <DialerFilter ></DialerFilter>
DigitalClock o
@ <DigitalClock /> | 1eeMof42sM [
|1 | <EditText /> S

Figure 11-5. XML editor: inserting new element

Attribute values

If you place your cursor inside an XML attribute definition (i.e., between the quotation
marks), you will be provided with a list of appropriate entries. There are two different
possibilities for these values, depending on the particular attribute you are defining.

The first allows you to fill in API options to define elements from the system (such as
width attributes or buffer). For example, in Figure 11-6 I am using code completion to
define the width attribute for a TextView.

174 | Chapter 11: Working with the User Interface

® O O Java - ToolsDemoActivity/res/layout/fragment.xml - ADT - /Users/mwolfso... "

FrHEe RmEdaB - dx-0-Q- & G- -
i e R [Q Quick Access) [= |:anava§§DTeam Synchronizing #3DDMS
& | | *fragment.xmi EEI =8 | &
= 1 <7xml version="1.8" encoding="utf-§"7= 3_.‘
= 2 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android QJ
i 3 android:layout_width="fill_parent”

= 4 android:layout_height="fill_parent"” =
(ﬁj 5 android:orientation="vertical"” > =

&

7 <TextView E

8 android:id="8+id titlel"” Elj

9 android: layout_width="fill_parent"”

18 android: layout_height="wrap_content”

1% android:bufferType=""

12 android:text="" />

13 | (@ @string/

14 <Button o |@andmid:

15 andro‘fd:\d: "'@ﬁ @ @+id/

i andro}d:layoutf (@ @drawable/

17 android: layout :

18 android:text=" @ @id/

19 @ @layout/

20 </LinearLayout> # wref -

@ Graphical Layout |E| fragment.xml

| 175Mofazsm |

Figure 11-6. XML editor: adding a new element

The second allows you to locate local or system resources for your UL These things
might include color definitions, string values, style definitions, or other layout elements.
The example in Figure 11-7 shows how the tool provides you with a list of values
available.

Editing XML Files Directly | 175

@ O O Java - ToolsDemoActivity/res/layout/fragment.xml - ADT - /Users/mwolfson... u"

BrlGe| s E2an B E-dx$-0-G - #6G-® -
i le XS Sy e Q, Quick Access [=] |§anava5§BTeam Synchronizing #DDMS
& | |d *fragment.xml EX] = 8 |8
= 1 <?xml version="1.8" encoding="utf-§"7> g__
= 2 <LinearLoyout xmlns:android="http://schemas.android, com/apk/res/android o
g 3 android: layout_width="fill_parent"” 2
& 4 android: layout_height="fill_parent” =
lﬁl 2 android:orientation="vertical"” > =0
7 <TextView Q
8 android:id="@+id titlel"” £
9 android:layout_width=""
16 android: layout_height= (@ fill_parent
11 android: text="Estring/ @ match_parent
12 (@) wra
p_content
13 <Button & xref -
14 android:id="8+id buttg
15 android:layout_width="
16 android:layout_height=
17 android: text="8string/
18
18 «</LinearlLayout>
E Graphical Layout |.5 fragment.xml
l?BM‘i0f425M IH]

Figure 11-7. XML editor: adding a new API attribute

Refactor menu

This tool allows you to quickly complete refactoring operations. These include remov-
ing layout elements, wrapping multiple widgets in a container, or extracting XML to be
shared by multiple resources. To launch this menu, highlight the starting tag of the
element you want to refactor, then select the Refactor menu from the top menu bar. It
offers a variety of options, some of which we already covered in the IDE section
(“Refactor Menu” on page 70). It is worth discussing the layout-specific options here:

176 | Chapter 11: Working with the User Interface

Change layout
This lets you change the layout and then re-renders the canvas automatically. You
might need this if you need to convert to another container type because of a lim-
itation with your current type (for instance, you needed finer control over place-
ment than a LinearLayout provides).

Change widget
This allows you to change the type of one or more widgets. It automatically removes
incompatible attribute types, and includes default values for any new ones that are
required.

Extract as include
This allows you to extract views into a separate layout file. It creates the new external
layout file and includes the appropriate reference in your XML. This is a simple way
to reuse common view components, which avoids duplications and creates cleaner
code.

Wrap in container
You can use this menu to select one of more siblings and wrap them in a new layout
container. The tool transfers layout attributes from the sibling to the new parent
container. This can be useful if you need to group UI components, perhaps to apply
common gravity.

You can use the Quick Assistant if you aren’t sure which refactor you
_ need to use. This is a great way to allow the system to provide sugges-
% tions depending on the current context. In either editor (Java or
XML), highlight a field and press [Ctrl+1] on Windows\Linux or

\Command+{1] on Mac OS X. This will bring up a list of refactor pos-
sibilities, and is the quickest way to access these common options.

Editing XML Files Directly | 177

The example in Figure 11-8 shows how you would use the Refactor menu to remove a
layout container. After highlighting the LinearLayout to remove, select the Remove
Container menu item and a screen appears (Figure 11-9) allowing you to review the
changes before clicking OK to commit them.

GG ElAGI Source Navigate Search Project Run Window Help

m " - : #
.Andrmd > Change Widget Type... ; AI?T {Users/mwolfson/androi...
ST Change Layout... IFeocimer = |
Remove Container... !aJJava ;éDTeam Synchronizing @DDMS
[E—— Wrap In Container... F = oilc
| [fragmentxmi B pypeney Style... =
F]
S ‘E’."’"l "E"s‘ Extract as Include... S s all
i 2 <lLinearlLayg 7 ¥ = oid. com/apk/res/androi]
== andr‘ogd Extract Android String... 0+ XA S i &y
& 4 android: Tayout_height="Ffill_parent" =
rfj] [S android:orientation="vertical” > =
@ 7 <LinearlLayout Q
3 android: layout_width="fill_parent"” 5
9 android: layout_height="wrap_content"”
10 android:orientation="vertical” >
11
12 <TextView
13 android:id="8+id titlel"”
14 android: layout_width="fill_parent"”
15 android: layout_height="wrap_content"”
16 android:text="8string/fragment_activity"” /=
17
18 <Button
19 android:id="@+id/buttonl”
28 android: layout_width="wrap_content”
21 android:layout_height="wrap_content"”
22 android: text="Bstring/launch_tools_demo" />
23 </LinearLayout>
24
25 </LinearlLayouts
%_Graphical Layout !.5 fragment.xml
179M of 423M ||

Figure 11-8. Accessing the refactor menu from the XML editor

XML formatting

Layout files can get complicated fast. You will likely use many different attributes to
specify unique parameters for your different UI elements. The XML files can become
particularly difficult to follow when attributes are not spaced uniformly or when
they are out of order. You can use the following keys to quickly format your code:

Ctrl}+Shift+F on Windows\Linux or (Command}+Shift+F| on Mac OS X.

It automatically adjusts tab spacing and organizes the attributes into a specific prede-
fined order. Having correctly formatted XML makes it easier to understand element
relationships and find particular attributes you may need to modify.

178 | Chapter 11: Working with the User Interface

800

Remove Container

Changes to be performed {—} ﬁ ::: 'l
|V} B fragment.xmi - ToolsDemoActivity/res/layout
|3 fragment.xml &0k 40 B
Original Source Refactored Source
1 <?xml wversion="1.8" encoding="utf-8"7= 1 <?xml version="1.8" encoding="utf-8"7=
2 <LinearLayout xmlns:android="http://schemas.android 2 <LinearlLayout xmlns:android="http://schemas.and
3 android: layout_width="fil1l_parent” 3 android: layout_width="fill_parent"
4 android: layout_height="Fill_parent" 4 android:layout_height="Fill_parent”
5 android:orientation="vertical" » 5 android:orientation="vertical" =
6 B
7 <LinearLayout 7 <TextView
8 android: layout_width="fill_parent” }—\-[g android:id="8+id/titlel” [l
a android: layout_height="wrap_content" | 9 android:layout_width="fill_parent”
[18 android:orientation="vertical” > : |L'd android: layout_height="wrap_content " o
i‘lL | |_J.J android:text-"Bstring/fragment_activity’ u
12 <TextView 2 I
13 android:id="8+id/titlel" 13 <Button
4 android: layout_width="fill_parent" 14 android:id="8+id/buttonl”
15 android:layout_height="wrap_content" 15 android:layout_width="wrap_content"
16 android:text="@string/fragment_activity' 16 android: layout_height="wrap_content"
17 17 android:text-"8string/launch_tools_demo’
18 <Button 18
149 android:id="@+id/buttonl” 19 «/LinearLayouts
20 android:layout_width="wrap_content"
21 android:layout_height="wrap_content"
22 android: text="@string/launch_tools_demo’ =
23 </LinearLayouts=
24
E_‘E </LinearLayouts

| Cancel

| e

Figure 11-9. XML editor: options shown by Refactor menu

The default formatting style matches the conventions used in official Android docu-
mentation, tutorials, and source code, so your code will match standards. The system
automatically applies custom formatting rules depending on which type of file is being
edited. This means that custom formatting rules will be applied to standard layout files,
resource definition files (such as strings.xml), or AndroidManifest.xml. This makes a
big difference in the readability (and maintainability of your code). The XML files can
become particularly difficult to follow when attributes are not spaced uniformly or when
they are out of order (as seen in Figure 11-10).

Editing XML Files Directly

179

d W50 Qv G @ &

) [et |:a'|jaiaa.|§DTeam Synchronizing @DDMS

& | 4| *uidemo.xml EX| oS
o 1 <?xml version="1.8" encoding="utf-§"7= Ef.-_(
e 2 <LinearLayout xmlns:ondroid="http://schemas.android.com/apk/res/android" ¢£‘
v 3 android: layout_width="fill_parent”

= 4 android:layout_height="fill_parent"” =
@ 5 android:orientation="vertical” > =

&

7 <TextView Q

& android:id="B+id/tool_demo_text" E_P‘

9

18 android: layout_height="wrap_content"”

11 android;layout_marginLeft="12dp"

12 android: layout_marginTop="8dp"

13 android: layout_width="wrap_content”

14 android:text="@string/user_interface_demo"

15 android:layout_marginRight="12dp"

16 android: textSize="I14dp" />

o

18 <LinearLayout

14 android;layout_width="fill_parent”
200 android:layout_height="wrap_content”
21 android:gravity="center_vertical"”

22 hndr'oi.d:ori.entation-"vertical” =

23

24 <Button

25 android: layout_width="258dp"

26 android: textSize="18sp"

27 android:layout_gravity="center_horizontal "
28 android:layout_marginTop="28dp"

28 android: text="@string/user_interface_demo"
38

31 android: layout_height="58dp"

32 android: textStyle="bold"

33 android:id="@+id on_ui_btn"/>

34 </LinearLayout>

[=] Graphical Layout | =] uidermo.xml

| z06mofasom |

Figure 11-10. XML editor: before reformat

Having correctly formatted XML (like that shown in Figure 11-11) makes it easier to
understand element relationships and find particular attributes you may need to modify.

180 | Chapter 11: Working with the User Interface

® O O Java - ToolsDemoActivity/res/layout/uidemo.xml - ADT - /Users/mwolfson/a... «"
rlGoe| s EaaB U-dws-0-Q & G- 5
v Dy D [Q Quick Access) [g | &tjava EYTeam Synchronizing #DDMS
& | |d *uidemo.xml EX| = oS
= 1 <?xml version="1.8" encoding="utf-§"7> g_(
s 2 <lLinearLayout xmlns:android="http://schemas.android.com/apk/res/android" _9.;.
i 3 android:layout_width="fill_parent”
= 4 android:layout_height="fill_parent"” =
lq[j] : android:orientation="vertical"” > =
7 <TextView Q
8 android:id="B+id tool_demo_text" 5
9 android; layout_width="wrap_content"” &
18 android:layout_height="wrap_content"”
11 android;layout_marginLeft="12dp"
12 android: layout_marginRight="12dp"
13 android: layout_marginTop="8dp"
14 android:text="8string/user_interface_demo"
15 android: textSize="14dp" />
16
17 <LinearLayout
18 android:layout_width= "fil]‘._parer#&quct;f"
149 android;layout_height="wrap_content”
28 android:gravity="center_vertical”
21 android:orientation="vertical " >
23 <Button
24 android:id="8+id on_ui_btn"
25 android: layout_width="258dp"
26 android:layout_height="58dp"
27 android:layout_gravity="center_horizontal"
28 android:layout_marginTop="28dp"
29 android:text="Bstring/user_interface_demo"
e android:textSize="18sp"
31 android: textStyle="bold" />
32 </LinearLayouts>
33
34 <LinearLayout
> it woi1a an
E Graphical Layout
| 18aMofsaom [

Figure 11-11. XML editor: after reformat

Editor Preferences menu

The Editor Preferences menu, shown in Figure 11-12, allows you to change the format
that the editor uses. This is valuable, for instance, if your company has unique coding
standards. Another important setting causes the system to automatically format your
code when you save it. I recommend you set this value, so you can ensure you are
performing the formatting operations on all of your files.

