
Python for Education

Learning Maths & Science using Python

and

writing them in LATEX

Ajith Kumar B.P.

Inter University Accelerator Centre

New Delhi 110067

www.iuac.res.in

June 2010

2

Preface

�Mathematics, rightly viewed, possesses not only truth, but supreme beauty � a beauty cold
and austere, like that of sculpture, without appeal to any part of our weaker nature, without the
gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection
such as only the greatest art can show�, wrote Bertrand Russell about the beauty of mathematics.
All of us may not reach such higher planes, probably reserved for Russels and Ramanujans, but
we also have beautiful curves and nice geometrical �gures with intricate symmetries, like fractals,
generated by seemingly dull equations. This book attempts to explore it using a simple tool, the
Python programming language.

I started using Python for the Phoenix project (www.iuac.res.in). Phoenix was driven in to
Python by Pramode CE (pramode.net) and I followed. Writing this document was triggered by
some of my friends who are teaching mathematics at Calicut University.

In the �rst chapter, a general introduction about computers and high level programming lan-
guages is given. Basics of Python language, Python modules for array and matrix manipulation,
2D and 3D data visualization, type-setting mathematical equations using latex and numerical
methods in Python are covered in the subsequent chapters. Example programs are given for every
topic discussed. This document is meant for those who want to try out these examples and modify
them for better understanding. Huge amount of material is already available online on the topics
covered, and the references to many resources on the Internet are given for the bene�t of the serious
reader.

This book comes with a live CD, containing a modi�ed version of Ubuntu GNU/Linux operating
system. You can boot any PC from this CD and practice Python. Click on the 'Learn by Coding'
icon on the desktop to browse through a collection of Python programs, run any of them with
a single click. You can practice Python very easily by modifying and running these example
programs.

This document is prepared using LYX, a LATEX front-end. It is distributed under the GNU Free
Documentation License (www.gnu.org). Feel free to make verbatim copies of this document and
distribute through any media. For the LYX source �les please contact the author.

Ajith Kumar
IUAC , New Delhi
ajith at iuac.res.in

Contents

1 Introduction 6
1.1 Hardware Components . 6
1.2 Software components . 7

1.2.1 The Operating System . 7
1.2.2 The User Interface . 7

1.2.2.1 The Command Terminal . 7
1.2.3 The File-system . 9

1.2.3.1 Ownership & permissions . 9
1.2.3.2 Current Directory . 10

1.3 Text Editors . 10
1.4 High Level Languages . 10
1.5 On Free Software . 11
1.6 Exercises . 11

2 Programming in Python 13
2.1 Getting started with Python . 13

2.1.1 Two modes of using Python Interpreter . 13
2.2 Variables and Data Types . 14
2.3 Operators and their Precedence . 16
2.4 Python Strings . 16

2.4.1 Slicing . 17
2.5 Python Lists . 17
2.6 Mutable and Immutable Types . 18
2.7 Input from the Keyboard . 18
2.8 Iteration: while and for loops . 19

2.8.1 Python Syntax, Colon & Indentation . 20
2.8.2 Syntax of 'for loops' . 20

2.9 Conditional Execution: if, elif and else . 21
2.10 Modify loops : break and continue . 22
2.11 Line joining . 23
2.12 Exercises . 23
2.13 Functions . 25

2.13.1 Scope of variables . 26
2.13.2 Optional and Named Arguments . 27

2.14 More on Strings and Lists . 27
2.14.1 split and join . 28
2.14.2 Manipulating Lists . 28
2.14.3 Copying Lists . 28

3

CONTENTS 4

2.15 Python Modules and Packages . 29
2.15.1 Di�erent ways to import . 29
2.15.2 Packages . 30

2.16 File Input/Output . 30
2.16.1 The pickle module . 32

2.17 Formatted Printing . 32
2.18 Exception Handling . 33
2.19 Turtle Graphics . 34
2.20 Writing GUI Programs . 36
2.21 Object Oriented Programming in Python . 38

2.21.1 Inheritance, reusing code . 40
2.21.2 A graphics example program . 40

2.22 Exercises . 42

3 Arrays and Matrices 44
3.1 The NumPy Module . 44

3.1.1 Creating Arrays and Matrices . 45
3.1.1.1 arange(start, stop, step, dtype = None) 45
3.1.1.2 linspace(start, stop, number of elements) 45
3.1.1.3 zeros(shape, datatype) . 45
3.1.1.4 ones(shape, datatype) . 45
3.1.1.5 random.random(shape) . 46
3.1.1.6 reshape(array, newshape) . 46

3.1.2 Copying . 47
3.1.3 Arithmetic Operations . 47
3.1.4 cross product . 47
3.1.5 dot product . 48
3.1.6 Saving and Restoring . 48
3.1.7 Matrix inversion . 48

3.2 Vectorized Functions . 49
3.3 Exercises . 49

4 Data visualization 51
4.1 The Matplotlib Module . 51

4.1.1 Multiple plots . 52
4.1.2 Polar plots . 53
4.1.3 Pie Charts . 54

4.2 Plotting mathematical functions . 54
4.2.1 Sine function and friends . 54
4.2.2 Trouble with Circle . 55
4.2.3 Parametric plots . 55

4.3 Famous Curves . 56
4.3.1 Astroid . 56
4.3.2 Ellipse . 57
4.3.3 Spirals of Archimedes and Fermat . 58
4.3.4 Polar Rose . 59

4.4 Power Series . 59
4.5 Fourier Series . 60
4.6 2D plot using colors . 61
4.7 Fractals . 62

CONTENTS 5

4.8 Meshgrids . 63
4.9 3D Plots . 64

4.9.1 Surface Plots . 64
4.9.2 Line Plots . 64
4.9.3 Wire-frame Plots . 65

4.10 Mayavi, 3D visualization . 65
4.11 Exercises . 66

5 Type setting using LATEX 68
5.1 Document classes . 68
5.2 Modifying Text . 69
5.3 Dividing the document . 69
5.4 Environments . 70
5.5 Typesetting Equations . 71

5.5.1 Building blocks for typesetting equations 72
5.6 Arrays and matrices . 73
5.7 Floating bodies, Inserting Images . 74
5.8 Example Application . 75
5.9 Exercises . 76

6 Numerical methods 78
6.1 Derivative of a function . 78

6.1.1 Di�erentiate Sine to get Cosine . 79
6.2 Numerical Integration . 80
6.3 Ordinary Di�erential Equations . 82

6.3.1 Euler method . 82
6.3.2 Runge-Kutta method . 83
6.3.3 Function depending on the integral . 85

6.4 Polynomials . 86
6.4.1 Taylor's Series . 88
6.4.2 Sine and Cosine Series . 89

6.5 Finding roots of an equation . 91
6.5.1 Method of Bisection . 92
6.5.2 Newton-Raphson Method . 93

6.6 System of Linear Equations . 95
6.6.1 Equation solving using matrix inversion . 95

6.7 Least Squares Fitting . 96
6.8 Interpolation . 97

6.8.1 Newton's polynomial . 97
6.9 Exercises . 101

Appendix A 102
6.10 Installing Ubuntu . 102
6.11 Package Management . 105

6.11.1 Install from repository CD . 108
6.11.1.1 Installing from the Terminal . 108

6.11.2 Behind the scene . 108

Chapter 1

Introduction

Primary objective of this book is to explore the possibilities of using Python language as a tool
for learning mathematics and science. The reader is not assumed to be familiar with computer
programming. Ability to think logically is enough. Before getting into Python programming, we
will brie�y explain some basic concepts and tools required.

Computer is essentially an electronic device like a radio or a television. What makes it di�erent
from a radio or a TV is its ability to perform di�erent kinds of tasks using the same electronic
and mechanical components. This is achieved by making the electronic circuits �exible enough to
work according to a set of instructions. The electronic and mechanical parts of a computer are
called the Hardware and the set of instructions is called Software (or computer program). Just by
changing the Software, computer can perform vastly di�erent kind of tasks. The instructions are
stored in binary format using electronic switches.

1.1 Hardware Components

Central Processing Unit (CPU), Memory and Input/Output units are the main hardware compo-
nents of a computer. CPU1 can be called the brain of the computer. It contains a Control Unit
and an Arithmetic and Logic Unit, ALU. The control unit brings the instructions stored in the
main memory one by one and acts according to it. It also controls the movement of data be-
tween memory and input/output units. The ALU can perform arithmetic operations like addition,
multiplication and logical operations like comparing two numbers.

Memory stores the instructions and data, that is processed by the CPU. All types of information
are stored as binary numbers. The smallest unit of memory is called a binary digit or Bit. It can
have a value of zero or one. A group of eight bits are called a Byte. A computer has Main and
Secondary types of memory. Before processing, data and instructions are moved into the main
memory. Main memory is organized into words of one byte size. CPU can select any memory
location by using it's address. Main memory is made of semiconductor switches and is very fast.
There are two types of Main Memory. Read Only Memory and Read/Write Memory. Read/Write
Memory is also called Random Access Memory. All computers contains some programs in ROM
which start running when you switch on the machine. Data and programs to be stored for future
use are saved to Secondary memory, mainly devices like Hard disks, �oppy disks, CDROM or
magnetic tapes.

1The cabinet that encloses most of the hardware is called CPU by some, mainly the computer vendors. They
are not referring to the actual CPU chip.

6

CHAPTER 1. INTRODUCTION 7

The Input devices are for feeding the input data into the computer. Keyboard is the most
common input device. Mouse, scanner etc. are other input devices. The processed data is displayed
or printed using the output devices. The monitor screen and printer are the most common output
devices.

1.2 Software components

An ordinary user expects an easy and comfortable interaction with a computer, and most of
them are least inclined to learn even the basic concepts. To use modern computers for common
applications like browsing and word processing, all you need to do is to click on some icons and
type on the keyboard. However, to write your own computer programs, you need to learn some
basic concepts, like the operating system, editors, compilers, di�erent types of user interfaces etc.
This section describes the basics from that point of view.

1.2.1 The Operating System

Operating system (OS) is the software that interacts with the user and makes the hardware re-
sources available to the user. It starts running when you switch on the computer and remains
in control. On user request, operating system loads other application programs from disk to the
main memory and executes them. OS also provides a �le system, a facility to store information on
devices like �oppy disk and hard disk. In fact the OS is responsible for managing all the hardware
resources.

GNU/Linux and MS Windows are two popular operating systems. Based on certain features,
operating systems can be classi�ed as:

� Single user, single process systems like MS DOS. Only one process can run at a time. Such
operating systems do not have much control over the application programs.

� Multi-tasking systems like MS Windows, where more than one processe can run at a time.

� Multi-user, multi-tasking systems like GNU/Linux, Unix etc. More than one person can use
the computer at the same time.

� Real-time systems, mostly used in control applications, where the response time to any
external input is maintained under speci�ed limits.

1.2.2 The User Interface

Interacting with a computer involves, starting various application programs and managing them
on the computer screen. The software that manages these actions is called the user interface. The
two most common forms of user interface have historically been the Command-line Interface, where
computer commands are typed out line-by-line, and the Graphical User Interface (GUI), where a
visual environment (consisting of windows, menus, buttons, icons, etc.) is present.

1.2.2.1 The Command Terminal

To run any particular program, we need to request the operating system to do so. Under a
Graphical User Interface, we do this by choosing the desired application from a menu. It is
possible only because someone has added it to the menu earlier. When you start writing your
own programs, obviously they will not appear in any menu. Another way to request the operating
system to execute a program is to enter the name of the program (more precisely, the name of

CHAPTER 1. INTRODUCTION 8

Figure 1.1: A GNU/Linux Terminal.

the �le containing it) at the Command Terminal. On an Ubuntu GNU/Linux system, you can
start a Terminal from the menu names Applications->Accessories->Terminal. Figure 1.1 shows a
Terminal displaying the list of �les in a directory (output of the command 'ls -l' , the -l option is
for long listing).

The command processor o�ers a host of features to make the interaction more comfortable. It
keeps track of the history of commands and we can recall previous commands, modify and reuse
them using the cursor keys. There is also a completion feature implemented using the Tab key
that reduces typing. Use the tab key to complete command and �lenames. To run hello.py from
our test directory, type python h and then press the tab key to complete it. If there are more than
one �le starting with 'h', you need to type more characters until the ambiguity is removed. Always
use the up-cursor key to recall the previous commands and re-issue it.

The commands given at the terminal are processed by a program called the shell. (The version
now popular under GNU/Linux is called bash, the Bourne again shell). Some of the GNU/Linux
commands are listed below.

� top : Shows the CPU and memory usage of all the processes started.

� cp �lename �lename : copies a �le to another.

� mv : moves �les from one folder to another, or rename a �le.

� rm : deletes �les or directories.

� man : display manual pages for a program. For example 'man bash' will give help on the
bash shell. Press 'q' to come out of the help screen.

� info : A menu driven information system on various topics.

See the manual pages of 'mv', cp, 'rm' etc. to know more about them. Most of these commands
are application programs, stored inside the folders /bin or /sbin, that the shell starts for you and
displays their output inside the terminal window.

CHAPTER 1. INTRODUCTION 9

Figure 1.2: The GNU/Linux �le system tree.

1.2.3 The File-system

Before the advent of computers, people used to keep documents in �les and folders. The designers
of the Operating System have implemented the electronic counterparts of the same. The storage
space is made to appear as �les arranged inside folders (directory is another term for folder). A
simpli�ed schematic of the GNU/Linux �le system is shown in �gure 1.2. The outermost directory
is called 'root' directory and represented using the forward slash character. Inside that we have
folders named bin, usr, home, tmp etc., containing di�erent type of �les.

1.2.3.1 Ownership & permissions

On a multi-user operating system, application programs and document �les must be protected
against any misuse. This is achieved by de�ning a scheme of ownerships and permissions. Each and
every �le on the system will be owned by a speci�c user. The read, write and execute permissions
can be assigned to them, to control the usage. The concept of group is introduced to share �les
between a selected group of users.

There is one special user named root (also called the system administrator or the super user) ,
who has permission to use all the resources. Ordinary user accounts, with a username and password,
are created for everyone who wants to use the computer. In a multi-user operating system, like
GNU/Linux, every user will have one directory inside which he can create sub-directories and �les.
This is called the 'home directory' of that user. Home directory of one user cannot be modi�ed by
another user.

The operating system �les are owned by root. The /home directory contains subdirectories
named after every ordinary user, for example, the user fred owns the directory /home/fred (�g
1.2) and its contents. That is also called the user's home directory. Every �le and directory has
three types of permissions : read, write and execute. To view them use the 'ls -l ' command. The
�rst character of output line tells the type of the �le. The next three characters show the rwx
(read, write, execute) permissions for the owner of that �le. Next three for the users belonging to
the same group and the next three for other users. A hyphen character (-) means the permission
corresponding to that �eld is not granted. For example, the �gure 1.1 shows a listing of �ve �les:

1. asecret.dat : read & write for the owner. No one else can even see it.

2. foo.png : rw for owner, but others can view the �le.

3. hello.py : rwx for owner, others can view and execute.

4. share.tex : rw for owner and other members of the same group.

CHAPTER 1. INTRODUCTION 10

5. xdata is a directory. Note that execute permission is required to view contents of a directory.

The system of ownerships and permissions also protects the system from virus attacks2. The
virus programs damage the system by modifying some application program. On a true multi-user
system, for example GNU/Linux, the application program and other system �les are owned by
the root user and ordinary users have no permission to modify them. When a virus attempts to
modify an application, it fails due to this permission and ownership scheme.

1.2.3.2 Current Directory

There is a working directory for every user. You can create subdirectories inside that and change
your current working directory to any of them. While using the command-line interface, you can
use the 'cd' command to change the current working directory. Figure 1.1 shows how to change the
directory and come back to the parent directory by using double dots. We also used the command
'pwd' to print the name of the current working directory.

1.3 Text Editors

To create and modify �les, we use di�erent application programs depending on the type of document
contained in that �le. Text editors are used for creating and modifying plain text matter, without
any formatting information embedded inside. Computer programs are plain text �les and to write
computer programs, we need a text editor. 'gedit' is a simple, easy to use text editor available on
GNU/Linux, which provides syntax high-lighting for several programming languages.

1.4 High Level Languages

In order to solve a problem using a computer, it is necessary to evolve a detailed and precise step
by step method of solution. A set of these precise and unambiguous steps is called an Algorithm.
It should begin with steps accepting input data and should have steps which gives output data.
For implementing any algorithm on a computer, each of it's steps must be converted into proper
machine language instructions. Doing this process manually is called Machine Language Program-
ming. Writing machine language programs need great care and a deep understanding about the
internal structure of the computer hardware. High level languages are designed to overcome these
di�culties. Using them one can create a program without knowing much about the computer
hardware.

We already learned that to solve a problem we require an algorithm and it has to be executed
step by step. It is possible to express the algorithm using a set of precise and unambiguous
notations. The notations selected must be suitable for the problems to be solved. A high level
programming language is a set of well de�ned notations which is capable of expressing algorithms.

In general a high level language should have the following features.

1. Ability to represent di�erent data types like characters, integers and real numbers. In addition
to this it should also support a collection of similar objects like character strings, arrays etc.

2. Arithmetic and Logical operators that acts on the supported data types.

3. Control �ow structures for decision making, branching, looping etc.

2Do not expect this from the MS Windows system. Even though it allows to create users, any user (by running
programs or viruses) is allowed to modify the system �les. This may be because it grew from a single process system
like MSDOS and still keeps that legacy.

CHAPTER 1. INTRODUCTION 11

4. A set of syntax rules that precisely specify the combination of words and symbols permissible
in the language.

5. A set of semantic rules that assigns a single, precise and unambiguous meaning to each
syntactically correct statement.

Program text written in a high level language is often called the Source Code. It is then trans-
lated into the machine language by using translator programs. There are two types of translator
programs, the Interpreter and the Compiler. Interpreter reads the high level language program line by
line, translates and executes it. Compilers convert the entire program in to machine language and stores
it to a �le which can be executed.

High level languages make the programming job easier. We can write programs that are machine
independent. For the same program di�erent compilers can produce machine language code to run
on di�erent types of computers and operating systems. BASIC, COBOL, FORTRAN, C, C++,
Python etc. are some of the popular high level languages, each of them having advantages in
di�erent �elds.

To write any useful program for solving a problem, one has to develop an algorithm. The
algorithm can be expressed in any suitable high level language. Learning how to develop an
algorithm is di�erent from learning a programming language.Learning a programming language
means learning the notations, syntax and semantic rules of that language. Best way to do this
is by writing small programs with very simple algorithms. After becoming familiar with the
notations and rules of the language one can start writing programs to implement more complicated
algorithms.

1.5 On Free Software

Software that can be used, studied, modi�ed and redistributed in modi�ed or unmodi�ed form
without restriction is called Free Software. In practice, for software to be distributed as free
software, the human-readable form of the program (the source code) must be made available to
the recipient along with a notice granting the above permissions.

The free software movement was conceived in 1983 by Richard Stallman to give the bene�t of
"software freedom" to computer users. Stallman founded the Free Software Foundation in 1985
to provide the organizational structure to advance his Free Software ideas. Later on, alternative
movements like Open Source Software came.

Software for almost all applications is currently available under the pool of Free Software.
GNU/Linux operating system, OpenO�ce.org o�ce suite, LATEX typesetting system, Apache web
server, GIMP image editor, GNU compiler collection, Python interpreter etc. are some of the
popular examples. For more information refer to www.gnu.org website.

