
Beginning
Programming
with Python®

2nd Edition

by John Paul Mueller

Beginning Programming with Python® For Dummies®, 2nd Edition

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2018 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

Library of Congress Control Number: 2017964018

ISBN 978-1-119-45789-3; ISBN 978-1-119-45787-9 (ebk); ISBN 978-1-119-45790-9 (ebk)

Manufactured in the United States of America

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction . 1

Part 1: Getting Started with Python . 5
CHAPTER 1: Talking to Your Computer . 7
CHAPTER 2: Getting Your Own Copy of Python . 21
CHAPTER 3: Interacting with Python . 37
CHAPTER 4: Writing Your First Application . 55
CHAPTER 5: Working with Anaconda . 83

Part 2: Talking the Talk . 101
CHAPTER 6: Storing and Modifying Information . 103
CHAPTER 7: Managing Information . 113
CHAPTER 8: Making Decisions . 135
CHAPTER 9: Performing Repetitive Tasks . 151
CHAPTER 10: Dealing with Errors . 165

Part 3: Performing Common Tasks . 195
CHAPTER 11: Interacting with Packages . 197
CHAPTER 12: Working with Strings . 225
CHAPTER 13: Managing Lists . 243
CHAPTER 14: Collecting All Sorts of Data . 261
CHAPTER 15: Creating and Using Classes . 281

Part 4: Performing Advanced Tasks . 303
CHAPTER 16: Storing Data in Files . 305
CHAPTER 17: Sending an Email . 323

Part 5: The Part of Tens . 341
CHAPTER 18: Ten Amazing Programming Resources . 343
CHAPTER 19: Ten Ways to Make a Living with Python . 353
CHAPTER 20: Ten Tools That Enhance Your Python Experience 361
CHAPTER 21: Ten (Plus) Libraries You Need to Know About . 371

Index . 379

INTRODUCTION . 1
About This Book .1
Foolish Assumptions .2
Icons Used in This Book .3
Beyond the Book .3
Where to Go from Here .4

PART 1: GETTING STARTED WITH PYTHON 5

CHAPTER 1: Talking to Your Computer . 7
Understanding Why You Want to Talk to Your Computer 8
Knowing that an Application is a Form of Communication 9

Thinking about procedures you use daily . 9
Writing procedures down .10
Seeing applications as being like any other procedure11
Understanding that computers take things literally11

Defining What an Application Is .11
Understanding that computers use a special language 12
Helping humans speak to the computer .12

Understanding Why Python Is So Cool .14
Unearthing the reasons for using Python .14
Deciding how you can personally benefit from Python15
Discovering which organizations use Python 16
Finding useful Python applications .17
Comparing Python to other languages .18

CHAPTER 2: Getting Your Own Copy of Python . 21
Downloading the Version You Need .21
Installing Python .24

Working with Windows .25
Working with the Mac .27
Working with Linux .28

Accessing Python on Your Machine .31
Using Windows .32
Using the Mac .34
Using Linux .35

Testing Your Installation .35

Contents

CHAPTER 3: Interacting with Python . 37
Opening the Command Line .38

Starting Python .38
Using the command line to your advantage39
Using Python environment variables to your advantage 41

Typing a Command .43
Telling the computer what to do .43
Telling the computer you’re done .44
Seeing the result .44

Using Help .46
Getting into help mode .46
Asking for help .47
Leaving help mode .49
Obtaining help directly .50

Closing the Command Line .51

CHAPTER 4: Writing Your First Application . 55
Understanding Why IDEs Are Important .56

Creating better code .56
Debugging functionality .56
Defining why notebooks are useful .57

Obtaining Your Copy of Anaconda .58
Obtaining Analytics Anaconda .58
Installing Anaconda on Linux .59
Installing Anaconda on MacOS .60
Installing Anaconda on Windows .61

Downloading the Datasets and Example Code .64
Using Jupyter Notebook .64
Defining the code repository .65

Creating the Application .71
Understanding cells. .71
Adding documentation cells .74
Other cell content .75

Understanding the Use of Indentation .75
Adding Comments .77

Understanding comments .78
Using comments to leave yourself reminders 79
Using comments to keep code from executing 80

Closing Jupyter Notebook. .80

CHAPTER 5: Working with Anaconda . 83
Downloading Your Code .84
Working with Checkpoints .85

Defining the uses of checkpoints .85
Saving a checkpoint .86
Restoring a checkpoint .86

Manipulating Cells .86
Adding various cell types .87
Splitting and merging cells .87
Moving cells around .88
Running cells .88
Toggling outputs .90

Changing Jupyter Notebook’s Appearance .90
Finding commands using the Command Palette91
Working with line numbers .92
Using the Cell Toolbar features .93

Interacting with the Kernel .94
Obtaining Help .95
Using the Magic Functions .97
Viewing the Running Processes .99

PART 2: TALKING THE TALK . 101

CHAPTER 6: Storing and Modifying Information 103
Storing Information .104

Seeing variables as storage boxes .104
Using the right box to store the data .104

Defining the Essential Python Data Types .105
Putting information into variables .105
Understanding the numeric types .106
Understanding Boolean values .110
Understanding strings .110

Working with Dates and Times .111

CHAPTER 7: Managing Information . 113
Controlling How Python Views Data .114

Making comparisons .114
Understanding how computers make comparisons115

Working with Operators .115
Defining the operators .116
Understanding operator precedence .122

Creating and Using Functions .123
Viewing functions as code packages. .124
Understanding code reusability .124
Defining a function .125
Accessing functions .126
Sending information to functions .127
Returning information from functions .131
Comparing function output .132

Getting User Input .132

CHAPTER 8: Making Decisions . 135
Making Simple Decisions by Using the if Statement 136

Understanding the if statement .136
Using the if statement in an application .137

Choosing Alternatives by Using the if. . .else Statement141
Understanding the if. . .else statement .141
Using the if. . .else statement in an application 142
Using the if. . .elif statement in an application 143

Using Nested Decision Statements .146
Using multiple if or if. . .else statements .146
Combining other types of decisions .148

CHAPTER 9: Performing Repetitive Tasks . 151
Processing Data Using the for Statement .152

Understanding the for statement .152
Creating a basic for loop .153
Controlling execution with the break statement 153
Controlling execution with the continue statement156
Controlling execution with the pass clause157
Controlling execution with the else statement158

Processing Data by Using the while Statement 159
Understanding the while statement .160
Using the while statement in an application161

Nesting Loop Statements .162

CHAPTER 10: Dealing with Errors . 165
Knowing Why Python Doesn’t Understand You166
Considering the Sources of Errors .167

Classifying when errors occur .168
Distinguishing error types .169

Catching Exceptions .171
Basic exception handling .171
Handling more specific to less specific exceptions 183
Nested exception handling .185

Raising Exceptions .189
Raising exceptions during exceptional conditions189
Passing error information to the caller .190

Creating and Using Custom Exceptions .191
Using the finally Clause .192

PART 3: PERFORMING COMMON TASKS . 195

CHAPTER 11: Interacting with Packages . 197
Creating Code Groupings .198

Understanding the package types .200
Considering the package cache .201

Importing Packages .202
Using the import statement .203
Using the from. . .import statement .205

Finding Packages on Disk .207
Downloading Packages from Other Sources .209

Opening the Anaconda Prompt .210
Working with conda packages .210
Installing packages by using pip .215

Viewing the Package Content .216
Viewing Package Documentation .219

Opening the Pydoc application .219
Using the quick-access links .220
Typing a search term .221
Viewing the results .222

CHAPTER 12: Working with Strings . 225
Understanding That Strings Are Different .226

Defining a character by using numbers .226
Using characters to create strings .227

Creating Stings with Special Characters .229
Selecting Individual Characters .231
Slicing and Dicing Strings .233
Locating a Value in a String .236
Formatting Strings .238

CHAPTER 13: Managing Lists . 243
Organizing Information in an Application .244

Defining organization using lists .244
Understanding how computers view lists .245

Creating Lists .246
Accessing Lists .248
Looping through Lists .249

Modifying Lists .250
Searching Lists .254
Sorting Lists .255
Printing Lists .257
Working with the Counter Object .259

CHAPTER 14: Collecting All Sorts of Data . 261
Understanding Collections .262
Working with Tuples .263
Working with Dictionaries .266

Creating and using a dictionary .267
Replacing the switch statement with a dictionary 270

Creating Stacks Using Lists .273
Working with queues .275
Working with deques .278

CHAPTER 15: Creating and Using Classes . 281
Understanding the Class as a Packaging Method.282
Considering the Parts of a Class .284

Creating the class definition .284
Considering the built-in class attributes .285
Working with methods .286
Working with constructors .288
Working with variables .290
Using methods with variable argument lists293
Overloading operators .294

Creating a Class .296
Defining the MyClass class .296
Saving a class to disk .297

Using the Class in an Application .298
Extending Classes to Make New Classes .299

Building the child class .299
Testing the class in an application .301

PART 4: PERFORMING ADVANCED TASKS 303

CHAPTER 16: Storing Data in Files . 305
Understanding How Permanent Storage Works.306
Creating Content for Permanent Storage .308
Creating a File .311
Reading File Content .314
Updating File Content .317
Deleting a File .321

CHAPTER 17: Sending an Email . 323
Understanding What Happens When You Send Email 324

Viewing email as you do a letter .325
Defining the parts of the envelope .326
Defining the parts of the letter .331

Creating the Email Message .335
Working with a text message .335
Working with an HTML message .337

Seeing the Email Output .338

PART 5: THE PART OF TENS . 341

CHAPTER 18: Ten Amazing Programming Resources 343
Working with the Python Documentation Online344
Using the LearnPython.org Tutorial .345
Performing Web Programming by Using Python346
Getting Additional Libraries .346
Creating Applications Faster by Using an IDE .348
Checking Your Syntax with Greater Ease .348
Using XML to Your Advantage .349
Getting Past the Common Python Newbie Errors 350
Understanding Unicode .351
Making Your Python Application Fast .352

CHAPTER 19: Ten Ways to Make a Living with Python 353
Working in QA .354
Becoming the IT Staff for a Smaller Organization 355
Performing Specialty Scripting for Applications355
Administering a Network .356
Teaching Programming Skills. .357
Helping People Decide on Location .357
Performing Data Mining .358
Interacting with Embedded Systems .358
Carrying Out Scientific Tasks .359
Performing Real-Time Analysis of Data .359

CHAPTER 20: Ten Tools That Enhance Your
Python Experience . 361
Tracking Bugs with Roundup Issue Tracker .362
Creating a Virtual Environment by Using VirtualEnv 363
Installing Your Application by Using PyInstaller364
Building Developer Documentation by Using pdoc365
Developing Application Code by Using Komodo Edit366

Debugging Your Application by Using pydbgr .367
Entering an Interactive Environment by Using IPython368
Testing Python Applications by Using PyUnit .368
Tidying Your Code by Using Isort .369
Providing Version Control by Using Mercurial 370

CHAPTER 21: Ten (Plus) Libraries You Need to Know About 371
Developing a Secure Environment by Using PyCrypto 372
Interacting with Databases by Using SQLAlchemy372
Seeing the World by Using Google Maps .373
Adding a Graphical User Interface by Using TkInter 373
Providing a Nice Tabular Data Presentation by
Using PrettyTable .374
Enhancing Your Application with Sound by Using PyAudio 374
Manipulating Images by Using PyQtGraph .375
Locating Your Information by Using IRLib .376
Creating an Interoperable Java Environment by Using JPype377
Accessing Local Network Resources by Using Twisted Matrix378
Accessing Internet Resources by Using Libraries378

INDEX . 379

Introduction 1

Introduction

Python is an example of a language that does everything right within the
domain of things that it’s designed to do. This isn’t just me saying it, either:
Programmers have voted by using Python enough that it’s now the

fifth-ranked language in the world (see https://www.tiobe.com/tiobe-index/
for details). The amazing thing about Python is that you really can write an
 application on one platform and use it on every other platform that you need to
support. In contrast to other programming languages that promised to provide
platform independence, Python really does make that independence possible. In
this case, the promise is as good as the result you get.

Python emphasizes code readability and a concise syntax that lets you write
 applications using fewer lines of code than other programming languages require.
You can also use a coding style that meets your needs, given that Python supports
the functional, imperative, object-oriented, and procedural coding styles (see
 Chapter 3 for details). In addition, because of the way Python works, you find it
used in all sorts of fields that are filled with nonprogrammers. Beginning
Programming with Python for Dummies, 2nd Edition is designed to help everyone,
including nonprogrammers, get up and running with Python quickly.

Some people view Python as a scripted language, but it really is so much more.
(Chapter 18 gives you just an inkling of the occupations that rely on Python to
make things work.) However, Python it does lend itself to educational and other
uses for which other programming languages can fall short. In fact, this book uses
Jupypter Notebook for examples, which relies on the highly readable literate pro-
gramming paradigm advanced by Stanford computer scientist Donald Knuth (see
Chapter 4 for details). Your examples end up looking like highly readable reports
that almost anyone can understand with ease.

About This Book
Beginning Programming with Python For Dummies, 2nd Edition is all about getting up
and running with Python quickly. You want to learn the language fast so that you
can become productive in using it to perform your real job, which could be any-
thing. Unlike most books on the topic, this one starts you right at the beginning
by showing you what makes Python different from other languages and how it can
help you perform useful work in a job other than programming. As a result, you

https://www.tiobe.com/tiobe-index/

2 Beginning Programming with Python For Dummies

gain an understanding of what you need to do from the start, using hands-on
examples and spending a good deal of time performing actually useful tasks. You
even get help with installing Python on your particular system.

When you have a good installation on whatever platform you’re using, you start
with the basics and work your way up. By the time you finish working through the
examples in this book, you’ll be writing simple programs and performing tasks
such as sending an email using Python. No, you won’t be an expert, but you will
be able to use Python to meet specific needs in the job environment. To make
absorbing the concepts even easier, this book uses the following conventions:

 » Text that you’re meant to type just as it appears in the book is bold. The
exception is when you’re working through a step list: Because each step is
bold, the text to type is not bold.

 » When you see words in italics as part of a typing sequence, you need to replace
that value with something that works for you. For example, if you see “Type Your
Name and press Enter,” you need to replace Your Name with your actual name.

 » Web addresses and programming code appear in monofont. If you’re reading
a digital version of this book on a device connected to the Internet, note that
you can click the web address to visit that website, like this: www.dummies.com.

 » When you need to type command sequences, you see them separated by a
special arrow, like this: File ➪  New File. In this case, you go to the File menu
first and then select the New File entry on that menu. The result is that you
see a new file created.

Foolish Assumptions
You might find it difficult to believe that I’ve assumed anything about you — after
all, I haven’t even met you yet! Although most assumptions are indeed foolish,
I made these assumptions to provide a starting point for the book.

Familiarity with the platform you want to use is important because the book
doesn’t provide any guidance in this regard. (Chapter 2 does provide Python instal-
lation instructions for various platforms, and Chapter 4 tells you how to install
Anaconda, which includes Jupyter Notebook — the Integrated Development
 Environment, or IDE, used for this book.) To provide you with maximum
 information about Python, this book doesn’t discuss any platform-specific issues.
You really do need to know how to install applications, use applications, and
 generally work with your chosen platform before you begin working with this book.

This book also assumes that you can locate information on the Internet. Sprinkled
throughout are numerous references to online material that will enhance your

http://www.dummies.com/

Introduction 3

learning experience. However, these added sources are useful only if you actually
find and use them.

Icons Used in This Book
As you read this book, you see icons in the margins that indicate material of interest
(or not, as the case may be). This section briefly describes each icon in this book.

Tips are nice because they help you save time or perform some task without a lot
of extra work. The tips in this book are time-saving techniques or pointers to
resources that you should try in order to get the maximum benefit from Python.

I don’t want to sound like an angry parent or some kind of maniac, but you should
avoid doing anything marked with a Warning icon. Otherwise, you could find that
your program only serves to confuse users, who will then refuse to work with it.

Whenever you see this icon, think advanced tip or technique. You might find these
tidbits of useful information just too boring for words, or they could contain the
solution you need to get a program running. Skip these bits of information when-
ever you like.

If you don’t get anything else out of a particular chapter or section, remember the
material marked by this icon. This text usually contains an essential process or a
bit of information that you must know to write Python programs successfully.

Beyond the Book
This book isn’t the end of your Python programming experience — it’s really just
the beginning. I provide online content to make this book more flexible and better
able to meet your needs. That way, as I receive email from you, I can do things like
address questions and tell you how updates to either Python or its associated
libraries affect book content. In fact, you gain access to all these cool additions:

 » Cheat sheet: You remember using crib notes in school to make a better mark
on a test, don’t you? You do? Well, a cheat sheet is sort of like that. It provides
you with some special notes about tasks that you can do with Python that not
every other developer knows. You can find the cheat sheet for this book by
going to www.dummies.com and searching Beginning Programming For
Dummies, 2nd Edition Cheat Sheet. It contains really neat information like the
top ten mistakes developers make when working with Python and some of
the Python syntax that gives most developers problems.

http://www.dummies.com

4 Beginning Programming with Python For Dummies

 » Updates: Sometimes changes happen. For example, I might not have seen
an upcoming change when I looked into my crystal ball during the writing of
this book. In the past, that simply meant the book would become outdated
and less useful, but you can now find updates to the book at by going to
www.dummies.com and searching this book’s title.

In addition to these updates, check out the blog posts with answers to reader
questions and demonstrations of useful book-related techniques at http://
blog.johnmuellerbooks.com/.

 » Companion files: Hey! Who really wants to type all the code in the book? Most
readers would prefer to spend their time actually working through coding
examples, rather than typing. Fortunately for you, the source code is available for
download, so all you need to do is read the book to learn Python coding tech-
niques. Each of the book examples even tells you precisely which example project
to use. You can find these files at going to www.dummies.com and searching this
book’s title. On the page that appears, scroll down to the graphic of the book’s
cover and click it; then click More About This Book. Click the Downloads tab on
the page that appears.

Where to Go from Here
It’s time to start your Programming with Python adventure! If you’re a complete
programming novice, you should start with Chapter 1 and progress through the
book at a pace that allows you to absorb as much of the material as possible.

If you’re a novice who’s in an absolute rush to get going with Python as quickly as
possible, you could skip to Chapter 2 with the understanding that you may find
some topics a bit confusing later. Skipping to Chapter 3 is possible if you already
have Python installed, but be sure to at least skim Chapter 2 so that you know
what assumptions were made when writing this book.

Readers who have some exposure to Python can save time by moving directly to
Chapter 4. It’s essential to install Anaconda to gain access to Jupyter Notebook,
which is the IDE used for this book. Otherwise, you won’t be able to use the down-
loadable source easily. Anaconda is free, so there is no cost involved.

Assuming that you already have Jupyter Notebook installed and know how to use
it, you can move directly to Chapter 6. You can always go back to earlier chapters
as necessary when you have questions. However, it’s important that you under-
stand how each example works before moving to the next one. Every example has
important lessons for you, and you could miss vital content if you start skipping
too much information.

http://www.dummies.com
http://blog.johnmuellerbooks.com/
http://blog.johnmuellerbooks.com/
http://www.dummies.com

1Getting Started
with Python

IN THIS PART . . .

Communicate with your computer.

Install Python on your Linux, Mac, or Windows system.

Interact with the Python-supplied tools.

Install and use Anaconda to write your first application.

Use Anaconda to perform useful work.

CHAPTER 1 Talking to Your Computer 7

Chapter 1
Talking to Your
Computer

Having a conversation with your computer might sound like the script of a
science fiction movie. After all, the members of the Enterprise on Star Trek
regularly talked with their computer. In fact, the computer often talked

back. However, with the rise of Apple’s Siri (http://www.apple.com/ios/siri/),
Amazon’s Echo (https://www.amazon.com/dp/B00X4WHP5E/), and other interactive
software, perhaps you really don’t find a conversation so unbelievable.

Asking the computer for information is one thing, but providing it with instruc-
tions is quite another. This chapter considers why you want to instruct your com-
puter about anything and what benefit you gain from it. You also discover the need
for a special language when performing this kind of communication and why you
want to use Python to accomplish it. However, the main thing to get out of this
chapter is that programming is simply a kind of communication that is akin to
other forms of communication you already have with your computer.

 » Talking to your computer

 » Creating programs to talk to your
computer

 » Understanding programs and their
creation

 » Considering why you want to use
Python

http://www.apple.com/ios/siri/
https://www.amazon.com/dp/B00X4WHP5E/

8 PART 1 Getting Started with Python

Understanding Why You Want to Talk
to Your Computer

Talking to a machine may seem quite odd at first, but it’s necessary because a
computer can’t read your mind — yet. Even if the computer did read your mind,
it would still be communicating with you. Nothing can occur without an exchange
of information between the machine and you. Activities such as

 » Reading your email

 » Writing about your vacation

 » Finding the greatest gift in the world

are all examples of communication that occurs between a computer and you. That
the computer further communicates with other machines or people to address
requests that you make simply extends the basic idea that communication is nec-
essary to produce any result.

In most cases, the communication takes place in a manner that is nearly invisible
to you unless you really think about it. For example, when you visit a chat room
online, you might think that you’re communicating with another person. However,
you’re communicating with your computer, your computer is communicating with
the other person’s computer through the chat room (whatever it consists of), and
the other person’s computer is communicating with that person. Figure 1-1 gives
you an idea of what is actually taking place.

Notice the cloud in the center of Figure 1-1. The cloud could contain anything, but
you know that it at least contains other computers running other applications.
These computers make it possible for your friend and you to chat. Now, think
about how easy the whole process seems when you’re using the chat application.
Even though all these things are going on in the background, it seems as if you’re
simply chatting with your friend, and the process itself is invisible.

FIGURE 1-1:
Communication

with your
computer may be

invisible unless
you really think

about it.

CHAPTER 1 Talking to Your Computer 9

Knowing that an Application is a Form
of Communication

Computer communication occurs through the use of applications. You use one
application to answer your email, another to purchase goods, and still another to
create a presentation. An application (sometimes called an app) provides the means
to express human ideas to the computer in a manner the computer can under-
stand and defines the tools needed to shape the data used for the communication
in specific ways. Data used to express the content of a presentation is different from
data used to purchase a present for your mother. The way you view, use, and under-
stand the data is different for each task, so you must use different applications to
interact with the data in a manner that both the computer and you can understand.

You can obtain applications to meet just about any general need you can conceive
of today. In fact, you probably have access to applications for which you haven’t
even thought about a purpose yet. Programmers have been busy creating millions
of applications of all types for many years now, so it may be hard to understand
what you can accomplish by creating some new method for talking with your
computer through an application. The answer comes down to thinking about the
data and how you want to interact with it. Some data simply isn’t common enough
to have attracted the attention of a programmer, or you may need the data in a
format that no application currently supports, so you don’t have any way to tell
the computer about it unless you create a custom application to do it.

The following sections describe applications from the perspective of working with
unique data in a manner that is special in some way. For example, you might have
access to a video library database but no method to access it in a way that makes
sense to you. The data is unique and your access needs are special, so you may
want to create an application that addresses both the data and your needs.

Thinking about procedures you use daily
A procedure is simply a set of steps you follow to perform a task. For example,
when making toast, you might use a procedure like this:

1. Get the bread and butter from the refrigerator.

2. Open the bread bag and take out two pieces of toast.

3. Remove the cover from the toaster.

4. Place each piece of bread in its own slot.

5. Push the toaster lever down to start toasting the bread.

10 PART 1 Getting Started with Python

6. Wait for the toasting process to complete.

7. Remove toast from the toaster.

8. Place toast on a plate.

9. Butter the toast.

Your procedure might vary from the one presented here, but it’s unlikely that
you’d butter the toast before placing it in the toaster. Of course, you do actually
have to remove the bread from the wrapper before you toast it (placing the bread,
wrapper and all, into the toaster would likely produce undesirable results). Most
people never actually think about the procedure for making toast. However, you
use a procedure like this one even though you don’t think about it.

Computers can’t perform tasks without a procedure. You must tell the computer
which steps to perform, the order in which to perform them, and any exceptions
to the rule that could cause failure. All this information (and more) appears within
an application. In short, an application is simply a written procedure that you use
to tell the computer what to do, when to do it, and how to do it. Because you’ve
been using procedures all your life, all you really need to do is apply the knowl-
edge you already possess to what a computer needs to know about specific tasks.

Writing procedures down
When I was in grade school, our teacher asked us to write a paper about making
toast. After we turned in our papers, she brought in a toaster and some loaves of
bread. Each paper was read and demonstrated. None of our procedures worked as
expected, but they all produced humorous results. In my case, I forgot to tell the
teacher to remove the bread from the wrapper, so she dutifully tried to stuff the
piece of bread, wrapper and all, into the toaster. The lesson stuck with me. Writing
about procedures can be quite hard because we know precisely want we want to
do, but often we leave steps out — we assume that the other person also knows
precisely what we want to do.

Many experiences in life revolve around procedures. Think about the checklist
used by pilots before a plane takes off. Without a good procedure, the plane could
crash. Learning to write a great procedure takes time, but it’s doable. You may
have to try several times before you get a procedure that works completely, but
eventually you can create one. Writing procedures down isn’t really sufficient,
though — you also need to test the procedure by using someone who isn’t familiar
with the task involved. When working with computers, the computer is your per-
fect test subject.

CHAPTER 1 Talking to Your Computer 11

Seeing applications as being
like any other procedure
A computer acts like the grade school teacher in my example in the previous sec-
tion. When you write an application, you’re writing a procedure that defines a
series of steps that the computer should perform to accomplish whatever task you
have in mind. If you leave out a step, the results won’t be what you expected. The
computer won’t know what you mean or that you intended for it to perform cer-
tain tasks automatically. The only thing the computer knows is that you have
provided it with a specific procedure and it needs to perform that procedure.

Understanding that computers
take things literally
People eventually get used to the procedures you create. They automatically compen-
sate for deficiencies in your procedure or make notes about things that you left out.
In other words, people compensate for problems with the procedures that you write.

When you begin writing computer programs, you’ll get frustrated because com-
puters perform tasks precisely and read your instructions literally. For example, if
you tell the computer that a certain value should equal 5, the computer will look
for a value of exactly 5. A human might see 4.9 and know that the value is good
enough, but a computer doesn’t see things that way. It sees a value of 4.9 and
decides that it doesn’t equal 5 exactly. In short, computers are inflexible, unintui-
tive, and unimaginative. When you write a procedure for a computer, the com-
puter will do precisely as you ask absolutely every time and never modify your
procedure or decide that you really meant for it to do something else.

Defining What an Application Is
As previously mentioned, applications provide the means to define express human
ideas in a manner that a computer can understand. To accomplish this goal, the
application relies on one or more procedures that tell the computer how to per-
form the tasks related to the manipulation of data and its presentation. What you
see onscreen is the text from your word processor, but to see that information, the
computer requires procedures for retrieving the data from disk, putting it into a
form you can understand, and then presenting it to you. The following sections
define the specifics of an application in more detail.

12 PART 1 Getting Started with Python

Understanding that computers
use a special language
Human language is complex and difficult to understand. Even applications such as
Siri and Alexa have serious limits in understanding what you’re saying. Over the
years, computers have gained the capability to input human speech as data and to
understand certain spoken words as commands, but computers still don’t quite
understand human speech to any significant degree. The difficulty of human
speech is exemplified in the way lawyers work. When you read legalese, it appears
as a gibberish of sorts. However, the goal is to state ideas and concepts in a way
that isn’t open to interpretation. Lawyers seldom succeed in meeting their objec-
tive precisely because human speech is imprecise.

Given what you know from previous sections of this chapter, computers could
never rely on human speech to understand the procedures you write. Computers
always take things literally, so you’d end up with completely unpredictable results
if you were to use human language to write applications. That’s why humans use
special languages, called programming languages, to communicate with computers.
These special languages make it possible to write procedures that are both specific
and completely understandable by both humans and computers.

Computers don’t actually speak any language. They use binary codes to flip
switches internally and to perform math calculations. Computers don’t even
understand letters — they understand only numbers. A special application turns
the computer-specific language you use to write a procedure into binary codes. For
the purposes of this book, you really don’t need to worry too much about the low-
level specifics of how computers work at the binary level. However, it’s interesting
to know that computers speak math and numbers, not really a language at all.

Helping humans speak to the computer
It’s important to keep the purpose of an application in mind as you write it. An
application is there to help humans speak to the computer in a certain way. Every
application works with some type of data that is input, stored, manipulated, and
output so that the humans using the application obtain a desired result. Whether
the application is a game or a spreadsheet, the basic idea is the same. Computers
work with data provided by humans to obtain a desired result.

When you create an application, you’re providing a new method for humans to
speak to the computer. The new approach you create will make it possible for other
humans to view data in new ways. The communication between human and com-
puter should be easy enough that the application actually disappears from view.
Think about the kinds of applications you’ve used in the past. The best applica-
tions are the ones that let you focus on whatever data you’re interacting with.

CHAPTER 1 Talking to Your Computer 13

For example, a game application is considered immersive only if you can focus on
the planet you’re trying to save or the ship you’re trying to fly, rather than the
application that lets you do these things.

One of the best ways to start thinking about how you want to create an application
is to look at the way other people create applications. Writing down what you like
and dislike about other applications is a useful way to start discovering how you
want your applications to look and work. Here are some questions you can ask
yourself as you work with the applications:

 » What do I find distracting about the application?

 » Which features were easy to use?

 » Which features were hard to use?

 » How did the application make it easy to interact with my data?

 » How would I make the data easier to work with?

 » What do I hope to achieve with my application that this application doesn’t
provide?

Professional developers ask many other questions as part of creating an applica-
tion, but these are good starter questions because they begin to help you think
about applications as a means to help humans speak with computers. If you’ve
ever found yourself frustrated by an application you used, you already know how
other people will feel if you don’t ask the appropriate questions when you create
your application. Communication is the most important element of any applica-
tion you create.

You can also start to think about the ways in which you work. Start writing pro-
cedures for the things you do. It’s a good idea to take the process one step at a
time and write everything you can think of about that step. When you get fin-
ished, ask someone else to try your procedure to see how it actually works. You
might be surprised to learn that even with a lot of effort, you can easily forget to
include steps.

The world’s worst application usually begins with a programmer who doesn’t
know what the application is supposed to do, why it’s special, what need it
addresses, or whom it is for. When you decide to create an application, make sure
that you know why you’re creating it and what you hope to achieve. Just having a
plan in place really helps make programming fun. You can work on your new
application and see your goals accomplished one at a time until you have a com-
pleted application to use and show off to your friends (all of whom will think
you’re really cool for creating it).

14 PART 1 Getting Started with Python

Understanding Why Python is So Cool
Many programming languages are available today. In fact, a student can spend an
entire semester in college studying computer languages and still not hear about
them all. (I did just that during my college days.) You’d think that programmers
would be happy with all these programming languages and just choose one to talk
to the computer, but they keep inventing more.

Programmers keep creating new languages for good reason. Each language has
something special to offer — something it does exceptionally well. In addition, as
computer technology evolves, so do the programming languages in order to keep
up. Because creating an application is all about efficient communication, many pro-
grammers know multiple programming languages so that they can choose just the
right language for a particular task. One language might work better to obtain data
from a database, and another might create user interface elements especially well.

As with every other programming language, Python does some things exception-
ally well, and you need to know what they are before you begin using it. You might
be amazed by the really cool things you can do with Python. Knowing a program-
ming language’s strengths and weaknesses helps you use it better as well as avoid
frustration by not using the language for things it doesn’t do well. The following
sections help you make these sorts of decisions about Python.

Unearthing the reasons for using Python
Most programming languages are created with specific goals in mind. These goals
help define the language characteristics and determine what you can do with the
language. There really isn’t any way to create a programming language that
does everything because people have competing goals and needs when creating
 applications. When it comes to Python, the main objective was to create a
 programming language that would make programmers efficient and productive.
With that in mind, here are the reasons that you want to use Python when creating
an application:

 » Less application development time: Python code is usually 2–10 times
shorter than comparable code written in languages like C/C++ and Java, which
means that you spend less time writing your application and more time using it.

 » Ease of reading: A programming language is like any other language — you
need to be able to read it to understand what it does. Python code tends to be
easier to read than the code written in other languages, which means you
spend less time interpreting it and more time making essential changes.

CHAPTER 1 Talking to Your Computer 15

 » Reduced learning time: The creators of Python wanted to make a program-
ming language with fewer odd rules that make the language hard to learn.
After all, programmers want to create applications, not learn obscure and
difficult languages.

Although Python is a popular language, it’s not always the most popular language
out there (depending on the site you use for comparison). In fact, it currently ranks
fifth on sites such as TIOBE (http://www.tiobe.com/index.php/content/
paperinfo/tpci/index.html), an organization that tracks usage statistics (among
other things). However, if you look at sites such as IEEE Spectrum (https://
spectrum.ieee.org/computing/software/the-2017-top-programming-
languages), you see that Python is actually the number-one language from that
site’s perspective. Tech Rapidly has it as the number-three language (see http://
techrapidly.com/top-10-best-programming-languages-learn-2018/).

If you’re looking for a language solely for the purpose of obtaining a job, Python
is a great choice, but Java, C/C++, or C# might be better choices, depending on the
kind of job you want to get. Visual Basic is also a great choice, even if it isn’t cur-
rently quite as popular as Python. Make sure to choose a language you like and one
that will address your application-development needs, but also choose on the
basis of what you intend to accomplish. Python was the language of the year in
both 2007 and 2010 and has ranked as high as the fourth most popular language
in February 2011. So it truly is a good choice if you’re looking for a job, but not
necessarily the best choice. However, you may be surprised to learn that many
colleges now use Python to teach coding, and it has become the most popular lan-
guage in that venue. Check out my blog post at http://blog.johnmuellerbooks.
com/2014/07/14/python-as-a-learning-tool for details.

Deciding how you can personally benefit
from Python
Ultimately, you can use any programming language to write any sort of applica-
tion you want. If you use the wrong programming language for the job, the pro-
cess will be slow, error prone, bug ridden, and you’ll absolutely hate it — but you
can get the job done. Of course, most of us would rather avoid horribly painful
experiences, so you need to know what sorts of applications people typically use
Python to create. Here’s a list of the most common uses for Python (although
people do use it for other purposes):

 » Creating rough application examples: Developers often need to create a
prototype, a rough example of an application, before getting the resources to
create the actual application. Python emphasizes productivity, so you can use
it to create prototypes of an application quickly.

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
http://techrapidly.com/top-10-best-programming-languages-learn-2018/
http://techrapidly.com/top-10-best-programming-languages-learn-2018/
http://blog.johnmuellerbooks.com/2014/07/14/python-as-a-learning-tool
http://blog.johnmuellerbooks.com/2014/07/14/python-as-a-learning-tool

16 PART 1 Getting Started with Python

 » Scripting browser-based applications: Even though JavaScript is probably
the most popular language used for browser-based application scripting,
Python is a close second. Python offers functionality that JavaScript doesn’t
provide (see the comparison at https://blog.glyphobet.net/essay/2557
for details) and its high efficiency makes it possible to create browser-based
applications faster (a real plus in today’s fast-paced world).

 » Designing mathematic, scientific, and engineering applications: Interestingly
enough, Python provides access to some really cool libraries that make it easier
to create math, scientific, and engineering applications. The two most popular
libraries are NumPy (http://www.numpy.org/) and SciPy (http://www.scipy.
org/). These libraries greatly reduce the time you spend writing specialized code
to perform common math, scientific, and engineering tasks.

 » Working with XML: The eXtensible Markup Language (XML) is the basis of
most data storage needs on the Internet and many desktop applications
today. Unlike most languages, where XML is just sort of bolted on, Python
makes it a first-class citizen. If you need to work with a Web service, the main
method for exchanging information on the Internet (or any other XML-
intensive application), Python is a great choice.

 » Interacting with databases: Business relies heavily on databases. Python
isn’t quite a query language, like the Structured Query Language (SQL) or
Language INtegrated Query (LINQ), but it does do a great job of interacting
with databases. It makes creating connections and manipulating data
relatively painless.

 » Developing user interfaces: Python isn’t like some languages like C# where
you have a built-in designer and can drag and drop items from a toolbox onto
the user interface. However, it does have an extensive array of graphical user
interface (GUI) frameworks — extensions that make graphics a lot easier to
create (see https://wiki.python.org/moin/GuiProgramming for details).
Some of these frameworks do come with designers that make the user
interface creation process easier. The point is that Python isn’t devoted to just
one method of creating a user interface — you can use the method that best
suits your needs.

Discovering which organizations
use Python
Python really is quite good at the tasks that it was designed to perform. In fact,
that’s why a lot of large organizations use Python to perform at least some
application-creation (development) tasks. You want a programming language
that has good support from these large organizations because these organizations
tend to spend money to make the language better. Table 1-1 lists the large orga-
nizations that use Python the most.

https://blog.glyphobet.net/essay/2557
http://www.numpy.org/
http://www.scipy.org/
http://www.scipy.org/
https://wiki.python.org/moin/GuiProgramming

CHAPTER 1 Talking to Your Computer 17

These are just a few of the many organizations that use Python extensively. You
can find a more complete list of organizations at http://www.python.org/about/
success/. The number of success stories has become so large that even this list
probably isn’t complete and the people supporting it have had to create categories
to better organize it.

Finding useful Python applications
You might have an application written in Python sitting on your machine right
now and not even know it. Python is used in a vast array of applications on the
market today. The applications range from utilities that run at the console to
full-fledged CAD/CAM suites. Some applications run on mobile devices, while
others run on the large services employed by enterprises. In short, there is no
limit to what you can do with Python, but it really does help to see what others
have done. You can find a number of places online that list applications written
in Python, but the best place to look is https://wiki.python.org/moin/
Applications.

TABLE 1-1 Large Organizations That Use Python
Vendor URL Application Type

Alice Educational Software –
Carnegie Mellon University

(https://www.alice.org/) Educational applications

Fermilab (https://www.fnal.gov/) Scientific applications

Go.com (http://go.com/) Browser-based applications

Google (https://www.google.com/) Search engine

Industrial Light & Magic (http://www.ilm.com/) Just about every
programming need

Lawrence Livermore
National Library

(https://www.llnl.gov/) Scientific applications

National Space and Aeronautics
Administration (NASA)

(http://www.nasa.gov/) Scientific applications

New York Stock Exchange (https://nyse.nyx.com/) Browser-based applications

Redhat (http://www.redhat.com/) Linux installation tools

Yahoo! (https://www.yahoo.com/) Parts of Yahoo! mail

YouTube (http://www.youtube.com/) Graphics engine

Zope – Digital Creations (http://www.zope.org/en/latest/) Publishing application

http://www.python.org/about/success/
http://www.python.org/about/success/
https://wiki.python.org/moin/Applications
https://wiki.python.org/moin/Applications
https://www.alice.org/
https://www.fnal.gov/
http://go.com/
https://www.google.com/
http://www.ilm.com/
https://www.llnl.gov/
http://www.nasa.gov/
https://nyse.nyx.com/
http://www.redhat.com/
https://www.yahoo.com/
http://www.youtube.com/
http://www.zope.org/en/latest/

18 PART 1 Getting Started with Python

As a Python programmer, you’ll also want to know that Python development tools
are available to make your life easier. A development tool provides some level of
automation in writing the procedures needed to tell the computer what to do.
Having more development tools means that you have to perform less work in
order to obtain a working application. Developers love to share their lists of favor-
ite tools, but you can find a great list of tools broken into categories at http://
www.python.org/about/apps/.

Of course, this chapter describes a number of tools as well, such as NumPy and
SciPy (two scientific libraries). The remainder of the book lists a few other tools;
make sure that you copy down your favorite tools for later.

Comparing Python to other languages
Comparing one language to another is somewhat dangerous because the selection
of a language is just as much a matter of taste and personal preference as it is any
sort of quantifiable scientific fact. So before I’m attacked by the rabid protectors
of the languages that follow, it’s important to realize that I also use a number of
languages and find at least some level of overlap among them all. There is no best
language in the world, simply the language that works best for a particular appli-
cation. With this idea in mind, the following sections provide an overview com-
parison of Python to other languages. (You can find comparisons to other
languages at https://wiki.python.org/moin/LanguageComparisons.)

C#
A lot of people claim that Microsoft simply copied Java to create C#. That said, C#
does have some advantages (and disadvantages) when compared to Java. The
main (undisputed) intent behind C# is to create a better kind of C/C++ language —
one that is easier to learn and use. However, we’re here to talk about C# and
Python. When compared to C#, Python has these advantages:

 » Significantly easier to learn

 » Smaller (more concise) code

 » Supported fully as open source

 » Better multiplatform support

 » Easily allows use of multiple development environments

 » Easier to extend using Java and C/C++

 » Enhanced scientific and engineering support

http://www.python.org/about/apps/
http://www.python.org/about/apps/
https://wiki.python.org/moin/LanguageComparisons

CHAPTER 1 Talking to Your Computer 19

Java
For years, programmers looked for a language that they could use to write an
application just once and have it run anywhere. Java is designed to work well on
any platform. It relies on some tricks that you’ll discover later in the book to
accomplish this magic. For now, all you really need to know is that Java was so
successful at running well everywhere that other languages have sought to emu-
late it (with varying levels of success). Even so, Python has some important
advantages over Java, as shown in the following list:

 » Significantly easier to learn

 » Smaller (more concise) code

 » Enhanced variables (storage boxes in computer memory) that can hold
different kinds of data based on the application’s needs while running
(dynamic typing)

 » Faster development times

Perl
Perl was originally an acronym for Practical Extraction and Report Language.
Today, people simply call it Perl and let it go at that. However, Perl still shows its
roots in that it excels at obtaining data from a database and presenting it in report
format. Of course, Perl has been extended to do a lot more than that — you can use
it to write all sorts of applications. (I’ve even used it for a Web service application.)
In a comparison with Python, you’ll find that Python has these advantages over
Perl:

 » Simpler to learn

 » Easier to read

 » Enhanced protection for data

 » Better Java integration

 » Fewer platform-specific biases

R
Data scientists often have a tough time choosing between R and Python because
both languages are adept at statistical analysis and the sorts of graphing that data
scientists need to understand data patterns. Both languages are also open source

20 PART 1 Getting Started with Python

and support a large range of platforms. However, R is a bit more specialized than
Python and tends to cater to the academic market. Consequently, Python has these
advantages over R in that Python:

 » Emphasizes productivity and code readability

 » Is designed for use by enterprises

 » Offers easier debugging

 » Uses consistent coding techniques

 » Has greater flexibility

 » Is easier to learn

CHAPTER 2 Getting Your Own Copy of Python 21

Chapter 2
Getting Your Own
Copy of Python

Creating applications requires that you have another application, unless you
really want to get low level and write applications in machine code — a
decidedly difficult experience that even true programmers avoid if at all

possible. If you want to write an application using the Python programming lan-
guage, you need the applications required to do so. These applications help you
work with Python by creating Python code, providing help information as you
need it, and letting you run the code you write. This chapter helps you obtain a
copy of the Python application, install it on your hard drive, locate the installed
applications so that you can use them, and test your installation so that you can
see how it works.

Downloading the Version You Need
Every platform (combination of computer hardware and operating system
 software) has special rules that it follows when running applications. The Python
application hides these details from you. You type code that runs on any platform
that Python supports, and the Python applications translate that code into some-
thing the platform can understand. However, in order for the translation to take

 » Obtaining a copy of Python for
your system

 » Performing the Python installation

 » Finding and using Python on your
system

 » Ensuring your installation works
as planned

22 PART 1 Getting Started with Python

place, you must have a version of Python that works on your particular platform.
Python supports these platforms (and possibly others):

 » Advanced IBM Unix (AIX)

 » Android

 » BeOS

 » Berkeley Software Distribution (BSD)/FreeBSD

 » Hewlett-Packard Unix (HP-UX)

 » IBM i (formerly Application System 400 or AS/400, iSeries, and System i)

 » iPhone Operating System (iOS)

 » Linux

 » Mac OS X (comes pre-installed with the OS)

 » Microsoft Disk Operating System (MS-DOS)

 » MorphOS

 » Operating System 2 (OS/2)

 » Operating System 390 (OS/390) and z/OS

 » PalmOS

 » PlayStation

 » Psion

 » QNX

 » RISC OS (originally Acorn)

 » Series 60

 » Solaris

 » Virtual Memory System (VMS)

 » Windows 32-bit (XP and later)

 » Windows 64-bit

 » Windows CE/Pocket PC

Wow, that’s a lot of different platforms! This book is tested with the Windows,
Mac OS X, and Linux platforms. However, the examples could very well work with
these other platforms, too, because the examples don’t rely on any platform-
specific code. Let me know if it works on your non-Windows, Mac, or Linux

CHAPTER 2 Getting Your Own Copy of Python 23

platform at John@JohnMuellerBooks.com. The current version of Python at the
time of this writing is 3.6.2. I’ll talk about any Python updates on my blog at
http://blog.johnmuellerbooks.com. You can find the answers to your Python
book-specific questions there, too.

To get the right version for your platform, you need to go to https://www.python.
org/downloads/release/python-362/. The download section is initially hidden
from view, so you need to scroll halfway down the page. You see a page similar to
the one shown in Figure 2-1. The main part of the page contains links for
Windows, Mac OS X, and Linux downloads. These links provide you with the
default setup that is used in this book. The platform-specific links on the left side
of the page show you alternative Python configurations that you can use when the
need arises. For example, you may want to use a more advanced editor than the
one provided with the default Python package, and these alternative configura-
tions can provide one for you.

If you want to work with another platform, go to https://www.python.org/
download/other/ instead. You see a list of Python installations for other platforms,
as shown in Figure 2-2. Many of these installations are maintained by volunteers
rather than by the people who create the versions of Python for Windows, Mac OS
X, and Linux. Make sure you contact these individuals when you have installation
questions because they know how best to help you get a good installation on your
platform.

FIGURE 2-1:
The Python

download page
contains links for

all sorts of
versions.

mailto:John@JohnMuellerBooks.com
http://blog.johnmuellerbooks.com/
https://www.python.org/downloads/release/python-362/
https://www.python.org/downloads/release/python-362/
https://www.python.org/download/other/
https://www.python.org/download/other/

24 PART 1 Getting Started with Python

Installing Python
After you download your copy of Python, it’s time to install it on your system. The
downloaded file contains everything needed to get you started:

 » Python interpreter

 » Help files (documentation)

 » Command-line access

 » Integrated DeveLopment Environment (IDLE) application

 » Preferred Installer Program (pip)

 » Uninstaller (only on platforms that require it)

This book assumes that you’re using one of the default Python setups found at
https://www.python.org/downloads/release/python-362/. If you use a ver-
sion other than 3.6.2, some of the examples won’t work as anticipated. The fol-
lowing sections describe how to install Python on the three platforms directly
supported by this book: Windows, Mac OS X, and Linux.

FIGURE 2-2:
Volunteers have

made Python
available on

all sorts of
 platforms.

https://www.python.org/downloads/release/python-362/

CHAPTER 2 Getting Your Own Copy of Python 25

Working with Windows
The installation process on a Windows system follows the same procedure that
you use for other application types. The main difference is in finding the file you
downloaded so that you can begin the installation process. The following proce-
dure should work fine on any Windows system, whether you use the 32-bit or the
64-bit version of Python.

1. Locate the downloaded copy of Python on your system.

The name of this file varies, but normally it appears as python-3.6.2.exe for
both 32-bit systems and python-3.6.2-amd64.exe for 64-bit systems. The
version number is embedded as part of the filename. In this case, the filename
refers to version 3.6.2, which is the version used for this book.

2. Double-click the installation file.

(You may see an Open File – Security Warning dialog box that asks whether
you want to run this file. Click Run if you see this dialog box pop up.) You see a
Python Setup dialog box similar to the one shown in Figure 2-3. The exact
dialog box you see depends on which version of the Python installation
program you download.

3. Choose a user installation option (the book uses the default setting of
Install for All Users).

Using a personalized installation can make it easier to manage systems that
have multiple users. In some cases, the personalized installation also reduces
the number of Security Warning dialog boxes you see.

FIGURE 2-3:
The setup

process begins by
asking you who

should have
access to Python.

26 PART 1 Getting Started with Python

4. Select Add Python 3.6 to PATH.

Adding this setting enables you to access Python from anywhere on your hard
drive. If you don’t select this setting, you must manually add Python to the path
later.

5. Click Customize Installation.

Install asks you to choose which features to use with your copy of Python, as
shown in Figure 2-4. Keep all the features selected for this book. However, for
your own installation, you may find that you don’t actually require all the
Python features.

6. Click Next.

You see the Advanced Options dialog box, shown in Figure 2-5. Note that Install
for All Users isn’t selected, despite your having requested that feature earlier.
Install also asks you to provide the name of an installation directory for Python.
Using the default destination will save you time and effort later. However, you
can install Python anywhere you desire.

FIGURE 2-4:
Choose the

Python features
you want to

install.

FIGURE 2-5:
Decide on an

installation
location for your
copy of Python.

CHAPTER 2 Getting Your Own Copy of Python 27

Using the Windows \Program Files or \Program Files (x86) folder is
problematic for two reasons. First, the folder name has a space in it, which
makes it hard to access from within the application. Second, the folder usually
requires administrator access, so you’ll constantly battle the User Account
Control (UAC) feature of Windows if you install Python in either folder.

7. Select the Install for All Users option to ensure that the installer makes
Python accessible to everyone.

Note that selecting this option automatically selects the Precompile Standard
Library option, which you should keep selected.

8. Type a destination folder name, if necessary.

This book uses an installation folder of C:\Python36.

9. Click Install.

You see the installation process start. At some point, you might see a User
Account Control dialog box asking whether you want to perform the install. If
you see this dialog box, click Yes. The installation continues and you see an
Installation Complete dialog box.

10. Click Close.

Python is ready for use.

Working with the Mac
Your Mac system likely already has Python installed on it. However, this installa-
tion is normally a few years old — or whatever the age of your system happens to
be. For the purposes of this book, the installation will likely work fine. You won’t
be testing the limits of Python programming technology — just getting a great
start using Python.

The Leopard version of OS X (10.5) uses a really old version of Python 2.5.1. This
particular version lacks direct access to the IDLE application. As a result, you may
find that some book exercises won’t work properly. The article at https://wiki.
python.org/moin/MacPython/Leopard tells you more about how to overcome
this particular issue. The code in this book is tested with OS X version 10.12 that
comes with Python 2.7.10, which is just fine for working through the examples in
the book. Later versions of OS X and Python will also likely work fine, but you may
see warnings about library use or other potential compatibility issues.”

Depending on how you use Python, you might want to update your installation at
some point. Part of this process involves installing the GNU Compiler Collection
(GCC) tools so that Python has access to the low-level resources it needs. The fol-
lowing steps get you started with installing a new version of Python on your Mac
OS X 10.6 or above system.

https://wiki.python.org/moin/MacPython/Leopard
https://wiki.python.org/moin/MacPython/Leopard

28 PART 1 Getting Started with Python

1. Navigate to https://www.python.org/downloads/release/python-362/
with your browser.

You see information regarding the latest version of Python, as shown previously
in Figure 2-1.

2. Click the Mac OS X 64-bit/32-bit installer link.

The Python disk image begins downloading. Be patient: The disk image
requires several minutes to download. Most browsers provide a method for
monitoring the download process so that you can easily see how long the
download will take.

3. Double-click python-3.6.2-macosx10.6.pkg in the download folder.

You see a Welcome dialog box that tells you about this particular Python build.

4. Click Continue three times.

The installation program displays late-breaking notes about Python, licensing
information (click Agree when asked about the licensing information), and,
finally, a destination dialog box.

5. Click Install.

The installer may request your administrator password. Type the administrator
name and password, if required, into the dialog box and click OK. You see an
Installing Python dialog box. The contents of this dialog box will change as the
installation process proceeds so that you know what part of Python the installer
is working with.

After the installation is completed, you see an Install Succeeded dialog box.

6. Click Close.

Python is ready to use. (You can close the disk image at this point and remove
it from your system.)

Working with Linux
Some versions of Linux come with Python installed. For example, if you have a
Red Hat Package Manager (RPM)-based distribution (such as SUSE, Red Hat,
 Yellow Dog, Fedora Core, and CentOS), you likely already have Python on your
system and don’t need to do anything else.

Depending on which version of Linux you use, the version of Python varies and
some systems don’t include the Interactive DeveLopment Environment (IDLE)
application. If you have an older version of Python (2.5.1 or earlier), you might
want to install a newer version so that you have access to IDLE. Many of the book
exercises require use of IDLE.

https://www.python.org/downloads/release/python-362/

CHAPTER 2 Getting Your Own Copy of Python 29

You actually have two techniques to use to install Python on Linux. The following
sections discuss both techniques. The first technique works on any Linux distri-
bution; the second technique has special criteria that you must meet.

Using the standard Linux installation
The standard Linux installation works on any system. However, it requires you to
work at the Terminal and type commands to complete it. Some of the actual com-
mands may vary by version of Linux. The information at http://docs.python.
org/3/install/ provides some helpful tips that you can use in addition to the
procedure that follows.

1. Navigate to https://www.python.org/downloads/release/python-362/
with your browser.

You see information regarding the latest version of Python, as shown previ-
ously in Figure 2-1.

2. Click the appropriate link for your version of Linux:

a. Gzipped source tarball (any version of Linux)

b. XZ compressed source tarball (better compression and faster download)

3. When asked whether you want to open or save the file, choose Save.

The Python source files begin downloading. Be patient: The source files require
a minute or two to download.

4. Double-click the downloaded file.

The Archive Manager window opens. After the files are extracted, you see the
Python 3.6.2 folder in the Archive Manager window.

5. Double-click the Python 3.6.2 folder.

The Archive Manager extracts the files to the Python 3.6.2 subfolder of your
home folder.

6. Open a copy of Terminal.

The Terminal window appears. If you have never built any software on your
system before, you must install the build essentials, SQLite, and bzip2 or the
Python installation will fail. Otherwise, you can skip to Step 10 to begin working
with Python immediately.

7. Type sudo apt-get install build-essential and press Enter.

Linux installs the Build Essential support required to build packages (see
https://packages.debian.org/squeeze/build-essential for details).

http://docs.python.org/3/install/
http://docs.python.org/3/install/
https://www.python.org/downloads/release/python-362/
https://packages.debian.org/squeeze/build-essential

30 PART 1 Getting Started with Python

8. Type sudo apt-get install libsqlite3-dev and press Enter.

Linux installs the SQLite support required by Python for database manipulation
(see https://packages.debian.org/squeeze/libsqlite3-dev for details).

9. Type sudo apt-get install libbz2-dev and press Enter.

Linux installs the bzip2 support required by Python for archive manipulation
(see https://packages.debian.org/sid/libbz2-dev for details).

10. Type CD Python 3.6.2 in the Terminal window and press Enter.

Terminal changes directories to the Python 3.6.2 folder on your system.

11. Type ./configure and press Enter.

The script begins by checking the system build type and then performs a series
of tasks based on the system you’re using. This process can require a minute
or two because there is a large list of items to check.

12. Type make and press Enter.

Linux executes the make script to create the Python application software.
The make process can require up to a minute — it depends on the processing
speed of your system.

13. Type sudo make altinstall and press Enter.

The system may ask you for your administrator password. Type your password
and press Enter. At this point, a number of tasks take place as the system
installs Python on your system.

Using the graphical Linux installation
All versions of Linux support the standard installation discussed in the “Using the
standard Linux installation” section of this chapter. However, a few versions of
Debian-based Linux distributions, such as Ubuntu 12.x and later, provide a graph-
ical installation technique as well. You need the administrator group (sudo) pass-
word to use this procedure, so having it handy will save you time. The following
steps outline the graphical installation technique for Ubuntu, but the technique is
similar for other Linux installations:

1. Open the Ubuntu Software Center folder. (The folder may be named
Synaptics on other platforms.)

You see a listing of the most popular software available for download and
installation.

2. Select Developer Tools (or Development) from the All Software drop-
down list box.

You see a listing of developer tools, including Python.

https://packages.debian.org/squeeze/libsqlite3-dev
https://packages.debian.org/sid/libbz2-dev

CHAPTER 2 Getting Your Own Copy of Python 31

3. Double-click the Python 3.6.2 entry.

The Ubuntu Software Center provides details about the Python 3.6.2 entry and
offers to install it for you.

4. Click Install.

Ubuntu begins the process of installing Python. A progress bar shows the
download and installation status. When the installation is complete, the Install
button changes to a Remove button.

5. Close the Ubuntu Software Center folder.

You see a Python icon added to the desktop. Python is ready for use.

Accessing Python on Your Machine
After you have Python installed on your system, you need to know where to find
it. In some respects, Python does everything it can to make this process easy by
performing certain tasks, such as adding the Python path to the machine’s path
information during installation. Even so, you need to know how to access the
installation, which the following sections describe.

A WORD ABOUT THE SCREENSHOTS
As you work your way through the book, you’ll use either IDLE or the Python command-
line shell to work with Python in the beginning. Later, you use Anaconda because it
 provides a significantly enhanced and easier-to-use method of interacting with Python.
The name of the graphical (GUI) environment, IDLE or Anaconda, is precisely the same
across all three platforms, and you won’t even see any significant difference in the
 presentation. The differences you do see are minor, and you should ignore them as
you work through the book. With this in mind, the book does rely heavily on Windows
screenshots — all the screenshots you see were obtained from a Windows system for
the sake of consistency.

The command-line shell also works precisely the same across all three platforms. The
presentation may vary a little more than IDLE or Anaconda does simply because the
shell used for each platform varies slightly. However, the commands you type for one
platform are precisely the same on another platform. The output is the same as well.
When viewing the screenshot, look at the content rather than for specific differences
in the presentation of the shell.

32 PART 1 Getting Started with Python

Using Windows
A Windows installation creates a new folder in the Start menu that contains your
Python installation. You can access it by choosing Start ➪ All Programs ➪ Python
3.6. The two items of interest in the folder when creating new applications are
IDLE (Python GUI) and Python (command line). (Chapter 4 helps you install, con-
figure, and use Anaconda to create your first real application, but you should know
how to use both IDLE and the command-line version of Python.)

Clicking IDLE (Python GUI) produces a graphical interactive environment like the
one shown in Figure 2-6. When you open this environment, IDLE automatically
displays some information so that you know you have the right application open.
For example, you see the Python version number (which is 3.6.2 in this case). It
also tells you what sort of system you’re using to run Python.

The Python (command line) option opens a command prompt and executes the
Python command, as shown in Figure 2-7. Again, the environment automatically
displays information such as the Python version and the host platform.

A third method to access Python is to open a command prompt, type Python, and
press Enter. You can use this approach when you want to gain additional flexibility
over the Python environment, automatically load items, or execute Python in a

FIGURE 2-6:
Use IDLE when

you want the
comforts of a

graphical
 environment.

FIGURE 2-7:
Use the

 command
prompt when you

want the speed
and flexibility of a

command-line
interface.

CHAPTER 2 Getting Your Own Copy of Python 33

higher-privilege environment (in which you gain additional security rights).
Python provides a significant array of command-line options that you can see by
typing Python /? at the command prompt and pressing Enter. Figure 2-8 shows
what you typically see. Don’t worry too much about these command-line
options — you won’t need them for this book, but it’s helpful to know they exist.

To use this third method of executing Python, you must include Python in the
Windows path. This is why you want to choose the Add Python 3.6 to PATH option
when installing Python on Windows. If you didn’t add the path during installa-
tion, you can add it afterward using the instructions found in the Adding a Loca-
tion to the Windows Path article on my blog at http://blog.johnmuellerbooks.
com/2014/02/17/adding-a-location-to-the-windows-path/. This same tech-
nique works for adding Python-specific environment variables such as

 » PYTHONSTARTUP

 » PYTHONPATH

 » PYTHONHOME

 » PYTHONCASEOK

FIGURE 2-8:
Using a standard

command line
offers the

flexibility of using
switches to

change the way
Python works.

http://blog.johnmuellerbooks.com/2014/02/17/adding-a-location-to-the-windows-path/
http://blog.johnmuellerbooks.com/2014/02/17/adding-a-location-to-the-windows-path/

34 PART 1 Getting Started with Python

 » PYTHONIOENCODING

 » PYTHONFAULTHANDLER

 » PYTHONHASHSEED

None of these environment variables is used in the book. However, you can find
out more about them at https://docs.python.org/3.6/using/cmdline.
html#environment-variables.

Using the Mac
When working with a Mac, you probably have Python already installed and don’t
need to install it for this book. However, you still need to know where to find
Python. The following sections tell you how to access Python depending on the
kind of installation you performed.

Locating the default installation
The default OS X installation doesn’t include a Python-specific folder in most
cases. Instead, you must open Terminal by choosing Applications ➪ Utilities ➪
Terminal. After Terminal is open, you can type Python and press Enter to access
the command-line version of Python. The display you see is similar to the one
shown previously in Figure 2-7. As with Windows (see the “Using Windows” sec-
tion of the chapter), using Terminal to open Python offers the advantage of using
command-line switches to modify the manner in which Python works.

Locating the updated version
of Python you installed
After you perform the installation on your Mac system, open the Applications
folder. Within this folder, you find a Python 3.6 folder that contains the
following:

 » Extras folder

 » IDLE application (GUI development)

 » Python Launcher (interactive command development)

 » Update Sh. . . command

Double-clicking IDLE application opens a graphical interactive environment that
looks similar to the environment shown previously in Figure 2-6. There are some
small cosmetic differences, but the content of the window is the same. Double-
clicking Python Launcher opens a command-line environment similar to the one

https://docs.python.org/3.6/using/cmdline.html#environment-variables
https://docs.python.org/3.6/using/cmdline.html#environment-variables

CHAPTER 2 Getting Your Own Copy of Python 35

shown previously in Figure 2-7. This environment uses all the Python defaults to
provide a standard execution environment.

Even if you install a new version of Python on your Mac, you don’t have to settle
for using the default environment. It’s still possible to open Terminal to gain
access to the Python command-line switches. However, when you access Python
from the Mac Terminal application, you need to ensure that you’re not accessing
the default installation. Make sure to add /usr/local/bin/Python3.6 to your
shell search path.

Using Linux
After the installation process is complete, you can find a Python 3.6 subfolder in
your home folder. The physical location of Python 3.6 on your Linux system is
normally the /usr/local/bin/Python3.6 folder. This is important information
because you may need to modify the path for your system manually. Linux devel-
opers need to type Python3.6, rather than just Python, when working at the
Terminal window to obtain access to the Python 3.6.2 installation.

Testing Your Installation
To ensure that you have a usable installation, you need to test it. It’s important to
know that your installation will work as expected when you need it. Of course, this
means writing your first Python application. To get started, open a copy of
IDLE. As previously mentioned, IDLE automatically displays the Python version
and host information when you open it (refer to Figure 2-6).

To see Python work, type print(“This is my first Python program.”) and press
Enter. Python displays the message you just typed, as shown in Figure 2-9. The
print() command displays onscreen whatever you tell it to display. You see the
print() command used quite often in this book to display the results of tasks you
ask Python to perform, so this is one of the commands you work with frequently.

FIGURE 2-9:
The print()

command
displays whatever

information you
tell it to print.

36 PART 1 Getting Started with Python

Notice that IDLE color codes the various entries for you so that they’re easier to
see and understand. The colors codes are your indicator that you’ve done some-
thing right. Four color codes are shown in Figure 2-9 (although they’re not visible
in the print edition of the book):

 » Purple: Indicates that you have typed a command

 » Green: Specifies the content sent to a command

 » Blue: Shows the output from a command

 » Black: Defines non-command entries

You know that Python works now because you were able to issue a command to it,
and it responded by reacting to that command. It might be interesting to see one
more command. Type 3 + 4 and press Enter. Python responds by outputting 7, as
shown in Figure 2-10. Notice that 3 + 4 appears in black type because it isn’t a
command. However, the 7 is still in blue type because it’s output.

It’s time to end your IDLE session. Type quit() and press Enter. IDLE may display
a message such as the one shown in Figure 2-11. Well, you never intended to kill
anything, but you will now. Click OK, and the session dies.

Notice that the quit() command has parentheses after it, just as the print()
command does. All commands have parentheses like these two. That’s how you
know they’re commands. However, you don’t need to tell the quit() command
anything, so you simply leave the area between the parentheses blank.

FIGURE 2-10:
Python supports
math directly as

part of the
interactive

environment.

FIGURE 2-11:
IDLE seems to get

a little dramatic
about ending a

session!

CHAPTER 3 Interacting with Python 37

Chapter 3
Interacting with Python

Ultimately, any application you create interacts with the computer and the
data it contains. The focus is on data because without data, there isn’t a
good reason to have an application. Any application you use (even one as

simple as Solitaire) manipulates data in some way. In fact, the acronym CRUD
sums up what most applications do:

 » Create

 » Read

 » Update

 » Delete

If you remember CRUD, you’ll be able to summarize what most applications do
with the data your computer contains (and some applications really are quite
cruddy). However, before your application accesses the computer, you have to
interact with a programming language that creates a list of tasks to perform in a
language the computer understands. That’s the purpose of this chapter. You begin
interacting with Python. Python takes the list of steps you want to perform on the
computer’s data and changes those steps into bits the computer understands.

 » Accessing the command line

 » Using commands to perform tasks

 » Obtaining help about Python

 » Ending a command-line session

38 PART 1 Getting Started with Python

Opening the Command Line
Python offers a number of ways to interact with the underlying language. For
example, you worked a bit with the Integrated DeveLopment Environment (IDLE)
in Chapter 2. (In Chapter 4, you begin seeing how to use a full-featured Integrated
Development Environment, IDE, named Anaconda.) IDLE makes developing full-
fledged applications easy. However, sometimes you simply want to experiment or
to run an existing application. Often, using the command-line version of Python
works better in these cases because it offers better control over the Python envi-
ronment through command-line switches, uses fewer resources, and relies on a
minimalistic interface so that you can focus on trying out code rather than playing
with a GUI.

Starting Python
Depending on your platform, you might have multiple ways to start the command
line. Here are the methods that are commonly available:

 » Select the Python (command-line) option found in the Python36 folder. This
option starts a command-line session that uses the default settings.

 » Open a command prompt or terminal, type Python, and press Enter. Use this
option when you want greater flexibility in configuring the Python environ-
ment using command-line switches.

UNDERSTANDING THE IMPORTANCE
OF THE README FILE
Many applications include a README file. The README file usually provides updated infor-
mation that didn’t make it into the documentation before the application was put into a
production status. Unfortunately, most people ignore the README file and some don’t
even know it exists. As a result, people who should know something interesting about
their shiny new product never find out. Python has a NEWS.txt file in the \Python36
directory. When you open this file, you find all sorts of really interesting information, most
of which centers on upgrades to Python that you really need to know about.

Opening and reading the README file (named NEWS.txt because people were appar-
ently ignoring the other file) will help you become a Python genius. People will be
amazed that you really do know something interesting about Python and will ask you all
sorts of questions (deferring to your wisdom). Of course, you could always just sit there,
thinking that the README is just too much effort to read.

CHAPTER 3 Interacting with Python 39

 » Locate the Python folder, such as C:\Python36 in Windows, and open the
Python.exe file directly. This option also opens a command-line session that
uses the default settings, but you can do things like open it with increased
privileges (for applications that require access to secured resources) or modify
the executable file properties (to add command-line switches).

No matter how you start Python at the command line, you eventually end up with
a prompt similar to the one shown in Figure 3-1. (Your screen may look slightly
different from the one shown in Figure 3-1 if you rely on a platform other than
Windows, you’re using IDLE instead of the command-line version of Python, your
system is configured differently from mine, or you have a different version of
Python.) This prompt tells you the Python version, the host operating system, and
how to obtain additional information.

Using the command line to your advantage
This section will seem a little complicated at first, and you won’t normally need
this information when using the book. However, it’s still good information, and
you’ll eventually need it. For now, you can browse the information so that you
know what’s available and then come back to it later when you really do need the
information.

To start Python at a command prompt, type Python and press Enter. However,
that’s not all you can do. You can also provide some additional information to
change how Python works:

 » Options: An option, or command-line switch, begins with a minus sign
followed by one or more letters. For example, if you want to obtain help about
Python, you type Python –h and press Enter. You see additional information
about how to work with Python at the command line. The options are
described later in this section.

FIGURE 3-1:
The Python

command
prompt tells you

a bit about
the Python

 environment.

40 PART 1 Getting Started with Python

 » Filename: Providing a filename as input tells Python to load that file and run
it. You can run any of the example applications from the downloadable code
by providing the name of the file containing the example as input. For
example, say that you have an example named SayHello.py. To run this
example, you type Python SayHello.py and press Enter.

 » Arguments: An application can accept additional information as input to
control how it runs. This additional information is called an argument. Don’t
worry too much about arguments right now — they appear later in the book.

Most of the options won’t make sense right now. They’re here so that you can find
them later when you need them (this is the most logical place to include them in
the book). Reading through them will help you gain an understanding of what’s
available, but you can also skip this material until you need it later.

Python uses case-sensitive options. For example, -s is a completely different
option from -S. The Python options are

 » -b: Add warnings to the output when your application uses certain Python
features that include: str(bytes_instance), str(bytearray_instance),
and comparing bytes or bytearray with str().

 » -bb: Add errors to the output when your application uses certain Python
features that include: str(bytes_instance), str(bytearray_instance),
and comparing bytes or bytearray with str().

 » -B: Don’t write .py or .pyco files when performing a module import.

 » -c cmd: Use the information provided by cmd to start a program. This option
also tells Python to stop processing the rest of the information as options (it’s
treated as part of the command).

 » -d: Start the debugger (used to locate errors in your application).

 » -E: Ignore all the Python environment variables, such as PYTHONPATH, that
are used to configure Python for use.

 » -h: Display help about the options and basic environment variables onscreen.
Python always exits after it performs this task without doing anything else so
that you can see the help information.

 » -i: Force Python to let you inspect the code interactively after running a
script. It forces a prompt even if stdin (the standard input device) doesn’t
appear to be a terminal.

 » -m mod: Run the library module specified by mod as a script. This option also
tells Python to stop processing the rest of the information as options (the rest
of the information is treated as part of the command).

CHAPTER 3 Interacting with Python 41

 » -O: Optimize the generated bytecode slightly (makes it run faster).

 » -OO: Perform additional optimization by removing doc-strings.

 » -q: Tell Python not to print the version and copyright messages on interactive
startup.

 » -s: Force Python not to add the user site directory to sys.path (a variable
that tells Python where to find modules).

 » -S: Don’t run 'import site' on initialization. Using this option means that
Python won’t look for paths that may contain modules it needs.