Editing XML Files Directly | 181

| ®806 Preferences

| type filter text) Editors v W
P General
¥ Android Monitor Density | 0.0 |£°_':"_m."_te“‘ J
Build
DOMS g Format XML files using the standard Android XML style rather than the
Editors configured Eclipse XML style (additional options below)
Launch 0 Use Eclipse setting for indentation width and space or tab character indentation
Lint Error Checking — (Android default is 4 space characters)
':E;J'fat || Always remove empty lines between elements
Usage Stats [21 Allow single attributes to appear on the same line as their elements
L3
’g'é_f:_ @1 Add a space before the > or /> in opening tags
FHelp Sort Attributes
P Install/Update T [o 5 .
»Java @ Logical (id, style, layout attributes, remaining attributes alphabetically)
P Memory Analyzer (: | Alphabetical
P Run/Debug 3
»Team (I None
Validation
XML [21 Automatically format the XML edited by the visual layout editor
@1 Format on Save
|| Use a single layout editor for all configuration variations of a layout
| Restore Defaults | | Apply |
C?) | Cancel | [OK]

Figure 11-12. XML editor: preferences

There are two preferences worth highlighting. You can access them from Window —>
Preference - Android - Editor on Windows and Linux, and from ADT —> Prefer-
ence - Android - Editor on Mac OS X.

This menu contains a variety of useful options that allow you to customize Editor func-
tionality further. Some of the more useful ones include:

o Configure style (spacing, line wrapping, etc.) of formatting

« Modify the default order of the attributes (there are a few alternate options, and
you can create a custom sort order as well)

o Specify if you would like the format operation to be run on every save

Working with Graphics

In the beginning of the chapter, I described how Android uses multiple resources to
support different device resolutions. Supplying each of the proper resolution images is
one of the most important ways to ensure that your app looks good everywhere. If the
system is not able to find an image resource matching its preferred resolution, it will

182 | Chapter 11: Working with the User Interface

find the next closest resolution and scale it to fit. This can result in unexpected visual
artifacts, and can significantly effect the responsiveness of your app, as image rescaling
can be memory and CPU intensive.

It can be difficult to understand what size each of the images can be, the names of the
folders, and other information associated with this way of doing things. In my experi-
ence, this is one of the bigger frustrations for designers and developers.

There are two great ways of dealing with the complexities of manipulating image re-
sources: the Android Asset tool, and the use of Nine-patch images.

The Asset Tool

The Asset tool automatically creates the appropriate resolution resources and places
them in your project. Launch it by entering [Ctrl+N| on Windows or Linux and

Command+N]|on Mac OS X.

From the New wizard launcher, expand the Android section and select Android Icon
Set, as shown in Figure 11-13.

8086 New

Select a wizard _ A

Create an Android icon set

Wizards:

[type filter text

| » == General
¥ (2= Android

22 Android Activity

! @Aﬂdmid Application Project
[android Object
@Aﬂdrﬂid Project from Existing Code
@Android Sample Project
JﬁAndrﬂid Test Project
|cil Android XML File
|cil Andraid XML Layout File
|cil Andraid XML Values File
JS'TempIate Development Wizard

| »=C/CHr

@ < Back [Next>] | Cancel | Finish

Figure 11-13. Launching the Android Icon Set generator

Working with Graphics | 183

A screen (Figure 11-14) prompts you to specify the type of resource you want to gen-
erate. There are different sizes for images, depending on whether they are intended to
be used in notifications, on the Action Bar, or elsewhere on the screen. You will need to
specify the type of icon that should be created.

8.0.0 Create Asset Set

Choose Icon Set Type
Select the type of icon set to create:
(=) Launcher lcons
() Action Bar and Tab Icons (Android 3.0+)
() Notification Icons
() Pre-Android 3.0 Tab lcons

() Pre-Android 3.0 Menu lcons

Project: | MADTDemo y

lcon Name: | ic_launcher |

Resource: @drawable/ic_launcher Copy Name to Clipboard |
@ | <Back | [Next> | | Cancel | Finish

Figure 11-14. Specifying options to customize icons

Next, you will specify the name of the icon, and the project where you would like it
created. When the tool is done, it will create all the appropriate images and place them
in the correct folders in this project.

The last screen (Figure 11-15) is where you can actually generate the icon asset. You can
generate an icon with text, modify the appearance of it, and change the colors of the
foreground or background. You can even use clip art (either your own, which you can
import, or icons supplied in the tool itself) to generate specific designs. When you have
configured the look of your icon, click the Finish button. The res folder in your project
will now have PNG files with your design at the correct resolution.

184 | Chapter 11: Working with the User Interface

806 Create Asset Set

Configure lcon Set

Configure the attributes of the icon set

Preview:

Foreground: | Image m

Text: iMADT |

Font: | Helvetica-Bold

@1 Trim Surrounding Blank Space

Additional Padding:
21%

Foreground Scaling: m Center

Shape | Non: jare | Circle |

Background Color: r-
Foreground Color: E

® | <Back | Next > | Cancel | [Finish

Figure 11-15. Creating an icon set

I have found an excellent way to work with my design team. When I
. create my source code, I use the Asset Studio to create sample icons.
' Then, when I request real icons from the graphic artists, I just copy
the res folder out of my projects and give it to them. I ask them to
replace the sample images with their own. Since they know the names
and sizes of each of the resources they need to supply, this eliminates
communication errors. The best part is that, when it is time to inte-
grate the real images back into the project, all I have to do is copy the
res folder with the correct resources back into my code, and I'm done!

Using Nine-Patch Images

Android lets you supply your image assets as Nine-patch images. This format allows
you to define lines along the edges of an image, which control how it is scaled by the
system. The placement of black lines informs the framework whether that section of
the image will be grown/shrunk by zooming it, or should be kept unchanged. A good
example of when it’s useful to provide this type of image is when creating a styled button

Working with Graphics | 185

to use throughout your app. If you use a NinePatchDrawable as the background for
your buttons, it will stretch and scale to look uniform across all of them.

To use a NinePatchDrawable, you must slice your image resource into nine regions.
There is a center container for your content, then four corners and four sides that will
be scaled by the system. It can be a little challenging to understand this concept at first
so if you would like to brush up on the topic, the drawable documentation is a great
place to start.

Specify how the Nine-patch image is scaled by drawing black lines on the sides of the
image. These specify two things:

Stretch regions
Defines which pixels of the image will be copied to stretch the image. These lines
are drawn on the top and left.

Content padding
Defines the area within the image that the contents will occupy. These will be the
lines on the bottom and right.

The draw9patch command-line tool makes it easy to create and edit these images. Just
type draw9patch at the command line to bring up the “Draw 9-patch” tool, which pro-
vides a way to visualize the effects of scaling on your image when you are defining it.

Start by dragging and dropping an image on the palette. This launches the editor (see
Figure 11-16).

Then use the mouse to draw the lines that specify the various regions. Check the “Show
patches” and “Show content” options at the bottom of the screen to visualize exactly
how the system will scale your image. You can change the black lines to show:

Stretch regions
Shown by the pink box in the center of the pane on the left.

Content padding
Shows how much space is available for your content, via the purple box in the right
side pane.

186 | Chapter 11: Working with the User Interface

http://bit.ly/13oIJzY

® O O Draw 9-patch: /Users/ Ifs Perforce/

1 bp15_1223/eng/Client/feature/Babylon/Android /Apps/EpocSTM/res/d...

r——————
Release Shift to draw pixels (" Show bad patches |

Figure 11-16. Editing Nine-patch drawables using the visual editor

Asset Studio Website

It is worth noting an excellent open source project called Asset Studio that automates
many of the procedures we discussed in this section. The home page (shown in
Figure 11-17) shows some of the things you can do. This site automates many of the
things the tools do, including generating multiple image resources, editing Nine-patch
images, and others. It also has some additional functionality not available elsewhere,
including generating screenshots such as device frames for marketing, or generating
styles for commonly used resources—specifically the Action Bar.

Working with Graphics | 187

http://bit.ly/14sqRrh

1800 Comamimmmae N R

&« = e |D android-ui-utils.googlecode.com/hg/asset-studio/dist/index.htm!| '{\L{‘| =

Android Asset Studio

ICON GENERATORS — MAKE [CONS FOR YOUR APP

Icon generators allow you to quickly and easily generate icons from existing source
images, clipart, or text.

Launcher icons

Action bar and tab icons
Notification icons

Generic icons

Tab icons (pre-Android 3.0)
Menu icons (pre-Android 3.0)

OTHER GENERATORS — MISCELLANEOUS ASSET CREATION TOOLS

Device frame generator (or see the official version for Nexus devices)
Simple nine-patch generator

COMMUNITY TOOLS — SIMILAR TOOLS FROM THE OPEN SOURCE COMMUNITY

Android Action Bar Style Generator by Jeff Gilfelt
Android Holo Colors Generator by Jérome Van Der Linden

See the source at the android-ui-utils Google Code project.

Figure 11-17. Android Asset Studio website

188 | Chapter 11: Working with the User Interface

CHAPTER 12
Using the Graphical Editor

By far the easiest and most productive way to design a user interface (UI) in Android
apps is to use the Graphical Layout tools. In the past, these have been difficult to use,
sometimes creating code that was hard to understand and had other practical limita-
tions. But the tools have improved over successive releases. They are getting close to the
standard set used by GUI builders for Windows or iOS, and now work better than
the Android alternative (manually editing XML files). They make it easy to generate the
user interface, refactor existing layouts, visualize your UI on multiple environments,
and much more. They can make development more efficient and ensure that you are
creating well-formed layout code.

Generating Layouts Using the Graphical Layout Editor

If editing XML isn’t your thing, there is a graphical tool that allows you to drag and drop
UI components to construct a layout. You will use this to create your basic layouts, then
modify the XML to fine-tune your layouts.

The Graphical Layout editor (see Figure 12-1) can be accessed by selecting the appro-
priate tab (on the bottom left) of any Android layout.xml file. Selecting this tab presents
you with a perspective containing the tools you can use to construct your interface.
Switch back to the XML view by selecting the tab showing the layout filename. The two
views are kept in sync when you save the file.

189

@00 Java — MasteringADT /res/layout/activity_main.xml — Eclipse SDK — {Users/mwalfson/AirstripAndroid fworkspace 2

CrEE A8 (B [2a0 [0-Q % [#6 &5 5] - ot
E_Mw = ‘ﬁ‘]ava F5Debug EYDOMS £0Team Synchronizing G Hierarchy View
) *activity_main.xml &2 =i 5= outline &2 L |
e ‘ ‘ ‘ ‘ T S
e e defaule v | [Nexus One v : @+ | e AppTheme v | @ Mainactivity | ©r|Fi6. E!["" =
3 Palette - A5 TextView -
[Form Widgets | | E = & G failimageviewl - ic
[Text Fields |
1 Layouts | = Properties 3%
) Compesite | @MasteringADT = 1 1
(= Images & Media | = Layout Par... []
Gravity
I Gallery Width | match_parent
—2 a | Height | match_parent
[»] MediaControlier - L# Margins] |
Background
B videoview Padding L.
‘Content D...
=l RelativeLay...]
Hell workd: | Gravity
lgnore G...
= View i]
Style
Tag
Backgro.
Padding
Padding ...
Padding ...
Padding ..
Padding ...
Focusable | (]
Focusab.... |[[]
(] Time & Date | Visibility
— - | Fits Syst.. |[E]
[Transitions | Scrollbars
G svanesd | Scrollba.
O ——S T — — scrollba... [F]
(] Custom & Library Views il | FadingE...
[=] Graphical Layout | | =] activity_main.xml Fadmg Eu
(2] RelativeLayout (=)

Figure 12-1. Visual editor, full view

This tool has a few different components that work together to provide a comprehensive
visual editing environment. We will discuss each in detail in this chapter.

