
PYTHON
FOR KIDS
PYTHON
FOR KIDS

A Playful Introduction to Programming

J a s o n R . B r i g g s

M

M

M

M

M

ABOUT THE AUTHOR

For kids aged 10+ (and their parents)

real programming.

real easy.
REAL Programming.

REAL EASY.
Illustrations by Miran Lipovaca

P
Y

T
H

O
N

 F
O

R
 K

ID
S

B
r

i
g

g
s

P
Y

T
H

O
N

 F
O

R
 K

ID
S

Python for Kids

 Python
for Kids

A Playful Introduction
to Programming

By Jason R. Briggs

San Francisco

PYTHON FOR KIDS. Copyright © 2013 by Jason R. Briggs.

All rights reserved. No part of this work may be reproduced or transmitted in any form

or by any means, electronic or mechanical, including photocopying, recording, or by any

information storage or retrieval system, without the prior written permission of the

copyright owner and the publisher.

First printing

16 15 14 13 12 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-407-6

ISBN-13: 978-1-59327-407-8

Publisher: William Pollock

Production Editor: Serena Yang

Cover and Interior Design: Octopod Studios

Illustrator: Miran Lipovaca

Developmental Editor: William Pollock

Technical Reviewers: Josh Pollock and Maria Fernandez

Copyeditor: Marilyn Smith

Compositor: Serena Yang

Proofreader: Greg Teague

For information on book distributors or translations, please contact No Starch Press, Inc.

directly:

No Starch Press, Inc.

38 Ringold Street, San Francisco, CA 94103

phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; http://www.nostarch.com/

Library of Congress Cataloging-in-Publication Data

A catalog record of this book is available from the Library of Congress.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch

Press, Inc. Other product and company names mentioned herein may be the trademarks of

their respective owners. Rather than use a trademark symbol with every occurrence of a

trademarked name, we are using the names only in an editorial fashion and to the benefit

of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While

every precaution has been taken in the preparation of this work, neither the author nor

No Starch Press, Inc. shall have any liability to any person or entity with respect to any

loss or damage caused or alleged to be caused directly or indirectly by the information

contained in it.

BRIef Contents
About the Author, Illustrator, and Technical Reviewers xv

Acknowledgments . xvii

Introduction. xix

Part I: Learning to Program
Chapter 1: Not All Snakes Slither . 3

Chapter 2: Calculations and Variables . 15

Chapter 3: Strings, Lists, Tuples, and Maps. 25

Chapter 4: Drawing with Turtles. 43

Chapter 5: Asking Questions with if and else . 53

Chapter 6: Going Loopy . 67

Chapter 7: Recycling Your Code with Functions and Modules 81

Chapter 8: How to Use Classes and Objects . 93

Chapter 9: Python’s Built-in Functions. 109

Chapter 10: Useful Python Modules . 129

Chapter 11: More Turtle Graphics. 145

Chapter 12: Using tkinter for Better Graphics . 163

Part II: Bounce!
Chapter 13: Beginning Your First Game: Bounce! 193

Chapter 14: Finishing Your First Game: Bounce! 205

Part III : Mr. stick Man Races for the exit
Chapter 15: Creating Graphics for the Mr. Stick Man Game 221

Chapter 16: Developing the Mr. Stick Man Game 233

Chapter 17: Creating Mr. Stick Man . 251

Chapter 18: Completing the Mr. Stick Man Game 259

Afterword: Where to Go from Here . 285

Appendix: Python Keywords . 293

Glossary. 307

Index . 313

Contents In DetAIL

About the Author, Illustrator, and
technical Reviewers xv

Acknowledgments xvii

Introduction xix

Why Python? . xx

How to Learn to Code . xx

Who Should Read This Book . xxi

What’s in This Book . xxii

The Companion Website. xxiii

Have Fun! . xxiii

Part I: Learning to Program

1
not All snakes slither 3

A Few Words About Language. 4

Installing Python . 5

Installing Python on Windows 7 . 5

Installing Python on Mac OS X . 7

Installing Python on Ubuntu . 9

Once You’ve Installed Python . 10

Saving Your Python Programs. 12

What You Learned . 13

2
Calculations and Variables 15

Calculating with Python. 16

Python Operators . 17

The Order of Operations . 18

Variables Are Like Labels . 19

Using Variables. 21

What You Learned . 23

viii Contents in Detail

3
strings, Lists, tuples, and Maps 25

Strings . 26

Creating Strings . 26

Handling Problems with Strings . 27

Embedding Values in Strings. 30

Multiplying Strings. 31

Lists Are More Powerful Than Strings . 32

Adding Items to a List . 35

Removing Items from a List . 35

List Arithmetic . 36

Tuples . 38

Python Maps Won’t Help You Find Your Way . 39

What You Learned . 41

Programming Puzzles. 41

#1: Favorites . 41

#2: Counting Combatants . 42

#3: Greetings! . 42

4
Drawing with turtles 43

Using Python’s turtle Module . 44

Creating a Canvas. 44

Moving the Turtle . 46

What You Learned . 51

Programming Puzzles. 51

#1: A Rectangle . 51

#2: A Triangle . 51

#3: A Box Without Corners. 51

5
Asking Questions with if and else 53

if Statements . 54

A Block Is a Group of Programming Statements 54

Conditions Help Us Compare Things. 57

if-then-else Statements. 58

if and elif Statements . 59

Combining Conditions . 61

Variables with No Value—None . 61

The Difference Between Strings and Numbers. 62

What You Learned . 65

Contents in Detail ix

Programming Puzzles. 65

#1: Are You Rich? . 65

#2: Twinkies! . 65

#3: Just the Right Number . 66

#4: I Can Fight Those Ninjas . 66

6
Going Loopy 67

Using for Loops . 68

While We’re Talking About Looping... 75

What You Learned . 78

Programming Puzzles. 78

#1: The Hello Loop . 78

#2: Even Numbers. 79

#3: My Five Favorite Ingredients. 79

#4: Your Weight on the Moon . 79

7
Recycling Your Code with functions
and Modules 81

Using Functions . 82

Parts of a Function . 83

Variables and Scope . 84

Using Modules. 87

What You Learned . 89

Programming Puzzles. 90

#1: Basic Moon Weight Function . 90

#2: Moon Weight Function and Years . 90

#3: Moon Weight Program . 90

8
How to Use Classes and objects 93

Breaking Things into Classes. 94

Children and Parents . 95

Adding Objects to Classes. 96

Defining Functions of Classes . 97

Adding Class Characteristics as Functions . 97

Why Use Classes and Objects? . 99

Objects and Classes in Pictures . 100

Other Useful Features of Objects and Classes . 102

Inherited Functions . 103

Functions Calling Other Functions . 104

x Contents in Detail

Initializing an Object . 105

What You Learned . 107

Programming Puzzles. 107

#1: The Giraffe Shuffle . 107

#2: Turtle Pitchfork. 108

9
Python’s Built-in functions 109

Using Built-in Functions . 110

The abs Function. 110

The bool Function . 111

The dir Function . 113

The eval Function . 114

The exec Function . 116

The float Function. 116

The int Function . 117

The len Function . 118

The max and min Functions. 119

The range Function. 121

The sum Function . 122

Working with Files . 122

Creating a Test File . 123

Opening a File in Python . 125

Writing to Files . 126

What You Learned . 127

Programming Puzzles. 127

#1: Mystery Code. 127

#2: A Hidden Message. 128

#3: Copying a File . 128

10
Useful Python Modules 129

Making Copies with the copy Module . 130

Keeping Track of Keywords with the keyword Module 133

Getting Random Numbers with the random Module 133

Using randint to Pick a Random Number . 134

Using choice to Pick a Random Item from a List 135

Using shuffle to Shuffle a List . 136

Controlling the Shell with the sys Module . 136

Exiting the Shell with the exit function. 136

Reading with the stdin Object . 137

Writing with the stdout Object. 138

Which Version of Python Am I Using?. 138

Contents in Detail xi

Doing Time with the time Module . 138

Converting a Date with asctime. 140

Getting the Date and Time with localtime 140

Taking Some Time Off with sleep . 141

Using the pickle Module to Save Information . 142

What You Learned . 144

Programming Puzzles. 144

#1: Copied Cars . 144

#2: Pickled Favorites. 144

11
More turtle Graphics 145

Starting with the Basic Square . 146

Drawing Stars . 147

Drawing a Car. 151

Coloring Things In . 152

A Function to Draw a Filled Circle . 153

Creating Pure Black and White . 155

A Square-Drawing Function . 155

Drawing Filled Squares . 157

Drawing Filled Stars . 158

What You Learned . 160

Programming Puzzles. 160

#1: Drawing an Octagon . 160

#2: Drawing a Filled Octagon. 161

#3: Another Star-Drawing Function . 161

12
Using tkinter for Better Graphics 163

Creating a Clickable Button. 165

Using Named Parameters . 167

Creating a Canvas for Drawing . 167

Drawing Lines. 168

Drawing Boxes . 170

Drawing a Lot of Rectangles. 172

Setting the Color . 174

Drawing Arcs. 177

Drawing Polygons . 179

Displaying Text . 180

Displaying Images . 181

Creating Basic Animation . 183

Making an Object React to Something . 186

More Ways to Use the Identifier . 188

xii Contents in Detail

What You Learned . 190

Programming Puzzles. 190

#1: Fill the Screen with Triangles . 190

#2: The Moving Triangle. 190

#3: The Moving Photo . 190

Part II : Bounce!

13
Beginning Your first Game: Bounce! 193

Whack the Bouncing Ball . 194

Creating the Game Canvas . 194

Creating the Ball Class. 196

Adding Some Action . 198

Making the Ball Move. 198

Making the Ball Bounce . 200

Changing the Ball’s Starting Direction . 202

What You Learned . 204

14
finishing Your first Game: Bounce! 205

Adding the Paddle. 206

Making the Paddle Move . 207

Finding Out When the Ball Hits the Paddle 209

Adding an Element of Chance . 212

What You Learned . 216

Programming Puzzles. 216

#1: Delay the Game Start . 217

#2: A Proper “Game Over” . 217

#3: Accelerate the Ball . 217

#4: Record the Player’s Score . 217

Part III: Mr. stick Man Races for the exit

15
Creating Graphics for the Mr. stick Man Game 221

Mr. Stick Man Game Plan . 222

Getting GIMP . 222

Contents in Detail xiii

Creating the Game Elements. 224

Preparing a Transparent Image. 224

Drawing Mr. Stick Man . 225

Drawing the Platforms . 227

Drawing the Door . 228

Drawing the Background . 229

Transparency. 230

What You Learned . 231

16
Developing the Mr. stick Man Game 233

Creating the Game Class . 234

Setting the Window Title and Creating the Canvas 234

Finishing the __init__ Function . 235

Creating the mainloop Function . 236

Creating the Coords Class . 238

Checking for Collisions . 239

Sprites Colliding Horizontally . 239

Sprites Colliding Vertically . 241

Putting It All Together: Our Final Collision-Detection Code. 242

Creating the Sprite Class . 244

Adding the Platforms . 245

Adding a Platform Object . 246

Adding a Bunch of Platforms . 247

What You Learned . 249

Programming Puzzles. 249

#1: Checkerboard. 249

#2: Two-Image Checkerboard. 250

#3: Bookshelf and Lamp . 250

17
Creating Mr. stick Man 251

Initializing the Stick Figure. 252

Loading the Stick Figure Images . 252

Setting Up Variables. 253

Binding to Keys . 255

Turning the Stick Figure Left and Right. 255

Making the Stick Figure Jump . 256

What We Have So Far . 257

What You Learned . 258

xiv Contents in Detail

18
Completing the Mr. stick Man Game 259

Animating the Stick Figure . 260

Creating the Animate Function . 260

Getting the Stick Figure’s Position . 263

Making the Stick Figure Move . 265

Testing Our Stick Figure Sprite. 273

The Door! . 273

Creating the DoorSprite Class . 274

Detecting the Door . 275

Adding the Door Object. 275

The Final Game . 276

What You Learned . 282

Programming Puzzles. 283

#1: “You Win!” . 283

#2: Animating the Door. 283

#3: Moving Platforms . 283

Afterword
Where to Go from Here 285

Games and Graphics Programming. 286

PyGame . 286

Programming Languages . 288

Java . 288

C/C++ . 288

C# . 289

PHP . 289

Objective-C . 290

Perl. 290

Ruby . 290

JavaScript . 291

Final Words . 291

Appendix
Python Keywords 293

Glossary 307

Index 313

About the Author
Jason R. Briggs has been a programmer since the age of eight,

when he first learned BASIC on a Radio Shack TRS-80. He

has written software professionally as a developer and systems

architect and served as Contributing Editor for Java Developer’s

Journal. His articles have appeared in JavaWorld, ONJava, and

ONLamp. Python for Kids is his first book.

Jason can be reached at http://jasonrbriggs.com/ or by email

at mail@jasonrbriggs.com.

About the Illustrator
Miran Lipovaca is the author of Learn You a Haskell for Great

Good!. He enjoys boxing, playing bass guitar, and, of course,

 drawing. He has a fascination with dancing skeletons and the

number 71, and when he walks through automatic doors he pre-

tends that he’s actually opening them with his mind.

About the technical Reviewers
A recent graduate of The Nueva School, 15-year-old Josh Pollock

is a freshman at Lick-Wilmerding High School in San Francisco.

He first started programming in Scratch when he was 9 years old,

began using TI-BASIC when he was in 6th grade, and moved on

to Java and Python in 7th and UnityScript in 8th. In addition to

programming, he loves playing the trumpet, developing computer

games, and teaching people about interesting STEM topics.

Maria Fernandez has a master’s degree in applied linguistics and

has been interested in computers and technology for more than

20 years. She taught English to young refugee women with the

Global Village Project in Georgia and currently resides in northern

California working with ETS (Educational Testing Service).

Acknowledgments
This must be what it’s like when you get up on stage to accept

an award, only to realize you’ve left the list of people you have to

thank in your other trousers: You’re guaranteed to forget someone,

and that music will soon start rolling to quickly usher you off the

stage.

So that being said, here’s the (no doubt) incomplete list of people

to whom I owe a huge debt of gratitude for helping make this book

as good as I think it now is.

Thanks to the No Starch team, particularly Bill Pollock, for

applying a liberal dose of “what-would-a-kid-think” while editing it.

When you’ve been programming for a long time, it’s all too easy to

forget how difficult some of this stuff is for learners, and Bill was

invaluable at pointing out those oft-overlooked, over-complicated

parts. And thanks to Serena Yang, production manager extra-

ordinaire; here’s hoping you haven’t torn out too much hair getting

300+ pages of code correctly colorized.

A big thank you must go to Miran Lipovaca for utterly bril-

liant illustrations. Beyond brilliant. No really! If I had done the

artwork, we’d be lucky to have the occasional smudged figure

that doesn’t resemble anything in particular. Is it a bear . . . ?

Is it a dog . . . ? No, wait . . . is that supposed to be a tree?

Thanks to the reviewers. I apologize if some of your sugges-

tions weren’t implemented in the end. You were probably right, and

I can only blame a personal character flaw for any probable goofs.

Particular thanks to Josh for some great suggestions and some

really good catches. And apologies to Maria for having to deal with

occasionally dodgily formatted code.

Thanks to my wife and daughter, for putting up with a hus-

band and father who had his nose buried in a computer screen

even more than usual.

To Mum, for endless amounts of encouragement over the years.

Finally, thanks to my father, for buying a computer back in the

1970s and putting up with someone who wanted to use it as much

as he did. None of this would have been possible without him.

�

IntRoDUCtIon

Why learn computer programming?

Programming fosters creativity, reasoning, and

problem solving. The programmer gets the opportunity

to create something from nothing, use logic to turn

programming constructs into a form that a computer

can run, and, when things don’t work quite as well

as expected, use problem solving to figure out what

has gone wrong. Programming is a fun, sometimes

xx Introduction

challenging (and occasionally frustrating) activity, and the skills

learned from it can be useful both in school and at work . . . even if

your career has nothing to do with computers.

And, if nothing else, programming is a great way to spend an

afternoon when the weather outside is dreary.

Why Python?
Python is an easy-to-learn programming language that has some

really useful features for a beginning programmer. The code is quite

easy to read when compared to other programming languages, and

it has an interactive shell into which you can enter your programs

and see them run. In addition to its simple language structure and

an interactive shell with which to experiment, Python has some

features that greatly augment the learning process and allow you

to put together simple animations for creating your own games.

One is the turtle module, inspired by Turtle graphics (used by the

Logo programming language back in the 1960s) and designed for

educational use. Another is the tkinter module, an interface for the

Tk GUI toolkit, which provides a simple way to create programs

with slightly more advanced graphics and animation.

How to Learn to Code
Like anything you try for the first time, it’s always best to start

with the basics, so begin with the first chapters and resist the urge

to skip ahead to the later chapters. No one can play an orchestral

symphony the first time they pick up an instrument. Student pilots

don’t start flying a plane before they understand the basic controls.

Gymnasts aren’t (usually) able to do back flips on their first try. If

you jump ahead too quickly, not only will the basic ideas not stick

in your head, but you’ll also find the content of the later chapters

more complicated than it actually is.

As you go through this book, try each of the examples, so you

can see how they work. There are also programming puzzles at the

end of most chapters for you to try, which will help improve your

programming skills. Remember that the better you understand the

basics, the easier it will be to understand more complicated ideas

later on.

Introduction xxi

When you find something frustrating or too challenging, here

are some things that I find helpful:

1. Break a problem down into smaller pieces. Try to understand

what a small piece of code is doing, or think about only a small

part of a difficult idea (focus on a small piece of code rather

than trying to understand the whole thing at once).

2. If that still doesn’t help, sometimes it’s best to just leave it

alone for a while. Sleep on it, and come back to it another day.

This is a good way to solve many problems, and it can be par-

ticularly helpful for computer programmers.

Who should Read this Book
This book is for anyone interested in computer programming,

whether that’s a child or an adult coming to programming for the

first time. If you want to learn how to write your own software

rather than just use the programs developed by others, Python for

Kids is a great place to start.

In the following chapters, you’ll find information to help you

install Python, start the Python shell and perform basic calcula-

tions, print text on the screen and create lists, and perform simple

control flow operations using if statements and for loops (and

learn what if statements and for loops are!). You’ll learn how to

reuse code with functions, the basics of classes and objects, and

descriptions of some of the many built-in Python functions and

modules.

You’ll find chapters on both simple and advanced turtle graph-

ics, as well as on using the tkinter module to draw on the computer

screen. There are programming puzzles of varying complexity at

the ends of many chapters, which will help readers cement their

newfound knowledge by giving them a chance to write small pro-

grams by themselves.

Once you’ve built up your fundamental programming knowl-

edge, you’ll learn how to write your own games. You’ll develop two

graphical games and learn about collision detection, events, and

different animation techniques.

Most of the examples in this book use Python’s IDLE (Inte-

grated DeveLopment Environment) shell. IDLE provides syntax

highlighting, copy-and-paste functionality (similar to what you

xxii Introduction

would use in other applications), and an editor window where you

can save your code for later use, which means IDLE works as both

an interactive environment for experimentation and something

a bit like a text editor. The examples will work just as well with

the standard console and a regular text editor, but IDLE’s syntax

highlighting and slightly more user-friendly environment can aid

understanding, so the very first chapter shows you how to set it up.

What’s in this Book
Here’s a brief rundown of what you’ll find in each chapter.

Chapter 1 is an introduction to programming with instruc-

tions for installing Python for the first time.

Chapter 2 introduces basic calculations and variables, and

Chapter 3 describes some of the basic Python types, such as

strings, lists, and tuples.

Chapter 4 is the first taste of the turtle module. We’ll jump

from basic programming to moving a turtle (in the shape of an

arrow) around the screen.

Chapter 5 covers the variations of conditions and if state-

ments, and Chapter 6 moves on to for loops and while loops.

Chapter 7 is where we start to use and create functions, and

then in Chapter 8 we cover classes and objects. We cover enough

of the basic ideas to support some of the programming techniques

we’ll need in the games development chapters later on in the book.

At this point, the material starts get a little more complicated.

Chapter 9 goes through most of the built-in functions in

Python, and Chapter 10 continues with a few modules (basically

buckets of useful functionality) that are installed by default with

Python.

Chapter 11 returns to the turtle module as the reader experi-

ments with more complicated shapes. Chapter 12 moves on to

using the tkinter module for more advanced graphics creation.

In Chapters 13 and 14, we create our first game, “Bounce!,”

which builds on the knowledge gained from the preceding chapters,

and in Chapters 15–18, we create another game, “Mr. Stick Man

Races for the Exit.” The game development chapters are where

things could start to go seriously wrong. If all else fails, download

the code from the companion website (http://python-for-kids.com/),

and compare your code with these working examples.

Introduction xxiii

In the Afterword, we wrap up with a look at PyGame and

some other popular programming languages.

Finally, in the Appendix, you’ll learn about Python’s key-

words in detail, and in the Glossary, you’ll find definitions of the

programming terms used throughout this book.

the Companion Website
If you find that you need help as you read, try the companion site,

http://python-for-kids.com/, where you’ll find downloads for all the

examples in this book and more programming puzzles. You’ll also

find solutions to all the programming puzzles in the book on the

companion site, in case you get stumped or want to check your work.

Have fun!
Remember as you work your way through this book that pro-

gramming can be fun. Don’t think of this as work. Think of

programming as a way to create some fun games or applications

that you can share with your friends or others.

Learning to program is a wonderful mental exercise and the

results can be very rewarding. But most of all, whatever you do,

have fun!

Part I

Learning to
Program

1
not ALL snAKes sLItHeR

A computer program is a set of instructions that causes

a computer to perform some kind of action. It isn’t the

physical parts of a computer—like the wires, micro-

chips, cards, hard drive, and such—but the hidden

stuff running on that hardware. A computer program,

which I’ll usually refer to as just a program, is the set

of commands that tell that dumb hardware what to do.

Software is a collection of computer programs.

4 Chapter 1

Without computer programs, almost every device you use daily

would either stop working or be much less useful than it is now.

Computer programs, in one form or another, control not only your

personal computer but also video game systems, cell phones, and

the GPS units in cars. Software also controls less obvious items

like LCD TVs and their remote controllers, as well as some of the

newest radios, DVD players, ovens, and some fridges. Even car

engines, traffic lights, street lamps, train signals, electronic bill-

boards, and elevators are controlled by programs.

Programs are a bit like thoughts. If you didn’t have thoughts,

you would probably just sit on the floor, staring vacantly and drool-

ing down the front of your shirt. Your thought “get up off the floor”

is an instruction, or command, that tells your body to stand up. In

the same way, computer programs tell computers what to do.

If you know how to write computer programs, you can do all

sorts of useful things. Sure, you may not be able to write programs

to control cars, traffic lights, or your fridge (well, at least not at

first), but you could create web pages, write your own games, or

even make a program to help with your homework.

A few Words About Language
Like humans, computers use multiple languages to communicate—

in this case, programming languages. A program ming language

is simply a particular way to talk to a computer—a way to use

instructions that both humans and the computer can understand.

There are programming languages named after people (like Ada

and Pascal), those named using simple acronyms (like BASIC and

FORTRAN), and even a few named after TV shows, like Python.

Yes, the Python programming language was named after the Monty

Python’s Flying Circus TV show, not after python the snake.

note Monty Python’s Flying Circus was an alternative British comedy

show first broadcast in the 1970s, and it remains hugely popular

today among a certain audience. The show had sketches like “The

Ministry of Silly Walks,” “The Fish-Slapping Dance,” and “The

Cheese Shop” (which didn’t sell any cheese).

Not All Snakes Slither 5

A number of things about the Python programming language

make it extremely useful for beginners. Most importantly, you

can use Python to write simple, efficient programs really quickly.

Python doesn’t have a lot of complicated symbols, like braces ({ }),

hashes (#), and dollar signs ($), which make other programming

languages a lot more difficult to read and, therefore, a lot less

friendly to beginners.

Installing Python
Installing Python is fairly straightforward. Here, we’ll go over

the steps for installing it on Windows 7, Mac OS X, and Ubuntu.

When installing Python, you’ll also set up a shortcut for the IDLE

program, which is the Integrated DeveLopment Environment that

lets you write programs for Python. If Python has already been

installed on your computer, jump ahead to “Once You’ve Installed

Python” on page 10.

Installing Python on Windows 7
To install Python for Microsoft Windows 7, point a web browser to

http://www.python.org/ and download the latest Windows installer

for Python 3. Look for a section in the menu titled Quick Links,

as shown here:

note The exact version of Python that you download is not important, as

long as it starts with the number 3.

6 Chapter 1

After you download the Windows installer, double-click its

icon, and then follow the instructions to install Python in the

default location, as follows:

1. Select Install for All Users, and then click Next.

2. Leave the default directory unchanged, but note the name

of the installation directory (probably C:\Python31 or C:\

Python32). Click Next.

3. Ignore the Customize Python section of the installation, and

click Next.

At the end of this process, you should have a Python 3 entry in

your Start menu:

Next, follow these steps to add a Python 3 shortcut to your

desktop:

1. Right-click your desktop, and select New4Shortcut from the

pop-up menu.

2. Enter the following in the box where it says Type the location

of the item (make sure that the directory you enter is the same

as the one you noted earlier):

c:\Python32\Lib\idlelib\idle.pyw –n

Not All Snakes Slither 7

Your dialog should look like this:

3. Click Next to move to the next dialog.

4. Enter the name as IDLE, and click Finish to create the

 shortcut.

Now you can skip to “Once You’ve Installed Python” on page 10

to get started with Python.

Installing Python on Mac os X
If you’re using a Mac, you should find a version of Python pre-

installed, but it’s probably an older version of the language. To be

sure that you’re running the newest version, point your browser to

http://www.python.org/getit/ to download the latest installer for

the Mac.

There are two different installers. The one you should down-

load depends on which version of Mac OS X you have installed.

(To find out, click the Apple icon in the top menu bar, and choose

About this Mac.) Pick an installer as follows:

•	 If you’re running a Mac OS X version between 10.3 and 10.6,

download the 32-bit version of Python 3 for i386/PPC.

•	 If you’re running Mac OS X version 10.6 or higher, download

the 64-bit/32-bit version of Python 3 for x86-64.

8 Chapter 1

Once the file has downloaded (it will have the filename exten-

sion .dmg), double-click it. You’ll see a window showing the file’s

contents.

In this window, double-click Python.mpkg, and then follow the

instructions to install the software. You’ll be prompted for the admin-

istrator password for your Mac before Python installs. (Don’t have

the administrator password? Your parent may need to enter it.)

Next, you need to add a script to the desktop for launching

Python’s IDLE application, as follows:

1. Click the Spotlight icon, the small magnifying glass at the

top-right corner of the screen.

2. In the box that appears, enter Automator.

3. Click the application that looks like a robot when it appears in

the menu. It will either be in the section labeled Top Hit or in

Applications.

4. Once Automator starts, select the Application template:

Not All Snakes Slither 9

5. Click Choose to continue.

6. In the list of actions, find Run Shell Script, and drag it to the

empty panel on the right. You’ll see something like this:

7. In the text box, you’ll see the word cat. Select the word and

replace it with the following text (everything from open to -n):

open -a "/Applications/Python 3.2/IDLE.app" --args -n

You may need to change the directory depending on the

version of Python you installed.

8. Select File4Save, and enter IDLE as the name.

9. Select Desktop from the Where dialog, and then click Save.

Now you can skip to “Once You’ve Installed Python” on page 10

to get started with Python.

Installing Python on Ubuntu
Python comes preinstalled on the Ubuntu Linux distribution, but

it may be an older version. Follow these steps to install Python 3

on Ubuntu 12.x:

1. Click the button for the Ubuntu Software Center in the Side-

bar (it’s the icon that looks like an orange bag—if you don’t

see it, you can always click the Dash Home icon and enter

Software in the dialog).

2. Enter Python in the search box in the top-right corner of the

Software Center.

10 Chapter 1

3. In the list of software presented, select the latest version of

IDLE, which is IDLE (using Python 3.2) in this example:

4. Click Install.

5. Enter your administrator password to install the software, and

then click Authenticate. (Don’t have the administrator pass-

word? Your parent may need to enter it.)

note On some versions of Ubuntu you might only see Python (v3.2) in the

main menu (rather than IDLE)—you can install this instead.

Now that you’ve got the latest version of Python installed, let’s

give it a try.

once You’ve Installed Python
You should now have an icon on your

Windows or Mac OS X desktop labeled

IDLE. If you’re using Ubuntu, in the

Applications menu, you should see

a new group named Programming

with the application IDLE (using

Python 3.2) (or a later version).

Not All Snakes Slither 11

 Double-click the icon or choose the menu option, and you should

see this window:

This is the Python shell, which is part of Python’s integrated

development environment. The three greater-than signs (>>>) are

called the prompt.

Let’s enter some commands at the prompt, beginning with the

following:

>>> print("Hello World")

Make sure to include the double quotes (" "). Press enter on

your keyboard when you’re finished typing the line. If you’ve entered

the command correctly, you should see something like this:

>>> print("Hello World")
Hello World
>>>

The prompt should reappear to let

you know that the Python shell is ready

to accept more commands.

Congratulations! You’ve just created

your first Python program. The word

print is a type of Python command called

a function, and it prints out whatever is

inside the parentheses to the screen. In

essence, you have given the computer an

instruction to display the words “Hello

World”—an instruction that both you

and the computer can understand.

12 Chapter 1

saving Your Python Programs
Python programs wouldn’t be very useful if you needed to rewrite

them every time you wanted to use them, never mind print them

out so you could reference them. Sure, it might be fine to just

rewrite short programs, but a large program, like a word proces-

sor, could contain millions of lines of code. Print that all out, and

you could have well over 100,000 pages. Just imagine trying to

carry that huge stack of paper home. Better hope that you won’t

meet up with a big gust of wind.

Luckily, we can save our programs for future use. To save a

new program, open IDLE and choose File4New Window. An

empty window will appear, with *Untitled* in the menu bar.

Enter the following code into the new shell window:

print("Hello World")

Now, choose File4Save. When prompted for a filename, enter

hello.py, and save the file to your desktop. Then choose Run4Run

Module. With any luck, your saved program should run, like this:

Now, if you close the shell win-

dow but leave the hello.py window

open and then choose Run4Run

Module, the Python shell should

reappear, and your program should

run again. (To reopen the Python

shell without running the program,

choose Run4Python Shell.)

Not All Snakes Slither 13

After running the code, you’ll find a new icon on your desktop

labeled hello.py. If you double-click the icon, a black window will

appear briefly and then vanish. What happened?

You’re seeing the Python command-line console (similar to the

shell) starting up, printing “Hello World,” and then exiting. Here’s

what would appear if you had superhero-like speed vision and

could see the window before it closed:

In addition to the menus, you can also use keyboard shortcuts

to create a new shell window, save a file, and run a program:

•	 On Windows and Ubuntu, use ctrl-N to create a new shell

window, use ctrl-S to save your file after you’ve finished edit-

ing, and press F5 to run your program.

•	 On Mac OS X, use z-N to create a new shell window, use z-S

to save your file, and hold down the function (fn) key and press

F5 to run your program.

What You Learned
We began simply in this chapter with a Hello World application—

the program nearly everyone starts with when they learn computer

programming. In the next chapter, we’ll do some more useful things

with the Python shell.

2
CALCULAtIons AnD

VARIABLes

Now that you have Python installed and know how to

start the Python shell, you’re ready to do something

with it. We’ll begin with some simple calculations and

then move on to variables. Variables are a way of stor-

ing things in a computer program, and they can help

you write useful programs.

16 Chapter 2

Calculating with Python
Normally, when asked to find the product of two numbers like

8 × 3.57, you would use a calculator or a pencil and paper. Well,

how about using the Python shell to perform your calculation?

Let’s try it.

Start the Python shell by double-clicking the IDLE icon on

your desktop or, if you’re using Ubuntu, by clicking the IDLE icon

in the Applications menu. At the prompt, enter this equation:

>>> 8 * 3.57
28.56

Notice that when entering a multiplication calculation in Python,

you use the asterisk symbol (*) instead of a multiplication sign (×).

How about if we try an equation that’s a bit more useful?

Suppose you are digging in your backyard and uncover a bag

of 20 gold coins. The next day, you sneak down to the basement

and stick the coins inside your grandfather’s steam-powered repli-

cating invention (luckily, you can just fit the 20 coins inside). You

hear a whiz and a pop and, a few hours later, out shoot another 10

gleaming coins.

How many coins would you have in your treasure chest if you

did this every day for a year? On paper, the equations might look

like this:

10 × 365 = 3650

20 + 3650 = 3670

Sure, it’s easy enough to do these calculations on a calculator

or on paper, but we can do all of these calculations with the Python

shell as well. First, we multiply 10 coins by 365 days in a year to

get 3650. Next, we add the original 20 coins to get 3670.

>>> 10 * 365
3650
>>> 20 + 3650
3670

Now, what if a raven spots the shiny gold sitting in your bed-

room, and every week flies in and manages to steal three coins?

Calculations and Variables 17

How many coins would you have left at the end of the year? Here’s

how this calculation looks in the shell:

>>> 3 * 52
156
>>> 3670 - 156
3514

First, we multiply 3 coins by 52 weeks in the year. The result

is 156. We subtract that number from our total coins (3670), which

tells us that we would have 3514 coins remaining at the end of

the year.

This is a very simple program. In this book, you’ll learn how to

expand on these ideas to write programs that are even more useful.

Python operators
You can do multiplication, addition, subtraction, and division in

the Python shell, among other mathematical operations that we

won’t go into right now. The basic symbols used by Python to per-

form mathematical operations are called operators, as listed in

Table 2-1.

Table 2-1: Basic Python Operators

Symbol Operation

+ Addition

- Subtraction

* Multiplication

/ Division

The forward slash (/) is used for divi-

sion because it’s similar to the division line

that you would use when writing a frac-

tion. For example, if you had 100 pirates

and 20 large barrels and you wanted to

calculate how many pirates you could

hide in each barrel, you could divide

100 pirates by 20 barrels (100 ÷ 20)

by entering 100 / 20 in the Python shell.

Just remember that the forward slash is

the one whose top falls to the right.

18 Chapter 2

the order of operations
We use parentheses in a programming language to control the

order of operations. An operation is anything that uses an operator.

Multiplication and division have a higher order than addition and

subtraction, which means that they’re performed first. In other

words, if you enter an equation in Python, multiplication or divi-

sion is performed before addition or subtraction.

For example, in the following equation, the numbers 30 and 20

are multiplied first, and the number 5 is added to their product.

>>> 5 + 30 * 20
605

This equation is another way of saying, “multiply 30 by 20,

and then add 5 to the result.” The result is 605. We can change

the order of operations by adding parentheses around the first two

numbers, like so:

>>> (5 + 30) * 20
700

The result of this equation is

700 (not 605) because the parenthe-

ses tell Python to do the operation

in the parentheses first, and then

do the operation outside the paren-

theses. This example is saying “add

5 to 30, and then multiply the result

by 20.”

Parentheses can be nested,

which means that there can be

parentheses inside parentheses,

like this:

>>> ((5 + 30) * 20) / 10
70.0

In this case, Python evaluates the innermost parentheses

first, then the outer ones, and then the final division operator.

Calculations and Variables 19

In other words, this equation is saying, “add 5 to 30, then multiply

the result by 20, and divide that result by 10.” Here’s what happens:

•	 Adding 5 to 30 gives 35.

•	 Multiplying 35 by 20 gives 700.

•	 Dividing 700 by 10 gives the final answer of 70.

If we had not used parentheses, the result would be slightly

different:

>>> 5 + 30 * 20 / 10
65.0

In this case, 30 is first multiplied by 20 (giving 600), and

then 600 is divided by 10 (giving 60). Finally, 5 is added to get

the result of 65.

WARnInG Remember that multiplication and division always go before

addition and subtraction, unless parentheses are used to control

the order of operations.

Variables Are Like Labels
The word variable in programming describes a place to store infor-

mation such as numbers, text, lists of numbers and text, and so

on. Another way of looking at a variable is that it’s like a label for

something.

For example, to create a variable named fred, we use an equal

sign (=) and then tell Python what information the variable should

be the label for. Here, we create the variable fred and tell Python

that it labels the number 100 (note that this doesn’t mean that

another variable can’t have the same value):

>>> fred = 100

To find out what value a variable labels, enter print in the

shell, followed by the variable name in parentheses, like this:

>>> print(fred)
100

20 Chapter 2

We can also tell Python to change the variable fred so that it

labels something else. For example, here’s how to change fred to

the number 200:

>>> fred = 200
>>> print(fred)
200

On the first line, we say that fred labels the number 200. In

the second line, we ask what fred is labeling, just to confirm the

change. Python prints the result on the last line.

We can also use more than one label (more than one variable)

for the same item:

>>> fred = 200
>>> john = fred
>>> print(john)
200

In this example, we’re telling Python that we want the name

(or variable) john to label the same thing as fred by using the equal

sign between john and fred.

Of course, fred probably isn’t a very useful name for a variable

because it most likely doesn’t tell us anything about what the vari-

able is used for. Let’s call our variable number_of_coins instead of

fred, like this:

>>> number_of_coins = 200
>>> print(number_of_coins)
200

This makes it clear that we’re talking about 200 coins.

Variable names can be made up of letters, numbers, and the

underscore character (_), but they can’t start with a number. You

can use anything from single letters (such as a) to long sentences

for variable names. (A variable can’t contain a space, so use an

underscore to separate words.) Sometimes, if you’re doing some-

thing quick, a short variable name is best. The name you choose

should depend on how meaningful you need the variable name

to be.

Now that you know how to create variables, let’s look at how to

use them.

Calculations and Variables 21

Using Variables
Remember our equation for figuring out how many coins you would

have at the end of the year if you could magically create new coins

with your grandfather’s crazy invention in the basement? We have

this equation:

>>> 20 + 10 * 365
3670
>>> 3 * 52
156
>>> 3670 - 156
3514

We can turn this into a single line of code:

>>> 20 + 10 * 365 – 3 * 52
3514

Now, what if we turn the numbers into variables? Try entering

the following:

>>> found_coins = 20
>>> magic_coins = 10
>>> stolen_coins = 3

These entries create the variables found_coins, magic_coins, and

stolen_coins.

Now, we can reenter the equation like this:

>>> found_coins + magic_coins * 365 - stolen_coins * 52
3514

You can see that

this gives us the same

answer. So who cares,

right? Ah, but here’s

the magic of variables.

What if you stick a

scarecrow in your win-

dow, and the raven

steals only two coins

22 Chapter 2

instead of three? When we use a variable, we can simply change

the variable to hold that new number, and it will change every-

where it is used in the equation. We can change the stolen_coins

variable to 2 by entering this:

>>> stolen_coins = 2

We can then copy and paste the equation to calculate the

answer again, like so:

1. Select the text to copy by clicking with the mouse and drag-

ging from the beginning to the end of the line, as shown here:

2. Hold down the ctrl key (or, if you’re using a Mac, the z key)

and press C to copy the selected text. (You’ll see this as ctrl-C

from now on.)

3. Click the last prompt line (after stolen_coins = 2).

4. Hold down the ctrl key and press V to paste the selected text.

(You’ll see this as ctrl-V from now on.)

5. Press enter to see the new result:

Calculations and Variables 23

Isn’t that a lot easier than retyping the whole equation? It

sure is.

You can try changing the other variables, and then copy

(ctrl-C) and paste (ctrl-V) the calculation to see the effect of

your changes. For example, if you bang the sides of your grand-

father’s invention at the right moment, and it spits out an extra

3 coins each time, you’ll find that you end up with 4661 coins at

the end of the year:

>>> magic_coins = 13
>>> found_coins + magic_coins * 365 - stolen_coins * 52
4661

Of course, using variables for a simple equation like this one is

still only slightly useful. We haven’t gotten to really useful yet. For

now, just remember that variables are a way of labeling things so

that you can use them later.

What You Learned
In this chapter you learned how to do simple equations using

Python operators and how to use parentheses to control the order

of operations (the order in which Python evaluates the parts of

the equations). We then created variables to label values and used

those variables in our calculations.

3
stRInGs, LIsts,

tUPLes, AnD MAPs

In Chapter 2, we did some basic calculations with

Python, and you learned about variables. In this

chapter, we’ll work with some other items in Python

programs: strings, lists, tuples, and maps. You’ll use

strings to display messages in your programs (such as

“Get Ready” and “Game Over” messages in a game).

You’ll also discover how lists, tuples, and maps are

used to store collections of things.

26 Chapter 3

strings
In programming terms, we usually call text a string. When you

think of a string as a collection of letters, the term makes sense.

All the letters, numbers, and symbols in this book could be a string.

For that matter, your name could be a string, and so could your

address. In fact, the first Python pro-

gram we created in Chapter 1 used a

string: “Hello World.”

Creating strings
In Python, we create a string by put-

ting quotes around text. For example,

we could take our other wise useless

fred variable from Chapter 2 and use it

to label a string, like this:

fred = "Why do gorillas have big nostrils? Big fingers!!"

Then, to see what’s inside fred, we could enter print(fred),

like this:

>>> print(fred)
Why do gorillas have big nostrils? Big fingers!!

You can also use single quotes to create a string, like this:

>>> fred = 'What is pink and fluffy? Pink fluff!!'
>>> print(fred)
What is pink and fluffy? Pink fluff!!

However, if you try to enter more than one line of text for your

string using only a single quote (') or double quote (") or if you

start with one type of quote and try to finish with another, you’ll

get an error message in the Python shell. For example, enter the

following line:

>>> fred = "How do dinosaurs pay their bills?

You’ll see this result:

SyntaxError: EOL while scanning string literal

Strings, Lists, Tuples, and Maps 27

This is an error message complaining about syntax because

you did not follow the rules for ending a string with a single or

double quote.

Syntax means the arrangement and order of words in a sen-

tence or, in this case, the arrangement and order of words and

symbols in a program. So SyntaxError means that you did some-

thing in an order Python was not expecting, or Python was

expecting something that you missed. EOL means end-of-line,

so the rest of the error message is telling you that Python hit the

end of the line and did not find a double quote to close the string.

To use more than one line of text in your string (called a

multiline string), use three single quotes ('''), and then hit enter

between lines, like this:

>>> fred = '''How do dinosaurs pay their bills?
With tyrannosaurus checks!'''

Now let’s print out the contents of fred to see if this worked:

>>> print(fred)
How do dinosaurs pay their bills?
With tyrannosaurus checks!

Handling Problems with strings
Now consider this crazy example of a string, which causes Python

to display an error message:

>>> silly_string = 'He said, "Aren't can't shouldn't wouldn't."'
SyntaxError: invalid syntax

In the first line, we try to create a string (defined as the vari-

able silly_string) enclosed by single quotes, but also containing a

mixture of single quotes in the words can't, shouldn't, and wouldn't,

as well as double quotes. What a mess!

Remember that Python itself is not as smart as a human

being, so all it sees is a string containing He said, "Aren, followed

by a bunch of other characters that it doesn’t expect. When Python

sees a quotation mark (either a single or double quote), it expects a

string to start following the first mark and the string to end after

the next matching quotation mark (either single or double) on that

line. In this case, the start of the string is the single quotation mark

28 Chapter 3

before He, and the end of the string, as far as Python is concerned,

is the single quote after the n in Aren. IDLE highlights the point

where things have gone wrong:

The last line of IDLE tells us what sort of error occurred—in

this case, a syntax error.

Using double instead of single quotes still produces an error:

>>> silly_string = "He said, "Aren't can't shouldn't wouldn't.""
SyntaxError: invalid syntax

Here, Python sees a string bounded by double quotes, contain-

ing the letters He said, (and a space). Everything following that

string (from Aren't on) causes the error:

This is because, from Python’s perspective, all that extra stuff

just isn’t supposed to be there. Python looks for the next matching

quote and doesn’t know what you want it to do with anything that

follows that quote on the same line.

Strings, Lists, Tuples, and Maps 29

The solution to this prob-

lem is a multiline string, which

we learned about earlier, using

three single quotes ('''), which

allows us to combine double and

single quotes in our string with-

out causing errors. In fact, if we

use three single quotes, we can

put any combination of single

and double quotes inside the

string (as long as we don’t try to

put three single quotes there).

This is what the error-free ver-

sion of our string looks like:

silly_string = '''He said, "Aren't can't shouldn't wouldn't."'''

But wait, there’s more. If you really want to use single or dou-

ble quotes to surround a string in Python, instead of three single

quotes, you can add a backslash (\) before each quotation mark

within the string. This is called escaping. It’s a way of saying to

Python, “Yes, I know I have quotes inside my string, and I want

you to ignore them until you see the end quote.”

Escaping strings can make them harder to read, so it’s prob-

ably better to use multiline strings. Still, you might come across

snippets of code that use escaping, so it’s good to know why the

backslashes are there.

Here are a few examples of how escaping works:

u >>> single_quote_str = 'He said, "Aren\'t can\'t shouldn\'t wouldn\'t."'
v >>> double_quote_str = "He said, \"Aren't can't shouldn't wouldn't.\""

>>> print(single_quote_str)
He said, "Aren't can't shouldn't wouldn't."
>>> print(double_quote_str)
He said, "Aren't can't shouldn't wouldn't."

First, at u, we create a string with single quotes, using the

backslash in front of the single quotes inside that string. At v, we

create a string with double quotes, and use the backslash in front

of those quotes in the string. In the lines that follow, we print the

variables we’ve just created. Notice that the backslash character

doesn’t appear in the strings when we print them.