1.6 Exercises

1. What are the basic hardware components of a computer.

2. Name the working directory of a user named 'ramu' under GNU/Linux.

3. What is the command to list the �le names inside a directory (folder).

4. What is the command under GNU/Linux to create a new folder.

5. What is the command to change the working directory.

CHAPTER 1. INTRODUCTION 12

6. Can we install more than one operating systems on a single hard disk.

7. Name two most popular Desktop Environments for GNU/Linux.

8. How to open a command window from the main menu of Ubuntu GNU/Linux.

9. Explain the �le ownership and permission scheme of GNU/Linux.

Chapter 2

Programming in Python

Python is a simple, high level language with a clean syntax. It o�ers strong support for integration
with other languages and tools, comes with extensive standard libraries, and can be learned in a
few days. Many Python programmers report substantial productivity gains and feel the language
encourages the development of higher quality, more maintainable code. To know more visit the
Python website.1

2.1 Getting started with Python

To start programming in Python, we have to learn how to type the source code and save it to a
�le, using a text editor program. We also need to know how to open a Command Terminal and
start the Python Interpreter. The details of this process may vary from one system to another.
On an Ubuntu GNU/Linux system, you can open the Text Editor and the Terminal from the
Applications->Accessories menu.

2.1.1 Two modes of using Python Interpreter

If you issue the command 'python', without any argument, from the command terminal, the Python
interpreter will start and display a '>>>' prompt where you can type Python statements. Use
this method only for viewing the results of single Python statements, for example to use Python
as a calculator. It could be confusing when you start writing larger programs, having looping and
conditional statements. The preferred way is to enter your source code in a text editor, save it to
a �le (with .py extension) and execute it from the command terminal using Python. A screen-shot
of the Desktop with Text Editor and Terminal is shown in �gure 2.1.

In this document, we will start writing small programs showing the essential elements of the
language without going into the details. The reader is expected to run these example programs and
also to modify them in di�erent ways.It is like learning to drive a car, you master it by practicing.

Let us start with a program to display the words Hello World on the computer screen. This is
the customary 'hello world' program. There is another version that prints 'Goodbye cruel world',
probably invented by those who give up at this point. The Python 'hello world' program is shown
below.

1http://www.python.org/
http://docs.python.org/tutorial/
This document, example programs and a GUI program to browse through them are at
http://www.iuac.res.in/phoenix

13

CHAPTER 2. PROGRAMMING IN PYTHON 14

Figure 2.1: Text Editor and Terminal Windows.

Example. hello.py

print 'Hello World'

This should be entered into a text �le using any text editor. On a GNU/Linux system you may
use the text editor like 'gedit' to create the source �le, save it as hello.py . The next step is to call
the Python Interpreter to execute the new program. For that, open a command terminal and (at
the $ prompt) type: 2

$ python hello.py

2.2 Variables and Data Types

As mentioned earlier, any high level programming language should support several data types.
The problem to be solved is represented using variables belonging to the supported data types.
Python supports numeric data types like integers, �oating point numbers and complex numbers.
To handle character strings, it uses the String data type. Python also supports other compound
data types like lists, tuples, dictionaries etc.

In languages like C, C++ and Java, we need to explicitly declare the type of a variable. This
is not required in Python. The data type of a variable is decided by the value assigned to it. This
is called dynamic data typing. The type of a particular variable can change during the execution
of the program. If required, one type of variable can be converted in to another type by explicit
type casting, like y = float(3). Strings are enclosed within single quotes or double quotes.

The program �rst.py shows how to de�ne variables of di�erent data types. It also shows how
to embed comments inside a program.

2For quick practicing, boot from the CD provided with this book and click on the learn-by-coding icon to browse
through the example programs given in this book. The browser allows you to run any of them with a single click,
modify and save the modi�ed versions.

CHAPTER 2. PROGRAMMING IN PYTHON 15

Example: �rst.py

�'

A multi-line comment, within a pair of three single quotes.

In a line, anything after a # sign is also a comment

�'

x = 10

print x, type(x) # print x and its type

x = 10.4

print x, type(x)

x = 3 + 4j

print x, type(x)

x = 'I am a String '

print x, type(x)

The output of the program is shown below. Note that the type of the variable x changes during
the execution of the program, depending on the value assigned to it.

10 <type 'int'>

10.4 <type 'float'>

(3+4j) <type 'complex'>

I am a String <type 'str'>

The program treats the variables like humans treat labelled envelopes. We can pick an envelope,
write some name on it and keep something inside it for future use. In a similar manner the program
creates a variable, gives it a name and keeps some value inside it, to be used in subsequent steps.
So far we have used four data types of Python: int, �oat, complex and str. To become familiar with
them, you may write simple programs performing arithmetic and logical operations using them.

Example: oper.py

x = 2

y = 4

print x + y * 2

s = 'Hello '

print s + s

print 3 * s

print x == y

print y == 2 * x

Running the program oper.py will generate the following output.

10

Hello Hello

Hello Hello Hello

False

True

Note that a String can be added to another string and it can be multiplied by an integer. Try to
understand the logic behind that and also try adding a String to an Integer to see what is the error
message you will get. We have used the logical operator == for comparing two variables.

CHAPTER 2. PROGRAMMING IN PYTHON 16

Operator Description Expression Result

or Boolean OR 0 or 4 4

and Boolean AND 3 and 0 0

not x Boolean NOT not 0 True

in, not in Membership tests 3 in [2.2,3,12] True

<, <=, >, >=, !=, == Comparisons 2 > 3 False

| Bitwise OR 1 | 2 3

^ Bitwise XOR 1 ^ 5 4

& Bitwise AND 1 & 3 1

<<, >> Bitwise Shifting 1 << 3 8

+ , - Add, Subtract 6 - 4 2

*, /, % Multiply, divide, reminder 5 % 2 1

+x , -x Positive, Negative -5*2 -10

~ Bitwise NOT ~1 -2

** Exponentiation 2 ** 3 8

x[index] Subscription a='abcd' ; a[1] 'b'

Table 2.1: Operators in Python listed according to their precedence.

2.3 Operators and their Precedence

Python supports a large number of arithmetic and logical operators. They are summarized in the
table 2.1. An important thing to remember is their precedence. In the expression 2+3*4, is the
addition done �rst or the multiplication? According to elementary arithmetics, the multiplication
should be done �rst. It means that the multiplication operator has higher precedence than the
addition operator. If you want the addition to be done �rst, enforce it by using parenthesis like
(2 + 3) ∗ 4. Whenever there is ambiguity in evaluation, use parenthesis to clarify the order of
evaluation.

2.4 Python Strings

So far we have come across four data types: Integer, Float, Complex and String. Out of which,
String is somewhat di�erent from the other three. It is a collection of same kind of elements,
characters. The individual elements of a String can be accessed by indexing as shown in string.py.
String is a compound, or collection, data type.

Example: string.py

s = 'hello world'

print s[0] # print first element, h

print s[1] # print e

print s[-1] # will print the last character

Addition and multiplication is de�ned for Strings, as demonstrated by string2.py.

Example: string2.py

a = 'hello'+'world'

print a

b = 'ha' * 3

CHAPTER 2. PROGRAMMING IN PYTHON 17

print b

print a[-1] + b[0]

will give the output

helloworld
hahaha
dh

The last element of a and �rst element of b are added, resulting in the string 'dh'

2.4.1 Slicing

Part of a String can be extracted using the slicing operation. It can be considered as a modi�ed
form of indexing a single character. Indexing using s[a : b] extracts elements s[a] to s[b − 1]. We
can skip one of the indices. If the index on the left side of the colon is skipped, slicing starts from
the �rst element and if the index on right side is skipped, slicing ends with the last element.

Example: slice.py

a = 'hello world'
print a[3:5]
print a[6:]
print a[:5]

The reader can guess the nature of slicing operation from the output of this code, shown below.

'lo'

'world'

'hello'

Please note that specifying a right side index more than the length of the string is equivalent to
skipping it. Modify slice.py to print the result of a[6 : 20] to demonstrate it.

2.5 Python Lists

List is an important data type of Python. It is much more �exible than String. The individual
elements can be of any type, even another list. Lists are de�ned by enclosing the elements inside
a pair of square brackets, separated by commas. The program list1.py de�nes a list and print its
elements.

Example: list1.py

a = [2.3, 3.5, 234] # make a list

print a[0]

a[1] = 'haha' # Change an element

print a

The output is shown below 3.

3The �oating point number 2.3 showing as 2.2999999999999998 is interesting. This is the very nature of �ot-
ing point representation of numbers, nothing to do with Python. With the precision we are using, the error in
representing 2.3 is around 2.0e-16. This becomes a concern in operations like inversion of big matrices.

CHAPTER 2. PROGRAMMING IN PYTHON 18

2.3
[2.2999999999999998, 'haha', 234]
Lists can be sliced in a manner similar to that if Strings. List addition and multiplication are

demonstrated by the following example. We can also have another list as an element of a list.

Example: list2.py

a = [1,2]

print a * 2

print a + [3,4]

b = [10, 20, a]

print b

The output of this program is shown below.
[1, 2, 1, 2]
[1, 2, 3, 4]
[10, 20, [1, 2]]

2.6 Mutable and Immutable Types

There is one major di�erence between String and List types, List is mutable but String is not.
We can change the value of an element in a list, add new elements to it and remove any existing
element. This is not possible with String type. Uncomment the last line of third.py and run it to
clarify this point.

Example: third.py

s = [3, 3.5, 234] # make a list

s[2] = 'haha' # Change an element

print s

x = 'myname' # String type

#x[1] = 2 # uncomment to get ERROR

The List data type is very �exible, an element of a list can be another list. We will be using lists
extensively in the coming chapters. Tuple is another data type similar to List, except that it is
immutable. List is de�ned inside square brackets, tuple is de�ned in a similar manner but inside
parenthesis, like (3, 3.5, 234).

2.7 Input from the Keyboard

Since most of the programs require some input from the user, let us introduce this feature before
proceeding further. There are mainly two functions used for this purpose, input() for numeric
type data and raw_input() for String type data. A message to be displayed can be given as an
argument while calling these functions.4

Example: kin1.py

4Functions will be introduced later. For the time being, understand that it is an isolated piece of code, called
from the main program with some input arguments and returns some output.

CHAPTER 2. PROGRAMMING IN PYTHON 19

x = input('Enter an integer ')

y = input('Enter one more ')

print 'The sum is ', x + y

s = raw_input('Enter a String ')

print 'You entered ', s

It is also possible to read more than one variable using a single input() statement. String type
data read using raw_input() may be converted into integer or �oat type if they contain only the
valid characters. In order to show the e�ect of conversion explicitly, we multiply the variables
by 2 before printing. Multiplying a String by 2 prints it twice. If the String contains any other
characters than 0..9, . and e, the conversion to �oat will give an error.

Example: kin2.py

x,y = input('Enter x and y separated by comma ')

print 'The sum is ', x + y

s = raw_input('Enter a decimal number ')

a = float(s)

print s * 2 # prints string twice

print a * 2 # converted value times 2

We have learned about the basic data types of Python and how to get input data from the keyboard.
This is enough to try some simple problems and algorithms to solve them.

Example: area.py

pi = 3.1416

r = input('Enter Radius ')

a = pi * r ** 2 # A = πr2

print 'Area = ', a

The above example calculates the area of a circle. Line three calculates r2 using the exponentiation
operator ∗∗, and multiply it with π using the multiplication operator ∗. r2 is evaluated �rst because
** has higher precedence than *, otherwise the result would be (πr)2.

2.8 Iteration: while and for loops

If programs can only execute from the �rst line to the last in that order, as shown in the previous
examples, it would be impossible to write any useful program. For example, we need to print the
multiplication table of eight. Using our present knowledge, it would look like the following

Example: badtable.py

print 1 * 8

print 2 * 8

print 3 * 8

print 4 * 8

print 5 * 8

CHAPTER 2. PROGRAMMING IN PYTHON 20

Well, we are stopping here and looking for a better way to do this job.
The solution is to use the while loop of Python. The logical expression in front of while

is evaluated, and if it is True, the body of the while loop (the indented lines below the while
statement) is executed. The process is repeated until the condition becomes false. We should
have some statement inside the body of the loop that will make this condition false after few
iterations. Otherwise the program will run in an in�nite loop and you will have to press Control-C
to terminate it.

The program table.py, de�nes a variable x and assigns it an initial value of 1. Inside the while
loop x ∗ 8 is printed and the value of x is incremented. This process will be repeated until the
value of x becomes greater than 10.

Example: table.py

x = 1

while x <= 10:

print x * 8

x = x + 1

As per the Python syntax, the while statement ends with a colon and the code inside the while
loop is indented. Indentation can be done using tab or few spaces. In this example, we have
demonstrated a simple algorithm.

2.8.1 Python Syntax, Colon & Indentation

Python was designed to be a highly readable language. It has a relatively uncluttered visual layout,
uses English keywords frequently where other languages use punctuation, and has notably fewer
syntactic constructions than other popular structured languages.

There are mainly two things to remember about Python syntax: indentation and colon. Python
uses indentation to delimit blocks of code. Both space characters and tab characters are currently
accepted as forms of indentation in Python. Mixing spaces and tabs can create bugs that are hard
to �nd, since the text editor does not show the di�erence. There should not be any extra white
spaces in the beginning of any line.

The line before any indented block must end with a colon character.

2.8.2 Syntax of 'for loops'

Python for loops are slightly di�erent from the for loops of other languages. Python for loop
iterates over a compound data type like a String, List or Tuple. During each iteration, one member
of the compound data is assigned to the loop variable. The �exibility of this can be seen from the
examples below.

Example: forloop.py

a = 'my name'

for ch in a: # ch is the loop variable

print ch

b = ['hello', 3.4, 2345, 3+5j]

for item in b:

print item

For constructing for loops that executes a �xed number of times, we can create a list using the
range() function and run the for loop over that.

CHAPTER 2. PROGRAMMING IN PYTHON 21

Example: forloop2.py

mylist = range(5)

print mylist

for item in mylist:

print item

The range function in the above example will generate the list [0, 1, 2, 3, 4]. It is possible to specify
the starting point and increment as arguments in the form range(start, end+1, step). The following
example prints the table of 5 using this feature.

Example: forloop3.py

mylist = range(5,51,5)

for item in mylist:

print item

In some cases, we may need to traverse the list to modify some or all of the elements. This can be
done by looping over a list of indices generated by the range() function.For example, the program
forloop4.py zeros all the elements of the list.

Example: forloop4.py

a = [2, 5, 3, 4, 12]

size = len(a)

for k in range(size):

a[k] = 0

print a

2.9 Conditional Execution: if, elif and else

In some cases, we may need to execute some section of the code only if certain conditions are true.
Python implements this feature using the if, elif and else keywords, as shown in the next example.
The indentation levels of if and the corresponding elif and else must be kept the same.

Example: compare.py

x = raw_input('Enter a string ')

if x == 'hello':

print 'You typed ', x

Example: big.py

x = input('Enter a number ')

if x > 10:

print 'Bigger Number'

elif x < 10:

print 'Smaller Number'

else:

print 'Same Number'

CHAPTER 2. PROGRAMMING IN PYTHON 22

The statement x > 10 and x < 15 can be expressed in a short form, like 10 < x < 15.
The next example uses while and if keywords in the same program. Note the level of indentation

when the if statement comes inside the while loop. Remember that, the if statement must be
aligned with the corresponding elif and else.

Example: big2.py

x = 1

while x < 11:

if x < 5:

print 'Small ', x

else:

print 'Big ', x

x = x + 1

print 'Done'

2.10 Modify loops : break and continue

We can use the break statement to terminate a loop, if some condition is met. The continue
statement is used to skip the rest of the block and go to the beginning again. Both are demonstrated
in the program big3.py shown below.

Example: big3.py

x = 1

while x < 10:

if x < 3:

print 'skipping work', x

x = x + 1

continue

print x

if x == 4:

print 'Enough of work'

break

x = x + 1

print 'Done'

The output of big3.py is listed below.
skipping work 1
skipping work 2
3
4
Enough of work
Done
Now let us write a program to �nd out the largest positive number entered by the user. The

algorithm works in the following manner. To start with, we assume that the largest number is
zero. After reading a number, the program checks whether it is bigger than the current value of
the largest number. If so the value of the largest number is replaced with the current number. The
program terminates when the user enters zero. Modify max.py to work with negative numbers
also.

CHAPTER 2. PROGRAMMING IN PYTHON 23

Example: max.py

max = 0

while True: # Infinite loop

x = input('Enter a number ')

if x > max:

max = x

if x == 0:

print max

break

2.11 Line joining

Python interpreter processes the code line by line. A program may have a long line of code that
may not physically �t in the width of the text editor. In such cases, we can split a logical line
of code into more than one physical lines, using backslash characters (\), in other words multiple
physical lines are joined to form a logical line before interpreting it.

if 1900 < year < 2100 and 1 <= month <= 12 :

can be split like

if 1900 < year < 2100 \

and 1 <= month <= 12 :

Do not split in the middle of words except for Strings. A long String can be split as shown below.

longname = 'I am so long and will \

not fit in a single line'

print longname

2.12 Exercises

We have now covered the minimum essentials of Python; de�ning variables, performing arithmetic
and logical operations on them and the control �ow statements. These are su�cient for handling
most of the programming tasks. It would be better to get a grip of it before proceeding further,
by writing some code.

1. Modify the expression print 5+3*2 to get a result of 16

2. What will be the output of print type(4.5)

3. Print all even numbers upto 30, su�xed by a * if the number is a multiple of 6. (hint: use
% operator)

4. Write Python code to remove the last two characters of 'I am a long string' by slicing, without
counting the characters. (hint: use negative indexing)

5. s = '012345' . (a) Slice it to remove last two elements (b) remove �rst two element.

6. a = [1,2,3,4,5]. Use Slicing and multiplication to generate [2,3,4,2,3,4] from it.

CHAPTER 2. PROGRAMMING IN PYTHON 24

7. Compare the results of 5/2, 5.0/2 and 2.0/3.

8. Print the following pattern using a while loop
+
++
+++
++++

9. Write a program to read inputs like 8A, 10C etc. and print the integer and alphabet parts
separately.

10. Write code to print a number in the binary format (for example 5 will be printed as 101)

11. Write code to print all perfect cubes upto 2000.

12. Write a Python program to print the multiplication table of 5.

13. Write a program to �nd the volume of a box with sides 3,4 and 5 inches in cm3(1 inch =
2.54 cm)

14. Write a program to �nd the percentage of volume occupied by a sphere of diameter r �tted
in a cube of side r. Read r from the keyboard.

15. Write a Python program to calculate the area of a circle.

16. Write a program to divide an integer by another without using the / operator. (hint: use -
operator)

17. Count the number of times the character 'a' appears in a String read from the keyboard.
Keep on prompting for the string until there is no 'a' in the input.

18. Create an integer division machine that will ask the user for two numbers then divide and
give the result. The program should give the result in two parts: the whole number result
and the remainder. Example: If a user enters 11 / 4, the computer should give the result 2
and remainder 3.

19. Modify the previous program to avoid division by zero error.

20. Create an adding machine that will keep on asking the user for numbers, add them together
and show the total after each step. Terminate when user enters a zero.

21. Modify the adding machine to use raw_input() and check for errors like user entering invalid
characters.

22. Create a script that will convert Celsius to Fahrenheit. The program should ask the users to
enter the temperature in Celsius and should print out the temperature in Fahrenheit, using
f = 9

5c + 32.