Palette
On the left is the panel that contains the widgets you can drag onto the canvas. The
palette contains rendered views of the components available, making it easy to find
the component you want.

Canvas
This is the component in the middle of the screen. When you drag elements onto
this canvas, a view will be rendered to show how it will look. There are many dif-
ferent options available in this tool that allow you to determine how your UT will
look on different devices. XREF discusses these in detail.

Outline
This panel (on the top right) provides a hierarchical view of your layout, displayed
as an ordered list.

Properties editor
This window (on the bottom right) allows you to modify attributes of your widgets.

190 | Chapter12: Using the Graphical Editor

Configuration chooser
The list of menus on the top of the canvas allow you to configure how the view is
rendered. These allow you to render different views of your UL, right in the tool.
This is easier and quicker than trying to duplicate Ul in different configurations
using emulators.

Palette

On the left side of the tool is the palette. It contains categories of widgets and UI com-
ponents that are available to drag onto the canvas. You can select a category heading to
display the view types in that group.

You will notice that the widgets are rendered according to the currently defined style.
The dark bottom part contains any custom views you have defined in your project (see
Figure 12-2). ADT automatically makes them available via this tool (you may have to
press the Refresh button if they don’t display automatically).

|4 Palette
= Palette -
] Form Widgets
[*) Text Fields
2= Layouts
] Composite
ki Images & Media
[Time & Date
7] Transitions
[Advanced
|| Other
= Custom & Library Views

. DashboardLayout . CustomTextView

|. SlidingMenu . CustomViewAbove

. CustomViewBehind

. CustomTitleTextView

'§“ Refresh

Figure 12-2. Palette

The palette contains a large variety of components that are preconfigured to perform
certain actions. Find the appropriate component and drag it to your canvas to place a
properly configured Ul component on your interface. For example, if you wanted to

Palette | 191

add a Password field to a form, you would locate the component from the Text Fields
category (see Figure 12-3) and drag it onto your canvas. When you look at the XML,
you will see that a default value is defined for ems (which is a property used to control
text size), and the inputType is set to textPassword (which masks the values the user
enters).

A= Palette
7% Palette -

7] Form Widgets
=" Text Fields

abc Firstname Lastname

E—

Lorem ipaum dolor sit
et, consectetur
Address ANEL OGS
adipisicing elit, sed do
eiusmod temoor

CR R

o Layouts

= Composite

] images & Media
o Time & Date

|| Transitions

[Advanced

] Other

] Custom & Library Views

Figure 12-3. Graphical editor: password example

Canvas

This is where you can drag widgets from the palette and drop them to create your Ul
The canvas renders a preview of your app in real time based on the widgets you add.
You can then modify the preview to visualize your app on multiple screen sizes, orien-
tations, and other ways using the configuration chooser (see “Configuration Chooser”
on page 197).

To add a view to your U], find it in the palette and drag it onto the canvas. You can also
add Views to other Views (see “Views and ViewGroups” on page 167) by dropping them
onto the Outline part of the screen. After a component is placed on the canvas, you can
drag it around to reposition it, assuming the Parent view supports the move.

192 | Chapter12: Using the Graphical Editor

Just as when you are editing the XML directly, you can use|Ctrl/Command+Z/to undo

your last operation. You can do the same thing from the Edit > Undo menu. Because
it is easy to undo any operations, you can be comfortable that any changes you make
are not permanent (so feel free to experiment a little).

When you drag and drop a component from the palette onto the canvas, indicators
appear that show you the alignment and approximate location of the widget on your
UL This allows you to control how the view is placed in the parent. Depending on the
type of parent container, you can control the alignment and placement of the view you
are creating. In Figure 12-4, for instance, you are placing a Button into a RelativeLayout.
A pop-up in the figure shows the alignment (in this case, centerHorizontal="true")
with an arrow tying the component to its parent. Understanding the relationships
among views helps you a great deal in controlling layouts, and getting this feedback
visually is much easier than trying to decipher XML files.

1 Palette
& Palette -

Form Widgets ‘ 23] - QaQm®

ik E] Nexus One » |-F:\{ ¥ | ¥ Theme » G(SEIQ(U v & A 17

Large Medium

Add previews with "Add as Thumbnail
in the configuration menu

" CheckBox

centerHorizontal=true
alignParentTop=true, margin=26 dp

Text Fields

| Layouts
Composite
Images & Media
Time & Date

| Transitions

Advanced

Other

Custom & ..rary Views

Figure 12-4. Viewing extents while dragging items onto the canvas

Canvas | 193

Layout Actions

Atthe top of the canvas are two rows of buttons. The top one is the configuration chooser
(see “Configuration Chooser” on page 197), and the bottom one is the layout actions bar
(see Figure 12-5). This bar offers context-sensitive options (meaning they will change
based on what you currently have selected) relating to the currently selected view and
its parent.

Some of the common options available here include changing the gravity, lay
out_width, and layout_margins. For example, in Figure 12-5 I selected a Button in a
LinearLayout. The bar shows actions related to the LinearLayout, such as a toggle to
change the orientation from vertical to horizontal. Some other available options might
include a control to specify how children are aligned, actions to control the child’s layout
attributes (like layout_width), or a button to change the layout’s margins.

1 Holo =
[0 [0 (&) [&]

{5 CoodUID

[3.4in wavGa ~

H -
OE | =6 | EE.

gr

& ool sDemoProject

Ul Demo

Figure 12-5. Viewing the layout options available

Context-Sensitive Menu

You might be surprised by the functionality hiding when you right-click on any element
in the canvas. You are presented with a menu of context-sensitive options (see
Figure 12-6). These provide a variety of shortcuts to useful functionality, including:

 Changing widget properties, including a menu to navigate based on Java package
structure within Android source code (as an alternative to the full-blown properties
editor, “Properties Editor” on page 196).

o Creating or previewing animations. If you have enabled animation on a component,
this allows you to view it from the canvas.

194 | Chapter 12: Using the Graphical Editor

o Performing most of the refactor operations we discussed in “Refactor menu” on

page 176.

« Exporting a screenshot that contains a preview of your app, rendered to appear on

the device you are currently showing.

Edit Text... F2
Edit ID... 38R
Edit TextAppearance...
Edit TextColor...

Edit TextSize...

Layout Width
Layout Height

Other Properties Recent

Extract Include...
Extract Style...

Wrap in Container...
Remove Container...

Change Widget Type...

LinearLayout
ScrollView

Select

of Cut
=/ Copy
Paste

¥ Delete

Play Animation
Export Screenshot...

Show Included In
Show In

Defined by TextView
Inherited from View

Layout Parameters

All By Name

Figure 12-6. Launching the context-sensitive menu

Canvas

195

Outline View

This tool (shown in Figure 12-7) provides a visual representation of your layout ele-
ments. It organizes them into a clear hierarchy that is easy to navigate. This view offers
additional functionality that allows you to drag and drop the elements within the outline.
It has a lot of the same functionality as the canvas, but provides a different view that
makes it easier to use for ordering, along with selection operations.

Qm Qutline

‘F ScrollView

‘FD LinearLayout
@tnol_demu_text (TextView) - "Select an option t..."
@ ui_demo_btn (Button) - “Ul Demo"
@gocdui_demn_btn {Button) - "Good Ul Demo”
@memuw_demo_btn [Button) - "Memory Demo”
@Ingcat_demo_btﬂ (Button) - "Logcat Demo”
@img_demn_mn {Button) - "Image Demo"
@Fragment_demu_btn (Button) - "Fragment Demo”
«k| localization_btn (Button} - "Localization Demo”

Figure 12-7. Viewing the Outline

Properties Editor

In addition to the right-click approach to changing view properties, you can also use
the View Properties tab. This tab on the bottom right will list context-sensitive properties
you can use to set various attributes on the view you have selected. This is generally
easier than editing the XML directly, because the editor provides lookup tools to help
you find the attribute you need to set.

The properties editor shows a list of all the various properties options available for the
currently selected view. If a property is already set, the value will be listed in the column
on the right. If you would like to change the value, or add a new one, click within the
cell to launch a list of options or a dialog to select your new value.

In the example in Figure 12-8, I show how I could change the color property for the text
of the Button I selected. When I click on the property, a dialog is presented that allows
me to locate a system or project resource that defines a new color. I can then start to
type the name of a color to search for a resource I have defined.

196 | Chapter 12: Using the Graphical Editor

|4 —— Palette —— | —— Structure —— |

il = | [Nexus One ¥ | - ‘ ¥r Theme » | %4 Outline
@ (Select) » | ®- | = i

HE | EE- |

7w
v E RelativeLayout
lak|button1

QaQad | |

ES Properties

Id @+id/buttonl
w [Layout P.. [|
Style android:buttonStyle
Text | Button
Hint
Content ... |
|TextView]
Choose a resource Text Buttan
\ Hint
\eshierts i :-_‘fuxt C... I @android:coior/primary_text_light
¥ Color b Text C... |l @android:color/hint_foreground .
my_button_calor | Text A...|7android:attr/textAppearanceSmalll..
my_heading_color Text Si...
my_text_color _Typehce
¥ Drawable . TextSt..
kD :‘i_'(_axt C... Il @android:color/link_text_dark
B Layout
B String b

| 7] Images & M

| [Time & Dat

[&l Tr.msitiojj New Resource.,

| _r—'_AdM . Gravity 'cemerﬁvefticalIcenrer,horiznntal
| [other [(@ | Cancel | [0K | | Scrall ... [[5]

| — Select ... |[F]

f[Sustonr S g _includ [T

| E Graphical Lays

Figure 12-8. Viewing the Properties editor

Configuration Chooser

This set of tools (Figure 12-9), which appears at the top of the editor, allows you to see
a visual rendering of your layout in various configurations. This is a great way to test
your layouts against a variety of different configurations, and is much easier that creating
emulators or finding devices for each of these options. While this won’t replace real
testing across different devices, it’s a great way to get instant feedback about your Ul
while you are creating it.

[3.4in wQvGA v | [v | #¢ Holo =17 v

v

(8 GoodUIDemoActivity » | [*E

Figure 12-9. Viewing the Configuration chooser

There are a variety of options for changing the way your Ul is rendered. It is worth
exploring each of the options, as there are a lot of different ways to customize your
canvas.

Configuration Chooser | 197

Configuration menu

This button (") lets you save a particular configuration of the tool itself. In ad-
dition to defining a custom configuration, there are existing configurations, such
as “Preview All Screen Sizes,” which will show how the screen will look on every
device you have configured, and “Preview All Locales,” which shows how it will
look in the various languages and local settings you have configured.

Screen

[0 3.4in WQVGA ~

You can control the screen size using this button ().Icover thisin more

detail following this list.
Orientation

This option (B~ allows you to change screen orientation, or change to special
modes (such as Car Dock or Night Mode).

Theme

This selection () applies a theme to your UL It presents a list of all theme
resources available (both from the system and your project). Selecting any of them
applies the styling to your UI.

+r Holo

Activity
ThlS selection ((® GoodUIDemoActivity =

text for your layout.

) changes the Activity class that would provide con-

Localization

This option (| ©- |) applies any changes supported by your project for internation-
alization. If you have alternative resources (strings in strings.xml, images, etc.) for
multiple countries, you will be provided with a list of these and be able to switch
between them.

SDK

This selection () show how your app looks on devices with different versions
of the Android OS. This option is important to test because the UI changes a lot
with each release. The SDK you select does not need to be the one you are targeting.

|=| 17

The option for changing the screen size is a great example of how useful this tool can
be. As youknow, Android applications need to run on alarge variety of different devices,
and it can be challenging to test each of these configurations. This tool provides the
capability to check multiple resolutions of your layout. You can quickly switch between
different device configurations, and instantly see how your UI will render.

To change the screen size and resolution in the visual editor, use the option in the top
bar (see Figure 12-10) that allows you to view your layout on a variety of preset screen
sizes. Thelist includes any AVDs you've created at the top, then a variety of other devices

198 | Chapter 12: Using the Graphical Editor

below. You can select any of the devices from the list, and the rendering of your UT will
be updated to show how it would appear in that configuration.