30 Chapter 3

embedding Values in strings
If you want to display a message using the contents of a vari-

able, you can embed values in a string using %s, which is like a

marker for a value that you want to add later. (Embedding values

is programmer-speak for “inserting values.”) For example, to have

Python calculate or store the number of points you scored in a

game, and then add it to a sentence like “I scored points,” use

%s in the sentence in place of the value, and then tell Python that

value, like this:

>>> myscore = 1000
>>> message = 'I scored %s points'
>>> print(message % myscore)
I scored 1000 points

Here, we create the variable myscore with the value 1000 and the

variable message with a string that contains the words “I scored %s

points,” where %s is a placeholder for the number of points. On the

next line, we call print(message) with the % symbol to tell Python to

replace %s with the value stored in the variable myscore. The result

of printing this message is I scored 1000 points. We don’t need to

use a variable for the value. We could do the same example and

just use print(message % 1000).

We can also pass in different values for the %s placeholder,

using different variables, as in this example:

>>> joke_text = '%s: a device for finding furniture in the dark'
>>> bodypart1 = 'Knee'
>>> bodypart2 = 'Shin'
>>> print(joke_text % bodypart1)
Knee: a device for finding furniture in the dark
>>> print(joke_text % bodypart2)
Shin: a device for finding furniture in the dark

Here, we create three variables. The first,

joke_text, includes the string with the %s marker.

The other variables are bodypart1 and bodypart2.

We can print the variable joke_text, and once

again use the % operator to replace it with the

contents of the variables bodypart1 and bodypart2

to produce different messages.

Strings, Lists, Tuples, and Maps 31

You can also use more than one placeholder in a string,

like this:

>>> nums = 'What did the number %s say to the number %s? Nice belt!!'
>>> print(nums % (0, 8))
What did the number 0 say to the number 8? Nice belt!!

When using more than one placeholder, be sure to wrap the

replacement values in parentheses, as shown in the example. The

order of the values is the order in which they’ll be used in the string.

Multiplying strings
What is 10 multiplied by 5? The answer is 50, of course. But

what’s 10 multiplied by a? Here’s Python’s answer:

>>> print(10 * 'a')
aaaaaaaaaa

Python programmers might use this approach to line up strings

with a specific number of spaces when displaying messages in the

shell, for example. How about printing a letter in the shell (select

File4New Window, and enter the following code):

spaces = ' ' * 25
print('%s 12 Butts Wynd' % spaces)
print('%s Twinklebottom Heath' % spaces)
print('%s West Snoring' % spaces)
print()
print()
print('Dear Sir')
print()
print('I wish to report that tiles are missing from the')
print('outside toilet roof.')
print('I think it was bad wind the other night that blew them away.')
print()
print('Regards')
print('Malcolm Dithering')

Once you’ve typed the code into the shell window, select

File4Save As. Name your file myletter.py.

32 Chapter 3

note From now on, when you see Save As: somefilename.py above a chunk

of code, you’ll know you need to select File4New Window, enter the

code into the window that appears, and then save it as we did in

this example.

In the first line of this example, we create the variable spaces

by multiplying a space character by 25. We then use that variable

in the next three lines to align the text to the right of the shell.

You can see the result of these print statements below:

In addition to using multiplication for alignment, we can also

use it to fill the screen with annoying messages. Try this example

for yourself:

>>> print(1000 * 'snirt')

Lists Are More Powerful
than strings

“Spider legs, toe of frog, eye of newt, bat wing,

slug butter, and snake dandruff ” is not quite a

normal shopping list (unless you happen to be

a wizard), but we’ll use it as our first example

of the differences between strings and lists.

Strings, Lists, Tuples, and Maps 33

We could store this list of items in the wizard_list variable using a

string like this:

>>> wizard_list = 'spider legs, toe of frog, eye of newt, bat wing,
slug butter, snake dandruff'
>>> print(wizard_list)
spider legs, toe of frog, eye of newt, bat wing, slug butter, snake
dandruff

But we could also create a list, a somewhat magical kind of

Python object that we can manipulate. Here’s what these items

would look like written as a list:

>>> wizard_list = ['spider legs', 'toe of frog', 'eye of newt',
 'bat wing', 'slug butter', 'snake dandruff']
>>> print(wizard_list)
['spider legs', 'toe of frog', 'eye of newt', 'bat wing', 'slug
butter', 'snake dandruff']

Creating a list takes a bit more typing than creating a string,

but a list is more useful than a string because it can be manipu-

lated. For example, we could print the third item in the wizard_list

(eye of newt) by entering its position in the list (called the index

position) inside square brackets ([]), like this:

>>> print(wizard_list[2])
eye of newt

Huh? Isn’t it the third item on the list? Yes, but lists start at

index position 0, so the first item in a list is 0, the second is 1, and

the third is 2. That may not make a lot of sense to humans, but it

does to computers.

We can also change an item in a list much more easily than we

could in a string. Perhaps instead of eye of newt we needed a snail

tongue. Here’s how we would do that with our list:

>>> wizard_list[2] = 'snail tongue'
>>> print(wizard_list)
['spider legs', 'toe of frog', 'snail tongue', 'bat wing', 'slug
butter', 'snake dandruff']

This sets the item in index position 2, previously eye of newt,

to snail tongue.

34 Chapter 3

Another option is to show a subset

of the items in the list. We do this by

using a colon (:) inside square brack-

ets. For example, enter the following to

see the third to fifth items in a list (a

brilliant set of ingredients for a lovely

sandwich):

>>> print(wizard_list[2:5])
['snail tongue', 'bat wing', 'slug butter']

Writing [2:5] is the same as saying, “show the items from index

position 2 up to (but not including) index position 5”—or in other

words, items 2, 3, and 4.

Lists can be used to store all sorts of items, like numbers:

>>> some_numbers = [1, 2, 5, 10, 20]

They can also hold strings:

>>> some_strings = ['Which', 'Witch', 'Is', 'Which']

They might have mixtures of numbers and strings:

>>> numbers_and_strings = ['Why', 'was', 6, 'afraid', 'of', 7,
 'because', 7, 8, 9]
>>> print(numbers_and_strings)
['Why', 'was', 6, 'afraid', 'of', 7, 'because', 7, 8, 9]

And lists might even store other lists:

>>> numbers = [1, 2, 3, 4]
>>> strings = ['I', 'kicked', 'my', 'toe', 'and', 'it', 'is', 'sore']
>>> mylist = [numbers, strings]
>>> print(mylist)
[[1, 2, 3, 4], ['I', 'kicked', 'my', 'toe', 'and', 'it', 'is', 'sore']]

This list-within-list example creates three variables: numbers with

four numbers, strings with eight strings, and mylist using numbers

and strings. The third list (mylist) has only two elements because

it’s a list of variable names, not the contents of the variables.

Strings, Lists, Tuples, and Maps 35

Adding Items to a List
To add items to a list, we use the append function. A function is a

chunk of code that tells Python to do something. In this case, append

adds an item to the end of a list.

For example, to add a bear burp (I’m sure there is such a

thing) to the wizard’s shopping list, do this:

>>> wizard_list.append('bear burp')
>>> print(wizard_list)
['spider legs', 'toe of frog', 'snail tongue', 'bat wing', 'slug
butter', 'snake dandruff', 'bear burp']

You can keep adding more magical items to the wizard’s list in

the same way, like so:

>>> wizard_list.append('mandrake')
>>> wizard_list.append('hemlock')
>>> wizard_list.append('swamp gas')

Now the wizard’s list looks like this:

>>> print(wizard_list)
['spider legs', 'toe of frog', 'snail tongue', 'bat wing', 'slug
butter', 'snake dandruff', 'bear burp', 'mandrake', 'hemlock', 'swamp
gas']

The wizard is clearly ready to work some serious magic!

Removing Items from a List
To remove items from a list, use the del command (short for delete).

For example, to remove the sixth item in the wizard’s list, snake

dandruff, do this:

>>> del wizard_list[5]
>>> print(wizard_list)
['spider legs', 'toe of frog', 'snail tongue', 'bat wing', 'slug
butter', 'bear burp', 'mandrake', 'hemlock', 'swamp gas']

note Remember that positions start at zero, so wizard_list[5] actually

refers to the sixth item in the list.

36 Chapter 3

And here’s how to remove the items we just added (mandrake,

hemlock, and swamp gas):

>>> del wizard_list[8]
>>> del wizard_list[7]
>>> del wizard_list[6]
>>> print(wizard_list)
['spider legs', 'toe of frog', 'snail tongue', 'bat wing', 'slug
butter', 'bear burp']

List Arithmetic
We can join lists by adding them, just like adding numbers, using

a plus (+) sign. For example, suppose we have two lists: list1, con-

taining the numbers 1 through 4, and list2, containing some words.

We can add them using print and the + sign, like so:

>>> list1 = [1, 2, 3, 4]
>>> list2 = ['I', 'tripped', 'over', 'and', 'hit', 'the', 'floor']
>>> print(list1 + list2)
[1, 2, 3, 4, 'I', 'tripped', 'over', 'and', 'hit', 'the', 'floor']

We can also add the two lists and set the result equal to

another variable.

>>> list1 = [1, 2, 3, 4]
>>> list2 = ['I', 'ate', 'chocolate', 'and', 'I', 'want', 'more']
>>> list3 = list1 + list2
>>> print(list3)
[1, 2, 3, 4, 'I', 'ate', 'chocolate', 'and', 'I', 'want', 'more']

And we can multiply a list by a number. For example, to multi-

ply list1 by 5, we write list1 * 5:

>>> list1 = [1, 2]
>>> print(list1 * 5)
[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]

This is actually telling Python to repeat list1 five times,

resulting in 1, 2, 1, 2, 1, 2, 1, 2, 1, 2.

Strings, Lists, Tuples, and Maps 37

On the other hand, division (/) and subtraction (-) give only

errors, as in these examples:

>>> list1 / 20
Traceback (most recent call last):
 File "<pyshell>", line 1, in <module>
 list1 / 20
TypeError: unsupported operand type(s) for /: 'list' and 'int'

>>> list1 - 20
Traceback (most recent call last):
 File "<pyshell>", line 1, in <module>
 list1 - 20
TypeError: unsupported operand type(s) for -: 'list' and 'int'

But why? Well, joining lists with + and repeating lists with *

are straightforward enough operations. These concepts also make

sense in the real world. For example, if I were to hand you two

paper shopping lists and say, “Add these two lists,” you might write

out all the items on another sheet of paper in order, end to end. The

same might be true if I said, “Multiply this list by 3.” You could

imagine writing a list of all of the list’s items three times on another

sheet of paper.

But how would you divide a list? For example, consider how

you would divide a list of six numbers (1 through 6) in two. Here

are just three different ways:

[1, 2, 3] [4, 5, 6]
[1] [2, 3, 4, 5, 6]
[1, 2, 3, 4] [5, 6]

Would we divide the list in the middle,

split it after the first item, or just pick some

random place and divide it there? There’s no

simple answer, and when you ask Python to

divide a list, it doesn’t know what to do, either.

That’s why it responds with an error.

38 Chapter 3

The same goes for adding anything other than a list to a list.

You can’t do that either. For example, here’s what happens when

we try to add the number 50 to list1:

>>> list1 + 50
Traceback (most recent call last):
 File "<pyshell>", line 1, in <module>
 list1 + 50
TypeError: can only concatenate list (not "int") to list

Why do we get an error here? Well, what does it mean to add

50 to a list? Does it mean add 50 to each item? But what if the

items aren’t numbers? Does it mean add the number 50 to the end

or beginning of the list?

In computer programming, commands should work in exactly

the same way every time you enter them. That dumb computer

sees things only in black and white. Ask it to make a complicated

decision, and it throws up its hands with errors.

tuples
A tuple is like a list that uses parentheses, as in this example:

>>> fibs = (0, 1, 1, 2, 3)
>>> print(fibs[3])
2

Here we define the variable fibs as the numbers 0, 1, 1, 2, and

3. Then, as with a list, we print the item in index position 3 in the

tuple using print(fibs[3]).

The main difference between a tuple and a list is that a tuple

cannot change once you’ve created it. For example, if we try to

replace the first value in the tuple fibs with the number 4 (just as

we replaced values in our wizard_list), we get an error message:

>>> fibs[0] = 4
Traceback (most recent call last):
 File "<pyshell>", line 1, in <module>
 fibs[0] = 4
TypeError: 'tuple' object does not support item assignment

Strings, Lists, Tuples, and Maps 39

Why would you use a tuple instead of a list? Basically because

sometimes it is useful to use something that you know can never

change. If you create a tuple with two elements inside, it will

always have those two elements inside.

Python Maps Won’t Help You find
Your Way

In Python, a map (also referred to as a dict, short for dictionary) is

a collection of things, like lists and tuples. The difference between

maps and lists or tuples is that each item in a map has a key and a

corresponding value.

For example, say we have a list of people and their favorite

sports. We could put this information into a Python list, with the

person’s name followed by their sport, like so:

>>> favorite_sports = ['Ralph Williams, Football',
 'Michael Tippett, Basketball',
 'Edward Elgar, Baseball',
 'Rebecca Clarke, Netball',
 'Ethel Smyth, Badminton',
 'Frank Bridge, Rugby']

If I asked you what Rebecca Clarke’s favorite

sport is, you could skim through that list and find

the answer is netball. But what if the list included

100 (or many more) people?

Now, if we store this same information in a

map, with the person’s name as the key and their

favorite sport as the value, the Python code would

look like this:

>>> favorite_sports = {'Ralph Williams' : 'Football',
 'Michael Tippett' : 'Basketball',
 'Edward Elgar' : 'Baseball',
 'Rebecca Clarke' : 'Netball',
 'Ethel Smyth' : 'Badminton',
 'Frank Bridge' : 'Rugby'}

We use colons to separate each key from its value, and each

key and value is surrounded by single quotes. Notice, too, that

the items in a map are enclosed in braces ({}), not parentheses or

square brackets.

40 Chapter 3

The result is a map (each key maps to a particular value), as

shown in Table 3-1.

Table 3-1: Keys Pointing to Values in a Map of Favorite Sports

Key Value

Ralph Williams Football

Michael Tippett Basketball

Edward Elgar Baseball

Rebecca Clarke Netball

Ethel Smyth Badminton

Frank Bridge Rugby

Now, to get Rebecca Clarke’s favorite sport, we access our map

favorite_sports using her name as the key, like so:

>>> print(favorite_sports['Rebecca Clarke'])
Netball

And the answer is netball.

To delete a value in a map, use its key. For example, here’s how

to remove Ethel Smyth:

>>> del favorite_sports['Ethel Smyth']
>>> print(favorite_sports)
{'Rebecca Clarke': 'Netball', 'Michael Tippett': 'Basketball', 'Ralph
Williams': 'Football', 'Edward Elgar': 'Baseball', 'Frank Bridge':
'Rugby'}

To replace a value in a map, we also use its key:

>>> favorite_sports['Ralph Williams'] = 'Ice Hockey'
>>> print(favorite_sports)
{'Rebecca Clarke': 'Netball', 'Michael Tippett': 'Basketball', 'Ralph
Williams': 'Ice Hockey', 'Edward Elgar': 'Baseball', 'Frank Bridge':
'Rugby'}

We replace the favorite sport of Football with Ice Hockey by

using the key Ralph Williams.

Strings, Lists, Tuples, and Maps 41

As you can see, working with maps is kind of like working with

lists and tuples, except that you can’t join maps with the plus oper-

ator (+). If you try to do that, you’ll get an error message:

>>> favorite_sports = {'Rebecca Clarke': 'Netball',
 'Michael Tippett': 'Basketball',
 'Ralph Williams': 'Ice Hockey',
 'Edward Elgar': 'Baseball',
 'Frank Bridge': 'Rugby'}
>>> favorite_colors = {'Malcolm Warner' : 'Pink polka dots',
 'James Baxter' : 'Orange stripes',
 'Sue Lee' : 'Purple paisley'}
>>> favorite_sports + favorite_colors
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'dict' and 'dict'

Joining maps doesn’t make sense to Python, so it just throws

up its hands.

What You Learned
In this chapter, you learned how Python uses strings to store text,

and how it uses lists and tuples to handle multiple items. You saw

that the items in lists can be changed, and that you can join one

list to another list, but that the values in a tuple cannot change.

You also learned how to use maps to store values with keys that

identify them.

Programming Puzzles
The following are a few experiments you can try yourself. The

answers can be found at http://python-for-kids.com/.

#1: favorites
Make a list of your favorite hobbies and give the list the variable

name games. Now make a list of your favorite foods and name the

variable foods. Join the two lists and name the result favorites.

Finally, print the variable favorites.

42 Chapter 3

#2: Counting Combatants
If there are 3 buildings with 25 ninjas hiding on each roof and

2 tunnels with 40 samurai hiding inside each tunnel, how many

ninjas and samurai are about to do battle? (You can do this with

one equation in the Python shell.)

#3: Greetings!
Create two variables: one that points to your first name and

one that points to your last name. Now create a string and use

placeholders to print your name with a message using those two

variables, such as “Hi there, Brando Ickett!”

4
DRAWInG WItH tURtLes

A turtle in Python is sort of like a turtle in the real

world. We know a turtle as a reptile that moves around

very slowly and carries its house on its back. In the

world of Python, a turtle is a small, black arrow that

moves slowly around the screen. Actually, considering

that a Python turtle leaves a trail as it moves around

the screen, it’s actually less like a turtle and more like

a snail or a slug.

The turtle is a nice way to learn some of the basics

of computer graphics, so in this chapter, we’ll use a

Python turtle to draw some simple shapes and lines.

44 Chapter 4

Using Python’s turtle Module
A module in Python is a way of

providing useful code to be used

by another program (among other

things, the module can contain

functions we can use). We’ll learn

more about modules in Chapter 7.

Python has a special module called

turtle that we can use to learn

how computers draw pictures on a

screen. The turtle module is a way

of programming vector graphics,

which is basically just drawing

with simple lines, dots, and curves.

Let’s see how the turtle works. First, start the Python shell

by clicking the desktop icon (or if you’re using Ubuntu, select

Applications4Programming4IDLE). Next, tell Python to

use the turtle by importing the turtle module, as follows:

>>> import turtle

Importing a module tells Python that you want to use it.

note If you’re using Ubuntu and you get an error at this point, you might

need to install tkinter. To do so, open the Ubuntu Software Center

and enter python-tk in the search box. “Tkinter – Writing Tk Appli-

cations with Python” should appear in the window. Click Install to

install this package.

Creating a Canvas
Now that we have imported the turtle module, we need to create a

canvas—a blank space to draw on, like an artist’s canvas. To do so,

we call the function Pen from the turtle module, which automati-

cally creates a canvas. Enter this into the Python shell:

>>> t = turtle.Pen()

Drawing with Turtles 45

You should see a blank box (the canvas), with an arrow in the

center, something like this:

The arrow in the middle of the screen is the turtle, and you’re

right—it isn’t very turtle-like.

If the Turtle window appears behind the Python Shell window,

you may find that it doesn’t seem to be working properly. When you

move your mouse over the Turtle window, the cursor turns into an

hourglass, like this:

This could happen for several reasons: you haven’t started the

shell from the icon on your desktop (if you’re using Windows or a

Mac), you clicked IDLE (Python GUI) in the Windows Start menu,

46 Chapter 4

or IDLE isn’t installed correctly. Try exiting and restarting the

shell from the desktop icon. If that fails, try using the Python con-

sole instead of the shell, as follows:

•	 In Windows, select Start4All Programs, and then in the

Python 3.2 group, click Python (command line).

•	 In Mac OS X, click the Spotlight icon at the top-right corner

of the screen and enter Terminal in the input box. Then enter

python when the terminal opens.

•	 In Ubuntu, open the terminal from your Applications menu

and enter python.

Moving the turtle
You send instructions to the

turtle by using functions

available on the variable t

we just created, similar to

using the Pen function in the

turtle module. For example,

the forward instruction tells the turtle to move forward. To tell the

turtle to advance 50 pixels, enter the following command:

>>> t.forward(50)

You should see something like this:

Drawing with Turtles 47

The turtle has moved forward 50 pixels. A pixel is a single

point on the screen—the smallest element that can be represented.

Everything you see on your computer monitor is made up of pixels,

which are tiny, square dots. If you could zoom in on the canvas

and the line drawn by the turtle, you would be able to see that

the arrow representing the turtle’s path is just a bunch of pixels.

That’s simple computer graphics.

Now we’ll tell the turtle to turn left 90 degrees with the follow-

ing command:

>>> t.left(90)

If you haven’t learned about degrees yet, here’s how to think

about them. Imagine that you’re standing in the center of a circle.

•	 The direction you’re facing is 0 degrees.

•	 If you hold out your left arm, that’s 90 degrees left.

•	 If you hold out your right arm, that’s 90 degrees right.

You can see this 90-degree turn to the left or right here:

0

90˚

left

90˚

right

Dots!

48 Chapter 4

If you continue around the circle to the right from where

your right arm is pointing, 180 degrees is directly behind you,

270 degrees is the direction your left arm is pointing, and

360 degrees is back where you started; degrees go from 0 to 360.

The degrees in a full circle, when turning to the right, can be seen

here in 45-degree increments:

45

0

90

180

135225

270

315

When Python’s turtle turns left, it swivels around to face the

new direction (just as if you turned your body to face where your

arm is pointing 90 degrees left).

The t.left(90) command points the arrow up (since it started

by pointing to the right):

note When you call t.left(90), it’s the same as calling t.right(270). This

is also true of calling t.right(90), which is the same as t.left(270).

Just imagine that circle and follow along with the degrees.

Now we’ll draw a square. Add the following code to the lines

you’ve already entered:

>>> t.forward(50)
>>> t.left(90)

Drawing with Turtles 49

>>> t.forward(50)
>>> t.left(90)
>>> t.forward(50)
>>> t.left(90)

Your turtle should have drawn a square and should now be

facing in the same direction it started:

To erase the canvas, enter reset. This clears the canvas and

puts the turtle back at its starting position.

>>> t.reset()

You can also use clear, which just clears the screen and leaves

the turtle where it is.

>>> t.clear()

We can also turn our turtle right or move it backward. We can

use up to lift the pen off the page (in other words, tell the turtle to

stop drawing), and down to start drawing. These functions are writ-

ten in the same way as the others we’ve used.

Let’s try another drawing using some of these commands. This

time, we’ll have the turtle draw two lines. Enter the following code:

>>> t.reset()
>>> t.backward(100)
>>> t.up()
>>> t.right(90)

50 Chapter 4

>>> t.forward(20)
>>> t.left(90)
>>> t.down()
>>> t.forward(100)

First, we reset the can-

vas and move the turtle back

to its starting position with

t.reset(). Next, we move the

turtle backward 100 pixels with

t.backward(100), and then use

t.up() to pick up the pen and

stop drawing.

Then, with the command

t.right(90), we turn the turtle

right 90 degrees to point down,

toward the bottom of the screen,

and with t.forward(20), we move

forward 20 pixels. Nothing is drawn because of the use of up com-

mand on the third line. We turn the turtle left 90 degrees to face

right with t.left(90), and then with the down command, we tell the

turtle to put the pen back down and start drawing again. Finally,

we draw a line forward, parallel to the first line we drew, with

t.forward(100). The two parallel lines we’ve drawn end up looking

like this:

Drawing with Turtles 51

What You Learned
In this chapter, you learned how to use Python’s turtle module.

We drew some simple lines, using left and right turns and forward

and backward commands. You found out how to stop the turtle from

drawing using up, and start drawing again with down. You also dis-

covered that the turtle turns by degrees.

Programming Puzzles
Try drawing some of the following shapes with the turtle. The

answers can be found at http://python-for-kids.com/.

#1: A Rectangle
Create a new canvas using the turtle module’s Pen function and

then draw a rectangle.

#2: A triangle
Create another canvas, and this time, draw a triangle. Look back

at the diagram of the circle with the degrees (“Moving the Turtle”

on page 46) to remind yourself which direction to turn the turtle

using degrees.

#3: A Box Without Corners
Write a program to draw the four lines shown here (the size isn’t

important, just the shape):

5
AsKInG QUestIons
WItH If AnD eLse

In programming, we often ask yes or no questions, and

decide to do something based on the answer. For exam-

ple, we might ask, “Are you older than 20?” and if the

answer is yes, respond with “You are too old!”

These sorts of questions are called conditions, and

we combine these conditions and the responses into if

statements. Conditions can be more complicated than

a single question, and if statements can also be com-

bined with multiple questions and different responses

based on the answer to each question.

54 Chapter 5

In this chapter, you’ll learn how to use if statements to build

programs.

If statements
An if statement might be written in Python like this:

>>> age = 13
>>> if age > 20:
 print('You are too old!')

An if statement is

made up of the if keyword,

followed by a condition and

a colon (:), as in if age > 20:.

The lines following the colon

must be in a block, and if

the answer to the question

is yes (or true, as we say in

Python programming), the

commands in the block will

be run. Now, let’s explore

how to write blocks and

conditions.

A Block Is a Group of Programming
statements
A block of code is a grouped set of programming statements. For

example, when if age > 20: is true, you might want to do more

than just print “You are too old!” Perhaps you want to print out

a few other choice sentences, like this:

>>> age = 25
>>> if age > 20:
 print('You are too old!')
 print('Why are you here?')
 print('Why aren\'t you mowing a lawn or sorting papers?')

Asking Questions with if and else 55

This block of code is made up of three print statements that

are run only if the condition age > 20 is found to be true. Each line

in the block has four spaces at the beginning, when you compare it

with the if statement above it. Let’s look at that code again, with

visible spaces:

>>> age = 25
>>> if age > 20:
 print('You are too old!')
 print('Why are you here?')
 print('Why aren\'t you mowing a lawn or sorting papers?')

In Python, whitespace, such as a tab (inserted when you press

the tab key) or a space (inserted when you press the spacebar), is

meaningful. Code that is at the same position (indented the same

number of spaces from the left margin) is grouped into a block, and

whenever you start a new line with more spaces than the previous

one, you are starting a new block that is part of the previous one,

like this:

line of code
line of code
line of code

line of code
line of code
line of code

line of code
line of code
line of code

line of code
line of code

block 1

block 2

block 3

We group statements together into blocks because they are

related. The statements need to be run together.

When you change the indentation, you’re generally creating

new blocks. The following example shows three separate blocks

that are created just by changing the indentation.

56 Chapter 5

line of code
line of code
line of code

line of code
line of code
line of code

line of code
line of code
line of code

line of code
line of code
line of code

block 1

block 3

block 2

Here, even though blocks 2 and 3 have the same indentation,

they are considered different blocks because there is a block with

less indentation (fewer spaces) between them.

For that matter, a block with four spaces on one line and six

spaces on the next will produce an indentation error when you run

it, because Python expects you to use the same number of spaces

for all the lines in a block. So if you start a block with four spaces,

you should consistently use four spaces for that block. Here’s an

example:

>>> if age > 20:
 print('You are too old!')
 print('Why are you here?')

I’ve made the spaces visible so that you can see the differences.

Notice that the third line has six spaces instead of four.

When we try to run this code, IDLE highlights the line where

it sees a problem with a red block and displays an explanatory

 SyntaxError message:

>>> age = 25
>>> if age > 20:
 print('You are too old!')
 print('Why are you here?')
SyntaxError: unexpected indent

Python didn’t expect to see two extra spaces at the beginning

of the second print line.

Asking Questions with if and else 57

note Use consistent spacing to make your code easier to read. If you start

writing a program and put four spaces at the beginning of a block,

keep using four spaces at the beginning of the other blocks in your

program. Also, be sure to indent each line in the same block with

the same number of spaces.

Conditions Help Us Compare things
A condition is a programming statement that compares things and

tells us whether the criteria set by the comparison are either True

(yes) or False (no). For example, age > 10 is a condition, and is another

way of saying, “Is the value of the age variable greater than 10?”

This is also a condition: hair_color == 'mauve', which is another way

of saying, “Is the value of the hair_color variable mauve?”

We use symbols in Python (called operators) to create our con-

ditions, such as equal to, greater than, and less than. Table 5-1

lists some symbols for conditions.

Table 5-1: Symbols for Conditions

Symbol Definition

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

For example, if you are 10 years old, the condition your_age == 10

would return True; otherwise, it would return False. If you are

12 years old, the condition your_age > 10 would return True.

Warning Be sure to use a double equal sign (==) when defining an equal-to

condition.

Let’s try a few more examples. Here, we set our age as equal to

10 and then write a conditional statement that will print “You are

too old for my jokes!” if age is greater than 10:

>>> age = 10
>>> if age > 10:
 print('You are too old for my jokes!')

58 Chapter 5

What happens when we type this into

IDLE and press enter?

Nothing.

Because the value returned by age is not

greater than 10, Python does not execute

(run) the print block. However, if we had set

the variable age to 20, the message would be

printed.

Now let’s change the previous example

to use a greater-than-or-equal-to (>=)

 condition:

>>> age = 10
>>> if age >= 10:
 print('You are too old for my jokes!')

You should see “You are too old for my jokes!” printed to the

screen because the value of age is equal to 10.

Next, let’s try using an equal-to (==) condition:

>>> age = 10
>>> if age == 10:
 print('What\'s brown and sticky? A stick!!')

You should see the message “What’s brown and sticky? A

stick!!” printed to the screen.

If-then-else statements
In addition to using if statements to do something when a condi-

tion is met (True), we can also use if statements to do something

when a condition is not true. For example, we might print one mes-

sage to the screen if your age is 12 and another if it’s not 12 (False).

The trick here is to use an if-then-else statement, which essen-

tially says “If something is true, then do this; or else, do that.”

Let’s create an if-then-else statement. Enter the following into

the shell:

>>> print("Want to hear a dirty joke?")
Want to hear a dirty joke?

Asking Questions with if and else 59

>>> age = 12
>>> if age == 12:
 print("A pig fell in the mud!")
else:
 print("Shh. It's a secret.")

A pig fell in the mud!

Because we’ve set the age vari-

able to 12, and the condition is

asking whether age is equal to

12, you should see the first print

message on the screen. Now try

changing the value of age to a num-

ber other than 12, like this:

>>> print("Want to hear a dirty joke?")
Want to hear a dirty joke?
>>> age = 8
>>> if age == 12:
 print("A pig fell in the mud!")
else:
 print("Shh. It's a secret.")

Shh. It's a secret.

This time, you should see the second print message.

if and elif statements
We can extend an if statement even further with elif (which is

short for else-if). For example, we can check if a person’s age is 10,

11, or 12 (and so on) and have our program do something different

based on the answer. These statements are different from if-then-

else statements in that there can be more than one elif in the

same statement:

>>> age = 12
u >>> if age == 10:
v print("What do you call an unhappy cranberry?")

 print("A blueberry!")

60 Chapter 5

w elif age == 11:
 print("What did the green grape say to the blue grape?")
 print("Breathe! Breathe!")

x elif age == 12:
y print("What did 0 say to 8?")

 print("Hi guys!")
elif age == 13:
 print("Why wasn't 10 afraid of 7?")
 print("Because rather than eating 9, 7 8 pi.")
else:
 print("Huh?")

What did 0 say to 8? Hi guys!

In this example, the if statement on the second line checks

to see if the value of the age variable is equal to 10 at u. The print

statement that follows at v is run if age is equal to 10. However,

since we’ve set age equal to 12, the computer jumps to the next if

statement at w and checks if the value of age is equal to 11. It isn’t,

so the computer jumps to the next if statement at x to see if age

is equal to 12. It is, so this time, the computer executes the print

command at y.

When you enter this code in the IDLE, it will automatically

indent, so be sure to press the backspace or delete key once you’ve

typed each print statement, so that your if, elif, and else state-

ments will start at the far-left margin. This is the same position

the if statement would be in if the prompt (>>>) were absent.

Asking Questions with if and else 61

Combining Conditions
You can combine conditions by using the keywords and and or, which

produces shorter and simpler code. Here’s an example of using or:

>>> if age == 10 or age == 11 or age == 12 or age == 13:
 print('What is 13 + 49 + 84 + 155 + 97? A headache!')
else:
 print('Huh?')

In this code, if any of the conditions on the first line are true

(in other words, if age is 10, 11, 12, or 13), the block of code on the

next line beginning with print will run.

If the conditions in the first line are not true (else), Python

moves to the block in the last line, displaying Huh? on the screen.

To shrink this example even further, we could use the and

keyword, along with the greater than or equal-to operator (>=)

and less-than-or-equal-to operator (<=), as follows:

>>> if age >= 10 and age <= 13:
 print('What is 13 + 49 + 84 + 155 + 97? A headache!')
else:
 print('Huh?')

Here, if age is greater than or

equal to 10 and less than or equal

to 13, as defined on the first line

with if age >= 10 and age <= 13:, the

block of code beginning with print

on the following line will run. For

example, if the value of age is 12,

then What is 13 + 49 + 84 + 155 + 97?

A headache! will be printed to the

screen, because 12 is more than 10

and less than 13.

Variables with no Value—none
Just as we can assign numbers, strings, and lists to a variable,

we can also assign nothing, or an empty value, to a variable. In

Python, an empty value is referred to as None, and it is the absence

of value. And it’s important to note that the value None is different

62 Chapter 5

from the value 0 because it is the absence of a value, rather than a

number with a value of 0. The only value that a variable has when

we give it the empty value None is nothing. Here’s an example:

>>> myval = None
>>> print(myval)
None

Assigning a value of None to a variable is one way to reset it

to its original, empty state. Setting a variable to None is also a

way to define a variable without setting its value. You might do

this when you know you’re going to need a variable later in your

program, but you want to define all your variables at the begin-

ning. Programmers often define their variables at the beginning

of a program because placing them there makes it easy to see the

names of all the variables used by a chunk of code.

You can check for None in an if statement as well, as in the fol-

lowing example:

>>> myval = None
>>> if myval == None:
 print("The variable myval doesn't have a value")

The variable myval doesn't have a value

This is useful when you only want to calculate a value for a

variable if it hasn’t already been calculated.

the Difference Between strings and
numbers

User input is what a person enters on the keyboard—whether

that’s a character, a pressed arrow or enter key, or anything else.

User input comes into Python as a string, which means that when

you type the number 10 on your keyboard, Python saves the num-

ber 10 into a variable as a string, not a number.

What’s the difference between the number 10 and the string

'10'? Both look the same to us, with the only difference being that

one is surrounded by quotes. But to a computer, the two are very

different.

Asking Questions with if and else 63

For example, suppose that we compare the value of the vari-

able age to a number in an if statement, like this:

>>> if age == 10:
 print("What's the best way to speak to a monster?")
 print("From as far away as possible!")

Then we set the variable age to the number 10:

>>> age = 10
>>> if age == 10:
 print("What's the best way to speak to a monster?")
 print("From as far away as possible!")
What's the best way to speak to a monster?
From as far away as possible!

As you can see, the print statement executes.

Next, we set age to the string '10' (with quotes), like this:

>>> age = '10'
>>> if age == 10:
 print("What's the best way to speak to a monster?")
 print("From as far away as possible!")

Here, the code in the print

statement doesn’t run because

Python doesn’t see the number in

quotes (a string) as a number.

Fortunately, Python has magic

functions that can turn strings

into numbers and numbers into

strings. For example, you can con-

vert the string '10' into a number

with int:

>>> age = '10'
>>> converted_age = int(age)

The variable converted_age would now hold the number 10.

64 Chapter 5

To convert a number into a string, use str:

>>> age = 10
>>> converted_age = str(age)

In this case, converted_age would hold the string 10 instead of

the number 10.

Remember that if age == 10 statement that didn’t print any-

thing when the variable was set to a string (age = '10')? If we

convert the variable first, we get an entirely different result:

>>> age = '10'
>>> converted_age = int(age)
>>> if converted_age == 10:
 print("What's the best way to speak to a monster?")
 print("From as far away as possible!")
What's the best way to speak to a monster?
From as far away as possible!

But hear this: If you try to convert a number with a decimal

point, you’ll get an error because the int function expects an integer.

>>> age = '10.5'
>>> converted_age = int(age)
Traceback (most recent call last):
 File "<pyshell#35>", line 1, in <module>
 converted_age = int(age)
ValueError: invalid literal for int() with base 10: '10.5'

A ValueError is what Python uses to tell you that the value you

have tried to use isn’t appropriate. To fix this, use the function

float instead of int. The float function can handle numbers that

aren’t integers.

>>> age = '10.5'
>>> converted_age = float(age)
>>> print(converted_age)
10.5

You will also get a ValueError if you try to convert a string that

doesn’t contain a number in digits:

>>> age = 'ten'
>>> converted_age = int(age)
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in <module>

Asking Questions with if and else 65

 converted_age = int(age)
ValueError: invalid literal for int() with base 10: 'ten'

What You Learned
In this chapter, you learned how to work with if statements to

create blocks of code that are executed only when particular condi-

tions are true. You saw how to extend if statements using elif so

that different sections of code will execute as a result of different

conditions, and how to use the else keyword to execute code if none

of the conditions turn out to be true. You also learned how to com-

bine conditions using the and and or keywords so that you can see if

numbers fall in a range, and how to change strings into numbers

with int, str, and float. And you discovered that nothing (None) has

meaning in Python and can be used to reset variables to their ini-

tial, empty state.

Programming Puzzles
Try the following puzzles using if statement and conditions. The

answers can be found at http://python-for-kids.com/.

#1: Are You Rich?
What do you think the following code will do? Try to figure out

the answer without typing it into the shell, and then check your

answer.

>>> money = 2000
>>> if money > 1000:
 print("I'm rich!!")
else:
 print("I'm not rich!!")
 print("But I might be later...")

#2: twinkies!
Create an if statement that checks whether a number of Twinkies

(in the variable twinkies) is less than 100 or greater than 500. Your

program should print the message “Too few or too many” if the

condition is true.

66 Chapter 5

#3: Just the Right number
Create an if statement that checks whether the amount of money

contained in the variable money is between 100 and 500 or between

1,000 and 5,000.

#4: I Can fight those ninjas
Create an if statement that prints the string “That’s too many”

if the variable ninjas contains a number that’s less than 50, prints

“It’ll be a struggle, but I can take ’em” if it’s less than 30, and

prints “I can fight those ninjas!” if it’s less than 10. You might

try out your code with:

>>> ninjas = 5

6
GoInG LooPY

Nothing is worse than having to do the same thing over

and over again. There’s a reason why some people count

sheep when they’re having trouble falling asleep, and

it has nothing to do with the amazing sleep-inducing

powers of woolly mammals. It’s because endlessly

repeating something is boring, and your mind can

drop off to sleep more easily if you’re not focusing on

something interesting.

68 Chapter 6

Programmers don’t particularly like repeat-

ing themselves either, unless they’re also trying

to fall asleep. Thankfully, most programming

languages have what is called a for loop, which

repeats things like other programming state-

ments and blocks of code automatically.

In this chapter, we’ll look at for loops, as

well as another type of loop that Python offers:

the while loop.

Using for Loops
To print hello five times in Python, you could do the following:

>>> print("hello")

hello

>>> print("hello")

hello

>>> print("hello")

hello

>>> print("hello")

hello

>>> print("hello")

hello

But this is rather tedious. Instead, you can use a for loop to

reduce the amount of typing and repetition, like this:

u >>> for x in range(0, 5):

v print('hello')

hello

hello

hello

hello

hello

The range function at u can be used to create a list of numbers

ranging from a starting number up to the number just before the

ending number. That may sound a little confusing. Let’s combine

the range function with the list function to see exactly how this

Going Loopy 69

works. The range function doesn’t actually create a list of numbers;

it returns an iterator, which is a type of Python object specially

designed to work with loops. However, if we combine range with

list, we get a list of numbers.

>>> print(list(range(10, 20)))

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

In the case of the for loop, the code at u is actually telling

Python to do the following:

•	 Start counting from 0 and stop before reaching 5.

•	 For each number we count, store the value in the variable x.

Then Python executes the block of code at v. Note that there

are four additional spaces at the beginning of line v (when you

compare with line u). IDLE will have automatically indented this

for you.

When we hit enter after the second line, Python prints “hello”

five times.

We could also use the x in our print statement to count the hellos:

>>> for x in range(0, 5):

 print('hello %s' % x)

hello 0

hello 1

hello 2

hello 3

hello 4

If we get rid of the for loop again, our code might look some-

thing like this:

>>> x = 0

>>> print('hello %s' % x)

hello 0

>>> x = 1

>>> print('hello %s' % x)

hello 1

>>> x = 2

>>> print('hello %s' % x)

hello 2

70 Chapter 6

>>> x = 3

>>> print('hello %s' % x)

hello 3

>>> x = 4

>>> print('hello %s' % x)

hello 4

So using the loop has actually saved us from writing eight

extra lines of code. Good programmers hate doing things more

than once, so the for loop is one of the more popular statements

in a programming language.

You don’t need to stick to using the range and list functions

when making for loops. You could also use a list you’ve already

 created, such as the shopping list from Chapter 3, as follows:

>>> wizard_list = ['spider legs', 'toe of frog', 'snail tongue',

 'bat wing', 'slug butter', 'bear burp']

>>> for i in wizard_list:

 print(i)

spider legs

toe of frog

snail tongue

bat wing

slug butter

bear burp

This code is a way of saying, “For

each item in wizard_list, store the value

in the variable i, and then print the con-

tents of that variable.” Again, if we got

rid of the for loop, we would need to do

something like this:

>>> wizard_list = ['spider legs', 'toe of frog', 'snail tongue',

 'bat wing', 'slug butter', 'bear burp']

>>> print(wizard_list[0])

spider legs

>>> print(wizard_list[1])

toe of frog

>>> print(wizard_list[2])

snail tongue

Going Loopy 71

>>> print(wizard_list[3])

bat wing

>>> print(wizard_list[4])

slug butter

>>> print(wizard_list[5])

bear burp

So once again, the loop has saved us a lot of typing.

Let’s create another loop. Type the following code into the

shell. It should automatically indent the code for you.

u >>> hugehairypants = ['huge', 'hairy', 'pants']

v >>> for i in hugehairypants:

w print(i)

x print(i)

y
z huge

huge

hairy

hairy

pants

pants

In the first line u, we create a list containing

'huge', 'hairy', and 'pants'. In the next line v, we

loop through the items in that list, and each item

is then assigned to the variable i. We print the con-

tents of the variable twice in the next two lines (w

and x). Pressing enter on the next blank line y

tells Python to end the block, and it then runs the

code and prints each element of the list twice z.

Remember that if you enter the wrong number of spaces, you’ll

end up with an error message. If you entered the preceding code

with an extra space on the fourth line x, Python would display an

indentation error:

>>> hugehairypants = ['huge', 'hairy', 'pants']

>>> for i in hugehairypants:

 print(i)

 print(i)

SyntaxError: unexpected indent

72 Chapter 6

As you learned in Chapter 5, Python expects the number

of spaces in a block to be consistent. It doesn’t matter how many

spaces you insert, as long as you use the same number for every

new line (plus it makes the code easier for humans to read).

Here’s a more complicated example of a for loop with two

blocks of code:

>>> hugehairypants = ['huge', 'hairy', 'pants']

>>> for i in hugehairypants:

 print(i)

 for j in hugehairypants:

 print(j)

Where are the blocks in this code? The first block is the first

for loop:

hugehairypants = ['huge', 'hairy', 'pants']

for i in hugehairypants:

 print(i) #

 for j in hugehairypants: # These lines are the FIRST block.

 print(j) #

The second block is the single print line in the second for loop:

u hugehairypants = ['huge', 'hairy', 'pants']

for i in hugehairypants:

 print(i)

v for j in hugehairypants:

w print(j) # This line is also the SECOND block.

Can you figure out what this little bit of code is going to do?

After a list called hugehairypants is created at u, we can tell

from the next two lines that it’s going to loop through the items in

the list and print out each one. However, at v, it will loop over the

list again, this time assigning the value to the variable j, and then

print each item again at w. The code at v and w is still part of the

for loop, which means they will be executed for each item as the for

loop goes through the list.

So when this code runs, we should see huge followed by huge,

hairy, pants, and then hairy followed by huge, hairy, pants, and so on.

Going Loopy 73

Enter the code into the Python shell and see for yourself:

>>> hugehairypants = ['huge', 'hairy', 'pants']

>>> for i in hugehairypants:

u print(i)

 for j in hugehairypants:

v print(j)

 huge

huge

hairy

pants

 hairy

huge

hairy

pants

 pants

huge

hairy

pants

Python enters the first loop and prints an item from the list at

u. Next, it enters the second loop and prints all the items in the

list at v. Then it continues with the print(i) command, printing

the next item in the list, and then prints the complete list again

with print(j). In the output, the lines marked are printed by the

print(i) statement. The unmarked lines are printed by print(j).

How about something more practical than printing silly words?

Remember that calculation we came up with in Chapter 2 to work

out how many gold coins you would have at the end of the year if

you used your grandfather’s crazy invention to duplicate coins? It

looked like this:

>>> 20 + 10 * 365 – 3 * 52

This represents 20 found coins plus

10 magic coins multiplied by 365 days in

the year, minus the 3 coins a week stolen

by the raven.

74 Chapter 6

It might be useful to see how your pile of gold coins will increase

each week. We can do this with another for loop, but first, we need

to change the value of our magic_coins variable so it represents the

total number of magic coins per week. That’s 10 magic coins per

day times 7 days in a week, so magic_coins should be 70:

>>> found_coins = 20

>>> magic_coins = 70

>>> stolen_coins = 3

We can see our treasure increase each week by creating

another variable, called coins, and using a loop:

>>> found_coins = 20

>>> magic_coins = 70

>>> stolen_coins = 3

u >>> coins = found_coins

v >>> for week in range(1, 53):

w coins = coins + magic_coins - stolen_coins

x print('Week %s = %s' % (week, coins))

At u, the variable coins is loaded with the value of the variable

found_coins; this is our starting number. The next line at v sets up

the for loop, which will run the commands in the block (the block is

made up of the lines at w and x). Each time it loops, the variable

week is loaded with the next number in the range of 1 through 52.