 » -u: Allow unbuffered binary input for the stdout (standard output) and
stderr (standard error) devices. The stdin device is always buffered.

 » -v: Place Python in verbose mode so that you can see all the import state-
ments. Using this option multiple times increases the level of verbosity.

 » -V: Display the Python version number and exit.

 » --version: Display the Python version number and exit.

 » -W arg: Modify the warning level so that Python displays more or fewer
warnings. The valid arg values are

• action
• message
• category
• module
• lineno

 » -x: Skip the first line of a source code file, which allows the use of non-Unix
forms of #!cmd.

 » -X opt: Set an implementation-specific option. (The documentation for your
version of Python discusses these options, if there are any.)

Using Python environment variables
to your advantage
Environment variables are special settings that are part of the command line or
terminal environment for your operating system. They serve to configure Python
in a consistent manner. Environment variables perform many of the same tasks as
do the options that you supply when you start Python, but you can make environ-
ment variables permanent so that you can configure Python the same way every
time you start it without having to manually supply the option.

42 PART 1 Getting Started with Python

As with options, most of these environment variables won’t make any sense right
now. You can read through them to see what is available. You find some of the
environment variables used later in the book. Feel free to skip the rest of this sec-
tion and come back to it later when you need it.

Most operating systems provide the means to set environment variables tempo-
rarily, by configuring them during a particular session, or permanently, by con-
figuring them as part of the operating system setup. Precisely how you perform
this task depends on the operating system. For example, when working with Win-
dows, you can use the Set command (see my blog post at http://blog.john
muellerbooks.com/2014/02/24/using-the-set-command-to-your-advantage/
for details) or rely on a special Windows configuration feature (see my post at
http://blog.johnmuellerbooks.com/2014/02/17/adding-a-location-to-
the-windows-path/ for setting the Path environment variable as an example).

Using environment variables makes sense when you need to configure Python the
same way on a regular basis. The following list describes the Python environment
variables:

 » PYTHONCASEOK=x: Forces Python to ignore case when parsing import
statements. This is a Windows-only environment variable.

 » PYTHONDEBUG=x: Performs the same task as the -d option.

 » PYTHONDONTWRITEBYTECODE=x: Performs the same task as the -B option.

 » PYTHONFAULTHANDLER=x: Forces Python to dump the Python traceback (list of
calls that led to an error) on fatal errors.

 » PYTHONHASHSEED=arg: Determines the seed value used to generate hash
values from various kinds of data. When this variable is set to random, Python
uses a random value to seed the hashes of str, bytes, and datetime objects.
The valid integer range is 0 to 4294967295. Use a specific seed value to obtain
predictable hash values for testing purposes.

 » PYTHONHOME=arg: Defines the default search path that Python uses to look
for modules.

 » PYTHONINSPECT=x: Performs the same task as the -i option.

 » PYTHONIOENCODING=arg: Specifies the encoding[:errors] (such as utf-8)
used for the stdin, stdout, and stderr devices.

 » PYTHONNOUSERSITE: Performs the same task as the -s option.

 » PYTHONOPTIMIZE=x: Performs the same task as the -O option.

 » PYTHONPATH=arg: Provides a semicolon (;) separated list of directories to
search for modules. This value is stored in the sys.path variable in Python.

http://blog.johnmuellerbooks.com/2014/02/24/using-the-set-command-to-your-advantage/
http://blog.johnmuellerbooks.com/2014/02/24/using-the-set-command-to-your-advantage/
http://blog.johnmuellerbooks.com/2014/02/17/adding-a-location-to-the-windows-path/
http://blog.johnmuellerbooks.com/2014/02/17/adding-a-location-to-the-windows-path/

CHAPTER 3 Interacting with Python 43

 » PYTHONSTARTUP=arg: Defines the name of a file to execute when Python
starts. There is no default value for this environment variable.

 » PYTHONUNBUFFERED=x: Performs the same task as the -u option.

 » PYTHONVERBOSE=x: Performs the same task as the -v option.

 » PYTHONWARNINGS=arg: Performs the same task as the -W option.

Typing a Command
After you start the command-line version of Python, you can begin typing com-
mands. Using commands makes it possible to perform tasks, test ideas that you
have for writing your application, and discover more about Python. Using the
command line lets you gain hands-on experience with how Python actually
works — details that could be hidden by an interactive IDE such as IDLE. The fol-
lowing sections get you started using the command line.

Telling the computer what to do
Python, like every other programming language in existence, relies on commands.
A command is simply a step in a procedure. In Chapter 1, you see how “Get the
bread and butter from the refrigerator” is a step in a procedure for making toast.
When working with Python, a command, such as print(), is simply the same
thing: a step in a procedure.

To tell the computer what to do, you issue one or more commands that Python
understands. Python translates these commands into instructions that the com-
puter understands, and then you see the result. A command such as print() can
display the results onscreen so that you get an instant result. However, Python
supports all sorts of commands, many of which don’t display any results onscreen
but still do something important.

As the book progresses, you use commands to perform all sorts of tasks. Each of
these tasks will help you accomplish a goal, just as the steps in a procedure do.
When it seems as if all the Python commands become far too complex, simply
remember to look at them as steps in a procedure. Even human procedures become
complex at times, but if you take them one step at a time, you begin to see how
they work. Python commands are the same way. Don’t get overwhelmed by them;
instead, look at them one at a time and focus on just that step in your procedure.

44 PART 1 Getting Started with Python

Telling the computer you’re done
At some point, the procedure you create ends. When you make toast, the proce-
dure ends when you finish buttering the toast. Computer procedures work pre-
cisely the same way. They have a starting and an ending point. When typing
commands, the ending point for a particular step is the Enter key. You press Enter
to tell the computer that you’re done typing the command. As the book progresses,
you find that Python provides a number of ways to signify that a step, group of
steps, or even an entire application is complete. No matter how the task is accom-
plished, computer programs always have a distinct starting and stopping point.

Seeing the result
You now know that a command is a step in a procedure and that each command
has a distinct starting and ending point. In addition, groups of commands and
entire applications also have a distinct starting and ending point. So, take a look
at how this works. The following procedure helps you see the result of using a
command:

1. Start a copy of the Python command-line version.

You see a command prompt where you can type commands, as shown
previously in Figure 3-1.

2. Type print(“This is a line of text.”) at the command line.

Notice that nothing happens. Yes, you typed a command, but you haven’t
signified that the command is complete.

3. Press Enter.

The command is complete, so you see a result like the one shown in Figure 3-2.

This exercise shows you how things work within Python. Each command that you
type performs some task, but only after you tell Python that the command is com-
plete in some way. The print() command displays data onscreen. In this case,

FIGURE 3-2:
Issuing

 commands tells
Python what

to tell the
computer to do.

CHAPTER 3 Interacting with Python 45

you supplied text to display. Notice that the output shown in Figure 3-2 comes
immediately after the command because this is an interactive environment — one
in which you see the result of any given command immediately after Python per-
forms it. Later, as you start creating applications, you notice that sometimes a
result doesn’t appear immediately because the application environment delays it.
Even so, the command is executed by Python immediately after the application
tells Python that the command is complete.

PYTHON’S CODING STYLES
Most programming languages are dedicated to using just one coding style, which
reduces flexibility for the programmer. However, Python is different. You can use a
number of coding styles to achieve differing effects with Python. The four commonly
used Python coding styles are

• Functional: Every statement is a kind of math equation. This style lends itself well
to use in parallel processing activities.

• Imperative: Computations occur as changes to program state. This style is most
used for manipulating data structures.

• Object-oriented: This is the style commonly used with other languages to simplify
the coding environment by using objects to model the real world. Python doesn’t
fully implement this coding style because it doesn’t support features like data
hiding, but you can still use this approach to a significant degree. You see this style
used later in the book.

• Procedural: All the code you’ve written so far (and much of the initial code in this
book) is procedural, meaning that tasks proceed a step at a time. This style is most
used for iteration, sequencing, selection, and modularization. It’s the simplest form
of coding you can use.

Even though this book doesn’t cover all these coding styles (and others that Python sup-
ports), it’s useful to know that you aren’t trapped using a particular coding style. Because
Python supports multiple coding styles and you can mix and match those styles in a
single application, you have the advantage of being able to use Python in the manner
that works best for a particular need. You can read more about the coding styles at
https://blog.newrelic.com/2015/04/01/python-programming-styles/.

https://blog.newrelic.com/2015/04/01/python-programming-styles/

46 PART 1 Getting Started with Python

Using Help
Python is a computer language, not a human language. As a result, you won’t
speak it fluently at first. If you think about it for a moment, it makes sense that
you won’t speak Python fluently (and as with most human languages, you won’t
know every command even after you do become fluent). Having to discover Python
commands a little at a time is the same thing that happens when you learn to
speak another human language. If you normally speak English and try to say
something in German, you find that you must have some sort of guide to help you
along. Otherwise, anything you say is gibberish and people will look at you quite
oddly. Even if you manage to say something that makes sense, it may not be what
you want. You might go to a restaurant and order hot hubcaps for dinner when
what you really wanted was a steak.

Likewise, when you try to speak Python, you need a guide to help you. Fortunately,
Python is quite accommodating and provides immediate help to keep you from
ordering something you really don’t want. The help provided inside Python works
at two levels:

 » Help mode, in which you can browse the available commands

 » Direct help, in which you ask about a specific command

There isn’t a correct way to use help — just the method that works best for you at
a particular time. The following sections describe how to obtain help.

Getting into help mode
When you first start Python, you see a display similar to the one shown previously
in Figure 3-1. Notice that Python provides you with four commands at the outset
(which is actually your first piece of help information):

 » help

 » copyright

 » credits

 » license

All four commands provide you with help, of a sort, about Python. For example,
the copyright() command tells you about who holds the right to copy, license, or
otherwise distribute Python. The credits() command tells you who put Python
together. The license() command describes the usage agreement between you
and the copyright holder. However, the command you most want to know about is
simply help().

CHAPTER 3 Interacting with Python 47

To enter help mode, type help() and press Enter. Notice that you must include the
parentheses after the command even though they don’t appear in the help text.
Every Python command has parentheses associated with it. After you enter this
command, Python goes into help mode and you see a display similar to the one
shown in Figure 3-3.

You can always tell that you’re in help mode by the help> prompt that you see in
the Python window. As long as you see the help> prompt, you know that you’re in
help mode.

Asking for help
To obtain help, you need to know what question to ask. The initial help message
that you see when you go into help mode (refer to Figure 3-3) provides some help-
ful tips about the kinds of questions you can ask. If you want to explore Python,
the four basic topics are

 » modules

 » keywords

 » symbols

 » topics

The first two topics won’t tell you much for now. You won’t need the modules
topic until Chapter 10. The keywords topic will begin proving useful in Chapter 4.
However, the symbols and topics keywords are already useful because they help
you understand where to begin your Python adventure. When you type symbols
and press Enter, you see a list of symbols used in Python. To see what topics are
available, type topics and press Enter. You see a list of topics similar to those
shown in Figure 3-4.

FIGURE 3-3:
You ask Python

about other
commands in

help mode.

48 PART 1 Getting Started with Python

Chapter 7 begins the discussion of symbols when you explore the use of operators
in Python. When you see a topic that you like, such as FUNCTIONS, simply type that
topic and press Enter. To see how this works, type FUNCTIONS and press Enter
(you must type the word in uppercase — don’t worry, Python won’t think you’re
shouting). You see help information similar to that shown in Figure 3-5.

As you work through examples in the book, you use commands that look interest-
ing, and you might want more information about them. For example, in the “See-
ing the result” section of this chapter, you use the print() command. To see
more information about the print() command, type print and press Enter (notice
that you don’t include the parentheses this time because you’re requesting help
about print(), not actually using the command). Figure 3-6 shows typical help
information for the print() command.

FIGURE 3-4:
The topics help

topic provides
you with a

starting point for
your Python

adventure.

FIGURE 3-5:
You must use

uppercase when
requesting topic

information.

CHAPTER 3 Interacting with Python 49

Unfortunately, reading the help information probably doesn’t help much yet
because you need to know more about Python. However, you can ask for more
information. For example, you might wonder what sys.stdout means — and the
help topic certainly doesn’t tell you anything about it. Type sys.stdout and press
Enter. You see the help information shown in Figure 3-7.

You may still not find the information as helpful as you need, but at least you
know a little more. In this case, help has a lot to say and it can’t all fit on one
screen. Notice the following entry at the bottom of the screen:

-- More --

To see the additional information, press the spacebar. The next page of help
appears. As you read to the bottom of each page of help, you can press the space-
bar to see the next page. The pages don’t go away — you can scroll up to see pre-
vious material.

Leaving help mode
At some point, you need to leave help mode to perform useful work. All you have
to do is press Enter without typing anything. When you press Enter, you see a
message about leaving help, and then the prompt changes to the standard Python
prompt, as shown in Figure 3-8.

FIGURE 3-6:
Request

command help
information by

typing the
command using
whatever case it

actually uses.

FIGURE 3-7:
You can ask for

help on the help
you receive.

50 PART 1 Getting Started with Python

Obtaining help directly
Entering help mode isn’t necessary unless you want to browse, which is always a
good idea, or unless you don’t actually know what you need to find. If you have a
good idea of what you need, all you need to do is ask for help directly (a really nice
thing for Python to do). So, instead of fiddling with help mode, you simply type
the word help, followed by a left parenthesis and single quote, whatever you want
to find, another single quote, and the right parenthesis. For example, if you want
to know more about the print() command, you type help(‘print’) and press
Enter. Figure 3-9 shows typical output when you access help this way.

You can browse at the Python prompt, too. For example, when you type
help(‘topics’) and press Enter, you see a list of topics like the one that appears in
Figure 3-10. You can compare this list with the one shown in Figure 3-4. The two
lists are identical, even though you typed one while in help mode and the other
while at the Python prompt.

FIGURE 3-8:
Exit help mode by

pressing Enter
without typing

anything.

FIGURE 3-9:
Python lets you

obtain help
whenever you

need it without
leaving the

Python prompt.

FIGURE 3-10:
You can browse

at the Python
prompt if you
really want to.

CHAPTER 3 Interacting with Python 51

You might wonder why Python has a help mode at all if you can get the same
results at the Python prompt. The answer is convenience. It’s easier to browse in
the help mode. In addition, even though you don’t do a lot of extra typing at the
prompt, you do perform less typing while in help mode. Help mode also provides
additional helps, such as by listing commands that you can type, as shown previ-
ously in Figure 3-3. So you have all kinds of good reasons to enter help mode when
you plan to ask Python a lot of help questions.

No matter where you ask for help, you need to observe the correct capitalization
of help topics. For example, if you want general information about functions, you
must type help(‘FUNCTIONS’) and not help('Functions') or help('functions').
When you use the wrong capitalization, Python will tell you that it doesn’t know
what you mean or that it couldn’t find the help topic. It won’t know to tell you that
you used the wrong capitalization. Someday computers will know what you meant
to type, rather than what you did type, but that hasn’t happened yet.

Closing the Command Line
Eventually, you want to leave Python. Yes, it’s hard to believe, but people have
other things to do besides playing with Python all day long. You have two standard
methods for leaving Python and a whole bunch of nonstandard methods. Gener-
ally, you want to use one of the standard methods to ensure that Python behaves
as you expect it to, but the nonstandard methods work just fine when you simply
want to play around with Python and not perform any productive work. The two
standard methods are

 » quit()

 » exit()

Either of these methods will close the interactive version of Python. The shell (the
Python program) is designed to allow either command.

Both of these commands can accept an optional argument. For example, you can
type quit(5) or exit(5) and press Enter to exit the shell. The numeric argument
sets the command prompt’s ERRORLEVEL environment variable, which you can
then intercept at the command line or as part of a batch file. Standard practice is
to simply use quit() or exit() when nothing has gone wrong with the applica-
tion. To see this way of exiting at work, you must

52 PART 1 Getting Started with Python

1. Open a command prompt or terminal.

You see a prompt.

2. Type Python and press Enter to start Python.

You see the Python prompt.

3. Type quit(5) and press Enter.

You see the prompt again.

4. Type echo %ERRORLEVEL% and press Enter.

You see the error code, as shown in Figure 3-11. When working with platforms
other than Windows, you may need to type something other than echo
%ERRORLEVEL%. For example, when working with a bash script, you type
echo $ instead.

One of the most common nonstandard exit methods is to simply click the com-
mand prompt’s or terminal’s Close button. Using this approach means that your
application may not have time to perform any required cleanup, which can result
in odd behaviors. It’s always better to close Python using an expected approach if
you’ve been doing anything more than simply browsing.

You also have access to a number of other commands for closing the command
prompt when needed. In most cases, you won’t need these special commands, so
you can skip the rest of this section if desired.

When you use quit() or exit(), Python performs a number of tasks to ensure
that everything is neat and tidy before the session ends. If you suspect that a ses-
sion might not end properly anyway, you can always rely on one of these two
commands to close the command prompt:

 » sys.exit()

 » os._exit()

FIGURE 3-11:
Add an error

code when
needed to tell

others the Python
exit status.

CHAPTER 3 Interacting with Python 53

Both of these commands are used in emergency situations only. The first, sys.
exit(), provides special error-handling features that you discover in Chapter 9.
The second, os._exit(), exits Python without performing any of the usual
cleanup tasks. In both cases, you must import the required module, either sys or
os, before you can use the associated command. Consequently, to use the sys.
exit() command, you actually use this code:

import sys
sys.exit()

You must provide an error code when using os._exit() because this command is
used only when an extreme error has occurred. The call to this command will fail
if you don’t provide an error code. To use the os._exit() command, you actually
use this code (where the error code is 5):

import os
os._exit(5)

Chapter 10 discusses importing modules in detail. For now, just know that these
two commands are for special uses only and you won’t normally use them in an
application.

CHAPTER 4 Writing Your First Application 55

Chapter 4
Writing Your First
Application

Many people view application development as some sort of magic prac-
ticed by wizards called geeks who wave their keyboard to produce soft-
ware both great and small. However, the truth is a lot more mundane.

Application development follows a number of processes. It’s more than a strict
procedure, but is most definitely not magic of any sort. As Arthur C. Clark once
noted, “Any sufficiently advanced technology is indistinguishable from magic.”
This chapter is all about removing the magic from the picture and introducing you
to the technology. By the time you’re finished with this chapter, you too will be
able to develop a simple application (and you won’t use magic to do it).

As with any other task, people use tools to write applications. In the case of
Python, you don’t have to use a tool, but using a tool makes the task so much
easier that you really will want to use one. In this chapter, you use a commonly
available Integrated Development Environment (IDE) named Jupyter Notebook
that appears as part of the Anaconda tool collection. An IDE is a special kind of
application that makes writing, testing, and debugging code significantly easier.
In the previous chapter, you use the command-line tool to play around with

 » Using Jupyter Notebook in
Anaconda as an IDE

 » Writing and running the first
application

 » Formatting your application code

 » Using comments effectively

 » Managing applications using
Anaconda

56 PART 1 Getting Started with Python

Python a little. However, the Anaconda offerings go further than the command-line
tool and enables you to write applications with greater ease.

A vast number of other tools are available for you to use when writing Python
applications. This book doesn’t tell you much about them because Anaconda per-
forms every task needed and it’s readily available free of charge. However, as your
skills increase, you might find the features in other tools such as Komodo Edit
(http://www.activestate.com/komodo-edit/downloads) more to your liking.
You can find a great list of these tools at https://wiki.python.org/moin/
IntegratedDevelopmentEnvironments.

Understanding Why IDEs Are Important
A good question to ask is, why do you need an IDE to work with Python if the
command-line tool works fine? For that matter, Python actually comes with a limited
IDE called Integrated DeveLopement Environment (IDLE). Most people probably
question the need for anything more during the learning process and possibly to
develop full-fledged applications. Unfortunately, the tools that come with Python are
interesting and even helpful in getting started, but they won’t help you create useful
applications with any ease. If you choose to work with Python long term, you really
need a better tool for the reasons described in the following sections.

Creating better code
A good IDE contains a certain amount of intelligence. For example, the IDE can sug-
gest alternatives when you type the incorrect keyword, or it can tell you that a cer-
tain line of code simply won’t work as written. The more intelligence that an IDE
contains, the less hard you have to work to write better code. Writing better code is
essential because no one wants to spend hours looking for errors, called bugs.

IDEs vary greatly in the level and kind of intelligence they provide, which is why so
many IDEs exist. You may find the level of help obtained from one IDE to be insuf-
ficient to your needs, but another IDE hovers over you like a mother hen. Every
developer has different needs and, therefore, different IDE requirements. The point
is to obtain an IDE that helps you write clean, efficient code quickly and easily.

Debugging functionality
Finding bugs (errors) in your code is a process called debugging. Even the most
expert developer in the world spends time debugging. Writing perfect code on the
first pass is nearly impossible. When you do, it’s cause for celebration because it

http://www.activestate.com/komodo-edit/downloads
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

CHAPTER 4 Writing Your First Application 57

won’t happen often. Consequently, the debugging capabilities of your IDE are
critical. Unfortunately, the debugging capabilities of the native Python tools are
almost nonexistent. If you spend any time at all debugging, you quickly find
the native tools annoying because of what they don’t tell you about your code.

The best IDEs double as training tools. Given enough features, an IDE can help
you explore code written by true experts. Tracing through applications is a
time-honored method of learning new skills and honing the skills you already
 possess. A seemingly small advance in knowledge can often become a huge savings in
time later. When looking for an IDE, don’t just look at debugging features as a means
to remove errors — see them also as a means to learn new things about Python.

Defining why notebooks are useful
Most IDEs look like fancy text editors, and that’s precisely what they are. Yes, you
get all sorts of intelligent features, hints, tips, code coloring, and so on, but at the
end of the day, they’re all text editors. There’s nothing wrong with text editors,
and this chapter isn’t telling you anything of the sort. However, given that Python
developers often focus on scientific applications that require something better
than pure text presentation, using notebooks instead can be helpful.

A notebook differs from a text editor in that it focuses on a technique advanced by
Stanford computer scientist Donald Knuth called literate programming. You use
literate programming to create a kind of presentation of code, notes, math equa-
tions, and graphics. In short, you wind up with a scientist’s notebook full of
everything needed to understand the code completely. You commonly see literate
programming techniques used in high-priced packages such as Mathematica and
MATLAB. Notebook development excels at

 » Demonstration

 » Collaboration

 » Research

 » Teaching objectives

 » Presentation

This book uses the Anaconda tool collection because it provides you with a great
Python coding experience, but also helps you discover the enormous potential of
literate programming techniques. If you spend a lot of time performing scientific
tasks, Anaconda and products like it are essential. In addition, Anaconda is free,
so you get the benefits of the literate programming style without the cost of other
packages.

58 PART 1 Getting Started with Python

Obtaining Your Copy of Anaconda
As mentioned in the previous section, Anaconda doesn’t come with your Python
installation. You can follow the essential book examples using IDLE if you’d
rather, but you really do want to try Anaconda if possible. With this in mind, the
following sections help you obtain and install Anaconda on the three major plat-
forms supported by this book.

Obtaining Analytics Anaconda
The basic Anaconda package is a free download that you obtain at https://store.
continuum.io/cshop/anaconda/. Simply click Download Anaconda to obtain
access to the free product. You do need to provide an email address to get a copy
of Anaconda. After you put in your email address, you go to another page, where
you can choose your platform and the installer for that platform. Anaconda sup-
ports the following platforms:

 » Windows 32-bit and 64-bit (the installer may offer you only the 64-bit or 32-bit
version, depending on which version of Windows it detects)

 » Linux 32-bit and 64-bit

 » Mac OS X 64-bit

This book uses Anaconda version 4.4.0, which supports Python 3.6.2. If you don’t
use this version of Anaconda, you may find that some examples don’t work well
and that what you see on your screen doesn’t match what you see in the book,
even if you’re working with Windows. The screenshots in this book are taken
using a Windows 64-bit system, but they should be very close to what you see on
other platforms when you use Anaconda 4.4.0.

You can obtain Anaconda with older versions of Python. If you want to use an older
version of Python, click the installer archive link near the bottom of the page. You
should use an older version of Python only when you have a pressing need to do so.

The Miniconda installer can potentially save time by limiting the number of fea-
tures you install. However, trying to figure out precisely which packages you do
need is an error-prone and time-consuming process. In general, you want to
perform a full installation to ensure that you have everything needed for your
projects. Even a full install doesn’t require much time or effort to download and
install on most systems.

The free product is all you need for this book. However, when you look on the site,
you see that many other add-on products are available. These products can help
you create robust applications. For example, when you add Accelerate to the mix,

https://store.continuum.io/cshop/anaconda/
https://store.continuum.io/cshop/anaconda/

CHAPTER 4 Writing Your First Application 59

you obtain the capability to perform multicore and GPU-enabled operations. The
use of these add-on products is outside the scope of this book, but the Anaconda
site gives you details on using them.

Installing Anaconda on Linux
You have to use the command line to install Anaconda on Linux; you’re given no
graphical installation option. Before you can perform the install, you must down-
load a copy of the Linux software from the Continuum Analytics site. You can find
the required download information in the “Obtaining Analytics Anaconda”
 section, earlier in this chapter. The following procedure should work fine on any
Linux system, whether you use the 32-bit or 64-bit version of Anaconda:

1. Open a copy of Terminal.

The Terminal window appears.

2. Change directories to the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-4.4.0-
Linux-x86.sh for 32-bit systems and Anaconda3-4.4.0-Linux-x86_64.sh
for 64-bit systems. The version number is embedded as part of the filename. In
this case, the filename refers to version 4.4.0, which is the version used for this
book. If you use some other version, you may experience problems with the
source code and need to make adjustments when working with it.

3. Type bash Anaconda3-4.4.0-Linux-x86.sh (for the 32-bit version) or bash
Anaconda3-4.4.0-Linux-x86_64.sh (for the 64-bit version) and press Enter.

An installation wizard starts that asks you to accept the licensing terms for
using Anaconda.

4. Read the licensing agreement and accept the terms using the method
required for your version of Linux.

The wizard asks you to provide an installation location for Anaconda. The book
assumes that you use the default location of ~/anaconda. If you choose some
other location, you may have to modify some procedures later in the book to
work with your setup.

5. Provide an installation location (if necessary) and press Enter (or click
Next).

The application extraction process begins. After the extraction is complete,
you see a completion message.

6. Add the installation path to your PATH statement using the method
required for your version of Linux.

You’re ready to begin using Anaconda.

60 PART 1 Getting Started with Python

Installing Anaconda on MacOS
The Mac OS X installation comes in only one form: 64-bit. Before you can perform
the install, you must download a copy of the Mac software from the Continuum
Analytics site. You can find the required download information in the “Obtaining
Analytics Anaconda” section, earlier in this chapter.

The installation files come in two forms. The first depends on a graphical installer;
the second relies on the command line. The command-line version works much
like the Linux version described in the “Using the standard Linux installation”
section of Chapter 2. The following steps help you install Anaconda 64-bit on a
Mac system using the graphical installer:

1. Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-4.4.0-
MacOSX-x86_64.pkg. The version number is embedded as part of the filename.
In this case, the filename refers to version 4.4.0, which is the version used for
this book. If you use some other version, you may experience problems with the
source code and need to make adjustments when working with it.

2. Double-click the installation file.

An introduction dialog box appears.

3. Click Continue.

The wizard asks whether you want to review the Read Me materials. You can
read these materials later. For now, you can safely skip the information.

4. Click Continue.

The wizard displays a licensing agreement. Be sure to read through the
licensing agreement so that you know the terms of usage.

5. Click I Agree if you agree to the licensing agreement.

The wizard asks you to provide a destination for the installation. The destina-
tion controls whether the installation is for an individual user or a group.

You may see an error message stating that you can’t install Anaconda on the
system. The error message occurs because of a bug in the installer and has
nothing to do with your system. To get rid of the error message, choose the
Install Only for Me option. You can’t install Anaconda for a group of users on a
Mac system.

6. Click Continue.

The installer displays a dialog box containing options for changing the installa-
tion type. Click Change Install Location if you want to modify where Anaconda
is installed on your system. (The book assumes that you use the default path

CHAPTER 4 Writing Your First Application 61

of ~/anaconda.) Click Customize if you want to modify how the installer works.
For example, you can choose not to add Anaconda to your PATH statement.
However, the book assumes that you have chosen the default install options,
and no good reason exists to change them unless you have another copy of
Python 3.6.2 installed somewhere else.

7. Click Install.

The installation begins. A progress bar tells you how the installation process is
progressing. When the installation is complete, you see a completion dialog box.

8. Click Continue.

You’re ready to begin using Anaconda.

Installing Anaconda on Windows
Anaconda comes with a graphical installation application for Windows, so getting
a good install means using a wizard, as you would for any other installation. Of
course, you need a copy of the installation file before you begin, and you can find
the required download information in the “Obtaining Analytics Anaconda”
 section, earlier in this chapter. The following procedure (which can require a while
to complete) should work fine on any Windows system, whether you use the
32-bit or the 64-bit version of Anaconda:

1. Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-4.4.0-
Windows-x86.exe for 32-bit systems and Anaconda3-4.4.0-Windows-x86_
64.exe for 64-bit systems. The version number is embedded as part of the
filename. In this case, the filename refers to version 4.4.0, which is the version
used for this book. If you use some other version, you may experience
problems with the source code and need to make adjustments when working
with it.

2. Double-click the installation file.

(You may see an Open File – Security Warning dialog box that asks whether
you want to run this file. Click Run if you see this dialog box pop up.) You see
an Anaconda3 4.4.0 Setup dialog box similar to the one shown in Figure 4-1.
The exact dialog box that you see depends on which version of the Anaconda
installation program you download. If you have a 64-bit operating system,
using the 64-bit version of Anaconda is always best so that you obtain the best
possible performance. This first dialog box tells you when you have the 64-bit
version of the product.

62 PART 1 Getting Started with Python

3. Click Next.

The wizard displays a licensing agreement. Be sure to read through the
licensing agreement so that you know the terms of usage.

4. Click I Agree if you agree to the licensing agreement.

You’re asked what sort of installation type to perform, as shown in Figure 4-2.
In most cases, you want to install the product just for yourself. The exception is
if you have multiple people using your system and they all need access to
Anaconda.

FIGURE 4-1:
The setup

process begins by
telling you

whether you have
the 64-bit version.

FIGURE 4-2:
Tell the wizard
how to install
Anaconda on
your system.

CHAPTER 4 Writing Your First Application 63

5. Choose one of the installation types and then click Next.

The wizard asks where to install Anaconda on disk, as shown in Figure 4-3.
The book assumes that you use the default location. If you choose some other
location, you may have to modify some procedures later in the book to work
with your setup.

6. Choose an installation location (if necessary) and then click Next.

You see the Advanced Installation Options, shown in Figure 4-4. These options
are selected by default, and no good reason exists to change them in most
cases. You might need to change them if Anaconda won’t provide your default
Python 3.6 (or Python 2.7) setup. However, the book assumes that you’ve set
up Anaconda using the default options.

FIGURE 4-3:
Specify an

installation
location.

FIGURE 4-4:
Configure the

advanced
installation

options.

64 PART 1 Getting Started with Python

7. Change the advanced installation options (if necessary) and then click
Install.

You see an Installing dialog box with a progress bar. The installation process
can take a few minutes, so get yourself a cup of coffee and read the comics for
a while. When the installation process is over, you see a Next button enabled.

8. Click Next.

The wizard tells you that the installation is complete.

9. Click Finish.

You’re ready to begin using Anaconda.

Downloading the Datasets
and Example Code

This book is about using Python to perform basic programming tasks. Of course,
you can spend all your time creating the example code from scratch, debugging it,
and only then discovering how it relates to discovering the wonders of Python, or
you can take the easy way and download the prewritten code from the Dummies
site as described in the book’s Introduction so that you can get right to work. The
following sections show how to work with Jupyter Notebook, the name of the
Anaconda IDE. These sections emphasize the capability to manage application
code, including importing the downloadable source and exporting your amazing
applications to show friends.

Using Jupyter Notebook
To make working with the code in this book easier, you use Jupyter Notebook. This
interface lets you easily create Python notebook files that can contain any number
of examples, each of which can run individually. The program runs in your
browser, so which platform you use for development doesn’t matter; as long as it
has a browser, you should be okay.

Starting Jupyter Notebook
Most platforms provide an icon to access Jupyter Notebook. Just click this icon to
access Jupyter Notebook. For example, on a Windows system, you choose Start ➪ All
Programs ➪ Anaconda 3 ➪ Jupyter Notebook. Figure 4-5 shows how the interface
looks when viewed in a Firefox browser. The precise appearance on your system
depends on the browser you use and the kind of platform you have installed.

CHAPTER 4 Writing Your First Application 65

Stopping the Jupyter Notebook server
No matter how you start Jupyter Notebook (or just Notebook, as it appears in the
remainder of the book), the system generally opens a command prompt or termi-
nal window to host Jupyter Notebook. This window contains a server that makes
the application work. After you close the browser window when a session is com-
plete, select the server window and press Ctrl+C or Ctrl+Break to stop the server.

Defining the code repository
The code you create and use in this book will reside in a repository on your hard
drive. Think of a repository as a kind of filing cabinet where you put your code.
Notebook opens a drawer, takes out the folder, and shows the code to you. You can
modify it, run individual examples within the folder, add new examples, and sim-
ply interact with your code in a natural manner. The following sections get you
started with Notebook so that you can see how this whole repository concept works.

Defining the book’s folder
It pays to organize your files so that you can access them more easily later. This
book keeps its files in the BPPD (Beginning Programming with Python For
Dummies) folder. Use these steps within Notebook to create a new folder:

1. Choose New ➪ Folder.

Notebook creates a new folder named Untitled Folder, as shown in Figure 4-6.
The file appears in alphanumeric order, so you may not initially see it. You
must scroll down to the correct location.

FIGURE 4-5:
Jupyter Notebook
provides an easy
method to create
machine learning

examples.

66 PART 1 Getting Started with Python

2. Select the box next to the Untitled Folder entry.

3. Click Rename at the top of the page.

You see a Rename Directory dialog box like the one shown in Figure 4-7.

4. Type BPPD and click Rename.

Notebook changes the name of the folder for you.

5. Click the new BPPD entry in the list.

Notebook changes the location to the BPPD folder in which you perform tasks
related to the exercises in this book.

FIGURE 4-6:
New folders

appear with a
name of Untitled

Folder.

FIGURE 4-7:
Rename the

folder so that you
remember the

kinds of entries it
contains.

CHAPTER 4 Writing Your First Application 67

Creating a new notebook
Every new notebook is like a file folder. You can place individual examples within
the file folder, just as you would sheets of paper into a physical file folder. Each
example appears in a cell. You can put other sorts of things in the file folder, too,
but you see how these things work as the book progresses. Use these steps to cre-
ate a new notebook:

1. Click New ➪ Python 3.

A new tab opens in the browser with the new notebook, as shown in Figure 4-8.
Notice that the notebook contains a cell and that Notebook has highlighted the
cell so that you can begin typing code in it. The title of the notebook is Untitled
right now. That’s not a particularly helpful title, so you need to change it.

2. Click Untitled on the page.

Notebook asks what you want to use as a new name, as shown in Figure 4-9.

3. Type BPPD_04_Sample and press Enter.

The new name tells you that this is a file for Beginning Programming with Python
For Dummies, Chapter 4, Sample.ipynb. Using this naming convention lets you
easily differentiate these files from other files in your repository.

FIGURE 4-8:
A notebook

contains cells
that you use to

hold code.

68 PART 1 Getting Started with Python

Of course, the Sample notebook doesn’t contain anything just yet. Place the cursor
in the cell, type print(‘Python is really cool!’), and then click the Run button (the
button with the right-pointing arrow on the toolbar). You see the output shown in
Figure 4-10. The output is part of the same cell as the code (the code resides in a
square box and the output resides outside that square box, but both are within the
cell). However, Notebook visually separates the output from the code so that you
can tell them apart. Notebook automatically creates a new cell for you.

When you finish working with a notebook, shutting it down is important. To close
a notebook, choose File ➪ Close and Halt. You return to the Home page, where you
can see that the notebook you just created is added to the list, as shown in
Figure 4-11.

FIGURE 4-10:
Notebook uses

cells to store
your code.

FIGURE 4-9:
Provide a new
name for your

notebook.

CHAPTER 4 Writing Your First Application 69

Exporting a notebook
Creating notebooks and keeping them all to yourself isn’t much fun. At some
point, you want to share them with other people. To perform this task, you must
export your notebook from the repository to a file. You can then send the file to
someone else, who will import it into his or her repository.

The previous section shows how to create a notebook named BPPD_04_Sample.
ipynb. You can open this notebook by clicking its entry in the repository list. The
file reopens so that you can see your code again. To export this code, choose
File ➪ Download As ➪ Notebook (.ipynb). What you see next depends on your
browser, but you generally see some sort of dialog box for saving the notebook as
a file. Use the same method for saving the Jupyter Notebook file as you use for any
other file you save by using your browser. Remember to choose File ➪ Close and
Halt when you finish so that the application is shut down.

Removing a notebook
Sometimes notebooks get outdated or you simply don’t need to work with them
any longer. Rather than allow your repository to get clogged with files that you
don’t need, you can remove these unwanted notebooks from the list. Use these
steps to remove the file:

1. Select the box next to the BPPD_04_Sample.ipynb entry.

2. Click the trash can icon (Delete) at the top of the page.

You see a Delete notebook warning message like the one shown in Figure 4-12.

3. Click Delete.

The file gets removed from the list.

FIGURE 4-11:
Any notebooks

you create
appear in the

repository list.

70 PART 1 Getting Started with Python

Importing a notebook
To use the source code from this book, you must import the downloaded files into
your repository. The source code comes in an archive file that you extract to a
location on your hard drive. The archive contains a list of .ipynb (IPython Note-
book) files containing the source code for this book (see the Introduction for
details on downloading the source code). The following steps tell how to import
these files into your repository:

1. Click Upload at the top of the page.

What you see depends on your browser. In most cases, you see some type of
File Upload dialog box that provides access to the files on your hard drive.

2. Navigate to the directory containing the files that you want to import
into Notebook.

3. Highlight one or more files to import and click the Open (or other,
similar) button to begin the upload process.

You see the file added to an upload list, as shown in Figure 4-13. The file isn’t
part of the repository yet — you’ve simply selected it for upload.

4. Click Upload.

Notebook places the file in the repository so that you can begin using it.

FIGURE 4-12:
Notebook warns

you before
removing any
files from the

repository.

CHAPTER 4 Writing Your First Application 71

Creating the Application
You’ve actually created your first Anaconda application by using the steps in the
“Creating a new notebook” section, earlier in this chapter. The print() method
may not seem like much, but you use it quite often. However, the literate pro-
gramming approach provided by Anaconda requires a little more knowledge than
you currently have. The following sections don’t tell you everything about this
approach, but they do help you gain an understanding of what literate program-
ming can provide in the way of functionality. However, before you begin, make
sure you have the BPPD_04_Sample.ipynb file open for use because you need it to
explore Notebook.

Understanding cells
If Notebook were a standard IDE, you wouldn’t have cells. What you’d have is a
document containing a single, contiguous series of statements. To separate vari-
ous coding elements, you need separate files. Cells are different because each cell
is separate. Yes, the results of things you do in previous cells matter, but if a cell
is meant to work alone, you can simply go to that cell and run it. To see how this

FIGURE 4-13:
The files that you

want to add to
the repository

appear as part of
an upload list

consisting of one
or more

filenames.

72 PART 1 Getting Started with Python

works for yourself, type the following code into the next cell of the BPPD_04_
Sample file:

myVar = 3 + 4
print(myVar)

Now click Run (the right-pointing arrow). The code executes, and you see the
output, as shown in Figure 4-14. The output is 7, as expected. However, notice the
In [1]: entry. This entry tells you that this is the first cell executed.

Note that the first cell also has a In [1]: entry. This entry is still from the previous
session. Place your cursor in that cell and click Run. Now the cell contains In [2]:,
as shown in Figure 4-15. However, note that the next cell hasn’t been selected and
still contains the In [1]: entry.

Now place the cursor in the third cell — the one that is currently blank — and type
print("This is myVar: ", myVar). Click Run. The output in Figure 4-16 shows
that the cells have executed in anything but a rigid order, but that myVar is global
to the notebook. What you do in other cells with data affects every other cell, no
matter what order the execution takes place.

FIGURE 4-14:
Cells execute

individually in
Notebook.

CHAPTER 4 Writing Your First Application 73

FIGURE 4-15:
Cells can execute

in any order in
Notebook.

FIGURE 4-16:
Data changes do

affect every cell
that uses the

modified variable.

74 PART 1 Getting Started with Python

Adding documentation cells
Cells come in a number of different forms. This book doesn’t use them all.
However, knowing how to use the documentation cells can come in handy. Select
the first cell (the one currently marked with a 2). Choose Insert ➪ Insert Cell Above.
You see a new cell added to the notebook. Note the drop-down list that currently
has Code in it. This list allows you to choose the kind of cell to create. Select Mark-
down from the list and type # This is a level 1 heading. Click Run (which may
seem like an extremely odd thing to do, but give it a try). You see the text change
into a heading, as shown in Figure 4-17.

About now, you may be thinking that these special cells act just like HTML pages,
and you’d be right. Choose Insert ➪ Insert Cell Below, select Markdown in the
drop-down list, and then type ## This is a level 2 heading. Click Run. As you can
see in Figure 4-18, the number of hashes (#) you add to the text affects the head-
ing level, but the hashes don’t show up in the actual heading.

FIGURE 4-17:
Adding headings

helps you
separate and

document
your code.

CHAPTER 4 Writing Your First Application 75

Other cell content
This chapter (and book) doesn’t demonstrate all the kinds of cell content that you
can see by using Notebook. However, you can add things like graphics to your
notebooks, too. When the time comes, you can output (print) your notebook as a
report and use it in presentations of all sorts. The literate programming technique
is different from what you may have used in the past, but it has definite advan-
tages, as you see in upcoming chapters.

Understanding the Use of Indentation
As you work through the examples in this book, you see that certain lines are
indented. In fact, the examples also provide a fair amount of white space (such as
extra lines between lines of code). Python ignores any indentation in your appli-
cation. The main reason to add indentation is to provide visual cues about your
code. In the same way that indentation is used for book outlines, indentation in
code shows the relationships between various code elements.

FIGURE 4-18:
Using heading
levels provides

emphasis for cell
content.

76 PART 1 Getting Started with Python

The various uses of indentation will become more familiar as you work your way
through the examples in the book. However, you should know at the outset why
indentation is used and how it gets put in place. So it’s time for another example.
The following steps help you create a new example that uses indentation to make
the relationship between application elements a lot more apparent and easier to
figure out later.

1. Choose New ➪ Python3.

Jupyter Notebook creates a new notebook for you. The downloadable source
uses the filename BPPD_04_Indentation.ipynb, but you can use any name
desired.

2. Type print(“This is a really long line of text that will” +.

You see the text displayed normally onscreen, just as you expect. The plus sign
(+) tells Python that there is additional text to display. Adding text from multiple
lines together into a single long piece of text is called concatenation. You learn
more about using this feature later in the book, so you don’t need to worry
about it now.

3. Press Enter.

The insertion point doesn’t go back to the beginning of the line, as you might
expect. Instead, it ends up directly under the first double quote, as shown in
Figure 4-19. This feature is called automatic indention and it’s one of the features
that differentiates a regular text editor from one designed to write code.

4. Type “appear on multiple lines in the source code file.”) and press Enter.

Notice that the insertion point goes back to the beginning of the line. When
Notebook senses that you have reached the end of the code, it automatically
outdents the text to its original position.

FIGURE 4-19:
The Edit window

automatically
indents some
types of text.

CHAPTER 4 Writing Your First Application 77

5. Click Run.

You see the output shown in Figure 4-20. Even though the text appears on multiple
lines in the source code file, it appears on just one line in the output. The line does
break because of the size of the window, but it’s actually just one line.

Adding Comments
People create notes for themselves all the time. When you need to buy groceries,
you look through your cabinets, determine what you need, and write it down on a
list. When you get to the store, you review your list to remember what you need.
Using notes comes in handy for all sorts of needs, such as tracking the course of a
conversation between business partners or remembering the essential points of a
lecture. Humans need notes to jog their memories. Comments in source code are
just another form of note. You add them to the code so that you can remember
what task the code performs later. The following sections describe comments in
more detail. You can find these examples in the BPPD_04_Comments.ipynb file in
the downloadable source.

FIGURE 4-20:
Use

 concatenation to
make multiple

lines of text
appear on a single
line in the output.

HEADINGS VERSUS COMMENTS
You may find headings and comments a bit confusing at first. Headings appear in
 separate cells; comments appear with the source code. They serve different purposes.
Headings serve to tell you about an entire code grouping, and individual comments tell
you about individual code steps or even lines of code. Even though you use both of
them for documentation, each serves a unique purpose. Comments are generally more
detailed than headings.

78 PART 1 Getting Started with Python

Understanding comments
Computers need some special way to determine that the text you’re writing is a
comment, not code to execute. Python provides two methods of defining text as a
comment and not as code. The first method is the single-line comment. It uses
the number sign (#), like this:

This is a comment.
print("Hello from Python!") #This is also a comment.

A single-line comment can appear on a line by itself or it can appear after execut-
able code. It appears on only one line. You typically use a single-line comment for
short descriptive text, such as an explanation of a particular bit of code. Notebook
shows comments in a distinctive color (usually blue) and in italics.

Python doesn’t actually support a multiline comment directly, but you can create
one using a triple-quoted string. A multiline comment both starts and ends with
three double quotes (""") or three single quotes (’’’) like this:

"""
 Application: Comments.py
 Written by: John
 Purpose: Shows how to use comments.
"""

These lines aren’t executed. Python won’t display an error message when they
appear in your code. However, Notebook treats them differently, as shown in
 Figure 4-21. Note that the actual Python comments, those preceded by a hash (#)
in cell 1, don’t generate any output. The triple-quote strings, however, do gener-
ate output. If you plan to output your notebook as a report, you need to avoid using
triple-quoted strings. (Some IDEs, such as IDLE, ignore the triple-quoted strings
completely.)

Unlike standard comments, triple quoted text appears in red, rather than blue and
the text isn’t in italics. You typically use multiline comments for longer explana-
tions of who created an application, why it was created, and what tasks it per-
forms. Of course, there aren’t any hard rules on precisely how you use comments.
The main goal is to tell the computer precisely what is and isn’t a comment so that
it doesn’t become confused.

CHAPTER 4 Writing Your First Application 79

Using comments to leave
yourself reminders
A lot of people don’t really understand comments — they don’t quite know what
to do with notes in code. Keep in mind that you might write a piece of code today
and then not look at it for years. You need notes to jog your memory so that you
remember what task the code performs and why you wrote it. In fact, here are
some common reasons to use comments in your code:

 » Reminding yourself about what the code does and why you wrote it

 » Telling others how to maintain your code

 » Making your code accessible to other developers

 » Listing ideas for future updates

 » Providing a list of documentation sources you used to write the code

 » Maintaining a list of improvements you’ve made

You can use comments in a lot of other ways, too, but these are the most common
ways. Look at the way comments are used in the examples in the book, especially
as you get to later chapters where the code becomes more complex. As your code
becomes more complex, you need to add more comments and make the comments
pertinent to what you need to remember about it.

FIGURE 4-21:
Multiline

comments do
work, but they

also provide
output.

80 PART 1 Getting Started with Python

Using comments to keep code
from executing
Developers also sometimes use the commenting feature to keep lines of code from
executing (referred to as commenting out). You might need to do this in order to
determine whether a line of code is causing your application to fail. As with any
other comment, you can use either single line commenting or multiline com-
menting. However, when using multiline commenting, you do see the code that
isn’t executing as part of the output (and it can actually be helpful to see where
the code affects the output). Figure 4-22 shows an example of code commenting
techniques.

Closing Jupyter Notebook
After you have used the File ➪ Close and Halt command to close each of the note-
books you have open, you can simply close the browser window to end your ses-
sion. However, the server continues to run in the background. Normally, a Jupyter
Notebook window opens, like the one shown in Figure 4-23. This window remains
open until you stop the server. Simply press Ctrl+C to end the server session, and
the window will close.

FIGURE 4-22:
Use comments to

keep code from
executing.

CHAPTER 4 Writing Your First Application 81

Look again at Figure 4-23 to note a number of commands. These commands tell
you what the user interface is doing. By monitoring this window, you can deter-
mine what might go wrong during a session. Even though you won’t use this
feature very often, it’s a handy trick to know.

FIGURE 4-23:
Make sure to

close the server
window.

CHAPTER 5 Working with Anaconda 83

Chapter 5
Working with Anaconda

Anaconda provides a powerful Integrated Development Environment (IDE)
in the form of Jupyter Notebook. In fact, you can perform every task in this
book using just this one utility. That’s why this chapter focuses on Jupyter

Notebook (simply called Notebook in most places). Unlike most IDEs, Notebook
relies on a principle called literate programming that the “Defining why note-
books are useful” section of Chapter 4 describes. This chapter helps you under-
stand how literate programming can help you become more productive when
writing Python code.

As part of discovering more about Notebook, you see how to download your code
in various forms and how to create code checkpoints to make recovering from
errors easier. Working with files effectively is an important part of the develop-
ment process. Chapter 4 shows only the basics of working with code files; this
chapter fills in the details.

Chapter 4 also shows you a few things about cells. You’re probably already think-
ing that cells definitely make certain kinds of coding efforts easier because you
can move blocks of code around easily. However, cells can do a lot more, and this
chapter tells you about these techniques.

This chapter also helps you understand the mechanics of using Notebook
 effectively. For example, you might not like how Notebook is configured, so this
chapter tells you how to change the configuration. You also need to know how to
restart the kernel when things freeze up, and how to obtain help. In addition,

 » Interacting with code files

 » Making cells useful

 » Configuring the user interface

 » Changing the code appearance

84 PART 1 Getting Started with Python

Notebook has features called magic functions that really do seem magical. Using
these functions doesn’t affect your code, but they do affect how you see your code
in Notebook and how certain features such as graphics appear. Finally, you need
to know how to interact with running processes. In some cases, you need to know
what a process is doing in order to make a decision about how to interact with it.

Downloading Your Code
Notebook provides you with a particular kind of coding environment, one that
isn’t text based, in contrast to many other IDEs. If you were to open an IPython
Notebook File (.ipynb, which is the same extension used by Jupyter Notebook),
what you would find would be sort of readable, but not really usable. To obtain the
special features that Notebook provides, the file must contain additional informa-
tion not found in a normal text file. Consequently, you find that you must down-
load your code to use it in other environments.

The “Exporting a notebook” section of Chapter 4 tells how to export your note-
book in a form that Notebook understands. However, you may want to download
the code into other formats that other applications can use. In fact, the File ➪ Down-
load As menu contains options for downloading your code in these formats:

 » Python (.py)

 » HTML (.html)

 » Markdown (.md)

 » reST (.rst)

 » LaTeX (.tex)

 » PDF via LaTeX (.pdf)

Not all the formats are available all the time. For example, if you want to create a
PDF using LaTeX, you must install XeTeX by using the instructions found at
https://nbconvert.readthedocs.io/en/latest/install.html#installing-
tex. XeTeX provides a rendering engine for creating PDFs.

Depending on your setup, some of the formats might actually open directly in
your browser. For example, Figure 5-1 shows how one of the examples from
Chapter 4 might look when presented in HTML format. Note that the output will
appear precisely as it appears in the file, so what you end up with is a sort of elec-
tronic printout. In addition, the content won’t always lend itself to modification,
such as when using the HTML format.

https://nbconvert.readthedocs.io/en/latest/install.html#installing-tex
https://nbconvert.readthedocs.io/en/latest/install.html#installing-tex

CHAPTER 5 Working with Anaconda 85

Working with Checkpoints
Checkpoints are a Notebook-specific feature that can save you a huge amount of
time and embarrassment when used correctly. A checkpoint is a kind of interim
save and source control combined into a single package. What you get is a picture
of your application at a specific point in time.

Defining the uses of checkpoints
Unlike many application saves, a checkpoint is an individual entry. Every time you
create a checkpoint, you also create a hidden file. This file resides in a special
folder of your project folder. For example, when looking at this book’s code, you
find the checkpoints in the \BPPD\.ipynb_checkpoints folder. You can go back to
this specific checkpoint later, if necessary, to turn back the clock of your develop-
ment efforts. Checkpoint-type saves occur at these times:

 » Automatic: Notebook automatically creates a save for you every 120 seconds
by default unless you change this interval using the %autosave magic function
(see the “Using the Magic Functions” section of the chapter for details).

 » Manual checkpoint save: Generates a separate manually created save file.

All the save options use a single file. Consequently, each save overwrites the pre-
vious file. Any save is useful for general backup, ensuring that you have an

FIGURE 5-1:
Some output

formats can open
directly in your

browser.

86 PART 1 Getting Started with Python

alternative if an entity damages the original file between occurrences of major
events (such as running or closing the application).

The manual checkpoint save helps you create a special kind of save. For example,
you might get your application to a stable point at which everything runs, even if
the application isn’t feature complete. Consequently, you want to create a manual
save, a checkpoint, to ensure that you can get back to this point should future edits
cause application damage.

Checkpoints can also come in handy at other times. For example, you might add a
risky feature to your application and want to protect the application against dam-
age should the addition prove fatal. You use checkpoints whenever you want to be
able to go back to a specific point in time during application development. It’s a
kind of insurance that works in addition to automatic saves.

Even though Notebook won’t display multiple checkpoints, you can keep multiple
checkpoints if desired. Simply rename the existing checkpoint and then create a
new one. For example, if you name the existing checkpoint BPPD_04_Comments-
checkpoint.ipynb, you might rename it to BPPD_04_Comments-checkpoint1.
ipynb before you create a new save. To use an older checkpoint, you must rename
it back to the original name of checkpoint.ipynb.

Saving a checkpoint
To save a checkpoint, you choose File ➪ Save and Checkpoint. Notebook automati-
cally saves a copy of the existing notebook in the .ipynb_checkpoints folder
using the same name with -checkpoint added. Unless you specifically rename the
existing checkpoint, the manual or automatic save will overwrite the existing file.
Consequently, all you ever see is a single checkpoint file unless you rename older
files manually.

Restoring a checkpoint
To restore a checkpoint, choose the entry found on the File ➪ Revert to Checkpoint
menu. This menu makes it appear that you can have more than one checkpoint
file, but the menu never has more than one entry in it. The entry does contain the
date and time that you created the checkpoint.

Manipulating Cells
Cells are what make Notebook considerably different from using other IDEs. By
using the functionality that cells provide, you can perform all sorts of application

CHAPTER 5 Working with Anaconda 87

manipulations that would otherwise be difficult or error prone using other IDEs,
such as moving related code around as a chunk, rather than line-by-line.
Chapter 4 shows you a few quick tricks for working with cells. The following sec-
tions provide additional techniques that you can use to make cells truly useful.

Adding various cell types
Notebook gives you access to several different cell types. You find out the two
types used in this book in Chapter 4. Here’s a rundown of all the types that you can
use with Notebook:

 » Code: Contains interpreted Python code that provides an input and an
output area.

 » Markdown: Displays special documentation text using the GitHub markup
technique, as described at https://help.github.com/categories/
writing-on-github/. This book mainly uses markdown cells for headings,
but you can include all sorts of information in cells of this type.

 » Raw NBConvert: Provides a method for including uninterpreted content
within a notebook that affects certain kinds of downloaded output, such as
LaTeX. This book doesn’t use these kinds of cells because this is a specialty
output. You can read more about this topic at https://ipython.org/
ipython-doc/3/notebook/nbconvert.html#nbconvert.

 » Heading (obsolete): This is an older method of creating headings that you
shouldn’t use any longer.

Whenever you execute the content of a cell using the Run Cell button or by choos-
ing Cell ➪ Run Cells and Select Below, and the insertion point is on the last cell,
Notebook automatically adds a new cell for you. However, this isn’t the only way
to add a new cell. For example, you might want to add a new cell in the middle of
the notebook. To perform this task, you choose Insert ➪ Insert Cell Above or
Insert ➪ Insert Cell Below, depending on whether you want to insert a cell above or
below the current cell.

Splitting and merging cells
Notebook treats cells as distinct entities. Whatever you do in a cell will affect the
application as a whole. However, you can execute or manipulate that individual
cell without changing any other cell. In addition, you can execute cells in any
order and execute some cells more often than you do others. That’s why you need
to focus on cell construction: You need to determine whether a cell is independent
enough, yet complete enough, to perform a desired task. With this in mind, you
may find it necessary to split and merge cells.

https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://ipython.org/ipython-doc/3/notebook/nbconvert.html#nbconvert
https://ipython.org/ipython-doc/3/notebook/nbconvert.html#nbconvert

88 PART 1 Getting Started with Python

Splitting a cell means to create two cells from an existing cell. The split occurs at
the current cursor location within the cell. To perform the split, you choose
Edit ➪ Split Cell.

Merging a cell means to create a single cell from two existing cells. The cells are
merged in the order in which they appear in the notebook, so you must be sure
that the cells are in the correct order before you merge them. To perform the
merge, you choose Edit ➪ Merge Cell Above or Edit ➪ Merge Cell Below.

Moving cells around
Cells need not stay in the order in which you originally create them. You may find
that you need to perform a particular task sooner or later in the process. The sim-
plest way to move a cell is to select the cell and then choose Edit ➪ Move Cell Up or
Edit ➪ Move Cell Down. However, these two commands simply move the cells. You
might decide to do something completely different.

As do most editors, Notebook comes with a full selection of editing commands. All
these commands appear on the Edit menu. Following are editing commands that
Notebook provides in addition to the standard movement commands:

 » Cut Cells: Removes the selected cell but places it on the Clipboard for
later reuse.

 » Copy Cells: Places a copy of the selected cell on the Clipboard without
removing it.

 » Paste Cells Above: Inserts a copy of the cell that appears on the Clipboard
above the selected cell.

 » Paste Cells Below: Inserts a copy of the cell that appears on the Clipboard
below the selected cell.

 » Delete Cells: Removes the selected cell without creating any copy.

 » Undo Delete Cells: Adds a deleted cell back onto the notebook (there is only
one level of undelete, so you must perform this task immediately after a
deletion).

Running cells
To see the result of interpreting a cell, even those markdown cells, you need to run
the cell. The most common way to perform this task is to click the Run Cell button
on the toolbar (the one with the right pointing arrow). However, you might decide

CHAPTER 5 Working with Anaconda 89

that you don’t want to run your cells in the default manner. In this case, you have
a number of options to choose from on the Cell menu:

 » Run Cells: Runs the selected cell while maintaining the current selection.

 » Run Cells and Select Below (default): Runs the selected cell and then selects
the cell below it. If this is the last cell, Notebook creates a new cell to select.

 » Run Cells and Insert Below: Runs the selected cell and then inserts a new
cell below it. This is a good option to choose if you’re adding new cells in the
middle of an application because you get a new cell regardless of whether this
is the last cell.

 » Run All: Starts at the top and runs every cell in the notebook. When Notebook
reaches the bottom, it selects the last cell, but doesn’t insert a new one.

 » Run All Above: Starts from the current cell and executes all the cells above it
in reverse order. You won’t find this option in most other IDEs!

 » Run All Below: Starts from the current cell and executes all the cells below it
in order. When Notebook reaches the bottom, it selects the last cell but
doesn’t insert a new one.

TRUSTING YOUR NOTEBOOK
In the upper-right corner of Notebook, you see a little square box with the words Not
Trusted. In most cases, it doesn’t matter that your notebook is untrusted because of how
Python works. However, when dealing with some local or secure resources on a web-
site, you may find that you really do need to place some trust in your notebook.

The fastest, easiest method of overriding the trust issue is to click the Not Trusted
button. You see a dialog box that gives you the option of trusting the notebook.
Unfortunately, this is also a good way to cause yourself woe with security issues and
isn’t recommended unless you know that you can trust the source.

Anaconda provides a number of other ways to ensure safe access to secure resources.
Performing the extended setup is outside the scope of this book, but you can read
about it at https://jupyter-notebook.readthedocs.io/en/latest/security.
html. None of the examples in this book require you to run in trusted mode, so you can
safely ignore that Not Trusted button for the moment.

https://jupyter-notebook.readthedocs.io/en/latest/security.html
https://jupyter-notebook.readthedocs.io/en/latest/security.html

90 PART 1 Getting Started with Python

Toggling outputs
Sometimes seeing the output from a cell is helpful, but in other cases, the output
just gets in the way. In addition, situations that call for starting with a clean out-
put can arise, so you may want to clear the old information. The Cell ➪ Current
Outputs menu has options that affect just the selected cell, and the Cell ➪ All Out-
put menu has options that affect all the cells in the notebook. Here are the options
you have for controlling output:

 » Toggle: Turns the output on or off, based on a previous condition. The output
is still present in its entirety.

 » Toggle Scrolling: Reduces the size of long outputs to just the default number
of lines. In this way, you can see enough information to know how the cell
worked, but not get every detail.

 » Clear: Removes the current output. You must rerun the cell in order to
generate new output after using this option.

Changing Jupyter Notebook’s Appearance
You can modify Notebook’s appearance to an extent. In this one respect, you don’t
get quite as much flexibility with Notebook as you do with other IDEs, but the
flexibility is good enough to make the interface usable in most cases. The various
options you use are on the View menu:

 » Toggle Header: The header is at the top of the display and contains the name
of the notebook. (You change the notebook name in the “Creating a new
notebook” section of Chapter 4.) It also provides access to the Notebook
dashboard when you click Jupyter in the upper left, plus it shows the current
save status and lets you log out of Notebook by clicking Logout.

 » Toggle Toolbar: The toolbar contains a series of icons that let you perform
tasks quickly. The following list describes these icons as they appear from left
to right:

• Save and Checkpoint: Saves the current notebook and creates a check-
point for it.

• Insert Cell Below: Adds a new cell below the selected cell.

• Cut Selected Cells: Removes the current cell and places it on the Clipboard.

CHAPTER 5 Working with Anaconda 91

• Copy Selected Cells: Places a copy of the current cell on the Clipboard
without removing it.

• Paste Cells Below: Creates a copy of the cell on the Clipboard and places it
below the currently selected cell.

• Move Selected Cells Up: Moves the selected cell up one position.

• Move Selected Cells Down: Moves the selected cell down one position.

• Run Cell: Interprets the content of the current cell and selects the next cell.
If this is the last cell, Notebook creates a new cell below it. Notebook
doesn’t interpret Raw NBConvert cells, so nothing happens in this case.

• Interrupt Kernel: Stops the kernel from completing the instructions in the
current cell.

• Restart the Kernel: Stops and then starts the kernel. All variable data is
lost during this process.

• Cell Type Selection: Chooses one of the cell types described in the
“Adding various cell types” section, earlier in this chapter.

• Open the Command Palette: Displays the Command Palette dialog box,
in which you can search for a particular command. The “Finding com-
mands using the Command Palette” section that follows explains this
feature in more detail.

 » Toggle Line Numbers: Adds or removes line numbers from the code listings.
This setting doesn’t affect other cell types. The “Working with line numbers”
section that follows explains this feature in more detail.

 » Cell Toolbar: Adds a specific command to the cell toolbar. These commands
help you interact in specific ways with the individual cells. The “Using the Cell
Toolbar features” section that follows explains this feature in more detail.

Finding commands using
the Command Palette
The Command Palette dialog box provides access to the command-mode com-
mands that Notebook supports. Click Open the Command Palette icon on the Tool-
bar to see the dialog shown in Figure 5-2.

To locate the command you need, simply start typing a phrase that you feel defines
the command. For example, you might type cell to locate specific cell-related
commands. After you find the command you need, you can click it to execute it.

92 PART 1 Getting Started with Python

Working with line numbers
Longer listings are hard to work with at times, and when you need to collaborate
with others, having a reference can be useful. To display line numbers, choose
View ➪ Toggle Line Numbers. You see line numbers added to all input code cells, as
shown in Figure 5-3. Note that the line numbers don’t appear in the output.

FIGURE 5-2:
Use the

 Command Palette
dialog box to

locate commands
you need.

FIGURE 5-3:
Line numbers

make
 collaborating

with others
easier.

CHAPTER 5 Working with Anaconda 93

Using the Cell Toolbar features
Each cell has specific features associated with it. You can add a cell toolbar button
to make these features accessibly by using the options on the View ➪ Cell Toolbar
menu. Figure 5-4 shows how a cell appears with the Edit Metadata button in place.

The metadata affects how the cell works. The default settings control both whether
the cell is trusted and Notebook will scroll long content. Some of these settings
affect only certain kinds of cells. For example, the Raw Cell Format setting affects
only Raw NBConvert cells.

You can display only one Cell Toolbar button at a time. So, you can’t configure the
cells for a slideshow while also adding tags. You must select one feature or the
other. Choosing View ➪ Cell Toolbar ➪ None removes all the buttons from the dis-
play. Here are the Cell Toolbar menu options:

 » None: Removes all the Cell Toolbar buttons from the notebook.

 » Edit Metadata: Allows configuration of the cell functionality using both
standard and custom metadata.

 » Raw Cell Format: Selects the kind of data that a Raw NTConvert cell contains.
The options include None, LaTeX, reST, HTML, Markdown, Python, and
Custom.

 » Slideshow: Defines the kind of slide that the cell contains. The options are
Slide, Sub-slide, Fragment, Skip, and Notes.

FIGURE 5-4:
Use the cell

toolbar buttons
to modify

underlying code
content.

94 PART 1 Getting Started with Python

 » Attachments: Presents a list of attachments for the current cell. For example,
you can add images or pictures to markdown cells.

 » Tags: Manages tags associated with each cell. A tag is a piece of information
that you provide that helps you understand and classify the cell. The tags are
for your use; they mean nothing to Notebook. When you use tags correctly,
they enable you to interact with cells in new ways, but you must use the tags
consistently to allow tags to work properly.

Interacting with the Kernel
The kernel is the server that enables you to run cells within Notebook. You typi-
cally see the kernel commands in a separate command or terminal window, such
as the one shown in Figure 5-5.

Each entry shows the time the kernel executed the task, which application the
command executed, the task it performed, and any resources affected. In most
cases, you don’t need to do anything with this window, but viewing it can be help-
ful when you run into problems because you often see error messages that can
help you resolve an issue.

You control the kernel in a number of ways. For example, saving a file issues a
command to the kernel, which carries the task out for you. However, you also find
some kernel-specific commands on the Kernel menu, which are described in the
following list:

 » Interrupt: Causes the kernel to stop performing the current task without
actually shutting the kernel down. You can use this option when you want to
do something like stop processing a large dataset.

FIGURE 5-5:
The kernel
displays its

commands in a
separate Jupyter

Notebook
window.

CHAPTER 5 Working with Anaconda 95

 » Restart: Stops the kernel and starts it again. This option causes you to lose all
the variable data. However, in some cases, this is precisely what you need to
do when the environment has become dirty with old data.

 » Restart & Clear Output: Stops the kernel, starts it again, and clears all the
existing cell outputs.

 » Restart & Run All: Stops the kernel, starts it again, and then runs every cell
starting from the top cell and ending with the last cell. When Notebook
reaches the bottom, it selects the last cell but doesn’t insert a new one.

 » Reconnect: Recreates the connection to the kernel. In some cases, environ-
mental or other issues could cause the application to lose its connection, so
you use this option to reestablish the connection without loss of variable data.

 » Shutdown: Shuts the kernel down. You may perform this step in preparation
for using a different kernel.

 » Change Kernel: Selects a different kernel from the list of kernels you have
installed. For example, you may want to test an application using various
Python versions to ensure that it runs on all of them.

Obtaining Help
The help system in Notebook is designed to provide a certain level of interactivity.
For example, when you choose Help ➪ User Interface Tour, a wizard actually points
to various elements of your current notebook and tells you what they are. In this
way, you see precisely what each element is used for in a way that also helps you
with your current task.

The Help ➪ Keyboard Shortcuts command provides you with a chart listing the
various shortcut commands. To enter command mode, you press Esc first and
then type whatever is needed to execute a command. For example, Esc ➪ F displays
the Find and Replace dialog box. As part of using keyboard shortcuts, you can
choose Help ➪ Edit Keyboard Shortcuts to display the Edit Command Mode Short-
cuts dialog box, shown in Figure 5-6. You use this dialog box to change how Note-
book reacts in command mode.

The Help menu contains two other user interface-specific help entries. The first,
Notebook Help, offers extensive online help at http://nbviewer.jupyter.org/
github/ipython/ipython/blob/3.x/examples/Notebook/Index.ipynb. This site
contains tutorials and other aids in more effectively using Notebook to perform
useful work. The second, Markdown, takes you to https://help.github.com/
articles/getting-started-with-writing-and-formatting-on-github/, where
you discover more about formatting the content of markdown cells.

http://nbviewer.jupyter.org/github/ipython/ipython/blob/3.x/examples/Notebook/Index.ipynb
http://nbviewer.jupyter.org/github/ipython/ipython/blob/3.x/examples/Notebook/Index.ipynb
https://help.github.com/articles/getting-started-with-writing-and-formatting-on-github/
https://help.github.com/articles/getting-started-with-writing-and-formatting-on-github/

96 PART 1 Getting Started with Python

FIGURE 5-6:
Modify the

command mode
shortcuts to meet

your specific
needs.

CONSIDERING THE IPYTHON ALTERNATIVE
Chapters 1 through 3 of the book provide insights into using the command-line version
of Python. The command shell IPython looks and acts much like the command line pro-
vided with Python, but it has a number of interesting add-ons. The most noticeable of
these add-ons is the use of color coding for code you type (reducing your chances of
making an error). For example, commands appear in green and text appears in yellow.
The interface also highlights matching parentheses and other block elements so that
you can actually see which block element you’re closing.

The help system is another difference between the Python command line and IPython.
You get additional access to help, and the information you receive is more detailed. One
of the more interesting features in this case is the use of the question mark after the
name of any Python object. For example, if you type print? and press Enter, you see a
quick overview of the print() command. Type ? and press Enter to see the IPython-
specific help overview.

In contrast to the Python command line, IPython also supports many of the Notebook
advanced features, such as magic functions, which the “Using the Magic Functions” sec-
tion of the chapter discusses. These special functions enable you to change how IPython
and Notebook display various kinds of Python output, among other things. In sum,
when you do need to use a command line, use IPython instead of the command line
supplied with Python to obtain added functionality.

CHAPTER 5 Working with Anaconda 97

At the bottom of the Help menu, you see the usual About entry. This entry displays
a dialog box telling you all about your installation. In some cases, you need this
information to obtain help from other Anaconda users. The most important bits of
information are the version of Python and Anaconda that you’re currently using.