GalaxyAce_mdpi_g8
GalaxyNexus_xhdpi_g16
Galaxys3_xhdpi_16
Nexus7_tvdpi_gl7

! NexusOne_hdpi_g10

Nexus 7 (7.27", 800 x 1280: tvdpi)
Galaxy Nexus (4.65", 720 x 1280: xhdpi)
Nexus S (4.0", 480 x 800: hdpi)

Nexus One (3.7", 480 x 800: hdpi)

10.1" WXGA (Tablet) (1280 x 800: mdpi)
7.0" WSVGA (Tablet) (1024 x 600: mdpi)
5.4" FWVGA (480 x 854: mdpi)
5.1" WVGA (480 x 800: mdpi)
4.7" WXGA (1280 x 720: xhdpi)
4.65" 720p (720 x 1280: xhdpi)
4.0" WVGA (480 x 800: hdpi)
3.7" FWVCGA slider (480 x 854: hdpi)
v 3.7" WVGA (480 x 800: hdpi)
3.4" WQVGA (240 x 432: Idpi)
3.3" WQVGA (240 x 400: Idpi)
3.2" QVGA (ADP2) (320 x 480: mdpi)
3.2" HVGA slider (ADP1) (320 x 480: mdpi)
2.7" QVGA slider (240 x 320: Idpi)
2.7" QVGA (240 x 320: Idpi)

Preview All Screens

Figure 12-10. Setting screen resolution in the visual editor

I already mentioned the option at the bottom named Preview All Screens. It renders, in
one view, your UI the way it will look on a variety of different devices (Figure 12-11).
The tool actually updates each of the various views in real time, which means that you
can see the impact of any changes you make on a variety of different screen sizes at the
same time. In the example below, I adjusted the top Button to move it to the left. You
will notice that the smaller screens on the right are updated to reflect this UI change.

Configuration Chooser | 199

v | [wexus One | @ + | # Holo » | @ ToolsDemoActivity v | @~ | iFi17 »

nE | =R | @E. | 0OEE

i® ToolsDemoProject

8 Deme
an option

Good W Dema

UI Demo Memory Deme

Logeat Demn

Image Demo

Good Ul Demo

Memory Demo

Woems uipeme
Boesd Ul Desmo. Goed L Demig.
Memary Dems Mymmary Darme

Logcat Demo
e Logeat Demo. Logem Dnems
Image Dema Image Dema

Image Demo

Fragment Deme Fragment Dema

Fragment Demo

Localization Demo

If you are using resource qualifiers (see “Resources” on page 170) to
. enable different layouts (for size or orientation-specific Uls), you need
" to modify each one independently. The changes you make in this tool
will take effect only on the layout.xml file you are currently editing. You

need to edit each of your alternate layouts independently and make
your changes in each of those files.

200 | Chapter 12: Using the Graphical Editor

CHAPTER 13
Optimizing the User Interface

Earlier chapters presented aids for creating dynamic and efficient layouts. The tools can
make your UI good, but you’ll probably need to do some additional work to make your
UI great. This chapter discusses the various tools that help you improve the efficiency
of your interface code. I will show you how to use the tools to eliminate:

o Slow or jittery redraw rates

A nonresponsive, poorly performing Ul

Introduction to Ul Performance

In addition to the content covered in Chapter 11, there are a few concepts relating to
how Android builds user interfaces that are important to understand.

How Android Draws Views, and How It Affects Ul Performance

When an activity gets started, it asks the framework to draw its UI from its layout
definitions. The Ul is drawn by walking the View tree and rendering each ViewGroup.
Then each ViewGroup requests each of its children to be drawn until all Views in the
hierarchy have been rendered. The tree is traversed in order, which means that parents
are drawn before their children, with the final order determined by where they appear
in the tree.

Two-pass layout

The runtime draws the layout through a two-pass process via the View tree, visualized
in Figure 13-1. For each View rendering, the system must perform two operations: a
measure pass and a layout pass. The measure pass collects dimension specifications and
the layout pass positions the Views on the screen.

201

Measure pass

This pass traverses the entire View tree to determine dimension specifications for
each View. The size and position of a ViewGroup depends on the number and size
of the Views it contains. The measure pass calculates sizes based on the relationships
between a ViewGroup and its related Views. The system will do a series of meas-
urement passes. At the end, the system knows the size required for each View, and

validates that they can be placed on the layout.

Layout Pass

After the system has determined the proper dimensions for a requested layout, it
renders the items to the screen.

ViewGroup:
LinearLayout

e T

ViewGroup:
LinearLayout

View: View:
TextView Button

ik

View:
Button

v

View:
Button

4 Measure Pass (Dimensions)

— Layout Pass (Positioning)

Figure 13-1. Two-pass layout process

Nested layouts reduce performance

Nested layouts can be a big source of performance issues. Overhead is involved with
each redraw of a ViewGroup. When Android redraws a component on the screen, it
must redraw every component and hierarchy it contains. The OS does a variety of com-
plicated measurement and placement calculations for each screen draw. Complex nested
components and unnecessary items impact performance and diminish the user expe-

rience with a slow response.

There are a few tools designed to help isolate Views with inefficient hierarchies. You can
use the Developer Tools (see “Developer Tools Application” on page 52) to visualize
problems, Lint (see “Lint” on page 107) to find and fix the errors in XML or Java, or the
Hierarchy Viewer (see “Hierarchy Viewer” on page 203) to visualize your View organi-

zation and determine possible optimizations.

202 | Chapter 13: Optimizing the User Interface

Hierarchy Viewer

It is important to have a good understanding of the View elements in your application.
Fortunately, ADT provides a collection of tools called the Hierarchy Viewer that allows
the developer to visualize these elements and quickly identify problems.

Dealing with complicated layouts can be very challenging. It can be hard to understand
deeply nested layouts, or find and remove unused layouts. We will use these tools to
create a diagram of the View hierarchy of a layout, which allows us to get a clearer
understanding of the nature of all the components in our layouts and how their rela-
tionships might be optimized. We optimize the layouts by removing unused layouts and
flattening the View hierarchy (which has a positive impact on performance). These tools
are also useful when debugging slow Uls, as you can navigate to a specific point in your
UI and get measurements about the actual render times of the individual widgets in

your apps.

Starting the Hierarchy Viewer

To start the tool, you first need to deploy your application to a running device. Then
use the preconfigured Eclipse perspective that organizes a collection of tools into a single
dashboard. Start it from the menu through: Window — Open Perspective - Other -
Hierarchy View. You will see something that looks like Figure 13-2.

Loading the View Hierarchy into the Tools

To begin analyzing your UI, navigate in your test app to the specific view you want to
inspect. Then:

1. Highlight the Window tab (@) on the top left.

2. Find your app activity in the list and highlight it.

3. If your app is not showing up, press the Refresh button (&) to renew the list of
views.

4. Generate the View by pressing Tree View button (*#).

A progress dialog on the bottom right corner will indicate that the View is being gen-
erated. When complete, your view will look similar to Figure 13-3.

Navigating the Tree Hierarchy

Notice that the two tabs on the right side of Figure 13-3 now have content in them.
There are two different ways to navigate using these tools:

Hierarchy Viewer | 203

| = Hierarchy View - Book2/ch09:xml -
File Edit Run MNavigate Search Project Refactor Design Window Help

BB (4] [: Ml - % .hG al i;f; > E [T} [& Hierarchy View I
= & 5o v X5 ¥ v £0 Team Synchr.. & Java
Q Windows % '=-E View Properties =] .'=E Tree View 2 =0 '=:E Tree Overview 2 = |

& T =

> oaf | e |
4 @ ermulator-5554
StatusBar
StatusBarExpanded
TrackingView
Release Notes
com.wolfsoft.dotd/com.wolfsoft.dotd.ui.C
cam.android.launcher/com.android.launc
com.android.internal service.wallpaper.Imi

i Layout View &3 =g

| 1 b || Filter by class orid: 20% <«

1
e

Figure 13-2. Initial Hierarchy View perspective

Tree Overview (%)
You might remember from “Nested layouts reduce performance” on page 202 that
unused views can be detrimental to performance. Figure 13-3 shows a high-level
overview of how each View in the UI is being rendered. This is a good place to
identify unnecessary components, because you can look for instances where a
component has only one descendant (and hence you can drop the container, and
just use the View directly). I highlight how to find these in the example at the end
of this section.

Layout View (%)
This section shows a wire-frame rendering of your Views. You can click any indi-
vidual component in this display to highlight it in the center Tree View.

204 | Chapter 13: Optimizing the User Interface

= o
= Hierarchy View - Book2/ch08xml - Eclipse SDK - [
File Edit Run MNovigate Search Project Refactor Design Window Help

C~-B& AE E- B - o B [&’ ava (@ Hierarchy View | &5 DDMS %5 Debug

- v X5 o - £0 Team Synchr...
B Windows [*:§ View Properties 52 = O |33 FreeView 52 2§ Tree Overview 52 =0
Property Value

Drawing

getPersistentDra SCROLLING
isAlwaysDrawnV true
isChildrenDrawi false
isChildrenDrawr false
isDrawingCache false
isOpaque() true
mForeground null
mForegroundGr 119
mForegroundinl true
willNotCacheDr: false
willNotDraw() true

Focus

Layout

Measurement ~2§ Layout View 52] Console

Miscellaneous -

Padding

Scrolling

Filter by class orid: 20% <

Figure 13-3. Hierarchy loaded into tools

Gathering View Information

The center column named Tree View (*#) is the main tool used to gather detailed in-
formation about your UL To start getting details, click on any View within your hier-
archy to bring up the detailed information about the View, which will look like
Figure 13-4. We will dig into each of the things you can do here.

The information displayed when you click on the node contains a variety of details about
the View’s rendering characteristics (and its children when appropriate). This display
contains alot of great information, so I want to take a moment to explain what the values
mean.

Hierarchy Viewer | 205

24 views
Measure: 6.755 ms
Layout: 0.731 ms
Draw: 20.200 ms

FramelLayout
@414cel08

idfcontent

Figure 13-4. Hierarchy View: Tree View

Measurement information

The middle section (see Figure 13-5) has two important items:

o The number of Views in this container. This example shows 24, which is a lot be-
cause this happens to be the main node in the tree.

o Measure, Layout, and Draw times for this node (and all of its children). Keep in
mind that high times are not necessarily evidence of an issue, especially for screens
with a lot of objects, which naturally take longer to render.

Identification and performance indicators

Thebottom part of the node information display (see Figure 13-6) has some other useful
information that you can use to quickly identify objects within your hierarchy. It also
includes performance indicators that you can scan to quickly understand how the View
performs (in relation to all other Views in the same layout). Information you can find
here includes:

206 | Chapter 13: Optimizing the User Interface

24 views
Measure: 6.755 ms

Layout: 0.731 ms
Draw: 20.200 ms

Figure 13-5. Hierarchy View: node measurements

o Class type of this view (in this case, the component is FrameLayout).
o The internal ID (i.e., how this View is referenced in the R class) for this View.
o The android:id used when the element was created in the XML.

o The three colored balls indicate the rendering speed of this View relative to other
objects in the tree. The left ball shows the measure time, the middle one shows the
layout time, and the right ball represents the draw time. If the ball is red, it means
that View is the slowest one in the tree; if the ball is yellow, that View is slower than
50% of the other Views. If the ball is green, it means that the View renders faster
than 50% of the other Views on the screen. You should use these indicators to
quickly scan your UT to identify the problems you should look at first.

o The number on the bottom right indicates the index of this View within its parent.
In this case, the node has one parent, so its index is one (if this were the top node
in the hierarchy, it would be zero).

FrameLayout
@414cel08
id/content

Figure 13-6. Hierarchy View: node identification and performance indicators

Gathering View Rendering Details

The Tree View contains detailed information about exact rendering times. You will see
the exact times (in milliseconds) it takes to measure, lay out, and draw a component.

Notice the three colored balls at the bottom of the screen. This is a quick way to identify
particular view groups that may not be rendering efficiently. The balls represent the
same cycles (Measure, Layout, and Draw, in order) as detailed in the Tree View in the

Hierarchy Viewer | 207

previous section. A ball will be green if everything looks good, yellow if there might be
reason for concern, and red if there is definitely something to fix.

In addition to gathering metrics about rendering, there are a variety of operations you
can do on a selected component:

o Save asa PNG (®).

« Capture window layers as a Photoshop document (®).
o Reload the View Hierarchy ().

o Display the selected View image in a new window (#@).

o Invalidate the View layout for the current window (®). This marks the View as
invalid, and it will be redrawn the next time the layout view is refreshed.

« Request the View to lay out (#). This marks the View and its children as invalid,
so they will be redrawn the next time the layout view is refreshed.

« Request the View to output its display list to logcat (*#).

