

What Readers Are Saying About

Practical Programming

Practical Programming is true to its name. The information it presents

is organized around useful tasks rather than abstract constructs, and

each chapter addresses a well-contained and important aspect of pro-

gramming in Python. A student wondering “How do I make the com-

puter do X?” would be able to find their answer very quickly with this

book.

Christine Alvarado

Associate professor of computer science, Harvey Mudd College

Science is about learning by performing experiments. This book

encourages computer science students to experiment with short,

interactive Python scripts and in the process learn fundamental con-

cepts such as data structures, sorting and searching algorithms,

object-oriented programming, accessing databases, graphical user

interfaces, and good program design. Clearly written text along with

numerous compelling examples, diagrams, and images make this an

excellent book for the beginning programmer.

Ronald Mak

Research staff member, IBM Almaden Research Center

Lecturer, Department of Computer Science, San Jose State

University

What, no compiler, no sample payroll application? What kind of pro-

gramming book is this? A great one, that’s what. It launches from a

“You don’t know anything yet” premise into a fearless romp through

the concepts and techniques of relevant programming technology.

And what fun students will have with the images and graphics in the

exercises!

Laura Wingerd

Author, Practical Perforce

The debugging section is truly excellent. I know several practicing pro-

grammers who’d be rightfully offended by a suggestion to study the

whole book but who could really do with brushing up on this section

(and many others) once in a while.

Alex Martelli

Author, Python in a Nutshell

This book succeeds in two different ways. It is both a science-focused

CS1 text and a targeted Python reference. Even as it builds students’

computational insights, it also empowers and encourages them to

immediately apply their newfound programming skills in the lab or

on projects of their own.

Zachary Dodds

Associate professor of computer science, Harvey Mudd College

Practical Programming
An Introduction to Computer Science Using Python

Jennifer Campbell

Paul Gries

Jason Montojo

Greg Wilson

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Jennifer Campbell, Paul Gries, Jason Montojo, and Greg Wilson.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-27-1

ISBN-13: 978-1-934356-27-2

Printed on acid-free paper.

P1.0 printing, April 2009

Version: 2009-5-6

http://www.pragprog.com

Contents
1 Introduction 11

1.1 Programs and Programming 13

1.2 A Few Definitions . 14

1.3 What to Install . 14

1.4 For Instructors . 15

1.5 Summary . 16

2 Hello, Python 17

2.1 The Big Picture . 17

2.2 Expressions . 19

2.3 What Is a Type? . 22

2.4 Variables and the Assignment Statement 25

2.5 When Things Go Wrong 29

2.6 Function Basics . 30

2.7 Built-in Functions . 33

2.8 Style Notes . 34

2.9 Summary . 35

2.10 Exercises . 36

3 Strings 39

3.1 Strings . 39

3.2 Escape Characters . 42

3.3 Multiline Strings . 43

3.4 Print . 44

3.5 Formatted Printing . 45

3.6 User Input . 46

3.7 Summary . 47

3.8 Exercises . 48

CONTENTS 8

4 Modules 50

4.1 Importing Modules . 50

4.2 Defining Your Own Modules 54

4.3 Objects and Methods . 60

4.4 Pixels and Colors . 68

4.5 Testing . 70

4.6 Style Notes . 76

4.7 Summary . 77

4.8 Exercises . 78

5 Lists 81

5.1 Lists and Indices . 81

5.2 Modifying Lists . 85

5.3 Built-in Functions on Lists 87

5.4 Processing List Items . 89

5.5 Slicing . 92

5.6 Aliasing . 94

5.7 List Methods . 95

5.8 Nested Lists . 97

5.9 Other Kinds of Sequences 99

5.10 Files as Lists . 100

5.11 Comments . 103

5.12 Summary . 105

5.13 Exercises . 105

6 Making Choices 108

6.1 Boolean Logic . 108

6.2 if Statements . 118

6.3 Storing Conditionals . 125

6.4 Summary . 126

6.5 Exercises . 127

7 Repetition 131

7.1 Counted Loops . 131

7.2 while Loops . 140

7.3 User Input Loops . 148

7.4 Controlling Loops . 149

7.5 Style Notes . 153

7.6 Summary . 154

7.7 Exercises . 155

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=8

CONTENTS 9

8 File Processing 159

8.1 One Record per Line . 160

8.2 Records with Multiple Fields 171

8.3 Positional Data . 174

8.4 Multiline Records . 177

8.5 Looking Ahead . 179

8.6 Writing to Files . 181

8.7 Summary . 183

8.8 Exercises . 183

9 Sets and Dictionaries 185

9.1 Sets . 185

9.2 Dictionaries . 190

9.3 Inverting a Dictionary . 197

9.4 Summary . 198

9.5 Exercises . 199

10 Algorithms 203

10.1 Searching . 204

10.2 Timing . 211

10.3 Summary . 211

10.4 Exercises . 212

11 Searching and Sorting 214

11.1 Linear Search . 214

11.2 Binary Search . 218

11.3 Sorting . 222

11.4 More Efficient Sorting Algorithms 228

11.5 Mergesort: An N log2N Algorithm 229

11.6 Summary . 233

11.7 Exercises . 234

12 Construction 237

12.1 More on Functions . 237

12.2 Exceptions . 242

12.3 Testing . 249

12.4 Debugging . 254

12.5 Patterns . 256

12.6 Summary . 260

12.7 Exercises . 261

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=9

CONTENTS 10

13 Object-Oriented Programming 270

13.1 Class Color . 271

13.2 Special Methods . 276

13.3 More About dir and help 278

13.4 A Little Bit of OO Theory 280

13.5 A Longer Example . 288

13.6 Summary . 293

13.7 Exercises . 293

14 Graphical User Interfaces 294

14.1 The Tkinter Module . 295

14.2 Basic GUI Construction 296

14.3 Models, Views, and Controllers 301

14.4 Style . 307

14.5 A Few More Widgets . 312

14.6 Object-Oriented GUIs . 316

14.7 Summary . 317

14.8 Exercises . 318

15 Databases 321

15.1 The Big Picture . 321

15.2 First Steps . 323

15.3 Retrieving Data . 327

15.4 Updating and Deleting 330

15.5 Transactions . 331

15.6 Using NULL for Missing Data 333

15.7 Using Joins to Combine Tables 334

15.8 Keys and Constraints . 339

15.9 Advanced Features . 341

15.10 Summary . 346

15.11 Exercises . 347

A Bibliography 351

Index 353

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=10

Chapter 1

Introduction
Take a look at the pictures in Figure 1.1, on the following page. The

first one shows forest cover in the Amazon basin in 1975. The second

one shows the same area 26 years later. Anyone can see that much of

the rainforest has been destroyed, but how much is “much”?

Now look at Figure 1.2, on page 13.

Are these blood cells healthy? Do any of them show signs of leukemia?

It would take an expert doctor a few minutes to tell. Multiply those

minutes by the number of people who need to be screened. There simply

aren’t enough human doctors in the world to check everyone.

This is where computers come in. Computer programs can measure the

differences between two pictures and count the number of oddly shaped

platelets in a blood sample. Geneticists use programs to analyze gene

sequences; statisticians, to analyze the spread of diseases; geologists, to

predict the effects of earthquakes; economists, to analyze fluctuations

in the stock market; and climatologists, to study global warming. More

and more scientists are writing programs to help them do their work. In

turn, those programs are making entirely new kinds of science possible.

Of course, computers are good for a lot more than just science. We used

computers to write this book; you have probably used one today to chat

with friends, find out where your lectures are, or look for a restaurant

that serves pizza and Chinese food. Every day, someone figures out how

to make a computer do something that has never been done before.

Together, those “somethings” are changing the world.

This book will teach you how to make computers do what you want

them to do. You may be planning to be a doctor, linguist, or physicist

CHAPTER 1. INTRODUCTION 12

Figure 1.1: The Rainforest Retreats (Photo credit: NASA/Goddard Space

Flight Center Scientific Visualization Studio)

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=12

PROGRAMS AND PROGRAMMING 13

Figure 1.2: Healthy blood cells—or are they? (Photo credit: CDC)

rather than a full-time programmer, but whatever you do, being able

to program is as important as being able to write a letter or do basic

arithmetic.

We begin in this chapter by explaining what programs and program-

ming are. We then define a few terms and present a few boring-but-

necessary bits of information for course instructors.

1.1 Programs and Programming

A program is a set of instructions. When you write down directions to

your house for a friend, you are writing a program. Your friend “exe-

cutes” that program by following each instruction in turn.

Every program is written in terms of a few basic operations that its

reader already understands. For example, the set of operations that

your friend can understand might include the following: “Turn left at

Darwin Street,” “Go forward three blocks,” and “If you get to the gas

station, turn around—you’ve gone too far.”

Computers are similar but have a different set of operations. Some

operations are mathematical, like “Add 10 to a number and take the

square root,” while others include “Read a line from the file named

data.txt,” “Make a pixel blue,” or “Send email to the authors of this

book.”

The most important difference between a computer and an old-

fashioned calculator is that you can “teach” a computer new opera-

tions by defining them in terms of old ones. For example, you can teach

the computer that “Take the average” means “Add up the numbers in

a set and divide by the set’s size.” You can then use the operations you

have just defined to create still more operations, each layered on top of

the ones that came before. It’s a lot like creating life by putting atoms

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=13

A FEW DEFINITIONS 14

together to make proteins and then combining proteins to build cells

and giraffes.

Defining new operations, and combining them to do useful things, is

the heart and soul of programming. It is also a tremendously powerful

way to think about other kinds of problems. As Prof. Jeannette Wing

wrote [Win06], computational thinking is about the following:

• Conceptualizing, not programming. Computer science is not com-

puter programming. Thinking like a computer scientist means

more than being able to program a computer. It requires think-

ing at multiple levels of abstraction.

• A way that humans, not computers, think. Computational thinking

is a way humans solve problems; it is not trying to get humans

to think like computers. Computers are dull and boring; humans

are clever and imaginative. We humans make computers exciting.

Equipped with computing devices, we use our cleverness to tackle

problems we would not dare take on before the age of computing

and build systems with functionality limited only by our imagina-

tions.

• For everyone, everywhere. Computational thinking will be a reality

when it is so integral to human endeavors it disappears as an

explicit philosophy.

We hope that by the time you have finished reading this book, you will

see the world in a slightly different way.

1.2 A Few Definitions

One of the pieces of terminology that causes confusion is what to call

certain characters. The Python style guide (and several dictionaries) use

these names, so this book does too:

() Parentheses

[] Brackets

{} Braces

1.3 What to Install

For current installation instructions, please download the code from

the book website and open install/index.html in a browser. The book URL

is http://pragprog.com/titles/gwpy/practical-programming.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=14

FOR INSTRUCTORS 15

1.4 For Instructors

This book uses the Python programming language to introduce stan-

dard CS1 topics and a handful of useful applications. We chose Python

for several reasons:

• It is free and well documented. In fact, Python is one of the largest

and best-organized open source projects going.

• It runs everywhere. The reference implementation, written in C, is

used on everything from cell phones to supercomputers, and it’s

supported by professional-quality installers for Windows, Mac OS,

and Linux.

• It has a clean syntax. Yes, every language makes this claim, but in

the four years we have been using it at the University of Toronto,

we have found that students make noticeably fewer “punctuation”

mistakes with Python than with C-like languages.

• It is relevant. Thousands of companies use it every day; it is one of

the three “official languages” at Google, and large portions of the

game Civilization IV are written in Python. It is also widely used

by academic research groups.

• It is well supported by tools. Legacy editors like Vi and Emacs all

have Python editing modes, and several professional-quality IDEs

are available. (We use a free-for-students version of one called

Wing IDE.)

We use an “objects first, classes second” approach: students are shown

how to use objects from the standard library early on but do not create

their own classes until after they have learned about flow control and

basic data structures. This compromise avoids the problem of explain-

ing Java’s public static void main(String[] args) to someone who has never

programmed.

We have organized the book into two parts. The first covers fundamen-

tal programming ideas: elementary data types (numbers, strings, lists,

sets, and dictionaries), modules, control flow, functions, testing, debug-

ging, and algorithms. Depending on the audience, this material can be

covered in nine or ten weeks.

The second part of the book consists of more or less independent chap-

ters on more advanced topics that assume all the basic material has

been covered. The first of these chapters shows students how to create

their own classes and introduces encapsulation, inheritance, and poly-

morphism; courses for computer science majors will want to include

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=15

SUMMARY 16

this material. The other chapters cover application areas, such as 3D

graphics, databases, GUI construction, and the basics of web program-

ming; these will appeal to both computer science majors and students

from the sciences and will allow the book to be used for both.

Lots of other good books on Python programming exist. Some are acces-

sible to novices [Guz04, Zel03], and others are for anyone with any

previous programming experience [DEM02, GL07, LA03]. You may also

want to take a look at [Pyt], the special interest group for educators

using Python.

1.5 Summary

In this book, we’ll do the following:

• We will show you how to develop and use programs that solve real-

world problems. Most of its examples will come from science and

engineering, but the ideas can be applied to any domain.

• We start by teaching you the core features of a programming lan-

guage called Python. These features are included in every modern

programming language, so you can use what you learn no matter

what you work on next.

• We will also teach you how to think methodically about program-

ming. In particular, we will show you how to break complex prob-

lems into simple ones and how to combine the solutions to those

simpler problems to create complete applications.

• Finally, we will introduce some tools that will help make your pro-

gramming more productive, as well as some others that will help

your applications cope with larger problems.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=16

Chapter 2

Hello, Python
Programs are made up of commands that a computer can understand.

These commands are called statements, which the computer executes.

This chapter describes the simplest of Python’s statements and shows

how they can be used to do basic arithmetic. It isn’t very exciting in its

own right, but it’s the basis of almost everything that follows.

2.1 The Big Picture

In order to understand what happens when you’re programming, you

need to have a basic understanding of how a program gets executed on

a computer. The computer itself is assembled from pieces of hardware,

including a processor that can execute instructions and do arithmetic,

a place to store data such as a hard drive, and various other pieces such

as computer monitor, a keyboard, a card for connecting to a network,

and so on.

To deal with all these pieces, every computer runs some kind of operat-

ing system, such as Microsoft Windows, Linux, or Mac OS X. An oper-

ating system, or OS, is a program; what makes it special is that it’s the

only program on the computer that’s allowed direct access to the hard-

ware. When any other program on the computer wants to draw on the

screen, find out what key was just pressed on the keyboard, or fetch

data from the hard drive, it sends a request to the OS (see Figure 2.1,

on the following page).

This may seem a roundabout way of doing things, but it means that

only the people writing the OS have to worry about the differences

between one network card and another. Everyone else—everyone ana-

lyzing scientific data or creating 3D virtual chat rooms—only has to

THE BIG PICTURE 18

!"#$%&#'() *+,'-+#

./)#"-',0%123-)4

53)#%6#+0#"4

Figure 2.1: Talking to the operating system

learn their way around the OS, and their programs will then run on

thousands of different kinds of hardware.

Twenty-five years ago, that’s how most programmers worked. Today,

though, it’s common to add another layer between the programmer and

the computer’s hardware. When you write a program in Python, Java,

or Visual Basic, it doesn’t run directly on top of the OS. Instead, another

program, called an interpreter or virtual machine, takes your program

and runs it for you, translating your commands into a language the OS

understands. It’s a lot easier, more secure, and more portable across

operating systems than writing programs directly on top of the OS.

But an interpreter alone isn’t enough; it needs some way to interact

with the world. One way to do this is to run a text-oriented program

called a shell that reads commands from the keyboard, does what they

ask, and shows their output as text, all in one window. Shells exist for

various programming languages as well as for interacting with the OS;

we will be exploring Python in this chapter using a Python shell.

The more modern way to interact with Python is to use an integrated

development environment, or IDE. This is a full-blown graphical inter-

face with menus and windows, much like a web browser, word proces-

sor, or drawing program.

Our favorite IDE for student-sized programs is the free Wing 101, a

“lite” version of the professional tool.1

1. See http://www.wingware.com for details.

http://www.wingware.com
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=18

EXPRESSIONS 19

Figure 2.2: A Python shell

Another fine IDE is IDLE, which comes bundled with Python. We prefer

Wing 101 because it was designed specifically for beginning program-

mers, but IDLE is a capable development environment.

The Wing 101 interface is shown in Figure 2.3, on the next page. The

top part is the editing pane where we will write Python programs; the

bottom half, labeled as Python Shell, is where we will experiment with

snippets of Python programs. We’ll use the top pane more when we get

to Chapter 4, Modules, on page 50; for now we’ll stick to the shell.

The >>> part is called a prompt, because it prompts us to type some-

thing.

2.2 Expressions

As we learned at the beginning of the chapter, Python commands are

called statements. One kind of statement is an expression statement, or

expression for short. You’re familiar with mathematical expressions like

3 + 4 and 2 - 3 / 5; each expression is built out of values like 2 and 3 /

5 and operators like + and -, which combine their operands in different

ways.

Like any programming language, Python can evaluate basic mathemat-

ical expressions. For example, the following expression adds 4 and 13:

Download basic/addition.cmd

>>> 4 + 13

17

http://media.pragprog.com/titles/gwpy/code/basic/addition.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=19

EXPRESSIONS 20

Figure 2.3: The Wing 101 interface

When an expression is evaluated, it produces a single result. In the

previous expression, 4 + 13 produced the result 17.

Type int

It’s not surprising that 4 + 13 is 17. However, computers do not always

play by the rules you learned in primary school. For example, look at

what happens when we divide 17 by 10:

Download basic/int_div.cmd

>>> 17 / 10

1

You would expect the result to be 1.7, but Python produces 1 instead.

This is because every value in Python has a particular type, and the

types of values determine how they behave when they’re combined.

http://media.pragprog.com/titles/gwpy/code/basic/int_div.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=20

EXPRESSIONS 21

Division in Python 3.0

In the latest version of Python (Python 3.0), 5 / 2 is 2.5 rather than
2. Python 3.0 is currently less widely used than its predecessors,
so the examples in this book use the “classic” behavior.

In Python, an expression involving values of a certain type produces

a value of that same type. For example, 17 and 10 are integers—in

Python, we say they are of type int. When we divide one by the other,

the result is also an int.

Notice that Python doesn’t round integer expressions. If it did, the

result would have been 2. Instead, it takes the floor of the interme-

diate result. If you want the leftovers, you can use Python’s modulo

operator (%) to return the remainder:

Download basic/int_mod.cmd

>>> 17 % 10

7

Be careful about using % and / with negative operands. Since Python

takes the floor of the result of an integer division, the result is one

smaller than you might expect:

Download basic/neg_int_div.cmd

>>> -17 / 10

-2

When using modulo, the sign of the result matches the sign of the

second operand:

Download basic/neg_int_mod.cmd

>>> -17 % 10

3

>>> 17 % -10

-3

Type float

Python has another type called float to represent numbers with frac-

tional parts. The word float is short for floating point, which refers to

the decimal point that moves around between digits of the number.

http://media.pragprog.com/titles/gwpy/code/basic/int_mod.cmd
http://media.pragprog.com/titles/gwpy/code/basic/neg_int_div.cmd
http://media.pragprog.com/titles/gwpy/code/basic/neg_int_mod.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=21

WHAT Is A TYPE? 22

An expression involving two floats produces a float:

Download basic/float_div_intro.cmd

>>> 17.0 / 10.0

1.7

When an expression’s operands are an int and a float, Python automati-

cally converts the int to a float. This is why the following two expressions

both return the same answer as the earlier one:

Download basic/float_division.cmd

>>> 17.0 / 10

1.7

>>> 17 / 10.0

1.7

If you want, you can omit the zero after the decimal point when writing

a floating-point number:

Download basic/float_division2.cmd

>>> 17 / 10.

1.7

>>> 17. / 10

1.7

However, most people think this is bad style, since it makes your pro-

grams harder to read: it’s very easy to miss a dot on the screen and see

“17” instead of “17.”

2.3 What Is a Type?

We’ve now seen two types of numbers, so we ought to explain exactly

what we mean by a type. In computing, a type is a set of values, along

with a set of operations that can be performed on those values. For

example, the type int is the values ..., -3, -2, -1, 0, 1, 2, 3, ..., along with

the operators +, -, *, /, and % (and a few others we haven’t introduced

yet). On the other hand, 84.2 is a member of the set of float values, but

it is not in the set of int values.

Arithmetic was invented before Python, so the int and float types have

exactly the same operators. We can see what happens when these are

applied to various values in Figure 2.4, on the next page.

http://media.pragprog.com/titles/gwpy/code/basic/float_div_intro.cmd
http://media.pragprog.com/titles/gwpy/code/basic/float_division.cmd
http://media.pragprog.com/titles/gwpy/code/basic/float_division2.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=22

WHAT Is A TYPE? 23

Operator Symbol Example Result

- Negation -5 -5

* Multiplication 8.5 * 2.5 29.75

/ Division 11 / 3 3

% Remainder 8.5 % 3.5 1.5

+ Addition 11 + 3 14

- Subtraction {5 - 19} -14

** Exponentiation 2 ** 5 32

Figure 2.4: Arithmetic operators

Finite Precision

Floating-point numbers are not exactly the fractions you learned in

grade school. For example, take a look at Python’s version of the frac-

tion 1
3 (remember to include a decimal point so that the result isn’t

truncated):

Download basic/rate.cmd

>>> 1.0 / 3.0

0.33333333333333331

What’s that 1 doing at the end? Shouldn’t it be a 3? The problem is

that real computers have a finite amount of memory, which limits how

much information they can store about any single number. The number

0.33333333333333331 turns out to be the closest value to 1
3 that the

computer can actually store.

Operator Precedence

Let’s put our knowledge of ints and floats to use to convert Fahrenheit to

Celsius. To do this, we subtract 32 from the temperature in Fahrenheit

and then multiply by 5
9 :

Download basic/precedence.cmd

>>> 212 - 32.0 * 5.0 / 9.0

194.22222222222223

Python claims the result is 194.222222222222232 degrees Celsius

when in fact it should be 100. The problem is that * and / have higher

2. This is another floating-point approximation.

http://media.pragprog.com/titles/gwpy/code/basic/rate.cmd
http://media.pragprog.com/titles/gwpy/code/basic/precedence.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=23

WHAT Is A TYPE? 24

More on Numeric Precision

Computers use the same amount of memory to store an inte-
ger regardless of that integer’s value, which means that -22984,
-1, and 100000000 all take up the same amount of room.
Because of this, computers can store int values only in a certain
range. A modern desktop or laptop machine, for example, can
store the numbers only from -2147483648 to 2147483647. (We’ll
take a closer look in the exercises at where these bounds come
from.)

Computers can store only approximations to real numbers for
the same reason. For example, 1

4 can be stored exactly, but as
we’ve already seen, 1

3 cannot. Using more memory won’t solve
the problem, though it will make the approximation closer to
the real value, just as writing a larger number of 3s after the 0 in
0.333... doesn’t make it exactly equal to 1

3 .

The difference between 1
3 and 0.33333333333333331 may look

tiny. But if we use that value in a calculation, then the error
may get compounded. For example, if we add the float to
itself, the result ends in ...6662; that is a slightly worse approxima-
tion to 2

3 than 0.666.... As we do more calculations, the round-
ing errors can get larger and larger, particularly if we’re mix-
ing very large and very small numbers. For example, suppose
we add 10,000,000,000 and 0.00000000001. The result ought to
have twenty zeroes between the first and last significant digit,
but that’s too many for the computer to store, so the result is just
10,000,000,000—it’s as if the addition never took place. Adding
lots of small numbers to a large one can therefore have no
effect at all, which is not what a bank wants when it totals up
the values of its customers’ savings accounts.

It’s important to be aware of the floating-point issue so that
your programs don’t bite you unexpectedly, but the solutions to
this problem are beyond the scope of this text. In fact, numeri-
cal analysis, the study of algorithms to approximate continuous
mathematics, is one of the largest subfields of computer sci-
ence and mathematics.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=24

VARIABLES AND THE ASSIGNMENT STATEMENT 25

Operator Symbol

** Exponentiation

- Negation

*, /, % Multiplication, division, and remainder

+- Addition and subtraction

Figure 2.5: Arithmetic operators by precedence

precedence than -; in other words, when an expression contains a mix

of operators, * and / are evaluated before - and +. This means that what

we actually calculated was 212 - ((32.0 * 5.0) / 9.0).

We can alter the order of precedence by putting parentheses around

parts of the expression, just as we did in Mrs. Singh’s fourth-grade

class:

Download basic/precedence_diff.cmd

>>> (212 - 32.0) * 5.0 / 9.0

100.0

The order of precedence for arithmetic operators is listed in Figure 2.5.

It’s a good rule to parenthesize complicated expressions even when you

don’t need to, since it helps the eye read things like 1+1.7+3.2*4.4-16/3.

2.4 Variables and the Assignment Statement

Most handheld calculators3 have one or more memory buttons. These

store a value so that it can be used later. In Python, we can do this

with a variable, which is just a name that has a value associated with

it. Variables’ names can use letters, digits, and the underscore symbol.

For example, X, species5618, and degrees_celsius are all allowed, but 777

isn’t (it would be confused with a number), and neither is no-way! (it

contains punctuation).

You create a new variable simply by giving it a value:

Download basic/assignment.cmd

>>> degrees_celsius = 26.0

3. And cell phones, and wristwatches, and...

http://media.pragprog.com/titles/gwpy/code/basic/precedence_diff.cmd
http://media.pragprog.com/titles/gwpy/code/basic/assignment.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=25

VARIABLES AND THE ASSIGNMENT STATEMENT 26

!"#$""%&'"(%)*% !"#$

Figure 2.6: Memory model for a variable and its associated value

This statement is called an assignment statement; we say that degrees_

celsius is assigned the value 26.0. An assignment statement is executed

as follows:

1. Evaluate the expression on the right of the = sign.

2. Store that value with the variable on the left of the = sign.

In Figure 2.6, we can see the memory model for the result of the assign-

ment statement. It’s pretty simple, but we will see more complicated

memory models later.

Once a variable has been created, we can use its value in other cal-

culations. For example, we can calculate the difference between the

temperature stored in degrees_celsius and the boiling point of water like

this:

Download basic/variable.cmd

>>> 100 - degrees_celsius

74.0

Whenever the variable’s name is used in an expression, Python uses

the variable’s value in the calculation. This means that we can create

new variables from old ones:

Download basic/assignment2.cmd

>>> difference = 100 - degrees_celsius

Typing in the name of a variable on its own makes Python display its

value:

Download basic/variable2.cmd

>>> difference

74.0

What happened here is that we gave Python a very simple expression—

one that had no operators at all—so Python evaluated it and showed us

the result.

http://media.pragprog.com/titles/gwpy/code/basic/variable.cmd
http://media.pragprog.com/titles/gwpy/code/basic/assignment2.cmd
http://media.pragprog.com/titles/gwpy/code/basic/variable2.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=26

VARIABLES AND THE ASSIGNMENT STATEMENT 27

It’s no more mysterious than asking Python what the value of 3 is:

Download basic/simplevalue.cmd

>>> 3

3

Variables are called variables because their values can change as the

program executes. For example, we can assign difference a new value:

Download basic/variable3.cmd

>>> difference = 100 - 15.5

>>> difference

84.5

This does not change the results of any calculations done with that

variable before its value was changed:

Download basic/variable4.cmd

>>> difference = 20

>>> double = 2 * difference

>>> double

40

>>> difference = 5

>>> double

40

As the memory models illustrate in Figure 2.7, on the following page,

once a value is associated with double, it stays associated until the pro-

gram explicitly overwrites it. Changes to other variables, like difference,

have no effect.

We can even use a variable on both sides of an assignment statement:

Download basic/variable5.cmd

>>> number = 3

>>> number

3

>>> number = 2 * number

>>> number

6

>>> number = number * number

>>> number

36

This wouldn’t make much sense in mathematics—a number cannot be

equal to twice its own value—but = in Python doesn’t mean “equals to.”

Instead, it means “assign a value to.”

http://media.pragprog.com/titles/gwpy/code/basic/simplevalue.cmd
http://media.pragprog.com/titles/gwpy/code/basic/variable3.cmd
http://media.pragprog.com/titles/gwpy/code/basic/variable4.cmd
http://media.pragprog.com/titles/gwpy/code/basic/variable5.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=27

VARIABLES AND THE ASSIGNMENT STATEMENT 28

!"##$%$&'$!"

!"##$%$&'$!"

!()*+$ #"

!"##$%$&'$ $

!()*+$ #"

%%%&'())*+*,-*&.&!"

%%%&'/012*&.&!&3&'())*+*,-*

%%%&'())*+*,-*&.&$

Figure 2.7: Changing a variable’s value

When a statement like number = 2 * number is evaluated, Python does the

following:

1. Gets the value currently associated with number

2. Multiplies it by 2 to create a new value

3. Assigns that value to number

Combined Operators

In the previous example, variable number appeared on both sides of

the assignment statement. This is so common that Python provides a

shorthand notation for this operation:

Download basic/variable6.cmd

>>> number = 100

>>> number -= 80

>>> number

20

Here is how a combined operator is evaluated:

1. Evaluate the expression to the right of the = sign.

2. Apply the operator attached to the = sign to the variable and the

result of the expression.

3. Assign the result to the variable to the left of the = sign.

http://media.pragprog.com/titles/gwpy/code/basic/variable6.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=28

WHEN THINGS GO WRONG 29

Note that the operator is applied after the expression on the right is

evaluated:

Download basic/variable7.cmd

>>> d = 2

>>> d *= 3 + 4

>>> d

14

All the operators in Figure 2.5, on page 25, have shorthand versions.

For example, we can square a number by multiplying it by itself:

Download basic/variable8.cmd

>>> number = 10

>>> number *= number

>>> number

100

which is equivalent to this:

Download basic/variable9.cmd

>>> number = 10

>>> number = number * number

>>> number

100

2.5 When Things Go Wrong

We said earlier that variables are created by assigning them values.

What happens if we try to use a variable that hasn’t been created yet?

Download basic/undefined_var.cmd

>>> 3 + something

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'something' is not defined

This is pretty cryptic. In fact, Python’s error messages are one of its few

weaknesses from the point of view of novice programmers. The first two

lines aren’t much use right now, though they’ll be indispensable when

we start writing longer programs. The last line is the one that tells us

what went wrong: the name something wasn’t recognized.

http://media.pragprog.com/titles/gwpy/code/basic/variable7.cmd
http://media.pragprog.com/titles/gwpy/code/basic/variable8.cmd
http://media.pragprog.com/titles/gwpy/code/basic/variable9.cmd
http://media.pragprog.com/titles/gwpy/code/basic/undefined_var.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=29

FUNCTION BASICS 30

Here’s another error message you might sometimes see:

Download basic/syntax_error.cmd

>>> 2 +

File "<stdin>", line 1

2 +

^

SyntaxError: invalid syntax

The rules governing what is and isn’t legal in a programming language

(or any other language) are called its syntax. What this message is

telling us is that we violated Python’s syntax rules—in this case, by

asking it to add something to 2 but not telling it what to add.

2.6 Function Basics

Earlier in this chapter, we converted 80 degrees Fahrenheit to Celsius.

A mathematician would write this as f(t)= 5
9 (t-32), where t is the tem-

perature in Fahrenheit that we want to convert to Celsius. To find out

what 80 degrees Fahrenheit is in Celsius, we replace t with 80, which

gives us f (80) = 5
9 (80-32), or 262

3 .

We can write functions in Python, too. As in mathematics, they are used

to define common formulas. Here is the conversion function in Python:

Download basic/fahr_to_cel.cmd

>>> def to_celsius(t):

... return (t - 32.0) * 5.0 / 9.0

...

It has these major differences from its mathematical equivalent:

• A function definition is another kind of Python statement; it de-

fines a new name whose value can be rather complicated but is

still just a value.

• The keyword def is used to tell Python that we’re defining a new

function.

• We use a readable name like to_celsius for the function rather than

something like f whose meaning will be hard to remember an hour

later. (This isn’t actually a requirement, but it’s good style.)

• There is a colon instead of an equals sign.

• The actual formula for the function is defined on the next line. The

line is indented four spaces and marked with the keyword return.

http://media.pragprog.com/titles/gwpy/code/basic/syntax_error.cmd
http://media.pragprog.com/titles/gwpy/code/basic/fahr_to_cel.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=30

FUNCTION BASICS 31

Python displays a triple-dot prompt automatically when you’re in the

middle of defining a new function; you do not type the dots any more

than you type the greater-than signs in the usual >>> prompt. If you’re

using a smart editor, like the one in Wing 101, it will automatically

indent the body of the function by the required amount. (This is another

reason to use Wing 101 instead of a basic text editor like Notepad or

Pico: it saves a lot of wear and tear on your spacebar and thumb.)

Here is what happens when we ask Python to evaluate to_celsius(80),

to_celsius(78.8), and to_celsius(10.4):

Download basic/fahr_to_cel_2.cmd

>>> to_celsius(80)

26.666666666666668

>>> to_celsius(78.8)

26.0

>>> to_celsius(10.4)

-12.0

Each of these three statements is called a function call, because we’re

calling up the function to do some work for us. We have to define a

function only once; we can call it any number of times.

The general form of a function definition is as follows:

def function_name(parameters):

block

As we’ve already seen, the def keyword tells Python that we’re defin-

ing a new function. The name of the function comes next, followed by

zero or more parameters in parentheses and a colon. A parameter is

a variable (like t in the function to_celsius) that is given a value when

the function is called. For example, 80 was assigned to t in the func-

tion call to_celsius(80), and then 78.8 in to_celsius(78.8), and then 10.4

in to_celsius(10.4). Those actual values are called the arguments to the

function.

What the function does is specified by the block of statements inside

it. to_celsius’s block consisted of just one statement, but as we’ll see

later, the blocks making up more complicated functions may be many

statements long.

Finally, the return statement has this general form:

return expression

http://media.pragprog.com/titles/gwpy/code/basic/fahr_to_cel_2.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=31

FUNCTION BASICS 32

!"#$%&'(")*+,*-%./$
$$$0"%,01$-%$2$3456.$7$856$9$:56$
$$$
%&'(")*+,*-;6.

!"#$%&'(&)"'*"+,-

!

"

#

$

Figure 2.8: Function control flow

and is executed as follows:

1. Evaluate the expression to the right of the keyword return.

2. Use that value as the result of the function.

It’s important to be clear on the difference between a function definition

and a function call. When a function is defined, Python records it but

doesn’t execute it. When the function is called, Python jumps to the

first line of that function and starts running it (see Figure 2.8). When

the function is finished, Python returns to the place where the function

was originally called.

Local Variables

Some computations are complex, and breaking them down into sepa-

rate steps can lead to clearer code. Here, we break down the evaluation

of the polynomial ax2 + bx + c into several steps:

Download basic/multi_statement_block.cmd

>>> def polynomial(a, b, c, x):

... first = a * x * x

... second = b * x

... third = c

... return first + second + third

...

>>> polynomial(2, 3, 4, 0.5)

6.0

>>> polynomial(2, 3, 4, 1.5)

13.0

Variables like first, second, and third that are created within a function

are called local variables. These variables exist only during function

execution; when the function finishes executing, the variables no longer

exist. This means that trying to access a local variable from outside the

http://media.pragprog.com/titles/gwpy/code/basic/multi_statement_block.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=32

BUILT -IN FUNCTIONS 33

function is an error, just like trying to access a variable that has never

been defined:

Download basic/local_variable.cmd

>>> polynomial(2, 3, 4, 1.3)

11.280000000000001

>>> first

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'first' is not defined

>>> a

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'a' is not defined

As you can see from this example, a function’s parameters are also local

variables. When a function is called, Python assigns the argument val-

ues given in the call to the function’s parameters. As you might expect,

if a function is defined to take a certain number of parameters, it must

be passed the same number of arguments:4

Download basic/matching_args_params.cmd

>>> polynomial(1, 2, 3)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: polynomial() takes exactly 4 arguments (3 given)

The scope of a variable is the area of the program that can access it.

For example, the scope of a local variable runs from the line on which

it is first defined to the end of the function.

2.7 Built-in Functions

Python comes with many built-in functions that perform common oper-

ations. One example is abs, which produces the absolute value of a

number:

Download basic/abs.cmd

>>> abs(-9)

9

4. We’ll see later how to create functions that take any number of arguments.

http://media.pragprog.com/titles/gwpy/code/basic/local_variable.cmd
http://media.pragprog.com/titles/gwpy/code/basic/matching_args_params.cmd
http://media.pragprog.com/titles/gwpy/code/basic/abs.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=33

STYLE NOTES 34

Another is round, which rounds a floating-point number to the nearest

integer:

Download basic/round.cmd

>>> round(3.8)

4.0

>>> round(3.3)

3.0

>>> round(3.5)

4.0

Just like user-defined functions, Python’s built-in functions can take

more than one argument. For example, we can calculate 2
4 using the

power function pow:

Download basic/two_args.cmd

>>> pow(2, 4)

16

Some of the most useful built-in functions are ones that convert from

one type to another. The type names int and float can be used as if they

were functions:

Download basic/typeconvert.cmd

>>> int(34.6)

34

>>> float(21)

21.0

In this example, we see that when a floating-point number is converted

to an integer and truncated, not rounded.

2.8 Style Notes

Psychologists have discovered that people can keep track of only a

handful of things at any one time [Hoc04]. Since programs can get quite

complicated, it’s important that you choose names for your variables

that will help you remember what they’re for. X1, X2, and blah won’t

remind you of anything when you come back to look at your program

next week; use names like celsius, average, and final_result instead.

Other studies have shown that your brain automatically notices differ-

ences between things—in fact, there’s no way to stop it from doing this.

As a result, the more inconsistencies there are in a piece of text, the

longer it takes to read. (JuSt thInK a bout how long It w o u l d tAKE

you to rEa d this cHaPTer iF IT wAs fORmaTTeD like thIs.) It’s therefore

http://media.pragprog.com/titles/gwpy/code/basic/round.cmd
http://media.pragprog.com/titles/gwpy/code/basic/two_args.cmd
http://media.pragprog.com/titles/gwpy/code/basic/typeconvert.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=34

SUMMARY 35

also important to use consistent names for variables. If you call some-

thing maximum in one place, don’t call it max_val in another; if you use

the name max_val, don’t also use the name maxVal, and so on.

These rules are so important that many programming teams require

members to follow a style guide for whatever language they’re using,

just as newspapers and book publishers specify how to capitalize head-

ings and whether to use a comma before the last item in a list. If you

search the Internet for programming style guide, you’ll discover links to

hundreds of examples.

You will also discover that lots of people have wasted many hours argu-

ing over what the “best” style for code is. Some of your classmates may

have strong opinions about this as well. If they do, ask them what data

they have to back up their beliefs, in other words, whether they know of

any field studies that prove that spaces after commas make programs

easier to read than no spaces. If they can’t cite any studies, pat them

on the back and send them on their deluded way.

2.9 Summary

In this chapter, we learned the following:

• An operating system is a program that manages your computer’s

hardware on behalf of other programs. An interpreter or virtual

machine is a program that sits on top of the operating system and

runs your programs for you. Building layers like this is the best

way we have found so far for constructing complicated systems.

• Programs are made up of statements. These can be simple expres-

sions (which are evaluated immediately), assignment statements

(which create new variables or change the values of existing vari-

ables), and function definitions (which teach Python how to do

new things).

• Every value in Python has a specific type, which determines what

operations can be applied to it. The two types used to represent

numbers are int and float.

• Expressions are evaluated in a particular order. However, you can

change that order by putting parentheses around subexpressions.

• Variables must be given values before they are used.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=35

EXERCISES 36

• When a function is called, the values of its arguments are assigned

to its parameters, the statements inside the function are executed,

and a value is returned. The values assigned to the function’s

parameters, and the values of any local variables created inside

the function, are forgotten after the function returns.

• Python comes with predefined functions called built-ins.

2.10 Exercises

Here are some exercises for you to try on your own:

1. For each of the following expressions, what value will the expres-

sion give? Verify your answers by typing the expressions into

Python.

a) 9 - 3

b) 8 * 2.5

c) 9 / 2

d) 9 / -2

e) 9 % 2

f) 9 % -2

g) -9 % 2

h) 9 / -2.0

i) 4 + 3 * 5

j) (4 + 3) * 5

2. Unary minus negates a number. Unary plus exists as well; for

example, Python understands +5. If x has the value -17, what do

you think +x should do? Should it leave the sign of the number

alone? Should it act like absolute value, removing any negation?

Use the Python shell to find out its behavior.

3. a) Create a new variable temp, and assign it the value 24.

b) Convert the value in temp from Celsius to Fahrenheit by mul-

tiplying by 1.8 and adding 32; associate the resulting value

with temp. What is temp’s new value?

4. a) Create a new variable x, and assign it the value 10.5.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=36

EXERCISES 37

b) Create a new variable y, and assign it the value 4.

c) Sum x and y, and associate the resulting value with x. What

are x and y’s new values?

5. Write a bullet list description of what happens when Python eval-

uates the statement x += x - x when x has the value 3.

6. The function name to_celsius is problematic: it doesn’t mention the

original unit, and it isn’t a verb phrase. (Many function names

are verb phrases because functions actively do things.) We also

assumed the original unit was Fahrenheit, but Kelvin is a tem-

perature scale too, and there are many others (see Section 6.5,

Exercises, on page 127 for a discussion of them).