The remainder of the Help menu entries will depend on what you have installed at
any given time. Each of these entries is for a specific Python feature (starting with
the Python language itself). You generally see all the common libraries as well,
such as NumPy and SciPy. All these help entries are designed to make it easier for
you to obtain help in creating great code.

Using the Magic Functions
Notebook and its counterpart, IPython, provide you with some special functional-
ity in the form of magic functions. It’s kind of amazing to think that these appli-
cations offer you magic, but that’s precisely what you get with the magic functions.
The magic is in the output. For example, instead of displaying graphic output in a
separate window, you can chose to display it within the cell, as if by magic (because
the cells appear to hold only text). Or you can use magic to check the performance
of your application, without all the usual added code that such performance checks
require.

A magic function begins with either a % or %% sign. Those with a % sign work
within the environment and those with a %% sign work at the cell level. For
example, if you want to obtain a list of magic functions, type %lsmagic and then
press Enter in IPython (or run the command in Notebook) to see them, as shown
in Figure 5-7. (Note that IPython uses the same input, In, and output, Out, prompts
that Notebook uses.)

FIGURE 5-7:
The %lsmagic

function displays
a list of magic

functions for you.

98 PART 1 Getting Started with Python

Not every magic function works with IPython. For example, the %autosave func-
tion has no purpose in IPython because IPython doesn’t automatically save
anything.

Table 5-1 lists a few of the most common magic functions and their purpose. To
obtain a full listing, type %quickref and press Enter in Notebook (or the IPython
console) or check out the full listing at https://damontallen.github.io/
IPython-quick-ref-sheets/.

TABLE 5-1 Common Notebook and IPython Magic Functions

Magic Function
Type Alone
Provides Status? Description

%alias Yes Assigns or displays an alias for a system command.

%autocall Yes Enables you to call functions without including the parentheses.
The settings are Off, Smart (default), and Full. The Smart setting
applies the parentheses only if you include an argument
with the call.

%automagic Yes Enables you to call the line magic functions without including the
percent (%) sign. The settings are False (default) and True.

%autosave Yes Displays or modifies the intervals between automatic Notebook
saves. The default setting is every 120 seconds.

%cd Yes Changes directory to a new storage location. You can also use this
command to move through the directory history or to change
directories to a bookmark.

%cls No Clears the screen.

%colors No Specifies the colors used to display text associated with prompts,
the information system, and exception handlers. You can choose
between NoColor (black and white), Linux (default), and LightBG.

%config Yes Enables you to configure IPython.

%dhist Yes Displays a list of directories visited during the current session.

%file No Outputs the name of the file that contains the source code for
the object.

%hist Yes Displays a list of magic function commands issued during the
current session.

%install_ext No Installs the specified extension.

%load No Loads application code from another source, such as an
online example.

https://damontallen.github.io/IPython-quick-ref-sheets/
https://damontallen.github.io/IPython-quick-ref-sheets/

CHAPTER 5 Working with Anaconda 99

Viewing the Running Processes
The main Notebook page, where you choose which notebooks to open, actually has
three tabs. You normally interact with the Files tab. The Clusters tab is no longer
used, so you don’t need to worry about it. However, the Running tab, shown in
Figure 5-8, does contain some useful information in the form of terminals and
open notebooks.

Magic Function
Type Alone
Provides Status? Description

%load_ext No Loads a Python extension using its module name.

%lsmagic Yes Displays a list of the currently available magic functions.

%magic Yes Displays a help screen showing information about the magic
functions.

%matplotlib Yes Sets the backend processor used for plots. Using the inline value
displays the plot within the cell for an IPython Notebook file. The
possible values are: 'gtk', 'gtk3', 'inline', 'nbagg', 'osx',
'qt', 'qt4', 'qt5', 'tk', and 'wx'.

%paste No Pastes the content of the clipboard into the IPython environment.

%pdef No Shows how to call the object (assuming that the object is callable).

%pdoc No Displays the docstring for an object.

%pinfo No Displays detailed information about the object (often more than
provided by help alone).

%pinfo2 No Displays extra detailed information about the object (when
available).

%reload_ext No Reloads a previously installed extension.

%source No Displays the source code for the object (assuming the source is
available).

%timeit No Calculates the best performance time for an instruction.

%%timeit No Calculates the best time performance for all the instructions in a
cell, apart from the one placed on the same cell line as the cell
magic (which could therefore be an initialization instruction).

%unalias No Removes a previously created alias from the list.

%unload_ext No Unloads the specified extension.

%%writefile No Writes the contents of a cell to the specified file.

100 PART 1 Getting Started with Python

The terminals’ part of the equation only comes into play when you configure your
server to allow multiple users. You won’t use this feature in this book, so it isn’t
discussed. However, you can get information about using terminals at sites such
as https://software.intel.com/en-us/dl-training-tool-devguide-using-
jupyter-notebook-terminal-console and http://jupyter-notebook.readthe
docs.io/en/latest/examples/Notebook/Connecting%20with%20the%20Qt%
20Console.html.

The other element on the Running tab is the Notebooks list, shown in Figure 5-8.
Whenever you run a new notebook, you see its entry added to the list. In this case,
a single notebook is running. You can see that the notebook relies on a Python 3
kernel.

You also have the option of shutting the notebook down. Generally, you want to
use the File ➪ Close and Halt command to shut down a notebook instead of closing
it this way to prevent data loss, but this option can be helpful when the notebook
isn’t responding for whatever reason.

FIGURE 5-8:
View the

terminals
connected to

your system and
the open

notebooks.

https://software.intel.com/en-us/dl-training-tool-devguide-using-jupyter-notebook-terminal-console
https://software.intel.com/en-us/dl-training-tool-devguide-using-jupyter-notebook-terminal-console
http://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/Connecting%20with%20the%20Qt%20Console.html
http://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/Connecting%20with%20the%20Qt%20Console.html
http://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/Connecting%20with%20the%20Qt%20Console.html

2Talking the Talk

IN THIS PART . . .

Store and manage data in memory.

Interact with data and use functions.

Determine which path to take.

Perform tasks more than one time.

Locate, understand, and react to application errors.

CHAPTER 6 Storing and Modifying Information 103

Chapter 6
Storing and Modifying
Information

Chapter 3 introduces you to CRUD, Create, Read, Update, and Delete — not
that Chapter 3 contains cruddy material. This acronym provides an easy
method to remember precisely what tasks all computer programs perform

with information you want to manage. Of course, geeks use a special term for
information — data, but either information or data works fine for this book.

To make information useful, you have to have some means of storing it perma-
nently. Otherwise, every time you turned the computer off, all your information
would be gone and the computer would provide limited value. In addition, Python
must provide some rules for modifying information. The alternative is to have
applications running amok, changing information in any and every conceivable
manner. This chapter is about controlling information — defining how informa-
tion is stored permanently and manipulated by applications you create. You can
find the source code for this chapter in the BPPD_06_Storing_And_Modifying_
Information.ipynb file provided with the downloadable source code, as described
in the book’s Introduction.

 » Understanding data storage

 » Considering the kinds of data
storage

 » Adding dates and times
to applications

104 PART 2 Talking the Talk

Storing Information
An application requires fast access to information or else it will take a long time
to complete tasks. As a result, applications store information in memory.
However, memory is temporary. When you turn off the machine, the information
must be stored in some permanent form, such as on your hard drive, a Universal
Serial Bus (USB) flash drive, a Secure Digital (SD) card, or on the Internet using
something like Anaconda Cloud. In addition, you must also consider the form of
the information, such as whether it’s a number or text. The following sections
discuss the issue of storing information as part of an application in more detail.

Seeing variables as storage boxes
When working with applications, you store information in variables. A variable is
a kind of storage box. Whenever you want to work with the information, you
access it using the variable. If you have new information you want to store, you
put it in a variable. Changing information means accessing the variable first and
then storing the new value in the variable. Just as you store things in boxes in the
real world, so you store things in variables (a kind of storage box) when working
with applications.

Computers are actually pretty tidy. Each variable stores just one piece of information.
Using this technique makes it easy to find the particular piece of information you
need — unlike in your closet, where things from ancient Egypt could be hidden. Even
though the examples you work with in previous chapters don’t use variables, most
applications rely heavily on variables to make working with information easier.

Using the right box to store the data
People tend to store things in the wrong sort of box. For example, you might find
a pair of shoes in a garment bag and a supply of pens in a shoebox. However,
Python likes to be neat. As a result, you find numbers stored in one sort of variable
and text stored in an entirely different kind of variable. Yes, you use variables in
both cases, but the variable is designed to store a particular kind of information.
Using specialized variables makes it possible to work with the information inside
in particular ways. You don’t need to worry about the details just yet — just keep
in mind that each kind of information is stored in a special kind of variable.

Python uses specialized variables to store information to make things easy for the
programmer and to ensure that the information remains safe. However, comput-
ers don’t actually know about information types. All that the computer knows
about are 0s and 1s, which is the absence or presence of a voltage. At a higher level,
computers do work with numbers, but that’s the extent of what computers do.
Numbers, letters, dates, times, and any other kind of information you can think

CHAPTER 6 Storing and Modifying Information 105

about all come down to 0s and 1s in the computer system. For example, the letter
A is actually stored as 01000001 or the number 65. The computer has no concept
of the letter A or of a date such as 8/31/2017.

Defining the Essential Python Data Types
Every programming language defines variables that hold specific kinds of infor-
mation, and Python is no exception. The specific kind of variable is called a data
type. Knowing the data type of a variable is important because it tells you what
kind of information you find inside. In addition, when you want to store informa-
tion in a variable, you need a variable of the correct data type to do it. Python
doesn’t allow you to store text in a variable designed to hold numeric information.
Doing so would damage the text and cause problems with the application. You can
generally classify Python data types as numeric, string, and Boolean, although
there really isn’t any limit on just how you can view them. The following sections
describe each of the standard Python data types within these classifications.

Putting information into variables
To place a value into any variable, you make an assignment using the assignment
operator (=). Chapter 7 discusses the whole range of basic Python operators in
more detail, but you need to know how to use this particular operator to some
extent now. For example, to place the number 5 into a variable named myVar, you
type myVar = 5 and press Enter at the Python prompt. Even though Python doesn’t
provide any additional information to you, you can always type the variable name
and press Enter to see the value it contains, as shown in Figure 6-1.

FIGURE 6-1:
Use the

 assignment
operator to place
information into

a variable.

106 PART 2 Talking the Talk

Understanding the numeric types
Humans tend to think about numbers in general terms. We view 1 and 1.0 as being
the same number — one of them simply has a decimal point. However, as far as
we’re concerned, the two numbers are equal and we could easily use them inter-
changeably. Python views them as being different kinds of numbers because each
form requires a different kind of processing. The following sections describe the
integer, floating-point, and complex number classes of data types that Python
supports.

Integers
Any whole number is an integer. For example, the value 1 is a whole number, so it’s
an integer. On the other hand, 1.0 isn’t a whole number; it has a decimal part to it,
so it’s not an integer. Integers are represented by the int data type.

As with storage boxes, variables have capacity limits. Trying to stuff a value that’s
too large into a storage box results in an error. On most platforms, you can store
numbers between –9,223,372,036,854,775,808 and 9,223,372,036,854,775,807
within an int (which is the maximum value that fits in a 64-bit variable). Even
though that’s a really large number, it isn’t infinite.

When working with the int type, you have access to a number of interesting fea-
tures. Many of them appear later in the book, but one feature is the ability to use
different numeric bases:

 » Base 2: Uses only 0 and 1 as numbers.

 » Base 8: Uses the numbers 0 through 7.

 » Base 10: Uses the usual numeric system.

 » Base 16: Is also called hex and uses the numbers 0 through 9 and the letters A
through F to create 16 different possible values.

To tell Python when to use bases other than base 10, you add a 0 and a special let-
ter to the number. For example, 0b100 is the value one-zero-zero in base 2. Here
are the letters you normally use:

 » b: Base 2

 » o: Base 8

 » x: Base 16

You can also convert numeric values to other bases by using the bin(), oct(), and
hex() commands. So, putting everything together, you can see how to convert

CHAPTER 6 Storing and Modifying Information 107

between bases using the commands shown in Figure 6-2. Try the command
shown in the figure yourself so that you can see how the various bases work. Using
a different base actually makes things easier in many situations, and you’ll
encounter some of those situations later in the book. For now, all you really need
to know is that integers support different numeric bases.

Floating-point values
Any number that includes a decimal portion is a floating-point value. For exam-
ple, 1.0 has a decimal part, so it’s a floating-point value. Many people get con-
fused about whole numbers and floating-point numbers, but the difference is
easy to remember. If you see a decimal in the number, then it’s a floating-point
value. Python stores floating-point values in the float data type.

Floating-point values have an advantage over integer values in that you can store
immensely large or incredibly small values in them. As with integer variables,
floating-point variables have a storage capacity. In their case, the maximum value
that a variable can contain is ±1.7976931348623157 × 10308 and the minimum value
that a variable can contain is ±2.2250738585072014 × 10-308 on most platforms.

When working with floating-point values, you can assign the information to the
variable in a number of ways. The two most common methods are to provide the
number directly and to use scientific notation. When using scientific notation, an
e separates the number from its exponent. Figure 6-3 shows both methods of
making an assignment. Notice that using a negative exponent results in a
 fractional value.

FIGURE 6-2:
Integers have

many interesting
features,

including the
capability to use

different numeric
bases.

108 PART 2 Talking the Talk

UNDERSTANDING THE NEED
FOR MULTIPLE NUMBER TYPES
A lot of new developers (and even some older ones) have a hard time understanding
why there is a need for more than one numeric type. After all, humans can use just one
kind of number. To understand the need for multiple number types, you have to
 understand a little about how a computer works with numbers.

An integer is stored in the computer as simply a series of bits that the computer reads
directly. A value of 0100 in binary equates to a value of 4 in decimal. On the other hand,
numbers that have decimal points are stored in an entirely different manner. Think
back to all those classes you slept through on exponents in school — they actually come
in handy sometimes. A floating-point number is stored as a sign bit (plus or minus),
mantissa (the fractional part of the number), and exponent (the power of 2). (Some texts
use the term significand in place of mantissa — the terms are interchangeable.) To
obtain the floating-point value, you use the equation:

Value = Mantissa * 2^Exponent

At one time, computers all used different floating-point representations, but they all use
the IEEE-754 standard now. You can read about this standard at http://grouper.
ieee.org/groups/754/. A full explanation of precisely how floating-point numbers
work is outside the scope of this book, but you can read a fairly understandable
 description at http://www.cprogramming.com/tutorial/floating_point/
understanding_floating_point_representation.html. Nothing helps you
understand a concept like playing with the values. You can find a really interesting
 floating-point number converter at http://www.h-schmidt.net/FloatConverter/
IEEE754.html, where you can click the individual bits (to turn them off or on) and see
the floating-point number that results.

As you might imagine, floating-point numbers tend to consume more space in memory
because of their complexity. In addition, they use an entirely different area of the
 processor — one that works more slowly than the part used for integer math. Finally,
integers are precise, as contrasted to floating-point numbers, which can’t precisely
 represent some numbers, so you get an approximation instead. However, floating-point
variables can store much larger numbers. The bottom line is that decimals are unavoid-
able in the real world, so you need floating-point numbers, but using integers when you
can reduces the amount of memory your application consumes and helps it work
faster. Computer systems have many trade-offs, and this one is unavoidable.

http://grouper.ieee.org/groups/754/
http://grouper.ieee.org/groups/754/
http://www.cprogramming.com/tutorial/floating_point/understanding_floating_point_representation.html
http://www.cprogramming.com/tutorial/floating_point/understanding_floating_point_representation.html
http://www.h-schmidt.net/FloatConverter/IEEE754.html
http://www.h-schmidt.net/FloatConverter/IEEE754.html

CHAPTER 6 Storing and Modifying Information 109

Complex numbers
You may or may not remember complex numbers from school. A complex number
consists of a real number and an imaginary number that are paired together. Just
in case you’ve completely forgotten about complex numbers, you can read about
them at http://www.mathsisfun.com/numbers/complex-numbers.html. Real-
world uses for complex numbers include:

 » Electrical engineering

 » Fluid dynamics

 » Quantum mechanics

 » Computer graphics

 » Dynamic systems

Complex numbers have other uses, too, but this list should give you some ideas.
In general, if you aren’t involved in any of these disciplines, you probably won’t
ever encounter complex numbers. However, Python is one of the few languages
that provides a built-in data type to support them. As you progress through the
book, you find other ways in which Python lends itself especially well to science
and engineering.

The imaginary part of a complex number always appears with a j after it. So, if you
want to create a complex number with 3 as the real part and 4 as the imaginary
part, you make an assignment like this:

myComplex = 3 + 4j

If you want to see the real part of the variable, you simply type myComplex.real at
the Python prompt and press Enter. Likewise, if you want to see the imaginary part
of the variable, you type myComplex.imag at the Python prompt and press Enter.

FIGURE 6-3:
Floating-point

values provide
multiple

assignment
techniques.

http://www.mathsisfun.com/numbers/complex-numbers.html

110 PART 2 Talking the Talk

Understanding Boolean values
It may seem amazing, but computers always give you a straight answer! A com-
puter will never provide “maybe” as output. Every answer you get is either True
or False. In fact, there is an entire branch of mathematics called Boolean algebra
that was originally defined by George Boole (a super-geek of his time) that com-
puters rely upon to make decisions. Contrary to common belief, Boolean algebra
has existed since 1854 — long before the time of computers.

When using Boolean value in Python, you rely on the bool type. A variable of this
type can contain only two values: True or False. You can assign a value by using
the True or False keywords, or you can create an expression that defines a logical
idea that equates to true or false. For example, you could say, myBool = 1 > 2,
which would equate to False because 1 is most definitely not greater than 2. You
see the bool type used extensively in the book, so don’t worry about understand-
ing this concept right now.

Understanding strings
Of all the data types, strings are the most easily understood by humans and not
understood at all by computers. If you have read the previous chapters in this
book, you have already seen strings used quite often. For example, all the example
code in Chapter 4 relies on strings. A string is simply any grouping of characters
you place within double quotes. For example, myString = "Python is a great
language." assigns a string of characters to myString.

The computer doesn’t see letters at all. Every letter you use is represented by a
number in memory. For example, the letter A is actually the number 65. To see
this for yourself, type print(ord(“A”)) at the Python prompt and press Enter. You
see 65 as output. You can convert any single letter to its numeric equivalent by
using the ord() command.

DETERMINING A VARIABLE’S TYPE
Sometimes you might want to know the variable type. Perhaps the type isn’t obvious
from the code or you’ve received the information from a source whose code isn’t acces-
sible. Whenever you want to see the type of a variable, use the type() method. For
example, if you start by placing a value of 5 in myInt by typing myInt = 5 and pressing
Enter, you can find the type of myInt by typing type(myInt) and pressing Enter.
The output will be <class 'int'>, which means that myInt contains an int value.

CHAPTER 6 Storing and Modifying Information 111

Because the computer doesn’t really understand strings, but strings are so useful
in writing applications, you sometimes need to convert a string to a number. You
can use the int() and float() commands to perform this conversion. For exam-
ple, if you type myInt = int(“123”) and press Enter at the Python prompt, you
create an int named myInt that contains the value 123. Figure 6-4 shows how you
can perform this task and validate the content and type of myInt.

You can convert numbers to a string as well by using the str() command. For
example, if you type myStr = str(1234.56) and press Enter, you create a string con-
taining the value "1234.56" and assign it to myStr. Figure 6-5 shows this type of
conversion and the test you can perform on it. The point is that you can go back and
forth between strings and numbers with great ease. Later chapters demonstrate
how these conversions make a lot of seemingly impossible tasks quite doable.

Working with Dates and Times
Dates and times are items that most people work with quite a bit. Society bases
almost everything on the date and time that a task needs to be or was completed.
We make appointments and plan events for specific dates and times. Most of our
day revolves around the clock. Because of the time-oriented nature of humans,
it’s a good idea to look at how Python deals with interacting with dates and time
(especially storing these values for later use). As with everything else, computers
understand only numbers — the date and time don’t really exist.

FIGURE 6-4:
Converting a

string to a
number is easy

by using the
int() and
float()

commands.

FIGURE 6-5:
You can convert

numbers to
strings as well.

112 PART 2 Talking the Talk

To work with dates and times, you need to perform a special task in Python. When
writing computer books, chicken-and-egg scenarios always arise, and this is one
of them. To use dates and times, you must issue a special import datetime com-
mand. Technically, this act is called importing a package, and you learn more about
it in Chapter 11. Don’t worry how the command works right now — just use it
whenever you want to do something with date and time.

Computers do have clocks inside them, but the clocks are for the humans using
the computer. Yes, some software also depends on the clock, but again, the
emphasis is on human needs rather than anything the computer might require. To
get the current time, you can simply type datetime.datetime.now() and press
Enter. You see the full date and time information as found on your computer’s
clock (see Figure 6-6).

You may have noticed that the date and time are a little hard to read in the existing
format. Say that you want to get just the current date, in a readable format. It’s
time to combine a few things you discovered in previous sections to accomplish
that task. Type str(datetime.datetime.now().date()) and press Enter. Figure 6-7
shows that you now have something a little more usable.

Interestingly enough, Python also has a time() command, which you can use to
obtain the current time. You can obtain separate values for each of the compo-
nents that make up date and time by using the day, month, year, hour, minute,
second, and microsecond values. Later chapters help you understand how to use
these various date and time features to keep application users informed about the
current date and time on their system.

FIGURE 6-7:
Make the date
and time more

readable by using
the str()

command.

FIGURE 6-6:
Get the current

date and time by
using the now()

command.

CHAPTER 7 Managing Information 113

Chapter 7
Managing Information

Whether you use the term information or data to refer to the content that
applications manage, the fact is that you must provide some means of
working with it or your application really doesn’t have a purpose.

Throughout the rest of the book, you see information and data used interchange-
ably because they really are the same thing, and in real-world situations, you’ll
encounter them both, so getting used to both is a good idea. No matter which term
you use, you need some means of assigning data to variables, modifying the con-
tent of those variables to achieve specific goals, and comparing the result you
receive with desired results. This chapter addresses all three requirements so that
you can start to control data within your applications.

Also essential is to start working through methods of keeping your code under-
standable. Yes, you could write your application as a really long procedure, but
trying to understand such a procedure is incredibly hard, and you’d find yourself
repeating some steps because they must be done more than once. Functions are
one way for you to package code so that you can more easily understand and reuse
as needed.

Applications also need to interact with the user. Yes, some perfectly usable appli-
cations are out there that don’t really interact with the user, but they’re extremely
rare and don’t really do much, for the most part. In order to provide a useful

 » Understanding the Python view
of data

 » Using operators to assign, modify,
and compare data

 » Organizing code using functions

 » Interacting with the user

114 PART 2 Talking the Talk

service, most applications interact with the user to discover how the user wants to
manage data. You get an overview of this process in this chapter. Of course, you
visit the topic of user interaction quite often throughout the book because it’s an
important topic.

Controlling How Python Views Data
As discussed in Chapter 6, all data on your computer is stored as 0s and 1s. The
computer doesn’t understand the concept of letters, Boolean values, dates, times,
or any other kind of information except numbers. In addition, a computer’s capa-
bility to work with numbers is both inflexible and relatively simplistic. When you
work with a string in Python, you’re depending on Python to translate the concept
of a string into a form the computer can understand. The storage containers that
your application creates and uses in the form of variables tell Python how to treat
the 0s and 1s that the computer has stored. So, you need to understand that the
Python view of data isn’t the same as your view of data or the computer’s view of
data — Python acts as an intermediary to make your applications functional.

To manage data within an application, the application must control the way in
which Python views the data. The use of operators, packaging methods such as
functions, and the introduction of user input all help applications control data. All
these techniques rely, in part, on making comparisons. Determining what to do
next means understanding what state the data is in now as compared to some
other state. If the variable contains the name John now, but you really want it to
contain Mary instead, then you first need to know that it does in fact contain John.
Only then can you make the decision to change the content of the variable to Mary.

Making comparisons
Python’s main method for making comparisons is through the use of operators. In
fact, operators play a major role in manipulating data as well. The upcoming
“Working with Operators” section discusses how operators work and how you can
use them in applications to control data in various ways. Later chapters use oper-
ators extensively as you discover techniques for creating applications that can
make decisions, perform tasks repetitively, and interact with the user in interest-
ing ways. However, the basic idea behind operators is that they help applications
perform various types of comparisons.

CHAPTER 7 Managing Information 115

In some cases, you use some fancy methods for performing comparisons in an
application. For example, you can compare the output of two functions (as
described in the “Comparing function output” section, later in this chapter). With
Python, you can perform comparisons at a number of levels so that you can man-
age data without a problem in your application. Using these techniques hides
detail so that you can focus on the point of the comparison and define how to react
to that comparison rather than become mired in detail. Your choice of techniques
for performing comparisons affects the manner in which Python views the data
and determines the sorts of things you can do to manage the data after the com-
parison is made. All this functionality might seem absurdly complex at the
moment, but the important point to remember is that applications require com-
parisons in order to interact with data correctly.

Understanding how computers
make comparisons
Computers don’t understand packaging, such as functions, or any of the other
structures that you create with Python. All this packaging is for your benefit,
not the computer’s. However, computers do directly support the concept of oper-
ators. Most Python operators have a direct corollary with a command that the
computer understands directly. For example, when you ask whether one number
is greater than another number, the computer can actually perform this computa-
tion directly, using an operator. (The upcoming section explains operators in
detail.)

Some comparisons aren’t direct. Computers work only with numbers. So, when
you ask Python to compare two strings, what Python actually does is compare the
numeric value of each character in the string. For example, the letter A is actually
the number 65 in the computer. A lowercase letter a has a different numeric
value — 97. As a result, even though you might see ABC as being equal to abc, the
computer doesn’t agree — it sees them as different because the numeric values of
their individual letters are different.

Working with Operators
Operators are the basis for both control and management of data within applica-
tions. You use operators to define how one piece of data is compared to another
and to modify the information within a single variable. In fact, operators are

116 PART 2 Talking the Talk

essential to performing any sort of math-related task and to assigning data to
variables in the first place.

When using an operator, you must supply either a variable or an expression. You
already know that a variable is a kind of storage box used to hold data. An expres-
sion is an equation or formula that provides a description of a mathematical con-
cept. In most cases, the result of evaluating an expression is a Boolean (true or
false) value. The following sections describe operators in detail because you use
them everywhere throughout the rest of the book.

Defining the operators
An operator accepts one or more inputs in the form of variables or expressions,
performs a task (such as comparison or addition), and then provides an output
consistent with that task. Operators are classified partially by their effect and par-
tially by the number of elements they require. For example, a unary operator
works with a single variable or expression; a binary operator requires two.

The elements provided as input to an operator are called operands. The operand on
the left side of the operator is called the left operand, while the operand on the
right side of the operator is called the right operand. The following list shows the
categories of operators that you use within Python:

 » Unary

 » Arithmetic

 » Relational

 » Logical

 » Bitwise

 » Assignment

 » Membership

 » Identity

Each of these categories performs a specific task. For example, the arithmetic
operators perform math-based tasks, while relational operators perform com-
parisons. The following sections describe the operators based on the category in
which they appear.

CHAPTER 7 Managing Information 117

UNDERSTANDING PYTHON’S ONE
TERNARY OPERATOR
A ternary operator requires three elements. Python supports just one such operator,
and you use it to determine the truth value of an expression. This ternary operator
takes the following form (it apparently has no actual name, but you can call it the
if. . .else operator if desired):

TrueValue if Expression else FalseValue

When the Expression is true, the operator outputs TrueValue. When the expression
is false, it outputs FalseValue. As an example, if you type

"Hello" if True else "Goodbye"

the operator outputs a response of 'Hello'. However, if you type

"Hello" if False else "Goodbye"

the operator outputs a response of 'Goodbye'. This is a handy operator for times
when you need to make a quick decision and don’t want to write a lot of code to do it.

One of the advantages of using Python is that it normally has more than one way to do
things. Python has an alternative form of this ternary operator — an even shorter short-
cut. It takes the following form:

(FalseValue, TrueValue)[Expression]

As before, when Expression is true, the operator outputs TrueValue; otherwise, it
outputs FalseValue. Notice that the TrueValue and FalseValue elements are
reversed in this case. An example of this version is

("Hello", "Goodbye")[True]

In this case, the output of the operator is 'Goodbye' because that’s the value in the True
Value position. Of the two forms, the first is a little clearer, while the second is shorter.

Unary
Unary operators require a single variable or expression as input. You often use
these operators as part of a decision-making process. For example, you might
want to find something that isn’t like something else. Table 7-1 shows the unary
operators.

118 PART 2 Talking the Talk

Arithmetic
Computers are known for their capability to perform complex math. However, the
complex tasks that computers perform are often based on much simpler math
tasks, such as addition. Python provides access to libraries that help you perform
complex math tasks, but you can always create your own libraries of math func-
tions using the simple operators found in Table 7-2.

Relational
The relational operators compare one value to another and tell you when the
relationship you’ve provided is true. For example, 1 is less than 2, but 1 is never
greater than 2. The truth value of relations is often used to make decisions in your
applications to ensure that the condition for performing a specific task is met.
Table 7-3 describes the relational operators.

TABLE 7-2 Python Arithmetic Operators
Operator Description Example

+ Adds two values together 5 + 2 = 7

- Subtracts the right operand from the left operand 5 – 2 = 3

* Multiplies the right operand by the left operand 5 * 2 = 10

/ Divides the left operand by the right operand 5 / 2 = 2.5

% Divides the left operand by the right operand and returns the remainder 5 % 2 = 1

** Calculates the exponential value of the right operand by the left operand 5 ** 2 = 25

// Performs integer division, in which the left operand is divided by the right operand
and only the whole number is returned (also called floor division)

5 // 2 = 2

TABLE 7-1 Python Unary Operators
Operator Description Example

~ Inverts the bits in a number so that all the 0 bits become 1 bits and
vice versa.

~4 results in a value of –5

- Negates the original value so that positive becomes negative and
vice versa.

–(–4) results in 4 and –4
results in –4

+ Is provided purely for the sake of completeness. This operator
returns the same value that you provide as input.

+4 results in a value of 4

CHAPTER 7 Managing Information 119

Logical
The logical operators combine the true or false value of variables or expressions
so that you can determine their resultant truth value. You use the logical operators
to create Boolean expressions that help determine whether to perform tasks.
Table 7-4 describes the logical operators.

TABLE 7-3 Python Relational Operators
Operator Description Example

== Determines whether two values are equal. Notice that the relational operator
uses two equals signs. A mistake many developers make is using just one
equals sign, which results in one value being assigned to another.

1 == 2 is False

!= Determines whether two values are not equal. Some older versions of Python
allowed you to use the <> operator in place of the != operator. Using the <>
operator results in an error in current versions of Python.

1 != 2 is True

> Verifies that the left operand value is greater than the right operand value. 1 > 2 is False

< Verifies that the left operand value is less than the right operand value. 1 < 2 is True

>= Verifies that the left operand value is greater than or equal to the right
operand value.

1 >= 2 is False

<= Verifies that the left operand value is less than or equal to the right
operand value.

1 <= 2 is True

TABLE 7-4 Python Logical Operators
Operator Description Example

and Determines whether both operands are true. True and True is True

True and False is False

False and True is False

False and False is False

or Determines when one of two operands is true. True or True is True

True or False is True

False or True is True

False or False is False

not Negates the truth value of a single operand. A true value becomes
false and a false value becomes true.

not True is False

not False is True

120 PART 2 Talking the Talk

Bitwise
The bitwise operators interact with the individual bits in a number. For example,
the number 6 is actually 0b0110 in binary.

If your binary is a little rusty, you can use the handy Binary to Decimal to Hexadeci-
mal Converter at http://www.mathsisfun.com/binary-decimal-hexadecimal-
converter.html. You need to enable JavaScript to make the site work.

A bitwise operator would interact with each bit within the number in a specific
way. When working with a logical bitwise operator, a value of 0 counts as false and
a value of 1 counts as true. Table 7-5 describes the bitwise operators.

Assignment
The assignment operators place data within a variable. The simple assignment
operator appears in previous chapters of the book, but Python offers a number of
other interesting assignment operators that you can use. These other assignment

TABLE 7-5 Python Bitwise Operators
Operator Description Example

& (And) Determines whether both individual bits within
two operators are true and sets the resulting bit
to true when they are.

0b1100 & 0b0110 = 0b0100

| (Or) Determines whether either of the individual bits
within two operators is true and sets the resulting
bit to true when one of them is.

0b1100 | 0b0110 = 0b1110

^ (Exclusive or) Determines whether just one of the individual
bits within two operators is true and sets the
resulting bit to true when one is. When both bits
are true or both bits are false, the result is false.

0b1100 ^ 0b0110 = 0b1010

~ (One’s complement) Calculates the one’s complement value
of a number.

~0b1100 = –0b1101

~0b0110 = –0b0111

<< (Left shift) Shifts the bits in the left operand left by the value
of the right operand. All new bits are set to 0 and
all bits that flow off the end are lost.

0b00110011 << 2 =
0b11001100

>> (Right shift) Shifts the bits in the left operand right by the
value of the right operand. All new bits are set to
0 and all bits that flow off the end are lost.

0b00110011 >> 2 =
0b00001100

http://www.mathsisfun.com/binary-decimal-hexadecimal-converter.html
http://www.mathsisfun.com/binary-decimal-hexadecimal-converter.html

CHAPTER 7 Managing Information 121

operators can perform mathematical tasks during the assignment process, which
makes it possible to combine assignment with a math operation. Table 7-6
describes the assignment operators. For this particular table, the initial value of
MyVar in the Example column is 5.

Membership
The membership operators detect the appearance of a value within a list or
sequence and then output the truth value of that appearance. Think of the mem-
bership operators as you would a search routine for a database. You enter a value
that you think should appear in the database, and the search routine finds it for
you or reports that the value doesn’t exist in the database. Table 7-7 describes the
membership operators.

TABLE 7-6 Python Assignment Operators
Operator Description Example

= Assigns the value found in the right operand to the left operand. MyVar = 5 results in
MyVar containing 5

+= Adds the value found in the right operand to the value found in the
left operand and places the result in the left operand.

MyVar += 2 results in
MyVar containing 7

-= Subtracts the value found in the right operand from the value found
in the left operand and places the result in the left operand.

MyVar −= 2 results in
MyVar containing 3

*= Multiplies the value found in the right operand by the value found in
the left operand and places the result in the left operand.

MyVar *= 2 results in
MyVar containing 10

/= Divides the value found in the left operand by the value found in the
right operand and places the result in the left operand.

MyVar /= 2 results in
MyVar containing 2.5

%= Divides the value found in the left operand by the value found in the
right operand and places the remainder in the left operand.

MyVar %= 2 results in
MyVar containing 1

**= Determines the exponential value found in the left operand when
raised to the power of the value found in the right operand and
places the result in the left operand.

MyVar **= 2 results in
MyVar containing 25

//= Divides the value found in the left operand by the value found in the
right operand and places the integer (whole number) result in the
left operand.

MyVar //= 2 results in
MyVar containing 2

122 PART 2 Talking the Talk

Identity
The identity operators determine whether a value or expression is of a certain
class or type. You use identity operators to ensure that you’re actually working
with the sort of information that you think you are. Using the identity operators
can help you avoid errors in your application or determine the sort of processing
a value requires. Table 7-8 describes the identity operators.

Understanding operator precedence
When you create simple statements that contain just one operator, the order of
determining the output of that operator is also simple. However, when you start
working with multiple operators, it becomes necessary to determine which opera-
tor to evaluate first. For example, you should know whether 1 + 2 * 3 evaluates to
7 (where the multiplication is done first) or 9 (where the addition is done first). An
order of operator precedence tells you that the answer is 7 unless you use paren-
theses to override the default order. In this case, (1 + 2) * 3 would evaluate to 9
because the parentheses have a higher order of precedence than multiplication
does. Table 7-9 defines the order of operator precedence for Python.

TABLE 7-8 Python Identity Operators
Operator Description Example

Is Evaluates to true when the type of the value or expression in the
right operand points to the same type in the left operand.

type(2) is int is True

is not Evaluates to true when the type of the value or expression in the
right operand points to a different type than the value or expression
in the left operand.

type(2) is not int is False

TABLE 7-7 Python Membership Operators
Operator Description Example

In Determines whether the value in the left operand appears in the
sequence found in the right operand.

“Hello” in “Hello
Goodbye” is True

not in Determines whether the value in the left operand is missing from the
sequence found in the right operand.

“Hello” not in “Hello
Goodbye” is False

CHAPTER 7 Managing Information 123

Creating and Using Functions
To manage information properly, you need to organize the tools used to perform
the required tasks. Each line of code that you create performs a specific task, and
you combine these lines of code to achieve a desired result. Sometimes you need to
repeat the instructions with different data, and in some cases your code becomes
so long that keeping track of what each part does is hard. Functions serve as orga-
nization tools that keep your code neat and tidy. In addition, functions make it easy
to reuse the instructions you’ve created as needed with different data. This section

TABLE 7-9 Python Operator Precedence
Operator Description

() You use parentheses to group expressions and to override the default precedence
so that you can force an operation of lower precedence (such as addition) to take
precedence over an operation of higher precedence (such as multiplication).

** Exponentiation raises the value of the left operand to the power of the right operand.

~ + - Unary operators interact with a single variable or expression.

* / % // Multiply, divide, modulo, and floor division.

+ - Addition and subtraction.

>> << Right and left bitwise shift.

& Bitwise AND.

^ | Bitwise exclusive OR and standard OR.

<= < > >= Comparison operators.

== != Equality operators.

= %= /= //=
-= += *= **=

Assignment operators.

Is

is not

Identity operators.

In

not in

Membership operators.

not or and Logical operators.

124 PART 2 Talking the Talk

of the chapter tells you all about functions. More important, in this section you
start creating your first serious applications in the same way that professional
developers do.

Viewing functions as code packages
You go to your closet, open the door, and everything spills out. In fact, it’s an
avalanche, and you’re lucky that you’ve survived. That bowling ball in the top
shelf could have done some severe damage! However, you’re armed with storage
boxes and soon you have everything in the closet in neatly organized boxes. The
shoes go in one box, games in another, and old cards and letters in yet another.
After you’re done, you can find anything you want in the closet without fear of
injury. Functions are just like that: They take messy code and place it in packages
that make it easy to see what you have and understand how it works.

Commentaries abound on just what functions are and why they’re necessary, but
when you boil down all that text, it comes down to a single idea: Functions provide
a means of packaging code to make it easy to find and access. If you can think of
functions as organizers, you find that working with them is much easier. For
example, you can avoid the problem that many developers have of stuffing the
wrong items in a function. All your functions will have a single purpose, just like
those storage boxes in the closet.

Understanding code reusability
You go to your closet, take out new pants and shirt, remove the labels, and put
them on. At the end of the day, you take everything off and throw it in the trash.
Hmmm . . . That really isn’t what most people do. Most people take the clothes off,
wash them, and then put them back into the closet for reuse. Functions are reus-
able, too. No one wants to keep repeating the same task; it becomes monotonous
and boring. When you create a function, you define a package of code that you can
use over and over to perform the same task. All you need to do is tell the computer
to perform a specific task by telling it which function to use. The computer faith-
fully executes each instruction in the function absolutely every time you ask it to
do so.

When you work with functions, the code that needs services from the function is
named the caller, and it calls upon the function to perform tasks for it. Much of the
information you see about functions refers to the caller. The caller must supply
information to the function, and the function returns information to the caller.

CHAPTER 7 Managing Information 125

At one time, computer programs didn’t include the concept of code reusability. As
a result, developers had to keep reinventing the same code. It didn’t take long for
someone to come up with the idea of functions, though, and the concept has
evolved over the years until functions have become quite flexible. You can make
functions do anything you want. Code reusability is a necessary part of applica-
tions to

 » Reduce development time

 » Reduce programmer error

 » Increase application reliability

 » Allow entire groups to benefit from the work of one programmer

 » Make code easier to understand

 » Improve application efficiency

In fact, functions do a whole list of things for applications in the form of reus-
ability. As you work through the examples in this book, you see how reusability
makes your life significantly easier. If not for reusability, you’d still be program-
ming by plugging 0s and 1s into the computer by hand.

Defining a function
Creating a function doesn’t require much work. Python tends to make things fast
and easy for you. The following steps show you the process of creating a function
that you can later access:

1. Create a new notebook in Notebook.

The book uses the filename BPPD_07_Managing_Information.ipynb, which
is where you find all the source code for this chapter. See the Introduction for
information on using the downloadable source.

2. Type def Hello(): and press Enter.

This step tells Python to define a function named Hello. The parentheses are
important because they define any requirements for using the function. (There
aren’t any requirements in this case.) The colon at the end tells Python that
you’re done defining the way in which people will access the function. Notice
that the insertion pointer is now indented, as shown in Figure 7-1. This
indentation is a reminder that you must give the function a task to perform.

126 PART 2 Talking the Talk

3. Type print(“This is my first Python function!”) and press Enter.

You should notice something special, as shown in Figure 7-2. The insertion
pointer is still indented because Notebook is waiting for you to provide the
next step in the function.

4. Click Run Cell.

The function is now complete.

Even though this is a really simple function, it demonstrates the pattern you use
when creating any Python function. You define a name, provide any requirements
for using the function (none in this case), and provide a series of steps for using
the function. A function ends when the insertion point is at the left side or you
move to the next cell.

Accessing functions
After you define a function, you probably want to use it to perform useful work. Of
course, this means knowing how to access the function. In the previous section,
you create a new function named Hello(). To access this function, you type

FIGURE 7-1:
Define the name
of your function.

FIGURE 7-2:
Notebook awaits

your next
instruction.

CHAPTER 7 Managing Information 127

Hello() and click Run Cell. Figure 7-3 shows the output you see when you execute
this function.

Every function you create will provide a similar pattern of usage. You type the
function name, an open parenthesis, any required input, and a close parenthesis;
then you press Enter. In this case, you have no input, so all you type is Hello(). As
the chapter progresses, you see other examples for which input is required.

Sending information to functions
The Hello() example in the previous section is nice because you don’t have to
keep typing that long string every time you want to say Hello(). However, it’s
also quite limited because you can use it to say only one thing. Functions should
be flexible and allow you to do more than just one thing. Otherwise, you end up
writing a lot of functions that vary by the data they use rather than the function-
ality they provide. Using arguments helps you create functions that are flexible
and can use a wealth of data.

Understanding arguments
The term argument doesn’t mean that you’re going to have a fight with the func-
tion; it means that you supply information to the function to use in processing a
request. Perhaps a better word for it would be input, but the term input has been
used for so many other purposes that developers decided to use something a bit
different: argument. Although the purpose of an argument might not be clear from
its name, understanding what it does is relatively straightforward. An argument
makes it possible for you to send data to the function so that the function can use
it when performing a task. Using arguments makes your function more flexible.

The Hello() function is currently inflexible because it prints just one string. Add-
ing an argument to the function can make it a lot more flexible because you can
send strings to the function to say anything you want. To see how arguments
work, create a new function in the notebook. This version of Hello(), Hello2(),
requires an argument:

def Hello2(Greeting):
 print(Greeting)

FIGURE 7-3:
Whenever you

type the
function’s name,

you get the
output the

function provides.

128 PART 2 Talking the Talk

Notice that the parentheses are no longer empty. They contain a word, Greeting,
which is the argument for Hello2(). The Greeting argument is actually a variable
that you can pass to print() in order to see it onscreen.

Sending required arguments
You have a new function, Hello2(). This function requires that you provide an
argument to use it. At least, that’s what you’ve heard so far. Type Hello2() and
click Run Cell. You see an error message, as shown in Figure 7-4, telling you that
Hello2() requires an argument.

Not only does Python tell you that the argument is missing, it tells you the name
of the argument as well. Creating a function the way you have done so far means
that you must supply an argument. Type Hello2(“This is an interesting func-
tion.”) and click Run Cell. This time, you see the expected output. However, you
still don’t know whether Hello2() is flexible enough to print multiple messages.
Type Hello2(“Another message. . .”) and click Run Cell. You see the expected
output again, as shown in Figure 7-5, so Hello2() is indeed an improvement over
Hello().

You might easily to assume that Greeting will accept only a string from the tests
you have performed so far. Type Hello2(1234), click Run Cell, and you see 1234 as
the output. Likewise, type Hello2(5 + 5) and click Run Cell. This time you see the
result of the expression, which is 10.

FIGURE 7-4:
You must supply
an argument or
you get an error

message.

FIGURE 7-5:
Use Hello2()

to print any
message

you desire.

CHAPTER 7 Managing Information 129

Sending arguments by keyword
As your functions become more complex and the methods to use them do as well,
you may want to provide a little more control over precisely how you call the func-
tion and provide arguments to it. Up until now, you have positional arguments,
which means that you have supplied values in the order in which they appear in
the argument list for the function definition. However, Python also has a method
for sending arguments by keyword. In this case, you supply the name of the argu-
ment followed by an equals sign (=) and the argument value. To see how this
works, type the following function in the notebook:

def AddIt(Value1, Value2):
 print(Value1, " + ", Value2, " = ", (Value1 + Value2))

Notice that the print() function argument includes a list of items to print and
that those items are separated by commas. In addition, the arguments are of dif-
ferent types. Python makes it easy to mix and match arguments in this manner.

Time to test AddIt(). Of course, you want to try the function using positional
arguments first, so type AddIt(2, 3) and click Run Cell. You see the expected out-
put of 2 + 3 = 5. Now type AddIt(Value2 = 3, Value1 = 2) and click Run Cell. Again,
you receive the output 2 + 3 = 5 even though the position of the arguments has
been reversed.

Giving function arguments a default value
Whether you make the call using positional arguments or keyword arguments, the
functions to this point have required that you supply a value. Sometimes a func-
tion can use default values when a common value is available. Default values make
the function easier to use and less likely to cause errors when a developer doesn’t
provide an input. To create a default value, you simply follow the argument name
with an equals sign and the default value. To see how this works, type the follow-
ing function in the notebook:

def Hello3(Greeting = "No Value Supplied"):
 print(Greeting)

This is yet another version of the original Hello() and updated Hello2() func-
tions, but Hello3() automatically compensates for individuals who don’t supply
a value. When someone tries to call Hello3() without an argument, it doesn’t
raise an error. Type Hello3() and press Enter to see for yourself. Type Hello3(“This
is a string.”) to see a normal response. Lest you think the function is now unable
to use other kinds of data, type Hello3(5) and press Enter; then Hello3(2 + 7) and
press Enter. Figure 7-6 shows the output from all these tests.

130 PART 2 Talking the Talk

Creating functions with a variable
number of arguments
In most cases, you know precisely how many arguments to provide with your
function. It pays to work toward this goal whenever you can because functions
with a fixed number of arguments are easier to troubleshoot later. However,
sometimes you simply can’t determine how many arguments the function will
receive at the outset. For example, when you create a Python application that
works at the command line, the user might provide no arguments, the maximum
number of arguments (assuming there is more than one), or any number of argu-
ments in between.

Fortunately, Python provides a technique for sending a variable number of argu-
ments to a function. You simply create an argument that has an asterisk in front
of it, such as *VarArgs. The usual technique is to provide a second argument that
contains the number of arguments passed as an input. Here is an example of a
function that can print a variable number of elements. (Don’t worry too much if
you don’t understand it completely now — you haven’t seen some of these tech-
niques used before.)

def Hello4(ArgCount, *VarArgs):
 print("You passed ", ArgCount, " arguments.")
 for Arg in VarArgs:
 print(Arg)

This example uses something called a for loop. You meet this structure in
 Chapter 9. For now, all you really need to know is that it takes the arguments out
of VarArgs one at a time, places the individual argument into Arg, and then prints
Arg using print(). What should interest you most is seeing how a variable num-
ber of arguments can work.

After you type the function into the notebook, type Hello4(1, “A Test String.”)
and click Run Cell. You should see the number of arguments and the test string as
output — nothing too exiting there. However, now type Hello4(3, “One”, “Two”,
“Three”) and click Run Cell. As shown in Figure 7-7, the function handles the
variable number of arguments without any problem at all.

FIGURE 7-6:
Supply default

arguments when
possible to make

your functions
easier to use.

CHAPTER 7 Managing Information 131

Returning information from functions
Functions can display data directly or they can return the data to the caller so that
the caller can do something more with it. In some cases, a function displays data
directly as well as returns data to the caller, but more commonly, a function either
displays the data directly or returns it to the caller. Just how functions work
depends on the kind of task the function is supposed to perform. For example, a
function that performs a math-related task is more likely to return the data to the
caller than certain other functions.

To return data to a caller, a function needs to include the keyword return, fol-
lowed by the data to return. You have no limit on what you can return to a caller.
Here are some types of data that you commonly see returned by a function to a
caller:

 » Values: Any value is acceptable. You can return numbers, such as 1 or 2.5;
strings, such as “Hello There!”; or Boolean values, such as True or False.

 » Variables: The content of any variable works just as well as a direct value. The
caller receives whatever data is stored in the variable.

 » Expressions: Many developers use expressions as a shortcut. For example,
you can simply return A + B rather than perform the calculation, place the
result in a variable, and then return the variable to the caller. Using the
expression is faster and accomplishes the same task.

 » Results from other functions: You can actually return data from another
function as part of the return of your function.

It’s time to see how return values work. Type the following code into the
notebook:

def DoAdd(Value1, Value2):
 return Value1 + Value2

FIGURE 7-7:
Variable

argument
functions can

make your
applications more

flexible.

132 PART 2 Talking the Talk

This function accepts two values as input and then returns the sum of those two
values. Yes, you could probably perform this task without using a function, but
this is how many functions start. To test this function, type print(“The sum of
3 + 4 is ”, DoAdd(3, 4)) and click Run Cell. You see the output shown in Figure 7-8.

Comparing function output
You use functions with return values in a number of ways. For example, the previ-
ous section of this chapter shows how you can use functions to provide input for
another function. You use functions to perform all sorts of tasks. One of the ways
to use functions is for comparison purposes. You can actually create expressions
from them that define a logical output.

To see how this might work, use the DoAdd() function from the previous section.
Type print(“3 + 4 equals 2 + 5 is ”, (DoAdd(3, 4) == DoAdd(2, 5))) and click Run
Cell. You see the truth value of the statement that 3 + 4 equals 2 + 5, as shown in
Figure 7-9. The point is that functions need not provide just one use or that you
view them in just one way. Functions can make your code quite versatile and
flexible.

Getting User Input
Very few applications exist in their own world — that is, apart from the user. In
fact, most applications interact with users in a major way because computers are
designed to serve user needs. To interact with a user, an application must provide
some means of obtaining user input. Fortunately, the most commonly used tech-
nique for obtaining input is also relatively easy to implement. You simply use the
input() function to do it.

FIGURE 7-8:
Return values can

make your
functions even

more useful.

FIGURE 7-9:
Use your

functions to
perform a wide
variety of tasks.

CHAPTER 7 Managing Information 133

The input() function always outputs a string. Even if a user types a number, the
output from the input() function is a string. This means that if you are expecting
a number, you need to convert it after receiving the input. The input() function
also lets you provide a string prompt. This prompt is displayed to tell the user
what to provide in the way of information. The following example shows how to
use the input() function in a simple way:

Name = input("Tell me your name: ")
print("Hello ", Name)

In this case, the input() function asks the user for a name. After the user types a
name and presses Enter, the example outputs a customized greeting to the user.
Try running this example. Figure 7-10 shows typical results when you input John
as the username.

You can use input() for other kinds of data; all you need is the correct conversion
function. For example, the code in the following example provides one technique
for performing such a conversion, as shown here:

ANumber = float(input("Type a number: "))
print("You typed: ", ANumber)

When you run this example, the application asks for a numeric input. The call to
float() converts the input to a number. After the conversion, print() outputs
the result. When you run the example using a value such as 5.5, you obtain the
desired result.

Understand that data conversion isn’t without risk. If you attempt to type some-
thing other than a number, you get an error message, as shown in Figure 7-11.
Chapter 10 helps you understand how to detect and fix errors before they cause a
system crash.

FIGURE 7-10:
Provide a

username and
see a greeting as

output.

FIGURE 7-11:
Data conversion

changes the input
type to whatever

you need, but
could cause

errors.

CHAPTER 8 Making Decisions 135

Chapter 8
Making Decisions

The ability to make a decision, to take one path or another, is an essential
element of performing useful work. Math gives the computer the capability
to obtain useful information. Decisions enable you to do something with the

information after obtaining it. Without the capability to make decisions, a com-
puter would be useless. So any language you use will include the capability to
make decisions in some manner. This chapter explores the techniques that Python
uses to make decisions. You can find the downloadable source code for this chap-
ter in the BPPD_08_Making_Decisions.ipynb file, as described in the book’s
Introduction.

Think through the process you use when making a decision. You obtain the actual
value of something, compare it to a desired value, and then act accordingly. For
example, when you see a signal light and see that it’s red, you compare the red
light to the desired green light, decide that the light isn’t green, and then stop.
Most people don’t take time to consider the process they use because they use it
so many times every day. Decision making comes naturally to humans, but com-
puters must perform the following tasks every time:

1. Obtain the actual or current value of something.

2. Compare the actual or current value to a desired value.

3. Perform an action that corresponds to the desired outcome of the
comparison.

 » Using the if statement to make
simple decisions

 » Making advanced decisions using
if...else

 » Nesting statements

136 PART 2 Talking the Talk

Making Simple Decisions by Using
the if Statement

The if statement is the easiest method for making a decision in Python. It simply
states that if something is true, Python should perform the steps that follow. The
following sections tell you how you can use the if statement to make decisions of
various sorts in Python. You may be surprised at what this simple statement can
do for you.

Understanding the if statement
You use if statements regularly in everyday life. For example, you may say to
yourself, “If it’s Wednesday, I’ll eat tuna salad for lunch.” The Python if state-
ment is a little less verbose, but it follows precisely the same pattern. Say you
create a variable, TestMe, and place a value of 6 in it, like this:

TestMe = 6

You can then ask the computer to check for a value of 6 in TestMe, like this:

if TestMe == 6:
 print("TestMe does equal 6!")

Every Python if statement begins, oddly enough, with the word if. When Python
sees if, it knows that you want it to make a decision. After the word if comes a
condition. A condition simply states what sort of comparison you want Python to
make. In this case, you want Python to determine whether TestMe contains the
value 6.

Notice that the condition uses the relational equality operator, ==, and not the
assignment operator, =. A common mistake that developers make is to use the
assignment operator rather than the equality operator. You can see a list of rela-
tional operators in Chapter 7.

The condition always ends with a colon (:). If you don’t provide a colon, Python
doesn’t know that the condition has ended and will continue to look for additional
conditions on which to base its decision. After the colon come any tasks you want
Python to perform. In this case, Python prints a statement saying that TestMe is
equal to 6.

CHAPTER 8 Making Decisions 137

Using the if statement in an application
You can use the if statement in a number of ways in Python. However, you imme-
diately need to know about three common ways to use it:

 » Use a single condition to execute a single statement when the
condition is true.

 » Use a single condition to execute multiple statements when the condition
is true.

 » Combine multiple conditions into a single decision and execute one or more
statements when the combined condition is true.

The following sections explore these three possibilities and provide you with
examples of their use. You see additional examples of how to use the if statement
throughout the book because it’s such an important method of making decisions.

Working with relational operators
A relational operator determines how a value on the left side of an expression
compares to the value on the right side of an expression. After it makes the deter-
mination, it outputs a value of true or false that reflects the truth value of the
expression. For example, 6 == 6 is true, while 5 == 6 is false. Table 7-3 in
Chapter 7 lists the relational operators. The following steps show how to create
and use an if statement.

1. Open a new notebook.

You can also use the downloadable source file, BPPD_08_Making_Decisions.
ipynb.

2. Type TestMe = 6 and press Enter.

This step assigns a value of 6 to TestMe. Notice that it uses the assignment
operator and not the equality operator.

3. Type if TestMe == 6: and press Enter.

This step creates an if statement that tests the value of TestMe by using the
equality operator. You should notice two features of Notebook at this point:

• The word if is highlighted in a different color than the rest of the
statement.

• The next line is automatically indented.

138 PART 2 Talking the Talk

4. Type print(“TestMe does equal 6!”) and press Enter.

Notice that Python doesn’t execute the if statement yet. It does indent the
next line. The word print appears in a special color because it’s a function
name. In addition, the text appears in another color to show you that it’s a
string value. Color coding makes it much easier to see how Python works.

5. Click Run Cell.

Notebook executes the if statement, as shown in Figure 8-1. Notice that the
output is in yet another color. Because TestMe contains a value of 6, the if
statement works as expected.

Performing multiple tasks
Sometimes you want to perform more than one task after making a decision.
Python relies on indentation to determine when to stop executing tasks as part of
an if statement. As long as the next line is indented, it’s part of the if statement.
When the next line is outdented, it becomes the first line of code outside the if
block. A code block consists of a statement and the tasks associated with that state-
ment. The same term is used no matter what kind of statement you’re working
with, but in this case, you’re working with an if statement that is part of a code
block. The following steps show how to use indentation to execute multiple steps
as part of an if statement.

1. Type the following code into the notebook — pressing Enter after each
line:

TestMe = 6
if TestMe == 6:
 print("TestMe does equal 6!")

 print("All done!")

FIGURE 8-1:
Simple if

statements
can help your

application know
what to do

in certain
conditions.

CHAPTER 8 Making Decisions 139

Notice that the shell continues to indent lines as long as you continue to type
code. Each line you type is part of the current if statement code block.

When working in the shell, you create a block by typing one line of code after
another. If you press Enter twice in a row without entering any text, the code
block is ended, and Python executes the entire code block at one time. Of
course, when working in Notebook, you must click Run Cell to execute the code
within that cell.

2. Click Run Cell.

Python executes the entire code block. You see the output shown in Figure 8-2.

Making multiple comparisons by using
logical operators
So far, the examples have all shown a single comparison. Real life often requires
that you make multiple comparisons to account for multiple requirements. For
example, when baking cookies, if the timer has gone off and the edges are brown,
it’s time to take the cookies out of the oven.

To make multiple comparisons, you create multiple conditions by using relational
operators and combine them by using logical operators (see Table 7-4 in
 Chapter 7). A logical operator describes how to combine conditions. For example,
you might say x == 6 and y == 7 as two conditions for performing one or more
tasks. The and keyword is a logical operator that states that both conditions must
be true.

One of the most common uses for making multiple comparisons is to determine
when a value is within a certain range. In fact, range checking, the act of determin-
ing whether data is between two values, is an important part of making your
application secure and user friendly. The following steps help you see how to per-
form this task. In this case, you create a file so that you can run the application
multiple times.

1. Type the following code into the notebook — pressing Enter after
each line:

FIGURE 8-2:
A code block can
contain multiple
lines of code —

one for each task.

140 PART 2 Talking the Talk

Value = int(input("Type a number between 1 and 10: "))
if (Value > 0) and (Value <= 10):

 print("You typed: ", Value)

The example begins by obtaining an input value. You have no idea what the
user has typed other than that it’s a value of some sort. The use of the int()
function means that the user must type a whole number (one without a
decimal portion). Otherwise, the application will raise an exception (an error
indication; Chapter 10 describes exceptions). This first check ensures that the
input is at least of the correct type.

The if statement contains two conditions. The first states that Value must be
greater than 0. You could also present this condition as Value >= 1. The
second condition states that Value must be less than or equal to 10. Only
when Value meets both of these conditions will the if statement succeed and
print the value the user typed.

2. Click Run Cell.

Python prompts you to type a number between 1 and 10.

3. Type 5 and press Enter.

The application determines that the number is in the right range and outputs
the message shown in Figure 8-3.

4. Select the cell again. Repeat Steps 2 and 3, but type 22 instead of 5.

The application doesn’t output anything because the number is in the wrong
range. Whenever you type a value that’s outside the programmed range, the
statements that are part of the if block aren’t executed.

Note that the input value updates by one. Each time you execute a cell, the
input value will change. Given that the input value is at 4 in Figure 8-3, you now
see In [5]: in the Notebook margin.

5. Select the cell again. Repeat Steps 2 and 3, but type 5.5 instead of 5.

Python displays the error message shown in Figure 8-4. Even though you may
think of 5.5 and 5 as both being numbers, Python sees the first number as a
floating-point value and the second as an integer. (Note also that the input
value is now at 6.)

FIGURE 8-3:
The application

verifies the value
is in the right

range and
outputs a
message.

CHAPTER 8 Making Decisions 141

6. Repeat Steps 2 and 3, but type Hello instead of 5.

Python displays about the same error message as before. Python doesn’t
differentiate between types of wrong input. It knows only that the input type is
incorrect and therefore unusable.

The best applications use various kinds of range checking to ensure that the appli-
cation behaves in a predictable manner. The more predictable an application
becomes, the less the user thinks about the application and the more time the user
spends on performing useful work. Productive users tend to be a lot happier than
those who constantly fight with their applications.

Choosing Alternatives by Using the
if. . .else Statement

Many of the decisions you make in an application fall into a category of choosing one
of two options based on conditions. For example, when looking at a signal light, you
choose one of two options: press on the brake to stop or press the accelerator to con-
tinue. The option you choose depends on the conditions. A green light signals that
you can continue on through the light; a red light tells you to stop. The following
sections describe how Python makes choosing between two alternatives possible.

Understanding the if. . .else statement
With Python, you choose one of two alternatives by using the else clause of the if
statement. A clause is an addition to a code block that modifies the way in which it
works. Most code blocks support multiple clauses. In this case, the else clause
enables you to perform an alternative task, which increases the usefulness of the
if statement. Most developers refer to the form of the if statement that has the
else clause included as the if...else statement, with the ellipsis implying that
something happens between if and else.

FIGURE 8-4:
Typing the

wrong type of
information
results in an

error message.

142 PART 2 Talking the Talk

Sometimes developers encounter problems with the if...else statement because
they forget that the else clause always executes when the conditions for the if
statement aren’t met. Be sure to think about the consequences of always execut-
ing a set of tasks when the conditions are false. Sometimes doing so can lead to
unintended consequences.

Using the if. . .else statement in an
application
The example in the previous section is a little less helpful than it could be when
the user enters a value that’s outside the intended range. Even entering data of the
wrong type produces an error message, but entering the correct type of data out-
side the range tells the user nothing. In this example, you discover the means for
correcting this problem by using an else clause. The following steps demonstrate
just one reason to provide an alternative action when the condition for an if
statement is false:

1. Type the following code into the notebook — pressing Enter after
each line:

Value = int(input("Type a number between 1 and 10: "))
if (Value > 0) and (Value <= 10):
 print("You typed: ", Value)
else:

 print("The value you typed is incorrect!")

As before, the example obtains input from the user and then determines
whether that input is in the correct range. However, in this case, the else
clause provides an alternative output message when the user enters data
outside the desired range.

Notice that the else clause ends with a colon, just as the if statement does.
Most clauses that you use with Python statements have a colon associated
with them so that Python knows when the clause has ended. If you receive a
coding error for your application, make sure that you check for the presence of
the colon as needed.

2. Click Run Cell.

Python prompts you to type a number between 1 and 10.

3. Type 5 and press Enter.

The application determines that the number is in the right range and outputs
the message shown previously in Figure 8-3.

CHAPTER 8 Making Decisions 143

4. Repeat Steps 2 and 3, but type 22 instead of 5.

This time the application outputs the error message shown in Figure 8-5. The
user now knows that the input is outside the desired range and knows to try
entering it again.

Using the if. . .elif statement in an
application
You go to a restaurant and look at the menu. The restaurant offers eggs, pancakes,
waffles, and oatmeal for breakfast. After you choose one of the items, the server
brings it to you. Creating a menu selection requires something like an if...else
statement, but with a little extra oomph. In this case, you use the elif clause to
create another set of conditions. The elif clause is a combination of the else
clause and a separate if statement. The following steps describe how to use the
if...elif statement to create a menu.

1. Type the following code into the notebook — pressing Enter after
each line:

print("1. Red")
print("2. Orange")
print("3. Yellow")
print("4. Green")
print("5. Blue")
print("6. Purple")
Choice = int(input("Select your favorite color: "))
if (Choice == 1):
 print("You chose Red!")
elif (Choice == 2):
 print("You chose Orange!")

FIGURE 8-5:
Providing
feedback

for incorrect
input is always a

good idea.

144 PART 2 Talking the Talk

elif (Choice == 3):
 print("You chose Yellow!")
elif (Choice == 4):
 print("You chose Green!")
elif (Choice == 5):
 print("You chose Blue!")
elif (Choice == 6):
 print("You chose Purple!")
else:

 print("You made an invalid choice!")

The example begins by displaying a menu. The user sees a list of choices for
the application. It then asks the user to make a selection, which it places inside
Choice. The use of the int() function ensures that the user can’t type
anything other than a number.

After the user makes a choice, the application looks for it in the list of potential
values. In each case, Choice is compared against a particular value to create a
condition for that value. When the user types 1, the application outputs the
message "You chose Red!". If none of the options is correct, the else clause
is executed by default to tell the user that the input choice is invalid.

2. Click Run Cell.

Python displays the menu. The application asks you to select your favorite
color.

3. Type 1 and press Enter.

The application displays the appropriate output message, as shown in
Figure 8-6.

4. Repeat Steps 3 and 4, but type 5 instead of 1.

The application displays a different output message — the one associated with
the requested color.

5. Repeat Steps 3 and 4, but type 8 instead of 1.

The application tells you that you made an invalid choice.

6. Repeat Steps 3 and 4, but type Red instead of 1.

The application displays the expected error message, as shown in Figure 8-7.
Any application you create should be able to detect errors and incorrect inputs.
Chapter 10 shows you how to handle errors so that they’re user friendly.

CHAPTER 8 Making Decisions 145

FIGURE 8-6:
Menus let you

choose one
option from a list

of options.

FIGURE 8-7:
Every application

you create
should include

some means
of detecting

errant input.

146 PART 2 Talking the Talk

Using Nested Decision Statements
The decision-making process often happens in levels. For example, when you go
to the restaurant and choose eggs for breakfast, you have made a first-level deci-
sion. Now the server asks you what type of toast you want with your eggs. The
server wouldn’t ask this question if you had ordered pancakes, so the selection of
toast becomes a second-level decision. When the breakfast arrives, you decide
whether you want to use jelly on your toast. This is a third-level decision. If you
had selected a kind of toast that doesn’t work well with jelly, you might not have
had to make this decision at all. This process of making decisions in levels, with
each level reliant on the decision made at the previous level, is called nesting.
Developers often use nesting techniques to create applications that can make
complex decisions based on various inputs. The following sections describe sev-
eral kinds of nesting you can use within Python to make complex decisions.

Using multiple if or if. . .else statements
The most commonly used multiple selection technique is a combination of if
and if...else statements. This form of selection is often called a selection tree
because of its resemblance to the branches of a tree. In this case, you follow a
particular path to obtain a desired result. The following steps show how to create
a selection tree:

1. Type the following code into the notebook — pressing Enter after each
line:

One = int(input("Type a number between 1 and 10: "))
Two = int(input("Type a number between 1 and 10: "))

NO SWITCH STATEMENT?
If you’ve worked with other languages, you might notice that Python lacks a switch
statement (if you haven’t, there is no need to worry about it with Python). Developers
commonly use the switch statement in other languages to create menu-based applica-
tions. The if...elif statement is generally used for the same purpose in Python.

However, the if...elif statement doesn’t provide quite the same functionality as a
switch statement because it doesn’t enforce the use of a single variable for comparison
purposes. As a result, some developers rely on Python’s dictionary functionality to stand
in for the switch statement. Chapter 14 describes how to work with dictionaries.

CHAPTER 8 Making Decisions 147

if (One >= 1) and (One <= 10):
 if (Two >= 1) and (Two <= 10):
 print("Your secret number is: ", One * Two)
 else:
 print("Incorrect second value!")
else:

 print("Incorrect first value!")

This is simply an extension of the example you see in the “Using the if. . .else
statement in an application” section of the chapter. However, notice that the
indentation is different. The second if...else statement is indented within
the first if...else statement. The indentation tells Python that this is a
second-level statement.

2. Click Run Cell.

You see a Python Shell window open with a prompt to type a number between
1 and 10.

3. Type 5 and press Enter.

The shell asks for another number between 1 and 10.

4. Type 2 and press Enter.

You see the combination of the two numbers as output, as shown in
Figure 8-8.

This example has the same input features as the previous if. . .else example. For
example, if you attempt to provide a value that’s outside the requested range, you
see an error message. The error message is tailored for either the first or second
input value so that the user knows which value was incorrect.

FIGURE 8-8:
Adding multiple

levels lets you
perform tasks

with greater
complexity.

148 PART 2 Talking the Talk

Providing specific error messages is always useful because users tend to become
confused and frustrated otherwise. In addition, a specific error message helps you
find errors in your application much faster.

Combining other types of decisions
You can use any combination of if, if...else, and if...elif statements to pro-
duce a desired outcome. You can nest the code blocks as many levels deep as
needed to perform the required checks. For example, Listing 8-1 shows what you
might accomplish for a breakfast menu.

LISTING 8-1: Creating a Breakfast Menu

print("1. Eggs")
print("2. Pancakes")
print("3. Waffles")
print("4. Oatmeal")
MainChoice = int(input("Choose a breakfast item: "))
if (MainChoice == 2):
 Meal = "Pancakes"
elif (MainChoice == 3):
 Meal = "Waffles"
if (MainChoice == 1):
 print("1. Wheat Toast")
 print("2. Sour Dough")
 print("3. Rye Toast")
 print("4. Pancakes")
 Bread = int(input("Choose a type of bread: "))
 if (Bread == 1):
 print("You chose eggs with wheat toast.")
 elif (Bread == 2):
 print("You chose eggs with sour dough.")
 elif (Bread == 3):
 print("You chose eggs with rye toast.")
 elif (Bread == 4):
 print("You chose eggs with pancakes.")
 else:
 print("We have eggs, but not that kind of bread.")
elif (MainChoice == 2) or (MainChoice == 3):
 print("1. Syrup")
 print("2. Strawberries")
 print("3. Powdered Sugar")
 Topping = int(input("Choose a topping: "))

CHAPTER 8 Making Decisions 149

 if (Topping == 1):
 print ("You chose " + Meal + " with syrup.")
 elif (Topping == 2):
 print ("You chose " + Meal + " with strawberries.")
 elif (Topping == 3):
 print ("You chose " + Meal + " with powdered sugar.")
 else:
 print ("We have " + Meal + ", but not that topping.")
elif (MainChoice == 4):
 print("You chose oatmeal.")
else:
 print("We don't serve that breakfast item!")