Example: Debugging a Ul Using the Hierarchy Viewer

Examples in this section show how to find common problems, reveal a poorly imple-
mented UI, and identify issues. This section compares two different screens that achieve
the exact same UI result. They look exactly the same, but have significantly different
performance characteristics due to some design decisions. I am going to step through
how you would use the Hierarchy Viewer to analyze their performance and identify
issues.

Different ways to design a Ul

As an example, I have created two different XML layouts. They have the exact same
output on the screen, but one of them performs significantly worse than the other due
to implementation differences. The key difference is:

o The “bad” layout nests many different LinearLayouts. It is not unusual for devel-
opers to use LinearLayouts for complex layouts, but this often creates overly com-
plex layout files and poorly performing Uls.

o The “good” layout was written using a single RelativeLayout, and all the other Views
are laid out within this single container. This creates simpler layouts, and makes
them perform better.

Let’s use the Outline tool to show the format of the code. This is a good way to show
that the bad outline has a much more complex and deeply nested structure than the
good outline.

208 | Chapter 13: Optimizing the User Interface

The “bad” layout nests many different LinearLayouts. It is not unusual for developers
to use LinearLayouts for complex layouts, but this often creates overly complex layout
files and poorly performing Uls. You can see this complexity in the Outline view

(Figure 13-7).

s Outline

YD LinearLayout
v I:‘ buttenLinear (LinearLayout)

(o] on_ui_btn (Button) - "On Ul Thread"
@oﬁ’_ui_bm {Button) - "Off Ul Thread"
@t&xt\f’iewl - "Multi-ltem Select”
Yl:‘ options_layout (LinearLayout)
|Z|checkﬂoxl - “ltem1"
@checkanxz - “Item2"
E‘checkﬂoﬂ - "ltem3"
v I:‘ images_layout (LinearLayout)
'Dimagel_layout {LinearLayout)
E;jimage\:‘iew2 -ic_launcher
@Tg]text\f'iewtt - "Imagel”
YDimageZ_Ia\mut (LinearLayout)
i&-jimagemwz - ic_launcher
|20 textView3 - "Image2"
"Danother_uselesslayoul (LinearLayout)
v I:‘ extra_linear (LinearLayout)
> I:‘ another_extra (LinearLayout)
@ buttonl

|A__bjtcol_demo_text (TextView) - “Bad Ul Form Example:”

Figure 13-7. Hierarchy View: bad outline

Figure 13-8 shows the result of creating simpler layouts and making them perform

better: a much cleaner Outline view.

%g DQutline

Y RelativeLayout
|A__b|tool_demo_te>(t (TextView) - "Good Ul Form Example:”
ok|on_ui_btn (Button) - "On Ul Thread"
ok off_ui_btn (Button) - "Off Ul Thread"
[AbltextViewl - "Multi-Itern Select”
|Z|checkl30xl - "lterm1"
@checkﬁoxz - "ltem2"
@checkﬂoﬂ - “Item3"
uimage\-'iewz - ic_launcher
E_:_iimage\ﬁewl - ic_launcher
IA__bltextViewz - "Imagel"”
IA__b!textView3 - "Image2"
A textViewd - "Enter text”
[T | editText1
|D_ﬂ buttonl

Figure 13-8. Hierarchy View: good outline

Hierarchy Viewer

209

Despite the big difference in design, the “bad” screen (see Figure 13-9) and the “good”
screen (see Figure 13-10) look and operate in exactly the same way.

® O O 5554:GalaxyNexus_xhdpi_g16
o000

Bad Ul Form Example: Y. Y- NC)
On Ul Thread Ny
Off Ul Thread

Multi-Item Select

Item1 Item2 Item3

f:'

mag I

!gf

Figure 13-9. Hierarchy View: bad layout

Using the Tree View to get timing information

To understand the UL, let’s use the Tree View described in “Gathering View Informa-
tion” on page 205 to discover how long it is taking to render our View. Use the steps
described in “Loading the View Hierarchy into the Tools” on page 203 to load the display
and determine how the UT is performing. For the most part, you need to get a feel for
the optimal performance number, which varies based on the complexity of the particular
screen. You will learn what the optimal numbers are through experience, and you gen-
erally will want to compare the layout times for the same layout, before and after opti-
mizations (to determine whether your changes are beneficial).

In our example, it is easy to see that the “bad” layout is a poor performer. We select the
top element in the Tree View and look at the measurement on the bottom. This shows

210 | Chapter 13: Optimizing the User Interface

® O O 5554:GalaxyNexus_xhdpi_gl16
o0

ood Ul Form Example Y RoRa
On Ul Thread Ny
Off Ul Thread

Multi-lItem Select

Iltem2

Figure 13-10. Hierarchy View: good layout

the time it takes to draw this View. In this case, it takes 24.483 ms for the bad UI (see
Figure 13-11), and only 19.640 ms for the good one (see Figure 13-12). There is a 20%
difference between the two, and they both look exactly the same.

It is worth getting multiple measurements, as they will vary each time you generate the
Hierarchy View.

Reviewing the structure with the Tree Overview

So now that we have identified the poor performance of the U, let’s next take a look at
its general structure. Tree Overview makes it easy to look at a high-level overview of the
tree hierarchy, and understand when a View has a complicated structure. The more
complicated structures take longer to render. You will also use this View to identify when
a hierarchy is too deep. Having deep hierarchies causes significant performance impact,
as it increases the time it takes the system to measure the components before laying
them out.

Hierarchy Viewer | 211

2% Tree View 53 ol () |- j@*ﬁﬂ"li ¥ =0

27 views
Measure: 3.636 ms
Layout: 0.562 ms

Draw: 24.483 ms

Filter by class or id: 20% 200%

Figure 13-11. Hierarchy View: bad timing

Looking at the two different structures, it is easy to see why one might perform better
than the other. The “good” layout is basically completely flat (see Figure 13-13), without
any deep hierarchies. The “bad” layout (see Figure 13-14) has a lot of different hierar-
chies, and some of them are even a few levels deep. You will use this View to quickly
identify overly complicated structures by looking at how organized they appear.

212 | Chapter 13: Optimizing the User Interface

2 Tree View &2 i

19 views
Measure: 5.044 ms
Layout: 0.420 ms

Draw: 19.640 ms

Filter by class or id: 200 200%

Figure 13-12. Hierarchy View: good timing

Hierarchy Viewer | 213

Tree Overview 53 = O

Figure 13-13. Hierarchy View: good tree

214 | Chapter 13: Optimizing the User Interface

#f Tree Overview 53 = 38

Figure 13-14. Hierarchy View: bad tree

Hierarchy Viewer | 215

Using the Tree tool to inspect the bad Ul

To help identify the exact View components that are causing slow render performance,
use the Tree tool (Figure 13-15) to check the different nodes, inspecting their perfor-
mance indicators. Concentrate on the nodes with red or yellow performance indicators,
which can indicate slower performance.

The View Hierarchy window also helps you pinpoint performance issues. By looking at
the performance indicators for each node, you can quickly identify the objects that are
the slowest to draw. This helps to identify the elements to focus on.

A A
e It is worth noting that red or yellow indicators are not always indica-
f‘.‘ _ tive of a problem. This is particularly true for ViewGroup objects,
"4 which have more children and are more complex (and thus take more
time to render).

When I look at the bad UL, I see red and yellow dots on many different nodes (in this
figure, there are red and yellow dots on a variety of different places in no discernible
order). On a high level, this tells me the entire Ul is problematic and that the issues
aren’t isolated to one particular ViewGroup. At this point, I know this layout is probably
overly complex and is a candidate for a complete redesign. Next, I will inspect the par-
ticular elements with red dots (in this case, there is the TextView that is second from
the top, and the EditText that is on the bottom to the very right). In this case, both
these elements are simple object types, using an Android base class (TextView). If these
were custom Views (i.e., MyCustomTextView), red and yellow dots would point to good
places to spend time optimizing. In this case, because these are Android base classes, I
know I probably should spend my time elsewhere.

You can also use this tool to identify unused layouts (if you didn't catch them earlier
using Lint, described in “Fixing Problems Using Lint” on page 218). Unused layouts in
your hierarchy are a common problem with potentially big performance impacts, as
each additional ViewGroup makes the measure pass described in “Two-pass layout” on
page 201 take more time (and it’s already the bulk of the time required to render the
screen). It is reasonably easy to identify unused layouts. In this case, there is one Line
arlLayout (in the middle towards the left) that doesn’t show any performance metrics
(there is just a blank space where the colored balls and timing information would be).
This indicates that it is not being rendered and should be removed.

216 | Chapter 13: Optimizing the User Interface

28 Tree View 52 o B

Filter by class or id: 20% 200%

Figure 13-15. Hierarchy View: bad detail

Using the Tree tool to inspect the good Ul

The performance indicators in the good UI look much better than the bad one in the
Tree View. Most of the indicators in Figure 13-16 are green. The concentration of all
the red indicators on my single layout indicates that I don’t need to worry about them
—the tool has just identified that this path takes the most time to render, which is
appropriate because it is the only path.

There are clearly no unused layouts, so that looks great as well. Overall, this layout is
much better, which is easy to visualize using this tool.

Hierarchy Viewer | 217

2§ Tree view 53 = |'=§ '|®*ﬁ"=§ ¥ =08

16 views
Measure: 3,551 ms
Layout: LOGT m3
Draw: 21.882 ms

Filter by class or id: 20% 200%

Figure 13-16. Hierarchy View: good detail

Fixing Problems Using Lint

ADT includes a static code analysis tool designed to check source code for potential
issues and identify optimization opportunities. It automatically analyzes source code
for a variety of criteria. You have likely encountered it before, as it is involved in other
aspects of Android development, including writing the business logic (Java classes).

Lint is launched by pressing the little red button on the far right of the Graphical Editor
toolbar (@), which we discussed in the previous chapter (Chapter 12). This number
indicates the number of issues Lint has identified. Clicking it will launch the Lint tool
(Figure 13-17). You can use this tool to organize and navigate to the various issues it
identifies. When you click on an item, the bottom will show additional information
about the issue (and offer suggestions about possible fixes).

218 | Chapter 13: Optimizing the User Interface

The right side provides a few buttons that allow you to take action on the item. You can
opt to fix it, or if it isn’t important to your particular use case, you can tell the tool to
ignore it. You can remove instances from the display, specifying whether you would like
to remove just one instance (“Suppress Issue”), all instances in this file (“Suppress in
Layout”), or all instances in your entire project (“Disable Issue Type”).

800

Lint Warnings in Layout

Lint Errors found for the current layout:

Description w Line-: [
s [118N] Hardcoded string "On Ul Thread", should use @string resource24 | |#'|
4 [11LBN] Hardcoded string "Off Ul Thread”, should use @string resourci 35 -
ut, [118N] Hardcoded string "Multi-ltem Select”, should use @string reso46 | | suppress lssue |
ut, [11BN] Hardcoded string "ltem1", should use @string resource 56 . T
ui [118N] Hardcoded string "ltem2", should use @string resource 65 | |M|
«ir [118N] Hardcoded string “ltem3", should use @string resource 75 -_—
.1 [118N] Hardcoded string "Imagel”, should use @string resource 103 | | Disable Issue Type |
w1 [118N] Hardcoded string “Image2”, should use @string resource 111

AL Hardendad.chring tEntar tastt_chosld o, EEin 0.0 E AR L0
[118N] Hardcoded string "Good Ul Form Example:”, should use @string resource

Show |

Issue: Looks for hardcoded text attributes which should be converted to resource
lookup
Id: HardcodedText

Figure 13-17. Visual Editor using Lint

Application Exerciser Monkey

The Monkey is a tool you run on your device to generate a pseudorandom stream of
user interactions and system-level events. It is used to stress-test applications by pro-
viding a way to simulate lots of random interactions in a repeatable manner while col-
lecting metrics about crashes or memory issues. This is a great way to test for user
interactions that aren’t the “normal” ones that you expect (and are already testing for).
You can think of it as a tiny virtual primate, whose sole job is to punch and prod your
application in an effort to break it.

Monkey runs on your device, which means we will use ADB (see “Android Debug Bridge
(ADB)” on page 17) and shell commands to run it remotely. When starting it, you need
to provide your package name and the number of events you want to trigger. So if you
wanted to run 500 events against the MyPackage app, the command would look like:

$ adb shell monkey -p com.foo.MyPackage 500

A real example of running this looks like:

Application Exerciser Monkey | 219

$ adb shell monkey -p com.tools.demo 500

// activityResuming(com.tools.demo)

// activityResuming(com.tools.demo)

Events injected: 500

Network stats: elapsed time=36972ms (36972ms mobile, Oms wifi,
Oms not connected)

$

When you run this test, you can watch your device or emulator. You will notice random
elements of your UI being exercised as if an imaginary monkey were pressing on your
app at random.