The line at w is a bit more complicated. Basically, each week

we want to add the number of coins we’ve magically created and

subtract the number of coins that were stolen by the raven. Think

of the variable coins as something like a treasure chest. Every week,

the new coins are piled into the chest. So this line really means,

“Replace the contents of the variable coins with the number of my

current coins, plus what I’ve created this week.” Basically, the

equal sign (=) is a bossy piece of code that says, “Work out some

stuff on the right first, and then save it for later, using the name

on the left.”

The line at x is a print statement using placeholders, which

prints the week number and the total number of coins (so far) to

the screen. (If that doesn’t make sense to you, reread “Embedding

Going Loopy 75

Values in Strings” on page 30.) So, if you run this program,

you’ll see something like this:

While We’re talking About Looping . . .
A for loop isn’t the only kind of loop you can make in Python.

There’s also the while loop. A for loop is a loop of a specific length,

whereas a while loop is a loop that is used when you don’t know

ahead of time when it needs to stop looping.

Imagine a staircase with 20 steps. The staircase is indoors,

and you know you can easily climb 20 steps. A for loop is like that.

>>> for step in range(0, 20):

 print(step)

Now imagine a staircase going up a mountainside. The moun-

tain is really tall, and you might run out of energy before you reach

the top, or the weather might turn bad, forcing you to stop. This is

what a while loop is like.

76 Chapter 6

step = 0

while step < 10000:

 print(step)

 if tired == True:

 break

 elif badweather == True:

 break

 else:

 step = step + 1

If you try to enter and run this

code, you’ll get an error. Why? The

error happens because we haven’t cre-

ated the variables tired and badweather.

Although there isn’t enough code here

to actually make a working program,

it does demonstrate a basic example of

a while loop.

We start by creating a variable

called step with step = 0. Next, we cre-

ate a while loop that checks whether

the value of the variable step is less than 10,000 (step < 10000), which

is the total number of steps from the bottom of the mountain to the

top. As long as step is less than 10,000, Python will execute the

rest of the code.

With print(step), we print the value of the variable and

then check whether the value of the variable tired is True with

if tired == True:. (True is called a Boolean value, which we’ll learn

about in Chapter 8.) If it is, we use the break keyword to exit the

loop. The break keyword is a way of jumping out of a loop (in other

words, stopping it) immediately, and it works with both while and

for loops. Here it has the effect of jumping out of the block and into

the line step = step + 1.

The line elif badweather == True: checks to see if the variable

 badweather is set to True. If so, the break keyword exits the loop.

If neither tired nor badweather is True (else), we add 1 to the step

variable with step = step + 1, and the loop continues.

Going Loopy 77

So the steps of a while loop are as follows:

1. Check the condition.

2. Execute the code in the block.

3. Repeat.

More commonly, a while loop might be created with a couple of

conditions, rather than just one, like this:

u >>> x = 45

v >>> y = 80

w >>> while x < 50 and y < 100:

 x = x + 1

 y = y + 1

 print(x, y)

Here, we create a variable x with the value 45 at u, and a vari-

able y with the value 80 at v. The loop checks for two conditions

at w: whether x is less than 50 and whether y is less than 100.

While both conditions are true, the lines that follow are executed,

adding 1 to both variables and then printing them. Here’s the out-

put of this code:

46 81

47 82

48 83

49 84

50 85

Can you figure out how this works?

We start counting at 45 for the variable x and at 80 for the vari-

able y, and then increment (add 1 to each variable) every time the

code in the loop is run. The loop will run as long as x is less than

50 and y is less than 100. After looping five times (1 is added to each

variable each time), the value in x reaches 50. Now the first condi-

tion (x < 50) is no longer true, so Python knows to stop looping.

Another common use of a while loop is to create semi-eternal

loops. This is a type of loop that could go on forever, but actually

78 Chapter 6

continues until something happens in the code to break out of it.

Here’s an example:

while True:

 lots of code here

 lots of code here

 lots of code here

 if some_value == True:

 break

The condition for the while loop is just True, which is always

true, so the code in the block will always run (thus, the loop is eter-

nal). Only if the variable some_value is true will Python break out

of the loop. You can see a better example of this in “Using randint

to Pick a Random Number” on page 134, but you might want to

wait until you’ve read Chapter 7 before taking a look at it.

What You Learned
In this chapter, we used loops to perform repetitive tasks without

all the repetition. We told Python what we wanted repeated by

writing the tasks inside blocks of code, which we put inside loops.

We used two types of loops: for loops and while loops, which are

similar but can be used in different ways. We also used the break

keyword to stop looping—that is, to break out of a loop.

Programming Puzzles
Here are some examples of loops that you can try out for yourself.

The answers can be found at http://python-for-kids.com/.

#1: the Hello Loop
What do you think the following code will do? First, guess what

will happen, and then run the code in Python to see if you were

right.

>>> for x in range(0, 20):

 print('hello %s' % x)

 if x < 9:

 break

Going Loopy 79

#2: even numbers
Create a loop that prints even numbers until it reaches your year

of age or, if your age is an odd number, prints out odd numbers

until it reaches your age. For example, it might print out some-

thing like this:

2

4

6

8

10

12

14

#3: My five favorite Ingredients
Create a list containing five different sandwich ingredients, such

as the following:

>>> ingredients = ['snails', 'leeches', 'gorilla belly-button lint',

 'caterpillar eyebrows', 'centipede toes']

Now create a loop that prints out the list (including the numbers):

1 snails

2 leeches

3 gorilla belly-button lint

4 caterpillar eyebrows

5 centipede toes

#4: Your Weight on the Moon
If you were standing on the moon right now, your weight would be

16.5 percent of what it is on Earth. You can calculate that by mul-

tiplying your Earth weight by 0.165.

If you gained a kilo in weight every year for the next 15 years,

what would your weight be when you visited the moon each year

and at the end of the 15 years? Write a program using a for loop

that prints your moon weight for each year.

7
ReCYCLInG YoUR CoDe WItH

fUnCtIons AnD MoDULes

Think about how much stuff you throw away each

day: water bottles, soda cans, potato chip bags, plas-

tic sandwich wrappers, bags that held carrot sticks or

apple slices, shopping bags, newspapers, magazines,

and so on. Now imagine what would happen if all of

that trash just got dumped in a pile at the end of your

driveway, without separating out the paper, the plastic,

and the tin cans.

82 Chapter 7

Of course, you probably recycle as much as

possible, which is good, because no one likes to

climb over a pile of trash on the way to school.

Rather than sitting in an enormous, gross pile,

those glass bottles that you recycle are melted

down and turned into new jars and bottles;

paper is pulped into recycled paper; and plas-

tic is turned into heavier plastic goods. So we

reuse things we would otherwise throw away.

In the programming world, reuse is just as

important. Obviously, your program won’t dis-

appear under a pile of garbage, but if you don’t

reuse some of what you’re doing, you’ll eventu-

ally wear your fingers down to painful stubs

through overtyping. Reuse also makes your

code shorter and easier to read.

As you’ll learn in this chapter, Python offers a number of dif-

ferent ways to reuse code.

Using functions
You’ve already seen one of the ways to recycle Python code. In the

previous chapter, we used the functions range and list to make

Python count.

>>> list(range(0, 5))
[0,1,2,3,4]

If you know how to count, it’s not too hard to create a list of

consecutive numbers by typing them yourself, but the larger the

list, the more typing you need to do. However, if you use functions,

you can just as easily create a list with a thousand numbers.

Here’s an example that uses the list and range functions to pro-

duce a list of numbers:

>>> list(range(0, 1000))
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16...,997,998,999]

Functions are chunks of code that tell Python to do something.

They are one way to reuse code—you can use functions in your

programs again and again.

Recycling Your Code with Functions and Modules 83

When you’re writing simple programs, functions are handy.

Once you start writing long, more complicated programs, like

games, functions are essential (assuming you want to finish writ-

ing your program this century).

Parts of a function
A function has three parts: a name, parameters, and a body. Here’s

an example of a simple function:

>>> def testfunc(myname):
 print('hello %s' % myname)

The name of this function is testfunc. It has a single param-

eter, myname, and its body is the block of code immediately following

the line beginning with def (short for define). A parameter is a

variable that exists only while a function is being used.

You can run the function by calling its name, using parenthe-

ses around the parameter value:

>>> testfunc('Mary')
hello Mary

The function could take two, three, or any number of param-

eters, instead of just one:

>>> def testfunc(fname, lname):
 print('Hello %s %s' % (fname, lname))

The two values for these parameters are separated by a comma:

>>> testfunc('Mary', 'Smith')
Hello Mary Smith

We could also create some variables first and then call the

function with them:

>>> firstname = 'Joe'
>>> lastname = 'Robertson'
>>> testfunc(firstname, lastname)
Hello Joe Robertson

84 Chapter 7

A function is often used to return a value, using a return state-

ment. For example, you could write a function to calculate how

much money you were saving:

>>> def savings(pocket_money, paper_route, spending):
 return pocket_money + paper_route – spending

This function takes three parameters. It adds the first two

(pocket_money and paper_route) and subtracts the last (spending). The

result is returned and can be assigned to a variable (the same way

we set other values to variables) or printed:

>>> print(savings(10, 10, 5))
15

Variables and scope
A variable that’s inside the body of a function can’t be used again

when the function has finished running because it exists only

inside the function. In the world of programming, this is called

scope.

Let’s look at a simple function that uses a couple of variables

but doesn’t have any parameters:

u >>> def variable_test():
 first_variable = 10
 second_variable = 20

v return first_variable * second_variable

In this example, we create the function called variable_test at u,

which multiplies two variables (first_variable and second_variable)

and returns the result at v.

>>> print(variable_test())
200

 If we call this function using print, we get the result: 200.

However, if we try to print the contents of first_variable (or

Recycling Your Code with Functions and Modules 85

 second_variable, for that matter) outside of the block of code in

the function, we get an error message:

>>> print(first_variable)
Traceback (most recent call last):
 File "<pyshell#50>", line 1, in <module>
 print(first_variable)
NameError: name 'first_variable' is not defined

If a variable is defined outside the function, it has a different

scope. For example, let’s define a variable before we create our

function, and then try using it inside the function:

u >>> another_variable = 100
>>> def variable_test2():
 first_variable = 10
 second_variable = 20

v return first_variable * second_variable * another_variable

In this code, even though the variables first_variable and

second_variable can’t be used outside the function, the variable

another_variable (which was created outside the function at u)

can be used inside it at v.

Here’s the result of calling this function:

>>> print(variable_test2())
20000

Now, suppose you were building a

spaceship out of something economi-

cal like used tin cans. You think you

can flatten 2 cans a week to create the

curved walls of your spaceship, but

you’ll need something like 500 cans

to finish the fuselage. We can easily

write a function to help work out how

long it will take to flatten 500 cans if

we do 2 cans a week.

86 Chapter 7

Let’s create a function to show how many cans we’ve flattened

each week up to a year. Our function will take the number of cans

as a parameter:

>>> def spaceship_building(cans):
 total_cans = 0
 for week in range(1, 53):
 total_cans = total_cans + cans
 print('Week %s = %s cans' % (week, total_cans))

On the first line of the function, we create a variable called

total_cans and set its value to 0. We then create a loop for the weeks

in the year and add the number of cans flattened each week. This

block of code makes up the content of our function. But there’s also

another block of code in this function: its last two lines, which

make up the block of the for loop.

Let’s try entering that function in the shell and calling it with

different values for the number of cans:

>>> spaceship_building(2)

Week 1 = 2 cans
Week 2 = 4 cans
Week 3 = 6 cans
Week 4 = 8 cans
Week 5 = 10 cans
Week 6 = 12 cans
Week 7 = 14 cans
Week 8 = 16 cans
Week 9 = 18 cans
Week 10 = 20 cans
(continues on...)

>>> spaceship_building(13)
Week 1 = 13 cans
Week 2 = 26 cans
Week 3 = 39 cans
Week 4 = 52 cans
Week 5 = 65 cans
(continues on...)

This function can be reused with different values for the num-

ber of cans per week, which is a bit more efficient than retyping

the for loop every time you want to try it with different numbers.

Recycling Your Code with Functions and Modules 87

Functions can also be grouped together into modules, which

is where Python becomes really useful, as opposed to just mildly

useful.

Using Modules
Modules are used to group functions, variables, and other things

together into larger, more powerful programs. Some modules are

built in to Python, and you

can download other modules

separately. You’ll find modules

to help you write games (such

as tkinter, which is built in,

and PyGame, which is not), mod-

ules for manipulating images

(such as PIL, the Python Imag-

ing Library), and modules for

drawing three-dimensional

graphics (such as Panda3D).

Modules can be used to do all sorts of useful things. For exam-

ple, if you were designing a simulation game, and you wanted the

world of the game to change realistically, you could calculate the

current date and time using a built-in module called time:

>>> import time

Here, the import command is used to tell Python that we want

to use the module time.

We can then call functions that are available in this module,

using the dot symbol. (Remember that we used functions like this

to work with the turtle module in Chapter 4, such as t.forward(50).)

For example, here’s how we might call the asctime function with the

time module:

>>> print(time.asctime())
'Mon Nov 5 12:40:27 2012'

The function asctime is a part of the time module that returns

the current date and time, as a string.

88 Chapter 7

Now suppose that you want to ask someone

using your program to enter a value, perhaps

their date of birth or their age. You can do this

using a print statement, to display a message,

and the sys (short for system) module, which con-

tains utilities for interacting with the Python

system itself. First, we import the sys module:

>>> import sys

Inside the sys module is a special object called stdin (for

standard input), which provides a rather useful function called

readline. The readline function is used to read a line of text typed

on the keyboard until you press enter. (We’ll look at how objects

work in Chapter 8.) To test readline, enter the following code in the

shell:

>>> import sys
>>> print(sys.stdin.readline())

If you then type some words and press enter, those words will

be printed out in the shell.

Think back to the code we wrote in Chapter 5, using an if

statement:

>>> if age >= 10 and age <= 13:
 print('What is 13 + 49 + 84 + 155 + 97? A headache!')
else:
 print('Huh?')

Rather than creating the variable age and giving it a specific

value before the if statement, we can now ask someone to enter

the value instead. But first, let’s turn the code into a function:

>>> def silly_age_joke(age):
 if age >= 10 and age <= 13:
 print('What is 13 + 49 + 84 + 155 + 97? A headache!')
 else:
 print('Huh?')

Now you can call the function by entering its name, and then

tell it what number to use by entering the number in parentheses.

Does it work?

Recycling Your Code with Functions and Modules 89

>>> silly_age_joke(9)
Huh?
>>> silly_age_joke(10)
What is 13 + 49 + 84 + 155 + 97? A headache!

It works! Now let’s make the function ask for a person’s age.

(You can add to or change a function as many times as you want.)

>>> def silly_age_joke():
 print('How old are you?')

u age = int(sys.stdin.readline())
v if age >= 10 and age <= 13:

 print('What is 13 + 49 + 84 + 155 + 97? A headache!')
 else:
 print('Huh?')

Did you recognize the function int at u, which converts a

string to a number? We included that function because readline()

returns whatever someone enters as a string, but we want a num-

ber so that we can compare it with the numbers 10 and 13 at v.

To try this yourself, call the function without any parameters, and

then type a number when How old are you? appears:

>>> silly_age_joke()
How old are you?
10
What is 13 + 49 + 84 + 155 + 97? A headache!
>>> silly_age_joke()
How old are you?
15
Huh?

What You Learned
In this chapter, you’ve seen how to make reusable chunks of code

in Python with functions and how to use functions provided by

modules. You learned how the scope of variables controls whether

they can be seen inside or outside of functions, and how to create

functions using the def keyword. You also found out how to import

modules so you can use their contents.

90 Chapter 7

Programming Puzzles
Give the following examples a try, to experiment with creat-

ing your own functions. The answers can be found at http://

python-for-kids.com/.

#1: Basic Moon
Weight function
In Chapter 6, one programming

puzzle was to create a for loop to

determine your weight on the moon

over a period of 15 years. That for

loop could easily be turned into a

function. Try creating a function

that takes a starting weight and

increases the weight amount each

year. You might call the new func-

tion using code like this:

>>> moon_weight(30, 0.25)

#2: Moon Weight function and Years
Take the function you’ve just created, and change it to work out

the weight over different periods, such as 5 years or 20 years. Be

sure to change the function so that it takes three arguments: ini-

tial weight, weight gained each year, and number of years:

>>> moon_weight(90, 0.25, 5)

#3: Moon Weight Program
Instead of a simple function, where you pass in the values as

parameters, you can make a mini-program that prompts for the

values using sys.stdin.readline(). In this case, you call the function

without any parameters at all:

>>> moon_weight()

Recycling Your Code with Functions and Modules 91

The function will display a message asking for the starting

weight, then a second message asking for the amount the weight

will increase each year, and finally a message asking for the num-

ber of years. You would see something like the following:

Please enter your current Earth weight
45
Please enter the amount your weight might increase each year
0.4
Please enter the number of years
12

Remember to import the sys module first before creating your

function:

>>> import sys

8
HoW to Use CLAsses

AnD oBJeCts

Why is a giraffe like a sidewalk? Because both a giraffe

and a sidewalk are things, known in the English lan-

guage as nouns and in Python as objects.

The idea of objects is an important one in the world

of computers. Objects are a way of organizing code in

a program and breaking things down to make it easier

to think about complex ideas. (We used an object in

Chapter 4 when we worked with the turtle—Pen.)

94 Chapter 8

To really understand how objects work in Python, we need to

think about types of objects. Let’s start with giraffes and sidewalks.

A giraffe is a type of mammal, which is a

type of animal. A giraffe is also an animate

object—it’s alive.

Now consider a sidewalk. There’s not

much to say about a sidewalk other than

it’s not a living thing. Let’s call it an inani-

mate object (in other words, it’s not alive).

The terms mammal, animal, animate, and

inanimate are all ways of classifying things.

Breaking things into Classes
In Python, objects are defined by classes, which we can think of as

a way to classify objects into groups. Here is a tree diagram of the

classes that giraffes and sidewalks would fit into based on our pre-

ceding definitions:

Things

Inanimate Animate

Sidewalks Animals

Mammals

Giraffes

The main class is Things. Below the Things class, we have

 Inanimate and Animate. These are further broken down into just

 Sidewalks for Inanimate, and Animals, Mammals, and Giraffes for Animate.

How to Use Classes and Objects 95

We can use classes to organize bits of Python code. For

example, consider the turtle module. All the things that Python’s

turtle module can do—such as moving forward, moving backward,

turning left, and turning right—are functions in the Pen class. An

object can be thought of as a member of a class, and we can create

any number of objects for a class—which we will get to shortly.

Now let’s create the same set of classes as shown in our tree

diagram, starting from the top. We define classes using the class

keyword followed by a name. Since Things is the broadest class,

we’ll create it first:

>>> class Things:
 pass

We name the class Things and use the pass statement to let

Python know that we’re not going to give any more information.

pass is used when we want to provide a class or function but don’t

want to fill in the details at the moment.

Next, we’ll add the other classes and build some relationships

between them.

Children and Parents
If a class is a part of another class, then it’s a child of that class,

and the other class is its parent. Classes can be both children of and

parents to other classes. In our tree diagram, the class above another

class is its parent, and the class below it is its child. For example,

Inanimate and Animate are both children of the class Things, meaning

that Things is their parent.

To tell Python that a class is a child of another class, we add

the name of the parent class in parentheses after the name of our

new class, like this:

>>> class Inanimate(Things):
 pass

>>> class Animate(Things):
 pass

Here, we create a class called Inanimate and tell Python that its

parent class is Things with the code class Inanimate(Things). Next,

we create a class called Animate and tell Python that its parent

class is also Things, using class Animate(Things).

96 Chapter 8

Let’s try the same thing with the Sidewalks class. We create the

Sidewalks class with the parent class Inanimate like so:

>>> class Sidewalks(Inanimate):
 pass

And we can organize the Animals, Mammals, and Giraffes classes

using their parent classes as well:

>>> class Animals(Animate):
 pass

>>> class Mammals(Animals):
 pass

>>> class Giraffes(Mammals):
 pass

Adding objects to Classes
We now have a bunch of classes, but what about putting some

things into those classes? Say we have a giraffe named Reginald.

We know that he belongs in the class Giraffes, but what do we use,

in programming terms, to describe single giraffe called Reginald?

We call Reginald an object of the class Giraffes (you may also see

the term instance of the class). To “introduce” Reginald to Python,

we use this little snippet of code:

>>> reginald = Giraffes()

This code tells Python to create an object in the Giraffes class

and assign it to the variable reginald. Like a function, the class

name is followed by parentheses. Later in this chapter we’ll see

how to create objects and use parameters in the parentheses.

But what does the reginald object do? Well, nothing at the

moment. To make our objects useful, when we create our classes,

we also need to define functions that can be used with the objects

in that class. Rather than just using the pass keyword immediately

after the class definition, we can add function definitions.

How to Use Classes and Objects 97

Defining functions of Classes
Chapter 7 introduced functions as a way to reuse code. When we

define a function that is associated with a class, we do so in the

same way that we define any other function, except that we indent

it beneath the class definition. For example, here’s a normal func-

tion that isn’t associated with a class:

>>> def this_is_a_normal_function():
 print('I am a normal function')

And here are a couple of functions that belong to a class:

>>> class ThisIsMySillyClass:
 def this_is_a_class_function():
 print('I am a class function')
 def this_is_also_a_class_function():
 print('I am also a class function. See?')

Adding Class Characteristics As
 functions
Consider the child classes of the Animate class we defined on

page 95. We can add characteristics to each class to describe

what it is and what it can do. A characteristic is a trait that all

of the members of the class (and its children) share.

For example, what do all animals have in common? Well, to

start with, they all breathe. They also move and eat. What about

mammals? Mammals all feed their young with milk. And they

breathe, move, and eat. We know that giraffes eat leaves from high

up in trees, and like all mammals, they feed their young with milk,

breathe, move, and eat food. When we add these characteristics to

our tree diagram, we get something like this:

Animals

Mammals

Giraffes

Move

Breathe

Eat food

Feed young with milk

Eat leaves from trees

98 Chapter 8

These characteristics can be thought of as actions, or functions—

things that an object of that class can do.

To add a function to a class, we use the def keyword. So the

Animals class will look like this:

>>> class Animals(Animate):
 def breathe(self):
 pass
 def move(self):
 pass
 def eat_food(self):
 pass

In the first line of this listing, we define the

class as we did before, but instead of using the

pass keyword on the next line, we define a func-

tion called breathe, and give it one parameter:

self. The self parameter is a way for one func-

tion in the class to call another function in the

class (and in the parent class). We will see this

parameter in use later.

On the next line, the pass keyword tells Python we’re not going

to provide any more information about the breathe function because

it’s going to do nothing for now. Then we add the functions move and

eat_food, which also do nothing for now. We’ll re-create our classes

shortly and put some proper code in the functions. This is a common

way to develop programs. Often, programmers will create classes

with functions that do nothing as a way to figure out what the class

should do, before getting into the details of the individual functions.

We can also add functions to the other two classes, Mammals

and Giraffes. Each class will be able to use the characteristics (the

functions) of its parent. This means that you don’t need to make

one really complicated class; you can put your functions in the

highest parent where the characteristic applies. (This is a good

way to make your classes simpler and easier to understand.)

>>> class Mammals(Animals):
 def feed_young_with_milk(self):
 pass

>>> class Giraffes(Mammals):
 def eat_leaves_from_trees(self):
 pass

How to Use Classes and Objects 99

Why Use Classes and objects?
We’ve now added functions to our classes, but why use classes and

objects at all, when you could just write normal functions called

breathe, move, eat_food, and so on?

To answer that question, we’ll use our giraffe called Reginald,

which we created earlier as an object of the Giraffes class, like this:

>>> reginald = Giraffes()

Because reginald is an object, we can call (or run) functions pro-

vided by his class (the Giraffes class) and its parent classes. We call

functions on an object by using the dot operator and the name of the

function. To tell Reginald the giraffe to move or eat, we can call the

functions like this:

>>> reginald = Giraffes()
>>> reginald.move()
>>> reginald.eat_leaves_from_trees()

Suppose Reginald has a giraffe friend named Harold. Let’s cre-

ate another Giraffes object called harold:

>>> harold = Giraffes()

Because we’re using objects and classes, we can tell Python

exactly which giraffe we’re talking about when we want to run the

move function. For example, if we wanted to make Harold move but

leave Reginald in place, we could call the move function using our

harold object, like this:

>>> harold.move()

In this case, only Harold would be moving.

Let’s change our classes a little to make this a bit more obvious.

We’ll add a print statement to each function, instead of using pass:

>>> class Animals(Animate):
 def breathe(self):
 print('breathing')
 def move(self):
 print('moving')
 def eat_food(self):
 print('eating food')

100 Chapter 8

>>> class Mammals(Animals):
 def feed_young_with_milk(self):
 print('feeding young')

>>> class Giraffes(Mammals):
 def eat_leaves_from_trees(self):
 print('eating leaves')

Now when we create our reginald and harold objects and call

functions on them, we can see something actually happen:

>>> reginald = Giraffes()
>>> harold = Giraffes()
>>> reginald.move()
moving
>>> harold.eat_leaves_from_trees()
eating leaves

On the first two lines, we create the vari-

ables reginald and harold, which are objects

of the Giraffes class. Next, we call the move

function on reginald, and Python prints moving

on the following line. In the same way, we call

the eat_leaves_from_trees function on harold, and

Python prints eating leaves. If these were real

giraffes, rather than objects in a computer, one

giraffe would be walking, and the other would

be eating.

objects and Classes in Pictures
How about taking a more graphical approach to objects and classes?

Let’s return to the turtle module we toyed with in Chapter 4.

When we use turtle.Pen(), Python creates an object of the Pen class

that is provided by the turtle module (similar to our reginald and

harold objects in the previous section). We can create two turtle

objects (named Avery and Kate), just as we created two giraffes:

>>> import turtle
>>> avery = turtle.Pen()
>>> kate = turtle.Pen()

Each turtle object (avery and kate) is a member of the Pen class.

How to Use Classes and Objects 101

Now here’s where objects start to become powerful. Having

created our turtle objects, we can call functions on each, and they

will draw independently. Try this:

>>> avery.forward(50)
>>> avery.right(90)
>>> avery.forward(20)

With this series of instructions, we tell Avery to move forward

50 pixels, turn right 90 degrees, and move forward 20 pixels so

that she finishes facing downward. Remember that turtles always

start off facing to the right.

Now it’s time to move Kate.

>>> kate.left(90)
>>> kate.forward(100)

We tell Kate to turn left 90 degrees, and then move forward

100 pixels so that she ends facing up.

So far, we have a line with arrowheads moving in two differ-

ent directions, with the head of each arrow representing a different

turtle object: Avery pointing down, and Kate facing up.

Now let’s add another turtle, Jacob, and move him, too, with-

out bugging Kate or Avery.

>>> jacob = turtle.Pen()
>>> jacob.left(180)
>>> jacob.forward(80)

102 Chapter 8

First, we create a new Pen object called jacob, then we turn him

left 180 degrees, and then move him forward 80 pixels. Our draw-

ing now looks like this, with three turtles:

Remember that every time we call turtle.Pen() to create a

turtle, we add a new, independent object. Each object is still an

instance of the class Pen, and we can use the same functions on

each object, but because we’re using objects, we can move each

turtle independently. Like our independent giraffe objects (Regi-

nald and Harold), Avery, Kate, and Jacob are independent turtle

objects. If we create a new object with the same variable name

as an object we’ve already created, the old object won’t necessar-

ily vanish. Try it for yourself: Create another Kate turtle and try

moving it around.

other Useful features of objects
and Classes

Classes and objects make it easy to group functions. They’re also

really useful when we want to think about a program in smaller

chunks.

How to Use Classes and Objects 103

For example, consider a really large software application,

like a word processor or a 3D computer game. It’s nearly impos-

sible for most people to understand large programs like these as

a whole because there’s just so much code. But break these mon-

ster programs into smaller pieces, and each piece starts to make

sense—as long as you know the language, of course!

When writing a large program, breaking it up also allows you

to divide the work among other programmers. The most compli-

cated programs that you use (like your web browser) were written

by many people, or teams of people, working on different parts at

the same time around the world.

Now imagine that we want to

expand some of the classes we’ve cre-

ated in this chapter (Animals, Mammals,

and Giraffes), but we have too much

work to do, and we want our friends to

help. We could divide the work of writ-

ing the code so that one person worked

on the Animals class, another on the

Mammals class, and still another on the

Giraffes class.

Inherited functions
Those of you who have been paying attention may realize that

whoever ends up working on the Giraffes class is lucky, because

any functions created by the people working on the Animals and

Mammals classes can also be used by the Giraffes class. The Giraffes

class inherits functions from the Mammals class, which, in turn, inher-

its from the Animals class. In other words, when we create a giraffe

object, we can use functions defined in the Giraffes class, as well

as functions defined in the Mammals and Animals classes. And, by the

same token, if we create a mammal object, we can use functions

defined in the Mammals class as well as its parent class Animals.

Take a look at the rela-

tionship between the Animals,

Mammals, and Giraffes classes

again. The Animals class is

the parent of the Mammals

class, and Mammals is the

 parent of Giraffes.

Animals Move

Breathe

Eat food

Mammals
I can also use

those functions.

104 Chapter 8

Even though Reginald is an object of the Giraffes class, we

can still call the move function that we defined in the Animals class

because functions defined in any parent class are available to its

child classes:

>>> reginald = Giraffes()
>>> reginald.move()
moving

In fact, all of the functions we defined in both the Animals and

Mammals classes can be called from our reginald object because the

functions are inherited:

>>> reginald = Giraffes()
>>> reginald.breathe()
breathing
>>> reginald.eat_food()
eating food
>>> reginald.feed_young_with_milk()
feeding young

functions Calling other functions
When we call functions on an object, we use the object’s variable

name. For example, here’s how to call the move function on Regi-

nald the giraffe:

>>> reginald.move()

To have a function in the Giraffes class call the move function,

we would use the self parameter instead. The self parameter

is a way for one function in the class to call another function.

For example, suppose we add a function called find_food to the

Giraffes class:

>>> class Giraffes(Mammals):
 def find_food(self):
 self.move()
 print("I've found food!")
 self.eat_food()

We have now created a function that combines two other func-

tions, which is quite common in programming. Often, you will

write a function that does something useful, which you can then

How to Use Classes and Objects 105

use inside another function. (We’ll do this in Chapter 13, where

we’ll write more complicated functions to create a game.)

Let’s use self to add some functions to the Giraffes class:

>>> class Giraffes(Mammals):
 def find_food(self):
 self.move()
 print("I've found food!")
 self.eat_food()
 def eat_leaves_from_trees(self):
 self.eat_food()
 def dance_a_jig(self):
 self.move()
 self.move()
 self.move()
 self.move()

We use the eat_food and move functions from the

parent Animals class to define eat_leaves_from_trees

and dance_a_jig for the Giraffes class because these

are inherited functions. By adding functions that

call other functions in this way, when we create

objects of these classes, we can call a single func-

tion that does more than just one thing. You can

see what happens when we call the dance_a_jig

function below—our giraffe moves 4 times (that

is, the text “moving” is printed 4 times):

>>> reginald = Giraffes()
>>> reginald.dance_a_jig()
moving
moving
moving
moving

Initializing an object
Sometimes when creating an object, we want to set some values

(also called properties) for later use. When we initialize an object,

we are getting it ready to be used.

For example, suppose we want to set the number of spots on

our giraffe objects when they are created—that is, when they’re

initialized. To do this, we create an __init__ function (notice that

there are two underscore characters on each side, for a total of four).

106 Chapter 8

This is a special type of function in Python classes and must have

this name. The init function is a way to set the properties for an

object when the object is first created, and Python will automati-

cally call this function when we create a new object. Here’s how to

use it:

>>> class Giraffes:
 def __init__(self, spots):
 self.giraffe_spots = spots

First, we define the init function with two parameters, self

and spots, with the code def __init__(self, spots):. Just like the

other functions we have defined in the class, the init function also

needs to have self as the first parameter. Next, we set the param-

eter spots to an object variable (its property) called giraffe_spots

using the self parameter, with the code self.giraffe_spots = spots.

You might think of this line of code as saying, “Take the value of

the parameter spots and save it for later (using the object variable

giraffe_spots).” Just as one function in a class can call another

function using the self parameter, variables in the class are also

accessed using self.

Next, if we create a couple of new giraffe objects (Ozwald and

Gertrude) and display their number of spots, you can see the ini-

tialization function in action:

>>> ozwald = Giraffes(100)
>>> gertrude = Giraffes(150)
>>> print(ozwald.giraffe_spots)
100
>>> print(gertrude.giraffe_spots)
150

First, we create an instance of the Giraffes class, using the

parameter value 100. This has the effect of calling the __init__

function and using 100 for the value of the spots parameter. Next,

we create another instance of the Giraffes class, this time with

150. Finally, we print the object variable giraffe_spots for each of

our giraffe objects, and we see that the results are 100 and 150.

It worked!

Remember, when we create an object of a class, such as ozwald

above, we can refer to its variables or functions using the dot opera-

tor and the name of the variable or function we want to use (for

How to Use Classes and Objects 107

example, ozwald.giraffe_spots). But when we’re creating functions

inside a class, we refer to those same variables (and other func-

tions) using the self parameter (self.giraffe_spots).

What You Learned
In this chapter, we used classes to create categories of things and

made objects (instances) of those classes. You learned how the child

of a class inherits the functions of its parent, and that even though

two objects are of the same class, they’re not necessarily clones.

For example, a giraffe object can have its own number of spots. You

learned how to call (or run) functions on an object and how object

variables are a way of saving values in those objects. Finally, we

used the self parameter in functions to refer to other functions and

variables. These concepts are fundamental to Python, and you’ll see

them again and again as you read the rest of this book.

Programming Puzzles
Some of the ideas in this chapter will start to make sense the more

you use them. Try them out with the following examples, and then

find the answers at http://python-for-kids.com/.

#1: the Giraffe shuffle
Add functions to the Giraffes class to move the giraffe’s left and

right feet forward and backward. A function for moving the left

foot forward might look like this:

>>> def left_Foot_Forward(self):
 print('left foot forward')

Then create a function called dance to teach Reginald to dance

(the function will call the four foot functions you’ve just created).

The result of calling this new function will be a simple dance:

>>> reginald = Giraffes()
>>> reginald.dance()
left foot forward
left foot back
right foot forward
right foot back
left foot back

108 Chapter 8

right foot back
right foot forward
left foot forward

#2: turtle Pitchfork
Create the following picture of a sideways pitchfork using four

turtle Pen objects (the exact length of the lines isn’t important).

Remember to import the turtle module first!

9
PYtHon’s BUILt-In

fUnCtIons

Python has a well-stocked box of programming tools,

including a large number of functions and modules that

are ready-made for you to use. Like a trusty hammer

or a bicycle wrench, these built-in tools—chunks of

code, really—can make writing programs a lot easier.

As you learned in Chapter 7, modules need to be

imported before they can be used. Python’s built-in

functions don’t need to be imported first; they’re avail-

able as soon as the Python shell starts. In this chapter,

110 Chapter 9

we’ll look at some of the more useful built-in functions, and then

focus on one: the open function, which lets you open files in order to

read and write from them.

Using Built-in functions
We’ll look at 12 built-in functions that are commonly used by Python

programmers. I’ll describe what they do and how to use them, and

then show examples of how they can help in your programs.

the abs function
The abs function returns the absolute value of a number, which is

the value of a number without its sign. For example, the absolute

value of 10 is 10, and the absolute value of –10 is 10.

To use the abs function, simply call it with a number or vari-

able as its parameter, like this:

>>> print(abs(10))
10
>>> print(abs(-10))
10

You might use the abs function to

do something like calculate an absolute

amount of movement of a character in a

game, no matter in which the direction

that character is traveling. For example,

say the character takes three steps to his

right (positive 3) and then ten steps to

his left (negative 10, or –10). If we didn’t

care about the direction (positive or nega-

tive), the absolute value of these numbers

would be 3 and 10. You might use this in

a board game where you roll two dice and

then move your character a maximum num-

ber of steps in any direction, based on the

total of the dice. Now, if we store the number of steps in a vari-

able, we can determine if the character is moving with the code

Python’s Built-in Functions 111

below. We might want to display some information when the player

has decided to move (in this case, we’ll just display “Character is

moving”):

>>> steps = -3
>>> if abs(steps) > 0:
 print('Character is moving')

If we hadn’t used abs, the if statement might look like this:

>>> steps = -3
>>> if steps < 0 or steps > 0:
 print('Character is moving')

As you can see, using abs makes the if statement just a little

shorter and easier to understand.

the bool function
The name bool is short for Boolean, the word programmers use to

describe a type of data that can have one of two possible values,

usually either true or false.

The bool function takes a single parameter and returns either

True or False based on its value. When using bool for numbers, 0

returns False, while any other number returns True. Here’s how

you might use bool with various numbers:

>>> print(bool(0))
False
>>> print(bool(1))
True
>>> print(bool(1123.23))
True
>>> print(bool(-500))
True

When you use bool for other values, like strings, it returns False

if there’s no value for the string (in other words, the keyword None

or an empty string). Otherwise, it will return True, as shown here:

>>> print(bool(None))
False
>>> print(bool('a'))
True

112 Chapter 9

>>> print(bool(' '))
True
>>> print(bool('What do you call a pig doing karate? Pork Chop!'))
True

The bool function will also return False for lists, tuples, and

maps that do not contain any values, or True when they do:

>>> my_silly_list = []
>>> print(bool(my_silly_list))
False
>>> my_silly_list = ['s', 'i', 'l', 'l', 'y']
>>> print(bool(my_silly_list))
True

You might use bool when you need to decide whether a value

has been set or not. For example, if we ask people using our pro-

gram to enter the year they were born, our if statement could use

bool to test the value they enter:

>>> year = input('Year of birth: ')
Year of birth:
>>> if not bool(year.rstrip()):
 print('You need to enter a value for your year of birth')
You need to enter a value for your year of birth

The first line of this example uses

input to store what someone enters

on the keyboard as the variable year.

Pressing enter on the next line (with-

out typing anything else) stores the

value of the enter key in the vari-

able. (We used sys.stdin.readline()

back in Chapter 7, which is another

way to do the same thing.)

On the following line, the if state-

ment checks the Boolean value of the

variable after using the rstrip func-

tion (which removes any spaces and enter characters from the

end of the string). Because the user didn’t enter anything in this

example, the bool function returns false. Because this if statement

uses the not keyword, it is a way of saying, “do this if the function

does not return true,” and so the code prints You need to enter a

value for your year of birth on the next line.

Python’s Built-in Functions 113

the dir function
The dir function (short for directory) returns information about any

value. Basically, it tells you the functions that can be used with

that value in alphabetical order.

For example, to display the functions that are available for a

list value, enter this:

>>> dir(['a', 'short', 'list'])
['__add__', '__class__', '__contains__', '__delattr__',
'__delitem__', '__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__',
'__imul__', '__init__', '__iter__', '__le__', '__len__', '__lt__',
'__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__',
'__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__',
'__sizeof__', '__str__', '__subclasshook__', 'append', 'count',
'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']

The dir function works on pretty much anything, includ-

ing strings, numbers, functions, modules, objects, and classes.

But sometimes the information it returns may not be very useful.

For example, if you call dir on the number 1, it displays a number

of special functions (those that start and end with underscores)

used by Python itself, which isn’t really useful (you can usually

ignore most of them):

>>> dir(1)
['__abs__', '__add__', '__and__', '__bool__', '__ceil__',
'__class__', '__delattr__', '__divmod__', '__doc__', '__eq__',
'__float__', '__floor__', '__floordiv__', '__format__', '__ge__',
'__getattribute__', '__getnewargs__', '__gt__', '__hash__',
'__index__', '__init__', '__int__', '__invert__', '__le__',
'__lshift__', '__lt__', '__mod__', '__mul__', '__ne__', '__neg__',
'__new__', '__or__', '__pos__', '__pow__', '__radd__', '__rand__',
'__rdivmod__', '__reduce__', '__reduce_ex__', '__repr__',
'__rfloordiv__', '__rlshift__', '__rmod__', '__rmul__', '__ror__',
'__round__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__',
'__rtruediv__', '__rxor__', '__setattr__', '__sizeof__', '__str__',
'__sub__', '__subclasshook__', '__truediv__', '__trunc__',
'__xor__', 'bit_length', 'conjugate', 'denominator', 'imag',
'numerator', 'real']

The dir function can be useful when you have a variable and

quickly want to find out what you can do with it. For example, run

114 Chapter 9

dir using the variable popcorn containing a string value, and you

get the list of functions provided by the string class (all strings are

members of the string class):

>>> popcorn = 'I love popcorn!'
>>> dir(popcorn)
['__add__', '__class__', '__contains__', '__delattr__', '__doc__',
'__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__',
'__getnewargs__', '__gt__', '__hash__', '__init__', '__iter__',
'__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__',
'__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__',
'__rmul__', '__setattr__', '__sizeof__', '__str__',
'__subclasshook__', 'capitalize', 'center', 'count', 'encode',
'endswith', 'expandtabs', 'find', 'format', 'format_map', 'index',
'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'isidentifier',
'islower', 'isnumeric', 'isprintable', 'isspace', 'istitle',
'isupper', 'join', 'ljust', 'lower', 'lstrip', 'maketrans', 'parti-
tion', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition',
'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip',
'swapcase', 'title', 'translate', 'upper', 'zfill']

At this point, you could use help to get a short description of

any function in the list. Here’s an example of running help against

the upper function:

>>> help(popcorn.upper)
Help on built-in function upper:

upper(...)
 S.upper() -> str�
 Return a copy of S converted to uppercase.

The information returned can be a little confusing, so let’s

take a closer look. The ellipsis (...) means that upper is a built-in

function of the string class and, in this case, takes no parameters.

The arrow (->) on the next line means that this function returns a

string (str). The last line offers a brief description of what the func-

tion does.

the eval function
The eval function (short for evaluate) takes a string as a parameter

and runs it as though it were a Python expression. For example,

eval('print("wow")') will actually run the statement print("wow").

Python’s Built-in Functions 115

The eval function works only with simple expressions, such as

the following:

>>> eval('10*5')
50

Expressions that are split over more than one line (such as if

statements) generally won’t evaluate, as in this example:

>>> eval('''if True:
 print("this won't work at all")''')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<string>", line 1
 if True: print("this won't work at all')
 ^
SyntaxError: invalid syntax

The eval function is often used to turn user input into Python

expressions. For example, you could write a simple calculator pro-

gram that reads equations entered into Python and then calculates

(evaluates) the answers.

Since user input is read in as a string, Python needs to convert

it into numbers and operators before doing any calculations. The

eval function makes that conversion easy:

>>> your_calculation = input('Enter a calculation: ')
Enter a calculation: 12*52
>>> eval(your_calculation)
624

116 Chapter 9

In this example, we use input to read what the user enters into

the variable your_calculation. On the next line, we enter the expres-

sion 12*52 (perhaps your age multiplied by the number of weeks

in a year). We use eval to run this calculation, and the result is

printed on the final line.

the exec function
The exec function is like eval, except that you can use it to run more

complicated programs. The difference between the two is that eval

returns a value (something that you can save in a variable), whereas

exec does not. Here’s an example:

>>> my_small_program = '''print('ham')
print('sandwich')'''
>>> exec(my_small_program)
ham
sandwich

In the first two lines, we create a variable with a multiline

string containing two print statements, and then use exec to run

the string.

You could use exec to run mini programs that your Python pro-

gram reads in from files—really, programs inside programs! This

can be quite useful when writing long, complicated applications.

For example, you could create a Dueling Robots game, where two

robots move around a screen and try to attack each other. Players

of the game would provide the instructions for their robot as mini

Python programs. The Dueling Robots game would read in these

scripts and use exec to run.

the float function
The float function converts a

string or a number into a floating-

point number, which is a number

with a decimal place (also called

a real number). For example, the

number 10 is an integer (also

called a whole number), but 10.0,

10.1, and 10.253 are all floating-

point numbers (also called floats).

Python’s Built-in Functions 117

You can convert a string to a float simply by calling float,

like this:

>>> float('12')
12.0

You can use a decimal place in a string as well:

>>> float('123.456789')
123.456789

You might use float to convert values entered into your pro-

gram into proper numbers, which is particularly useful when you

need to compare the value a person enters with other values. For

example, to check whether a person’s age is above a certain num-

ber, we could do this:

>>> your_age = input('Enter your age: ')
Enter your age: 20
>>> age = float(your_age)
>>> if age > 13:
 print('You are %s years too old' % (age - 13))
You are 7.0 years too old

the int function
The int function converts a string or a number into a whole num-

ber (or integer), which basically means that everything after the

decimal point is dropped. For example, here’s how to convert a

floating-point number into a plain integer:

>>> int(123.456)
123

This example converts a string to an integer:

>>> int('123')
123

But try to convert a string containing a floating-point number

into an integer, and you get an error message. For example, here

118 Chapter 9

we try to convert a string containing a floating-point number using

the int function:

>>> int('123.456')
Traceback (most recent call last):
 File "<pyshell>", line 1, in <module>
 int('123.456')
ValueError: invalid literal for int() with base 10: '123.456'

As you can see, the result is a ValueError message.

the len function
The len function returns

the length of an object or,

in the case of a string, the

number of characters in the

string. For example, to get

the length of this is a test

string, you would do this:

>>> len('this is a test string')
21

When used with a list or a tuple, len returns the number of

items in that list or tuple:

>>> creature_list = ['unicorn', 'cyclops', 'fairy', 'elf', 'dragon',
 'troll']
>>> print(len(creature_list))
6

Used with a map, len also returns the number of items in

the map:

>>> enemies_map = {'Batman' : 'Joker',
 'Superman' : 'Lex Luthor',
 'Spiderman' : 'Green Goblin'}
>>> print(len(enemies_map))
3

Python’s Built-in Functions 119

The len function is particularly useful when you’re working

with loops. For example, we could use it to display the index posi-

tions of the elements in a list like this:

>>> fruit = ['apple', 'banana', 'clementine', 'dragon fruit']
u >>> length = len(fruit)
v >>> for x in range(0, length):
w print('the fruit at index %s is %s' % (x, fruit[x]))

the fruit at index 0 is apple
the fruit at index 1 is banana
the fruit at index 2 is clementine
the fruit at index 3 is dragon fruit

Here, we store the length of the list in

the variable length at u, and then use that

variable in the range function to create our

loop at v. At w, as we loop through each item

in the list, we print a message showing the

item’s index position and value. You could

also use the len function, if you had a list of

strings and wanted to print every second or

third item in the list.

the max and min functions
The max function returns the largest item in a

list, tuple, or string. For example, here’s how

to use it with a list of numbers:

>>> numbers = [5, 4, 10, 30, 22]
>>> print(max(numbers))
30

A string with the characters separated by commas or spaces

will also work:

>>> strings = 's,t,r,i,n,g,S,T,R,I,N,G'
>>> print(max(strings))
t

120 Chapter 9

As this example shows, letters are ranked alphabetically, and

lowercase letters come after uppercase letters, so t is more than T.