We could use a longer name such as fahrenheit_to_celsius or even

convert_fahrenheit_to_celsius. We could abbreviate it as fahr_to_cel,

make it much shorter and use f2c, or even just use f. Write a para-

graph describing which name you think is best and why. Consider

ease of remembering, ease of typing, and readability. Don’t forget

to consider people whose first language isn’t English.

7. In the United States, a car’s fuel efficiency is measured in miles

per gallon. In the metric system, it is usually measured in liters

per 100 kilometers.

a) Write a function called convert_mileage that converts from

miles per gallon to liters per 100 kilometers.

b) Test that your functions returns the right values for 20 and

40 miles per gallon.

c) How did you figure out what the right value was? How closely

do the computer’s results match the ones you expected?

8. Explain the difference between a parameter and an argument.

9. a) Define a function called liters_needed that takes a value repre-

senting a distance in kilometers and a value representing gas

mileage for a vehicle and returns the amount of gas needed

in liters to travel that distance. Your definition should call the

function convert_mileage that you defined as part of a previous

exercise.

b) Verify that liters_needed(150, 30) returns 11.761938367442955

and liters_needed(100, 30) returns 7.84129224496197.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=37

EXERCISES 38

c) When liters_needed is called with arguments 100 and 30, what

is the value of the argument to convert_mileage?

d) The function call liters_needed(100, 30) results in a call to con-

vert_mileage. Which of those two functions finishes executing

first?

10. We’ve seen built-in functions abs, round, pow, int, and float. Using

these functions, write expressions that do the following:

a) Calculate 3 to the power of 7.

b) Convert 34.7 to an integer by truncating.

c) Convert 34.7 to an integer by rounding.

d) Take the absolute value of -86, then convert it to a floating-

point number.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=38

Chapter 3

Strings
Numbers are fundamental to computing—in fact, crunching numbers

is what computers were invented to do—but there are many other kinds

of data in the world as well, such as addresses, pictures, and music.

Each of these can be represented as a data type, and knowing how to

manipulate those data types is a big part of being able to program. This

chapter introduces a non-numeric data type that represents text, such

as the words in this sentence or a strand of DNA. Along the way, we

will see how to make programs a little more interactive.

3.1 Strings

Computers may have been invented to do arithmetic, but these days,

most of them spend a lot of their time processing text. From desktop

chat programs to Google, computers create text, store it, search it, and

move it from one place to another.

In Python, a piece of text is represented as a string, which is a sequence

of characters (letters, numbers, and symbols). The simplest data type

for storing sequences of characters is str; it can store characters from

the Latin alphabet found on most North American keyboards. Another

data type called unicode can store strings containing any characters at

all, including Chinese ideograms, chemical symbols, and Klingon. We

will use the simpler type, str, in our examples.

STRINGS 40

In Python, we indicate that a value is a string by putting either single

or double quotes around it:

Download strings/string.cmd

>>> 'Aristotle'

'Aristotle'

>>> "Isaac Newton"

'Isaac Newton'

The quotes must match:

Download strings/mismatched_quotes.cmd

>>> 'Charles Darwin"

File "<stdin>", line 1

'Charles Darwin"

^

SyntaxError: EOL while scanning single-quoted string

We can join two strings together by putting them side by side:

Download strings/concat.cmd

>>> 'Albert' 'Einstein'

'AlbertEinstein'

Notice that the words Albert and Einstein run together. If we want a space

between the words, then we can add a space either to the end of Albert

or to the beginning of Einstein:

Download strings/concat_space.cmd

>>> 'Albert ' 'Einstein'

'Albert Einstein'

>>> 'Albert' ' Einstein'

'Albert Einstein'

It’s almost always clearer to join strings with +. When + has two string

operands, then it is referred to as the concatenation operator:

Download strings/concat2.cmd

>>> 'Albert' + ' Einstein'

'Albert Einstein'

Since the + operator is used for both numeric addition and for string

concatenation, we call this an overloaded operator. It performs different

functions based on the type of operands that it is applied to.

The shortest string is the empty string, containing no characters at all.

http://media.pragprog.com/titles/gwpy/code/strings/string.cmd
http://media.pragprog.com/titles/gwpy/code/strings/mismatched_quotes.cmd
http://media.pragprog.com/titles/gwpy/code/strings/concat.cmd
http://media.pragprog.com/titles/gwpy/code/strings/concat_space.cmd
http://media.pragprog.com/titles/gwpy/code/strings/concat2.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=40

STRINGS 41

As the following example shows, it’s the textual equivalent of 0—adding

it to another string has no effect:

Download strings/empty_string.cmd

>>> ''

''

>>> "Alan Turing" + ''

'Alan Turing'

>>> "" + 'Grace Hopper'

'Grace Hopper'

Here is an interesting question: can the + operator be applied to a string

and numeric value? If so, what function would be applied, addition or

concatenation? We’ll give it a try:

Download strings/concat3.cmd

>>> 'NH' + 3

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: cannot concatenate 'str' and 'int' objects

>>> 9 + ' planets'

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: unsupported operand type(s) for +: 'int' and 'str'

This is the second time Python has told us that we have a type error.

The first time, in Section 2.6, Local Variables, on page 32, the problem

was not passing the right number of parameters to a function. Here,

Python took exception to our attempts to add values of different data

types, because it doesn’t know which version of + we want: the one that

adds numbers or the one that concatenates strings.

In this case, it’s easy for a human being to see what the right answer

is. But what about this example?

Download strings/concat4.cmd

>>> '123' + 4

Should Python produce the string ’1234’ or the integer 127? The answer

is that it shouldn’t do either: if it guesses what we want, it’ll be wrong

at least some of the time, and we will have to try to track down the

problem without an error message to guide us.1

1. If you still aren’t convinced, consider this: in JavaScript (a language used for web

programming), ’7’+0 is the string ’70’, but ’7’-0 is 7.

http://media.pragprog.com/titles/gwpy/code/strings/empty_string.cmd
http://media.pragprog.com/titles/gwpy/code/strings/concat3.cmd
http://media.pragprog.com/titles/gwpy/code/strings/concat4.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=41

ESCAPE CHARACTERS 42

If you want to put a number in the middle of a string, the easiest way is

to convert it via the built-in str function and then do the concatenation:

Download strings/concat4.cmd

>>> '123' + 4

The fact that Python will not combine strings and numbers using +

doesn’t mean that other operators can’t combine strings and integers.

In particular, we can repeat a string using the * operator, like this:

Download strings/repeat.cmd

>>> 'AT' * 5

'ATATATATAT'

>>> 4 * '-'

'----'

If the integer is less than or equals to zero, then this operator yields the

empty string (a string containing no characters):

Download strings/repeat2.cmd

>>> 'GC' * 0

''

>>> 'TATATATA' * -3

''

3.2 Escape Characters

Suppose you want to put a single quote inside a string. If you write it

directly, Python will complain:

Download strings/single_in_single.cmd

>>> 'that's not going to work'

File "<stdin>", line 1

'that's not going to work'

^

SyntaxError: invalid syntax

The problem is that when Python sees the second quote—the one that

you think of as being part of the string—it thinks the string is over. It

then doesn’t know what to do with all the stuff that comes after the

second quote.

One simple way to fix this is to use double quotes around the string:

Download strings/single_in_double.cmd

>>> "that's better"

"that's better"

http://media.pragprog.com/titles/gwpy/code/strings/concat4.cmd
http://media.pragprog.com/titles/gwpy/code/strings/repeat.cmd
http://media.pragprog.com/titles/gwpy/code/strings/repeat2.cmd
http://media.pragprog.com/titles/gwpy/code/strings/single_in_single.cmd
http://media.pragprog.com/titles/gwpy/code/strings/single_in_double.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=42

MULTILINE STRINGS 43

Escape Sequence Description

\n End of line

\\ Backslash

\’ Single quote

\" Double quote

\t Tab

Figure 3.1: Escape sequences

If you need to put a double quote in a string, you can use single quotes

around the string. But what if you want to put both kinds of quote in

one string? You could do this:

Download strings/adding_quotes.cmd

>>> 'She said, "That' + "'" + 's hard to read."'

Luckily, there’s a better way. If you type the previous expression into

Python, the result is as follows:

Download strings/adding_quotes_output.cmd

'She said, "That\'s hard to read."'

The combination of the backslash and the single quote is called an

escape sequence. The name comes from the fact that we’re “escaping”

from Python’s usual syntax rules for a moment. When Python sees a

backslash inside a string, it means that the next character represents

something special—in this case, a single quote, rather than the end of

the string. The backslash is called an escape character, since it signals

the start of an escape sequence.

As shown in Figure 3.1, Python recognizes several escape sequences.

In order to see how most are used, we will have to introduce two more

ideas: multiline strings and printing.

3.3 Multiline Strings

If you create a string using single or double quotes, the whole string

must fit onto a single line.

http://media.pragprog.com/titles/gwpy/code/strings/adding_quotes.cmd
http://media.pragprog.com/titles/gwpy/code/strings/adding_quotes_output.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=43

PRINT 44

Here’s what happens when you try to stretch a string across multiple

lines:

Download strings/multi1.cmd

>>> 'one

Traceback (most recent call last):

File "<string>", line 1, in <string>

Could not execute because an error occurred:

EOL while scanning single-quoted string: <string>, line 1, pos 4:

'one

EOL stands for “end of line,” so in this error report, Python is saying

that it reached the end of the line before it found the end of the string.

To span multiple lines, put three single quotes or three double quotes

around the string instead of one of each. The string can then span as

many lines as you want:

Download strings/multi2.cmd

>>> '''one

... two

... three'''

'one\ntwo\nthree'

Notice that the string Python creates contains a \n sequence every-

where our input started a new line. In reality, each of the three major

operating systems uses a different set of characters to indicate the end

of a line. This set of characters is called a newline. On Linux, a newline

is one ’\n’ character; on Mac OS X, it is one ’\r’; and on Windows, the

ends of lines are marked with both characters as ’\r\n’.

Python always uses a single \n to indicate a newline, even on operating

systems like Windows that do things other ways. This is called normal-

izing the string; Python does this so that you can write exactly the same

program no matter what kind of machine you’re running on.

3.4 Print

So far, we have been able to display the value of only one variable or

expression at a time. Real programs often want to display more infor-

mation, such as the values of multiple variable values. This can be done

using a print statement:

Download strings/print3.cmd

>>> print 1 + 1

2

http://media.pragprog.com/titles/gwpy/code/strings/multi1.cmd
http://media.pragprog.com/titles/gwpy/code/strings/multi2.cmd
http://media.pragprog.com/titles/gwpy/code/strings/print3.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=44

FORMATTED PRINTING 45

>>> print "The Latin 'oryctolagus cuniculus' means 'domestic rabbit'."

The Latin 'Oryctolagus cuniculus' means 'domestic rabbit'.

The first statement does what you’d expect from the numeric examples

we’ve seen previously, but the second does something slightly different

from previous string examples: it strips off the quotes around the string

and shows us the string’s contents, rather than its representation. This

example makes the difference between the two even clearer:

Download strings/print4.cmd

>>> print 'In 1859, Charles Darwin revolutionized biology'

In 1859, Charles Darwin revolutionized biology

>>> print 'and our understanding of ourselves'

and our understanding of ourselves

>>> print 'by publishing "On the Origin of Species".'

by publishing "On the Origin of Species".

And the following example shows that when Python prints a string, it

prints the values of any escape sequences in the string, rather than

their backslashed representations:

Download strings/print5.cmd

>>> print 'one\ttwo\nthree\tfour'

one two

three four

This example shows how the tab character \t can be used to lay values

out in columns. A print statement takes a comma-separated list of items

to print and displays them on a line of their own. If no values are given,

print simply displays a blank line. You can use any mix of types in the

list; Python always inserts a single space between each value:

Download strings/print_var.cmd

>>> area = 3.14159 * 5 * 5

>>> print "The area of the circle is", area, "sq cm."

The area of the circle is 78.539750 sq cm.

3.5 Formatted Printing

Sometimes, Python’s default printing rules aren’t what we want. In

these cases, we can specify the exact format we want for our output

by providing Python with a format string:

Download strings/print.cmd

>>> print "The area of the circle is %f sq cm." % area

The area of the circle is 78.539750 sq cm.

http://media.pragprog.com/titles/gwpy/code/strings/print4.cmd
http://media.pragprog.com/titles/gwpy/code/strings/print5.cmd
http://media.pragprog.com/titles/gwpy/code/strings/print_var.cmd
http://media.pragprog.com/titles/gwpy/code/strings/print.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=45

USER INPUT 46

In the previous statement, %f is a conversion specifier. It indicates where

the value of the variable area is to be inserted. Other markers that we

might use are %s, to insert a string value, and %d, to insert an integer.

The letter following the % is called the conversion type.

The % between the string and the value being inserted is another over-

loaded operator. We used % earlier for modulo; here, it is the string

formatting operator. It does not modify the string on its left side, any

more than the + in 3 + 5 changes the value of 3. Instead, the string

formatting operator returns a new string.

We can use the string formatting operator to lay out several values at

once. Here, for example, we are laying out a float and an int at the same

time:

Download strings/print2.cmd

>>> rabbits = 17

>>> cage = 10

>>> print "%f rabbits are in cage #%d." % (rabbits, cage)

17.000000 rabbits are in cage #10.

As we said earlier, print automatically puts a newline at the end of a

string. This isn’t necessarily what we want; for example, we might want

to print several pieces of data separately and have them all appear on

one line. To prevent the newline from being added, put a comma at the

end of the print statement:

Download strings/print_multiline2.cmd

>>> print rabbits,

17>>>

3.6 User Input

In an earlier chapter, we explored some built-in functions. Another

built-in function that you will find useful is raw_input, which reads a sin-

gle line of text from the keyboard. The “raw” part means that it returns

whatever the user enters as a string, even if it looks like a number:

Download strings/user_input.cmd

>>> line = raw_input()

Galapagos Islands

>>> print line

Galapagos Islands

>>> line = raw_input()

123

http://media.pragprog.com/titles/gwpy/code/strings/print2.cmd
http://media.pragprog.com/titles/gwpy/code/strings/print_multiline2.cmd
http://media.pragprog.com/titles/gwpy/code/strings/user_input.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=46

SUMMARY 47

>>> print line * 2

123123

If you are expecting the user to enter a number, you must use int or

float to convert the string to the required type:

Download strings/user_input2.cmd

>>> value = raw_input()

123

>>> value = int(value)

>>> print value * 2

246

>>> value = float(raw_input())

Galapagos

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: invalid literal for float(): Galapagos

Finally, raw_input can be given a string argument, which is used to

prompt the user for input:

Download strings/raw_input_param.cmd

>>> name = raw_input("Please enter a name: ")

Please enter a name: Darwin

>>> print name

Darwin

3.7 Summary

In this chapter, we learned the following:

• Python uses the string type str to represent text as sequences of

characters.

• Strings are usually created by placing pairs of single or double

quotes around the text. Multiline strings can be created using

matching pairs of triple quotes.

• Special characters like newline and tab are represented using es-

cape sequences that begin with a backslash.

• Values can be displayed on the screen using a print statement and

input can be provided by the user using raw_input.

http://media.pragprog.com/titles/gwpy/code/strings/user_input2.cmd
http://media.pragprog.com/titles/gwpy/code/strings/raw_input_param.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=47

EXERCISES 48

3.8 Exercises

Here are some exercises for you to try on your own:

1. For each of the following expressions, what value will the expres-

sion give? Verify your answers by typing the expressions into the

Python shell.

a) ’Comp’ ’Sci’

b) ’Computer’ + ’ Science’

c) ’H20’ * 3

d) ’C02’ * 0

2. For each of the following phrases, express them as Python strings

using the appropriate type of quotation marks (single, double or

triple) and, if necessary, escape sequences:

a) They’ll hibernate during the winter.

b) “Absolutely not,” he said.

c) “He said, ’Absolutely not,”’ recalled Mel.

d) hydrogen sulfide

e) left\right

3. Rewrite the following string using single or double quotes instead

of triple quotes:

'''A

B

C'''

4. Use the built-in function len to find the length of the empty string.

5. Given variables x and y, which refer to values 3 and 12.5 respec-

tively, use print to display the following messages. When numbers

appear in the messages, the variables x and y should be used in

the print statement.

a) The rabbit is 3.

b) The rabbit is 3 years old.

c) 12.5 is average.

d) 12.5 * 3

e) 12.5 * 3 is 37.5.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=48

EXERCISES 49

6. State whether each expression listed here evaluates to True or False:

a) ’g’ == "g"

b) ’g’ == ’G’

c) ’a’ ≥ ’b’

d) ’ant’ < ’abc’

e) ’ant’ > ’Ant’

f) ’ant’ > ’Abc’

g) ’ant’ < ’anti’

7. Use raw_input to prompt the user for a number and store the num-

ber entered as a float in a variable named num, and then print the

contents of num.

8. If you enter two strings side by side in Python, it automatically

concatenates them:

>>> 'abc' 'def'

'abcdef'

If those same strings are stored in variables, though, putting them

side by side is a syntax error:

>>> left = 'abc'

>>> right = 'def'

>>> left right

File "<stdin>", line 1

left right

^

SyntaxError: invalid syntax

Why do you think Python doesn’t let you do this?

9. Some people believe that multiplying a string by a negative num-

ber ought to produce an error, rather than an empty string. Ex-

plain why they might think this. If you agree, explain why; if you

don’t, explain why not.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=49

Chapter 4

Modules
Mathematicians don’t prove every theorem from scratch. Instead, they

build their proofs on the truths their predecessors have already estab-

lished. In the same way, it’s vanishingly rare for someone to write all of

a program herself; it’s much more common—and productive—to make

use of the millions of lines of code that other programmers have written

before.

A module is a collection of functions that are grouped together in a

single file. Functions in a module are usually related to each other in

some way; for example, the math module contains mathematical func-

tions such as cos (cosine) and sqrt (square root). This chapter shows you

how to use some of the hundreds of modules that come with Python and

how to create new modules of your own. You will also see how you can

use Python to explore and view images.

4.1 Importing Modules

When you want to refer to someone else’s work in a scientific paper, you

have to cite it in your bibliography. When you want to use a function

from a module, you have to import it. To tell Python that you want

to use functions in the math module, for example, you use this import

statement:

Download modules/import.cmd

>>> import math

http://media.pragprog.com/titles/gwpy/code/modules/import.cmd

IMPORTING MODULES 51

Once you have imported a module, you can use the built-in help func-

tion to see what it contains:1

Download modules/help_math.cmd

>>> help(math)

Help on built-in module math:

NAME

math

FILE

(built-in)

DESCRIPTION

This module is always available. It provides access to the

mathematical functions defined by the C standard.

FUNCTIONS

acos(...)

acos(x)

Return the arc cosine (measured in radians) of x.

asin(...)

asin(x)

Return the arc sine (measured in radians) of x.

...

Great—our program can now use all the standard mathematical func-

tions. When we try to calculate a square root, though, we get an error

telling us that Python is still unable to find the function sqrt:

Download modules/sqrt.cmd

>>> sqrt(9)

Traceback (most recent call last):

File "<string>", line 1, in <string>

NameError: name 'sqrt' is not defined

The solution is to tell Python explicitly to look for the function in the

math module by combining the module’s name with the function’s name

using a dot:

Download modules/sqrt2.cmd

>>> math.sqrt(9)

3.0

1. When you do this interactively, Python displays only a screenful of information at a

time. Press the spacebar when you see the “More” prompt to go to the next page.

http://media.pragprog.com/titles/gwpy/code/modules/help_math.cmd
http://media.pragprog.com/titles/gwpy/code/modules/sqrt.cmd
http://media.pragprog.com/titles/gwpy/code/modules/sqrt2.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=51

IMPORTING MODULES 52

!"##$

!"#$

!"#$%&

%&'()'*+

!"#$%&

!"##$

,(--./00123

'

Figure 4.1: How import works

The reason we have to join the function’s name with the module’s name

is that several modules might contain functions with the same name.

For example, does the following call to floor refer to the function from

the math module that rounds a number down or the function from the

(completely fictional) building module that calculates a price given an

area (see Figure 4.1)?

Download modules/import_ambiguity.cmd

>>> import math

>>> import building

>>> floor(22.7)

Once a module has been imported, it stays in memory until the program

ends. There are ways to “unimport” a module (in other words, to erase

it from memory) or to reimport a module that has changed while the

program is running, but they are rarely used. In practice, it’s almost

always simpler to stop the program and restart it.

Modules can contain more than just functions. The math module, for

example, also defines some variables like pi. Once the module has been

imported, you can use these variables like any others:

Download modules/pi.cmd

>>> math.pi

3.1415926535897931

>>> radius = 5

>>> print 'area is %6f' % (math.pi * radius ** 2)

area is 78.539816

http://media.pragprog.com/titles/gwpy/code/modules/import_ambiguity.cmd
http://media.pragprog.com/titles/gwpy/code/modules/pi.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=52

IMPORTING MODULES 53

You can even assign to variables imported from modules:

Download modules/pi_change.cmd

>>> import math

>>> math.pi = 3 # would turn circles into hexagons

>>> radius = 5

>>> print 'circumference is', 2 * math.pi * radius

circumference is 30

Don’t do this! Changing the value of π is not a good idea. In fact, it’s

such a bad idea that many languages allow programmers to define

unchangeable constants as well as variables. As the name suggests,

the value of a constant cannot be changed after it has been defined:

π is always 3.14159 and a little bit, while SECONDS_PER_DAY is always

86,400. The fact that Python doesn’t allow programmers to “freeze” val-

ues like this is one of the language’s few significant flaws.

Combining the module’s name with the names of the things it contains

is safe, but it isn’t always convenient. For this reason, Python lets you

specify exactly what you want to import from a module, like this:

Download modules/from.cmd

>>> from math import sqrt, pi

>>> sqrt(9)

3.0

>>> radius = 5

>>> print 'circumference is %6f' % (2 * pi * radius)

circumference is 31.415927

This can lead to problems when different modules provide functions

that have the same name. If you import a function called spell from a

module called magic and then you import another function called spell

from the module grammar, the second replaces the first. It’s exactly

like assigning one value to a variable, then another: the most recent

assignment or import wins.

This is why it’s usually not a good idea to use import *, which brings in

everything from the module at once. It saves some typing:

Download modules/from2.cmd

>>> from math import *
>>> '%6f' % sqrt(8)

'2.828427'

but using it means that every time you add anything to a module, you

run the risk of breaking every program that uses it.

http://media.pragprog.com/titles/gwpy/code/modules/pi_change.cmd
http://media.pragprog.com/titles/gwpy/code/modules/from.cmd
http://media.pragprog.com/titles/gwpy/code/modules/from2.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=53

DEFINING YOUR OWN MODULES 54

The standard Python library contains several hundred modules to do

everything from figuring out what day of the week it is to fetching data

from a website. The full list is online at http://docs.python.org/modindex.

html; although it’s far too much to absorb in one sitting (or even one

course), knowing how to use the library well is one of the things that

distinguishes good programmers from poor ones.

4.2 Defining Your Own Modules

Section 2.1, The Big Picture, on page 17 explained that in order to save

code for later use, you can put it in a file with a .py extension. You

can then tell Python to run the code in that file, rather than typing

commands in at the interactive prompt. What we didn’t tell you then is

that every Python file can be used as a module. The name of the module

is the same as the name of the file, but without the .py extension.

For example, the following function is taken from Section 2.6, Function

Basics, on page 30:

Download modules/convert.py

def to_celsius(t):

return (t - 32.0) * 5.0 / 9.0

Put this function definition in a file called temperature.py, and then add

another function called above_freezing that returns True if its argument’s

value is above freezing (in Celsius), and False otherwise:

Download modules/freezing.py

def above_freezing(t):

return t > 0

Congratulations—you have now created a module called temperature:

Download modules/temperature.py

def to_celsius(t):

return (t - 32.0) * 5.0 / 9.0

def above_freezing(t):

return t > 0

Now that you’ve created this file, you can now import it like any other

module:

Download modules/import_temp.cmd

>>> import temperature

>>> temperature.above_freezing(temperature.to_celsius(33.3))

True

http://docs.python.org/modindex.html
http://docs.python.org/modindex.html
http://media.pragprog.com/titles/gwpy/code/modules/convert.py
http://media.pragprog.com/titles/gwpy/code/modules/freezing.py
http://media.pragprog.com/titles/gwpy/code/modules/temperature.py
http://media.pragprog.com/titles/gwpy/code/modules/import_temp.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=54

DEFINING YOUR OWN MODULES 55

The __builtins__ Module

Python’s built-in functions are actually in a module named
__builtins__. The double underscores before and after the name
signal that it’s part of Python; we’ll see this convention used
again later for other things. You can see what’s in the module
using help(__builtins__), or if you just want a directory, you can use
dir instead (which works on other modules as well):

Download modules/dir1.cmd

>>> dir(__builtins__)
['ArithmeticError', 'AssertionError', 'AttributeError',
'BaseException', 'DeprecationWarning', 'EOFError', 'Ellipsis',
'EnvironmentError', 'Exception', 'False', 'FloatingPointError',
'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError',
'ImportWarning', 'IndentationError', 'IndexError', 'KeyError',
'KeyboardInterrupt', 'LookupError', 'MemoryError', 'NameError',
'None', 'NotImplemented', 'NotImplementedError', 'OSError',
'OverflowError', 'PendingDeprecationWarning', 'ReferenceError',
'RuntimeError', 'RuntimeWarning', 'StandardError',
'StopIteration', 'SyntaxError', 'SyntaxWarning', 'SystemError',
'SystemExit', 'TabError', 'True', 'TypeError',
'UnboundLocalError', 'UnicodeDecodeError', 'UnicodeEncodeError',
'UnicodeError', 'UnicodeTranslateError', 'UnicodeWarning',
'UserWarning', 'ValueError', 'Warning', 'ZeroDivisionError', '_',
'__debug__', '__doc__', '__import__', '__name__', 'abs', 'all',
'any', 'apply', 'basestring', 'bool', 'buffer', 'callable',
'chr', 'classmethod', 'cmp', 'coerce', 'compile', 'complex',
'copyright', 'credits', 'delattr', 'dict', 'dir', 'divmod',
'enumerate', 'eval', 'execfile', 'exit', 'file', 'filter',
'float', 'frozenset', 'getattr', 'globals', 'hasattr', 'hash',
'help', 'hex', 'id', 'input', 'int', 'intern', 'isinstance',
'issubclass', 'iter', 'len', 'license', 'list', 'locals', 'long',
'map', 'max', 'min', 'object', 'oct', 'open', 'ord', 'pow',
'property', 'quit', 'range', 'raw_input', 'reduce', 'reload',
'repr', 'reversed', 'round', 'set', 'setattr', 'slice', 'sorted',
'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', 'unichr',
'unicode', 'vars', 'xrange', 'zip']

As of Python 2.5, 32 of the 135 things in __builtins__ are used to
signal errors of particular kinds, such as SyntaxError and ZeroDi-

visionError. There are also functions called copyright, which tells
you who holds the copyright on Python, and license, which dis-
plays Python’s rather complicated license. We’ll meet some of
this module’s other members in later chapters.

http://media.pragprog.com/titles/gwpy/code/modules/dir1.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=55

DEFINING YOUR OWN MODULES 56

Figure 4.2: The temperature module in Wing 101

What Happens During Import

Let’s try another experiment. Put the following in a file called experi-

ment.py:

Download modules/experiment.py

print "The panda's scientific name is 'Ailuropoda melanoleuca'"

and then import it (or click Wing 101’s Run button):

Download modules/import_experiment.cmd

>>> import experiment

The panda's scientific name is 'Ailuropoda melanoleuca'

What this shows is that Python executes modules as it imports them.

You can do anything in a module you would do in any other program,

because as far as Python is concerned, it’s just another bunch of state-

ments to be run.

http://media.pragprog.com/titles/gwpy/code/modules/experiment.py
http://media.pragprog.com/titles/gwpy/code/modules/import_experiment.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=56

DEFINING YOUR OWN MODULES 57

Let’s try another experiment. Start a fresh Python session, and try

importing the experiment module twice in a row:

Download modules/import_twice.cmd

>>> import experiment

The panda's scientific name is 'Ailuropoda melanoleuca'

>>> import experiment

>>>

Notice that the message wasn’t printed the second time. That’s because

Python loads modules only the first time they are imported. Internally,

Python keeps track of the modules it has already seen; when it is asked

to load one that’s already in that list, it just skips over it. This saves time

and will be particularly important when you start writing modules that

import other modules, which in turn import other modules—if Python

didn’t keep track of what was already in memory, it could wind up

loading commonly used modules like math dozens of times.

Using __main__

As we’ve now seen, every Python file can be run directly from the com-

mand line or IDE or can be imported and used by another program. It’s

sometimes useful to be able to tell inside a module which is happening,

in other words, whether the module is the main program that the user

asked to execute or whether some other module has that honor.

Python defines a special variable called __name__ in every module to

help us figure this out. Suppose we put the following into echo.py:

Download modules/echo.py

print "echo: __name__ is", __name__

If we run this file, its output is as follows:

Download modules/echo.out

echo: __name__ is __main__

As promised, Python has created the variable __name__. Its value is

"__main__", meaning, “This module is the main program.”

But look at what happens when we import echo.py, instead of running

it directly:

Download modules/echo.cmd

>>> import echo

echo: __name__ is echo

http://media.pragprog.com/titles/gwpy/code/modules/import_twice.cmd
http://media.pragprog.com/titles/gwpy/code/modules/echo.py
http://media.pragprog.com/titles/gwpy/code/modules/echo.out
http://media.pragprog.com/titles/gwpy/code/modules/echo.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=57

DEFINING YOUR OWN MODULES 58

The same thing happens if we write a program that does nothing but

import our echoing module:

Download modules/import_echo.py

import echo

print "After import, __name__ is", __name__, "and echo.__name__ is", echo.__name__

which, when run from the command line, produces this:

Download modules/import_echo.out

echo: __name__ is echo

After import, __name__ is __main__ and echo.__name__ is echo

What’s happening here is that when Python imports a module, it sets

that module’s __name__ variable to be the name of the module, rather

than the special string "__main__". This means that a module can tell

whether it is the main program:

Download modules/test_main.py

if __name__ == "__main__":

print "I am the main program"

else:

print "Someone is importing me"

Try it, and see what happens when you run it directly and when you

import it.

Knowing whether a module is being imported or not turns out to allow a

few handy programming tricks. One is to provide help on the command

line whenever someone tries to run a module that’s meant to be used

as a library. For example, think about what happens when you run the

following on the command line vs. importing it into another program:

Download modules/main_help.py

'''

This module guesses whether something is a dinosaur or not.

'''

def is_dinosaur(name):

'''

Return True if the named create is recognized as a dinosaur,

and False otherwise.

'''

return name in ['Tyrannosaurus', 'Triceratops']

if __name__ == '__main__':

help(__name__)

We will see other uses in the following sections and in later chapters.

http://media.pragprog.com/titles/gwpy/code/modules/import_echo.py
http://media.pragprog.com/titles/gwpy/code/modules/import_echo.out
http://media.pragprog.com/titles/gwpy/code/modules/test_main.py
http://media.pragprog.com/titles/gwpy/code/modules/main_help.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=58

DEFINING YOUR OWN MODULES 59

Providing Help

Let’s return to the temperature module for a moment and modify it to

round temperatures off. We’ll put the result in temp_round.py:

Download modules/temp_round.py

def to_celsius(t):

return round((t - 32.0) * 5.0 / 9.0)

def above_freezing(t):

return t > 0

What happens if we ask for help on the function to_celsius?

Download modules/help_temp.cmd

>>> import temp_round

>>> help(temp_round)

Help on module temp_round:

NAME

temp_round

FILE

/home/pybook/modules/temp_round.py

FUNCTIONS

above_freezing(t)

to_celsius(t)

That’s not much use: we know the names of the functions and how

many parameters they need, but not much else. To provide something

more useful, we should add docstrings to the module and the functions

it contains and save the result in temp_with_doc.py:

Download modules/temp_with_doc.py

'''Functions for working with temperatures.'''

def to_celsius(t):

'''Convert Fahrenheit to Celsius.'''

return round((t - 32.0) * 5.0 / 9.0)

def above_freezing(t):

'''True if temperature in Celsius is above freezing, False otherwise.'''

return t > 0

Asking for help on this module produces a much more useful result.

http://media.pragprog.com/titles/gwpy/code/modules/temp_round.py
http://media.pragprog.com/titles/gwpy/code/modules/help_temp.cmd
http://media.pragprog.com/titles/gwpy/code/modules/temp_with_doc.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=59

OBJECTS AND METHODS 60

Download modules/help_temp_with_doc.cmd

>>> import temp_with_doc

>>> help(temp_with_doc)

Help on module temp_with_doc:

NAME

temp_with_doc - Functions for working with temperatures.

FILE

/home/pybook/modules/temp_with_doc.py

FUNCTIONS

above_freezing(t)

True if temperature in Celsius is above freezing, False otherwise.

to_celsius(t)

Convert Fahrenheit to Celsius.

The term docstring is short for “documentation string.” Docstrings are

easy to create: if the first thing in a file or a function is a string that

isn’t assigned to anything, Python saves it so that help can print it later.

You might think that a module this small doesn’t need much documen-

tation. After all, it has only two functions, and their names are pretty

descriptive of what they do. But writing documentation is more than a

way to earn a few extra marks—it’s essential to making software usable.

Small programs have a way of turning into larger and more complicated

ones. If you don’t document as you go along and keep the documenta-

tion in the same file as the program itself, you will quickly lose track of

what does what.

4.3 Objects and Methods

Numbers and strings may have been enough to keep programmers

happy back in the twentieth century, but these days, people expect

to work with images, sound, and video as well. A Python module called

media provides functions for manipulating and viewing pictures; it isn’t

in the standard library, but it can be downloaded for free from http://

code.google.com/p/pygraphics/. (One of the exercises discusses why it

needs a separate download.)

In order to understand how media works, we first have to introduce two

concepts that are fundamental to modern program design. And to do

that, we have to back up and take another look at strings.

http://media.pragprog.com/titles/gwpy/code/modules/help_temp_with_doc.cmd
http://code.google.com/p/pygraphics/
http://code.google.com/p/pygraphics/
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=60

OBJECTS AND METHODS 61

So far, we have seen two operators that work on strings: concatena-

tion (+), which “adds” strings, and formatting (%), which gives you con-

trol over how values are displayed. There are dozens of other things

we might want to do to strings, such as capitalize them, strip off any

leading or trailing blanks, or find out whether one string is contained

inside another. Having single-character operators such as + and - for all

of these is impractical, because we would quickly run out of letters and

have to start using two- and three-character combinations that would

be impossible to remember.

We could put all the functions that work on strings in a module and

ask users to load that module, but there’s a simpler way to solve the

problem. Python strings “own” a set of special functions called methods.

These are called just like the functions inside a module. If we have a

string like ’hogwarts’, we can capitalize it by calling ’hogwarts’.capitalize(),

which returns ’Hogwarts’. Similarly, if the variable villain has been as-

signed the string ’malfoy’, the expression villain.capitalize() will return

the string ’Malfoy’.

Every string we create automatically shares all the methods that belong

to the string data type. The most commonly used ones are listed in

Figure 4.3, on the next page; you can find the complete list in Python’s

online documentation or type help(str) into the command prompt.

Using methods is almost the same as using functions, though a method

almost always does something to or with the thing that owns it. For

example, let’s call the startswith method on the string ’species’:

Download modules/startswith.cmd

>>> 'species'.startswith('a')

False

>>> 'species'.startswith('s')

True

The method startswith takes a string argument and returns a bool to tell

us whether the string whose method was called—the one on the left of

the dot—starts with the string that is given as an argument. String also

has an endswith method:

Download modules/endswith.cmd

>>> 'species'.endswith('a')

False

>>> 'species'.endswith('s')

True

http://media.pragprog.com/titles/gwpy/code/modules/startswith.cmd
http://media.pragprog.com/titles/gwpy/code/modules/endswith.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=61

OBJECTS AND METHODS 62

Method Description

capitalize() Returns a copy of the string with the first letter cap-

italized

find(s) Returns the index of the first occurrence of s in the

string, or -1 if s is not in the string

find(s, beg) Returns the index of the first occurrence of s after

index beg in the string, or -1 if s is not in the string

after index beg

find(s, beg, end) Returns the index of the first occurrence of s between

indices beg and end in the string, or -1 if s is not in

the string between indices beg and end

islower() Tests that all characters are lowercase

isupper() Tests that all characters are uppercase

lower() Returns a copy of the string with all characters con-

verted to lowercase

replace(old, new) Returns a copy of the string with all occurrences of

the substring old replaced with new

split() Returns the space-separated words as a list

split(del) Returns the del-separated words as a list

strip() Returns a copy of the string with leading and trailing

whitespace removed

strip(s) Returns a copy of the string with the characters in s

removed

upper() Returns a copy of the string with all characters con-

verted to uppercase

Figure 4.3: Common string methods

We can chain multiple method calls together in a single line by calling

a method of the value returned by another method call. To show how

this works, let’s start by calling swapcase to change lowercase letters to

uppercase and uppercase to lowercase:

Download modules/swap.cmd

>>> 'Computer Science'.swapcase()

'cOMPUTER sCIENCE'

Since the result of this method is a string, we can immediately call the

result’s endswith method to check that the first call did the right thing

to the last few letters of the original string.

http://media.pragprog.com/titles/gwpy/code/modules/swap.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=62

OBJECTS AND METHODS 63

!"#$%&'()*+,-(.,(!/012%,20(34!"#$%&'()*+,-.,+/

!"#$%&'()*+,-.,+/!,56789:;*0"<:=":!

012"

Figure 4.4: Chaining method calls

Download modules/swap_endswith.cmd

>>> 'Computer Science'.swapcase().endswith('ENCE')

True

In Figure 4.4, we can see what’s going on when we do this. Note that

Python automatically creates a temporary variable to hold the value of

the swapcase method call long enough for it to call that value’s endswith

method.

Something that has methods is called an object. It turns out that every-

thing in Python is an object, even the number zero:

Download modules/int_help.cmd

>>> help(0)

Help on int object:

class int(object)

| int(x[, base]) -> integer

|

| Convert a string or number to an integer, if possible. A floating point

| argument will be truncated towards zero (this does not include a string

| representation of a floating point number!) When converting a string, use

| the optional base. It is an error to supply a base when converting a

| non-string. If the argument is outside the integer range a long object

| will be returned instead.

|

| Methods defined here:

|

| __abs__(...)

| x.__abs__() <==> abs(x)

|

| __add__(...)

| x.__add__(y) <==> x+y

...

http://media.pragprog.com/titles/gwpy/code/modules/swap_endswith.cmd
http://media.pragprog.com/titles/gwpy/code/modules/int_help.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=63

OBJECTS AND METHODS 64

Most modern programming languages are structured this way: the

“things” in the program are objects, and most of the code in the pro-

gram consists of methods that use the data stored in those objects.

Chapter 13, Object-Oriented Programming, on page 270 will show you

how to create new kinds of objects; for now, let’s take a look at the

objects Python uses to store and manipulate images.

Images

Now that we have seen the basic features of modules, objects, and

methods, let’s look at how they can solve real-world problems. For our

running example, we will write some programs that display and manip-

ulate pictures and other images.

Suppose you have a file called pic207.jpg on your hard drive and want

to display it on your screen. You could double-click to open it, but

what does that actually do? To start to answer that question, type the

following into a Python prompt:

Download modules/open_pic.cmd

>>> import media

>>> f = media.choose_file()

>>> pic = media.load_picture(f)

>>> media.show(pic)

When the file dialog box opens, navigate to pic207.jpg. The result should

be the awesomely cute photo shown in Figure 4.5, on the following

page. Here’s what the commands shown earlier actually did:

1. Import the functions from the media module.

2. Call that module’s choose_file function to open a file-choosing dia-

log box. This call returns a string that contains the path to the

picture file.

3. Call the module’s load_picture function to read the contents of the

picture file into memory. This creates a Python object, which is

assigned to the variable pic.

4. Call that module’s show function, which launches another pro-

gram to display the picture. Python has to launch another pro-

gram because it can’t print the picture out at the command line.

Double-clicking would definitely have been easier.

http://media.pragprog.com/titles/gwpy/code/modules/open_pic.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=64

OBJECTS AND METHODS 65

Figure 4.5: Madeleine

But let’s see your mouse do this:

Download modules/pic_props.cmd

>>> pic.get_width()

500

>>> pic.get_height()

375

>>> pic.title

'modules/pic207.jpg'

The first two commands tell us how wide and high the picture is in

pixels. The third tells us the path to the file containing the picture.

Now try this:

Download modules/pic_crop.cmd

>>> media.crop_picture(pic, 150, 50, 450, 300)

>>> media.show(pic)

>>> media.save_as(pic, 'pic207cropped.jpg')

http://media.pragprog.com/titles/gwpy/code/modules/pic_props.cmd
http://media.pragprog.com/titles/gwpy/code/modules/pic_crop.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=65

OBJECTS AND METHODS 66

Figure 4.6: Madeleine cropped

As you can guess from the name, crop crops the picture. The upper-

left corner is (150, 50), and the lower-right corner is (450, 300); the

resulting picture is shown in Figure 4.6.

The code also shows the new picture and then writes it to a new file.

This file is saved in the current working directory, which by default is the

directory in which the program is running. On our system this happens

to be ’/Users/pgries/’.