23. Write a program to convert Fahrenheit to Celsius.

24. Create a script that uses a variable and will write 20 times "I will not talk in class." Make
each sentence on a separate line.

25. De�ne 2 + 5j and 2 − 5j as complex numbers , and �nd their product. Verify the result by
de�ning the real and imaginary parts separately and using the multiplication formula.

CHAPTER 2. PROGRAMMING IN PYTHON 25

26. Write the multiplication table of 12 using while loop.

27. Write the multiplication table of a number, from the user, using for loop.

28. Print the powers of 2 up to 1024 using a for loop. (only two lines of code)

29. De�ne the list a = [123, 12.4, 'haha', 3.4]
a) print all members using a for loop
b) print the �oat type members (use type() function)
c) insert a member after 12.4
d) append more members

30. Make a list containing 10 members using a for loop.

31. Generate multiplication table of 5 with two lines of Python code. (hint: range function)

32. Write a program to �nd the sum of �ve numbers read from the keyboard.

33. Write a program to read numbers from the keyboard until their sum exceeds 200. Modify
the program to ignore numbers greater than 99.

34. Write a Python function to calculate the GCD of two numbers

35. Write a Python program to �nd annual compound interest. Get P,N and R from user

2.13 Functions

Large programs need to be divided into small logical units. A function is generally an isolated
unit of code that has a name and does a well de�ned job. A function groups a number of program
statements into a unit and gives it a name. This unit can be invoked from other parts of a program.
Python allows you to de�ne functions using the def keyword. A function may have one or more
variables as arguments, which receive their values from the calling program.

In the example shown below, function arguments (a and b) get the values 3 and 4 respectively
from the caller. One can specify more than one variables in the return statement, separated by
commas. The function will return a tuple containing those variables. Some functions may not
have any arguments, but while calling them we need to use an empty parenthesis, otherwise the
function will not be invoked. If there is no return statement, a None is returned to the caller.

Example func.py

def sum(a,b): # a trivial function

return a + b

print sum(3, 4)

The function factorial.py calls itself recursively. The value of argument is decremented before each
call. Try to understand the working of this by inserting print statements inside the function.

Example factor.py

CHAPTER 2. PROGRAMMING IN PYTHON 26

def factorial(n): # a recursive function

if n == 0:

return 1

else:

return n * factorial(n-1)

print factorial(10)

Example �banocci.py

def fib(n): # print Fibonacci series up to n

a, b = 0, 1

while b < n:

print b

a, b = b, a+b

print fib(30)

Runing �banocci.py will print

1 1 2 3 5 8 13 21

Modify it to replace a, b = b, a + b by two separate assignment statements, if required introduce a
third variable.

2.13.1 Scope of variables

The variables de�ned inside a function are not known outside the function. There could be two
variables, one inside and one outside, with the same name. The program scope.py demonstrates
this feature.

Example scope.py

def change(x):

counter = x

counter = 10

change(5)

print counter

The program will print 10 and not 5. The two variables, both named counter, are not related
to each other. In some cases, it may be desirable to allow the function to change some external
variable. This can be achieved by using the global keyword, as shown in global.py.

Example global.py

def change(x):

global counter # use the global variable

counter = x

counter = 10

change(5)

print counter

The program will now print 5. Functions with global variables should be used carefully to avoid
inadvertent side e�ects.

CHAPTER 2. PROGRAMMING IN PYTHON 27

2.13.2 Optional and Named Arguments

Python allows function arguments to have default values; if the function is called without a partic-
ular argument, its default value will be taken. Due to this feature, the same function can be called
with di�erent number of arguments. The arguments without default values must appear �rst in
the argument list and they cannot be omitted while invoking the function. The following example
shows a function named power() that does exponentiation, but the default value of exponent is set
to 2.

Example power.py

def power(mant, exp = 2.0):

return mant ** exp

print power(5., 3)

print power(4.) # prints 16

print power() # Gives Error

Arguments can be speci�ed in any order by using named arguments.

Example named.py

def power(mant = 10.0, exp = 2.0):

return mant ** exp

print power(5., 3)

print power(4.) # prints 16

print power(exp=3) # mant gets 10.0, prints 1000

2.14 More on Strings and Lists

Before proceeding further, we will explore some of the functions provided for manipulating strings
and lists. Python strings can be manipulated in many ways. The following program prints the
length of a string, makes an upper case version for printing and prints a help message on the String
class.

Example: stringhelp.py

s = 'hello world'

print len(s)

print s.upper()

help(str) # press q to exit help

Python is an object oriented language and all variables are objects belonging to various classes.
The method upper() (a function belonging to a class is called a method) is invoked using the dot
operator. All we need to know at this stage is that there are several methods that can be used for
manipulating objects and they can be invoked like: variable_name.method_name().

CHAPTER 2. PROGRAMMING IN PYTHON 28

2.14.1 split and join

Splitting a String will result in a list of smaller strings. If you do not specify the separator, the
space character is assumed by default. To demonstrate the working of these functions, few lines
of code and its output are listed below.

Example: split.py

s = 'I am a long string'

print s.split()

a = 'abc.abc.abc'

aa = a.split('.')

print aa

mm = '+'.join(aa)

print mm

The result is shown below

['I', 'am', 'a', 'long', 'string']
['abc', 'abc', 'abc']
'abc+abc+abc'

The List of strings generated by split is joined using '+' character, resulting in the last line of the
output.

2.14.2 Manipulating Lists

Python lists are very �exible, we can append, insert, delete and modify elements of a list. The
program list3.py demonstrates some of them.

Example: list3.py

a = [] # make an empty list

a.append(3) # Add an element

a.insert(0,2.5) # insert 2.5 as first element

print a, a[0]

print len(a)

The output is shown below.
[2.5, 3] 2.5
2

2.14.3 Copying Lists

Lists cannot be copied like numeric data types. The statement b = a will not create a new list b
from list a, it just make a reference to a. The following example will clarify this point. To make a
duplicate copy of a list, we need to use the copy module.

Example: list_copy.py

CHAPTER 2. PROGRAMMING IN PYTHON 29

a = [1,2,3,4]

print a

b = a # b refers to a

print a == b # True

b[0] = 5 # Modifies a[0]

print a

import copy

c = copy.copy(a)

c[1] = 100

print a is c # is False

print a, c

The output is shown below.
[1, 2, 3, 4]
True
[5, 2, 3, 4]
False
[5, 2, 3, 4] [5, 100, 3, 4]

2.15 Python Modules and Packages5

One of the major advantages of Python is the availability of libraries for various applications like
graphics, networking and scienti�c computation. The standard library distributed with Python
itself has a large number of modules: time, random, pickle, system etc. are some of them. The
site http://docs.python.org/library/ has the complete reference.

Modules are loaded by using the import keyword. Several ways of using import is explained
below, using the math (containing mathematical functions) module as an example.

2.15.1 Di�erent ways to import

simplest way to use import is shown in mathsin.py, where the function is invoked using the form
module_name.function_name(). In the next example, we use an alias for the module name.

Example mathsin.py

import math

print math.sin(0.5) # module_name.method_name

Example mathsin2.py

import math as m # Give another name for math

print m.sin(0.5) # Refer by the new name

We can also import the functions to behave like local (like the ones within our source �le) function,
as shown below. The character * is a wild card for importing all the functions.

5While giving names to your Python programs, make sure that you are not directly or indirectly importing any
Python module having same name. For example, if you create a program namedmath.py and keep it in your working
directory, the import math statement from any other program started from that directory will try to import your
�le named math.py and give error. If you ever do that by mistake, delete all the �les with .pyc extension from your
directory.

CHAPTER 2. PROGRAMMING IN PYTHON 30

Example mathlocal.py

from math import sin # sin is imported as local

print sin(0.5)

Example mathlocal2.py

from math import * # import everything from math

print sin(0.5)

In the third and fourth cases, we need not type the module name every time. But there could be
trouble if two modules imported contains a function with same name. In the program con�ict.py,
the sin() from numpy is capable of handling a list argument. After importing math.py, line 4, the
sin function from math module replaces the one from numpy. The error occurs because the sin()
from math can accept only a numeric type argument.

Example con�ict.py

from numpy import *

x = [0.1, 0.2, 0.3]

print sin(x) # numpy's sin can handle lists

from math import * # sin of math becomes effective

print sin(x) # will give ERROR

2.15.2 Packages

Packages are used for organizing multiple modules. The module name A.B designates a submodule
named B in a package named A. The concept is demonstrated using the packages Numpy6 and
Scipy.

Example submodule.py

import numpy

print numpy.random.normal()

import scipy.special

print scipy.special.j0(.1)

In this example random is a module inside the package NumPy. Similarly special is a module inside
the package Scipy. We use both of them in the package.module.function() format. But there is
some di�erence. In the case of Numpy, the random module is loaded by default, importing scipy
does not import the module special by default. This behavior can be de�ned while writing the
Package and it is upto the package author.

2.16 File Input/Output

Disk �les can be opened using the function named open() that returns a File object. Files can be
opened for reading or writing. There are several methods belonging to the File class that can be
used for reading and writing data.

Example w�le.py

6NumPy will be discusssed later in chapter 3.

CHAPTER 2. PROGRAMMING IN PYTHON 31

f = open('test.dat' , 'w')

f.write ('This is a test file')

f.close()

Above program creates a new �le named 'test.dat' (any existing �le with the same name will be
deleted) and writes a String to it. The following program opens this �le for reading the data.

Example r�le.py

f = open('test.dat' , 'r')

print f.read()

f.close()

Note that the data written/read are character strings. read() function can also be used to read a
�xed number of characters, as shown below.

Example r�le2.py

f = open('test.dat' , 'r')

print f.read(7) # get first seven characters

print f.read() # get the remaining ones

f.close()

Now we will examine how to read a text data from a �le and convert it into numeric type. First
we will create a �le with a column of numbers.

Example w�le2.py

f = open('data.dat' , 'w')

for k in range(1,4):

s = '%3d\n' %(k)

f.write(s)

f.close()

The contents of the �le created will look like this.
1
2
3

Now we write a program to read this �le, line by line, and convert the string type data to integer
type, and print the numbers.7

Example r�le3.py

f = open('data.dat' , 'r')

while 1: # infinite loop

s = f.readline()

if s == � : # Empty string means end of file

break # terminate the loop

m = int(s) # Convert to integer

print m * 5

f.close()

7This will give error if there is a blank line in the data �le. This can be corrected by changing the comparison
statement to if len(s) < 1: , so that the processing stops at a blank line. Modify the code to skip a blank line
instead of exiting (hint: use continue).

CHAPTER 2. PROGRAMMING IN PYTHON 32

2.16.1 The pickle module

Strings can easily be written to and read from a �le. Numbers take a bit more e�ort, since the
read() method only returns Strings, which will have to be converted in to a number explicitly.
However, when you want to save and restore data types like lists, dictionaries, or class instances,
things get a lot more complicated. Rather than have the users constantly writing and debugging
code to save complicated data types, Python provides a standard module called pickle.

Example pickledump.py

import pickle

f = open('test.pck' , 'w')

pickle.dump(12.3, f) # write a float type

f.close()

Now write another program to read it back from the �le and check the data type.

Example pickleload.py

import pickle

f = open('test.pck' , 'r')

x = pickle.load(f)

print x , type(x) # check the type of data read

f.close()

2.17 Formatted Printing

Formatted printing is done by using a format string followed by the % operator and the values
to be printed. If format requires a single argument, values may be a single variable. Otherwise,
values must be a tuple (just place them inside parenthesis, separated by commas) with exactly the
number of items speci�ed by the format string.

Example: format.py

a = 2.0 /3 # 2/3 will print zero

print a

print 'a = %5.3f' %(a) # upto 3 decimal places

Data can be printed in various formats. The conversion types are summarized in the following
table. There are several �ags that can be used to modify the formatting, like justi�cation, �lling
etc.

The following example shows some of the features available with formatted printing.

Example: format2.py

a = 'justify as you like'

print '%30s'%a # right justified

print '%-30s'%a # minus sign for left justification

for k in range(1,11): # A good looking table

print '5 x %2d = %2d' %(k, k*5)

CHAPTER 2. PROGRAMMING IN PYTHON 33

Conversion Conversion Example Result

d , i signed Integer '%6d'%(12) ' 12'
f �oating point decimal '%6.4f'%(2.0/3) 0.667
e �oating point exponential '%6.2e'%(2.0/3) 6.67e-01
x hexadecimal '%x'%(16) 10
o octal '%o'%(8) 10
s string '%s'%('abcd') abcd
0d modi�ed 'd' '%05d'%(12) 00012

Table 2.2: Formatted Printing in Python

The output of format2.py is given below.

justify as you like

justify as you like

5 x 1 = 5

5 x 2 = 10

5 x 3 = 15

5 x 4 = 20

5 x 5 = 25

5 x 6 = 30

5 x 7 = 35

5 x 8 = 40

5 x 9 = 45

5 x 10 = 50

2.18 Exception Handling

Errors detected during execution are called exceptions, like divide by zero. If the program does
not handle exceptions, the Python Interpreter reports the exception and terminates the program.
We will demonstrate handling exceptions using try and except keywords, in the example except.py.

Example: except.py

x = input('Enter a number ')

try:

print 10.0/x

except:

print 'Division by zero not allowed'

If any exception occurs while running the code inside the try block, the code inside the except
block is executed. The following program implements error checking on input using exceptions.

Example: except2.py

def get_number():

while 1:

try:

a = raw_input('Enter a number ')

x = atof(a)

CHAPTER 2. PROGRAMMING IN PYTHON 34

return x

except:

print 'Enter a valid number'

print get_number()

2.19 Turtle Graphics

Turtle Graphics have been noted by many psychologists and educators to be a powerful aid in
teaching geometry, spatial perception, logic skills, computer programming, and art. The language
LOGO was speci�cally designed to introduce children to programming, using turtle graphics. An
abstract drawing device, called the Turtle, is used to make programming attractive for children by
concentrating on doing turtle graphics. It has been used with children as young as 3 and has a
track record of 30 years of success in education.

We will use the Turtle module of Python to play with Turtle Graphics and practice the logic
required for writing computer programs. Using this module, we will move a Pen on a two di-
mensional screen to generate graphical patterns. The Pen can be controlled using functions like
forward(distance), backward(distance), right(angle), left(angle) etc.8. Run the program turtle1.py
to understand the functions. This section is included only for those who want to practice program-
ming in a more interesting manner.

Example turtle1.py

from turtle import *

a = Pen() # Creates a turtle in a window

a.forward(50)

a.left(45)

a.backward(50)

a.right(45)

a.forward(50)

a.circle(10)

a.up()

a.forward(50)

a.down()

a.color('red')

a.right(90)

a.forward(50)

raw_input('Press Enter')

Example turtle2.py

from turtle import *

a = Pen()

for k in range(4):

a.forward(50)

a.left(90)

a.circle(25)

raw_input() # Wait for Key press

8http://docs.python.org/library/turtle.html

CHAPTER 2. PROGRAMMING IN PYTHON 35

Figure 2.2: Output of turtle2.py (b) turtle3.py (c) turtle4.py

Outputs of the program turtle2.py and turtle3.py are shown in �gure 2.2. Try to write more
programs like this to generate more complex patterns.

Example turtle3.py

from turtle import *

def draw_rectangle():

for k in range(4):

a.forward(50)

a.left(90)

a = Pen()

for k in range(36):

draw_rectangle()

a.left(10)

raw_input()

The program turtle3.py creates a pattern by drwaing 36 squares, each drawn tilted by 10◦ from
the previous one. The program turtle4.py generates the fractal image as shown in �gure2.2(c).

Example turtle4.py

from turtle import *

def f(length, depth):

if depth == 0:

forward(length)

else:

f(length/3, depth-1)

right(60)

f(length/3, depth-1)

left(120)

f(length/3, depth-1)

right(60)

f(length/3, depth-1)

f(500, 4)

raw_input('Press any Key')

CHAPTER 2. PROGRAMMING IN PYTHON 36

Figure 2.3: Outputs of (a)tkmain.py (b)tklabel.py

2.20 Writing GUI Programs

Python has several modules that can be used for creating Graphical User Interfaces. The intention
of this chapter is just to show the ease of making GUI in Python and we have selected Tkinter9,
one of the easiest to learn. The GUI programs are event driven (movement of mouse, clicking a
mouse button, pressing and releasing a key on the keyboard etc. are called events). The execution
sequence of the program is decided by the events, generated mostly by the user. For example, when
the user clicks on a Button, the code associated with that Button is executed. GUI Programming
is about creating Widgets like Button, Label, Canvas etc. on the screen and executing selected
functions in response to events. After creating all the necessary widgets and displaying them on
the screen, the control is passed on to Tkinter by calling a function named mainloop. After that
the program �ow is decided by the events and associated callback functions.

For writing GUI programs, the �rst step is to create a main graphics window by calling the
function Tk(). After that we create various Widgets and pack them inside the main window. The
example programs given below demonstrate the usage of some of the Tkinter widgets.The program
tkmain.py is the smallest GUI program one can write using Tkinter. The output of tkmain.py is
shown in �gure2.3(a).

Example tkmain.py

from Tkinter import *

root = Tk()

root.mainloop()

Example tklabel.py

from Tkinter import *

root = Tk()

w = Label(root, text="Hello, world")

w.pack()

root.mainloop()

The program tklabel.py will generate the output as shown in �gure 2.3(b). Terminate the program
by clicking on the x displayed at the top right corner. In this example, we used a Label widget to
display some text. The next example will show how to use a Button widget.

9http://www.pythonware.com/library/an-introduction-to-tkinter.htm
http://infohost.nmt.edu/tcc/help/pubs/tkinter/
http://wiki.python.org/moin/TkInter

CHAPTER 2. PROGRAMMING IN PYTHON 37

Figure 2.4: Outputs of (a) tkbutton.py (b)tkcanvas.py

A Button widget can have a callback function, hello() in this case, that gets executed when the
user clicks on the Button. The program will display a Button on the screen. Every time you click
on it, the function hello will be executed. The output of the program is shown in �gure 2.4(a).

Example tkbutton.py

from Tkinter import *

def hello():

print 'hello world'

w = Tk() # Creates the main Graphics window

b = Button(w, text = 'Click Me', command = hello)

b.pack()

w.mainloop()

Canvas is another commonly used widget. Canvas is a drawing area on which we can draw elements
like line, arc, rectangle, text etc. The program tkcanvas.py creates a Canvas widget and binds the
<Button-1> event to the function draw(). When left mouse button is pressed, a small rectangle
are drawn at the cursor position. The output of the program is shown in �gure 2.4(b).

Example tkcanvas.py

from Tkinter import *

def draw(event):

c.create_rectangle(event.x, \

event.y, event.x+5, event.y+5)

w = Tk()

c = Canvas(w, width = 300, height = 200)

c.pack()

c.bind("<Button-1>", draw)

w.mainloop()

The next program is a modi�cation of tkcanvas.py. The right mouse-button is bound to remove().
Every time a rectangle is drawn, its return value is added to a list, a global variable, and this list
is used for removing the rectangles when right button is pressed.