This example has some interesting features. For one thing, you might assume that
an if...elif statement always requires an else clause. This example shows a
situation that doesn’t require such a clause. You use an if...elif statement to
ensure that Meal contains the correct value, but you have no other options to
consider.

The selection technique is the same as you saw for the previous examples. A user
enters a number in the correct range to obtain a desired result. Three of the selec-
tions require a secondary choice, so you see the menu for that choice. For example,
when ordering eggs, it isn’t necessary to choose a topping, but you do want a top-
ping for pancakes or waffles.

Notice that this example also combines variables and text in a specific way.
Because a topping can apply equally to waffles or pancakes, you need some method
for defining precisely which meal is being served as part of the output. The Meal
variable that the application defines earlier is used as part of the output after the
topping choice is made.

The best way to understand this example is to play with it. Try various menu com-
binations to see how the application works.

CHAPTER 9 Performing Repetitive Tasks 151

Chapter 9
Performing Repetitive
Tasks

All the examples in the book so far have performed a series of steps just one
time and then stopped. However, the real world doesn’t work this way.
Many of the tasks that humans perform are repetitious. For example, the

doctor might state that you need to exercise more and tell you to do 100 push-ups
each day. If you just do one push-up, you won’t get much benefit from the exer-
cise and you definitely won’t be following the doctor’s orders. Of course, because
you know precisely how many push-ups to do, you can perform the task a specific
number of times. Python allows the same sort of repetition by using the for
statement.

Unfortunately, you don’t always know how many times to perform a task. For
example, consider needing to check a stack of coins for one of extreme rarity. Tak-
ing just the first coin from the top, examining it, and deciding that it either is or
isn’t the rare coin doesn’t complete the task. Instead, you must examine each coin
in turn, looking for the rare coin. Your stack may contain more than one. Only
after you have looked at every coin in the stack can you say that the task is com-
plete. However, because you don’t know how many coins are in the stack, you
don’t know how many times to perform the task at the outset. You only know the
task is done when the stack is gone. Python performs this kind of repetition by
using the while statement.

 » Performing a task a specific
number of times

 » Performing a task until completion

 » Placing one task loop within
another

152 PART 2 Talking the Talk

Most programming languages call any sort of repeating sequence of events a loop.
The idea is to picture the repetition as a circle, with the code going round and
round executing tasks until the loop ends. Loops are an essential part of applica-
tion elements such as menus. In fact, writing most modern applications without
using loops would be impossible.

In some cases, you must create loops within loops. For example, to create a
multiplication table, you use a loop within a loop. The inner loop calculates the
column values and the outer loop moves between rows. You see such an example
later in the chapter, so don’t worry too much about understanding precisely how
such things work right now. You can find the downloadable source code for this
chapter in the BPPD_09_Performing_Repetitive_Tasks.ipynb file, as described
in the book’s Introduction.

Processing Data Using the for Statement
The first looping code block that most developers encounter is the for statement.
It’s hard to imagine creating a conventional programming language that lacks
such a statement. In this case, the loop executes a fixed number of times, and you
know the number of times it will execute before the loop even begins. Because
everything about a for loop is known at the outset, for loops tend to be the easiest
kind of loop to use. However, in order to use one, you need to know how many
times to execute the loop. The following sections describe the for loop in greater
detail.

Understanding the for statement
A for loop begins with a for statement. The for statement describes how to per-
form the loop. The Python for loop works through a sequence of some type. It
doesn’t matter whether the sequence is a series of letters in a string or items
within a collection. You can even specify a range of values to use by specifying the
range() function. Here’s a simple for statement.

for Letter in "Howdy!":

The statement begins with the keyword for. The next item is a variable that holds
a single element of a sequence. In this case, the variable name is Letter. The in
keyword tells Python that the sequence comes next. In this case, the sequence is
the string "Howdy". The for statement always ends with a colon, just as the
decision-making statements described in Chapter 8 do.

CHAPTER 9 Performing Repetitive Tasks 153

Indented under the for statement are the tasks you want performed within the
for loop. Python considers every following indented statement part of the code
block that composes the for loop. Again, the for loop works just like the decision-
making statements in Chapter 8.

Creating a basic for loop
The best way to see how a for loop actually works is to create one. In this case, the
example uses a string for the sequence. The for loop processes each of the char-
acters in the string in turn until it runs out of characters.

1. Open a new notebook.

You can also use the downloadable source file, BPPD_09_Performing_
Repetitive_Tasks.ipynb.

2. Type the following code into the notebook — pressing Enter after each
line:

LetterNum = 1
for Letter in "Howdy!":
 print("Letter ", LetterNum, " is ", Letter)

 LetterNum+=1

The example begins by creating a variable, LetterNum, to track the number of
letters that have been processed. Every time the loop completes, LetterNum is
updated by 1.

The for statement works through the sequence of letters in the string
"Howdy!". It places each letter, in turn, in Letter. The code that follows
displays the current LetterNum value and its associated character found in
Letter.

3. Click Run Cell.

The application displays the letter sequence along with the letter number, as
shown in Figure 9-1.

Controlling execution with the
break statement
Life is often about exceptions to the rule. For example, you might want an assem-
bly line to produce a number of clocks. However, at some point, the assembly line
runs out of a needed part. If the part isn’t available, the assembly line must stop
in the middle of the processing cycle. The count hasn’t completed, but the line
must be stopped anyway until the missing part is restocked.

154 PART 2 Talking the Talk

Interruptions also occur in computers. You might be streaming data from an
online source when a network glitch occurs and breaks the connection; the stream
temporarily runs dry, so the application runs out of things to do even though the
set number of tasks isn’t completed.

The break clause makes breaking out of a loop possible. However, you don’t sim-
ply place the break clause in your code — you surround it with an if statement
that defines the condition for issuing a break. The statement might say some-
thing like this: If the stream runs dry, then break out of the loop.

In this example, you see what happens when the count reaches a certain level
when processing a string. The example is a little contrived in the interest of keep-
ing things simple, but it reflects what could happen in the real world when a data
element is too long to process (possibly indicating an error condition).

1. Type the following code into the notebook — pressing Enter after each
line:

Value = input("Type less than 6 characters: ")
LetterNum = 1
for Letter in Value:
 print("Letter ", LetterNum, " is ", Letter)
 LetterNum+=1
 if LetterNum > 6:
 print("The string is too long!")

 break

FIGURE 9-1:
Use the for loop

to process
the characters
in a string one

at a time.

CHAPTER 9 Performing Repetitive Tasks 155

This example builds on the one found in the previous section. However, it lets
the user provide a variable-length string. When the string is longer than six
characters, the application stops processing it.

The if statement contains the conditional code. When LetterNum is greater
than 6, it means that the string is too long. Notice the second level of indenta-
tion used for the if statement. In this case, the user sees an error message
stating that the string is too long, and then the code executes a break to end
the loop.

2. Click Run Cell.

Python displays a prompt asking for input.

3. Type Hello and press Enter.

The application lists each character in the string, as shown in Figure 9-2.

4. Perform Steps 2 and 3 again, but type I am too long. instead of Hello.

The application displays the expected error message and stops processing the
string at character 6, as shown in Figure 9-3.

FIGURE 9-2:
A short string is

successfully
processed by

the application.

FIGURE 9-3:
Long strings are

truncated
to ensure that
they remain a

certain size.

156 PART 2 Talking the Talk

This example adds length checking to your repertoire of application data error
checks. Chapter 8 shows how to perform range checks, which ensure that a value
meets specific limits. The length check is necessary to ensure that data, especially
strings, aren’t going to overrun the size of data fields. In addition, a small input
size makes it harder for intruders to perform certain types of hacks on your sys-
tem, which makes your system more secure.

Controlling execution with the
continue statement
Sometimes you want to check every element in a sequence, but don’t want to pro-
cess certain elements. For example, you might decide that you want to process all
the information for every car in a database except brown cars. Perhaps you simply
don’t need the information about that particular color of car. The break clause
simply ends the loop, so you can’t use it in this situation. Otherwise, you won’t see
the remaining elements in the sequence.

The break clause alternative that many developers use is the continue clause. As
with the break clause, the continue clause appears as part of an if statement.
However, processing continues with the next element in the sequence rather than
ending completely.

The following steps help you see how the continue clause differs from the break
clause. In this case, the code refuses to process the letter w, but will process every
other letter in the alphabet.

1. Type the following code into the notebook — pressing Enter after
each line:

LetterNum = 1
for Letter in "Howdy!":
 if Letter == "w":
 continue
 print("Encountered w, not processed.")
 print("Letter ", LetterNum, " is ", Letter)

 LetterNum+=1

This example is based on the one found in the “Creating a basic for loop”
section, earlier in this chapter. However, this example adds an if statement
with the continue clause in the if code block. Notice the print() function
that is part of the if code block. You never see this string printed because the
current loop iteration ends immediately.

CHAPTER 9 Performing Repetitive Tasks 157

2. Click Run Cell.

Python displays the letter sequence along with the letter number, as shown in
Figure 9-4. However, notice the effect of the continue clause — the letter w
isn’t processed.

Controlling execution with the pass clause
The Python language includes something not commonly found in other languages:
a second sort of continue clause. The pass clause works almost the same way as
the continue clause does, except that it allows completion of the code in the if
code block in which it appears. The following steps use an example that is pre-
cisely the same as the one found in the previous section, “Controlling execution
with the continue statement,” except that it uses a pass clause instead.

1. Type the following code into the notebook — pressing Enter after each
line:

LetterNum = 1
for Letter in "Howdy!":
 if Letter == "w":
 pass
 print("Encountered w, not processed.")
 print("Letter ", LetterNum, " is ", Letter)

 LetterNum+=1

2. Click Run Cell.

You see a Python Shell window open. The application displays the letter
sequence along with the letter number, as shown in Figure 9-5. However,
notice the effect of the pass clause — the letter w isn’t processed. In addition,
the example displays the string that wasn’t displayed for the continue clause
example.

FIGURE 9-4:
Use the

continue
clause to avoid

processing
specific elements.

158 PART 2 Talking the Talk

The continue clause enables you to silently bypass specific elements in a sequence
and avoid executing any additional code for that element. Use the pass clause
when you need to perform some sort of post processing on the element, such as
logging the element in an error log, displaying a message to the user, or handling
the problem element in some other way. The continue and pass clauses both do
the same thing, but they’re used in distinctly different situations.

Controlling execution with the else
statement
Python has another loop clause that you won’t find with other languages: else.
The else clause makes executing code possible even if you have no elements to
process in a sequence. For example, you might need to convey to the user that
there simply isn’t anything to do. In fact, that’s what the following example does.
This example also appears with the downloadable source code as ForElse.py.

1. Type the following code into the notebook — pressing Enter after each
line:

Value = input("Type less than 6 characters: ")
LetterNum = 1
for Letter in Value:
 print("Letter ", LetterNum, " is ", Letter)
 LetterNum+=1
else:

 print("The string is blank.")

This example is based on the one found in the “Creating a basic for loop”
section, earlier in the chapter. However, when a user presses Enter without
typing something, the else clause is executed.

FIGURE 9-5:
Using the pass

clause allows for
post processing
of an unwanted

input.

CHAPTER 9 Performing Repetitive Tasks 159

2. Click Run Cell.

Python displays a prompt asking for input.

3. Type Hello and press Enter.

The application lists each character in the string, as shown previously in
Figure 9-2. However, notice that you also see a statement saying that the string
is blank, which seems counterintuitive. When using an else clause with a for
loop, the else clause always executes. However, if the iterator isn’t valid, then
the else clause still executes, so you can use it as an ending statement for any
for loop. See the article at http://python-notes.curiousefficiency.
org/en/latest/python_concepts/break_else.html for additional details.

4. Repeat Steps 2 and 3. However, simply press Enter instead of entering
any sort of text.

You see the alternative message shown in Figure 9-6 that tells you the string is
blank.

You can easily misuse the else clause because an empty sequence doesn’t always
signify a simple lack of input. An empty sequence can also signal an application
error or other conditions that need to be handled differently from a simple omis-
sion of data. Make sure you understand how the application works with data to
ensure that the else clause doesn’t end up hiding potential error conditions,
rather than making them visible so that they can be fixed.

Processing Data by Using
the while Statement

You use the while statement for situations when you’re not sure how much data
the application will have to process. Instead of instructing Python to process a
static number of items, you use the while statement to tell Python to continue
processing items until it runs out of items. This kind of loop is useful when you
need to perform tasks such as downloading files of unknown size or streaming

FIGURE 9-6:
The else clause

makes it possible
to perform tasks

based on an
empty sequence.

http://python-notes.curiousefficiency.org/en/latest/python_concepts/break_else.html
http://python-notes.curiousefficiency.org/en/latest/python_concepts/break_else.html

160 PART 2 Talking the Talk

data from a source such as a radio station. Any situation in which you can’t define
at the outset how much data the application will process is a good candidate for
the while statement, which the following sections describe more fully.

Understanding the while statement
The while statement works with a condition rather than a sequence. The condi-
tion states that the while statement should perform a task until the condition is
no longer true. For example, imagine a deli with a number of customers standing
in front of the counter. The salesperson continues to service customers until no
more customers are left in line. The line could (and probably will) grow as the
other customers are handled, so it’s impossible to know at the outset how many
customers will be served. All the salesperson knows is that continuing to serve
customers until no more are left is important. Here is how a while statement
might look:

while Sum < 5:

The statement begins with the while keyword. It then adds a condition. In this
case, a variable, Sum, must be less than 5 for the loop to continue. Nothing speci-
fies the current value of Sum, nor does the code define how the value of Sum will
change. The only thing that is known when Python executes the statement is that
Sum must be less than 5 for the loop to continue performing tasks. The statement
ends with a colon and the tasks are indented below the statement.

Because the while statement doesn’t perform a series of tasks a set number of
times, creating an endless loop is possible, meaning that the loop never ends. For
example, say that Sum is set to 0 when the loop begins, and the ending condition
is that Sum must be less than 5. If the value of Sum never increases, the loop will
continue executing forever (or at least until the computer is shut down). Endless
loops can cause all sorts of bizarre problems on systems, such as slowdowns and
even computer freezes, so it’s best to avoid them. You must always provide a
method for the loop to end when using a while loop (contrasted with the for loop,
in which the end of the sequence determines the end of the loop). So, when work-
ing with the while statement, you must perform three tasks:

1. Create the environment for the condition (such as setting Sum to 0).

2. State the condition within the while statement (such as Sum < 5).

3. Update the condition as needed to ensure that the loop eventually ends (such
as adding Sum+=1 to the while code block).

CHAPTER 9 Performing Repetitive Tasks 161

As with the for statement, you can modify the default behavior of the while
statement. In fact, you have access to the same four clauses to modify the while
statement behavior:

 » break: Ends the current loop.

 » continue: Immediately ends processing of the current element.

 » pass: Ends processing of the current element after completing the statements
in the if block.

 » else: Provides an alternative processing technique when conditions aren’t
met for the loop.

Using the while statement in an application
You can use the while statement in many ways, but this first example is straight-
forward. It simply displays a count based on the starting and ending condition of
a variable named Sum. The following steps help you create and test the example
code.

1. Type the following code into the notebook — pressing Enter after each
line:

Sum = 0
while Sum < 5:
 print(Sum)

 Sum+=1

The example code demonstrates the three tasks you must perform when
working with a while loop in a straightforward manner. It begins by setting
Sum to 0, which is the first step of setting the condition environment. The
condition itself appears as part of the while statement. The end of the while
code block accomplishes the third step. Of course, the code displays the
current value of Sum before it updates the value of Sum.

A while statement provides flexibility that you don’t get with a for statement.
This example shows a relatively straightforward way to update Sum. However,
you can use any update method required to meet the goals of the application.
Nothing says that you have to update Sum in a specific manner. In addition, the
condition can be as complex as you want it to be. For example, you can track
the current value of three or four variables if you want. Of course, the more
complex you make the condition, the more likely you are to create an endless
loop, so you have a practical limit as to how complex you should make the
while loop condition.

162 PART 2 Talking the Talk

2. Click Run Cell.

Python executes the while loop and displays the numeric sequence shown in
Figure 9-7.

Nesting Loop Statements
In some cases, you can use either a for loop or a while loop to achieve the same
effect. The loop statements work differently, but the effect is the same. In this
example, you create a multiplication table generator by nesting a while loop
within a for loop. Because you want the output to look nice, you use a little for-
matting as well. (Chapter 12 gives you the details.)

1. Type the following code into the notebook — pressing Enter after
each line:

X = 1
Y = 1
print ('{:>4}'.format(' '), end= ' ')
for X in range(1, 11):
 print('{:>4}'.format(X), end=' ')
print()
for X in range(1,11):
 print('{:>4}'.format(X), end=' ')
 while Y <= 10:
 print('{:>4}'.format(X * Y), end=' ')
 Y+=1
 print()

 Y=1

FIGURE 9-7:
The simple
while loop

displays a
sequence of

numbers.

CHAPTER 9 Performing Repetitive Tasks 163

This example begins by creating two variables, X and Y, to hold the row and
column value of the table. X is the row variable and Y is the column variable.

To make the table readable, this example must create a heading at the top and
another along the side. When users see a 1 at the top and a 1 at the side, and
follow these values to where they intersect in the table, they can see the value
of the two numbers when multiplied.

The first print() statement adds a space (because nothing appears in the
corner of the table; see Figure 9-8 to more easily follow this discussion). All the
formatting statement says is to create a space 4 characters wide and place a
space within it. The {:>4} part of the code determines the size of the column.
The format(' ') function determines what appears in that space. The end
attribute of the print() statement changes the ending character from a
carriage return to a simple space.

The first for loop displays the numbers 1 through 10 at the top of the table.
The range() function creates the sequence of numbers for you. When using
the range() function, you specify the starting value, which is 1 in this case, and
one more than the ending value, which is 11 in this case.

At this point, the cursor is sitting at the end of the heading row. To move it to
the next line, the code issues a print() call with no other information.

Even though the next bit of code looks quite complex, you can figure it out if
you look at it a line at a time. The multiplication table shows the values from
1 * 1 to 10 * 10, so you need ten rows and ten columns to display the informa-
tion. The for statement tells Python to create ten rows.

Look again at Figure 9-8 to note the row heading. The first print() call
displays the row heading value. Of course, you have to format this information,
and the code uses a space of four characters that end with a space, rather than
a carriage return, in order to continue printing information in that row.

The while loop comes next. This loop prints the columns in an individual row.
The column values are the multiplied values of  X * Y. Again, the output is
formatted to take up four spaces. The while loop ends when Y is updated to
the next value by using Y+=1.

Now you’re back into the for loop. The print() statement ends the current
row. In addition, Y must be reset to 1 so that it’s ready for the beginning of the
next row, which begins with 1.

164 PART 2 Talking the Talk

2. Click Run Cell.

You see the multiplication table shown in Figure 9-8.

FIGURE 9-8:
The multiplication

table is pleasing
to the eye thanks
to its formatting.

CHAPTER 10 Dealing with Errors 165

Chapter 10
Dealing with Errors

Most application code of any complexity has errors in it. When your appli-
cation suddenly freezes for no apparent reason, that’s an error. Seeing
one of those obscure message dialog boxes is another kind of error.

However, errors can occur that don’t provide you with any sort of notification. An
application might perform the wrong computation on a series of numbers you
provide, resulting in incorrect output that you may never know about unless
someone tells you that something is wrong or you check for the issue yourself.
Errors need not be consistent, either. You may see them on some occasions and
not on others. For example, an error can occur only when the weather is bad or the
network is overloaded. In short, errors occur in all sorts of situations and for all
sorts of reasons. This chapter tells you about various kinds of errors and what to
do when your application encounters them.

It shouldn’t surprise you that errors occur. Applications are written by humans,
and humans make mistakes. Most developers call application errors exceptions,
meaning that they’re the exception to the rule. Because exceptions do occur in
applications, you need to detect and do something about them whenever possible.
The act of detecting and processing an exception is called error handling or exception
handling. To properly detect errors, you need to know about error sources and why
errors occur in the first place. When you do detect the error, you must process it
by catching the exception. Catching an exception means examining it and possibly

 » Understanding error sources

 » Handling error conditions

 » Specifying that an error has
occurred

 » Developing your own error
indicators

 » Performing tasks even after an
error occurs

166 PART 2 Talking the Talk

doing something about it. So, another part of this chapter is about discovering
how to perform exception handling in your own application.

Sometimes your code detects an error in the application. When this happens, you
need to raise or throw an exception. You see both terms used for the same thing,
which simply means that your code encountered an error it couldn’t handle, so it
passed the error information onto another piece of code to handle (interpret, pro-
cess, and, with luck, fix the exception). In some cases, you use custom error mes-
sage objects to pass on the information. Even though Python has a wealth of
generic message objects that cover most situations, some situations are special.
For example, you might want to provide special support for a database applica-
tion, and Python won’t normally cover that contingency with a generic message
object. You need to know when to handle exceptions locally, when to send them to
the code that called your code, and when to create special exceptions so that every
part of the application knows how to handle the exception — all of which are top-
ics covered by this chapter.

Sometimes you also must ensure that your application handles an exception
gracefully, even if that means shutting the application down. Fortunately, Python
provides the finally clause, which always executes, even when an exception
occurs. You can place code to close files or perform other essential tasks in the
code block associated with this clause. Even though you won’t perform this task
all the time, it’s the last topic discussed in the chapter. You can find the
 downloadable source code for this chapter in the BPPD_10_Dealing_with_Errors.
ipynb file, as described in the book’s Introduction.

Knowing Why Python Doesn’t
Understand You

Developers often get frustrated with programming languages and computers
because they seemingly go out of their way to cause communication problems. Of
course, programming languages and computers are both inanimate — they don’t
“want” anything. Programming languages and computers also don’t think; they
literally accept whatever the developer says. Therein lies the problem.

Neither Python nor the computer will “know what you mean” when you type
instructions as code. Both follow whatever instructions you provide to the letter
and literally as you provide them. You may not have meant to tell Python to delete
a data file unless some absurd condition occurred. However, if you don’t make the
conditions clear, Python will delete the file whether the condition exists or not.
When an error of this sort happens, people commonly say that the application has
a bug in it. Bugs are simply coding errors that you can remove by using a debugger.

CHAPTER 10 Dealing with Errors 167

(A debugger is a special kind of tool that lets you stop or pause application execu-
tion, examine the content of variables, and generally dissect the application to see
what makes it tick.)

Errors occur in many cases when the developer makes assumptions that simply
aren’t true. Of course, this includes assumptions about the application user, who
probably doesn’t care about the extreme level of care you took when crafting your
application. The user will enter bad data. Again, Python won’t know or care that
the data is bad and will process it even when your intent was to disallow the bad
input. Python doesn’t understand the concepts of good or bad data; it simply pro-
cesses incoming data according to any rules you set, which means that you must
set rules to protect users from themselves.

Python isn’t proactive or creative — those qualities exist only in the developer.
When a network error occurs or the user does something unexpected, Python
doesn’t create a solution to fix the problem. It only processes code. If you don’t
provide code to handle the error, the application is likely to fail and crash
 ungracefully — possibly taking all of the user’s data with it. Of course, the devel-
oper can’t anticipate every potential error situation, either, which is why most
complex applications have errors in them — errors of omission, in this case.

Some developers out there think they can create bulletproof code, despite the
absurdity of thinking that such code is even possible. Smart developers assume
that some number of bugs will get through the code-screening process, that nature
and users will continue to perform unexpected actions, and that even the smartest
developer can’t anticipate every possible error condition. Always assume that your
application is subject to errors that will cause exceptions; that way, you’ll have the
mindset required to actually make your application more reliable. Keeping
 Murphy’s Law, “If anything can go wrong, it will” in mind will help more than you
think. (See more about Murphy’s laws at http://www.murphys-laws.com/.)

Considering the Sources of Errors
You might be able to divine the potential sources of error in your application by
reading tea leaves, but that’s hardly an efficient way to do things. Errors actually
fall into well-defined categories that help you predict (to some degree) when and
where they’ll occur. By thinking about these categories as you work through your
application, you’re far more likely to discover potential errors sources before they
occur and cause potential damage. The two principle categories are

 » Errors that occur at a specific time

 » Errors that are of a specific type

http://www.murphys-laws.com/

168 PART 2 Talking the Talk

The following sections discuss these two categories in greater detail. The overall
concept is that you need to think about error classifications in order to start find-
ing and fixing potential errors in your application before they become a problem.

Classifying when errors occur
Errors occur at specific times. The two major time frames are

 » Compile time

 » Runtime

No matter when an error occurs, it causes your application to misbehave. The fol-
lowing sections describe each time frame.

Compile time
A compile time error occurs when you ask Python to run the application. Before
Python can run the application, it must interpret the code and put it into a form
that the computer can understand. A computer relies on machine code that is spe-
cific to that processor and architecture. If the instructions you write are mal-
formed or lack needed information, Python can’t perform the required conversion.
It presents an error that you must fix before the application can run.

Fortunately, compile-time errors are the easiest to spot and fix. Because the
application won’t run with a compile-time error in place, user never sees this
error category. You fix this sort of error as you write your code.

The appearance of a compile-time error should tell you that other typos or omis-
sions could exist in the code. It always pays to check the surrounding code to
ensure that no other potential problems exist that might not show up as part of
the compile cycle.

Runtime
A runtime error occurs after Python compiles the code you write and the computer
begins to execute it. Runtime errors come in several different types, and some are
harder to find than others. You know you have a runtime error when the applica-
tion suddenly stops running and displays an exception dialog box or when the
user complains about erroneous output (or at least instability).

CHAPTER 10 Dealing with Errors 169

Not all runtime errors produce an exception. Some runtime errors cause instabil-
ity (the application freezes), errant output, or data damage. Runtime errors can
affect other applications or create unforeseen damage to the platform on which
the application is running. In short, runtime errors can cause you quite a bit of
grief, depending on precisely the kind of error you’re dealing with at the time.

Many runtime errors are caused by errant code. For example, you can misspell the
name of a variable, preventing Python from placing information in the correct
variable during execution. Leaving out an optional but necessary argument when
calling a method can also cause problems. These are examples of errors of
commission, which are specific errors associated with your code. In general, you
can find these kinds of errors by using a debugger or by simply reading your code
line by line to check for errors.

Runtime errors can also be caused by external sources not associated with your
code. For example, the user can input incorrect information that the application
isn’t expecting, causing an exception. A network error can make a required
resource inaccessible. Sometimes even the computer hardware has a glitch that
causes a nonrepeatable application error. These are all examples of errors of
omission, from which the application might recover if your application has error-
trapping code in place. It’s important that you consider both kinds of runtime
errors — errors of commission and omission — when building your application.

Distinguishing error types
You can distinguish errors by type, that is, by how they’re made. Knowing the
error types helps you understand where to look in an application for potential
problems. Exceptions work like many other things in life. For example, you know
that electronic devices don’t work without power. So, when you try to turn your
television on and it doesn’t do anything, you might look to ensure that the power
cord is firmly seated in the socket.

Understanding the error types helps you locate errors faster, earlier, and more
consistently, resulting in fewer misdiagnoses. The best developers know that fix-
ing errors while an application is in development is always easier than fixing it
when the application is in production because users are inherently impatient and
want errors fixed immediately and correctly. In addition, fixing an error earlier in
the development cycle is always easier than fixing it when the application nears
completion because less code exists to review.

170 PART 2 Talking the Talk

The trick is to know where to look. With this in mind, Python (and most other
programming languages) breaks errors into the following types:

 » Syntactical

 » Semantic

 » Logical

The following sections examine each of these error types in more detail. I’ve
arranged the sections in order of difficulty, starting with the easiest to find.
A syntactical error is generally the easiest; a logical error is generally the
hardest.

Syntactical
Whenever you make a typo of some sort, you create a syntactical error. Some
Python syntactical errors are quite easy to find because the application simply
doesn’t run. The interpreter may even point out the error for you by highlighting
the errant code and displaying an error message. However, some syntactical errors
are quite hard to find. Python is case sensitive, so you may use the wrong case for
a variable in one place and find that the variable isn’t quite working as you thought
it would. Finding the one place where you used the wrong capitalization can be
quite challenging.

Most syntactical errors occur at compile time and the interpreter points them out
for you. Fixing the error is made easy because the interpreter generally tells you
what to fix, and with considerable accuracy. Even when the interpreter doesn’t
find the problem, syntactical errors prevent the application from running cor-
rectly, so any errors the interpreter doesn’t find show up during the testing phase.
Few syntactical errors should make it into production as long as you perform
adequate application testing.

Semantic
When you create a loop that executes one too many times, you don’t generally
receive any sort of error information from the application. The application will
happily run because it thinks that it’s doing everything correctly, but that one
additional loop can cause all sorts of data errors. When you create an error of this
sort in your code, it’s called a semantic error.

Semantic errors occur because the meaning behind a series of steps used to per-
form a task is wrong — the result is incorrect even though the code apparently
runs precisely as it should. Semantic errors are tough to find, and you sometimes
need some sort of debugger to find them. (Chapter 20 provides a discussion of

CHAPTER 10 Dealing with Errors 171

tools that you can use with Python to perform tasks such as debugging applica-
tions. You can also find blog posts about debugging on my blog at http://blog.
johnmuellerbooks.com.)

Logical
Some developers don’t create a division between semantic and logical errors, but
they are different. A semantic error occurs when the code is essentially correct but
the implementation is wrong (such as having a loop execute once too often).
 Logical errors occur when the developer’s thinking is faulty. In many cases, this
sort of error happens when the developer uses a relational or logical operator
incorrectly. However, logical errors can happen in all sorts of other ways, too. For
example, a developer might think that data is always stored on the local hard
drive, which means that the application may behave in an unusual manner when
it attempts to load data from a network drive instead.

Logical errors are quite hard to fix because the problem isn’t with the actual code,
yet the code itself is incorrectly defined. The thought process that went into creat-
ing the code is faulty; therefore, the developer who created the error is less likely
to find it. Smart developers use a second pair of eyes to help spot logical errors.
Having a formal application specification also helps because the logic behind the
tasks the application performs is usually given a formal review.

Catching Exceptions
Generally speaking, a user should never see an exception dialog box. Your applica-
tion should always catch the exception and handle it before the user sees it. Of
course, the real world is different — users do see unexpected exceptions from
time to time. However, catching every potential exception is still the goal when
developing an application. The following sections describe how to catch excep-
tions and handle them.

Basic exception handling
To handle exceptions, you must tell Python that you want to do so and then pro-
vide code to perform the handling tasks. You have a number of ways in which you
can perform this task. The following sections start with the simplest method first
and then move on to more complex methods that offer added flexibility.

http://blog.johnmuellerbooks.com/
http://blog.johnmuellerbooks.com/

172 PART 2 Talking the Talk

Handling a single exception
In Chapter 8, the IfElse.py and other examples have a terrible habit of spitting
out exceptions when the user inputs unexpected values. Part of the solution is to
provide range checking. However, range checking doesn’t overcome the problem
of a user typing text such as Hello in place of an expected numeric value. Excep-
tion handling provides a more complex solution to the problem, as described in
the following steps.

UNDERSTANDING THE BUILT-IN
EXCEPTIONS
Python comes with a host of built-in exceptions — far more than you might think
 possible. You can see a list of these exceptions at https://docs.python.org/3.6/
library/exceptions.html. The documentation breaks the exception list down into
categories. Here is a brief overview of the Python exception categories that you work
with regularly:

• Base classes: The base classes provide the essential building blocks (such as the
Exception exception) for other exceptions. However, you might actually see some
of these exceptions, such as the ArithmeticError exception, when working with
an application.

• Concrete exceptions: Applications can experience hard errors — errors that are
hard to overcome because there really isn’t a good way to handle them or they
signal an event that the application must handle. For example, when a system runs
out of memory, Python generates a MemoryError exception. Recovering from this
error is hard because it isn’t always possible to release memory from other uses.
When the user presses an interrupt key (such as Ctrl+C or Delete), Python gener-
ates a KeyboardInterrupt exception. The application must handle this exception
before proceeding with any other tasks.

• OS exceptions: The operating system can generate errors that Python then passes
along to your application. For example, if your application tries to open a file that
doesn’t exist, the operating system generates a FileNotFoundError exception.

• Warnings: Python tries to warn you about unexpected events or actions that could
result in errors later. For example, if you try to inappropriately use a resource, such
as an icon, Python generates a ResourceWarning exception. You want to remem-
ber that this particular category is a warning and not an actual error: Ignoring it can
cause you woe later, but you can ignore it.

https://docs.python.org/3.6/library/exceptions.html
https://docs.python.org/3.6/library/exceptions.html

CHAPTER 10 Dealing with Errors 173

1. Open a new notebook.

You can also use the downloadable source file, BPPD_10_Dealing_with_
Errors.ipynb.

2. Type the following code into the notebook — pressing Enter after each
line:

try:
 Value = int(input("Type a number between 1 and 10: "))
except ValueError:
 print("You must type a number between 1 and 10!")
else:
 if (Value > 0) and (Value <= 10):
 print("You typed: ", Value)
 else:

 print("The value you typed is incorrect!")

The code within the try block has its exceptions handled. In this case, handling
the exception means getting input from the user by using the int(input())
calls. If an exception occurs outside this block, the code doesn’t handle it. With
reliability in mind, the temptation might be to enclose all the executable code
in a try block so that every exception would be handled. However, you want
to make your exception handling small and specific to make locating the
problem easier.

The except block looks for a specific exception in this case: ValueError. When
the user creates a ValueError exception by typing Hello instead of a numeric
value, this particular exception block is executed. If the user were to generate
some other exception, this except block wouldn’t handle it.

The else block contains all the code that is executed when the try block code
is successful (doesn’t generate an exception). The remainder of the code is in
this block because you don’t want to execute it unless the user does provide
valid input. When the user provides a whole number as input, the code can
then range check it to ensure that it’s correct.

3. Click Run Cell.

Python asks you to type a number between 1 and 10.

4. Type Hello and press Enter.

The application displays an error message, as shown in Figure 10-1.

174 PART 2 Talking the Talk

5. Perform Steps 3 and 4 again, but type 5.5 instead of Hello.

The application generates the same error message, as shown in Figure 10-1.

6. Perform Steps 3 and 4 again, but type 22 instead of Hello.

The application outputs the expected range error message, as shown in
Figure 10-2. Exception handling doesn’t weed out range errors. You must still
check for them separately.

7. Perform Steps 3 and 4 again, but type 7 instead of Hello.

This time, the application finally reports that you’ve provided a correct value
of 7. Even though it seems like a lot of work to perform this level of checking,
you can’t really be certain that your application is working correctly without it.

You may have to check for other sorts of issues, depending on the environment
you choose to use for testing. For example, if you had been using IDLE instead of
Notebook for testing purposes, pressing a Ctrl+C, Cmd+C, or an alternative type of
unexpected interrupt would have resulted in a KeyboardInterrupt exception.
Because Notebook automatically checks for this sort of exception, nothing

FIGURE 10-1:
Typing the wrong

input type
generates an

error instead of
an exception.

FIGURE 10-2:
Exception

handling doesn’t
ensure that the

value is in the
correct range.

CHAPTER 10 Dealing with Errors 175

happens when you press these interrupt keys, so you’re saved from having to
perform yet another check. Obviously, this strategy works only when everyone
uses an IDE, such as Notebook, that provides the required built-in protection.

Using the except clause without an exception
You can create an exception handling block in Python that’s generic because it
doesn’t look for a specific exception. In most cases, you want to provide a specific
exception when performing exception handling for these reasons:

 » To avoid hiding an exception you didn’t consider when designing the
application

 » To ensure that others know precisely which exceptions your application will
handle

 » To handle the exceptions correctly by using specific code for that exception

However, sometimes you may need a generic exception-handling capability, such
as when you’re working with third-party libraries or interacting with an external
service. The following steps demonstrate how to use an except clause without a
specific exception attached to it.

1. Type the following code into the notebook — pressing Enter after each
line:

try:
 Value = int(input("Type a number between 1 and 10: "))
except:
 print("This is the generic error!")
except ValueError:
 print("You must type a number between 1 and 10!")
else:
 if (Value > 0) and (Value <= 10):
 print("You typed: ", Value)
 else:

 print("The value you typed is incorrect!")

The only difference between this example and the previous example is that the
except clause doesn’t have the ValueError exception specifically associated
with it. The result is that this except clause will also catch any other exception
that occurs.

2. Click Run Cell.

You see the error message shown in Figure 10-3. Python automatically detects
that you have placed the exception handlers in the wrong order. (You discover

176 PART 2 Talking the Talk

more about this issue in the “Handling more specific to less specific excep-
tions” section later in the chapter.) Reverse the order of the two exceptions so
that they appear like this:

try:
 Value = int(input("Type a number between 1 and 10: "))
except ValueError:
 print("You must type a number between 1 and 10!")
except:
 print("This is the generic error!")
else:
 if (Value > 0) and (Value <= 10):
 print("You typed: ", Value)
 else:

 print("The value you typed is incorrect!")

3. Click Run Cell.

Python asks you to type a number between 1 and 10.

4. Type Hello and press Enter.

The application displays an error message (refer to Figure 10-1). When the
exceptions are in the right order, the code detects specific errors first and then
uses less specific handlers only when necessary.

5. Click Run Cell.

Python asks you to type a number between 1 and 10.

6. Choose Kernel ➪ Interrupt.

This act is akin to pressing Ctrl+C or Cmd+C in other IDEs. However, nothing
actually appears to happen. Look at the server window, however, and you see a
Kernel Interrupted message.

FIGURE 10-3:
The exception

handlers are in
the wrong order.

CHAPTER 10 Dealing with Errors 177

7. Type 5.5 and press Enter.

You see the generic error message shown in Figure 10-4 because Notebook is
reacting to the interrupt, rather than the incorrect input; the reason is that the
interrupt came first. Python queues errors in the order in which it receives
them. Consequently, you may find that an application outputs what appears to
be the wrong error message at times.

8. Perform Steps 3 and 4 again, but type 5.5 instead of Hello.

The application generates the same error message as before (again, refer to
Figure 10-1). In this case, no interrupt occurred, so you see the error message
you expected.

Working with exception arguments
Most exceptions don’t provide arguments (a list of values that you can check for
additional information). The exception either occurs or it doesn’t. However, a few
exceptions do provide arguments, and you see them used later in the book. The
arguments tell you more about the exception and provide details that you need to
correct it.

For the sake of completeness, this chapter includes a simple example that
 generates an exception with an argument. You can safely skip the remainder of
this section if desired because the information is covered in more detail later in
the book.

1. Type the following code into the notebook — pressing Enter after each
line:

import sys
try:
 File = open('myfile.txt')

FIGURE 10-4:
Generic exception

handling traps
the Keyboard

Interrupt
exception.

178 PART 2 Talking the Talk

except IOError as e:
 print("Error opening file!\r\n" +
 "Error Number: {0}\r\n".format(e.errno) +
 "Error Text: {0}".format(e.strerror))
else:
 print("File opened as expected.")

 File.close();

This example uses some advanced features. The import statement obtains
code from another file. Chapter 11 tells you how to use this Python feature.

The open() function opens a file and provides access to the file through the
File variable. Chapter 16 tells you how file access works. Given that myfile.
txt doesn’t exist in the application directory, the operating system can’t open it
and will tell Python that the file doesn’t exist.

Trying to open a nonexistent file generates an IOError exception. This
particular exception provides access to two arguments:

• errno: Provides the operating system error number as an integer

• strerror: Contains the error information as a human-readable string

The as clause places the exception information into a variable, e, that you can
access as needed for additional information. The except block contains a
print() call that formats the error information into an easily read error
message.

If you should decide to create the myfile.txt file, the else clause executes.
In this case, you see a message stating that the file opened normally. The code
then closes the file without doing anything with it.

2. Click Run Cell.

The application displays the Error opening file information, as shown in
Figure 10-5.

FIGURE 10-5:
Attempting

to open a
 nonexistent file

never works.

CHAPTER 10 Dealing with Errors 179

OBTAINING A LIST OF EXCEPTION
ARGUMENTS
The list of arguments supplied with exceptions varies by exception and by what the
sender provides. It isn’t always easy to figure out what you can hope to obtain in the
way of additional information. One way to handle the problem is to simply print
 everything by using code like this:

import sys
try:
 File = open('myfile.txt')
except IOError as e:
 for Arg in e.args:
 print(Arg)
else:
 print("File opened as expected.")
 File.close();

The args property always contains a list of the exception arguments in string format.
You can use a simple for loop to print each of the arguments. The only problem with
this approach is that you’re missing the argument names, so you know the output infor-
mation (which is obvious in this case), but you don’t know what to call it.

A more complex method of dealing with the issue is to print both the names and the
contents of the arguments. The following code displays both the names and the values
of each of the arguments:

import sys
try:
 File = open('myfile.txt')
except IOError as e:
 for Entry in dir(e):
 if (not Entry.startswith("_")):
 try:
 print(Entry, " = ", e.__getattribute__(Entry))
 except AttributeError:
 print("Attribute ", Entry, " not accessible.")
else:
 print("File opened as expected.")
 File.close();

In this case, you begin by getting a listing of the attributes associated with the error
argument object using the dir() function. The output of the dir() function is a list of

(continued)

180 PART 2 Talking the Talk

Handling multiple exceptions with
a single except clause
Most applications can generate multiple exceptions for a single line of code. This
fact demonstrated in the “Using the except clause without an exception” section
of the chapter. How you handle the multiple exceptions depends on your goals for
the application, the types of exceptions, and the relative skill of your users.
 Sometimes when working with a less skilled user, it’s simply easier to say that
the application experienced a nonrecoverable error and then log the details into a
log file in the application directory or a central location.

Using a single except clause to handle multiple exceptions works only when a
common source of action fulfills the needs of all the exception types. Otherwise,
you need to handle each exception individually. The following steps show how to
handle multiple exceptions by using a single except clause.

1. Type the following code into the notebook — pressing Enter after each
line:

strings containing the names of the attributes that you can print. Only those arguments
that don’t start with an underscore (_) contain useful information about the exception.
However, even some of those entries are inaccessible, so you must encase the output
code in a second try . . . except block (see the “Nested exception handling” section, later
in the chapter, for details).

The attribute name is easy because it’s contained in Entry. To obtain the value associ-
ated with that attribute, you must use the __getattribute() function and supply the
name of the attribute you want. When you run this code, you see both the name and
the value of each of the attributes supplied with a particular error argument object. In
this case, the actual output is as follows:

args = (2, 'No such file or directory')
Attribute characters_written not accessible.
errno = 2
filename = myfile.txt
filename2 = None
strerror = No such file or directory
winerror = None
with_traceback = <built-in method with_traceback of
 FileNotFoundError object at 0x0000000003416DC8>

(continued)

CHAPTER 10 Dealing with Errors 181

try:
 Value = int(input("Type a number between 1 and 10: "))
except (ValueError, KeyboardInterrupt):
 print("You must type a number between 1 and 10!")
else:
 if (Value > 0) and (Value <= 10):
 print("You typed: ", Value)
 else:

 print("The value you typed is incorrect!")

Note that the except clause now sports both a ValueError and a Keyboard
Interrupt exception. These exceptions appear within parentheses and are
separated by commas.

2. Click Run Cell.

Python asks you to type a number between 1 and 10.

3. Type Hello and press Enter.

The application displays an error message (refer to Figure 10-1).

4. Click Run Cell.

Python asks you to type a number between 1 and 10.

5. Choose Kernel ➪ Interrupt.

This act is akin to pressing Ctrl+C or Cmd+C in other IDEs.

6. Type 5.5 and press Enter.

The application displays an error message (refer to Figure 10-1).

7. Perform Steps 2 and 3 again, but type 7 instead of Hello.

This time, the application finally reports that you’ve provided a correct value of 7.

Handling multiple exceptions with
multiple except clauses
When working with multiple exceptions, it’s usually a good idea to place each
exception in its own except clause. This approach allows you to provide custom
handling for each exception and makes it easier for the user to know precisely
what went wrong. Of course, this approach is also a lot more work. The following
steps demonstrate how to perform exception handling by using multiple except
clauses.

182 PART 2 Talking the Talk

1. Type the following code into the window — pressing Enter after each line:

try:
 Value = int(input("Type a number between 1 and 10: "))
except ValueError:
 print("You must type a number between 1 and 10!")
except KeyboardInterrupt:
 print("You pressed Ctrl+C!")
else:
 if (Value > 0) and (Value <= 10):
 print("You typed: ", Value)
 else:

 print("The value you typed is incorrect!")

Notice the use of multiple except clauses in this case. Each except clause
handles a different exception. You can use a combination of techniques, with
some except clauses handling just one exception and other except clauses
handling multiple exceptions. Python lets you use the approach that works
best for the error-handling situation.

2. Click Run Cell.

Python asks you to type a number between 1 and 10.

3. Type Hello and press Enter.

The application displays an error message (refer to Figure 10-1).

4. Perform Steps 2 and 3 again, but type 22 instead of Hello.

The application outputs the expected range error message (refer to Figure 10-2).

5. Perform Steps 2 and 3 again, but choose Kernel ➪ Interrupt, and then
type 5.5 and press Enter.

The application outputs a specific message that tells the user what went
wrong, as shown in Figure 10-6.

FIGURE 10-6:
Using multiple
except clauses
makes specific

error messages
possible.

CHAPTER 10 Dealing with Errors 183

6. Perform Steps 2 and 3 again, but type 7 instead of Hello.

This time, the application finally reports that you’ve provided a correct
value of 7.

Handling more specific to less
specific exceptions
One strategy for handling exceptions is to provide specific except clauses for all
known exceptions and generic except clauses to handle unknown exceptions. You
can see the exception hierarchy that Python uses at https://docs.python.
org/3/library/exceptions.html#exception-hierarchy. When viewing this
chart, BaseException is the uppermost exception. Most exceptions are derived
from Exception. When working through math errors, you can use the generic
ArithmeticError or a more specific ZeroDivisionError exception.

Python evaluates except clauses in the order in which they appear in the source
code file. The first clause is examined first, the second clause is examined second,
and so on. The following steps help you examine an example that demonstrates
the importance of using the correct exception order. In this case, you perform
tasks that result in math errors.

1. Type the following code into the notebook — pressing Enter after each
line:

try:
 Value1 = int(input("Type the first number: "))
 Value2 = int(input("Type the second number: "))
 Output = Value1 / Value2
except ValueError:
 print("You must type a whole number!")
except KeyboardInterrupt:
 print("You pressed Ctrl+C!")
except ArithmeticError:
 print("An undefined math error occurred.")
except ZeroDivisionError:
 print("Attempted to divide by zero!")
else:

 print(Output)

The code begins by obtaining two inputs: Value1 and Value2. The first two
except clauses handle unexpected input. The second two except clauses
handle math exceptions, such as dividing by zero. If everything goes well with the
application, the else clause executes, which prints the result of the operation.

https://docs.python.org/3/library/exceptions.html%23exception-hierarchy
https://docs.python.org/3/library/exceptions.html%23exception-hierarchy

184 PART 2 Talking the Talk

2. Click Run Cell.

Python asks you to type the first number.

3. Type Hello and press Enter.

As expected, Python displays the ValueError exception message. However, it
always pays to check for potential problems.

4. Click Run Cell again.

Python asks you to type the first number.

5. Type 8 and press Enter.

The application asks you to enter the second number.

6. Type 0 and press Enter.

You see the error message for the ArithmeticError exception, as shown in
Figure 10-7. What you should actually see is the ZeroDivisionError excep-
tion because it’s more specific than the ArithmeticError exception.

7. Reverse the order of the two exceptions so that they look like this:

except ZeroDivisionError:
 print("Attempted to divide by zero!")
except ArithmeticError:

 print("An undefined math error occurred.")

8. Perform Steps 4 through 6 again.

This time, you see the ZeroDivisionError exception message because the
exceptions appear in the correct order.

FIGURE 10-7:
The order in

which Python
processes

exceptions is
important.

CHAPTER 10 Dealing with Errors 185

9. Perform Steps 4 through 5 again, but type 2 for the second number
instead of 0.

This time, the application finally reports an output value of 4.0, as shown in
Figure 10-8.

Notice that the output shown in Figure 10-8 is a floating-point value. Division
results in a floating-point value unless you specify that you want an integer
output by using the floor division operator (//).

Nested exception handling
Sometimes you need to place one exception-handling routine within another in a
process called nesting. When you nest exception-handling routines, Python tries
to find an exception handler in the nested level first and then moves to the outer
layers. You can nest exception-handling routines as deeply as needed to make
your code safe.

One of the more common reasons to use a dual layer of exception-handling code
is when you want to obtain input from a user and need to place the input code in
a loop to ensure that you actually get the required information. The following
steps demonstrate how this sort of code might work.

1. Type the following code into the notebook — pressing Enter after each
line:

TryAgain = True
while TryAgain:
 try:
 Value = int(input("Type a whole number. "))
 except ValueError:
 print("You must type a whole number!")

FIGURE 10-8:
Providing usable
input results in a

usable output.

186 PART 2 Talking the Talk

 try:
 DoOver = input("Try again (y/n)? ")
 except:
 print("OK, see you next time!")
 TryAgain = False
 else:
 if (str.upper(DoOver) == "N"):
 TryAgain = False
 except KeyboardInterrupt:
 print("You pressed Ctrl+C!")
 print("See you next time!")
 TryAgain = False
 else:
 print(Value)

 TryAgain = False

The code begins by creating an input loop. Using loops for this type of purpose
is actually quite common in applications because you don’t want the applica-
tion to end every time an input error is made. This is a simplified loop, and
normally you create a separate function to hold the code.

When the loop starts, the application asks the user to type a whole number. It
can be any integer value. If the user types any non-integer value or presses
Ctrl+C, Cmd+C, or another interrupt key combination, the exception-handling
code takes over. Otherwise, the application prints the value that the user
supplied and sets TryAgain to False, which causes the loop to end.

A ValueError exception can occur when the user makes a mistake. Because
you don’t know why the user input the wrong value, you have to ask if the user
wants to try again. Of course, getting more input from the user could generate
another exception. The inner try...except code block handles this second-
ary input.

Notice the use of the str.upper() function when getting character input from
the user. This function makes it possible to receive y or Y as input and accept
them both. Whenever you ask the user for character input, converting
lowercase characters to uppercase is a good idea so that you can perform a
single comparison (reducing the potential for error).

The KeyboardInterrupt exception displays two messages and then exits
automatically by setting TryAgain to False. The KeyboardInterrupt occurs
only when the user presses a specific key combination designed to end the
application. The user is unlikely to want to continue using the application at
this point.

CHAPTER 10 Dealing with Errors 187

2. Click Run Cell.

Python asks the user to input a whole number.

3. Type Hello and press Enter.

The application displays an error message and asks whether you want to try
again.

4. Type Y and press Enter.

The application asks you to input a whole number again, as shown in Figure 10-9.

5. Type 5.5 and press Enter.

The application again displays the error message and asks whether you want
to try again.

6. Choose Kernel ➪ Interrupt to interrupt the application, type Y, and then
press Enter.

The application ends, as shown in Figure 10-10. Notice that the message is
the one from the inner exception. The application never gets to the outer
exception because the inner exception handler provides generic exception
handling.

FIGURE 10-9:
Using a loop

means that the
application can

recover from
the error.

188 PART 2 Talking the Talk

7. Click Run Cell.

Python asks the user to input a whole number.

8. Choose Kernel ➪ Interrupt to interrupt the application, type 5.5, and then
press Enter.

The application ends, as shown in Figure 10-11. Notice that the message is the
one from the outer exception. In Steps 6 and 8, the user ends the application
by pressing an interrupt key. However, the application uses two different
exception handlers to address the problem.

FIGURE 10-10:
The inner
exception

handler provides
secondary

input support.

FIGURE 10-11:
The outer
exception

handler provides
primary input

support.

CHAPTER 10 Dealing with Errors 189

Raising Exceptions
So far, the examples in this chapter have reacted to exceptions. Something hap-
pens and the application provides error-handling support for that event. How-
ever, situations arise for which you may not know how to handle an error event
during the application design process. Perhaps you can’t even handle the error at
a particular level and need to pass it up to some other level to handle. In short, in
some situations, your application must generate an exception. This act is called
raising (or sometimes throwing) the exception. The following sections describe
common scenarios in which you raise exceptions in specific ways.

Raising exceptions during
exceptional conditions
The example in this section demonstrates how you raise a simple exception —
that it doesn’t require anything special. The following steps simply create the
exception and then handle it immediately.

1. Type the following code into the notebook — pressing Enter after each
line:

try:
 raise ValueError
except ValueError:

 print("ValueError Exception!")

You wouldn’t ever actually create code that looks like this, but it shows you how
raising an exception works at its most basic level. In this case, the raise call
appears within a try...except block. A basic raise call simply provides the
name of the exception to raise (or throw). You can also provide arguments as
part of the output to provide additional information.

Notice that this try...except block lacks an else clause because there is
nothing to do after the call. Although you rarely use a try...except block in
this manner, you can. You may encounter situations like this one sometimes
and need to remember that adding the else clause is purely optional. On the
other hand, you must add at least one except clause.

2. Click Run Cell.

Python displays the expected exception text, as shown in Figure 10-12.

190 PART 2 Talking the Talk

Passing error information to the caller
Python provides exceptionally flexible error handling in that you can pass
 information to the caller (the code that is calling your code) no matter which
exception you use. Of course, the caller may not know that the information is
available, which leads to a lot of discussion on the topic. If you’re working with
someone else’s code and don’t know whether additional information is available,
you can always use the technique described in the “Obtaining a list of exception
arguments” sidebar earlier in this chapter to find it.

You may have wondered whether you could provide better information when
working with a ValueError exception than with an exception provided natively by
Python. The following steps show that you can modify the output so that it does
include helpful information.

1. Type the following code into the notebook — pressing Enter after each
line:

try:
 Ex = ValueError()
 Ex.strerror = "Value must be within 1 and 10."
 raise Ex
except ValueError as e:

 print("ValueError Exception!", e.strerror)

The ValueError exception normally doesn’t provide an attribute named
strerror (a common name for string error), but you can add it simply by
assigning a value to it as shown. When the example raises the exception,
the except clause handles it as usual but obtains access to the attributes
using e. You can then access the e.strerror member to obtain the added
information.

2. Click Run Cell.

Python displays an expanded ValueError exception, as shown in Figure 10-13.

FIGURE 10-12:
Raising an
exception

requires only a
call to raise.

CHAPTER 10 Dealing with Errors 191

Creating and Using Custom Exceptions
Python provides a wealth of standard exceptions that you should use whenever
possible. These exceptions are incredibly flexible, and you can even modify them
as needed (within reason) to meet specific needs. For example, the “Passing error
information to the caller” section of this chapter demonstrates how to modify a
ValueError exception to allow for additional data. However, sometimes you
 simply must create a custom exception because none of the standard exceptions
will work. Perhaps the exception name just doesn’t tell the viewer the purpose
that the exception serves. You may need a custom exception for specialized
 database work or when working with a service.

The example in this section is going to seem a little complicated for now because
you haven’t worked with classes before. Chapter 15 introduces you to classes and
helps you understand how they work. If you want to skip this section until after
you read Chapter 15, you can do so without any problem.

The example in this section shows a quick method for creating your own excep-
tions. To perform this task, you must create a class that uses an existing exception
as a starting point. To make things a little easier, this example creates an excep-
tion that builds upon the functionality provided by the ValueError exception. The
advantage of using this approach rather than the one shown in the “Passing error
information to the caller” section, the preceding section in this chapter, is that
this approach tells anyone who follows you precisely what the addition to the Val-
ueError exception is; additionally, it makes the modified exception easier to use.

1. Type the following code into the notebook — pressing Enter after each
line:

class CustomValueError(ValueError):
 def __init__(self, arg):
 self.strerror = arg
 self.args = {arg}
try:
 raise CustomValueError("Value must be within 1 and 10.")
except CustomValueError as e:

 print("CustomValueError Exception!", e.strerror)

FIGURE 10-13:
You can add error

information to
any exception.

192 PART 2 Talking the Talk

This example essentially replicates the functionality of the example in the
“Passing error information to the caller” section of the chapter. However, it
places the same error in both strerror and args so that the developer has
access to either (as would normally happen).

The code begins by creating the CustomValueError class that uses the
ValueError exception class as a starting point. The __init__() function
provides the means for creating a new instance of that class. Think of the class
as a blueprint and the instance as the building created from the blueprint.

Notice that the strerror attribute has the value assigned directly to it, but
args receives it as an array. The args member normally contains an array
of all the exception values, so this is standard procedure, even when args
contains just one value as it does now.

The code for using the exception is considerably easier than modifying
ValueError directly. All you do is call raise with the name of the exception
and the arguments you want to pass, all on one line.

2. Click Run Cell.

The application displays the letter sequence, along with the letter number, as
shown in Figure 10-14.

Using the finally Clause
Normally you want to handle any exception that occurs in a way that doesn’t
cause the application to crash. However, sometimes you can’t do anything to fix
the problem, and the application is most definitely going to crash. At this point,
your goal is to cause the application to crash gracefully, which means closing files
so that the user doesn’t lose data and performing other tasks of that nature.
 Anything you can do to keep damage to data and the system to a minimum is an
essential part of handling data for a crashing application.

FIGURE 10-14:
Custom

exceptions can
make your code

easier to read.

CHAPTER 10 Dealing with Errors 193

The finally clause is part of the crashing-application strategy. You use this
clause to perform any required last-minute tasks. Normally, the finally clause is
quite short and uses only calls that are likely to succeed without further problem.
It’s essential to close the files, log the user off, and perform other required tasks,
and then let the application crash before something terrible happens (such as a
total system failure). With this necessity in mind, the following steps show a sim-
ple example of using the finally clause.

1. Type the following code into the notebook — pressing Enter after each
line:

import sys
try:
 raise ValueError
 print("Raising an exception.")
except ValueError:
 print("ValueError Exception!")
 sys.exit()
finally:
 print("Taking care of last minute details.")

print("This code will never execute.")

In this example, the code raises a ValueError exception. The except clause
executes as normal when this happens. The call to sys.exit() means that the
application exits after the exception is handled. Perhaps the application can’t
recover in this particular instance, but the application normally ends, which is
why the final print() function call won’t ever execute.

The finally clause code always executes. It doesn’t matter whether the
exception happens or not. The code you place in this block needs to be
common code that you always want to execute. For example, when working
with a file, you place the code to close the file into this block to ensure that the
data isn’t damaged by remaining in memory rather than going to disk.

2. Click Run Cell.

The application displays the except clause message and the finally clause
message, as shown in Figure 10-15. The sys.exit() call prevents any other
code from executing.

Note that this isn’t a normal exit, so Notepad displays additional information
for you. When you use some other IDEs, such as IDLE, the application simply
exits without displaying any additional information.

194 PART 2 Talking the Talk

3. Comment out the raise ValueErrorcall by preceding it with two pound
signs, like this:

##raise ValueError

Removing the exception will demonstrate how the finally clause actually
works.

4. Click Run Cell.

The application displays a series of messages, including the finally clause
message, as shown in Figure 10-16. This part of the example shows that the
finally clause always executes, so you need to use it carefully.

FIGURE 10-15:
Use the finally
clause to ensure

specific actions
take place
before the

application ends.

FIGURE 10-16:
Be sure to

remember that
the finally

clause always
executes.

3Performing
Common Tasks

IN THIS PART . . .

Import and use packages.

Use strings to display data in human-readable form.

Create and manage lists of objects.

Use collections to enhance list capabilities.

Develop and use classes.

CHAPTER 11 Interacting with Packages 197

Chapter 11
Interacting with
Packages

The examples in this book are small, but the functionality of the resulting
applications is extremely limited as well. Even tiny real-world applications
contain thousands of lines of code. In fact, applications that contain

 millions of lines of code are somewhat common. Imagine trying to work with a file
large enough to contain millions of lines of code — you’d never find anything. In
short, you need some method to organize code into small pieces that are easier to
manage, much like the examples in this book. The Python solution is to place code
in separate code groupings called packages. (In some sources, you may see modules
used in place of packages; the two terms are used interchangeably.) Commonly
used packages that contain source code for generic needs are called libraries.

Packages are contained in separate files. To use the package, you must tell Python
to grab the file and read it into the current application. The process of obtaining
code found in external files is called importing. You import a package or library to
use the code it contains. A few examples in the book have already shown the
import statement in use, but this chapter explains the import statement in detail
so that you know how to use it.

As part of the initial setup, Python created a pointer to the general-purpose librar-
ies that it uses. That’s why you can simply add an import statement with the
name of the library and Python can find it. However, it pays to know how to locate

 » Organizing your code

 » Adding code from outside sources

 » Locating and viewing code
libraries

 » Obtaining and reading library
documentation

198 PART 3 Performing Common Tasks

the files on disk in case you ever need to update them or you want to add your own
packages and libraries to the list of files that Python can use.

The library code is self-contained and well documented (at least in most cases it
is). Some developers might feel that they never need to look at the library code,
and they’re right to some degree — you never have to look at the library code in
order to use it. You might want to view the library code, though, to ensure that you
understand how the code works. In addition, the library code can teach you new
programming techniques that you might not otherwise discover. So, viewing the
library code is optional, but it can be helpful.

The one thing you do need to know how to do is obtain and use the Python
library documentation. This chapter shows you how to obtain and use the
library documentation as part of the application-creation process. You can find
the downloadable source code for the client code examples this chapter in the
BPPD_11_Interacting_with_Packages.ipynb file, as described in the book’s
Introduction. The package examples appear in the BPPD_11_Packages.ipynb file.

Creating Code Groupings
Grouping like pieces of code together is important to make the code easier to use,
modify, and understand. As an application grows, managing the code found in a
single file becomes harder and harder. At some point, the code becomes impos-
sible to manage because the file has become too large for anyone to work with.

The term code is used broadly in this particular case. Code groupings can include:

 » Classes

 » Functions

 » Variables

 » Runnable code

The collection of classes, functions, variables, and runnable code within a package
is known as attributes. A package has attributes that you access by that attribute’s
name. Later sections in this chapter discuss precisely how package access works.

The runnable code can actually be written in a language other than Python. For
example, it’s somewhat common to find packages that are written in C/C++ instead
of Python. The reason that some developers use runnable code is to make the
Python application faster, less resource intensive, and better able to use a particu-
lar platform’s resources. However, using runnable code comes with the downside

CHAPTER 11 Interacting with Packages 199

of making your application less portable (able to run on other platforms) unless
you have runnable code packages for each platform that you want to support. In
addition, dual-language applications can be harder to maintain because you must
have developers who can speak each of the computer languages used in the
application.

The most common way to create a package is to define a separate file containing
the code you want to group separately from the rest of the application. For
example, you might want to create a print routine that an application uses in a
number of places. The print routine isn’t designed to work on its own but is part
of the application as a whole. You want to separate it because the application
uses it in numerous places and you could potentially use the same code in
another application. The ability to reuse code ranks high on the list of reasons to
create packages.

To make things easier to understand, the examples in this chapter use a common
package. The package doesn’t do anything too amazing, but it demonstrates the
principles of working with packages. Open a Python 3 Notebook project, name it
BPPD_11_Packages, and create the code shown in Listing 11-1. After you complete
this task, download the code as a new Python file named BPPD_11_Packages.py
by choosing File ➪ Download As ➪ Python (.py) in Notebook.

LISTING 11-1: A Simple Demonstration Package

def SayHello(Name):
 print("Hello ", Name)
 return
def SayGoodbye(Name):
 print("Goodbye ", Name)
 return

You may need to copy the resulting file to your existing BPPD folder, depending on
where your browser normally downloads files. When done correctly, your Note-
book dashboard should contain a copy of the file, as shown in Figure 11-1. Using
the Notebook’s Import feature, described in the “Importing a notebook” section
of Chapter 4, makes things considerably easier.

The example code contains two simple functions named SayHello() and
SayGoodbye(). In both cases, you supply a Name to print and the function prints it
onscreen along with a greeting for you. At that point, the function returns control
to the caller. Obviously, you normally create more complicated functions, but
these functions work well for the purposes of this chapter.

200 PART 3 Performing Common Tasks

Understanding the package types
The Python support system is immense. In fact, you’ll likely never use more than
a small fraction of it for even the most demanding applications. It’s not that
Python itself is all that huge; the language is actually somewhat concise compared
to many other languages out there. The immensity comes from the Python system
of packages that perform everything from intense scientific work, to AI, to space
exploration, to biologic modeling, to anything else you can imagine and many
things you can’t. However, not all those packages are available all the time, so you
need some idea of what sort of packages Python supports and where you might
find them (in order of preference):

 » Built-in: The built-in packages address most common needs. You find them in
the Adaconda3\Lib folder on your system, and all you need to do to use
them is import them into your application.

 » Custom: As demonstrated in this chapter, you can create your own packages
and use them as needed. They appear on your hard drive, normally in the
same directory as your project code, and you simply import them into your
application.

 » Conda: You can find a wealth of packages specifically designed for Anaconda.
Many of these packages appear at http://conda.anaconda.org/mutirri.
Before you can use these packages, you must install them by using the conda
utility at the Anaconda command line, as described in the “Installing conda
packages” section of this chapter. After you have the package installed, you
use it as you would any built-in package.

FIGURE 11-1:
Make sure you
place a copy of
the package in

your BPPD folder.

http://conda.anaconda.org/mutirri

CHAPTER 11 Interacting with Packages 201

 » Non-conda: Just because a package isn’t specifically designed for use with
Anaconda doesn’t mean that you can’t use it. You can find a great wealth of
packages from third parties that provide significant functionality. To install
these packages, you use the pip utility at the Anaconda command line, as
described in the “Installing packages by using pip” section, later in this chapter.
After you have the package installed, you may have to perform additional
configuration as described by the party who created the package. Generally,
when the package is configured, you use it as you would any built-in package.

Considering the package cache
Anaconda provides a package cache that resides outside the Python library. This
package cache lets you easily interact with the Anaconda-specific packages by
using the conda command-line utility. To see how you use this package cache,
open an Anaconda command prompt or terminal window. You get access to this
feature through the Anaconda Prompt entry in the Anaconda3 folder on your sys-
tem. Type conda list and press Enter to see a list of the packages that you have
installed now. Figure 11-2 shows typical results.

Note that the output displays the package name as you would access it from within
Anaconda, the package version, and the associated Python version. All this infor-
mation is helpful in managing the packages. The following list provides the
essential conda commands for managing your packages:

 » conda clean: Removes packages that you aren’t using.

 » conda config: Configures the package cache setup.

 » conda create: Defines a new conda environment that contains a specific list
of packages, which makes it easier to manage the packages and can improve
application speed.

FIGURE 11-2:
Obtain a list of

Anaconda-specific
packages by

using the
conda utility.

202 PART 3 Performing Common Tasks

 » conda help: Displays a complete list of conda commands.

 » conda info: Displays the conda configuration information, which includes
details on where conda stores packages and where it looks for new packages.

 » conda install: Installs one or more packages into the default or specified
conda environment.

 » conda list: Outputs a list of conda packages with varying levels of detail.
You can specify which packages to list and in which environments to look.

 » conda remove: Removes one or more packages from the package cache.

 » conda search: Looks for specific packages by using the search criteria you
provide.

 » conda update: Updates some or all of the packages in the package cache.

These commands can do a lot more than you might think. Of course, it’s impos-
sible to memorize all that information, so you can rely on the --help command-
line switch to obtain full details on using a particular command. For example, to
learn more about conda list, type conda list --help and press Enter.

Importing Packages
To use a package, you must import it. Python places the package code inline with
the rest of your application in memory — as if you had created one huge file.
 Neither file is changed on disk — they’re still separate, but the way Python views
the code is different.

You have two ways to import packages. Each technique is used in specific
circumstances:

 » import: You use the import statement when you want to import an entire
package. This is the most common method that developers use to import
packages because it saves time and requires only one line of code. However,
this approach also uses more memory resources than does the approach of
selectively importing the attributes you need, which the next paragraph
describes.

 » from...import: You use the from...import statement when you want to
selectively import individual package attributes. This method saves resources,
but at the cost of complexity. In addition, if you try to use an attribute that you
didn’t import, Python registers an error. Yes, the package still contains the
attribute, but Python can’t see it because you didn’t import it.

CHAPTER 11 Interacting with Packages 203

Now that you have a better idea of how to import packages, it’s time to look at
them in detail. The following sections help you work through importing packages
using the two techniques available in Python.

Using the import statement
The import statement is the most common method for importing a package into
Python. This approach is fast and ensures that the entire package is ready for use.
The following steps get you started using the import statement.

INTERACTING WITH THE CURRENT
PYTHON DIRECTORY
The directory that Python is using to access code affects which packages you can load.
The Python library files are always included in the list of locations that Python can
access, but Python knows nothing of the directory you use to hold your source code
unless you tell it to look there. Of course, you need to know how to interact with the
directory functions in order to tell Python where to look for specific bits of code. You can
find this example in the BPPD_11_Directory.ipynb file, as described in the book’s
Introduction.

1. Open a new notebook.

2. Type import os and press Enter.

This action imports the Python os library. You need to import this library to
change the directory (the location Python sees on disk) to the working directory
for this book.

3. Type print(os.getcwd()) and click Run Cell.

You see the current working directory (cwd) that Python uses to obtain local code.

4. In a new cell, type for entry in os.listdir(): print(entry) and click Run Cell.

You see a listing of the directory entries. The listing lets you determine whether the
file you need is in the cwd. If not, you need to change directories to a location that
does contain the required file.

To change directories to a new location, you use the os.chdir() method and include
the new location as a string, such as os.chdir('C:\MyDir'). However, you normally
find with Notebook that the cwd does contain the files for your current project.

204 PART 3 Performing Common Tasks

1. Open a new notebook.

You can also use the downloadable source file, BPPD_11_Interacting_with_
Packages.ipynb.

2. Change directories, if necessary, to the downloadable source code
directory.

Generally, Notebook places you in the correct directory to use the source code
files, so you won’t need to perform this step. See the instructions found in the
“Interacting with the current Python directory” sidebar.

3. Type import BPPD_11_Packages and press Enter.

This instruction tells Python to import the contents of the BPPD_11_Packages.
py file that you created in the “Creating Code Groupings” section of the
chapter. The entire library is now ready for use.

It’s important to know that Python also creates a cache of the package in the
__pycache__ subdirectory. If you look into your source code directory after you
import BPPD_11_Packages for the first time, you see the new __pycache__
directory. If you want to make changes to your package, you must delete this
directory. Otherwise, Python will continue to use the unchanged cache file
instead of your updated source code file.