Now let’s put Madeleine’s name on her hat. To do that, we use picture’s

add_text function; the result is shown in Figure 4.7, on the following

page.

Download modules/pic_text.cmd

>>> media.add_text(pic, 115, 40, 'Madeleine', media.magenta)

>>> media.show(pic)

http://media.pragprog.com/titles/gwpy/code/modules/pic_text.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=66

OBJECTS AND METHODS 67

Figure 4.7: Madeleine named

Function choose_file is useful for writing interactive programs, but when

we know exactly which files we want or we want more than one file, it’s

often easier to skip that navigation step. As an example, let’s open up

all three pictures of Madeleine in a single program:

Download modules/show_madeleine.py

import media

pic1 = media.load_picture('pic207.jpg')

media.show(pic1)

pic2 = media.load_picture('pic207cropped.jpg')

media.show(pic2)

pic3 = media.load_picture('pic207named.jpg')

media.show(pic3)

Since we haven’t specified what directory to find the files in, the pro-

gram looks for them in the current working directory. If the program

can’t find them there, it reports an error.

http://media.pragprog.com/titles/gwpy/code/modules/show_madeleine.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=67

PIXELS AND COLORS 68

Color Value

black Color(0, 0, 0)

white Color(255, 255, 255)

red Color(255, 0, 0)

green Color(0, 255, 0)

blue Color(0, 0, 255)

magenta Color(255, 0, 255)

yellow Color(255, 255, 0)

aqua Color(0, 255, 255)

pink Color(255, 192, 203)

purple Color(128, 0, 128)

Figure 4.8: Example color values

4.4 Pixels and Colors

Most people want to do a lot more to pictures than just display them

and crop them. If you do a lot of digital photography, you may want to

remove the “red-eye” caused by your camera flash. You might also want

to convert pictures to black and white for printing, highlight certain

objects, and so on.

To do these things, you must work with the individual pixels that make

up the image. The media module represents pixels using the RGB color

model discussed in the sidebar on page 72. Module media provides a

Color type and more than 100 predefined Color values. Several of them

are listed in Figure 4.3, on page 62; black is represented as “no blue,

no green, no red,” white is the maximum possible amount of all three,

and other colors lie somewhere in between.

The media module provides functions for getting and changing the col-

ors in pixels (see Figure 4.9, on the next page) and for manipulating

colors themselves (see Figure 4.10, on page 70).

To see how these functions are used, let’s go through all the pixels in

Madeleine’s cropped and named picture and make it look like it was

taken at sunset. To do this, we’re going to remove some of the blue

and some of the green from each pixel, making the picture darker and

redder.2

2. We’re not actually adding any red, but reducing the amount of blue and green will

fool the eye into thinking we have.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=68

PIXELS AND COLORS 69

Function Description

get_red(pixel) Gets the red component of pixel

set_red(pixel, value) Sets the red component of pixel to value

get_blue(pixel) Gets the red component of pixel

set_blue(pixel, value) Sets the blue component of pixel to value

get_green(pixel) Gets the red component of pixel

set_green(pixel, value) Sets the green component of pixel to value

get_color(pixel) Gets the color of pixel

set_color(pixel, color) Sets the color of pixel to color

Figure 4.9: Pixel-manipulation functions

Download modules/sunset.py

import media

pic = media.load_picture('pic207.jpg')

media.show(pic)

for p in media.get_pixels(pic):

new_blue = int(0.7 * media.get_blue(p))

new_green = int(0.7 * media.get_green(p))

media.set_blue(p, new_blue)

media.set_green(p, new_green)

media.show(pic)

Some things to note:

• Color values are integers, so we need to convert the result of mul-

tiplying the blue and green by 0.7 using the function int.

• The for loop does something to each pixel in the picture. We will

talk about for loops in detail in Section 5.4, Processing List Items,

on page 89, but just reading the code aloud will give you the idea

that it associates each pixel in turn with the variable p, extracts

the blue and green components, calculates new values for them,

and then resets the values in the pixel.

Try this code on a picture of your own, and see how convincing the

result is.

http://media.pragprog.com/titles/gwpy/code/modules/sunset.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=69

TESTING 70

Function Description

darken(color) Returns a color slightly darker than color

lighten(color) Returns a color slightly darker than color

create_color(red, green, blue) Returns color (red, green, blue)

distance(c1, c2) Returns how far apart colors c1 and c2

are

Figure 4.10: Color functions

4.5 Testing

Another use for modules in real-world Python programming is to make

sure that programs don’t just run but also produce the right answers.

In science, for example, the programs you use to analyze experimen-

tal data must be at least as reliable as the lab equipment you used to

collect that data, or there’s no point running the experiment. The pro-

grams that run CAT scanners and other medical equipment must be

even more reliable, since lives depend on them. As it happens, the tools

used to make sure that these programs are behaving correctly can also

be used by instructors to grade students’ assignments and by students

to check their programs before submitting them.

Checking that software is doing the right thing is called quality assur-

ance, or QA. Over the last fifty years, programmers have learned that

quality isn’t some kind of magic pixie dust that you can sprinkle on a

program after it has been written. Quality has to be designed in, and

software must be tested and retested to check that it meets standards.

The good news is that putting effort into QA actually makes you more

productive overall. The reason can be seen in Boehm’s curve in Fig-

ure 4.11, on the following page. The later you find a bug, the more

expensive it is to fix, so catching bugs early reduces overall effort.

Most good programmers today don’t just test their software while writ-

ing it; they build their tests so that other people can rerun them months

later and a dozen time zones away. This takes a little more time up

front but makes programmers more productive overall, since every hour

invested in preventing bugs saves two, three, or ten frustrating hours

tracking bugs down.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=70

TESTING 71

!"#$%&"'"()* +"*%,(-./%(, 0"*)%(, +"12.3'"()

-
.
*
)

Figure 4.11: Boehm’s curve

One popular testing library for Python is called Nose, which can be

downloaded for free at http://code.google.com/p/python-nose/. To show

how it works, we will use it to test our temperature module. To start,

create a new Python file called test_temperature.py. The name is impor-

tant: when Nose runs, it automatically looks for files whose names start

with the letters test_. The second part of the name is up to us—we could

call it test_hagrid.py if we wanted to—but a sensible name will make it

easier for other people to find things in our code.

Every Nose test module should contain the following:

• Statements to import Nose and the module to be tested

• Functions that actually test our module

• A function call to trigger execution of those test functions

Like the name of the test module, the names of the test functions must

start with test_. Using the structure outlined earlier, our first sketch of

a testing module looks like this:

Download modules/structure.py

import nose

import temperature

def test_to_celsius():

'''Test function for to_celsius'''

pass # we'll fill this in later

def test_above_freezing():

'''Test function for above_freezing.'''

pass # we'll fill this in too

if __name__ == '__main__':

nose.runmodule()

http://code.google.com/p/python-nose/
http://media.pragprog.com/titles/gwpy/code/modules/structure.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=71

TESTING 72

RGB and Hexadecimal

In the red-green-blue (or RGB) color system, each pixel in a pic-
ture has a certain amount of the three primary colors in it, and
each color component is specified by a number in the range
0–255 (which is the range of numbers that can be represented
in a single 8-bit byte).

By tradition, RGB values are represented in hexadecimal, or
base-16, rather than in the usual base-10 decimal system. The
“digits” in hexadecimal are the usual 0–9, plus the letters A–F (or
a–f). This means that the number after 916 is not 1016, but A16; the
number after A16 is B16, and so on, up to F16, which is followed
by 1016. Counting continues to 1F16, which is followed by 2016,
and so on, up to FF16 (which is 1510×1610 + 1510, or 25510).

An RGB color is therefore six hexadecimal digits: two for red,
two for green, and two for blue. Black is therefore #000000 (no
color of any kind), while white is #FFFFFF (all colors saturated),
and #008080 is a bluish-green (no red, half-strength green, half-
strength blue).

For now, each test function contains nothing except a docstring and

a pass statement. As the name suggests, this does nothing—it’s just a

placeholder to remind ourselves that we need to come back and write

some more code.

If you run the test module, the output starts with two dots to say

that two tests have run successfully. (If a test fails, Nose prints an

“F” instead to attract attention to the problem.) The summary after the

dashed line tells us that Nose found and ran two tests, that it took less

than a millisecond to do so, and that everything was OK:

Download modules/structure.out

..

--

Ran 2 tests in 0.000s

OK

Two successful tests isn’t surprising, since our functions don’t actually

test anything yet. The next step is to fill them in so that they actually do

something useful. The goal of testing is to confirm that our code works

properly; for to_celsius, this means that given a value in Fahrenheit, the

function produces the corresponding value in Celsius.

http://media.pragprog.com/titles/gwpy/code/modules/structure.out
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=72

TESTING 73

It’s clearly not practical to try every possible value—after all, there are a

lot of real numbers. Instead, we select a few representative values and

make sure the function does the right thing for them.

For example, let’s make sure that the round-off version of to_celsius from

Section 4.2, Providing Help, on page 59 returns the right result for two

reference values: 32 Fahrenheit (0 Celsius) and 212 Fahrenheit (100

Celsius). Just to be on the safe side, we should also check a value that

doesn’t translate so neatly. For example, 100 Fahrenheit is 37.777...

Celsius, so our function should return 38 (since it’s rounding off).

We can execute each test by comparing the actual value returned by

the function with the expected value that it’s supposed to return. In

this case, we use an assert statement to let Nose know that to_celsius(100)

should be 38:

Download modules/assert.py

import nose

from temp_with_doc import to_celsius

def test_freezing():

'''Test freezing point.'''

assert to_celsius(32) == 0

def test_boiling():

'''Test boiling point.'''

assert to_celsius(212) == 100

def test_roundoff():

'''Test that roundoff works.'''

assert to_celsius(100) == 38 # NOT 37.777...

if __name__ == '__main__':

nose.runmodule()

When the code is executed, each test will have one of three outcomes:

• Pass. The actual value matches the expected value.

• Fail. The actual value is different from the expected value.

• Error. Something went wrong inside the test itself; in other words,

the test code contains a bug. In this case, the test doesn’t tell us

anything about the system being tested.

http://media.pragprog.com/titles/gwpy/code/modules/assert.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=73

TESTING 74

Run the test module; the output should be as follows:

Download modules/outcome.out

...

--

Ran 3 tests in 0.002s

OK

As before, the dots tell us that the tests are passing.

Just to prove that Nose is doing the right thing, let’s compare to_celsius’s

result with 37.8 instead:

Download modules/assert2.py

import nose

from temp_with_doc import to_celsius

def test_to_celsius():

'''Test function for to_celsius'''

assert to_celsius(100) == 37.8

if __name__ == '__main__':

nose.runmodule()

This causes the test case to fail, so the dot corresponding to it is

replaced by an “F,” an error message is printed, and the number of

failures is listed in place of OK:

Download modules/fail.out

F

==

FAIL: Test function for to_celsius

--

Traceback (most recent call last):

File "/python25/lib/site-packages/nose/case.py", line 202, in runTest

self.test(*self.arg)

File "assert2.py", line 6, in test_to_celsius

assert to_celsius(100) == 37.8

AssertionError

--

Ran 1 test in 0.000s

FAILED (failures=1)

The error message tells us that the failure happened in test_to_celsius

on line 6. That is helpful, but the reason for failure can be made even

clearer by adding a description of what is being tested to each assert

statement.

http://media.pragprog.com/titles/gwpy/code/modules/outcome.out
http://media.pragprog.com/titles/gwpy/code/modules/assert2.py
http://media.pragprog.com/titles/gwpy/code/modules/fail.out
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=74

TESTING 75

Download modules/assert3.py

import nose

from temp_with_doc import to_celsius

def test_to_celsius():

'''Test function for to_celsius'''

assert to_celsius(100) == 37.8, 'Returning an unrounded result'

if __name__ == '__main__':

nose.runmodule()

That message is then included in the output:

Download modules/fail_comment.out

F

==

FAIL: Test function for to_celsius

--

Traceback (most recent call last):

File "c:\Python25\Lib\site-packages\nose\case.py", line 202, in runTest

self.test(*self.arg)

File "assert3.py", line 6, in test_to_celsius

assert to_celsius(100) == 37.8, 'Returning an unrounded result'

AssertionError: Returning an unrounded result

--

Ran 1 test in 0.000s

FAILED (failures=1)

Having tested test_to_celsius with one value, we need to decide whether

any other test cases are needed. The description of that test case states

that it is a positive value, which implies that we may also want to test

our code with a value of 0 or a negative value. The real question is

whether our code will behave differently for those values. Since all we’re

doing is some simple arithmetic, we probably don’t need to bother; in

future chapters, though, we will see functions that are complicated

enough to need several tests each.

Let’s move on to test_above_freezing. The function it is supposed to test,

above_freezing, is supposed to return True for any temperature above

freezing, so let’s make sure it does the right thing for 89.4. We should

also check that it does the right thing for a temperature below freezing,

so we’ll add a check for -42.

Finally, we should also test that the function does the right thing for the

dividing case, when the temperature is exactly freezing. Values like this

are often called boundary cases, since they lie on the boundary between

http://media.pragprog.com/titles/gwpy/code/modules/assert3.py
http://media.pragprog.com/titles/gwpy/code/modules/fail_comment.out
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=75

STYLE NOTES 76

two different possible behaviors of the function. Experience shows that

boundary cases are much more likely to contain bugs than other cases,

so it’s always worth figuring out what they are and testing them.

The test module, including comments, is now complete:

Download modules/test_freezing.py

import nose

from temp_with_doc import above_freezing

def test_above_freezing():

'''Test function for above_freezing.'''

assert above_freezing(89.4), 'A temperature above freezing.'

assert not above_freezing(-42), 'A temperature below freezing.'

assert not above_freezing(0), 'A temperature at freezing.'

if __name__ == '__main__':

nose.runmodule()

When we run it, its output is as follows:

Download modules/test_freezing.out

.

--

Ran 1 test in 0.000s

OK

Whoops—Nose believes that only one test was run, even though there

are three assert statements in the file. The reason is that as far as Nose

is concerned, each function is one test. If some of those functions want

to check several things, that’s their business. The problem with this is

that as soon as one assertion fails, Python stops executing the func-

tion it’s in. As a result, if the first check in test_above_freezing failed,

we wouldn’t get any information from the ones after it. It is therefore

generally a good idea to write lots of small test functions, each of which

only checks a small number of things, rather than putting dozens of

assertions in each function.

4.6 Style Notes

Anything that can go in a Python program can go in a module, but that

doesn’t mean that anything should. If you have functions and variables

that logically belong together, you should put them in the same module.

If there isn’t some logical connection—for example, if one of the func-

tions calculates how much carbon monoxide different kinds of cars

http://media.pragprog.com/titles/gwpy/code/modules/test_freezing.py
http://media.pragprog.com/titles/gwpy/code/modules/test_freezing.out
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=76

SUMMARY 77

produce, while another figures out how strong bones are given their

diameter and density—then you shouldn’t put them in one module just

because you happen to be the author of both.

Of course, people often have different opinions about what is logical

and what isn’t. Take Python’s math module, for example; should func-

tions to multiply matrices go in there too or in a separate linear algebra

module? What about basic statistical functions? Going back to the pre-

vious paragraph, should a function that calculates gas mileage go in

the same module as one that calculates carbon monoxide emissions?

You can always find a reason why two functions should not be in the

same module, but 1,000 modules with one function each are going to

be hard for people (including you) to find their way around.

As a rule of thumb, if a module has less than half a dozen things in

it, it’s probably too small, and if you can’t sum up the contents and

purpose of a module in a one- or two-sentence docstring, it’s probably

too large. These are just guidelines, though; in the end, you will have

to decide based on how more experienced programmers have organized

modules like the ones in the Python standard library and eventually on

your own sense of style.

4.7 Summary

In this chapter, we learned the following:

• A module is a collection of functions and variables grouped

together in a file. To use a module, you must first import it. After

it has been imported, you refer to its contents using modulename.

thingname.

• Put docstrings at the start of modules or functions to describe

their contents and use.

• Every “thing” in a Python program is an object. Objects have meth-

ods, which work just like functions but are associated with the

object’s type. Methods are called using object.methodname, just

like the functions in a module.

• You can manipulate images using the picture module, which has

functions for loading, displaying, and manipulating entire images,

as well as inspecting and modifying individual pixels and colors.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=77

EXERCISES 78

• Programs have to do more than just run to be useful; they have

to run correctly. One way to ensure that they do is to test them,

which you can do in Python using the Nose module. Since you

usually can’t test every possible case, you should focus your test-

ing on boundary cases.

4.8 Exercises

Here are some exercises for you to try on your own:

1. Import module math, and use its functions to complete the follow-

ing exercises:

a) Write a single expression that rounds the value of -4.3 and

then takes the absolute value of that result.

b) Write an expression that takes the ceiling of sine of 34.5.

2. In the following exercises, you will work with Python’s calendar

module:

a) Visit the Python documentation website at http://docs.python.

org/modindex.html, and look at the documentation on the cal-

endar module.

b) Import the calendar module.

c) Read the description of the function isLeap. Use isLeap to de-

termine the next leap year.

d) Find and use a function in module calendar to determine how

many leap years there will be between the years 2000 and

2050, inclusive.

e) Find and use a function in module calendar to determine

which day of the week July 29, 2016 will be.

3. Using string methods, write expressions that do the following:

a) Capitalize ’boolean’.

b) Find the first occurrence of ’2’ in ’C02 H20’.

c) Find the second occurrence of "2" in ’C02 H20’.

d) Determine whether ’Boolean’ begins with a lowercase.

http://docs.python.org/modindex.html
http://docs.python.org/modindex.html
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=78

EXERCISES 79

e) Convert "MoNDaY" to lowercase letters and then capitalize the

result.

f) Remove the leading whitespace from " Monday".

4. The example used to explain import * was as follows:

Download modules/from2.cmd

>>> from math import *
>>> '%6f' % sqrt(8)

'2.828427'

Explain why there are quotes around the value 2.828427.

5. Why do you think the media module mentioned in Section 4.3,

Objects and Methods, on page 60 isn’t part of the standard Python

library? How do you think Python’s developers decide what should

be in the standard library and what shouldn’t? If you need some-

thing that isn’t in the standard library, where and how can you

find it?

6. Write a program that allows the user to choose a file and then

shows the picture twice.

7. Write a program that allows the user to choose a file, sets the red

value of each pixel in the picture to 0, and shows the picture.

8. Write a program that allows the user to pick a file, halves the green

value of each pixel in the picture, and shows the picture.

9. Write a program that allows the user to pick a file and makes it

grayscale; it should calculate the average of red, green, and blue

values of each pixel and then set the red, green, and blue values

to that average.

10. Write a program that allows the user to pick a file, doubles the red

value of each pixel in the picture, and shows the picture. What

happens when a value larger than 255 is calculated?

11. Media outlets such as newspapers and TV stations sometimes

“enhance” photographs by recoloring them or digitally combine

pictures of two people to make them appear together. Do you think

they should be allowed to use only unmodified images? Given that

almost all pictures and TV footage are now digital and have to

be processed somehow for display, what would that rule actually

mean in practice?

http://media.pragprog.com/titles/gwpy/code/modules/from2.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=79

EXERCISES 80

12. Suppose we want to test a function that calculates the distance

between two XY points:

Download modules/distance.py

import math

def distance(x0, y0, x1, y1):

'''Calculate the distance between (x0, y0) and (x1, y1).'''

return math.sqrt((x1 - x0) ** 2 + (y1 - y0) ** 2)

a) Unlike the rounding-off version of to_celsius, this returns a

floating-point number. Explain why this makes testing more

difficult.

b) A friend of yours suggests testing the function like this:

Download modules/test_distance.py

import nose

from distance import distance

def close(left, right):

'''Test if two floating-point values are close enough.'''

return abs(left - right) < 1.0e-6

def test_distance():

'''Test whether the distance function works correctly.'''

assert close(distance(1.0, 0.0, 1.0, 0.0), 0.0), 'Identical points fail.'

assert close(distance(0.0, 0.0, 1.0, 0.0), 1.0), 'Unit distance fails.'

if __name__ == '__main__':

nose.runmodule()

Explain what your friend is trying to do. As gently as you can,

point out two flaws in his approach.

http://media.pragprog.com/titles/gwpy/code/modules/distance.py
http://media.pragprog.com/titles/gwpy/code/modules/test_distance.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=80

Chapter 5

Lists
Up to this point, each variable we have created has referred to a single

number or string. In this chapter, we will work with collections of data

and use a Python type named list. Lists contain 0 or more objects, and

they allow us to store data such as 90 experiment measurements or

10,000 student IDs. We’ll also see how to access files and represent

their contents using lists.

5.1 Lists and Indices

Figure 5.1, on the next page, taken from http://www.acschannelislands.

org/2008CountDaily.pdf, shows the number of gray whales counted near

the Coal Oil Point Natural Reserve in a two-week period in the spring of

2008.

Using what we have seen so far, we would have to create fourteen vari-

ables to keep track of these numbers (see Figure 5.2, on the following

page). If we wanted to track an entire year’s worth of observations, we’d

need 366 (just in case it was a leap year). Even worse, if we didn’t know

in advance how long we wanted to watch the whales, we wouldn’t know

how many variables to create.

The solution is to store all the values together in a list. Lists show up

everywhere in the real world: students in a class, the kinds of birds

native to New Guinea, and so on. To create a list in Python, we put the

values, separated by commas, inside square brackets:

Download lists/whalelist.py

Number of whales seen per day

[5, 4, 7, 3, 2, 3, 2, 6, 4, 2, 1, 7, 1, 3]

http://www.acschannelislands.org/2008CountDaily.pdf
http://www.acschannelislands.org/2008CountDaily.pdf
http://media.pragprog.com/titles/gwpy/code/lists/whalelist.py

LISTS AND INDICES 82

Day Number of Whales

1 5

2 4

3 7

4 3

5 2

6 3

7 2

8 6

9 4

10 2

11 1

12 7

13 1

14 3

Figure 5.1: Gray whale census

!"#$!

!"#% "

!"#& #

!"#' $

!"#(%

!"#) $

!"#* %

!"#+ &

!"#, "

!"#$- %

!"#$$ '

!"#$% #

!"#$& '

!"#$' $

Figure 5.2: Life without lists

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=82

LISTS AND INDICES 83

! " # $

% & ' $

!"#$%&

& % ('

$ # (

) * "! ""

& # " '

"# "$

" $

Figure 5.3: List example

A list is an object; like any other object, it can be assigned to a variable:

Download lists/whales1.cmd

>>> whales = [5, 4, 7, 3, 2, 3, 2, 6, 4, 2, 1, 7, 1, 3]

>>> whales

[5, 4, 7, 3, 2, 3, 2, 6, 4, 2, 1, 7, 1, 3]

In Figure 5.3, we can see a memory model of whales after this assign-

ment. It’s important to keep in mind that the list itself is one object but

may contain references to other objects (shown by the arrows).

So, how do we get at the objects in a list? By providing an index that

specifies the one we want. The first item in a list is at index 0, the

second at index 1, and so on.1 To refer to a particular item, we put the

index in square brackets after a reference to the list (such as the name

of a variable):

Download lists/whales2.cmd

>>> whales = [5, 4, 7, 3, 2, 3, 2, 6, 4, 2, 1, 7, 1, 3]

>>> whales[0]

5

>>> whales[1]

4

>>> whales[12]

1

>>> whales[13]

3

We can use only those indices that are in the range from zero up to one

less than the length of the list. In a fourteen-item list, the legal indices

are 0, 1, 2, and so on, up to 13. Trying to use an out-of-range index is

an error, just like trying to divide by zero.

1. Yes, it would be more natural to use 1 as the first index, as human languages do.

Python, however, uses the same convention as languages like C and Java and starts

counting at zero.

http://media.pragprog.com/titles/gwpy/code/lists/whales1.cmd
http://media.pragprog.com/titles/gwpy/code/lists/whales2.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=83

LISTS AND INDICES 84

Download lists/whales3.cmd

>>> whales = [5, 4, 7, 3, 2, 3, 2, 6, 4, 2, 1, 7, 1, 3]

>>> whales[1001]

Traceback (most recent call last):

File "<stdin>", line 1, in ?

IndexError: list index out of range

Unlike most programming languages, Python also lets us index back-

ward from the end of a list. The last item is at index -1, the one before

it at index -2, and so on:

Download lists/whales4.cmd

>>> whales = [5, 4, 7, 3, 2, 3, 2, 6, 4, 2, 1, 7, 1, 3]

>>> whales[-1]

3

>>> whales[-2]

1

>>> whales[-14]

5

We can assign the values in a list to other variables:

Download lists/whales5.cmd

>>> whales = [5, 4, 7, 3, 2, 3, 2, 6, 4, 2, 1, 7, 1, 3]

>>> third = whales[2]

>>> print 'Third day:', third

Third day: 7

The Empty List

Zero is a useful number, and as we saw in Chapter 3, Strings, on

page 39, the empty string is often useful as well. There is also an empty

list, in other words, a list with no items in it. As you might guess, it is

written []. Trying to index an empty list always results in an error:

Download lists/whales6.cmd

>>> whales = []

>>> whales[0]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: list index out of range

>>> whales[-1]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: list index out of range

http://media.pragprog.com/titles/gwpy/code/lists/whales3.cmd
http://media.pragprog.com/titles/gwpy/code/lists/whales4.cmd
http://media.pragprog.com/titles/gwpy/code/lists/whales5.cmd
http://media.pragprog.com/titles/gwpy/code/lists/whales6.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=84

MODIFYING LISTS 85

This follows from the definition of legal index:

• Legal indices for a list of N items are the integers in the set {i: 0 ≤

i < N }.

• The length of the empty list is 0.

• Legal indices for the empty list are therefore the elements of the

set {i: 0 ≤ i < -1}.

• Since this set is empty, there are no legal indices for the empty

list.

Lists Are Heterogeneous

Lists can contain any type of data, including integers, strings, and even

other lists. Here is a list of information about the element Krypton,

including its name, symbol, melting point (in degrees Celsius), and

boiling point (also in degrees Celsius). Using a list to aggregate related

information is somewhat prone to error; a better, but more advanced,

way to do this is described in Chapter 13, Object-Oriented Programming,

on page 270.

Download lists/krypton1.cmd

>>> krypton = ['Krypton', 'Kr', -157.2, -153.4]

>>> krypton[1]

'Kr'

>>> krypton[2]

-157.19999999999999

5.2 Modifying Lists

Suppose we’re typing in a list of the noble gases2 and our fingers slip:

Download lists/nobles1.cmd

>>> nobles = ['helium', 'none', 'argon', 'krypton', 'xenon', 'radon']

The error here is that we typed ’none’ instead of ’neon’. Rather than

retyping the whole list, we can assign a new value to a specific element

of the list:

Download lists/nobles2.cmd

>>> nobles = ['helium', 'none', 'argon', 'krypton', 'xenon', 'radon']

>>> nobles[1] = 'neon'

>>> nobles

['helium', 'neon', 'argon', 'krypton', 'xenon', 'radon']

2. A noble gas is one whose outermost electron shell is completely full, which makes it

chemically inert.

http://media.pragprog.com/titles/gwpy/code/lists/krypton1.cmd
http://media.pragprog.com/titles/gwpy/code/lists/nobles1.cmd
http://media.pragprog.com/titles/gwpy/code/lists/nobles2.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=85

BUILT -IN FUNCTIONS ON LISTS 86

! " # $

%&'()*+% %,-,'% %./0-,% %1/234-,%

!"#$%&

5

%6',-,%

!"#$%"

7

%/.8-,%

!"#$%

! " # $

%&'()*+% %,-,'% %./0-,% %1/234-,%

!"#$%&

5

%6',-,%

7

%/.8-,%

%,'-,%

Figure 5.4: List mutation

In Figure 5.4, we show what the assignment to nobles[1] did. It also

shows that lists are mutable, in other words, that their contents can be

changed after they have been created. In contrast, numbers and strings

are immutable. You cannot, for example, change a letter in a string after

you have created it. Methods that appear to, like upper, actually create

new strings:

Download lists/strings_immutable.cmd

>>> name = 'Darwin'

>>> capitalized = name.upper()

>>> print capitalized

'DARWIN'

>>> print name

'Darwin'

The expression L[i] behaves just like a simple variable (see Section 2.4,

Variables and the Assignment Statement, on page 25). If it’s on the right,

it means “Get the value of the item at location i in the list L.” If it’s on

the left, it means “Figure out where item i in the list L is located so that

we can overwrite it.”

http://media.pragprog.com/titles/gwpy/code/lists/strings_immutable.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=86

BUILT -IN FUNCTIONS ON LISTS 87

Function Description

len(L) Returns the number of items in list L

max(L) Returns the maximum value in list L

min(L) Returns the minimum value in list L

sum(L) Returns the sum of the values in list L

Figure 5.5: List functions

5.3 Built-in Functions on Lists

Section 2.6, Function Basics, on page 30 introduced a few of Python’s

built-in functions. Some of these, such as len, can be applied to lists as

well, as can others that we haven’t seen before (see Figure 5.5). Here

they are in action working on a list of the half-lives3 of our plutonium

isotopes:

Download lists/plu4.cmd

>>> half_lives = [87.74, 24110.0, 6537.0, 14.4, 376000.0]

>>> len(half_lives)

5

>>> max(half_lives)

376000.0

>>> min(half_lives)

14.4

>>> sum(half_lives)

406749.14000000001

We can use the results of the built-in functions in expressions; for

example, the following code demonstrates that we can check whether

an index is in range:

Download lists/plu5.cmd

>>> half_lives = [87.74, 24110.0, 6537.0, 14.4, 376000.0]

>>> i = 2

>>> 0 <= i < len(half_lives)

True

>>> half_lives[i]

6537.0

>>> i = 5

>>> 0 <= i < len(half_lives)

False

3. The half-life of a radioactive substance is the time taken for half of it to decay. After

twice this time has gone by, three quarters of the material will have decayed; after three

times, seven eighths, and so on.

http://media.pragprog.com/titles/gwpy/code/lists/plu4.cmd
http://media.pragprog.com/titles/gwpy/code/lists/plu5.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=87

BUILT -IN FUNCTIONS ON LISTS 88

! " # $

! "

%&% %&'%

!"#$#%&'

(#%&'

#

%()%

!

%*'%

Figure 5.6: List concatenation

>>> half_lives[i]

Traceback (most recent call last):

File "<stdin>", line 1, in ?

IndexError: list index out of range

Like all other objects, lists have a particular type, and Python complains

if you try to combine types in inappropriate ways. Here’s what happens

if you try to “add” a list and a string:

Download lists/add_list_str.cmd

>>> ['H', 'He', 'Li'] + 'Be'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: can only concatenate list (not "str") to list

That error report is interesting. It hints that we might be able to con-

catenate lists with lists to create new lists, just as we concatenated

strings to create new strings. A little experimentation shows that this

does in fact work:

Download lists/concat_lists.cmd

>>> original = ['H', 'He', 'Li']

>>> final = original + ['Be']

>>> final

['H', 'He', 'Li', 'Be']

As shown in Figure 5.6, this doesn’t modify either of the original lists.

Instead, it creates a new list whose entries refer to the entries of the

original lists.

http://media.pragprog.com/titles/gwpy/code/lists/add_list_str.cmd
http://media.pragprog.com/titles/gwpy/code/lists/concat_lists.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=88

PROCESSING LIST ITEMS 89

So if + works on lists, will sum work on lists of strings? After all, if sum([1,

2, 3]) is the same as 1 + 2 + 3, shouldn’t sum(’a’, ’b’, ’c’) be the same as

’a’ + ’b’ + ’c’, or ’abc’? The following code shows that the analogy can’t

be pushed that far:

Download lists/sum_of_str.cmd

>>> sum(['a', 'b', 'c'])

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

On the other hand, you can multiply a list by an integer to get a new

list containing the elements from the original list repeated a certain

number of times:

Download lists/mult_lists.cmd

>>> metals = 'Fe Ni'.split()

>>> metals * 3

['Fe', 'Ni', 'Fe', 'Ni', 'Fe', 'Ni']

As with concatenation, the original list isn’t modified; instead, a new

list is created. Notice, by the way, how we use string.split to turn the

string ’Fe Ni’ into a two-element list [’Fe’, ’Ni’]. This is a common trick in

Python programs.

5.4 Processing List Items

Lists were invented so that we wouldn’t have to create 1,000 variables

to store a thousand values. For the same reason, Python has a for loop

that lets us process each element in a list in turn, without having to

write one statement per element. The general form of a for loop is as

follows:

for variable in list:

block

As we saw in Section 2.6, Function Basics, on page 30, a block is just a

sequence of one or more statements. variable and list are just a variable

and a list.

When Python encounters a loop, it executes the loop’s block once for

each value in the list. Each pass through the block is called an iteration,

and at the start of each iteration, Python assigns the next value in the

list to the specified variable. In this way, the program can do something

with each value in turn.

http://media.pragprog.com/titles/gwpy/code/lists/sum_of_str.cmd
http://media.pragprog.com/titles/gwpy/code/lists/mult_lists.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=89

PROCESSING LIST ITEMS 90

For example, this code prints every velocity of a falling object in metric

and imperial units:

Download lists/velocity_loop.cmd

>>> velocities = [0.0, 9.81, 19.62, 29.43]

>>> for v in velocities:

... print "Metric:", v, "m/sec;",

... print "Imperial:", v * 3.28, "ft/sec"

...

Metric: 0.0 m/sec; Imperial: 0.0 ft/sec

Metric: 9.81 m/sec; Imperial: 32.1768 ft/sec

Metric: 19.62 m/sec; Imperial: 64.3536 ft/sec

Metric: 29.43 m/sec; Imperial: 96.5304 ft/sec

Here are two other things to notice about this loop:

• In English we would say “for each velocity in the list, print the

metric value, and then print the imperial value.” In Python, we

said roughly the same thing.

• As with function definitions, the statements in the loop block are

indented. (We use four spaces in this book; check with your in-

structors to find out whether they prefer something else.)

In this case, we created a new variable v to store the current value

taken from the list inside the loop. We could equally well have used an

existing variable. If we do this, the loop still starts with the first element

of the list—whatever value the variable had before the loop is lost:

Download lists/velocity_recycle.cmd

>>> speed = 2

>>> velocities = [0.0, 9.81, 19.62, 29.43]

>>> for speed in velocities:

... print "Metric:", speed, "m/sec;",

...

Metric: 0.0 m/sec

Metric: 9.81 m/sec

Metric: 19.62 m/sec

Metric: 29.43 m/sec

>>> print "Final:", speed

Final: 29.43

Either way, the variable is left holding its last value when the loop fin-

ishes. Notice, by the way, that the last print statement in this program

is not indented, so it is not part of the for loop. It is executed after the

for loop has finished and is executed only once.

Nested Loops

We said earlier that the block of statements inside a loop could contain

anything. This means that it can also contain another loop.

http://media.pragprog.com/titles/gwpy/code/lists/velocity_loop.cmd
http://media.pragprog.com/titles/gwpy/code/lists/velocity_recycle.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=90

PROCESSING LIST ITEMS 91

This program, for example, loops over the list inner once for each ele-

ment of the list outer:

Download lists/nested_loops.cmd

>>> outer = ['Li', 'Na', 'K']

>>> inner = ['F', 'Cl', 'Br']

>>> for metal in outer:

... for gas in inner:

... print metal + gas

...

...

LiF

LiCl

LiBr

NaF

NaCl

NaBr

KF

KCl

KBr

If the outer loop has No iterations and the inner loop executes Ni times

for each of them, the inner loop will execute a total of NoNi times. One

special case of this is when the inner and outer loops are running over

the same list of length N, in which case the inner loop executes N2 times.

This can be used to generate a multiplication table; after printing the

header row, we use a nested loop to print each row of the table in turn,

using tabs to make the columns line up:

Download lists/multiplication_table.py

def print_table():

'''Print the multiplication table for numbers 1 through 5.'''

numbers = [1, 2, 3, 4, 5]

Print the header row.

for i in numbers:

print '\t' + str(i),

print # End the header row.

Print the column number and the contents of the table.

for i in numbers:

print i,

for j in numbers:

print '\t' + str(i * j),

print # End the current row.

http://media.pragprog.com/titles/gwpy/code/lists/nested_loops.cmd
http://media.pragprog.com/titles/gwpy/code/lists/multiplication_table.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=91

SLICING 92

Here is print_table’s output:

Download lists/multiplication_out.txt

>>> from multiplication_table import *
>>> print_table()

1 2 3 4 5

1 1 2 3 4 5

2 2 4 6 8 10

3 3 6 9 12 15

4 4 8 12 16 20

5 5 10 15 20 25

Notice when the two different kinds of formatting are done: the print

statement at the bottom of the program prints a new line when outer

loop advances, while the inner loop includes a tab in front of each item.

5.5 Slicing

Geneticists describe C. elegans (nematodes, or microscopic worms)

using three-letter short-form markers. Examples include Emb (embry-

onic lethality), Him (High incidence of males), Unc (Uncoordinated), Dpy

(dumpy: short and fat), Sma (small), and Lon (long). We can thus keep

a list:

Download lists/celegans.cmd

>>> celegans_markers = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']

>>> celegans_markers

['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']

It turns out that Dpy worms and Sma worms are difficult to distin-

guish from each other, so they are not as useful as markers in complex

strains. We can produce a new list based on celegans_markers, but with-

out Dpy or Sma, by taking a slice of the list:

Download lists/celegans1.cmd

>>> celegans_markers = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']

>>> useful_markers = celegans_markers[0:4]

This creates a new list consisting of only the four distinguishable mark-

ers (see Figure 5.7, on the following page).

The first index in the slice is the starting point. The second index is one

more than the index of the last item we want to include. More rigorously,

http://media.pragprog.com/titles/gwpy/code/lists/multiplication_out.txt
http://media.pragprog.com/titles/gwpy/code/lists/celegans.cmd
http://media.pragprog.com/titles/gwpy/code/lists/celegans1.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=92

SLICING 93

! " # $

%&'(% %)*'% %+,-% %./,%

!"#"$%&'()%*+"*'

%012%

3

"

,'"-,#()%*+"*'

!

%4'5%

6

$#

Figure 5.7: Slicing doesn’t modify lists.

list[i:j] is a slice of the original list from index i (inclusive) up to, but not

including, index j (exclusive).4

The first index can be omitted if we want to slice from the beginning of

the list, and the last index can be omitted if we want to slice to the end:

Download lists/celegans2.cmd

>>> celegans_markers = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']

>>> celegans_markers[:4]

['Emb', 'Him', 'Unc', 'Lon']

>>> celegans_markers[4:]

['Dpy', 'Sma']

To create a copy of the entire list, we just omit both indices so that the

“slice” runs from the start of the list to its end:

Download lists/celegans3.cmd

>>> celegans_markers = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']

>>> celegans_copy = celegans_markers[:]

>>> celegans_markers[5] = 'Lvl'

>>> celegans_markers

['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Lvl']

>>> celegans_copy

['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']

4. Python uses this convention to be consistent with the rule that the legal indices for a

list go from 0 up to one less than the list’s length.

http://media.pragprog.com/titles/gwpy/code/lists/celegans2.cmd
http://media.pragprog.com/titles/gwpy/code/lists/celegans3.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=93

ALIASING 94

! " # $

%&'(% %)*'% %+,-% %./,%

!"#"$%&'()%*+"*'

%012%

3

%4'5%

6

!"#"$%&'(!,-.

Figure 5.8: Aliasing lists

5.6 Aliasing

An alias is an alternative name for something. In Python, two variables

are said to be aliases when they refer to the same value. For example,

the following code creates two variables, both of which refer to a single

list (see Figure 5.8). When we modify the list using one of the variables,

references through the other variable show the change as well:

Download lists/celegans4.cmd

>>> celegans_markers = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']

>>> celegans_copy = celegans_markers

>>> celegans_markers[5] = 'Lvl'

>>> celegans_markers

['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Lvl']

>>> celegans_copy

['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Lvl']

Aliasing is one of the reasons why the notion of mutability is important.

For example, if x and y refer to the same list, then any changes you

make to the list through x will be “seen” by y, and vice versa. This can

lead to all sorts of hard-to-find errors in which a list’s value changes

as if by magic, even though your program doesn’t appear to assign

anything to it. This can’t happen with immutable values like strings.

Since a string can’t be changed after it has been created, it’s safe to

have aliases for it.

Aliasing in Function Calls

Aliasing occurs when we use list parameters as well, since parameters

are variables.

http://media.pragprog.com/titles/gwpy/code/lists/celegans4.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=94

LIST METHODS 95

Method Description

L.append(v) Appends value v to list L

L.insert(i, v) Inserts value v at index i in list L, shifting following items

to make room

L.remove(v) Removes the first occurrence of value v from list L

L.reverse() Reverses the order of the values in list L

L.sort() Sorts the values in list L in ascending order (for strings,

alphabetical order)

L.pop() Removes and returns the last element of L (which must be

nonempty)

Figure 5.9: List methods

Here is a simple function that takes a list, sorts it, and then reverses it:

Download lists/alias_parameters.cmd

>>> def sort_and_reverse(L):

... '''Return list L sorted and reversed.'''

... L.sort()

... L.reverse()

... return L

...

>>> celegans_markers = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Lvl']

>>> sort_and_reverse(celegans_markers)

['Unc', 'Lvl', 'Lon', 'Him', 'Emb', 'Dpy']

>>> celegans_markers

['Unc', 'Lvl', 'Lon', 'Him', 'Emb', 'Dpy']

This function modifies list L, and since L is an alias of celegans_markers,

that list is modified as well.