But you don’t have to use lists, tuples, or strings. You can also

call the max function directly, and enter the items that you want to

compare into the parentheses as parameters:

>>> print(max(10, 300, 450, 50, 90))
450

The min function works like max, except that it returns the

smallest item in the list, tuple, or string. Here’s our list of num-

bers example using min instead of max:

>>> numbers = [5, 4, 10, 30, 22]
>>> print(min(numbers))
4

Suppose you were playing a guessing game with a team of four

players, and each had to guess a number that was less than your

number. If any player guesses above your number, all players lose,

but if they all guess lower, they win. We could use max to quickly

find whether all of the guesses are lower, like so:

>>> guess_this_number = 61
>>> player_guesses = [12, 15, 70, 45]
>>> if max(player_guesses) > guess_this_number:
 print('Boom! You all lose')
else:
 print('You win')

Boom! You all lose

In this example, we store the number to guess using the vari-

able guess_this_number. The team members’ guesses are stored in

the list player_guesses. The if statement checks the maximum guess

against the number in guess_this_number, and if any player guesses

over the number, we print the message “Boom! You all lose.”

Python’s Built-in Functions 121

the range function
The range function, as we’ve

seen before, is mainly used in

for loops, to loop through a sec-

tion of code a specific number of

times. The first two parameters

given to range are called the start

and the stop. You saw range with

these two parameters in the ear-

lier example of using the len

func tion to work with a loop.

The numbers that range generates begin with the number given

as the first parameter and end with the number that’s one less than

the second parameter. For example, the following shows what hap-

pens when we print the numbers that range creates between 0 and 5:

>>> for x in range(0, 5):
 print(x)

0
1
2
3
4

The range function actually returns a special object called an

iterator that repeats an action a number of times. In this case, it

returns the next highest number each time it is called.

You can convert the iterator into a list (using the function list).

If you then print the returned value when calling range, you’ll see

the numbers it contains as well:

>>> print(list(range(0, 5)))
[0, 1, 2, 3, 4]

122 Chapter 9

You can also add a third parameter to range, called step. If

the step value is not included, the number 1 is used as the step by

default. But what happens when we pass in the number 2 as the

step? Here’s the result:

>>> count_by_twos = list(range(0, 30, 2))
>>> print(count_by_twos)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28]

Each number in the list increases by two from the previous

number, and the list ends with the number 28, which is 2 less

than 30. You can also use negative steps:

>>> count_down_by_twos = list(range(40, 10, -2))
>>> print(count_down_by_twos)
[40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12]

the sum function
The sum function adds items in a list and returns the total. Here’s

an example:

>>> my_list_of_numbers = list(range(0, 500, 50))
>>> print(my_list_of_numbers)
[0, 50, 100, 150, 200, 250, 300, 350, 400, 450]
>>> print(sum(my_list_of_numbers))
2250

On the first line, we create a list of numbers between 0 and

500, using range with a step of 50. Next, we print the list to see the

result. Finally, passing the variable my_list_of_numbers to the sum

function with print(sum(my_list_of_numbers)) adds all the items in

the list, giving the total of 2250.

Working with files
Python files are the same as other files on your computer: docu-

ments, pictures, music, games . . . indeed, everything on your

computer is stored as files.

Let’s look at how to open and work with files in Python by

using the built-in function open. But first we need to create a

new file to play with.

Python’s Built-in Functions 123

Creating a test file
We’ll experiment with a text file we’ll call test.txt. Follow the steps

for the operating system you’re using.

Creating a new file in Windows

If you’re using Windows, follow these steps to create test.txt:

1. Select Start4All Programs4Accessories4Notepad.

2. Enter a few lines into the empty file.

3. Select File4Save.

4. When the dialog appears, select the C: drive by double-clicking

My Computer and then double-clicking Local Disk (C:).

5. Enter test.txt in the File name box at the bottom of the dialog.

6. Finally, click the Save button.

Creating a new file in Mac os X

If you’re using a Mac, follow these steps to create test.txt:

1. Click the Spotlight icon in the menu bar at the top of the

screen.

2. Enter TextEdit in the search box that appears.

124 Chapter 9

3. TextEdit should appear in the Applications section. Click it to

open the editor (you can also find TextEdit in the Applications

folder in Finder).

4. Type a few lines of text into the empty file.

5. Select Format4Make Plain Text.

6. Select File4Save.

7. In the Save As box, enter test.txt.

8. In the Places list, click your username—the name you logged

in with or the name of the person who owns the computer

you’re using.

9. Finally, click the Save button.

Creating a new file in Ubuntu

If you’re using Ubuntu, follow these steps to create test.txt:

1. Open your editor, which is usually called Text Editor. If you

haven’t used it before, search for it in the Applications menu.

2. Enter a few lines of text in the editor.

3. Select File4Save.

4. In the Name box, enter test.txt for the filename. Your home

directory may already be selected in the box labeled Save in

Folder, but if not, click it in the Places list. (Your home direc-

tory is the username that you are logged in with.)

Python’s Built-in Functions 125

5. Click the Save button.

opening a file in Python
Python’s built-in open function opens a file in the Python shell and

displays its contents. How you tell the function which file to open

depends on your operating system. Look over the example for a

Windows file, and then read the Mac- or Ubuntu-specific section

if you’re using one of those systems.

opening a Windows file

If you’re using Windows, enter the following code to open test.txt:

>>> test_file = open('c:\\test.txt')
>>> text = test_file.read()
>>> print(text)
There once was a boy named Marcelo
Who dreamed he ate a marshmallow
He awoke with a start
As his bed fell apart
And he found he was a much rounder fellow

On the first line, we use open, which returns a file object with

functions for working with files. The parameter we use with the

open function is a string telling Python where to find the file. If

you’re using Windows, you saved test.txt to the local disk on the C:

drive, so you specify the location of your file as c:\\test.txt.

126 Chapter 9

The two backslashes in the Windows filename tell Python

that the backslash is just that, and not some sort of command. (As

you learned in Chapter 3, backslashes on their own have a special

meaning in Python, particularly in strings.) We save the file object

to the variable test_file.

On the second line, we use the read function, provided by the

file object, to read the contents of the file and store it in the vari-

able text. We print the variable on the final line to display the

contents of the file.

opening a Mac os X file

If you are using Mac OS X, you’ll need to enter a different loca-

tion on the first line of the Windows example to open test.txt. Use

the username you clicked when saving the text file in the string.

For example, if the username is sarahwinters, the open parameter

should look like this:

>>> test_file = open('/Users/sarahwinters/test.txt')

opening an Ubuntu file

If you are using Ubuntu, you’ll need to enter a different location

on the first line of the Windows example to open test.txt. Use the

username you clicked when saving the text file. For example, if

the username is jacob, the open parameter should look like this:

>>> test_file = open('/home/jacob/test.txt')

Writing to files
The file object returned by open has other functions besides read.

We can create a new, empty file by using a second parameter, the

string 'w', when we call the function:

>>> test_file = open('c:\\myfile.txt', 'w')

The parameter 'w' tells Python that we want to write to the

file object, rather than read from it.

Python’s Built-in Functions 127

We can now add information to this new file using the write

function:

>>> test_file = open('c:\\myfile.txt', 'w')
>>> test_file.write('this is my test file')

Finally, we need to tell Python when we’re finished writing to

the file, using the close function:

>>> test_file = open('c:\\myfile.txt', 'w')
>>> test_file.write('What is green and loud? A froghorn!')
>>> test_file.close()

Now, if you open the file with your text editor, you should see

that it contains the text “What is green

and loud? A froghorn!” Or, you can use

Python to read it again:

>>> test_file = open('myfile.txt')
>>> print(test_file.read())
What is green and loud? A froghorn!

What You Learned
In this chapter, you learned about Python’s built-in functions, such

as float and int, which can turn numbers with decimal points into

integers and vice versa. You also saw how the len function can make

looping easier, and how Python can be used to open files in order

to read from them and write to them.

Programming Puzzles
Try the following examples to experiment with some of Python’s

built-in functions. Find the answers at http://python-for-kids.com/.

#1: Mystery Code
What will be the result of running the following code? Guess, and

then run the code to see if you’re right.

128 Chapter 9

>>> a = abs(10) + abs(-10)
>>> print(a)
>>> b = abs(-10) + -10
>>> print(b)

#2: A Hidden Message
Try using dir and help to find out how to break a string into words,

and then create a small program to print every other word in the

following string, starting with the first word (this):

"this if is you not are a reading very this good then way you to have
hide done a it message wrong"

#3: Copying a file
Create a Python program to copy a file. (Hint: You’ll need to open

the file that you want to copy, read it in, and then create a new

file—the copy.) Check that your program works by printing the

contents of the new file on the screen.

10
UsefUL PYtHon

MoDULes

As you learned in Chapter 7, a Python module is

any combination of functions, classes, and variables.

Python uses modules to group functions and classes

in order to make them easier to use. For example, the

turtle module, which we used in previous chapters,

groups functions and classes that are used to create

a canvas for a turtle to draw on the screen.

130 Chapter 10

When you import a module into a program, you can use all of

its contents. For example, when we imported the turtle module in

Chapter 4, we had access to the Pen class, which we used to create

an object representing the turtle’s canvas:

>>> import turtle
>>> t = turtle.Pen()

Python has a lot of modules for doing all sorts of different

tasks. In this chapter, we’ll look at some of the most useful ones

and try some of their functions.

Making Copies with the copy Module
The copy module contains functions

for creating copies of objects. Usu-

ally, when writing a program, you’ll

create new objects, but sometimes

it’s useful to create a copy of an

object, and then use that copy to

create a new object, particularly

when the process of creating an

object takes several steps.

For example, suppose we have

an Animal class, with an __init__

function that takes the parameters

name, number_of_legs, and color.

>>> class Animal:
 def __init__(self, species, number_of_legs, color):
 self.species = species
 self.number_of_legs = number_of_legs
 self.color = color

We could create a new object in the class Animal using the fol-

lowing code. Let’s create a pink hippogriff with six legs, called harry.

>>> harry = Animal('hippogriff', 6, 'pink')

Useful Python Modules 131

Suppose we want a herd of pink hippogriffs with six legs? We

could repeat the previous code over and over again, or use copy,

which can be found in the copy module:

>>> import copy
>>> harry = Animal('hippogriff', 6, 'pink')
>>> harriet = copy.copy(harry)
>>> print(harry.species)
hippogriff
>>> print(harriet.species)
hippogriff

In this example, we create an object and label it with the

 variable harry, and then we create a copy of that object and label

it harriet. These are two completely different objects, even though

they have the same species. This saves only a bit of typing, but

when the objects are a lot more complicated, being able to copy

them can be useful.

We can also create and copy a list of Animal objects.

>>> harry = Animal('hippogriff', 6, 'pink')
>>> carrie = Animal('chimera', 4, 'green polka dots')
>>> billy = Animal('bogill', 0, 'paisley')
>>> my_animals = [harry, carrie, billy]
>>> more_animals = copy.copy(my_animals)
>>> print(more_animals[0].species)
hippogriff
>>> print(more_animals[1].species)
chimera

In the first three lines, we create

three Animal objects and store them in

harry, carrie, and billy. On the fourth line,

we add these objects to the list my_animals.

Next, we use copy to create a new list,

more_animals. Finally, we print the species

of the first two objects ([0] and [1]) in the

more_animals list and see that they’re the

same as in the original list: hippogriff

and chimera. We’ve made a copy of the list

without needing to create the objects all

over again.

132 Chapter 10

But look what happens if we change the species of one of our

Animal objects in the original my_animals list (hippogriff to ghoul).

Python changes the species in more_animals, too.

>>> my_animals[0].species = 'ghoul'
>>> print(my_animals[0].species)
ghoul
>>> print(more_animals[0].species)
ghoul

That’s odd. Didn’t we change the species in my_animals only?

Why did the species change in both lists?

The species changed because copy actually makes a shallow

copy, which means it doesn’t copy objects inside the objects we cop-

ied. Here, it has copied the main list object but not the individual

objects inside the list. So we end up with a new list that does not

have its own new objects—the list more_animals has the same three

objects inside it.

By the same token, if we add a new animal to the first list

(my_animals), it doesn’t appear in the copy (more_animals). As proof,

print the length of each list after adding another animal, like this:

>>> sally = Animal('sphinx', 4, 'sand')
>>> my_animals.append(sally)
>>> print(len(my_animals))
4
>>> print(len(more_animals))
3

As you can see, when we append a new animal to the first list,

my_animals, it isn’t added to the copy of that list, more_animals. When

we use len and print the results, the first list has four elements

and the second has three.

Another function in the copy module, deepcopy, actually creates

copies of all objects inside the object being copied. When we use

deepcopy to copy my_animals, we get a new list complete with copies of

all of its objects. As a result, changes to one of our original Animal

objects won’t affect the objects in the new list. Here’s an example:

>>> more_animals = copy.deepcopy(my_animals)
>>> my_animals[0].species = 'wyrm'
>>> print(my_animals[0].species)
wyrm

Useful Python Modules 133

>>> print(more_animals[0].species)
ghoul

When we change the species of the first object in the original

list from ghoul to wyrm, the copied list doesn’t change, as we can see

when we print the species of the first object in each list.

Keeping track of Keywords with the
keyword Module

A Python keyword is any word in Python that is part of the lan-

guage itself, such as if, else, and for. The keyword module contains

a function named iskeyword and a variable called kwlist. The func-

tion iskeyword returns true if any string is a Python keyword. The

variable kwlist returns a list of all Python keywords.

Notice in the following code that the function iskeyword returns

true for the string if and false for the string ozwald. You can see

the full list of keywords when we print the contents of the variable,

which is useful because keywords don’t always stay the same. New

versions (or older versions) of Python may have different keywords.

>>> import keyword
>>> print(keyword.iskeyword('if'))
True
>>> print(keyword.iskeyword('ozwald'))
False
>>> print(keyword.kwlist)
['False', 'None', 'True', 'and', 'as', 'assert', 'break', 'class',
'continue', 'def', 'del', 'elif', 'else', 'except', 'finally',
'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda',
'nonlocal', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while',
'with', 'yield']

You can find a description of each keyword in the Appendix.

Getting Random numbers with the
Random Module

The random module contains a number of functions that are useful

for generating random numbers—kind of like asking the computer

to “pick a number.” The most useful functions in the random module

are randint, choice, and shuffle.

134 Chapter 10

Using randint to Pick a Random number
The randint function picks a random number between a range

of numbers, say between 1 and 100, between 100 and 1000, or

between 1000 and 5000. Here’s an example:

>>> import random
>>> print(random.randint(1, 100))
58
>>> print(random.randint(100, 1000))
861
>>> print(random.randint(1000, 5000))
3795

You might use randint to do something like create a simple (and

annoying) guessing game, using a while loop, like this:

>>> import random
>>> num = random.randint(1, 100)

u >>> while True:
v print('Guess a number between 1 and 100')
w guess = input()
x i = int(guess)
y if i == num:
 print('You guessed right')
z break
{ elif i < num:
 print('Try higher')
| elif i > num:

 print('Try lower')

First, we import the random module, and

then we set the variable num to a random num-

ber using randint with a range of 1 to 100. We

then create a while loop at u that will loop

forever (or at least until the player guesses

the number).

Next, we print a message at v, and then use input to get input

from the user, which we store in the variable guess at w. We con-

vert the input to a number using int, and save it in the variable i

at x. Then we compare it with the randomly selected number at y.

If the input and the randomly generated number are equal, we

print “You guessed right,” and then exit the loop at z. If the num-

bers aren’t equal, we check to see if the number the player guessed

Useful Python Modules 135

is higher than the random number at {, or lower at |, and print a

hint message accordingly.

This code is a bit long, so you may want to type it into a new

shell window or create a text document, save it, and then run it in

IDLE. Here’s a reminder of how to open and run a saved program:

1. Start IDLE and choose File4Open.

2. Browse to the directory where you saved the file, and click the

filename to select it.

3. Click Open.

4. After the new window opens, choose Run4Run Module.

Here’s what happens when we run the program:

Using choice to Pick a Random Item
from a List
If you want to pick a random item from a list instead of a random

number from a given range, you can use choice. For example, you

might want Python to choose your dessert for you.

>>> import random
>>> desserts = ['ice cream', 'pancakes', 'brownies', 'cookies',
 'candy']

136 Chapter 10

>>> print(random.choice(desserts))
brownies

Looks like you’ll be having brownies—not a bad choice at all.

Using shuffle to shuffle a List
The shuffle function shuffles a list, mixing up the items. If you’re

working along in IDLE and you just imported random and created

the desserts list in the previous example, you could skip right to the

random.shuffle command in the following code.

>>> import random
>>> desserts = ['ice cream', 'pancakes', 'brownies', 'cookies',
 'candy']
>>> random.shuffle(desserts)
>>> print(desserts)
['pancakes', 'ice cream', 'candy', 'brownies', 'cookies']

You can see the results of the shuffle when we print the list—

the order is completely different. If you were writing a card game,

you might use this to shuffle a list representing a deck of cards.

Controlling the shell with the
sys Module

The sys module contains system functions that you can use to

control the Python shell itself. Here, we’ll look at how to use exit

function, stdin and stdout objects, and version variable.

exiting the shell with the exit function
The exit function is a way of stopping the Python shell or console.

Enter the following code, and you’ll be prompted with a dialog ask-

ing if you want to exit. Click Yes, and the shell will shut down.

>>> import sys
>>> sys.exit()

Useful Python Modules 137

This won’t work if you’re not using the modified version of

IDLE that we set up in Chapter 1. Instead, you’ll get an error,

like this:

>>> import sys
>>> sys.exit()
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in <module>
 sys.exit()
SystemExit

Reading with the stdin object
The stdin object (short for standard input) in the sys module prompts

a user to enter information to be read into the shell and used by the

program. As you learned in Chapter 7, this object has a readline

function, which is used to read a line of text typed on the keyboard

until the user presses enter. It works like the input function that

we used in the random number guessing game earlier in this chap-

ter. For example, enter the following:

>>> import sys
>>> v = sys.stdin.readline()
He who laughs last thinks slowest

Python will store the string He who laughs last thinks slowest in

the variable v. To confirm this, print the contents of v:

>>> print(v)
He who laughs last thinks slowest

One of the differences between input and the readline function

is that with readline, you can specify the number of characters to

read as a parameter. For example:

>>> v = sys.stdin.readline(13)
He who laughs last thinks slowest
>>> print(v)
He who laughs

138 Chapter 10

Writing with the stdout object
Unlike stdin, the stdout object (short for standard output) can be

used to write messages to the shell (or console), rather than read-

ing them in. In some ways, it’s the same as print, but stdout is a file

object, so it has the same functions we used in Chapter 9, such as

write. Here’s an example:

>>> import sys
>>> sys.stdout.write("What does a fish say when it swims into a wall?
Dam.")
What does a fish say when it swims into a wall? Dam.52

Notice that when write finishes, it returns a count of the num-

ber of characters it has written. You can see 52 printed into the

shell at the end of the message. We could save this value to a vari-

able in order to record, over time, how many characters we have

written to the screen.

Which Version of Python Am I Using?
The variable version displays your ver-

sion of Python, which can be useful if

you want to make sure you’re up-to-date.

Some programmers like to print infor-

mation when their programs start up.

For example, you might put the version

of Python into an About window of your

program, like this:

>>> import sys
>>> print(sys.version)
3.1.2 (r312:79149, Mar 21 2013, 00:41:52) [MSC v.1500 32 bit (Intel)]

Doing time with the time module
Python’s time module contains functions for displaying the time,

though not necessarily as you might expect. Try this:

>>> import time
>>> print(time.time())
1300139149.34

Useful Python Modules 139

The number returned by the call to

time() is actually the number of seconds

since January 1, 1970, at 00:00:00 AM

to be exact. On its own, this unusual ref-

erence point may not seem immediately

useful, but it can serve a purpose. For example, to find out how

long parts of your program take to run, you can record the time at

the beginning and end, and compare the values. Let’s try this to

find out how long it will take to print all numbers from 0 to 999.

First, create a function like this:

>>> def lots_of_numbers(max):
 for x in range(0, max):
 print(x)

Next, call the function with max set to 1000:

>>> lots_of_numbers(1000)

Then work out how long the function takes by modifying our

program with the time module.

>>> def lots_of_numbers(max):
u t1 = time.time()
v for x in range(0, max):

 print(x)
w t2 = time.time()
x print('it took %s seconds' % (t2-t1))

Calling the program again, we get the following result (which

will vary depending on the speed of your system):

>>> lots_of_numbers(1000)
0
1
2
3
.
.
.
997
998
999
it took 50.159196853637695 seconds

140 Chapter 10

Here’s how this works: The first time we call the time() func-

tion, we assign the value returned to the variable t1 at u. We then

loop and print all the numbers in the third and fourth lines at v.

After the loop, we again call time(), and assign the value returned

to the variable t2 at w. Since it took several seconds for the loop to

complete, the value in t2 will be higher than t1 because more sec-

onds will have passed since January 1, 1970. Subtracting t1 from

t2 as we do at x, we get the number of seconds it took to print all

those numbers.

Converting a Date with asctime
The function asctime takes a date as a tuple and converts it into

something more readable. (Remember that a tuple is like a list

with items that you can’t change.) As you saw in Chapter 7, calling

asctime without any parameters will display the current date and

time in a readable form.

>>> import time
>>> print(time.asctime())
Mon Mar 11 22:03:41 2013

To call asctime with a parameter, we first create a tuple with

values for the date and time. For example, here we assign the tuple

to the variable t:

>>> t = (2007, 5, 27, 10, 30, 48, 6, 0, 0)

The values in the sequence are year, month, day, hours, min-

utes, seconds, day of the week (0 is Monday, 1 is Tuesday, and so

on), day of the year (we put 0 as a placeholder), and whether or not

it is daylight saving time (0 if it isn’t; 1 if it is). Calling asctime with

a similar tuple, we get this:

>>> import time
>>> t = (2020, 2, 23, 10, 30, 48, 6, 0, 0)
>>> print(time.asctime(t))
Sun Feb 23 10:30:48 2020

Getting the Date and time with localtime
Unlike asctime, the function localtime returns the current date

and time as an object, with the values in roughly the same order

Useful Python Modules 141

as asctime input. If you print the object, you’ll see the name of the

class, and each of the values labeled as tm_year, tm_mon (for month),

tm_mday (for day of the month), tm_hour, and so on.

>>> import time
>>> print(time.localtime())
time.struct_time(tm_year=2020, tm_mon=2, tm_mday=23, tm_hour=22,
tm_min=18, tm_sec=39, tm_wday=0, tm_yday=73, tm_isdst=0)

To print the current year and month, you can use their index

positions (as with the tuple we used with asctime). Based on our

example, we know that year is in the first position (position 0) and

month is in the second position (1). Therefore, we use year = t[0]

and month = t[1], like this:

>>> t = time.localtime()
>>> year = t[0]
>>> month = t[1]
>>> print(year)
2020
>>> print(month)
2

And we see that we’re in the second month of 2020.

taking some time off with sleep
The function sleep is quite use-

ful when you want to delay or

slow down your program. For

example, to print every second

from 1 to 61, we could use the

following loop:

>>> for x in range(1, 61):
 print(x)

This code will rapidly print all numbers from 1 to 60. However,

we can tell Python to sleep for a second between each print state-

ment, like this:

>>> for x in range(1, 61):
 print(x)
 time.sleep(1)

142 Chapter 10

This adds a delay between the display of each number. In

Chapter 12, we’ll use the sleep function to make an animation a

bit more realistic.

Using the pickle Module to save
Information

The pickle module is used to convert

Python objects into something that can

be written into a file and then easily read

back out. You might find pickle useful if

you’re writing a game and want to save

information about a player’s progress. For

example, here’s how we might add a save

feature to a game:

>>> game_data = {
 'player-position' : 'N23 E45',
 'pockets' : ['keys', 'pocket knife', 'polished stone'],
 'backpack' : ['rope', 'hammer', 'apple'],
 'money' : 158.50
}

Here, we create a Python map containing the player’s current

position in our imaginary game, a list of the items in the player’s

pockets and backpack, and the amount of money the player is carry-

ing. We can save this map to a file by opening the file for writing

and then calling pickle’s dump function, like this:

u >>> import pickle
v >>> game_data = {

 'player-position' : 'N23 E45',
 'pockets' : ['keys', 'pocket knife', 'polished stone'],
 'backpack' : ['rope', 'hammer', 'apple'],
 'money' : 158.50
 }

w >>> save_file = open('save.dat', 'wb')
x >>> pickle.dump(game_data, save_file)
y >>> save_file.close()

Useful Python Modules 143

We import the pickle module first at u, and create a map

of our game data at v. At w, we open the file save.dat with

the parameter wb, which tells Python to write the file in binary

mode (you might need to save this in a directory like /Users/

malcolmozwald, /home/susanb/ or C:\\Users\JimmyIpswich, as

we did in Chapter 9. At x, we use dump to pass in the map and the

file variable as two parameters. Finally, at y, we close the file,

because we’re finished with it.

note Plain text files contain only characters that humans can read.

Images, music files, movies, and pickled Python objects have infor-

mation that isn’t always readable by humans, so they’re known as

binary files. If you were to open the save.dat file, you would see that

it doesn’t look like a text file; it looks like a jumbled mixture of nor-

mal text and special characters.

We can unpickle objects we’ve written to the file using pickle’s

load function. When we unpickle something, we reverse the pickle

process: We take the information written into the file and convert

it back into values that our program can use. The process is simi-

lar to using the dump function.

>>> load_file = open('save.dat', 'rb')
>>> loaded_game_data = pickle.load(load_file)
>>> load_file.close()

First, we open the file using rb as the parameter, which means

read binary. We then pass the file to load and set the return value

to the variable loaded_game_data. Finally, we close the file.

To prove that our saved data has been loaded correctly, print

the variable:

>>> print(loaded_game_data)
{'money': 158.5, 'backpack': ['rope', 'hammer', 'apple'],
'player-position': 'N23 E45', 'pockets': ['keys', 'pocket knife',
'polished stone']}

144 Chapter 10

What You Learned
In this chapter, you learned how Python modules group functions,

classes, and variables, and how to use these functions by import-

ing modules. You’ve seen how to copy objects, generate random

numbers, and randomly shuffle lists of objects, as well as how to

work with time in Python. Finally, you learned how to save and

load information from a file using pickle.

Programming Puzzles
Try the following to practice using Python’s modules. Check your

answers at http://python-for-kids.com/.

#1: Copied Cars
What will the following code print?

>>> import copy
>>> class Car:
 pass

>>> car1 = Car()
>>> car1.wheels = 4
>>> car2 = car1
>>> car2.wheels = 3
>>> print(car1.wheels)

>>> car3 = copy.copy(car1)
>>> car3.wheels = 6
>>> print(car1.wheels)

#2: Pickled favorites
Create a list of your favorite things, and then use pickle to save

them to a file called favorites.dat. Close the Python shell, and then

reopen it and display your list of favorites by loading the file.

What is

printed here?

What is

printed here?

11
MoRe tURtLe GRAPHICs

Let’s take another look at the turtle module we began

using in Chapter 4. As you’ll see in this chapter, in

Python, turtles can do a lot more than just draw plain

black lines. For example, you can use them to draw

more advanced geometric shapes, create different

 colors, and even fill your shapes with color.

146 Chapter 11

starting with the Basic square
We’ve already learned how to make the turtle draw simple shapes.

Before using the turtle, we need to import the turtle module and

create the Pen object:

>>> import turtle
>>> t = turtle.Pen()

Here’s the code we used to create a square in Chapter 4:

>>> t.forward(50)
>>> t.left(90)
>>> t.forward(50)
>>> t.left(90)
>>> t.forward(50)
>>> t.left(90)
>>> t.forward(50)

In Chapter 6, you learned about for loops. With our newfound

knowledge, we can make this somewhat tedious code for a square

simpler using a for loop:

>>> t.reset()
>>> for x in range(1, 5):
 t.forward(50)
 t.left(90)

On the first line, we tell the Pen

object to reset itself. Next, we start

a for loop that will count from 1 to

4 with the code range(1, 5). Then,

with the following lines, in each

run of the loop, we move forward

50 pixels and turn left 90 degrees.

Because we’ve used a for loop, this

code is a little shorter than the pre-

vious version—ignoring the reset

line, we’ve gone from six lines down

to three.

More Turtle Graphics 147

Drawing stars
Now, with a few simple changes to our for loop, we can create

something even more interesting. Type in the following:

>>> t.reset()
>>> for x in range(1, 9):
 t.forward(100)
 t.left(225)

This code produces an eight-point star:

The code itself is very similar to the code we used to draw a

square, with a few exceptions:

•	 Rather than looping four times with range(1, 5), we loop eight

times with range(1, 9).

•	 Rather than moving forward 50 pixels, we move forward

100 pixels.

•	 Rather than turning 90 degrees, we turn 225 degrees to the left.

Now let’s develop our star just a bit more. By using a 175-degree

angle and looping 37 times, we can make a star with even more

points, using this code:

>>> t.reset()
>>> for x in range(1, 38):
 t.forward(100)
 t.left(175)

148 Chapter 11

Here’s the result of running this code:

While we’re playing with stars, here’s the code to produce a

spiraling star:

>>> t.reset()
>>> for x in range(1, 20):
 t.forward(100)
 t.left(95)

By changing the degree of the turn and reducing the number

of loops, the turtle ends up drawing quite a different style of star:

More Turtle Graphics 149

Using similar code, we can

create a variety of shapes, from a

basic square to a spiral star. As

you can see, by using for loops,

we’ve made it much simpler to

draw these shapes. Without

for loops, our code would have

required a lot of tedious typing.

Now let’s use an if state-

ment to control how the turtle

will turn and draw another star

variation. In this example, we

want the turtle to turn one angle

the first time, and then another

angle the next time.

>>> t.reset()
>>> for x in range(1, 19):
 t.forward(100)
 if x % 2 == 0:
 t.left(175)
 else:
 t.left(225)

Here, we create a loop that will run 18 times (range(1, 19)) and

tell the turtle to move forward 100 pixels (t.forward(100)). New here

is the if statement (if x % 2 == 0:). This statement checks to see if

the variable x contains an even number by using a modulo opera-

tor, the % in the expression x % 2 == 0, which is a way of saying, “x

mod 2” is equal to 0.

The expression x % 2 essentially says, “What is the amount

left over when you divide the number in variable x into two equal

parts?” For example, if we were to divide 5 balls into two parts, we

would get two groups of 2 balls (making a total of 4 balls), and the

remainder (the amount left over) would be 1 ball, as shown here.

225

This is the

remainder.

150 Chapter 11

If we divided 13 balls into two parts, we would get two groups

of 6 balls with 1 ball remaining:

6613

This is the

remainder.

When we check to see if the remainder equals zero after divid-

ing x by 2, we are actually asking whether it can be broken into

two parts with no remainder. This method is a nice way to see if a

number in a variable is even, because even numbers can always be

divided into two equal parts.

On the fifth line of our code, we tell the turtle to turn left

175 degrees (t.left(175)) if the number in x is even (if x % 2 == 0:);

otherwise (else), on the final line, we tell it to turn 225 degrees

(t.left(225)).

Here’s the result of running this code:

More Turtle Graphics 151

Drawing a Car
The turtle can do more than just draw stars and simple geometric

shapes. For our next example, we’ll draw a rather primitive-looking

car. First, we draw the body of the car. In IDLE, select File4New

Window, and then enter the following code in the window.

t.reset()
t.color(1,0,0)
t.begin_fill()
t.forward(100)
t.left(90)
t.forward(20)
t.left(90)
t.forward(20)
t.right(90)
t.forward(20)
t.left(90)
t.forward(60)
t.left(90)
t.forward(20)
t.right(90)
t.forward(20)
t.left(90)
t.forward(20)
t.end_fill()

Next, we draw the first wheel.

t.color(0,0,0)
t.up()
t.forward(10)
t.down()
t.begin_fill()
t.circle(10)
t.end_fill()

Finally, we draw the second wheel.

t.setheading(0)
t.up()
t.forward(90)
t.right(90)
t.forward(10)
t.setheading(0)

152 Chapter 11

t.begin_fill()
t.down()
t.circle(10)
t.end_fill()

Select File4Save As. Give the file a name, such as car.py.

Select Run4Run Module to try out the code. And here’s our car:

You may have noticed that a few new turtle functions have

snuck into this code:

•	 color is used to change the color of the pen.

•	 begin_fill and end_fill are used to fill in an area of the canvas

with a color.

•	 circle draws a circle of a particular size.

•	 setheading turns the turtle to face a particular direction.

Let’s take a look at how we can use these functions to add color

to our drawings.

Coloring things In
The color function takes three parameters. The first specifies the

amount of red, the second the amount of green, and the third

the amount of blue. For example, to get the bright red of the car,

we used color(1,0,0), which tells the turtle to use a 100 percent

red pen.

More Turtle Graphics 153

This red, green, and blue color recipe

is called RGB. It’s the way that colors are

represented on your computer monitor, and

the relative mix of these primary colors

produces other colors, just like when you

mix blue and red paint to make purple or

yellow and red to make orange. The colors

red, green, and blue are called primary

colors because you cannot mix other

shades to produce them.

Although we’re not using paint when we create colors on a

computer monitor (we’re using light), it may help to understand

this RGB recipe by thinking about three pots of paint: one red,

one green, and one blue. Each pot is full, and we give each full pot

a value of 1 (or 100 percent). We then mix all of the red paint and

all of the green paint in a vat to produce yellow (that’s 1 and 1 of

each, or 100 percent of each color).

Now let’s return to the world of code. To draw a yellow circle

with the turtle, we would use 100 percent of both the red and

green paint, but no blue, like this:

>>> t.color(1,1,0)
>>> t.begin_fill()
>>> t.circle(50)
>>> t.end_fill()

The 1,1,0 in the first line represents 100 percent red, 100 per-

cent green, and 0 percent blue. On the next line, we tell the turtle to

fill the shapes it draws with this RGB color (t.begin_fill), and then

we tell it to draw a circle with (t.circle). On the final line, end_fill

tells the turtle to fill the circle with the RGB color.

A function to Draw a filled Circle
To make it easier to experiment with different colors, let’s create a

function from the code we used to draw a filled circle.

>>> def mycircle(red, green, blue):
 t.color(red, green, blue)
 t.begin_fill()
 t.circle(50)
 t.end_fill()

154 Chapter 11

We can draw a bright green circle by using only the green

paint, with this code:

>>> mycircle(0, 1, 0)

Or we can draw a darker green circle by using only half the

green paint (0.5):

>>> mycircle(0, 0.5, 0)

To play with the RGB colors on your screen, try drawing a cir-

cle first with full red then half red (1 and 0.5), and then with full

blue and finally half blue, like this:

>>> mycircle(1, 0, 0)
>>> mycircle(0.5, 0, 0)
>>> mycircle(0, 0, 1)
>>> mycircle(0, 0, 0.5)

note If your canvas starts to get cluttered, use t.reset() to delete your

old drawings. Also remember that you can move the turtle without

drawing lines by using t.up() to lift the pen (use t.down() to set it

back down again).

Various combinations of red, green, and blue will produce a

huge variety of colors, like gold:

>>> mycircle(0.9, 0.75, 0)

Here’s light pink:

>>> mycircle(1, 0.7, 0.75)

And here are two versions for different shades of orange:

>>> mycircle(1, 0.5, 0)
>>> mycircle(0.9, 0.5, 0.15)

Try mixing some colors yourself!

More Turtle Graphics 155

Creating Pure Black and White
What happens when you turn off all the

lights at night? Everything goes black. The

same thing happens with colors on a com-

puter. No light means no color, so a circle

with 0 for all of the primary colors creates

black:

>>> mycircle(0, 0, 0)

Here’s the result:

The opposite is true if you use 100 percent of all three colors.

In this case, you get white. Enter the following to wipe out your

black circle:

>>> mycircle(1, 1, 1)

A square-Drawing function
You’ve seen that we fill shapes with color by telling the turtle to

start filling using begin_fill, and the shapes are filled only once

we use the end_fill function. Now we’ll try a few more experiments

with shapes and filling. Let’s use the square-drawing function from

the beginning of the chapter and pass it the size of the square as a

parameter.

156 Chapter 11

>>> def mysquare(size):
 for x in range(1, 5):
 t.forward(size)
 t.left(90)

Test your function by calling it with size 50, like so:

>>> mysquare(50)

This produces a small square:

Now let’s try our function with different sizes. The following

code creates five consecutive squares of size 25, 50, 75, 100, and 125.

>>> t.reset()
>>> mysquare(25)
>>> mysquare(50)
>>> mysquare(75)
>>> mysquare(100)
>>> mysquare(125)

Here’s what those squares should look like:

More Turtle Graphics 157

Drawing filled squares
To draw a filled square, first we need to reset the canvas, begin

filling, and then call the square function again, with this code:

>>> t.reset()
>>> t.begin_fill()
>>> mysquare(50)

You should see an empty square until you end filling:

>>> t.end_fill()

And your square should look like this:

Let’s change this function so that we can draw either a filled

or an unfilled square. To do so, we need another parameter and

slightly more complicated code.

>>> def mysquare(size, filled):
 if filled == True:
 t.begin_fill()
 for x in range(1, 5):
 t.forward(size)
 t.left(90)
 if filled == True:
 t.end_fill()

On the first line, we change the definition of our function to

take two parameters: size and filled. Next, we check to see whether

the value of filled is set to True with if filled == True. If it is, we

call begin_fill, to tell the turtle to fill the shape we drew. We then

loop four times (for x in range(0, 4)) to draw the four sides of the

158 Chapter 11

rectangle (moving forward and left), before checking again to see

whether filled is True with if filled == True. If it is, we turn filling

off again with t.end_fill, and the turtle fills the square with color.

Now we can draw a filled square with this line:

>>> mysquare(50, True)

Or we can create an unfilled square with this line:

>>> mysquare(150, False)

After these two calls to the mysquare function, we get the follow-

ing image, which looks a bit like a square eye.

But there’s no sense in stopping here. You can draw all sorts of

shapes and fill them with color.

Drawing filled stars
For our final example, we’ll add some color to the star we drew

earlier. The original code looked like this:

for x in range(1, 19):
 t.forward(100)
 if x % 2 == 0:
 t.left(175)
 else:
 t.left(225)

Now we’ll make a mystar function. We’ll use the if statements

from the mysquare function and add the size parameter.

More Turtle Graphics 159

>>> def mystar(size, filled):
 if filled == True:
 t.begin_fill()
 for x in range(1, 19):
 t.forward(size)
 if x % 2 == 0:
 t.left(175)
 else:
 t.left(225)
 if filled == True:
 t.end_fill()

In the first two lines of this function, we check to see if filled

is True, and if it is we begin filling. We check again in the last two

lines, and if filled is True, we stop filling. Also, as with the mysquare

function, we pass the size of the star in the parameter size, and

use that value when we call t.forward.

Now let’s set the color to gold (90 percent red, 75 percent green,

and 0 percent blue), and then call the function again.

>>> t.color(0.9, 0.75, 0)
>>> mystar(120, True)

The turtle will draw this filled star:

To add an outline to the star, change the color to black and

redraw the star without filling:

>>> t.color(0,0,0)
>>> mystar(120, False)

160 Chapter 11

And the star is now gold with a black outline, like this:

What You Learned
In this chapter, you learned how

to use the turtle module to draw a

few basic geometric shapes, using

for loops and if statements to con-

trol what the turtle does on the

screen. We changed the color of the

turtle’s pen and filled the shapes

that it drew. We also reused the

drawing code in some functions to

make it easier to draw shapes with

different colors with a single call

to a function.

Programming Puzzles
In the following experiments, you will draw your own shapes

with the turtle. As always, the solutions can be found at http://

python-for-kids.com/.

#1: Drawing an octagon
We’ve drawn stars, squares, and rectangles in this chapter. How

about creating a function to draw an eight-sided shape like an

octagon? (Hint: Try turning the turtle 45 degrees.)

More Turtle Graphics 161

#2: Drawing a filled octagon
Now that you have a function to draw an octagon, modify it so that

it draws a filled octagon. Try drawing an octagon with an outline,

as we did with the star.

#3: Another star-drawing function
Create a function to draw a star that will take two parameters:

the size and number of points. The beginning of the function will

look something like this:

def draw_star(size, points):

12
UsInG tKInteR foR
BetteR GRAPHICs

The problem with using a turtle to draw is . . . that . . .

turtles . . . are . . . really . . . slow. Even when a turtle is

going at top speed, it’s still not going very fast. That’s

not really a problem for turtles, but it is a problem for

computer graphics.

Computer graphics, especially in games, usually

need to move fast. If you have a game console or you

play games on your computer, think for a moment about

the graphics you see on the screen. Two-dimensional

(2D) graphics are flat—the characters generally move

164 Chapter 12

only up and down or left and right—

as in many Nintendo DS, PlayStation

Portable (PSP), and mobile phone

games. In pseudo-three-dimensional

(3D) games—ones that are almost

3D—images look a little more real,

but the characters generally move

only in relation to a flat plane (this

is also known as isometric graphics).

And, finally, we have 3D games, where the pictures drawn on

the screen attempt to mimic reality. Whether the games use 2D,

pseudo-3D, or 3D graphics, all have one thing in common: the need

to draw on the computer screen very quickly.

If you’ve never tried to create your own animation, try this

simple project:

1. Get a blank pad of paper, and in the bottom corner of the first

page, draw something (perhaps a stick figure).

2. On the corner of the next page, draw the same stick figure, but

move its leg slightly.

3. On the next page, draw the stick figure again, with the leg

moved a little more.

4. Gradually go through each page, drawing a modified stick fig-

ure on the bottom corner.

When you’re finished, flip quickly through the pages, and you

should see your stick figure moving. This is the basic method used

with all animation, whether it’s cartoons on TV or games on your

console or computer. An image is drawn, and then drawn again

with a slight change to create the illusion of movement. To make

an image look like it is moving, you need to display each frame, or

piece of the animation, very quickly.

Python offers different ways to create graphics. In addition to

the turtle module, you can use external modules (which need to

be installed separately), as well as the tkinter module, which you

should already have in your standard Python installation. tkinter

can be used to create full applications, like a simple word proces-

sor, as well as for simple drawing. In this chapter, we’ll explore

how to use tkinter to create graphics.

Using tkinter for Better Graphics 165

Creating a Clickable Button
For our first example, we’ll use tkinter to create a basic application

with a button. Enter this code:

>>> from tkinter import *
>>> tk = Tk()
>>> btn = Button(tk, text="click me")
>>> btn.pack()

On the first line, we import

the contents of the tkinter module.

Using from module-name import * allows

us to use the contents of a module

without using its name. In contrast,

when using import turtle in previous

examples, we needed to include the

module name to access its contents:

import turtle
t = turtle.Pen()

When we use import *, we don’t need to call turtle.Pen, as we

did in Chapters 4 and 11. This isn’t so useful with the turtle mod-

ule, but it is when you are using modules with a lot of classes and

functions, because it reduces the amount you need to type.

from turtle import *
t = Pen()

On the next line in our button example, we create a variable

containing an object of the class Tk with tk = Tk(), just like we

create a Pen object for the turtle. The tk object creates a basic win-

dow to which we can then add other things, such as buttons, input

boxes, or a canvas to draw on. This is the main class provided by

the tkinter module—without creating an object of the Tk class, you

won’t be able to do any graphics or animations.

On the third line, we create a button, with btn = Button and

pass the tk variable as the first parameter, and "click me" as

the text that the button will display, with (tk, text="click me").

Although we’ve added this button to the window, it won’t be dis-

played until you enter the line btn.pack(), which tells the button to

166 Chapter 12

appear. It also lines everything up correctly on the screen, if there

are other buttons or objects to display. The result should be some-

thing like this:

The click me button doesn’t do much. You can click it all day,

but nothing will happen until we change the code just a bit. (Be

sure to close the window you created earlier!)

First, we create a function to print some text:

>>> def hello():
 print('hello there')

Then we modify our example to use this new function:

>>> from tkinter import *
>>> tk = Tk()
>>> btn = Button(tk, text="click me", command=hello)
>>> btn.pack()

Notice that we’ve made only a slight change to the previous

version of this code: We’ve added the parameter command, which tells

Python to use the hello function when the button is clicked.

Now when you click the button, you will see “hello there” writ-

ten to the shell. This will appear each time the button is clicked.

In the following example, I’ve clicked the button five times.