The cached filename includes the version of Python for which it is meant, so it’s
BPPD_11_Packages.cpython-36.pyc in this case. The 36 in the filename
means that this file is Python 3.6 specific. A .pyc file represents a compiled
Python file, which is used to improve application speed.

4. Type dir(BPPD_11_Packages) and click Run Cell.

You see a listing of the package contents, which includes the SayHello() and
SayGoodbye() functions, as shown in Figure 11-3. (A discussion of the other
entries appears in the “Viewing the Package Content” section, later in this
chapter.)

5. In a new cell, type BPPD_11_Packages.SayHello(“Josh”).

Notice that you must precede the attribute name, which is the SayHello()
function in this case, with the package name, which is BPPD_11_Packages.
The two elements are separated by a period. Every call to a package that you
import follows the same pattern.

6. Type BPPD_11_Packages.SayGoodbye(“Sally”) and click Run Cell.

The SayHello() and SayGoodbye() functions output the expected text, as
shown in Figure 11-4.

CHAPTER 11 Interacting with Packages 205

Using the from. . .import statement
The from...import statement has the advantage of importing only the attributes
you need from a package. This difference means that the package uses less mem-
ory and other system resources than using the import statement does. In addi-
tion, the from...import statement makes the package a little easier to use because
some commands, such as dir(), show less information, or only the information
that you actually need. The point is that you get only what you want and not any-
thing else. The following steps demonstrate using the from...import statement.
However, before you can import BPPD_11_Packages selectively, you must remove
it from the environment, which is the first part of the following process.

1. Type the following code into Notebook:

import sys
del sys.modules["BPPD_11_Packages"]
del BPPD_11_Packages

dir(BPPD_11_Packages)

FIGURE 11-3:
A directory listing

shows that
Python imports
both functions

from the
package.

FIGURE 11-4:
The SayHello()

and SayGoodbye()
functions output

the expected text.

206 PART 3 Performing Common Tasks

2. Click Run Cell.

You see the error message shown in Figure 11-5. Listing the content of the
BPPD_11_Packages package isn’t possible anymore because it’s no longer
loaded.

3. In a new cell, type from BPPD_11_Packages import SayHello and press Enter.

Python imports the SayHello() function that you create in the “Creating Code
Groupings” section, earlier in the chapter. Only this specific function is now
ready for use.

You can still import the entire package, should you want to do so. The two
techniques for accomplishing the task are to create a list of packages to import
(the names can be separated by commas, such as from BPPD_11_Packages
import SayHello, SayGoodbye) or to use the asterisk (*) in place of a
specific attribute name. The asterisk acts as a wildcard character that imports
everything.

4. Type dir(BPPD_11_Packages) and click Run Cell.

Python displays an error message, as shown previously in Figure 11-5. Python
imports only the attributes that you specifically request. This means that the
BPPD_11_Packages package isn’t in memory — only the attributes that you
requested are in memory.

5. In a new cell, type dir(SayHello) and click Run Cell.

You see a listing of attributes that are associated with the SayHello()
function, as shown in Figure 11-6 (which is only a partial list). You don’t need
to know how these attributes work just now, but you’ll use some of them
later in the book.

FIGURE 11-5:
Removing a

package from
the environment

requires two
steps.

CHAPTER 11 Interacting with Packages 207

6. In a new cell, type SayHello(″Angie″) and click Run Cell.

The SayHello() function outputs the expected text, as shown in Figure 11-7.

When you import attributes by using the from...import statement, you don’t
need to precede the attribute name with a package name. This feature makes
the attribute easier to access.

Using the from...import statement can also cause problems. If two attri-
butes have the same name, you can import only one of them. The import
statement prevents name collisions, which is important when you have a large
number of attributes to import. In sum, you must exercise care when using the
from...import statement.

7. In a new cell, type SayGoodbye(″Harold″) and click Run Cell.

You imported only the SayHello() function, so Python knows nothing about
SayGoodbye() and displays an error message. The selective nature of the
from...import statement can cause problems when you assume that an
attribute is present when it really isn’t.

Finding Packages on Disk
To use the code in a package, Python must be able to locate the package and load
it into memory. The location information is stored as paths within Python.
 Whenever you request that Python import a package, Python looks at all the files
in its list of paths to find it. The path information comes from three sources:

 » Environment variables: Chapter 3 tells you about Python environment
variables, such as PYTHONPATH, that tell Python where to find packages on disk.

FIGURE 11-6:
Use the dir()

function to obtain
information

about the specific
attributes you

import.

FIGURE 11-7:
The SayHello()

function no
longer requires

the package
name.

208 PART 3 Performing Common Tasks

 » Current directory: Earlier in this chapter, you discover that you can change
the current Python directory so that it can locate any packages used by your
application.

 » Default directories: Even when you don’t define any environment variables
and the current directory doesn’t yield any usable packages, Python can still
find its own libraries in the set of default directories that are included as part
of its own path information.

Knowing the current path information is helpful because the lack of a path can
cause your application to fail. To obtain path information, type for p in sys.path:
print(p) in a new cell and click Run Cell. You see a listing of the path information,
as shown in Figure 11-8. Your listing may be different from the one shown in
 Figure 11-8, depending on your platform, the version of Python you have installed,
and the Python features you have installed.

The sys.path attribute is reliable but may not always contain every path that
Python can see. If you don’t see a needed path, you can always check in another
place that Python looks for information. The following steps show how to perform
this task:

1. In a new cell, type import os and press Enter.

2. Type os.environ[‘PYTHONPATH’].split(os.pathsep) and click Run Cell.

When you have a PYTHONPATH environment variable defined, you see a list of
paths, as shown in Figure 11-9. However, if you don’t have the environment
variable defined, you see an error message instead.

FIGURE 11-8:
The sys.path

attribute contains
a listing of the

individual paths
for your system.

FIGURE 11-9:
You must

request
information

about
 environment

variables
separately.

CHAPTER 11 Interacting with Packages 209

Notice that both the sys.path and the os.environ['PYTHONPATH'] attributes
contain the C:\BP4D\Chapter11 entry in this case. The sys.path attribute
doesn’t include the split() function, which is why the example uses a for
loop with it. However, the os.environ['PYTHONPATH'] attribute does include
the split() function, so you can use it to create a list of individual paths.

You must provide split() with a value to look for in splitting a list of items.
The os.pathsep constant (a variable that has one, unchangeable, defined
value) defines the path separator for the current platform so that you can use
the same code on any platform that supports Python.

You can also add and remove items from sys.path. For example, if you want to
add the current working directory to the list of packages, you type sys.path.
append(os.getcwd()) in the Notebook cell and click Run Cell. When you list the
sys.path contents again, you see that the new entry is added to the end of the list.
Likewise, when you want to remove an entry you type sys.path.remove(os.
getcwd()) in the Notebook cell and click Run Cell. The addition is present only
during the current session.

Downloading Packages from
Other Sources

Your copy of Python and the associated Jupyter Notebook component of Anaconda
come with a wide assortment of packages that fulfill many common needs. In fact,
for experimentation purposes, you seldom have to go beyond these packages
because you already have so many of them installed on your system. Of course,
someone is always thinking of some new way to do things, which requires new
code and packages to store the code. In addition, some coding techniques are so
esoteric that including the packages to support them with a default install would
consume space that most people will never use. Consequently, you may have to
install packages from online or other sources from time to time.

The two most common methods of obtaining new packages are to use the conda
or pip (also known by the recursive acronym Pip Installs Packages) utilities. How-
ever, you may find packages that use other installation methods with varying
degrees of success. You use conda and pip for different purposes. Many miscon-
ceptions exist about the two package managers, but it really comes down to conda
providing general-purpose package management for a wide range of languages
with special needs in the conda environment, and to pip providing services
 specifically for Python in any environment. You can read more about these dif-
ferences at https://jakevdp.github.io/blog/2016/08/25/conda-myths-and-
misconceptions/. When you need a Python-specific package, look to pip first.

https://jakevdp.github.io/blog/2016/08/25/conda-myths-and-misconceptions/
https://jakevdp.github.io/blog/2016/08/25/conda-myths-and-misconceptions/

210 PART 3 Performing Common Tasks

For example, pip gives you access to the Python Package Index (PyPI) found
at https://pypi.python.org/pypi. The following sections discuss these two
methods.

Opening the Anaconda Prompt
Before you can do much in the way of managing packages, you must open the
Anaconda Prompt. The Anaconda Prompt is just like any other command prompt
or terminal window, but it provide special configuration features to make working
with the various command-line utilities supplied with Anaconda easier. To open
the prompt, locate its icon in the Anaconda3 folder on your machine. For example,
when using a Windows system, you can open the Anaconda Prompt by choosing
Start ➪ All Programs ➪ Anaconda3 ➪ Anaconda Prompt. The Anaconda Prompt
may take a moment or two to appear onscreen because of its configuration
requirements.

Working with conda packages
You can perform a wide range of tasks using conda, but some tasks are more com-
mon than others. The following sections describe how to perform five essential
tasks using conda. You can obtain additional information about this utility at
https://conda.io/docs/commands.html. Typing conda --help and pressing
Enter also yields an overview of help information.

Viewing conda packages
You can view conda packages in two ways. The first is to create a list of available
packages, while the second is to search for a specific package. Listing helps you
discover whether a package is already installed. Searching helps you discover the
details about the installed package.

You can perform searching and listing in a general way to locate everything
installed on a particular system. In this case, you use the commands by
themselves:

conda list
conda search

The output of these commands is lengthy and might scroll right off the end of the
screen buffer (making it impossible to scroll back and view all of the results). For
example, Figure 11-10 shows what happens when you use conda list by itself.

https://pypi.python.org/pypi
https://conda.io/docs/commands.html

CHAPTER 11 Interacting with Packages 211

Note that the output shows the package name, version, and associated version of
Python. You can use this output to determine whether a package is installed on
your system. However, sometimes you need more, which requires a search. For
example, say that you want to know what you have installed from the scikit-learn
package for the Windows 64-bit platform. In this case, you type conda
search --platform win-64 scikit-learn and press Enter, which outputs the details
shown in Figure 11-11.

A number of flags exist to greatly increase the amount of information you receive.
For example, when you use the --json flag, you obtain details such as a complete
list of dependencies for the package, whether the package is completely installed,
and a URL containing the location of the packages online. You can learn more
about conda searches at https://conda.io/docs/commands/conda-search.html.

Installing conda packages
The conda packages appear at https://anaconda.org/. To determine whether a
particular package, such as SciPy, is available, type its name in the search field
near the top and press Enter. Oddly enough, you’re apt to find a whole long list of
candidates, as shown in Figure 11-12.

FIGURE 11-10:
The conda list
output is rather

lengthy and may
overrun the

screen buffer.

FIGURE 11-11:
Searches output

a lot more
information

than lists.

https://conda.io/docs/commands/conda-search.html
https://anaconda.org/

212 PART 3 Performing Common Tasks

To make any sense out of the long list of candidates, you must click the individual
links, which takes you to a details page like the one shown in Figure 11-13. Note
that you get links to all sorts of information about this particular copy of SciPy.
However, the Installers section of the page is most important. You can download
an installer or use conda to perform the task with the supplied command line,
which is conda install -c anaconda scipy in this case.

USING CONDA INFO
Even though the conda info command is normally associated with environment
 information, you can also use it to work with packages. To discover the specifics of a
particular package, you just add the package name, such as conda info numpy.
Unfortunately, using this command often results in information overload, so you need
to shorten it a little. One way to do this is to add a version number after the package
name separated by an equals (=) sign, such as conda info numpy=1.13.1 for
 version 1.13.1 of the NumPy package.

In most cases, you don’t receive any additional information using the --verbose switch
with packages. However, using the --json switch can yield a little additional information,
and this switch puts the information in a form that lets you easily manipulate the output
using code, such as a script. The point is that you can use conda info to discover even
more deep, dark secrets about your packages. You can learn more about conda info
at https://conda.io/docs/commands/conda-info.html.

FIGURE 11-12:
Choose a version

of the package
that you want

to use.

https://conda.io/docs/commands/conda-info.html

CHAPTER 11 Interacting with Packages 213

Updating conda packages
The packages you use to develop applications can become outdated with time. The
developers who maintain them might add new features or apply bug fixes. The
problem with updates is that they can cause your application to work incorrectly,
or sometimes not at all if you’re depending on a broken behavior. However, it’s
generally a good idea to keep packages updated if for no other reason than to apply
security-related bug fixes. Of course, you need to know that the package requires
updating. To find outdated packages, you use the conda search --outdated
command, followed by the name of the package you want to check.

If you want to check all of the packages, then you simply leave the package name
off when performing your search. Unfortunately, at this point the output becomes
so long that it’s really tough to see anything (assuming the majority doesn’t just
scroll right off the screen buffer). Using the conda search --outdated --names-
only command helps in this case by showing just the names of the packages that
require updating.

After you know what you need to update, you can use the conda update command
to perform the task. For example, you might want to update the NumPy package,
which means typing conda update numpy and pressing Enter. Few packages are
stand-alone, so conda will present a list of items that you need to update along
with NumPy. Type y and press Enter to proceed. Figure 11-14 shows a typical
sequence of events during the update process.

FIGURE 11-13:
Locate the

package version
to install and use

the condo
command to

install it.

214 PART 3 Performing Common Tasks

You do have the option of updating all packages at one time. Simply type conda
update --all and press Enter to get started. However, you may find that interac-
tions between packages make the update less successful than it could be if
you performed the updates individually. In addition, the update can take a long
time, so be sure to have plenty of coffee and a copy of War and Peace on hand.
You can learn more about conda updates at https://conda.io/docs/commands/
conda-update.html.

Removing conda packages
At some point, you might decide that you no longer need a conda package. The
only problem is that you don’t know whether other packages depend on the pack-
age in question. Because package dependencies can become quite complex, and
you want to be sure that your applications will continue to run, you need to check
which other packages depend on this particular package. Unfortunately, the conda
info command (described at https://conda.io/docs/commands/conda-info.
html) tells you only about the package requirements — that is, what it depends
on. Best practice is to keep packages installed after you’ve install them.

However, assuming that you really must remove the package, you use the conda
remove command described at https://conda.io/docs/commands/conda-
remove.html. This command removes the package that you specify, along with
any packages that depend on this package. In this case, best practice is to use the
--dry-run command-line switch first to ensure that you really do want to remove
the package. For example, you may decide that you want to remove NumPy. In this
case, you type conda remove --dry-run numpy and press Enter. The command
won’t actually execute; conda simply shows what would happen if you actually did
run the command, as shown in Figure 11-15.

FIGURE 11-14:
You see a lot of

information
during the update

process.

https://conda.io/docs/commands/conda-update.html
https://conda.io/docs/commands/conda-update.html
https://conda.io/docs/commands/conda-info.html
https://conda.io/docs/commands/conda-info.html
https://conda.io/docs/commands/conda-remove.html
https://conda.io/docs/commands/conda-remove.html

CHAPTER 11 Interacting with Packages 215

As you can see, a single package can support many other packages —some of
which you might need. If you really must insist on removing the package, type the
same command as before without the --dry-run command line switch.

Never use the --force command-line switch. This command-line switch removes
the package without removing the dependent packages, which will end up destroy-
ing your Python installation. If you must remove a package, remove all the depen-
dent packages as well to keep your installation in great shape.

Installing packages by using pip
Oddly enough, working with pip is much like working with conda. They both
need to perform essentially the same tasks, so if you know how to use one, you
know how to use the other. The reference at https://pip.pypa.io/en/stable/
reference/ shows that pip does support essentially the same commands (with a
few wording differences). For example, if you want to find a list of outdated pack-
ages, you type pip list --outdated and press Enter. Here is a list of the common
commands that pip supports:

 » check: Verify that the installed packages have compatible dependencies.

 » download: Download the specified packages for later installation.

 » freeze: Output installed packages in requirements format.

 » help: Display a help screen listing an overview of the commands.

 » install: Install the specified packages.

 » list: List the installed packages.

FIGURE 11-15:
A single package

can have a
huge effect.

https://pip.pypa.io/en/stable/reference/
https://pip.pypa.io/en/stable/reference/

216 PART 3 Performing Common Tasks

 » search: Search online at PyPI for packages.

 » show: Show information about the installed packages.

 » uninstall: Uninstall the specified packages.

Viewing the Package Content
Python gives you several different ways to view package content. The method that
most developers use is to work with the dir() function, which tells you about the
attributes that the package provides.

Look at Figure 11-3, earlier in the chapter. In addition to the SayGoodbye() and
SayHello() function entries discussed previously, the list has other entries. These
attributes are automatically generated by Python for you. These attributes per-
form the following tasks or contain the following information:

 » __builtins__: Contains a listing of all the built-in attributes that are acces-
sible from the package. Python adds these attributes automatically for you.

 » __cached__: Tells you the name and location of the cached file that is
associated with the package. The location information (path) is relative to the
current Python directory.

 » __doc__: Outputs help information for the package, assuming that you’ve
actually filled it in. For example, if you type os.__doc__ and press Enter, Python
will output the help information associated with the os library.

 » __file__: Tells you the name and location of the package. The location
information (path) is relative to the current Python directory.

 » __initializing__: Determines whether the package is in the process of
initializing itself. Normally this attribute returns a value of False. This attribute
is useful when you need to wait until one package is done loading before you
import another package that depends on it.

 » __loader__: Outputs the loader information for this package. The loader is a
piece of software that gets the package and puts it into memory so that
Python can use it. This is one attribute you rarely (if ever) use.

 » __name__: Tells you just the name of the package.

 » __package__: This attribute is used internally by the import system to make it
easier to load and manage packages. You don’t need to worry about this
particular attribute.

CHAPTER 11 Interacting with Packages 217

It may surprise you to find that you can drill down even further into the attributes.
Type dir(BPPD_11_Packages.SayHello) and press Enter. You see the entries
shown in Figure 11-16.

Some of these entries, such as __name__, also appeared in the package listing.
However, you might be curious about some of the other entries. For example, you
might want to know what __sizeof__ is all about. One way to get additional
information is to type help(“__sizeof__”) and press Enter. You see some scanty
(but useful) help information, as shown in Figure 11-17.

Python isn’t going to blow up if you try the attribute. Even if the Notebook does
experience problems, you can always restart the kernel (or simply restart the envi-
ronment as a whole). So, another way to check out a package is to simply try the
attributes. For example, if you type BPPD_11_Packages.SayHello.__sizeof__()
and press Enter, you see the size of the SayHello() function in bytes, as shown in
Figure 11-18.

FIGURE 11-16:
Drill down as far

as needed to
understand the

packages that
you use in

Python.

FIGURE 11-17:
Try getting some
help information

about the
attribute you want

to know about.

FIGURE 11-18:
Using the

attributes will
help you get a
better feel for

how they work.

218 PART 3 Performing Common Tasks

Unlike many other programming languages, Python also makes the source code
for its native language libraries available. For example, when you look into the
\Python36\Lib directory, you see a listing of .py files that you can open in
 Notebook with no problem at all. Try uploading the os.py library that you use for
various tasks in this chapter by using the Upload button on the Notebook
 dashboard. Make sure to click Upload next to the file after you’ve opened it; then
click the resulting link, and you see the content shown in Figure 11-19. Note that
.py files open in a simpler editor and don’t display cells as the notebook files do
that you’ve been using throughout the book.

Viewing the content directly can help you discover new programming techniques
and better understand how the library works. The more time you spend work-
ing with Python, the better you’ll become at using it to build interesting
applications.

Make sure that you just look at the library code and don’t accidentally change it.
If you accidentally change the code, your applications can stop working.
Worse yet, you can introduce subtle bugs into your application that will appear
only on your system and nowhere else. Always exercise care when working with
library code.

FIGURE 11-19:
Directly viewing

package code
can help in

 understanding it.

CHAPTER 11 Interacting with Packages 219

Viewing Package Documentation
You can use the doc() function whenever needed to get quick help. However, you
have a better way to study the packages and libraries located in the Python path —
the Python Package Documentation. This feature often appears as Package Docs in
the Python folder on your system. It’s also referred to as Pydoc. Whatever you call
it, the Python Package Documentation makes life a lot easier for developers. The
following sections describe how to work with this feature.

Opening the Pydoc application
Pydoc is just another Python application. It actually appears in the \Python36\Lib
directory of your system as pydoc.py. As with any other .py file, you can open this
one with Notebook and study how it works. You can start it by using the Python
3.6 Module Docs shortcut that appears in the Python 3.6 folder on your system or
by using a command at the Anaconda Prompt (see the “Opening the Anaconda
Prompt” section, earlier in this chapter, for details).

You can use Pydoc in both graphical and textual mode. When opening an Ana-
conda Prompt, you can provide a keyword, such as JSON, and Pydoc displays tex-
tual help. Using the -k command-line switch, followed by a keyword such as if,
lets you display a list of places where specific keywords appear. To actually start
the server, you type Pydoc -b and press Enter. If you need to use a specific port for
your browser, add the -p command-line switch with a port number.

The graphical mode of the Pydoc application creates a localized server that works
with your browser to display information about the Python packages and libraries.
So when you start this application, you see a command (terminal) window open.

As with any server, your system may prompt you for permissions. For example,
you may see a warning from your firewall telling you that Pydoc is attempting to
access the local system. You need to give Pydoc permission to work with the sys-
tem so that you can see the information it provides. Any virus detection that you
have installed may need permission to let Pydoc continue as well. Some platforms,
such as Windows, may require an elevation in privileges to run Pydoc.

Normally, the server automatically opens a new browser window for you, as
shown in Figure 11-20. This window contains links to the various packages that
are contained on your system, including any custom packages you create and
include in the Python path. To see information about any package, you can simply
click its link.

220 PART 3 Performing Common Tasks

The Anaconda Prompt provides you with two commands to control the server. You
simply type the letter associated with the command and press Enter to activate it.
Here are the two commands:

 » b: Starts a new copy of the default browser with the index page loaded.

 » q: Stops the server.

When you’re done browsing the help information, make sure that you stop the
server by typing q and pressing Enter at the command prompt. Stopping the server
frees any resources it uses and closes any holes you made in your firewall to
accommodate Pydoc.

Using the quick-access links
Refer back to Figure 11-20. Near the top of the web page, you see three links. These
links provide quick access to the site features. The browser always begins at
the Module Index. If you need to return to this page, simply click the Module
Index link.

The Topics link takes you to the page shown in Figure 11-21. This page contains
links for essential Python topics. For example, if you want to know more about
Boolean values, click the BOOLEAN link. The page you see next describes how
Boolean values work in Python. At the bottom of the page are related links that
lead to pages that contain additional helpful information.

FIGURE 11-20:
Your browser

displays a
number of links

that appear
as part of the

Index page.

CHAPTER 11 Interacting with Packages 221

The Keywords link takes you to the page shown in Figure 11-22. What you see is a
list of the keywords that Python supports. For example, if you want to know more
about creating for loops, you click the for link.

Typing a search term
The pages also include two text boxes near the top. The first has a Get button next
to it and the second has a Search button next to it. When you type a search term
in the first text box and click Get, you see the documentation for that particular
package or attribute. Figure 11-23 shows what you see when you type print and
click Get.

FIGURE 11-21:
The Topics page

tells you about
essential Python

topics, such as
how Boolean
values work.

FIGURE 11-22:
The Keywords
page contains

a listing of
keywords that

Python supports.

222 PART 3 Performing Common Tasks

When you type a search term in the second text box and click Search, you see all
the topics that could relate to that search term. Figure 11-24 shows typical results
when you type print and click Search. In this case, you click a link, such as
 calendar, to see additional information.

Viewing the results
The results you get when you view a page depends on the topic. Some topics are
brief, such as the one shown previously in Figure 11-23 for print. However, other
topics are extensive. For example, if you were to click the calendar link in
 Figure 11-24, you would see a significant amount of information, as shown in
Figure 11-25.

FIGURE 11-23:
Using Get

obtains specific
 information

about a
search term.

FIGURE 11-24:
Using Search

obtains a list of
topics about a

search term.

CHAPTER 11 Interacting with Packages 223

In this particular case, you see related package information, error information,
functions, data, and all sorts of additional information about the calendar printing
functions. The amount of information you see depends partly on the complexity of
the topic and partly on the amount of information the developer provided with the
package. For example, if you were to select BPPD_11_Packages from the Package
Index page, you would see only a list of functions and no documentation at all.

FIGURE 11-25:
Some pages

contain extensive
information.

CHAPTER 12 Working with Strings 225

Chapter 12
Working with Strings

Your computer doesn’t understand strings. It’s a basic fact. Computers
understand numbers, not letters. When you see a string on the computer
screen, the computer actually sees a series of numbers. However, humans

understand strings quite well, so applications need to be able to work with them.
Fortunately, Python makes working with strings relatively easy. It translates
the string you understand into the numbers the computer understands, and
vice versa.

To make strings useful, you need to be able to manipulate them. Of course, that
means taking strings apart and using just the pieces you need or searching the
string for specific information. This chapter describes how you can build strings
by using Python, dissect them as needed, and use just the parts you want after you
find what’s required. String manipulation is an important part of applications
because humans depend on computers performing that sort of work for them
(even though the computer has no idea of what a string is).

After you have the string you want, you need to present it to the user in an eye-
pleasing manner. The computer doesn’t really care how it presents the string, so
often you get the information, but it lacks pizzazz. In fact, it may be downright
difficult to read. Knowing how to format strings so that they look nice onscreen is
important because users need to see information in a form they understand. By
the time you complete this chapter, you know how to create, manipulate, and
format strings so that the user sees precisely the right information. You can find
the downloadable source code for the examples in this chapter in the BPPD_12_
Working_with_Strings.ipynb file, as described in the book’s Introduction.

 » Considering the string difference

 » Working with special and single
characters

 » Manipulating and searching
strings

 » Modifying the appearance of
string output

226 PART 3 Performing Common Tasks

Understanding That Strings Are Different
Most aspiring developers (and even a few who have written code for a long time)
really have a hard time understanding that computers truly do only understand 0s
and 1s. Even larger numbers are made up of 0s and 1s. Comparisons take place
with 0s and 1s. Data is moved by using 0s and 1s. In short, strings don’t exist for
the computer (and numbers just barely exist). Although grouping 0s and 1s to
make numbers is relatively easy, strings are a lot harder because now you’re talk-
ing about information that the computer must manipulate as numbers but present
as characters.

There are no strings in computer science. Strings are made up of characters, and
individual characters are actually numeric values. When you work with strings in
Python, what you’re really doing is creating an assembly of characters that the
computer sees as numeric values. That’s why the following sections are so impor-
tant. They help you understand why strings are so special. Understanding this
material will save you a lot of headaches later.

Defining a character by using numbers
To create a character, you must first define a relationship between that character
and a number. More important, everyone must agree that when a certain number
appears in an application and is viewed as a character by that application, the
number is translated into a specific character. One of the most common ways to
perform this task is to use the American Standard Code for Information Inter-
change (ASCII). Python uses ASCII to translate the number 65 to the letter A. The
chart at http://www.asciitable.com/ shows the various numeric values and
their character equivalents.

Every character you use must have a different numeric value assigned to it. The
letter A uses a value of 65. To create a lowercase a, you must assign a different
number, which is 97. The computer views A and a as completely different charac-
ters, even though people view them as uppercase and lowercase versions of the
same character.

The numeric values used in this chapter are in decimal. However, the computer
still views them as 0s and 1s. For example, the letter A is really the value 01000001
and the letter a is really the value 01100001. When you see an A onscreen, the com-
puter sees a binary value instead.

http://www.asciitable.com/

CHAPTER 12 Working with Strings 227

Having just one character set to deal with would be nice. However, not everyone
could agree on a single set of numeric values to equate with specific characters.
Part of the problem is that ASCII doesn’t support characters used by other lan-
guages; also, it lacks the capability to translate special characters into an onscreen
presentation. In fact, character sets abound. You can see a number of them at
http://www.i18nguy.com/unicode/codepages.html. Click one of the character
set entries to see how it assigns specific numeric values to each character. Most
characters sets do use ASCII as a starting point.

Using characters to create strings
Python doesn’t make you jump through hoops to create strings. However, the
term string should actually give you a good idea of what happens. Think about
beads or anything else you might string. You place one bead at a time onto the
string. Eventually you end up with some type of ornamentation — perhaps a
necklace or tree garland. The point is that these items are made up of individual
beads.

The same concept used for necklaces made of beads holds true for strings in com-
puters. When you see a sentence, you understand that the sentence is made up of
individual characters that are strung together by the programming language you
use. The language creates a structure that holds the individual characters together.
So, the language, not the computer, knows that so many numbers in a row (each
number being represented as a character) defines a string such as a sentence.

You may wonder why it’s important to even know how Python works with char-
acters. The reason is that many of the functions and special features that Python
provides work with individual characters, and you need to know that Python sees
the individual characters. Even though you see a sentence, Python sees a specific
number of characters.

Unlike most programming languages, strings can use either single quotes or dou-
ble quotes. For example, “Hello There!” with double quotes is a string, as is ‘Hello
There!’ with single quotes. Python also supports triple double and single quotes
that let you create strings spanning multiple lines. The following steps help you
create an example that demonstrates some of the string features that Python
provides.

1. Open a new notebook.

You can also use the downloadable source file, BPPD_12_Working_with_
Strings.ipynb.

http://www.i18nguy.com/unicode/codepages.html

228 PART 3 Performing Common Tasks

2. Type the following code into the notebook — pressing Enter after each
line:

print('Hello There (Single Quote)!')
print("Hello There (Double Quote)!")
print("""This is a multiple line
string using triple double quotes.

You can also use triple single quotes.""")

Each of the three print() function calls demonstrates a different principle in
working with strings. Equally acceptable is to enclose the string in either single
or double quotes. When you use a triple quote (either single or double), the
text can appear on multiple lines.

3. Click Run Cell.

Python outputs the expected text. Notice that the multiline text appears on
three lines (see Figure 12-1), just as it does in the source code file, so this is a
kind of formatting. You can use multiline formatting to ensure that the text
breaks where you want it to onscreen.

FIGURE 12-1:
Strings consist

of individual
characters that

are linked
together.

CHAPTER 12 Working with Strings 229

Creating Stings with Special Characters
Some strings include special characters. These characters are different from the
alphanumeric and punctuation characters that you’re used to using. In fact, they
fall into these categories:

 » Control: An application requires some means of determining that a particular
character isn’t meant to be displayed but rather to control the display. All the
control movements are based on the insertion pointer, the line you see when
you type text on the screen. For example, you don’t see a tab character. The
tab character provides a space between two elements, and the size of that
space is controlled by a tab stop. Likewise, when you want to go to the next
line, you use a carriage return (which returns the insertion pointer to the
beginning of the line) and linefeed (which places the insertion pointer on the
next line) combination.

 » Accented: Characters that have accents, such as the acute (‘), grave (`),
circumflex (^), umlaut or diaeresis (¨), tilde (~), or ring (°), represent special
spoken sounds, in most cases. You must use special characters to create
alphabetical characters with these accents included.

 » Drawing: You can create rudimentary art with some characters. You can see
examples of the box-drawing characters at http://jrgraphix.net/r/
Unicode/2500-257F. Some people actually create art by using ASCII charac-
ters as well (http://www.asciiworld.com/).

 » Typographical: A number of typographical characters, such as the pilcrow
(¶),are used when displaying certain kinds of text onscreen, especially when
the application acts as an editor.

 » Other: Depending on the character set you use, the selection of characters is
nearly endless. You can find a character for just about any need. The point is
that you need some means of telling Python how to present these special
characters.

A common need when working with strings, even strings from simple console
applications, is control characters. With this in mind, Python provides escape
sequences that you use to define control characters directly (and a special escape
sequence for other characters).

An escape sequence literally escapes the common meaning of a letter, such as a, and
gives it a new meaning (such as the ASCII bell or beep). The combination of the
backslash (\) and a letter (such as a) is commonly viewed as a single letter by
developers — an escape character or escape code. Table 12-1 provides an overview of
these escape sequences.

http://jrgraphix.net/r/Unicode/2500-257F
http://jrgraphix.net/r/Unicode/2500-257F
http://www.asciiworld.com/

230 PART 3 Performing Common Tasks

The best way to see how the escape sequences work is to try them. The following
steps help you create an example that tests various escape sequences so that you
can see them in action.

1. Type the following code into the notebook — pressing Enter after each
line:

print("Part of this text\r\nis on the next line.")
print("This is an A with a grave accent: \xC0.")
print("This is a drawing character: \u2562.")
print("This is a pilcrow: \266.")

print("This is a division sign: \xF7.")

The example code uses various techniques to achieve the same end — to
create a special character. Of course, you use control characters directly, as
shown in the first line. Many special letters are accessible by using a hexadecimal
number that has two digits (as in the second and fifth lines). However, some
require that you rely on Unicode numbers (which always require four digits),

TABLE 12-1 Python Escape Sequences
Escape Sequence Meaning

\newline Ignored

\\ Backslash (\)

\’ Single quote (‘)

\" Double quote (")

\a ASCII Bell (BEL)

\b ASCII Backspace (BS)

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\r ASCII Carriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\uhhhh Unicode character (a specific kind of character set with broad
appeal across the world) with a hexadecimal value that
replaces hhhh

\v ASCII Vertical Tab (VT)

\ooo ASCII character with octal numeric value that replaces ooo

\xhh ASCII character with hexadecimal value that replaces hh

CHAPTER 12 Working with Strings 231

as shown in the third line. Octal values use three digits and have no special
character associated with them, as shown in the fourth line.

2. Click Run Cell.

Python outputs the expected text and special characters, as shown in
Figure 12-2.

Notebook uses a standard character set across platforms, so you should see
the same special characters no matter which platform you test. However,
when creating your application, make sure to test it on various platforms to see
how the application will react. A character set on one platform may use
different numbers for special characters than another platform does. In
addition, user selection of character sets could have an impact on how special
characters displayed by your application appear. Always make sure that you
test special character usage completely.

Selecting Individual Characters
Earlier in the chapter, you discover that strings are made up of individual charac-
ters. They are, in fact, just like beads on a necklace — with each bead being an
individual element of the whole string.

Python makes it possible to access individual characters in a string. This is an
important feature because you can use it to create new strings that contain only
part of the original. In addition, you can combine strings to create new results.
The secret to this feature is the square bracket. You place a square bracket with a
number in it after the name of the variable. Here’s an example:

MyString = "Hello World"
print(MyString[0])

FIGURE 12-2:
Use special

characters as
needed to

present special
information or

to format the
output.

232 PART 3 Performing Common Tasks

In this case, the output of the code is the letter H. Python strings are zero-based,
which means they start with the number 0 and proceed from there. For example,
if you were to type print(MyString[1]), the output would be the letter e.

You can also obtain a range of characters from a string. Simply provide the begin-
ning and ending letter count separated by a colon in the square brackets. For
example, print(MyString[6:11]) would output the word World. The output
would begin with letter 7 and end with letter 12 (remember that the index is zero
based). The following steps demonstrate some basic tasks that you can perform by
using Python’s character-selection technique.

1. Type the following code into the notebook — pressing Enter after each line.

String1 = "Hello World"
String2 = "Python is Fun!"
print(String1[0])
print(String1[0:5])
print(String1[:5])
print(String1[6:])
String3 = String1[:6] + String2[:6]
print(String3)

print(String2[:7]*5)

The example begins by creating two strings. It then demonstrates various
methods for using the index on the first string. Notice that you can leave out
the beginning or ending number in a range if you want to work with the
remainder of that string.

The next step is to combine two substrings. In this case, the code combines the
beginning of String1 with the beginning of String2 to create String3.

The use of the + sign to combine two strings is called concatenation. This sign is
one of the handier operators to remember when you’re working with strings in
an application.

The final step is to use a Python feature called repetition. You use repetition to
make a number of copies of a string or substring.

2. Click Run Cell.

Python outputs a series of substrings and string combinations, as shown in
Figure 12-3.

CHAPTER 12 Working with Strings 233

Slicing and Dicing Strings
Working with ranges of characters provides some degree of flexibility, but it
doesn’t provide you with the capability to actually manipulate the string content
or discover anything about it. For example, you might want to change the charac-
ters to uppercase or determine whether the string contains all letters. Fortunately,
Python has functions that help you perform tasks of this sort. Here are the most
commonly used functions:

 » capitalize(): Capitalizes the first letter of a string.

 » center(width, fillchar=" "): Centers a string so that it fits within the number of
spaces specified by width. If you supply a character for fillchar, the function
uses that character. Otherwise, center() uses spaces to create a string of the
desired width.

 » expandtabs(tabsize=8): Expands tabs in a string by replacing the tab with the
number of spaces specified by tabsize. The function defaults to 8 spaces per
tab when tabsize isn’t provided.

 » isalnum(): Returns True when the string has at least one character and all
characters are alphanumeric (letters or numbers).

 » isalpha(): Returns True when the string has at least one character and all
characters are alphabetic (letters only).

 » isdecimal(): Returns True when a Unicode string contains only decimal
characters.

 » isdigit(): Returns True when a string contains only digits (numbers and not
letters).

 » islower(): Returns True when a string has at least one alphabetic character
and all alphabetic characters are in lowercase.

FIGURE 12-3:
You can select

individual pieces
of a string.

234 PART 3 Performing Common Tasks

 » isnumeric(): Returns True when a Unicode string contains only numeric
characters.

 » isspace(): Returns True when a string contains only whitespace characters
(which includes spaces, tabs, carriage returns, linefeeds, form feeds, and
vertical tabs, but not the backspace).

 » istitle(): Returns True when a string is cased for use as a title, such as
Hello World. However, the function requires that even little words have the
title case. For example, Follow a Star returns False, even though it’s
properly cased, but Follow A Star returns True.

 » isupper(): Returns True when a string has at least one alphabetic character
and all alphabetic characters are in uppercase.

 » join(seq): Creates a string in which the base string is separated in turn by
each character in seq in a repetitive fashion. For example, if you start with
MyString = "Hello" and type print(MyString.join("!*!")), the output
is !Hello*Hello!.

 » len(string): Obtains the length of string.

 » ljust(width, fillchar=" "): Left justifies a string so that it fits within the
number of spaces specified by width. If you supply a character for fillchar,
the function uses that character. Otherwise, ljust() uses spaces to create a
string of the desired width.

 » lower(): Converts all uppercase letters in a string to lowercase letters.

 » lstrip(): Removes all leading whitespace characters in a string.

 » max(str): Returns the character that has the maximum numeric value in
str. For example, a would have a larger numeric value than A.

 » min(str): Returns the character that has the minimum numeric value in str. For
example, A would have a smaller numeric value than a.

 » rjust(width, fillchar=" "): Right justifies a string so that it fits within
the number of spaces specified by width. If you supply a character for
fillchar, the function uses that character. Otherwise, rjust() uses spaces
to create a string of the desired width.

 » rstrip(): Removes all trailing whitespace characters in a string.

 » split(str=" ", num=string.count(str)): Splits a string into substrings
using the delimiter specified by str (when supplied). The default is to use a
space as a delimiter. Consequently, if your string contains A Fine Day, the
output would be three substrings consisting of A, Fine, and Day. You use
num to define the number of substrings to return. The default is to return
every substring that the function can produce.

CHAPTER 12 Working with Strings 235

 » splitlines(num=string.count('\n')): Splits a string that contains
newline (\n) characters into individual strings. Each break occurs at the
newline character. The output has the newline characters removed. You can
use num to specify the number of strings to return.

 » strip(): Removes all leading and trailing whitespace characters in a string.

 » swapcase(): Inverts the case for each alphabetic character in a string.

 » title(): Returns a string in which the initial letter in each word is in upper-
case and all remaining letters in the word are in lowercase.

 » upper(): Converts all lowercase letters in a string to uppercase letters.

 » zfill (width): Returns a string that is left-padded with zeros so that the
resulting string is the size of width. This function is designed for use with
strings containing numeric values. It retains the original sign information (if
any) supplied with the number.

Playing with these functions a bit can help you understand them better. The
 following steps create an example that demonstrates some of the tasks you can
perform by using these functions.

1. Type the following code into the notebook — pressing Enter after each line:

MyString = " Hello World "
print(MyString.upper())
print(MyString.strip())
print(MyString.center(21, "*"))
print(MyString.strip().center(21, "*"))
print(MyString.isdigit())
print(MyString.istitle())
print(max(MyString))
print(MyString.split())

print(MyString.split()[0])

The code begins by creating MyString, which includes spaces before and after
the text so that you can see how space-related functions work. The initial task
is to convert all the characters to uppercase.

Removing extra space is a common task in application development. The
strip() function performs this task well. The center() function lets you add
padding to both the left and right side of a string so that it consumes a desired
amount of space. When you combine the strip() and center() functions,
the output is different from when you use the center() function alone.

236 PART 3 Performing Common Tasks

You can combine functions to produce a desired result. Python executes
each of the functions one at a time from left to right. The order in which the
functions appear will affect the output, and developers commonly make the
mistake of putting the functions in the wrong order. If your output is different
from what you expected, try changing the function order.

Some functions work on the string as an input rather than on the string instance.
The max() function falls into this category. If you had typed MyString.max(),
Python would have displayed an error. The bulleted list that appears earlier in
this section shows which functions require this sort of string input.

When working with functions that produce a list as an output, you can access
an individual member by providing an index to it. The example shows how to
use split() to split the string into substrings. It then shows how to access just
the first substring in the list. You find out more about working with lists in
Chapter 13.

2. Click Run Cell.

Python outputs a number of modified strings, as shown in Figure 12-4.

Locating a Value in a String
Sometimes you need to locate specific information in a string. For example, you
may want to know whether a string contains the word Hello in it. One of the
essential purposes behind creating and maintaining data is to be able to search it
later to locate specific bits of information. Strings are no different — they’re most
useful when you can find what you need quickly and without any problems. Python
provides a number of functions for searching strings. Here are the most com-
monly used functions:

FIGURE 12-4:
Using functions

makes string
manipulation a

lot more flexible.

CHAPTER 12 Working with Strings 237

 » count(str, beg= 0, end=len(string)): Counts how many times str
occurs in a string. You can limit the search by specifying a beginning index
using beg or an ending index using end.

 » endswith(suffix, beg=0, end=len(string)): Returns True when a
string ends with the characters specified by suffix. You can limit the check by
specifying a beginning index using beg or an ending index using end.

 » find(str, beg=0, end=len(string)): Determines whether str occurs in a
string and outputs the index of the location. You can limit the search by
specifying a beginning index using beg or a ending index using end.

 » index(str, beg=0, end=len(string)): Provides the same functionality
as find(), but raises an exception when str isn’t found.

 » replace(old, new [, max]): Replaces all occurrences of the character
sequence specified by old in a string with the character sequence specified by
new. You can limit the number of replacements by specifying a value for max.

 » rfind(str, beg=0, end=len(string)): Provides the same functionality
as find(), but searches backward from the end of the string instead of the
beginning.

 » rindex(str, beg=0, end=len(string)): Provides the same functionality
as index(), but searches backward from the end of the string instead of the
beginning.

 » startswith(prefix, beg=0, end=len(string)): Returns True when a
string begins with the characters specified by prefix. You can limit the check by
specifying a beginning index using beg or an ending index using end.

Finding the data that you need is an essential programming task — one that is
required no matter what kind of application you create. The following steps help
you create an example that demonstrates the use of search functionality within
strings.

1. Type the following code into the window — pressing Enter after each line:

SearchMe = "The apple is red and the berry is blue!"
print(SearchMe.find("is"))
print(SearchMe.rfind("is"))
print(SearchMe.count("is"))
print(SearchMe.startswith("The"))
print(SearchMe.endswith("The"))
print(SearchMe.replace("apple", "car")

 .replace("berry", "truck"))

238 PART 3 Performing Common Tasks

The example begins by creating SearchMe, a string with two instances of the
word is. The two instances are important because they demonstrate how
searches differ depending on where you start. When using find(), the
example starts from the beginning of the string. By contrast, rfind() starts
from the end of the string.

Of course, you won’t always know how many times a certain set of characters
appears in a string. The count() function lets you determine this value.

Depending on the kind of data you work with, sometimes the data is heavily
formatted and you can use a particular pattern to your advantage. For
example, you can determine whether a particular string (or substring) ends or
begins with a specific sequence of characters. You could just as easily use this
technique to look for a part number.

The final bit of code replaces apple with car and berry with truck. Notice the
technique used to place the code on two lines. In some cases, your code will
need to appear on multiple lines to make it more readable.

2. Click Run Cell.

Python displays the output shown in Figure 12-5. Notice especially that the
searches returned different indexes based on where they started in the string.
Using the correct function when performing searches is essential to ensure
that you get the results you expected.

Formatting Strings
You can format strings in a number of ways using Python. The main emphasis of
formatting is to present the string in a form that is both pleasing to the user and
easy to understand. Formatting doesn’t mean adding special fonts or effects in
this case, but refers merely to the presentation of the data. For example, the user
might want a fixed-point number rather than a decimal number as output.

FIGURE 12-5:
Typing the wrong

input type
generates an

error instead of
an exception.

CHAPTER 12 Working with Strings 239

You have quite a few ways to format strings and you see a number of them as the
book progresses. However, the focus of most formatting is the format() function.
You create a formatting specification as part of the string and then use the
format() function to add data to that string. A format specification may be as
simple as two curly brackets {} that specify a placeholder for data. You can num-
ber the placeholder to create special effects. For example, {0} would contain the
first data element in a string. When the data elements are numbered, you can even
repeat them so that the same data appears more than once in the string.

The formatting specification follows a colon. When you want to create just a
 formatting specification, the curly brackets contain just the colon and whatever
formatting you want to use. For example, {:f} would create a fixed-point num-
ber as output. If you want to number the entries, the number that precedes the
colon: {0:f} creates a fixed-point number output for data element one. The for-
matting specification follows this form, with the italicized elements serving as
placeholders here:

[[fill]align][sign][#][0][width][,][.precision][type]

The specification at https://docs.python.org/3/library/string.html pro-
vides you with the in-depth details, but here’s an overview of what the various
entries mean:

 » fill: Defines the fill character used when displaying data that is too small to fit
within the assigned space.

 » align: Specifies the alignment of data within the display space. You can use
these alignments:

• <: Left aligned

• >: Right aligned

• ^: Centered

• =: Justified

 » sign: Determines the use of signs for the output:

• +: Positive numbers have a plus sign and negative numbers have a minus
sign.

• -: Negative numbers have a minus sign.

• <space>: Positive numbers are preceded by a space and negative numbers
have a minus sign.

https://docs.python.org/3/library/string.html

240 PART 3 Performing Common Tasks

 » #: Specifies that the output should use the alternative display format for
numbers. For example, hexadecimal numbers will have a 0x prefix added
to them.

 » 0: Specifies that the output should be sign aware and padded with zeros as
needed to provide consistent output.

 » width: Determines the full width of the data field (even if the data won’t fit in
the space provided).

 » ,: Specifies that numeric data should have commas as a thousands separator.

 » .precision: Determines the number of characters after the decimal point.

 » type: Specifies the output type, even if the input type doesn’t match. The
types are split into three groups:

• String: Use an s or nothing at all to specify a string.

• Integer: The integer types are as follows: b (binary); c (character); d
(decimal); o (octal); x (hexadecimal with lowercase letters); X (hexadecimal
with uppercase letters); and n (locale-sensitive decimal that uses the
appropriate characters for the thousands separator).

• Floating point: The floating-point types are as follows: e (exponent using
a lowercase e as a separator); E (exponent using an uppercase E as a
separator); f (lowercase fixed point); F (uppercase fixed point); g (lowercase
general format); G (uppercase general format); n (local-sensitive general
format that uses the appropriate characters for the decimal and thousands
separators); and % (percentage).

The formatting specification elements must appear in the correct order or Python
won’t know what to do with them. If you specify the alignment before the fill
character, Python displays an error message rather than performing the required
formatting. The following steps help you see how the formatting specification
works and demonstrate the order you need to follow in using the various format-
ting specification criteria.

1. Type the following code into the notebook — pressing Enter after each line:

Formatted = "{:d}"
print(Formatted.format(7000))
Formatted = "{:,d}"
print(Formatted.format(7000))
Formatted = "{:^15,d}"
print(Formatted.format(7000))

CHAPTER 12 Working with Strings 241

Formatted = "{:*^15,d}"
print(Formatted.format(7000))
Formatted = "{:*^15.2f}"
print(Formatted.format(7000))
Formatted = "{:*>15X}"
print(Formatted.format(7000))
Formatted = "{:*<#15x}"
print(Formatted.format(7000))
Formatted = "A {0} {1} and a {0} {2}."

print(Formatted.format("blue", "car", "truck"))

The example starts simply with a field formatted as a decimal value. It then
adds a thousands separator to the output. The next step is to make the field
wider than needed to hold the data and to center the data within the field.
Finally, the field has an asterisk added to pad the output.

Of course, the example contains other data types. The next step is to display
the same data in fixed-point format. The example also shows the output in
both uppercase and lowercase hexadecimal format. The uppercase output is
right aligned and the lowercase output is left aligned.

Finally, the example shows how you can use numbered fields to your advan-
tage. In this case, it creates an interesting string output that repeats one of the
input values.

2. Click Run Cell.

Python outputs data in various forms, as shown in Figure 12-6.

FIGURE 12-6:
Use formatting to

present data in
precisely the

form you want.

CHAPTER 13 Managing Lists 243

Chapter 13
Managing Lists

A lot of people lose sight of the fact that most programming techniques are
based on the real world. Part of the reason is that programmers often use
terms that other people don’t to describe these real-world objects. For

example, most people would call a place to store something a box or a cupboard —
but programmers insist on using the term variable. Lists are different. Everyone
makes lists and uses them in various ways to perform an abundance of tasks. In
fact, you’re probably surrounded by lists of various sorts where you’re sitting
right now as you read this book. So, this chapter is about something you already
use quite a lot. The only difference is that you need to think of lists in the same
way Python does.

You may read that lists are hard to work with. The reason that some people find
working with lists difficult is that they’re not used to actually thinking about the
lists they create. When you create a list, you simply write items down in whatever
order makes sense to you. Sometimes you rewrite the list when you’re done to put
it in a specific order. In other cases, you use your finger as a guide when going
down the list to make looking through it easier. The point is that everything you
normally do with lists is also doable within Python. The difference is that you
must now actually think about what you’re doing in order to make Python under-
stand what you want done.

Lists are incredibly important in Python. This chapter introduces you to the con-
cepts used to create, manage, search, and print lists (among other tasks). When
you complete the chapter, you can use lists to make your Python applications
more robust, faster, and more flexible. In fact, you’ll wonder how you ever got

 » Defining why lists are important

 » Generating lists

 » Managing lists

 » Using the Counter object to your
advantage

244 PART 3 Performing Common Tasks

along without using lists in the past. The important thing to keep in mind is that
you have already used lists most of your life. There really isn’t any difference now
except that you must now think about the actions that you normally take for
granted when managing your own lists. You can find the downloadable source
code for the examples this chapter in the BPPD_13_Managing_Lists.ipynb file,
as described in the book’s Introduction.

Organizing Information in an Application
People create lists to organize information and make it easier to access and change.
You use lists in Python for the same reason. In many situations, you really do need
some sort of organizational aid to hold data. For example, you might want to cre-
ate a single place to look for days of the week or months of the year. The names of
these items would appear in a list, much as they would if you needed to commit
them to paper in the real world. The following sections describe lists and how they
work in more detail.

Defining organization using lists
The Python specification defines a list as a kind of sequence. Sequences simply
provide some means of allowing multiple data items to exist together in a single
storage unit, but as separate entities. Think about one of those large mail holders
you see in apartment buildings. A single mail holder contains a number of small
mailboxes, each of which can contain mail. Python supports other kinds of
sequences as well (Chapter 14 discusses a number of these sequences):

 » Tuples

 » Dictionaries

 » Stacks

 » Queues

 » Deques

Of all the sequences, lists are the easiest to understand and are the most directly
related to a real-world object. Working with lists helps you become better able to
work with other kinds of sequences that provide greater functionality and
improved flexibility. The point is that the data is stored in a list much as you
would write it on a piece of paper — one item comes after another, as shown in
Figure 13-1. The list has a beginning, a middle, and an end. As shown in the figure,
the items are numbered. (Even if you might not normally number them in real
life, Python always numbers the items for you.)

CHAPTER 13 Managing Lists 245

Understanding how computers view lists
The computer doesn’t view lists in the same way that you do. It doesn’t have an
internal notepad and use a pen to write on it. A computer has memory. The
 computer stores each item in a list in a separate memory location, as shown in
Figure 13-2. The memory is contiguous, so as you add new items, they’re added to
the next location in memory.

In many respects, the computer uses something like a mailbox to hold your list.
The list as a whole is the mail holder. As you add items, the computer places it in
the next mailbox within the mail holder.

Just as the mailboxes are numbered in a mail holder, the memory slots used for a
list are numbered. The numbers begin with 0, not with 1 as you might expect. Each
mailbox receives the next number in line. A mail holder with the months of the
year would contain 12 mailboxes. The mailboxes would be numbered from 0 to 11
(not 1 to 12, as you might think). Getting the numbering scheme down as quickly
as possible is essential because even experienced developers get into trouble by
using 1 and not 0 as a starting point at times.

FIGURE 13-1:
A list is simply a

sequence of
items, much as

you would write
on a notepad.

FIGURE 13-2:
Each item added

to a list takes
the next position

in memory.

246 PART 3 Performing Common Tasks

Depending on what sort of information you place in each mailbox, the mailboxes
need not be of the same size. Python lets you store a string in one mailbox, an
integer in another, and a floating-point value in another. The computer doesn’t
know what kind of information is stored in each mailbox and it doesn’t care. All
the computer sees is one long list of numbers that could be anything. Python
 performs all the work required to treat the data elements according to the right
type and to ensure that when you request item five, you actually get item five.

In general, it’s good practice to create lists of like items to make the data easier to
manage. When creating a list of all integers, for example, rather than of mixed
data, you can make assumptions about the information and don’t have to spend
nearly as much time checking it. However, in some situations, you might need to
mix data. Many other programming languages require that lists have just one type
of data, but Python offers the flexibility of using mixed data sorts. Just remember
that using mixed data in a list means that you must determine the data type when
retrieving the information in order to work with the data correctly. Treating a
string as an integer would cause problems in your application.

Creating Lists
As in real life, before you can do anything with a list, you must create it. As previ-
ously stated, Python lists can mix types. However, restricting a list to a single type
when you can is always the best practice. The following steps demonstrate how to
create Python lists.

1. Open a new notebook.

You can also use the downloadable source file, BPPD_13_Managing_Lists.
ipynb.

2. Type List1 = [“One”, 1, “Two”, True] and press Enter.

Python creates a list named List1 for you. This list contains two string values
(One and Two), an integer value (1), and a Boolean value (True). Of course, you
can’t actually see anything because Python processes the command without
saying anything.

Notice that each data type that you type is a different color. When you use the
default color scheme, Python displays strings in green, numbers in black, and
Boolean values in orange. The color of an entry is a cue that tells you whether
you have typed the entry correctly, which helps reduce errors when creating a list.

CHAPTER 13 Managing Lists 247

3. Type print(List1) and click Run Cell.

You see the content of the list as a whole, as shown in Figure 13-3. Notice that
the string entries appear in single quotes, even though you typed them using
double quotes. Strings can appear in either single quotes or double quotes in
Python.

4. Type dir(List1) and click Run Cell.

Python displays a list of actions that you can perform using lists, as shown
(partially) in Figure 13-4. Notice that the output is actually a list. So, you’re using
a list to determine what you can do with another list.

As you start working with objects of greater complexity, you need to remember
that the dir() command always shows what tasks you can perform using that
object. The actions that appear without underscores are the main actions that
you can perform using a list. These actions are the following:

• append

• clear

FIGURE 13-3:
Python displays

the content
of List1.

FIGURE 13-4:
Python provides

a listing of
the actions you

can perform
using a list.

248 PART 3 Performing Common Tasks

• copy

• count

• extend

• index

• insert

• pop

• remove

• reverse

• sort

Accessing Lists
After you create a list, you want to access the information it contains. An object isn’t
particularly useful if you can’t at least access the information it contains. The pre-
vious section shows how to use the print() and dir() functions to interact with a
list, but other ways exist to perform the task, as described in the following steps.

1. Type List1 = [“One”, 1, “Two”, True] and click Run Cell.

Python creates a list named List1 for you.

2. Type List1[1] and click Run Cell.

You see the value 1 as output, as shown in Figure 13-5. The use of a number
within a set of square brackets is called an index. Python always uses zero-
based indexes, so asking for the element at index 1 means getting the second
element in the list.

3. Type List1[1:3] and click Run Cell.

You see a range of values that includes two elements, as shown in Figure 13-6.
When typing a range, the end of the range is always one greater than the
number of elements returned. In this case, that means that you get elements 1
and 2, not elements 1 through 3 as you might expect.

FIGURE 13-5:
Make sure to use
the correct index

number.

CHAPTER 13 Managing Lists 249

4. Type List1[1:] and click Run Cell.

You see all the elements, starting from element 1 to the end of the list, as
shown in Figure 13-7. A range can have a blank ending number, which simply
means to print the rest of the list.

5. Type List1[:3] and click Run Cell.

Python displays the elements from 0 through 2. Leaving the start of a range
blank means that you want to start with element 0, as shown in Figure 13-8.

Even though doing so is really confusing, you can use negative indexes with
Python. Instead of working from the left, Python will work from the right and
backward. For example, if you have List1 = ["One", 1, "Two", True] and type
List1[-2], you get Two as output. Likewise, typing List[-3] results in an output
of 1. The rightmost element is element -1 in this case.

Looping through Lists
To automate the processing of list elements, you need some way to loop through
the list. The easiest way to perform this task is to rely on a for statement, as
described in the following steps.

FIGURE 13-6:
Ranges return

multiple values.

FIGURE 13-7:
Leaving the

ending number of
a range blank
prints the rest

of the list.

FIGURE 13-8:
Leaving the

beginning
number of a
range blank
prints from
element 0.

250 PART 3 Performing Common Tasks

1. Type the following code into the window — pressing Enter after each line:

List1 = [0, 1, 2, 3, 4, 5]
for Item in List1:

 print(Item)

The example begins by creating a list consisting of numeric values. It then uses
a for loop to obtain each element in turn and print it onscreen.

2. Click Run Cell.

Python shows the individual values in the list, one on each line, as shown in
Figure 13-9.

Modifying Lists
You can modify the content of a list as needed. Modifying a list means to change a
particular entry, add a new entry, or remove an existing entry. To perform these
tasks, you must sometimes read an entry. The concept of modification is found
within the acronym CRUD, which stands for Create, Read, Update, and Delete.
Here are the list functions associated with CRUD:

 » append(): Adds a new entry to the end of the list.

 » clear(): Removes all entries from the list.

 » copy(): Creates a copy of the current list and places it in a new list.

 » extend(): Adds items from an existing list and into the current list.

 » insert(): Adds a new entry to the position specified in the list.

 » pop(): Removes an entry from the end of the list.

 » remove(): Removes an entry from the specified position in the list.

FIGURE 13-9:
A loop makes it
easy to obtain a

copy of each item
and process it

as needed.

CHAPTER 13 Managing Lists 251

The following steps show how to perform modification tasks with lists. This is a
hands-on exercise. As the book progresses, you see these same functions used
within application code. The purpose of this exercise is to help you gain a feel for
how lists work.

1. Type List2 = [] and press Enter.

Python creates a list named List2 for you.

Notice that the square brackets are empty. List2 doesn’t contain any entries.
You can create empty lists that you fill with information later. In fact, this is
precisely how many lists start because you usually don’t know what informa-
tion they will contain until the user interacts with the list.

2. Type len(List2) and click Run Cell.

The len() function outputs 0, as shown in Figure 13-10. When creating an
application, you can check for an empty list by using the len() function. If a list
is empty, you can’t perform tasks such as removing elements from it because
there is nothing to remove.

3. Type List2.append(1) and press Enter.

4. Type len(List2) and click Run Cell.

The len() function now reports a length of 1.

5. Type List2[0] and click Run Cell.

You see the value stored in element 0 of List2, as shown in Figure 13-11.

FIGURE 13-10:
Check for empty

lists as needed in
your application.

FIGURE 13-11:
Appending an

element changes
the list length

and stores the
value at the end

of the list.

252 PART 3 Performing Common Tasks

6. Type List2.insert(0, 2) and press Enter.

The insert() function requires two arguments. The first argument is the
index of the insertion, which is element 0 in this case. The second argument is
the object you want inserted at that point, which is 2 in this case.

7. Type List2 and click Run Cell.

Python has added another element to List2. However, using the insert()
function lets you add the new element before the first element, as shown in
Figure 13-12.

8. Type List3 = List2.copy() and press Enter.

The new list, List3, is a precise copy of List2. Copying is often used to create
a temporary version of an existing list so that a user can make temporary
modifications to it rather than to the original list. When the user is done, the
application can either delete the temporary list or copy it to the original list.

9. Type List2.extend(List3) and press Enter.

Python copies all the elements in List3 to the end of List2. Extending is
commonly used to consolidate two lists.

10. Type List2 and click Run Cell.

You see that the copy and extend processes have worked. List2 now contains
the values 2, 1, 2, and 1, as shown in Figure 13-13.

11. Type List2.pop() and click Run Cell.

Python displays a value of 1, as shown in Figure 13-14. The 1 was stored at the
end of the list, and pop() always removes values from the end.

FIGURE 13-12:
Inserting provides

flexibility in
deciding where to

add an element.

FIGURE 13-13:
Copying and

extending
provide methods

for moving a lot
of data around

quickly.

CHAPTER 13 Managing Lists 253

12. Type List2.remove(1) and click Run Cell.

This time, Python removes the item at element 1. Unlike the pop() function,
the remove() function doesn’t display the value of the item it removed.

13. Type List2.clear() and press Enter.

Using clear() means that the list shouldn’t contain any elements now.

14. Type len(List2) and click Run Cell.

You see that the output is 0. List2 is definitely empty. At this point, you’ve
tried all the modification methods that Python provides for lists. Work with
List2 some more using these various functions until you feel comfortable
making changes to the list.

FIGURE 13-14:
Use pop() to

remove elements
from the end

of a list.

USING OPERATORS WITH LISTS
Lists can also rely on operators to perform certain tasks. For example, if you want
to create a list that contains four copies of the word Hello, you could use MyList =
["Hello"] * 4 to fill it. A list allows repetition as needed. The multiplication operator (*)
tells Python how many times to repeat a given item. You need to remember that every
repeated element is separate, so what MyList contains is ['Hello', 'Hello',
'Hello', 'Hello'].

You can also use concatenation to fill a list. For example, using MyList = ["Hello"] +
["World"] + ["!"] * 4 creates six elements in MyList. The first element is Hello,
followed by World and ending with four elements with one exclamation mark (!) in each
element.

The membership operator (in) also works with lists. This chapter uses a straightforward
and easy-to-understand method of searching lists (the recommended approach).
However, you can use the membership operator to make things shorter and simpler
by using "Hello" in MyList. Assuming that you have your list filled with ['Hello',
'World', '!', '!', '!', '!'], the output of this statement is True.

254 PART 3 Performing Common Tasks

Searching Lists
Modifying a list isn’t very easy when you don’t know what the list contains. The
ability to search a list is essential if you want to make maintenance tasks easier.
The following steps help you create an application that demonstrates the ability to
search a list for specific values.

1. Type the following code into the notebook — pressing Enter after each line:

Colors = ["Red", "Orange", "Yellow", "Green", "Blue"]
ColorSelect = ""
while str.upper(ColorSelect) != "QUIT":
 ColorSelect = input("Please type a color name: ")
 if (Colors.count(ColorSelect) >= 1):
 print("The color exists in the list!")
 elif (str.upper(ColorSelect) != "QUIT"):

 print("The list doesn't contain the color.")

The example begins by creating a list named Colors that contains color
names. It also creates a variable named ColorSelect to hold the name of the
color that the user wants to find. The application then enters a loop where the
user is asked for a color name that is placed in ColorSelect. As long as this
variable doesn’t contain the word QUIT, the application continues a loop that
requests input.

Whenever the user inputs a color name, the application asks the list to count
the number of occurrences of that color. When the value is equal to or greater
than one, the list does contain the color and an appropriate message appears
onscreen. On the other hand, when the list doesn’t contain the requested
color, an alternative message appears onscreen.

Notice how this example uses an elif clause to check whether ColorSelect
contains the word QUIT. This technique of including an elif clause ensures
that the application doesn’t output a message when the user wants to quit the
application. You need to use similar techniques when you create your applica-
tions to avoid potential user confusion or even data loss (when the application
performs a task the user didn’t actually request).

2. Click Run Cell.

Python asks you to type a color name.

3. Type Blue and press Enter.

You see a message telling you that the color does exist in the list, as shown in
Figure 13-15.

CHAPTER 13 Managing Lists 255

4. Type Purple and press Enter.

You see a message telling you that the color doesn’t exist, as shown in
Figure 13-16.

5. Type Quit and press Enter.

The application ends. Notice that the application displays neither a success nor
a failure message.

Sorting Lists
The computer can locate information in a list no matter what order it appears in.
It’s a fact, though, that longer lists are easier to search when you put them in
sorted order. However, the main reason to put a list in sorted order is to make it
easier for the human user to actually see the information the list contains. People
work better with sorted information. This example begins with an unsorted list. It
then sorts the list and outputs it to the display. The following steps demonstrate
how to perform this task.

FIGURE 13-15:
Colors that exist

in the list receive
the success

message.

FIGURE 13-16:
Entering a color

that doesn’t exist
results in a failure

message.

256 PART 3 Performing Common Tasks

1. Type the following code into the notebook — pressing Enter after each
line:

Colors = ["Red", "Orange", "Yellow", "Green", "Blue"]
for Item in Colors:
 print(Item, end=" ")
print()
Colors.sort()
for Item in Colors:
 print(Item, end=" ")

print()

The example begins by creating an array of colors. The colors are currently in
unsorted order. The example then prints the colors in the order in which they
appear. Notice the use of the end=" " argument for the print() function to
ensure that all color entries remain on one line (making them easier to
compare).

Sorting the list is as easy as calling the sort() function. After the example calls
the sort() function, it prints the list again so that you can see the result.

2. Click Run Cell.

Python outputs both the unsorted and sorted lists, as shown in Figure 13-17.

You may need to sort items in reverse order at times. To accomplish this task, you
use the reverse() function. The function must appear on a separate line. So the
previous example would look like this if you wanted to sort the colors in reverse
order:

Colors = ["Red", "Orange", "Yellow", "Green", "Blue"]
for Item in Colors:
 print(Item, end=" ")
print()
Colors.sort()

FIGURE 13-17:
Sorting a list is as

easy as calling the
sort() function.

CHAPTER 13 Managing Lists 257

Colors.reverse()
for Item in Colors:
 print(Item, end=" ")
print()

Printing Lists
Python provides myriad ways to output information. In fact, the number of ways
would amaze you. This chapter has shown just a few of the most basic methods for
outputting lists so far, using the most basic methods. Real-world printing can
become more complex, so you need to know a few additional printing techniques
to get you started. Using these techniques is actually a lot easier if you play with
them as you go along.

1. Type the following code into the notebook — pressing Enter after each line:

Colors = ["Red", "Orange", "Yellow", "Green", "Blue"]

print(*Colors, sep='\n')

This example begins by using the same list of colors in the previous section.
In that section, you use a for loop to print the individual items. This example
takes another approach. It uses the splat (*) operator, also called the positional
expansion operator (and an assortment of other interesting terms), to unpack
the list and send each element to the print() method one item at a time. The
sep argument tells how to separate each of the printed outputs, relying on a
newline character in this case.

2. Click Run Cell.

Python outputs the list one item at a time, as shown in Figure 13-18.

FIGURE 13-18:
Using the splat

operator can
make your code

significantly
smaller.

258 PART 3 Performing Common Tasks

3. Type the following code into the notebook and click Run Cell.

for Item in Colors: print(Item.rjust(8), sep='/n')

Code doesn’t have to appear on multiple lines. This example takes two lines of
code and places it on just a single line. However, it also demonstrates the use of
the rjust() method, which right justifies the string, as shown in Figure 13-19.
Numerous methods of this sort are described at https://docs.python.org/2/
library/string.html. Even though they continue to work, Python may stop
using them at any time.

4. Type the following code into the notebook and click Run Cell.

print('\n'.join(Colors))

Python provides more than one way to perform any task. In this case, the code
uses the join() method to join the newline character with each member of
Colors. The output is the same as that shown previously in Figure 13-18, even
though the approach is different. The point is to use the approach that best
suits a particular need.

5. Type the following code into the notebook and click Run Cell.

print('First: {0}\nSecond: {1}'.format(*Colors))

In this case, the output is formatted in a specific way with accompanying text,
and the result doesn’t include every member of Colors. The {0} and {1}
entries represent placeholders for the values supplied from *Colors.
Figure 13-20 shows the output. You can read more about this approach
(the topic is immense) at https://docs.python.org/3/tutorial/
inputoutput.html.

FIGURE 13-20:
Use the

format()
function to obtain

specific kinds of
output from your

application.

FIGURE 13-19:
String functions

let you easily
format your

output in
specific ways.

https://docs.python.org/2/library/string.html
https://docs.python.org/2/library/string.html
https://docs.python.org/3/tutorial/inputoutput.html
https://docs.python.org/3/tutorial/inputoutput.html

CHAPTER 13 Managing Lists 259

This section touches on only some of the common techniques used to format out-
put in Python. There are lots more. You see many of these approaches demon-
strated in the chapters that follow. The essential goal is to use a technique that’s
easy to read, works well with all anticipated inputs, and doesn’t paint you into a
corner when you’re creating additional output later.

Working with the Counter Object
Sometimes you have a data source and you simply need to know how often things
happen (such as the appearance of a certain item in the list). When you have a
short list, you can simply count the items. However, when you have a really long
list, getting an accurate count is nearly impossible. For example, consider what it
would take if you had a really long novel like War and Peace in a list and wanted to
know the frequency of the words the novel used. The task would be impossible
without a computer.

The Counter object lets you count items quickly. In addition, it’s incredibly easy
to use. This book shows the Counter object in use a number of times, but this
chapter shows how to use it specifically with lists. The example in this section
creates a list with repetitive elements and then counts how many times those
 elements actually appear.

1. Type the following code into the notebook — pressing Enter after each line:

from collections import Counter
MyList = [1, 2, 3, 4, 1, 2, 3, 1, 2, 1, 5]
ListCount = Counter(MyList)
print(ListCount)
for ThisItem in ListCount.items():
 print("Item: ", ThisItem[0],
 " Appears: ", ThisItem[1])
print("The value 1 appears {0} times."