5.7 List Methods

Lists are objects and thus have methods. Some of the most commonly

used are listed in Figure 5.9. Here is a sample interaction showing how

we can use these methods to construct a list containing all the colors

of the rainbow:

Download lists/colors.cmd

>>> colors = 'red orange green black blue'.split()

>>> colors.append('purple')

>>> colors

['red', 'orange', 'green', 'black', 'blue', 'purple']

http://media.pragprog.com/titles/gwpy/code/lists/alias_parameters.cmd
http://media.pragprog.com/titles/gwpy/code/lists/colors.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=95

LIST METHODS 96

Where Did My List Go?

Beginning programmers often forget that many list methods
return None rather than creating and returning a new list. (Expe-
rienced programmers sometimes forget too.) As a result, their
lists sometimes seem to disappear:

Download lists/colors2.cmd

>>> colors = 'red orange yellow green blue purple'.split()
>>> colors
['blue', 'green', 'orange', 'purple', 'red', 'yellow']
>>> sorted_colors = colors.sort()
>>> print sorted_colors
None

As we’ll discuss in Section 4.5, Testing, on page 70, mistakes like
these can quickly be caught by writing and running a few tests.

>>> colors.insert(2, 'yellow')

>>> colors

['red', 'orange', 'yellow', 'green', 'black', 'blue', 'black', 'purple']

>>> colors.remove('black')

>>> colors

['red', 'orange', 'yellow', 'green', 'blue', 'purple']

It is important to note that all these methods modify the list instead

of creating a new list. They do this because lists can grow very, very

large—a million patient records, for example, or a billion measurements

of a magnetic field. Creating a new list every time someone wanted to

make a change to such a list would slow Python down so much that it

would no longer be useful; having Python guess when it should make

a copy, and when it should operate on the list in place, would make it

impossible to figure out.

It’s just as important to remember that all of these methods except

pop return the special value None, which means “There is no useful

information” or “There’s nothing here.” Python doesn’t display anything

when asked to display the value None. Printing it, on the other hand,

shows us that it’s there:

Download lists/none.cmd

>>> x = None

>>> x

>>> print x

None

http://media.pragprog.com/titles/gwpy/code/lists/colors2.cmd
http://media.pragprog.com/titles/gwpy/code/lists/none.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=96

NESTED LISTS 97

!

!"#$

" #

! " ! " ! "

$%&'&(&$)!

$*'+,-(./,&,-0$ 1232

$4-5+67$ 1#3!

Figure 5.10: Nested lists

Finally, a call to append is not the same as using +. First, append

appends a single value, while + expects two lists as operands. Second,

append modifies the list rather than creating a new one.

5.8 Nested Lists

We said in Section 5.1, Lists Are Heterogeneous, on page 85 that lists

can contain any type of data. That means that they can contain other

lists, just as the body of a loop can contain another loop. For example,

the following nested list describes life expectancies in different coun-

tries:

Download lists/lifelist.py

[['Canada', 76.5], ['United States', 75.5], ['Mexico', 72.0]]

As shown in Figure 5.10, each element of the outer list is itself a list

of two items. We use the standard notation to access the items in the

outer list:

Download lists/life0.cmd

>>> life = [['Canada', 76.5], ['United States', 75.5], ['Mexico', 72.0]]

>>> life[0]

['Canada', 76.5]

>>> life[1]

['United States', 75.5]

>>> life[2]

['Mexico', 72.0]

http://media.pragprog.com/titles/gwpy/code/lists/lifelist.py
http://media.pragprog.com/titles/gwpy/code/lists/life0.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=97

NESTED LISTS 98

!

!"#$

" #

! " ! " ! "

$%&'&(&$)*+,

$-'./0(12/&/03$),+,

405.67)#+!

%&'&(&

Figure 5.11: Aliasing sublists

Since each of these items is also a list, we can immediately index it

again, just as we can chain together method calls or pass the result of

one function call as an argument to another function:

Download lists/life1.cmd

>>> life = [['Canada', 76.5], ['United States', 75.5], ['Mexico', 72.0]]

>>> life[1]

['United States', 75.5]

>>> life[1][0]

'United States'

>>> life[1][1]

75.5

We can also assign sublists to variables:

Download lists/life2.cmd

>>> life = [['Canada', 76.5], ['United States', 75.5], ['Mexico', 72.0]]

>>> canada = life[0]

>>> canada

['Canada', 76.5]

>>> canada[0]

'Canada'

>>> canada[1]

76.5

Assigning a sublist to a variable creates an alias for that sublist (see

Figure 5.11). As before, any change we make through the sublist refer-

ence will show up when we access the main list, and vice versa:

Download lists/life3.cmd

>>> life = [['Canada', 76.5], ['United States', 75.5], ['Mexico', 72.0]]

>>> canada = life[0]

http://media.pragprog.com/titles/gwpy/code/lists/life1.cmd
http://media.pragprog.com/titles/gwpy/code/lists/life2.cmd
http://media.pragprog.com/titles/gwpy/code/lists/life3.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=98

OTHER KINDS OF SEQUENCES 99

>>> canada[1] = 80.0

>>> canada

['Canada', 80.0]

>>> life

[['Canada', 80.0], ['United States', 75.5], ['Mexico', 72.0]]

5.9 Other Kinds of Sequences

Lists aren’t the only kind of sequence in Python. You’ve already met one

of the others: strings. Formally, a string is an immutable sequence of

characters. The “sequence” part of this definition means that it can be

indexed and sliced like a list to create new strings:

Download lists/string_seq.cmd

>>> rock = 'anthracite'

>>> rock[9]

'e'

>>> rock[0:3]

'ant'

>>> rock[-5:]

'acite'

>>> for character in rock[:5]:

... print character

...

a

n

t

h

r

Python also has an immutable sequence type called a tuple. Tuples are

written using parentheses instead of square brackets; like strings and

lists, they can be subscripted, sliced, and looped over:

Download lists/tuples1.cmd

>>> bases = ('A', 'C', 'G', 'T')

... for b in bases:

... print b

A

C

G

T

There is one small catch: although () represents the empty tuple, a tuple

with one element is not written as (x) but instead as (x,) (with a trailing

comma). This has to be done to avoid ambiguity. If the trailing comma

weren’t required, (5 + 3) could mean either 8 (under the normal rules of

http://media.pragprog.com/titles/gwpy/code/lists/string_seq.cmd
http://media.pragprog.com/titles/gwpy/code/lists/tuples1.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=99

FILES AS LISTS 100

arithmetic) or the tuple containing only the value 8. This is one of the

few places where Python’s syntax leaves something to be desired....

Once a tuple is created, it cannot be changed:

Download lists/life4.cmd

>>> life = (['Canada', 76.5], ['United States', 75.5], ['Mexico', 72.0])

>>> life[0] = life[1]

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: object does not support item assignment

However, the objects inside it can still be changed:

Download lists/life5.cmd

>>> life = (['Canada', 76.5], ['United States', 75.5], ['Mexico', 72.0])

>>> life[0][1] = 80.0

>>> life

(['Canada', 80.0], ['United States', 75.5], ['Mexico', 72.0])

This is because it’s actually sloppy English to say that something is

“inside” a tuple. It would be more accurate to say this: “The references

contained in a tuple cannot be changed after the tuple has been cre-

ated, though the objects referred to may themselves change.”

Newcomers to Python often ask why tuples exist. The answer is that

they make some operations more efficient and others safer. We won’t

get far enough in this book to explain the former, but we will explore

the latter in Chapter 9, Sets and Dictionaries, on page 185.

5.10 Files as Lists

Most data is stored in files, which are just ordered sequences of bytes.

Those bytes may represent characters, pixels, or postal codes; the im-

portant thing is that they’re in a particular order, which means that

lists are usually a natural way to work with them.

In order to read data from a file, we must first open it using Python’s

built-in function open:

Download lists/open_basic.cmd

>>> file = open("data.txt", "r")

The first argument to open is a string containing the name of the file.

The second argument indicates a mode. The three options are "r" for

reading, "w" for writing, and "a" for appending. (The difference between

http://media.pragprog.com/titles/gwpy/code/lists/life4.cmd
http://media.pragprog.com/titles/gwpy/code/lists/life5.cmd
http://media.pragprog.com/titles/gwpy/code/lists/open_basic.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=100

FILES AS LISTS 101

writing and appending is that writing a file erases anything that was

already in it, while appending adds new data to the end.)

The result of open is not the contents of the file. Instead, open returns

a file object whose methods allow the program to access the contents of

the file.

The most fundamental of these methods is read. When it is called with-

out any arguments, it reads all the data in the file and returns it as a

string of characters. If we give read a positive integer argument, it reads

only up to that many characters; this is useful when we are working

with very large files. In either case, if there’s no more data in the file,

the method returns an empty string.

Although read gives us access to the bytes in a file, we usually use

higher-level methods to do our work. If the file contains text, for exam-

ple, we will probably want to process it one line at a time. To do this,

we can use the file object’s readline method, which reads the next line of

text from the file. A line is defined as being all the characters up to and

including the next end-of-line marker (see Section 3.3, Multiline Strings,

on page 43). Like read, readline returns an empty string when there’s no

more data in the file.

The neatest thing about readline is that Python calls it for us automat-

ically when a file object is used in a for loop. Assume this data is in a

file called data.txt:

Download lists/data.txt

Mercury

Venus

Earth

Mars

This program opens that file and prints the length of each line:

Download lists/fileinputloop.cmd

>>> data = open('data.txt', 'r')

>>> for line in data:

... print len(line)

...

8

6

6

5

Take a close look at the last line of output. There are only four char-

acters in the word Mars, but our program is reporting that the line

http://media.pragprog.com/titles/gwpy/code/lists/data.txt
http://media.pragprog.com/titles/gwpy/code/lists/fileinputloop.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=101

FILES AS LISTS 102

is five characters long. The reason for this is that each of the lines

we read from the file has an end-of-line character at the end. We can

get rid of it using string.strip, which returns a copy of a string that has

leading and trailing whitespace characters (spaces, tabs, and newlines)

stripped away:

Download lists/fileinputloop2.cmd

>>> data = open('data.txt', 'r')

>>> for line in data:

... print len(line.strip())

...

7

5

5

4

This example shows the result of applying strip to a string with leading

and trailing whitespace:

Download lists/strip_basic.cmd

>>> compound = " \n Methyl butanol \n"

>>> print compound

Methyl butanol

>>> print compound.strip()

Methyl butanol

Note that the space inside the string is unaffected: string.strip takes

whitespace only off the front and end of the string.

Using string.strip, we can now produce the correct output when reading

from our file:

Download lists/fileinputloop_strip.cmd

>>> file = open('data.txt', 'r')

>>> for line in file:

... line = line.strip()

... print len(line)

...

7

5

5

4

http://media.pragprog.com/titles/gwpy/code/lists/fileinputloop2.cmd
http://media.pragprog.com/titles/gwpy/code/lists/strip_basic.cmd
http://media.pragprog.com/titles/gwpy/code/lists/fileinputloop_strip.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=102

COMMENTS 103

Command-Line Arguments

We said earlier that the file data.txt contains the name of planets. To

finish the example, let’s go back to reading that file but display only a

certain range of the lines. We’ll provide the start and end line numbers

when we run the program. For example, we might want to read the first

three lines one time and lines 2 to 4 another time.

We can do this using command-line arguments. When we run a pro-

gram, we can send arguments to it, much like when we call a function

or method. These values end up in a special variable of the system

module sys called argv, which is just a list of the arguments (as strings).

sys.argv[0] always contains the name of the Python program being run.

In this case, it is read_lines_range.py. The rest of the command-line argu-

ments are in sys.argv[1], sys.argv[2], and so on.

Here, then, is a program that reads all the data from a file and displays

lines with line numbers within the start and end line range:

Download lists/read_lines_range.py

''' Display the lines of data.txt from the given starting line number to the

given end line number.

Usage: read_lines_range.py start_line end_line '''

import sys

if __name__ == '__main__':

get the start and end line numbers

start_line = int(sys.argv[1])

end_line = int(sys.argv[2])

read the lines of the file and store them in a list

data = open('data.txt', 'r')

data_list = data.readlines()

data.close()

display lines within start to end range

for line in data_list[start_line:end_line]:

print line.strip()

5.11 Comments

The previous line-reading program is one of the longest we have seen

to date—so long, in fact, that we have added comments as well as a

http://media.pragprog.com/titles/gwpy/code/lists/read_lines_range.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=103

COMMENTS 104

docstring. The docstring is primarily for people who want to use the

program; it describes what the program does but not how.

Comments, on the other hand, are written for the benefit of future

developers.5 Each comment starts with the # character and runs to the

end of the line. We can put whatever we want in comments, because

Python ignores them completely.

Here are a few rules for good commenting:

• Assume your readers know as much Python as you do (for exam-

ple, don’t explain what strings are or what an assignment state-

ment does).

• Don’t comment the obvious—the following comment is not useful:

count = count + 1 # add one to count

• Many programmers leave comments beginning with “TODO” or

“FIXME” in code to remind themselves of things that need to be

written or tidied up.

• If you needed to think hard when you wrote a piece of software,

you should write a comment so that the next person doesn’t have

to do the same thinking all over again. In particular, if you develop

a program or function by writing a simple point-form description

in English, then making the points more and more specific until

they turn into code, you should keep the original points as com-

ments. (We will discuss this style of development further in Chap-

ter 10, Algorithms, on page 203.)

• Similarly, if a bug was difficult to find or if the fix is complicated,

you should write a comment to explain it. If you don’t, the next

programmer to work on that part of the program might think that

the code is needlessly complicated and undo your hard work.

• On the other hand, if you need lots of comments to explain what a

piece of code does, you should clean up the code. For example, if

you have to keep reminding readers what each of the fifteen lists

in a function are for, you should break the function into smaller

pieces, each of which works only with a few of those lists.

5. Including future versions of ourselves, who might have forgotten the details of this

program by the time a change needs to be made or a bug needs to be fixed.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=104

SUMMARY 105

And here’s one more rule:

• An out-of-date comment is worse than no comment at all, so if

you change a piece of software, read the comments carefully and

fix any that are no longer accurate.

5.12 Summary

In this chapter, we learned the following:

• Lists are used to keep track of zero or more objects. We call the

objects in a list its elements and refer to them by position using

indices ranging from zero to one less than the length of the list.

• Lists are mutable, which means that their contents can be modi-

fied. Lists can contain any type of data, including other lists.

• Slicing is used to create new lists that have the same values or a

subset of the values of the originals.

• When two variables refer to the same object, we call them aliases.

• Tuples are another kind of Python sequence. Tuples are similar to

lists, except they are immutable.

• When files are opened and read, their contents are commonly

stored in lists of strings.

5.13 Exercises

Here are some exercises for you to try on your own:

1. Assign a list that contains the atomic numbers of the six alka-

line earth metals—beryllium (4), magnesium (12), calcium (20),

strontium (38), barium (56), and radium (88)—to a variable called

alkaline_earth_metals.

2. Which index contains Radium’s atomic number? Write the answer

in two ways, one using a positive index and one using a negative

index.

3. Which function tells you how many items there are in alkaline_

earth_metals?

4. Write code that returns the highest atomic number in alkaline_

earth_metals. (Hint: use one of the list methods from Figure 5.5, on

page 87.)

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=105

EXERCISES 106

5. What is the difference between print ’a’ and print ’a’,?

6. Write a for loop to print all the values in list half_lives from Sec-

tion 5.5, Slicing, on page 92, one per line.

7. Write a for loop to print all the values in list half_lives from Sec-

tion 5.5, Slicing, on page 92, all on a single line.

8. Consider the following statement, which creates a list of popula-

tions of countries in eastern Asia (China, DPR Korea, Hong Kong,

Mongolia, Republic of Korea, and Taiwan), in millions: country_

populations = [1295, 23, 7, 3, 47, 21]. Write a for loop that adds up all

the values and stores them in variable total. (Hint: give total an

initial value of zero, and, inside the loop body, add the population

of the current country to total.)

9. Create a list of temperatures in degrees Celsius with the values

25.2, 16.8, 31.4, 23.9, 28, 22.5, and 19.6, and assign it to a vari-

able called temps.

10. Using one of the list methods, sort temps in ascending order.

11. Using slicing, create two new lists, cool_temps and warm_temps,

which contain the temperatures below and above 20 degrees cel-

sius, respectively.

12. Using list arithmetic, recombine cool_temps and warm_temps in

into a new list called temps_in_celsius.

13. Write a for loop to convert all the values from temps_in_celsius into

Fahrenheit, and store the converted values in a new list temps_in_

fahrenheit. The list temps_in_celsius should remain unchanged.

14. Create a nested list where each element of the outer list con-

tains the atomic number and atomic weight for an alkaline earth

metal. The values are beryllium (4 and 9.012), magnesium (12 and

24.305), calcium (20 and 40.078), strontium (38 and 87.62), bar-

ium (56 and 137.327), and radium (88 and 226). Assign the list to

a variable alkaline_earth_metals.

15. Write a for loop to print all the values in alkaline_earth_metals, with

the atomic number and atomic weight for each alkaline earth

metal on a different line.

16. Write a for loop to create a new list called number_and_weight that

contains the elements of alkaline_earth_metals in the same order but

not nested.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=106

EXERCISES 107

17. Suppose the file alkaline_metals.txt contains this:

4 9.012

12 24.305

20 20.078

38 87.62

56 137.327

88 226

Write a for loop to read the contents of alkaline_metals.txt, and store

it in a nested list with each element of the list contains the atomic

number and atomic weight for an element. (Hint: use string.split.)

18. Draw a memory model showing the effect of the following state-

ments:

values = [0, 1, 2]

values[1] = values

19. The following function does not have a docstring or comments.

Write enough of both to make it easy for the next person to under-

stand what the function does, and how, and then compare your

solution with those of at least two other people. How similar are

they? Why do they differ?

def mystery_function(values):

result = []

for i in range(len(values[0])):

result.append([values[0][i]])

for j in range(1, len(values)):

result[-1].append(values[j][i])

return result

20. Section 5.2, Modifying Lists, on page 85 said that strings are im-

mutable. Why might mutable strings be useful? Why do you think

Python made them immutable?

21. What happens when you sort a list that contains a mix of numbers

and strings, such as [1, ’a’, 2, ’b’]? Is this consistent with the rules

given in Chapter 3, Strings, on page 39 and Chapter 6, Making

Choices, on the next page for how comparison operators like <

work on numbers and strings? Is this the “right” thing for Python

to do, or would some other behavior be more useful?

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=107

Chapter 6

Making Choices
This chapter introduces another fundamental concepts of program-

ming: making choices. We have to do this whenever we want to have our

program behave differently depending on the data it’s working with. For

example, we might want to do different things depending on whether a

solution is acidic or basic.

The statements we’ll meet in this chapter for making choices are called

control flow statements, because they control the way the computer

executes programs. We have already met one control flow statement—

the loops introduced in Section 5.4, Processing List Items, on page 89—

and we will meet others in future chapters as well. Together, they are

what give programs their “personalities.”

Before we can explore control flow statements, we must introduce a

Python type that is used to represent truth and falsehood. Unlike the

integers, floating-point numbers, and strings we have already seen,

this type has only two values and three operators, but it is extremely

powerful.

6.1 Boolean Logic

In the 1840s, the mathematician George Boole showed that the classi-

cal rules of logic could be expressed in purely mathematical form using

only the two values “true” and “false.” A century later, Claude Shan-

non (later the inventor of information theory) realized that Boole’s work

could be used to optimize the design of electromechanical telephone

switches. His work led directly to the use of Boolean logic to design

computer circuits.

BOOLEAN LOGIC 109

In honor of Boole’s work, most modern programming languages use a

type named after him to keep track of what’s true and what isn’t.

In Python, that type is called bool (without an “e”). Unlike int and float,

which have billions of possible values, bool has only two: True and False.

True and False are values, just as much as the numbers 0 and -43.7. It

feels a little strange at first to think of them this way, since “true” and

“false” in normal speech are adjectives that we apply to other state-

ments. As we’ll see, though, treating True and False as nouns is natural

in programs.

Boolean Operators

There are only three basic Boolean operators: and, or, and not. not has

the highest precedence, followed by and, followed by or.

not is a unary operator; in other words, it is applied to just one value,

like the negation in the expression -(3 + 2). An expression involving not

produces True if the original value is False, and it produces False if the

original value is True:

Download cond/boolean_not_examples.cmd

>>> not True

False

>>> not False

True

In the previous example, instead of not True, we could simply use False;

and instead of not False, we could use True. Rather than apply not directly

to a Boolean value, we would typically apply not to a Boolean variable

or a more complex Boolean expression. The same goes for the following

examples of Boolean operators and and or, so although we apply them

to Boolean constants in the following examples, we’ll give an example

of how they are typically used at the end of this section.

and is a binary operator; the expression left and right is True if both left

and right are True, and it’s False otherwise:

Download cond/boolean_and_examples.cmd

>>> True and True

True

>>> False and False

False

>>> True and False

False

>>> False and True

False

http://media.pragprog.com/titles/gwpy/code/cond/boolean_not_examples.cmd
http://media.pragprog.com/titles/gwpy/code/cond/boolean_and_examples.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=109

BOOLEAN LOGIC 110

!"#$

%&'(

)*+$,

%&'(

%&'(

-.#/(

-.#/(

%&'(

0+"12!"#$32.+$2)*+$,

!"#$%

!"#$%

&'(%

+"120!"#$2.+$2)*+$,3

!"#$%

&'(%

&'(%

-.#/(-.#/(!"#$% &'(%

Figure 6.1: Relational and equality operators

or is also a binary operator. It produces True if either operand is True,

and it produces False only if both are False:

Download cond/boolean_or_examples.cmd

>>> True or True

True

>>> False or False

False

>>> True or False

True

>>> False or True

True

This definition is called inclusive or, since it allows both possibilities

as well as either. In English, the word or is also sometimes an exclu-

sive or. For example, if someone says, “You can have pizza or tandoori

chicken,” they probably don’t mean that you can have both. Like most

programming languages, Python always interprets or as inclusive. We

will see in the exercises how to create an exclusive or.

We mentioned earlier that Boolean operators are usually applied to

Boolean expressions, rather than Boolean constants. If we want to

express “It is not cold and windy” using two variables cold and windy

that contain Boolean values, we first have to decide what the ambigu-

ous English expression means: is it not cold but at the same time

windy, or is it not both cold and windy? A truth table for each alter-

native is shown in Figure 6.1, and the following code snippet shows

what they look like translated into Python:

Download cond/boolean_expression.cmd

>>> (not cold) and windy

>>> not (cold and windy)

http://media.pragprog.com/titles/gwpy/code/cond/boolean_or_examples.cmd
http://media.pragprog.com/titles/gwpy/code/cond/boolean_expression.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=110

BOOLEAN LOGIC 111

Symbol Operation

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

== Equal to

!= Not equal to

Figure 6.2: Relational and Equality Operators

Relational Operators

We said earlier that True and False are values. The most common way

to produce them in programs is not to write them down directly but

rather to create them in expressions. The most common way to do that

is to do a comparison using a relational operator. For example, 3<5 is

a comparison using the relational operator < whose value is True, while

13≥77 uses ≥ and has the value False.

As shown in Figure 6.2, Python has all the operators you’re used to

using. Some of them are represented using two characters instead of

one, like <= instead of ≤.

The most important representation rule is that Python uses == for

equality instead of just =, because = is used for assignment. Beginners

often mix the two up and type x = 3 when they meant to check whether

the variable x was equal to three. This always produces a syntax error,

but if you don’t know what to look for, it can be hard to spot the reason.

All relational operators are binary operators: they compare two values

and produce True or False, as appropriate. The “greater than” > and “less

than” < operators work as expected:

Download cond/relational_1.cmd

>>> 45 > 34

True

>>> 45 > 79

False

>>> 45 < 79

True

>>> 45 < 34

False

http://media.pragprog.com/titles/gwpy/code/cond/relational_1.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=111

BOOLEAN LOGIC 112

We can compare integers to floating-point numbers with any of the rela-

tional operators. Integers are automatically converted to floating point

when we do this, just as they are when we add 14 to 23.3:

Download cond/relational_2.cmd

>>> 23.1 >= 23

True

>>> 23.1 >= 23.1

True

>>> 23.1 <= 23.1

True

>>> 23.1 <= 23

False

The same holds for “equal to” and “not equal to”:

Download cond/relational_3.cmd

>>> 67.3 == 87

False

>>> 67.3 == 67

False

>>> 67.0 == 67

True

>>> 67.0 != 67

False

>>> 67.0 != 23

True

Of course, it doesn’t make much sense to compare two numbers that

you know in advance, since you would also know the result of the com-

parison. Relational operators therefore almost always involve variables,

like this:

Download cond/relational_var.cmd

>>> def positive(x):

... return x > 0

...

>>> positive(3)

True

>>> positive(-2)

False

>>> positive(0)

False

Combining Comparisons

We have now seen three types of operators: arithmetic, Boolean, and

relational.

http://media.pragprog.com/titles/gwpy/code/cond/relational_2.cmd
http://media.pragprog.com/titles/gwpy/code/cond/relational_3.cmd
http://media.pragprog.com/titles/gwpy/code/cond/relational_var.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=112

BOOLEAN LOGIC 113

Here are the rules for combining them:

• Arithmetic operators have higher precedence than relational oper-

ators. For example, + and / are evaluated before < or >.

• Relational operators have higher precedence than Boolean opera-

tors. For example, comparisons are evaluated before and, or, and

not.

• All relational operators have the same precedence.

These rules mean that the expression 1 + 3 > 7 is evaluated as (1 + 3) >

7, not as 1 + (3 > 7). These rules also mean that you can often skip the

parentheses in complicated expressions:

Download cond/skipping_parens.cmd

>>> x = 2

>>> y = 5

>>> z = 7

>>> x < y and y < z

True

It’s usually a good idea to put the parentheses in, though, since it helps

the eye find the subexpressions and clearly communicates the order to

anyone reading your code:

Download cond/parens_included.cmd

>>> (x < y) and (y < z)

True

It’s very common in mathematics to check whether a value lies in a

certain range, in other words, that it is between two other values. You

can do this in Python by combining the comparisons with and:

Download cond/compare_range.cmd

>>> x = 3

>>> (1 < x) and (x <= 5)

True

>>> x = 7

>>> (1 < x) and (x <= 5)

False

This comes up so often, however, that Python lets you chain the

comparisons:

Download cond/chain1.cmd

>>> x = 3

>>> 1 < x <= 5

True

http://media.pragprog.com/titles/gwpy/code/cond/skipping_parens.cmd
http://media.pragprog.com/titles/gwpy/code/cond/parens_included.cmd
http://media.pragprog.com/titles/gwpy/code/cond/compare_range.cmd
http://media.pragprog.com/titles/gwpy/code/cond/chain1.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=113

BOOLEAN LOGIC 114

Most combinations work as you would expect, but there are cases that

may startle you:

Download cond/chain2.cmd

>>> 3 < 5 != True

True

>>> 3 < 5 != False

True

It seems impossible for both of these expressions to be True. However,

the first one is equivalent to this:

(3 < 5) and (5 != True)

while the second is equivalent to this:

(3 < 5) and (5 != False)

Since 5 is not True or False, the second half of each expression is True, so

the expression as a whole is True as well.

This kind of expression is an example of something that is a bad idea

even though it is legal.1 We strongly recommend that you only chain

comparisons in ways that would seem natural to a mathematician, in

other words, that you use < and <= together, or > and >= together, and

nothing else. If you’re tempted to do something else, resist. Use simple

comparisons and combine them with and in order to keep your code

readable. It’s also a good idea to use parentheses whenever you think

the expression you are writing may not be entirely clear.

Applying Boolean Operators to Integers, Floats, and Strings

We have already seen that Python converts ints to floats in mixed expres-

sions. It also converts numbers to bools, which means that the three

Boolean operators can be applied directly to numbers. When this hap-

pens, Python treats 0 and 0.0 as False and treats all other numbers as

True:

Download cond/not.cmd

>>> not 0

True

>>> not 1

False

>>> not 5

False

1. Sort of like going on a roller coaster right after eating two extra large ice cream sun-

daes back to back on a dare.

http://media.pragprog.com/titles/gwpy/code/cond/chain2.cmd
http://media.pragprog.com/titles/gwpy/code/cond/not.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=114

BOOLEAN LOGIC 115

!"#$%"&

'()* '()*

&

&"#$%"!

+#,-*

&

!"#$%".

'()* '()*

.

Figure 6.3: Short-circuit evaluation

>>> not 34.2

False

>>> not -87

False

Things are more complicated with and and or. When Python evaluates

an expression containing either of these operators, it always does so

from left to right. As soon as it knows enough to stop evaluating, it

stops, even if some operands haven’t been looked at yet. The result is

the last thing that was evaluated, which is not necessarily either True or

False.

This is much easier to demonstrate than explain. Here are three expres-

sions involving and:

Download cond/and.cmd

>>> 0 and 3

0

>>> 3 and 0

0

>>> 3 and 5

5

In the first expression, Python sees a 0, which is equivalent to False,

and immediately stops evaluating. It doesn’t need to look at the 3 to

know that the expression as a whole is going to be false, since and is

true only if both operands are true (see Figure 6.3).

In the second expression, though, Python has to check both operands,

since knowing that the first one (the 3) isn’t false is not enough to know

what the value of the whole expression will be. Python also checks both

operands in the third expression; as you can see, it takes the value of

http://media.pragprog.com/titles/gwpy/code/cond/and.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=115

BOOLEAN LOGIC 116

the last thing it checked as the value of the expression as a whole (in

this case, 5).

With or, if the first operand is considered to be true, or evaluates to

that value immediately, without even checking the second operand. The

reason for this is that Python already knows the answer: True or X is True,

regardless of the value of X.

If the first operand is equivalent to False, though, or has to check the

second operand. Its result is then that operand’s value:

Download cond/or.cmd

>>> 1 or 0

1

>>> 0 or 1

1

>>> True or 0

True

>>> 0 or False

False

>>> False or 0

0

>>> False or 18.2

18.199999999999999

(Remember, computers can’t represent all fractions exactly: the last

value in the previous code fragment is as close as it can get to 18.2.)

We claimed that if the first operand to the or operator is true, then

or evaluates to that value immediately without evaluating the second

operand. In order to show that this is what happens, try an expression

that divides by zero:

Download cond/div_zero.cmd

>>> 1 / 0

Traceback (most recent call last):

File "<string>", line 1, in <string>

ZeroDivisionError: integer division or modulo by zero

Now use that expression as the second operand to or:

Download cond/or_lazy.cmd

>>> True or 1 / 0

True

Since the first operand is true, the second operand is not evaluated, so

the computer never actually tries to divide anything by zero.

http://media.pragprog.com/titles/gwpy/code/cond/or.cmd
http://media.pragprog.com/titles/gwpy/code/cond/div_zero.cmd
http://media.pragprog.com/titles/gwpy/code/cond/or_lazy.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=116

BOOLEAN LOGIC 117

There’s Such a Thing as Being Too Clever

An expression like y = x and 1/x works, but that doesn’t mean you
should use it, any more than you should use this:

result = test and first or second

as a shorthand for the following:

if test:
result = first

else:
result = second

Programs are meant to be readable. If you have to puzzle over
a line of code or if there’s a high likelihood that someone seeing
it for the first time will misunderstand it, it’s bad code, even if it
runs correctly.

It’s possible to compare strings with each other, just as you would com-

pare numbers. The characters in strings are represented by integers: a

capital A, for example, is represented by 65, while a space is 32, and a

lowercase z is 172.2 Python decides which string is greater than which

by comparing corresponding characters from left to right. If the char-

acter from one string is greater than the character from the other, the

first string is greater than the second. If all the characters are the same,

the two strings are equal; if one string runs out of characters while the

comparison is being done (in other words, is shorter than the other),

then it is less. The following code fragment shows a few comparisons in

action:

Download cond/string_compare.cmd

>>> 'A' < 'a'

True

>>> 'A' > 'z'

False

>>> 'abc' < 'abd'

True

>>> 'abc' < 'abcd'

True

2. This encoding is called ASCII, which stands for “American Standard Code for Infor-

mation Interchange.” One of its quirks is that all the uppercase letters come before all

the lowercase letters, so a capital Z is less than a small a.

http://media.pragprog.com/titles/gwpy/code/cond/string_compare.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=117

IF STATEMENTS 118

Like zero, the empty string is equivalent to False; all other strings are

equivalent to True:

Download cond/empty_false.cmd

>>> '' and False

''

>>> 'salmon' or True

'salmon'

Python can also convert Booleans to numbers: True becomes 1, while

False becomes 0:

Download cond/truefalse.cmd

>>> False == 0

True

>>> True == 1

True

>>> True == 2

False

>>> False < True

True

This means that you can add, subtract, multiply, and divide using

Boolean values:

Download cond/bool_math.cmd

>>> 5 + True

6

>>> 7 - False

7

But “can” isn’t the same as “should”: adding True to 5, or multiplying the

temperature by current_time<NOON, will make your code much harder to

read. In practice, programmers routinely rely on conversion to Booleans

but rarely if ever use conversions in the other direction.

6.2 if Statements

The basic form of an if statement is as follows:

if condition:

block

The condition is an expression, such as name != ” or x < y. Note that

this doesn’t have to be a Boolean expression. As we discussed in Sec-

tion 6.1, Applying Boolean Operators to Integers, Floats, and Strings, on

page 114, non-Boolean values are automatically converted to True or

False when required.

http://media.pragprog.com/titles/gwpy/code/cond/empty_false.cmd
http://media.pragprog.com/titles/gwpy/code/cond/truefalse.cmd
http://media.pragprog.com/titles/gwpy/code/cond/bool_math.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=118

IF STATEMENTS 119

In particular, 0, None, the empty string ”, and the empty list [] all are

considered to false, while all other values that we have encountered are

considered to be true.

If the condition is true, then the statements in the block are executed;

otherwise, they are not. As with loops and functions, the block of state-

ments must be indented to show that it belongs to the if statement. If

you don’t indent properly, Python might raise an error, or worse, might

happily execute the code that you wrote but, because some statements

were not indented properly, do something you didn’t intend. We’ll briefly

explore both problems in this chapter.

Here is a table of solution categories based on pH level:

pH Level Solution Category

0–4 Strong acid

5–6 Weak acid

7 Neutral

8–9 Weak base

10–14 Strong base

We can use an if statement to print a message only when the pH level

given by the program’s user is acidic:

Download cond/if_basictrue.cmd

>>> ph = float(raw_input())

6.0

>>> if ph < 7.0:

... print "%s is acidic." % (ph)

...

6.0 is acidic.

(Recall from Section 3.6, User Input, on page 46 that we have to convert

user input from a string to a float before doing the comparison.)

If the condition is false, the statements in the block are not executed:

Download cond/if_basicfalse.cmd

>>> ph = float(raw_input())

8.0

>>> if ph < 7.0:

... print "%s is acidic." % (ph)

...

>>>

http://media.pragprog.com/titles/gwpy/code/cond/if_basictrue.cmd
http://media.pragprog.com/titles/gwpy/code/cond/if_basicfalse.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=119

IF STATEMENTS 120

If we don’t indent the block, Python lets us know:

Download cond/if_indenterror.cmd

>>> ph = float(raw_input())

6.0

>>> if ph < 7.0:

... print "%s is acidic." % (ph)

File "<stdin>", line 2

print "%s is acidic." % (ph)

^

IndentationError: expected an indented block

Since we’re using a block, we can have multiple statements, which are

executed only if the condition is true:

Download cond/if_multilinetrue.cmd

>>> ph = float(raw_input())

6.0

>>> if ph < 7.0:

... print "%s is acidic." % (ph)

... print "You should be careful with that!"

...

6.0 is acidic.

You should be careful with that!

When we indent the first line of the block, the Python interpreter

changes its prompt to ... until the end of the block, which is signaled by

a blank line:

Download cond/if_multiline_indent_error.cmd

>>> ph = float(raw_input())

8.0

>>> if ph < 7.0:

... print "%s is acidic." % (ph)

...

>>> print "You should be careful with that!"

You should be careful with that!

If we don’t indent the code that’s in the block, the interpreter complains:

Download cond/if_multiline_indent_error2.cmd

>>> ph = float(raw_input())

8.0

>>> if ph < 7.0:

... print "%s is acidic." % (ph)

... print "You should be careful with that!"

File "<stdin>", line 3

print "You should be careful with that!"

^

SyntaxError: invalid syntax

http://media.pragprog.com/titles/gwpy/code/cond/if_indenterror.cmd
http://media.pragprog.com/titles/gwpy/code/cond/if_multilinetrue.cmd
http://media.pragprog.com/titles/gwpy/code/cond/if_multiline_indent_error.cmd
http://media.pragprog.com/titles/gwpy/code/cond/if_multiline_indent_error2.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=120

IF STATEMENTS 121

If the program is in a file, then no blank line is needed. As soon as the

indentation ends, Python assumes that the block has ended as well.

This is therefore legal:

Download cond/if_multiline_indent_error3.cmd

ph = 8.0

if ph < 7.0:

print "%s is acidic." % (ph)

print "You should be careful with that!"

In practice, this slight inconsistency is never a problem, and most peo-

ple never even notice it.

Of course, sometimes there are situations where a single decision isn’t

sufficient. If there are multiple criteria to examine, there are a couple of

ways to handle it. One way is to use multiple if statements. For example,

we might print different messages depending on whether a pH level is

acidic or basic:

Download cond/multi_if.cmd

>>> ph = float(raw_input())

8.5

>>> if ph < 7.0:

... print "%s is acidic." % (ph)

...

>>> if ph > 7.0:

... print "%s is basic." % (ph)

...

8.5 is basic.

>>>

In Figure 6.4, on the following page, we see that both conditions are

always evaluated, even though we know that only one of the blocks

can be executed. We can merge both cases by adding another condi-

tion/block pair using the elif keyword (which stands for “else if”); each

condition/block pair is called a clause:

Download cond/elif_basic.cmd

>>> ph = float(raw_input())

8.5

>>> if ph < 7.0:

... print "%s is acidic." % (ph)

... elif ph > 7.0:

... print "%s is basic." % (ph)

...

8.5 is basic.

>>>

http://media.pragprog.com/titles/gwpy/code/cond/if_multiline_indent_error3.cmd
http://media.pragprog.com/titles/gwpy/code/cond/multi_if.cmd
http://media.pragprog.com/titles/gwpy/code/cond/elif_basic.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=121

IF STATEMENTS 122

!"#$
%&'(')*+

!"#$%&'()*+

,-./)&")

0,&1,23

%&',')*+
!"#$

!"#$%&'()*4

-./0$

-./0$

Figure 6.4: if statement

The difference between the two is that the elif is checked only when

the if above it was false. In Figure 6.5, on the next page, we can see

the difference pictorially, with conditions drawn as diamonds, other

statements as rectangles, and arrows to show the flow of control.

An if statement can be followed by multiple elif clauses. This longer

example translates a chemical formula into English:

Download cond/elif_longer.cmd

>>> compound = raw_input()

CH3

>>> if compound == "H2O":

... print "Water"

... elif compound == "NH3":

... print "Ammonia"

... elif compound == "CH3":

... print "Methane"

...

Methane

>>>

http://media.pragprog.com/titles/gwpy/code/cond/elif_longer.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=122

IF STATEMENTS 123

!"#$
%&'(')*+

!"#$%&'(

)%!"#$%&'(

*)+,-&"-

.*&/*01

,-./$

%&'0')*+

,-./$

!"#$

Figure 6.5: elif statement

If none of the conditions in a chain of if/elif statements are satisfied,

Python does not execute any of the associated blocks. This isn’t always

what we’d like, though. In our translation example, we probably want

our program to print something even if it doesn’t recognize the com-

pound. To do this, we add an else clause at the end of the chain:

Download cond/else_basic.cmd

>>> compound = raw_input()

H2SO4

>>> if compound == "H2O":

... print "Water"

... elif compound == "NH3":

... print "Ammonia"

... elif compound == "CH3":

... print "Methane"

... else:

... print "Unknown compound"

...

Unknown compound

>>>

http://media.pragprog.com/titles/gwpy/code/cond/else_basic.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=123

IF STATEMENTS 124

An if statement can have at most one else clause, and it has to be the

final clause in the statement. Notice there is no condition associated

with the else; logically, the following statement:

if condition:

if-block

else:

else-block

is the same as this:

if condition:

if-block

if not condition:

else-block

Nested if Statements

An if statement’s block can contain any type of Python statement, which

means that it can include other if statements. An if statement inside

another is called a nested if statement.

Download cond/nested_if.cmd

input = raw_input()

if len(input) > 0:

ph = float(input)

if ph < 7.0:

print "%s is acidic." % (ph)

elif ph > 7.0:

print "%s is basic." % (ph)

else:

print "%s is neutral." % (ph)

else:

print "No pH value was given!"

In this case, we ask the user to provide a pH value, which we’ll initially

receive as a string. The first, or outer, if statement checks whether the

user typed something, which determines whether we examine the value

of pH with the inner if statement.