CHAPTER 2. PROGRAMMING IN PYTHON 38

Example tkcanvas2.py

from Tkinter import *

recs = [] # List keeping track of the rectangles

def remove(event):

global recs

if len(recs) > 0:

c.delete(recs[0]) # delete from Canvas

recs.pop(0) # delete first item from list

def draw(event):

global recs

r = c.create_rectangle(event.x, \

event.y, event.x+5, event.y+5)

recs.append(r)

w = Tk()

c = Canvas(w, width = 300, height = 200)

c.pack()

c.bind("<Button-1>", draw)

c.bind("<Button-3>", remove)

w.mainloop()

2.21 Object Oriented Programming in Python

OOP is a programming paradigm that uses objects (Structures consisting of variables and methods)
and their interactions to design computer programs. Python is an object oriented language but it
does not force you to make all programs object oriented and there is no advantage in making small
programs object oriented. In this section, we will discuss some features of OOP.

Before going to the new concepts, let us recollect some of the things we have learned. We have
seen that the e�ect of operators on di�erent data types is prede�ned. For example 2 ∗ 3 results in
6 and 2∗′ abc′ results in ′abcabc′. This behavior has been decided beforehand, based on some logic,
by the language designers. One of the key features of OOP is the ability to create user de�ned
data types. The user will specify, how the new data type will behave under the existing operators
like add, subtract etc. and also de�ne methods that will belong to the new data type.

We will design a new data type using the class keyword and de�ne the behavior of it. In the
program point.py, we de�ne a class named Point. The variables xpos and ypos are members of
Point. The __init__() function is executed whenever we create an instance of this class, the
member variables are initialized by this function. The way in which an object belonging to this
class is printed is decided by the __str__ function. We also have de�ned the behavior of add (+)
and subtract (-) operators for this class. The + operator returns a new Point by adding the x and
y coordinates of two Points. Subtracting a Point from another gives the distance between the two.
The method dist() returns the distance of a Point object from the origin. We have not de�ned the
behavior of Point under copy operation. We can use the copy module of Python to copy objects.

Example point.py

class Point:

�'

CHAPTER 2. PROGRAMMING IN PYTHON 39

This is documentation comment.

help(Point) will display this.

�'

def __init__(self, x=0, y=0):

self.xpos = x

self.ypos = y

def __str__(self): # overloads print

return 'Point at (%f,%f)'%(self.xpos, self.ypos)

def __add__(self, other): #overloads +

xpos = self.xpos + other.xpos

ypos = self.ypos + other.ypos

return Point(xpos,ypos)

def __sub__(self, other): #overloads -

import math

dx = self.xpos - other.xpos

dy = self.ypos - other.ypos

return math.sqrt(dx**2+dy**2)

def dist(self):

import math

return math.sqrt(self.xpos**2 + self.ypos**2)

The program point1.py imports the �le point.py to use the class Point de�ned inside it to demon-
strate the properties of the class. A self. is pre�xed when a method refers to member of the same
object. It refers to the variable used for invoking the method.

Example point1.py

from point import *

origin = Point()

print origin

p1 = Point(4,4)

p2 = Point(8,7)

print p1

print p2

print p1 + p2

print p1 - p2

print p1.dist()

Output of program point1.py is shown below.

Point at (0.000000,0.000000)
Point at (4.000000,4.000000)
Point at (8.000000,7.000000)
Point at (12.000000,11.000000)
5.0
5.65685424949

In this section, we have demonstrated the OO concepts like class, object and operator overloading.

CHAPTER 2. PROGRAMMING IN PYTHON 40

2.21.1 Inheritance, reusing code

Reuse of code is one of the main advantages of object oriented programming. We can de�ne
another class that inherits all the properties of the Point class, as shown below. The __init__
function of colPoint calls the __init__ function of Point, to get all work except initilization of
color done. All other methods and operator overloading de�ned for Point is inherited by colPoint.

Example cpoint.py

class colPoint(Point): #colPoint inherits Point

color = 'black'

def __init__(self,x=0,y=0,col='black'):

Point.__init__(self,x,y)

self.color = col

def __str__(self):

return '%s colored Point at (%f,%f)'% \

(self.color,self.xpos, self.ypos)

Example point2.py

from cpoint import *

p1 = Point(5,5)

rp1 = colPoint(2,2,'red')

print p1

print rp1

print rp1 + p1

print rp1.dist()

The output of point2.py is listed below.
Point at (5.000000,5.000000)
red colored Point at (2.000000,2.000000)
Point at (7.000000,7.000000)
2.82842712475

For a detailed explanation on the object oriented features of Python, refer to chapters 13, 14 and
15 of the online book http://openbookproject.net//thinkCSpy/

2.21.2 A graphics example program

Object Oriented programming allows us to write Classes with a well de�ned external interface
hiding all the internal details. This example shows a Class named 'disp', for drawing curves,
providing the xy coordinates within an arbitrary range . The the world-to-screen coordinate
conversion is performed internally. The method named line() accepts a list of xy coordinates. The
�le tkplot_class.py de�nes the 'disp' class and is listed below.

Example tkplot_class.py

from Tkinter import *

from math import *

class disp:

def __init__(self, parent, width=400., height=200.):

CHAPTER 2. PROGRAMMING IN PYTHON 41

Figure 2.5: Output of tkplot.py

self.parent = parent

self.SCX = width

self.SCY = height

self.border = 1

self.canvas = Canvas(parent, width=width, height=height)

self.canvas.pack(side = LEFT)

self.setWorld(0 , 0, self.SCX, self.SCY) # scale factors

def setWorld(self, x1, y1, x2, y2):

self.xmin = float(x1)

self.ymin = float(y1)

self.xmax = float(x2)

self.ymax = float(y2)

self.xscale = (self.xmax - self.xmin) / (self.SCX)

self.yscale = (self.ymax - self.ymin) / (self.SCY)

def w2s(self, p): #world-to-screen before plotting

ip = []

for xy in p:

ix = self.border + int((xy[0] - self.xmin) / self.xscale)

iy = self.border + int((xy[1] - self.ymin) / self.yscale)

iy = self.SCY - iy

ip.append((ix,iy))

return ip

def line(self, points, col='blue'):

ip = self.w2s(points)

t = self.canvas.create_line(ip, fill=col)

The program tkplot.py imports tkplot_class.py and plots two graphs. The advantage of code reuse
is evident from this example. 10. Output of tkplot.py is shown in �gure 2.5.

Example tkplot.py

from tkplot_class import *

from math import *

w = Tk()

gw1 = disp(w)

xy = []

10A more sophisticated version of the disp class program (draw.py) is included in the package 'learn-by-coding',
available on the CD.

CHAPTER 2. PROGRAMMING IN PYTHON 42

for k in range(200):

x = 2 * pi * k/200

y = sin(x)

xy.append((x,y))

gw1.setWorld(0, -1.0, 2*pi, 1.0)

gw1.line(xy)

gw2 = disp(w)

gw2.line([(10,10),(100,100),(350,50)], 'red')

w.mainloop()

2.22 Exercises

1. Generate multiplication table of eight and write it to a �le.

2. Make a list and write it to a �le using the pickle module.

3. Write a Python program to open a �le and write 'hello world' to it.

4. Write a Python program to open a text �le and read all lines from it.

5. Write a program to generate the multiplication table of a number from the user. The output
should be formatted as shown below
1 x 5 = 5
2 x 5 = 10

6. De�ne the list [1,2,3,4,5,6] using the range function. Write code to insert a 10 after 2, delete
4, add 0 at the end and sort it in the ascending order.

7. Write Python code to generate the sequence of numbers
25 20 15 10 5
using range function . Delete 15 from the result and sort it. Print it using a for loop.

8. De�ne a string s = 'mary had a little lamb'.
a) print it in reverse order
b) split it using space character as sepatator

9. Join the elements of the list ['I', 'am', 'in', 'pieces'] using + character. Do the same using a
for loop also.

10. Create a window with �ve buttons. Make each button a di�erent color. Each button should
have some text on it.

11. Create a program that will put words in alphabetical order. The program should allow the
user to enter as many words as he wants to.

12. Create a program that will check a sentence to see if it is a palindrome. A palindrome is a
sentence that reads the same backwards and forwards ('malayalam').

13. A text �le contains two columns of numbers. Write a program to read them and print the
sum of numbers in each row.

14. Read a String from the keyboard. Multiply it by an integer to make its length more than
50. How do you �nd out the smallest number that does the job.

CHAPTER 2. PROGRAMMING IN PYTHON 43

15. Write a program to �nd the length of the hypotenuse of a right triangle from the length of
other two sides, get the input from the user.

16. Write a program displaying 2 labels and 2 buttons. It should print two di�erent messages
when clicked on the two buttons.

17. Write a program with a Canvas and a circle drawn on it.

18. Write a program using for loop to reverse a string.

19. Write a Python function to calculate the GCD of two numbers

20. Write a program to print the values of sine function from 0 to 2π with 0.1 increments. Find
the mean value of them.

21. Generate N random numbers using random.random() and �nd out howmay are below 0.5 .
Repeat the same for di�erent values of N to draw some conclusions.

22. Use the equation x = (−b ±
√

b2 − 4ac)/2a to �nd the roots of 3x2 + 6x + 12 = 0

23. Write a program to calculate the distance between points (x1,y1) and (x2,y2) in a Cartesian
plane. Get the coordinates from the user.

24. Write a program to evaluate y=
√

2.3a + a2 + 34.5 for a = 1, 2 and 3.

25. Print Fibanocci numbers upto 100, without using multiple assignment statement.

26. Draw a chess board pattern using turtle graphics.

27. Find the syntax error in the following code and correct it.
x=1
while x <= 10:
print x * 5

Chapter 3

Arrays and Matrices

In the previous chapter, we have learned the essential features of Python language. We also used
the math module to calculate trigonometric functions. Using the tools introduced so far, let us
generate the data points to plot a sine wave. The program sine.py generates the coordinates to
plot a sine wave.

Example sine.py

import math

x = 0.0

while x < 2 * math.pi:

print x , math.sin(x)

x = x + 0.1

The output to the screen can be redirected to a �le as shown below, from the command prompt.
You can plot the data using some program like xmgrace.

$ python sine.py > sine.dat
$ xmgrace sine.dat
It would be better if we could write such programs without using loops explicitly. Serious

scienti�c computing requires manipulating of large data structures like matrices. The list data
type of Python is very �exible but the performance is not acceptable for large scale computing.
The need of special tools is evident even from the simple example shown above. NumPy is a
package widely used for scienti�c computing with Python.1

3.1 The NumPy Module

The numpy module supports operations on compound data types like arrays and matrices.First
thing to learn is how to create arrays and matrices using the numpy package. Python lists can
be converted into multi-dimensional arrays. There are several other functions that can be used
for creating matrices. The mathematical functions like sine, cosine etc. of numpy accepts array
objects as arguments and return the results as arrays objects. NumPy arrays can be indexed,
sliced and copied like Python Lists.

1http://numpy.scipy.org/
http://www.scipy.org/Tentative_NumPy_Tutorial
http://www.scipy.org/Numpy_Functions_by_Category
http://www.scipy.org/Numpy_Example_List_With_Doc

44

CHAPTER 3. ARRAYS AND MATRICES 45

In the examples below, we will import numpy functions as local (using the syntax from numpy
import *). Since it is the only package used there is no possibility of any function name con�icts.

Example numpy1.py

from numpy import *

x = array([1, 2, 3]) # Make array from list

print x , type(x)

In the above example, we have created an array from a list.

3.1.1 Creating Arrays and Matrices

We can also make multi-dimensional arrays. Remember that a member of a list can be another
list. The following example shows how to make a two dimensional array.

Example numpy3.py

from numpy import *

a = [[1,2] , [3,4]] # make a list of lists

x = array(a) # and convert to an array

print a

Other than than array(), there are several other functions that can be used for creating di�erent
types of arrays and matrices. Some of them are described below.

3.1.1.1 arange(start, stop, step, dtype = None)

Creates an evenly spaced one-dimensional array. Start, stop, stepsize and datatype are the argu-
ments. If datatype is not given, it is deduced from the other arguments. Note that, the values are
generated within the interval, including start but excluding stop.

arange(2.0, 3.0, .1) makes the array([2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9])

3.1.1.2 linspace(start, stop, number of elements)

Similar to arange(). Start, stop and number of samples are the arguments.
linspace(1, 2, 11) is equivalent to array([1. , 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.])

3.1.1.3 zeros(shape, datatype)

Returns a new array of given shape and type, �lled zeros. The arguments are shape and datatype.
For example zeros([3,2], '�oat') generates a 3 x 2 array �lled with zeros as shown below. If not
speci�ed, the type of elements defaults to int.

0.0 0.0 0.0
0.0 0.0 0.0

3.1.1.4 ones(shape, datatype)

Similar to zeros() except that the values are initialized to 1.

CHAPTER 3. ARRAYS AND MATRICES 46

3.1.1.5 random.random(shape)

Similar to the functions above, but the matrix is �lled with random numbers ranging from 0 to 1,
of �oat type. For example, random.random([3,3]) will generate the 3x3 matrix;

array([[0.3759652 , 0.58443562, 0.41632997],

[0.88497654, 0.79518478, 0.60402514],

[0.65468458, 0.05818105, 0.55621826]])

3.1.1.6 reshape(array, newshape)

We can also make multi-dimensions arrays by reshaping a one-dimensional array. The function
reshape() changes dimensions of an array. The total number of elements must be preserved.
Working of reshape() can be understood by looking at reshape.py and its result.

Example reshape.py

from numpy import *

a = arange(20)

b = reshape(a, [4,5])

print b

The result is shown below.

array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],

[10, 11, 12, 13, 14],

[15, 16, 17, 18, 19]])

The program numpy2.py demonstrates most of the functions discussed so far.

Example numpy2.py

from numpy import *

a = arange(1.0, 2.0, 0.1)

print a

b = linspace(1,2,11)

print b

c = ones(5,'float')

print c

d = zeros(5, 'int')

print d

e = random.rand(5)

print e

Output of this program will look like;
[1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9]
[1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.]
[1. 1. 1. 1. 1.]
[0. 0. 0. 0. 0.]
[0.89039193 0.55640332 0.38962117 0.17238343 0.01297415]

CHAPTER 3. ARRAYS AND MATRICES 47

3.1.2 Copying

Numpy arrays can be copied using the copy method, as shown below.

Example array_copy.py

from mumpy import *

a = zeros(5)

print a

b = a

c = a.copy()

c[0] = 10

print a, c

b[0] = 10

print a,c

The output of the program is shown below. The statement b = a does not make a copy of a.
Modifying b a�ects a, but c is a separate entity.

[0. 0. 0.]
[0. 0. 0.] [10. 0. 0.]
[10. 0. 0.] [10. 0. 0.]

3.1.3 Arithmetic Operations

Arithmetic operations performed on an array is carried out on all individual elements. Adding or
multiplying an array object with a number will multiply all the elements by that number. However,
adding or multiplying two arrays having identical shapes will result in performing that operation
with the corresponding elements. To clarify the idea, have a look at aroper.py and its results.

Example aroper.py

from numpy import *

a = array([[2,3], [4,5]])

b = array([[1,2], [3,0]])

print a + b

print a * b

The output will be as shown below

array([[3, 5],

[7, 5]])

array([[2, 6],

[12, 0]])

Modifying this program for more operations is left as an exercise to the reader.

3.1.4 cross product

Returns the cross product of two vectors, de�ned by

A × B =

∣∣∣∣∣∣
i j k

A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣ = i(A2B3 − A3B2) + j(A1B3 − A3B1) + k(A1B2 − A2B1) (3.1)

CHAPTER 3. ARRAYS AND MATRICES 48

It can be evaluated using the function cross((array1, array2). The program cross.py prints [-3,
6, -3]

Example cross.py

from numpy import *

a = array([1,2,3])

b = array([4,5,6])

c = cross(a,b)

print c

3.1.5 dot product

Returns the dot product of two vectors de�ned by A.B = A1B1 + A2B2 + A3B3 . If you change
the fourth line of cross.py to c = dot(a, b), the result will be 32.

3.1.6 Saving and Restoring

An array can be saved to text �le using array.to�le(�lename) and it can be read back using
array=from�le() methods, as shown by the code �leio.py

Example �leio.py

from numpy import *

a = arange(10)

a.tofile('myfile.dat')

b = fromfile('myfile.dat',dtype = 'int')

print b

The function from�le() sets dtype='�oat' by default. In this case we have saved an integer array
and need to specify that while reading the �le. We could have saved it as �oat the the statement
a.to�le('my�le.dat', '�oat').

3.1.7 Matrix inversion

The function linalg.inv(matrix) computes the inverse of a square matrix, if it exists. We can verify
the result by multiplying the original matrix with the inverse. Giving a singular matrix as the
argument should normally result in an error message. In some cases, you may get a result whose
elements are having very high values, and it indicates an error.

Example inv.py

from numpy import *

a = array([[4,1,-2], [2,-3,3], [-6,-2,1]], dtype='float')

ainv = linalg.inv(a)

print ainv

print dot(a,ainv)

Result of this program is printed below.

CHAPTER 3. ARRAYS AND MATRICES 49

[[0.08333333 0.08333333 -0.08333333]

[-0.55555556 -0.22222222 -0.44444444]

[-0.61111111 0.05555556 -0.38888889]]

[[1.00000000e+00 -1.38777878e-17 0.00000000e+00]

[-1.11022302e-16 1.00000000e+00 0.00000000e+00]

[0.00000000e+00 2.08166817e-17 1.00000000e+00]]

3.2 Vectorized Functions

The functions like sine, log etc. from NumPy are capable of accepting arrays as arguments. This
eliminates the need of writing loops in our Python code.

Example vfunc.py

from numpy import *

a = array([1,10,100,1000])

print log10(a)

The output of the program is [0. 1. 2. 3.] , where the log of each element is calculated and
returned in an array. This feature simpli�es the programs a lot. Numpy also provides a function
to vectorize functions written by the user.

Example vectorize.py

from numpy import *

def spf(x):

return 3*x

vspf = vectorize(spf)

a = array([1,2,3,4])

print vspf(a)

The output will be [3 6 9 12] .

3.3 Exercises

1. Write code to make a one dimensional matrix with elements 5,10,15,20 and 25. make another
matrix by slicing the �rst three elements from it.

2. Create a 3 × 2 matrix and print the sum of its elements using for loops.

3. Create a 2 × 3 matrix and �ll it with random numbers.

4. Use linspace to make an array from 0 to 10, with stepsize of 0.1

5. Use arange to make an 100 element array ranging from 0 to 10

6. Make an array a = [2,3,4,5] and copy it to b. change one element of b and print both.

7. Make a 3x3 matrix and multipy it by 5.

CHAPTER 3. ARRAYS AND MATRICES 50

8. Create two 3x3 matrices and add them.

9. Write programs to demonstrate the dot and cross products.

10. Using matrix inversion, solve the system of equations
4x1 = 2x2 + x3 = 11
=2x1 + 4x2 = 2x3 = =16
x1 = 2x2 + 4x3 = 17

11. Find the new values of the coordinate (10,10) under a rotation by angle π/4.

12. Write a vectorized function to evaluate y = x2 and print the result for x=[1,2,3].

Chapter 4

Data visualization

A graph or chart is used to present numerical data in visual form. A graph is one of the easiest
ways to compare numbers. They should be used to make facts clearer and more understandable.
Results of mathematical computations are often presented in graphical format. In this chapter, we
will explore the Python modules used for generating two and three dimensional graphs of various
types.