Using tkinter for Better Graphics 167

This is the first time we’ve used named parameters in any of

our code examples, so let’s talk about them a bit before continuing

with our drawing.

Using named Parameters
Named parameters are just like normal parameters, except that,

rather than using the specific order of the values provided to a

function to determine which value belongs to which parameter

(the first value is the first parameter, the second value is the sec-

ond parameter, the third value is the third parameter, and so on),

we explicitly name the values, so they can appear in any order.

Sometimes functions have a lot of parameters, and we may not

always need to provide a value for every parameter. Named param-

eters are a way we can provide values for only the parameters that

we need to give values.

For example, suppose we have a function called person that

takes two parameters: width and height.

>>> def person(width, height):
 print('I am %s feet wide, %s feet high' % (width, height))

Normally, we might call this function like this:

>>> person(4, 3)
I am 4 feet wide, 3 feet high

Using named parameters, we could call this function and spec-

ify the parameter name with each value:

>>> person(height=3, width=4)
I am 4 feet wide, 3 feet high

Named parameters will become particularly useful as we do

more with the tkinter module.

Creating a Canvas for Drawing
Buttons are nice tools, but they’re not particularly useful when we

want to draw things on the screen. When it’s time to really draw

something, we need a different component: a canvas object, which is

an object of the class Canvas (provided by the tkinter module).

168 Chapter 12

When creating a canvas, we pass the width and height (in

 pixels) of the canvas to Python. Otherwise, the code is similar to

the button code. Here’s an example:

>>> from tkinter import *
>>> tk = Tk()
>>> canvas = Canvas(tk, width=500, height=500)
>>> canvas.pack()

As with the button example,

a window will appear when you

enter tk = Tk(). On the last line,

we pack the canvas with canvas.

pack(), which changes the size

of the canvas to a width of 500

pixels and a height of 500 pixels,

as specified in the third line

of code.

Also as with the button

example, the pack function tells

the canvas to display itself in the

correct position within the win-

dow. If that function isn’t called,

nothing will display properly.

Drawing Lines
To draw a line on the canvas, we use pixel coordinates. Coordinates

determine the positions of pixels on a surface. On a tkinter canvas,

coordinates describe how far across the canvas (from left to right)

and how far down the canvas (top to bottom) to place the pixel.

For example, since our canvas is 500 pixels wide by 500 pix-

els high, the coordinates of the bottom-right corner of the screen

are (500, 500). To draw the line shown in the following image, we

would use the starting coordinates (0, 0) and ending coordinates

(500, 500).

Using tkinter for Better Graphics 169

We specify the coordinates using the create_line function, as

shown here:

>>> from tkinter import *
>>> tk = Tk()
>>> canvas = Canvas(tk, width=500, height=500)
>>> canvas.pack()
>>> canvas.create_line(0, 0, 500, 500)
1

The create_line function returns 1, which is an identifier—we’ll

learn more about that later. If we had done the same thing with the

turtle module, we would have needed the following code:

>>> import turtle
>>> turtle.setup(width=500, height=500)
>>> t = turtle.Pen()
>>> t.up()
>>> t.goto(-250, 250)
>>> t.down()
>>> t.goto(500, -500)

170 Chapter 12

So the tkinter code is already an improvement. It’s slightly

shorter and a bit simpler.

Now let’s look at some of the functions available on the canvas

object that we can use for some more interesting drawings.

Drawing Boxes
With the turtle module, we drew a

box by moving forward, turning, mov-

ing forward, turning again, and so on.

Eventually, we were able to draw a rect-

angular or square box by changing how

far we moved forward.

The tkinter module makes it a lot

easier to draw a square or rectangle. All you need to know are the

coordinates for the corners. Here’s an example (you can close the

other windows now):

>>> from tkinter import *
>>> tk = Tk()
>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()
>>> canvas.create_rectangle(10, 10, 50, 50)

In this code, we use tkinter to create a canvas that is 400 pixels

wide by 400 pixels high, and we then draw a square in the top-left

corner of the window, like this:

The parameters we pass to canvas.create_rectangle in the last

line of the code are the coordinates for the top-left and bottom-right

corners of the square. We provide these coordinates as the distance

from the left-hand side of the canvas and the distance from the top

of the canvas. In this case, the first two coordinates (the top-left

Using tkinter for Better Graphics 171

corner) are 10 pixels across from the left and 10 pixels down from

the top (those are the first numbers: 10, 10). The bottom-right corner

of the square is 50 pixels across from the left and 50 pixels down

(the second numbers: 50, 50).

We’ll refer to these two sets of coordinates as x1, y1 and x2, y2.

To draw a rectangle, we can increase the distance of the second

corner from the side of the canvas (increasing the value of the x2

parameter), like this:

>>> from tkinter import *
>>> tk = Tk()
>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()
>>> canvas.create_rectangle(10, 10, 300, 50)

In this example, the top-left coordinates of the rectangle (its

position on the screen) are (10, 10), and the bottom-right coor-

dinates are (300, 50). The result is a rectangle that is the same

height as our original square (50 pixels), but a lot wider.

We can also draw a rectangle by increasing the distance of the

second corner from the top of the canvas (increasing the value of

the y2 parameter), like this:

>>> from tkinter import *
>>> tk = Tk()
>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()
>>> canvas.create_rectangle(10, 10, 50, 300)

In this call to the create_rectangle function, we are basically

saying, in order:

•	 Go 10 pixels across the canvas (from the top left).

•	 Go 10 pixels down the canvas. This is the starting corner of

the rectangle.

172 Chapter 12

•	 Draw the rectangle across to 50 pixels.

•	 Draw down to 300 pixels.

The end result should look something like this:

Drawing a Lot of Rectangles
How about filling the canvas with different-sized rectangles?

We can do this by importing the module random and then creating

a function that uses a random number for the coordinates at the

top-left and bottom-right corners of the rectangle.

We’ll use the function provided by the random module called

randrange. When we give this function a number, it returns a ran-

dom integer between 0 and the number we give it. For example,

calling randrange(10) would return a number between 0 and 9,

 randrange(100) would return a number between 0 and 99, and

so on.

Here’s how we use randrange in a function. Create a new

 window by selecting File4New Window, and enter the follow-

ing code:

from tkinter import *
import random
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()

Using tkinter for Better Graphics 173

def random_rectangle(width, height):
 x1 = random.randrange(width)
 y1 = random.randrange(height)
 x2 = x1 + random.randrange(width)
 y2 = y1 + random.randrange(height)
 canvas.create_rectangle(x1, y1, x2, y2)

We first define our function (def random_rectangle) as taking two

parameters: width and height. Next, we create variables for the top-

left corner of the rectangle using the randrange function, passing the

width and the height as parameters with x1 = random.randrange(width)

and y1 = random.randrange(height), respectively. In effect, with the

second line of this function, we’re saying, “Create a variable called

x1, and set its value to a random number between 0 and the value

in the parameter width.”

The next two lines create variables for the bottom-right corner

of the rectangle, taking into account the top-left coordinates (either

x1 or y1) and adding a random number to those values. The third

line of the function is effectively saying, “Create the variable x2 by

adding a random number to the value that we already calculated

for x1.”

Finally, with canvas.create_rectangle, we use the variables x1,

y1, x2, and y2 to draw the rectangle on the canvas.

To try our random_rectangle function, we’ll pass it the width and

height of the canvas. Add the following code below the function

you’ve just entered:

random_rectangle(400, 400)

Save the code you’ve entered (select File4Save and enter

a filename such as randomrect.py) and then select Run4Run

Module. Once you’ve seen the function working, fill the screen

with rectangles by creating a loop to call random_rectangle a number

of times. Let’s try a for loop of 100 random rectangles. Add the fol-

lowing code, save your work, and try running it again:

for x in range(0, 100):
 random_rectangle(400, 400)

174 Chapter 12

This code produces a bit of a mess, but it’s kind of like mod-

ern art:

setting the Color
Of course, we want to add color to our graphics. Let’s change the

random_rectangle function to pass in a color for the rectangle as an

additional parameter (fill_color). Enter this code in a new window,

and when you save, call the file colorrect.py:

from tkinter import *
import random
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()

def random_rectangle(width, height, fill_color):
 x1 = random.randrange(width)
 y1 = random.randrange(height)
 x2 = random.randrange(x1 + random.randrange(width))
 y2 = random.randrange(y1 + random.randrange(height))
 canvas.create_rectangle(x1, y1, x2, y2, fill=fill_color)

The create_rectangle function now takes a parameter fill_color,

which specifies the color to use when drawing the rectangle.

We can pass named colors into the function like this (using

a canvas 400 pixels wide by 400 pixels high) to create a bunch of

different-colored rectangles. If you try this example, you might

Using tkinter for Better Graphics 175

like to copy and paste to save on typing.

To do so, select the text to copy, press

ctrl-C to copy it, click a blank line, and

press ctrl-V to paste. Add this code to

colorrect.py, just below the function):

random_rectangle(400, 400, 'green')
random_rectangle(400, 400, 'red')
random_rectangle(400, 400, 'blue')
random_rectangle(400, 400, 'orange')
random_rectangle(400, 400, 'yellow')
random_rectangle(400, 400, 'pink')
random_rectangle(400, 400, 'purple')
random_rectangle(400, 400, 'violet')
random_rectangle(400, 400, 'magenta')
random_rectangle(400, 400, 'cyan')

Many of these named colors will display the color you expect

to see, but others may produce an error message (depending on

whether you’re using Windows, Mac OS X, or Linux).

But what about a custom color that isn’t exactly the same as

a named color? Recall in Chapter 11 that we set the color of the

turtle’s pen using percentages of the colors red, green, and blue.

Setting the amount of each primary color (red, green, and blue)

to use in a color combination with tkinter is slightly more compli-

cated, but we’ll work through it.

When working with the turtle module, we created gold using

90 percent red, 75 percent green, and no blue. In tkinter, we can

create the same gold color using this line:

random_rectangle(400, 400, '#ffd800')

The hash mark (#) before the value ffd800 tells Python we’re pro-

viding a hexadecimal number. Hexadecimal is a way of representing

numbers that is commonly used in computer programming. It uses

a base of 16 (0 through 9 then A through F) rather than decimal,

which has a base of 10 (0 through 9). If you haven’t learned about

bases in mathematics, just know that you can convert a normal deci-

mal number to hexadecimal using a format placeholder in a string:

%x (see “Embedding Values in Strings” on page 30). For example,

to convert the decimal number 15 to hexadecimal, you could do this:

>>> print('%x' % 15)
f

176 Chapter 12

To make sure our number has at least two digits, we can

change the format placeholder slightly, to this:

>>> print('%02x' % 15)
0f

The tkinter module provides an easy way to get a hexadecimal

color value. Try adding the following code to colorrect.py (you can

remove the other calls to the random_rectangle function).

from tkinter import *
colorchooser.askcolor()

This shows you a color chooser:

When you select a color and click OK, a tuple will be displayed.

This tuple contains another tuple with three numbers and a string:

>>> colorchooser.askcolor()
((235.91796875, 86.3359375, 153.59765625), '#eb5699')

The three numbers represent the amounts of red, green, and

blue. In tkinter, the amount of each primary color to use in a color

combination is represented by a number between 0 and 255 (which

is different from using a percentage for each primary color with the

turtle module). The string in the tuple contains the hexadecimal

version of those three numbers.

You can either copy and paste the string value to use or store

the tuple as a variable, and then use the index position of the hexa-

decimal value.

Using tkinter for Better Graphics 177

Let’s use the random_rectangle function to see how this works.

>>> c = colorchooser.askcolor()
>>> random_rectangle(400, 400, c[1])

Here’s the result:

Drawing Arcs
An arc is a segment of the

circumference of a circle or

another curve, but in order

to draw one with tkinter, you

need to draw it inside a rect-

angle using the create_arc

function, with code like this:

canvas.create_arc(10, 10, 200, 100, extent=180, style=ARC)

178 Chapter 12

If you’ve closed all the tkinter windows, or restarted IDLE,

make sure to reimport tkinter and then re-create the canvas with

this code:

>>> from tkinter import *
>>> tk = Tk()
>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()
>>> canvas.create_arc(10, 10, 200, 100, extent=180, style=ARC)

This code places the top-left corner of the rectangle that

will contain the arc at the coordinates (10, 10), which is 10 pixels

across and 10 pixels down, and its bottom-right corner at coordi-

nates (200, 100), or 200 pixels across and 100 pixels down. The

next parameter, extent, is used to specify the degrees of the angle

of the arc. Recall from Chapter 4 that degrees are a way of mea-

suring the distance to travel around a circle. Here are examples

of two arcs, where we travel 45 degrees and 270 degrees around

a circle:

90˚ 270˚

The following code draws several different arcs down the page

so that you can see what happens when we use different degrees

with the create_arc function.

>>> from tkinter import *
>>> tk = Tk()
>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()
>>> canvas.create_arc(10, 10, 200, 80, extent=45, style=ARC)
>>> canvas.create_arc(10, 80, 200, 160, extent=90, style=ARC)
>>> canvas.create_arc(10, 160, 200, 240, extent=135, style=ARC)
>>> canvas.create_arc(10, 240, 200, 320, extent=180, style=ARC)
>>> canvas.create_arc(10, 320, 200, 400, extent=359, style=ARC)

Using tkinter for Better Graphics 179

note We use 359 degrees in the final circle, rather than 360, because

tkinter considers 360 to be the same as 0 degrees, and would draw

nothing if we used 360.

Drawing Polygons
A polygon is any shape with three or more sides. There are regu-

larly shaped polygons like triangles, squares, rectangles, pentagons,

hexagons, and so on, as well as irregular ones with uneven edges,

many more sides, and odd shapes.

When drawing polygons with tkinter, you need to provide coor-

dinates for each point of the polygon. Here’s how we can draw a

triangle:

from tkinter import *
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()
canvas.create_polygon(10, 10, 100, 10, 100, 110, fill="",
outline="black")

This example draws a

triangle by starting with the

x and y coordinates (10, 10),

then moving across to (100,

10), and finishing at (100,

110). Here’s the result:

180 Chapter 12

We can add another irregular polygon (a shape with uneven

angles or sides) using this code:

canvas.create_polygon(200, 10, 240, 30, 120, 100, 140, 120, fill="",
outline="black")

This code begins with the coordinates (200, 10), moves to

(240, 30), then to (120, 100), and finally to (100, 140). tkinter auto-

matically joins the line back to the first coordinate. And here’s the

result of running the code:

Displaying text
In addition to drawing shapes, you can also write on the canvas

using create_text. This function takes only two coordinates (the

x and y positions of the text), along with a named parameter for

the text to display. In the following code, we create our canvas as

before and then display a sentence positioned at the coordinates

(150, 100). Save this code as text.py.

from tkinter import *
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()
canvas.create_text(150, 100, text='There once was a man from Toulouse,')

The create_text function takes some other useful param-

eters, such as a text fill color. In the following code, we call the

create_text function with coordinates (130, 120), the text we want

to display, and a red fill color.

canvas.create_text(130, 120, text='Who rode around on a moose.',
fill='red')

Using tkinter for Better Graphics 181

You can also specify the font (the type-

face used for the displayed text) as a tuple

with the font name and the size of the text.

For example, the tuple for the Times font

of size 20 is ('Times', 20). In the following

code, we display text using the Times font

set at size 15, the Helvetica font at size 20,

and the Courier font at sizes 22 and then 30.

canvas.create_text(150, 150, text='He said, "It\'s my curse,',
font=('Times', 15))
canvas.create_text(200, 200, text='But it could be worse,',
font=('Helvetica', 20))
canvas.create_text(220, 250, text='My cousin rides round',
font=('Courier', 22))
canvas.create_text(220, 300, text='on a goose."', font=('Courier', 30))

And here’s the result of these functions using the three speci-

fied fonts at five different sizes:

Displaying Images
To display an image on a canvas using tkinter, first load the image

and then use the create_image function on the canvas object.

Any image that you load must be in a directory that’s acces-

sible to Python. For this example, we put our image test.gif in the

C:\ directory, which is the root directory (the base directory) of

the C: drive, but you could put it anywhere.

182 Chapter 12

If you’re using a Mac or Linux system, you can put the image

in your Home directory. If you aren’t able to put files on your C:

drive, you can put the image on your desktop.

note With tkinter, you can load only GIF images, that is, image files with

the extension .gif. You can display other types of images, such as

PNG (.png) and JPG (.jpg), but you’ll need to use a different mod-

ule, such as the Python Imaging Library (http://www.pythonware

.com/products/pil/).

We can display the test.gif image like this:

from tkinter import *
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()
my_image = PhotoImage(file='c:\\test.gif')
canvas.create_image(0, 0, anchor=NW, image=myimage)

In the first four lines, we set up the canvas as with the previous

examples. In the fifth line, the image is loaded into the variable

my_image. We create PhotoImage with the directory 'c:\\test.gif'. If you

saved your image to the desktop, you should create the PhotoImage

with that directory, something like this:

my_image = PhotoImage(file='C:\\Users\\Joe Smith\\Desktop\\test.gif')

Using tkinter for Better Graphics 183

Once the image has been loaded into the variable, canvas.create_

image(0, 0, anchor=NW, image=myimage) displays it using the create_image

function. The coordinates (0, 0) are where the image will be dis-

played, and anchor=NW tells the function to use the top-left (NW, for

northwest) edge of the image as the starting point when drawing

(otherwise, it will use the center of the image as the starting point

by default). The final named parameter, image, points at the vari-

able for the loaded image. Here’s the result:

Creating Basic Animation
We’ve covered how to create static drawings—pictures that don’t

move. What about creating animation?

Animation is not necessarily a specialty of the tkinter module,

but it can handle the basics. For example, we can create a filled

triangle and then make it move across the screen using this code

(don’t forget, select File4New Window, save your work, and then

run the code with Run4Run Module):

import time
from tkinter import *
tk = Tk()
canvas = Canvas(tk, width=400, height=200)
canvas.pack()
canvas.create_polygon(10, 10, 10, 60, 50, 35)

184 Chapter 12

for x in range(0, 60):
 canvas.move(1, 5, 0)
 tk.update()
 time.sleep(0.05)

When you run this code, the triangle will start moving across

the screen to the end of its path:

How does this work? As before, we’ve used the first three lines

after importing tkinter to do the basic setup to display a canvas. In

the fourth line, we create the triangle with this function:

canvas.create_polygon(10, 10, 10, 60, 50, 35)

note When you enter this line, a number will be printed to the screen.

This is an identifier for the polygon. We can use it to refer to the

shape later, as described in the following example.

Next, we create a simple for loop

to count from 0 to 59, beginning with

for x in range(0, 60):. The block of code

inside the loop moves the tri angle across

the screen. The canvas.move function will

move any drawn object by adding values

to its x and y coordinates. For example,

with canvas.move(1, 5, 0), we move the

object with ID 1 (the identifier for the

triangle) 5 pixels across and 0 pixels down. To move it back again,

we could use the function call canvas.move(1, -5, 0).

The function tk.update() forces tkinter to update the screen

(redraw it). If we didn’t use update, tkinter would wait until the loop

finished before moving the triangle, which means you would see

Using tkinter for Better Graphics 185

it jump to the last position, rather than move smoothly across the

canvas. The final line of the loop, time.sleep(0.05), tells Python to

sleep for one-twentieth of a second (0.05 seconds), before continuing.

To make the triangle move diagonally down the screen, we

can modify this code by calling move(1, 5, 5). To try this, close the

canvas, and create a new file (File4New Window) for the follow-

ing code:

import time
from tkinter import *
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()
canvas.create_polygon(10, 10, 10, 60, 50, 35)
for x in range(0, 60):
 canvas.move(1, 5, 5)
 tk.update()
 time.sleep(0.05)

This code differs from the original in two ways:

•	 We make the height of the canvas 400, rather than 200,

with canvas = Canvas(tk, width=400, height=400).

•	 We add 5 to the triangle’s x and y coordinates with

canvas.move(1, 5, 5).

Once you save your code and run it, here’s the triangle’s posi-

tion at the end of the loop:

186 Chapter 12

To move the triangle diagonally back up the screen to its start-

ing position, use -5, -5 (add this code to the bottom of the file):

for x in range(0, 60):
 canvas.move(1, -5, -5)
 tk.update()
 time.sleep(0.05)

Making an object React to something
We can make the triangle react when someone presses a key by

using event bindings. Events are things that occur while a program

is running, such as someone moving the mouse, pressing a key, or

closing a window. You can tell tkinter to watch for these events and

then do something in response.

To begin handling events (making Python do something when

an event occurs), we first create a function. The binding part comes

when we tell tkinter that a particular function is bound (or associ-

ated) to a specific event; in other words, it will be automatically

called by tkinter to handle that event.

For example, to make the triangle move when the enter key is

pressed, we can define this function:

def movetriangle(event):
 canvas.move(1, 5, 0)

The function takes a single parameter (event), which tkinter

uses to send information to the function about the event. We now

tell tkinter that this function should be used for a particular event,

using the bind_all function on the canvas. The full code now looks

like this:

from tkinter import *
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()
canvas.create_polygon(10, 10, 10, 60, 50, 35)
def movetriangle(event):
 canvas.move(1, 5, 0)
canvas.bind_all('<KeyPress-Return>', movetriangle)

The first parameter in this function describes the event that we

want tkinter to watch for. In this case, it’s called <KeyPress-Return>,

Using tkinter for Better Graphics 187

which is a press of the enter or

return key. We tell tkinter that

the movetriangle function should

be called whenever this KeyPress

event occurs. Run this code, click

the canvas with your mouse, and

then try pressing enter on your

keyboard.

How about changing the direction of the triangle depending on

different key presses, such as the arrow keys? That’s no problem.

We just need to change the movetriangle function to the following:

def movetriangle(event):
 if event.keysym == 'Up':
 canvas.move(1, 0, -3)
 elif event.keysym == 'Down':
 canvas.move(1, 0, 3)
 elif event.keysym == 'Left':
 canvas.move(1, -3, 0)
 else:
 canvas.move(1, 3, 0)

The event object passed to movetriangle contains several vari-

ables. One of these variables is called keysym (for key symbol), which

is a string that holds the value of the actual key pressed. The line

if event.keysym == 'Up': says that if the keysym variable contains the

string 'Up', we should call canvas.move with the parameters (1, 0, -3),

as we do in the following line. If keysym contains 'Down', as in elif

event.keysym == 'Down':, we call it with the parameters (1, 0, 3),

and so on.

Remember that the first parameter is the identifying number

for the shape drawn on the canvas, the second is the value to add

to the x (horizontal) coordinate, and the third is the value to add to

the y (vertical) coordinate.

We then tell tkinter that the movetriangle function should be

used to handle events from four different keys (up, down, left,

and right). The following shows how the code looks at this point.

When you enter this code, it will again be a lot easier if you cre-

ate a new shell window by selecting File4New Window. Before

running the code, save it with a meaningful filename, such as

movingtriangle.py.

188 Chapter 12

from tkinter import *
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()
canvas.create_polygon(10, 10, 10, 60, 50, 35)
def movetriangle(event):

u if event.keysym == 'Up':
v canvas.move(1, 0, -3)
w elif event.keysym == 'Down':
x canvas.move(1, 0, 3)
y elif event.keysym == 'Left':
z canvas.move(1, -3, 0)
{ else:
| canvas.move(1, 3, 0)

canvas.bind_all('<KeyPress-Up>', movetriangle)
canvas.bind_all('<KeyPress-Down>', movetriangle)
canvas.bind_all('<KeyPress-Left>', movetriangle)
canvas.bind_all('<KeyPress-Right>', movetriangle)

On the first line of the movetriangle function, we check whether

the keysym variable contains 'Up' at u. If it does, we move the tri-

angle upward using the move function with the parameters 1, 0, -3

at v. The first parameter is the identifier of the triangle, the

second is the amount to move to the right (we don’t want to move

horizontally, so the value is 0), and the third is the amount to

move downward (–3 pixels).

We then check whether keysym contains 'Down' at w, and if

so, we move the triangle down (3 pixels) at x. The final check is

whether the value is 'Left' at y, and if so, we move the triangle

left (–3 pixels) at z. If none of the values are matched, the final

else at { moves the triangle right at |.

Now the triangle should move in the direction of the pressed

arrow key.

More Ways to Use the Identifier
Whenever we use a create_ function from the canvas, such as

 create_polygon or create_rectangle, an identifier is returned. This

identifying number can be used with other canvas functions, as we

did earlier with the move function:

>>> from tkinter import *
>>> tk = Tk()

Using tkinter for Better Graphics 189

>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()
>>> canvas.create_polygon(10, 10, 10, 60, 50, 35)
1
>>> canvas.move(1, 5, 0)

The problem with this example is that create_polygon won’t

always return 1. For example, if you’ve created other shapes, it

might return 2, 3, or even 100 for that matter (depending on the

number of shapes that have been created). If we change the code to

store the value returned as a variable, and then use the variable

(rather than just referring to the number 1), the code will work no

matter what number is returned:

>>> mytriangle = canvas.create_polygon(10, 10, 10, 60, 50, 35)
>>> canvas.move(mytriangle, 5, 0)

The move function allows us to move objects around the screen

using their identifier. But there are other canvas functions that can

also change something we’ve drawn. For example, the itemconfig

function of the canvas can be used to change some of the param-

eters of a shape, such as its fill and outline colors.

Say we create a red triangle:

>>> from tkinter import *
>>> tk = Tk()
>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()
>>> mytriangle = canvas.create_polygon(10, 10, 10, 60, 50, 35,
fill='red')

We can change the triangle to another color using itemconfig

and use the identifier as the first parameter. The following code

says, “Change the fill color of the object identified by the number

in variable mytriangle to blue.”

>>> canvas.itemconfig(mytriangle, fill='blue')

We could also give the triangle a different-colored outline,

again using the identifier as the first parameter:

>>> canvas.itemconfig(mytriangle, outline='red')

190 Chapter 12

Later, we’ll learn how to make other

changes to a drawing, such as hide it and

make it visible again. You’ll find it useful

to be able to change a drawing once it’s dis-

played on the screen when we start writing

games in the next chapter.

What You Learned
In this chapter, you used the tkinter module to draw simple geo-

metric shapes on a canvas, display images, and perform basic

animation. You learned how to use event bindings to make draw-

ings react to someone pressing a key, which will be useful once we

start working on programming a game. You learned how the create

functions in tkinter return an identifying number, which can be

used to modify shapes after they’ve been drawn, such as to move

them around on the screen or change their color.

Programming Puzzles
Try the following to play with the tkinter module and basic anima-

tion. Visit http://python-for-kids.com/ for solutions.

#1: fill the screen with triangles
Create a program using tkinter to fill the screen with triangles.

Then change the code to fill the screen with different-colored

(filled) triangles instead.

#2: the Moving triangle
Modify the code for the moving triangle (“Creating Basic Anima-

tion” on page 183) to make it move across the screen to the right,

then down, then back to the left, and then back to its starting

 position.

#3: the Moving Photo
Try displaying a photo of yourself on the canvas using tkinter.

Make sure it’s a GIF image! Can you make it move across the

screen?

Part II

Bounce!

13
BeGInnInG YoUR

fIRst GAMe: BoUnCe!

So far, we’ve covered the basics of computer program-

ming. You’ve learned how to use variables to store

information, if statements for conditional code, and for

loops for repeating code. You know how to create func-

tions to reuse your code, and how to use classes and

objects to divide your code into smaller chunks that

make it easier to understand. You’ve learned how to

draw graphics on the screen with both the turtle and

tkinter modules. Now it’s time to use that knowledge

to create your first game.

194 Chapter 13

Whack the Bouncing Ball
We’re going to develop a game with a bouncing ball and a paddle.

The ball will fly around the screen, and the player will bounce it

off the paddle. If the ball hits the bottom of the screen, the game

comes to an end. Here’s a preview of the finished game:

Our game may look quite simple, but the code will be a bit

trickier than what we’ve written so far because there are a lot of

things that it needs to handle. For example, it needs to animate

the paddle and the ball, and detect when the ball hits the paddle

or the walls.

In this chapter, we’ll begin creating the game by adding a

game canvas and a bouncing ball. In the next chapter, we’ll com-

plete the game by adding the paddle.

Creating the Game Canvas
To create your game, first open a new file in the Python shell

(select File4New Window). Then import tkinter and create a

canvas to draw on:

from tkinter import *
import random
import time

Beginning Your First Game: Bounce! 195

tk = Tk()
tk.title("Game")
tk.resizable(0, 0)
tk.wm_attributes("-topmost", 1)
canvas = Canvas(tk, width=500, height=400, bd=0, highlightthickness=0)
canvas.pack()
tk.update()

This is a little different from previous examples. First, we import

the time and random modules with import random and import time, for

use a bit later in the code.

With tk.title("Game"), we use the title function of the tk

object we created with tk = Tk() to give the window a title. Then

we use resizable to make the window a fixed size. The parameters

0, 0 say “the size of the window cannot be changed either horizon-

tally or vertically.” Next, we call wm_attributes to tell tkinter to place

the win dow containing our canvas in front of all other windows

("- topmost").

Notice that when we create a canvas object with canvas =, we

pass in a few more named parameters than with previous exam-

ples. For example, both bd=0 and highlightthickness=0 make sure

that there’s no border around the outside of the canvas, which

makes it look better on our game screen.

The line canvas.pack()

tells the canvas to size itself

according to the width and

height parameters given in

the preceding line. Finally,

tk.update() tells tkinter to

initialize itself for the ani-

mation in our game. Without

this last line, nothing would

work quite as expected.

Make sure you save

your code as you go. Give it

a meaningful filename the

first time you save it, such

as paddleball.py.

196 Chapter 13

Creating the Ball Class
Now we’ll create the class for the ball. We’ll begin with the code we

need for the ball to draw itself on the canvas. Here’s what we need

to do:

•	 Create a class called Ball that takes parameters for the canvas

and the color of the ball we’re going to draw.

•	 Save the canvas as an object variable because we’ll draw our

ball on it.

•	 Draw a filled circle on the canvas using the value of the color

parameter as the fill color.

•	 Save the identifier that tkinter returns when it draws the circle

(oval) because we’re going use this to move the ball around the

screen.

•	 Move the oval to the middle of the canvas.

This code should be added just after the first two lines in the

file (after import time):

from tkinter import *
import random
import time

u class Ball:
v def __init__(self, canvas, color):
w self.canvas = canvas
x self.id = canvas.create_oval(10, 10, 25, 25, fill=color)
y self.canvas.move(self.id, 245, 100)

 def draw(self):
 pass

First, we name our class Ball at u. Then we create an ini-

tialization function (as described in Chapter 8) that takes the

parameters canvas and color at v. At w, we set the object variable

canvas to the value of the parameter canvas.

At x, we call the create_oval function with five parameters: x

and y coordinates for the top-left corner (10 and 10), x and y coor-

dinates for the bottom-right corner (25 and 25), and finally, the fill

color for the oval.

Beginning Your First Game: Bounce! 197

The create_oval function returns an

identifier for the shape that is drawn, which

we store in the object variable id. At y, we

move the oval to the middle of the canvas

(position 245, 100), and the canvas knows

what to move, because we use the stored

shape identifier (the object variable id) to

identify it.

On the last two lines of the Ball class, we

create the draw function with def draw(self),

and the body of the function is simply the

pass keyword. At the moment it does noth-

ing. We’ll add more to this function shortly.

Now that we’ve created our Ball class,

we need to create an object of this class

(remember that a class describes what it can do, but the object is

the thing that actually does it). Add the following code to the bot-

tom of the program to create a red ball object:

ball = Ball(canvas, 'red')

If you run this program now using Run4Run Module, the

canvas will appear for a split second and then vanish. To stop the

window from closing immediately, we need to add an animation

loop, which is called the main loop of our game.

A main loop is the central part of a program that generally

controls most of what it does. Our main loop, for the moment, just

tells tkinter to redraw the screen. The loop keeps running forever

(or at least until we close the window), constantly telling tkinter to

redraw the screen, and then sleeping for one hundredth of a sec-

ond. We’ll add this code to the end of our program:

ball = Ball(canvas, 'red')

while 1:
 tk.update_idletasks()
 tk.update()
 time.sleep(0.01)

198 Chapter 13

Now if you run the code, the ball should appear almost in the

center of the canvas:

Adding some Action
Now that we have the Ball class

set up, it’s time to animate the ball.

We’ll make it move, bounce, and

change direction.

Making the Ball Move
To move the ball, change the draw function as follows:

class Ball:
 def __init__(self, canvas, color):
 self.canvas = canvas
 self.id = canvas.create_oval(10, 10, 25, 25, fill=color)
 self.canvas.move(self.id, 245, 100)

 def draw(self):
 self.canvas.move(self.id, 0, -1)

Since __init__ saved the canvas parameter as the object variable

canvas, we use that variable with self.canvas, and call the function

move on the canvas.

Beginning Your First Game: Bounce! 199

We pass three parameters to move: the id of the oval, and the

numbers 0 and -1. The 0 says don’t move horizontally, and the -1

says move 1 pixel up the screen.

We’re making this small change because it’s a good idea to

try things out as we go. Imagine if we wrote the entire code for

our game at once, and then discovered that it didn’t work. Where

would we start looking to figure out why?

The other change is to the main loop at the bottom of our pro-

gram. In the block of the while loop (that’s our main loop!), we add

a call to the ball object’s draw function, like so:

while 1:
 ball.draw()
 tk.update_idletasks()
 tk.update()
 time.sleep(0.01)

If you run this code now, the ball should move up the canvas

and vanish, because the code forces tkinter to redraw the screen

quickly—the commands update_idletasks and update tell tkinter to

hurry up and draw what is on the canvas.

The command time.sleep is a call to the sleep function of the

time module, which tells Python to sleep for one hundredth of a

 second (0.01). This is to make sure that our program won’t run so

fast that the ball vanishes before you even see it.

So the loop is basically saying: move the ball a little, redraw

the screen with the new position, sleep for a moment, and then

start over again.

note You may see error messages written to the shell when you close the

game window. This is because when you close the window, the code

is breaking out of the while loop, and Python is complaining about it.

Your game should now look like this:

from tkinter import *
import random
import time

class Ball:
 def __init__(self, canvas, color):
 self.canvas = canvas
 self.id = canvas.create_oval(10, 10, 25, 25, fill=color)
 self.canvas.move(self.id, 245, 100)

200 Chapter 13

 def draw(self):
 self.canvas.move(self.id, 0, -1)

tk = Tk()
tk.title("Game")
tk.resizable(0, 0)
tk.wm_attributes("-topmost", 1)
canvas = Canvas(tk, width=500, height=400, bd=0, highlightthickness=0)
canvas.pack()
tk.update()

ball = Ball(canvas, 'red')

while 1:
 ball.draw()
 tk.update_idletasks()
 tk.update()
 time.sleep(0.01)

Making the Ball Bounce
A ball that vanishes off the top of the screen isn’t particularly

useful for a game, so let’s make it bounce. First, we save a few

additional object variables in the initialization function of the Ball

class, like this:

 def __init__(self, canvas, color):
 self.canvas = canvas
 self.id = canvas.create_oval(10, 10, 25, 25, fill=color)
 self.canvas.move(self.id, 245, 100)
 self.x = 0
 self.y = -1
 self.canvas_height = self.canvas.winfo_height()

We’ve added three more lines to our program. With self.x = 0,

we set the object variable x to 0, and then with self.y = -1, we set

the variable y to -1. Finally, we set the object variable canvas_height

by calling the canvas function winfo_height. This function returns

the current height of the canvas.

Next, we change the draw function again:

 def draw(self):
u self.canvas.move(self.id, self.x, self.y)
v pos = self.canvas.coords(self.id)

Beginning Your First Game: Bounce! 201

w if pos[1] <= 0:
 self.y = 1

x if pos[3] >= self.canvas_height:
 self.y = -1

At u, we change the call to the canvas’s move function by passing

the object variables x and y. Next, we create a variable called pos

at v, by calling the canvas function coords. This function returns

the current x and y coordinates of anything drawn on the canvas

as long as you know its identifying number. In this case, we pass

coords the object variable id, which contains the oval’s identifier.

The coords function returns the coordinates as a list of four

numbers. If we print the results of calling this function, we’ll see

something like this:

print(self.canvas.coords(self.id))
[255.0, 29.0, 270.0, 44.0]

The first two numbers in the list (255.0 and 29.0) contain the

top-left coordinates of the oval (x1 and y1); the second two (270.0

and 44.0) are the bottom-right x2 and y2 coordinates. We’ll use

these values in the next few lines of code.

At w, we see if the y1 coordinate (that’s the top of the ball!)

is less than or equal to 0. If so, we set the y object variable to 1.

In effect, we’re saying if you

hit the top of the screen, stop

subtracting one from the verti-

cal position, and therefore stop

 moving up.

At x, we see if the y2 coor-

dinate (that’s the bottom of the

ball!) is greater than or equal

to the variable canvas_height. If

it is, we set the y object variable

back to -1.

Run this code now, and the

ball should bounce up and down

the canvas until you close the

window.

202 Chapter 13

Changing the Ball’s
starting Direction
Making a ball bounce slowly up and

down isn’t much of a game, so let’s

enhance things a bit by changing the

ball’s starting direction—the angle that

it flies off when the game starts. In the

__init__ function, change these lines:

 self.x = 0
 self.y = -1

to the following (make sure you have the right number of spaces—

there are eight—at the beginning of each line):

u starts = [-3, -2, -1, 1, 2, 3]
v random.shuffle(starts)
w self.x = starts[0]
x self.y = -3

At u, we create the variable starts with a list of six numbers,

and then mix up the list at v by calling random.shuffle. At w, we

set the value of x to the first item in the list, so that x can be any

number in the list, from –3 to 3.

If we then change y to –3 at x (to speed up the ball), we need

to make a few more additions to be sure that the ball won’t just

vanish off the side of the screen. Add the following line to the end

of the __init__ function to save the width of the canvas to a new

object variable, canvas_width:

 self.canvas_width = self.canvas.winfo_width()

We’ll use this new object variable in the draw function to see if

the ball has hit the top or bottom of the canvas:

 if pos[0] <= 0:
 self.x = 3
 if pos[2] >= self.canvas_width:
 self.x = -3

Beginning Your First Game: Bounce! 203

Since we’re setting x to 3 and –3, we’ll do the same with y, so

that the ball moves at the same speed in all directions. Your draw

function should now look like this:

 def draw(self):
 self.canvas.move(self.id, self.x, self.y)
 pos = self.canvas.coords(self.id)
 if pos[1] <= 0:
 self.y = 3
 if pos[3] >= self.canvas_height:
 self.y = -3
 if pos[0] <= 0:
 self.x = 3
 if pos[2] >= self.canvas_width:
 self.x = -3

Save and run the code, and the ball should bounce around

the screen without vanishing. And here is what the full program

should look like now:

from tkinter import *
import random
import time

class Ball:
 def __init__(self, canvas, color):
 self.canvas = canvas
 self.id = canvas.create_oval(10, 10, 25, 25, fill=color)
 self.canvas.move(self.id, 245, 100)
 starts = [-3, -2, -1, 1, 2, 3]
 random.shuffle(starts)
 self.x = starts[0]
 self.y = -3
 self.canvas_height = self.canvas.winfo_height()
 self.canvas_width = self.canvas.winfo_width()

 def draw(self):
 self.canvas.move(self.id, self.x, self.y)
 pos = self.canvas.coords(self.id)
 if pos[1] <= 0:
 self.y = 3
 if pos[3] >= self.canvas_height:
 self.y = -3
 if pos[0] <= 0:
 self.x = 3
 if pos[2] >= self.canvas_width:
 self.x = -3

204 Chapter 13

tk = Tk()
tk.title("Game")
tk.resizable(0, 0)
tk.wm_attributes("-topmost", 1)
canvas = Canvas(tk, width=500, height=400, bd=0, highlightthickness=0)
canvas.pack()
tk.update()

ball = Ball(canvas, 'red')

while 1:
 ball.draw()
 tk.update_idletasks()
 tk.update()
 time.sleep(0.01)

What You Learned
In this chapter, we started creating our first game using the

tkinter module. We created a class for a ball and animated it so

that it moves around the screen. We used coordinates to check

when the ball hits the sides of the canvas, so that we can make it

bounce. We also used the shuffle function in the random module, so

our ball doesn’t always start moving in the exact same direction.

In the next chapter, we’ll complete the game by adding the paddle.

14
fInIsHInG YoUR fIRst

GAMe: BoUnCe!

In the previous chapter, we got started creating our

first game: Bounce! We created a canvas and added

a bouncing ball to our game code. But our ball will

bounce around the screen forever (or at least until you

turn your computer off), which doesn’t make for much

of a game. Now we’ll add a paddle for the player to use.

We’ll also add an element of chance to the game, which

will make it a bit more challenging and fun to play.

206 Chapter 14

Adding the Paddle
There’s not much fun to be had with a bounc-

ing ball when there’s nothing to hit it with.

Time to create a paddle!

Begin by adding the following code just

after the Ball class, to create a paddle (you’ll

stick this in a new line below the Ball draw

function):

 def draw(self):
 self.canvas.move(self.id, self.x, self.y)
 pos = self.canvas.coords(self.id)
 if pos[1] <= 0:
 self.y = 3
 if pos[3] >= self.canvas_height:
 self.y = -3
 if pos[0] <= 0:
 self.x = 3
 if pos[2] >= self.canvas_width:
 self.x = -3

class Paddle:
 def __init__(self, canvas, color):
 self.canvas = canvas
 self.id = canvas.create_rectangle(0, 0, 100, 10, fill=color)
 self.canvas.move(self.id, 200, 300)

 def draw(self):
 pass

This added code is almost exactly the same as that of the Ball

class, except that we call create_rectangle (rather than create_oval),

and we move the rectangle to position 200, 300 (200 pixels

across and 300 pixels down).

Next, at the bottom of your code listing, create an object of the

Paddle class, and then change the main loop to call the paddle’s draw

function, as shown here:

paddle = Paddle(canvas, 'blue')
ball = Ball(canvas, 'red')

while 1:
 ball.draw()
 paddle.draw()

Finishing Your First Game: Bounce! 207

 tk.update_idletasks()
 tk.update()
 time.sleep(0.01)

If you run the game now, you should see the bouncing ball and

a stationary rectangular paddle:

Making the Paddle Move
To make the paddle move left and right,

we’ll use event bindings to bind the left and

right arrow keys to new functions in the

Paddle class. When the player presses the

left arrow key, the x variable will be set to

-2 (to move left). Pressing the right arrow

key sets the x variable to 2 (to move right).

The first step is to add the x object

variable to the __init__ function of our

 Paddle class, and also a variable for the can-

vas width, as we did with the Ball class:

 def __init__(self, canvas, color):
 self.canvas = canvas
 self.id = canvas.create_rectangle(0, 0, 100, 10, fill=color)
 self.canvas.move(self.id, 200, 300)
 self.x = 0
 self.canvas_width = self.canvas.winfo_width()

208 Chapter 14

Now we need the functions for changing the direction between

left (turn_left) and right (turn_right). We’ll add these just after the

draw function:

 def turn_left(self, evt):
 self.x = -2

 def turn_right(self, evt):
 self.x = 2

We can bind these functions to the correct key in the __init__

function of the class with these two lines. We used binding in “Mak-

ing an Object React to Something” on page 187 to make Python

call a function when a key is pressed. In this case, we bind the

turn_left function of our Paddle class to the left arrow key using the

event name '<KeyPress-Left>'. We then bind the turn_right function

to the right arrow key using the event name '<KeyPress-Right>'.

Our __init__ function now looks like this:

 def __init__(self, canvas, color):
 self.canvas = canvas
 self.id = canvas.create_rectangle(0, 0, 100, 10, fill=color)
 self.canvas.move(self.id, 200, 300)
 self.x = 0
 self.canvas_width = self.canvas.winfo_width()
 self.canvas.bind_all('<KeyPress-Left>', self.turn_left)
 self.canvas.bind_all('<KeyPress-Right>', self.turn_right)

The draw function for the Paddle class is similar to that for the

Ball class:

 def draw(self):
 self.canvas.move(self.id, self.x, 0)
 pos = self.canvas.coords(self.id)
 if pos[0] <= 0:
 self.x = 0
 elif pos[2] >= self.canvas_width:
 self.x = 0

We use the canvas’s move function to move the paddle in the

direction of the x variable with self.canvas.move(self.id, self.x, 0).

Then we get the paddle’s coordinates to see if it has hit the left or

right side of the screen using the value in pos.

Finishing Your First Game: Bounce! 209

Rather than bouncing like the ball, the paddle should stop

moving. So, when the left x coordinate (pos[0]) is less than or equal

to 0 (<= 0), we set the x variable to 0 with self.x = 0. In the same

way, when the right x coordinate (pos[2]) is greater than or equal

to the canvas width (>= self.canvas_width), we also set the x vari-

able to 0 with self.x = 0.

note If you run the program now, you’ll need to click the canvas before

the game will recognize the left and right arrow key actions. Click-

ing the canvas gives the canvas focus, which means it knows to

take charge when someone presses a key on the keyboard.

finding out When the
Ball Hits the Paddle
At this point in our code, the ball

won’t hit the paddle; in fact, the ball

will fly straight through the paddle.

The ball needs to know when it has

hit the paddle, just as the ball needs

to know when it has hit a wall.

We could solve this problem by adding code to the draw function

(where we have code that checks for walls), but it’s a better idea

to move this sort of code into new functions to break things into

smaller chunks. If we put too much code in one place (inside one

function, for example), we can make the code much more difficult

to understand. Let’s make the necessary changes.