Nested if statements are sometimes necessary, but they can get com-

plicated and difficult to understand. To describe when a statement is

executed, we have to mentally combine conditions; for example, print

"That’s acidic!" is executed only if the length of the string input is greater

than 0 and pH < 7.0 also evaluates to true.

http://media.pragprog.com/titles/gwpy/code/cond/nested_if.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=124

STORING CONDITIONALS 125

6.3 Storing Conditionals

Take a look at the following line of code and guess what value is stored

in x:

Download cond/assign_bool.cmd

>>> x = 15 > 5

If you said “True”, you were right: 15 is greater than 5, so the comparison

produces True, and since that’s a value like any other, it can be assigned

to a variable.

The most common situation in which you would want to do this comes

up when translating decision tables into software. For example, sup-

pose you want to calculate someone’s risk of heart disease using the

following rules based on age and body mass index (BMI):

Age

<45 ≥45

BMI
<22.0 Low Medium

≥22.0 Medium High

One way to implement this would be to use nested if statements:

if age < 45:

if bmi < 22.0:

risk = 'low'

else:

risk = 'medium'

else:

if bmi < 22.0:

risk = 'medium'

else:

risk = 'high'

The problem with this is that it’s hard to see that we’re testing exactly

the same condition in several places. If there were four thresholds each

for age and BMI, for example, we’d have sixteen inner conditions, and

it wouldn’t be obvious that they were all identical.

Here’s a better way to do this:

young = age < 45

slim = bmi < 22.0

if young:

if slim:

risk = 'low'

else

risk = 'medium'

http://media.pragprog.com/titles/gwpy/code/cond/assign_bool.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=125

SUMMARY 126

else:

if slim:

risk = 'medium'

else:

risk = 'high'

We could also write this as follows:

young = age < 45

slim = bmi < 22.0

if young and slim:

risk = 'low'

elif young and not slim:

risk = 'medium'

elif not young and slim:

risk = 'medium'

elif not young and not slim:

risk = 'high'

We can even take advantage of the fact that False has the value 0 when

converted to an integer and that True has the value 1:

table = [['medium', 'high'],

['low', 'medium']]

young = age < 45

heavy = bmi >= 22.0

risk = table[young][heavy]

6.4 Summary

In this chapter, we learned the following:

• Python uses the Boolean values True and False to represent what

is true and what isn’t. Programs can combine these values using

three operators: not, and, and or.

• Boolean operators can also be applied to numeric values. 0 and

0.0 are equivalent to False; all other numeric values are equiva-

lent to True. When Boolean values are converted to numbers, False

becomes 0, and True becomes 1.

• Relational operators such as “equals” and “less than” compare val-

ues and produce a Boolean result.

• When different operators are combined in an expression, the order

of precedence from highest to lowest is arithmetic, relational, and

then Boolean.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=126

EXERCISES 127

6.5 Exercises

Here are some exercises for you to try on your own:

1. For each of the following expressions, what value will the expres-

sion give? Verify your answers by typing the expressions into

Python.

a) True and not False

b) True or True and False

c) not True or not False

d) True and not 0

e) 52 < 52.3

f) 1 + 52 < 52.3

g) 4 != 4.0

2. Here is a possible definition of how and works:

If both operands are true, and’s result is its second value. If either

is false, and’s result is its first value.

Is this the rule that Python actually uses? If not, provide a counter

example.

3. You are given variables x and y.

a) Write an expression that evaluates to True if both variables are

True and that evaluates to False otherwise.

b) Write an expression that evaluates to True if x is False and eval-

uates to False otherwise.

c) Write an expression that evaluates to True if at least one of the

variables is True and evaluates to False otherwise.

4. Given variables full and empty, write an expression that evaluates

to True if at most one of the variables is True and evaluates to False

otherwise.

5. You want an automatic wildlife camera to switch on if the light

level is less than 0.01 or if the temperature is above freezing, but

not if both conditions are true.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=127

EXERCISES 128

Your first attempt to write this is as follows:

if (light < 0.01) or (temperature > 0.0):

if (light < 0.01) and (temperature > 0.0):

pass

else:

camera.on()

A friend says that this is an exclusive or and that you could write

it more simply as follows:

if (light < 0.01) != (temperature > 0.0):

camera.on()

Is your friend right? If so, explain why. If not, give values for light

and temperature that will produce different results for the two frag-

ments of code.

6. In Section 2.7, Built-in Functions, on page 33, we saw the built-in

function abs. Given a variable x, write an expression that evalu-

ates to True if x and its absolute value are equal and evaluates

to False otherwise. Associate the resulting value with a variable

named result.

7. Write a function named different that has two parameters, a and b.

The function should return True if a and b refer to different values

and should return False otherwise.

8. You are given two float variables, population and land_area.

a) Write an if statement that will print the population if it is less

than 10,000,000.

b) Write an if statement that will print the population if it is

between 10,000,000 and 35,000,000.

c) Write an if statement that will print "Densely populated" if the

land density (number of people per unit of area) is greater

than 100.

d) Write an if statement that will print "Densely populated" if the

land density (number of people per unit of area) is greater

than 100 and that will print "Sparsely populated" otherwise.

9. Function to_celsius from Section 2.6, Function Basics, on page 30

converts from Fahrenheit to Celsius. Wikipedia, however, discus-

ses eight temperature scales: Kelvin, Celsius, Fahrenheit, Rank-

ine, Delisle, Newton, Rèaumur, and Rømer. Visit http://en.wikipedia.

org/wiki/Comparison_of_temperature_scales to read about them.

http://en.wikipedia.org/wiki/Comparison_of_temperature_scales
http://en.wikipedia.org/wiki/Comparison_of_temperature_scales
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=128

EXERCISES 129

a) Write a function convert_temperatures(t, source, target) that con-

verts temperature t from source units to target units, where

source and target are each one of "Kelvin", "Celsius", "Fahrenheit",

"Rankine", "Delisle", "Newton", "Reaumur", and "Romer".

Hint: on the Wikipedia page there are eight tables, each with

two columns and seven rows. That translates to an awful lot

of if statements—at least 8 * 7, because each of the eight

units can be converted to the seven other units. Possibly even

worse, if you decided to add another temperature scale, you

would need to add at least sixteen more if statements: eight to

convert from your new scale to each of the current ones and

eight to convert from the current ones to your new scale.

A better way is to choose one canonical scale, such as Celsius.

Your conversion function could work in two steps: convert

from the source scale to Celsius and then from Celsius to the

target scale.

b) Now, if you added a new temperature scale, how many if state-

ments would you need to add?

10. Assume we want to print a strong warning message if a pH value

is below 3.0 and otherwise simply report on the acidity. We try this

if statement:

Download cond/elif_wrongorder.cmd

>>> if ph < 7.0:

... print "%s is acidic." % (ph)

... elif ph < 3.0:

... print "%s is VERY acidic! Be careful." % (ph)

...

This prints the wrong message when a pH of 2.5 is entered. What

is the problem, and how can you fix it?

11. The following code displays a message(s) about the acidity of a

solution:

Download cond/acidity.cmd

ph = float(raw_input("Enter the ph level: "))

if pH < 7.0:

print "It's acidic!"

elif ph < 4.0:

print "It's a strong acid!"

a) What message(s) are displayed when the user enters 6.4?

http://media.pragprog.com/titles/gwpy/code/cond/elif_wrongorder.cmd
http://media.pragprog.com/titles/gwpy/code/cond/acidity.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=129

EXERCISES 130

b) What message(s) are displayed when the user enters 3.6?

c) Make a small change to one line of the code so that both

messages are displayed when a value less than 4 is entered.

Why does the last example in Section 6.3, Storing Conditionals, on

page 125 check to see whether someone is heavy (that is, that their

weight exceeds the threshold) rather than light? If you wanted to write

the second assignment statement as light = bmi < 22.0, what change(s)

would you have to make to the lookup table?

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=130

Chapter 7

Repetition
This chapter revisits another fundamental kind of control flow: repe-

tition. The for loops we saw in Section 5.4, Processing List Items, on

page 89 are the simplest way to do this, but many situations require

something a bit more powerful. Along with that “something,” we will

also encounter some of the tools that make experienced programmers

more productive and learn how Python keeps track of what it’s doing at

any moment in time.

7.1 Counted Loops

Conditional statements let us decide whether to do something; loops let

us do things many times. Section 5.4, Processing List Items, on page 89

introduced simple for loops, which can be used to do things with each

element of a sequence in turn. To refresh your memory, these loops

look like this:

for variable in <cf>list</cf>:

block

and are used like this:

Download loop/for_loop.cmd

>>> for c in 'alpha':

... print c

...

a

l

p

h

a

http://media.pragprog.com/titles/gwpy/code/loop/for_loop.cmd

COUNTED LOOPS 132

!" #" $$

" # $

!"#$%&

!

!" #" $$

" # $

!"#$%&

! %"

&'()*)+,)*-./012

)3)$)4)

Figure 7.1: Overwriting a loop iterator

But what if we want to change the elements of a list? For example,

suppose we want to double all of the values in a list. We can’t do this:

values[0] = 2 * values[0]

values[1] = 2 * values[1]

...

because we may not know the list’s length (and because we’d have to

rewrite our program every time the list’s length changed). This doesn’t

work either:

for v in values:

v = 2 * v

To see why, look at the memory model in Figure 7.1. Each loop iteration

assigned an element of values to the variable v. Doubling that value

inside the loop changes what v refers to but doesn’t change what’s in

the original list.

Ranges of Numbers

In order to do what we want, we need to know the index of the list

element we are working with. Getting that requires us to make a little

detour to examine a built-in function called range, which generates a

list of numbers.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=132

COUNTED LOOPS 133

Here are some examples:

Download loop/range_basic.cmd

>>> range(1, 5)

[1, 2, 3, 4]

>>> range(1, 10)

[1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range(5, 10)

[5, 6, 7, 8, 9]

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>>

Notice that a call to range(start, stop) returns a list of integers from start

to the first integer before stop. This is (deliberately) consistent with the

way sequence indexing works: the expression seq[0:5] takes a slice of

seq up to, but not including, the value at index 5.

To save typing, a call to range with a single argument is equivalent to a

call to range(0, argument):

Download loop/range_single.cmd

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range(1)

[0]

>>> range(0)

[]

The result of range is a list like any other. As an example, the following

program calculates the sum of the integers from 1 to 100:

Download loop/for_rangebasic.cmd

>>> sum = 0

>>> for i in range(1, 101):

... sum += i

...

>>> sum

5050

Again, notice that the upper bound passed to range is one more than

the greatest integer we actually want.

By default, range generates numbers that increase by 1 successively—

this is called its step size. We can specify a different step size for range

with an optional third parameter.

http://media.pragprog.com/titles/gwpy/code/loop/range_basic.cmd
http://media.pragprog.com/titles/gwpy/code/loop/range_single.cmd
http://media.pragprog.com/titles/gwpy/code/loop/for_rangebasic.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=133

COUNTED LOOPS 134

Here, we produce a list of leap years in the first half of this century:

Download loop/for_rangestepping.cmd

>>> range(2000, 2050, 4)

[2000, 2004, 2008, 2012, 2016, 2020, 2024, 2028, 2032, 2036, 2040, 2044, 2048]

The step size can also be negative, but when it is, the starting index

should be larger than the stopping index:

Download loop/for_rangestepping2.cmd

>>> range(2050, 2000, -4)

[2050, 2046, 2042, 2038, 2034, 2030, 2026, 2022, 2018, 2014, 2010, 2006, 2002]

Otherwise, range’s result will be empty:

Download loop/for_rangestepping_empty.cmd

>>> range(2050, 2000, 4)

[]

>>> range(2000, 2050, -4)

[]

Let’s return to our original goal of doubling the elements of a list. If the

list is called values, then len(values) is the number of elements it con-

tains, and the expression range(len(values)) produces a list containing

exactly the indices for values:

Download loop/range_len.cmd

>>> values = ['a', 'b', 'c']

>>> len(values)

3

>>> range(3)

[0, 1, 2]

>>> range(len(values))

[0, 1, 2]

If we use that list of indices in a for loop, we will iterate over the indices

for the list, rather than the values in the list itself:

Download loop/range_len_2.cmd

>>> values = ['a', 'b', 'c']

>>> for i in range(len(values)):

... print i

...

0

1

2

http://media.pragprog.com/titles/gwpy/code/loop/for_rangestepping.cmd
http://media.pragprog.com/titles/gwpy/code/loop/for_rangestepping2.cmd
http://media.pragprog.com/titles/gwpy/code/loop/for_rangestepping_empty.cmd
http://media.pragprog.com/titles/gwpy/code/loop/range_len.cmd
http://media.pragprog.com/titles/gwpy/code/loop/range_len_2.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=134

COUNTED LOOPS 135

We can use this to get values out of the list:

Download loop/range_len_3.cmd

>>> values = ['a', 'b', 'c']

>>> for i in range(len(values)):

... print i, values[i]

...

0 a

1 b

2 c

and to overwrite list elements:

Download loop/range_len_4.cmd

>>> values = ['a', 'b', 'c']

>>> for i in range(len(values)):

... values[i] = 'X'

...

>>> values

['X', 'X', 'X']

We now have everything we need to solve our original problem:

Download loop/range_len_5.cmd

>>> values = [1, 2, 3]

>>> for i in range(len(values)):

... values[i] = 2 * values[i]

...

>>> values

[2, 4, 6]

We can tidy this up a bit using a combined operator:

Download loop/range_len_6.cmd

>>> values = [1, 2, 3]

>>> for i in range(len(values)):

... values[i] *= 2

...

>>> values

[2, 4, 6]

The enumerate Function

Looping over a list using its indices is such a common operation that

Python provides a built-in function called enumerate to help do it. Given

a sequence—a list, a tuple, or a string—enumerate returns a list of

pairs. The first element of each pair is an index, and the second is

the sequence’s value at that index.

http://media.pragprog.com/titles/gwpy/code/loop/range_len_3.cmd
http://media.pragprog.com/titles/gwpy/code/loop/range_len_4.cmd
http://media.pragprog.com/titles/gwpy/code/loop/range_len_5.cmd
http://media.pragprog.com/titles/gwpy/code/loop/range_len_6.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=135

COUNTED LOOPS 136

For example:

Download loop/enumerate.cmd

>>> for x in enumerate('abc'):

... print x

...

(0, 'a')

(1, 'b')

(2, 'c')

>>> for x in enumerate([10, 20, 30]):

... print x

...

(0, 10)

(1, 20)

(2, 30)

Using this gives us another way to write our double-the-values loop:

Download loop/enumerate_2.cmd

>>> values = [1, 2, 3]

>>> for pair in enumerate(values):

... i = pair[0]

... v = pair[1]

... values[i] = 2 * v

...

>>> values

[2, 4, 6]

This is easier to read when we write it like this:

Download loop/enumerate_3.cmd

>>> values = [1, 2, 3]

>>> for (i, v) in enumerate(values):

... values[i] = 2 * v

...

>>> values

[2, 4, 6]

What’s happening here is that Python actually allows multivalued as-

signment. If there are several variables on the left of an assignment

statement and an equal number of values on the right, Python matches

them up and does all the assignments at once:

Download loop/multi_assign.cmd

>>> x, y = 1, 2

>>> x

1

>>> y

2

http://media.pragprog.com/titles/gwpy/code/loop/enumerate.cmd
http://media.pragprog.com/titles/gwpy/code/loop/enumerate_2.cmd
http://media.pragprog.com/titles/gwpy/code/loop/enumerate_3.cmd
http://media.pragprog.com/titles/gwpy/code/loop/multi_assign.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=136

COUNTED LOOPS 137

This also works if the values on the right side are in a list, string, or

other kind of sequences—Python “explodes” the sequence on the right

and then assigns the elements to the variables on the left:

Download loop/multi_assign_explode.cmd

>>> first, second, third = [1, 2, 3]

>>> first

1

>>> second

2

>>> third

3

>>> first, second, third = 'abc'

>>> first

'a'

>>> second

'b'

>>> third

'c'

Knowing this, we can understand what happened in the for loop shown

earlier:

for (i, v) in enumerate(values):

values[i] = 2 * v

On the first iteration of the loop, enumerate(values) produced the tuple

(0, values[0]). Python saw that the loop was using two variables as its

indices, so it broke the tuple apart, assigning 0 to i and values[0] to v.

The next iteration produced 1, values[1], and so on.

Nested Loops, Revisited

As you saw in Section 5.4, Nested Loops, on page 90, loops can be

nested inside other loops. Here is an example where we use nested

loops to color every other line of an image black; the result of running

this code is shown in Figure 7.2, on the next page:

Download loop/for_nested.py

import media

lake = media.load_picture('lake.png')

width, height = media.get_width(lake), media.get_height(lake)

for y in range(0, height, 2): # Skip odd-numbered lines

for x in range(0, width):

p = media.get_pixel(lake, x, y)

media.set_color(p, media.black)

media.show(lake)

http://media.pragprog.com/titles/gwpy/code/loop/multi_assign_explode.cmd
http://media.pragprog.com/titles/gwpy/code/loop/for_nested.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=137

COUNTED LOOPS 138

Figure 7.2: lake_lines.png

The nested loops result in a full set of iterations for the inner loop, for

every iteration of the outer loop.

Looping Over Several Objects

It’s possible to use the same loop to interact with different objects. In

the following example, we’ll superimpose a baseball over a lake. We do

this by looping over the pixels in all the rows and columns of the base-

ball image and copying them one by one into the lake image. The top-left

corner of both images is located at (0, 0). We can position the baseball

away from the corner by adding offsets when we refer to indices in the

lake image; the result is shown in Figure 7.3, on the following page.

Download loop/multiloop.py

import media

baseball = media.load_picture('baseball.png')

lake = media.load_picture('lake.png')

width, height = media.get_width(baseball), media.get_height(baseball)

for y in range(0, height):

http://media.pragprog.com/titles/gwpy/code/loop/multiloop.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=138

COUNTED LOOPS 139

Figure 7.3: baseball_lake.png

for x in range(0, width):

Position the top-left of the baseball at (50, 25)

from_p = media.get_pixel(baseball, x, y)

to_p = media.get_pixel(lake, 50 + x, 25 + y)

media.set_color(to_p, media.get_color(from_p))

media.show(lake)

Ragged Lists

Nothing says that nested lists all have to be the same length:

Download loop/different_lengths.cmd

>>> info = [['Isaac Newton', 1643, 1727],

['Charles Darwin', 1809, 1882],

['Alan Turing', 1912, 1954, 'alan@bletchley.uk']]

>>> for item in info:

... print len(item)

...

3

3

4

http://media.pragprog.com/titles/gwpy/code/loop/different_lengths.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=139

WHILE LOOPS 140

These sorts of lists are called ragged lists. Ragged lists can be tricky to

process if the data is not uniform; for example, trying to assemble a list

of email addresses for data where some addresses are missing requires

a bit of careful thought.

Ragged data does arise normally. For example, if a record is made

each day of the time at which a person who is trying to quit smokes

a cigarette, each day will have a different number of entries. The code

is fairly straightforward:

Download loop/nested_for.cmd

>>> times = [["9:02", "10:17", "13:52", "18:23", "21:31"],

... ["8:45", "12:44", "14:52", "22:17"],

... ["8:55", "11:11", "12:34", "13:46", "15:52", "17:08", "21:15"],

... ["9:15", "11:44", "16:28"],

... ["10:01", "13:33", "16:45", "19:00"],

... ["9:34", "11:16", "15:52", "20:37"],

... ["9:01", "12:24", "18:51", "23:13"]]

>>> for day in times:

... for time in day:

... print time,

... print

...

9:02 10:17 13:52 18:23 21:31

8:45 12:44 14:52 22:17

8:55 11:11 12:34 13:46 15:52 17:08 21:15

9:15 11:44 16:28

10:01 13:33 16:45 19:00

9:34 11:16 15:52 20:37

9:01 12:24 18:51 23:13

7.2 while Loops

for loops are very useful if you know how many iterations of the loop you

need. However, there are situations where it’s impossible to know in

advance how many times you will want the loop body executed. That’s

what a while loop is used for. while loops are sometimes called conditional

loops, since they iterate only as long as some condition is true. Their

general form is as follows:

while condition:

block

The condition of a while loop is an expression, just like the condition

of an if statement. When Python encounters a while loop, it evaluates

the condition. If that condition is false, Python skips the loop body.

If the condition is true, on the other hand, Python executes the loop

http://media.pragprog.com/titles/gwpy/code/loop/nested_for.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=140

WHILE LOOPS 141

!"#$
"%&&'()

*+, !"#$%

&'()*#+*

,&#-&./

-%.)$

Figure 7.4: while loops

body once and then goes back to the top of the loop and reevaluates

the condition. If it’s still true, the loop body is executed again. This is

repeated—condition, body, condition, body—until the condition is false,

at which point Python stops executing the loop.

Here’s a trivial example:

Download loop/simple_while.cmd

>>> rabbits = 3

>>> while rabbits > 0:

... print rabbits

... rabbits -= 1

...

3

2

1

Notice that this loop did not print 0. When the number of rabbits

reaches zero, the loop expression is false, so the body is not executed

(see Figure 7.4).

As a more useful example, we can calculate the growth of a bacterial

colony using a simple exponential growth model, which is essentially a

calculation of compound interest:

P(t + 1) = P(t) + rP(t)

http://media.pragprog.com/titles/gwpy/code/loop/simple_while.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=141

WHILE LOOPS 142

In this formula, P(t) is the population size at time t, and r is the growth

rate. Let’s see how long it takes the bacteria to double their numbers:

Download loop/whileloop.py

time = 0

population = 1000 # 1000 bacteria to start with

growth_rate = 0.21 # 21% growth per minute

while population < 2000:

population = population + growth_rate * population

print population

time = time + 1

print "It took %d minutes for the bacteria to double." % time

print "...and the final population was %6.2f bacteria." % population

Because the time variable was updated inside the loop, its value after

the loop was the time of the last iteration, which is exactly what we

want. Running this program gives us the answer we were looking for:

Download loop/whileloop_output.cmd

1210.0

1464.1

1771.561

2143.58881

It took 4 minutes for the bacteria to double.

...and the final population was 2143.59 bacteria.

Infinite Loops

The preceding example used population < 2000 as a loop condition so that

the loop stopped when the population reached double its initial size or

more. What would happen if we stopped only when the population was

exactly double its initial size?

Download loop/while_infinite.py

Use multi-valued assignment to set up controls.

time, population, growth_rate = 0, 1000, 0.21

Don't stop until we're exactly double original size.

while population != 2000:

population = population + growth_rate * population

print population

time = time + 1

print "It took %d minutes for the bacteria to double." % time

http://media.pragprog.com/titles/gwpy/code/loop/whileloop.py
http://media.pragprog.com/titles/gwpy/code/loop/whileloop_output.cmd
http://media.pragprog.com/titles/gwpy/code/loop/while_infinite.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=142

WHILE LOOPS 143

Here is this program’s output:

Download loop/while_infinite_output.cmd

1210.0

1464.1

1771.561

2143.58881

2593.7424601

...3,680 lines or so later...

inf

inf

inf

...and so on forever...

Whoops—since the population is never exactly 2,000 bacteria, the loop

never stops.1 A loop like this one is called an infinite loop, because

the computer will execute it forever (or until you kill your program,

whichever comes first). In Wing 101, you kill your program by selecting

Restart Shell from the Options menu, and from the command-line shell,

you can kill it by pressing Ctrl-C. Infinite loops are a common kind of

bug; the usual symptoms include printing the same value over and over

again, or hanging (doing nothing at all).

Here’s a more subtle example of an infinite loop. The following function

counts the number of times a fragment occurs in a string of DNA. It

starts searching at index 0. Subsequent searches start at the index of

the last match:

Download loop/debug.py

def count_fragments(fragment, dna):

count = -1

last_match = 0

while last_match != -1:

count += 1

last_match = dna.find(fragment, last_match)

return count

Let’s try calling it with some bits of DNA:

Download loop/debug.cmd

>>> count_fragments('atc', 'gttacgtggatg')

0

>>> count_fragments('gtg', 'gttacgtggatg')

1. The first set of dots represents more than 3,000 values, each 21 percent larger than

the one before. Eventually, these values are too large for the computer to represent, so it

displays inf (or on some computers 1.#INF), which is its way of saying “effectively infinity.”

http://media.pragprog.com/titles/gwpy/code/loop/while_infinite_output.cmd
http://media.pragprog.com/titles/gwpy/code/loop/debug.py
http://media.pragprog.com/titles/gwpy/code/loop/debug.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=143

WHILE LOOPS 144

Figure 7.5: The Wing 101 debugger

It works when the fragment doesn’t occur in the DNA. However, when

the fragment does appear, the function seems to run forever. Let’s try

to diagnose the problem using a debugger. Wing 101 has one (see Fig-

ure 7.5); so should you.

The easiest way to figure out what’s going on is to set a breakpoint

where the function is called. In Wing 101, you can do this by clicking

in the margin directly to the left of the line, as illustrated in Figure 7.6,

on the next page.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=144

WHILE LOOPS 145

Figure 7.6: Setting a breakpoint

Figure 7.7: The Stack Data tab

Start the debugging session by clicking the Debug button. You’ll notice

that the line with the breakpoint gets highlighted. Click the Step Into

button to make the debugger look at the details of the function call.

Now that we’re inside, we can step over individual statements. We don’t

want to step into any more functions at this level because we’re con-

cerned only about what’s happening in our own function.

Keep stepping over the code until you reach the beginning of the while

loop. While you’re stepping, take a look at the Stack Data tab (see Fig-

ure 7.7). You can see the values of your local variables there.

Step over the statements in the loop a few times while watching how the

values of the local variables change. Notice that count keeps increasing,

but last_match doesn’t change! It turns out that after we find the first

match, we find it over and over again in subsequent searches.

Edit the value of last_match in the Stack Data tab by double-clicking

it. Change it from 5 to 6, and continue stepping. That should let the

function run to completion.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=145

WHILE LOOPS 146

Now that we confirmed what our bug is, we need to go back and change

our code. What we really want to do is search from last_match + 1:

Download loop/debug2.py

def count_fragments(fragment, dna):

count = -1

last_match = 0

while last_match != -1:

count += 1

last_match = dna.find(fragment, last_match + 1)

return count

Now let’s try running it with different input:

Download loop/debug2.cmd

>>> count_fragments('gtg', 'gttacgtggatg')

1

>>> count_fragments('gtt', 'gttacgtggatg')

0

The first case works. The second case is obviously wrong because ’gtt’

occurs right at the beginning of the string. It turns out that we inserted

a bug along with our fix! Now that you know how to use the debugger,

you can diagnose this problem on your own.

The Call Stack

Python keeps track of any running functions using a runtime stack (see

Figure 7.8, on the next page). We can think of the stack as a series

of records, called frames (see Figure 7.9, on the following page), which

pile up on top of each other as functions are called. Only the top frame

is active; the rest are paused, waiting until functions above them are

finished.

Code outside of any function is executed in a special frame that is at

the bottom of the stack; this frame is called <module> because it is

executing at the module level.

When a function is called, Python creates a new frame for it and adds

the frame to the top of the stack. These frames store information about

each function call and the order they were called in. The most recently

called function’s frame always sits at the top of the stack.

As we will see later in this chapter, each stack frame stores a func-

tion’s parameters and local variables. It also contains a reference to the

next statement Python will execute when the function finishes. This is

known as the return address.

http://media.pragprog.com/titles/gwpy/code/loop/debug2.py
http://media.pragprog.com/titles/gwpy/code/loop/debug2.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=146

WHILE LOOPS 147

!!"#$%!!

!"#$%&'()$*+,(-.'#

/0$.1#(23)$()$*3$)

!!"#$%!!

!"#$%&'()$*+,(*4$'3

+*55%#6(&'%()

&'%()

7$*+,(631-)(%#($.%)(8%3'+$%1#9+$%:'(43*&'

!!"#$%!!

!"#$%&'()$*+,(*4$'3

&'%()(+*55)(&'%(*

&'%(*

&'%()

Figure 7.8: Runtime stack

!"#$%&'()
!"#$%&'(*

+,-!+)
+,-!+*

..%!/'..

!"#$%!&'()*+','#$%

-".&$%')/

0+(#1,2#"*#31%/

Figure 7.9: A stack frame

Finally, the frame has space set aside for storing the function’s return

value, which we will see later in the chapter.

When a function finishes executing, Python then checks the stack to

see what it should run next. This information is stored in the return

address of the frame at the top of the stack. Once Python knows where

to go, it removes the frame.

When your Python program is finished executing, there will be no more

frames on the stack.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=147

USER INPUT LOOPS 148

7.3 User Input Loops

We can use the raw_input function in a loop to make the chemical for-

mula translation example from Section 6.2, if Statements, on page 118

interactive:

Download loop/userinputloop_infinite.py

while True:

formula = raw_input("Please enter a chemical formula: ")

if formula == "H2O":

print "Water"

elif formula == "NH3":

print "Ammonia"

elif formula == "CH3":

print "Methane"

else:

print "Unknown compound"

In this case, we’d like the loop to continually process user input, so the

loop condition is just True. Running the program looks like this:

Download loop/userinputloop_infinite_output.cmd

Please enter a chemical formula: NH3

Ammonia

Please enter a chemical formula: H2O

Water

Please enter a chemical formula: NaCl

Unknown compound

...

where ... shows that the cycle repeats until the user kills the program

or turns off her computer. Since that isn’t a particularly friendly user

interface, let’s modify the loop condition to give users a way to stop the

program cleanly:

Download loop/userinputloop.py

text = ""

while text != "quit":

text = raw_input("Please enter a chemical formula (or 'quit' to exit): ")

if text == "quit":

print "...exiting program"

elif text == "H2O":

print "Water"

elif text == "NH3":

print "Ammonia"

elif text == "CH3":

print "Methane"

else:

print "Unknown compound"

http://media.pragprog.com/titles/gwpy/code/loop/userinputloop_infinite.py
http://media.pragprog.com/titles/gwpy/code/loop/userinputloop_infinite_output.cmd
http://media.pragprog.com/titles/gwpy/code/loop/userinputloop.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=148

CONTROLLING LOOPS 149

Since the loop condition checks the value of text, we have to assign it a

value before the loop begins. Now we can run the program as usual but

exit whenever we want:

Download loop/userinputloop_output.cmd

Please enter a chemical formula (or 'quit' to exit): CH3

Methane

Please enter a chemical formula (or 'quit' to exit): H2O

Water

Please enter a chemical formula (or 'quit' to exit): quit

...exiting program

7.4 Controlling Loops

As a rule, for and while loops execute all the statements in their body

on each iteration. However, it is sometimes handy to be able to break

that rule. Python provides two ways of controlling the iteration of a loop:

break, which exits the loop body immediately, and continue, which skips

ahead to the next iteration.

The break Statement

Sometimes a loop’s task is finished before its final iteration. Using what

we have seen so far, though, we still have to finish iterating. For exam-

ple, to find which line in a file contains the string “Earth,” we would

have to write something like this:

Download loop/filesearch_nobreak.py

current_line = 1

earth_line = 0

file = open("data.txt", "r")

for line in file:

line = line.strip()

if line == "Earth":

earth_line = current_line

current_line = current_line + 1

print "Earth is at line %d" % earth_line

Here we require two variables: one for the current line number and

another to remember the desired line number until after the loop. This

is a little bit clumsy and also inefficient: if “Earth” is the first line of the

file, this program is still going to read everything that comes after it.

http://media.pragprog.com/titles/gwpy/code/loop/userinputloop_output.cmd
http://media.pragprog.com/titles/gwpy/code/loop/filesearch_nobreak.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=149

CONTROLLING LOOPS 150

!���
!"#$%&'($

%&'$#)

'(#*$&+$

,'&-'"%

()%*$
%&'$+,,+

-.)"/0-

!"#$

()%*$

.'("/

Figure 7.10: The break statement

To fix this, we can exit the loop early using a break statement, which

jumps out of the loop body immediately:

Download loop/filesearch_break.py

earth_line = 1

file = open("data.txt", "r")

for line in file:

line = line.strip()

if line == "Earth":

break

earth_line = earth_line + 1

print "Earth is at line %d" % earth_line

We can see this in Figure 7.10. Notice that because the loop exits early,

the counter variable earth_line retains the value it had when the break

was executed, so we need only one variable. However, if the file con-

tains more than one occurrence of “Earth,” this program will produce

a different answer than the previous one. This program will display the

index of the first line found, while the previous program would remem-

ber and display the index of the last matching line.

One more thing about break: it exits only the innermost loop that it’s

contained in. This means that in a nested loop, a break statement inside

the inner loop will exit only the inner loop, not both loops.

http://media.pragprog.com/titles/gwpy/code/loop/filesearch_break.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=150

CONTROLLING LOOPS 151

The continue Statement

Another way to bend the rules for iteration is to use the continue state-

ment, which causes Python to skip immediately ahead to the next iter-

ation of a loop. For example, let’s assume that the file data.txt could

include comment lines starting with a # character:

Download loop/fileinput_continue_data.cmd

Pluto is only 0.002 times the mass of Earth.

Pluto

Mercury

Mars is half Earth's diameter, but only

0.11 times Earth's mass.

Mars

Venus

Earth

Uranus

If we used the previous version of this program, it would count the

commented lines as well, giving us an incorrect answer. Instead, we

can use continue to skip comments in the file:

Download loop/filesearch_continue.cmd

entry_number = 1

file = open("data.txt", "r")

for line in file :

line = line.strip()

if line.startswith("#"):

continue

if line == "Earth":

break

entry_number = entry_number + 1

print "Earth is the %dth-lightest planet." % (entry_number)

When continue is executed, it immediately begins the next iteration of

the loop and skips any statements in the loop body that appear after it.

This allows us to skip the statement where entry_number is incremented.

Using continue is one way to skip comment lines, but this can also

be accomplished by using the conditional statements that were intro-

duced earlier in this chapter. In the previous code, continue prevents

the comment line from being processed; in other words, if the line is

not a comment, it should be processed.

http://media.pragprog.com/titles/gwpy/code/loop/fileinput_continue_data.cmd
http://media.pragprog.com/titles/gwpy/code/loop/filesearch_continue.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=151

CONTROLLING LOOPS 152

����
!"#$%&'($

%&'$#)

'(#*$&+$

,'&-'"%

()%*$

%&'$+,,+

-.)"/0-

!"#$

()%*$

.'("/

#*"'*#$01*!+

1�1)
2&3*134(

()%*$

!"#$

Figure 7.11: The continue statement

The form of the previous sentence matches that of an if statement, and

the updated code is as follows:

Download loop/filesearch_if.py

entry_number = 1

file = open("data.txt", "r")

for line in file :

line = line.strip()

if not line.startswith("#"):

if line == "Earth":

break

entry_number = entry_number + 1

print "Earth is the %dth-lightest planet." % (entry_number)

Whether you favor if or continue is largely a matter of personal taste.2

As always, the most important thing is to be consistent: switching back

and forth between the two is more likely to confuse your readers than

consistently using either one.

2. That is our way of saying that the authors and reviewers of this book split almost

evenly as to which they thought was better.

http://media.pragprog.com/titles/gwpy/code/loop/filesearch_if.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=152

STYLE NOTES 153

7.5 Style Notes

Conditional statements give us control over of the flow of execution of

our programs. When there are multiple paths of execution, we have

choices to make about the structure of our conditional statements. For

example, consider the following:

Download loop/complex_cond.py

def f(a, b, c):

if a:

if b:

print 'hi'

elif c:

print 'bonjour'

else:

print 'hola'

else:

print 'Select a language.'

Under what conditions will “hi” be printed? “hola”? The word “hi” is

printed when both a and b are True, and “hola” is printed when a is

True, but b and c are not. To make this clearer, we can rewrite our

conditional statement without the nesting:

Download loop/complex_cond_2.py

def f(a, b, c):

if a and b:

print 'hi'

elif a and c:

print 'bonjour'

elif a:

print 'hola'

else:

print 'Select a language'

With multiple ways to write equivalent conditional statements, care

must be taken to structure our code so that it is easy to understand.

Reducing the amount of nesting is one way to improve the readability

of the code, particularly if there are several nested conditionals.

break and continue have their place but should be used sparingly since

they can make programs harder to understand. When people see while

and for loops in programs, their first assumption is that the whole body

will execute every time, in other words, that the body can be treated as

a single “super statement” when trying to understand the program. If

the loop contains break or continue, though, that assumption is false.

http://media.pragprog.com/titles/gwpy/code/loop/complex_cond.py
http://media.pragprog.com/titles/gwpy/code/loop/complex_cond_2.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=153

SUMMARY 154

Sometimes, only part of the statement body will execute, which means

the reader has to keep two scenarios in mind.

There are always alternatives: well-chosen loop conditions (as in Sec-

tion 7.3, User Input Loops, on page 148) can replace break, and if state-

ments can be used to skip statements instead of continue. It is up to

the programmer to decide which option makes the program clearer and

which makes it more complicated. As we said in Section 5.11, Com-

ments, on page 103, programs are written for human beings; taking a

few moments to make your code as clear as possible, or to make clarity

a habit, will pay dividends for the lifetime of the program.

7.6 Summary

In this chapter, we learned the following:

• Program statements in Python can be grouped into blocks using

indentation.

• Choosing whether to execute a block is one of the fundamental

ways to control a program’s behavior. In Python, such choices are

expressed using if, elif, and else. The first two base their decision

on the value of a Boolean expression, while else is executed only if

all other tests fail.

• Repeating a block is another fundamental way to control a pro-

gram’s behavior. Using a for loop to iterate over the elements of

a structure is one example, but for can also be used to create

counted loops that iterate over a range of integers.

• The most general kind of repetition is the while loop, which contin-

ues executing as long as some arbitrary Boolean condition is true.

However, the condition is tested only at the top of the loop. If that

condition is never false, the loop will execute forever. The break and

continue statements can be used to change the way loops execute.

• Control structures like loops and conditionals can be nested inside

one another to any desired depth.

• Python and other languages keep track of nested function calls

using a call stack. Each time a function is called, a new frame

containing that functions parameters and local variables is put

on the top of the stack. When the function returns, the frame is

discarded.

• Programs can use raw_input to get input from users interactively.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=154

EXERCISES 155

7.7 Exercises

Here are some exercises for you to try on your own:

1. Your lab partner claims to have written a function that replaces

each value in a list with twice the preceding value (and the first

value with 0). For example, if the list [1, 2, 3] is passed as an argu-

ment, the function is supposed to turn it into [0, 2, 4]. Here’s the

code:

Download loop/buggy_scan.py

def double_preceding(values):

if values == []:

pass # do nothing to the empty list

else:

temp = values[0]

values[0] = 0

for i in range(1, len(values)):

values[i] = 2 * temp

temp = values[i]

Explain what the bug in this function is, and fix it.

2. You are given two lists, rat_1 and rat_2, that contain the daily

weights of two rats over a period of ten days. Write statements

to do the following:

a) If the weight of Rat 1 is greater than that of Rat 2 on day 1,

print "Rat 1 weighed more than Rat 2 on Day 1."; otherwise, print

"Rat 1 weighed less than Rat 2 on Day 1."

b) If Rat 1 weighed more than Rat 2 on day 1 and if Rat 1 weighs

more than Rat 2 on the last day, print "Rat 1 remained heavier

than Rat 2."; otherwise, print "Rat 2 became heavier than Rat 1."

c) If your solution to the previous question used nested if state-

ments, then do it without nesting, or vice versa.

3. Print the numbers in the range 33 to 49 (inclusive).

4. Print the numbers from 1 to 10 in descending order, all on one

line.

5. Calculate the average of numbers in the range 2 to 22 using a loop

to find the total, and then calculate the average.

http://media.pragprog.com/titles/gwpy/code/loop/buggy_scan.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=155

EXERCISES 156

6. Consider the following function:

Download loop/shrinking_list.py

def remove_neg(num_list):

'''Remove the negative numbers from the list num_list.'''

for item in num_list:

if item < 0:

num_list.remove(item)

When remove_negs([1, 2, 3, -3, 6, -1, -3, 1]) is executed, the result is [1,

2, 3, 6, -3, 1]. The for loop traverses the elements of the list, and when

a negative value (like -3 at position 3) is reached, it is removed,

shifting the subsequent values one position earlier in the list (so 6

moves into position 3). The loop then continues on to process the

next item, skipping over the value that moved into the removed

item’s position. If there are two negative numbers in a row (like -1

and -3), then the second one will not be removed. Rewrite the code

to avoid this problem.

7. Using nested for loops, print a right triangle of the character T on

the screen where the triangle is one character wide at its narrow-

est point and seven characters wide at its widest point:

T

TT

TTT

TTTT

TTTTT

TTTTTT

TTTTTTT

8. Using nested for loops, print the triangle described in the previous

question with its hypotenuse on the left side:

T

TT

TTT

TTTT

TTTTT

TTTTTT

TTTTTTT

9. Redo the previous two questions using while loops instead of for

loops.

10. The variables rat_1_weight and rat_2_weight store the weights of two

rats at the beginning of an experiment. The variables rat_1_rate

and rat_2_rate are the rate that the rats’ weights are expected to

increase each week (for example, 4 percent per week).

http://media.pragprog.com/titles/gwpy/code/loop/shrinking_list.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=156

EXERCISES 157

a) Using a while loop, calculate how many weeks it would take

for the weight of the first rat to become 25 percent heavier

than it was originally.

b) Assume that the two rats have the same initial weight, but rat

1 is expected to gain weight at a faster rate than rat 2. Using

a while loop, calculate how many weeks it would take for rat 1

to be 10 percent heavier than rat 2.

11. Transformations are some of the most common operations in

image-processing software. Arbitrary rotations require some trig-

onometry but 90 degree rotations can be done using for loops.