Grooming the Monkey

There are a variety of ways to customize the Hierarchy Viewer’s test and report. I will
go through some of the most important ones in this section. You can see a complete list
of all options by typing:

$ adb shell monkey --help
Letting the Monkey free

The Monkey starts in the default application of the package you specified, and by default
is contained within that package. Any event that launches something external will be
dropped. This is generally a desired behavior, but there might be times when you want
to be able to launch other packages. This can be done by providing an additional package
argument to the command:

$ adb shell monkey -p com.foo.MyPackage -p com.foo.MyPackage2 500
Specifying event types and frequency

It is possible to isolate the types of events that are triggered. You can specify the per-
centage of a particular event that should be run. This is done with the event parameters.
So, for instance, if you want to ensure that 50 percent of the events are touch events (a
down-up event in a single place on the screen), enter a command like:

$ adb shell monkey --pct-touch 50 -p com.foo.MyPackage 500
Verbosity level

Depending on your needs, you may want to get back different levels of information
from a test run. It is possible to set the verbosity level to indicate how much information
you wish to receive. There are three possible levels, based on how many v’s you set.
Putting a single v (the default) provides the least information—basically just informa-
tion about startup, test completion, and final results. Putting vv will also output
information during the test run. Lastly, entering vvv provides the most information,
including details about activities selected or not selected for testing.

220 | Chapter 13: Optimizing the User Interface

If that isn’t enough information for you, you can also include the hprof argument on the
command line. This will dump a large (~5MB) file that can be used by traceview (see
Chapter 10) for memory profiling.

So to see the most verbose output, enter:

$ adb shell monkey -vvv -hprof -p com.foo.MyPackage 500
Setting a seed value

A seed value allows you to generate the same set of random events over and over. This
can be useful when you need to duplicate the same set of random events predictably to
isolate a particular bug. If you rerun the Monkey with the same seed number, the same
exact events will be executed in the same sequence. The seed can be any value, and
determines where Monkey starts in its generation of pseudorandom events. So we could
choose the seed number 334422 as follows:

$ adb shell monkey -seed 334422 -p com.foo.MyPackage 500

Monkeyrunner

This tool (which despite the similar name to the tool we just discussed is completely
different) is designed to control an Android device from outside of code, simulating
how a real user would interact. It provides an API so you can simulate user interactions
by issuing commands through a script, or from the command line. This is a powerful
tool for simulating and running a consistent set of UI interactions in a repeatable
fashion.

The monkeyrunner tool is a Java program that can be found with the rest of the tools in
the ${android.home}/tools folder. To run it, create a set of instructions you would like
to simulate and feed to the tool. This is a scripted application, so we need to give the
tool a list of commands in order for it to run. You can either type the commands one at
a time in interactive mode or create a script to run a collection of commands together.

You can do a lot with monkeyrunner, which provides a robust automated tooling plat-
form. This tool makes repeating a specific UI easy. This makes it easy to standardize
functional tests, which can be run across a variety of devices.

Using Python to Create the Script

Rather than inventing a scripting language for this tool, the creators chose to use an
existing language named Python. Python was the logical choice because it is very pow-
erful and popular. It is a dynamic programming language that was designed to focus on
creating clear, readable code thatis modular and extensible. Python combines functional
and object-oriented programming concepts to make it easy to express procedural pro-
grams. It is beyond the scope of this book to explain the details of the Python language

Monkeyrunner | 221

but we can step through a simple monkeyrunner script to show how it can be used. Even
if you don’t know Python, you should be able to follow along.

Let’s step through a simple example that shows how to install an application, launch an
activity, take a screenshot of the menu options, and then store the screenshot for later
review.

#menu_script.py
Import the monkeyrunner modules we need from com.android.monkeyrunner
import MonkeyRunner, MonkeyDevice

Connect to a device
device = MonkeyRunner.waitForConnection()

Install an application to the device
device.installPackage('../ToolsDemo.apk")

Run a component
device.startActivity(component="'com.tools.demo/.MainActivity"')

Press and hold the 'MENU' button
device.press('KEYCODE_MENU', MonkeyDevice.DOWN)

Take a screenshot
screenl = device.takeSnapshot()

Store the screenshot to the filesystem
screenl.writeToFile('screens/menu_buttons.png','png')

Release the 'MENU' button
device.press('KEYCODE_MENU', MonkeyDevice.UP)

You can run this script by starting monkeyrunner from the command line with this
script as a parameter:

$ {android.home}\tools\monkeyrunner menu_script.py

When you execute this command, you will be able to watch the actions you scripted on
your device as they are happening.

Thanks for Reading!

Well, that’s the end of this chapter on UI performance, and the end of the book. With
any technology that changes as rapidly as Android does, there will frequently be updates
and new information. There’s a website with pointers on that at http://www.mikewolf
son.com. And finally, I'd like to thank you for choosing this book and reading it all the
way to the end. In the final analysis, programmers don't write books for fame or financial
reward. We write them to share our hard-won knowledge and make the path of other
programmers a little bit easier. I hope that this book fulfills that goal for you (and that
you recommend it to all your developer friends!).

222 | Chapter 13: Optimizing the User Interface

http://www.mikewolfson.com
http://www.mikewolfson.com

Symbols

*:s, silencing all other log messages, 98

A

accelerometer, SensorSimulator accelerometer
example, 124
actions
Android Actions, in Android Studio default
toolbar, 75
common, in Android Studio, 76
Telephony Actions, Emulator Control tab,
118
activities
Activity option in Configuration Chooser,
198
Don't keep activities option, 126
log messages on, 90
Activity Manager, 22
ActivityManager:* tag, 93
ADB (Android Debug Bridge), 17-24
functionality, additional, 22
issuing commands, 19
managing applications on a device, 19
transferring files, 19
querying for device instances, 18
directing command to specific device, 18
finding connected devices, 18
resetting the server, 23

Index

resources for learning more about, 24
shell command, 20-22
interactive mode, 20
one-off mode, 21
retrieving system data, 21
using Activity Manager, 22
starting, 17
ADB driver, downloading, 7
adb logcat command, 97
ADB process, resetting from Devices tool, 50
ADT (Android Developer Tools), ix, 5
ADT Preview Channel, 15
development process, x
File Explorer, 50
Gradle integration, documentation on, 144
leveraging to build great Uls, 171
Lint, 107
requirements for, ix
ADT Template Format Documentation, 65
ADT website, x
Analyzer Tool, 153-155
running, 154
viewing results, 154
Android Attributes, getting information about,
106
android create avd command, 31
Android Debug Bridge (see ADB)
Android Debug Monitor, 152
Android Developer Tools (see ADT)

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

223

Android devices (see devices)
Android Document website, 7
Android key, 67
Android Manifest Editor, 65
tabs, 65
Android platforms
SDK component, 12
selecting and downloading packages for, 14
Android Plugin for NetBeans, 7
Android Software Development Kit (SDK)
bundled with Android Studio, 72
components, 11
installing, 3-5
extracting tools to Android home, 4
installing ADT Bundle, 3
setting PATH variable, 5
unzipping download artifact, 5
Android Studio, 6, 71-88
anatomy of, 74
navigation, 76
panels, 74
status bar, 75
toolbars, 75
useful actions, 76
creating new Android components, 79
generating an APK, 82
installing, 72
bundled SDK, 72
default project location, 74
interacting with Gradle, 84
interacting with Maven, 83
Layout Designer, 80
Layout Preview, 81
migrating to, from Eclipse, 86
new structure for Android project, 77
refactoring and code generation, 87

running and debugging Android projects, 78

tips and tricks, 86
miscellaneous shortcuts, 87
refactoring and code generation short-
cuts, 87
training resources, additional, 88
Version Control System (VCS) integrations,
85
android update project command, 135, 136
Android Virtual Devices (see AVDs)
Ant, 129
building from command line with, 133-138
building app to release to Play Store, 136

building in Debug mode, 136
more Ant commands, 138
setting up your project, 135
ant debug command, 136
ant release command, 137, 138
Apache Ant home page, 133
APKs (Android package files)
generating in Android Studio, 82
packaging for release, 130-133
Asset Studio project, 187
Asset tool, 183-186
creating images, 184
selecting icon type, 184
AsyncTasks, monitoring with logcat, 95
attributes
defined, 166
editing attribute values in XML files, 174
AVD Command Reference, 32
AVD Manager
starting the emulator, 40
AVD launch options, 41
AVDs (Android Virtual Devices), 28
creating, 28
AVD Manager, 29
from command line, 31
location of AVD files, 31
emulator options, 32
setting up emulator using snapshots, 42
snapshots saved state, 45
starting the emulator
from command line, 41
launch from snapshot, 46

B

boot animation, disabling on emulator, 37, 42
breakpoints
setting a debug point in source code, 99
setting debug points, 102
build file (Gradle), 147
build tools, 129-149
advanced packaging steps, 139-144
ProGuard, 139-144
Zipalign, 144
Android Studio interacting with Gradle, 84
Android Studio interacting with Maven, 83
building from command line using Ant,
133-138
additional Ant commands, 138
building app to release to Play Store, 136

224 | Index

building in Debug mode, 136
setting up your project, 135
compiling your code, 129
Gradle-based, 144-149
build file, 147
build tasks, 148
creating multiple build variations, 145
generating Gradle build from Eclipse,
148
installing Gradle, 144
Maven, 149
packaging APK for release, 130-133
signing your app, 130-133
build type (Gradle), 145
build variant (Gradle), 145
build.xml file (Ant), creating, 135
building Android apps
from multiple source libraries, 135
steps in process, 134

C

canvas (Graphical Layout editor), 192-196
context-sensitive menu, 194
layout actions, 194
certificates, 130
code completion, XML editor, 173
Code Editor (Eclipse), 56
code examples from this book, xi
code generation and refactoring in Android
Studio, 87
code templates, 60-65
accessing menu in Eclipse, 60
creating Master/detail flow, 60-65
code template confirmation, 62
Master/detail wizard, 61
viewing results, 63

creating your own, 64

XML editor, 172

command line
building from, using Ant, 133-138
creating AVDs from, 31
draw9patch tool, 186
starting an emulator from, 41
using development tools from, 6
using lint from, 108

excluding issues, 109

compiling your code, 129

Configuration Chooser, 197-200
Preview all screens, 199

setting screen resolution, 199
configuration parameters for AVDs, 30
context-sensitive menu, Graphical Layout edi-

tor, 194
context-specific options in Android Studio, 86
convention over configuration, 145
Create AVD wizard, 29
custom content entered in log statement, 91

D

Dalvik Compatible executables (DEX files), 129
Dalvik Debug Monitor Server (see DDMS)
DDMS (Dalvik Debug Monitor Server), 152
159
Analyzer Tool, 154-155
Heap tool, 156
launching DDMS perspective, 152
specifying location for emulator to simulate,
115
Threads tool, 155
Traceview tool, 158-159
DDMS perspective, 58
debug key, 130
Debug mode, 134
building in, using Ant, 136
Debug toolbar, Resume button, 104
Debug.dumpHprofData() method, 160
debuggable, setting app to, 99
debugging, 98-107
DDMS (Dalvik Debug Monitor Server),
152-159
Eclipse Debug Perspective, 100
enabled for testing apps on a phone, 7
example, 101-107
setting debug points, 102
starting the debugger, 103
stepping through the code, 104-107
launched from Devices tool, 49
setting app to debuggable, 99
setting debug point, 99
validating on phone, 7
dependencies
defining project dependencies and target
API, 135
listing tasks and dependencies in Gradle, 148
managing for packages selected in SDK
Manager, 15
Developer Settings application, 126-127
Developer Tools application, 52

Index | 225

development tools (see tools)
development, configuring a device for, 7
Device Screen Capture (Devices tool), 50
devices
configuring for development, 7
querying for device instances in ADB, 18
directing command to specific device, 18
finding connected devices, 18
recording sensor interactions on physical de-
vice, 125
using physical device for development, 25
capabilities and limitations, 25
configuring device for development, 26
devices command (ADB), 18
-s option, 18
Devices tool
Devices tab, 48
operations launched from devices tab, 49
physical device shown in, 49
tracking emulators or devices hooked to
your computer, 48
documentation
Ant commands, 138
Gradle, 144
in Android SDK, 12
using alternative resources, 171
using NinePatchDrawables, 186
draw9patch command-line tool, 186
drawable documentation, 186
drivers, 12
Dump HPROF file button, 160