First, we change the ball’s __init__ function so that we can

pass in the paddle object as a parameter:

class Ball:
u def __init__(self, canvas, paddle, color):

 self.canvas = canvas
v self.paddle = paddle

 self.id = canvas.create_oval(10, 10, 25, 25, fill=color)
 self.canvas.move(self.id, 245, 100)
 starts = [-3, -2, -1, 1, 2, 3]
 random.shuffle(starts)
 self.x = starts[0]
 self.y = -3
 self.canvas_height = self.canvas.winfo_height()
 self.canvas_width = self.canvas.winfo_width()

210 Chapter 14

Notice at u that we change the parameters of __init__ to

include the paddle. Then at v, we assign the paddle parameter

to the object variable paddle.

Having saved the paddle object, we need to change the code

where we create the ball object. This change is at the bottom of

the program, just before the main loop:

paddle = Paddle(canvas, 'blue')
ball = Ball(canvas, paddle, 'red')

while 1:
 ball.draw()
 paddle.draw()
 tk.update_idletasks()
 tk.update()
 time.sleep(0.01)

The code we need to see if the ball has struck the paddle is a

little more complicated than the code to check for walls. We’ll call

this function hit_paddle and add it to the draw function of the Ball

class, where we see if the ball has hit the bottom of the screen:

 def draw(self):
 self.canvas.move(self.id, self.x, self.y)
 pos = self.canvas.coords(self.id)
 if pos[1] <= 0:
 self.y = 3
 if pos[3] >= self.canvas_height:
 self.y = -3
 if self.hit_paddle(pos) == True:
 self.y = -3
 if pos[0] <= 0:
 self.x = 3
 if pos[2] >= self.canvas_width:
 self.x = -3

As you can see in the new code we added, if hit_paddle returns

True, we change the direction of the ball by setting the y object vari-

able to -3 with self.y = -3. But don’t try to run the game now—we

haven’t created the hit_paddle function yet. Let’s do that now.

Add the hit_paddle function just before the draw function.

Finishing Your First Game: Bounce! 211

u def hit_paddle(self, pos):
v paddle_pos = self.canvas.coords(self.paddle.id)
w if pos[2] >= paddle_pos[0] and pos[0] <= paddle_pos[2]:
x if pos[3] >= paddle_pos[1] and pos[3] <= paddle_pos[3]:

 return True
 return False

First, we define the function with the parameter pos at u. This

line contains the ball’s current coordinates. Then, at v, we get the

paddle’s coordinates and store them in the variable paddle_pos.

At w, we have the first part of our if-then statement, and we

say, “If the right side of the ball is greater than the left side of

the paddle, and the left side of the ball is less than the right side

of the paddle . . .” Here, pos[2] contains the x coordinate for the

ball’s right side, and pos[0] contains the x coordinate for its left

side. The variable paddle_pos[0] contains the x coordinate for the

paddle’s left side, and paddle_pos[2] contains its x coordinate for

the right side. The following diagram shows how these coordinates

look when the ball is about to hit the paddle.

pos[0] pos[2]

paddle_pos[0] paddle_pos[2]

The ball is falling toward the paddle, but in this case, you see

that the right side of the ball (pos[2]) hasn’t yet crossed over the

left side of the paddle (that’s paddle_pos[0]).

At x, we see if the bottom of the ball (pos[3]) is between the

paddle’s top (paddle_pos[1]) and bottom (paddle_pos[3]). In the next

diagram, you can see that the bottom of the ball (pos[3]) has yet to

hit the top of the paddle (paddle_pos[1]).

212 Chapter 14

pos[1]

pos[3]

paddle_pos[1]

paddle_pos[3]

So, based on the current position of the ball, the hit_paddle

function would return false.

note Why do we need to see if the bottom of the ball is between the top

and bottom of the paddle? Why not just see if the bottom of the ball

has hit the top of the paddle? Because each time we move the ball

across the canvas, we move in 3-pixel jumps. If we just checked to

see if the ball had reached the top of the paddle (pos[1]), we might

have jumped past that position. In that case, the ball would con-

tinue traveling, and it would pass through the paddle without

stopping.

Adding an element of Chance
Now it’s time to turn our program

into a game rather than just a bounc-

ing ball and a paddle. Games need

an element of chance—some way for

the player to lose. In our current

game, the ball will bounce forever,

so there’s nothing to lose.

We’ll finish our game by adding

code that says that the game ends if

the ball hits the bottom of the can-

vas (in other words, once it hits the

ground).

Finishing Your First Game: Bounce! 213

First, we add the hit_bottom object variable to the bottom of the

Ball class’s __init__ function:

 self.canvas_height = self.canvas.winfo_height()
 self.canvas_width = self.canvas.winfo_width()
 self.hit_bottom = False

Then we change the main loop at the bottom of the program,

like this:

while 1:
 if ball.hit_bottom == False:
 ball.draw()
 paddle.draw()
 tk.update_idletasks()
 tk.update()
 time.sleep(0.01)

Now the loop keeps checking hit_bottom to see if the ball has

indeed hit the bottom of the screen. The code should continue mov-

ing the ball and paddle only if the ball hasn’t touched the bottom,

as you can see in our if statement. The game ends when the ball

and paddle stop moving. (We no longer animate them.)

The final change is to the draw function of the Ball class:

 def draw(self):
 self.canvas.move(self.id, self.x, self.y)
 pos = self.canvas.coords(self.id)
 if pos[1] <= 0:
 self.y = 3
 if pos[3] >= self.canvas_height:
 self.hit_bottom = True
 if self.hit_paddle(pos) == True:
 self.y = -3
 if pos[0] <= 0:
 self.x = 3
 if pos[2] >= self.canvas_width:
 self.x = -3

We altered the if statement to see if the ball has hit the bottom

of the screen (that is, if it is greater than or equal to canvas_height).

If so, in the following line, we set hit_bottom to True, rather than

changing the value of the y variable, because there’s no need to

bounce the ball once it hits the bottom of the screen.

214 Chapter 14

When you run the game now and miss hitting the ball with

the paddle, all movement on your screen should stop, and the game

will end once the ball touches the bottom of the canvas:

Your program should now look like the following code. If you

have trouble getting your game to work, check what you’ve entered

against this code.

from tkinter import *
import random
import time

class Ball:
 def __init__(self, canvas, paddle, color):
 self.canvas = canvas
 self.paddle = paddle
 self.id = canvas.create_oval(10, 10, 25, 25, fill=color)
 self.canvas.move(self.id, 245, 100)
 starts = [-3, -2, -1, 1, 2, 3]
 random.shuffle(starts)
 self.x = starts[0]
 self.y = -3
 self.canvas_height = self.canvas.winfo_height()
 self.canvas_width = self.canvas.winfo_width()
 self.hit_bottom = False

Finishing Your First Game: Bounce! 215

 def hit_paddle(self, pos):
 paddle_pos = self.canvas.coords(self.paddle.id)
 if pos[2] >= paddle_pos[0] and pos[0] <= paddle_pos[2]:
 if pos[3] >= paddle_pos[1] and pos[3] <= paddle_pos[3]:
 return True
 return False

 def draw(self):
 self.canvas.move(self.id, self.x, self.y)
 pos = self.canvas.coords(self.id)
 if pos[1] <= 0:
 self.y = 3
 if pos[3] >= self.canvas_height:
 self.hit_bottom = True
 if self.hit_paddle(pos) == True:
 self.y = -3
 if pos[0] <= 0:
 self.x = 3
 if pos[2] >= self.canvas_width:
 self.x = -3

class Paddle:
 def __init__(self, canvas, color):
 self.canvas = canvas
 self.id = canvas.create_rectangle(0, 0, 100, 10, fill=color)
 self.canvas.move(self.id, 200, 300)
 self.x = 0
 self.canvas_width = self.canvas.winfo_width()
 self.canvas.bind_all('<KeyPress-Left>', self.turn_left)
 self.canvas.bind_all('<KeyPress-Right>', self.turn_right)

 def draw(self):
 self.canvas.move(self.id, self.x, 0)
 pos = self.canvas.coords(self.id)
 if pos[0] <= 0:
 self.x = 0
 elif pos[2] >= self.canvas_width:
 self.x = 0

 def turn_left(self, evt):
 self.x = -2

 def turn_right(self, evt):
 self.x = 2

216 Chapter 14

tk = Tk()
tk.title("Game")
tk.resizable(0, 0)
tk.wm_attributes("-topmost", 1)
canvas = Canvas(tk, width=500, height=400, bd=0, highlightthickness=0)
canvas.pack()
tk.update()

paddle = Paddle(canvas, 'blue')
ball = Ball(canvas, paddle, 'red')

while 1:
 if ball.hit_bottom == False:
 ball.draw()
 paddle.draw()
 tk.update_idletasks()
 tk.update()
 time.sleep(0.01)

What You Learned
In this chapter, we finished creating

our first game using the tkinter module.

We created classes for the paddle used in

our game, and used coordinates to check

when the ball hits the paddle or the walls

of our game canvas. We used event bind-

ings to bind the left and right arrow keys

to the movement of the paddle, and used

the main loop to call the draw function, to

animate it. Finally, we changed our code

to give our game an element of chance, so

that when the player misses the ball, the

game is over when the ball hits the bot-

tom of the canvas.

Programming Puzzles
At the moment, our game is a bit simple. There’s a lot you could

change to create a more professional game. Try enhancing your

code in the following ways to make it more interesting, and then

check your answers at http://python-for-kids.com/.

Finishing Your First Game: Bounce! 217

#1: Delay the Game start
Our game starts a bit quickly, and you need to click the canvas

before it will recognize pressing the left and right arrow keys on

your keyboard. Can you add a delay to the start of the game in

order to give the player enough time to click the canvas? Or even

better, can you add an event binding for a mouse click, which

starts the game only then?

Hint 1: You’ve already added event bindings to the Paddle class,

so that might be a good place to start.

Hint 2: The event binding for the left mouse button is the

string '<Button-1>'.

#2: A Proper “Game over”
Everything just freezes when the game ends, and that’s not very

player-friendly. Try adding the text “Game Over” when the ball

hits the bottom of the screen. You can use the create_text func-

tion, but you might also find the named parameter state useful (it

takes values such as normal and hidden). Have a look at itemconfig in

“More Ways to Use the Identifier” on page 188. As an additional

challenge, add a delay so that the text doesn’t appear right away.

#3: Accelerate the Ball
If you play tennis, you know that when a ball hits your racket, it

sometimes flies away faster than the speed at which it arrived,

depending on how hard you swing. The ball in our game goes at

the same speed, whether or not the paddle is moving. Try chang-

ing the program so that the paddle’s speed is passed on to the

speed of the ball.

#4: Record the Player’s score
How about recording the score? Every time the ball hits the paddle,

the score should increase. Try displaying the score at the top-right

corner of the canvas. You might want to look back at itemconfig in

“More Ways to Use the Identifier” on page 188 for a hint.

Part III

Mr. stick Man
Races for
the exit

15
CReAtInG GRAPHICs foR
tHe MR. stICK MAn GAMe

It’s a good idea to develop a plan when creating a game

(or any program). Your plan should include a descrip-

tion of what the game is about, as well as a description

of the game’s major elements and characters. When it’s

time to start programming, your description will help

keep you focused on what you are trying to develop.

Your game might not turn out exactly like the original

description—and that’s okay as well.

In this chapter, we’ll begin developing a fun game

called Mr. Stick Man Races for the Exit.

222 Chapter 15

Mr. stick Man Game Plan
Here’s the description of our new game:

•	 Secret agent Mr. Stick Man is trapped in

the lair of Dr. Innocuous, and you want to

help him escape through the exit on the

top floor.

•	 The game has a stick figure that can

run from left to right and jump up. There

are platforms on each floor that he must

jump to.

•	 The goal of the game is to reach the door

to the exit, before it’s too late and the

game ends.

Based on this description, we know we’ll need several images,

including ones for Mr. Stick Man, the platforms, and the door.

We’ll obviously need code to pull all this together, but before we

get there, we’ll create the graphics for our game in this chapter.

That way, we’ll have something to work with in the next chapter.

How will we draw the elements in our game? We could use

graphics like the ones that we created for the bouncing ball and

paddle in the previous chapters, but those are far too simple for

this game. Instead, we’re going to create sprites.

Sprites are the things in a game—typically a character of

some kind. Sprites are usually prerendered, meaning they are

drawn in advance (before the program runs) rather than being

created by the program itself using polygons, as in our Bounce!

game. Mr. Stick Man will be a sprite, and the platforms will be

sprites, too. In order to create these images, you’ll need to install

a graphics program.

Getting GIMP
Several graphics programs are available, but for this game, we

need one that supports transparency (sometimes called the alpha

channel), which lets images have sections where no colors are

drawn on the screen. We need images with transparent parts

Creating Graphics for the Mr. Stick Man Game 223

because when one image passes over or near another as it moves

across the screen, we don’t want the background of one image to

wipe out part of another. For example, in this image, the checker-

board pattern in the background represents the transparent area:

So if we copy the entire image and paste it over the top of

another image, the background won’t wipe anything out:

224 Chapter 15

GIMP (http://www.gimp.org/), short for GNU Image Manipu-

lation Program, is a free graphics program for Linux, Mac OS X,

and Windows that supports transparent images. Download and

install it as follows:

•	 If you’re using Windows, you’ll be able to find Windows

 installers on the GIMP-WIN project page at http://gimp-win

.sourceforge.net/stable.html.

•	 If you’re using Ubuntu, install GIMP by opening the Ubuntu

Software Center and entering gimp in the search box. Click

the Install button for the GIMP Image Editor when it appears

in the results.

•	 If you’re using Mac OS X, download an application bundle

from http://gimp.lisanet.de/Website/Download.html.

You should also create a directory for your game. To do so,

right-click your desktop anywhere there is empty space and select

New4Folder (on Ubuntu, the option is Create New Folder; on

Mac OS X, it’s New Folder). In the dialog, enter stickman for the

folder name.

Creating the Game elements
Once you have your graphics program installed, you’re ready to

draw. We’ll create these images for our game elements:

•	 Images for a stick figure that can run left and right and jump

•	 Images for the platform, in three different sizes

•	 Images for the door: one open and one closed

•	 An image for the game’s background (because a plain white or

gray background makes for a boring game)

Before we start drawing, we need to prepare our images with

transparent backgrounds.

Preparing a transparent Image
To set up an image with transparency—an alpha channel—start

up GIMP, and then follow these steps:

1. Select File4New.

Creating Graphics for the Mr. Stick Man Game 225

2. In the dialog, enter 27 pixels for the image width and 30 pixels

for its height.

3. Select Layer4Transparency4Add Alpha Channel.

4. Select Select4All.

5. Select Edit4Cut.

The end result should be an image filled with a checkerboard

of dark gray and light gray, as shown here (zoomed in):

Now we can begin creating our secret agent: Mr. Stick Man.

Drawing Mr. stick Man
To draw our first stick figure image, click

the Paintbrush tool in the GIMP Toolbox,

and then select the brush that looks like

a small dot in the Brushes toolbar (usu-

ally at the bottom right of the screen), as

shown on the right.

We’ll draw three different images

(or frames) for our stick figure to show

him running and jumping to the right.

We’ll use these frames to animate

Mr. Stick Man, as we did for the ani-

mation in Chapter 12.

226 Chapter 15

If you zoom in to look at these images, they might look

like this:

Your images don’t need to look exactly the same, but they should

have the stick figure with three different positions of movement.

Remember that each one is 27 pixels wide by 30 pixels tall.

Mr. stick Man Running to the Right

First, we’ll draw a sequence of frames for Mr. Stick Man running

to the right. Create the first image as follows:

1. Draw the first image (the leftmost image in the preceding

illustration).

2. Select File4Save As.

3. In the dialog, enter figure-R1.gif for the name. Then click the

small plus (+) button labeled Select File Type.

4. Select GIF image in the list that appears.

5. Save the file to the stickman directory you created earlier (click

Browse for Other Folders to find the correct directory).

Follow the same steps to create

a new 27 pixel by 30 pixel image,

and then draw the next Mr. Stick

Man image. Save this image as

figure-R2.gif. Repeat the process

for the final image, and save it as

figure-R3.gif.

Creating Graphics for the Mr. Stick Man Game 227

Mr. stick Man Running to the Left

Rather than re-creating our drawings for the stick figure moving

to the left, we can use GIMP to flip our frames of Mr. Stick Man

moving to the right.

In GIMP, open each image in sequence, and then select Tools4
Transform Tools4Flip. When you click the image, you should see

it flip from side to side. Save the images as figure-L1.gif, figure-L2

.gif, and figure-L3.gif.

Now we’ve created six images for Mr. Stick Man, but we still

need images for the platforms and the door for the exit.

Drawing the Platforms
We’ll create three platforms in differ-

ent sizes: 100 pixels wide by 10 pixels

tall, 60 pixels wide by 10 pixels tall, and

30 pixels wide by 10 pixels tall. You can

draw the platforms any way that you

like, but make sure that their back-

grounds are transparent, as with the

stick figure images.

228 Chapter 15

Here’s what the three platform images might look like

zoomed in:

As with the stick figure images, save these in the stickman

directory. Call the smallest platform platform1.gif, the middle-

sized one platform2.gif, and the largest one platform3.gif.

Drawing the Door
The size of the door should be proportional to the size of Mr. Stick

Man (27 pixels wide by 30 pixels tall), and we need two images:

one for the closed door and another for the open door. The doors

might look like this (again zoomed in):

To create these images, follow these steps:

1. Click the foreground color box (at the bot-

tom of the GIMP Toolbox) to display the

color chooser. Select the color you want for

your door. On the right is an example with

yellow selected.

2. Choose the Bucket tool (shown selected

in the Toolbox), and fill the screen with the

color you chose.

3. Change the foreground color to black.

Creating Graphics for the Mr. Stick Man Game 229

4. Choose either the Pencil or Paintbrush tool (to the right of the

Bucket tool), and draw the black outline of the door and the

doorknob.

5. Save these in the stickman directory, and call them door1.gif

and door2.gif.

Drawing the Background
The final image we need to create is the background. We’ll make

this image 100 pixels wide by 100 pixels tall. It does not need a

transparent background because we’ll fill it with a single color that

will be the background “wallpaper” behind all the other elements

of the game.

To create the background, select File4New and give the

image’s size as 100 pixels wide and 100 pixels tall. Choose a suit-

ably evil color for the wallpaper of a villain’s lair. I chose a darker

shade of pink.

You can dress up your wallpaper with flowers, stripes, stars,

and such—whatever you think looks suitable for the game. For

example, if you want to add stars to the wallpaper, choose another

color, select the Pencil tool, and draw your first star. Then use the

Selection tool to select a box around the star, and copy and paste

it around the image (select Edit4Copy, and then Edit4Paste).

You should be able to drag the pasted image around the screen by

clicking it. Here’s an example with some stars, and the Selection

tool selected in the Toolbox:

230 Chapter 15

Once you’re happy with your drawing, save the image as

background.gif in the stickman directory.

transparency
With our graphics created, you can get a better of idea of why our

images (other than the background) need transparency. What

would happen if we placed Mr. Stick Man in front of our back-

ground wallpaper and he didn’t have a transparent background?

Here’s the answer:

The white background of Mr. Stick Man wipes out part of the

wallpaper. But if we use our transparent image, we get this:

Nothing in the background is obscured by the stick figure

image, except for whatever he covers himself. That’s much more

professional!

Creating Graphics for the Mr. Stick Man Game 231

What You Learned
In this chapter, you learned how to

write a basic plan for a game (Mr. Stick

Man Races for the Exit in this case)

and figured out where to begin. Because

we need graphical elements before we

can make a game, we used a graphics

program to create the basic graphics for

our game. In the process, you learned

how to make the backgrounds of these

images transparent so they don’t cover

up other images on the screen.

In the next chapter, we’ll create

some of the classes for our game.

16
DeVeLoPInG tHe

MR. stICK MAn GAMe

Now that we’ve created the images for our Mr. Stick

Man Races for the Exit game, we can begin to develop

the code. The description of the game in the previous

 chapter gives us a basic idea of what we need: a stick

figure that can run and jump, and platforms that he

must jump to.

We’ll need code to display the stick figure and

move it across the screen, as well as to draw platforms.

But before we write that code, we need to create the

canvas to display our background image.

234 Chapter 16

Creating the Game Class
First, we’ll create a class called Game, which will be our program’s

main controller. The Game class will have an __init__ function for ini-

tializing the game and a mainloop function for doing the animation.

setting the Window title and
 Creating the Canvas
In the first part of the __init__ function, we’ll set the window title

and create the canvas. As you’ll see, this part of the code is simi-

lar to the code that we wrote for the Bounce! game in Chapter 13.

Open your editor and enter the following code, and then save your

file as stickmangame.py. Make sure you save it in the directory we

created in Chapter 15 (called stickman).

from tkinter import *
import random
import time

class Game:
 def __init__(self):
 self.tk = Tk()
 self.tk.title("Mr. Stick Man Races for the Exit")
 self.tk.resizable(0, 0)
 self.tk.wm_attributes("-topmost", 1)
 self.canvas = Canvas(self.tk, width=500, height=500, \
 highlightthickness=0)
 self.canvas.pack()
 self.tk.update()
 self.canvas_height = 500
 self.canvas_width = 500

In the first half of this program (from from tkinter import * to

self.tk.wm_attributes), we create the tk object and then set the win-

dow title with self.tk.title to ("Mr. Stick Man Races for the Exit").

We make the window fixed (so it can’t be resized) by calling the

resizable function, and then we move the window in front of all

other windows with the wm_attributes function.

Next, we create the canvas with the self.canvas = Canvas line,

and call the pack and update functions of the tk object. Finally, we

create two variables for our Game class, height and width, to store the

height and width of the canvas.

Developing the Mr. Stick Man Game 235

note The backslash (\) in the self.canvas = Canvas line is used only to

separate the long line of code. It’s not required, but I’ve included it

here for readability since the entire line won’t fit on the page.

finishing the _init_ function
Now enter the rest of the __init__ function into the stickfiguregame

.py file that you just created. This code will load the background

image and then display it on the canvas:

 self.tk.update()
 self.canvas_height = 500
 self.canvas_width = 500

u self.bg = PhotoImage(file="background.gif")
v w = self.bg.width()

 h = self.bg.height()
w for x in range(0, 5):
x for y in range(0, 5):
y self.canvas.create_image(x * w, y * h, \

 image=self.bg, anchor='nw')
z self.sprites = []

 self.running = True

At u, we create the variable bg, which contains a PhotoImage

object—the background image file called background.gif that we

created in Chapter 15. Next, beginning at v, we store the width

and height of the image in the variables w and h. The PhotoImage

class functions width and height return the size of the image once

it has been loaded.

Next come two loops inside this func-

tion. To understand what they do, imagine

that you have a small square rubber stamp,

an ink pad, and a large piece of paper. How

are you going to fill the paper with colored

squares using the stamp? Well, you could

just randomly cover the page with stamps

until it’s filled. The result would be a mess,

and it would take a while to complete, but

it would fill the page. Or you could start

stamping down the page in a column and

then move back to the top and start stamp-

ing down the page in the next column, as

shown on the right.

236 Chapter 16

The background image we created in the previous chapter

is our stamp. We know that the canvas is 500 pixels across and

500 pixels down, and that we created a background image of

100 pixels square. This tells us that we need five columns across

and five rows down to fill the screen with images. We use the loop

at w to calculate the columns across, and the loop at x to calculate

rows going down.

At y, we multiply the first loop variable x by the width of the

image (x * w) to determine how far across we’re drawing, and then

multiply the second loop variable y by the height of the image (y * h)

to calculate how far down to draw. We use the create_image function

of the canvas object (self.canvas.create_image) to draw the image on

the screen using those coordinates.

Finally, beginning with z, we create the variables sprites,

which holds an empty list, and running, which contains the Boolean

value True. We’ll use these variables later in our game code.

Creating the mainloop function
We’ll use the mainloop function in the Game class to animate our

game. This function looks a lot like the main loop (or animation

loop) we created for the Bounce! game in Chapter 13. Here it is:

 for x in range(0, 5):
 for y in range(0, 5):
 self.canvas.create_image(x * w, y * h, \
 image=self.bg, anchor='nw')
 self.sprites = []
 self.running = True

 def mainloop(self):
u while 1:
v if self.running == True:
w for sprite in self.sprites:
x sprite.move()
y self.tk.update_idletasks()

 self.tk.update()
 time.sleep(0.01)

At u, we create a while loop that will run until the game win-

dow is closed. Next, at v, we check to see if the variable running

is equal to True. If it is, we loop through any sprites in the list of

sprites (self.sprites) at w, calling the function move for each one

at x. (Of course, we have yet to create any sprites, so this code

Developing the Mr. Stick Man Game 237

wouldn’t do anything if you ran the program

now, but it will be useful later.)

The last three lines of the function, begin-

ning at y, force the tk object to redraw the

screen and sleep for a fraction of a second, as

we did with the Bounce! game in Chapter 13.

So that you can run this code, add the

following two lines (note that there’s no inden-

tation required for these two lines) and save

the file.

g = Game()
g.mainloop()

note Be sure to add this code to the bottom of your game file. Also, make

sure that your images are in the same directory as the Python file.

If you created the stickman directory in Chapter 15 and saved all

your images there, the Python file for this game should be there

as well.

This code creates an object of the Game class and saves it as the

variable g. We then call the mainloop function on the new object to

draw the screen.

Once you’ve saved the program, run it in IDLE by choosing

Run4Run Module. You will see a window appear with the back-

ground image filling the canvas.

238 Chapter 16

We’ve added a nice background for our game, and created

an animation loop that will draw sprites for us (once we’ve cre-

ated them).

Creating the Coords Class
Now we’ll create the class that we’ll use to specify the position of

something on our game screen. This class will store the top-left (x1

and y1) and bottom-right (x2 and y2) coordinates of any component

of our game.

Here’s how you might record the position of the stick figure

image using these coordinates:

x1,y1

x2,y2

We’ll call our new class Coords, and it will contain only an

__init__ function, where we pass the four parameters (x1, y1, x2,

and y2). Here’s the code to add (put it at the beginning of the

stickmangame.py file):

class Coords:
 def __init__(self, x1=0, y1=0, x2=0, y2=0):
 self.x1 = x1
 self.y1 = y1
 self.x2 = x2
 self.y2 = y2

Notice that each parameter is saved as an object variable of

the same name (x1, y1, x2, and y2). We’ll be using objects of this

class shortly.

Developing the Mr. Stick Man Game 239

Checking for Collisions
Once we know how to store the position of our game sprites, we

need a way to tell if one sprite has collided with another, like when

Mr. Stick Man jumps around the screen and bangs into one of

the platforms. To make this problem easier to solve, we can break

it down into two smaller problems: checking if sprites are collid-

ing vertically and checking if sprites are colliding horizontally.

Then we can combine our two smaller solutions to easily see if two

sprites are colliding in any direction!

sprites Colliding Horizontally
First, we’ll create the within_x function to determine if one set of

x coordinates (x1 and x2) has crossed over another set of x coordi-

nates (again, x1 and x2). There’s more than one way to do this, but

here’s a simple approach which you can add just below the Coords

class:

class Coords:
 def __init__(self, x1=0, y1=0, x2=0, y2=0):
 self.x1 = x1
 self.y1 = y1
 self.x2 = x2
 self.y2 = y2

def within_x(co1, co2):
u if co1.x1 > co2.x1 and co1.x1 < co2.x2:
v return True
w elif co1.x2 > co2.x1 and co1.x2 < co2.x2:
x return True
y elif co2.x1 > co1.x1 and co2.x1 < co1.x2:

 return True
z elif co2.x2 > co1.x1 and co2.x2 < co1.x1:

 return True
{ else:
| return False

The within_x function takes the parameters co1 and co2, both

Coords objects. At u, we check to see if the leftmost position of

the first coordinate object (co1.x1) is between the leftmost position

(co2.x1) and the rightmost position (co2.x2) of the second coordinate

object. We return True at v if it is.

240 Chapter 16

Let’s take a look at two lines with overlapping x coordinates to

understand how this works. Each line starts at x1 and finishes at x2.

x1=50 x2=100

x1=40 x2=150

The first line in this diagram (co1) starts at pixel position 50

(x1) and finishes at 100 (x2). The second line (co2) starts at position

40 and finishes at 150. In this case, because the x1 position of the

first line is between the x1 and x2 positions of the second line,

the first if statement in the function would be true for these two

sets of coordinates.

With the elif at w, we see whether the rightmost position of

the first line (co1.x2) is between the leftmost position (co2.x1) and

rightmost position (co2.x2) of the second. If it is, we return True at x.

The two elif statements at y and z do almost the same thing: They

check the leftmost and rightmost positions of the second line (co2)

against the first (co1).

If none of the if statements match, we reach else at {, and

return False at |. This is effectively saying, “No, the two coordi-

nate objects do not cross over each other horizontally.”

To see an example of the function working, look back at the

diagram showing the first and second lines. The x1 and x2 positions

of the first coordinate object are 40 and 100, and the x1 and x2 posi-

tions of the second coordinate object are 50 and 150. Here’s what

happens when we call the within_x function that we wrote:

>>> c1 = Coords(40, 40, 100, 100)
>>> c2 = Coords(50, 50, 150, 150)
>>> print(within_x(c1, c2))
True

The function returns True. This is the first step to being

able to determine whether one sprite has bumped into another.

For example, when we create a class for Mr. Stick Man and for

the platforms, we will be able to tell if their x coordinates have

crossed one another.

Developing the Mr. Stick Man Game 241

It’s not really good programming practice to have lots of if or

elif statements that return the same value. To solve this problem,

we can shorten the within_x function by surrounding each of its

conditions with parentheses, separated by the or keyword. If you

want a slightly neater function, with a few less lines of code, you

can change the function so it looks like this:

def within_x(co1, co2):
 if (co1.x1 > co2.x1 and co1.x1 < co2.x2) \
 or (co1.x2 > co2.x1 and co1.x2 < co2.x2) \
 or (co2.x1 > co1.x1 and co2.x1 < co1.x2) \
 or (co2.x2 > co1.x1 and co2.x2 < co1.x1):
 return True
 else:
 return False

To extend the if statement across multiple lines so that we

don’t end up with one really long line containing all the conditions,

we use a backslash (\), as shown above.

sprites Colliding Vertically
We also need to know if sprites collide

vertically. The within_y function is very

similar to the within_x function. To create

it, we check whether the y1 position of the

first coordinate has crossed over the y1

and y2 positions of the second, and then

vice versa. Here’s the function to add (put

it below the within_x function)—this time

we’ll write it using the shorter version of

the code (rather than lots of if statements):

def within_y(co1, co2):
 if (co1.y1 > co2.y1 and co1.y1 < co2.y2) \
 or (co1.y2 > co2.y1 and co1.y2 < co2.y2) \
 or (co2.y1 > co1.y1 and co2.y1 < co1.y2) \
 or (co2.y2 > co1.y1 and co2.y2 < co1.y1):
 return True
 else:
 return False

242 Chapter 16

Putting It All together:
our final Collision-Detection Code
Once we’ve determined whether one set of x coordinates has

crossed over another, and done the same for y coordinates, we can

write functions to see whether a sprite has hit another sprite and

on which side. We’ll do this with the functions collided_left, col-

lided_right, collided_top, and collided_bottom.

the collided_left function

Here’s the code for the collided_left function, which you can add

below the two within functions we just created:

u def collided_left(co1, co2):
v if within_y(co1, co2):
w if co1.x1 <= co2.x2 and co1.x1 >= co2.x1:
x return True
y return False

This function tells us whether the left-hand side (the x1 value)

of a first coordinate object has hit another coordinate object.

The function takes two parameters: co1 (the first coordinate

object) and co2 (the second coordinate object). As you can see at u,

we check whether the two coordinate objects have crossed over verti-

cally, using the within_y function at v. After all, there’s no point in

checking whether Mr. Stick Man has hit a platform if he is floating

way above it, like this:

x1,y1

x1,y1

x1,y1

x2,y2

Developing the Mr. Stick Man Game 243

At w, we see if the value of the left-

most position of the first coordinate object

(co1.x1) has hit the x2 position of the sec-

ond coordinate object (co2.x2)—that it is

less than or equal to the x2 position. We

also check to make sure that it hasn’t

gone past the x1 position. If it has hit the

side, we return True at x. If none of the if

statements are true, we return False at y.

the collided_right function

The collided_right function looks a lot like collided_left:

def collided_right(co1, co2):
u if within_y(co1, co2):
v if co1.x2 >= co2.x1 and co1.x2 <= co2.x2:
w return True
x return False

As with collided_left, we check to see if the y coordinates have

crossed over each other using the within_y function at u. We then

check to see if the x2 value is between the x1 and x2 positions of the

second coordinate object at v, and return True at w if it is. Other-

wise, we return False at x.

the collided_top function

The collided_top function is very similar to the two functions we

just added.

def collided_top(co1, co2):
u if within_x(co1, co2):
v if co1.y1 <= co2.y2 and co1.y1 >= co2.y1:

 return True
 return False

The difference is that this time, we check to see if the coordi-

nates have crossed over horizontally, using the within_x function

at u. Next, at v, we see if the topmost position of the first coor-

dinate (co1.y1) has crossed over the y2 position of the second

coordinate, but not its y1 position. If so, we return True (mean-

ing that yes, the top of the first coordinate has hit the second

coordinate).

244 Chapter 16

the collided_bottom function

Of course, you knew that one of these four functions had to be just

a bit different, and it is. Here’s the collided_bottom function:

def collided_bottom(y, co1, co2):
u if within_x(co1, co2):
v y_calc = co1.y2 + y
w if y_calc >= co2.y1 and y_calc <= co2.y2:
x return True
y return False

This function takes an additional parameter, y, a value that

we add to the y position of the first coordinate. At u, we see if

the coordinates have crossed over horizontally (as we did with

 collided_top). Next, we add the value of the y parameter to the first

coordinate’s y2 position, and store the result in the variable y_calc

at v. If at w the newly calculated value is between the y1 and y2

values of the second coordinate, we return True at x because the

bottom of coordinate co1 has hit the top of coordinate co2. However,

if none of the if statements are true, we return False at y.

We need the additional y parameter because Mr. Stick Man

could fall off a platform. Unlike with the other collided functions,

we need to be able to test to see if he would collide at the bottom,

rather than whether he already has. If he walks off a platform and

keeps floating in midair, our game won’t be very realistic; so as he

walks, we check to see if he has collided with something on the left

or right. However, when we check below him, we see if he would

collide with the platform; if not, he needs to go crashing down!

Creating the sprite Class
We’ll call the parent class for our game items Sprite. This class will

provide two functions: move to move the sprite and coords to return

the sprite’s current position on the screen. Here’s the code for the

Sprite class.

class Sprite:
u def __init__(self, game):
v self.game = game
w self.endgame = False
x self.coordinates = None

Developing the Mr. Stick Man Game 245

y def move(self):
z pass
{ def coords(self):
| return self.coordinates

The Sprite class’s __init__ function defined at u takes a single

parameter: game. This parameter will be the game object. We need it

so that any sprite we create will be able to access the list of other

sprites in the game. We store the game parameter as an object vari-

able at v.

At w, we store the object variable endgame, which we’ll use to

indicate the end of the game. (At the moment, it’s set to False.) The

final object variable, coordinates at x, is set to nothing (None).

The move function defined at y does nothing in this parent

class, so we use the pass keyword in the body of this function

at z. The coords function at { simply returns the object variable

 coordinates at |.

So our Sprite class has a move function

that does nothing and a coords function that

returns no coordinates. It doesn’t sound

very useful, does it? However, we know

that any classes that have Sprite as their

parent will always have move and coords

functions. So, in the main loop of the game,

when we loop through a list of sprites, we

can call the function move, and it won’t

cause any errors. Why not? Because each

sprite has that function.

note Classes with functions that don’t do very much are actually quite

common in programming. In a way, they’re a kind of agreement

or contract that makes sure all the children of a class provide the

same sort of functionality, even if in some cases the functions in

the child classes do nothing.

Adding the Platforms
Now we’ll add the platforms. We’ll call our class for platform objects

PlatformSprite, and it will be a child class of Sprite. The __init__

function for this class will take a game parameter (as the Sprite

246 Chapter 16

parent class does), as well as an image, x and y positions, and the

image width and height. Here’s the code for the PlatformSprite class:

u class PlatformSprite(Sprite):
v def __init__(self, game, photo_image, x, y, width, height):
w Sprite.__init__(self, game)
x self.photo_image = photo_image
y self.image = game.canvas.create_image(x, y, \

 image=self.photo_image, anchor='nw')
z self.coordinates = Coords(x, y, x + width, y + height)

When we define the PlatformSprite class at u, we give it a sin-

gle parameter: the name of the parent class (Sprite). The __init__

function, at v, has seven parameters: self, game, photo_image, x, y,

width, and height.

At w, we call the __init__ function of the parent

class, Sprite, using self and game as the parameter val-

ues, because other than the self keyword, the Sprite

class’s __init__ function takes only one parameter: game.

At this point, if we were to create a PlatformSprite

object, it would have all the object variables from its

parent class (game, endgame, and coordinates), simply

because we’ve called the __init__ function in Sprite.

At x, we save the photo_image parameter as an object variable,

and at y we use the canvas variable of the game object to draw the

image on screen with create_image.

Finally, we create a Coords object with the x and y parameters

as the first two arguments. We then add the width and height param-

eters to these parameters for the second two arguments at z.

Even though the coordinates variable is set to None in the Sprite

parent class, we have changed it in our PlatformSprite child class

to a real Coords object, containing the real location of the platform

image on the screen.

Adding a Platform object
Let’s add a platform to the game to see how it looks. Change the

last two lines of the game file (stickmangame.py) as follows:

u g = Game()
v platform1 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \

 0, 480, 100, 10)
w g.sprites.append(platform1)
x g.mainloop()

Developing the Mr. Stick Man Game 247

As you can see, lines u and x have not changed, but at v, we

create an object of the PlatformSprite class, passing it the variable

for our game (g), along with a PhotoImage object (which uses the first

of our platform images, platform1.gif). We also pass it the position

where we want to draw the platform (0 pixels across and 480 pixels

down, near the bottom of the canvas), along with the height and

width of our image (100 pixels across and 10 pixels high). We add

this sprite to the list of sprites in our game object at w.

If you run the game now, you should see a platform drawn at

the bottom-left side of the screen, like this:

Adding a Bunch of Platforms
Let’s add a whole bunch of platforms. Each platform will have

different x and y positions, so that they will be drawn scattered

around the screen. Here’s the code to use:

g = Game()
platform1 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 0, 480, 100, 10)
platform2 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 150, 440, 100, 10)
platform3 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 300, 400, 100, 10)
platform4 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 300, 160, 100, 10)

248 Chapter 16

platform5 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 175, 350, 66, 10)
platform6 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 50, 300, 66, 10)
platform7 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 170, 120, 66, 10)
platform8 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 45, 60, 66, 10)
platform9 = PlatformSprite(g, PhotoImage(file="platform3.gif"), \
 170, 250, 32, 10)
platform10 = PlatformSprite(g, PhotoImage(file="platform3.gif"), \
 230, 200, 32, 10)
g.sprites.append(platform1)
g.sprites.append(platform2)
g.sprites.append(platform3)
g.sprites.append(platform4)
g.sprites.append(platform5)
g.sprites.append(platform6)
g.sprites.append(platform7)
g.sprites.append(platform8)
g.sprites.append(platform9)
g.sprites.append(platform10)
g.mainloop()

We create a lot of PlatformSprite objects, saving them as vari-

ables platform1, platform2, platform3, and so on, up to platform10. We

then add each platform to the variable sprites, which we created in

our Game class. If you run the game now, it should look like this:

Developing the Mr. Stick Man Game 249

We’ve created the basics of our game! Now we’re ready to add

our main character, Mr. Stick Man.

What You Learned
In this chapter, you created the Game class and drew the background

image onto the screen like a kind of wallpaper. You learned how to

determine whether a horizontal or vertical position is within the

bounds of two other horizontal or vertical positions by creating the

functions within_x and within_y. You then used these functions to

create new functions to determine whether one coordinate object

had collided with another. We’ll use these functions in the next

chapters when we animate Mr. Stick Man and need to detect

whether he has collided with a platform as he moves around the

canvas.

We also created a parent class Sprite and its first child class,

PlatformSprite, which we used to draw the platforms onto the canvas.

Programming Puzzles
The following coding puzzles are some ways that you can experi-

ment with the game’s background image. Check your answers at

http://python-for-kids.com/.

#1: Checkerboard
Try changing the Game class so that the background image is drawn

like a checkerboard:

250 Chapter 16

#2: two-Image Checkerboard
Once you’ve figured out how to create a checkerboard effect, try

using two alternating images. Come up with another wallpaper

image (using your graphics program), and then change the Game

class so it displays a checkerboard with two alternating images

instead of one image and the blank background.

#3: Bookshelf and Lamp
You can create different wallpaper images to make the background

of the game look more interesting. Create a copy of the background

image, and then draw a simple bookshelf on it. Or you could draw

a table with a lamp or a window. Then dot these images around

the screen by changing the Game class so that it loads (and dis-

plays) three or four different wallpaper images.

17
CReAtInG MR. stICK MAn

In this chapter, we’ll create the main character of

our Mr. Stick Man Races for the Exit game. This will

require the most complicated coding we’ve done so

far, because Mr. Stick Man needs to run left and right,

jump, stop when he runs into a platform, and fall when

he runs off the edge of a platform. We’ll use event bind-

ings for the left and right arrow keys to make the stick

figure run left and right, and we’ll have him jump

when the player presses the spacebar.

252 Chapter 17

Initializing the stick figure
The __init__ function for our new stick figure class will look a lot

like it does in the other classes in our game so far. We start by

giving our new class a name: StickFigureSprite. As with previous

classes, this class has a parent class: Sprite.

class StickFigureSprite(Sprite):
 def __init__(self, game):
 Sprite.__init__(self, game)

This code looks like what we wrote for the PlatformSprite class

in Chapter 16, except that we’re not using any additional param-

eters (other than self and game). The reason is that, unlike with the

 PlatformSprite class, there will be only one StickFigureSprite object

used in the game.

Loading the stick figure Images
Because we have a lot of platform

objects on the screen, which each

can use a different-sized image,

we pass the platform image as a

parameter of the PlatformSprite’s

__init__ function (kind of like say-

ing, “Here, Platform Sprite, use

this image when you draw yourself

on the screen.”). But since there’s

only one stick figure on the screen,

it doesn’t make sense to load the

image outside the sprite and then

pass it in as a parameter. The

StickFigureSprite class will know

how to load its own images.

The next few lines of the __init__ function do this very job:

They load each of the three left images (which we’ll use to animate

the stick figure running left) and the three right images (used

to animate the stick figure running right). We need to load these

images now, because we don’t want to have to load them every time

we display the stick figure on the screen (doing so would take too

long and make our game run slowly).

Creating Mr. Stick Man 253

class StickFigureSprite(Sprite):
 def __init__(self, game):
 Sprite.__init__(self, game)

u self.images_left = [
 PhotoImage(file="figure-L1.gif"),
 PhotoImage(file="figure-L2.gif"),
 PhotoImage(file="figure-L3.gif")
]

v self.images_right = [
 PhotoImage(file="figure-R1.gif"),
 PhotoImage(file="figure-R2.gif"),
 PhotoImage(file="figure-R3.gif")
]

w self.image = game.canvas.create_image(200, 470, \
 image=self.images_left[0], anchor='nw')

This code loads each of the three left images, which we’ll

use to animate the stick figure running left, and the three right

images, which we’ll use to animate the stick figure running right.

At u and v, we create the object variables images_left and

images_right. Each contains a list of PhotoImage objects that we cre-

ated in Chapter 15, showing the stick figure facing left and right.

We draw the first image at w with images_left[0] using the

canvas’s create_image function at position (200, 470), which puts the

stick figure in the middle of the game screen, at the bottom of the

canvas. The create_image function returns a number that identifies

the image on the canvas. We store this identifier in the object vari-

able image for later use.

setting Up Variables
The next part of the __init__ function sets up some more variables

that we’ll be using later in this code.

 self.images_right = [
 PhotoImage(file="figure-R1.gif"),
 PhotoImage(file="figure-R2.gif"),
 PhotoImage(file="figure-R3.gif")
]
 self.image = game.canvas.create_image(200, 470, \
 image=self.images_left[0], anchor='nw')

u self.x = -2
v self.y = 0
w self.current_image = 0

254 Chapter 17

x self.current_image_add = 1
y self.jump_count = 0
z self.last_time = time.time()
{ self.coordinates = Coords()

At u and v, the object variables x and y will store the amount

we’ll be adding to the stick figure’s horizontal (x1 and x2) or verti-

cal (y1 and y2) coordinates when he is moving around the screen.

As you learned in Chapter 13, in order to animate something

with the tkinter module, we add values to the object’s x or y posi-

tion to move it around the canvas. By setting x to –2, and y to 0, we

subtract 2 from the x position later in the code and add nothing to

the vertical position, to make the stick figure run to the left.

note Remember that a negative x number means move left on the canvas,

and a positive x number means move right. A negative y number

means move up, and a positive y number means move down.

At w, we create the object variable current_image to store

the image’s index position as currently displayed on the screen.

Our list of left-facing images, images_left, contains figure-L1.gif,

figure-L2.gif, and figure-L3.gif. Those are index positions 0, 1,

and 2.

At x, the variable current_image_add will contain the number

we’ll add to that index position stored in current_image to get the

next index position. For example, if the image at index position 0

is displayed, we add 1 to get the next image at index position 1,

and then add 1 again to get the final image in the list at index

position 2. (You’ll see how we use this variable for animation in

the next chapter.)

The variable jump_count at y is a counter we’ll use while the

stick figure is jumping. The variable last_time will record the

last time we changed the image when animating our stick figure.

We store the current time using the time function of the time mod-

ule at z.

At {, we set the coordinates object variable to an object of the

Coords class, with no initialization parameters set (x1, y1, x2, and y2

are all 0). Unlike with the platforms, the stick figure’s coordinates

will change, so we’ll set these values later.