4.1 The Matplotlib Module

Matplotlib is a python package that produces publication quality �gures in a variety of hardcopy
formats. It also provides many functions for matrix manipulation. You can generate plots, his-
tograms, power spectra, bar charts, error-charts, scatter-plots, etc, with just a few lines of code
and have full control of line styles, font properties, axes properties, etc. The data points to the
plotting functions are supplied as Python lists or Numpy arrays.

If you import matplotlib as pylab, the plotting functions from the submodules pyplot and matrix
manipulation functions from the submodule mlab will be available as local functions. Pylab also
imports Numpy for you. Let us start with some simple plots to become familiar with matplotlib.1

Example plot1.py

from pylab import *

data = [1,2,5]

plot(data)

show()

In the above example, the x-axis of the three points is taken from 0 to 2. We can specify both the
axes as shown below.

Example plot2.py

from pylab import *

x = [1,2,5]

y = [4,5,6]

1http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/users/pyplot_tutorial.html
http://matplotlib.sourceforge.net/examples/index.html
http://matplotlib.sourceforge.net/api/axes_api.html

51

CHAPTER 4. DATA VISUALIZATION 52

Figure 4.1: Output of (a) plot4.py (b) subplot1.py (c) piechart.py

plot(x,y)

show()

By default, the color is blue and the line style is continuous. This can be changed by an optional
argument after the coordinate data, which is the format string that indicates the color and line
type of the plot. The default format string is `b-` (blue, continuous line). Let us rewrite the above
example to plot using red circles. We will also set the ranges for x and y axes and label them.

Example plot3.py

from pylab import *

x = [1,2,5]

y = [4,5,6]

plot(x,y,'ro')

xlabel('x-axis')

ylabel('y-axis')

axis([0,6,1,7])

show()

The �gure 4.1 shows two di�erent plots in the same window, using di�erent markers and colors.

Example plot4.py

from pylab import *

t = arange(0.0, 5.0, 0.2)

plot(t, t**2,'x') # t2

plot(t, t**3,'ro') # t3

show()

We have just learned how to draw a simple plot using the pylab interface of matplotlib.

4.1.1 Multiple plots

Matplotlib allows you to have multiple plots in the same window, using the subplot() command as
shown in the example subplot1.py, whose output is shown in �gure 4.1(b).

Example subplot1.py

CHAPTER 4. DATA VISUALIZATION 53

from pylab import *

subplot(2,1,1) # the first subplot

plot([1,2,3,4])

subplot(2,1,2) # the second subplot

plot([4,2,3,1])

show()

The arguments to subplot function are NR (number of rows) , NC (number of columns) and a
�gure number, that ranges from 1 to NR ∗NC. The commas between the arguments are optional
if NR ∗ NC < 10, ie. subplot(2,1,1) can be written as subplot(211).

Another example of subplot is given is subplot2.py. You can modify the variable NR and NC
to watch the results. Please note that the % character has di�erent meanings. In (pn+1)%5, it
is the reminder operator resulting in a number less than 5. The % character also appears in the
String formatting.

Example subplot2.py

from pylab import *

mark = ['x','o','^','+','>']

NR = 2 # number of rows

NC = 3 # number of columns

pn = 1

for row in range(NR):

for col in range(NC):

subplot(NR, NC, pn)

a = rand(10) * pn

plot(a, marker = mark[(pn+1)%5])

xlabel('plot %d X'%pn)

ylabel('plot %d Y'%pn)

pn = pn + 1

show()

4.1.2 Polar plots

Polar coordinates locate a point on a plane with one distance and one angle. The distance `r' is
measured from the origin. The angle θ is measured from some agreed starting point. Use the
positive part of the x − axis as the starting point for measuring angles. Measure positive angles
anti-clockwise from the positive x − axis and negative angles clockwise from it.

Matplotlib supports polar plots, using the polar(θ, r) function. Let us plot a circle using polar().
For every point on the circle, the value of radius is the same but the polar angle θ changes from
0to 2π. Both the coordinate arguments must be arrays of equal size. Since θ is having 100 points
, r also must have the same number. This array can be generated using the ones() function. The
axis([θmin, θmax, rmin, rmax) function can be used for setting the scale.

Example polar.py

from pylab import *

th = linspace(0,2*pi,100)

r = 5 * ones(100) # radius = 5

polar(th,r)

show()

CHAPTER 4. DATA VISUALIZATION 54

Figure 4.2: (a) Output of npsin.py (b) Output of circ.py .

4.1.3 Pie Charts

An example of a pie chart is given below. The percentage of di�erent items and their names are
given as arguments. The output is shown in �gure 4.1(c).

Example piechart.py

from pylab import *

labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'

fracs = [25, 25, 30, 20]

pie(fracs, labels=labels)

show()

4.2 Plotting mathematical functions

One of our objectives is to understand di�erent mathematical functions better, by plotting them
graphically. We will use the arange, linspace and logspace functions from numpy to generate the
input data and also the vectorized versions of the mathematical functions. For arange(), the third
argument is the stepsize. The total number of elements is calculated from start, stop and stepsize.
In the case of linspace(), we provide start, stop and the total number of points. The step size is
calculated from these three parameters. Please note that to create a data set ranging from 0 to 1
(including both) with a stepsize of 0.1, we need to specify linspace(0,1,11) and not linspace(0,1,10).

4.2.1 Sine function and friends

Let the �rst example be the familiar sine function. The input data is from −π to +π radians2. To
make it a bit more interesting we are plotting sin x2 also. The objective is to explain the concept
of odd and even functions. Mathematically, we say that a function f(x) is even if f(x) = f(−x)
and is odd if f(−x) = −f(x). Even functions are functions for which the left half of the plane
looks like the mirror image of the right half of the plane. From the �gure 4.2(a) you can see that
sinx is odd and sinx2 is even.

Example npsin.py

2Why do we need to give the angles in radians and not in degrees. Angle in radian is the length of the arc de�ned
by the given angle, with unit radius. Degree is just an arbitrary unit.

CHAPTER 4. DATA VISUALIZATION 55

from pylab import *

x = linspace(-pi, pi , 200)

y = sin(x)

y1 = sin(x*x)

plot(x,y)

plot(x,y1,'r')

show()

Exercise: Modify the program npsin.py to plot sin2 x , cos x, sinx3 etc.

4.2.2 Trouble with Circle

Equation of a circle is x2 + y2 = a2 , where a is the radius and the circle is located at the origin
of the coordinate system. In order to plot it using Cartesian coordinates, we need to express y in
terms of x, and is given by

y =
√

a2 − x2

We will create the x-coordinates ranging from −a to +a and calculate the corresponding values
of y. This will give us only half of the circle, since for each value of x, there are two values of y
(+y and -y). The following program circ.py creates both to make the complete circle as shown in
�gure 4.2(b). Any multi-valued function will have this problem while plotting. Such functions can
be plotted better using parametric equations or using the polar plot options, as explained in the
coming sections.

Example circ.py

from pylab import *

a = 10.0

x = linspace(-a, a , 200)

yupper = sqrt(a**2 - x**2)

ylower = -sqrt(a**2 - x**2)

plot(x,yupper)

plot(x,ylower)

show()

4.2.3 Parametric plots

The circle can be represented using the equations x = a cos θ and y = a sin θ . To get the complete
circle θ should vary from zero to 2π radians. The output of circpar.py is shown in �gure 4.3(a).

Example circpar.py

from pylab import *

a = 10.0

th = linspace(0, 2*pi, 200)

x = a * cos(th)

y = a * sin(th)

plot(x,y)

show()

CHAPTER 4. DATA VISUALIZATION 56

Figure 4.3: (a)Output of circpar.py. (b)Output of arcs.py

Changing the range of θ to less than 2π radians will result in an arc. The following example plots
several arcs with di�erent radii. The for loop will execute four times with the values of radius
5,10,15 and 20. The range of θ also depends on the loop variable. For the next three values it will
be π, 1.5πand2π respectively. The output is shown in �gure 4.3(b).

Example arcs.py

from pylab import *

a = 10.0

for a in range(5,21,5):

th = linspace(0, pi * a/10, 200)

x = a * cos(th)

y = a * sin(th)

plot(x,y)

show()

4.3 Famous Curves

Connection between di�erent branches of mathematics like trigonometry, algebra and geometry
can be understood by geometrically representing the equations. You will �nd a large number of
equations generating geometric patterns having interesting symmetries. A collection of them is
available on the Internet [2][3]. We will select some of them and plot here. Exploring them further
is left as an exercise to the reader.

4.3.1 Astroid

The astroid was �rst discussed by Johann Bernoulli in 1691-92. It also appears in Leibniz's corre-
spondence of 1715. It is sometimes called the tetracuspid for the obvious reason that it has four
cusps. A circle of radius 1/4 rolls around inside a circle of radius 1 and a point on its circumference
traces an astroid. The Cartesian equation is

x
2
3 + y

2
3 = a

2
3 (4.1)

The parametric equations are

x = a cos3(t), y = a sin3(t) (4.2)

CHAPTER 4. DATA VISUALIZATION 57

Figure 4.4: (a)Output of astro.py (b) astropar.py (c) lissa.py

In order to plot the curve in the Cartesian system, we rewrite equation 4.1 as

y = (a
2
3 − x

2
3)

3
2

The program astro.py plots the part of the curve in the �rst quadrant. The program astropar.py
uses the parametric equation and plots the complete curve. Both are shown in �gure 4.4

Example astro.py

from pylab import *

a = 2

x = linspace(0,a,100)

y = (a**(2.0/3) - x**(2.0/3))**(3.0/2)

plot(x,y)

show()

Example astropar.py

from pylab import *

a = 2

t = linspace(-2*a,2*a,101)

x = a * cos(t)**3

y = a * sin(t)**3

plot(x,y)

show()

4.3.2 Ellipse

The ellipse was �rst studied by Menaechmus [4] . Euclid wrote about the ellipse and it was given
its present name by Apollonius. The focus and directrix of an ellipse were considered by Pappus.
Kepler, in 1602, said he believed that the orbit of Mars was oval, then he later discovered that it
was an ellipse with the sun at one focus. In fact Kepler introduced the word focus and published
his discovery in 1609.

The Cartesian equation is
x2

a2
+

y2

b2
= 1 (4.3)

The parametric equations are

x = a cos(t), y = b sin(t) (4.4)

The program ellipse.py uses the parametric equation to plot the curve. Modifying the para-
metric equations will result in Lissajous �gures. The output of lissa.py are shown in �gure 4.4(c).

CHAPTER 4. DATA VISUALIZATION 58

Figure 4.5: (a)Archimedes Spiral (b)Fermat's Spiral (c)Polar Rose

Example ellipse.py

from pylab import *

a = 2

b = 3

t = linspace(0, 2 * pi, 100)

x = a * sin(t)

y = b * cos(t)

plot(x,y)

show()

Example lissa.py

from pylab import *

a = 2

b = 3

t= linspace(0, 2*pi,100)

x = a * sin(2*t)

y = b * cos(t)

plot(x,y)

x = a * sin(3*t)

y = b * cos(2*t)

plot(x,y)

show()

The Lissajous curves are closed if the ratio of the arguments for sine and cosine functions is an
integer. Otherwise open curves will result, both are shown in �gure 4.4(c).

4.3.3 Spirals of Archimedes and Fermat

The spiral of Archimedes is represented by the equation r = aθ. Fermat's Spiral is given by
r2 = a2θ. The output of archi.py and fermat.py are shown in �gure 4.5.

Example archi.py

from pylab import *

a = 2

CHAPTER 4. DATA VISUALIZATION 59

th= linspace(0, 10*pi,200)

r = a*th

polar(th,r)

axis([0, 2*pi, 0, 70])

show()

Example fermat.py

from pylab import *

a = 2

th= linspace(0, 10*pi,200)

r = sqrt(a**2 * th)

polar(th,r)

polar(th, -r)

show()

4.3.4 Polar Rose

A rose or rhodonea curve is a sinusoid r = cos(kθ) plotted in polar coordinates. If k is an even
integer, the curve will have 2k petals and k petals if it is odd. If k is rational, then the curve is
closed and has �nite length. If k is irrational, then it is not closed and has in�nite length.

Example rose.py

from pylab import *

k = 4

th = linspace(0, 10*pi,1000)

r = cos(k*th)

polar(th,r)

show()

There are dozens of other famous curves whose details are available on the Internet. It may be an
interesting exercise for the reader. For more details refer to [3, 2, 5]on the Internet.

4.4 Power Series

Trigonometric functions like sine and cosine sounds very familiar to all of us, due to our interaction
with them since high school days. However most of us would �nd it di�cult to obtain the numerical
values of , say sin 50, without trigonometric tables or a calculator. We know that di�erentiating a
sine function twice will give you the original function, with a sign reversal, which implies

d2y

dx2
+ y = 0

which has a series solution of the form

y = a0

∞∑
n=0

(−1)n x2n

(2n)!
+ a1

∞∑
n=0

(−1)n x2n+1

(2n + 1)!
(4.5)

These are the Maclaurin series for sine and cosine functions. The following code plots several
terms of the sine series and their sum.

CHAPTER 4. DATA VISUALIZATION 60

Figure 4.6: Outputs of (a)series_sin.py (b) rose.py

Example series_sin.py

from pylab import *

from scipy import factorial

x = linspace(-pi, pi, 50)

y = zeros(50)

for n in range(5):

term = (-1)**(n) * (x**(2*n+1)) / factorial(2*n+1)

y = y + term

#plot(x,term) #uncomment to see each term

plot(x, y, '+b')

plot(x, sin(x),'r') # compare with the real one

show()

The output of series_sin.py is shown in �gure 4.6(a). For comparison the sin function from the
library is plotted. The values calculated by using the series becomes closer to the actual value
with more and more number of terms. The error can be obtained by adding the following lines to
series_sin.py and the e�ect of number of terms on the error can be studied.

err = y - sin(x)

plot(x,err)

for k in err:

print k

4.5 Fourier Series

A Fourier series is an expansion of a periodic function f(x) in terms of an in�nite sum of sines
and cosines. The computation and study of Fourier series is known as harmonic analysis and is
extremely useful as a way to break up an arbitrary periodic function into a set of simple terms that
can be plugged in, solved individually, and then recombined to obtain the solution to the original
problem or an approximation to it to whatever accuracy is desired or practical.

The examples below shows how to generate a square wave and sawtooth wave using this tech-
nique. To make the output better, increase the number of terms by changing the argument of the
range() function, used in the for loop. The output of the programs are shown in �gure 4.7.

Example fourier_square.py

CHAPTER 4. DATA VISUALIZATION 61

Figure 4.7: Sawtooth and Square waveforms generated using Fourier series.

from pylab import *

N = 100 # number of points

x = linspace(0.0, 2 * pi, N)

y = zeros(N)

for n in range(5):

term = sin((2*n+1)*x) / (2*n+1)

y = y + term

plot(x,y)

show()

Example fourier_sawtooth.py

from pylab import *

N = 100 # number of points

x = linspace(-pi, pi, N)

y = zeros(N)

for n in range(1,10):

term = (-1)**(n+1) * sin(n*x) / n

y = y + term

plot(x,y)

show()

4.6 2D plot using colors

A two dimensional matrix can be represented graphically by assigning a color to each point pro-
portional to the value of that element. The program imshow1.py makes a 50 × 50 matrix �lled
with random numbers and uses imshow() to plot it. The result is shown in �gure 4.8(a).

Example imshow1.py

from pylab import *

m = random([50,50])

imshow(m)

show()

CHAPTER 4. DATA VISUALIZATION 62

Figure 4.8: Outputs of (a) imshow1.py (b) julia.py (c) mgrid2.py

4.7 Fractals

Fractals3 are a part of fractal geometry, which is a branch of mathematics concerned with irregular
patterns made of parts that are in some way similar to the whole (e.g.: twigs and tree branches).
A fractal is a design of in�nite details. It is created using a mathematical formula. No matter how
closely you look at a fractal, it never loses its detail. It is in�nitely detailed, yet it can be contained
in a �nite space. Fractals are generally self-similar and independent of scale. The theory of fractals
was developed from Benoit Mandelbrot's study of complexity and chaos. Complex numbers are
required to compute the Mandelbrot and Julia Set fractals and it is assumed that the reader is
familiar with the basics of complex numbers.

To compute the basic Mandelbrot (or Julia) set one uses the equation f(z) → z2 + c , where
both z and c are complex numbers. The function is evaluated in an iterative manner, ie. the result
is assigned to z and the process is repeated. The purpose of the iteration is to determine the
behavior of the values that are put into the function. If the value of the function goes to in�nity
(practically to some �xed value, like 1 or 2) after few iterations for a particular value of z , that
point is considered to be outside the Set. A Julia set can be de�ned as the set of all the complex
numbers (z) such that the iteration of f(z) → z2 + c is bounded for a particular value of c.

To generate the fractal the number of iterations required to diverge is calculated for a set of
points in the selected region in the complex plane. The number of iterations taken for diverging
decides the color of each point. The points that did not diverge, belonging to the set, are plotted
with the same color. The program julia.py generates a fractal using a julia set. The program
creates a 2D array (200 x 200 elements). For our calculations, this array represents a rectangular
region on the complex plane centered at the origin whose lower left corner is (-1,-j) and the upper
right corner is (1+j). For 200x200 equidistant points in this plane the number of iterations are
calculated and that value is given to the corresponding element of the 2D matrix. The plotting is
taken care by the imshow function. The output is shown in �gure 4.8(b). Change the value of c
and run the program to generate more patterns. The equation also may be changed.

Example julia.py

�'

Region of a complex plane ranging from -1 to +1 in both real

and imaginary axes is represented using a 2D matrix

having X x Y elements.For X and Y equal to 200,the stepsize

in the complex plane is 2.0/200 = 0.01.

The nature of the pattern depends much on the value of c.

�'

from pylab import *

3http://en.wikipedia.org/wiki/Fractal

CHAPTER 4. DATA VISUALIZATION 63

X = 200

Y = 200

MAXIT = 100

MAXABS = 2.0

c = 0.02 - 0.8j # The constant in equation z**2 + c

m = zeros([X,Y]) # A two dimensional array

def numit(x,y): # number of iterations to diverge

z = complex(x,y)

for k in range(MAXIT):

if abs(z) <= MAXABS:

z = z**2 + c

else:

return k # diverged after k trials

return MAXIT # did not diverge,

for x in range(X):

for y in range(Y):

re = 0.01 * x - 1.0 # complex number for

im = 0.01 * y - 1.0 # this (x,y) coordinate

m[x][y] = numit(re,im) # get the color for (x,y)

imshow(m) # Colored plot using the 2D matrix

show()

4.8 Meshgrids

in order to make contour and 3D plots, we need to understand the meshgrid. Consider a rectangular
area on the X-Y plane. Assume there are m divisions in the X direction and n divisions in the Y
direction. We now have a m × n mesh. A meshgrid is the coordinates of a grid in a 2D plane, x
coordinates of each mesh point is held in one matrix and y coordinates are held in another.

The NumPy function meshgrid() creates two 2x2 matrices from two 1D arrays, as shown in the
example below. This can be used for plotting surfaces and contours, by assigning a Z coordinate
to every mesh point.

Example mgrid1.py

from numpy import *

x = arange(0, 3, 1)

y = arange(0, 3, 1)

gx, gy = meshgrid(x, y)

print gx

print gy

The outputs are as shown below, gx(i,j) contains the x-coordinate and gx(i,j) contains the y-
coordinate of the point (i,j).