E

Eclipse IDE, x, 3, 55-70
Android Key, 67
Android Studio and, 71
Build Automatically setting, 129
code templates, 60-65
DDMS perspective, launching, 115, 152
Debug Perspective, 100
developing without using, 6
generating Gradle build from, 148
Initial Hierarchy View perspective, 203
launching, 5
logcat viewer, 93
MAT, installing and launching, 160
moving to Android Studio from Eclipse, 86
other essential shortcuts, 69

properties editors, 65
Android Manifest Editor, 65
quick outline for XML or Java class, 68-69
Refactor menu, 70
running Lint, 110
Java and XML editor integration, 112
Lint Options dialog, 112
Lint toolbar menu, 111
Quick Fix tool, 113
starting SDK Manager, 13
starting the emulator, 40
workspace layout, 55-59
Code Editor, 56
Outline, 56
Package Explorer, 56
Problems tab, 57
Quick button, 59
uncovering additional tools and views,
57-59
XML formatter, 67
Editor Preferences menu (XML editor), 181
Emulator Documentation, 50
emulators, 39
advanced configuration, 33
dedicating core to emulator on Windows,
37
disabling boot animation, 37
using hardware acceleration, 33-37
Android Virtual Devices (see AVDs)
emulator application, 47
emulator options for AVDs, 32
keyboard shortcuts, 50
location simulation, 115-118
starting the emulator, 40-47
AVD launch options, 41
enabling options to launch from snap-
shot, 46
from command line, 41
saving and retrieving a snapshot, 42
using AVD Manager, 40
using snapshots to improve performance,
42
tracking using Devices tool, 48
using for development, 26
supported and unsupported features, 27
events, simulating, 115-127
advanced sensor testing, 122-125
recording sensor scenarios, 124
SensorSimulator, supported sensors, 123

226 | Index

simulating sensor events in real time, 124
changing networking parameters, 121
location and routes, 115
telephony operations, 118-121
using Developer Settings application, 126-

127
using device with sensor emulation, 122

example code in Android SDK, 12
Export wizard, 131

F

File Explorer, 50
files
File Actions in Android Studio, 75
transferring between your computer and de-
vices, 19
filtering
applying multiple filter expressions to logcat
command, 92
logcat output using custom tags, 98
logging output filter based on log tags, 92
logging output filter based on logging level,
91
flavor group (Gradle), 145
Force GPU Rendering option, 127
formatting
monitoring with logcat, 95
XML files, using XML editor, 178

G

garbage collection, 151
Google APIs (in Android SDK), 12
GPU rendering, forcing, 127
Gradle, 83, 129, 144-149
build file, 147
build tasks, 148
creating multiple build variations, 145
documentation, 144
generating Gradle build from Eclipse, 148
installing, 144
interacting with, using Android Studio, 84
key concepts and terms, 145
gradle command, 148
graphical editor, using, 189-200
canvas, 192-196
context-sensitive menu, 194
layout actions, 194
Configuration Chooser, 197-200

generating layouts with Graphical Layout
editor, 189

Lint, 218

Outline view, 196

palette, 191

Properties editor, 196-197
graphics acceleration, starting emulator with, 42
graphics, working with, in Android UI, 183-187

Asset Studio website, 187

Asset tool, 183

using Nine-patch images, 186

H

Hardware Accelerated Execution Manager (In-
tel HAXM), 33-37
benefits and limitations of, 33
configuring an AVD, 34
downloading components, 34
installing software, 34
validating that it's running, 36
hardware capabilities, Android phones, ix
heap
Heap tool, 153, 156
information displayed in 3 sections, 157
inspecting with Devices tool, 50
Hierarchy Viewer, 203
example, debugging a UTI using, 208-218
different ways to design a UI, 208
getting timing information with Tree
View, 210
inspecting bad UI with Tree tool, 216
inspecting good UI with Tree tool, 217
reviewing structure with Tree Overview,
211
gathering view information, 205
identification and performance indica-
tors, 206
measurement information, 206
gathering view rendering details, 207
loading view hierarchy into tools, 203
navigating tree hierarchy, 203
starting up, 203
Hierarchy Viewer perspective, 58
home directory, Android, 4
HPROF file, 159
analyzing using MAT, 161

Index | 227

IDEs (Integrated Development Environments),
X, 1
(see also Android Studio; Eclipse IDE)
developing without using, 6
Eclipse IDE or other IDE, 3
using IDE other than Eclipse, 6

install command (ADB), 19

J

Java

compiling your code, 129

Lint Quick Fix in, 114

Lint warnings in Java file, 112

signing APK with standard Java tools, 133
Java keystore, 131-133
JDK (Java Developer Kit), 2
JRE (Java Runtime Environment), 2
JSON parsing, monitoring with logcat, 95
JSON:* tag, 98

K

keyboard shortcuts
Android key, 67
Eclipse Quick Outline, 68
emulator, 50
in Android Studio, 76, 86
miscellaneous shortcuts in Android Studio,
87
navigating within XML files, 68
other Eclipse shortcuts, 69
Quick Fix feature in Eclipse, 113
refactoring and code generation in Android
Studio, 87
setting breakpoints in code, 99
keystore
checking or validating in Build wizard, 133
creating in Build wizard, 132
password information, storing in Ant, 137
selection, in Build wizard, 132
signing app with custom keystore, 137

L

layout
Android, basic concepts, 165
defining layouts using XML, 166

defining layouts using XML/layout basics
rendered, 168
leveraging ADT to build Uls, 171
resources, 170
Views and ViewGroups, 167
bad and good layouts for Android UL, 208
defined, 166
generating using Graphical Layout editor,
189-196
inserting new layouts into XML files, 173
nested layouts reducing performance, 202
two-pass layout process, 201
layout actions bar (Graphical Layout editor),
194
Layout Designer (Android Studio), 80
layout files, 166
Layout Preview (Android Studio), 81
Layout View (Hierarchy Viewer), 204
link suspects report (MAT), 162
Lint, 107
command-line usage, 108
--disable command as permanent, 109
--enable option, 109
excluding issues, 109
fixing UI performance problems, 218
listing issues currently enabled, using lint --
list command, 107
running in Eclipse, 110
Java and XML editor integration, 112
Lint Options dialog, 112
Lint toolbar menu, 111
Quick Fix tool, 113
Linux
Android Framework and, 20
Android home directory, 4
keyboard shortcuts in Android Studio, 87,
87
minimum requirements for Android devel-
opment, 1
navigation shortcuts in Android Studio, 76
setting breakpoints, keyboard shortcut, 99
starting SDK Manager, 13
XML formatter, 67
localization, 198
locations, simulating, 115-118
log tags, 90
creating custom tags to represent logging
categories, 95

228 | Index

using in multiple filters on logcat command,
93

using to filter output, 92

logcat, 89

filtering output based on logging level, 91

filtering output using log tags, 92

filtering verbose system logs to find needed
information, 94-98
creating log statements, 95
determining areas to monitor, 95
filtering output, 98
verbose logging, 97

getting the most out of, 92

log messages, 89

logcat tool in Eclipse, 93

predefined output formats, 93

reading output, 90

viewing alternative log buffers, 93

viewing logcat file, 89

logging level, 90
example in testing of ActivityManager, 90
filtering based on, 91

M

Mac OS X, x
Android home directory, 4
minimum requirements for Android devel-

opment, 1

navigation shortcuts in Android Studio, 76
setting breakpoints, keyboard shortcut, 99
starting SDK Manager, 13
XML formatter, 67

Manifest Editor, 65
tabs, 65

Master/detail flow, generating with code tem-
plate, 60-65

MAT (Memory Analyzer Tool), 159-162
HPROF file, 160
installing into Eclipse, 160
launching from Eclipse, 160
Overview screen, 162
using to analyze HPROF files, 161
viewing a report, 162

MAT wizard, launching, 161

Maven, 129
interacting with, using Android Studio, 83
learning more about integration with An-

droid, 149

memory
Analyzer Tool, 153
usage in Android, 151

Memory Analyzer Tool (see MAT)

memory leaks, 151

monitoring system resources (see system re-
sources, monitoring)

Monkey tool, 219

monkeyrunner, 221

N

navigation shortcuts in Android Studio, 76

NetBeans IDE, 7

network, monitoring with logcat, 95

NETWORK:* tag, 98

networking parameters, changing, simulation
of, 121

Nine-Patch images, 186

Nurik, Roman, 65

0

obfuscation of code, with Proguard, 89
Openintents.org, SensorSimulator project, 122
operating systems

Android development on, x

minimum hardware requirements for An-

droid development, 1

optimizing the UI (see UI, optimizing)
orientation, 198
Outline view

in Eclipse, 56

in graphical editor, 196
OutOfMemory exception, 151
Overview screen (MAT), 162

P

Package Explorer (Eclipse), 56

packaging steps, advanced, 139-144
ProGuard, 139-144
Zipalign, 144

palette (Graphical Layout editor), 191

panels in Android Studio, 74

passwords
Graphical editor, password example, 192
keystore for app built in Ant, 137

PATH environment variable, 5

Index | 229

performance, UL, 201
(see also UL, performance)
introduction to, 201-202
perspectives (Eclipse), 58
Pixel Perfect View, 58
Platform Tools, 12
Play Store
building app in Ant to release to Play Store,
136
packaging an APK for release on, 130-133
Pointer Location, 126
port forwarding, 122
PowerManagerService:E tag, 93
Problems tab (Eclipse), 57
process ID of application originating log mes-
sage, 90
product flavor (Gradle), 145
Profile panel (Traceview), 159
ProGuard tool, 89, 139-144
configuring, 140-142
enabling, 139
viewing obfuscated code, 142
project files, Android Studio, default location,
74
project.properties file, 135
projects
new file structure in Android Studio, 77
running and debugging in Android Studio,
78
properties editors, 65
Android Manifest Editor, 65
Properties editor in Graphical Layout editor,
196-197
push and pull commands (ADT), 19
Python, using to create monkeyrunner script,
222

Q

Quick button (Eclipse), 59
Quick Fix tool, Lint running in Eclipse, 113
Quick Outline

for XML, 68

in Java class, 69

R

Refactor menu, 70
Extract Style, 70
renaming item IDs, 70

refactoring
in Android Studio, 87
Refactor menu of XML editor, 176
Release mode, 134
building in, using Ant, 136
Reset ADB (Devices tool), 50
resource files, 170
resource qualifiers, 167
modifying each independently, 200
resources, 151, 170
(see also system resources, monitoring)
resource limitations for mobile apps, x

S

sample code in Android SDK, 12
scale factor (AVD launch option), 41
scenarios, recording sensor scenarios, 124
screen resolutions
setting in visual editor, 199
supporting multiple, 170
screens
controlling screen size in visual editor, 198
multiple screen sizes for Android devices, ix
Preview All Screens in graphical editor, 199
Show screen updates, Developer Options
menu, 126
SDK Manager, 11-17
ADT Preview Channel, 15
enabling, 15
installing Preview Tools, 16
reverting to released tools, 17
starting, 12
viewing installed and available components,
14
deleting and updating components, 15
installing packages, 14
managing dependencies, 15
selecting packages, 14
SDK option, Configuration Chooser, 198
SDK Tools, 12
SdkControllerSensor app, 122
secure.properties file, 137
self-signed certificates, 130
sensor emulation, using device with, 122
SensorRecordFromDevice.apk, 125
SensorSimulator, 122
accelerometer example, 124
recording sensor scenarios, 124
supported sensors, 123

230 | Index

Settings app
Developer Options, 126
enabling developer options, 52
USB Debugging, 7, 26
shell interface (ADB), 20-22
interactive mode, 20
one-off mode, 21
retrieving system data, 21
using Activity Manager, 22
Show screen updates, 126
signing apps, 130-133
simulating events (see events, simulating)
SMS messaging, simulating, 118-121
snapshots
AVD launch option, 41
AVD snapshots saved state, 45

using to improve emulator performance, 42

saving and retrieving a snapshot, 42
Software Development Kit (see Android Soft-
ware Development Kit; entries beginning
with SDK)
Sonatype, resources on Maven, 149
sourceset (Gradle), 145
stacktrace, 155
related to a single thread, 156
Strict Mode Enabled, 126
styles
defined, 166
Extract Style in Refactor menu, 70
syncing Gradle files with Android app, 85
system data, retrieving with ADB shell com-
mand, 21
system resources, monitoring, 151-162
DDMS (Dalvik Debug Monitor Server),
152-159
MAT (Memory Analyzer Tool), 159-162
memory usage in Android, 151