Creating Mr. Stick Man 255

Binding to Keys
In the final part of the __init__ function, the bind functions bind a

key to something in our code that needs to be run when the key is

pressed.

 self.jump_count = 0
 self.last_time = time.time()
 self.coordinates = Coords()
 game.canvas.bind_all('<KeyPress-Left>', self.turn_left)
 game.canvas.bind_all('<KeyPress-Right>', self.turn_right)
 game.canvas.bind_all('<space>', self.jump)

We bind <KeyPress-Left> to the function turn_left, <KeyPress-Right>

to the function turn_right, and <space> to the function jump. Now we

need to create those functions to make the stick figure move.

turning the stick figure
Left and Right

The turn_left and turn_right functions

make sure that the stick figure is not

jumping, and then set the value of the

object variable x to move him left and

right. (If our character is jumping, our

game doesn’t allow us to change his

direction in midair.)

 game.canvas.bind_all('<KeyPress-Left>', self.turn_left)
 game.canvas.bind_all('<KeyPress-Right>', self.turn_right)
 game.canvas.bind_all('<space>', self.jump)

u def turn_left(self, evt):
v if self.y == 0:
w self.x = -2

x def turn_right(self, evt):
y if self.y == 0:
z self.x = 2

Python calls the turn_left function when the player presses the

left arrow key, and it passes an object with information about what

the player did as a parameter. This object is called an event object,

and we give it the parameter name evt.

256 Chapter 17

note The event object isn’t important for our purposes, but we need to

include it as a parameter of our functions (at u and x) or we’ll

get an error because Python is expecting it to be there. The event

object contains things like the x and y positions of the mouse (mouse

event), a code identifying a particular key (keyboard event), and

other information. For this game, none of that information is use-

ful, so we can safely ignore it.

To see if the stick figure is jumping, we check the value of

the y object variable at v and y. If the value is not 0, the stick

figure is jumping. In this example, if the value of y is 0, we set x

to –2 to run left (w) or we set it to 2 to run right (z), because set-

ting the value to –1 or 1 wouldn’t make the stick figure move across

the screen fast enough. (Once you have the animation working for

your stick figure, try changing this value to see what difference it

makes.)

Making the stick figure Jump
The jump function is very similar to the turn_left and turn_right

functions.

 def turn_right(self, evt):
 if self.y == 0:
 self.x = 2

 def jump(self, evt):
u if self.y == 0:
v self.y = -4
w self.jump_count = 0

This function takes a parameter

evt (the event object), which we can

ignore because we don’t need any more

information about the event. If this

function is called, we know it’s because

the spacebar was pressed.

Because we want our stick figure

to jump only if he is not already jump-

ing, at u we check to see if y is equal

to 0. If the stick figure is not jump-

ing, at v we set y to –4 (to move him

Creating Mr. Stick Man 257

vertically up the screen), and we set jump_count to 0 at w. We’ll use

jump_count to make sure the stick figure doesn’t just keep jumping

forever. Instead, we’ll let him jump for a specific count and then

have him come down again, as if gravity were pulling him. We’ll

add this code in the next chapter.

What We Have so far
Let’s review the definitions of the classes and functions we now

have in our game, and where they should be in your file.

At the top of your program, you should have your import state-

ments, followed by the Game and Coords classes. The Game class will

be used to create an object which will be the main controller for

our game, and objects of the Coords class are used to hold the posi-

tions of things in our game (like the platforms and Mr. Stick Man):

from tkinter import *
import random
import time

class Game:
 ...
class Coords:
 ...

Next, you should have the within functions (which tell whether

the coordinates of one sprite are “within” the same area of another

sprite), the Sprite parent class (which is the parent class of all the

sprites in our game), the PlatformSprite class, and the beginning

of the StickFigureSprite class. PlatformSprite was used to create

platform objects, which our stick figure will jump across, and we

created one object of the StickFigureSprite class, to represent the

main character in our game:

def within_x(co1, co2):
 ...
def within_y(co1, co2):
 ...
class Sprite:
 ...
class PlatformSprite(Sprite):
 ...
class StickFigureSprite(Sprite):
 ...

258 Chapter 17

Finally, at the end of your program, you should have code that

creates all the objects in our game so far: the game object itself and

the platforms. The final line is where we call the mainloop function.

g = Game()
platform1 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 0, 480, 100, 10)
...
g.sprites.append(platform1)
...
g.mainloop()

If your code looks a bit different, or you’re having trouble get-

ting it working, you can always skip ahead to the end of Chapter 18,

where you’ll find the full listing for the entire game.

What You Learned
In this chapter, we began working on the class for our stick figure.

At the moment, if we created an object of this class, it wouldn’t

really do much besides loading the images it needs for animat-

ing the stick figure, and setting up a few object variables to be

used later in the code. This class contains a couple of functions for

changing the values in those object variables based on keyboard

events (when the player presses the left or right arrow, or the

spacebar).

In the next chapter, we’ll finish our game. We’ll write the

functions for the StickFigureSprite class to display and animate the

stick figure, and move him around the screen. We’ll also add the

exit (the door) that Mr. Stick Man is trying to reach.

18
CoMPLetInG tHe

MR. stICK MAn GAMe

In the previous three chapters, we’ve been develop-

ing our game: Mr. Stick Man Races for the Exit. We

created the graphics, and then wrote code to add the

background image, platforms, and stick figure. In this

chapter, we’ll fill in the missing pieces to animate the

stick figure and add the door.

You’ll find the full listing for the complete game

at the end of this chapter. If you get lost or become

confused when writing some of this code, compare

your code with that listing to see where you might

have gone wrong.

260 Chapter 18

Animating the stick figure
So far, we’ve created a basic class for our stick

figure, loading the images we’ll be using and

binding keys to some functions. But none of our

coding will do anything particularly interesting

if you run our game at this point.

Now we’ll add the remaining functions to the

StickFigureSprite class we created in Chapter 17:

animate, move, and coords. The animate function will

draw the different stick figure images, move will

determine where the character needs to move to,

and coords will return the stick figure’s current

position. (Unlike with the platform sprites, we

need to recalculate the position of the stick fig-

ure as he moves around the screen.)

Creating the Animate function
First, we’ll add the animate function, which will need to check for

movement and change the image accordingly.

Checking for Movement

We don’t want to change the stick figure image too quickly in our

animation or its movement won’t look realistic. Think about a flip

animation, drawn in the corner of a notepad—if you flip the pages

too quickly, you may not get the full effect of what you’ve drawn.

The first half of the animate function checks to see if the stick

figure is running left or right, and then uses the last_time vari-

able to decide whether to change the current image. This variable

will help us control the speed of our animation. The function will

go after the jump function, which we added to our StickFigureSprite

class in Chapter 17.

 def jump(self, evt):
 if self.y == 0:
 self.y = -4
 self.jump_count = 0

 def animate(self):
u if self.x != 0 and self.y == 0:
v if time.time() - self.last_time > 0.1:

Completing the Mr. Stick Man Game 261

w self.last_time = time.time()
x self.current_image += self.current_image_add
y if self.current_image >= 2:
z self.current_image_add = -1
{ if self.current_image <= 0:
| self.current_image_add = 1

In the if statement at u, we check to see if x is not 0 in order

to determine whether the stick figure is moving (either left or right),

and we check to see if y is 0 in order to determine that the stick

figure is not jumping. If this if statement is true, we need to ani-

mate our stick figure; if not, he’s standing still, so there’s no need

to keep drawing. If the stick figure isn’t moving, we drop out of the

function, and the rest of the code in this listing is ignored.

At v, we calculate the amount of time since the animate

 function was last called, by subtracting the value of the last_time

variable from the current time, using time.time(). This calculation

is used to decide whether to draw the next image in the sequence,

and if the result is greater than a tenth of a second (0.1), we con-

tinue with the block of code at w. We set the last_time variable to

the current time, basically resetting the stopwatch to start timing

again for the next change of image.

At x, we add the value of the object variable current_image_add

to the variable current_image, which stores the index position of

the currently displayed image. Remember that we created the

 current_image_add variable in the stick figure’s __init__ function in

Chapter 17, so when the animate function is first called, the value

of the variable has already been set to 1.

At y, we check to see if the value of the index position in

 current_image is greater than or equal to 2, and if so, we change the

value of current_image_add to –1 at z. The process is similar at {—

once we reach 0, we need to start counting up again, which we do

at |.

note If you’re having trouble figuring out how to indent this code, here’s

a hint: There are 8 spaces at the beginning of u and 20 spaces at

the beginning of |.

To help you understand what’s going on in the function so far,

imagine that you have a sequence of colored blocks in a line on the

floor. You move your finger from one block to the next, and each

block that your finger points to (1, 2, 3, 4, and so on) has a number

262 Chapter 18

(the current_image variable). The number of the block your finger

moves to (it points at one block at a time) is the number stored in

the variable current_image_add. When your finger moves one way

up the line of blocks, you’re adding 1 each time, and when it hits

the end of the line and moves back down, you’re subtracting 1

(that is, adding –1).

The code we’ve added to our animate function performs this

process, but instead of colored blocks, we have the three stick fig-

ure images for each direction stored in a list. The index positions

of these images are 0, 1, and 2. As we animate the stick figure,

once we reach the last image, we start counting down, and once

we reach the first image, we need to start counting up again. As a

result, we create the effect of a running figure.

The following shows how we move through the list of images,

using the index positions we calculate in the animate function.

Position 0 Position 1 Position 2 Position 1 Position 0 Position 1

Counting up Counting up Counting up Counting

down

Counting

down

Counting up

Changing the Image

In the next half of the animate function, we change the currently

displayed image, using the calculated index position.

 def animate(self):
 if self.x != 0 and self.y == 0:
 if time.time() - self.last_time > 0.1:
 self.last_time= time.time()
 self.current_image += self.current_image_add
 if self.current_image >= 2:
 self.current_image_add = -1
 if self.current_image <= 0:
 self.current_image_add = 1

u if self.x < 0:
v if self.y != 0:
w self.game.canvas.itemconfig(self.image, \

 image=self.images_left[2])
x else:
y self.game.canvas.itemconfig(self.image, \

 image=self.images_left[self.current_image])

Completing the Mr. Stick Man Game 263

z elif self.x > 0:
{ if self.y != 0:
| self.game.canvas.itemconfig(self.image, \

 image=self.images_right[2])
} else:
~ self.game.canvas.itemconfig(self.image, \

 image=self.images_right[self.current_image])

At u, if x is less than 0, the stick figure is moving left, so

Python moves into the block of code shown at v through y, which

checks whether y is not equal to 0 (meaning the stick figure is

jumping). If y is not equal to 0 (the stick figure is moving up or

down—in other words, jumping), we use the canvas’s itemconfig

function to change the displayed image to the last image in our list

of left-facing images at w (images_left[2]). Because the stick figure

is jumping, we’ll use the image showing him in full stride to make

the animation look a bit more realistic:

If the stick figure is not jumping (that is, y is equal to 0), the

else statement starting at x uses itemconfig to change the displayed

image to whatever index position is in the variable current_image,

as shown in the code at y.

At z, we see if the stick figure is running right (x is greater

than 0), and Python moves into the block shown at { through ~.

This code is very similar to the first block, again checking whether

the stick figure is jumping, and drawing the correct image if so,

except that it uses the images_right list.

Getting the stick figure’s Position
Because we’ll need to determine where the stick figure is on the

screen (since he is moving around), the coords function will differ

from the other Sprite class functions. We’ll use the coords function

of the canvas to determine where the stick figure is, and then use

those values to set the x1, y1 and x2, y2 values of the coordinates

264 Chapter 18

variable we created in the __init__ function at the beginning of

Chapter 17. Here’s the code, which can be added after the animate

function:

 if self.x < 0:
 if self.y != 0:
 self.game.canvas.itemconfig(self.image, \
 image=self.images_left[2])
 else:
 self.game.canvas.itemconfig(self.image, \
 image=self.images_left[self.current_image])
 elif self.x > 0:
 if self.y != 0:
 self.game.canvas.itemconfig(self.image, \
 image=self.images_right[2])
 else:
 self.game.canvas.itemconfig(self.image, \
 image=self.images_right[self.current_image])

 def coords(self):
u xy = self.game.canvas.coords(self.image)
v self.coordinates.x1 = xy[0]
w self.coordinates.y1 = xy[1]
x self.coordinates.x2 = xy[0] + 27
y self.coordinates.y2 = xy[1] + 30

 return self.coordinates

When we created the Game class in Chapter 16, one of the object

variables was the canvas. At u, we use the coords function of this

canvas variable, with self.game.canvas.coords, to return the x and

y positions of the current image. This function uses the number

stored in the object variable image, the identifier for the image

drawn on the canvas.

We store the resulting list in the variable xy, which now con-

tains two values: the top-left x position stored as the x1 variable of

coordinates at v, and the top-left y position stored as the y1 variable

of coordinates at w.

Because all of the stick figure images we created are 27 pixels

wide by 30 pixels high, we can determine what the x2 and y2 vari-

ables should be by adding the width at x and the height at y to

the x and y numbers, respectively.

Finally, on the last line of the function, we return the object

variable coordinates.

Completing the Mr. Stick Man Game 265

Making the stick figure Move
The final function of the StickFigureSprite class, move, is in charge

of actually moving our game character around the screen. It also

needs to be able to tell us when the character has bumped into

something.

starting the move function

Here’s the code for the first part of the move function—this will go

after coords:

 def coords(self):
 xy = self.game.canvas.coords(self.image)
 self.coordinates.x1 = xy[0]
 self.coordinates.y1 = xy[1]
 self.coordinates.x2 = xy[0] + 27
 self.coordinates.y2 = xy[1] + 30
 return self.coordinates

 def move(self):
u self.animate()
v if self.y < 0:
w self.jump_count += 1
x if self.jump_count > 20:
y self.y = 4
z if self.y > 0:
{ self.jump_count -= 1

At u, this part of the function calls the animate function we cre-

ated earlier in this chapter, which changes the currently displayed

image if necessary. At v, we see whether the value of y is less than

0. If it is, we know that the stick figure is jumping because a nega-

tive value will move him up the screen. (Remember that 0 is at the

top of the canvas, and the bottom of the canvas is pixel position

500.)

At w, we add 1 to jump_count, and at x, we say that if the value

of jump_count reaches 20, we should change y to 4 to start the stick

figure falling again (y).

At z, we see if the value of y is greater than 0 (meaning the

character must be falling), and if it is, we subtract 1 from jump_count

because once we’ve counted up to 20, we need to count back down

again. (Move your hand slowly up in the air while counting to 20,

266 Chapter 18

then move it back down again while counting down from 20, and

you’ll get a sense of how calculating the stick figure jumping up

and down is supposed to work.)

In the next few lines of the move function, we call the coords

function, which tells us where our character is on the screen and

stores its result in the variable co. We then create the variables

left, right, top, bottom, and falling. We’ll use each in the remainder

of this function.

 if self.y > 0:
 self.jump_count -= 1
 co = self.coords()
 left = True
 right = True
 top = True
 bottom = True
 falling = True

Notice that each variable has been set to the Boolean value

True. We’ll use these as indicators to check whether the character

has hit something on the screen or is falling.

Has the stick figure Hit the Bottom or top of
the Canvas?

The next section of the move function checks whether our character

has hit the bottom or top of the canvas. Here’s the code:

 bottom = True
 falling = True

u if self.y > 0 and co.y2 >= self.game.canvas_height:
v self.y = 0
w bottom = False

Completing the Mr. Stick Man Game 267

x elif self.y < 0 and co.y1 <= 0:
y self.y = 0
z top = False

If the character is falling down the screen, y will be greater

than 0, so we need to make sure it hasn’t yet hit the bottom of the

canvas (or it will vanish off the bottom of the screen). To do so, at u,

we see if its y2 position (the bottom of the stick figure) is greater than

or equal to the canvas_height variable of the game object. If it is, we set

the value of y to 0 at v to stop the stick figure from falling, and then

set the bottom variable to False at w, which tells the remaining code

that we no longer need to see if the stick figure has hit the bottom.

The process of determining whether the stick figure has hit the

top of the screen is very similar to the way we determine whether

he has hit the bottom. To do so, at x, we first see if the stick figure

is jumping (y is less than 0), then we see if his y1 position is less

than or equal to 0, meaning he has hit the top of the canvas. If

both conditions are true, we set y equal to 0 at y to stop the move-

ment. We also set the top variable to True at z to tell the remaining

code that we no longer need to see if the stick figure has hit the top.

Has the stick figure Hit the side of the Canvas?

We follow almost exactly the same process as in the preceding code

to determine whether the stick figure has hit the left and right

sides of the canvas, as follows:

 elif self.y < 0 and co.y1 <= 0:
 self.y = 0
 top = False

u if self.x > 0 and co.x2 >= self.game.canvas_width:
v self.x = 0
w right = False
x elif self.x < 0 and co.x1 <= 0:
y self.x = 0
z left = False

The code at u is based on the fact that we know the stick fig-

ure is running to the right if x is greater than 0. We also know

whether he has hit the right-hand side of the screen by seeing if

the x2

pos ition (co.x2) is greater than or equal to the width of the

canvas stored in game_width. If both statements are true, we set x

equal to 0 (to stop the stick figure from running), and we set the

right variable to False at w.

268 Chapter 18

Colliding with other sprites

Once we’ve determined whether the figure has hit the sides of the

screen, we need to see if he has hit anything else on the screen.

We use the following code to loop through the list of sprite objects

stored in the game object to see if the stick figure has hit any of them.

 elif self.x < 0 and co.x1 <= 0:
 self.x = 0
 left = False

u for sprite in self.game.sprites:
v if sprite == self:
w continue
x sprite_co = sprite.coords()
y if top and self.y < 0 and collided_top(co, sprite_co):
z self.y = -self.y
{ top = False

At u, we loop through the list of sprites, assigning each one in

turn to the variable sprite. At v, we say that if the sprite is equal

to self (that’s another way of saying, “if this sprite is the same as

me”), we don’t need to determine whether the stick figure has col-

lided because he would have only hit himself. If the sprite variable

is equal to self, we use continue to jump to the next sprite in the list.

Next, we get the coordinates of the new sprite by calling its

coords function at x and storing the results in the variable sprite_co.

Then the code at y checks for the following:

•	 The stick figure has not hit the top of the canvas (the top vari-

able is still true).

•	 The stick figure is jumping (the value of y is less than 0).

•	 The top of the stick figure has collided with the sprite from the

list (using the collided_top function we created in Chapter 16).

Completing the Mr. Stick Man Game 269

If all of these conditions are true, we want the sprite to start

falling back down again, so at z, we reverse the value of the y using

minus (-). The top variable is set to False at {, because once the

stick figure has hit the top, we don’t need to keep checking for a

collision.

Colliding at the Bottom

The next part of the loop checks to see if the bottom of our charac-

ter has hit something:

 if top and self.y < 0 and collided_top(co, sprite_co):
 self.y = -self.y
 top = False

u if bottom and self.y > 0 and collided_bottom(self.y, \
 co, sprite_co):

v self.y = sprite_co.y1 - co.y2
w if self.y < 0:
x self.y = 0
y bottom = False
z top = False

There are three similar checks at u: whether the bottom variable

is still set, whether the character is falling (y is greater than 0), and

whether the bottom of our character has hit the sprite. If all three

checks are true, we subtract the bottom y value (y2) of the stick fig-

ure from the top y value of the sprite (y1) at v. This might seem

strange, so let’s see why we do this.

Imagine that our game character has fallen off a platform. He

moves down the screen 4 pixels each time the mainloop function runs,

and the foot of the stick figure is 3 pixels above another platform.

Let’s say the stick figure’s bottom (y2) is at position 57 and the top

of the platform (y1) is at position 60. In this case, the collided_bottom

function would return true, because its code will add the value of y

(which is 4) to the stick figure’s y2 variable, resulting in 61.

However, we don’t want Mr. Stick Man to stop falling as soon

as it looks like he will hit a platform or the bottom of the screen,

because that would be like taking a huge jump off a step and stop-

ping in midair, an inch above the ground. That may be a neat

trick, but it won’t look right in our game. Instead, if we subtract

the character’s y2 value (of 57) from the platform’s y1 value (of 60)

we get 3, the amount the stick figure should drop in order to land

properly on the top of the platform.

270 Chapter 18

At w, we make sure that the calculation doesn’t result in a

negative number; if it does, we set y equal to 0 at x. (If we let the

number be negative, the stick figure would fly back up again, and

we don’t want that to happen in this game.)

Finally, we set the top z and bottom y flags to False, so we no

longer need to check whether the stick figure has collided at the

top or bottom with another sprite.

We’ll do one more bottom check to see whether the stick fig-

ure has run off the edge of a platform. Here’s the code for this if

statement:

 if self.y < 0:
 self.y = 0
 bottom = False
 top = False
 if bottom and falling and self.y == 0 \
 and co.y2 < self.game.canvas_height \
 and collided_bottom(1, co, sprite_co):
 falling = False

Five checks here must all be true in order for the falling vari-

able to be set to False:

•	 We still need to check that the bottom flag is set to True.

•	 We need to check whether the stick figure should be falling

(the falling flag is still set to True).

•	 The stick figure isn’t already falling (y is 0).

•	 The bottom of the sprite hasn’t hit the bottom of the screen

(it’s less than the canvas height).

•	 The stick figure has hit the top of a platform (collided_bottom

returns True).

Then we set the falling variable to False.

Checking Left and Right

We’ve checked whether the stick figure has hit a sprite at the bot-

tom or the top. Now we need to check whether he has hit the left or

right side, with this code:

 if bottom and falling and self.y == 0 \
 and co.y2 < self.game.canvas_height \
 and collided_bottom(1, co, sprite_co):
 falling = False

Completing the Mr. Stick Man Game 271

u if left and self.x < 0 and collided_left(co, sprite_co):
v self.x = 0
w left = False
x if right and self.x > 0 and collided_right(co, sprite_co):
y self.x = 0
z right = False

At u, we see if we should

still be looking for collisions to

the left (left is still set to True)

and whether the stick figure

is moving to the left (x is less

than 0). We also check to see

if the stick figure has col-

lided with a sprite using the

collided_left function. If these three conditions are true, we set x

equal to 0 at v (to make the stick figure stop running), and set left

to False at w, so that we no longer check for collisions on the left.

The code is similar for collisions to the right, as shown at x.

We set x equal to 0 again at y, and right to False at z, to stop

checking for right-hand collisions.

Now, with checks for collisions in all four directions, our for

loop should look like this:

 elif self.x < 0 and co.x1 <= 0:
 self.x = 0
 left = False
 for sprite in self.game.sprites:
 if sprite == self:
 continue
 sprite_co = sprite.coords()
 if top and self.y < 0 and collided_top(co, sprite_co):
 self.y = -self.y
 top = False
 if bottom and self.y > 0 and collided_bottom(self.y, \
 co, sprite_co):
 self.y = sprite_co.y1 - co.y2
 if self.y < 0:
 self.y = 0
 bottom = False
 top = False
 if bottom and falling and self.y == 0 \
 and co.y2 < self.game.canvas_height \
 and collided_bottom(1, co, sprite_co):
 falling = False

272 Chapter 18

 if left and self.x < 0 and collided_left(co, sprite_co):
 self.x = 0
 left = False
 if right and self.x > 0 and collided_right(co, sprite_co):
 self.x = 0
 right = False

We need to add only a few more lines to the move function, as

follows:

 if right and self.x > 0 and collided_right(co, sprite_co):
 self.x = 0
 right = False

u if falling and bottom and self.y == 0 \
 and co.y2 < self.game.canvas_height:

v self.y = 4
w self.game.canvas.move(self.image, self.x, self.y)

At u, we check whether both the falling and bottom variables

are set to True. If so, we’ve looped through every platform sprite in

the list without colliding at the bottom.

The final check in this line determines whether the bottom of

our character is less than the canvas height—that is, above the

ground (the bottom of the canvas). If the stick figure hasn’t collided

with anything and he is above the ground, he is standing in mid-

air, so he should start falling (in other words, he has run off the

end of a platform). To make him run off the end of any platform,

we set y equal to 4 at v.

At w, we move the image across the screen, according to the

values we set in the variables x and y. The fact that we’ve looped

through the sprites checking for collisions may mean that we’ve set

both variables to 0, because the stick figure has collided on the left

and with the bottom. In that case, the call to the move function of

the canvas will do nothing.

It may also be the case that Mr. Stick Man has walked off the

edge of a platform. If that happens, y will be set to 4, and Mr. Stick

Man will fall downward.

Phew, that was a long function!

Completing the Mr. Stick Man Game 273

testing our stick figure sprite
Having created the StickFigureSprite class, let’s try it out by adding

the following two lines just before the call to the mainloop function.

u sf = StickFigureSprite(g)
v g.sprites.append(sf)

g.mainloop()

At u, we create a StickFigureSprite object and set it equal to the

variable sf. As we did with the platforms, we add this new variable

to the list of sprites stored in the game object at v.

Now run the program. You will find that Mr. Stick Man can

run, jump from platform to platform, and fall!

the Door!
The only thing missing from our game is the door to the exit. We’ll

finish up by creating a sprite for the door, adding code to detect the

door, and giving our program a door object.

274 Chapter 18

Creating the Doorsprite Class
You guessed it—we need to create one more class: DoorSprite.

Here’s the start of the code:

class DoorSprite(Sprite):
u def __init__(self, game, photo_image, x, y, width, height):
v Sprite.__init__(self, game)
w self.photo_image = photo_image
x self.image = game.canvas.create_image(x, y, \

 image=self.photo_image, anchor='nw')
y self.coordinates = Coords(x, y, x + (width / 2), y + height)
z self.endgame = True

As shown at u, the __init__ function of

the DoorSprite class has parameters for self,

a game object, a photo_image object, the x and y

coordinates, and the width and height of the

image. At v, we call __init__ as with our

other sprite classes.

At w, we save the parameter photo_image

using an object variable with the same name,

as we did with PlatformSprite. We create a

display image using the canvas create_image function and save the

identifying number returned by that function using the object vari-

able image at x.

At y, we set the coordinates of DoorSprite to the x and y param-

eters (which become the x1 and y1 positions of the door), and then

calculate the x2 and y2 positions. We calculate the x2 position by

adding half of the width (the width variable, divided by 2) to the x

parameter. For example, if x is 10 (the x1 coordinate is also 10), and

the width is 40, the x2 coordinate would be 30 (10 plus half of 40).

Why use this confusing little calculation? Because, unlike with

the platforms, where we want Mr. Stick Man to stop running as

soon as he collides with the side of the platform, we want him to

stop in front of the door. (It won’t look good if Mr. Stick Man stops

running next to the door!) You’ll see this in action when you play

the game and make it to the door.

Unlike the x1 position, the y1 position is simple to calculate.

We just add the value of the height variable to the y parameter, and

that’s it.

Finally, at z, we set the endgame object variable to True. This says

that when the stick figure reaches the door, the game should end.

Completing the Mr. Stick Man Game 275

Detecting the Door
Now we need to change the code in the StickFigureSprite class of

the move function that determines when the stick figure has col-

lided with a sprite on the left or the right. Here’s the first change:

 if left and self.x < 0 and collided_left(co, sprite_co):
 self.x = 0
 left = False
 if sprite.endgame:
 self.game.running = False

We check to see if the sprite that the stick figure has collided

with has an endgame variable that is set to True. If it does, we set the

running variable to False, and everything stops—we’ve reached the

end of the game.

We’ll add these same lines to the code that checks for a colli-

sion on the right. Here’s the code:

 if right and self.x > 0 and collided_right(co, sprite_co):
 self.x = 0
 right = False
 if sprite.endgame:
 self.game.running = False

Adding the Door object
Our final addition to the game code is an object for the door. We’ll

add this before the main loop. Just before creating the stick fig-

ure object, we’ll create a door object, and then add it to the list of

sprites. Here’s the code:

g.sprites.append(platform7)
g.sprites.append(platform8)
g.sprites.append(platform9)
g.sprites.append(platform10)
door = DoorSprite(g, PhotoImage(file="door1.gif"), 45, 30, 40, 35)
g.sprites.append(door)
sf = StickFigureSprite(g)
g.sprites.append(sf)
g.mainloop()

We create a door object using the variable for our game object, g,

followed by a PhotoImage (the door image we created in Chapter 15).

We set the x and y parameters to 45 and 30 to put the door on a

276 Chapter 18

platform near the top of the screen, and set the width and height to

40 and 35. We add the door object to the list of sprites, as with all

the other sprites in the game.

You can see the result when Mr. Stick Man reaches the door.

He stops running in front of the door, rather than next to it, as

shown here:

the final Game
The full listing of our game is now a bit more than 200 lines of

code. The following is the complete code for the game. If you have

trouble getting your game to work, compare each function (and

each class) to this listing and see where you’ve gone wrong.

from tkinter import *
import random
import time

class Game:
 def __init__(self):
 self.tk = Tk()
 self.tk.title("Mr. Stick Man Races for the Exit")
 self.tk.resizable(0, 0)

Completing the Mr. Stick Man Game 277

 self.tk.wm_attributes("-topmost", 1)
 self.canvas = Canvas(self.tk, width=500, height=500, \
 highlightthickness=0)
 self.canvas.pack()
 self.tk.update()
 self.canvas_height = 500
 self.canvas_width = 500
 self.bg = PhotoImage(file="background.gif")
 w = self.bg.width()
 h = self.bg.height()
 for x in range(0, 5):
 for y in range(0, 5):
 self.canvas.create_image(x * w, y * h, \
 image=self.bg, anchor='nw')
 self.sprites = []
 self.running = True

 def mainloop(self):
 while 1:
 if self.running == True:
 for sprite in self.sprites:
 sprite.move()
 self.tk.update_idletasks()
 self.tk.update()
 time.sleep(0.01)

class Coords:
 def __init__(self, x1=0, y1=0, x2=0, y2=0):
 self.x1 = x1
 self.y1 = y1
 self.x2 = x2
 self.y2 = y2

def within_x(co1, co2):
 if (co1.x1 > co2.x1 and co1.x1 < co2.x2) \
 or (co1.x2 > co2.x1 and co1.x2 < co2.x2) \
 or (co2.x1 > co1.x1 and co2.x1 < co1.x2) \
 or (co2.x2 > co1.x1 and co2.x2 < co1.x1):
 return True
 else:
 return False

def within_y(co1, co2):
 if (co1.y1 > co2.y1 and co1.y1 < co2.y2) \
 or (co1.y2 > co2.y1 and co1.y2 < co2.y2) \
 or (co2.y1 > co1.y1 and co2.y1 < co1.y2) \
 or (co2.y2 > co1.y1 and co2.y2 < co1.y1):
 return True

278 Chapter 18

 else:
 return False

def collided_left(co1, co2):
 if within_y(co1, co2):
 if co1.x1 <= co2.x2 and co1.x1 >= co2.x1:
 return True
 return False

def collided_right(co1, co2):
 if within_y(co1, co2):
 if co1.x2 >= co2.x1 and co1.x2 <= co2.x2:
 return True
 return False

def collided_top(co1, co2):
 if within_x(co1, co2):
 if co1.y1 <= co2.y2 and co1.y1 >= co2.y1:
 return True
 return False

def collided_bottom(y, co1, co2):
 if within_x(co1, co2):
 y_calc = co1.y2 + y
 if y_calc >= co2.y1 and y_calc <= co2.y2:
 return True
 return False

class Sprite:
 def __init__(self, game):
 self.game = game
 self.endgame = False
 self.coordinates = None
 def move(self):
 pass
 def coords(self):
 return self.coordinates

class PlatformSprite(Sprite):
 def __init__(self, game, photo_image, x, y, width, height):
 Sprite.__init__(self, game)
 self.photo_image = photo_image
 self.image = game.canvas.create_image(x, y, \
 image=self.photo_image, anchor='nw')
 self.coordinates = Coords(x, y, x + width, y + height)

Completing the Mr. Stick Man Game 279

class StickFigureSprite(Sprite):
 def __init__(self, game):
 Sprite.__init__(self, game)
 self.images_left = [
 PhotoImage(file="figure-L1.gif"),
 PhotoImage(file="figure-L2.gif"),
 PhotoImage(file="figure-L3.gif")
]
 self.images_right = [
 PhotoImage(file="figure-R1.gif"),
 PhotoImage(file="figure-R2.gif"),
 PhotoImage(file="figure-R3.gif")
]
 self.image = game.canvas.create_image(200, 470, \
 image=self.images_left[0], anchor='nw')
 self.x = -2
 self.y = 0
 self.current_image = 0
 self.current_image_add = 1
 self.jump_count = 0
 self.last_time = time.time()
 self.coordinates = Coords()
 game.canvas.bind_all('<KeyPress-Left>', self.turn_left)
 game.canvas.bind_all('<KeyPress-Right>', self.turn_right)
 game.canvas.bind_all('<space>', self.jump)

 def turn_left(self, evt):
 if self.y == 0:
 self.x = -2

 def turn_right(self, evt):
 if self.y == 0:
 self.x = 2

 def jump(self, evt):
 if self.y == 0:
 self.y = -4
 self.jump_count = 0

 def animate(self):
 if self.x != 0 and self.y == 0:
 if time.time() - self.last_time > 0.1:
 self.last_time= time.time()
 self.current_image += self.current_image_add

280 Chapter 18

 if self.current_image >= 2:
 self.current_image_add = -1
 if self.current_image <= 0:
 self.current_image_add = 1
 if self.x < 0:
 if self.y != 0:
 self.game.canvas.itemconfig(self.image, \
 image=self.images_left[2])
 else:
 self.game.canvas.itemconfig(self.image, \
 image=self.images_left[self.current_image])
 elif self.x > 0:
 if self.y != 0:
 self.game.canvas.itemconfig(self.image, \
 image=self.images_right[2])
 else:
 self.game.canvas.itemconfig(self.image, \
 image=self.images_right[self.current_image])

 def coords(self):
 xy = self.game.canvas.coords(self.image)
 self.coordinates.x1 = xy[0]
 self.coordinates.y1 = xy[1]
 self.coordinates.x2 = xy[0] + 27
 self.coordinates.y2 = xy[1] + 30
 return self.coordinates

 def move(self):
 self.animate()
 if self.y < 0:
 self.jump_count += 1
 if self.jump_count > 20:
 self.y = 4
 if self.y > 0:
 self.jump_count -= 1
 co = self.coords()
 left = True
 right = True
 top = True
 bottom = True
 falling = True
 if self.y > 0 and co.y2 >= self.game.canvas_height:
 self.y = 0
 bottom = False
 elif self.y < 0 and co.y1 <= 0:
 self.y = 0
 top = False

Completing the Mr. Stick Man Game 281

 if self.x > 0 and co.x2 >= self.game.canvas_width:
 self.x = 0
 right = False
 elif self.x < 0 and co.x1 <= 0:
 self.x = 0
 left = False
 for sprite in self.game.sprites:
 if sprite == self:
 continue
 sprite_co = sprite.coords()
 if top and self.y < 0 and collided_top(co, sprite_co):
 self.y = -self.y
 top = False
 if bottom and self.y > 0 and collided_bottom(self.y, \
 co, sprite_co):
 self.y = sprite_co.y1 - co.y2
 if self.y < 0:
 self.y = 0
 bottom = False
 top = False
 if bottom and falling and self.y == 0 \
 and co.y2 < self.game.canvas_height \
 and collided_bottom(1, co, sprite_co):
 falling = False
 if left and self.x < 0 and collided_left(co, sprite_co):
 self.x = 0
 left = False
 if sprite.endgame:
 self.game.running = False
 if right and self.x > 0 and collided_right(co, sprite_co):
 self.x = 0
 right = False
 if sprite.endgame:
 self.game.running = False
 if falling and bottom and self.y == 0 \
 and co.y2 < self.game.canvas_height:
 self.y = 4
 self.game.canvas.move(self.image, self.x, self.y)

class DoorSprite(Sprite):
 def __init__(self, game, photo_image, x, y, width, height):
 Sprite.__init__(self, game)
 self.photo_image = photo_image
 self.image = game.canvas.create_image(x, y, \
 image=self.photo_image, anchor='nw')
 self.coordinates = Coords(x, y, x + (width / 2), y + height)
 self.endgame = True

282 Chapter 18

g = Game()
platform1 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 0, 480, 100, 10)
platform2 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 150, 440, 100, 10)
platform3 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 300, 400, 100, 10)
platform4 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 300, 160, 100, 10)
platform5 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 175, 350, 66, 10)
platform6 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 50, 300, 66, 10)
platform7 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 170, 120, 66, 10)
platform8 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 45, 60, 66, 10)
platform9 = PlatformSprite(g, PhotoImage(file="platform3.gif"), \
 170, 250, 32, 10)
platform10 = PlatformSprite(g, PhotoImage(file="platform3.gif"), \
 230, 200, 32, 10)
g.sprites.append(platform1)
g.sprites.append(platform2)
g.sprites.append(platform3)
g.sprites.append(platform4)
g.sprites.append(platform5)
g.sprites.append(platform6)
g.sprites.append(platform7)
g.sprites.append(platform8)
g.sprites.append(platform9)
g.sprites.append(platform10)
door = DoorSprite(g, PhotoImage(file="door1.gif"), 45, 30, 40, 35)
g.sprites.append(door)
sf = StickFigureSprite(g)
g.sprites.append(sf)
g.mainloop()

What You Learned
In this chapter, we completed our game, Mr. Stick Man Races for

the Exit. We created a class for our animated stick figure and

wrote functions to move him around the screen and animate him

as he moves (changing from one image to the next to give the illu-

sion of running). We’ve used basic collision detection to tell when

he has hit the left or right sides of the canvas, and when he has hit

Completing the Mr. Stick Man Game 283

another sprite, such as a platform or a

door. We’ve also added collision code to

tell when he hits the top of the screen

or the bottom, and to make sure that

when he runs off the edge of a plat-

form, he tumbles down accordingly.

We added code to tell when Mr. Stick

Man has reached the door, so the game

comes to an end.

Programming Puzzles
There’s a lot more we can do to improve the game. At the moment,

it’s very simple, so we can add code to make it more professional

looking and more interesting to play. Try adding the following fea-

tures and then check your code at http://python-for-kids.com/.

#1: “You Win!”
Like the “Game Over” text in the Bounce! game we completed in

Chapter 14, add the “You Win!” text when the stick figure reaches

the door, so players can see that they have won.

#2: Animating the Door
In Chapter 15, we created two images

for the door: one open and one closed.

When Mr. Stick Man reaches the door,

the door image should change to the

open door, Mr. Stick Man should vanish,

and the door image should revert to the

closed door. This will give the illusion

that Mr. Stick Man is exiting and clos-

ing the door as he leaves. You can do this

by changing the DoorSprite class and the

StickFigureSprite class.

#3: Moving Platforms
Try adding a new class called MovingPlatformSprite. This plat-

form should move from side to side, making it more difficult for

Mr. Stick Man to reach the door at the top.

Afterword
WHeRe to Go fRoM HeRe

You’ve learned some basic programming concepts

in your tour of Python, and now you’ll find it much

easier to work with other programming languages.

While Python is incredibly useful, one language is not

always the best tool for every task, so don’t be afraid to

try other ways to program your computer. Here, we’ll

look at some alternatives for games and graphics pro-

gramming, and then take a peek at some of the most

commonly used programming languages.

286 Afterword

Games and Graphics Programming
If you want to do more with games or graphics programming,

you’ll find many options available. Here are just a few:

•	 BlitzBasic (http://www.blitzbasic.com/), which uses a special

version of the BASIC programming language designed specifi-

cally for games

•	 Adobe Flash, a type of animation software designed to run in

the browser, which has its own programming language called

ActionScript (http://www.adobe.com/devnet/actionscript.html)

•	 Alice (http://www.alice.org/), a 3D programming environment

(for Microsoft Windows and Mac OS X only)

•	 Scratch (http://scratch.mit.edu/), a tool for developing games

•	 Unity3D (http://unity3d.com/), another tool for creating games

An online search will uncover a wealth of resources to help

you get started with any of these options.

On the other hand, if you would like to continue playing with

Python, you could use PyGame, the Python module designed for

game development. Let’s explore that option.

PyGame
PyGame Reloaded (pgreloaded or pygame2) is the version of PyGame

that works with Python 3 (earlier versions work only with Python 2).

A good place to start reading is the pgreloaded tutorial at http://

code.google.com/p/pgreloaded/.

note As of this writing, there is no installer for pgreloaded on Mac OS X

or Linux, so there is no straightforward way to use it on either of

these operating systems.

Writing a game with PyGame is a little more complicated

than using tkinter. For example, in Chapter 12, we displayed an

image using tkinter with this code:

from tkinter import *
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()
myimage = PhotoImage(file='c:\\test.gif')
canvas.create_image(0, 0, anchor=NW, image=myimage)

Where to Go from Here 287

The same code using PyGame (loading a .bmp file rather than

a .gif file) would look like this:

import sys
import time
import pygame2
import pygame2.sdl.constants as constants
import pygame2.sdl.image as image
import pygame2.sdl.video as video

u video.init()
v img = image.load_bmp("c:\\test.bmp")
w screen = video.set_mode(img.width, img.height)
x screen.fill(pygame2.Color(255, 255, 255))
y screen.blit(img, (0, 0))
z screen.flip()
{ time.sleep(10)
| video.quit()

After importing the pygame2 modules, we call the init func-

tion on the PyGame video module at u, which is a bit like the call

to create the canvas and then pack it in the tkinter example. We

load a BMP image using the load_bmp function at v, and then cre-

ate a screen object using the set_mode function, passing in the width

and height of the loaded image as parameters at w. With the next

(optional) line, we wipe the screen by filling it with white at x,

and then use the blit function of the screen object to display the

image at y. The parameters for this function are the img object and

a tuple containing the position where we want to display the image

(0 pixels across, 0 pixels down).

PyGame uses an off-screen buffer (also known as a double-

buffer). An off-screen buffer is a technique used to draw graphics

in an area of the computer’s memory where it isn’t visible, and then

to copy that entire area into the visible display (onto your screen)

all at once. Off-screen buffering reduces the flickering effect if you

happen to be drawing a lot of different objects on a display. Copy-

ing from the off-screen buffer to the visible display is performed

using the flip function at z.

Finally, we sleep for 10 seconds at { because, unlike tkinter’s

canvas, the screen will immediately close if we don’t stop it from

doing so. At |, we clean up using video.init so that PyGame will

shut down properly. There’s a lot more to PyGame, but this short

example gives you an idea of what it’s like.

288 Afterword

Programming Languages
If you’re interested in other programming languages, some that

are currently popular are Java, C/C++, C#, PHP, Objective-C, Perl,

Ruby, and JavaScript. We’ll take a brief tour of these languages

and see how a Hello World program (like the Python version we

started with in Chapter 1) would look in each one. Note that none

of these languages are specifically intended for beginning pro-

grammers, and most are significantly different from Python.

Java
Java (http://www.oracle.com/technetwork/java/index.html) is a

moderately complicated programming language with a large built-

in library of modules (called packages). A lot of free documentation

is available online. You can use Java on most operating systems.

Java is also the language used on Android mobile phones.

Here’s an example of Hello World in Java:

public class HelloWorld {
 public static final void main(String[] args) {
 System.out.println("Hello World");
 }
}

C/C++
C (http://www.cprogramming.com/) and C++ (http://www

.stroustrup/C++.html) are complicated programming languages

that are used on all operating systems. You’ll find both free and

commercial versions available. Both languages (though perhaps

C++ more than C) have a steep learning curve. For example, you’ll

find that you need to manually code some features that Python pro-

vides (like telling the computer that you need to use a chunk of

memory to store an object). Many commercial games and game

consoles are programmed in some form of C or C++.

Here’s an example of Hello World in C:

#include <stdio.h>
int main ()
{
 printf ("Hello World\n");
}

Where to Go from Here 289

An example in C++ might look like this:

#include <iostream>
int main()
{
 std::cout << "Hello World\n";
 return 0;
}

C#
C# (http://msdn.microsoft.com/en-us/vstudio/hh388566/), pro-

nounced “C sharp,” is a moderately complicated programming

language for Windows that is very similar to Java. It’s a bit easier

than C and C++.

Here’s an example of Hello World in C#:

public class Hello
{
 public static void Main()
 {
 System.Console.WriteLine("Hello World");
 }
}

PHP
PHP (http://www.php.net/) is a programming language for

building websites. You will need a web server (software used to

deliver web pages to a web browser) with PHP installed, but all

the software required is freely available for all the major operating

systems. In order to work with PHP, you will need to learn HTML

(a simple language for building web pages). You can find a free

PHP tutorial at http://php.net/manual/en/tutorial.php, and an

HTML tutorial at http://www.w3schools.com/html.

An HTML page that displays “Hello World” in a browser might

look like this:

<html>
 <body>
 <p>Hello World</p>
 </body>
</html>

290 Afterword

A PHP page to do the same thing might look like this:

<?php
echo "Hello World\n";
?>

objective-C
Objective-C (http://classroomm.com/objective-c/) is very similar to

C (in fact, it’s an extension of the C programming language) and

most commonly used on Apple computers. It’s the programming

language for the iPhone and iPad.

Here’s an example of Hello World in Objective-C:

#import <Foundation/Foundation.h>
int main (int argc, const char * argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 NSLog (@"Hello World");

 [pool drain];
 return 0;
}

Perl
The Perl programming language (http://www.perl.org/) is avail-

able for free for all major operating systems. It’s usually used for

developing websites (similar to PHP).

Here’s an example of Hello World in Perl:

print("Hello World\n");

Ruby
Ruby (http://www.ruby-lang.org/) is a free programming language

available on all major operating systems. It’s mostly used for creat-

ing websites, specifically using the framework Ruby on Rails. (A

framework is a set of libraries supporting the development of spe-

cific types of applications.)