 .format(ListCount.get(1)))

To use the Counter object, you must import it from collections. Of course, if
you work with other collection types in your application, you can import the
entire collections package by typing import collections instead.

The example begins by creating a list, MyList, with repetitive numeric ele-
ments. You can easily see that some elements appear more than once. The
example places the list into a new Counter object, ListCount. You can create
Counter objects in all sorts of ways, but this is the most convenient method
when working with a list.

260 PART 3 Performing Common Tasks

The Counter object and the list aren’t actually connected in any way. When the
list content changes, you must re-create the Counter object because it won’t
automatically see the change. An alternative to re-creating the counter is to
call the clear() method first and then call the update() method to fill the
Counter object with the new data.

The application prints ListCount in various ways. The first output is the
Counter as it appears without any manipulation. The second output prints the
individual unique elements in MyList along with the number of times each
element appears. To obtain both the element and the number of times it
appears, you must use the items() function as shown. Finally, the example
demonstrates how to obtain an individual count from the list by using the
get() function.

2. Click Run Cell.

Python outputs the results of using the Counter object, as shown in
Figure 13-21.

Notice that the information is actually stored in the Counter as a key and
value pair. Chapter 14 discusses this topic in greater detail. All you really need
to know for now is that the element found in MyList becomes a key in
ListCount that identifies the unique element name. The value contains the
number of times that that element appears within MyList.

FIGURE 13-21:
The Counter

is helpful in
obtaining

statistics about
longer lists.

CHAPTER 14 Collecting All Sorts of Data 261

Chapter 14
Collecting All Sorts
of Data

People collect all sorts of things. The CDs stacked near your entertainment
center, the plates that are part of a series, baseball cards, and even the pens
from every restaurant you’ve ever visited are all collections. The collections

you encounter when you write applications are the same as the collections in the
real world. A collection is simply a grouping of like items in one place and usually
organized into some easily understood form.

This chapter is about collections of various sorts. The central idea behind every
collection is to create an environment in which the collection is properly managed
and lets you easily locate precisely what you want at any given time. A set of
 bookshelves works great for storing books, DVDs, and other sorts of flat items.
However, you probably put your pen collection in a holder or even a display case.
The difference in storage locations doesn’t change the fact that both house
collections. The same is true with computer collections. Yes, differences exist
between a stack and a queue, but the main idea is to provide the means to manage
data properly and make it easy to access when needed. You can find the download-
able source code for the examples this chapter in the BPPD_14_Collecting_All_
Sorts_of_Data.ipynb file, as described in the book’s Introduction.

 » Defining a collection

 » Using tuples and dictionaries

 » Developing stacks using lists

 » Using the queue and deque
packages

262 PART 3 Performing Common Tasks

Understanding Collections
In Chapter 13, you’re introduced to sequences. A sequence is a succession of values
that are bound together in a container. The simplest sequence is a string, which is
a succession of characters. Next comes the list described in Chapter 13, which is a
succession of objects. Even though a string and a list are both sequences, they have
significant differences. For example, when working with a string, you can set all the
characters to lowercase — something you can’t do with a list. On the other hand,
lists let you append new items, which is something a string doesn’t support directly
(concatenations actually create a new string). Collections are simply another kind of
sequence, albeit a more complex sequence than you find in either a string or list.

No matter which sequence you use, they all support two functions: index() and
count(). The index() function always returns the position of a specified item in
the sequence. For example, you can return the position of a character in a string
or the position of an object in a list. The count() function returns the number of
times a specific item appears in the list. Again, the kind of specific item depends
upon the kind of sequence.

You can use collections to create database-like structures using Python. Each col-
lection type has a different purpose, and you use the various types in specific
ways. The important idea to remember is that collections are simply another kind
of sequence. As with every other kind of sequence, collections always support the
index() and count() functions as part of their base functionality.

Python is designed to be extensible. However, it does rely on a base set of collec-
tions that you can use to create most application types. This chapter describes the
most common collections:

 » Tuple: A tuple is a collection used to create complex list-like sequences. An
advantage of tuples is that you can nest the content of a tuple. This feature
lets you create structures that can hold employee records or x-y coordi-
nate pairs.

 » Dictionary: As with the real dictionaries, you create key/value pairs when
using the dictionary collection (think of a word and its associated definition).
A dictionary provides incredibly fast search times and makes ordering data
significantly easier.

 » Stack: Most programming languages support stacks directly. However,
Python doesn’t support the stack, although there’s a work-around for that.
A stack is a last in/first out (LIFO) sequence. Think of a pile of pancakes: You
can add new pancakes to the top and also take them off of the top. A stack is
an important collection that you can simulate in Python by using a list, which
is precisely what this chapter does.

CHAPTER 14 Collecting All Sorts of Data 263

 » queue: A queue is a first in/first out (FIFO) collection. You use it to track items that
need to be processed in some way. Think of a queue as a line at the bank. You go
into the line, wait your turn, and are eventually called to talk with a teller.

 » deque: A double-ended queue (deque) is a queue-like structure that lets you
add or remove items from either end, but not from the middle. You can use a
deque as a queue or a stack or any other kind of collection to which you’re
adding and from which you’re removing items in an orderly manner (in
contrast to lists, tuples, and dictionaries, which allow randomized access and
management).

Working with Tuples
As previously mentioned, a tuple is a collection used to create complex lists, in
which you can embed one tuple within another. This embedding lets you create
hierarchies with tuples. A hierarchy could be something as simple as the directory
listing of your hard drive or an organizational chart for your company. The idea is
that you can create complex data structures by using a tuple.

Tuples are immutable, which means you can’t change them. You can create a new
tuple with the same name and modify it in some way, but you can’t modify an
existing tuple. Lists are mutable, which means that you can change them. So, a
tuple can seem at first to be at a disadvantage, but immutability has all sorts of
advantages, such as being more secure as well as faster. In addition, immutable
objects are easier to use with multiple processors.

The two biggest differences between a tuple and a list are that a tuple is immu-
table and allows you to embed one tuple inside another. The following steps dem-
onstrate how you can interact with a tuple in Python.

1. Open a new notebook.

You can also use the downloadable source file, BPPD_14_Collecting_All_
Sorts_of_Data.ipynb.

2. Type MyTuple = (″Red″, ″ Blue″, ″ Green ″) and press Enter.

Python creates a tuple containing three strings.

3. Type MyTuple and click Run Cell.

You see the content of MyTuple, which is three strings, as shown in Figure 14-1.
Notice that the entries use single quotes, even though you used double quotes
to create the tuple. In addition, notice that a tuple uses parentheses rather
than square brackets, as lists do.

264 PART 3 Performing Common Tasks

4. Type print(dir(MyTuple)) and click Run Cell.

Python presents a list of functions that you can use with tuples, as shown
(partially) in Figure 14-2. Notice that the list of functions appears significantly
smaller than the list of functions provided with lists in Chapter 13. The count()
and index() functions are present.

However, appearances can be deceiving. For example, you can add new items
by using the __add__() function. When working with Python objects, look at
all the entries before you make a decision as to functionality.

Also notice that the output differs when using the print() function with the
dir() function. Compare the dir()-only output shown in the upcoming
Figure 14-4 with the combination output shown previously in Figure 14-2. The
output shown in Figure 14-2 looks more like the output that you see with other
IDEs, such as IDLE. The output you get is affected by the methods you use, but
the IDE also makes a difference, so in some situations, you must use a
different approach based on the IDE you prefer. Many people find that the
Notebook listing of one method per line is much easier to read and use, but
the combination method is certainly more compact.

5. Type MyTuple = MyTuple.__add__((″Purple″,)) and press Enter.

This code adds a new tuple to MyTuple and places the result in a new copy of
MyTuple. The old copy of MyTuple is destroyed after the call.

FIGURE 14-1:
Tuples use

parentheses, not
square brackets.

FIGURE 14-2:
Fewer functions

seem to be
available for use

with tuples.

CHAPTER 14 Collecting All Sorts of Data 265

The __add__() function accepts only tuples as input. This means that you
must enclose the addition in parentheses. In addition, when creating a tuple
with a single entry, you must add a comma after the entry, as shown in the
example. This is an odd Python rule that you need to keep in mind or you’ll see
an error message similar to this one:

TypeError: can only concatenate tuple (not "str") to

 tuple

6. Type MyTuple and click Run Cell.

The addition to MyTuple appears at the end of the list, as shown in Figure 14-3.
Notice that it appears at the same level as the other entries.

7. Type MyTuple = MyTuple.__add__((″ Yellow″, (″ Orange″, ″Black″))) and
press Enter.

This step adds three entries: Yellow, Orange, and Black. However, Orange and
Black are added as a tuple within the main tuple, which creates a hierarchy.
These two entries are actually treated as a single entry within the main tuple.

You can replace the __add__() function with the concatenation operator. For
example, if you want to add Magenta to the front of the tuple list, you type
MyTuple = ("Magenta",) + MyTuple.

8. Type MyTuple[4] and click Run Cell.

Python displays a single member of MyTuple, Yellow. Tuples use indexes to
access individual members, just as lists do. You can also specify a range when
needed. Anything you can do with a list index you can also do with a tuple
index.

9. Type MyTuple[5] and press Enter.

You see a tuple that contains Orange and Black. Of course, you might not want
to use both members in tuple form.

Tuples do contain hierarchies on a regular basis. You can detect when an index
has returned another tuple, rather than a value, by testing for type. For
example, in this case, you could detect that the sixth item (index 5) contains a
tuple by typing type(MyTuple[5]) == tuple. The output would be True in
this case.

FIGURE 14-3:
This new copy of
MyTuple contains

an additional
entry.

266 PART 3 Performing Common Tasks

10. Type MyTuple[5][0] and press Enter.

At this point, you see Orange as output. Figure 14-4 shows the results of the
previous commands so that you can see the progression of index usage. The
indexes always appear in order of their level in the hierarchy.

Using a combination of indexes and the __add__() function (or the concatena-
tion operator, +), you can create flexible applications that rely on tuples. For
example, you can remove an element from a tuple by making it equal to a
range of values. If you wanted to remove the tuple containing Orange and
Black, you type MyTuple = MyTuple[0:5].

Working with Dictionaries
A Python dictionary works just the same as its real-world counterpart — you cre-
ate a key and value pair. It’s just like the word and definition in a dictionary. As
with lists, dictionaries are mutable, which means that you can change them as
needed. The main reason to use a dictionary is to make information lookup faster.
The key is always short and unique so that the computer doesn’t spend a lot of
time looking for the information you need.

The following sections demonstrate how to create and use a dictionary. When you
know how to work with dictionaries, you use that knowledge to make up for defi-
ciencies in the Python language. Most languages include the concept of a switch
statement, which is essentially a menu of choices from which one choice is
selected. Python doesn’t include this option, so you must normally rely on if...
elif statements to perform the task. (Such statements work, but they aren’t as
clear as they could be.)

FIGURE 14-4:
Use indexes to

gain access to the
individual tuple

members.

CHAPTER 14 Collecting All Sorts of Data 267

Creating and using a dictionary
Creating and using a dictionary is much like working with a list, except
that you must now define a key and value pair. Here are the special rules for
 creating a key:

 » The key must be unique. When you enter a duplicate key, the information found
in the second entry wins — the first entry is simply replaced with the second.

 » The key must be immutable. This rule means that you can use strings,
numbers, or tuples for the key. You can’t, however, use a list for a key.

You have no restrictions on the values you provide. A value can be any Python
object, so you can use a dictionary to access an employee record or other complex
data. The following steps help you understand how to use dictionaries better.

1. Type Colors = {″ Sam″: ″ Blue″, ″ Amy″: ″Red″, ″ Sarah″: ″ Yellow″} and press
Enter.

Python creates a dictionary containing three entries with people’s favorite
colors. Notice how you create the key and value pair. The key comes first,
followed by a colon and then the value. Each entry is separated by a comma.

2. Type Colors and click Run Cell.

You see the key and value pairs, as shown in Figure 14-5. However, notice that
the entries are sorted in key order. A dictionary automatically keeps the keys
sorted to make access faster, which means that you get fast search times even
when working with a large data set. The downside is that creating the
dictionary takes longer than using something like a list because the
computer is busy sorting the entries.

3. Type Colors[″ Sarah″] and click Run Cell.

You see the color associated with Sarah, Yellow, as shown in Figure 14-6. Using
a string as a key, rather than using a numeric index, makes the code easier to
read and makes it self-documenting to an extent. By making your code more
readable, dictionaries save you considerable time in the long run (which is why

FIGURE 14-5:
A dictionary

places entries in
sorted order.

268 PART 3 Performing Common Tasks

they’re so popular). However, the convenience of a dictionary comes at the
cost of additional creation time and a higher use of resources, so you have
trade-offs to consider.

4. Type Colors.keys() and click Run Cell.

The dictionary presents a list of the keys it contains, as shown in Figure 14-7.
You can use these keys to automate access to the dictionary.

5. Type the following code pressing Enter after each line, and then click
Run Cell.

for Item in Colors.keys():
 print("{0} likes the color {1}."
 .format(Item, Colors[Item]))

The example code outputs a listing of each of the user names and the user’s
favorite color, as shown in Figure 14-8. Using dictionaries can make creating
useful output a lot easier. The use of a meaningful key means that the key can
easily be part of the output.

6. Type Colors[″ Sarah″] =″Purple″ and press Enter.

The dictionary content is updated so that Sarah now likes Purple instead of
Yellow.

FIGURE 14-6:
Dictionaries
make value

access easy and
self- documenting.

FIGURE 14-7:
You can ask a

dictionary for a
list of keys.

FIGURE 14-8:
You can

create useful keys
to output

 information with
greater ease.

CHAPTER 14 Collecting All Sorts of Data 269

7. Type Colors.update({″ Harry″: ″ Orange″}) and press Enter.

A new entry is added to the dictionary.

8. Type the following code, pressing Enter after each line:

for name, color in Colors.items():
 print("{0} likes the color {1}."

 .format(name, color))

Compare this code to the code in Step 5. This version obtains each of the items
one at a time and places the key in name and the value in color. The output will
always work the same from the item() method. You need two variables, one for
the key and another value, presented in the order shown. The reason to consider
this second form is that it might be easier to read in some cases. There doesn’t
seem to be much of a speed difference between the two versions.

9. Click Run Cell.

You see the updated output in Figure 14-9. Notice that Harry is added in sorted
order. In addition, Sarah’s entry is changed to the color Purple.

10. Type del Colors[″ Sam″] and press Enter.

Python removes Sam’s entry from the dictionary.

11. Repeat Steps 8 and 9.

You verify that Sam’s entry is actually gone.

12. Type len(Colors) and click Run Cell.

The output value of 3 verifies that the dictionary contains only three entries
now, rather than 4.

13. Type Colors.clear( ) and press Enter.

14. Type len(Colors) and click Run Cell.

Python reports that Colors has 0 entries, so the dictionary is now empty.

FIGURE 14-9:
Dictionaries are
easy to modify.

270 PART 3 Performing Common Tasks

Replacing the switch statement
with a dictionary
Most programming languages provide some sort of switch statement. A switch
statement provides for elegant menu type selections. The user has a number of
options but is allowed to choose only one of them. The program takes some course
of action based on the user selection. Here is some representative code (it won’t
execute) of a switch statement you might find in another language:

switch(n)
{
 case 0:
 print("You selected blue.");
 break;
 case 1:
 print("You selected yellow.");
 break;
 case 2:
 print("You selected green.");
 break;
}

The application normally presents a menu-type interface, obtains the number of
the selection from the user, and then chooses the correct course of action from the
switch statement. It’s straightforward and much neater than using a series of if
statements to accomplish the same task.

Unfortunately, Python doesn’t come with a switch statement. The best you can
hope to do is use an if...elif statement for the task. However, by using a
dictionary, you can simulate the use of a switch statement. The following steps
help you create an example that will demonstrate the required technique.

1. Type the following code into the window — pressing Enter after each line:

def PrintBlue():
 print("You chose blue!\r\n")
def PrintRed():
 print("You chose red!\r\n")
def PrintOrange():
 print("You chose orange!\r\n")
def PrintYellow():

 print("You chose yellow!\r\n")

CHAPTER 14 Collecting All Sorts of Data 271

Before the code can do anything for you, you must define the tasks. Each of
these functions defines a task associated with selecting a color option
onscreen. Only one of them gets called at any given time.

2. Type the following code into the notebook — pressing Enter after each line:

ColorSelect = {
 0: PrintBlue,
 1: PrintRed,
 2: PrintOrange,
 3: PrintYellow

}

This code is the dictionary. Each key is like the case part of the switch state-
ment. The values specify what to do. In other words, this is the switch structure.
The functions that you created earlier are the action part of the switch — the part
that goes between the case statement and the break clause.

3. Type the following code into the notebook — pressing Enter after each line:

Selection = 0
while (Selection != 4):
 print("0. Blue")
 print("1. Red")
 print("2. Orange")
 print("3. Yellow")
 print("4. Quit")
 Selection = int(input("Select a color option: "))
 if (Selection >= 0) and (Selection < 4):

 ColorSelect[Selection]()

Finally, you see the user interface part of the example. The code begins by
creating an input variable, Selection. It then goes into a loop until the user
enters a value of 4.

During each loop, the application displays a list of options and then waits for
user input. When the user does provide input, the application performs a
range check on it. Any value between 0 and 3 selects one of the functions
defined earlier using the dictionary as the switching mechanism.

4. Click Run Cell.

Python displays a menu like the one shown in Figure 14-10.

272 PART 3 Performing Common Tasks

5. Type 0 and press Enter.

The application tells you that you selected blue and then displays the menu
again, as shown in Figure 14-11.

6. Type 4 and press Enter.

The application ends.

FIGURE 14-10:
The application

begins by
displaying
the menu.

FIGURE 14-11:
After displaying
your selection,
the application

displays the
menu again.

CHAPTER 14 Collecting All Sorts of Data 273

Creating Stacks Using Lists
A stack is a handy programming structure because you can use it to save an appli-
cation execution environment (the state of variables and other attributes of the
application environment at any given time) or as a means of determining an order
of execution. Unfortunately, Python doesn’t provide a stack as a collection. How-
ever, it does provide lists, and you can use a list as a perfectly acceptable stack.
The following steps help you create an example of using a list as a stack.

1. Type the following code into the notebook — pressing Enter after
each line:

MyStack = []
StackSize = 3
def DisplayStack():
 print("Stack currently contains:")
 for Item in MyStack:
 print(Item)
def Push(Value):
 if len(MyStack) < StackSize:
 MyStack.append(Value)
 else:
 print("Stack is full!")
def Pop():
 if len(MyStack) > 0:
 MyStack.pop()
 else:
 print("Stack is empty.")
Push(1)
Push(2)
Push(3)
DisplayStack()
input("Press any key when ready...")
Push(4)
DisplayStack()
input("Press any key when ready...")
Pop()
DisplayStack()
input("Press any key when ready...")
Pop()
Pop()
Pop()

DisplayStack()

274 PART 3 Performing Common Tasks

In this example, the application creates a list and a variable to determine the
maximum stack size. Stacks normally have a specific size range. This is
admittedly a really small stack, but it serves well for the example’s needs.

Stacks work by pushing a value onto the top of the stack and popping values
back off the top of the stack. The Push() and Pop() functions perform these
two tasks. The code adds DisplayStack() to make it easier to see the stack
content as needed.

The remaining code exercises the stack (demonstrates its functionality) by
pushing values onto it and then removing them. Four main exercise sections
test stack functionality.

2. Click Run Cell.

Python fills the stack with information and then displays it onscreen, as shown
in Figure 14-12 (only part of the code appears in the screenshot). In this case, 3
is at the top of the stack because it’s the last value added.

Depending on the IDE you use, the Press any key when ready message can
appear at the top or the bottom of the output area. In the case of Notebook,
the message and associated entry field appear at the top after the first query
(refer to Figure 14-12). The message will move to the bottom during the second
and subsequent queries.

3. Press Enter.

The application attempts to push another value onto the stack. However, the
stack is full, so the task fails, as shown in Figure 14-13.

FIGURE 14-12:
A stack pushes

values one on top
of the other.

CHAPTER 14 Collecting All Sorts of Data 275

4. Press Enter.

The application pops a value from the top of the stack. Remember that 3 is the
top of the stack, so that’s the value that is missing in Figure 14-14.

5. Press Enter.

The application tries to pop more values from the stack than it contains,
resulting in an error, as shown in Figure 14-15. Any stack implementation that
you create must be able to detect both overflows (too many entries) and
underflows (too few entries).

Working with queues
A queue works differently from a stack. Think of any line you’ve ever stood in: You
go to the back of the line, and when you reach the front of the line you get to do
whatever you stood in the line to do. A queue is often used for task scheduling and
to maintain program flow — just as it is in the real world. The following steps
help you create a queue-based application. This example also appears with the
downloadable source code as QueueData.py.

FIGURE 14-13:
When the stack is
full, it can’t accept
any more values.

FIGURE 14-14:
Popping a value

means removing
it from the top of

the stack.

FIGURE 14-15:
Make sure that

your stack
implementation

detects overflows
and underflows.

276 PART 3 Performing Common Tasks

1. Type the following code into the notebook — pressing Enter after each
line:

import queue
MyQueue = queue.Queue(3)
print(MyQueue.empty())
input("Press any key when ready...")
MyQueue.put(1)
MyQueue.put(2)
print(MyQueue.full())
input("Press any key when ready...")
MyQueue.put(3)
print(MyQueue.full())
input("Press any key when ready...")
print(MyQueue.get())
print(MyQueue.empty())
print(MyQueue.full())
input("Press any key when ready...")
print(MyQueue.get())

print(MyQueue.get())

To create a queue, you must import the queue package. This package actually
contains a number of queue types, but this example uses only the standard
FIFO queue.

When a queue is empty, the empty() function returns True. Likewise, when a
queue is full, the full() function returns True. By testing the state of empty()
and full(), you can determine whether you need to perform additional work
with the queue or whether you can add other information to it. These two
functions help you manage a queue. You can’t iterate through a queue by using
a for loop as you have done with other collection types, so you must monitor
empty() and full() instead.

The two functions used to work with data in a queue are put(), which adds
new data, and get(), which removes data. A problem with queues is that if
you try to put more items into the queue than it can hold, it simply waits until
space is available to hold it. Unless you’re using a multithreaded application (one
that uses individual threads of execution to perform more than one task at one
time), this state could end up freezing your application.

2. Click Run Cell.

Python tests the state of the queue. In this case, you see an output of True,
which means that the queue is empty.

3. Press Enter.

The application adds two new values to the queue. In doing so, the queue is no
longer empty, as shown in Figure 14-16.

CHAPTER 14 Collecting All Sorts of Data 277

4. Press Enter.

The application adds another entry to the queue, which means that the queue
is now full because it was set to a size of 3. This means that full() will return
True because the queue is now full.

5. Press Enter.

To free space in the queue, the application gets one of the entries. Whenever
an application gets an entry, the get() function returns that entry. Given that
1 was the first value added to the queue, the print() function should return a
value of 1, as shown in Figure 14-17. In addition, both empty() and full()
should now return False.

6. Press Enter.

The application gets the remaining two entries. You see 2 and 3 (in turn) as
output.

FIGURE 14-16:
When the

 application puts
new entries in the
queue, the queue
no longer reports

that it’s empty.

FIGURE 14-17:
Monitoring is a

key part of
working with a

queue.

278 PART 3 Performing Common Tasks

Working with deques
A deque is simply a queue where you can remove and add items from either end.
In many languages, a queue or stack starts out as a deque. Specialized code serves
to limit deque functionality to what is needed to perform a particular task.

When working with a deque, you need to think of the deque as a sort of horizontal
line. Certain individual functions work with the left and right ends of the deque so
that you can add and remove items from either side. The following steps help you
create an example that demonstrates deque usage. This example also appears with
the downloadable source code as DequeData.py.

1. Type the following code into Notebook — pressing Enter after each line.

import collections
MyDeque = collections.deque("abcdef", 10)
print("Starting state:")
for Item in MyDeque:
 print(Item, end=" ")
print("\r\n\r\nAppending and extending right")
MyDeque.append("h")
MyDeque.extend("ij")
for Item in MyDeque:
 print(Item, end=" ")
print("\r\nMyDeque contains {0} items."
 .format(len(MyDeque)))
print("\r\nPopping right")
print("Popping {0}".format(MyDeque.pop()))
for Item in MyDeque:
 print(Item, end=" ")
print("\r\n\r\nAppending and extending left")
MyDeque.appendleft("a")
MyDeque.extendleft("bc")
for Item in MyDeque:
 print(Item, end=" ")
print("\r\nMyDeque contains {0} items."
 .format(len(MyDeque)))
print("\r\nPopping left")
print("Popping {0}".format(MyDeque.popleft()))
for Item in MyDeque:
 print(Item, end=" ")
print("\r\n\r\nRemoving")
MyDeque.remove("a")
for Item in MyDeque:

 print(Item, end=" ")

CHAPTER 14 Collecting All Sorts of Data 279

The implementation of deque is found in the collections package, so you
need to import it into your code. When you create a deque, you can optionally
specify a starting list of iterable items (items that can be accessed and
 processed as part of a loop structure) and a maximum size, as shown.

A deque differentiates between adding one item and adding a group of items.
You use append() or appendleft() when adding a single item. The extend()
and extendleft() functions let you add multiple items. You use the pop() or
popleft() functions to remove one item at a time. The act of popping values
returns the value popped, so the example prints the value onscreen. The
remove() function is unique in that it always works from the left side and
always removes the first instance of the requested data.

Unlike some other collections, a deque is fully iterable. This means that you can
obtain a list of items by using a for loop whenever necessary.

2. Click Run Cell.

Python outputs the information shown in Figure 14-18 (the screenshot shows
only the output and none of the code).

Following the output listing closely is important. Notice how the size of the
deque changes over time. After the application pops the j, the deque still
contains eight items. When the application appends and extends from the left,
it adds three more items. However, the resulting deque contains only ten
items. When you exceed the maximum size of a deque, the extra data simply
falls off the other end.

FIGURE 14-18:
A deque provides
the double-ended
functionality and

other features
you’d expect.

CHAPTER 15 Creating and Using Classes 281

Chapter 15
Creating and Using
Classes

You’ve already worked with a number of classes in previous chapters. Many
of the examples are easy to construct and use because they depend on the
Python classes. Even though classes are briefly mentioned in previous

chapters, those chapters largely ignore them simply because discussing them
wasn’t immediately important.

Classes make working with Python code more convenient by helping to make your
applications easy to read, understand, and use. You use classes to create contain-
ers for your code and data, so they stay together in one piece. Outsiders see your
class as a black box — data goes in and results come out.

At some point, you need to start constructing classes of your own if you want to
avoid the dangers of the spaghetti code that is found in older applications.
Spaghetti code is much as the name implies — various lines of procedures are
interwoven and spread out in such a way that it’s hard to figure out where one
piece of spaghetti begins and another ends. Trying to maintain spaghetti code is
nearly impossible, and some organizations have thrown out applications because
no one could figure them out.

Besides helping you understand classes as a packaging method that avoids spaghetti
code, this chapter helps you create and use your own classes for the first time.

 » Defining the characteristics of a
class

 » Specifying the class components

 » Creating and using your own class

 » Working with subclasses

282 PART 3 Performing Common Tasks

You gain insights into how Python classes work toward making your applications
convenient to work with. This is an introductory sort of chapter, though, and you
won’t become so involved in classes that your head begins to spin around on its
own. This chapter is about making class development simple and manageable.
You can find the downloadable source code for the examples in this chapter in the
BPPD_15_Creating_and_Using_Classes.ipynb file, as described in the book’s
Introduction.

Understanding the Class
as a Packaging Method

A class is essentially a method for packaging code. The idea is to simplify code
reuse, make applications more reliable, and reduce the potential for security
breaches. Well-designed classes are black boxes that accept certain inputs and
provide specific outputs based on those inputs. In short, a class shouldn’t create
any surprises for anyone and should have known (quantifiable) behaviors. How
the class accomplishes its work is unimportant, and hiding the details of its inner
workings is essential to good coding practice.

Before you move onto actual class theory, you need to know a few terms that are
specific to classes. The following list defines terms that you need to know in order
to use the material that follows later in the chapter. These terms are specific to
Python. (Other languages may use different terms for the same techniques or
define terms that Python uses in different ways.)

 » Class: Defines a blueprint for creating an object. Think of a builder who wants
to create a building of some type. The builder uses a blueprint to ensure that
the building will meet the required specifications. Likewise, Python uses
classes as a blueprint for creating new objects.

 » Class variable: Provides a storage location used by all methods in an instance
of the class. A class variable is defined within the class proper but outside of
any of the class methods. Class variables aren’t used very often because
they’re a potential security risk — every instance of the class has access to the
same information. In addition to being a security risk, class variables are also
visible as part of the class rather than a particular method of a class, so they
pose the potential problem of class contamination.

Global variables have always been considered a bad idea in programming,
doubly so in Python, because every instance can see the same information.
In addition, data hiding really doesn’t work in Python. Every variable is

CHAPTER 15 Creating and Using Classes 283

always visible. The article at http://www.geeksforgeeks.org/object-
oriented-programming-in-python-set-2-data-hiding-and-object-
printing/ describes this issue in greater detail, but the most important thing
to remember in Python is that it lacks the data hiding found in other languages
to promote true object orientation.

 » Data member: Defines either a class variable or an instance variable used to
hold data associated with a class and its objects.

 » Function overloading: Creates more than one version of a function, which
results in different behaviors. The essential task of the function may be the
same, but the inputs are different and potentially the outputs as well.
Function overloading is used to provide flexibility so that a function can work
with applications in various ways or perform a task with different variable
types.

 » Inheritance: Uses a parent class to create child classes that have the same
characteristics. The child classes usually have extended functionality or
provide more specific behaviors than the parent class does.

 » Instance: Defines an object created from the specification provided by a
class. Python can create as many instances of a class to perform the work
required by an application. Each instance is unique.

 » Instance variable: Provides a storage location used by a single method of an
instance of a class. The variable is defined within a method. Instance variables
are considered safer than class variables because only one method of the
class can access them. Data is passed between methods by using arguments,
which allows for controlled checks of incoming data and better control over
data management.

 » Instantiation: Performs the act of creating an instance of a class. The
resulting object is a unique class instance.

 » Method: Defines the term used for functions that are part of a class. Even
though function and method essentially define the same element, method is
considered more specific because only classes can have methods.

 » Object: Defines a unique instance of a class. The object contains all the
methods and properties of the original class. However, the data for each
object differs. The storage locations are unique, even if the data is the same.

 » Operator overloading: Creates more than one version of a function that is
associated with an operator such as: +, -, /, or *, which results in different
behaviors. The essential task of the operator may be the same, but the way in
which the operator interacts with the data differs. Operator overloading is
used to provide flexibility so that an operator can work with applications in
various ways.

http://www.geeksforgeeks.org/object-oriented-programming-in-python-set-2-data-hiding-and-object-printing/
http://www.geeksforgeeks.org/object-oriented-programming-in-python-set-2-data-hiding-and-object-printing/
http://www.geeksforgeeks.org/object-oriented-programming-in-python-set-2-data-hiding-and-object-printing/

284 PART 3 Performing Common Tasks

Considering the Parts of a Class
A class has a specific construction. Each part of a class performs a particular task
that gives the class useful characteristics. Of course, the class begins with a con-
tainer that is used to hold the entire class together, so that’s the part that the first
section that follows discusses. The remaining sections describe the other parts of
a class and help you understand how they contribute to the class as a whole.

Creating the class definition
A class need not be particularly complex. In fact, you can create just the container
and one class element and call it a class. Of course, the resulting class won’t do
much, but you can instantiate it (tell Python to build an object by using your class
as a blueprint) and work with it as you would any other class. The following steps
help you understand the basics behind a class by creating the simplest class
possible.

1. Open a new notebook.

You can also use the downloadable source file, BPPD_15_Creating_and_
Using_Classes.ipynb.

2. Type the following code (pressing Enter after each line and pressing Enter
twice after the last line):

class MyClass:

 MyVar = 0

The first line defines the class container, which consists of the keyword class
and the class name, which is MyClass. Every class you create must begin
precisely this way. You must always include class followed by the class name.

The second line is the class suite. All the elements that comprise the class are
called the class suite. In this case, you see a class variable named MyVar, which
is set to a value of 0. Every instance of the class will have the same variable and
start at the same value.

3. Type MyInstance = MyClass() and press Enter.

You have just created an instance of MyClass named MyInstance. Of course,
you’ll want to verify that you really have created such an instance. Step 4
accomplishes that task.

CHAPTER 15 Creating and Using Classes 285

4. Type MyInstance.MyVar and click Run Cell.

The output of 0, as shown in Figure 15-1, demonstrates that MyInstance does
indeed have a class variable named MyVar.

5. Type MyInstance.__class__ and click Run Cell.

Python displays the class used to create this instance, as shown in Figure 15-2.
The output tells you that this class is part of the __main__ package, which
means that you typed it directly into the application code and not as part of
another package.

Considering the built-in class attributes
When you create a class, you can easily think that all you get is the class. However,
Python adds built-in functionality to your class. For example, in the preceding
section, you type __class__ and press Enter. The __class__ attribute is built in;
you didn’t create it. It helps to know that Python provides this functionality so
that you don’t have to add it. The functionality is needed often enough that every
class should have it, so Python supplies it. The following steps help you work with

FIGURE 15-1:
The instance
contains the

required variable.

FIGURE 15-2:
The class name is

also correct, so
you know that
this instance is

created by using
MyClass.

286 PART 3 Performing Common Tasks

the built-in class attributes. They assume that you followed the steps in the pre-
ceding section, “Creating the class definition.”

1. Type print(dir(MyInstance)) and click Run Cell.

A list of attributes appears, as shown in Figure 15-3. These attributes provide
specific functionality for your class. They’re also common to every other class
you create, so you can count on always having this functionality in the classes
you create.

2. Type help(′__class__′) and press Enter.

Python displays information on the __class__ attribute, as partially shown in
Figure 15-4. You can use the same technique for learning more about any
attribute that Python adds to your class.

Working with methods
Methods are simply another kind of function that reside in classes. You create and
work with methods in precisely the same way that you do functions, except that
methods are always associated with a class (you don’t see freestanding methods
as you do functions). You can create two kinds of methods: those associated with

FIGURE 15-3:
Use the dir()

function to
determine which
built-in attributes

are present.

FIGURE 15-4:
Python provides
help for each of

the attributes
it adds to

your class.

CHAPTER 15 Creating and Using Classes 287

the class itself and those associated with an instance of a class. It’s important to
differentiate between the two. The following sections provide the details needed
to work with both.

Creating class methods
A class method is one that you execute directly from the class without creating an
instance of the class. Sometimes you need to create methods that execute from the
class, such as the functions you used with the str class to modify strings. As an
example, the multiple exception example in the “Nested exception handling” sec-
tion of Chapter 10 uses the str.upper() function. The following steps demon-
strate how to create and use a class method.

1. Type the following code (pressing Enter after each line and pressing Enter
twice after the last line):

class MyClass:
 def SayHello():

 print("Hello there!")

The example class contains a single defined attribute, SayHello(). This
method doesn’t accept any arguments and doesn’t return any values. It simply
prints a message as output. However, the method works just fine for demon-
stration purposes.

2. Type MyClass.SayHello() and click Run Cell.

The example outputs the expected string, as shown in Figure 15-5. Notice that
you didn’t need to create an instance of the class — the method is available
immediately for use.

A class method can work only with class data. It doesn’t know about any data
associated with an instance of the class. You can pass it data as an argument, and
the method can return information as needed, but it can’t access the instance
data. As a consequence, you need to exercise care when creating class methods to
ensure that they’re essentially self-contained.

FIGURE 15-5:
The class method
outputs a simple

message.

288 PART 3 Performing Common Tasks

Creating instance methods
An instance method is one that is part of the individual instances. You use instance
methods to manipulate the data that the class manages. As a consequence, you
can’t use instance methods until you instantiate an object from the class.

All instance methods accept a single argument as a minimum, self. The self
argument points at the particular instance that the application is using to manip-
ulate data. Without the self argument, the method wouldn’t know which instance
data to use. However, self isn’t considered an accessible argument — the value
for self is supplied by Python, and you can’t change it as part of calling the
method. The following steps demonstrate how to create and use instance methods
in Python.

1. Type the following code (pressing Enter after each line and pressing Enter
twice after the last line):

class MyClass:
 def SayHello(self):

 print("Hello there!")

The example class contains a single defined attribute, SayHello(). This
method doesn’t accept any special arguments and doesn’t return any values. It
simply prints a message as output. However, the method works just fine for
demonstration purposes.

2. Type MyInstance = MyClass() and press Enter.

Python creates an instance of MyClass named MyInstance.

3. Type MyInstance.SayHello() and click Run Cell.

You see the message shown in Figure 15-6.

Working with constructors
A constructor is a special kind of method that Python calls when it instantiates
an object by using the definitions found in your class. Python relies on the

FIGURE 15-6:
The instance

message is called
as part of an

object and
outputs this

simple message.

CHAPTER 15 Creating and Using Classes 289

constructor to perform tasks such as initializing (assigning values to) any instance
variables that the object will need when it starts. Constructors can also verify that
there are enough resources for the object and perform any other start-up task you
can think of.

The name of a constructor is always the same, __init__(). The constructor can
accept arguments when necessary to create the object. When you create a class
without a constructor, Python automatically creates a default constructor for you
that doesn’t do anything. Every class must have a constructor, even if it simply
relies on the default constructor. The following steps demonstrate how to create a
constructor:

1. Type the following code (pressing Enter after each line and pressing Enter
twice after the last line):

class MyClass:
 Greeting = ""
 def __init__(self, Name="there"):
 self.Greeting = Name + "!"
 def SayHello(self):

 print("Hello {0}".format(self.Greeting))

This example provides your first example of function overloading. In this case,
there are two versions of __init__(). The first doesn’t require any special
input because it uses the default value for the Name of ″there″. The second
requires a name as an input. It sets Greeting to the value of this name, plus
an exclamation mark. The SayHello() method is essentially the same as
previous examples in this chapter.

Python doesn’t support true function overloading. Many strict adherents to
strict Object-Oriented Programming (OOP) principles consider default values to
be something different from function overloading. However, the use of default
values obtains the same result, and it’s the only option that Python offers. In
true function overloading, you see multiple copies of the same function, each
of which could process the input differently.

2. Type MyInstance = MyClass() and press Enter.

Python creates an instance of MyClass named MyInstance.

3. Type MyInstance.SayHello() and click Run Cell.

You see the message shown in Figure 15-7. Notice that this message provides
the default, generic greeting.

4. Type MyInstance2 = MyClass(″Amy″) and press Enter.

Python creates an instance of MyClass named MyInstance2. The instance
MyInstance is completely different from the instance MyInstance2.

290 PART 3 Performing Common Tasks

5. Type MyInstance2.SayHello() and press Enter.

Python displays the message for MyInstance2, not the message for
MyInstance.

6. Type MyInstance.Greeting =″Harry!″ and press Enter.

This step changes the greeting for MyInstance without changing the greeting
for MyInstance2.

7. Type MyInstance.SayHello() and click Run Cell.

You see the messages shown in Figure 15-8. Notice that this message provides
a specific greeting for each of the instances. In addition, each instance is
separate, and you were able to change the message for the first instance
without affecting the second instance.

Working with variables
As mentioned earlier in the book, variables are storage containers that hold data.
When working with classes, you need to consider how the data is stored and man-
aged. A class can include both class variables and instance variables. The class
variables are defined as part of the class itself, while instance variables are defined
as part of methods. The following sections show how to use both variable types.

Creating class variables
Class variables provide global access to data that your class manipulates in some
way. In most cases, you initialize global variables by using the constructor to
ensure that they contain a known good value. The following steps demonstrate
how class variables work.

FIGURE 15-7:
The first version

of the constructor
provides a default

value for
the name.

FIGURE 15-8:
Supplying the

constructor with
a name provides

a customized
output.

CHAPTER 15 Creating and Using Classes 291

1. Type the following code (pressing Enter after each line and pressing Enter
twice after the last line):

class MyClass:
 Greeting = ""
 def SayHello(self):

 print("Hello {0}".format(self.Greeting))

This is a version of the code found in the “Working with constructors” section,
earlier in this chapter, but this version doesn’t include the constructor.
Normally you do include a constructor to ensure that the class variable is
initialized properly. However, this series of steps shows how class variables can
go wrong.

2. Type MyClass.Greeting = ″ Zelda″ and press Enter.

This statement sets the value of Greeting to something other than the value
that you used when you created the class. Of course, anyone could make this
change. The big question is whether the change will take.

3. Type MyClass.Greeting and click Run Cell.

You see that the value of Greeting has changed, as shown in Figure 15-9.

4. Type MyInstance = MyClass() and press Enter.

Python creates an instance of MyClass named MyInstance.

5. Type MyInstance.SayHello() and click Run Cell.

You see the message shown in Figure 15-10. The change that you made to
Greeting has carried over to the instance of the class. It’s true that the use of a
class variable hasn’t really caused a problem in this example, but you can
imagine what would happen in a real application if someone wanted to cause
problems.

FIGURE 15-9:
You can change

the value of
Greeting.

292 PART 3 Performing Common Tasks

This is just a simple example of how class variables can go wrong. The two
concepts you should take away from this example are as follows:

• Avoid class variables when you can because they’re inherently unsafe.

• Always initialize class variables to a known good value in the constructor
code.

Creating instance variables
Instance variables are always defined as part of a method. The input arguments to
a method are considered instance variables because they exist only when the
method exists. Using instance variables is usually safer than using class variables
because it’s easier to maintain control over them and to ensure that the caller is
providing the correct input. The following steps show an example of using instance
variables.

1. Type the following code (pressing Enter after each line and pressing Enter
twice after the last line):

class MyClass:
 def DoAdd(self, Value1=0, Value2=0):
 Sum = Value1 + Value2
 print("The sum of {0} plus {1} is {2}."

 .format(Value1, Value2, Sum))

In this case, you have three instance variables. The input arguments, Value1
and Value2, have default values of 0, so DoAdd() can’t fail simply because the
user forgot to provide values. Of course, the user could always supply something
other than numbers, so you should provide the appropriate checks as part
of your code. The third instance variable is Sum, which is equal to Value1 +
Value2. The code simply adds the two numbers together and displays the result.

2. Type MyInstance = MyClass() and press Enter.

Python creates an instance of MyClass named MyInstance.

3. Type MyInstance.DoAdd(1, 4) and click Run Cell.

You see the message shown in Figure 15-11. In this case, you see the sum of
adding 1 and 4.

FIGURE 15-10:
The change to

Greeting carries
over to the
instance of

the class.

CHAPTER 15 Creating and Using Classes 293

Using methods with variable argument lists
Sometimes you create methods that can take a variable number of arguments.
Handling this sort of situation is something Python does well. Here are the two
kinds of variable arguments that you can create:

 » *args: Provides a list of unnamed arguments.

 » **kwargs: Provides a list of named arguments.

The actual names of the arguments don’t matter, but Python developers use *args
and **kwargs as a convention so that other Python developers know that they’re a
variable list of arguments. Notice that the first variable argument has just one
asterisk (*) associated with it, which means the arguments are unnamed. The sec-
ond variable has two asterisks, which means that the arguments are named. The
following steps demonstrate how to use both approaches to writing an application.

1. Type the following code into the window — pressing Enter after each line:

class MyClass:
 def PrintList1(*args):
 for Count, Item in enumerate(args):
 print("{0}. {1}".format(Count, Item))
 def PrintList2(**kwargs):
 for Name, Value in kwargs.items():
 print("{0} likes {1}".format(Name, Value))
MyClass.PrintList1("Red", "Blue", "Green")
MyClass.PrintList2(George="Red", Sue="Blue",

 Zarah="Green")

For the purposes of this example, you’re seeing the arguments implemented
as part of a class method. However, you can use them just as easily with an
instance method.

Look carefully at PrintList1() and you see a new method of using a for loop
to iterate through a list. In this case, the enumerate() function outputs both a
count (the loop count) and the string that was passed to the function.

FIGURE 15-11:
The output is

simply the sum of
two numbers.

294 PART 3 Performing Common Tasks

The PrintList2() function accepts a dictionary input. Just as with
PrintList1(), this list can be any length. However, you must process the
items() found in the dictionary to obtain the individual values.

2. Click Run Cell.

You see the output shown in Figure 15-12. The individual lists can be of any
length. In fact, in this situation, playing with the code to see what you can do
with it is a good idea. For example, try mixing numbers and strings with the
first list to see what happens. Try adding Boolean values as well. The point is
that using this technique makes your methods incredibly flexible if all you want
is a list of values as input.

Overloading operators
In some situations, you want to be able to do something special as the result of
using a standard operator such as add (+). In fact, sometimes Python doesn’t pro-
vide a default behavior for operators because it has no default to implement. No
matter what the reason might be, overloading operators makes it possible to
assign new functionality to existing operators so that they do what you want,
rather than what Python intended. The following steps demonstrate how to over-
load an operator and use it as part of an application.

1. Type the following code into the Notebook — pressing Enter after each line:

class MyClass:
 def __init__(self, *args):
 self.Input = args
 def __add__(self, Other):
 Output = MyClass()

FIGURE 15-12:
The code can

process any
number of

entries in the list.

CHAPTER 15 Creating and Using Classes 295

 Output.Input = self.Input + Other.Input
 return Output
 def __str__(self):
 Output = ""
 for Item in self.Input:
 Output += Item
 Output += " "
 return Output
Value1 = MyClass("Red", "Green", "Blue")
Value2 = MyClass("Yellow", "Purple", "Cyan")
Value3 = Value1 + Value2
print("{0} + {1} = {2}"
 .format(Value1, Value2, Value3))

The example demonstrates a few different techniques. The constructor,
__init__(), demonstrates a method for creating an instance variable
attached to the self object. You can use this approach to create as many
variables as needed to support the instance.

When you create your own classes, no + operator is defined until you define
one, in most cases. The only exception is when you inherit from an existing
class that already has the + operator defined (see the “Extending Classes to
Make New Classes” section, later in this chapter, for details). To add two
MyClass entries together, you must define the __add__() method, which
equates to the + operator.

The code used for the __add__() method may look a little odd, too, but you
need to think about it one line at a time. The code begins by creating a new
object, Output, from MyClass. Nothing is added to Output at this point — it’s
a blank object. The two objects that you want to add, self.Input and Other.
Input, are actually tuples. (See “Working with Tuples,” in Chapter 14, for more
details about tuples.) The code places the sum of these two objects into
Output.Input. The __add__() method then returns the new combined
object to the caller.

Of course, you may want to know why you can’t simply add the two inputs
together as you would a number. The answer is that you’d end up with a tuple
as an output, rather than a MyClass as an output. The type of the output
would be changed, and that would also change any use of the resulting object.

To print MyClass properly, you also need to define a __str__() method. This
method converts a MyClass object into a string. In this case, the output is a
space-delimited string (in which each of the items in the string is separated from
the other items by a space) containing each of the values found in self.Input.

296 PART 3 Performing Common Tasks

Of course, the class that you create can output any string that fully represents
the object.

The main procedure creates two test objects, Value1 and Value2. It adds
them together and places the result in Value3. The result is printed onscreen.

2. Click Run Cell.

Figure 15-13 shows the result of adding the two objects together, converting
them to strings, and then printing the result. It’s a lot of code for such a simple
output statement, but the result definitely demonstrates that you can create
classes that are self-contained and fully functional.

Creating a Class
All the previous material in this chapter has helped prepare you for creating an
interesting class of your own. In this case, you create a class that you place into an
external package and eventually access within an application. The following sec-
tions describe how to create and save this class.

Defining the MyClass class
Listing 15-1 shows the code that you need to create the class. You can also find this
code in the BPPD_15_MyClass.ipynb file found in the downloadable source, as
described in the Introduction.

FIGURE 15-13:
The result of

adding two
MyClass objects

is a third object of
the same type.

CHAPTER 15 Creating and Using Classes 297

LISTING 15-1: Creating an External Class

class MyClass:
 def __init__(self, Name="Sam", Age=32):
 self.Name = Name
 self.Age = Age
 def GetName(self):
 return self.Name
 def SetName(self, Name):
 self.Name = Name
 def GetAge(self):
 return self.Age
 def SetAge(self, Age):
 self.Age = Age
 def __str__(self):
 return "{0} is aged {1}.".format(self.Name,
 self.Age)

In this case, the class begins by creating an object with two instance variables:
Name and Age. If the user fails to provide these values, they default to Sam and 32.

This example provides you with a new class feature. Most developers call this fea-
ture an accessor. Essentially, it provides access to an underlying value. There are two
types of accessors: getters and setters. Both GetName() and GetAge() are getters.
They provide read-only access to the underlying value. The SetName() and SetAge()
methods are setters, which provide write-only access to the underlying value. Using
a combination of methods like this allows you to check inputs for correct type and
range, as well as verify that the caller has permission to view the information.

As with just about every other class you create, you need to define the __str__()
method if you want the user to be able to print the object. In this case, the class
provides formatted output that lists both of the instance variables.

Saving a class to disk
You could keep your class right in the same file as your test code, but that wouldn’t
reflect the real world very well. To use this class in a real-world way for the rest
of the chapter, you must follow these steps:

1. Create a new notebook called BPPD_15_MyClass.ipynb.

2. Click Run Cell.

Python will execute the code without error when you have typed the code
correctly.

298 PART 3 Performing Common Tasks

3. Choose File ➪  Save and Checkpoint.

Notebook saves the file.

4. Choose File ➪  Download As ➪  Python (.py).

Notebook outputs the code as a Python file.

5. Import the resulting file into your Notebook.

The “Importing a notebook” section of Chapter 4 describes how to perform
this task.

Using the Class in an Application
Most of the time, you use external classes when working with Python. It isn’t very
often that a class exists within the confines of the application file because the
application would become large and unmanageable. In addition, reusing the class
code in another application would be difficult. The following steps help you use
the MyClass class that you created in the previous section.

1. Type the following code into the notebook for this chapter — pressing
Enter after each line:

import BPPD_15_MyClass
SamsRecord = BPPD_15_MyClass.MyClass()
AmysRecord = BPPD_15_MyClass.MyClass("Amy", 44)
print(SamsRecord.GetAge())
SamsRecord.SetAge(33)
print(AmysRecord.GetName())
AmysRecord.SetName("Aimee")
print(SamsRecord)

print(AmysRecord)

The example code begins by importing the BPPD_15_MyClass package. The
package name is the name of the file used to store the external code, not the
name of the class. A single package can contain multiple classes, so always
think of the package as being the actual file that is used to hold one or more
classes that you need to use with your application.

After the package is imported, the application creates two MyClass objects.
Notice that you use the package name first, followed by the class name. The
first object, SamsRecord, uses the default settings. The second object,
AmysRecord, relies on custom settings.

CHAPTER 15 Creating and Using Classes 299

Sam has become a year old. After the application verifies that the age does
need to be updated, it updates Sam’s age.

Somehow, HR spelled Aimee’s name wrong. It turns out that Amy is an
incorrect spelling. Again, after the application verifies that the name is wrong,
it makes a correction to AmysRecord. The final step is to print both records in
their entirety.

2. Click Run Cell.

The application displays a series of messages as it puts MyClass through its
paces, as shown in Figure 15-14. At this point, you know all the essentials of
creating great classes.

Extending Classes to Make New Classes
As you might imagine, creating a fully functional, production-grade class (one that
is used in a real-world application actually running on a system that is accessed
by users) is time consuming because real classes perform a lot of tasks. Fortu-
nately, Python supports a feature called inheritance. By using inheritance, you can
obtain the features you want from a parent class when creating a child class.
Overriding the features that you don’t need and adding new features lets you cre-
ate new classes relatively fast and with a lot less effort on your part. In addition,
because the parent code is already tested, you don’t have to put quite as much
effort into ensuring that your new class works as expected. The following sections
show how to build and use classes that inherit from each other.

Building the child class
Parent classes are normally supersets of something. For example, you might
 create a parent class named Car and then create child classes of various car types

FIGURE 15-14:
The output shows

that the class is
fully functional.

300 PART 3 Performing Common Tasks

around it. In this case, you build a parent class named Animal and use it to define
a child class named Chicken. Of course, you can easily add other child classes after
you have Animal in place, such as a Gorilla class. However, for this example, you
build just the one parent and one child class, as shown in Listing 15-2. To use this
class with the remainder of the chapter, you need to save it to disk by using the
technique found in the “Saving a class to disk” section, earlier in this chapter.
However, give your file the name BPPD_15_Animals.ipynb.

LISTING 15-2: Building a Parent and Child Class

class Animal:
 def __init__(self, Name="", Age=0, Type=""):
 self.Name = Name
 self.Age = Age
 self.Type = Type
 def GetName(self):
 return self.Name
 def SetName(self, Name):
 self.Name = Name
 def GetAge(self):
 return self.Age
 def SetAge(self, Age):
 self.Age = Age
 def GetType(self):
 return self.Type
 def SetType(self, Type):
 self.Type = Type
 def __str__(self):
 return "{0} is a {1} aged {2}".format(self.Name,
 self.Type,
 self.Age)
class Chicken(Animal):
 def __init__(self, Name="", Age=0):
 self.Name = Name
 self.Age = Age
 self.Type = "Chicken"
 def SetType(self, Type):
 print("Sorry, {0} will always be a {1}"
 .format(self.Name, self.Type))
 def MakeSound(self):
 print("{0} says Cluck, Cluck, Cluck!".format(self.Name))

CHAPTER 15 Creating and Using Classes 301

The Animal class tracks three characteristics: Name, Age, and Type. A production
application would probably track more characteristics, but these characteristics
do everything needed for this example. The code also includes the required acces-
sors for each of the characteristics. The __str__() method completes the picture
by printing a simple message stating the animal characteristics.

The Chicken class inherits from the Animal class. Notice the use of Animal in
parentheses after the Chicken class name. This addition tells Python that Chicken
is a kind of Animal, something that will inherit the characteristics of Animal.

Notice that the Chicken constructor accepts only Name and Age. The user doesn’t
have to supply a Type value because you already know that it’s a chicken. This new
constructor overrides the Animal constructor. The three attributes are still in
place, but Type is supplied directly in the Chicken constructor.

Someone might try something funny, such as setting her chicken up as a gorilla.
With this in mind, the Chicken class also overrides the SetType() setter. If some-
one tries to change the Chicken type, that user gets a message rather than the
attempted change. Normally, you handle this sort of problem by using an excep-
tion, but the message works better for this example by making the coding tech-
nique clearer.

Finally, the Chicken class adds a new feature, MakeSound(). Whenever someone
wants to hear the sound a chicken makes, he can call MakeSound() to at least see
it printed on the screen.

Testing the class in an application
Testing the Chicken class also tests the Animal class to some extent. Some func-
tionality is different, but some classes aren’t really meant to be used. The Animal
class is simply a parent for specific kinds of animals, such as Chicken. The follow-
ing steps demonstrate the Chicken class so that you can see how inheritance
works.

1. Type the following code into the notebook for this chapter — pressing
Enter after each line:

import BPPD_15_Animals
MyChicken = BPPD_15_Animals.Chicken("Sally", 2)
print(MyChicken)
MyChicken.SetAge(MyChicken.GetAge() + 1)

302 PART 3 Performing Common Tasks

print(MyChicken)
MyChicken.SetType("Gorilla")
print(MyChicken)

MyChicken.MakeSound()

The first step is to import the Animals package. Remember that you always
import the filename, not the class. The Animals.py file actually contains two
classes in this case: Animal and Chicken.

The example creates a chicken, MyChicken, named Sally, who is age 2. It then
starts to work with MyChicken in various ways. For example, Sally has a
birthday, so the code updates Sally’s age by 1. Notice how the code combines
the use of a setter, SetAge(), with a getter, GetAge(), to perform the task.
After each change, the code displays the resulting object values for you. The
final step is to let Sally say a few words.

2. Click Run Cell.

You see each of the steps used to work with MyChicken, as shown in Figure 15-15.
As you can see, using inheritance can greatly simplify the task of creating new
classes when enough of the classes have commonality so that you can create a
parent class that contains some amount of the code.

FIGURE 15-15:
Sally has a

birthday and then
says a few words.

4Performing
Advanced Tasks

IN THIS PART . . .

Store data permanently on disk.

Create, read, update, and delete data in files.

Create, send, and view an email.

CHAPTER 16 Storing Data in Files 305

Chapter 16
Storing Data in Files

Until now, application development might seem to be all about presenting
information onscreen. Actually, applications revolve around a need to work
with data in some way. Data is the focus of all applications because it’s the

data that users are interested in. Be prepared for a huge disappointment the first
time you present a treasured application to a user base and find that the only thing
users worry about is whether the application will help them leave work on time
after creating a presentation. The fact is, the best applications are invisible, but
they present data in the most appropriate manner possible for a user’s needs.

If data is the focus of applications, then storing the data in a permanent manner
is equally important. For most developers, data storage revolves around a perma-
nent media such as a hard drive, Solid State Drive (SSD), Universal Serial Bus
(USB) flash drive, or some other methodology. (Even cloud-based solutions work
fine, but you won’t see them used in this book because they require different pro-
gramming techniques that are beyond the book’s scope.) The data in memory is
temporary because it lasts only as long as the machine is running. A permanent
storage device holds onto the data long after the machine is turned off so that it
can be retrieved during the next session.

In addition to permanent storage, this chapter also helps you understand the four
basic operations that you can perform on files: Create, Read, Update, and Delete
(CRUD). You see the CRUD acronym used quite often in database circles, but it
applies equally well to any application. No matter how your application stores the
data in a permanent location, it must be able to perform these four tasks in order
to provide a complete solution to the user. Of course, CRUD operations must be

 » Considering how permanent
storage works

 » Using permanently stored content

 » Creating, reading, updating, and
deleting file data

306 PART 4 Performing Advanced Tasks

performed in a secure, reliable, and controlled manner. This chapter also helps you
set a few guidelines for how access must occur to ensure data integrity (a measure
of how often data errors occur when performing CRUD operations). You can find
the downloadable source code for the examples this chapter in the BPPD_16_
Storing_Data_in_Files.ipynb file, as described in the book’s Introduction.

Understanding How Permanent
Storage Works

You don’t need to understand absolutely every detail about how permanent stor-
age works in order to use it. For example, just how the drive spins (assuming that
it spins at all) is unimportant. However, most platforms adhere to a basic set of
principles when it comes to permanent storage. These principles have developed
over a period of time, starting with mainframe systems in the earliest days of
computing.

Data is generally stored in files (with pure data representing application state
information), but you could also find it stored as objects (a method of storing seri-
alized class instances). This chapter covers the use of files, not objects. You prob-
ably know about files already because almost every useful application out there
relies on them. For example, when you open a document in your word processor,
you’re actually opening a data file containing the words that you or someone else
has typed.

Files typically have an extension associated with them that defines the file type.
The extension is generally standardized for any given application and is separated
from the filename by a period, such as MyData.txt. In this case, .txt is the file
extension, and you probably have an application on your machine for opening
such files. In fact, you can likely choose from a number of applications to perform
the task because the .txt file extension is relatively common.

Internally, files structure the data in some specific manner to make it easy to
write and read data to and from the file. Any application you write must know
about the file structure in order to interact with the data the file contains. The
examples in this chapter use a simple file structure to make it easy to write the
code required to access them, but file structures can become quite complex.

Files would be nearly impossible to find if you placed them all in the same location
on the hard drive. Consequently, files are organized into directories. Many newer
computer systems also use the term folder for this organizational feature of
 permanent storage. No matter what you call it, permanent storage relies on

CHAPTER 16 Storing Data in Files 307

directories to help organize the data and make individual files significantly easier
to find. To find a particular file so that you can open it and interact with the data
it contains, you must know which directory holds the file.

Directories are arranged in hierarchies that begin at the uppermost level of the
hard drive. For example, when working with the downloadable source code for
this book, you find the code for the entire book in the BPPD directory within the
user folder on your system. On my Windows system, that directory hierarchy is
C:\Users\John\BPPD. However, my Mac and Linux systems have a different
directory hierarchy to reach the same BPPD directory, and the directory hierarchy
on your system will be different as well.

Notice that I use a backslash (\) to separate the directory levels. Some platforms
use the forward slash (/); others use the backslash. You can read about this issue
on my blog at http://blog.johnmuellerbooks.com/2014/03/10/backslash-
versus-forward-slash/. The book uses backslashes when appropriate and
assumes that you’ll make any required changes for your platform.

A final consideration for Python developers (at least for this book) is that the hier-
archy of directories is called a path. You see the term path in a few places in this
book because Python must be able to find any resources you want to use based on
the path you provide. For example, C:\Users\John\BPPD is the complete path to
the source code for this chapter on a Windows system. A path that traces the entire
route that Python must search is called an absolute path. An incomplete path that
traces the route to a resource using the current directory as a starting point is
called a relative path.

To find a location using a relative path, you commonly use the current directory
as the starting point. For example, BPPD__pycache__ would be the relative path
to the Python cache. Note that it has no drive letter or beginning backslash. How-
ever, sometimes you must add to the starting point in specific ways to define a
relative path. Most platforms define these special relative path character sets:

 » \: The root directory of the current drive. The drive is relative, but the path
begins at the root, the uppermost part, of that drive.

 » .\: The current directory. You use this shorthand for the current directory
when the current directory name isn’t known. For example, you could also
define the location of the Python cache as .__pycache__.

 » ..\: The parent directory. You use this shorthand when the parent directory
name isn’t known.

 » ..\..\: The parent of the parent directory. You can proceed up the hierarchy
of directories as far as necessary to locate a particular starting point before
you drill back down the hierarchy to a new location.

http://blog.johnmuellerbooks.com/2014/03/10/backslash-versus-forward-slash/
http://blog.johnmuellerbooks.com/2014/03/10/backslash-versus-forward-slash/

308 PART 4 Performing Advanced Tasks

Creating Content for Permanent Storage
A file can contain structured or unstructured data. An example of structured data is
a database in which each record has specific information in it. An employee data-
base would include columns for name, address, employee ID, and so on. Each
record would be an individual employee and each employee record would contain
the name, address, and employee ID fields. An example of unstructured data is a
word processing file whose text can contain any content in any order. There is no
required order for the content of a paragraph, and sentences can contain any
number of words. However, in both cases, the application must know how to per-
form CRUD operations with the file. This means that the content must be prepared
in such a manner that the application can both write to and read from the file.

Even with word processing files, the text must follow a certain series of rules.
Assume for a moment that the files are simple text. Even so, every paragraph must
have some sort of delimiter telling the application to begin a new paragraph. The
application reads the paragraph until it sees this delimiter, and then it begins a
new paragraph. The more that the word processor offers in the way of features,
the more structured the output becomes. For example, when the word processor
offers a method of formatting the text, the formatting must appear as part of the
output file.

The cues that make content usable for permanent storage are often hidden from
sight. All you see when you work with the file is the data itself. The formatting
remains invisible for a number of reasons, such as these:

 » The cue is a control character, such as a carriage return or linefeed, that is
normally invisible by default at the platform level.

 » The application relies on special character combinations, such as commas and
double quotes, to delimit the data entries. These special character combina-
tions are consumed by the application during reading.

 » Part of the reading process converts the character to another form, such as
when a word processing file reads in content that is formatted. The formatting
appears onscreen, but in the background the file contains special characters
to denote the formatting.

 » The file is actually in an alternative format, such as eXtensible Markup
Language (XML) (see http://www.w3schools.com/xml/default.ASP for
information about XML). The alternative format is interpreted and presented
onscreen in a manner the user can understand.

http://www.w3schools.com/xml/default.ASP

CHAPTER 16 Storing Data in Files 309

Other rules likely exist for formatting data. For example, Microsoft actually uses a
.zip file to hold its latest word processing files (the .docx) file. The use of a com-
pressed file catalog, such as .zip, makes storing a great deal of information in a
small space possible. It’s interesting to see how others store data because you can
often find more efficient and secure means of data storage for your own
applications.

Now that you have a better idea of what could happen as part of preparing content
for disk storage, it’s time to look at an example. In this case, the formatting strat-
egy is quite simple. All this example does is accept input, format it for storage, and
present the formatted version onscreen (rather than save it to disk just yet).

1. Open a new notebook.

You can also use the downloadable source files BPPD_16_Storing_Data_in_
Files.ipynb, which contains the application code, and BPPD_16_FormattedData.
ipynb, which contains the FormatData class code.

2. Type the following code into the window — pressing Enter after each line:

class FormatData:
 def __init__(self, Name="", Age=0, Married=False):
 self.Name = Name
 self.Age = Age
 self.Married = Married

 def __str__(self):
 OutString = "'{0}', {1}, {2}".format(
 self.Name,
 self.Age,
 self.Married)

 return OutString

This is a shortened class. Normally, you’d add accessors (getter and setter
methods) and error-trapping code. (Remember that getter methods provide
read-only access to class data and setter methods provide write-only access to
class data.) However, the class works fine for the demonstration.

The main feature to look at is the __str__() function. Notice that it formats
the output data in a specific way. The string value, self.Name, is enclosed in
single quotes. Each of the values is also separated by a comma. This is actually
a form of a standard output format, comma-separated value (CSV), that is used
on a wide range of platforms because it’s easy to translate and is in plain text,
so nothing special is needed to work with it.

310 PART 4 Performing Advanced Tasks

3. Save the code as BPPD_16_FormattedData.ipynb.

To use this class with the remainder of the chapter, you need to save it to disk
by using the technique found in the “Saving a class to disk” section of
Chapter 15. You must also create the BPPD_16_FormattedData.py file to
import the class into the application code.

4. Open another new notebook.

5. Type the following code into the window — pressing Enter after each line:

from BPPD_16_FormattedData import FormatData
NewData = [FormatData("George", 65, True),
 FormatData("Sally", 47, False),
 FormatData("Doug", 52, True)]
for Entry in NewData:

 print(Entry)

The code begins by importing just the FormatData class from BPPD_16_
FormattedData. In this case, it doesn’t matter because the BPPD_16_
FormattedData module contains only a single class. However, you need to
keep this technique in mind when you need only one class from a module.

Most of the time, you work with multiple records when you save data to disk.
You might have multiple paragraphs in a word processed document or
multiple records, as in this case. The example creates a list of records and
places them in NewData. In this case, NewData represents the entire document.
The representation will likely take other forms in a production application, but
the idea is the same.

Any application that saves data goes through some sort of output loop. In this
case, the loop simply prints the data onscreen. However, in the upcoming
sections, you actually output the data to a file.

6. Click Run Cell.

You see the output shown in Figure 16-1. This is a representation of how the
data would appear in the file. In this case, each record is separated by a
carriage return and linefeed control character combination. That is, George,
Sally, and Doug are all separate records in the file. Each field (data element) is
separated by a comma. Text fields appear in quotes so that they aren’t
confused with other data types.

CHAPTER 16 Storing Data in Files 311

Creating a File
Any data that the user creates and wants to work with for more than one session
must be put on some sort of permanent media. Creating a file and then placing the
data into it is an essential part of working with Python. You can use the following
steps to create code that will write data to the hard drive.

1. Open the previously saved BPPD_16_FormattedData.ipynb file.

You see the code originally created in the “Creating Content for Permanent
Storage” section, earlier in this chapter, appear onscreen. This example makes
adds a new class to the original code so that the package can now save a file to
disk.

2. Type the following code into the notebook — pressing Enter after
each line:

import csv

class FormatData2:
 def __init__(self, Name="", Age=0, Married=False):
 self.Name = Name
 self.Age = Age
 self.Married = Married

 def __str__(self):
 OutString = "'{0}', {1}, {2}".format(
 self.Name,
 self.Age,
 self.Married)
 return OutString

FIGURE 16-1:
The example

presents how the
data might look in

CSV format.

312 PART 4 Performing Advanced Tasks

 def SaveData(Filename = "", DataList = []):
 with open(Filename,
 "w", newline='\n') as csvfile:
 DataWriter = csv.writer(
 csvfile,
 delimiter='\n',
 quotechar=" ",
 quoting=csv.QUOTE_NONNUMERIC)
 DataWriter.writerow(DataList)
 csvfile.close()

 print("Data saved!")

The csv module contains everything needed to work with CSV files.

Python actually supports a huge number of file types natively, and libraries
that provide additional support are available. If you have a file type that you
need to support using Python, you can usually find a third-party library to
support it when Python doesn’t support it natively. Unfortunately, no compre-
hensive list of supported files exists, so you need to search online to find how
Python supports the file you need. The documentation divides the supported
files by types and doesn’t provide a comprehensive list. For example, you can
find all the archive formats at https://docs.python.org/3/library/
archiving.html and the miscellaneous file formats at https://docs.
python.org/3/library/fileformats.html.

This example uses essentially the same text formatting code as you saw in the
FormatData class, but now it adds the SaveData() method to put the
formatted data on disk. Using a new class notifies everyone of the increased
capability, so FormatData2 is the same class, but with more features.

Notice that the SaveData() method accepts two arguments as input: a
filename used to store the data and a list of items to store. This is a class
method rather than an instance method. Later in this procedure, you see how
using a class method is an advantage. The DataList argument defaults to an
empty list so that if the caller doesn’t pass anything at all, the method won’t
throw an exception. Instead, it produces an empty output file. Of course, you
can also add code to detect an empty list as an error, if desired.

The with statement tells Python to perform a series of tasks with a specific
resource — an open csvfile named Testfile.csv. The open() function
accepts a number of inputs depending in how you use it. For this example, you
open it in write mode (signified by the w). The newline attribute tells Python to
treat the \n control character (linefeed) as a newline character.

In order to write output, you need a writer object. The DataWriter object is
configured to use csvfile as the output file, to use /n as the record character, to
quote records using a space, and to provide quoting only on nonnumeric values.

https://docs.python.org/3/library/archiving.html
https://docs.python.org/3/library/archiving.html
https://docs.python.org/3/library/fileformats.html
https://docs.python.org/3/library/fileformats.html

CHAPTER 16 Storing Data in Files 313

This setup will produce some interesting results later, but for now, just assume
that this is what you need to make the output usable.

Actually writing the data takes less effort than you might think. A single call to
DataWriter.writerow() with the DataList as input is all you need. Always
close the file when you get done using it. This action flushes the data (makes
sure that it gets written) to the hard drive. The code ends by telling you that the
data has been saved.