T

tasks (Gradle), 145, 148
telephony operations, simulating, 118-121
testing code, 89-114
debugging, 98-107
Eclipse Debug Perspective, 100
example, 101-107
setting app to debuggable, 99
setting debug point, 99
filtering logging output based on logging
level, 91

filtering logging output on log tags, 92
getting the most out of logcat, 92
log messages, 89
logcat example, 94-98
creating log statements, 95
determining areas to monitor, 95
filtering logcat output, 98
verbose logging with logcat, 97

predefined output formats for log messages,

93
reading logcat output, 90
using Lint, 107
command-line usage, 108
running Lint in Eclipse, 110
using logcat viewer in Eclipse, 93
viewing alternative log buffers, 93
viewing logcat files, 89
themes, 166
Theme option in Configuration Chooser,
198
third-party add-ons, 12
Threads tool, 153, 155
running, 155
viewing thread information, 156
Timeline panel (Traceview), 158
toolbars in Android Studio, 75
tools
displaying additional tools in Eclipse, 57
essential, 11
ADB (Android Debug Bridge), 17-24
SDK Manager, 11-17
Traceview tool, 153, 158-159
output, Timeline panel, 158
Profile panel, 159
training resources for Android Studio, 88
Tree Overview (Hierarchy Viewer), 204

U

UT (user interface), 165-187

Android layout, basic concepts, 165
defining layouts with XML, 166
leveraging ADT to build Uls, 171
resources, 170
Views and ViewGroups, 167

designing using Graphical Layout tools,
189-200

editing XML files directly, 172-183

monitoring with logcat, 95

Index |

optimizing, 201-222
application exerciser Monkey, 219
debugging UI with Hierarchy Viewer,
208-218
fixing problems using Lint, 218
Hierarchy Viewer, 203-208
UI performance, 201-202
using monkeyrunner, 221
working with graphics, 183-187
Asset Studio, 187
Asset tool, 183-186
using Nine-patch images, 186
UI Thread, 155
UL:* tag, 93, 98
uninstall command (ADB), 20
USB Debugging
enabling on Android phone, 7
enabling on physical device, 26
USB drivers, 12

v

Version Control System (VCS) integrations with
Android Studio, 85
ViewGroups, 167
views
adding to Eclipse layout, 58
drawing of Views and its effect on UI perfor-
mance, 201
Views base class, Android layouts, 167

W

web page for this book, xii
widgets, 166

inserting into XML files, 173
Windows

Android home directory, 4

connecting Android-powered device for
testing with ADB driver, 7

dedicating a core to the emulator, 37

keyboard shortcuts in Android Studio, 87

minimum requirements for Android devel-
opment, 1

navigation shortcuts in Android Studio, 76

setting breakpoints, keyboard shortcut, 99

starting SDK Manager, 12

Windows 7 64-bit OS, x

XML formatter, 67

X

XML

automatically created by Android Studio
Layout Designer, 81

defining Android layouts, 166

editing XML files directly, 172-183
code completion, 173
editor preferences, 181
formatting, 178
inserting new layouts or widgets, 173
Refactor menu of XML editor, 176
using templates, 172

formatter, 67

layout editor in Android Studio Layout Pre-
view, 81

Lint Quick Fix in, 113

Lint warnings in XML file, 112

quick outline for, 68

XML files

editing directly

attribute values, 174

z

Zipalign, 144

232 | Index

About the Author

Mike Wolfson is a passionate mobile designer/developer working out of Phoenix, AZ.
He has been in the software field for almost 20 years, and with Android since its intro-
duction. Currently, he develops Android applications for the health care field. He has
written a variety of successful apps, and is best known for the “Droid Of The Day” App.

Mike has spent his career helping others learn technology. He currently runs the local
Google Developer Group, and has been a lifelong supporter of a variety of other group
learning activities. He has spoken about Android and mobile development at a variety
of conferences and user groups.

When he is not geeking out about phones, he enjoys the outdoors (snowboarding, hik-
ing, scuba diving), collecting PEZ dispensers, and chasing his young (but quick)
daughter.

Colophon

The animal on the cover of Android Developer Tools Essentials is a cassowary (genus
Casuarius), a large, flightless bird that is native to the rainforests of New Guinea and
Australia. This genus consists of three species: one is extinct and the rest are living but
endangered. It is estimated that only 1,500 cassowaries exist in the entirety of Australia.
Like the ostrich and the emu, the cassowary is a ratite, or flightless bird. Although the
three species of cassowary differ slightly in size, the Southern cassowary is the largest,
with females reaching heights of six and a half feet. Despite their enormous size, cas-
sowaries subsist mainly on fruits that have fallen from trees and will occasionally eat
fungus or insects if necessary. They swallow their food whole, sometimes taking in entire
bananas or mangos in one gulp.

All species of cassowary are black with bright blue and red necks and hard outgrowths
of flesh on the tops of their heads called casques. There is much debate about what
purpose the casques serve, with theories ranging from protection from falling fruit to
an amplifier of the birds’ rumbling calls. It is also possible that they allow the bird to
forge ahead through dense forest growth, with the casque acting as a battering ram to
clear foliage out of the way. The thick feathers that adorn the bird’s body are also thought
to provide protection from the undergrowth given their unique two-quilled design.

Female cassowaries are much larger than males and are in charge of initiating breeding
and courtship. After a female selects a mate, they court for almost a month before
breeding. The female will create a nest and lay the eggs, then immediately start off to
find another mate. The father then incubates the eggs until they hatch by sitting on them
for fifty days. Baby cassowaries are born with tan and white stripes to help them blend
in with the detritus on the rainforest floor. The chicks follow their father around for
about ten months and learn how to forage fruit and insects. Eventually, the father chases

the chicks away so that they can start life on their own and he can breed with another
female.

Cassowaries are extremely territorial, so in the wild they are solitary creatures. Generally
they are shy around humans, opting to run away rather than be noticed. However,
cassowaries can be very dangerous to people and other animals if provoked. Given the
rate at which human civilization is encroaching upon cassowary habitats, run-ins with
these giant birds are becoming more and more common. In 2003, 150 attacks involving
humans were reported, and 75% of these came from instances of people trying to feed
the birds. The cassowary’s best defense is its dagger-like claws, one on each center toe,
which can grow to be four inches long. One kick from a cassowary’s powerful legs can
slice open all but the toughest hides. Especially in northern Australia, where roads bisect
the rainforests, encounters with cassowaries are on the rise. Although large swaths of
land are now protected, the future of the cassowary is as unclear as that of the rainforest;
both must contend with human development and the environmental effects of global
warming.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC
Garamond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con-
densed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Requirements for Android Developer Tools
	Development Process for Android Developer Tools
	Development on a Variety of OS Platforms
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Getting Started
	Minimum Requirements
	Installing Java
	Installing the Android Software Development Kit
	Installing the ADT Bundle

	Developing Without Eclipse
	Command-Line Usage
	Using a Different IDE

	Configuring a Device for Development

	Chapter 2. Essential Tools
	SDK Manager
	SDK Components
	Starting the SDK Manager
	Viewing Installed and Available Components
	ADT Preview Channel

	Android Debug Bridge (ADB)
	Starting ADB
	Querying for Device Instances
	Issuing Commands
	The Shell Command
	ADB Does a Lot More
	Resetting the ADB Server
	Additional Resources

	Chapter 3. Configuring Devices and Emulators
	Using a Physical Device for Development
	Capabilities and Limitations
	Configuring a Physical Device for Development

	Using an Emulator for Development
	Supported Features

	Android Virtual Devices
	Creating AVDs
	Emulator Options

	Advanced Emulator Configuration
	Using Hardware Acceleration
	Disabling the Boot Animation
	On Windows: Dedicating a Core to the Emulator

	Chapter 4. Using Devices and Emulators
	Using the Emulator
	Starting the Emulator
	The Emulator Application
	The Devices Tool
	Keyboard Shortcuts

	File Explorer
	Developer Tools Application

	Chapter 5. Developing with Eclipse
	Anatomy of the Eclipse Workspace
	Uncovering Additional Tools and Views
	Quick Button

	Code Templates
	Properties Editors
	XML Formatter
	The Android Key
	Quick Outline for XML
	Other Essential Eclipse Shortcuts
	Refactor Menu

	Chapter 6. Developing with Android Studio
	Installing Android Studio
	Bundled SDK
	Default Project Location

	Anatomy of the Android Studio IDE
	Panels
	Toolbars
	Useful Actions in Android Studio
	Navigation

	The New Structure of an Android Project
	A Tour Around the New Structure
	Running and Debugging an Android Project

	Creating New Android Components
	Layout Designer and Layout Preview
	Layout Designer
	Layout Preview

	Generating an APK
	Interacting with Maven and Gradle
	Interacting with Maven
	Interacting with Gradle

	Version Control Integration
	Migrating from Eclipse
	Android Studio Tips and Tricks
	Refactoring and Code Generation
	Miscellaneous Shortcuts

	Chapter 7. Testing Your Code
	Logcat
	Viewing the Logcat File
	Anatomy of a Log Message
	Filtering Based on Logging Level
	Using Tags to Filter Output
	Getting the Most Out of Logcat
	Viewing Alternative Log Buffers
	Predefined Output Formats
	Logcat Viewer in Eclipse
	Logcat Example

	Debugging
	Setting Your App to Debuggable
	Setting a Debug Point
	The Eclipse Debug Perspective
	Debugging Example

	Lint
	Command-Line Usage
	Running in Eclipse

	Chapter 8. Simulating Events
	Simulating Location and Routes
	Simulating Telephony Operations
	Changing Networking Parameters
	Using a Device with Sensor Emulation
	Advanced Sensor Testing
	Supported Sensors
	Simulating Sensor Events in Real Time
	Recording Sensor Scenarios

	Developer Options Menu

	Chapter 9. Build Tools
	Compiling Your Code
	Packaging an APK for Release
	Signing Your App

	Building from the Command Line Using Ant
	Setting Up Your Project
	Building in Debug Mode
	Building an App to Release to the Play Store
	Additional Ant Commands

	Advanced Packaging Steps
	ProGuard
	Zipalign

	Gradle-Based Build Tools
	Installing Gradle
	Creating Multiple Build Variations
	Build File
	Build Tasks
	Generating a Gradle Build from Eclipse

	Using the Maven Tools

	Chapter 10. Monitoring System Resources
	Memory Usage in Android
	Dalvik Debug Monitor Server (DDMS)
	Launching the DDMS Perspective
	Analyzer Tool
	Threads
	Heap
	Traceview

	Memory Analyzer Tool (MAT)
	Generating an HPROF File
	HPROF File
	Installing MAT into Eclipse
	Launching MAT from Within Eclipse
	Using MAT to Analyze HRPOF Files
	The MAT Overview Screen
	Viewing a Report

	Chapter 11. Working with the User Interface
	Android Layout Basic Concepts
	Defining Layouts Using XML
	Views and ViewGroups
	Resources
	Leveraging ADT to Build Great UIs

	Editing XML Files Directly
	Using Templates
	Editing XML Directly

	Working with Graphics
	The Asset Tool
	Using Nine-Patch Images
	Asset Studio Website

	Chapter 12. Using the Graphical Editor
	Generating Layouts Using the Graphical Layout Editor
	Palette
	Canvas
	Layout Actions
	Context-Sensitive Menu

	Outline View
	Properties Editor
	Configuration Chooser

	Chapter 13. Optimizing the User Interface
	Introduction to UI Performance
	How Android Draws Views, and How It Affects UI
 Performance

	Hierarchy Viewer
	Starting the Hierarchy Viewer
	Loading the View Hierarchy into the Tools
	Navigating the Tree Hierarchy
	Gathering View Information
	Gathering View Rendering Details
	Example: Debugging a UI Using the Hierarchy Viewer

	Fixing Problems Using Lint
	Application Exerciser Monkey
	Grooming the Monkey

	Monkeyrunner
	Using Python to Create the Script

	Thanks for Reading!

	Index
	About the Author