Here’s an example of Hello World in Ruby:

puts "Hello World"

Where to Go from Here 291

Javascript
JavaScript (https://developer.mozilla.org/en/javascript/) is a pro-

gramming language that is usually used inside web pages but is

increasingly being used for game programming. The syntax is basi-

cally similar to Java, but perhaps it’s a little easier to get started

with JavaScript. (You can create a simple HTML page that con-

tains a JavaScript program and run it inside a browser without

needing a shell, command line, or anything else.) A good place to

start learning JavaScript might be Codecademy at http://www

.codecademy.com/.

A “Hello World” example in JavaScript will be different depend-

ing on whether you run it in a browser or in a shell. In a shell, the

example looks like this:

print('Hello World');

In a browser, it might look like this:

<html>
 <body>
 <script type="text/javascript">
 alert("Hello World");
 </script>
 </body>
</html>

fInal Words
Whether you stick with Python or decide to try out another pro-

gramming language (and there are many more than those listed

here), you should still find the concepts that you’ve discovered in

this book useful. Even if you don’t continue with computer pro-

gramming, understanding some of the fundamental ideas can help

with all sorts of activities, whether in school or later on, at work.

Good luck and have fun with your programming!

Appendix
PYtHon KeYWoRDs

Keywords in Python (and in most programming lan-

guages) are words that have special meaning. They

are used as part of the programming language itself,

and therefore must not be used for anything else. For

example, if you try to use keywords as variables, or

use them in the wrong way, you will get strange (some-

times funny, sometimes confusing) error messages

from the Python console.

This appendix describes each of the Python key-

words. You should find this to be a handy reference as

you continue to program.

294 Appendix

and
The keyword and is used to join two expressions together in a state-

ment (like an if statement) to say that both expressions must be

true. Here’s an example:

if age > 10 and age < 20:
 print('Beware the teenager!!!!')

This code means that the value of the variable age must be

greater than 10 and less than 20 before the message will be printed.

as
The keyword as can be used to give another name to an imported

module. For example, suppose you had a module with a very

long name:

i_am_a_python_module_that_is_not_very_useful

It would be enormously annoying to need to type this module

name every time you wanted to use it:

import i_am_a_python_module_that_is_not_very_useful
i_am_a_python_module_that_is_not_very_useful.do_something()
I have done something that is not useful.
i_am_a_python_module_that_is_not_very_useful.do_something_else()
I have done something else that is not useful!!

Instead, you can give the module a new, shorter name when

you import it, and then simply use that new name (a bit like a

nickname), as follows:

import i_am_a_python_module_that_is_not_very_useful as notuseful
notuseful.do_something()
I have done something that is not useful.
notuseful.do_something_else()
I have done something else that is not useful!!

assert
assert is a keyword used to say that some code must be true. It’s

another way of catching errors and problems in code, usually in

Python Keywords 295

more advanced programs (which is why we don’t use assert in this

book). Here’s a simple assert statement:

>>> mynumber = 10
>>> assert mynumber < 5
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in <module>
 assert a < 5
AssertionError

In this example, we assert that the value of the variable

 mynumber is less than 5. It isn’t, and so Python displays an error

(called an AssertionError).

break
The break keyword is used to stop some code from running. You

might use a break inside a for loop, like this:

age = 10
for x in range(1, 100):
 print('counting %s' % x)
 if x == age:
 print('end counting')
 break

Since the variable age is set to 10 here, this code will print out

the following:

counting 1
counting 2
counting 3
counting 4
counting 5
counting 6
counting 7
counting 8
counting 9
counting 10
end counting

Once the value of the variable x reaches 10, the code prints the

text “end counting” and then breaks out of the loop.

296 Appendix

class
The keyword class is used to define a type of object, like a vehicle,

animal, or person. Classes can have a function called __init__,

which is used to perform all the tasks an object of the class needs

when it is created. For example, an object of the class Car might

need a variable color when it’s created:

class Car:
 def __init__(self, color):
 self.color = color

car1 = Car('red')
car2 = Car('blue')
print(car1.color)
red
print(car2.color)
blue

ContInUe
The continue keyword is a way to “jump” to the next item in a

loop—so that the remaining code in the loop block is not executed.

Unlike break we don’t jump out of the loop, we just carry on with

the next item. For example, if we had a list of items and wanted to

skip items starting with b, we could use the following code:

u >>> my_items = ['apple', 'aardvark', 'banana', 'badger', 'clementine',
 'camel']

v >>> for item in my_items:
w if item.startswith('b'):
x continue
y print(item)

apple
aardvark
clementine
camel

We create our list of items at u, and then use a for loop to loop

over the items and run a block of code for each at v. If the item

starts with the letter b at w, we continue to the next item at x.

Otherwise, at y we print out the item.

Python Keywords 297

Def
The def keyword is used to define a function. For example, to cre-

ate a function to convert a number of years into the equivalent

number of minutes:

>>> def minutes(years):
 return years * 365 * 24 * 60
>>> minutes(10)
5256000

del
The del function is used to remove something. For example, if you

had a list of things you wanted for your birthday in your diary, but

then changed your mind about one of them, you might cross it off

the list and add something new:

remote controlled car
new bike
computer game
roboreptile

In Python, the original list would look like this:

what_i_want = ['remote controlled car', 'new bike', 'computer game']

You could remove the computer game by using del and the

index of the item you want to delete. You could then add the new

item with the function append:

del what_i_want[2]
what_i_want.append('roboreptile')

And then print the new list:

print(what_i_want)
['remote controlled car', 'new bike', 'roboreptile']

elif
The keyword elif is used as part of an if statement. See the

description of the if keyword for an example.

298 Appendix

else
The keyword else is used as part of an if statement. See the

description of the if keyword for an example.

except
The keyword except is used for catching problems in code. It’s

 typically used in fairly complicated programs, so we don’t use it

in this book.

finally
The keyword finally is used to make sure that if an error occurs,

certain code runs (usually to tidy up any mess that a piece of code

has left behind). This keyword isn’t used in this book because it’s

for more advanced programming.

for
The for keyword is used to create a loop of code that runs a certain

number of times. Here’s an example:

for x in range(0, 5):
 print('x is %s' % x)

This for loop executes the block of code (the print statement)

five times, resulting in the following output:

x is 0
x is 1
x is 2
x is 3
x is 4

from
When importing a module, you can import just the part you need

using the from keyword. For example, the turtle module intro-

duced in Chapter 4 has a class called Pen, which we use to create

a Pen object (the canvas on which the turtle moves). Here’s how we

import the entire turtle module and then use the Pen class:

import turtle
t = turtle.Pen()

Python Keywords 299

You could also just import the Pen class on its own, and then

use it directly (without referring to the turtle module at all):

from turtle import Pen
t = Pen()

You might do this so that the next time you look at the top

of that program, you can see all the functions and classes that

you’re using (which is particularly useful in larger programs that

import a lot of modules). However, if you choose to do this, you

won’t be able to use the parts of the module you haven’t imported.

For example, the time module has functions called localtime and

gmtime, but if you import only localtime and then try to use gmtime,

you’ll get an error:

>>> from time import localtime
>>> print(localtime())
(2007, 1, 30, 20, 53, 42, 1, 30, 0)
>>> print(gmtime())
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'gmtime' is not defined

The error message name 'gmtime' is not defined means that

Python doesn’t know anything about the function gmtime, which is

because you haven’t imported it.

If there are a number of functions in a particular module that

you want to use, and you don’t want to refer to them by using the

module name (for example, time.localtime, or time.gmtime), you can

import everything in the module using an asterisk (*), like this:

>>> from time import *
>>> print(localtime())
(2007, 1, 30, 20, 57, 7, 1, 30, 0)
>>> print(gmtime())
(2007, 1, 30, 13, 57, 9, 1, 30, 0)

This form imports everything from the time module, and you

can now refer to the individual functions by name.

global
The idea of scope in programs is introduced in Chapter 7. Scope

refers to the visibility of a variable. If a variable is defined outside

300 Appendix

a function, usually it can be seen (in other words, it’s visible) inside

the function. On the other hand, if the variable is defined inside a

function, usually it can’t be seen outside that function. The global

keyword is one exception to this rule. A variable that is defined as

global can be seen everywhere. Here’s an example:

>>> def test():
 global a
 a = 1
 b = 2

What do you think happens when you call print(a) and then

print(b), after running the function test? The first will work, but

the second will display an error message:

>>> test()
>>> print(a)
1
>>> print(b)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'b' is not defined

The variable a has been changed to global inside the function,

so it’s visible, even once the function has completed, but b is still

visible only inside the function. (You must use the global keyword

before setting the value of your variable.)

if
The if keyword is used to make a decision about something. It

can also be used with the keywords else and elif (else if). An if

statement is a way of saying, “If something is true, then perform

an action of some kind.” Here’s an example:

u if toy_price > 1000:
v print('That toy is overpriced')
w elif toy_price > 100:
x print('That toy is expensive')
y else:
z print('I can afford that toy')

This if statement says that if a toy price is over $1,000 at u,

display a message that it is overpriced at v; otherwise, if the toy

Python Keywords 301

price is over $100 as at w, then display a message that it’s expen-

sive at x. If neither of those conditions is true as at y, it should

display the message “I can afford that toy” at z.

import
The import keyword is used to tell Python to load a module so it

can be used. For example, the following code tells Python to use

the module sys:

import sys

in
The in keyword is used in expressions to see if an item is within

a collection of items. For example, can the number 1 be found in a

list (a collection) of numbers?

>>> if 1 in [1,2,3,4]:
>>> print('number is in list')
number is in list

Here’s how to find out if the string 'pants' is in a list of cloth-

ing items:

>>> clothing_list = ['shorts', 'undies', 'boxers', 'long johns',
 'knickers']
>>> if 'pants' in clothing_list:
 print('pants is in the list')
else:
 print('pants is not in the list')
pants is not in the list

is
The is keyword is a bit like the equal to operator (==), which is

used to tell if two things are equal (for example 10 == 10 is true,

and 10 == 11 is false). However, there is a fundamental difference

between is and ==. If you are comparing two things, == may return

true, while is may not (even if you think the things are the same).

This is an advanced programming concept, and we stick with

using == in this book.

302 Appendix

lambda
The lambda keyword is used to create anonymous, or inline, func-

tions. This keyword is used in more advanced programs, and we

don’t discuss it in this book.

not
If something is true, the not keyword makes it false. For example,

if we create a variable x and set it to the value True, and then print

the value of this variable using not, we get the following result:

>>> x = True
>>> print(not x)
False

This doesn’t seem very useful, until you start using the key-

word in if statements. For example, to find out whether an item is

not in a list, we could write something like this:

>>> clothing_list = ['shorts', 'undies', 'boxers', 'long johns',
 'knickers']
>>> if 'pants' not in clothing_list:
 print('You really need to buy some pants')
You really need to buy some pants

or
The or keyword is used to join two conditions together in a state-

ment (such as an if statement) to say that at least one of the condi-

tions should be true. Here’s an example:

if dino == 'Tyrannosaurus' or dino == 'Allosaurus':
 print('Carnivores')
elif dino == 'Ankylosaurus' or dino == 'Apatosaurus':
 print('Herbivores')

In this case, if the variable dino contains Tyrannosaurus

or Allosaurus, the program prints “Carnivores.” If it contains

 Ankylosaurus or Apatosaurus, the program prints “Herbivores.”

Python Keywords 303

pass
Sometimes when you’re developing a program, you want to write

only small pieces of it, to try things out. The problem with doing

this is that you can’t have an if statement without the block of

code that should be run if the expression in the if statement is

true. You also cannot have a for loop without the block of code that

should be run in the loop. For example, the following code works

just fine:

>>> age = 15
>>> if age > 10:
 print('older than 10')

older than 10

But if you don’t fill in the block of code (the body) for the if

statement, you’ll get an error message:

>>> age = 15
>>> if age > 10:

File "<stdin>", line 2
 ^
IndentationError: expected an indented block

This is the error message Python displays when you should

have a block of code after a statement of some kind (it won’t even

let you type this kind of code if you’re using IDLE). In cases like

these, you can use the pass keyword to write a statement but not

provide the block of code that goes with it.

For example, say you want to create a for loop with an if state-

ment inside it. Perhaps you haven’t decided what to put in the if

statement yet—maybe you’ll use the print function, put in a break,

or something else. You can use pass, and the code will still work

(even if it doesn’t do exactly what you want yet).

Here’s our if statement again, this time using the pass keyword:

>>> age = 15
>>> if age > 10:
 pass

304 Appendix

The following code shows another use of the pass keyword:

>>> for x in range(0, 7):
>>> print('x is %s' % x)
>>> if x == 4:
 pass

x is 0
x is 1
x is 2
x is 3
x is 4
x is 5
x is 6

Python still checks whether the variable x contains the value

4 every time it executes the block of code in the loop, but it will

do nothing as a consequence, so it will print every number in the

range 0 to 7.

Later, you could add the code in the block for the if statement,

replacing the pass keyword with something else, such as break:

>>> for x in range(1, 7):
 print('x is %s' % x)
 if x == 5:
 break

x is 1
x is 2
x is 3
x is 4
x is 5

The pass keyword is most commonly used when you’re creating

a function but don’t want to write the code for the function yet.

raise
The raise keyword can be used to cause an error to happen.

That might sound like a strange thing to do, but in advanced

programming, it can actually be quite useful. (We don’t use this

keyword in this book.)

Python Keywords 305

return
The return keyword is used to return a value from a function. For

example, you might create a function to calculate the number of

seconds you’ve been alive up till your last birthday:

def age_in_seconds(age_in_years):
 return age_in_years * 365 * 24 * 60 * 60

When you call this function, the returned value can be assigned

to another variable or printed:

>>> seconds = age_in_seconds(9)
>>> print(seconds)
283824000
>>> print(age_in_seconds())
378432000

try
The try keyword begins a block of code that ends with the except

and finally keywords. Together, these try/except/finally blocks of

code are used to handle errors in a program, such as to make sure

that the program displays a useful message to the user, rather

than an unfriendly Python error. These keywords aren’t used in

this book.

while
The while keyword is a bit like for, except that a for loop counts

through a range (of numbers), but a while loop keeps on running

while an expression is true. Be careful with while loops because if

the expression is always true, the loop will never end (this is called

an infinite loop). Here’s an example:

>>> x = 1
>>> while x == 1:
 print('hello')

If you run this code, it will loop forever, or at least until you

close the Python shell or press ctrl-C to interrupt it. However, the

following code will print “hello” nine times (each time adding 1 to

the variable x, until x is no longer less than 10).

306 Appendix

>>> x = 1
>>> while x < 10:
 print('hello')
 x = x + 1

with
The with keyword is used with an object to create a block of code in

a similar way to the try and finally keywords. This keyword is not

used in this book.

yield
The yield keyword is a little bit like return, except that it is used

with a specific class of object called a generator. Generators cre-

ate values on the fly (which is another way of saying that they

create values on request), so in that respect, the range function

behaves like a generator. This keyword is not used in this book.

GLossARY

Sometimes, when you’re programming for the first

time, you’ll encounter a new term that just doesn’t

make much sense. That lack of understanding can

get in the way of making any real progress. But

there’s a simple solution to that problem!

I’ve created this glossary to help you through

those times when a new word or term holds you up.

You’ll find definitions of many of the programming

terms used in this book, so look here if you encounter

a word that you don’t understand.

308 Glossary

animation The process of displaying a sequence of images fast

enough that it looks like something is moving.

block A group of computer statements in a program.

Boolean A type of value that can be either true or false. (In

Python, it’s True or False, with capital T and F.)

call Run the code in a function. When we use a function, we say

we are “calling” it.

canvas An area of the screen for drawing on. canvas is a class

provided by the tkinter module.

child When we’re talking about classes, we describe the relation-

ships between classes as that of parents and children. A child class

inherits the characteristics of its parent class.

class A description or definition of a type of thing. In program-

ming terms, a class is a collection of functions and variables.

click Press one of the mouse buttons to push an on-screen but-

ton, select a menu option, and so on.

collision In computer games, when one character in the game

crashes into another character or object on the screen.

condition An expression in a program that is a bit like a ques-

tion. Conditions evaluate to true or false.

coordinates The position of a pixel on the screen. This is usu-

ally described as a number of pixels across the screen (x) and a

number of pixels down (y).

degrees A unit of measurement for angles.

data Usually refers to information stored and manipulated by a

computer.

dialog A dialog is typically a small window in an application

that presents some contextual information, such as an alert or an

error message, or asks you to respond to a question. For example,

when you choose to open a file, the window that appears is usually

the File dialog.

dimensions In the context of graphics programming, two-

dimensional or three-dimensional refers to how images are dis-

played on a computer monitor. Two-dimensional (2D) graphics

are flat images on a screen that have width and height—like

Glossary 309

the old cartoons you might see on TV. Three-dimensional (3D)

graphics are images on the screen that have width, height, and

the appearance of depth—the sort of graphics you might see in

a more realistic computer game.

directory The location of a group of files on the hard disk of

your computer.

embed Replace values inside a string. The replaced values are

sometimes called placeholders.

error When something goes wrong with a program on your com-

puter, this is an error. When programming with Python, you might

see all sorts of messages displayed in response to an error. If you

enter your code incorrectly you might see an IndentationError, for

example.

event Something that occurs when a program is running. For

example, an event might be someone moving the mouse, clicking

the mouse button, or typing on a keyboard.

exception A type of error that can occur when running a

 program.

execute Run some code, like a program, a small snippet of code,

or a function.

frame One of a series of images that makes up an animation.

function A command in a programming language that is usu-

ally a collection of statements that perform some action.

hexadecimal A way of representing numbers, particularly in

computer programming. Hexadecimal numbers are base 16, which

means the numbers go from 0 through 9 and then A, B, C, D, E,

and F.

horizontal The left and right directions on the screen (repre-

sented by x).

identifier A number that uniquely names something in a pro-

gram. For example, in Python’s tkinter module, the identifier is

used to refer to shapes drawn on the canvas.

image A picture on the computer screen.

import In Python terms, importing makes a module available

for your program to use.

310 Glossary

initialize Refers to setting up the initial state of an object (that

is, setting variables in the object when it is first created).

installation The process of copying a software application’s files

onto your computer so that the application is available for use.

instance The instance of a class—in other words, an object.

keyword A special word used by a programming language.

Keywords are also referred to as reserved words, which basically

means you can’t use them for anything else (for example, you can’t

use a keyword as the name of a variable).

loop A repeated command or set of commands.

memory A device or component in your computer that is used to

temporarily store information.

module A group of functions and variables.

null The absence of value (in Python, also referred to as None).

object The specific instance of a class. When you create an

object of a class, Python sets aside some of your computer’s mem-

ory to store information about a member of that class.

operator An element in a computer program used for mathemat-

ics or for comparing values.

parameter A value used with a function when calling it or when

creating an object (when calling the Python __init__ function, for

example). Parameters are sometimes referred to as arguments.

parent When referring to classes and objects, the parent of a

class is another class that functions and variables are inherited

from. In other words, a child class inherits the characteristics of

its parent class. When we’re not talking Python, a parent is the

person who tells you to brush your teeth before going to bed at

night.

pixel A single point on your computer screen—the smallest dot

that the computer is capable of drawing.

program A set of commands that tells a computer what to do.

scope The part, or section, of a program where a variable can be

“seen” (or used). (A variable inside a function may not be visible to

code outside the function.)

Glossary 311

shell In computing, a shell is a command-line interface of

some kind. In this book, “the Python shell” refers to the IDLE

application.

software A collection of computer programs.

sprite A character or an object in a computer game.

string A collection of alphanumeric characters (letters, numbers,

punctuation, and whitespace).

syntax The arrangement and order of words in a program.

transparency In graphics programming, part of an image that

isn’t displayed, meaning it doesn’t overwrite whatever is displayed

behind it.

variable Something used to store values. A variable is like a

label for information held in the computer’s memory. Variables

aren’t permanently tied to a specific value, hence the name “vari-

able,” meaning it can change.

vertical The up and down directions on the screen (represented

by y).

symbols and

numbers

+ (addition operator), 17

\ (backslash)

to separate lines

of code, 235

in strings, 29, 126

{} (braces), for creating

maps, 39

[] (brackets), for creating

lists, 33

: (colon)

in if statements, 54

in lists, 34

in maps, 39

/ (division operator), 17–18

. (dot operator), 106–107

* (multiplication operator),

16–18

() (parentheses)

with classes and

objects, 96

for creating tuples, 38

% (percent sign)

as modulo operator, 149

as placeholder operator,

30–31, 175

- (subtraction operator), 17

2D (two-dimensional)

graphics, 163

3D (three-dimensional)

graphics, 164

A

abs function, 109–111

adding items to lists, 35

adding objects to classes, 96

addition operator (+), 17

Adobe Flash, 286

Alice, 286

alpha channel, 222, 224

and keyword, 61, 294

Android mobile phones, 288

animation, 164, 183, 198

defined, 308

in Mr. Stick Man Races

for the Exit, 225,

260–264

with sprites, 222

animation frames,

defined, 309

append function, 35

as keyword, 294

assert keyword, 294

AssertionError, 295

B

backslash (\)

to separate lines

of code, 235

in strings, 29, 126

BASIC, 4

BlitzBasic, 286

blocks of code, 54–55, 72

defined, 308

body of a function, 83

bool function, 111

Boolean, 111

defined, 308

Bounce! (game), 193–216

adding an element of

change, 212–213

ball, 196–198

changing direction, 202

hitting the paddle,

209–212

making bounce, 200

moving, 198

canvas, 194

paddle, 206

moving, 207–208

braces ({}), for creating

maps, 39

brackets ([]), for creating

lists, 33

break keyword, 78, 295

built-in functions, 109

abs, 109–111

bool, 111

dir, 113

eval, 114

exec, 116

float, 64, 116

int, 63, 117

len, 118

max, 119

min, 120

open, 125

range function, 121–122

in for loops, 68–69, 119

with list function, 82

sum, 122

C

C programming

language, 288

C++ programming

language, 289

C# programming

language, 289

calculating, 16, 115

calling a function, 83

defined, 308

canvases

creating with tkinter

module, 167–168

creating with turtle

module, 44

defined, 308

characteristics, of classes,

97–98

child classes, 95

defined, 308

Index

314 INDEX

class keyword, 94, 296

classes, 94

adding objects to, 96

class functions calling

other functions, 104

child classes, 95, 308

defining functions, 97

described using turtle

module, 100

inheriting functions,

103–104

parent classes, 95

classifying things using

classes and

objects, 94

clicking a button, 308

collision detection, 209,

239–244

in Bounce!, 209–212

in Mr. Stick Man Races

for the Exit,

266–272

collisions, defined, 308

colon (:)

in if statements, 54

in lists, 34

in maps, 39

colors

changing with the

itemconfig

function, 189

setting

with tkinter module,

174–175

with turtle module,

152–155, 159

using the color chooser in

tkinter module, 176

command-line console, 13

conditions, 57–58

and keyword, 61

combining, 61

defined, 308

operators, 57

or keyword, 61

continue keyword, 296

converting

dates, 140

numbers from strings, 63

numbers to strings, 64

coordinates, 168

Coords class, 238

copy module, 130

deep copy, 132

shallow copy, 132

copying and pasting,

in IDLE, 22

creating files

on Mac OS X, 123–124

on Ubuntu Linux,

124–125

on Windows, 123

creating lists of numbers,

48, 82

creating variables, 19

D

data, defined, 308

data types

Boolean, 111

floating-point

numbers, 116

integers, 64, 116

strings, 26–32

dates

converting, 140

as objects, 140–141

def keyword, 98, 297

degrees, 47–48

in arcs, 178–179

defined, 308

in stars, 147–148

del keyword, 35, 297

delaying programs, 141

deleting items

from lists, 35

from maps, 40

dialogs, defined, 308

dict. See maps

dimensions, defined, 308

dir function, 113

directories, defined, 309

division operator (/),

17–18

dot operator (.), 106–107

drawing

for Mr. Stick Man Races

for the Exit

background, 229

door, 228

Mr. Stick Man, 225

platforms, 227

with tkinter module,

163–190

arcs, 177–179

boxes, 170–174, 206

lines, 168–169

ovals (circles), 196–197

polygons, 179–180

with turtle module,

43–50, 145–160

8-point star, 147

boxes, 146, 206

car, 151

filled circle, 153

filled square, 157

filled stars, 158

line, 169

spiral star, 148

e

elif keyword, 59, 297. See

also if statements

else keyword, 58, 298. See

also if statements

embedding values in strings,

30, 175

EOL (end-of-line), 27

errors

AssertionError, 295

defined, 309

indentation, 56, 71, 303

highlighting in IDLE,

56, 71

NameError, 85, 299, 300

SyntaxError, 27, 28, 56, 71

SystemExit, 137

TypeError, 37, 38, 41

ValueError, 64, 118

INDEX 315

escaping strings, 29

eval function, 114

event bindings, with tkinter

module, 186, 208

event objects, 255–256

events, defined, 309

except keyword, 298

exceptions, defined, 309

exec function, 116

execute, defined, 309

expressions, 115, 149

f

file locations, 126

file objects

close function, 127

creating files

on Mac OS X, 123–124

on Ubuntu Linux,

124–125

on Windows, 123

opening files

on Mac OS X, 126

on Ubuntu Linux, 126

on Windows, 125

read function, 126

write function, 127

files

creating, 123–125

opening, 125–126

reading from, 125, 127

writing to, 126

finally keyword, 298

float function, 64, 116

floating-point numbers, 116

for keyword, 298

for loops, 68

comparing code without

using loops, 69

inside loops, 73

and lists, 70

and range function, 68

and turtle module, 147

format placeholder,

30–31, 175

frames, animation, 309

from keyword, 298

functions, 11, 35, 82. See also

built-in functions

append, 35

calling, 83

defined, 308

different values, 86

defined, 309

list, 69, 82

parts of a function, 83

print, 12

sleep, 141

str, 64

G

games. See Bounce!;

Mr. Stick Man

Races for the Exit

GIF images, 182, 226

GIMP (GNU Image

Manipulation

Program), 222

global keyword, 299

graphics

isometric, 164

three-dimensional

(3D), 164

two-dimensional

(2D), 163

H

help function, 114

hexadecimal numbers, 175

defined, 309

horizontal, defined, 309

HTML, 289

I

identifiers, 169, 184, 188

defined, 309

IDLE (integrated devel-

opment environ-

ment), 10

copying and pasting, 22

error highlighting, 56, 71

setting up on Mac OS X, 8

setting up on Windows, 6

starting, 11

if keyword, 300

if statements, 54. See also

elif keyword; else

keyword

images

defined, 309

displaying with tkinter

module, 181

flipping, in GIMP, 227

GIF, 182, 226

import keyword, 301

importing modules, 44, 87

defined, 309

in keyword, 301

indentation

consistent spacing,

57, 72

errors, 56, 71, 303

in IDLE, 56, 69, 71

indenting blocks, 54

index positions, in lists, 33

inheritance, 103–104

initialization, defined, 310

installation, defined, 310

installing Python, 5

on Mac OS X, 7

on Ubuntu Linux, 9

on Windows, 5

instances, 96

defined, 310

int function, 63, 117

integers, 64, 116

integrated development

environment.

See IDLE

is keyword, 301

isometric graphics, 164

iterators, 69, 121

J

Java programming

language, 288

JavaScript programming

language, 291

joining lists, 36

316 INDEX

K

keyword module, 133

keywords, 293–306

and, 294

as, 294

assert, 294

break, 78, 295

class, 94, 296

continue, 296

def, 98, 297

defined, 310

del, 35, 297

elif, 59, 297. See also if

statements

else, 58, 298. See also if

statements

except, 298

finally, 298

for, 298

from, 298

global, 299

if, 300

import, 301

in, 301

is, 301

lambda, 302

not, 302

or, 61, 302

pass, 95, 303

raise, 304

return, 305

try, 305

while, 305

with, 306

yield, 306

L

lambda keyword, 302

len function, 118

Linux. See Ubuntu Linux

lists, 33

adding items to, 35

changing, 33

deleting items from, 35

and for loops, 70

index positions, 33

joining, 36

length of, 118

minimum value of, 120

of numbers, creating,

48, 82

printing contents of, 33

and range function, 82

subsets of, 34

type errors, 37, 38

loops

defined, 310

for loops. See for loops

while loops, 75–78

M

Mac OS X

creating files on, 123–124

file locations on, 126

installing Python on, 7

opening files on, 126

setting up IDLE on, 8

main loops, 197, 236

maps, 39

deleting values from, 40

length of, 118

obtaining values of, 40

replacing values in, 40

type errors, 41

mathematical operations

addition, 17

division, 17–18

modulo, 149

multiplication, 16–18

with strings, 31

with variables, 84

subtraction, 17

max function, 119

memory, defined, 310

min function, 120

modules, 87

copy, 130

deep copy, 132

shallow copy, 132

defined, 310

importing, 44, 87

keyword, 133

pickle, 142

dump function, 142

load function, 143

random. See random module

sys. See sys module

time. See time module

tkinter. See tkinter

module

turtle. See turtle module

modulo operator (%), 149

Monty Python’s Flying

Circus, 4

Mr. Stick Man Races for the

Exit (game)

background, drawing,

229–230

collision detection,

239–244

Coords class, 238

door, drawing, 228–229

DoorSprite class, 274–275

Game class, 234–238

platforms

adding, 245–248

drawing, 227–228

sprites, creating, 244–245

Mr. Stick Man, 252–256

animating, 260-272

binding to keys, 255

drawing, 225–227

loading images,

252–253

moving, 255–257

multiline strings, 27, 116

multiplication, 16–18

with strings, 31

with variables, 84

n

NameError, 85, 299, 300

None, 61–62

not keyword, 302

null, defined, 310

numbers,

converting from

strings, 63

converting to strings, 64

INDEX 317

floating-point, 116

integers, 64, 116

vs. strings, 62

and ValueError, 64, 118

o

Objective-C programming

language, 290

objects, 88, 95–96

adding to classes, 96

defined, 310

identifiers, 188

initializing, 105

reading from files, 143

standard input, 88

standard output, 138

writing to files, 142

opening files

on Mac OS X, 126

on Ubuntu Linux, 126

on Windows, 125

operators, 17

defined, 310

modulo (%), 149

order of operations, 19

placeholder (%), 30

or keyword, 61, 302

order of operations, 18

OS X. See Mac OS X

P

parameters, 83

defined, 310

named, 167

parent classes, 95

defined, 310

parentheses (), 18

with classes and

objects, 96

for creating tuples, 38

pass keyword, 95, 303

percent sign (%)

as module operator, 149

as placeholder operator,

30–31, 175

PERL programming

language, 290

PHP programming

language, 289–290

pickle module, 142

dump function, 142

load function, 143

pixels, 47

defined, 310

placeholders, 30, 175

printing

contents of lists, 33

contents of variables, 20

programming languages,

4, 288–291

for mobile phone

development,

288, 290

for website development,

289, 290, 291

programs

defined, 310

delaying, 141

running, 13

saving, 12

prompt, 11

PyGame2, 286–287

Python, 4

console, using, 46

installing, 5

on Mac OS X, 7

on Ubuntu Linux, 9

on Windows, 5

saving programs, 12

shell. See shell

R

random module, 133

choice function 135

creating random

rectangles, 172

randint function, 134

shuffle function, 136, 202

range function, 121–122

in for loops, 68–69, 119

with list function, 82

raise keyword, 304

reading input, 89

reading objects from

files, 143

replacing map values, 40

resetting variables, 62

return keyword, 305

Ruby programming

language, 290

running programs, 13

s

saving programs, 12

scope

defined, 310

of variables, 84, 85

Scratch, 286

shell, 11. See also IDLE

creating a new window, 13

defined, 311

sleep function, 141

software, 3

defined, 311

sprites, defined, 222, 311.

See also Bounce!

(game); Mr. Stick

Man Races for the

Exit (game)

standard input (stdin), 88

standard output (stdout), 138

str function, 64

strings, 26

defined, 311

embedding values in,

30, 175

escaping, 29

multiline, 27, 116

multiplying, 31

vs. numbers, 62

syntax errors in strings,

27, 28

and whitespace, 112

subset of a list, 34

subtraction, 17

sum function, 122

318 INDEX

syntax, 27

defined, 311

SyntaxError, 27, 28, 56, 71

sys module, 88, 136

exit function, 136

stdin object, 137

stdout object, 138

version function, 138

SystemExit, 137

t

time module, 87, 138

asctime function, 140

localtime function,

140–141

sleep function, 141

time function, 139

three-dimensional (3D)

graphics, 164

tkinter module, 163

animation, 183–186, 198

askcolor function, 176

Canvas object

coords function,

200–201

winfo_height

function, 200

winfo_width

function, 202

and colors, 174–177

coords function, 201

creating

button, 165–166

canvas, 167–168

displaying

images, 181–183

text, 180–181

drawing

arcs, 177–179

boxes, 170–174, 206

lines, 168–169

ovals (circles), 196–197

polygons, 179–180

event binding, 186, 208

and identifiers, 169,

184, 188

itemconfig function of the

canvas, 189

keysym variable 187

move function, 207

pack function, 168, 195

PhotoImage, 182

tk object

title function, 195

update function, 197

update_idletasks

function, 197

wm_attributes

function, 195

transparency in images,

222–223, 230

creating with GIMP, 224

defined, 311

try keyword, 305

tuples, 38, 176, 181

turtle module, 44–50,

145–160

begin_fill function, 153

clear function, 49

color function, 152

creating canvas, 44

drawing

8-point star, 147

boxes, 146, 206

car, 151

filled circle, 153

filled square, 157

filled stars, 158

line, 169

spiral star, 148

end_fill function, 153

importing, 44

moving

backward, 49

forward, 46

Pen class, 44

reset function, 49

turning

left, 47

right, 49

using with for loops, 147

two-dimensional (2D)

graphics, 163

TypeError, 37, 38, 41

U

Ubuntu Linux

creating files on, 124–125

file locations on, 126

installing Python on, 10

opening files on, 126

Unity3D, 286

user input, 62

V

ValueError, 64, 118

variables

creating, 19

defined, 311

printing the contents

of, 20

resetting, 62

scope of, 84

using, 21

vertical, defined, 311

W

while keyword, 305

while loops, 75–78

whitespace, 55

whole numbers, 116

Windows

creating files on, 123

file locations on, 126

installing Python on, 5

opening files on, 125

setting up IDLE on, 6

with keyword, 306

writing objects to files, 142

Y

yield keyword, 306

PHONE:

800.420.7240 or

415.863.9900

EMAIL:

sales@nostarch.com

WEB:

www.nostarch.com

SUPER SCRATCH
PROGRAMMING ADVENTURE!
Learn to Program by Making Cool Games
by the lead project

august 2012, 160 pp., $24.95

isbn 978-1-59327-409-2

full color

THE UNOFFICIAL LEGO®
TECHNIC BUILDER’S GUIDE
by pawel “sariel” kmiec

november 2012, 352 pp., $29.95

isbn 978-1-59327-434-4

full color

THE MANGA GUIDE™
TO PHYSICS
by hideo nitta, keita takatsu,

and trend-pro co., ltd.

may 2009, 248 pp., $19.95

isbn 978-1-59327-196-1

WONDERFUL LIFE WITH
THE ELEMENTS
The Periodic Table Personified
by bunpei yorifuji

september 2012, 208 pp., $17.95

isbn 978-1-59327-423-8

hardcover with pull-out poster

ELOQUENT JAVASCRIPT
A Modern Introduction to Programming
by marijn haverbeke

january 2011, 224 pp., $29.95

isbn 978-1-59327-282-1

THINK LIKE A PROGRAMMER
An Introduction to Creative
Problem Solving
by v. anton spraul

august 2012, 256 pp., $34.95

isbn 978-1-59327-424-5

More no-nonsense books from NO STARCH PRESS

UPDAtes
Visit http://python-for-kids.com/ for updates, errata, and other

 information.

PYTHON
FOR KIDS
PYTHON
FOR KIDS

A Playful Introduction to Programming

J a s o n R . B r i g g s

Python is a powerful, expressive program-

ming language that’s easy to learn and fun to

use! But books about learning to program in

Python can be kind of dull, gray, and boring,

and that’s no fun for anyone.

Python for Kids brings Python to life and

brings you (and your parents) into the world of

programming. The ever-patient Jason R. Briggs

will guide you through the basics as you experi-

ment with unique (and often hilarious) example

programs that feature ravenous monsters, secret

agents, thieving ravens, and more. New terms

are defined; code is colored, dissected, and

explained; and quirky, full-color illustrations

keep things on the lighter side.

Chapters end with programming puzzles

designed to stretch your brain and strengthen

your understanding. By the end of the book

you’ll have programmed two complete games:

a clone of the famous Pong and “Mr. Stick Man

Races for the Exit”—a platform game with

jumps, animation, and much more.

As you strike out on your programming

adventure, you’ll learn how to:

M Use fundamental data structures like lists,

tuples, and maps

M Organize and reuse your code with func-

tions and modules

M Use control structures like loops and

conditional statements

M Draw shapes and patterns with Python’s

turtle module

M Create games, animations, and other

graphical wonders with tkinter

Why should serious adults have all the fun?

Python for Kids is your ticket into the amaz-

ing world of computer programming.

ABOUT THE AUTHOR

Jason R. Briggs has been a programmer since

the age of eight, when he first learned BASIC on

a Radio Shack TRS-80. He has written software

professionally as a developer and systems archi-

tect and served as Contributing Editor for Java

Developer’s Journal. His articles have appeared

in JavaWorld, ONJava, and ONLamp. Python

for Kids is his first book.

SH
ELV

E IN
:

P
R

O
G

R
A

M
M

IN
G

 LA
N

G
U

A
G

ES/
P

Y
TH

O
N

www.nostarch.com

TH E F I N EST I N

G E E K E NTE RTA I N M E NT™

For kids aged 10+ (and their parents)

real programming.

real easy.
REAL Programming.

REAL EASY.

$34.95 ($36.95 CDN)

Illustrations by Miran Lipovaca

P
Y

T
H

O
N

 F
O

R
 K

ID
S

B
r

i
g

g
s

P
Y

T
H

O
N

 F
O

R
 K

ID
S

	About the Author, Illustrator, and Technical Reviewers
	Acknowledgments
	Introduction
	Why Python?
	How to Learn to Code
	Who Should Read This Book
	What’s in This Book
	The Companion Website
	Have Fun!

	Part I: Learning to Program
	1: Not All Snakes Slither
	A Few Words About Language
	Installing Python
	Installing Python on Windows 7
	Installing Python on Mac OS X
	Installing Python on Ubuntu

	Once You’ve Installed Python
	Saving Your Python Programs
	What You Learned

	2: Calculations and Variables
	Calculating with Python
	Python Operators
	The Order of Operations

	Variables Are Like Labels
	Using Variables
	What You Learned

	3: Strings, Lists, Tuples, and Maps
	Strings
	Creating Strings
	Handling Problems with Strings
	Embedding Values in Strings
	Multiplying Strings

	Lists Are More PowerfulThan Strings
	Adding Items to a List
	Removing Items from a List
	List Arithmetic

	Tuples
	Python Maps Won’t Help You Find Your Way
	What You Learned
	Programming Puzzles
	#1: Favorites
	#2: Counting Combatants
	#3: Greetings!

	4: Drawing with Turtles
	Using Python’s turtle Module
	Creating a Canvas
	Moving the Turtle

	What You Learned
	Programming Puzzles
	#1: A Rectangle
	#2: A Triangle
	#3: A Box Without Corners

	5: Asking Questions with if and else
	if Statements
	A Block Is a Group of Programming Statements
	Conditions Help Us Compare Things

	if-then-else Statements
	if and elif Statements
	Combining Conditions
	Variables with No Value—None
	The Difference Between Strings and Numbers
	What You Learned
	Programming Puzzles
	#1: Are You Rich?
	#2: Twinkies!
	#3: Just the Right Number
	#4: I Can Fight Those Ninjas

	6: Going Loopy
	Using for Loops
	While We’re Talking About Looping . . .
	What You Learned
	Programming Puzzles
	#1: The Hello Loop
	#2: Even Numbers
	#3: My Five Favorite Ingredients
	#4: Your Weight on the Moon

	7: Recycling Your Code with Functions and Modules
	Using Functions
	Parts of a Function
	Variables and Scope

	Using Modules
	What You Learned
	Programming Puzzles
	#1: Basic Moon Weight Function
	#2: Moon Weight Function and Years
	#3: Moon Weight Program

	8: How to Use Classes and Objects
	Breaking Things into Classes
	Children and Parents
	Adding Objects to Classes
	Defining Functions of Classes
	Adding Class Characteristics as Functions
	Why Use Classes and Objects?
	Objects and Classes in Pictures

	Other Useful Features of Objects and Classes
	Inherited Functions
	Functions Calling Other Functions

	Initializing an Object
	What You Learned
	Programming Puzzles
	#1: The Giraffe Shuffle
	#2: Turtle Pitchfork

	9: Python’s Built-in Functions
	Using Built-in Functions
	The abs Function
	The bool Function
	The dir Function
	The eval Function
	The exec Function
	The float Function
	The int Function
	The len Function
	The max and min Functions
	The range Function
	The sum Function

	Working with Files
	Creating a Test File
	Opening a File in Python
	Writing to Files

	What You Learned
	Programming Puzzles
	#1: Mystery Code
	#2: A Hidden Message
	#3: Copying a File

	10: Useful Python Modules
	Making Copies with the copy Module
	Keeping Track of Keywords with the keyword Module
	Getting Random Numbers with therandom Module
	Using randint to Pick a Random Number
	Using choice to Pick a Random Item from a List
	Using shuffle to Shuffle a List

	Controlling the Shell with the sys Module
	Exiting the Shell with the exit function
	Reading with the stdin Object
	Writing with the stdout Object
	Which Version of Python Am I Using?

	Doing Time with the timeModule
	Converting a Date with asctime
	Getting the Date and Time with localtime
	Taking Some Time Off with sleep

	Using the pickle Module to Save Information
	What You Learned
	Programming Puzzles
	#1: Copied Cars
	#2: Pickled Favorites

	11: More Turtle Graphics
	Starting with the Basic Square
	DrawingStars
	Drawing a Car
	Coloring Things In
	A Function to Draw a Filled Circle
	Creating Pure Black and White

	A Square-Drawing Function
	Drawing Filled Squares
	Drawing Filled Stars
	What You Learned
	Programming Puzzles
	#1: Drawing an Octagon
	#2: Drawing a Filled Octagon
	#3: Another Star-Drawing Function

	12: Using tkinter for Better Graphics
	Creating a Clickable Button
	Using Named Parameters
	Creating a Canvas for Drawing
	Drawing Lines
	Drawing Boxes
	Drawing a Lot of Rectangles
	Setting the Color

	Drawing Arcs
	Drawing Polygons
	Displaying Text
	Displaying Images
	Creating Basic Animation
	Making an Object React to Something
	More Ways to Use the Identifier
	What You Learned
	Programming Puzzles
	#1: Fill the Screen with Triangles
	#2: The Moving Triangle
	#3: The Moving Photo
	Part II
	Bounce!

	Part II: Bounce!
	13: Beginning Your First Game: Bounce!
	Whack the Bouncing Ball
	Creating the Game Canvas
	Creating the Ball Class
	Adding Some Action
	Making the Ball Move
	Making the Ball Bounce
	Changing the Ball’s Starting Direction

	What You Learned

	14: Finishing Your First Game: Bounce!
	Adding the Paddle
	Making the Paddle Move
	Finding Out When the Ball Hits the Paddle

	Adding an Element of Chance
	What You Learned
	Programming Puzzles
	#1: Delay the Game Start
	#2: A Proper “Game Over”
	#3: Accelerate the Ball
	#4: Record the Player’s Score

	Part III: Mr. Stick Man Races for the Exit
	15: Creating Graphics for the Mr. Stick Man Game
	Mr. Stick Man Game Plan
	Getting GIMP
	Creating the Game Elements
	Preparing a Transparent Image
	Drawing Mr. Stick Man
	Drawing the Platforms
	Drawing the Door
	Drawing the Background
	Transparency

	What You Learned

	16: Developing the Mr. Stick Man Game
	Creating the Game Class
	Setting the Window Title and Creating the Canvas
	Finishing the _init_ Function
	Creating the mainloop Function

	Creating the Coords Class
	Checking for Collisions
	Sprites Colliding Horizontally
	Sprites Colliding Vertically
	Putting It All Together:
Our Final Collision-Detection Code

	Creating the Sprite Class
	Adding the Platforms
	Adding a Platform Object
	Adding a Bunch of Platforms

	What You Learned
	Programming Puzzles
	#1: Checkerboard
	#2: Two-Image Checkerboard
	#3: Bookshelf and Lamp

	17: Creating Mr. Stick Man
	Initializing the Stick Figure
	Loading the Stick Figure Images
	Setting Up Variables
	Binding to Keys

	Turning the Stick Figure Left and Right
	Making the Stick Figure Jump
	What We Have So Far
	What You Learned

	18: Completing the Mr. Stick Man Game
	Animating the Stick Figure
	Creating the Animate Function
	Getting the Stick Figure’s Position
	Making the Stick Figure Move

	Testing Our Stick Figure Sprite
	The Door!
	Creating the DoorSprite Class
	Detecting the Door
	Adding the Door Object

	The Final Game
	What You Learned
	Programming Puzzles
	#1: “You Win!”
	#2: Animating the Door
	#3: Moving Platforms

	Afterword: Where to Go from Here
	Games and Graphics Programming
	PyGame

	Programming Languages
	Java
	C/C++
	C#
	PHP
	Objective-C
	Perl
	Ruby
	JavaScript

	FinalWords

	Appendix: Python Keywords
	Glossary
	Index