3. Save the code as BPPD_16_FormattedData.ipynb.

To use this class with the remainder of the chapter, you need to save it to disk
using the technique found in the “Saving a class to disk” section of Chapter 15.
You must also recreate the BPPD_16_FormattedData.py file to import the
class into the application code. If you don’t recreate the Python file, the client
code won’t be able to import FormatData2. Make sure that you delete the old
version of BPPD_16_FormattedData.py from the code repository before you
import the new one (or you can simply tell Notebook to overwrite the old copy).

4. Type the following code into the application notebook — pressing Enter
after each line:

from BPPD_16_FormattedData import FormatData2
NewData = [FormatData2("George", 65, True),
 FormatData2("Sally", 47, False),
 FormatData2("Doug", 52, True)]

FormatData2.SaveData("TestFile.csv", NewData)

This example should look similar to the one you created in the “Creating
Content for Permanent Storage” section, earlier in the chapter. You still create
NewData as a list. However, instead of displaying the information onscreen, you
send it to a file instead by calling FormatData2.SaveData(). This is one of
those situations in which using an instance method would actually get in the
way. To use an instance method, you would first need to create an instance of
FormatData that wouldn’t actually do anything for you.

5. Restart the Kernel by choosing Kernel ➪  Restart or by clicking the Restart
the Kernel button.

You must perform this step to unload the previous version of BPPD_16_
FormattedData. Otherwise, even though the new copy of BPPD_16_
FormattedData.py appears in the code directory, the example won’t run.

6. Click Run Cell.

The application runs, and you see a data saved message as output. Of course,
that doesn’t tell you anything about the data. In the source code file, you see a
new file named Testfile.csv. Most platforms have a default application that

314 PART 4 Performing Advanced Tasks

opens such a file. With Windows, you can open it using Excel and WordPad
(among other applications). Figure 16-2 shows the output in Excel, while
Figure 16-3 shows it in WordPad. In both cases, the output looks surprisingly
similar to the output shown in Figure 16-1.

Reading File Content
At this point, the data is on the hard drive. Of course, it’s nice and safe there, but
it really isn’t useful because you can’t see it. To see the data, you must read it into
memory and then do something with it. The following steps show how to read
data from the hard drive and into memory so that you can display it onscreen.

1. Open the previously saved BPPD_16_FormattedData.ipynb file.

The code originally created in the “Creating Content for Permanent Storage”
section, earlier in this chapter, appears onscreen. This example adds a new
class to the original code so that the package can now save a file to disk.

FIGURE 16-2:
The application

output as it
appears in Excel.

FIGURE 16-3:
The application

output as it
appears in
WordPad.

CHAPTER 16 Storing Data in Files 315

2. Type the following code into the notebook — pressing Enter after
each line:

import csv

class FormatData3:
 def __init__(self, Name="", Age=0, Married=False):
 self.Name = Name
 self.Age = Age
 self.Married = Married

 def __str__(self):
 OutString = "'{0}', {1}, {2}".format(
 self.Name,
 self.Age,
 self.Married)
 return OutString

 def SaveData(Filename = "", DataList = []):
 with open(Filename,
 "w", newline='\n') as csvfile:
 DataWriter = csv.writer(
 csvfile,
 delimiter='\n',
 quotechar=" ",
 quoting=csv.QUOTE_NONNUMERIC)
 DataWriter.writerow(DataList)
 csvfile.close()
 print("Data saved!")

 def ReadData(Filename = ""):
 with open(Filename,
 "r", newline='\n') as csvfile:
 DataReader = csv.reader(
 csvfile,
 delimiter="\n",
 quotechar=" ",
 quoting=csv.QUOTE_NONNUMERIC)
 Output = []
 for Item in DataReader:
 Output.append(Item[0])
 csvfile.close()
 print("Data read!")

 return Output

316 PART 4 Performing Advanced Tasks

Opening a file for reading is much like opening it for writing. The big difference
is that you need to specify r (for read) instead of w (for write) as part of the
csv.reader() constructor. Otherwise, the arguments are precisely the same
and work the same.

It’s important to remember that you’re starting with a text file when working
with a .csv file. Yes, it has delimiters, but it’s still text. When reading the text
into memory, you must rebuild the Python structure. In this case, Output is an
empty list when it starts.

The file currently contains three records that are separated by the /n control
character. Python reads each record in using a for loop. Notice the odd use of
Item[0]. When Python reads the record, it sees the nonterminating entries
(those that aren’t last in the file) as actually being two list entries. The first entry
contains data; the second is blank. You want only the first entry. These entries
are appended to Output so that you end up with a complete list of the records
that appear in the file.

As before, make sure that you close the file when you get done with it. The
method prints a data read message when it finishes. It then returns Output (a
list of records) to the caller.

3. Save the code as BPPD_16_FormattedData.ipynb.

To use this class with the remainder of the chapter, you need to save it to disk
by using the technique found in the “Saving a class to disk” section of
Chapter 15. You must also recreate the BPPD_16_FormattedData.py file to
import the class into the application code. If you don’t recreate the Python file,
the client code won’t be able to import FormatData3. Make sure that you
delete the old version of BPPD_16_FormattedData.py from the code reposi-
tory before you import the new one.

4. Type the following code into the application notebook — pressing Enter
after each line:

from BPPD_16_FormattedData import FormatData3
NewData = FormatData3.ReadData("TestFile.csv")
for Entry in NewData:

 print(Entry)

The ReadCSV.py code begins by importing the FormatData class. It then
creates a NewData object, a list, by calling FormatData.ReadData(). Notice
that the use of a class method is the right choice in this case as well because it
makes the code shorter and simpler. The application then uses a for loop to
display the NewData content.

CHAPTER 16 Storing Data in Files 317

5. Restart the kernel and then click Run Cell.

You see the output shown in Figure 16-4. Notice that this output looks similar
to the output in Figure 16-1, even though the data was written to disk and read
back in. This is how applications that read and write data are supposed to
work. The data should appear the same after you read it in as it did when you
wrote it out to disk. Otherwise, the application is a failure because it has
modified the data.

Updating File Content
Some developers treat updating a file as something complex. It can be complex if
you view it as a single task. However, updates actually consist of three activities:

1. Read the file content into memory.

2. Modify the in-memory presentation of the data.

3. Write the resulting content to permanent storage.

In most applications, you can further break down the second step of modifying the
in-memory presentation of the data. An application can provide some or all of
these features as part of the modification process:

 » Provide an onscreen presentation of the data.

 » Allow additions to the data list.

 » Allow deletions from the data list.

 » Make changes to existing data, which can actually be implemented by adding
a new record with the changed data and deleting the old record.

So far in this chapter, you have performed all but one of the activities in these two
lists. You’ve already read file content and written file content. In the modification
list, you’ve added data to a list and presented the data onscreen. The only inter-
esting activity that you haven’t performed is deleting data from a list.

FIGURE 16-4:
The application

input after it has
been processed.

318 PART 4 Performing Advanced Tasks

The modification of data is often performed as a two-part process of creating a
new record that starts with the data from the old record and then deleting the old
record after the new record is in place in the list.

Don’t get into a rut by thinking that you must perform every activity mentioned
in this section for every application. A monitoring program wouldn’t need to dis-
play the data onscreen. In fact, doing so might be harmful (or at least inconve-
nient). A data logger only creates new entries — it never deletes or modifies them.
An email application usually allows the addition of new records and deletion of old
records, but not modification of existing records. On the other hand, a word
 processor implements all the features mentioned. What you implement and how
you implement it depends solely on the kind of application you create.

Separating the user interface from the activities that go on behind the user inter-
face is important. To keep things simple, this example focuses on what needs to
go on behind the user interface to make updates to the file you created in the
“Creating a File” section, earlier in this chapter. The following steps demonstrate
how to read, modify, and write a file in order to update it. The updates consist of
an addition, a deletion, and a change. To allow you to run the application more
than once, the updates are actually sent to another file.

1. Type the following code into the application notebook — pressing Enter
after each line:

from BPPD_16_FormattedData import FormatData3
import os.path

if not os.path.isfile("Testfile.csv"):
 print("Please run the CreateFile.py example!")
 quit()

NewData = FormatData3.ReadData("TestFile.csv")
for Entry in NewData:
 print(Entry)

print("\r\nAdding a record for Harry.")
NewRecord = "'Harry', 23, False"
NewData.append(NewRecord)
for Entry in NewData:
 print(Entry)

print("\r\nRemoving Doug's record.")
Location = NewData.index("'Doug', 52, True")
Record = NewData[Location]

CHAPTER 16 Storing Data in Files 319

NewData.remove(Record)
for Entry in NewData:
 print(Entry)

print("\r\nModifying Sally's record.")
Location = NewData.index("'Sally', 47, False")
Record = NewData[Location]
Split = Record.split(",")
NewRecord = FormatData3(Split[0].replace("'", ""),
 int(Split[1]),
 bool(Split[2]))
NewRecord.Married = True
NewRecord.Age = 48
NewData.append(NewRecord.__str__())
NewData.remove(Record)
for Entry in NewData:
 print(Entry)

FormatData3.SaveData("ChangedFile.csv", NewData)

This example has quite a bit going on. First, it checks to ensure that the
Testfile.csv file is actually present for processing. This is a check that you
should always perform when you expect a file to be present. In this case, you
aren’t creating a new file, you’re updating an existing file, so the file must be
present. If the file isn’t present, the application ends.

The next step is to read the data into NewData. This part of the process looks
much like the data reading example earlier in the chapter.

You have already seen code for using list functions in Chapter 13. This example
uses those functions to perform practical work. The append() function adds a
new record to NewData. However, notice that the data is added as a string, not
as a FormatData object. The data is stored as strings on disk, so that’s what
you get when the data is read back in. You can either add the new data as a
string or create a FormatData object and then use the __str__() method to
output the data as a string.

The next step is to remove a record from NewData. To perform this task, you
must first find the record. Of course, that’s easy when working with just four
records (remember that NewData now has a record for Harry in it). When
working with a large number of records, you must first search for the record
using the index() function. This act provides you with a number containing
the location of the record, which you can then use to retrieve the actual record.
After you have the actual record, you can remove it using the remove()
function.

320 PART 4 Performing Advanced Tasks

Modifying Sally’s record looks daunting at first, but again, most of this code is
part of dealing with the string storage on disk. When you obtain the record
from NewData, what you receive is a single string with all three values in it. The
split() function produces a list containing the three entries as strings, which
still won’t work for the application. In addition, Sally’s name is enclosed in both
double and single quotes.

The simplest way to manage the record is to create a FormatData object and
to convert each of the strings into the proper form. This means removing the
extra quotes from the name, converting the second value to an int, and
converting the third value to a bool. The FormatData class doesn’t provide
accessors, so the application modifies both the Married and Age fields directly.
Using accessors (getter methods that provide read-only access and setter
methods that provide write-only access) is a better policy.

The application then appends the new record to and removes the existing
record from NewData. Notice how the code uses NewRecord.__str__() to
convert the new record from a FormatData object to the required string.

The final act is to save the changed record. Normally, you’d use the same file to
save the data. However, the example saves the data to a different file in order
to allow examination of both the old and new data.

2. Click Run Cell.

You see the output shown in Figure 16-5. Notice that the application lists the
records after each change so that you can see the status of NewData. This is
actually a useful troubleshooting technique for your own applications. Of
course, you want to remove the display code before you release the applica-
tion to production.

FIGURE 16-5:
The application

shows each of the
modifications

in turn.

CHAPTER 16 Storing Data in Files 321

3. Open the ChangedFile.csv file using an appropriate application.

You see output similar to that shown in Figure 16-6. This output is shown using
WordPad, but the data won’t change when you use other applications. So, even if
your screen doesn’t quite match Figure 16-6, you should still see the same data.

Deleting a File
The previous section of this chapter, “Updating File Content,” explains how to add,
delete, and update records in a file. However, at some point you may need to delete
the file. The following steps describe how to delete files that you no longer need.
This example also appears with the downloadable source code as DeleteCSV.py.

1. Type the following code into the application notebook — pressing Enter
after each line:

import os
os.remove("ChangedFile.csv")

print("File Removed!")

The task looks simple in this case, and it is. All you need to do to remove a file
is call os.remove() with the appropriate filename and path (as needed,
Python defaults to the current directory, so you don’t need to specify a path if
the file you want to remove is in the default directory). The ease with which you
can perform this task is almost scary because it’s too easy. Putting safeguards

FIGURE 16-6:
The updated
information
appears as

expected in
Changed

File.csv.

322 PART 4 Performing Advanced Tasks

in place is always a good idea. You may want to remove other items, so here
are other functions you should know about:

• os.rmdir(): Removes the specified directory. The directory must be
empty or Python will display an exception message.

• shutil.rmtree(): Removes the specified directory, all subdirectories, and
all files. This function is especially dangerous because it removes every-
thing without checking (Python assumes that you know what you’re doing).
As a result, you can easily lose data using this function.

2. Click Run Cell.

The application displays the File Removed! message. When you look in the
directory that originally contained the ChangedFile.csv file, you see that the
file is gone.

CHAPTER 17 Sending an Email 323

Chapter 17
Sending an Email

This chapter helps you understand the process of sending an email using
Python. More important, this chapter is generally about helping you under-
stand what happens when you communicate outside the local PC. Even

though this chapter is specifically about email, it also contains principles you can
use when performing other tasks. For example, when working with an external
service, you often need to create the same sort of packaging as you do for an email.
So, the information you see in this chapter can help you understand all sorts of
communication needs.

To make working with email as easy as possible, this chapter uses standard mail
as a real-world equivalent of email. The comparison is apt. Email was actually
modeled on real-world mail. Originally, the term email was used for any sort of
electronic document transmission, and some forms of it required the sender and
recipient to be online at the same time. As a result, you may find some confusing
references online about the origins and development of email. This chapter views
email as it exists today — as a storing and forwarding mechanism for exchanging
documents of various types.

The examples in this chapter rely on the availability of a Simple Mail Transfer
Protocol (SMTP) server. If that sounds like Greek to you, read the sidebar entitled
“Considering the SMTP server” that appears later in the chapter. You can find the
downloadable source code for the examples in this chapter in the BPPD_17_
Sending_an_Email.ipynb file, as described in the book’s Introduction.

 » Defining the series of events for
sending an email

 » Developing an email application

 » Testing the email application

324 PART 4 Performing Advanced Tasks

Understanding What Happens
When You Send Email

Email has become so reliable and so mundane that most people don’t understand
what a miracle it is that it works at all. Actually, the same can be said of the real
mail service. When you think about it, the likelihood of one particular letter leav-
ing one location and ending up precisely where it should at the other end seems
impossible — mind-boggling, even. However, both email and its real-world
equivalent have several aspects in common that improve the likelihood that they’ll
actually work as intended. The following sections examine what happens when
you write an email, click Send, and the recipient receives it on the other end. You
might be surprised at what you discover.

CONSIDERING THE SIMPLE MAIL
TRANSFER PROTOCOL
When you work with email, you see a lot of references to Simple Mail Transfer Protocol
(SMTP). Of course, the term looks really technical, and what happens under the covers
truly is technical, but all you really need to know is that it works. On the other hand,
understanding SMTP a little more than as a “black box” that takes an email from the
sender and spits it out at the other end to the recipient can be useful. Taking the term
apart (in reverse order), you see these elements:

• Protocol: A standard set of rules. Email work by requiring rules that everyone
agrees upon. Otherwise, email would become unreliable.

Mail transfer: Documents are sent from one place to another, much the same as
what the post office does with real mail. In email’s case, the transfer process relies
on short commands that your email application issues to the SMTP server. For
example, the MAIL FROM command tells the SMTP server who is sending the email,
while the RCPT TO command states where to send it.

• Simple: States that this activity goes on with the least amount of effort possible.
The fewer parts to anything, the more reliable it becomes.

If you were to look at the rules for transferring the information, you would find they’re
anything but simple. For example, RFC1123 is a standard that specifies how Internet
hosts are supposed to work (see http://www.faqs.org/rfcs/rfc1123.html for
details). These rules are used by more than one Internet technology, which explains
why most of them appear to work about the same (even though their resources and
goals may be different).

http://www.faqs.org/rfcs/rfc1123.html

CHAPTER 17 Sending an Email 325

Viewing email as you do a letter
The best way to view email is the same as how you view a letter. When you
write a letter, you provide two pieces of paper as a minimum. The first contains
the content of the letter, the second is an envelope. Assuming that the postal
 service is honest, the content is never examined by anyone other than the recipient.
The same can be said of email. An email actually consists of these components:

 » Message: The content of the email, which is actually composed of
two subparts:

• Header: The part of the email content that includes the subject, the list of
recipients, and other features, such as the urgency of the email.

• Body: The part of the email content that contains the actual message.
The message can be in plain text, formatted as HTML, and consisting of
one or more documents, or it can be a combination of all these elements.

 » Envelope: A container for the message. The envelope provides sender and
recipient information, just as the envelope for a physical piece of mail
provides. However, an email doesn’t include a stamp.

When working with email, you create a message using an email application. As
part of the email application setup, you also define account information. When
you click send:

1. The email application wraps up your message, with the header first, in an
envelope that includes both your sender and the recipient’s information.

2. The email application uses the account information to contact the SMTP server
and send the message for you.

3. The SMTP server reads only the information found in the message envelope
and redirects your email to the recipient.

4. The recipient email application logs on to the local server, picks up the email,
and then displays only the message part for the user.

Another, entirely different standard, RFC2821, describes how SMTP specifically imple-
ments the rules found in RFC1123 (see http://www.faqs.org/rfcs/rfc2821.html
for details). The point is, a whole lot of rules are written in jargon that only a true geek
could love (and even the geeks aren’t sure). If you want a plain-English explanation
of how email works, check out the article at http://computer.howstuffworks.
com/e-mail-messaging/email.htm. Page 4 of this article (http://computer.
howstuffworks.com/e-mail-messaging/email3.htm) describes the commands
that SMTP uses to send information hither and thither across the Internet. In fact, if you
want the shortest possible description of SMTP, page 4 is probably the right place to look.

http://www.faqs.org/rfcs/rfc2821.html
http://computer.howstuffworks.com/e-mail-messaging/email.htm
http://computer.howstuffworks.com/e-mail-messaging/email.htm
http://computer.howstuffworks.com/e-mail-messaging/email3.htm
http://computer.howstuffworks.com/e-mail-messaging/email3.htm

326 PART 4 Performing Advanced Tasks

The process is a little more complex than this explanation, but this is essentially
what happens. In fact, it’s much the same as the process used when working with
physical letters in that the essential steps are the same. With physical mail, the
email application is replaced by you on one end and the recipient at the other. The
SMTP server is replaced by the post office and the employees who work
there (including the postal carriers). However, someone generates a message, the
 message is transferred to a recipient, and the recipient receives the message in
both cases.

Defining the parts of the envelope
There is a difference in how the envelope for an email is configured and how it’s
actually handled. When you view the envelope for an email, it looks just like a let-
ter in that it contains the address of the sender and the address of the recipient. It
may not look physically like an envelope, but the same components are there.
When you visualize a physical envelope, you see certain specifics, such as the
sender’s name, street address, city, state, and zip code. The same is true for the
recipient. These elements define, in physical terms, where the postal carrier
should deliver the letter or return the letter when it can’t be delivered.

However, when the SMTP server processes the envelope for an email, it must look
at the specifics of the address, which is where the analogy of a physical envelope
used for mail starts to break down a little. An email address contains different
information from a physical address. In summary, here is what the email address
contains:

 » Host: The host is akin to the city and state used by a physical mail envelope. A
host address is the address used by the card that is physically connected to
the Internet, and it handles all the traffic that the Internet consumes or
provides for this particular machine. A PC can use Internet resources in a lot
of ways, but the host address for all these uses is the same.

 » Port: The port is akin to the street address used by a physical mail envelope. It
specifies which specific part of the system should receive the message. For
example, an SMTP server used for outgoing messages normally relies on port 25.
However, the Point-of-Presence (POP3) server used for incoming email messages
usually relies on port 110. Your browser typically uses port 80 to communicate
with websites. However, secure websites (those that use https as a protocol,
rather than http) rely on port 443 instead. You can see a list of typical ports at
http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers.

 » Local hostname: The local hostname is the human-readable form of the
combination of the host and port. For example, the website http://www.
myplace.com might resolve to an address of 55.225.163.40:80 (where the first
four numbers are the host address and the number after the colon is the port).

http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
http://www.myplace.com/
http://www.myplace.com/

CHAPTER 17 Sending an Email 327

Python takes care of these details behind the scenes for you, so normally
you don’t need to worry about them. However, it’s nice to know that this
information is available.

Now that you have a better idea of how the address is put together, it’s time to
look at it more carefully. The following sections describe the envelope of an email
in more precise terms.

Host
A host address is the identifier for a connection to a server. Just as an address on an
envelope isn’t the actual location, neither is the host address the actual server. It
merely specifies the location of the server.

The connection used to access a combination of a host address and a port is called
a socket. Just who came up with this odd name and why isn’t important. What is
important is that you can use the socket to find out all kinds of information that’s
useful in understanding how email works. The following steps help you see host-
names and host addresses at work. More important, you begin to understand the
whole idea of an email envelope and the addresses it contains.

1. Open a new notebook.

You can also use the downloadable source file, BPPD_17_Sending_an_Email.
ipynb, which contains the application code.

2. Type import socket and press Enter.

Before you can work with sockets, you must import the socket library. This
library contains all sorts of confusing attributes, so use it with caution.
However, this library also contains some interesting functions that help you
see how the Internet addresses work.

3. Type print(socket.gethostbyname(“localhost”)) and press Enter.

You see a host address as output. In this case, you should see 127.0.0.1 as
output because localhost is a standard hostname. The address, 127.0.0.1,
is associated with the host name, localhost.

4. Type print(socket.gethostbyaddr(“127.0.0.1”)) and click Run Cell.

Be prepared for a surprise. You get a tuple as output, as shown in Figure 17-1.
However, instead of getting localhost as the name of the host, you get the
name of your machine. You use localhost as a common name for the local
machine, but when you specify the address, you get the machine name
instead. In this case, Main is the name of my personal machine. The name you
see on your screen will correspond to your machine.

328 PART 4 Performing Advanced Tasks

5. Type print(socket.gethostbyname(“www.johnmuellerbooks.com”)) and click
Run Cell.

You see the output shown in Figure 17-2. This is the address for my website.
The point is that these addresses work wherever you are and whatever you’re
doing — just like those you place on a physical envelope. The physical mail
uses addresses that are unique across the world, just as the Internet does.

Port
A port is a specific entryway for a server location. The host address specifies the
location, but the port defines where to get in. Even if you don’t specify a port every
time you use a host address, the port is implied. Access is always granted using a
combination of the host address and the port. The following steps help illustrate
how ports work with the host address to provide server access:

1. Type import socket and press Enter.

Remember that a socket provides both host address and port information. You
use the socket to create a connection that includes both items.

FIGURE 17-1:
The localhost

address actually
corresponds to
your machine.

FIGURE 17-2:
The addresses
that you use to
send email are

unique across the
Internet.

http://www.johnmuellerbooks.com

CHAPTER 17 Sending an Email 329

2. Type socket.getaddrinfo(“localhost”, 110) and click Run Cell.

The first value is the name of a host you want to obtain information about. The
second value is the port on that host. In this case, you obtain the information
about localhost port 110.

You see the output shown in Figure 17-3. The output consists of two tuples:
one for the Internet Protocol version 6 (IPv6) output and one for the Internet
Protocol version 4 (IPv4) address. Each of these tuples contains five entries,
four of which you really don’t need to worry about because you’ll likely never
need them. However, the last entry, ('127.0.0.1', 110), shows the address
and port for localhost port 110.

3. Type socket.getaddrinfo(“johnmuellerbooks.com”, 80) and press Enter.

Figure 17-4 shows the output from this command. Notice that this Internet
location provides only an IPv4 address, not an IPv6, address, for port 80. The
socket.getaddrinfo() method provides a useful method for determining
how you can access a particular location. Using IPv6 provides significant
benefits over IPv4 (see http://www.networkcomputing.com/networking/
six-benefits-of-ipv6/d/d-id/1232791 for details), but many Internet
locations provide only IPv4 support now. (If you live in a larger city, you’ll
probably see both an IPv4 and an IPv6 address.)

4. Type socket.getservbyport(25) and press Enter.

You see the output shown in Figure 17-5. The socket.getservbyport()
method provides the means to determine how a particular port is used.
Port 25 is always dedicated to SMTP support on any server. So, when you
access 127.0.0.1:25, you’re asking for the SMTP server on localhost. In short,
a port provides a specific kind of access in many situations.

FIGURE 17-3:
The localhost
host provides

both an IPv6 and
an IPv4 address.

FIGURE 17-4:
Most Internet

locations provide
only an IPv4

address.

http://www.networkcomputing.com/networking/six-benefits-of-ipv6/d/d-id/1232791
http://www.networkcomputing.com/networking/six-benefits-of-ipv6/d/d-id/1232791

330 PART 4 Performing Advanced Tasks

Some people assume that the port information is always provided. However, this
isn’t always the case. Python will provide a default port when you don’t supply
one, but relying on the default port is a bad idea because you can’t be certain
which service will be accessed. In addition, some systems use nonstandard port
assignments as a security feature. Always get into the habit of using the port
number and ensuring that you have the right one for the task at hand.

Local hostname
A hostname is simply the human-readable form of the host address. Humans don’t
really understand 127.0.0.1 very well (and the IPv6 addresses make even less
sense). However, humans do understand localhost just fine. There is a special
server and setup to translate human-readable hostnames to host addresses, but
you really don’t need to worry about it for this book (or programming in general).
When your application suddenly breaks for no apparent reason, it helps to know
that one does exist, though.

The “Host” section, earlier in this chapter, introduces you to the hostname to a
certain extent through the use of the socket.gethostbyaddr() method, whereby
an address is translated into a hostname. You saw the process in reverse using the
socket.gethostbyname() method. The following steps help you understand some
nuances about working with the hostname:

1. Type import socket and press Enter.

2. Type socket.gethostname() and click Run Cell.

You see the name of the local system, as shown in Figure 17-6. The name of
your system will likely vary from mine, so your output will be different than
that shown in Figure 17-6, but the idea is the same no matter which system
you use.

FIGURE 17-5:
Standardized
ports provide

specific services
on every server.

FIGURE 17-6:
Sometimes you

need to know the
name of the local

system.

CHAPTER 17 Sending an Email 331

3. Type socket.gethostbyname(socket.gethostname()) and click Run Cell.

You see the IP address of the local system, as shown in Figure 17-7. Again, your
setup is likely different from mine, so the output you see will differ. This is a
method you can use in your applications to determine the address of the
sender when needed. Because it doesn’t rely on any hard-coded value, the
method works on any system.

Defining the parts of the letter
The “envelope” for an email address is what the SMTP server uses to route the
email. However, the envelope doesn’t include any content — that’s the purpose of
the letter. A lot of developers get the two elements confused because the letter
contains sender and receiver information as well. This information appears in the
letter just like the address information that appears in a business letter — it’s for
the benefit of the viewer. When you send a business letter, the postal delivery
person doesn’t open the envelope to see the address information inside. Only the
information on the envelope matters.

It’s because the information in the email letter is separate from its information in
the envelope that nefarious individuals can spoof email addresses. The envelope
potentially contains legitimate sender information, but the letter may not. (When
you see the email in your email application, all that is present is the letter, not the
envelope — the envelope has been stripped away by the email application.) For
that matter, neither the sender nor the recipient information may be correct in the
letter that you see onscreen in your email reader.

The letter part of an email is actually made of separate components, just as the
envelope is. Here is a summary of the three components:

 » Sender: The sender information tells you who sent the message. It contains
just the email address of the sender.

 » Receiver: The receiver information tells you who will receive the message. This is
actually a list of recipient email addresses. Even if you want to send the message
to only one person, you must supply the single email address in a list.

FIGURE 17-7:
Avoid using
hard-coded

values for the
local system

whenever
possible.

332 PART 4 Performing Advanced Tasks

 » Message: Contains the information that you want the recipient to see.
This information can include the following:

• From: The human-readable form of the sender.

• To: The human-readable form of the recipients.

• CC: Visible recipients who also received the message, even though they
aren’t the primary targets of the message.

• Subject: The purpose of the message.

• Documents: One or more documents, including the text message that
appears with the email.

Emails can actually become quite complex and lengthy. Depending on the kind of
email that is sent, a message could include all sorts of additional information.
However, most emails contain these simple components, and this is all the infor-
mation you need to send an email from your application. The following sections
describe the process used to generate a letter and its components in more detail.

Defining the message
Sending an empty envelope to someone will work, but it isn’t very exciting. In
order to make your email message worthwhile, you need to define a message.
Python supports a number of methods of creating messages. However, the easiest
and most reliable way to create a message is to use the Multipurpose Internet Mail
Extensions (MIME) functionality that Python provides (and no, a MIME is not a
silent person with white gloves who acts out in public).

As with many email features, MIME is standardized, so it works the same no mat-
ter which platform you use. There are also numerous forms of MIME that are all
part of the email.mime module described at https://docs.python.org/3/
library/email.mime.html. Here are the forms that you need to consider most
often when working with email:

 » MIMEApplication: Provides a method for sending and receiving application
input and output

 » MIMEAudio: Contains an audio file

 » MIMEImage: Contains an image file

 » MIMEMultipart: Allows a single message to contain multiple subparts, such
as including both text and graphics in a single message

 » MIMEText: Contains text data that can be in ASCII, HTML, or another stan-
dardized format

https://docs.python.org/3/library/email.mime.html
https://docs.python.org/3/library/email.mime.html

CHAPTER 17 Sending an Email 333

Although you can create any sort of an email message with Python, the easiest type
to create is one that contains plain text. The lack of formatting in the content lets
you focus on the technique used to create the message, rather than on the message
content. The following steps help you understand how the message-creating
process works, but you won’t actually send the message anywhere.

1. Type the following code (pressing Enter after each line):

from email.mime.text import MIMEText
msg = MIMEText("Hello There")
msg['Subject'] = "A Test Message"
msg['From']='John Mueller <John@JohnMuellerBooks.com>'

msg['To'] = 'John Mueller <John@JohnMuellerBooks.com>'

This is a basic plain-text message. Before you can do anything, you must
import the required class, which is MIMEText. If you were creating some other
sort of message, you’d need to import other classes or import the email.mime
module as a whole.

The MIMEText() constructor requires message text as input. This is the body
of your message, so it might be quite long. In this case, the message is
relatively short — just a greeting.

At this point, you assign values to standard attributes. The example shows
the three common attributes that you always define: Subject, From, and To.
The two address fields, From and To, contain both a human-readable name
and the email address. All you have to include is the email address.

2. Type msg.as_string() and click Run Cell.

You see the output shown in Figure 17-8. This is how the message actually
looks. If you have ever looked under the covers at the messages produced by
your email application, the text probably looks familiar.

The Content-Type reflects the kind of message you created, which is a
plain-text message. The charset tells what kind of characters are used in the
message so that the recipient knows how to handle them. The MIME-Version
specifies the version of MIME used to create the message so that the recipient
knows whether it can handle the content. Finally, the Context-Transfer-
Encoding determines how the message is converted into a bit stream before it
is sent to the recipient.

334 PART 4 Performing Advanced Tasks

Specifying the transmission
An earlier section (“Defining the parts of the envelope”) describes how the enve-
lope is used to transfer the message from one location to another. The process of
sending the message entails defining a transmission method. Python actually cre-
ates the envelope for you and performs the transmission, but you must still define
the particulars of the transmission. The following steps help you understand the
simplest approach to transmitting a message using Python. These steps won’t
result in a successful transmission unless you modify them to match your setup.
Read the “Considering the SMTP server” sidebar for additional information.

1. Type the following code (pressing Enter after each line and pressing Enter
twice after the last line):

import smtplib

s = smtplib.SMTP('localhost')

The smtplib module contains everything needed to create the message
envelope and send it. The first step in this process is to create a connection to
the SMTP server, which you name as a string in the constructor. If the SMTP
server that you provide doesn’t exist, the application will fail at this point,
saying that the host actively refused the connection.

2. Type s.sendmail(‘SenderAddress’, [‘RecipientAddress’], msg.as_string()) and click
Run Cell.

For this step to work, you must replace SenderAddress and RecipientAddress
with real addresses. Don’t include the human-readable form this time — the
server requires only an address. If you don’t include a real address, you’ll
definitely see an error message when you click Run Cell. You might also see an
error if your email server is temporarily offline, there is a glitch in the network
connection, or any of a number of other odd things occur. If you’re sure that you
typed everything correctly, try sending the message a second time before you
panic. See the sidebar “Considering the SMTP server” for additional details.

FIGURE 17-8:
Python adds

some additional
information

required to make
your message

work.

CHAPTER 17 Sending an Email 335

This is the step that actually creates the envelope, packages the email mes-
sage, and sends it off to the recipient. Notice that you specify the sender and
recipient information separately from the message, which the SMTP server
doesn’t read.

Considering the message subtypes
The “Defining the message” section, earlier in this chapter, describes the major
email message types, such as application and text. However, if email had to rely
on just those types, transmitting coherent messages to anyone would be difficult.
The problem is that the type of information isn’t explicit enough. If you send
someone a text message, you need to know what sort of text it is before you can
process it, and guessing just isn’t a good idea. A text message could be formatted
as plain text, or it might actually be an HTML page. You wouldn’t know from just
seeing the type, so messages require a subtype. The type is text and the subtype
is html when you send an HTML page to someone. The type and subtype are
separated by a forward slash, so you’d see text/html if you looked at the
message.

Theoretically, the number of subtypes is unlimited as long as the platform has a
handler defined for that subtype. However, the reality is that everyone needs to
agree on the subtypes or there won’t be a handler (unless you’re talking about a
custom application for which the two parties have agreed to a custom subtype in
advance). With this in mind, you can find a listing of standard types and sub-
types at http://www.freeformatter.com/mime-types-list.html. The nice
thing about the table on this site is that it provides you with a common file
extension associated with the subtype and a reference to obtain additional infor-
mation about it.

Creating the Email Message
So far, you’ve seen how both the envelope and the message work. Now it’s time to
put them together and see how they actually work. The following sections show
how to create two messages. The first message is a plain-text message and the
second message uses HTML formatting. Both messages should work fine with
most email readers — nothing fancy is involved.

Working with a text message
Text messages represent the most efficient and least resource-intensive method
of sending communication. However, text messages also convey the least amount
of information. Yes, you can use emoticons to help get the point across, but the

http://www.freeformatter.com/mime-types-list.html

336 PART 4 Performing Advanced Tasks

lack of formatting can become a problem in some situations. The following steps
describe how to create a simple text message using Python.

1. Type the following code into the window — pressing Enter after each line:

from email.mime.text import MIMEText
import smtplib
msg = MIMEText("Hello There!")
msg['Subject'] = 'A Test Message'
msg['From']='SenderAddress'
msg['To'] = 'RecipientAddress'
s = smtplib.SMTP('localhost')
s.sendmail('SenderAddress',
 ['RecipientAddress'],
 msg.as_string())

print("Message Sent!")

This example is a combination of everything you’ve seen so far in the chapter.
However, this is the first time you’ve seen everything put together. Notice
that you create the message first, and then the envelope (just as you would in
real life).

The example will display an error if you don’t replace SenderAddress and
RecipientAddress with real addresses. These entries are meant only as
placeholders. As with the example in the previous section, you may also
encounter errors when other situations occur, so always try to send the
message at least twice if you see an error the first time. See the sidebar
“Considering the SMTP server” for additional details.

2. Click Run Cell.

The application tells you that it has sent the message to the recipient.

CONSIDERING THE SMTP SERVER
If you tried the example in this chapter without modifying it, you’re probably scratching
your head right now trying to figure out what went wrong. It’s unlikely that your system
has an SMTP server connected to localhost. The reason for the examples to use
 localhost is to provide a placeholder that you replace later with the information for your
 particular setup.

CHAPTER 17 Sending an Email 337

Working with an HTML message
An HTML message is basically a text message with special formatting. The
 following steps help you create an HTML email to send off.

1. Type the following code into the window — pressing Enter after each line:

from email.mime.text import MIMEText
import smtplib
msg = MIMEText(
 "<h1>A Heading</h1><p>Hello There!</p>","html")
msg['Subject'] = 'A Test HTML Message'
msg['From']='SenderAddress'
msg['To'] = 'RecipientAddress'
s = smtplib.SMTP('localhost')
s.sendmail('SenderAddress',
 ['RecipientAddress'],
 msg.as_string())

print("Message Sent!")

In order to see the example actually work, you need an SMTP server as well as a real-
world email account. Of course, you could install all the software required to create
such an environment on your own system, and some developers who work extensively
with email applications do just that. Most platforms come with an email package that
you can install, or you can use a freely available substitute such as Sendmail, an open
source product available for download at https://www.sendmail.com/sm/open_
source/download/. The easiest way to see the example work is to use the same SMTP
server that your email application uses. When you set up your email application, you
either asked the email application to detect the SMTP server or you supplied the SMTP
server on your own. The configuration settings for your email application should con-
tain the required information. The exact location of this information varies widely by
email application, so you need to look at the documentation for your particular product.

No matter what sort of SMTP server you eventually find, you need to have an account
on that server in most cases to use the functionality it provides. Replace the information
in the examples with the information for your SMTP server, such as smtp.myisp.com,
along with your email address for both sender and receiver. Otherwise, the example
won’t work.

https://www.sendmail.com/sm/open_source/download/
https://www.sendmail.com/sm/open_source/download/

338 PART 4 Performing Advanced Tasks

The example follows the same flow as the text message example in the
previous section. However, notice that the message now contains HTML tags.
You create an HTML body, not an entire page. This message will have an
H1 header and a paragraph.

The most important part of this example is the text that comes after the
message. The "html" argument changes the subtype from text/plain to
text/html, so the recipient knows to treat the message as HTML content. If
you don’t make this change, the recipient won’t see the HTML output.

2. Click Run Cell.

The application tells you that it has sent the message to the recipient.

Seeing the Email Output
At this point, you have between one and three application-generated messages
(depending on how you’ve gone through the chapter) waiting in your Inbox. To see
the messages you created in earlier sections, your email application must receive
the messages from the server — just as it would with any email. Figure 17-9 shows
an example of the HTML version of the message when viewed in Output. (Your
message will likely look different depending on your platform and email
application.)

FIGURE 17-9:
The HTML output
contains a header

and a paragraph
as expected.

CHAPTER 17 Sending an Email 339

If your email application offers the capability to look at the message source, you
find that the message actually does contain the information you saw earlier in the
chapter. Nothing is changed or different about it because after it leaves the appli-
cation, the message isn’t changed in any way during its trip.

The point of creating your own application to send and receive email isn’t
 convenience — using an off-the-shelf application serves that purpose much bet-
ter. The point is flexibility. As you can see from this short chapter on the subject,
you control every aspect of the message when you create your own application.
Python hides much of the detail from view, so what you really need to worry about
are the essentials of creating and transmitting the message using the correct
arguments.

5The Part of Tens

IN THIS PART . . .

Continue your Python learning experience.

Earn a living using Python.

Use tools to make working with Python easier.

Enhance Python using libraries.

CHAPTER 18 Ten Amazing Programming Resources 343

Chapter 18
Ten Amazing
Programming Resources

This book is a great start to your Python programming experience, but you’ll
want additional resources at some point. This chapter provides you with ten
amazing programming resources that you can use to make your develop-

ment experience better. By using these resources, you save both time and energy
in creating your next dazzling Python application.

Of course, this chapter is only the beginning of your Python resource experience.
Reams of Python documentation are out there, along with mountains of Python
code. One might be able to write an entire book (or two) devoted solely to the
Python libraries. This chapter is designed to provide you with ideas of where to
look for additional information that’s targeted toward meeting your specific
needs. Don’t let this be the end of your search — consider this chapter the start of
your search instead.

 » Getting better information about
Python

 » Creating online applications using
Python

 » Extending the Python
programming environment

 » Improving both application and
developer performance

344 PART 5 The Part of Tens

Working with the Python
Documentation Online

An essential part of working with Python is knowing what is available in the base
language and how to extend it to perform other tasks. The Python documentation
at https://docs.python.org/3/ (created for the 3.6.x version of the product at
the time of this writing; it may be updated by the time you read this chapter) con-
tains a lot more than just the reference to the language that you receive as part of
a download. In fact, you see these topics discussed as part of the documentation:

 » New features in the current version of the language

 » Access to a full-fledged tutorial

 » Complete library reference

 » Complete language reference

 » How to install and configure Python

 » How to perform specific tasks in Python

 » Help with installing Python modules from other sources (as a means of
extending Python)

 » Help with distributing Python modules you create so that others can use them

 » How to extend Python using C/C++ and then embed the new features you
create

 » Complete reference for C/C++ developers who want to extend their applica-
tions using Python

 » Frequently Asked Questions (FAQ) pages

All this information is provided in a form that is easy to access and use. In addition
to the usual table-of-contents approach to finding information, you have access
to a number of indexes. For example, if you aren’t interested in anything but
locating a particular module, class, or method, you can use the Global Module
Index.

The https://docs.python.org/3/ web page is also the place where you report
problems with Python (the specific URL is https://docs.python.org/3/bugs.
html). It’s important to work through problems you’re having with the product,
but as with any other language, Python does have bugs in it. Locating and destroy-
ing the bugs will only make Python a better language.

https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/bugs.html
https://docs.python.org/3/bugs.html

CHAPTER 18 Ten Amazing Programming Resources 345

You do have some flexibility in using the online documentation. Two drop-down
list boxes appear in the upper-left corner for the documentation page. The first
lets you choose your preferred language (as long as it’s English, French, or Japa-
nese, as of this writing). The second provides access to documentation for earlier
versions of Python, including version 2.7.

Using the LearnPython.org Tutorial
Many tutorials are available for Python and many of them do a great job, but
they’re all lacking a special feature that you find when using the LearnPython.org
tutorial at http://www.learnpython.org/: interactivity. Instead of just reading
about a Python feature, you read it and then try it yourself using the interactive
feature of the site.

You may have already worked through all the material in the simple tutorials in
this book. However, you likely haven’t worked through the advanced tutorials at
LearnPython.org yet. These tutorials present the following topics:

 » Generators: Specialized functions that return iterators.

 » List comprehensions: A method to generate new lists based on existing lists.

 » Multiple function arguments: An extension of the methods described in the
“Using methods with variable argument lists” in Chapter 15.

 » Regular expressions: Wildcard setups used to match patterns of characters,
such as telephone numbers.

 » Exception handling: An extension of the methods described in Chapter 10.

 » Sets: Demonstrates a special kind of list that never contains duplicate entries.

 » Serialization: Shows how to use a data storage methodology called JavaScript
Object Notation (JSON).

 » Partial functions: A technique for creating specialized versions of simple
functions that derive from more complex functions. For example, if you have
a multiply() function that requires two arguments, a partial function named
double() might require only one argument that it always multiplies by 2.

 » Code introspection: Provides the ability to examine classes, functions, and
keywords to determine their purpose and capabilities.

 » Decorator: A method for making simple modifications to callable objects.

http://www.learnpython.org/

346 PART 5 The Part of Tens

Performing Web Programming
by Using Python

This book discusses the ins and outs of basic programming, so it relies on desktop
applications because of their simplicity. However, many developers specialize in
creating online applications of various sorts using Python. The Web Programming
in Python site at https://wiki.python.org/moin/WebProgramming helps you
make the move from the desktop to online application development. It doesn’t
just cover one sort of online application — it covers almost all of them (an entire
book free for the asking). The tutorials are divided into these three major (and
many minor) areas:

 » Server

• Developing server-side frameworks for applications

• Creating a Common Gateway Interface (CGI) script

• Providing server applications

• Developing Content Management Systems (CMS)

• Designing data access methods through web services solutions

 » Client

• Interacting with browsers and browser-based technologies

• Creating browser-based clients

• Accessing data through various methodologies, including web services

 » Related

• Creating common solutions for Python-based online computing

• Interacting with DataBase Management Systems (DBMSs)

• Designing application templates

• Building Intranet solutions

Getting Additional Libraries
The Pythonware site (http://www.pythonware.com/) doesn’t look all that inter-
esting until you start clicking the links. It provides you with access to a number of
third-party libraries that help you perform additional tasks using Python.

https://wiki.python.org/moin/WebProgramming
http://www.pythonware.com/

CHAPTER 18 Ten Amazing Programming Resources 347

Although all the links provide you with useful resources, the “Downloads
(downloads.effbot.org)” link is the one you should look at first. This download
site provides you with access to

 » aggdraw: A library that helps you create anti-aliased drawings.

 » celementtree: An add-on to the elementtree library that makes working with
XML data more efficient and faster.

 » console: An interface for Windows that makes it possible to create better
console applications.

 » effbot: A collection of useful add-ons and utilities, including the EffNews RSS
news reader.

 » elementsoap: A library that helps you create Simple Object Access Protocol
(SOAP) connections to Web services providers.

 » elementtidy: An add-on to the elementtree library that helps you create nicer-
looking and more functional XML tree displays than the standard ones in Python.

 » elementtree: A library that helps you interact with XML data more efficiently
than standard Python allows.

 » exemaker: A utility that creates an executable program from your Python
script so that you can execute the script just as you would any other applica-
tion on your machine.

 » ftpparse: A library for working with FTP sites.

 » grabscreen: A library for performing screen captures.

 » imaging: Provides the source distribution to the Python Imaging Library (PIL)
that lets you add image-processing capabilities to the Python interpreter.
Having the source lets you customize PIL to meet specific needs.

 » pil: Binary installers for PIL, which make obtaining a good installation for your
system easier. (There are other PIL-based libraries as well, such as pilfont — a
library for adding enhanced font functionality to a PIL-based application.)

 » pythondoc: A utility for creating documentation from the comments in your
Python code that works much like JavaDoc.

 » squeeze: A utility for converting your Python application contained in multiple
files into a one- or two-file distribution that will execute as normal with the
Python interpreter.

 » tkinter3000: A widget-building library for Python that includes a number of
subproducts. Widgets are essentially bits of code that create controls, such as
buttons, to use in GUI applications. There are a number of add-ons for the
tkinter3000 library, such as wckgraph, which helps you add graphing support
to an application.

348 PART 5 The Part of Tens

Creating Applications Faster
by Using an IDE

An Interactive Development Environment (IDE) helps you create applications in a
specific language. The Integrated DeveLopment Environment (IDLE) editor that
comes with Python works well for experimentation, but you may find it limited
after a while. For example, IDLE doesn’t provide the advanced debugging func-
tionality that many developers favor. In addition, you may find that you want to
create graphical applications, which is difficult using IDLE.

The limitations in IDLE are the reason this edition of this book uses Jupyter
 Notebook instead of IDLE, which the first edition used. However, you may find
that Jupyter doesn’t meet your needs, either. You can talk to 50 developers and get
little consensus as to the best tool for any job, especially when discussing IDEs.
Every developer has a favorite product and isn’t easily swayed to try another.
Developers invest many hours learning a particular IDE and extending it to meet
specific requirements (when the IDE allows such tampering).

An inability (at times) to change IDEs later is why it’s important to try a number
of different IDEs before you settle on one. (The most common reason for not
wanting to change an IDE after you select one is that the project types are incom-
patible, which would mean having to re-create your projects every time you
change editors, but there are many other reasons that you can find listed online.)
The PythonEditors wiki at https://wiki.python.org/moin/PythonEditors
 provides an extensive list of IDEs that you can try. The table provides you with
particulars about each editor so that you can eliminate some of the choices
immediately.

Checking Your Syntax with Greater Ease
The IDLE editor provides some level of syntax highlighting, which is helpful in
finding errors. For example, if you mistype a keyword, it doesn’t change color to
the color used for keywords on your system. Seeing that it hasn’t changed makes
it possible for you to know to correct the error immediately, instead of having to
run the application and find out later that something has gone wrong (sometimes
after hours of debugging).

Jupyter Notebook provides syntax highlighting as well, along with some advanced
error checking not found in a standard IDE. However, for some developers, it, too,
can come up short because you actually have to run the cell in order to see the
error information. Some developers prefer interactive syntax checking, in which

https://wiki.python.org/moin/PythonEditors

CHAPTER 18 Ten Amazing Programming Resources 349

the IDE flags the error immediately, even before the developer leaves the errant
line of code.

The python.vim utility (http://www.vim.org/scripts/script.php?script_
id=790) provides enhanced syntax highlighting that makes finding errors in your
Python script even easier. This utility runs as a script, which makes it fast and
efficient to use on any platform. In addition, you can tweak the source code as
needed to meet particular needs.

Using XML to Your Advantage
The eXtensible Markup Language (XML) is used for data storage of all types in
most applications of any substance today. You probably have a number of XML
files on your system and don’t even know it because XML data appears under a
number of file extensions. For example, many .config files, used to hold applica-
tion settings, rely on XML. In short, it’s not a matter of if you’ll encounter XML
when writing Python applications, but when.

XML has a number of advantages over other means of storing data. For example,
it’s platform independent. You can use XML on any system, and the same file is
readable on any other system as long as that system knows the file format. The
platform independence of XML is why it appears with so many other technologies,
such as Web Services. In addition, XML is relatively easy to learn and because it’s
text, you can usually fix problems with it without too many problems.

It’s important to learn about XML itself, and you can do so using an easy tutorial
such as the one found on the W3Schools site at http://www.w3schools.com/xml/
default.ASP. Some developers rush ahead and later find that they can’t under-
stand the Python-specific materials that assume they already know how to write
basic XML files. The W3Schools site is nice because it breaks up the learning pro-
cess into chapters so that you can work with XML a little at a time, as follows:

 » Taking a basic XML tutorial

 » Validating your XML files

 » Using XML with JavaScript (which may not seem important, but JavaScript is
prominent in many online application scenarios)

 » Gaining an overview of XML-related technologies

 » Using advanced XML techniques

 » Working with XML examples that make seeing XML in action easier

http://www.vim.org/scripts/script.php?script_id=790
http://www.vim.org/scripts/script.php?script_id=790
http://www.w3schools.com/xml/default.ASP
http://www.w3schools.com/xml/default.ASP

350 PART 5 The Part of Tens

After you get the fundamentals down, you need a resource that shows how to use
XML with Python. One of the better places to find this information is the Tutorials on
XML Processing with Python site at https://wiki.python.org/moin/Tutorials
%20on%20XML%20processing%20with%20Python. Between these two resources, you
can quickly build a knowledge of XML that will have you building Python applica-
tions that use XML in no time.

Getting Past the Common
Python Newbie Errors

Absolutely everyone makes coding mistakes — even that snobby fellow down the
hall who has been programming for the last 30 years (he started in kindergarten).
No one likes to make mistakes and some people don’t like to own up to them, but

USING W3Schools TO YOUR ADVANTAGE
One of the most used online resources for learning online computing technologies is
W3Schools. You can find the main page at http://www.w3schools.com/. This single
resource can help you discover every web technology needed to build any sort of
modern application you can imagine. The topics include:

• HTML

• CSS

• JavaScript

• SQL

• JQuery

• PHP

• XML

• ASP.NET

However, you should realize that this is just a starting point for Python developers. Use
the W3Schools material to get a good handle on the underlying technology, and then
rely on Python-specific resources to build your skills. Most Python developers need a
combination of learning materials to build the skills required to make a real difference
in application coding.

https://wiki.python.org/moin/Tutorials%20on%20XML%20processing%20with%20Python
https://wiki.python.org/moin/Tutorials%20on%20XML%20processing%20with%20Python
http://www.w3schools.com/

CHAPTER 18 Ten Amazing Programming Resources 351

everyone does make them. So you shouldn’t feel too bad when you make a mis-
take. Simply fix it up and get on with your life.

Of course, there is a difference between making a mistake and making an avoid-
able, common mistake. Yes, even the professionals sometimes make the avoidable
common mistakes, but it’s far less likely because they have seen the mistake in
the past and have trained themselves to avoid it. You can gain an advantage over
your competition by avoiding the newbie mistakes that everyone has to learn
about sometime. To avoid these mistakes, check out this two-part series:

 » Python: Common Newbie Mistakes, Part 1 (http://blog.amir.rachum.com/
blog/2013/07/06/python-common-newbie-mistakes-part-1/)

 » Python: Common Newbie Mistakes, Part 2 (http://blog.amir.rachum.com/
blog/2013/07/09/python-common-newbie-mistakes-part-2/)

Many other resources are available for people who are just starting with Python,
but these particular resources are succinct and easy to understand. You can read
them in a relatively short time, make some notes about them for later use, and
avoid those embarrassing errors that everyone tends to remember.

Understanding Unicode
Although this book tries to sidestep the thorny topic of Unicode, you’ll eventually
encounter it when you start writing serious applications. Unfortunately, Unicode
is one of those topics that had a committee deciding what Unicode would look like,
so we ended up with more than one poorly explained definition of Unicode and a
multitude of standards to define it. In short, there is no one definition for
Unicode.

You’ll encounter a wealth of Unicode standards when you start working with more
advanced Python applications, especially when you start working with multiple
human languages (each of which seems to favor its own flavor of Unicode). Keep-
ing in mind the need to discover just what Unicode is, here are some resources you
should check out:

 » The Absolute Minimum Every Software Developer Absolutely, Positively Must
Know About Unicode and Character Sets (No Excuses!) (http://www.joelon
software.com/articles/Unicode.html)

 » The Updated Guide to Unicode on Python (http://lucumr.pocoo.org/2013/
7/2/the-updated-guide-to-unicode/)

http://blog.amir.rachum.com/blog/2013/07/06/python-common-newbie-mistakes-part-1/
http://blog.amir.rachum.com/blog/2013/07/06/python-common-newbie-mistakes-part-1/
http://blog.amir.rachum.com/blog/2013/07/09/python-common-newbie-mistakes-part-2/
http://blog.amir.rachum.com/blog/2013/07/09/python-common-newbie-mistakes-part-2/
http://www.joelonsoftware.com/articles/Unicode.html
http://www.joelonsoftware.com/articles/Unicode.html
http://lucumr.pocoo.org/2013/7/2/the-updated-guide-to-unicode/
http://lucumr.pocoo.org/2013/7/2/the-updated-guide-to-unicode/

352 PART 5 The Part of Tens

 » Python Encodings and Unicode (http://eric.themoritzfamily.com/
python-encodings-and-unicode.html)

 » Unicode Tutorials and Overviews (http://www.unicode.org/standard/
tutorial-info.html)

 » Explain it like I’m five: Python and Unicode? (http://www.reddit.com/r/
Python/comments/1g62eh/explain_it_like_im_five_python_and_unicode/)

 » Unicode Pain (http://nedbatchelder.com/text/unipain.html)

Making Your Python Application Fast
Nothing turns off a user faster than an application that performs poorly. When an
application performs poorly, you can count on users not using it at all. In fact,
poor performance is a significant source of application failure in enterprise envi-
ronments. An organization can spend a ton of money to build an impressive appli-
cation that does everything, but no one uses it because it runs too slowly or has
other serious performance problems.

Performance is actually a mix of reliability, security, and speed. In fact, you can read
about the performance triangle on my blog at http://blog.johnmuellerbooks.
com/2012/04/16/considering-the-performance-triangle/. Many developers
focus on just the speed part of performance but end up not achieving their goal. It’s
important to look at every aspect of your application’s use of resources and to
ensure that you use the best coding techniques.

Numerous resources are available to help you understand performance as it
applies to Python applications. However, one of the best resources out there is “A
guide to analyzing Python performance,” at http://zqpythonic.qiniucdn.com/
data/20170602154836/index.html. The author takes the time to explain why
something is a performance bottleneck, rather than simply tell you that it is. After
you read this article, make sure to check out the PythonSpeed Performance Tips at
https://wiki.python.org/moin/PythonSpeed/PerformanceTips as well.

http://eric.themoritzfamily.com/python-encodings-and-unicode.html
http://eric.themoritzfamily.com/python-encodings-and-unicode.html
http://www.unicode.org/standard/tutorial-info.html
http://www.unicode.org/standard/tutorial-info.html
http://www.reddit.com/r/Python/comments/1g62eh/explain_it_like_im_five_python_and_unicode/
http://www.reddit.com/r/Python/comments/1g62eh/explain_it_like_im_five_python_and_unicode/
http://nedbatchelder.com/text/unipain.html
http://blog.johnmuellerbooks.com/2012/04/16/considering-the-performance-triangle/
http://blog.johnmuellerbooks.com/2012/04/16/considering-the-performance-triangle/
http://zqpythonic.qiniucdn.com/data/20170602154836/index.html
http://zqpythonic.qiniucdn.com/data/20170602154836/index.html
https://wiki.python.org/moin/PythonSpeed/PerformanceTips

CHAPTER 19 Ten Ways to Make a Living with Python 353

Chapter 19
Ten Ways to Make a
Living with Python

You can literally write any application you want using any language you
desire given enough time, patience, and effort. However, some undertak-
ings would be so convoluted and time consuming as to make the effort a

study in frustration. In short, most (possibly all) things are possible, but not
everything is worth the effort. Using the right tool for the job is always a plus in a
world that views time as something in short supply and not to be squandered.

Python excels at certain kinds of tasks, which means that it also lends itself to
certain types of programming. The kind of programming you can perform deter-
mines the job you get and the way in which you make your living. For example,
Python probably isn’t a very good choice for writing device drivers, as C/C++ are, so
you probably won’t find yourself working for a hardware company. Likewise,
Python can work with databases, but not at the same depth that comes natively to
other languages such as Structured Query Language (SQL), so you won’t find your-
self working on a huge corporate database project. However, you may find yourself
using Python in academic settings because Python does make a great learning lan-
guage. (See my blog post on the topic at http://blog.johnmuellerbooks.
com/2014/07/14/python-as-a-learning-tool/.)

The following sections describe some of the occupations that do use Python regu-
larly so that you know what sorts of things you might do with your new-found
knowledge. Of course, a single source can’t list every kind of job. Consider this an
overview of some of the more common uses for Python.

 » Using Python for QA

 » Creating opportunities within an
organization

 » Demonstrating programming
techniques

 » Performing specialized tasks

http://blog.johnmuellerbooks.com/2014/07/14/python-as-a-learning-tool/
http://blog.johnmuellerbooks.com/2014/07/14/python-as-a-learning-tool/

354 PART 5 The Part of Tens

Working in QA
A lot of organizations have separate Quality Assurance (QA) departments that
check applications to ensure that they work as advertised. Many different test
script languages are on the market, but Python makes an excellent language in
this regard because it’s so incredibly flexible. In addition, you can use this single
language in multiple environments — both on the client and on the server. The
broad reach of Python means that you can learn a single language and use it for
testing anywhere you need to test something, and in any environment.

In this scenario, the developer usually knows another language, such as C++, and
uses Python to test the applications written in C++. However, the QA person
doesn’t need to know another language in all cases. In some situations, blind test-
ing may be used to confirm that an application behaves in a practical manner or
as a means for checking the functionality of an external service provider. You need
to check with the organization you want to work with as to the qualifications
required for a job from a language perspective.

WHY YOU NEED TO KNOW MULTIPLE
PROGRAMMING LANGUAGES
Most organizations see knowledge of multiple programming languages as a big plus
(some see it as a requirement). Of course, when you’re an employer, it’s nice to get the
best deal you can when hiring a new employee. Knowing a broader range of languages
means that you can work in more positions and offer greater value to an organization.
Rewriting applications in another language is time consuming, error prone, and expen-
sive, so most companies look for people who can support an application in the existing
language, rather than rebuild it from scratch.

From your perspective, knowing more languages means that you’ll get more interesting
jobs and will be less likely to get bored doing the same old thing every day. In addition,
knowing multiple languages tends to reduce frustration. Most large applications today
rely on components written in a number of computer languages. To understand the
application and how it functions better, you need to know every language used to
 construct it.

Knowing multiple languages also makes it possible to learn new languages faster. After
a while, you start to see patterns in how computer languages are put together, so you
spend less time with the basics and can move right on to advanced topics. The faster
you can learn new technologies, the greater your opportunities to work in exciting areas
of computer science. In short, knowing more languages opens a lot of doors.

CHAPTER 19 Ten Ways to Make a Living with Python 355

Becoming the IT Staff for a
Smaller Organization

A smaller organization may have only one or two IT staff, which means that you
have to perform a broad range of tasks quickly and efficiently. With Python, you
can write utilities and in-house applications quite swiftly. Even though Python
might not answer the needs of a large organization because it’s interpreted (and
potentially open to theft or fiddling by unskilled employees), using it in a smaller
organization makes sense because you have greater access control and need to
make changes fast. In addition, the ability to use Python in a significant number
of environments reduces the need to use anything but Python to meet your needs.

Some developers are unaware that Python is available in some non-obvious prod-
ucts. For example, even though you can’t use Python scripting with Internet
Information Server (IIS) right out of the box, you can add Python scripting sup-
port to this product by using the steps found in the Microsoft Knowledge Base
article at http://support.microsoft.com/kb/276494. If you aren’t sure whether
a particular application can use Python for scripting, make sure that you check it
out online.

You can also get Python support in some products that you might think couldn’t
possibly support it. For example, you can use Python with Visual Studio (see
https://www.visualstudio.com/vs/python/) to make use of Microsoft tech-
nologies with this language. The site at https://code.visualstudio.com/docs/
languages/python provides some additional details about Python support.

Performing Specialty Scripting
for Applications

A number of products can use Python for scripting purposes. For example, Maya
(http://www.autodesk.com/products/autodesk-maya/overview) relies on
Python for scripting purposes. By knowing which high-end products support
Python, you can find a job working with that application in any business that uses
it. Here are some examples of products that rely on Python for scripting needs:

 » 3ds Max

 » Abaqus

 » Blender

http://support.microsoft.com/kb/276494
https://www.visualstudio.com/vs/python/
https://code.visualstudio.com/docs/languages/python
https://code.visualstudio.com/docs/languages/python
http://www.autodesk.com/products/autodesk-maya/overview

356 PART 5 The Part of Tens

 » Cinema 4D

 » GIMP

 » Google App Engine

 » Houdini

 » Inkscape

 » Lightwave

 » Modo

 » MotionBuilder

 » Nuke

 » Paint Shop Pro

 » Scribus

 » Softimage

This is just the tip of the iceberg. You can also use Python with the GNU debugger
to create more understandable output of complex structures, such as those found
in C++ containers. Some video games also rely on Python as a scripting language.
In short, you could build a career around creating application scripts using Python
as the programming language.

Administering a Network
More than a few administrators use Python to perform tasks such as monitoring
network health or creating utilities that automate tasks. Administrators are often
short of time, so anything they can do to automate tasks is a plus. In fact, some
network management software, such as Trigger (http://trigger.readthedocs.
org/en/latest/), is actually written in Python. A lot of these tools are open source
and free to download, so you can try them on your network. Also, some interesting
articles discuss using Python for network administration, such as “Intro to Python
& Automation for Network Engineers” at http://packetpushers.net/show-
176-intro-to-python-automation-for-network-engineers/. The point is that
knowing how to use Python on your network can ultimately decrease your work-
load and help you perform your tasks more easily. If you want to see some scripts
that are written with network management in mind, check out 25 projects tagged
“Network Management” at http://freecode.com/tags/network-management.

http://trigger.readthedocs.org/en/latest/
http://trigger.readthedocs.org/en/latest/
http://packetpushers.net/show-176-intro-to-python-automation-for-network-engineers/
http://packetpushers.net/show-176-intro-to-python-automation-for-network-engineers/
http://freecode.com/tags/network-management

CHAPTER 19 Ten Ways to Make a Living with Python 357

Teaching Programming Skills
Many teachers are looking for a faster, more consistent method of teaching com-
puter technology. Raspberry Pi (http://www.raspberrypi.org/) is a single-
board computer that makes obtaining the required equipment a lot less expensive
for schools. The smallish device plugs into a television or computer monitor to
provide full computing capabilities with an incredibly simple setup. Interestingly
enough, Python plays a big role into making Raspberry Pi into a teaching platform
for programming skills (http://www.piprogramming.org/main/?page_id=372).

In reality, teachers often use Python to extend native Raspberry Pi capabilities so
that it can perform all sorts of interesting tasks (http://www.raspberrypi.org/
tag/python/). The project entitled, Boris, the Twitter Dino-Bot (http://www.
raspberrypi.org/boris-the-twitter-dino-bot/), is especially interesting.
The point is that if you have a teaching goal in mind, combining Raspberry Pi with
Python is a fantastic idea.

Helping People Decide on Location
A Geographic Information System (GIS) provides a means of viewing geographic
information with business needs in mind. For example, you could use GIS to
determine the best place to put a new business or to determine the optimum
routes for shipping goods. However, GIS is used for more than simply deciding on
locations — it also provides a means for communicating location information
better than maps, reports, and other graphics, and a method of presenting physi-
cal locations to others. Also interesting is the fact that many GIS products use
Python as their language of choice. In fact, a wealth of Python-specific informa-
tion related to GIS is currently available, such as

 » The GIS and Python Software Laboratory (https://sgillies.net/2009/
09/18/reintroducing-the-gis-and-python-software-laboratory.
html and http://gispython.org/)

 » Python and GIS Resources (http://www.gislounge.com/
python-and-gis-resources/)

 » GIS Programming and Automation (https://www.e-education.psu.edu/
geog485/node/17)

http://www.raspberrypi.org/
http://www.piprogramming.org/main/?page_id=372
http://www.raspberrypi.org/tag/python/
http://www.raspberrypi.org/tag/python/
http://www.raspberrypi.org/boris-the-twitter-dino-bot/
http://www.raspberrypi.org/boris-the-twitter-dino-bot/
https://sgillies.net/2009/09/18/reintroducing-the-gis-and-python-software-laboratory.html
https://sgillies.net/2009/09/18/reintroducing-the-gis-and-python-software-laboratory.html
https://sgillies.net/2009/09/18/reintroducing-the-gis-and-python-software-laboratory.html
http://gispython.org/
http://www.gislounge.com/python-and-gis-resources/
http://www.gislounge.com/python-and-gis-resources/
https://www.e-education.psu.edu/geog485/node/17
https://www.e-education.psu.edu/geog485/node/17

358 PART 5 The Part of Tens

Many GIS-specific products, such as ArcGIS (http://www.esri.com/software/
arcgis), rely on Python to automate tasks. Entire communities develop around
these software offerings, such as Python for ArcGIS (http://resources.arcgis.
com/en/communities/python/). The point is that you can use your new program-
ming skills in areas other than computing to earn an income.

Performing Data Mining
Everyone is collecting data about everyone and everything else. Trying to sift
through the mountains of data collected is an impossible task without a lot of
fine-tuned automation. The flexible nature of Python, combined with its terse
language that makes changes extremely fast, makes it a favorite with people who
perform data mining on a daily basis. In fact, you can find an online book on the
topic, A Programmer’s Guide to Data Mining, at http://guidetodatamining.com/.
Python makes data mining tasks a lot easier. The purpose of data mining is to
recognize trends, which means looking for patterns of various sorts. The use of
artificial intelligence with Python makes such pattern recognition possible. A
paper on the topic, “Data Mining: Discovering and Visualizing Patterns with
Python” (http://refcardz.dzone.com/refcardz/data-mining-discovering-
and), helps you understand how such analysis is possible. You can use Python to
create just the right tool to locate a pattern that could net sales missed by your
competitor.

Of course, data mining is used for more than generating sales. For example, peo-
ple use data mining to perform tasks such as locating new planets around stars or
other types of analysis that increase our knowledge of the universe. Python fig-
ures into this sort of data mining as well. You can likely find books and other
resources dedicated to any kind of data mining that you want to perform, with
many of them mentioning Python as the language of choice.

Interacting with Embedded Systems
An embedded system exists for nearly every purpose on the planet. For example,
if you own a programmable thermostat for your house, you’re interacting with an
embedded system. Raspberry Pi (mentioned earlier in the chapter) is an example
of a more complex embedded system. Many embedded systems rely on Python as
their programming language. In fact, a special form of Python, Embedded Python
(https://wiki.python.org/moin/EmbeddedPython), is sometimes used for these
devices. You can even find a YouTube presentation on using Python to build an
embedded system at http://www.youtube.com/watch?v=WZoeqnsY9AY.

http://www.esri.com/software/arcgis
http://www.esri.com/software/arcgis
http://resources.arcgis.com/en/communities/python/
http://resources.arcgis.com/en/communities/python/
http://guidetodatamining.com/
http://refcardz.dzone.com/refcardz/data-mining-discovering-and
http://refcardz.dzone.com/refcardz/data-mining-discovering-and
https://wiki.python.org/moin/EmbeddedPython
http://www.youtube.com/watch?v=WZoeqnsY9AY

CHAPTER 19 Ten Ways to Make a Living with Python 359

Interestingly enough, you might already be interacting with a Python-driven
embedded system. For example, Python is the language of choice for many car
security systems (http://www.pythoncarsecurity.com/). The remote start fea-
ture that you might have relies on Python to get the job done. Your home automa-
tion and security system (http://www.linuxjournal.com/article/8513) might
also rely on Python.

Python is so popular for embedded systems because it doesn’t require compila-
tion. An embedded-system vendor can create an update for any embedded system
and simply upload the Python file. The interpreter automatically uses this file
without having to upload any new executables or jump through any of the types of
hoops that other languages can require.

Carrying Out Scientific Tasks
Python seems to devote more time to scientific and numerical processing tasks
than many of the computer languages out there. The number of Python’s scientific
and numeric processing packages is staggering (https://wiki.python.org/
moin/NumericAndScientific). Scientists love Python because it’s small, easy to
learn, and yet quite precise in its treatment of data. You can produce results by
using just a few lines of code. Yes, you could produce the same result using another
language, but the other language might not include the prebuilt packages to per-
form the task, and it would most definitely require more lines of code even if it did.

The two sciences that have dedicated Python packages are space sciences and life
sciences. For example, there is actually a package for performing tasks related to
solar physics. You can also find a package for working in genomic biology. If
you’re in a scientific field, the chances are good that your Python knowledge will
significantly impact your ability to produce results quickly while your colleagues
are still trying to figure out how to analyze the data.

Performing Real-Time Analysis of Data
Making decisions requires timely, reliable, and accurate data. Often, this data
must come from a wide variety of sources, which then require a certain amount of
analysis before becoming useful. A number of the people who report using Python
do so in a management capacity. They use Python to probe those disparate sources
of information, perform the required analysis, and then present the big picture to
the manager who has asked for the information. Given that this task occurs regu-
larly, trying to do it manually every time would be time consuming. In fact, it

http://www.pythoncarsecurity.com/
http://www.linuxjournal.com/article/8513
https://wiki.python.org/moin/NumericAndScientific
https://wiki.python.org/moin/NumericAndScientific

360 PART 5 The Part of Tens

would simply be a waste of time. By the time the manager performed the required
work, the need to make a decision might already have passed. Python makes it
possible to perform tasks quickly enough for a decision to have maximum impact.