Design a function that uses nested for loops to rotate an image 90

degrees clockwise.

12. Reflections are another type of image transformation. Reflected

images appear flipped over when compared to the original.

a) When you look into a typical mirror, the image you see is a

horizontal reflection of reality. Use nested for loops to trans-

form an image in the same way by flipping it along the y-axis.

b) Use nested for loops to flip an image along the x-axis.

13. Scaling is another common image transformation. Downscaling

makes an image smaller, while upscaling makes it larger. Create a

function that uses nested for loops to downscale an image so that

each of its new dimensions are half of the original. For example,

your function should transform a 100 x 50 pixel image into a 50

x 25. The new image should look like it is 1/4th the size of the

original.

14. The mosaic filter is a common artistic effect in image processing

programs. The simple version of this filter divides an image into a

grid of equal-sized squares. The color of each square is determined

by the pixels that make up the square.

To keep things simple, assume each square is 10 pixels wide. The

color of the square is the average of the colors of the 100 pixels

inside. The average of two colors can be computed like this: red =

(red_1 + red_2)/2, green = (green_1 + green_2)/2, blue = (blue_1

+ blue_2)/2. Assuming the original image dimensions are divis-

ible by 10, design a function that implements the mosaic filter

described here.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=157

EXERCISES 158

15. When the red, green, and blue components of a pixel are equal,

the observed color is black, white, or a shade of gray. You can

transform a color image into a grayscale image by converting each

pixel to a shade of gray that approximates the brightness of the

original color. The easiest way to do this is to replace each color

component for a pixel with the average of all the color components.

a) Design a function that uses nested for loops that transforms

a color image into grayscale using the technique described

earlier.

b) The method of producing grayscale images in the previous

exercise assumes the human eye is equally sensitive to each

of the three color components. In reality, this is not the case.

The human eye is much more sensitive to greens than the

other colors. How would you modify your solution so that

greens influence the brightness of the image more than the

reds and blues?

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=158

Chapter 8

File Processing
We now have the tools we need—functions, modules, lists, loops, and

conditionals—to solve problems that scientists face every day. Scientific

data is often stored in plain-text files, which can be organized in several

different ways. The most straightforward format is one piece of data per

line; for example, the rainfall in Oregon for each separate day in a study

period might be stored on a line of its own. Alternatively, each line might

store the values for an entire week or month, with a delimiter such as a

space, tab, or comma used to separate values to make the data easier

for humans to read.

Often, data is more complex. For example, a study might keep track

of the heights, weights, and ages of the participants. Each record can

appear on a line by itself with the pieces of data in each record sep-

arated by delimiters. Some records might even span multiple lines, in

which case the format will usually have some kind of a separator (such

as a blank line) between records or use special symbols to mark the

start or end of each record.

Modules to read (or parse) many common formats are part of the stan-

dard Python library or will have been written by whoever created the

format you are working with. However, it is still common to encounter

specialized formats for which readers don’t exist. This chapter will show

you how to handle a variety of file formats from fairly simple single-line

records to more complex multiline records, as well as several variations

of each.

ONE RECORD PER LINE 160

8.1 One Record per Line

The following data, taken from the Time Series Data Library (TSDL)

[Hynnd], describes the number of colored fox fur pelts produced in

Hopedale, Labrador, in the years 1834 –1842. (The full data set has

values for the years 1834 –1925.)

Download fileproc/hopedale.txt

Coloured fox fur production, HOPEDALE, Labrador, 1834-1842

#Source: C. Elton (1942) "Voles, Mice and Lemmings", Oxford Univ. Press

#Table 17, p.265--266

22

29

2

16

12

35

8

83

166

The first line contains a description of the data. The next two lines con-

tain comments about the data, each of which begins with a # character.

Each piece of actual data appears on a single line.

Reading a File

For now, we will treat all lines the same (data, headers, and comments)

and read all lines of the file. As we saw in Section 5.10, Files as Lists,

on page 100, this loop reads and prints a file line by line:

Download fileproc/read_file_1.py

input_file = open("hopedale.txt", "r")

for line in input_file:

line = line.strip()

print line

input_file.close()

Files Over the Internet

These days, of course, the file containing the data we want could well

be on a machine half a world away. Provided it is accessible over the

Internet, though, it is just as easy to work with. The module urllib con-

tains a function called urlopen that opens a web page for reading and

returns a file-like object that you can use exactly as if you were reading

a local file.

http://media.pragprog.com/titles/gwpy/code/fileproc/hopedale.txt
http://media.pragprog.com/titles/gwpy/code/fileproc/read_file_1.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=160

ONE RECORD PER LINE 161

For example, the Hopedale data not only exists on our machine, but it’s

also on a web page.1 We can print this web page line by line using a

module called urllib and commands that are very similar to those we’ve

use with files:

Download fileproc/read_url.py

import urllib

url = "http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/ecology1/hopedale.dat"

web_page = urllib.urlopen(url)

for line in web_page:

line = line.strip()

print line

web_page.close()

Note that this example will work only if your machine is actually con-

nected to the Internet. Let’s return to our example of reading and print-

ing a file line by line:

Download fileproc/read_file_1.py

input_file = open("hopedale.txt", "r")

for line in input_file:

line = line.strip()

print line

input_file.close()

We can improve this in several ways. One big issue is that the filename

is hard-coded; in other words, the name of a particular file is stored

in the program, which means the program can’t be used to process

any other files. To fix this, we use what we learned in Section 5.10,

Command-Line Arguments, on page 103; we place the code that does

the work in a function that takes the name of the file as a parameter

and call that function with sys.argv[1] as an argument:

Download fileproc/read_file_2.py

import sys

def process_file(filename):

'''Open, read, and print a file.'''

input_file = open(filename, "r")

for line in input_file:

line = line.strip()

print line

1. At the time of writing, the URL for the file is

http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/ecology1/hopedale.dat (you can

look at it online!).

http://media.pragprog.com/titles/gwpy/code/fileproc/read_url.py
http://media.pragprog.com/titles/gwpy/code/fileproc/read_file_1.py
http://media.pragprog.com/titles/gwpy/code/fileproc/read_file_2.py
http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/ecology1/hopedale.dat
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=161

ONE RECORD PER LINE 162

input_file.close()

if __name__ == "__main__":

process_file(sys.argv[1])

This is more flexible, because we can now pass the program the name

of a file when we run it. To do this in Wing 101, right-click the edit-

ing pane, select Properties, select the Debug tab, and enter the run

arguments. However, it will work only with files, not with other input

streams such as standard input or a URL using module urllib. We fix

this by opening the file (or URL or input stream) outside of the function

and passing in the file object instead:

Download fileproc/read_file_3.py

import sys

def process_file(reader):

'''Read and print the contents of reader.'''

for line in reader:

line = line.strip()

print line

if __name__ == "__main__":

input_file = open(sys.argv[1], "r")

process_file(input_file)

input_file.close()

This change allows us to call the same function with an open web page

instead of a local file:

Download fileproc/read_file_4.py

import urllib

def process_file(reader):

'''Read and print the contents of reader.'''

for line in reader:

line = line.strip()

print line

if __name__ == "__main__":

webpage = urllib.urlopen(sys.argv[1])

process_file(webpage)

webpage.close()

Skipping the Header

Of course, we usually don’t just want to print data—if we did, we could

open the file in an editor and read it. Instead, we typically want to find

http://media.pragprog.com/titles/gwpy/code/fileproc/read_file_3.py
http://media.pragprog.com/titles/gwpy/code/fileproc/read_file_4.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=162

ONE RECORD PER LINE 163

the smallest value, sum the values, or process it in some other way.

Before we can do that, though, we need to figure out how to skip the

file’s header. To do this, we need to read the description line and all the

comment lines following it. Of course, not all files start with a descrip-

tion line like this one does, so we won’t always want to discard the first

line. We can stop when we read the first real piece of data, which will

be the first line after the description that doesn’t start with a #:

In English, we might try this algorithm to process such a file:

Skip the first line in the file.

Skip over the comment lines in the file.

For each of the remaining lines in the file:

Process the data on that line.

The problem with this approach is that we can’t tell whether a line is

a comment line until we’ve read it, but we can read a line from a file

only once—there’s no simple way to “back up” in the file. An alternative

approach is to read the line, skip it if it’s a comment, and process it

if it’s not. Once we’ve processed the first line of data, we process the

remaining lines:

Skip the first line in the file.

Find and process the first line of data in the file.

For each of the remaining lines:

Process the data on that line.

The thing to notice about this algorithm is that it processes lines in two

places: once when it finds the first “interesting” line in the file and once

when it handles all of the following lines:

Download fileproc/tsdl.py

import sys

def skip_header(r):

'''Skip the header in reader r, and return the first

real piece of data.'''

Read the description line and then the comment lines.

line = r.readline()

line = r.readline()

while line.startswith('#'):

line = r.readline()

Now line contains the first real piece of data.

return line

def process_file(r):

http://media.pragprog.com/titles/gwpy/code/fileproc/tsdl.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=163

ONE RECORD PER LINE 164

'''Read and print open reader r.'''

Find the first piece of data.

line = skip_header(r).strip()

print line

Read the rest of the data.

for line in r:

line = line.strip()

print line

if __name__ == "__main__":

input_file = open(sys.argv[1], 'r')

process_file(input_file)

input_file.close()

In skip_header, we return the first line of read data, because once we’ve

found it, we can’t read it again (we can go forward but not backward).

We will want to use skip_header in all of the file-processing functions in

this section. Rather than copying the code each time we want to use

it, we can put the function in a file called tsdl.py for Time Series Data

Library and get it in other programs using import tsdl, as shown in the

next example. This allows us to reuse the skip_header code, and if it

needs to be modified, then there is only one copy of the function to edit.

We can finally process the Hopedale data set to find the smallest num-

ber of fox pelts produced in any year. As we progress through the file,

we keep the smallest value seen so far in a variable called smallest. That

variable is initially set to the value on the first line, since it’s the small-

est (and only) value seen so far:

Download fileproc/read_smallest.py

import sys

import tsdl

def smallest_value(r):

'''Read and process reader r to find the smallest

value after the TSDL header.'''

line = tsdl.skip_header(r).strip()

print line

Now line contains the first data value; this is also the

smallest value found so far, because it is the only one we have seen.

smallest = int(line)

for line in r:

line = line.strip()

http://media.pragprog.com/titles/gwpy/code/fileproc/read_smallest.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=164

ONE RECORD PER LINE 165

value = int(line)

If we find a smaller value, remember it.

if value < smallest:

smallest = value

return smallest

if __name__ == "__main__":

input_file = open(sys.argv[1], "r")

print smallest_value(input_file)

input_file.close()

We could also use this:

smallest = min(smallest, value)

to keep track of the smallest value in the loop in smallest_value.

Data with Missing Values: Fox Pelts

We also have data for colored fox production in Hebron, Labrador:

Download fileproc/hebron.txt

Coloured fox fur production, Hebron, Labrador, 1834-1839

#Source: C. Elton (1942) "Voles, Mice and Lemmings", Oxford Univ. Press

#Table 17, p.265--266

#remark: missing value for 1836

55

262

-

102

178

227

The hyphen indicates that data for the year 1836 is missing. Unfortu-

nately, calling read_smallest on the Hebron data produces this error:

Download fileproc/read_smallest_hebron.cmd

>>> import read_smallest

>>> read_smallest.process_file(open('hebron.txt', 'r'))

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "read_smallest.py", line 15, in process_file

value = int(line)

ValueError: invalid literal for int() with base 10: '-'

The problem is that ’-’ isn’t an integer, so calling int(’-’) fails. This isn’t

an isolated problem. In general, we will often need to skip blank lines,

comments, or lines containing other “nonvalues” in our data. Real data

http://media.pragprog.com/titles/gwpy/code/fileproc/hebron.txt
http://media.pragprog.com/titles/gwpy/code/fileproc/read_smallest_hebron.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=165

ONE RECORD PER LINE 166

sets often contain omissions or contradictions; dealing with them is

just a fact of scientific life.

To fix our code, we must add a check inside the loop that processes

a line only if it contains a real value. In the TSDL data sets, missing

entries are always marked with hyphens, so we just need to check for

that before trying to convert the string we have read to an integer:

Download fileproc/read_smallest_skip.py

import sys

from tsdl import skip_header

def smallest_value_skip(r):

'''Read and process reader r to find the smallest value after

the TSDL header. Skip missing values, which are indicated

with a hyphen.'''

line = skip_header(r).strip()

Now line contains the first data value; this is also the

smallest value found so far.

smallest = int(line)

for line in r:

line = line.strip()

Only process line if it has a valid value.

if line != '-':

value = int(line)

Process value; if we find a smaller value, remember it.

if value < smallest:

smallest = value

return smallest

if __name__ == "__main__":

input_file = open(sys.argv[1], "r")

print smallest_value_skip(input_file)

input_file.close()

Notice that the comparison of value with smallest is nested inside the

check for hyphens. If it were not, then if the line contained a hyphen,

comparing value with smallest would result in an error.

Individual Whitespace-Delimited Data

The file [Hynnd] contains information about lynx pelts in the years

1821–1934. All data values are integers, each line contains many

http://media.pragprog.com/titles/gwpy/code/fileproc/read_smallest_skip.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=166

ONE RECORD PER LINE 167

values, the values are separated by whitespace, and for reasons best

known to the file’s author, each value ends with a period.

Download fileproc/lynx.txt

Annual Number of Lynx Trapped, MacKenzie River, 1821-1934

#Original Source: Elton, C. and Nicholson, M. (1942)

#"The ten year cycle in numbers of Canadian lynx",

#J. Animal Ecology, Vol. 11, 215--244.

#This is the famous data set which has been listed before in

#various publications:

#Cambell, M.J. and Walker, A.M. (1977) "A survey of statistical work on

#the MacKenzie River series of annual Canadian lynx trappings for the years

#1821-1934 with a new analysis", J.Roy.Statistical Soc. A 140, 432--436.

269. 321. 585. 871. 1475. 2821. 3928. 5943. 4950. 2577. 523. 98.

184. 279. 409. 2285. 2685. 3409. 1824. 409. 151. 45. 68. 213.

546. 1033. 2129. 2536. 957. 361. 377. 225. 360. 731. 1638. 2725.

2871. 2119. 684. 299. 236. 245. 552. 1623. 3311. 6721. 4245. 687.

255. 473. 358. 784. 1594. 1676. 2251. 1426. 756. 299. 201. 229.

469. 736. 2042. 2811. 4431. 2511. 389. 73. 39. 49. 59. 188.

377. 1292. 4031. 3495. 587. 105. 153. 387. 758. 1307. 3465. 6991.

6313. 3794. 1836. 345. 382. 808. 1388. 2713. 3800. 3091. 2985. 3790.

674. 81. 80. 108. 229. 399. 1132. 2432. 3574. 2935. 1537. 529.

485. 662. 1000. 1590. 2657. 3396.

To process this, we must break each line into pieces and strip off the

periods. Our algorithm is the same as it was for the fox pelt data: find

and process the first “real” line in the file, and then process each of the

subsequent lines. However, the notion of “processing a line” needs to be

examined further, because there are many values per line. Our refined

algorithm, shown next, uses nested loops to handle the notion of “for

each line and for each value on that line”:

Find the first line containing real data after the header.

For each piece of data in the current line:

Process that piece.

For each other line of data:

For each piece of data in the current line:

Process that piece.

Once again, we are processing lines in two different places. That is a

strong hint that we should write a helper function to avoid duplicate

code. Rewriting our algorithm, and making it specific to the problem of

finding the largest value, makes this clearer:

Find the first line of real data after the header.

Find the largest value in that line.

For each other line of data:

Find the largest value in that line.

http://media.pragprog.com/titles/gwpy/code/fileproc/lynx.txt
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=167

ONE RECORD PER LINE 168

If that value is larger than the previous largest, remember it.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=168

ONE RECORD PER LINE 169

The helper function required is one that finds the largest value in a line,

and it must split the line up. The string method split will split around

the whitespace, but we still have to remove the periods at the ends of

values.

We can also simplify our code by initializing largest to -1, because that

value is guaranteed to be smaller than any of the (positive) values in

the file. That way, no matter what the first real value is, it will be larger

than the “previous” value (our -1) and replace it.

Download fileproc/read_lynx_1.py

import sys

def find_largest(line):

'''Return the largest value in line, which is a

whitespace-delimited string of integers.'''

The largest value seen so far.

largest = -1

for value in line.split():

Remove the trailing period.

v = int(value[:-1])

If we find a larger value, remember it.

if v > largest:

largest = v

return largest

We now face the same choice as with skip_header: we can put find_largest

in a module (possibly tsdl), or we can include it in the same file as the

rest of the code. We choose the latter this time, because the code is

specific to this particular data set and problem:

Download fileproc/read_lynx.py

import sys

from tsdl import skip_header

def find_largest(line):

'''Return the largest value in line, which is a

whitespace-delimited string of integers.'''

The largest value seen so far.

largest = -1

for value in line.split():

http://media.pragprog.com/titles/gwpy/code/fileproc/read_lynx_1.py
http://media.pragprog.com/titles/gwpy/code/fileproc/read_lynx.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=169

ONE RECORD PER LINE 170

Remove the trailing period.

v = int(value[:-1])

If we find a larger value, remember it.

if v > largest:

largest = v

return largest

def process_file(r):

'''Read and process reader r.'''

line = skip_header(r).strip()

The largest value so far.

largest = find_largest(line)

Check the rest of the lines for larger values.

for line in r:

large = find_largest(line)

if large > largest:

largest = large

return largest

if __name__ == "__main__":

input_file = open(sys.argv[1], "r")

print process_file(input_file)

input_file.close()

Notice how simple the code in process_file looks! This happened only

because we decided to write helper functions. To show you how much

clearer this is, here is the same code without using find_largest as a

helper method:

Download fileproc/read_lynx_expanded.py

import sys

from tsdl import skip_header

def process_file(r):

'''Read and process reader r.'''

line = skip_header(r).strip()

The largest value seen so far.

largest = -1

for value in line.split():

http://media.pragprog.com/titles/gwpy/code/fileproc/read_lynx_expanded.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=170

RECORDS WITH MULTIPLE FIELDS 171

Remove the trailing period.

v = int(value[:-1])

If we find a larger value, remember it.

if v > largest:

largest = v

Check the rest of the lines for larger values.

for line in r:

The largest value seen so far.

large = -1

for value in line.split():

Remove the trailing period.

v = int(value[:-1])

If we find a larger value, remember it.

if v > large:

large = v

if large > largest:

largest = large

return largest

if __name__ == "__main__":

input_file = open(sys.argv[1], "r")

print process_file(input_file)

input_file.close()

8.2 Records with Multiple Fields

Here is some United States housing data for 1983 and 1984, also taken

from [Hynnd]. The first column is the monthly housing starts (thou-

sands of units), the second is the total construction contracts (millions

of dollars), and the third is the average interest rate for a new home

mortgage (percent):

Download fileproc/housing.dat

91.3 11.358 13

96.3 11.355 12.62

134.6 16.100 12.97

135.8 16.315 12.02

174.9 19.205 12.21

173.2 20.263 11.9

161.6 16.885 12.02

http://media.pragprog.com/titles/gwpy/code/fileproc/housing.dat
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=171

RECORDS WITH MULTIPLE FIELDS 172

176.8 19.441 12.01

154.9 17.379 12.08

159.3 16.028 11.8

136 15.401 11.82

108.3 13.518 11.94

109.1 14.023 11.8

130 14.442 11.78

137.5 17.916 11.56

172.7 17.655 11.55

180.7 21.990 11.68

184 20.036 11.61

162.1 19.224 11.91

147.4 19.367 11.89

148.5 16.923 12.03

152.3 18.413 12.27

126.2 16.616 12.27

98.9 14.220 12.05

This data differs from the previous example, because although there

are multiple values per line, in this case each value represents some-

thing different. We want to compare total housing starts and construc-

tion contracts from 1983 to 1984; for the moment, we don’t care about

interest rates.

What if we decide to ask more questions about this data in the future?

Instead of rereading the data from the file, we can store the data for

future use. But how will we store it? We can create twelve lists, one

for each month, or two lists, one for housing starts and one for total

construction contracts, and store the data by column. Another option

is to create a list of lists to keep all the data together. Twelve variables

feels like too many, so let’s store the data by column using two lists.

(A lot of program design is based on what “feels” right. There are no

universal hard-and-fast rules for good design; there are only trade-offs

and consequences.) Using the two lists to store the data, we compare

housing starts and construction contracts from 1983 to 1984:

Download fileproc/housing.py

import sys

def housing(r):

'''Return the difference between the housing starts and

construction contracts in 1983 and in 1984 from reader r.'''

The monthly housing starts, in thousands of units.

starts = []

The construction contracts, in millions of dollars.

contracts = []

http://media.pragprog.com/titles/gwpy/code/fileproc/housing.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=172

RECORDS WITH MULTIPLE FIELDS 173

Read the file, populating the lists.

for line in r:

start, contract, rate = line.split()

starts.append(float(start))

contracts.append(float(contract))

return (sum(starts[12:23]) - sum(starts[0:11]),

sum(contracts[12:23]) - sum(contracts[0:11]))

if __name__ == "__main__":

input_file = open(sys.argv[1], "r")

print housing(input_file)

input_file.close()

The result is the tuple (55.799999999999955, 16.875000000000028), showing

that both housing starts and construction contracts rose from 1983 to

1984.

This program answered our question, but it could still be improved. Its

first shortcoming is that it throws away the interest rate data; although

we don’t need this right now, someone might in future, so we should

create a third list and store it. The second improvement is to separate

the parsing and processing of the data, that is, to have one function

that reads the data and another that does calculations on it. That way,

we can reuse the parsing code every time we have new questions.

Download fileproc/housing_2.py

import sys

def read_housing_data(r):

'''Read housing data from reader r, returning lists of starts,

contracts, and rates.'''

starts = []

contracts = []

rates = []

for line in r:

start, contract, rate = line.split()

starts.append(float(start))

contracts.append(float(contract))

rates.append(rate)

return (starts, contracts, rates)

def process_housing_data(starts, contracts):

'''Return the difference between the housing starts and

construction contracts in 1983 and in 1984.'''

http://media.pragprog.com/titles/gwpy/code/fileproc/housing_2.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=173

POSITIONAL DATA 174

!

"#$% &'()* +$,

- . / 0 1 ! 2 3 1 1 4 1 3 / 4 . 1 3 4 555

+$)# 6$)7)89# 6'(:7)89#

+#:5 &7(5 ;#<5 +#:5 &7(5 ;#<5

Figure 8.1: A fixed-width file format

return (sum(starts[12:23]) - sum(starts[0:11]),

sum(contracts[12:23]) - sum(contracts[0:11]))

if __name__ == "__main__":

input_file = open(sys.argv[1], "r")

starts, contracts, rates = read_housing_data(input_file)

print process_housing_data(starts, contracts)

input_file.close()

Many programs go one step further and separate parsing, processing,

and reporting (the printing of results). That way, both the input and

output can be used in other programs without having to be rewritten,

and programs can process data from other sources [Wil05].

8.3 Positional Data

Some file formats don’t use delimiters to separate fields. Instead, each

field is in a fixed location on the line. For example, characters 1–8 might

store the date (with four digits for the year, two for the month, and two

for the day), characters 9–14 and 15–20 the latitude and longitude (as

degrees, minutes, and seconds), and the 24 characters after that the

temperature, humidity, and pressure as decimal numbers, each eight

characters long (see Figure 8.1).

Processing files like this is relatively straightforward, because slicing

strings is easy in Python. Here’s a function that reads a file in the

format just described. Its result is a list of tuples; each tuple is a single

record, and the fields in each tuple are that record’s values.

Download fileproc/fixed_width_1.py

def read_weather_data(r):

'''Read weather data from reader r in fixed-width format.

The fields are:

1 8 YYYYMMDD (date)

9 14 DDMMSS (latitude)

http://media.pragprog.com/titles/gwpy/code/fileproc/fixed_width_1.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=174

POSITIONAL DATA 175

15 20 DDMMSS (longitude)

21 26 FF.FFF (temp, deg. C)

27 32 FF.FFF (humidity, %)

33 38 FF.FFF (pressure, kPa)

The result is a list of tuples:

((Yr, Mo, Day), (Deg, Min, Sec), (Deg, Min, Sec), (Temp, Hum, Press))

'''

result = []

for line in r:

year = int(line[0:4])

month = int(line[4:6])

day = int(line[6:8])

lat_deg = int(line[8:10])

lat_min = int(line[10:12])

lat_sec = int(line[12:14])

long_deg = int(line[14:16])

long_min = int(line[16:18])

long_sec = int(line[18:20])

temp = float(line[20:26])

hum = float(line[26:32])

press = float(line[32:38])

result.append(((year, month, day),

(lat_deg, lat_min, lat_sec),

(long_deg, long_min, long_sec),

(temp, hum, press)))

return result

This function does indeed do what we need, but an experienced pro-

grammer would find fault with it. The biggest criticism would be that it

would be very easy to mistype some of those twenty-four slice indices

and wind up taking too much or too little data, like this:

long_min = int(line[16:18]) # missing 18!

long_sec = int(line[19:20])

temp = float(line[20:26])

Also, if the data format ever changes—for example, if this function

needs to read files that used decimal degrees for latitude and longi-

tude—then all the indices after the point of change would need to be

updated.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=175

POSITIONAL DATA 176

Here’s a more elegant solution:2

Download fileproc/fixed_width_2.py

def read_weather_data(r):

'''Read weather data from reader r in fixed-width format.

The field widths are:

4,2,2 YYYYMMDD (date)

2,2,2 DDMMSS (latitude)

2,2,2 DDMMSS (longitude)

6,6,6 FF.FFF (temp, deg. C; humidity, %; pressure, kPa)

The result is a list of values (not tuples):

(YY, MM, DD, DD, MM, SS, DD, MM, SS, Temp, Hum, Press)'''

fields = ((4, int), (2, int), (2, int), # date

(2, int), (2, int), (2, int), # latitude

(2, int), (2, int), (2, int), # longitude

(6, float), (6, float), (6, float)) # data

result = []

For each record

for line in r:

start = 0

record = []

for each field in the record

for (width, target_type) in fields:

convert the text

text = line[start:start+width]

field = target_type(text)

add it to the record

record.append(field)

move on

start += width

add the completed record to the result

result.append(record)

return result

The basic idea is that each field is a fixed width, so after processing a

field of width W, we just move W characters forward in the string to

find the next field. And since the users of this function don’t want text

back, but integers and floating-point numbers, we store a reference to

the appropriate conversion function right beside each field’s width. An

interesting feature of this example is that the functions are stored in

tuples just like other data.

2. Astute readers will notice that it returns a single tuple per record, rather than a tuple

of tuples. This will be fixed in the exercises.

http://media.pragprog.com/titles/gwpy/code/fileproc/fixed_width_2.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=176

MULTILINE RECORDS 177

8.4 Multiline Records

Not every data record will fit onto a single line. Here is a file in simplified

Protein Data Bank (PDB) format that describes the arrangements of

atoms in ammonia:

Download fileproc/ammonia.pdb

COMPND AMMONIA

ATOM 1 N 0.257 -0.363 0.000

ATOM 2 H 0.257 0.727 0.000

ATOM 3 H 0.771 -0.727 0.890

ATOM 4 H 0.771 -0.727 -0.890

END

The first line is the name of the molecule. All subsequent lines down to

the one containing END specify the ID, type, and XYZ coordinates of one

of the atoms in the molecule.

Reading this file is straightforward using the tools we have built up in

this chapter. But what if the file contained two or more molecules, like

this:

Download fileproc/multimol.pdb

COMPND AMMONIA

ATOM 1 N 0.257 -0.363 0.000

ATOM 2 H 0.257 0.727 0.000

ATOM 3 H 0.771 -0.727 0.890

ATOM 4 H 0.771 -0.727 -0.890

END

COMPND METHANOL

ATOM 1 C -0.748 -0.015 0.024

ATOM 2 O 0.558 0.420 -0.278

ATOM 3 H -1.293 -0.202 -0.901

ATOM 4 H -1.263 0.754 0.600

ATOM 5 H -0.699 -0.934 0.609

ATOM 6 H 0.716 1.404 0.137

END

As always, we tackle this problem by dividing into smaller ones and

solving each of those in turn. Our first algorithm is as follows:

while there are more molecules in the file:

read a molecule from the file

append it to the list of molecules read so far

Simple, except the only way to tell whether there is another molecule

left in the file is to try to read it. Our modified algorithm is as follows:

reading = True

while reading:

try to read a molecule from the file

http://media.pragprog.com/titles/gwpy/code/fileproc/ammonia.pdb
http://media.pragprog.com/titles/gwpy/code/fileproc/multimol.pdb
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=177

MULTILINE RECORDS 178

if there is one:

append it to the list of molecules read so far

else: # nothing left

reading = False

In Python, this is as follows:

Download fileproc/multimol.py

def read_all_molecules(r):

'''Read zero or more molecules from reader r,

returning a list of the molecules read.'''

result = []

reading = True

while reading:

molecule = read_molecule(r)

if molecule:

result.append(molecule)

else:

reading = False

return result

The work of actually reading a single molecule has been put in a func-

tion of its own that must return some false value (such as None) if it

can’t find another molecule in the file. This function checks the first line

it tries to read to see whether there is actually any data left in the file. If

not, it returns immediately to tell read_all_molecules that the end of the

file has been reached. Otherwise, it pulls the name of the molecule out

of the first line and then reads the molecule’s atoms one at a time down

to the END line:

Download fileproc/multimol_2.py

def read_molecule(r):

'''Read a single molecule from reader r and return it,

or return None to signal end of file.'''

If there isn't another line, we're at the end of the file.

line = r.readline()

if not line:

return None

Name of the molecule: "COMPND name"

key, name = line.split()

Other lines are either "END" or "ATOM num type x y z"

molecule = [name]

reading = True

http://media.pragprog.com/titles/gwpy/code/fileproc/multimol.py
http://media.pragprog.com/titles/gwpy/code/fileproc/multimol_2.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=178

LOOKING AHEAD 179

while reading:

line = r.readline()

if line.startswith('END'):

reading = False

else:

key, num, type, x, y, z = line.split()

molecule.append((type, x, y, z))

return molecule

Notice that this function uses exactly the same trick to spot the END

marking the end of a single molecule as the first function used to spot

the end of file.

8.5 Looking Ahead

Let’s add one final complication. Suppose that molecules didn’t have

END markers but instead just a COMPND line followed by one or more

ATOM lines. How would we read multiple molecules from a single file in

that case?

At first glance, it doesn’t seem much different from the problem we

just solved: read_molecule could extract the molecule’s name from the

COMPND line and then read ATOM lines until it got either an empty

string signaling the end of the file or another COMPND line signaling

the start of the next molecule. But once it has read that COMPND line,

the line isn’t available for the next call to read_molecule, so how can we

get the name of the second molecule (and all the ones following it)?

To solve this problem, our functions must always “look ahead” one line.

Let’s start with the function that reads multiple molecules:

Download fileproc/lookahead.py

def read_all_molecules(r):

'''Read zero or more molecules from reader r,

returning a list of the molecules read.'''

result = []

line = r.readline()

while line:

molecule, line = read_molecule(r, line)

result.append(molecule)

return result

This function begins by reading the first line of the file. Provided that

line is not the empty string (that is, the file being read is not empty),

http://media.pragprog.com/titles/gwpy/code/fileproc/lookahead.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=179

LOOKING AHEAD 180

!"##$%&"!

!"#$%&#$

' () * +

' () * ' () * ' () * ' () *

!%!

',)-.

/',*0*

','''

!1!

',)-.

',.).

','''

!1!

',..(

/',.).

',23'

!1!

',..(

/',.).

/',23'

Figure 8.2: A PDB file

it passes both the stream to read from and the line into read_molecule,

which is supposed to return two things: the next molecule in the file

and the first line immediately after the end of that molecule (or an

empty string if the end of file has been reached).

This simple description is enough to get us started writing the read_

molecule function. The first thing it has to do is check that line is actu-

ally the start of a molecule. It then reads lines from stream one at a time,

looking for one of three situations:

• The end of file, which signals the end of both the current molecule

and the file

• Another COMPND line, which signals the end of this molecule and

the start of the next one

• An ATOM, which is to be added to the current molecule

The most important thing is that when this function returns, it returns

both the molecule and the next line so that its caller can keep process-

ing. The result is probably the most complicated function we have seen

so far, but understanding the idea behind it will help you understand

how it works.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=180

WRITING TO FILES 181

!"##$%&"!

!"#$%&#$
'

' (((

($)*
'

!)$#*%+,,,,,,#-./"%$012!

!#-./"%$0!

!"#$%&#$
+

' (((

($)*
+

!!

Figure 8.3: Looking ahead

Download fileproc/lookahead_2.py

def read_molecule(r, line):

'''Read a molecule from reader r. The variable 'line'

is the first line of the molecule to be read; the result is

the molecule, and the first line after it (or the empty string

if the end of file has been reached).'''

fields = line.split()

molecule = [fields[1]]

line = r.readline()

while line and not line.startswith('COMPND'):

fields = line.split()

key, num, type, x, y, z = fields

molecule.append((type, x, y, z))

line = r.readline()

return molecule, line

8.6 Writing to Files

In addition to extracting data from files, there are times when we’d like

to modify or create files using Python. For example, when processing

data from a file, we may want to create a new file containing the results.

We may also want to take two data files and merge them into a single

file or split a single file into different files.

To open a file, we provide the filename and one of three modes ’r’, ’w’, or

’a’, which stand for read, write, and append, respectively. If the mode

isn’t provided (that is, we call open with only one argument), then the

default mode is ’r’.

To create a new file or to replace the contents of an existing file, we use

the write mode. If the filename does not exist already, then a new file

http://media.pragprog.com/titles/gwpy/code/fileproc/lookahead_2.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=181

WRITING TO FILES 182

is created; otherwise, the file contents are replaced. For example, let’s

put “Computer Science” in the file test.txt:

Download fileproc/write.py

output_file = open("test.txt", "w")

output_file.write("Computer Science")

output_file.close()

Rather than replacing the file contents, we can also add to a file using

the append mode. When we write to a file that is opened in append

mode, the data we write is added to the end of the file, and the current

file contents are not overwritten. For example, to add to our previous

file test.txt, we can append the line “Software Engineering”:

Download fileproc/append.py

output_file = open("test.txt", "a")

ouput_file.write("Software Engineering")

output_file.close()

In each of the previous examples, we called write only once, but we

would typically call it multiple times.

The next example is more complex, and it involves both reading from

and writing to a file. Our input file contains two numbers per line sep-

arated by a space. The output file will contain three numbers: the two

from the input file and their sum (all separated by spaces):

Download fileproc/sum.py

def sum(input_file, output_filename):

'''Reads the data from open file descriptor input_file, which contains

two floats per line separated by a space. For each line from

input_file, a line is written to the file named output_filename

containing the two floats from the corresponding line of input_file

plus a space and the sum of the two floats.'''

output_file = open(output_filename, 'w')

for line in input_file:

operands = line.split()

print 'operands', operands

sum = float(operands[0]) + float(operands[1])

new_line = line.rstrip() + ' ' + str(sum) + '\n'

output_file.write(new_line)

output_file.close()

http://media.pragprog.com/titles/gwpy/code/fileproc/write.py
http://media.pragprog.com/titles/gwpy/code/fileproc/append.py
http://media.pragprog.com/titles/gwpy/code/fileproc/sum.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=182

SUMMARY 183

8.7 Summary

In this chapter, we learned the following:

• Data stored in files is usually formatted in one of a small num-

ber of ways, from value per line to multiline records with explicit

end-of-record markers. Each format can be processed in a stereo-

typical way.

• Data processing programs should be broken into input, process-

ing, and output stages so that each can be reused independently.

• Programs that take filenames as command-line arguments are

more flexible, and therefore more useful, than ones in which these

names are hard-coded.

• Files can be read (content retrieved), written to (content replaced),

and added to (new content appended). When a file is opened in

writing mode and it does not exist, a new file is created.

• Data files come in many different formats, so custom code is often

required, but we can reuse as much as possible by writing helper

functions.

• To make the functions usable by different types of readers, the

reader (file, web page or input stream) is opened outside the func-

tion, passed as an argument to the function, and then closed out-

side the function.

8.8 Exercises

Here are some exercises for you to try on your own:

1. All of the file-reading functions we have seen in this chapter read

forward through the file from the first character or line to the

last. How would you write a function that would read backward

through a file?

2. The file reader we developed in Section 8.3, Positional Data, on

page 174 returns a single tuple for each entire record. Modify it so

that if the field format is specified like this:

fields = (

((4, int), (2, int), (2, int)), # date

((2, int), (2, int), (2, int)), # latitude

((2, int), (2, int), (2, int)), # longitude

((6, float), (6, float), (6, float)) # data

)

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=183

EXERCISES 184

then each record will be converted into a tuple of tuples, like this:

(

(2007, 5, 3), # date

(24, 17, 37), # latitude

(38, 56, 5), # longitude

(100.0, 121.3, 16.37) # data

)

Explain why a tuple of tuples would make life easier for the pro-

grams that are using this function.

3. The format descriptor used by the fixed-width file reader of Sec-

tion 8.3, Positional Data, on page 174, specifies the width of each

field. However, formats are sometimes specified in terms of start-

ing positions. For example, look at Figure 8.1, on page 174; the

fixed-width file format could be specified as this:

fields = (

(0, int), (4, int), (6, int), # date

(8, int), (10, int), (12, int), # latitude

(14, int), (16, int), (18, int), # longitude

(20, float), (26, float), (32, float) # data

)

Write a function that takes a format specified this way, converts

it into a width-based format, and then reads data from the spec-

ified file. (Functions like this are called wrapper functions, since

they are “wrapped around” existing code so that it can be used in

different ways.)

4. Modify the file reader in read_smallest_skip.py of Section 8.1, Skip-

ping the Header, on page 162 so that can handle files with no

data.

5. Modify the file reader in read_smallest_skip.py of Section 8.1, Skip-

ping the Header, on page 162 so that it uses a continue inside the

loop instead of an if. Which form do you find easier to read?

6. Modify the PDB file reader of Section 8.4, Multiline Records, on

page 177 so that it ignores blank lines and comment lines in PDB

files. A blank line is one that contains only space and tab char-

acters (that is, one that looks empty when viewed). A comment is

any line beginning with the keyword CMNT.

7. Modify the PDB file reader to check that the serial numbers on

atoms start at 1 and increase by 1. What should the modified

function do if it finds a file that doesn’t obey this rule?

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=184

Chapter 9

Sets and Dictionaries
So far, the only way we have seen to store multiple values is to put

them in a sequence, such as a list or a tuple. In this chapter, we will

investigate two other kinds of collections called sets and dictionaries.

These allow us to create programs that are simpler and more efficient

than those we could write using sequences alone.

9.1 Sets

A set is an unordered collection of distinct items. Unordered means that

items are not stored in any particular order. Something is either in the

set or not, but there’s no notion of it being the first, second, or last

item. Distinct means that any item appears in a set at most once; in

other words, there are no duplicates.

Sets are fundamental to mathematics and are built in to modern ver-

sions of Python. To create a new empty set, simply type set(). To create

a set with values already in it, type set((2, 3, 5)). It is important to notice

that the initial values are specified in a single argument, which is a

tuple. We could instead use a list, like set([2, 3, 5]), but cannot pass the

values one by one, like set(2, 3, 5).

It’s equally important to understand that the order of the values doesn’t

matter, nor does the number of times each value is entered. The expres-

sions set((3, 5, 2)) and set((2, 3, 5, 5, 2, 3)) create exactly the same result: a

set containing just three values (see Figure 9.1, on the following page).

Set Operations

In mathematics, set operations include union, intersection, add, and

remove. In Python, these are implemented as methods (for a complete

SETS 186

�

�
#

$%&'(")*#)*!+, $%&'(!)*")*#)*#)*!)*"+,

!

"
#

Figure 9.1: Creating a set

list, see Figure 9.2, on the next page). Note that most operations cre-

ate a new set: only add, remove, and clear modify the current set. The

following program shows these methods in action:

Download setdict/setexamples.cmd

>>> ten = set(range(10))

>>> lows = set([0, 1, 2, 3, 4])

>>> odds = set([1, 3, 5, 7, 9])

>>> lows.add(9)

>>> lows

set([0, 1, 2, 3, 4, 9])

>>> lows.difference(odds)

set([0, 2, 4])

>>> lows.intersection(odds)

set([1, 3, 9])

>>> lows.issubset(ten)

True

>>> lows.issuperset(odds)

False

>>> lows.remove(0)

>>> lows

set([1, 2, 3, 4, 9])

>>> lows.symmetric_difference(odds)

set([2, 4, 5, 7])

>>> lows.union(odds)

set([1, 2, 3, 4, 5, 7, 9])

>>> lows.clear()

>>> lows

set([])

http://media.pragprog.com/titles/gwpy/code/setdict/setexamples.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=186

SETS 187

Method Purpose Example Result

add Adds an element to a set lows.add(9) None

clear Removes all elements from
a set

lows.clear() None

difference Creates a set with elements
from one set, but not the
other

lows.difference(odds) set([0, 2, 4]])

intersection Creates a set with elements
that are in both sets

lows.intersection(odds) set([1, 3]])

issubset Asks are all of one set’s
elements contained in
another?

lows.issubset(ten) True

issuperset Asks does one set contain all
of another’s elements?

lows.issuperset(odds) False

remove Removes an element from a
set

lows.remove(0) None

symmetric_difference Creates a set with elements
that are in exactly one set

lows.symmetric_difference(odds) set([0, 2, 4, 5, 7, 9]])

union Creates a set with elements
that are in either set

lows.union(odds) set([0, 1, 2, 3, 4, 5, 7, 9]])

Figure 9.2: Set operations, where ten = set(range(10)), lows = set([0, 1,

2, 3, 4]), and odds = set([1, 3, 5, 7, 9])

Many set methods can also be written using operators. If acids and bases

are two sets, for example, then acids | bases creates a new set containing

their union (that is, all the elements from both acids and bases), while

acids <= bases tests whether all the values in acids are also in bases. All

the operators that sets support are listed in Figure 9.3, on the following

page.