[[0 1 2]
[0 1 2]
[0 1 2]]
[[0 0 0]
[1 1 1]

CHAPTER 4. DATA VISUALIZATION 64

[2 2 2]]
We can evaluate a function at all points of the meshgrid by passing the meshgrid as an argument.

The program mgrid2.py plots the sum of sines of the x and y coordinates, using imshow to get a
result as shown in �gure 4.8(c).

Example mgrid2.py

from pylab import *

x = arange(-3*pi, 3*pi, 0.1)

y = arange(-3*pi, 3*pi, 0.1)

xx, yy = meshgrid(x, y)

z = sin(xx) + sin(yy)

imshow(z)

show()

4.9 3D Plots

Matplotlib supports several types of 3D plots, using the Axes3D class. The following three lines
of code are required in every program making 3D plots using matplotlib.

from pylab import *

from mpl_toolkits.mplot3d import Axes3D

ax = Axes3D(figure())

4.9.1 Surface Plots

The example mgrid2.py is re-written to make a surface plot using the same equation in surface3d.py
and the result is shown in �gure 4.9.1(a).

Example sufrace3d.py

from pylab import *

from mpl_toolkits.mplot3d import Axes3D

ax = Axes3D(figure())

x = arange(-3*pi, 3*pi, 0.1)

y = arange(-3*pi, 3*pi, 0.1)

xx, yy = meshgrid(x, y)

z = sin(xx) + sin(yy)

ax.plot_surface(xx, yy, z, cmap=cm.jet, cstride=1)

show()

4.9.2 Line Plots

Example of a line plot is shown in line3d.py along with the output in �gure 4.9.1(b).

Example line3d.py

from pylab import *

from mpl_toolkits.mplot3d import Axes3D

ax = Axes3D(figure())

CHAPTER 4. DATA VISUALIZATION 65

Output of (a)surface3d.py (b)line3d.py

phi = linspace(0, 2*pi, 400)

x = cos(phi)

y = sin(phi)

z = 0

ax.plot(x, y, z, label = 'x')# circle

z = sin(4*phi) # modulated in z plane

ax.plot(x, y, z, label = 'x')

ax.set_xlabel('X')

ax.set_ylabel('Y')

ax.set_zlabel('Z')

show()

Modify the code to make x = sin(2*phi) to observe Lissajous �gures

4.9.3 Wire-frame Plots

Data for a sphere is generated using the outer product of matrices and plotted, by sphere.py.

from pylab import *

from mpl_toolkits.mplot3d import Axes3D

ax = Axes3D(figure())

phi = linspace(0, 2 * pi, 100)

theta = linspace(0, pi, 100)

x = 10 * outer(cos(phi), sin(theta))

y = 10 * outer(sin(phi), sin(theta))

z = 10 * outer(ones(size(phi)), cos(theta))

ax.plot_wireframe(x,y,z, rstride=2, cstride=2)

show()

4.10 Mayavi, 3D visualization

For more e�cient and advanced 3D visualization, use Mayavi that is available on most of the
GNU/Linux platforms. Program ylm20.py plots the spherical harmonics Y l

m for l = 2,m = 0,

using mayavi. The plot of Y 0
2 = 1

4

√
5
π (3 cos2 φ − 1) is shown in �gure4.9.

Example ylm20.py

CHAPTER 4. DATA VISUALIZATION 66

Figure 4.9: Output of ylm20.py

from numpy import *

from enthought.mayavi import mlab

polar = linspace(0,pi,100)

azimuth = linspace(0, 2*pi,100)

phi,th = meshgrid(polar, azimuth)

r = 0.25 * sqrt(5.0/pi) * (3*cos(phi)**2 - 1)

x = r*sin(phi)*cos(th)

y = r*cos(phi)

z = r*sin(phi)*sin(th)

mlab.mesh(x, y, z)

mlab.show()

4.11 Exercises

1. Plot a sine wave using markers +, o and x using three di�erent colors.

2. Plot tan θ from θ from −2π to 2π, watch for singular points.

3. Plot a circle using the polar() function.

4. Plot the following from the list of Famous curves at reference [3]
a) r2 = a2 cos 2θ , Lemniscate of Bernoulli

b) y =
√

2πe−x2/2 Frequency curve
c) a cosh(x/a) catenary
d) sin(aθ) for a = 2, 3, and 4. Rhodonea curves

5. Generate a triangular wave using Fourier series.

6. Evaluate y =
∑n=∞

n=1
(−1)nx2n+1

(2n+1)! for 10 terms.

7. Write a Python program to calculate sine function using series expansion and plot it.

8. Write a Python program to plot y = 5x2 + 3x + 2 (for x from 0 to 5, 20 points),using pylab,
with axes and title. Use red colored circles to mark the points.

CHAPTER 4. DATA VISUALIZATION 67

9. Write a Python program to plot a Square wave using Fourier series, number of terms should
be a variable.

10. Write a Python program to read the x and y coordinates from a �le, in a two column format,
and plot them.

11. Plot x2 + y2 + z2 = 25 using mayavi.

12. Make a plot z = sin(x) + sin(y) using imshow() , from −4πto4π for both x and y.

13. Write Python code to plot y = x2, with the axes labelled

Chapter 5

Type setting using LATEX

LATEX is a powerful typesetting system, used for producing scienti�c and mathematical documents
of high typographic quality. LATEX is not a word processor! Instead, LATEX encourages authors
not to worry too much about the appearance of their documents but to concentrate on getting
the right content. You prepare your document using a plain text editor, and the formatting is
speci�ed by commands embedded in your document. The appearance of your document is decided
by LATEX, but you need to specify it using some commands. In this chapter, we will discuss some
of these commands mainly to typeset mathematical equations. 1

5.1 Document classes

LATEX provides several prede�ned document classes (book, article, letter, report, etc.) with exten-
sive sectioning and cross-referencing capabilities. Title, chapter, section, subsection, paragraph,
subparagraph etc. are speci�ed by commands and it is the job of LATEX to format them properly.
It does the numbering of sections automatically and can generate a table of contents if requested.
Figures and tables are also numbered and placed without the user worrying about it.

The latex source document (the .tex �le) is compiled by the latex program to generate a device
independent (the .dvi �le) output. From that you can generate postscript or PDF versions of the
document. We will start with a simple example hello.tex to demonstrate this process. In a line,
anything after a % sign is taken as a comment.

Example hello.tex

\documentclass{article}

\begin{document}

Small is beautiful. % I am just a comment

\end{document}

Compile, view and make a PDF �le using the following commands:
$ latex hello.tex
$ xdvi hello.dvi
$ dvipdf hello.dvi

The output will look like : Small is beautiful.

1http://www.latex-project.org/
http://mirror.ctan.org/info/lshort/english/lshort.pdf
http://en.wikibooks.org/wiki/LATEX

68

CHAPTER 5. TYPE SETTING USING LATEX 69

5.2 Modifying Text

In the next example texts.tex we will demonstrate di�erent types of text. We will \newline or \\
to generate a line break. A blank line will start a new paragraph.

Example texts.tex

\documentclass{article}
\begin{document}
This is normal text.
\newline
\textbf{This is bold face text.}
\textit{This is italic text.}\\
\tiny{This is tiny text.}
\large{This is large text.}
\underline{This is underlined text.}
\end{document}

Compiling texts.tex, as explained in the previous example, will genearte the following output.

This is normal text.

This is bold face text. This is italic text.

This is tiny text. This is large text. This is underlined text.

5.3 Dividing the document

A document is generally organized in to sections, subsections, paragraphs etc. and
Latex allows us to do this by inserting commands like section subsection etc. If the
document class is book, you can have chapters also. There is a command to generate
the table of contents from the sectioning information.2

Example sections.tex

\documentclass{article}
\begin{document}
\tableofcontents
\section{Animals}
This document de�nes sections.
\subsection{Domestic}
This document also de�nes subsections.
\subsubsection{cats and dogs}
Cats and dogs are Domestic animals.
\end{document}

The output of sections.tex is shown in �gure 5.1.
2To generate the table of contents, you may have to compile the document two times.

CHAPTER 5. TYPE SETTING USING LATEX 70

Figure 5.1: Output of sections.tex

5.4 Environments

Environments decide the way in which your text is formatted : numbered lists, ta-
bles, equations, quotations, justi�cations, �gure, etc. are some of the environments.
Environments are de�ned like :

\begin{environment_name} your text \end{environment_name}
The example program environ.tex demonstrates some of the environments.

Example environs.tex

\documentclass{article}
\begin{document}
\begin{�ushleft} A bulleted list. \end{�ushleft}
\begin{itemize} \item dog \item cat \end{itemize}
\begin{center} A numbered List. \end{center}
\begin{enumerate} \item dog \item cat \end{enumerate}
\begin{�ushright} This text is right justi�ed. \end{�ushright}
\begin{quote}
Any text inside quote\\ environment will appe-\\ ar as typed.\\
\end{quote}
\begin{verbatim}
x = 1
while x <= 10:

print x * 5
x = x + 1

CHAPTER 5. TYPE SETTING USING LATEX 71

\end{verbatim}
\end{document}
The enumerate and itemize are used for making numbered and non-numbered

lists. Flushleft, �ushright and center are used for specifying text justi�cation. Quote
and verbatim are used for portions where we do not want LATEX to do the formatting.
The output of environs.tex is shown below.

A bulleted list.

� dog

� cat

A numbered List.

1. dog

2. cat

This text is right justi�ed.

Any text inside quote
environment will appe-
ar as typed.

x = 1 # a Python program

while x <= 10:
print x * 5

x = x + 1

5.5 Typesetting Equations

There two ways to typeset mathematical formulae: in-line within a paragraph, or in a
separate line. In-line equations are entered between two $ symbols. The equations in
a separate line can be done within the equation environment. Both are demonstrated
in math1.tex. We use the amsmath package in this example.

Example math1.tex

\documentclass{article}
\usepackage{amsmath}
\begin{document}

CHAPTER 5. TYPE SETTING USING LATEX 72

The equation $a^2 + b^2 = c^2$ is typeset as inline.
The same can be done in a separate line using
\begin{equation}
a^2 + b^2 = c^2
\end{equation}
\end{document}

The output of this �le is shown below.

The equation a2+b2 = c2 is typeset as inline. The same can be done in a separate
line using

a2 + b2 = c2 (5.1)

The equation number becomes 5.1 because this happens to be the �rst equation
in chapter 5.

5.5.1 Building blocks for typesetting equations

To typeset equations, we need to know the commands to make constructs like frac-
tion, sqareroot, integral etc. The following list shows several commands and corre-
sponding outputs. For each item, the output of the command, between the two $
signs, is shown on the right side. The reader is expected to insert then inside the
body of a document, compile the �le and view the output for practicing.

1. Extra space3 : $A \quad B\qquad C$ A B C

2. Greek letters : $ \alpha \beta \gamma \pi$ αβγπ

3. Subscript and Exponents : $A_n \quad A^m $ An Am

4. Multiple Exponents : $a^b \quad a^{b^c}$ ab abc

5. Fractions : $\frac{3}{5}$ 3
5

6. Dots : $n! = 1 \cdot 2 \cdots (n-1) \cdot n$ n! = 1 · 2 · · · (n − 1) · n

7. Under/over lines : $0.\overline{3} = \underline{1/3}}$ 0.3 = 1/3

8. Vectors : \vec{a} ~a

9. Functions : $\sin x + \arctan y$ sin x + arctan y

10. Square root : $\sqrt{x^2+y^2}$
√

x2 + y2

11. Higher roots : $z=\sqrt[3]{x^{2} + \sqrt{y}}$ z = 3

√
x2 +

√
y

3\quad is for inserting space, the size of a \quad corresponds to the width of the character `M' of the current
font. Use \qquad for larger space.

CHAPTER 5. TYPE SETTING USING LATEX 73

12. Equalities : $A \neq B \quad A \approx C$ A 6= B A ≈ C

13. Arrows : $\Leftrightarrow\quad\Downarrow$ ⇔ ⇓

14. Partial derivative : $\frac{\partial ^2A}{\partial x^2}$ ∂2A
∂x2

15. Summation : $\sum_{i=1}^n$
∑n

i=1

16. Integration : $\int_0^{\frac{\pi}{2} \sin x}$
∫ π

2
0 sinx

17. Product : \prod_ϵ
∏

ε

18. Big brackets : $\Big((x+1)(x-1)\Big)^{2}$
(
(x + 1)(x − 1)

)2

19. Integral : $\int_a^b f(x) dx$
∫ b
a f(x)dx

20. Operators : $\pm \div \times \cup \ast \$ ±÷× ∪ ∗

5.6 Arrays and matrices

To typeset arrays, use the array environment, that is similar to the tabular envi-
ronment. Within an array environment, & character separates columns, \\ starts a
new line. The command \hline inserts a horizontal line. Alignment of the columns
is shown inside braces using characters (lcr) and the | symbol is used for adding
vertical lines. An example of making a table is shown below.

$ \begin{array}{|l|cr|}\hline
person & sex & age \\
John & male & 20 \\
Mary & female & 10 \\
Gopal & male & 30 \\
\hline
\end{array} $

person sex age
John male 7
Mary female 20
Gopal male 30
The �rst column is left justi�ed, second is centered and the third is right justi�ed

(decided by the {|l|cr|}). If you insert a | character between c and r, it will add a
vertical line between second and third columns.

Let us make a matrix using the same command.

$ A = \left(
\begin{array}{ccc}
x_1 & x_2 & \ldots \\

CHAPTER 5. TYPE SETTING USING LATEX 74

y_1 & y_2 & \ldots \\
\vdots & \vdots & \ddots \\
\end{array}
\right) $

The output is shown below. The \left(and \right) provides the enclosure. All the
columns are centered. We have also used horizontal, vertical and diagonal dots in
this example.

A =

x1 x2 . . .
y1 y2 . . .
...

...
. . .

5.7 Floating bodies, Inserting Images

Figures and tables need special treatment, because they cannot be broken across
pages. One method would be to start a new page every time a �gure or a table is
too large to �t on the present page. This approach would leave pages partially empty,
which looks very bad. The easiest solution is to �oat them and let LATEX decide
the position. (You can in�uence the placement of the �oats using the arguments
[htbp], here, top, bottom or special page). Any material enclosed in a �gure or table
environment will be treated as �oating matter. The graphicsx packages is required
in this case.

\usepackage{graphicx}
\text{Learn how to insert pictures with caption inside the �gure environment.}
\begin{�gure}[h]
\centering
\includegraphics[width=0.2\textwidth]{pics/arcs.eps}
\includegraphics[width=0.2\textwidth]{pics/sawtooth.eps}
\caption{Picture of Arc and Sawtooth, inserted with [h] option.}
\end{�gure}

The result is shown below.

Learn how to insert pictures with caption inside the �gure environment.

�20�15�10�5 0 5 10 15 20
�20�15�10
�505
10

15

20

�4�3�2�1 0 1 2 3 4
�2.0�1.5�1.0
�0.50.0

0.5

1.0

1.5

2.0

Figure 5.2: Picture of Arc and Sawtooth, inserted with [h] option.

CHAPTER 5. TYPE SETTING USING LATEX 75

5.8 Example Application

Latex source code for a simple question paper listed below.

Example qpaper.tex

\documentclass{article}
\usepackage{amsmath}
begin{document}
\begin{center}
\large{\textbf{Sample Question Paper\\for\\
Mathematics using Python}}
\end{center}
\begin{tabular}{p{8cm}r}
\textbf{Duration:3 Hrs} & \textbf{30 weightage}
\end{tabular}\\
\section{Answer all Questions. $4\times 1\frac{1}{2}$}
\begin{enumerate}
\item What are the main document classes in LATEX.
\item Typeset $\sin^{2}x+\cos^{2}x=1$ using LATEX.
\item Plot a circle using the polar() function.
\item Write code to print all perfect cubes upto 2000.
\end{enumerate}
\section{Answer any two Questions. 3×5}
\begin{enumerate}
\item Set a sample question paper using LATEX.
\item Using Python calculate the GCD of two numbers
\item Write a program with a Canvas and a circle.
\end{enumerate}
\begin{center}\text{End}\end{center}
\end{document}

The formatted output is shown below.

CHAPTER 5. TYPE SETTING USING LATEX 76

5.9 Exercises

1. What are the main document classes supported by LATEX.

2. How does Latex di�er from other word processor programs.

3. Write a .tex �le to typeset 'All types of Text Available' in tiny, large, underline
and italic.

4. Rewrite the previous example to make the output a list of numbered lines.

5. Generate an article with section and subsections with table of contents.

6. Typeset 'All types of justi�cations' to print it three times; left, right and cen-
tered.

7. Write a .tex �le that prints 12345 in �ve lines (one character per line).

8. Typeset a Python program to generate the multiplication table of 5, using
verbatim.

9. Typeset sin2 x + cos2 x = 1

CHAPTER 5. TYPE SETTING USING LATEX 77

10. Typeset
(√

x2 + y2
)2

= x2 + y2

11. Typeset
∑∞

n=1

(
1 + 1

n

)n

12. Typeset ∂A
∂x

= A

13. Typeset
∫ π
0 cos x.dx

14. Typeset x = −b±
√

b2−4ac
2a

15. Typeset A =

(
1 2
3 4

)

16. Typeset R =

(
sin θ cos θ
cos θ sin θ

)

Chapter 6

Numerical methods

Solving mathematical equations is an important requirement for various branches
of science but many of them evade an analytic solution. The �eld of numerical
analysis explores the techniques that give approximate but accurate solutions to
such problems.1 Even when they have a solution, for all practical purposes we need
to evaluate the numeric value of the result, with the desired accuracy. We will
focus on developing simple working programs rather than going into the theoretical
details. The mathematical equations giving numerical solutions will be explored by
changing various parameters and nature of input data.

6.1 Derivative of a function

The mathematical de�nition of the derivative of a function f(x) at point x can be
approximated by equation

lim

∆x → 0

f(x + 4x
2

) − f(x − 4x
2

)

4x
(6.1)

neglecting the higher order terms. The accuracy of the derivative calculated using
discrete values depends on the stepsize 4x. It will also depends on the number of
higher order derivatives the function has. We will try to explore these aspects
using the program di�.py , which evaluates the derivatives of few functions using
two di�erent stepsizes (0.1 ans 0.01). The input values to function deriv() are the
function to be di�erentiated, the point at which the derivative is to be found and
the stepsize 4x.

Example di�.py

def f1(x):

return x**2
1Introductory methods of numerical analysis by S.S.Sastry
http://ads.harvard.edu/books/1990fnmd.book/

78

CHAPTER 6. NUMERICAL METHODS 79

Figure 6.1: Outputs of vdi�.py (a)for 4x = 0.005 (b) for 4x = 1.0

def f2(x):
return x**4

def f3(x):

return x**10

def deriv(func, x, dx=0.1):
df = func(x+dx/2)-func(x-dx/2)

return df/dx

print deriv(f1, 1.0), deriv(f1, 1.0, 0.01)

print deriv(f2, 1.0), deriv(f2, 1.0, 0.01)

print deriv(f3, 1.0), deriv(f3, 1.0, 0.01)

The output of the program is shown below. Comparing the two numbers on the
same line shows the e�ect of stepsize. Comparing the �rst number on each row
shows the e�ect of the number of higher order derivatives the function has. For the
same stepsize x4 gives much less error than x10. Second derivative of x2 is constant
and the result becomes exact, result on the �rst line.