Previous sections have pointed out Python’s data-mining, number-crunching,
and graphics capabilities. A manager can combine all these qualities while using a
language that isn’t nearly as complex to learn as C++. In addition, any changes are
easy to make, and the manager doesn’t need to worry about learning program-
ming skills such as compiling the application. A few changes to a line of code in an
interpreted package usually serve to complete the task.

As with other sorts of occupational leads in this chapter, thinking outside the box
is important when getting a job. A lot of people need real-time analysis. Launch-
ing a rocket into space, controlling product flow, ensuring that packages get
delivered on time, and all sorts of other occupations rely on timely, reliable, and
accurate data. You might be able to create your own new job simply by employing
Python to perform real-time data analysis.

CHAPTER 20 Ten Tools That Enhance Your Python Experience 361

Chapter 20
Ten Tools That Enhance
Your Python Experience

Python, like most other programming languages, has strong third-party
support in the form of various tools. A tool is any utility that enhances the
natural capabilities of Python when building an application. So, a debugger

is considered a tool because it’s a utility, but a library isn’t. Libraries are instead
used to create better applications. (You can see some of them listed in Chapter 21.)

Even making the distinction between a tool and something that isn’t a tool, such
as a library, doesn’t reduce the list by much. Python enjoys access to a wealth of
general-purpose and special tools of all sorts. In fact, the site at https://wiki.
python.org/moin/DevelopmentTools breaks these tools down into the following
13 categories:

 » AutomatedRefactoringTools

 » BugTracking

 » ConfigurationAndBuildTools

 » DistributionUtilities

 » DocumentationTools

 » IntegratedDevelopmentEnvironments

 » Debugging, testing, and deploying
applications

 » Documenting and versioning your
application

 » Writing your application code

 » Working within an interactive
environment

https://wiki.python.org/moin/DevelopmentTools
https://wiki.python.org/moin/DevelopmentTools

362 PART 5 The Part of Tens

 » PythonDebuggers

 » PythonEditors

 » PythonShells

 » SkeletonBuilderTools

 » TestSoftware

 » UsefulModules

 » VersionControl

Interestingly enough, the lists on the Python DevelopmentTools site might not
even be complete. You can find Python tools listed in quite a few places online.

Given that a single chapter can’t possibly cover all the tools out there, this chapter
discusses a few of the more interesting tools — those that merit a little extra
attention on your part. After you whet your appetite with this chapter, seeing what
other sorts of tools you can find online is a good idea. You may find that the tool
you thought you might have to create is already available, and in several different
forms.

Tracking Bugs with Roundup Issue Tracker
You can use a number of bug-tracking sites with Python, such as the following:
Github (https://github.com/); Google Code (https://code.google.com/);
 BitBucket (https://bitbucket.org/); and Launchpad (https://launchpad.
net/). However, these public sites are generally not as convenient to use as your
own specific, localized bug-tracking software. You can use a number of tracking
systems on your local drive, but Roundup Issue Tracker (http://roundup.
sourceforge.net/) is one of the better offerings. Roundup should work on any
platform that supports Python, and it offers these basic features without any
extra work:

 » Bug tracking

 » TODO list management

If you’re willing to put a little more work into the installation, you can get addi-
tional features, and these additional features are what make the product special.
However, to get them, you may need to install other products, such as a DataBase
Management System (DBMS). The product instructions tell you what to install
and which third-party products are compatible. After you make the additional
installations, you get these upgraded features:

https://github.com/
https://code.google.com/
https://bitbucket.org/
https://launchpad.net/
https://launchpad.net/
http://roundup.sourceforge.net/
http://roundup.sourceforge.net/

CHAPTER 20 Ten Tools That Enhance Your Python Experience 363

 » Customer help-desk support with the following features:

• Wizard for the phone answerers

• Network links

• System and development issue trackers

 » Issue management for Internet Engineering Task Force (IETF) working groups

 » Sales lead tracking

 » Conference paper submission

 » Double-blind referee management

 » Blogging (extremely basic right now, but will become a stronger offering later)

Creating a Virtual Environment
by Using VirtualEnv

Reasons abound to create virtual environments, but the main reason for to do so
with Python is to provide a safe and known testing environment. By using the
same testing environment each time, you help ensure that the application has a
stable environment until you have completed enough of it to test in a production-
like environment. VirtualEnv (https://pypi.python.org/pypi/virtualenv)
provides the means to create a virtual Python environment that you can use for
the early testing process or to diagnose issues that could occur because of the
environment. It’s important to remember that there are at least three standard
levels of testing that you need to perform:

 » Bug: Checking for errors in your application

 » Performance: Validating that your application meets speed, reliability, and
security requirements

 » Usability: Verifying that your application meets user needs and will react to
user input in the way the user expects

Because of the manner in which most Python applications are used (see Chapter 19
for some ideas), you generally don’t need to run them in a virtual environment
after the application has gone to a production site. Most Python applications
require access to the outside world, and the isolation of a virtual environment
would prevent that access.

https://pypi.python.org/pypi/virtualenv

364 PART 5 The Part of Tens

Installing Your Application
by Using PyInstaller

Users don’t want to spend a lot of time installing your application, no matter how
much it might help them in the end. Even if you can get the user to attempt an
installation, less skilled users are likely to fail. In short, you need a surefire method
of getting an application from your system to the user’s system. Installers, such
as PyInstaller (http://www.pyinstaller.org/), do just that. They make a nice
package out of your application that the user can easily install.

Fortunately, PyInstaller works on all the platforms that Python supports, so you
need just the one tool to meet every installation need you have. In addition, you
can get platform-specific support when needed. For example, when working on a
Windows platform, you can create code-signed executables. Mac developers will
appreciate that PyInstaller provides support for bundles. In many cases, avoiding
the platform-specific features is best unless you really do need them. When you
use a platform-specific feature, the installation will succeed only on the target
platform.

NEVER TEST ON A PRODUCTION SERVER
A mistake that some developers make is to test their unreleased application on the pro-
duction server where the user can easily get to it. Of the many reasons not to test your
application on a production server, data loss has to be the most important. If you allow
users to gain access to an unreleased version of your application that contains bugs
that might corrupt the database or other data sources, the data could be lost or
 damaged permanently.

You also need to realize that you get only one chance to make a first impression. Many
software projects fail because users don’t use the end result. The application is com-
plete, but no one uses it because of the perception that the application is flawed in
some way. Users have only one goal in mind: to complete their tasks and then go home.
When users see that an application is costing them time, they tend not to use it.

Unreleased applications can also have security holes that nefarious individuals will use
to gain access to your network. It doesn’t matter how well your security software works
if you leave the door open for anyone to come in. After they have come in, getting rid of
them is nearly impossible, and even if you do get rid of them, the damage to your data
is already done. Recovery from security breaches is notoriously difficult — and some-
times impossible. In short, never test on your production server because the costs of
doing so are simply too high.

http://www.pyinstaller.org/

CHAPTER 20 Ten Tools That Enhance Your Python Experience 365

A number of the installer tools that you find online are platform specific. For
example, when you look at an installer that reportedly creates executables, you
need to be careful that the executables aren’t platform specific (or at least match
the platform you want to use). It’s important to get a product that will work
everywhere it’s needed so that you don’t create an installation package that the
user can’t use. Having a language that works everywhere doesn’t help when the
installation package actually hinders installation.

Building Developer Documentation
by Using pdoc

Two kinds of documentation are associated with applications: user and developer.
User documentation shows how to use the application, while developer documen-
tation shows how the application works. A library requires only one sort of docu-
mentation, developer, while a desktop application may require only user
documentation. A service might actually require both kinds of documentation
depending on who uses it and how the service is put together. The majority of your
documentation is likely to affect developers, and pdoc (https://github.com/
BurntSushi/pdoc) is a simple solution for creating it.

The pdoc utility relies on the documentation that you place in your code in the
form of docstrings and comments. The output is in the form of a text file or an
HTML document. You can also have pdoc run in a way that provides output
through a web server so that people can see the documentation directly in a
browser. This is actually a replacement for epydoc, which is no longer supported
by its originator.

AVOID THE ORPHANED PRODUCT
Some Python tools floating around the Internet are orphaned, which means that the devel-
oper is no longer actively supporting them. Developers still use the tool because they like
the features it supports or how it works. However, doing so is always risky because you
can’t be sure that the tool will work with the latest version of Python. The best way to
approach tools is to get tools that are fully supported by the vendor who created them.

If you absolutely must use an orphaned tool (such as when an orphaned tool is the only
one available to perform the task), make sure that the tool still has good community sup-
port. The vendor may not be around any longer, but at least the community will provide
a source of information when you need product support. Otherwise, you’ll waste a lot of
time trying to use an unsupported product that you might never get to work properly.

https://github.com/BurntSushi/pdoc
https://github.com/BurntSushi/pdoc

366 PART 5 The Part of Tens

Developing Application Code
by Using Komodo Edit

Several chapters in this book discuss the issue of Interactive Development Envi-
ronments (IDEs), but none make a specific recommendation (except for the use of
Jupyter Notebook throughout the book). The IDE you choose depends partly on
your needs as a developer, your skill level, and the kinds of applications you want
to create. Some IDEs are better than others when it comes to certain kinds of
application development. One of the better general-purpose IDEs for novice
developers is Komodo Edit (http://komodoide.com/komodo-edit/). You can
obtain this IDE for free, and it includes a wealth of features that will make your
coding experience much better than what you’ll get from IDLE. Here are some of
those features:

 » Support for multiple programming languages

 » Automatic completion of keywords

 » Indentation checking

WHAT IS A DOCSTRING?
Chapter 5 and this chapter both talk about document strings (docstrings). A docstring is
a special kind of comment that appears within a triple quote, like this:

"""This is a docstring."""

You associate a docstring with an object, such as packages, functions, classes, and
methods. Any code object you can create in Python can have a docstring. The purpose
of a docstring is to document the object. Consequently, you want to use descriptive
 sentences.

The easiest way to see a docstring is to follow the object’s name with the special __
doc__() method. For example, typing print(MyClass.__doc__()) would display the
 docstring for MyClass. You can also access a docstring by using help, such as
help(MyClass). Good docstrings tell what the object does, rather than how it does it.

Third-party utilities can also make use of docstrings. Given the right utility, you can write
the documentation for an entire library without actually having to write anything. The
utility uses the docstrings within your library to create the documentation. Consequently,
even though docstrings and comments are used for different purposes, they’re equally
important in your Python code.

http://komodoide.com/komodo-edit/

CHAPTER 20 Ten Tools That Enhance Your Python Experience 367

 » Project support so that applications are partially coded before you even begin

 » Superior support

However, the feature that sets Komodo Edit apart from other IDEs is that it has an
upgrade path. When you start to find that your needs are no longer met by Komodo
Edit, you can upgrade to Komodo IDE (http://komodoide.com/), which includes
a lot of professional-level support features, such as code profiling (a feature that
checks application speed) and a database explorer (to make working with data-
bases easier).

Debugging Your Application
by Using pydbgr

A high-end IDE, such as Komodo IDE, comes with a complete debugger. Even
Komodo Edit comes with a simple debugger. However, if you’re using something
smaller, less expensive, and less capable than a high-end IDE, you might not have
a debugger at all. A debugger helps you locate errors in your application and fix
them. The better your debugger, the less effort required to locate and fix the error.
When your editor doesn’t include a debugger, you need an external debugger such
as pydbgr (https://code.google.com/p/pydbgr/).

A reasonably good debugger includes a number of standard features, such as code
colorization (the use of color to indicate things like keywords). However, it also
includes a number of nonstandard features that set it apart. Here are some of the
standard and nonstandard features that make pydbgr a good choice when your
editor doesn’t come with a debugger:

 » Smarteval: The eval command helps you see what will happen when you
execute a line of code, before you actually execute it in the application. It helps
you perform “what if” analysis to see what is going wrong with the application.

 » Out-of-process debugging: Normally you have to debug applications that
reside on the same machine. In fact, the debugger is part of the application’s
process, which means that the debugger can actually interfere with the
debugging process. Using out-of-process debugging means that the debugger
doesn’t affect the application and you don’t even have to run the application
on the same machine as the debugger.

 » Thorough byte-code inspection: Viewing how the code you write is turned
into byte code (the code that the Python interpreter actually understands) can
sometimes help you solve tough problems.

http://komodoide.com/
https://code.google.com/p/pydbgr/

368 PART 5 The Part of Tens

 » Event filtering and tracing: As your application runs in the debugger, it
generates events that help the debugger understand what is going on. For
example, moving to the next line of code generates an event, returning from
a function call generates another event, and so on. This feature makes it
possible to control just how the debugger traces through an application and
which events it reacts to.

Entering an Interactive Environment
by Using IPython

The Python shell works fine for many interactive tasks. However, if you have used
this product, you may have already noted that the default shell has certain defi-
ciencies. Of course, the biggest deficiency is that the Python shell is a pure text
environment in which you must type commands to perform any given task.
A more advanced shell, such as IPython (http://ipython.org/), can make the
interactive environment friendlier by providing GUI features so that you don’t
have to remember the syntax for odd commands.

IPython is actually more than just a simple shell. It provides an environment in
which you can interact with Python in new ways, such as by displaying graphics
that show the result of formulas you create using Python. In addition, IPython is
designed as a kind of front end that can accommodate other languages. The
IPython application actually sends commands to the real shell in the background,
so you can use shells from other languages such as Julia and Haskell. (Don’t worry
if you’ve never heard of these languages.)

One of the more exciting features of IPython is the ability to work in parallel com-
puting environments. Normally a shell is single threaded, which means that you
can’t perform any sort of parallel computing. In fact, you can’t even create a mul-
tithreaded environment. This feature alone makes IPython worthy of a trial.

Testing Python Applications
by Using PyUnit

At some point, you need to test your applications to ensure that they work as
instructed. You can test them by entering in one command at a time and verifying
the result, or you can automate the process. Obviously, the automated approach is

http://ipython.org/

CHAPTER 20 Ten Tools That Enhance Your Python Experience 369

better because you really do want to get home for dinner someday and manual
testing is really, really slow (especially when you make mistakes, which are guar-
anteed to happen). Products such as PyUnit (https://wiki.python.org/moin/
PyUnit) make unit testing (the testing of individual features) significantly
easier.

The nice part of this product is that you actually create Python code to perform the
testing. Your script is simply another, specialized, application that tests the main
application for problems.

You may be thinking that the scripts, rather than your professionally written
application, could be bug ridden. The testing script is designed to be extremely
simple, which will keep scripting errors small and quite noticeable. Of course,
errors can (and sometimes do) happen, so yes, when you can’t find a problem with
your application, you do need to check the script.

Tidying Your Code by Using Isort
It may seem like an incredibly small thing, but code can get messy, especially if
you don’t place all your import statements at the top of the file in alphabetical
order. In some situations, it becomes difficult, if not impossible, to figure out
what’s going on with your code when it isn’t kept neat. The Isort utility (http://
timothycrosley.github.io/isort/) performs the seemingly small task of sort-
ing your import statements and ensuring that they all appear at the top of the
source code file. This small step can have a significant effect on your ability to
understand and modify the source code.

Just knowing which modules a particular module needs can be a help in locating
potential problems. For example, if you somehow get an older version of a needed
module on your system, knowing which modules the application needs can make
the process of finding that module easier.

In addition, knowing which modules an application needs is important when
it comes time to distribute your application to users. Knowing that the user has
the correct modules available helps ensure that the application will run as
anticipated.

https://wiki.python.org/moin/PyUnit
https://wiki.python.org/moin/PyUnit
http://timothycrosley.github.io/isort/
http://timothycrosley.github.io/isort/

370 PART 5 The Part of Tens

Providing Version Control
by Using Mercurial

The applications you created while working through this book aren’t very com-
plex. In fact, after you finish this book and move on to more advanced training
applications, you’re unlikely to need version control. However, after you start
working in an organizational development environment in which you create real
applications that users need to have available at all times, version control becomes
essential. Version control is simply the act of keeping track of the changes that
occur in an application between application releases to the production environ-
ment. When you say you’re using MyApp 1.2, you’re referring to version 1.2 of the
MyApp application. Versioning lets everyone know which application release is
being used when bug fixes and other kinds of support take place.

Numerous version control products are available for Python. One of the more
interesting offerings is Mercurial (https://www.mercurial-scm.org/). You can
get a version of Mercurial for almost any platform that Python will run on, so you
don’t have to worry about changing products when you change platforms. (If your
platform doesn’t offer a binary, executable, release, you can always build one
from the source code provided on the download site.)

Unlike a lot of the other offerings out there, Mercurial is free. Even if you find that
you need a more advanced product later, you can gain useful experience by work-
ing with Mercurial on a project or two.

The act of storing each version of an application in a separate place so that changes
can be undone or redone as needed is called source code management or SCM. For
many people, source code management seems like a hard task. Because the
 Mercurial environment is quite forgiving, you can learn about SCM in a friendly
environment. Being able to interact with any version of the source code for a
 particular application is essential when you need to go back and fix problems
 created by a new release.

The best part about Mercurial is that it provides a great online tutorial at https://
www.mercurial-scm.org/wiki/Tutorial. Following along on your own machine
is the best way to learn about SCM, but even just reading the material is helpful.
Of course, the first tutorial is all about getting a good installation of Mercurial.
The tutorials then lead you through the process of creating a repository (a place
where application versions are stored) and using the repository as you create your
application code. By the time you finish the tutorials, you should have a great idea
of how source control should work and why versioning is an important part of
application development.

https://www.mercurial-scm.org/
https://www.mercurial-scm.org/wiki/Tutorial
https://www.mercurial-scm.org/wiki/Tutorial

CHAPTER 21 Ten (Plus) Libraries You Need to Know About 371

Chapter 21
Ten (Plus) Libraries You
Need to Know About

Python provides you with considerable power when it comes to creating aver-
age applications. However, most applications aren’t average and require
some sort of special processing to make them work. That’s where libraries

come into play. A good library will extend Python functionality so that it supports
the special programming needs that you have. For example, you might need to
plot statistics or interact with a scientific device. These sorts of tasks require the
use of one or more libraries.

One of the best places to find a library listing online is the UsefulModules site at
https://wiki.python.org/moin/UsefulModules. Of course, you have many
other places to look for libraries as well. For example, the article entitled “7 Python
Libraries you should know about” (http://www.lleess.com/2013/03/7-python-
libraries-you-should-know-about.html) provides you with a relatively
 complete description of the seven libraries its title refers to. If you’re working on
a specific platform, such as Windows, you can find platform-specific sites, such
as Unofficial Windows Binaries for Python Extension Packages (http://www.lfd.
uci.edu/~gohlke/pythonlibs/). The point is that you can find lists of libraries
everywhere.

The purpose of this chapter isn’t to add to your already overflowing list of potential
library candidates. Instead, it provides you with a list of ten libraries that work on

 » Securing your data by using
cryptology

 » Managing and displaying data

 » Working with graphics

 » Finding the information you need

 » Allowing access to Java code

https://wiki.python.org/moin/UsefulModules
http://www.lleess.com/2013/03/7-python-libraries-you-should-know-about.html
http://www.lleess.com/2013/03/7-python-libraries-you-should-know-about.html
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/

372 PART 5 The Part of Tens

every platform and provide basic services that just about everyone will need. Think
of this chapter as a source for a core group of libraries to use for your next coding
adventure.

Developing a Secure Environment
by Using PyCrypto

Data security is an essential part of any programming effort. The reason that
applications are so valued is that they make it easy to manipulate and use data of
all sorts. However, the application must protect the data or the efforts to work
with it are lost. It’s the data that is ultimately the valuable part of a business —
the application is simply a tool. Part of protecting the data is to ensure that no one
can steal it or use it in a manner that the originator didn’t intend, which is where
cryptographic libraries such as PyCrypto (https://www.dlitz.net/software/
pycrypto/) come into play.

The main purpose of this library is to turn your data into something that others
can’t read while it sits in permanent storage. The purposeful modification of data
in this manner is called encryption. However, when you read the data into memory,
a decryption routine takes the mangled data and turns it back into its original form
so that the application can manage it. At the center of all this is the key, which is
used to encrypt and decrypt the data. Ensuring that the key remains safe is part of
your application coding as well. You can read the data because you have the key;
no others can because they lack the key.

Interacting with Databases
by Using SQLAlchemy

A database is essentially an organized manner of storing repetitive or structured
data on disk. For example, customer records (individual entries in the database)
are repetitive because each customer has the same sort of information require-
ments, such as name, address, and telephone number. The precise organization of
the data determines the sort of database you’re using. Some database products
specialize in text organization, others in tabular information, and still others in
random bits of data (such as readings taken from a scientific instrument).
Databases can use a tree-like structure or a flat-file configuration to store data.
You’ll hear all sorts of odd terms when you start looking into DataBase Manage-
ment System (DBMS) technology — most of which mean something only to a
DataBase Administrator (DBA) and won’t matter to you.

https://www.dlitz.net/software/pycrypto/
https://www.dlitz.net/software/pycrypto/

CHAPTER 21 Ten (Plus) Libraries You Need to Know About 373

The most common type of database is called a Relational DataBase Management
System (RDBMS), which uses tables that are organized into records and fields (just
like a table you might draw on a sheet of paper). Each field is part of a column of the
same kind of information, such as the customer’s name. Tables are related to each
other in various ways, so creating complex relationships is possible. For example,
each customer may have one or more entries in a purchase order table, and the
customer table and the purchase order table are therefore related to each other.

An RDBMS relies on a special language called the Structured Query Language
(SQL) to access the individual records inside. Of course, you need some means of
interacting with both the RDBMS and SQL, which is where SQLAlchemy (http://
www.sqlalchemy.org/) comes into play. This product reduces the amount of work
needed to ask the database to perform tasks such as returning a specific customer
record, creating a new customer record, updating an existing customer record,
and deleting an old customer record.

Seeing the World by Using Google Maps
Geocoding (the finding of geographic coordinates, such as longitude and latitude
from geographic data, such as address) has lots of uses in the world today. People
use the information to do everything from finding a good restaurant to locating a
lost hiker in the mountains. Getting from one place to another often revolves
around geocoding today as well. Google Maps (https://pypi.python.org/pypi/
googlemaps/) lets you add directional data to your applications.

In addition to getting from one point to another or finding a lost soul in the desert,
Google Maps can also help in Geographic Information System (GIS) applications.
The “Helping People Decide on Location” section of Chapter 19 describes this
particular technology in more detail, but essentially, GIS is all about deciding on a
location for something or determining why one location works better than another
location for a particular task. In short, Google Maps presents your application
with a look at the outside world that it can use to help your user make decisions.

Adding a Graphical User Interface
by Using TkInter

Users respond to the Graphical User Interface (GUI) because it’s friendlier and
requires less thought than using a command-line interface. Many products out
there can give your Python application a GUI. However, the most commonly used

http://www.sqlalchemy.org/
http://www.sqlalchemy.org/
https://pypi.python.org/pypi/googlemaps/
https://pypi.python.org/pypi/googlemaps/

374 PART 5 The Part of Tens

product is TkInter (https://wiki.python.org/moin/TkInter). Developers like it
so much because TkInter keeps things simple. It’s actually an interface for the
Tool Command Language (Tcl)/Toolkit (Tk) found at http://www.tcl.tk/.
A number of languages use Tcl/Tk as the basis for creating a GUI.

You might not relish the idea of adding a GUI to your application. Doing so tends to
be time consuming and doesn’t make the application any more functional (it also
slows the application down in many cases). The point is that users like GUIs, and if
you want your application to see strong use, you need to meet user requirements.

Providing a Nice Tabular Data Presentation
by Using PrettyTable

Displaying tabular data in a manner the user can understand is important. From
the examples you’ve seen throughout the book, you know that Python stores this
type of data in a form that works best for programming needs. However, users
need something that is organized in a manner that humans understand and that
is visually appealing. The PrettyTable library (https://pypi.python.org/pypi/
PrettyTable) makes it easy to add an appealing tabular presentation to your
command-line application.

Enhancing Your Application with
Sound by Using PyAudio

Sound is a useful way to convey certain types of information to the user. Of course,
you have to be careful in using sound because special-needs users might not be
able to hear it, and for those who can, using too much sound can interfere with
normal business operations. However, sometimes audio is an important means of
communicating supplementary information to users who can interact with it (or
of simply adding a bit of pizzazz to make your application more interesting).

One of the better platform-independent libraries to make sound work with your
Python application is PyAudio (http://people.csail.mit.edu/hubert/
pyaudio/). This library makes it possible to record and play back sounds as needed
(such as a user recording an audio note of tasks to perform later and then playing
back the list of items as needed).

https://wiki.python.org/moin/TkInter
http://www.tcl.tk/
https://pypi.python.org/pypi/PrettyTable
https://pypi.python.org/pypi/PrettyTable
http://people.csail.mit.edu/hubert/pyaudio/
http://people.csail.mit.edu/hubert/pyaudio/

CHAPTER 21 Ten (Plus) Libraries You Need to Know About 375

Working with sound on a computer always involves trade-offs. For example, a
platform-independent library can’t take advantage of special features that a
 particular platform might possess. In addition, it might not support all the file
formats that a particular platform uses. The reason to use a platform- independent
library is to ensure that your application provides basic sound support on all
systems that it might interact with.

Manipulating Images by Using PyQtGraph
Humans are visually oriented. If you show someone a table of information and then
show the same information as a graph, the graph is always the winner when it
comes to conveying information. Graphs help people see trends and understand
why the data has taken the course that it has. However, getting those pixels that

CLASSIFYING PYTHON SOUND
TECHNOLOGIES
Realize that sound comes in many forms in computers. The basic multimedia services
provided by Python (see the documentation at https://docs.python.org/3/
library/mm.html) provide essential playback functionality. You can also write certain
types of audio files, but the selection of file formats is limited. In addition, some
 packages, such as winsound (https://docs.python.org/3/library/winsound.
html), are platform dependent, so you can’t use them in an application designed to
work everywhere. The standard Python offerings are designed to provide basic
 multimedia support for playing back system sounds.

The middle ground, augmented audio functionality designed to improve application
usability, is covered by libraries such as PyAudio. You can see a list of these libraries at
https://wiki.python.org/moin/Audio. However, these libraries usually focus on
business needs, such as recording notes and playing them back later. Hi-fidelity output
isn’t part of the plan for these libraries.

Gamers need special audio support to ensure that they can hear special effects, such
as a monster walking behind them. These needs are addressed by libraries such as
PyGame (http://www.pygame.org/news.html). When using these libraries, you
need higher-end equipment and have to plan to spend considerable time working on
just the audio features of your application. You can see a list of these libraries at
https://wiki.python.org/moin/PythonGameLibraries.

https://docs.python.org/3/library/mm.html
https://docs.python.org/3/library/mm.html
https://docs.python.org/3/library/winsound.html
https://docs.python.org/3/library/winsound.html
https://wiki.python.org/moin/Audio
http://www.pygame.org/news.html
https://wiki.python.org/moin/PythonGameLibraries

376 PART 5 The Part of Tens

represent the tabular information onscreen is difficult, which is why you need a
library such as PyQtGraph (http://www.pyqtgraph.org/) to make things simpler.

Even though the library is designed around engineering, mathematical, and sci-
entific requirements, you have no reason to avoid using it for other purposes.
PyQtGraph supports both 2D and 3D displays, and you can use it to generate new
graphics based on numeric input. The output is completely interactive, so a user
can select image areas for enhancement or other sorts of manipulation. In addi-
tion, the library comes with a wealth of useful widgets (controls, such as buttons,
that you can display onscreen) to make the coding process even easier.

Unlike many of the offerings in this chapter, PyQtGraph isn’t a free-standing
library, which means that you must have other products installed to use it. This
isn’t unexpected because PyQtGraph is doing quite a lot of work. You need these
items installed on your system to use it:

 » Python version 2.7 or above

 » PyQt version 4.8 or above (https://wiki.python.org/moin/PyQt) or
PySide (https://wiki.python.org/moin/PySide)

 » numpy (http://www.numpy.org/)

 » scipy (http://www.scipy.org/)

 » PyOpenGL (http://pyopengl.sourceforge.net/)

Locating Your Information by Using IRLib
Finding your information can be difficult when the information grows to a certain
size. Consider your hard drive as a large, free-form, tree-based database that
lacks a useful index. Any time such a structure becomes large enough, data sim-
ply gets lost. (Just try to find those pictures you took last summer and you’ll get
the idea.) As a result, having some type of search capability built into your appli-
cation is important so that users can find that lost file or other information.

A number of search libraries are available for Python. The problem with most of
them is that they are hard to install or don’t provide consistent platform support.
In fact, some of them work on only one or two platforms. However, IRLib
(https://github.com/gr33ndata/irlib) is written in pure Python, which
ensures that it works on every platform. If you find that IRLib doesn’t meet your
needs, make sure the product you do get will provide the required search func-
tionality on all the platforms you select and that the installation requirements are
within reason.

http://www.pyqtgraph.org/
https://wiki.python.org/moin/PyQt
https://wiki.python.org/moin/PySide
http://www.numpy.org/
http://www.scipy.org/
http://pyopengl.sourceforge.net/
https://github.com/gr33ndata/irlib

CHAPTER 21 Ten (Plus) Libraries You Need to Know About 377

IRLab works by creating a search index of whatever information you want to work
with. You can then save this index to disk for later use. The search mechanism
works through the use of metrics — you locate one or more entries that provide a
best fit for the search criteria.

Creating an Interoperable Java
Environment by Using JPype

Python does provide access to a huge array of libraries, and you’re really unlikely
to use them all. However, you might be in a situation in which you find a Java
library that is a perfect fit but can’t use it from your Python application unless
you’re willing to jump through a whole bunch of hoops. The JPype library
(http://jpype.sourceforge.net/) makes it possible to access most (but not
all) of the Java libraries out there directly from Python. The library works by
creating a bridge between the two languages at the byte-code level. Conse-
quently, you don’t have to do anything weird to get your Python application to
work with Java.

CONVERTING YOUR PYTHON
APPLICATION TO JAVA
Many different ways exist to achieve interoperability between two languages. Creating a
bridge between them, as JPype does, is one way. Another alternative is to convert the
code created for one language into code for the other language. This is the approach
used by Jython (https://wiki.python.org/jython/). This utility converts your
Python code into Java code so that you can make full use of Java functionality in your
application while maintaining the features that you like about Python.

You’ll encounter trade-offs in language interoperability no matter which solution you
use. In the case of JPype, you won’t have access to some Java libraries. In addition, there
is a speed penalty in using this approach because the JPype bridge is constantly
 converting calls and data. The problem with Jython is that you lose the ability to modify
your code after conversion. Any changes that you make will create an incompatibility
between the original Python code and its Java counterpart. In short, no perfect solutions
exist for the problem of getting the best features of two languages into one application.

http://jpype.sourceforge.net/
https://wiki.python.org/jython/

378 PART 5 The Part of Tens

Accessing Local Network Resources
by Using Twisted Matrix

Depending on your network setup, you may need access to files and other resources
that you can’t reach using the platform’s native capabilities. In this case, you need
a library that makes such access possible, such as Twisted Matrix (https://
twistedmatrix.com/trac/). The basic idea behind this library is to provide you
with the calls needed to establish a connection, no matter what sort of protocol is
in use.

The feature that makes this library so useful is its event-driven nature. This
means that your application need not get hung up while waiting for the network
to respond. In addition, the use of an event-driven setup makes asynchronous
communication (in which a request is sent by one routine and then handled by a
completely separate routine) easy to implement.

Accessing Internet Resources
by Using Libraries

Although products such as Twisted Matrix can handle online communication,
getting a dedicated HTTP protocol library is often a better option when working
with the Internet because a dedicated library is both faster and more feature
 complete. When you specifically need HTTP or HTTPS support, using a library
such as httplib2 (https://github.com/jcgregorio/httplib2) is a good idea.
This library is written in pure Python and makes handling HTTP-specific needs,
such as setting a Keep-Alive value, relatively easy. (A Keep-Alive is a value that
determines how long a port stays open waiting for a response so that the applica-
tion doesn’t have to continuously re-create the connection, wasting resources and
time as a result.)

You can use httplib2 for any Internet-specific methodology — it provides full
support for both the GET and POST request methods. This library also includes
routines for standard Internet compression methods, such as deflate and gzip. It
also supports a level of automation. For example, httplib2 adds ETags back into
PUT requests when resources are already cached.

https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://github.com/jcgregorio/httplib2

Index 379

Symbols
\ (backslash), 229, 307
: (colon), 136, 152
{} (curly brackets), 239
= (equals) sign, 125, 212
/ (forward slash), 307
[] (square brackets), 231

A
Abaqus, 355
absolute path, 307
The Absolute Minimum Every Software Developer

Absolutely, Positively Must Know about Unicode
and Character Sets (No Excuses!), 351

Accelerate, 58
accented (special character category), 229
accessor, 297
AddIt() command, 129
Advanced IBM Unix (AIX) (platform), 22
align formatting specification, 239
Amazon, Echo, 7
American Standard Code for Information Interchange

(ASCII), 226, 227
Anaconda

changing appearance of Jupyter Notebook, 90–94
installation of on Linux, 59
installation of on MacOS, 60–61
installation of on Windows, 61–64
interacting with the kernel, 94–95
manipulating cells, 86–90
as name of Integrated Development Environment (IDE),

38, 55
obtaining help, 95–97
obtaining your copy of, 58–64
packages specifically designed for, 200, 201
reasons for using, 57
using magic functions, 97–99
version 4.4.0, 58
viewing running processes of, 99–100

working with, 83–100
working with checkpoints, 85–86

Anaconda Cloud, 104
Anaconda Prompt, 210, 219, 220
Android (platform), 22
append() function, 250
Apple, Siri, 7
application (app)

adding comments, 77–80
adding documentation cells, 74–75
closing Jupyter Notebook, 80–81
converting your Python application to Java, 377
creating, 71–75
creating of faster by using IDE, 348
CRUD acronym to describe what it does, 37
defined, 10, 11–13
documentation associated with, 365
finding useful Python applications, 17–18
installing of using PyInstaller, 364–365
making your Python application fast, 352
never test on production server, 364
organizing information in, 244–246
other cell content, 75
performing specialty scripting for, 355–356
questions to ask yourself as you work with, 13
role of, 9, 11
testing of by using PyUnit, 368–369
testing of class in, 301–302
understanding cells, 71–73
using class in, 298–299
world’s worst, 13
writing your first one, 55–81

ARCGIS, 358
arg values, 41
*args variable argument, 293
arguments. See also specific arguments

creating functions with variable number of, 130–131
defined, 40, 127
giving function arguments a default value, 129–130

Index

380 Beginning Programming with Python For Dummies

arguments (continued)

positional arguments, 129
sending arguments by keyword, 129
sending required arguments, 128
understanding of, 127–128
variable arguments, 293
working with exception arguments, 177–178

arithmetic operators, 116, 118
ArithmeticError, 183
ASCII (American Standard Code for Information

Interchange), 226, 227
assignment operator (=), 105, 136
assignment operators, 116, 120–121
Attachments (Cell Toolbar menu option), 94
attributes. See also specific attributes

automatically generated by Python, 216
considering built-in class attributes, 285–286
defined, 198

audio, enhancing your application with by using
PyAudio, 374

automatic checkpoint save, 85

B
b command, 220
-B option, 40
-b option, 40
backslash (\), 229, 307
Base 2, 106
Base 8, 106
Base 10, 106
Base 16 (hex), 106
base classes (exception category), 172
BaseException, 183
-bb option, 40
Beginning Programming with Python For Dummies

(BPPD) folder, 65–66
BeOS (platform), 22
Berkeley Software Distribution (BSD)/FreeBSD

(platform), 22
bin() command, 106
BitBucket, 362
bitwise operators, 116, 120
Blender, 355
body (email), 325
bool type, 110
Boole, George (definer of Boolean algebra), 110

BOOLEAN link, 220
Boolean values, 110
Boris, the Twitter Dino-Bot, 357
BPPD (Beginning Programming with Python For

Dummies) folder, 65–66
break clause, 154
break statement, 153–156
BSD (Berkeley Software Distribution)/FreeBSD

(platform), 22
bugs, 56, 166, 218, 344, 362–363
bug-tracking sites, 362
built-in packages, 200
__builtins__ attribute, 216

C
C# (programming language), 15, 16, 18
__cached__ attribute, 216
capitalize() function, 233
car security systems, Python as language of choice for,

359
case sensitivity, 40, 170
catching exceptions, 165–166, 171–188
-c cmd option, 40
C/C++ (programming language), 14, 15, 18, 198, 353
cell toolbar features, 93
Cell Toolbar option, 91
Cell Type Selection icon, 91
cells, 71–75, 86–90
center(width, fillchar=" ") function, 233, 234
CentOS, 28
Change Kernel (kernel-specific command), 95
character sets, 227
Cheat sheet, 3
check (pip command), 215
checkpoints, 85–86
child class, 299–301
Cinema 4D, 356
Clark, Arthur C. (science writer), 55
class, defined, 282
__class__ attribute, 285–286
class definition, 284–285
class method, 287
class variable, 282–283, 290–292
classes

child class, 299–301
as code grouping, 198

Index 381

considering built-in class attributes, 285–286
considering parts of, 284–302
creating, 296–298
creating and using, 281–302
creating class definition, 284–285
creating class methods, 287
creating instance methods, 288
extending classes to make new classes, 299–302
overloading operators, 294–296
parent class, 299
production-grade class, 299
saving class to disk, 297–298
testing of in application, 301–302
understanding of as packaging method, 282–283
using methods with variable argument lists, 293–294
using of in application, 298–299
working with constructors, 288–290
working with methods, 286–287
working with variables, 290–293

clause, 141. See also specific clauses
clear() function, 250
Clear option, 90
client code, source code for, 198
cloud-based storage, 305
Clusters tab (main Notebook page), 99
code

creating better code, 56
developing of by using Komodo Edit, 366–367
downloading yours, 84–85
tidying of by using Isort, 369
use of term, 198
using comments to keep code from executing, 80
using comments to leave yourself reminders in, 79

code block, 138, 139
code cell type, 87
code groupings, 198–202
code packages, 124
code repository, 65–71
code reusability, 124–125
coding styles, 45
collections

defined, 261
deques as. See deques
dictionaries as. See dictionaries
queues as. See queues

stacks as. See stacks
tuples as. See tuples
understanding of, 262–263

colon (:), 136, 152
color codes, in IDLE, 36
,formatting specification, 240
command. See also specific commands

defined, 43
finding commands using Command Palette, 91–92
seeing result of, 44
telling computer what to do, 43
telling computer when you’re done, 44
typing of, 43–45

command line, 38–43, 51–53
Command Palette, 91–92
command shell IPython, 96
command-line shell, 31
command-line tool, 55–56
comments, 77–80
communication, application as form of, 9–11
companion files, 4
comparisons, 114–115
compile time error, 168
complex numbers, 109
computer

helping humans speak to, 12–13
telling it what to do, 43
telling it when you’re done, 44
understanding how computers make comparisons, 115
understanding how computers view lists, 245
understanding that they take things literally, 11
understanding why you want to talk to yours, 8
as using special language, 12

concrete exceptions (exception category), 172
conda clean command, 201
conda commands, 201–202
conda create command, 201
conda help command, 202, 210
conda info command, 202, 212, 214
conda install command, 202
conda list command, 202, 210, 211
conda packages, 200, 210–215
conda remove command, 202, 214
conda search command, 202, 210, 211, 213
conda update command, 202, 213, 214

382 Beginning Programming with Python For Dummies

conda utilities, 209
constant, 209
constructors, working with, 288–290
continue clause, 156, 158
continue statement, 156–157
control (special character category), 229
Copy Cells editing command, 88
copy() function, 250
Copy Selected Cells icon, 91
copyright() command, 46
count() function, 262
Counter object, 259–260
count(str, beg= 0, end=len(string)) function,

237
credits() command, 46
CRUD acronym, 37, 250, 305–306
curly brackets ({}), 239
current directory, 203, 208
custom exceptions, 191–192
custom packages, 200
Cut Cells editing command, 88
Cut Selected Cells icon, 90

D
-d option, 40
data

collecting all sorts of, 261–279
controlling how Python views data, 114–115
a.k.a. information, 113
performing real-time analysis of as occupation that

uses Python regularly, 359–360
storing of in files, 305–322
tabular data presentation by using PrettyTable, 374

data conversion, 133
data integrity, 306
data member, 283
“Data Mining: Discovering and Visualizing Patterns with

Python,” 358
data mining, performing of as occupation that uses

Python regularly, 358
data types

Boolean values, 110
complex numbers, 109
defined, 105
essential Python data types, 105–111
expressions, 131

floating-point values, 107, 108, 109
integers, 106–107, 108
results from other functions, 131
strings, 110–111
numeric types, 106–110
values, 131
variables, 131

DataBase Administrator (DBA), 372
DataBase Management System (DBMS), 362, 372
databases, interacting with by using SQLAlchemy,

372–373
datasets, downloading of, 64–71
dates, working with, 111–112
Debian-based Linux distributions, 30
debugger, 167, 361, 367
debugging, 56–57, 171, 367–368
decision making, 135–149
decryption, 372
default directories, 208
default Python setups, 24
default value, giving function arguments a default value,

129–130
Delete Cells editing command, 88
deques, 244, 263, 278–279
developer documentation, 365
development tool, 18
dictionaries

as collections, 262
creating and using, 267–269
replacing switch statement with, 270–272
as sequence supported by Python, 244
working with, 266–272

dir() command, 205
dir() function, 216, 248
direct help, 46, 50–51
directories

as arranged in hierarchies, 307
current directory as source of path information, 208
default directories as source of path information, 208
files as organized into, 306
interacting with current Python directory, 203

doc() function, 219
__doc__ attribute, 216
document strings (docstrings), 366
documentation, 344–345, 365
double quotes, use of, 227

Index 383

download (pip command), 215
drawing (special character category), 229

E
-E option, 40
Echo (Amazon), 7
Edit Metadata (Cell Toolbar menu option), 93
editing commands, provided by Notebook, 88
elif clause, 143
else clause, 141, 143, 158
else statement, 158–159
email

components of, 325
creating message for, 335–338
defining parts of envelope, 326–331
defining parts of letter, 331–335
seeing email output, 338–339
sending, 323–339
transmission method, 334–335
understanding what happens when you send, 324–335
viewing of as you do a letter, 325–326
working with HTML message, 337–338
working with text message, 335–336

Embedded Python, 358
embedded systems, interacting with as occupation that

uses Python regularly, 358–359
encryption, 372
endless loop, 160
endswith(suffix, beg=0, end=len(string))

function, 237
envelope, 325, 326
environment variables, 41–43, 207
equals (=) sign, 125, 212
error handling, 165
errors

catching exceptions, 165–166, 171–188
classifying when errors occur, 168
compile time error, 168
considering sources of, 167–171
custom exceptions, 191–192
dealing with, 165–194
distinguishing error types, 169–170
exceptions using finally clause, 192–194
getting past common Python newbie errors, 350–351
knowing why Python doesn’t understand you,

166–167

logical error, 170, 171
of omission, 169
principal categories of, 167
raising exceptions, 188–191
runtime error, 168–169
semantic error, 170–171
syntactical error, 170
that are of a specific type, 167
that occur at a specific time, 167

escape character, 229
escape code, 229
escape sequence, 229–230
example code, downloading of, 64–71
except clause

handling multiple exceptions with multiple except
clauses, 181–183

handling multiple exceptions with single except
clause, 180–181

use of without an exception, 175–177
Exception, 183
exception arguments, 177–180
exception handling, 165, 171–183, 185–188
exception hierarchy, 183
exceptions

catching of, 165–166, 171–188
creating and using custom exceptions, 191–192
handling more specific to less specific exceptions,

183–185
handling multiple exceptions with multiple except

clauses, 181–183
handling multiple exceptions with single except

clause, 180–181
handling single exception, 172–175
nested exception handling, 185–188
raising of, 166, 188–191
understanding built-in exceptions, 172
using except clause without an exception, 175–177
using finally clause, 192–194
working with exception arguments, 177–178

exit() command, 51, 52
expandtabs(tabsize=8) function, 233
Explain if like I’m five: Python and Unicode? 352
exponent, 108
extend() function, 250
eXtensible Markup Language (XML), 16, 308, 349–350
extension (on files), 306

384 Beginning Programming with Python For Dummies

F
False, 110
Fedora Core, 28
field, 373
__file__ attribute, 216
filename, 40
files

creating, 311–314
deleting, 321–322
extensions on, 306
reading file content, 314–317
storing data in, 305–322
updating file content, 317–321

Files tab (main Notebook page), 99
fill formatting specification, 239
finally clause, 192–194
find(str, beg=0, end=len(string)) function, 237
flags, 211
float() command, 111, 133
floating-point values, 107, 108, 109
floor division operator (//), 185
folder, files as organized into, 306
for loop, 130, 152, 153, 162
for statement, 152–159, 249–250
--force command-line switch, 215
format() function, 239
forward slash (/), 307
freeze (pip command), 215
from.import statement, 202, 205–207
function overloading, 283
functional coding style, 45
functions. See also specific functions

accessing of, 126–127
associated with CRUD, 250
as code grouping, 198
comparing function output, 132
creating and using, 123–132
defining of, 125–126
as helping applications control data, 114
list of commonly used ones for searching strings, 237
list of commonly used ones for slicing and dicing

strings, 233–235
returning information from, 131–132
sending information to, 127–131
understanding code reusability, 124–125
viewing of as code packages, 124

G
geocoding, 373
Geographic Information System (GIS), 357–358, 373
Get button, 221
getters, 297
GIMP, 356
The GIS and Python Software Laboratory, 357
GIS Programming and Automation, 357
Github, 362
global variables, 282, 290
GNU Compiler Collection (GCC) tools, 27
Google App Engine, 356
Google Code, 362
Google Maps, 373
graphical user interface (GUI), 16, 31, 373–374
graphs, 375–376
“A guide to analyzing Python performance,” 352

H
-h option, 40
handle, 166
header (email), 325
heading (obsolete) cell type, 87
headings, versus comments, 77
Hello() function, 125, 126–127
Hello2() function, 127–128
Hello3() function, 129
Hello4() function, 130
help, 46–51, 95–97
help (pip command), 215
help() command, 46, 47
help mode, 46–47, 49–50
Hewlett-Packard Unix (HP-UX) (platform), 22
hex() command, 106
home automation and security systems, Python as

language of choice for, 359
host (email address), 326, 327–328
host address, 327
hostname, 330
Houdini, 356
HP-UX (Hewlett-Packard Unix) (platform), 22
HTML (.html) download option, 84
HTML message, 337–338
HTTP protocol library, 378
httplib2, 378

Index 385

I
-i option, 40
IBM i (formerly Application System 400 or AS/400, iSeries,

and System i) (platform), 22
icons, explained, 3
IDE (Integrated Development Environment), 2, 38, 55,

56–58, 83
IDE (Interactive Development Environment), 348, 366
identity operators, 116, 122
IDLE (Integrated DeveLopment Environment), 24, 31, 32,

35, 36, 38, 56, 348
IDLE (Interactive DeveLopment Environment), 28
IEEE Spectrum, 15
IEEE-754 standard, 108
if statement, 136–141, 143, 146–148
if.elif statement, 143–145, 146, 266, 270
if.else statement, 141–148
IfElse.py, 172
IIS (Internet Information Server), 355
images, manipulating of by using PyQtGraph, 375–376
imperative coding style, 45
import statement, 197, 202, 203–205
importing, 112, 197, 202–207
indentation, 75–77
index() function, 262
index(str, beg=0, end=len(string)) function, 237
information

controlling how Python views data, 114–115
creating and using functions, 123–132
a.k.a. data, 113
locating of by using IRLib, 376–377
managing, 113–133
storing, 104–105
storing and modifying, 103–112
working with operators, 115–123

inheritance, 283, 299
__init__() constructor, 289
initializing, 289
__initializing__ attribute, 216
Inkscape, 356
input() function, 132–133
Insert Cell Below icon, 90
insert() function, 250
insertion pointer, 229
install (pip command), 215

installation
of Python, 24–31
testing of, 35

instance, 283
instance method, 288
instance variable, 283, 290, 292–293
instantiate, 284
instantiation, 283
int() command, 111
int data type, 106
integers, 106–107, 108
Integrated Development Environment (IDE), 2, 38, 55,

56–58, 83
Integrated DeveLopment Environment (IDLE), 24, 31, 32,

35, 36, 38, 56, 348
Interactive Development Environment (IDE), 348, 366
Interactive DeveLopment Environment (IDLE), 28
interactive environment, 45, 368
Internet Information Server (IIS), 355
Interrupt (kernel-specific command), 94
Interrupt Kernel icon, 91
“Intro to Python & Automation for Network

Engineers,” 356
iPhone Operating System (iOS) (platform), 22
IPython, 96, 97, 98, 368
IRLib, 376–377
isalnum() function, 233
isalpha() function, 233
isdecimal() function, 233
isdigit() function, 233
islower() function, 233
isnumeric() function, 234
Isort, 369
isspace() function, 234
istitle() function, 234
isupper() function, 234
IT staff, as occupation that uses Python regularly, 355
iterable items, 279

J
Java (programming language), 14, 15, 18, 19, 377
JavaScript, 16
join(seq) function, 234
JPype, 377
--json flag, 211

386 Beginning Programming with Python For Dummies

--json switch, 212
Jupyter Notebook. See also Notebook

changing appearance of, 90–94
closing, 80–81
IDE named as, 55
starting, 64–65

Jython, 377

K
Keep-Alive value, 378
kernel, 94–95
KeyboardInterrupt exception, 174, 186
keywords basic help topic, 47
Knuth, Donald (computer scientist), 57
Komodo Edit, 56, 366–367
Komodo IDE, 367
**kwargs variable argument, 293

L
Language INtegrated Query (LINQ), 16
LaTeX (.tex) download option, 84
Launchpad, 362
LearnPython.org tutorial, 345
len(string) function, 234
Leopard version of OS X (10.5), 27
libraries

accessing Internet resources by using, 378
defined, 197
getting additional ones, 346–347
search libraries, 376
you need to know about, 371–378

library code, 198, 218
license() command, 46
Lightwave, 356
line numbers, 92
LINQ (Language INtegrated Query), 16
Linux (platform), 22, 28–31, 35, 59
list (pip command), 215
lists

accessing of, 248–249
creating, 246–248
creating stacks using, 273–275
defining organization by using, 244–245
looping through, 249–250

managing, 243–260
modifying, 250–253
organizing information in an application,

244–246
printing, 257–259
searching, 254–255
sorting, 255–257
tuples as distinguished from, 263
understanding how computers view, 245–246
using operators with, 253
working with Counter object, 259–260

literate programming, 57
ljust(width, fillchar=" ") function, 234
__loader__ attribute, 216
local hostname (email address), 326–327, 330–331
location, helping build decide on as occupation that uses

Python regularly, 357–358
logical error, 170, 171
logical operators, 116, 119, 139–141
loop, 152, 153, 160, 162–164
lower() function, 234
lstrip() function, 234

M
Mac, 27–28, 34–35
Mac OS X (platform), 22
MacOS, installation of Anaconda on, 60–61
magic functions, 97, 98–99
manitssa, 108
manual checkpoint save, 85–86
Markdown (interface-specific help entry), 95
Markdown (.md) download option, 84
markdown cell type, 87
Mathematica, 57
MATLAB, 57
max(str) function, 234, 236
Maya, 355
membership operators, 116, 121–122
merging a cell, 88
message (email), 325, 332–334
message subtypes (email), 335
method, 283, 286–287, 293–294
Microsoft

C# (programming language), 15, 16, 18
.docx file, 309

Index 387

Knowledge Base scripting article, 355
.zip file, 309

Microsoft Disk Operating System (MS-DOS) (platform), 22
MIME (Multipurpose Internet Mail Extensions), 332
MIMEApplication, 332
MIMEAudio, 332
MIMEImage, 332
MIMEMultipart, 332
MIMEText, 332
Miniconda installer, 58
min(str) function, 234
-m mod option, 40
Modo, 356
Module Index, 220
modules, a.k.a. packages, 197
modules basic help topic, 47
MorphOS (platform), 22
MotionBuilder, 356
Move Selected Cells Down icon, 91
Move Selected Cells Up icon, 91
MS-DOS (Microsoft Disk Operating System) (platform), 22
Mueller, John

blog, 352
email address, 23

multiline comment, 78
multiple tasks, performing of, 138–139
Multipurpose Internet Mail Extensions (MIME), 332
MyClass class, 296–299
myVar variable, 105

N
__name__ attribute, 216
nested decision statements, 146–149
nesting, 185
nesting loop statements, 162–164
network

accessing local network resources by using Twisted
Matrix, 378

administering of as occupation that uses Python
regularly, 356

“Network Management,” 356
NEWS.txt file, 38
non-conda packages, 201
None (Cell Toolbar menu option), 93
Not Trusted button, 89
Notebook. See also Jupyter Notebook

coding environment in, 84
shortened version of Jupyter Notebook, 65
trusting your, 89

Notebook Help (interface-specific help entry), 95
notebooks, 57, 67–71
Nuke, 356
formatting specification, 240
numbers, defining character by using numbers,

226–227
numeric bases, 106
numeric data types, 106, 108
NumPy, 16, 18

O
-O option, 41
object, defined, 283
object-oriented coding style, 45
Object-Oriented Programming (OOP), 289
objects, data stored as, 306
occupations that use Python regularly, 353–360
oct() command, 106
-OO option, 41
Open the Command Palette icon, 91
Operating System 2 (OS/2) (platform), 22
Operating System 390 (OS/390) and z/OS (platform), 22
operator overloading, 283
operators. See also specific operators

categories of, 116
defining of, 116
as helping applications control data, 114
overloading of, 294–296
as Python’s main method for making comparisons,

114–115
understanding operator precedence, 122–123
use of with lists, 253
working with, 115–123

orphaned product, 365
OS exceptions (exception category), 172
OS X version 10.5, 27
OS X version 10.12, 27
os._exit() command, 52, 53
OS/2 (Operating System 2) (platform), 22
OS/390 (Operating System 390) and z/OS (platform), 22
os.rmdir() function, 322
other (special character category), 229
outputs, toggling of, 90

388 Beginning Programming with Python For Dummies

P
package cache, 201
package content, 216–218
Package Docs (Python Package Documentation), 219
package documentation, 219–223
__package__ attribute, 216
packages

built-in packages, 200
conda packages, 200, 210–215
considering package cache, 201
custom packages, 200
defined, 197
downloading of from other sources, 209–216
finding of on disk, 207–209
importing, 202–207
installing packages by using pip, 215–216
interacting with, 197–223
a.k.a. modules, 197
non-conda packages, 201
understanding package types, 200–201
viewing package content, 216–218
viewing package documentation, 219–223

packaging methods, as helping applications control
data, 114

Paint Shop Pro, 356
PalmOS (platform), 22
parent class, 299
pass clause, 157–158
Paste Cells Below editing command, 88
Paste Cells Below icon, 91
Paste Cells editing command, 88
path, defined, 307
path information, 207–209
PDF via LaTeX (.pdf) download option, 84
pdoc, 365–366
PERL (Practical Extraction and Report Language), 19
Perl (programming language), 19
permanent storage, 306–311
pip (Pip Installs Packages) utilities, 209, 215–216
platforms

defined, 21
supported by Anaconda, 58
supported by Python, 22

PlayStation (platform), 22
pop() function, 250

port (email address), 326, 328–330
positional arguments, 129
Practical Extraction and Report Language (PERL), 19
.precision formatting specification, 240
PrettyTable, 374
prewritten code, 64
print() command, 35, 43, 44, 48
print() function, 248
print() function argument, 129
procedural coding style, 45
procedure, 9–10, 11
production server, never test on, 364
production-grade class, 299
A Programmer’s Guide to Data Mining, 358
programming language

C#, 15, 16, 18
C/C++, 14, 15, 18, 198, 353
comparing Python to other languages, 18–20
creation of, 14
defined, 12
Java, 14, 15, 18, 19, 377
Perl, 19
R, 19–20
why you need to know multiple programming

languages, 354
programming resources, 343–352
programming skills, teaching of as occupation that uses

Python regularly, 357
Psion (platform), 22
PyAudio, 374–375
PyCrypto, 372
pydbgr, 367–368
Pydoc (Python Package Documentation) application,

219–220
PyGame, 375
PyInstaller, 364–365
PyPI (Python Package Index), 210
.py files, 218
PyQtGraph, 375–376
Python

accessing of on your machine, 31–35
case sensitivity of, 40, 170
coding styles of, 45
common uses of, 15–16
comparing of to other languages, 18–20
current version of, 23

Index 389

deciding how you can personally benefit from, 15–16
discovering which organizations use, 16–17
documentation online, 344–345
downloading the version you need, 21–24
enhancing your experience with, 361–369
as fifth-ranked language on TIOBE, 1, 15
finding useful applications written in, 17–18
as first-ranked language on IEEE Spectrum, 15
getting your own copy of, 21–36
installation of, 24–31
interacting with, 37–53
knowing why it doesn’t understand you, 166–167
as learning tool, 15, 353
main objective of creating it, 14
making your Python application fast, 352
performing web programming by using, 346
programming resources, 343–352
reasons for using, 14–15
starting, 38–39
as third-ranked language on Tech Rapidly, 15
use of by colleges to teach coding, 15
ways to making a living with, 353–360
why it’s so cool, 14–20

Python (.py) download option, 84
Python 2.7.10, 27
Python 3.3.4, 21
Python and GIS Resources, 357
Python: Common Newbie Mistakes, Part 1, 351
Python: Common Newbie Mistakes, Part 2, 351
Python DevelopmentTools, 362
Python Encodings and Unicode, 352
Python Package Documentation (Package Docs or

Pydoc), 219
Python Package Index (PyPI), 210
Python SayHello.py, 40
PYTHONCASEOK=x environment variable, 42
PYTHONDEBUG=x environment variable, 42
PYTHONDONTWRITEBYTECODE=x environment variable, 42
PythonEditors wiki, 348
PYTHONFAULTHANDLER=x environment variable, 42
Python-h, 39
PYTHONHASHSEED=arg environment variable, 42
PYTHONHOME=arg environment variable, 42
PYTHONINSPECT=x environment variable, 42
PYTHONIOENCODING=arg environment variable, 42

PYTHONNOUSERSITE environment variable, 42
PYTHONOPTIMIZE=x environment variable, 42
PYTHONPATH=arg environment variable, 42
PythonSpeed Performance Tips, 352
PYTHONSTARTUP=arg environment variable, 42
PYTHONUNBUFFERED=x environment variable, 42
PYTHONVERBOSE=x environment variable, 42
python.vim utility, 349
Pythonware site, 346
PYTHONWARNINGS=arg environment variable, 42
PyUnit, 368–369

Q
q command, 220
-q option, 41
QNX (platform), 22
Quality Assurance (QA) departments, as occupation that

uses Python regularly, 354
queues, 244, 263, 275–277
quick-access links, 220
quit() command, 36
quit() command, 51, 52

R
R (programming language), 19–20
raising exceptions, 166, 188–191
range checking, 139–141
range() function, 152
Raspberry Pi, 357, 358
Raw Cell Format (Cell Toolbar menu option), 93
raw NBConvert cell type, 87
README file, 38
receiver (email), 331
Reconnect (kernel-specific command), 95
records, defined, 372
Red Hat, 28
Red Hat Package Manager (RPM)-based distribution, 28
Relational DataBase Management System (RDBMS), 373
relational equality operator (==), 136
relational operators, 116, 118–119, 136, 137–138
relative path, 307
relative path character sets, 307
remove() function, 250
repetitive tasks, performing of, 151–164

390 Beginning Programming with Python For Dummies

replace(old, new [, max]) function, 237
repository, 65
reST (.rst) download option, 84
Restart (kernel-specific command), 95
Restart & Clear Output (kernel-specific command), 95
Restart & Run All (kernel-specific command), 95
Restart the Kernel icon, 91
return keyword, 131
return values, 131–132
rfind(str, beg=0, end=len(string)) function, 237
rindex(str, beg=0, end=len(string)) function, 237
RISC OS (originally Acorn) (platform), 22
rjust(width, fillchar=" ") function, 234
Roundup Issue Tracker, 362–363
rstrip() function, 234
Run Cell icon, 91
runnable code, 198–199
Running tab (main Notebook page), 99, 100
runtime error, 168–169

S
-S option, 41
-s option, 41
safe access, ensuring of, 89
Save and Checkpoint icon, 90
SaveData() method, 312
SayGoodbye() function, 199
SayHello() function, 199
scientific tasks, carrying out of as occupation that uses

Python regularly, 359
SciPy, 16, 18
screenshots, 31, 58
Scribus, 356
scripting, 355–356
search (pip command), 216
search libraries, 376
Secure Digital (SD) card, 104
secure environment, developing of by using

PyCrypto, 372
selection tree, 146
semantic error, 170–171
sender (email), 331
sequences, 244, 262
Series 60 (platform), 22

setup process, on Windows, 25
“7 Python Libraries you should know about,” 371
show (pip command), 216
Shutdown (kernel-specific command), 95
shutil.rmtree() function, 322
sign formatting specification, 239
significand, 108
Simple Mail Transfer Protocol (SMTP), 323, 324–325,

336–337
single quotes, use of, 227
single-line comment, 78
Siri (Apple), 7
Slideshow (Cell Toolbar menu option), 93
socket, 327
socket.gethostbyaddr() method, 330
Softimage, 356
Solaris (platform), 22
Solid State Drive (SSD), 305
sound, 374–375
spaghetti code, 281
special characters, 229–231
splitlines(num=string.count(’\n’)) function, 235
split(str=" ," num=string.count(str)) function,

234, 236
splitting a cell, 88
SQL (Structured Query Language), 16, 353, 373
SQLAlchemy, 372–373
square brackets ([]), 231
SSD (Solid State Drive), 305
stacks, 244, 262, 273–275
startswith(prefix, beg=0, end=len(string))

function, 237
storage

creating content for permanent storage, 308–311
creating file, 311–314
of data in files, 305–322
deleting file, 321–322
reading file content, 314–317
understanding how permanent storage works, 306–307
updating file content, 317–321

storage boxes, 104
__str__() method, 297
strings

creating of with special characters, 229–231
defining character by using numbers, 226–227
formatting, 238–241

Index 391

locating a value in, 236–238
selecting individual characters, 231–233
slicing and dicing of, 233–236
understanding of, 110–111
understanding that strings are different, 226–228
use of term, 227
using characters to create, 227–228
working with, 225–241

strip() function, 235
structured data, 308
Structured Query Language (SQL), 16, 353, 373
str.upper() function, 186
SUSE, 28
swapcase() function, 235
switch statement, 146, 266, 270–272
symbols basic help topic, 47, 48
syntactical error, 170
syntax, checking of with greater ease, 348–349
sys.exit() command, 52, 53
sys.path attribute, 208, 209

T
tabular data, display of, 374
Tags (Cell Toolbar menu option), 94
Tech Rapidly, 15
terminals, 99–100
ternary operators, 117
text editor, notebook compared to, 57
text message, 335–336
third-party support, 361–369
3ds Max, 355
throw an exception, 166
time() command, 112
times, working with, 111–112
TIOBE, 15
title() function, 235
TkInter, 373–374
Toggle Header option, 90
Toggle Line Numbers option, 91
Toggle option, 90
Toggle Scrolling option, 90
Toggle Toolbar option, 90
Tool Command Language (Tcl)/Toolkit (Tk), 374
tools

availability of, 56
categories of, 361–362
defined, 361

topics basic help topic, 47
Topics link, 220
transmission method (email), 334–335
Trigger, 356
triple double quotes, 227
True, 110
tuples, 244, 262, 263–266
tutorials, 345, 349, 350, 352
Tutorials on XML Processing with Python, 350
Twisted Matrix, 378
type formatting specification, 240
type() method, 110
typographical (special character category), 229

U
-u option, 41
Ubuntu 12.x, 30
unary operators, 116, 117–118
Undo Delete Cells editing command, 88
Unicode, 351–352
Unicode Pain, 352
Unicode Tutorials and Overviews, 352
uninstall (pip command), 216
Universal Serial Bus (USB) flash drive, 104, 305
Unofficial Windows Binaries for Python Extension

Packages, 371
unstructured data, 308
The Updated Guide to Unicode on Python, 351
updates

of file content, 317–321
of Python, 4, 23

upper() function, 235
Useful Modules, 371
user documentation, 365
user input, 114, 132–133

V
-V option, 41
-v option, 41
ValueError exception, 173, 186, 190, 191, 192

392 Beginning Programming with Python For Dummies

variable arguments, 293
variables

class variable, 282–283, 290–292
as code grouping, 198
determining variable’s type, 110
environment variables, 41–43, 207
instance variable, 283, 290, 292–293
putting information into, 105
seeing of as storage boxes, 104
working with, 290–293

-version option, 41
virtual environment, creating, 363
Virtual Memory System (VMS), 22
VirtualEnv, 363
Visual Basic, 15
Visual Studio, 355

W
-W arg option, 41
warnings (exception category), 172
Web Programming in Python, 346
while loop, 162
while statement, 159–162
width formatting specification, 240

Windows, 25–27, 32–34, 42, 61–64
Windows 32-bit (XP and later) (platform), 22
Windows 64-bit (platform), 22
Windows CE/Pocket PC (platform), 22
winsound, 375
W3Schools, 349, 350

X
XeTeX, 84
XML (eXtensible Markup Language), 16, 308, 349–350
-X opt option, 41
-x option, 41

Y
Yellow Dog, 28
YouTube, on using Python to build embedded

system, 358

Z
0 formatting specification, 240
ZeroDivisionError exception, 183
zfill (width) function, 235

	Brief Contents
	Contents
	Intro
	Start with Python
	Talking to your Computer
	Understanding Why You Want to Talk to Your Computer
	Knowing that an Application is a Form of Communication
	Defining What an Application I
	Understanding Why Python is So Cool

	Getting Copy of Python
	Downloading the Version You Need
	Installing Python
	Accessing Python on Your Machine
	Testing Your Installation

	Interacting with Python
	Opening the Command Line
	Typing a Command
	Using Help
	Closing the Command Line

	First Application
	Understanding Why IDEs Are Important
	Obtaining Your Copy of Anaconda
	Downloading the Datasets and Example Code
	Creating the Application
	Understanding the Use of Indentation
	Adding Comments
	Closing Jupyter Notebook

	Working with Anaconda
	Downloading Your Code
	Working with Checkpoints
	Manipulating Cells
	Changing Jupyter Notebook’s Appearance
	Interacting with the Kernel
	Obtaining Help
	Using the Magic Functions
	Viewing the Running Processes

	Talking the Talk
	Storing & Modifying Information
	Storing Information
	Defining the Essential Python Data Type
	Working with Dates and Times

	Managing Information
	Controlling How Python Views Data
	Working with Operators
	Creating and Using Functions
	Getting User Input

	Making Decisions
	Making Simple Decisions by Using the if Statement
	Choosing Alternatives by Using the if. . .else Statement
	Using Nested Decision Statements

	Repetitive Tasks
	Processing Data Using the for Statement
	Processing Data by Using the while Statement
	Nesting Loop Statements

	Errors
	Knowing Why Python Doesn’t Understand You
	Considering the Sources of Errors
	Catching Exceptions
	Raising Exceptions
	Creating and Using Custom Exceptions
	Using the finally Claus

	Performing Common Tasks
	Packages
	Creating Code Groupings
	Importing Packages
	Finding Packages on Disk
	Downloading Packages from Other Sources
	Viewing the Package Content
	Viewing Package Documentation

	Strings
	Understanding That Strings Are Differen
	Creating Stings with Special Characters
	Selecting Individual Characters
	Slicing and Dicing Strings
	Locating a Value in a String
	Formatting Strings

	Lists
	Organizing Information in an Application
	Creating Lists
	Accessing Lists
	Looping through Lists
	Modifying Lists
	Searching Lists
	Sorting Lists
	Printing Lists
	Working with the Counter Object

	Collecting all Sorts of Data
	Understanding Collections
	Working with Tuples
	Working with Dictionaries
	Creating Stacks Using Lists
	Working with queues
	Working with deques

	Classes
	Understanding the Class as a Packaging Method
	Considering the Parts of a Class
	Creating a Class
	Using the Class in an Application
	Extending Classes to Make New Classes

	Performing Advanced Tasks
	Storing Data in Files
	Understanding How Permanent Storage Works
	Creating Content for Permanent Storage
	Creating a File
	Reading File Content
	Updating File Content
	Deleting a File

	Sending Email
	Understanding What Happens When You Send Email
	Creating the Email Message
	Seeing the Email Output

	Part of Tens
	Programming Resources
	Working with the Python Documentation Online
	Using the LearnPython.org Tutorial
	Performing Web Programming by Using Python
	Getting Additional Libraries
	Creating Applications Faster by Using an IDE
	Checking Your Syntax with Greater Ease
	Using XML to Your Advantage
	Getting Past the Common Python Newbie Errors
	Understanding Unicode
	Making Your Python Application Fast

	Make a Living with Python
	Working in QA
	Becoming the IT Staff for Smaller Organization
	Performing Specialty Scripting for Applications
	Administering a Network
	Teaching Programming Skills
	Helping People Decide on Location
	Performing Data Mining
	Interacting with Embedded Systems
	Carrying Out Scientific Task
	Performing Real-Time Analysis of Data

	Tools that Enhance Python Experience
	Tracking Bugs with Roundup Issue Tracker
	Creating a Virtual Environment by Using VirtualEnv
	Installing Your Application by Using PyInstaller
	Building Developer Documentation by Using pdoc
	Developing Application Code by Using Komodo Edit
	Debugging Your Application by Using pydbgr
	Entering an Interactive Environment by Using IPython
	Testing Python Applications by Using PyUnit
	Tidying Your Code by Using Isort
	Providing Version Control by Using Mercurial

	Libraries
	Developing a Secure Environment by Using PyCrypto
	Interacting with Databases by Using SQLAlchemy
	Seeing the World by Using Google Maps
	Adding a Graphical User Interface by Using TkInter
	Providing a Nice Tabular Data Presentation by Using PrettyTable
	Enhancing Your Application with Sound by Using PyAudio
	Manipulating Images by Using PyQtGraph
	Locating Your Information by Using IRLib
	Creating an Interoperable Java Environment by Using JPype
	Accessing Local Network Resources by Using Twisted Matrix
	Accessing Internet Resources by Using Libraries

	Index