Arctic Birds

To see how sets are used, suppose we have several files recording obser-

vations of birds in the Canadian Arctic and we want to know which

species we have seen. Each file is formatted like this:

Download setdict/birdwatching.txt

canada goose

canada goose

long-tailed jaeger

canada goose

snow goose

canada goose

canada goose

northern fulmar

http://media.pragprog.com/titles/gwpy/code/setdict/birdwatching.txt
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=187

SETS 188

Method Call Operator

set1.difference(set2) set1 - set2

set1.intersection(set2) set1 & set2

set1.issubset(set2) set1 <= set2

set1.issuperset(set2) set1 >= set2

set1.union(set2) set1 | set2

set1.symmetric_difference(set2) set1∧set2

Figure 9.3: Set operations

Here’s our program:

Download setdict/birdwatching.py

import sys

Find the different bird types observed.

birds = set()

for filename in sys.argv[1:]:

infile = open(filename, 'r')

for line in infile:

name = line.strip()

birds.add(name)

infile.close()

Print the birds.

for b in birds:

print b

The first statement after the import creates a new empty set and assigns

it to the variable birds. The loop then reads the names of birds from each

of the input files specified on the command line. Any whitespace before

or after the bird’s name is stripped away by line.strip(); the program then

uses birds.add(name) to make sure the new name is in the set. If the

name is not already there, set.add puts it in the set; otherwise, the set

isn’t changed.

Once all the names have been read, the program loops over the values

in the set to print them. This works exactly like a loop over the val-

ues in a list, except that the order in which values are encountered is

arbitrary: there is no guarantee that they will come out in the order

in which they were added, in alphabetical order, in order by length, or

anything else.

http://media.pragprog.com/titles/gwpy/code/setdict/birdwatching.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=188

SETS 189

!"# $"% &"'

!"#$%&'()*+*,-("

!"# $"% &"'

!"#$%&./#$%&01%%&'()*+*,-("2

!"#$%&'()'*%)&'$+&),'-./

Figure 9.4: Moving items in a filing cabinet

Set Storage

Sets are stored in a data structure called a hash table. Each time an

item is added to a set, Python calculates a hash code for the item,

which is an integer that is guaranteed to be the same for items with

equal values:

Download setdict/hashcode.cmd

>>> help(hash)

Help on built-in function hash in module __builtin__:

hash(...)

hash(object) -> integer

Return a hash value for the object. Two objects with the same

value have the same hash value. The reverse is not necessarily

true, but likely.

>>> hash(123)

123

>>> hash('123') # a string

1911471187

To see whether a value is in a set, Python simply recalculates the hash

code for that value and checks the corresponding location in the hash

table. This is a lot faster than searching the whole set every time a value

needs to be looked up. However, this scheme works only if an item’s

hash code cannot change after it has been added to the hash table.

To see why, consider what would happen if you filed patient records in

alphabetical order but then went back and changed someone’s name

(see Figure 9.4). Their record would now be out of place, so if someone

else tried to look it up, they wouldn’t find it.

http://media.pragprog.com/titles/gwpy/code/setdict/hashcode.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=189

DICTIONARIES 190

Because hash codes are computed from values, if a list’s contents are

changed, the hash code for that list will change. For this reason, Python

allows sets to contain only immutable values (see Section 5.2, Modifying

Lists, on page 85). Again, Booleans, numbers, strings, and tuples are

allowed, but lists are not:

Download setdict/hashcode_seq.cmd

>>> hash((1, 2, 3))

-378539185

>>> hash([1, 2, 3])

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: list objects are unhashable

This is actually one of the reasons tuples were invented: they allow

multipart values like (’Albert’, ’Einstein’) to be added to sets.

But this means that we can’t store a set of sets. Sets themselves can’t

be immutable, since we need to add and remove values, so a set can’t

contain another one. To solve this problem, Python has another data

type called a frozen set. As the name implies, frozen sets are sets whose

contents can’t be changed, just as tuples are lists whose values can’t be

modified. An empty frozen set (which isn’t particularly useful) is created

using frozenset(); to create a frozen set that contains some values, use

frozenset(values), where values is a list, tuple, set, or other collection.

9.2 Dictionaries

Back to bird watching. Suppose we want to know how often each kind

of bird was seen. Our first attempt uses a list of pairs, each a list storing

the name of a bird and the number of times it has been seen so far:

Download setdict/listfordict.py

import sys

Find all the birds.

birds = []

for filename in sys.argv[1:]:

infile = open(filename, 'r')

For each bird, find its entry and increment the count.

for line in infile:

name = line.strip()

found = False

for entry in birds:

if entry[0] == name:

http://media.pragprog.com/titles/gwpy/code/setdict/hashcode_seq.cmd
http://media.pragprog.com/titles/gwpy/code/setdict/listfordict.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=190

DICTIONARIES 191

entry[1] += 1

found = True

if not found:

birds.append([name, 1])

infile.close()

Print.

for (name, count) in birds:

print name, count

This gives the right answer, but there are two things wrong with it. The

first is that it is complex. The more nested loops our programs contain,

the harder they are to understand, fix, and extend. The second is that it

is inefficient. Suppose we were interested in beetles instead of birds and

that we had millions of observations of tens of thousands of species.

Scanning the list of names each time we want to add one new observa-

tion would take a long, long time, even on a fast computer (a topic we

will return to in Chapter 11, Searching and Sorting, on page 214).

Can we use a set to solve both problems at once? Sets can look up

values in a single step; why not combine each bird’s name and the

number of times it has been seen into a two-valued tuple and put those

tuples in a set?

The problem with this idea is that we can look for values only if we

know what those values are. In this case, we won’t. We will know only

the name of the species, not how many times it has already been seen.

The right answer is to use another data structure called a dictionary.

Also known as a map, a dictionary is an unordered mutable collec-

tion of key/value pairs (see Figure 9.5, on the following page). In plain

English, dictionaries are like phone books. They associate a value (such

as a phone number) with a key (like a name). The keys form a set. Any

particular key can appear at most once in a dictionary, and like the ele-

ments in sets, keys must be immutable (though the values associated

with them do not have to be).

Dictionaries are created by putting key/value pairs inside braces. To

get the value associated with a key, we put the key in square brackets:

Download setdict/simpledict.cmd

>>> birds = {'canada goose' : 3, 'northern fulmar' : 1}

>>> birds

{'canada goose' : 3, 'northern fulmar' : 1}

>>> birds['northern fulmar']

1

http://media.pragprog.com/titles/gwpy/code/setdict/simpledict.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=191

DICTIONARIES 192

!"#$#%#&'(()*!

!$(+,-*+$&./01#+!

2 3

Figure 9.5: Structure of a dictionary

As you’d expect, the empty dictionary is written {}. Indexing a dictionary

with a key it doesn’t contain produces an error, just like an out-of-range

index for a list:

Download setdict/badkey.cmd

>>> birds = {'canada goose' : 3, 'northern fulmar' : 1}

>>> birds['canada goose']

3

>>> birds['long-tailed jaeger']

Traceback (most recent call last):

File "<stdin>", line 1, in ?

KeyError: 'long-tailed jaeger'

To test whether a key is in a dictionary, use k in d:

Download setdict/dictin.cmd

>>> birds = {'eagle' : 999, 'snow goose' : 33}

>>> if 'eagle' in birds:

... print 'eagles have been seen'

...

eagles have been seen

>>> del birds['eagle']

>>> if 'eagle' in birds:

... print 'oops: why are eagles still there?'

...

Updating and Membership

Updating dictionaries is easy. Just assign a value to a key. If the key is

already in the dictionary, this changes the value associated with it.

http://media.pragprog.com/titles/gwpy/code/setdict/badkey.cmd
http://media.pragprog.com/titles/gwpy/code/setdict/dictin.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=192

DICTIONARIES 193

If the key was not present, it is added, along with the value:

Download setdict/dictupdate.cmd

>>> birds = {}

>>> birds['snow goose'] = 33

>>> birds['eagle'] = 999 # oops

>>> birds

{'eagle' : 999, 'snow goose' : 33}

>>> birds['eagle'] = 9

>>> birds

{'eagle' : 9, 'snow goose' : 33}

To remove an entry from a dictionary, use del d[k], where d is the dictio-

nary and k is the key being removed. Only entries that are present can

be removed; trying to remove one that isn’t there causes an error:

Download setdict/dictdel.cmd

>>> birds = {'snow goose' : 33, 'eagle' : 9}

>>> del birds['snow goose']

>>> birds

{'eagle' : 9}

>>> del birds['gannet']

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

KeyError: 'gannet'

Loops

Since dictionaries are collections, we’re going to want to loop over their

contents. We do this with for key in somedict, which assigns each of the

keys in the dictionary to the loop variable in turn:

Download setdict/loop.cmd

>>> birds = {'canada goose' : 183, 'long-tailed jaeger' : 71,

'snow goose' : 63, 'northern fulmar', 1}

>>> for x in birds:

... print x, birds[x]

...

'northern fulmar' 1

'long-tailed jaeger' 71

'canada goose' 183

'snow goose' 63

As with set elements, Python loops over the entries in the dictionary in

an arbitrary order. There is no guarantee that they will be seen alpha-

betically or in the order they were added to the dictionary.

Notice, by the way, that looping over dictionaries is slightly different

from looping over lists. When Python loops over a list, the values in the

http://media.pragprog.com/titles/gwpy/code/setdict/dictupdate.cmd
http://media.pragprog.com/titles/gwpy/code/setdict/dictdel.cmd
http://media.pragprog.com/titles/gwpy/code/setdict/loop.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=193

DICTIONARIES 194

list are assigned to the loop variable. When it loops over a dictionary,

on the other hand, it assigns the keys. Python’s designers chose to do

this because

• looping over the indices of a list isn’t very interesting, since the

program would always get the sequence 0, 1, 2, ...; and

• it’s a lot easier to go from a dictionary key to the associated value

than it is to take the value and find the associated key.

Dictionary Methods

Like lists, tuples, and sets, dictionaries are objects. Their methods are

described in Figure 9.6, on the next page, while the following program

shows how they are used:

Download setdict/dictmeth.py

scientists = {'Newton' : 1642, 'Darwin' : 1809, 'Turing' : 1912}

print 'keys:', scientists.keys()

print 'values:', scientists.values()

print 'items:', scientists.items()

print 'get:', scientists.get('Curie', 1867)

temp = {'Curie' : 1867, 'Hopper' : 1906, 'Franklin' : 1920}

scientists.update(temp)

print 'after update:', scientists

scientists.clear()

print 'after clear:', scientists

As you can see from its output (shown next), the keys and values meth-

ods return the dictionary’s keys and values, respectively, while items

returns a list of (key, value) pairs. get returns the value associated with

a key or returns some user-specified value if the key isn’t in the dic-

tionary; we’ll see a use for this shortly. Finally, update copies keys and

values from one dictionary into another, and clear erases the dictio-

nary’s contents.

Download setdict/dictmeth.out

keys: ['Turing', 'Newton', 'Darwin']

values: [1912, 1642, 1809]

items: [('Turing', 1912), ('Newton', 1642), ('Darwin', 1809)]

get: 1867

after update: {'Curie': 1867, 'Darwin': 1809, 'Franklin': 1920,

'Turing': 1912, 'Newton': 1642, 'Hopper': 1906}

after clear: {}

http://media.pragprog.com/titles/gwpy/code/setdict/dictmeth.py
http://media.pragprog.com/titles/gwpy/code/setdict/dictmeth.out
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=194

DICTIONARIES 195

Method Purpose Example Result

clear Empties the dic-

tionary.

d.clear() Returns None, but

d is now empty.

get Returns the value

associated with a

key, or a default

value if the key is

not present.

d.get(’x’, 99) Returns d[’x’] if "x"

is in d, or 99 if it

is not.

keys Returns the dic-

tionary’s keys as

a list. Entries are

guaranteed to be

unique.

birthday.keys() [’Turing’, ’Newton’,

’Darwin’]

items Returns a list of

(key, value) pairs.

birthday.items() [(’Turing’, 1912),

(’Newton’, 1642),

(’Darwin’, 1809)]

values Returns the dic-

tionary’s values as

a list. Entries may

or may not be

unique.

birthday.values() [1912, 1642, 1809]

update Updates the

dictionary with

the contents of

another.

See the example

on the preceding

page.

Figure 9.6: Dictionary methods

One common use of items is to loop over the keys and values in a dic-

tionary together:

for (key, value) in dictionary.items():

...do something with the key and value...

This is inefficient for large dictionaries, since items actually constructs

a list of (key, value) pairs. A similar method called iteritems hands these

pairs back one by one on demand:

for (key, value) in dictionary.iteritems():

...do something with the key and value...

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=195

DICTIONARIES 196

Dictionary Example

Back to birdwatching once again. We want to count the number of times

each species has been seen. To do this, we create a dictionary that is

initially empty. Each time we read an observation from a file, we check

to see whether we have seen that bird before, that is, whether the bird’s

name is already a key in our dictionary. If it is, we add one to its count.

If it isn’t, we add the name to the dictionary with the value 1. Here is

the program that does this:

Download setdict/countbirds1.py

import sys

Count all the birds.

count = {}

for filename in sys.argv[1:]:

infile = open(filename, 'r')

for line in infile:

name = line.strip()

if name in count:

count[name] = count[name] + 1

else:

count[name] = 1

infile.close()

Print.

for b in count:

print b, count[b]

We can shorten this program a bit using the method dict.get. This

returns either the value associated with a key or some default value

that we provide. In this case, we get either the number of times we’ve

already seen a species or zero, add one to whichever value the method

returns, and store that back in the dictionary:

Download setdict/countbirds2.py

import sys

Count all the birds.

count = {}

for filename in sys.argv[1:]:

infile = open(filename, 'r')

for line in infile:

name = line.strip()

count[name] = count.get(name, 0) + 1

infile.close()

http://media.pragprog.com/titles/gwpy/code/setdict/countbirds1.py
http://media.pragprog.com/titles/gwpy/code/setdict/countbirds2.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=196

INVERTING A DICTIONARY 197

Print.

keys = count.keys()

keys.sort()

for b in keys:

print b, count[b]

Using dict.get saves three lines, but some programmers find it harder

to understand at a glance.

This program contains another innovation as well. Instead of printing

the birds’ names in whatever order the dictionary chose to use, we get

the dictionary’s keys as a list, sort that list alphabetically, and then

loop over that. This way, the entries appear in a sensible order. We can

make this more readable by using Python’s built-in sorted function:

Download setdict/countbirds3.py

import sys

Count all the birds.

count = {}

for filename in sys.argv[1:]:

infile = open(filename, 'r')

for line in infile:

name = line.strip()

count[name] = count.get(name, 0) + 1

infile.close()

Invert the dictionary.

freq = {}

for (name, times) in count.items():

if times in freq:

freq[times].append(name)

else:

freq[times] = [name]

Print.

for key in sorted(freq):

print key

for name in freq[key]:

print ' ', name

9.3 Inverting a Dictionary

We might want to print the birds in another order—in order of fre-

quency, for example. To do this, we need to invert the dictionary; that

is, use the values as keys and the keys as values. This is a little trickier

than it first appears. There’s no guarantee that the values are unique,

http://media.pragprog.com/titles/gwpy/code/setdict/countbirds3.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=197

SUMMARY 198

so we have to handle collisions. For example, if we invert the dictionary

{’a’:1, ’b’:1, ’c’:1}, the key will be 1, but it’s not clear what the value

would be.

The solution is to use some sort of collection, such as a list, to store

the inverted dictionary’s values. If we go this route, the inverse of the

dictionary shown earlier would be {1:[’a’,’b’,’c’]}. Here’s a program to do

what we want:

Download setdict/countbirds4.py

import sys

Count all the birds.

count = {}

for filename in sys.argv[1:]:

infile = open(filename, 'r')

for line in infile:

name = line.strip()

count[name] = count.get(name, 0) + 1

infile.close()

Invert the dictionary.

freq = {}

for (name, times) in count.items():

if times in freq:

freq[times].append(name)

else:

freq[times] = [name]

Print.

for key in sorted(freq):

print key

for name in freq[key]:

print ' ', name

The exercises will ask you to break this into functions to make it more

readable.

9.4 Summary

In this chapter, we learned the following:

• Sets are used in Python to store unordered collections of unique

values. They support the same operations as sets in mathematics.

• Sets are stored in hash tables to make lookup efficient. For this

to work, each item must have a hash code that does not change

during its lifetime. This means that mutable values like lists and

http://media.pragprog.com/titles/gwpy/code/setdict/countbirds4.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=198

EXERCISES 199

sets cannot themselves be stored in sets. Instead, programs must

use tuples and frozen sets.

• Dictionaries are used to store unordered collections of key/value

pairs. They are also stored using hash tables for efficiency’s sake

and also require keys to be immutable.

• Looking things up in sets and dictionaries is much faster than

searching through lists. If you have a program that is doing the

latter, consider changing your choice of data structures.

9.5 Exercises

Here are some exercises for you to try on your own:

1. Write a function called find_dups that takes a list of integers as its

input argument and returns a set of those integers that occur two

or more times in the list.

2. Python’s set objects have a method called pop that removes and

returns an arbitrary element from the set. If a set gerbils con-

tains five cuddly little animals, for example, calling gerbils.pop()

five times will return those animals one by one, leaving the set

empty at the end. Use this to write a function called mating_pairs

that takes two equal-sized sets called males and females as input

and returns a set of pairs; each pair must be a tuple containing

one male and one female. (The elements of males and females may

be strings containing gerbil names or gerbil ID numbers—your

function must work with both.)

3. The PDB file format is often used to store information about mol-

ecules. A PDB file may contain zero or more lines that begin with

the word AUTHOR (which may be in uppercase, lowercase, or mixed

case), followed by spaces or tabs, followed by the name of the per-

son who created the file. Write a function that takes a list of file-

names as an input argument and returns the set of all author

names found in those files.

4. Draw a memory model of the data structure produced by the fol-

lowing statement:

vowels = set(frozenset('aeiou'))

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=199

EXERCISES 200

5. The keys in a dictionary are guaranteed to be unique, but the

values are not. Write a function called count_values that takes a

single dictionary as an argument and returns the number of dis-

tinct values it contains. Given the input {’red’:1, ’green’:1, ’blue’:2},

for example, it would return 2.

6. After doing a series of experiments, you have compiled a dictio-

nary showing the probability of detecting certain kinds of sub-

atomic particles. The particles’ names are the dictionary’s keys,

and the probabilities are the values: {’neutron’:0.55, ’proton’:0.21,

’meson’:0.03, ’muon’:0.07, ’neutrino’:0.14}. Write a function that takes

a single dictionary of this kind as input and returns the parti-

cle that is least likely to be observed. Given the dictionary shown

earlier, for example, the function would return ’meson’.

7. Write a function called count_duplicates that takes a dictionary as

an argument and returns the number of values that appear two

or more times.

8. Write a function called fetch_and_set that takes a dictionary and

two arbitrary values, key and new_value, as arguments. If key is

already in the dictionary, this function returns the value associ-

ated with it while replacing that value with new_value. If the key is

not present, the function raises a KeyError exception with the error

message ’Unable to replace value for nonexistent key’.

9. A balanced color is one whose red, green, and blue values add up

to 1.0. Write a function called is_balanced that takes a dictionary

whose keys are ’R’, ’G’, and ’B’ as its input and returns True if they

represent a balanced color.

10. Write a function called dict_intersect that takes two dictionaries

as arguments and returns a dictionary that contains only the

key/value pairs found in both of the original dictionaries.

11. Programmers sometimes use a dictionary of dictionaries as a sim-

ple database. For example, to keep track of information about

famous scientists, they might use something like this:

Download setdict/dict_of_dicts.py

{

'jgoodall' : {'surname' : 'Goodall',

'forename' : 'Jane',

'born' : 1934,

'died' : None,

http://media.pragprog.com/titles/gwpy/code/setdict/dict_of_dicts.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=200

EXERCISES 201

'notes' : 'primate researcher'

'author' : ['In the Shadow of Man', 'The Chimpanzees of Gombe']},

'rfranklin' : {'surname' : 'Franklin',

'forename' : 'Rosalind',

'born' : 1920,

'died' : 1957,

'notes' : 'contributed to discovery of DNA'},

'rcarson' : {'surname' : 'Carson',

'forename' : 'Rachel',

'born' : 1907,

'died' : 1964,

'notes' : 'raised awareness of effects of DDT',

'author' : ['Silent Spring']}

}

Write a function called db_headings that returns the set of keys

used in any of the inner dictionaries. In this example, the func-

tion should return set(’author’, ’forename’, ’surname’, ’notes’, ’born’,

’died’).

12. Write another function called db_consistent that takes a dictionary

of dictionaries in the format described in the previous question

and returns True if and only if every one of the inner dictionaries

has exactly the same keys. (This function would return False for

the previous example, since Rosalind Franklin’s entry does not

contain the ’author’ key.)

13. Make the final bird-counting program in Section 9.3, Inverting a

Dictionary, on page 197, more readable by breaking it into several

functions.

14. A sparse vector is a vector whose entries are almost all zero, like [1,

0, 0, 0, 0, 0, 3, 0, 0, 0]. Storing all those zeroes in a list wastes memory,

so programmers often use dictionaries instead to keep track of just

the nonzero entries. For example, the vector shown earlier would

be represented as {0:1, 6:3}, since the vector it is meant to represent

has the value 1 at index 0 and the value 3 at index 6.

a) Write a function called sparse_add that takes two sparse vec-

tors stored as dictionaries and returns a new dictionary rep-

resenting their sum.1

1. The sum of two vectors is just the element-wise sum of their elements. For example,

the sum of [1, 2, 3] and [4, 5, 6] is [5, 7, 9].

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=201

EXERCISES 202

b) Write another function called sparse_dot that calculates the

dot product of two sparse vectors.2

c) Your boss has asked you to write a function called sparse_len

that will return the length of a sparse vector (just as Python’s

len returns the length of a list). What do you need to ask her

before you can start writing it?

2. The dot product of two vectors is the sum of the products of corresponding elements.

For example, the dot product of [1, 2, 3] and [4, 5, 6] is 4+10+18, or 32.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=202

Chapter 10

Algorithms
For the past few chapters, you have used built-in functions such as

max and sort on lists. This chapter will examine how they work and

thus introduce a systematic way of solving problems when there is no

function or method that does exactly what you want.

An algorithm is a set of steps that accomplishes a task, such as syn-

thesizing caffeine. Although programs require algorithms to be written

in programming languages like Python, it is easier to discuss and plan

an algorithm using a mixture of a human language like English and a

little mathematics.

Our algorithm-writing technique is called top-down design. You start

by describing your solution in English and then mark the phrases that

correspond directly to Python statements. Those that do not correspond

should be rewritten in more detail in English, until everything in your

description can be written in Python.

Top-down design sounds easy, but doing it requires a little practice. As

we work through the examples in the rest of this chapter, we will see

why our initial attempts at translation will have implementations that

look reasonable but often have bugs. This is common in many fields.

In mathematics, for example, the first versions of “proofs” often han-

dle common cases well but fail for odd cases [Lak76]. Mathematicians

deal with this by looking for counter examples, and programmers (good

programmers, at least) deal with it by testing their code as they write it.

Most important, this chapter focuses only on top-down design; we have

skipped the discussion of testing to make sure our code works. In fact,

the first versions we wrote had minor bugs in them, and we found them

SEARCHING 204

only by doing thorough testing. We will talk more about this in Chap-

ter 12, Construction, on page 237.

10.1 Searching

To start, suppose we have data showing the number of humpback

whales sighted off the coast of British Columbia over the past ten years:

809 834 477 478 307 122 96 102 324 476

We want to know how changes in fishing practices have impacted the

whales’ numbers. Our first question is, which year had the lowest num-

ber of sightings during those years? This code tells us just that:

Download alg/search1.cmd

>>> counts = [809, 834, 477, 478, 307, 122, 96, 102, 324, 476]

>>> min(counts)

96

If we want to know in which year the population bottomed out, we can

use index to find the position of the minimum:

Download alg/search2.cmd

>>> counts = [809, 834, 477, 478, 307, 122, 96, 102, 324, 476]

>>> low = min(counts)

>>> min_index = counts.index(low)

>>> print min_index

6

or more succinctly:

Download alg/search3.cmd

>>> counts = [809, 834, 477, 478, 307, 122, 96, 102, 324, 476]

>>> counts.index(min(counts))

6

Although this does the job, it seems a little inefficient to search through

the data to find the minimum value and then search again to find that

value’s index. Intuitively speaking, there ought to be a way to find both

in just one pass.

Now what if we want to find the indices of the two smallest values?

Lists don’t have a method to do this directly, so we will have to write a

function ourselves.

http://media.pragprog.com/titles/gwpy/code/alg/search1.cmd
http://media.pragprog.com/titles/gwpy/code/alg/search2.cmd
http://media.pragprog.com/titles/gwpy/code/alg/search3.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=204

SEARCHING 205

There are at least three ways we could do this, each of which will be

subjected to top-down design:

• Find, remove, find. Find the index of the minimum, remove that

element from the list, and find the index of the new minimum

element in the list.

• Sort, identify minimums, get indices. Sort the list, get the two small-

est numbers, and then find their indices in the original list.

• Walk through the list. Examine each value in the list in order, keep

track of the two smallest values found so far, and update these

values when a new smaller value is found.

At the end of all three, we’ll return a tuple of the two smallest indices.

Find, Remove, Find

Here is the algorithm again, rewritten with one instruction per line:

Download alg/find_remove_find1.py

def find_two_smallest(L):

'''Return a tuple of the indices of the two smallest values in list L.'''

find the index of the minimum element in L

remove that element from the list

find the index of the new minimum element in the list

return the two indices

To refine “find the index of the minimum element in L,” we skim the

help for list and find that there are no methods that do exactly that.

We’ll refine it:

Download alg/find_remove_find2.py

def find_two_smallest(L):

'''Return a tuple of the indices of the two smallest values in list L.'''

get the minimum element in L

find the index of that minimum element

remove that element from the list

find the index of the new minimum element in the list

return the two indices

Those first two statements match Python functions and methods: min

does the first, and list.index does the second.

http://media.pragprog.com/titles/gwpy/code/alg/find_remove_find1.py
http://media.pragprog.com/titles/gwpy/code/alg/find_remove_find2.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=205

SEARCHING 206

We see that list.remove does the third, and the refinement of “find the

index of the new minimum element in the list” is also straightforward:

Download alg/find_remove_find3.py

def find_two_smallest(L):

'''Return a tuple of the indices of the two smallest values in list L.'''

smallest = min(L)

min1 = L.index(smallest)

L.remove(smallest)

next_smallest = min(L)

min2 = L.index(next_smallest)

return the two indices

Since we removed the smallest element, we need to put it back. Also,

when we remove a value, the indices of the following values shift down

by one. So, when smallest was removed, in order to get the indices of the

two lowest values in the original list, we need to add 1 to min2:

Download alg/find_remove_find4.py

def find_two_smallest(L):

'''Return a tuple of the indices of the two smallest values in list L.'''

smallest = min(L)

min1 = L.index(smallest)

L.remove(smallest)

next_smallest = min(L)

min2 = L.index(next_smallest)

put smallest back into L

if min1 comes before min2, add 1 to min2

return the two indices

That’s enough refinement (finally!) to do it all in Python:

Download alg/find_remove_find5.py

def find_two_smallest(L):

'''Return a tuple of the indices of the two smallest values in list L.'''

smallest = min(L)

min1 = L.index(smallest)

L.remove(smallest)

next_smallest = min(L)

min2 = L.index(next_smallest)

L.insert(min1, smallest)

if min1 <= min2:

min2 += 1

return (min1, min2)

http://media.pragprog.com/titles/gwpy/code/alg/find_remove_find3.py
http://media.pragprog.com/titles/gwpy/code/alg/find_remove_find4.py
http://media.pragprog.com/titles/gwpy/code/alg/find_remove_find5.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=206

SEARCHING 207

That seems like a lot of work, and it is. Even if you go right to code,

you’ll be thinking through all those steps.

Sort, Identify Minimums, Get Indices

We again restate the algorithm, rewritten with one instruction per line:

Download alg/sort_then_find1.py

def find_two_smallest(L):

'''Return a tuple of the indices of the two smallest values in list L.'''

sort a copy of L

get the two smallest numbers

find their indices in the original list L

return the two indices

That looks straightforward; we can use list.sort, and then the smallest

items will be at the front. Being careful, we notice that we should work

on a copy of L—never change the contents of parameters unless the

docstrings says to!

Download alg/sort_then_find2.py

def find_two_smallest(L):

'''Return a tuple of the indices of the two smallest values in list L.'''

temp_list = L[:]

temp_list.sort()

smallest = temp_list[0]

next_smallest = temp_list[1]

find their indices in the original list

return the two indices

Now we can find the indices and return them the same way we did in

find-remove-find:

Download alg/sort_then_find3.py

def find_two_smallest(L):

'''Return a tuple of the indices of the two smallest values in list L.'''

temp_list = L[:]

temp_list.sort()

smallest = temp_list[0]

next_smallest = temp_list[1]

min1 = L.index(smallest)

min2 = L.index(next_smallest)

return (min1, min2)

http://media.pragprog.com/titles/gwpy/code/alg/sort_then_find1.py
http://media.pragprog.com/titles/gwpy/code/alg/sort_then_find2.py
http://media.pragprog.com/titles/gwpy/code/alg/sort_then_find3.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=207

SEARCHING 208

Walk Through the List

We’ll start the same way as for the first two:

Download alg/walk_through1.py

def find_two_smallest(L):

'''Return a tuple of the indices of the two smallest values in list L.'''

examine each value in the list in order

keep track of the indices of the two smallest values found so far

update these values when a new smaller value is found

return the two indices

We’ll also move the second line before the first one because it describes

the whole process; it isn’t a single step. Also, when we see phrases like

each value, we think of iteration; the third line is part of that iteration,

so we’ll indent it:

Download alg/walk_through2.py

def find_two_smallest(L):

'''Return a tuple of the indices of the two smallest values in list L.'''

keep track of the indices of the two smallest values found so far

examine each value in the list in order

update these values when a new smaller value is found

return the two indices

Every loop has three parts: an initialization section to set up the vari-

ables we’ll need, a loop condition, and a loop body. Here, the initializa-

tion will set up min1 and min2, which will be the indices of the smallest

two items; a natural choice is to set them to the first two elements of

the list:

Download alg/walk_through3.py

def find_two_smallest(L):

'''Return a tuple of the indices of the two smallest values in list L.'''

set min1 and min2 to the indices of the smallest and next-smallest

values at the beginning of L

examine each value in the list in order

update these values when a new smaller value is found

return the two indices

We can turn that first line into a couple lines of code; we’ve left our

English version in as a comment:

Download alg/walk_through4.py

def find_two_smallest(L):

'''Return a tuple of the indices of the two smallest values in list L.'''

http://media.pragprog.com/titles/gwpy/code/alg/walk_through1.py
http://media.pragprog.com/titles/gwpy/code/alg/walk_through2.py
http://media.pragprog.com/titles/gwpy/code/alg/walk_through3.py
http://media.pragprog.com/titles/gwpy/code/alg/walk_through4.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=208

SEARCHING 209

set min1 and min2 to the indices of the smallest and next-smallest

values at the beginning of L

if L[0] < L[1]:

smallest, next_smallest = 0, 1

else:

smallest, next_smallest = 1, 0

examine each value in the list in order

update these values when a new smaller value is found

return the two indices

We have a couple choices now. We can iterate with a for loop over the

values, a for loop over the indices, or a while loop over the indices. Since

we’re trying to find indices and we want to look at all of the elements in

the list, we’ll use a for loop over the indices—and we’ll start at index 2

because we’ve examined the first two values already. At the same time,

we’ll refine the statement in the body of the loop to mention min1 and

min2.

Download alg/walk_through5.py

def find_two_smallest(L):

'''Return a tuple of the indices of the two smallest values in list L.'''

set min1 and min2 to the indices of the smallest and next-smallest

values at the beginning of L

if L[0] < L[1]:

min1, min2 = 0, 1

else:

min2, min1 = 0, 1

examine each value in the list in order

for i in range(2, len(values)):

update min1 and/or min2 when a new smaller value is found

return the two indices

Now for the body of the loop. We’ll pick apart “update min1 and/or min2

when a new smaller value is found.”

If L[i] is smaller than both, then we have a new smallest item, so min1

currently holds the second smallest and min2 currently holds the third

smallest. We need to update both of them.

If L[i] is larger than min1 and smaller than min2, we have a new second

smallest.

If L[i] is larger than both, we skip it.

http://media.pragprog.com/titles/gwpy/code/alg/walk_through5.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=209

SEARCHING 210

Download alg/walk_through6.py

def find_two_smallest(L):

'''Return a tuple of the indices of the two smallest values in list L.'''

set min1 and min2 to the indices of the smallest and next-smallest

values at the beginning of L

if L[0] < L[1]:

min1, min2 = 0, 1

else:

min2, min1 = 1, 0

examine each value in the list in order

for i in range(2, len(L)):

L[i] is larger than both min1 and min2, smaller than both, or

in between.

if L[i] is larger than both min1 and min2, skip it

if L[i] is smaller than min1 and min2, update them both

if L[i] is in between, update min2

return (min1, min2)

All of those are easily translated to Python; in fact, we don’t even need

code for the “larger than both” case:

Download alg/walk_through7.py

def find_two_smallest(L):

'''Return a tuple of the indices of the two smallest values in list L.'''

set min1 and min2 to the indices of the smallest and next-smallest

values at the beginning of L

if L[0] < L[1]:

min1, min2 = 0, 1

else:

min2, min1 = 1, 0

examine each value in the list in order

for i in range(2, len(L)):

L[i] is larger than both min1 and min2, smaller than both, or

in between.

New smallest?

if L[i] < L[min1]:

min2 = min1

min1 = i

New second smallest?

elif L[i] < L[min2]:

min2 = i

return (min1, min2)

http://media.pragprog.com/titles/gwpy/code/alg/walk_through6.py
http://media.pragprog.com/titles/gwpy/code/alg/walk_through7.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=210

TIMING 211

10.2 Timing

Profiling a program means measuring how long it takes to run and

how much memory it uses. These two measures—space and time—

are fundamental to the theoretical study of algorithms. They are also

pretty important from a pragmatic point of view. Fast programs are

more useful than slow ones, and programs that need more memory

than what your computer has aren’t particularly useful at all.

We ran the three functions we developed to find the two lowest values

in a list on 1,400 monthly readings of air pressure in Darwin, Australia,

from 1882 to 1998.1 The execution times were as follows:

Algorithm Running Time (ms)

Find, remove, find 1.117

Sort, identify, index 2.128

Walk through the list 1.472

Notice how small these times are. No human being can notice the dif-

ference between one and two milliseconds; if this code never has to

process lists with more than 1,400 values, we would be justified in

choosing an implementation based on simplicity or clarity, rather than

speed.

But what if we wanted to process millions of values? Find-remove-find

outperforms the other two algorithms on 1,400 values, but how much

does that tell us about how they will perform on data sets 1,000 times

larger? That will be the subject of Chapter 11, Searching and Sorting,

on page 214.

10.3 Summary

In this chapter, we learned the following:

• The most effective way to design algorithms is to use top-down

design, in which goals are broken down into subgoals until the

steps are small enough to be translated directly into a program-

ming language.

• The performance of a program can be characterized by how much

time and memory it uses. This can be determined experimentally

by profiling its execution.

1. See http://www.stat.duke.edu/~mw/ts_data_sets.html.

http://www.stat.duke.edu/~mw/ts_data_sets.html
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=211

EXERCISES 212

• Almost all problems have more than one correct solution. Choos-

ing between them often involves a trade-off between simplicity and

performance.

• Code that has side effects is harder to understand and debug

than code that does not, so in general functions should return

values rather than modifying their arguments or external data

structures.

10.4 Exercises

Here are some exercises for you to try on your own:

1. A DNA sequence is a string made up of the letters A, T, G, and C.

To find the complement of a DNA sequence, As are replaced by Ts,

Ts by As, Gs by Cs, and Cs by Gs. For example, the complement

of AATTGCCGT is TTAACGGCA.

a) Write an outline in English of the algorithm you would use to

find the complement.

b) Reexamine your algorithm. Will any characters be changed

to their complement and then changed back to their original

value? If so, rewrite your outline. Hint: convert one character

at a time, rather than all of the As, Ts, Gs, or Cs at once.

c) Write the complement(sequence) function.

2. a) Write a loop (including initialization) that uses a loop to find

both the minimum value in a list and that value’s index in

one pass through the list.

b) Write the min_index(sequence) function that returns the mini-

mum value and that value’s index in a tuple.

c) You might also want to find the maximum value and its index.

Write a new function min_or_max_index(sequence, bool) where if

bool is true, it returns the minimum and its index, and where

if bool is false, it returns the maximum and its index.

3. Write a set of nose tests for the find-two-smallest functions. Think

about what kinds of data are interesting, long lists or short lists,

and what order the items are in. Here is one list to test with: [1, 2].

What other interesting ones are there?

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=212

EXERCISES 213

4. What happens if the functions to find the two smallest values in a

list are passed a list of length 1? What should happen, and why?

How about length 0? Modify one of the docstrings to describe what

happens.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=213

Chapter 11

Searching and Sorting
A huge part of computer science involves studying how to organize,

store, and retrieve data. Searching and sorting are fundamental parts

of programming, and they are also a good way to explain how computer

scientists compare the efficiency of different algorithms and to explain

what they mean by efficiency. In this chapter, we will develop several

algorithms for searching and sorting lists and then use them to explore

what it means for one algorithm to be faster than another.

11.1 Linear Search

As you have already seen, Python lists have a method called index that

searches for a particular item:

Download searchsort/index_help.txt

index(...)

L.index(value, [start, [stop]]) -> integer -- return first index of value

Method index starts at the front of the list and examines each item in

turn. For reasons that will soon become clear, this technique is called

linear search. We’ll examine three different but related versions.

Basic Linear Search

Here’s the first version of linear search; this is a common version:

Download searchsort/linear_search_1.py

def linear_search(v, L):

'''Return the index of the first occurrence of v in list L, or return len(L)

if v is not in L.'''

i = 0

http://media.pragprog.com/titles/gwpy/code/searchsort/index_help.txt
http://media.pragprog.com/titles/gwpy/code/searchsort/linear_search_1.py

LINEAR SEARCH 215

Keep going until we reach the end of L or until we find v.

while i != len(L) and L[i] != v:

i = i + 1

return i

This version uses variable i as the current index and marches through

the values in L. The first check in the loop condition, i != len(L), makes

sure we look at only valid indices; if we were to omit that check, then if

v is not in L, we would end up trying to access L[len(L)]. This, of course,

would not be valid.

The second check, L[i] != v, causes the loop to exit when we find v. The

loop body increments i; we enter the loop when we haven’t reach the

end of L and when L[i] isn’t the value we are looking for.

At the end, we return i’s value, which is either the index of v (if the

second loop check was false) or is len(L) if v was not in L.

for loop Version of Linear Search

The first version requires two checks each time through the loop. The

first check (i != len(L)) is almost unnecessary; it evaluates to true almost

every time through the loop, so the only effect it has is to make sure we

don’t attempt to index past the end of the list.

Here’s the second version, where we try to get around this problem

using Python’s for loop:

Download searchsort/linear_search_2.py

def linear_search(v, L):

'''Return the index of the first occurrence of v in list L, or return len(L)

if v is not in L.'''

i = 0

for value in L:

if value == v:

return i

i += 1

return len(L)

With this version, we no longer need the first check because the for loop

controls the number of iterations. This for loop version is significantly

faster than basic linear search; we’ll see in a bit how much faster.

http://media.pragprog.com/titles/gwpy/code/searchsort/linear_search_2.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=215

LINEAR SEARCH 216

Sentinel Search

The last linear search we will study is called sentinel search.1 Remem-

ber that a problem with basic linear search is that we check i != len(L)

every time through the loop even though it can never be false except

when v is not in L. So, we’ll play a trick: we’ll add v to the end of L before

searching so that we’re guaranteed to find it! And we need to remove it

before the function exits so that the list looks unchanged at the end:

Download searchsort/linear_search_3.py

def linear_search(v, L):

'''Return the index of the first occurrence of v in list L, or return len(L)

if v is not in L.'''

Add the sentinel.

L.append(v)

i = 0

Keep going until we find v.

while L[i] != v:

i = i + 1

Remove the sentinel.