2.0 2.0
4.01 4.0001
10.3015768754 10.0030001575

You may explore other functions by modifying the program. It can be seen that
the function deriv(), evaluates the function at two points to calculate the derivative.
The higher order terms can be calculated by evaluating the function at more points.
Techniques used for this will be discussed in section 6.8, on interpolation.

6.1.1 Di�erentiate Sine to get Cosine

The program di�.py in the previous example can only calculate the value of the
derivative at a given point. In the program vdi�.py , we use a vectorized version of

CHAPTER 6. NUMERICAL METHODS 80

Figure 6.2: Area under the curve is divided it in to a large number of intervals. Area of each of
them is calculated by assuming them to be trapezoids.

our deriv() function. The de�ned function is sine and the derivative is calculated
using the vectorized version of deriv(). The actual cosine function also is plotted for
comparison. The output of vdi�.py is shown in 6.1(a).

The value of4x is increased to 1.0 by changing one line of code as y = vecderiv(x, 1.0)
and the result is shown in 6.1(b). The values calculated using our function is shown
using +marker, while the continuous curve is the expected result , ie. the cosine
curve.

Example vdi�.py

from pylab import *

def f(x):
return sin(x)

def deriv(x,dx=0.005):

df = f(x+dx/2)-f(x-dx/2)

return df/dx

vecderiv = vectorize(deriv)

x = linspace(-2*pi, 2*pi, 200)

y = vecderiv(x)
plot(x,y,'+')

plot(x,cos(x))

show()

6.2 Numerical Integration

Numerical integration constitutes a broad family of algorithms for calculating the
numerical value of a de�nite integral. The objective is to �nd the area under the
curve as shown in �gure 6.2. One method is to divide this area in to large number
of sub-intervals and �nd the sum of their areas. The interval a ≤ x ≤ b is divided

CHAPTER 6. NUMERICAL METHODS 81

in to n sub-intervals, each of length h = (b − a)/n, and area of a sub-interval is
approximated by ∫ xn

xn−1

ydx =
h

2
(yn−1 + yn)

the integral is given by∫ b

a
ydx =

h

2
[y0 + 2(y1 + y2 + . . . + yn−1) + yn] (6.2)

This is the sum of the areas of the individual trapezoids. The error in using the
trapezoid rule is approximately proportional to 1/n2. If the number of sub-intervals
is doubled, the error is reduced by a factor of 4. The program trapez.py does
integration of a given function using equation 6.2. We will choose an example where
the results can be cross checked easily, the value of π is calculated by evaluating the
area of a unit circle by integrating the equation of a circle.

Example trapez.py

from math import *

def y(x): # equation of a circle

return sqrt(1.0 - x**2)

def trapez(f, a, b, n):

h = (b-a) / n

sum = 0

x = 0.5 * h # f(x) at middle of the slice
for i in range (1,n):

sum = sum + h * f(x)

x = x + h

return sum

print 4 * trapez(y, 0.0, 1.0,1000)

print 4 * trapez(y, 0.0, 1.0,10000)

print trapez(sin,0,2,1000) # Why the error ?

The output is shown below. The result gets better by increasing n thus resulting in
smaller h. The last line shows, how things can go wrong if the arguments are given
in the integer format. Learn how to avoid such pitfalls while writing programs. It
is left as an exercise to the reader to modify the function trapez() to accept integer
arguments also.

3.14041703178
3.14155546691
0.0

CHAPTER 6. NUMERICAL METHODS 82

6.3 Ordinary Di�erential Equations

Di�erential equations are one of the most important mathematical tools used in
producing models for physical and biological processes. In this section, we will
discuss the numerical methods for solving the initial value problem for �rst-order
ordinary di�erential equations. Consider the equation,

dy

dx
= f(x, y); y(x0) = y0 (6.3)

where the derivative of the function f(x, y) is known and the value of the function
at some value of x = x0 also is known. The objective is to �nd out the value of the
function for other values of x. The underlying idea of any routine for solving the
initial value problem is to rewrite the dy and dx as �nite steps 4y and 4x, and
multiply the equations by 4x. This gives algebraic formulas for the change in the
value of y(x) when x is changed by one stepsize 4x . In the limit of making the
stepsize very small, a good approximation to the underlying di�erential equation is
achieved.

Implementation of this procedure results in the Euler's method, which is concep-
tually very important, but not recommended for any practical use. In this section we
will discuss Euler's method and the Runge-Kutta method with the help of example
programs. For detailed information refer to [10, 11].

6.3.1 Euler method

The equations of Euler's method can be obtained as follows. By the de�nition of
derivative,

y
′
(xn, yn) =

lim

h → 0

y(xn + h) − y(xn)

h
(6.4)

For su�ciently small values of h , we can write,

y(xn + h) = y(xn, yn) + hy
′
(xn) (6.5)

The above equations implies that, if the value of the function y(x) is known to
be yn at the point xn, its value at a nearby point xn+1 is given by yn + h × y

′
.

The program euler.py calculates the value of sine function using its derivative, ie.
the cosine function. We start from x = 0 , where sin(x) = 0 and compute the
subsequent values using the derivative, cos(x), and compare the result with the
actual sine function.

Example euler.py

from pylab import *

h = 0.01 # stepsize

CHAPTER 6. NUMERICAL METHODS 83

Figure 6.3: (a)Output of euler.py (b)Four intermediate steps of RK4 method

x = 0.0 # initial values

y = 0.0

ax = [] # Lists to store x and y
ay = []
while x < 2*pi:

y = y + h * math.cos(x) # Euler equation

x = x + h

ax.append(x)
ay.append(y)

plot(ax,ay)

show()

The output of euler.py is shown in �gure 6.3.

6.3.2 Runge-Kutta method

The formula 6.4 used by Euler method which advances a solution from xntoxn+1 is
not symmetric, it advances the solution through an interval h, but uses derivative
information only at the beginning of that interval. Better results are obtained if we
take trial step to the midpoint of the interval and use the value of both x and y at
that midpoint to compute the real step across the whole interval. This is called the
second-order Runge-Kutta or the midpoint method. This procedure can be further
extended to higher orders.

The fourth order Runge-Kutta method is the most popular one and is commonly
referred as the Runge-Kutta method. In each step the derivative is evaluated four
times as shown in �gure 6.4(a). Once at the initial point, twice at trial midpoints,
and once at a trial endpoint. Every trial evaluation uses the value of the function
from the previous trial point, ie. k2 is evaluated using k1 and not using yn. From
these derivatives the �nal function value is calculated, The calculation is done using
the equations,

CHAPTER 6. NUMERICAL METHODS 84

Figure 6.4: Outputs of (a)rk4.py (b) compareEuRK4.py

k1 = hf(xn, yn)
k2 = hf(xn + h

2
, yn + k1

2
)

k3 = hf(xn + h
2
, yn + k2

2
)

k4 = hf(xn + h, yn + k3)

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (6.6)

The program rk4.py listed below uses the equations shown above to calculate the
sine function, by integrating the cosine. The output is shown in �gure 6.4(a).

Example rk4.py

from pylab import *

def rk4(x, y, fx, h = 0.1): # x, y , f(x), stepsize

k1 = h * fx(x)

k2 = h * fx(x + h/2.0)
k3 = h * fx(x + h/2.0)

k4 = h * fx(x + h)

return y + (k1/6 + k2/3 + k3/3 + k4/6)

h = 0.01 # stepsize

x = 0.0 # initial values

y = 0.0

ax = [x]
ay = [y]

while x < math.pi:

y = rk4(x,y,math.cos)

x = x + h

ax.append(x)
ay.append(y)

CHAPTER 6. NUMERICAL METHODS 85

plot(ax,ay)

show()

The program compareEuRK4.py calculates the values of Sine by integrating Cosine.
The errors in both cases are evaluated at every step, by comparing it with the
sine function, and plotted as shown in �gure 6.4(b). The accuracy of Runge-Kutta
method is far superior to that of Euler's method, for the same step size.

Example compareEuRK4.py

from scipy import *

def rk4(x, y, fx, h = 0.1): # x, y , f(x), stepsize
k1 = h * fx(x)
k2 = h * fx(x + h/2.0)

k3 = h * fx(x + h/2.0)

k4 = h * fx(x + h)

return y + (k1/6 + k2/3 + k3/3 + k4/6)

h = 0.1 # stepsize

x = 0.0 # initial values

ye = 0.0 # for Euler

yr = 0.0 # for RK4
ax = [] # Lists to store results

euerr = []

rkerr = []

while x < 2*pi:
ye = ye + h * math.cos(x) # Euler method

yr = rk4(x, yr, cos, h) # RK4 method

x = x + h

ax.append(x)

euerr.append(ye - sin(x))
rkerr.append(yr - sin(x))

plot(ax,euerr,'o')

plot(ax, rkerr,'+')

show()

6.3.3 Function depending on the integral

In the previous section, the program rk4.py implemented a simpli�ed version of
the Runge-Kutta method, the function was assumed to depend on the independent
variable only. The program rk4_proper.py listed below implements it properly. The
functions f(x, y) = 1+ y2 and f(x, y) = (y−x)/y +x) are used for testing. Readers
may verify the results by manual computing.

CHAPTER 6. NUMERICAL METHODS 86

Example rk4_proper.py

def f1(x,y):

return 1 + y**2

def f2(x,y):
return (y-x)/(y+x)

def rk4(x, y, fxy, h): # x, y , f(x,y), step
k1 = h * fxy(x, y)
k2 = h * fxy(x + h/2.0, y+k1/2)

k3 = h * fxy(x + h/2.0, y+k2/2)

k4 = h * fxy(x + h, y+k3)

ny = y + (k1/6 + k2/3 + k3/3 + k4/6)
#print x,y,k1,k2,k3,k4, ny
return ny

h = 0.2 # stepsize

x = 0.0 # initial values
y = 0.0
print rk4(x,y, f1, h)

h = 1
x = 0.0 # initial values

y = 1.0

print rk4(x,y,f2,h)

The results are shown below.
0.202707408081
1.5056022409

6.4 Polynomials

A polynomial is a mathematical expression involving a sum of powers in one or more
variables multiplied by coe�cients. A polynomial in one variable with constant
coe�cients is given by

anxn + ... + a2x
2 + a1x + a0 (6.7)

The derivative of 6.7 is,

nanx
n−1 + ... + 2a2x + a1

It is easy to �nd the derivative of a polynomial. Complicated functions can
be analyzed by approximating them with polynomials. Taylor's theorem states

CHAPTER 6. NUMERICAL METHODS 87

Figure 6.5: Output of polyplot.py

that any su�ciently smooth function can locally be approximated by a polynomial.
Computers use this property to evaluate trigonometric, logarithmic and exponential
functions.

One dimensional polynomials can be explored using the poly1d function from
Numpy. You can de�ne a polynomial by supplying the coe�cient as a list. For
example , the statement p = poly1d([3,4,7]) constructs the polynomial 3x2 +4x+7.
Numpy supports several polynomial operations. The following example demon-
strates evaluation at a particular value, multiplication, di�erentiation, integration
and division of polynomials using poly1d.

Example poly.py

from pylab import *

a = poly1d([3,4,5])

b = poly1d([6,7])

c = a * b + 5
d = c/a

print a

print a(0.5)

print b
print a * b

print a.deriv()
print a.integ()

print d[0], d[1]

The output of poly.py is shown below.

CHAPTER 6. NUMERICAL METHODS 88

3x2 + 4x + 5
7.75
6x + 7
18x3 + 45x2 + 58x + 35
6x + 4
1x3 + 2x2 + 5x
6x + 7
5
The last two lines show the result of the polynomial division, quotient and re-

minder. Note that a polynomial can take an array argument for evaluation to return
the results in an array. The program polyplot.py evaluates polynomial 6.8 and its
�rst derivative.

x − x3

6
+

x5

120
− x7

5040
(6.8)

The results are shown in �gure 6.5. The equation 6.8 is the �rst four terms
of series representing sine wave (7! = 5040). The derivative looks like cosine as
expected. Try adding more terms and change the limits to see the e�ects.

Example polyplot.py

from pylab import *

x = linspace(-pi, pi, 100)

a = poly1d([-1.0/5040,0,1.0/120,0,-1.0/6,0,1,0])
da = a.deriv()

y = a(x)

y1 = da(x)

plot(x,y)
plot(x,y1)

show()

6.4.1 Taylor's Series

If a function and its derivatives are known at some point x = a, we can express
f(x) in the vicinity of that point using a polynomial. The Taylor series expansion
is given by,

f(x) = f(a) + (x − a)f
′
(a) +

(x − a)2

2!
f

′′
(a) + · · · + (x − a)n

n!
fn(a) (6.9)

For example let us consider the equation

f(x) = x3 + x2 + x (6.10)

We can see that f(0) = 0 and the derivatives are

f ′(x) = 3x2 + 2x + 1; f ′′(x) = 6x + 2; f ′′′(x) = 6

CHAPTER 6. NUMERICAL METHODS 89

Using the values of the derivatives at x = 0and equation 6.9, we evaluate the
function at x = .5, using the polynomial expression,

f(0.5) = 0 + 0.5 × 1 +
0.52 × 2

2!
+

0.53 × 6

3!
= .875

The result is same as 0.53 + 0.52 + 0.5 = .875. We have calculated it manually
for x = .5 . We can also do this using Numpy as shown in the program taylor.py.

Example taylor.py

from numpy import *

p = poly1d([1,1,1,0])
dp = p.deriv()

dp2 = dp.deriv()
dp3 = dp2.deriv()

a = 0 # The known point
x = 0 # Evaluate at x

while x < .5:

tay = p(a) + (x-a)* dp(a) + \
(x-a)**2 * dp2(a) / 2 + (x-a)**3 * dp3(a)/6

print '%5.1f %8.5f\t%8.5f'%(x, p(x), tay)
x = x + .1

The result is shown below.

0.0 0.00000 0.00000
0.1 0.11100 0.11100
0.2 0.24800 0.24800
0.3 0.41700 0.41700
0.4 0.62400 0.62400

6.4.2 Sine and Cosine Series

In the equation 6.9, let us choose f(x) = sin(x) and a = 0. If a = 0, then the series
is known as the Maclaurin Series. The �rst term will become sin(0), which is just
zero. The other terms involve the derivatives of sin(x). The �rst, second and third
derivatives of sin(x) are cos(x), −sin(x) and −cos(x), respectively. Evaluating each
of these at zero, we get 1, 0 and -1 respectively. The terms with even powers vanish,
resulting in,

sin(x) = x − x3

3!
+

x5

5!
+ · · · =

∞∑
n=0

(−1)n x2n+1

(2n + 1)!
(6.11)

We can �nd the cosine series in a similar manner, to get

CHAPTER 6. NUMERICAL METHODS 90

Figure 6.6: Output of series_sc.py

cos(x) = 1 − x2

2!
+

x4

4!
+ · · · =

∞∑
n=0

(−1)n x2n

(2n)!
(6.12)

The program series_sc.py evaluates the sine and cosine series. The output is
shown in �gure 6.6. Compare the output of polyplot.py from section 6.4 with this.
In both cases, we have evaluated the polynomial of sine function. In the present
case, we can easily modify the number of terms and the logic is simpler.

Example series_sc.py

from pylab import *

def f(n): # Factorial function
if n == 0:

return 1

else:

return n * f(n-1)

NP = 100

x = linspace(-pi, pi, NP)

sinx = zeros(NP)
cosx = zeros(NP)

for n in range(10):

sinx += (-1)**(n) * (x**(2*n+1)) / f(2*n+1)

cosx += (-1)**(n) * (x**(2*n)) / f(2*n)

plot(x, sinx)
plot(x, cosx,'r')

show()

CHAPTER 6. NUMERICAL METHODS 91

6.5 Finding roots of an equation

In general, an equation may have any number of roots, or no roots at all. For
example f(x) = x2 has a single root whereas f(x) = sin(x) has an in�nite number
of roots. The roots can be located visually, by looking at the intersections with the
x-axis. Another useful tool for detecting and bracketing roots is the incremental
search method. The basic idea behind the incremental search method is simple: if
f(x1) and f(x2) have opposite signs, then there is at least one root in the interval
(x1, x2). If the interval is small enough, it is likely to contain a single root. Thus
the zeroes of f(x) can be detected by evaluating the function at intervals of ∆x and
looking for change in sign.

There are several potential problems with the incremental search method: It is
possible to miss two closely spaced roots if the search increment ∆x is larger than
the spacing of the roots. Certain singularities of f(x) can be mistaken for roots. For
example, f(x) = tan(x) changes sign at odd multiples of π/2, but these locations
are not true zeroes as shown in �gure 6.7 (b).

Example rootsearch.py implements the function root() that searches the roots of
a function f(x) from x = a to x = b, incrementing it by dx.

Example rootsearch.py

def func(x):

return x**3-10.0*x*x + 5

def root(f,a,b,dx):
x = a

while True:

f1 = f(x)

f2 = f(x+dx)
if f1*f2 < 0:

return x, x + dx

x = x + dx

if x >= b:
return (None,None)

x,y = root(func, 0.0, 1.0,.1)

print x,y

x,y = root(math.cos, 0.0, 4,.1)
print x,y

The outputs are (0.7 , 0.8) and (1.5 , 1.6). The root of cosine,π/2, is between 1.5
and 1.6. After the root has been located roughly, we can �nd the root with any
speci�ed accuracy, using bisection method, Newton-Raphson method etc.

CHAPTER 6. NUMERICAL METHODS 92

Figure 6.7: (a)Function 2x2 − 3x − 5 and its tangents at x = 4 and x = 4 (b) tan(x).

6.5.1 Method of Bisection

The method of bisection �nds the root by successively halving the interval until it
becomes su�ciently small. Bisection is not the fastest method available for comput-
ing roots, but it is the most reliable. Once a root has been bracketed, bisection will
always �nd it. The method of bisection works in the following manner. If there is a
root between x1 and x2, then f(x1) × f(x2) < 0. Next, we compute f(x3), where
x3 = (x1 + x2)/2. If f(x2) × f(x3) < 0, then the root must be in (x2, x3) and we
replace the original bound x1 by x3 . Otherwise, the root lies between x1 and x3, in
that case x2 is replaced by x3. This process is repeated until the interval has been
reduced to the speci�ed value, say ε.

The number of bisections required to reach a prescribed limit, ε, is given by
equation 6.13.

n =
ln(|4x|)/ε

ln 2
(6.13)

The program bisection.py �nds the root of the equation x3 − 10x2 + 5. The
starting values are found using the program rootsearch.py. The results are printed
for two di�erent accuracies.

Example bisection.py

import math def func(x):
return x**3 - 10.0* x*x + 5

def bisect(f, x1, x2, epsilon=1.0e-9):

f1 = f(x1)

f2 = f(x2)

if f1*f2 > 0.0:
print 'x1 and x2 are on the same side of x-axis'

return

n = math.ceil(math.log(abs(x2 - x1)/epsilon)/math.log(2.0))

CHAPTER 6. NUMERICAL METHODS 93

n = int(n)

for i in range(n):

x3 = 0.5 * (x1 + x2)

f3 = f(x3)
if f3 == 0.0: return x3
if f2*f3 < 0.0:

x1 = x3

f1 = f3
else:

x2 = x3
f2 = f3

return (x1 + x2)/2.0

print bisect(func, 0.70, 0.8, 1.0e-4)

print bisect(func, 0.70, 0.8, 1.0e-9)

6.5.2 Newton-Raphson Method

The Newton�Raphson algorithm requires the derivative of the function also to eval-
uate the roots. Therefore, it is usable only in problems where f ′(x) can be readily
computed. It does not require the value at two points to start with. We start with an
initial guess which is reasonably close to the true root. Then the function is approx-
imated by its tangent line and the x-intercept of the tangent line is calculated. This
value is taken as the next guess and the process is repeated. The Newton-Raphson
formula is shown below.

xi+1 = xi −
f(xi)

f ′(xi)
(6.14)

Figure 6.7(a) shows the graph of the quadratic equation 2x2 − 3x− 5 = 0 and its
two tangents. It can be seen that the zeros are at x = -1 and x = 2.5, and we use
the program newraph.py shown below to �nd the roots. The function nr() is called
twice, and we get the roots nearer to the corresponding starting values.

Example newraph.py

from pylab import *
def f(x):

return 2.0 * x**2 - 3*x - 5

def df(x):
return 4.0 * x - 3

def nr(x, tol = 1.0e-9):

CHAPTER 6. NUMERICAL METHODS 94

for i in range(30):

dx = -f(x)/df(x)

#print x

x = x + dx
if abs(dx) < tol:

return x

print nr(4)
print nr(0)

The output is shown below.
2.5
-1.0
Uncomment the print statement inside nr() to view how fast this method con-

verges, compared to the bisection method. The program newraph_plot.py, listed
below is used for generating the �gure 6.7.

Example newraph_plot.py

from pylab import *

def f(x):
return 2.0 * x**2 - 3*x - 5

def df(x):

return 4.0 * x - 3

vf = vectorize(f)

x = linspace(-2, 5, 100)

y = vf(x)

Tangents at x=3 and 4, using one point slope formula
x1 = 4

tg1 = df(x1)*(x-x1) + f(x1)

x1 = 3

tg2 = df(x1)*(x-x1) + f(x1)
grid(True)

plot(x,y)

plot(x,tg1)

plot(x,tg2)
ylim([-20,40])

show()

We have de�ned the function f(x) = 2x2 − 3x− 5 and vectorized it. The derivative
4x2 − 3 also is de�ned by df(x), which is the slope of f(x). The tangents are drawn
at x = 4 and x = 3, using the point slope formula for a line y = m(x − x1) + y1.

CHAPTER 6. NUMERICAL METHODS 95

6.6 System of Linear Equations

A system of m linear equations with n unknowns can be written in a matrix form
and can be solved by using several standard techniques like Gaussian elimination.
In this section, the matrix inversion method, using Numpy, is demonstrated. For
more information see reference [12].

6.6.1 Equation solving using matrix inversion

Non-homogeneous matrix equations of the form Ax = b can be solved by matrix
inversion to obtain x = A−1b . The system of equations

4x + y − 2z = 0
2x − 3y + 3z = 9
−6x − 2y + z = 0

can be represented in the matrix form as

 4 1 −2
2 −3 3

−6 −2 1

 x

y
z

 =

 0
9
0

and can be solved by �nding the inverse of the coe�cient matrix. x

y
z

 =

 4 1 −2
2 −3 3

−6 −2 1

−1 0

9
0

Using numpy we can solve this as shown in solve_eqn.py

Example solve_eqn.py

from numpy import *

b = array([0,9,0])

A = array([[4,1,-2], [2,-3,3],[-6,-2,1]])
print dot(linalg.inv(A),b)

The result will be [0.75 -2. 0.5], that means x = 0.75, y = −2, z = 0.5 . This can
be veri�ed by substituting them back in to the equations.

Exercise: solve x+y+3z = 6; 2x+3y-4z=6;3x+2y+7z=0

CHAPTER 6. NUMERICAL METHODS 96

Figure 6.8: Output of ls�t.py

6.7 Least Squares Fitting

A mathematical procedure for �nding the best-�tting curve f(x) for a given set of
points (xn, yn) by minimizing the sum of the squares of the vertical o�sets of the
points from the curve is called least squares �tting. The least square �t is obtained
by minimizing the function,

S(a0, a1, . . . , am) =
n∑

i=0

[yi − f(xi)]
2 (6.15)

with respect to each aiand the condition for that is

∂S

∂ai

= 0, i = 0, 1, . . .m (6.16)

For a linear �t, the equation is

f(a, b) = a + bx

Solving the equations ∂S
∂a

= 0 and ∂S
∂b

= 0 will give the result,

b =

∑
yi(x − x)∑
xi(x − x)

, and a = y − xb (6.17)

where x and y are the mean values de�ned by the equations,

x =
1

n + 1

n∑
i=0

xi, y =
1

n + 1

n∑
i=0

yi (6.18)

The program ls�t.py demonstrates the usage of equations 6.17 and 6.18.

Example ls�t.py

CHAPTER 6. NUMERICAL METHODS 97

from pylab import *

NP = 50

r = 2*ranf([NP]) - 0.5

x = linspace(0,10,NP)
data = 3 * x + 2 + r

xbar = mean(x)

ybar = mean(data)
b = sum(data*(x-xbar)) / sum(x*(x-xbar))

a = ybar - xbar * b
print a,b

y = a + b * x
plot(x,y)

plot(x,data,'ob')

show()

The raw data is made by adding random numbers (between -1 and 1) to the y
coordinates generated by y = 3 ∗ x + 2 . The Numpy functions mean() and sum()
are used. The output is shown in �gure 6.8.

6.8 Interpolation

Interpolation is the process of constructing a function f(x) from a set of data points
(xi, yi), in the interval a < x < b that will satisfy yi = f(xi) for any point in the
same interval. The easiest way is to construct a polynomial of degree n that passes
through the n + 1 distinct data points.

6.8.1 Newton's polynomial

Suppose the the given set is (xi, yi), i = 0, 1 . . . n − 1 and the polynomial is Pn(x).
Since the polynomial passes through all the data points, the following condition will
be satis�ed.

Pn(xi) = yi, i = 0, 1 . . . n − 1 (6.19)

The Newton's interpolating polynomial is given by the equation,

Pn(x) = a0 + (x − x0)a1 + · · · + (x − x0) · · · (x − xn−1)an (6.20)

The coe�cients ai can be evaluated in the following manner. When x = x0, all
the terms in 6.20 except a0 will vanish due to the presence of (x − x0) and we get

yo = a0 (6.21)

For x = x1, only the �rst two terms will be non-zero.

CHAPTER 6. NUMERICAL METHODS 98

y1 = a0 + a1(x1 − x0) (6.22)

a1 =
(y1 − y0)

(x1 − x0)
(6.23)

Applying x = x2, we get

y2 = a0 + a1(x2 − x0) + a2(x2 − x0)a1(x2 − x1) (6.24)

a2 =
y2−y1

x2−x1
− y1−y0

x1−x0

x2 − x0

(6.25)

The other coe�cients can be found in a similar manner. They can be expressed
better using the divided di�erence notation as shown below.

[y0] = y0

[y0, y1] =
(y1 − y0)

(x1 − x0)

[y0, y1, y3] =
y2−y1

x2−x1
− y1−y0

x1−x0

x2 − x0

=
[y1, y2] − [y0, y1]

(x2 − x0)

Using these notation, the Newton's polynomial can be re-written as;

P (x) = [y0] + [y0, y1] (x − x0) + [y0, y1, y2] (x − x0)(x − x1) +

· · · + [y0, . . . , yn] (x − x0) . . . (x − xn−1) (6.26)

The divided di�erence can be put in the tabular form as shown below. This will
be useful while calculating the coe�cients manually.

x0 x0 [y0]
x1 y1 [y1] [y0, y1]
x2 y2 [y2] [y1, y2] [y0, y1, y2]
x3 y3 [y3] [y2, y3] [y1, y2, y3] [y0, y1, y2, y3]

0 0
1 3 3−0

1−0
= 3

2 14 14−3
2−1

= 11 11−3
2−0

= 4
3 39 39−14

3−2
= 25 25−11

3−1
= 7 7−4

3−0
= 1

The table given above shows the divided di�erence table for the data set x =
[0,1,2,3] and y = [0,3,14,39], calculated manually. The program newpoly.py can be
used for calculating the coe�cients, which prints the output [0, 3, 4, 1].

CHAPTER 6. NUMERICAL METHODS 99

Example newpoly.py

from copy import copy

def coef(x,y):

a = copy(y)
m = len(x)

for k in range(1,m):

tmp = copy(a)
for i in range(k,m):

tmp[i] = (a[i] - a[i-1])/(x[i]-x[i-k])
a = copy(tmp)

return a

x = [0,1,2,3]
y = [0,3,14,39]
print coef(x,y)

We start by copying the list y to coe�cient a, the �rst element a0 = y0. While
calculating the di�erences, we have used two loops and a temporary list. The same
can be done in a better way using arrays of Numpy2, as shown in newpoly2.py.

Example newpoly2.py

from numpy import *

def coef(x,y):

a = copy(y)

m = len(x)
for k in range(1,m):

a[k:m] = (a[k:m] - a[k-1])/(x[k:m]-x[k-1])

return a

x = array([0,1,2,3])
y = array([0,3,14,39])

print coef(x,y)

The next step is to calculate the value of y for any given value of x, using the co-
e�cients already calculated. The program newinterpol.py calculates the coe�cients
using the four data points. The function eval() uses the recurrence relation

Pk(x) = an−k + (x − xn−k)Pk−1(x), k = 1, 2, . . . n (6.27)

The program generates 20 new values of x, and calculate corresponding values of
y and plots them along with the original data points, as shown in �gure 6.9.

2This function is from reference [12], some PDF versions of this book are available on the web.

CHAPTER 6. NUMERICAL METHODS 100

Figure 6.9: Output of newton_in3.py

Example newinterpol.py

from pylab import *

def eval(a,xpoints,x):

n = len(xpoints) - 1

p = a[n]
for k in range(1,n+1):

p = a[n-k] + (x -xpoints[n-k]) * p

return p

def coef(x,y):

a = copy(y)

m = len(x)

for k in range(1,m):

a[k:m] = (a[k:m] - a[k-1])/(x[k:m]-x[k-1])
return a

x = array([0,1,2,3])

y = array([0,3,14,39])
coef = coef(x,y)

NP = 20
newx = linspace(0,3, NP) # New x-values

newy = zeros(NP)
for i in range(NP): # evaluate y-values

newy[i] = eval(coef, x, newx[i])

plot(newx, newy,'-x')

plot(x, y,'ro')

show()

CHAPTER 6. NUMERICAL METHODS 101

You may explore the results for new points outside the range by changing the second
argument of line newx = linspace(0,3,NP) to a higher value.

Look for similarities between Taylor's series discussed in section 6.4.1 that and
polynomial interpolation process. The derivative of a function represents an in-
�nitesimal change in the function with respect to one of its variables. The �nite dif-
ference is the discrete analog of the derivative. Using the divided di�erence method,
we are in fact calculating the derivatives in the discrete form.

6.9 Exercises

1. Di�erentiate 5x2 + 3x + 5 numerically and evaluate at x = 2 and x = −2.

2. Write code to numerically di�erentiate sin(x2) and plot it by vectorizing the
function. Compare with the analytical result.

3. Integrate ln x, ex from x = 1to 2.

4. Solve 2x + y = 3;−x + 4y = 0; 3 + 3y = −1 using matrices.

5. Modify the program julia.py, c = 0.2 − 0.8j and z = z6 + c

6. Write Python code, using pylab, to solve the following equations using matrices
4x + y − 2z = 0
2x − 3y + 3z = 9
−6x − 2y + z = 0

7. Find the roots of 5x2 + 3x − 6 using bisection method.

8. Find the all the roots of sin(x) between 0 and 10, using Newton-Raphson
method.

Appendix A : Installing GNU/Linux

Programming can be learned better by practicing and it requires an operating sys-
tem, and Python interpreter along with some library modules. All these require-
ments are packaged on the Live CD comes along with this book. You can boot any
PC from this CD and start working. However, it is better to install the whole thing
to a harddisk. The following section explains howto install GNU/Linux. We have
selected the Ubuntu distribution due to its relatively simple installation procedure,
ease of maintenanace and support for most of the hardware available in the market.

6.10 Installing Ubuntu

Most of the users prefer a dual boot system, to keep their MSWindows working. We
will explain the installation process keeping that handicap in mind. All we need is
an empty partition of minimum 5 GB size to install Ubuntu. Free space inside a
Windows partition will not do, we need to format the partition to install Ubuntu.
The Ubuntu installer will make the system multi-boot by searching through all the
partitions for installed operating systems.

The System

This section will describe how Ubuntu was installed on a system, with MSWin-
dows, having the following partitions:

C: (GNU/Linux calls it /dev/sda1) 20 GB
D: (/dev/sda5) 20 GB
E: (/dev/sda6) 30 GB
We will use the partition E: to install Ubuntu, it will be formatted.

The Procedure

Set the �rst boot device CD ROM from the BIOS. Boot the PC from the Ubuntu
installation CD, we have used Phoenix Live CD (a modi�ed version on Ubuntu 9.1).
After 2 to 3 minutes a desktop as shown below will appear. Click on the Installer
icon, the window shown next will pop up. Screens will appear to select the language,
time zone and keyboard layout as shown in the �gures below.

102

Installing Ubuntu 103

Now we proceed to the important part, choosing a partition to install Ubuntu.

The bar on the top graphically displays the existing partitions. Below that there
are three options provided :

Installing Ubuntu 104

1. Install them side by side.

2. Erase and use the entire disk.

3. Specify partitions manually.

If you choose the �rst option, the Installer will resize and repartition the disk to
make some space for the new system. By default this option is marked as selected.
The bar at the bottom shows the proposed partition scheme. In the present example,
the installer plans to divide the C: drive in to two partitions to put ubuntu on the
second.

We are going to choose the third option, choose the partition manually. We will
use the last partition (drive E:) for installing Ubuntu. Once you choose that and
click forward, a screen will appear where we can add, delete and change partitions.
We have selected the third partition and clicked on Change. A pop-up window
appeared. Using that we selected the �le-system type to ext3, marked the format
option, and selected the mount point as / . The screen with the pop-up window is
shown below.

If we proceed with this, a warning will appear complaining about the absence of
swap partitions. The swap partition is used for supplementing the RAM with some
virtual memory. When RAM is full, processes started but not running will be
swapped out. One can install a system without swap partition but it is a good idea
to have one.

Installing Ubuntu 105

We decide to go back on the warning, to delete the E: drive, create two new
partitions in that space and make one of them as swap. This also demonstrates how
to make new partitions. The screen after deleting E: , with the pop-up window to
make the swap partition is shown below.

We made a 2 GB swap. The remaining space is used for making one more
partition, as shown in the �gure 6.10.

Once disk partitioning is over, you will be presented with a screen to enter a
user name and password.3 A warning will be issued if the password is less than 8
characters in length. You will be given an option to import desktop settings from
other installations already on the disk, choose this if you like. The next screen will
con�rm the installation. After the installation is over, mat take 10 to 15 minutes,
you will be prompted to reboot the system. On rebooting you will be presented
with a menu, to choose the operating system to boot. First item in the menu will
be the newly installed Ubuntu.

6.11 Package Management

The Ubuntu install CD contains some common application programs like web browser,
o�ce package, document viewer, image manipulation program etc. After installing
Ubuntu, you may want to add more applications. The Ubuntu repository has an

3All GNU/Linux installations ask for a root password during installation. For simplicity, Ubuntu has decided to
hide this information. The �rst user created during installation has special privileges and that password is asked,
instead of the root password, for all system administration jobs, like installing new software.

Installing Ubuntu 106

Figure 6.10: Making the partition to install Ubuntu.

enormous number of packages, that can be installed very easily. You need to have
a reasonably fast Internet connection for this purpose.

From the main menu, open System->Administration->Synaptic package man-
ager. After providing the pass word (of the �rst user, created during installation),
the synaptic window will popup as shown in �gure 6.11.

Select Settings->Repositories to get a pop-up window as shown below. Tick
the four repositories, close the pop-up window and Click on Reload. Synaptic will
now try to download the index �les from all these repositories. It may take several
minute.

Installing Ubuntu 107

Figure 6.11: Synaptic package manager window

Now, you are ready to install any package from the Ubuntu repository. Search

Installing Ubuntu 108

for any package by name, from these repositories, and install it. If you have done
the installation from original Ubuntu CD, you may require the following packges:

� lyx : A latex front-end. Latex will be installed since lyx dpends on latex.

� python-matplotlib : The graphics library

� python-visual : 3D graphics

� python-imaging-tk : Tkinter, Python Imaging Library etc. will be installed

� build-essential : C compiler and related tools.

6.11.1 Install from repository CD

We can also install packages from repository CDs. Insert the CD in the drive and
Select Add CDROM from the Edit menu of Synaptic. Now all the packages on the
CD will be available for search and install.

6.11.1.1 Installing from the Terminal

You can install packages from the terminal also. You have to become the root user
by giving the sudo command;

$ sudo -s
enter password :
#
Note that the prompt changes from $ to #, when you become root.
Install packages using the command :
#apt-cdrom add
#apt-get install mayavi2

6.11.2 Behind the scene

Even though there are installation programs that performs all these steps automat-
ically,it is better to know what is really happening. Installing an operating system
involves;

� Partitioning of the hard disk

� Formatting the partitions

� Copying the operating system �les

� Installing a boot loader program

Installing Ubuntu 109

The storage space of a hard disk drive can be divided into separate data areas,
known as partitions. You can create primary partitions and extended partitions.
Logical drives (secondary partitions can be created inside the extended partitions).
On a disk, you can have up to 4 partitions, where one of them could be an extended
partition. You can have many logical drives inside the extended partition.

On a MSWindows system, the primary partition is called the C: drive. The logical
drives inside the extended partition are named from D: onwards. GNU/Linux uses a
di�erent naming convention. The individual disks are named as /dev/sda , /dev/sdb
etc. and the partitions inside them are named as /dev/sda1, /dev/sda2 etc. The
numbering of secondary partitions inside the logical drive starts at /dev/sda5. (1 to
4 are reserved for primary and extended). Hard disk partitioning can be done using
the fdisk program. The installation program also does this for you.

The process of making a �le system on a partition is called formatting. There
are many di�erent types of �le systems. MSWindows use �le systems like FAT32,
NTFS etc. and GNU/Linux mostly uses �le systems like ext3, ext4 etc.

The operating system �les are kept in directories named boot, sbin, bin, etc etc.
The kernel that loads while booting the system is kept in /boot. The con�guration
�les are kept in /etc. /sbin and /bin holds programs that implements many of the
shell commands. Most of the application programs are kept in /usr/bin area.

The boot loader program is the one provides the selection of OS to boot, when
you power on the system. GRUB is the boot loader used by most of the GNU/Linux
systems.

Bibliography

[2] http://en.wikipedia.org/wiki/List_of_curves

[3] http://www.gap-system.org/~history/Curves/Curves.html

[4] http://www.gap-system.org/~history/Curves/Ellipse.html

[5] http://mathworld.wolfram.com/

[6] http://www.scipy.org/Numpy_Example_List

[7] http://docs.scipy.org/doc/

[8] http://numericalmethods.eng.usf.edu/mws/gen/07int/index.html

[9] http://www.angel�re.com/art2/fractals/lesson2.htm

[10] http://www.�zyka.umk.pl/nrbook/bookcpdf.html

[11] http://www.mathcs.emory.edu/ccs/ccs315/ccs315/ccs315.html

[12] Numerical Methods in Engineering with Python by Jaan Kiusalaas

110