L.pop()

return i

Timing the Searches

Here is a program that we used to time the three searches on a list with

1 million values:

Download searchsort/linear_time_1.py

import time

import linear_search_1

import linear_search_2

import linear_search_3

def time_it(search, v, L):

'''Time how long it takes to run function search to find value v in list L.'''

t1 = time.time()

search(v, L)

t2 = time.time()

return (t2 - t1) * 1000.

1. A sentinel is a guard whose job it is to stand watch.

http://media.pragprog.com/titles/gwpy/code/searchsort/linear_search_3.py
http://media.pragprog.com/titles/gwpy/code/searchsort/linear_time_1.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=216

LINEAR SEARCH 217

def print_times(v, L):

'''Print the number of milliseconds it takes for linear_search(v, L)

to run for list.index, basic linear search, the for loop linear search,

and sentinel search.'''

Get list.index's running time.

t1 = time.time()

L.index(v)

t2 = time.time()

index_time = (t2 - t1) * 1000.

Get the other three running times.

basic_time = time_it(linear_search_1.linear_search, v, L)

for_time = time_it(linear_search_2.linear_search, v, L)

sentinel_time = time_it(linear_search_3.linear_search, v, L)

print "%d\t%.02f\t%.02f\t%.02f\t%.02f" % \

(v, basic_time, for_time, sentinel_time, index_time)

L = range(1000001)

linear_search_1.linear_search(10, L)

print_times(10, L)

print_times(500000, L)

print_times(1000000, L)

Function time_it runs whatever search function it is given on v and L

and returns how long the search takes. Function print_times calls time_it

with the various linear search functions we have been exploring and

prints the search times.

Linear Search Running Time

The running times of the three linear searches with that of Python’s

list.index are compared in Figure 11.1, on the following page. This com-

parison used a list of 1,000,001 items and three test cases: an item

near the front, an item roughly in the middle, and the last item. Except

for the first case, where the speeds differ by only a few percent points,

our basic linear search takes about seven times as long as the one built

into Python, and the for loop search and sentinel search take about four

times as long.

What is more interesting is the way the running times of these func-

tions increase with the number of items they have to examine. Roughly

speaking, when they have to look through twice as much data, every

one of them takes twice as long. This is reasonable, because indexing

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=217

BINARY SEARCH 218

Case basic for sentinel list.index

First 0.01 0.01 0.03 0.01

Middle 138 69 62 17

Last 273 139 124 35

Figure 11.1: Running times for linear search, milliseconds

a list, adding 1 to an integer, and evaluating the loop control expres-

sion require the computer to do a fixed amount of work. Doubling the

number of times the loop has to be executed therefore doubles the total

number of operations, which in turn should double the total running

time. This is why this kind of search is called linear: the time to do it

grows linearly with the amount of data being processed.

11.2 Binary Search

Is there a faster way to find values than linear search? The answer is

yes—we can do much better, provided the list is sorted.

To understand how, think about finding a name in a phone book. You

open the book in the middle, glance at a name on the page, and imme-

diately know which half to look in next. After checking only two names,

you have eliminated 3
4 of the numbers in the phone book. Even in a

large city like Toronto, whose phone book has hundreds of thousands

of entries, finding the name you want takes only a few steps.

This technique is called binary search, because each step divides the

remaining data into two equal parts: values that come before the one

being looked for and values that come after it. To figure out how fast it

is, think about how big a list can be searched in a fixed number of steps.

One step divides two values; two steps divide four; three steps divide 2
3

= 8, four divide 2
4 = 16, and so on. Turning this around, N values can

be searched in roughly log2N steps.2 As shown in Figure 11.2, on the

next page, this increases much less quickly than the time needed for

linear search.

2. More exactly, N values can be searched in ⌈log2N⌉ steps, where ⌈⌉ is the ceiling func-

tion that rounds a value up to the nearest integer.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=218

BINARY SEARCH 219

N Steps Required

100 7

1000 10

1,0000 14

10,0000 17

100,000 24

1,000,000 27

Figure 11.2: Logarithmic growth

The key to binary search is to keep track of three parts of the list: the left

part, which contains values that come before the value we are searching

for; the right part, which contains values that come after the value we

are searching for; and the middle part, which contains values that we

haven’t yet examined—the unknown section. We’ll use two variables to

keep track of the boundaries: i will mark the index of the first unknown

value, and j will mark the index of the last unknown value.

At the beginning of the algorithm, the unknown section makes up the

entire list, so we will set i to 0 and j to the length of the list minus

one. We are done when that unknown section is empty—when we’ve

examined every item in the list. This happens when i == j + 1—when the

values cross. (When i == j, there is still one item left in the unknown

section.)

To make progress, we will set either i or j to near the middle of the range

between them, which is at (i + j) / 2.

Think for a moment about the value at (i + j) / 2. If it is less than v, we

need to move i up, while if it is greater than j, we should move j down.

But where exactly do we move them? When we move i up, we don’t want

to set it to the midpoint exactly, because L[i] is not included in the range;

instead, we set it to one past the middle, in other words, to (i + j) / 2 + 1.

Similarly, when we move j down, we move it to (i + j) / 2 - 1.

The completed function is as follows:

Download searchsort/binary_search.py

def binary_search(v, L):

"""Return the index of the leftmost occurrence of v in list L, or -1 if

v is not in L."""

http://media.pragprog.com/titles/gwpy/code/searchsort/binary_search.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=219

BINARY SEARCH 220

Mark the left and right indices of the unknown section.

i = 0

j = len(L) - 1

while i != j + 1:

m = (i + j) / 2

if L[m] < v:

i = m + 1

else:

j = m - 1

if 0 <= i < len(L) and L[i] == v:

return i

else:

return -1

Of course, no code is really complete until it has been tested. We tested

the various linear searches but did not show the tests; they are similar

to these:

Download searchsort/binary_test.py

'''Test binary search.'''

import nose

from binary_search import binary_search

The list to search with.

VALUES = [1, 3, 4, 4, 5, 7, 9, 10]

def test_first():

'''Test a value at the beginning of the list.'''

assert binary_search(1, VALUES) == 0

def test_duplicate():

'''Test a duplicate value.'''

assert binary_search(4, VALUES) == 2

def test_middle():

'''Test searching for the middle value.'''

assert binary_search(5, VALUES) == 4

def test_last():

'''Test searching for the last value.'''

assert binary_search(10, VALUES) == 7

def test_missing_start():

'''Test searching for a missing value at the start.'''

assert binary_search(-3, VALUES) == -1

http://media.pragprog.com/titles/gwpy/code/searchsort/binary_test.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=220

BINARY SEARCH 221

Case list.index binary_search Ratio

First 0.03 0.05 0.66

Middle 107 0.04 2643

Last 15.73 0.04 (Wow!) 4304

Figure 11.3: Running times for binary search

def test_missing_middle():

'''Test searching for a missing value in the middle.'''

assert binary_search(2, VALUES) == -1

def test_missing_end():

'''Test searching for a missing value at the end.'''

assert binary_search(11, VALUES) == -1

if __name__ == '__main__':

nose.runmodule()

Binary Search Running Time

Binary search is more complicated to write and understand than linear

search. Is it fast enough to make the extra effort worthwhile? To find

out, we can compare it to list.index. As before, we search for the first,

middle, and last items in a list with 100,001 elements.

The results are impressive (see Figure 11.3). Binary search is up to sev-

eral thousand times faster than its linear counterpart when searching 1

million items. Most important, if we double the number of items, binary

search takes only one more iteration, while the time for list.index nearly

doubles. Note also that although the time taken for linear search grows

in step with the index of the item found, there is no such pattern for

binary search. No matter where the item is, it takes the same number

of steps.

Built-in Binary Search

The Python standard library’s bisect module includes binary search

functions that are slightly faster than our binary search. bisect_left re-

turns the index where an item should be inserted in a list to keep it

in sorted order, assuming it is sorted to begin with. insort_left actually

does the insertion. The word left in their name signals that they find

the leftmost (lowest index) position where they can do their jobs; the

complementary functions bisect_right and insort_right find the rightmost.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=221

SORTING 222

563 7590 1708 2142 3323 6197 1985 1316 1824 472

1346 6029 2670 2094 2464 1009 1475 856 3027 4271

3126 1115 2691 4253 1838 828 2403 742 1017 613

3185 2599 2227 896 975 1358 264 1375 2016 452

3292 538 1471 9313 864 470 2993 521 1144 2212

2212 2331 2616 2445 1927 808 1963 898 2764 2073

500 1740 8592 10856 2818 2284 1419 1328 1329 1479

Figure 11.4: Acres lost to forest fires in Canada (in 000s),

1918–87

11.3 Sorting

Now let’s look at a slightly harder problem. Figure 11.4, taken from

[Hynnd], shows the number of acres burned in forest fires in Canada

from 1918 to 1987. One way to find out how much forest was destroyed

in the N worst years is to sort the list and then take the last N values

(Section 10.1, Sort, Identify Minimums, Get Indices, on page 207):

Download searchsort/sort1.py

def find_largest(N, L):

"""Return the N largest values in L in order from smallest to largest."""

copy = L[:]

copy.sort()

return copy[:N]

This algorithm is short, clean, and easy to understand, but it relies on

a bit of black magic. How does list.sort work, anyway? And how efficient

is it?

It turns out that many sorting algorithms have been developed over the

years, each with its own strengths and weaknesses. Broadly speaking,

they can be divided into two categories: those that are simple but inef-

ficient and those that are efficient but harder to understand and imple-

ment. We’ll examine two of the former kind; the rest rely on techniques

typically taught in a second course.

Selection Sort

Selection sort works by partitioning the list in two. The section at the

front contains values that are now in sorted order; the one at the back

contains values that have yet to be sorted. As you can probably guess

http://media.pragprog.com/titles/gwpy/code/searchsort/sort1.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=222

SORTING 223� �
$

%&% %'% %(% %)%

*

! 	

#$# #%#

!"#$%&

&

#'#

(

#)#

*

%+%

+

#,#

-.

#/#

--

#0#

-1

#2#

'(!"#$%&

(%)$*!+,--%!$

! " # $

%&% %'% %(% %)%

*

! "

%+% #%#

!"#$%&

&

#'#

(

#)#

*

#$#

+

#,#

-.

%,%

--

#0#

-1

#2#

'(!"#$%&

!"#$%"

&#'"%

(%)$*!+,--%!$

Figure 11.5: Selection sort

from this description, selection sort works by repeatedly finding the

next smallest item in the unsorted section and placing it at the end of

the sorted section (see Figure 11.5). This works because we are select-

ing the items in order. We first select the smallest item and move it to

the front; then we select the second-smallest item and move it to the

second spot, and so on.

Here’s the selection sort algorithm, partially in English:

Download searchsort/sort2.py

def selection_sort(L):

"""Reorder the items in L from smallest to largest."""

i = 0

while i != len(L):

Find the index of the smallest item in L[i:].

Swap that smallest item with L[i].

i = i + 1

In this algorithm, i acts as a marker for the beginning of the unsorted

section.

http://media.pragprog.com/titles/gwpy/code/searchsort/sort2.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=223

SORTING 224

We can replace the second comment with a single line of code:3

Download searchsort/sort3.py

def selection_sort(L):

"""Reorder the values in L from smallest to largest."""

i = 0

while i != len(L):

Find the index of the smallest item in L[i:].

L[i], L[smallest] = L[smallest], L[i]

i = i + 1

Now all that’s left is finding the index of the smallest item in L[i:]. This

is complex enough that it’s worth putting it in a function of its own:

Download searchsort/sort4.py

def selection_sort(L):

"""Reorder the values in L from smallest to largest."""

i = 0

while i != len(L):

smallest = find_min(L, i)

L[i], L[smallest] = L[smallest], L[i]

i = i + 1

def find_min(L, b):

"""Return the index of the smallest value in L[b:]."""

smallest = b # The index of the smallest so far.

i = b + 1

while i != len(L):

if L[i] < L[smallest]:

We found a smaller item at L[i].

smallest = i

i = i + 1

return smallest

Function find_min runs along L[b:], keeping track of the index of the min-

imum item so far in variable smallest. When it finds a smaller item, it

updates smallest.

3. Most Python programmers would probably write the loop header as for i in range(len(L)),

rather than incrementing i explicitly in the body of the loop. We’re doing the latter here to

make it clearer when the loop ends and to show why.

http://media.pragprog.com/titles/gwpy/code/searchsort/sort3.py
http://media.pragprog.com/titles/gwpy/code/searchsort/sort4.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=224

SORTING 225

As always, our function isn’t done until it has been tested:

Download searchsort/sort4test.py

from sort4 import selection_sort

import nose

def run_test(original, expected):

'''Sort list original and compare it to list expected.'''

selection_sort(original)

assert original == expected

def test_empty():

'''Test sorting empty list.'''

run_test([], [])

def test_one():

'''Test sorting a list of one value.'''

run_test([1], [1])

def test_two_ordered():

'''Test sorting an already-sorted list of two values.'''

run_test([1, 2], [1, 2])

def test_two_reversed():

'''Test sorting a reverse-ordered list of two values.'''

run_test([2, 1], [1, 2])

def test_three_identical():

'''Test sorting a list of three equal values.'''

run_test([3, 3, 3], [3, 3, 3])

def test_three_split():

'''Test sorting a list with an odd value out.'''

run_test([3, 0, 3], [0, 3, 3])

if __name__ == '__main__':

nose.runmodule()

Insertion Sort

Like selection sort, insertion sort keeps a sorted section at the beginning

of the list. Rather than scan all of the unsorted section for the next

smallest item, though, it takes the next item from the unsorted section

and inserts it where it belongs in the sorted section.

In outline, this is as follows:

Download searchsort/sort5.py

def insertion_sort(L):

"""Reorder the values in L from smallest to largest."""

http://media.pragprog.com/titles/gwpy/code/searchsort/sort4test.py
http://media.pragprog.com/titles/gwpy/code/searchsort/sort5.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=225

SORTING 226

i = 0

while i != len(L):

Insert L[i] where it belongs in L[0:i+1].

i = i + 1

This is exactly the same code as for selection sort; the difference is in

the comment in the loop.

How does insert work? It works by finding out where L[b] belongs and

then moving it. Where does it belong? It belongs after every value less

than or equal to it and before every value that is greater than it.4 We

need the check i != 0 in case L[b] is smaller than every value in L[0:b]:

Download searchsort/sort7.py

def insertion_sort(L):

"""Reorder the values in L from smallest to largest."""

i = 0

while i != len(L):

insert(L, i)

i = i + 1

def insert(L, b):

"""Insert L[b] where it belongs in L[0:b + 1];

L[0:b - 1] must already be sorted."""

Find where to insert L[b] by searching backwards from L[b] for a smaller item.

i = b

while i != 0 and L[i - 1] >= L[b]:

i = i - 1

Move L[b] to index i, shifting the following values to the right.

value = L[b]

del L[b]

L.insert(i, value)

This passes all the tests we wrote earlier for selection sort.

Performance

We have two algorithms of roughly equal complexity. Which should we

use?

4. We could equally well say “After every value less than it and before every value that is

greater than or equal to it.” This would produce a slightly different function, but the end

result would still be a sorted list.

http://media.pragprog.com/titles/gwpy/code/searchsort/sort7.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=226

SORTING 227

It’s easy enough to write a program to compare their running times,

along with that for list.sort:

Download searchsort/sort_time.py

import time

from sort4 import selection_sort

from sort7 import insertion_sort

from ms import mergesort

def built_in(L):

'''Call list.sort --- we need our own function to do this

so that we can treat it as we treat our own sorts.'''

L.sort()

def print_times(L):

'''Print the number of milliseconds it takes for selection sort

and insertion sort to run.'''

print len(L),

for func in (selection_sort, insertion_sort, mergesort, built_in):

if func in (selection_sort, insertion_sort) and len(L) > 4000:

continue

L_copy = L[:]

t1 = time.time()

func(L_copy)

t2 = time.time()

print "\t%.1f" % ((t2 - t1) * 1000.),

print

for list_size in [10, 1000, 2000, 3000, 4000, 5000, 10000, 20000, 40000, 80000]:

L = range(list_size)

L.reverse()

print_times(L)

The results are shown in Figure 11.6, on the following page. Something

is very clearly wrong, because our sorting functions are tens of thou-

sands of times slower than the built-in function. What’s more, the time

required by our routines is growing faster than the size of the data.

On 1,000 items, for example, selection sort takes about 0.5 millisec-

onds per item, but on 10,000 items, it needs about 4 milliseconds per

item—an eightfold increase! What is going on?

To answer this, we examine what happens in the inner loops of our

two algorithms. On the first iteration of selection sort, the inner loop

examines every element to find the smallest. On the second iteration, it

looks at all but one; on the third, it looks at all but two, and so on.

http://media.pragprog.com/titles/gwpy/code/searchsort/sort_time.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=227

MORE EFFICIENT SORTING ALGORITHMS 228

List Length Selection Sort Insertion Sort list.sort

10 0.1 0.1 0.0

1000 481 300 0.1

2000 1640 1223 0.2

3000 3612 2772 0.4

4000 6536 4957 0.6

5000 10112 7736 0.6

10000 40763 32382 1.3

Figure 11.6: Running times for selection and insertion sort,

milliseconds

If there are N items in the list, then the number of iterations of the

inner loop, in total, is roughly N + (N-1) + (N-2) + ... + 1, or N(N+1)
2 .

Putting it another way, the number of steps required to sort N items is

roughly proportional to N2+N. For large values of N, we can ignore the

second term and say that the time needed by selection sort grows as

the square of the number of values being sorted. And indeed, examining

the timing data further shows that doubling the size of the list increases

the running time by four.

The same analysis can be used for insertion sort, since it also examines

one element on the first iteration, two on the second, and so on. (It’s just

examining the already-sorted values, rather than the unsorted values.)

So, why is insertion sort slightly faster? The reason is that, on average,

only half of the values need to be scanned in order to find the location

in which to insert the new value, while with selection sort, every value

in the unsorted section needs to be examined in order to select the

smallest one. But, wow, list.sort is so much faster!

11.4 More Efficient Sorting Algorithms

The analysis of selection and insertion sort begs the question: how can

list.sort be so much more efficient? The answer is the same as it was

for binary search: by taking advantage of the fact that some values are

already sorted.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=228

MERGESORT: AN N log2N ALGORITHM 229

N N2 N log2N

10 100 3.32

100 10,000 6.64

1000 1,000,000 9.96

Figure 11.7: Sorting times

A First Attempt

Consider the following function:

Download searchsort/binsort.py

import bisect

def bin_sort(values):

'''Sort values, creating a new list.'''

result = []

for v in values:

bisect.insort_left(result, v)

return result

This code uses bisect.insort_left to figure out where to put each value

from the original list into a new list that is kept in sorted order. As we

have already seen, doing this takes time proportional to log2N, where N

is the length of the list. Since N values have to be inserted, the overall

running time ought to be N log2N. As shown in Figure 11.7, this grows

much more slowly with the length of the list than N2.

Unfortunately, there’s a flaw in this analysis. It’s correct to say that

bisect.insort_left needs only log2N time to figure out where to insert a

value, but actually inserting it takes time as well. To create an empty

slot in the list, we have to move all the values above that slot up one

place. On average, this means copying half of the list’s values, so the

cost of insertion is proportional to N. Since there are N values to insert,

our total time is N(N + log2N). For large values of N, this is once again

roughly proportional to N2.

11.5 Mergesort: An Nlog2N Algorithm

There are several well-known fast sorting algorithms; mergesort, quick-

sort, and heapsort are the ones you are most likely to encounter in a

future CS course. Most of them involve techniques that we haven’t yet

taught you, but mergesort can be written to be more accessible. Merge-

http://media.pragprog.com/titles/gwpy/code/searchsort/binsort.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=229

MERGESORT: AN N log2N ALGORITHM 230

sort is built around the idea that taking two sorted lists and merging

them is proportional to the number of items in both lists. We’ll start

with very small lists and keep merging them until we have a single

sorted list.

Merging Two Sorted Lists

Given two lists L1 and L2, we can produce a new sorted list by running

along L1 and L2 and comparing pairs of elements.

Here is the code for merge:

Download searchsort/merge.py

def merge(L1, L2):

"""Merge sorted lists L1 and L2 and return the result."""

newL = []

i1 = 0

i2 = 0

For each pair of items L1[1], L2[i2], copy the smaller into newL.

while i1 != len(L1) and i2 != len(L2):

if L1[i1] <= L2[i2]:

newL.append(L1[i1])

i1 += 1

else:

newL.append(L2[i2])

i2 += 1

Gather any leftover items from the two sections.

Note that one of them will be empty because of the loop condition.

newL.extend(L1[i1:])

newL.extend(L2[i2:])

return newL

i1 and i2 are the indices into L1 and L2, respectively; in each iteration,

we compare L1[i1] to L2[i2] and copy the smaller item to the resulting list.

At the end of the loop, we have run out of items in one of the two lists,

and the two extend calls will append the rest of the items to the result.

Mergesort

Here is the header for mergesort:

Download searchsort/mergesort_header.py

def mergesort(L):

"""Sort L in increasing order."""

http://media.pragprog.com/titles/gwpy/code/searchsort/merge.py
http://media.pragprog.com/titles/gwpy/code/searchsort/mergesort_header.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=230

MERGESORT: AN N log2N ALGORITHM 231

!
 # $

!"#$%&'()

% � �*

Figure 11.8: List of lists in mergesort

Mergesort uses function merge to do the bulk of the work. Here is the

algorithm, which creates and keeps track of a list of lists:

• Take list L, and make a list of one-item lists from it.

• As long as there are two lists left to merge, merge them, and

append the new list to the list of lists.

The first step is straightforward:

Download searchsort/mergesort_make_list.py

Make a list of 1-item lists so that we can start merging.

workspace = []

for i in range(len(L)):

workspace.append([L[i]])

The second step is trickier. If we remove the two lists, then we’ll run

into the same problem that we ran into in binsort: all the following lists

will need to shift over, which takes time proportional to the number of

lists.

Instead, we’ll keep track of the index of the next two lists to merge.

Initially, they will be at indices 0 and 1, and then 2 and 3, and so on

(Figure 11.9, on page 233). Here’s our refined algorithm:

• Take list L, and make a list of one-item lists from it.

• Start index i off at 0.

http://media.pragprog.com/titles/gwpy/code/searchsort/mergesort_make_list.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=231

MERGESORT: AN N log2N ALGORITHM 232

• As long as there are two lists, at indices i and i + 1, merge them,

append the new list to the list of lists, and increment i by 2.

With that, we can go straight to code:

Download searchsort/mergesort_function.py

def mergesort(L):

"""Sort L."""

Make a list of 1-item lists so that we can start merging.

workspace = []

for i in range(len(L)):

workspace.append([L[i]])

The next two lists to merge are workspace[i] and workspace[i + 1].

i = 0

As long as there are at least two more lists to merge, merge them.

while i < len(workspace) - 1:

L1 = workspace[i]

L2 = workspace[i + 1]

newL = merge(L1, L2)

workspace.append(newL)

i += 2

Copy the result back into L.

if len(workspace) != 0:

L[:] = workspace[-1][:]

Notice that, since we’re always making new lists, we need to copy the

last of the merged lists back into parameter L.

Mergesort Analysis

Mergesort, it turns out, is N log2N, where N is the number of items in L.

It may help to refer to Figure 11.9, on the next page.

The first part of the function, creating the list of one-item lists, takes N

iterations, one for each item.

The second loop, in which we continually merge lists, will take some

care to analyze. We’ll start with the very last iteration, in which we are

merging two lists with about N

2 items. As we’ve seen, function merge

copies each element into its result exactly once, so with these two lists,

this merge step takes roughly N steps.

On the previous iteration, there are two lists of size N

4 to merge into

one of the two lists of size N

2 , and on the iteration before that there are

another two lists of size N

2 to merge into the second list of size N

2 . Each

http://media.pragprog.com/titles/gwpy/code/searchsort/mergesort_function.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=232

SUMMARY 233

!"#$"

!"#$" !"#$"

!"#$" !"#$" !"#$" !"#$"

Figure 11.9: Steps in mergesort

of these two merges takes roughly N

2 steps, so the two together take

roughly N steps in total.

On the iteration before that, there are a total of eight lists of size N

8 to

merge into the four lists of size N

4 . Four merges of this size together also

take roughly N steps.

We can subdivide a list with N items a total of log2N times, using an

analysis much like we used for binary search. Since at each “level”

there are a total of N items to be merged, each of these log2N levels takes

roughly N steps. Hence, mergesort take time proportional to N log2N.

11.6 Summary

In this chapter, we learned the following:

• Linear search is the simplest way to find a value in a list, but on

average, the time required is directly proportional to the length of

the list.

• Binary search is much faster—the average time is proportional to

the logarithm of the list’s length—but it works only if the list is in

sorted order.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=233

EXERCISES 234

Big-Oh and All That

Our method of analyzing the performance of searching and
sorting algorithms might seem like hand-waving, but there is
actually a well-developed mathematical theory behind it. If f
and g are functions, then the expression f(x) = O(g(x)) is read
“f is big-oh of g” and means that for sufficiently large values
of x, f(x) is bounded above by some constant multiple of g(x),
or equivalently that the function g gives us an upper bound
on the values of the function f. Computer scientists use this to
group algorithms into families, such as those sorting functions
that execute in N2 time and those that execute in Nlog2N time.

These distinctions have important practical applications. In par-
ticular, one of the biggest puzzles in theoretical computer sci-
ence today is whether two families of algorithms (called P and
NP for reasons that we won’t go into here) are the same or not.
Almost everyone thinks they are not, but no one has been able
to prove it (despite the offer of a million-dollar prize for the first
correct proof). If it turns out that they are the same, then many
of the algorithms used to encrypt data in banking and military
applications (as well as on the Web) will be much more vulner-
able to attack than expected.

• Similarly, the average running time of simple sorting algorithms

like selection sort is proportional to the square of the input size N,

while the running time of more complex sorting algorithms grows

as N log2N.

• Looking at how the running time of an algorithm grows as a func-

tion of the size of its inputs is the standard way to analyze and

compare algorithms’ efficiency.

11.7 Exercises

Here are some exercises for you to try on your own:

1. Binary search is significantly faster than the built-in search but

requires that the list is sorted. As you know, the running time for

the best sorting algorithm is on the order of N log2N, where N is the

length of the list. If we search a lot of times on the same list of data,

it makes sense to sort it once before doing the searching; roughly

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=234

EXERCISES 235

how many times do we need to search in order to make sorting

and then searching faster, instead of using the built-in search?

2. Given the unsorted list [6, 5, 4, 3, 7, 1, 2], show what the contents

of the list would be after each iteration of the loop as it is sorted

using the following:

a) Selection sort

b) Insertion sort

3. Another sorting algorithm is bubble sort. Bubble sort involves

keeping a sorted section at the end of the list. The list is tra-

versed, pairs of elements are compared, and larger elements are

swapped into the higher position. This is repeated until all element

are sorted.

a) Using the English description of bubble sort, write an outline

of the bubble sort algorithm in English.

b) Continue using top-down design until you have a Python algo-

rithm.

c) Turn it into a function bubble_sort(L).

d) Write Nose test cases for bubble_sort.

4. In the description of bubble sort in the previous question, the

sorted section of the list was at the end of the list. In this question,

bubble sort will maintain the sorted section of the beginning of the

list. Make sure that you are still implementing bubble sort!

a) Rewrite the English description of bubble sort from the pre-

vious question with the necessary changes so that the sorted

elements are at the beginning of the list instead of the end.

b) Using your English description of bubble sort, write an outline

of the bubble sort algorithm in English.

c) Write the bubble_sort_2(L) function.

d) Write Nose test cases for bubble_sort_2.

5. Modify the timing program to compare bubble sort with insertion

and selection sort. Explain the results.

6. Modify the timing program to compare Python’s built-in list.sort

method with insertion and selection sort. Clearly, the built-in sort

does not use insertion, selection, or bubble sort; instead, some

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=235

EXERCISES 236

advanced tricks are being used in order to get a huge speedup.

You will learn these tricks in your next computer science course.

7. The analysis of bin_sort said, “Since N values have to be inserted,

the overall running time is N log2N.” Point out a flaw in this rea-

soning, and explain whether it affects the overall conclusion.

8. There are at least two ways to come up with loop conditions. One of

them is to answer the question “When is the work done?” and then

negate it. In function merge in Section 11.5, Merging Two Sorted

Lists, on page 230, the answer is “when we run out of items in one

of the two lists,” which is described by this expression: i1 == len(L1)

or i2 == len(L2). Negating this leads to our condition i1 != len(L1) and

i2 != len(L2).

Another way to come up with a loop condition is to ask “What are

the valid values of the loop index?” In function merge, the answer

to this is 0 <= i1 < len(L1) and 0 <= i2 < len(L2); since i1 and i2 start a

zero, we can drop the comparisons with zero, giving us i1 < len(L1)

and i2 < len(L2).

Is there another way to do it? Have you tried both approaches?

Which do you prefer?

9. In function mergesort in Section 11.5, Mergesort, on page 230,

there are two calls to extend. They are there because, when the

preceding loop ends, one of the two lists still has items in it that

have not been processed. Rewrite that loop so that these extend

calls are not needed.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=236

Chapter 12

Construction
A good scientist can do a lot with a handheld magnifying glass and a

pair of tweezers. However, she can do a lot more with a fully equipped

lab. The same is true for programming. In theory, you can write any pro-

gram at all using nothing but arithmetic and conditionals, but useful

software is a lot easier to build if you have more tools at your disposal.

This chapter will introduce a few of those tools. Some are part of the

Python language and will allow you to code something using a couple

of statements that might otherwise take up an entire page. Others are

mental tools, such as testing and debugging techniques, ways to handle

errors, and patterns worth naming because they come up so frequently.

Together, they help you become more fluent as a programmer.

12.1 More on Functions

Good programmers break their code down into functions that can be

reused. Therefore, it’s not surprising that Python (as well as other lan-

guages) provides a number of tools for making functions more flexible.

Default Parameter Values

Default parameter values are the first of these tools. Here’s an example:

Download construct/default_define.py

def total(values, start=0, end=None):

'''Add up the values in a list. If none are given, the total is zero. If

'start' is not specified, start at the beginning. If 'end' is specified,

go up to but not including that index; otherwise, go to the end of the

list.'''

http://media.pragprog.com/titles/gwpy/code/construct/default_define.py

MORE ON FUNCTIONS 238

if not values:

return 0

if end is None:

end = len(values)

result = 0

for i in range(start, end):

result += values[i]

return result

This function has three parameters: a list of values and two indices that

specify which part of the list to sum up. What makes it different is that

start and end are “assigned” default values in the definition. If the caller

doesn’t override them, Python uses those defaults when the function

is called. This means that the function can be called with one, two, or

three parameters, as shown here:

Download construct/default_call.cmd

>>> numbers = [10, 20, 30]

>>> print "total(numbers, 0, 3):", total(numbers, 0, 3)

total(numbers, 0, 3): 60

>>> print "total(numbers, 2):", total(numbers, 2)

total(numbers, 2): 30

>>> print "total(numbers):", total(numbers)

total(numbers): 60

Specifying default parameter values often makes functions easier to

use. If we didn’t let callers specify start and end indices for total, they

would have to slice their lists whenever they wanted to add up only a

subset of values:

most = total(values[1:-1]) # add up all but the first and last

This is no extra typing but is less efficient, since slicing copies the

values in the list. On the other hand, if total always required callers to

specify start and end indices, then the most common case—summing

up the whole list—would require more typing:

all = total(values, 0, len(values)) # more typing and harder to read

When you give a function’s parameters default values, parameters with-

out default values must come before those that that do. This is because

when a function is called, values are matched with parameters from left

to right; defaults are used only for those that are “left over” at the end of

the parameter list. If Python were to let you define a function like this:

Illegal!

def total(start=0, values, end=None):

...body as shown before...

http://media.pragprog.com/titles/gwpy/code/construct/default_call.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=238

MORE ON FUNCTIONS 239

then the call total(x) could be interpreted as either of these:

1. Assign the value of x to start, and then report an error because

nothing has been assigned to values.

2. Assign 0 to start and the value of x to values.

The second is probably what the caller wanted, but the computer can’t

know that. Worse, with more parameters, there is a greater chance of

confusing one parameter (or one kind of parameter) for another. Thus,

the left-to-right rule described earlier lets everyone involved—the func-

tion’s creator and its user—keep track of which values will be assigned

to which parameters.

One note before we leave this example: if you look closely at total’s def-

inition, you’ll see that start’s default value is 0 (which is a legal index),

but end’s is None (which is not). Why not assign end a more use-

ful default, such as len(values)? The answer is that we can’t, because

Python evaluates the default value when the function is defined, and at

that point, we don’t know what list is going to be passed in for values.

We will discuss the implications of this in more detail in the exercises.

Variable Parameter Lists

Default parameter values are useful, but they still aren’t enough to let

us write functions like max, which can take any number of arguments

at all. We could do this by requiring callers to pass a list of values, but

Python can actually do this for us. Take a close look at the parameter

in this function:

Download construct/our_max.cmd

>>> def our_max(*values):

... '''Find the maximum of any number of values.'''

...

... if not values:

... return None

... m = values[0]

... for v in values[1:]:

... if v > m:

... m = v

... return m

...

>>> our_max(1)

1

>>> our_max(1, 2)

2

>>> our_max(3, 1, 2, 5, 4, -17)

5

http://media.pragprog.com/titles/gwpy/code/construct/our_max.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=239

MORE ON FUNCTIONS 240

!

!"#$%&

"

#

#

$

$

%

!

&

&

'#(

%

'$()*"+,-./.0.1.2.3/45

#

!"#$%&

"

$

#

'$()*"+,/.05

!"#$%&

'$()*"+,5

Figure 12.1: How variable arguments work

The key here is the * in front of values. This tells Python to take all the

arguments passed into the call, put them in a tuple, and assign that

tuple to values. For example, if we call our_max(1, 2), values is assigned

(1, 2); when our_max is called with six values, values is assigned a six-

element tuple, while if no arguments are provided, values is assigned an

empty tuple (see Figure 12.1).

A starred parameter does not always have to appear on its own.

Functions are free to define any number of regular parameters before

it. These are matched up with the actual arguments as usual, and

anything left over is then placed in the tuple assigned to the starred

parameter:

Download construct/append_all.cmd

>>> def append_all(old, *new):

... for n in new:

... old.append(n)

... return old

...

>>> values = []

>>> append_all(values, 1, 2, 3)

[1, 2, 3]

>>> append_all(values) # not actually appending anything

[1, 2, 3]

One thing Python doesn’t allow is two or more starred arguments in a

single function, because matching values to them would be ambiguous.

For example, if a function is defined as follows:

Illegal!

def f(*front, *back):

...body of function...

http://media.pragprog.com/titles/gwpy/code/construct/append_all.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=240

MORE ON FUNCTIONS 241

and then called with f(1, 2, 3), there are four possible assignments of the

actual arguments to the parameters:

• a=(1, 2, 3), b=()

• a=(1, 2), b=(3,)

• a=(1,), b=(2, 3)

• a=(), b=(1, 2, 3)

Python also doesn’t allow “regular” parameters to be defined after a

starred parameter:

Illegal!

def f(*front, y, z):

...body of function...

There’s no technical reason to disallow this, because Python could

match actual arguments to parameters right-to-left instead of left-to-

right and then put the remainder in the starred parameter. On the

other hand, there’s no particular reason to allow it, either. Everything

that can be done this way can be done by defining the starred parame-

ter at the end of the parameter list.

Named Parameter

Python provides yet another way to call functions. Instead of passing

arguments in a particular order, they can be paired with parameters by

name, like this:

Download construct/named_params.cmd

>>> def describe_creature(name, species, age, weight):

... return '%s (%s): %d years, %d kg' % (name, species, age, weight)

...

>>> print describe_creature(name='Charles Darwin', species='Homo sapiens',

age=28, weight=70)

Charles Darwin (Homo sapiens): 28 years, 70 kg

Why would we do this? Because if we specify arguments by name, we

can put them in any order we want and get the same result:

Download construct/named_params_2.cmd

>>> print describe_creature(weight=70, species='Homo sapiens',

age=28, name='Charles Darwin')

Charles Darwin (Homo sapiens): 28 years, 70 kg

Being able to do this is particularly useful when working with functions

that have a very large number of parameters. As we will see in Chap-

ter 14, Graphical User Interfaces, on page 294, for example, a function

http://media.pragprog.com/titles/gwpy/code/construct/named_params.cmd
http://media.pragprog.com/titles/gwpy/code/construct/named_params_2.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=241

EXCEPTIONS 242

that displays text in a GUI can take a dozen or more parameters to spec-

ify font, weight, colors, borders, and so on. In these cases, it is easier

(and more readable) to specify the parameter names explicitly than to

remember whether the border thickness comes before the border color,

or vice versa.

12.2 Exceptions

Our next tool is a standard way of dealing with errors in programs.

As you have no doubt discovered by now, Python doesn’t like it when

you try to use an out-of-bounds index into a list, use a key not in a

dictionary, or use a string where you need an integer.

In each of these cases, Python reports the error by creating an exception

that contains information about what went wrong. The program can

deal with the exception right where it occurs or handle it somewhere

else; it can also handle exceptions occurring in many different places in

one location. As we’ll see, this allows programmers to separate “normal”

code from error-handling code, which makes both easier to read.

try and except

Consider this short program:

Download construct/simpletry.cmd

>>> try:

... x = 1/0.3

... print 'reciprocal of 0.3 is', x

... x = 1/0.0

... print 'reciprocal of 0.0 is', x

... except:

... print 'error: no reciprocal'

reciprocal of 0.3 is 3.33333333333

error: no reciprocal

The keywords try and except are used for error handling, just like if and

else are used for conditionals. If nothing goes wrong, Python executes

the code in the try block and then skips over the except block entirely

(see Figure 12.2, on the following page). If any exceptions are raised in

the try block, Python immediately jumps to the start of the except block

and executes the code inside it. When this happens, we say that the

exception has been caught and refer to the code that deals with it as an

exception handler. Statements in the try block after the statement that

raised the exception are not executed.

http://media.pragprog.com/titles/gwpy/code/construct/simpletry.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=242

EXCEPTIONS 243

!"#$

%%%%&%'%()*+,

%%%%-"./!%0"12.-"3245%36%*+,%.708%&

%%%%!"#"$%&'&

%%%%-"./!%0"12.-"3245%36%*+*%.708%&

1&21-!$

%%%%-"./!%01""3"$%/3%"12.-"32450

!"#$%&'(&)"'*"+,-

!"#$

%%%%&%'%()*+,

%%%%-"./!%0"12.-"3245%36%*+,%.708%&

1&21-!$

%%%%-"./!%01""3"$%/3%"12.-"32450

!"#$%&'(&)"'*"+,-

!

"

!

#

"

#

$

%

!"#$%%"% &'(')'"*#+,#-.%"

Figure 12.2: A simple try/except

We can also tell Python what to do when an exception isn’t raised by

adding an else block to the try/except:

Download construct/exceptelse.cmd

>>> def invert(x):

... try:

... i = 1.0 / x

... except:

... print 'caught exception for', x

... else:

... print 'reciprocal of', x, 'is', i

...

>>> invert(1)

reciprocal of 1 is 1.0

>>> invert(0)

caught exception for 0

Here, the statements in the else block are executed only if everything

inside the try block was executed without error. If we were sure we

knew all the places that exceptions could be thrown, we could put these

statements inside the try block. Even then, it is often clearer to put

them in an else block so that people reading the code can see that these

statements are to be executed only if the try block completed normally.

Exception Objects

When Python raises an exception, it creates an object to hold informa-

tion about what went wrong. Typically, this object will contain an error

message, along with a filename and line number to help the program-

mer pinpoint the problem.

http://media.pragprog.com/titles/gwpy/code/construct/exceptelse.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=243

EXCEPTIONS 244

Different kinds of errors raise exceptions of different types, which al-

lows a program to choose which kinds of errors to handle by specifying

an exception type in the except. For example:

Download construct/excepttype.cmd

>>> values = [-1, 0, 1]

>>> for i in range(4): # one more than len(values)

... try:

... r = 1.0 / values[i]

... print 'reciprocal of', values[i], 'at', i, 'is', r

... except IndexError:

... print 'index', i, 'out of range'

... except ArithmeticError:

... print 'unable to calculate reciprocal of', values[i]

reciprocal of -1 at 0 is -1.0

unable to calculate reciprocal of 0

reciprocal of 1 at 2 is 1.0

index 3 out of range

Here, the first except block handles only indexing errors; arithmetic

errors (such as dividing by zero) are handled by the second block. If

we want to know exactly what went wrong, we must modify the except

statement so that Python knows which variable to assign the exception

object to:

Download construct/exceptobj.cmd

>>> values = [-1, 0, 1]

>>> for i in range(4): # one more than len(values)

... try:

... r = 1.0 / values[i]

... print 'reciprocal of', values[i], 'at', i, 'is', r

... except IndexError, e:

... print 'error:', e

... except ArithmeticError, e:

... print 'error:', e

reciprocal of -1 at 0 is -1.0

error: float division

reciprocal of 1 at 2 is 1.0

error: list index out of range

Python tests except blocks in order. Whichever matches first gets to

handle the exception. The order matters because exceptions are ar-

ranged in a hierarchy, as shown in Figure 12.3, on the next page. This

allows a program to handle ZeroDivisionErrors one way and all other Arith-

meticErrors another, but only if the handler for the first comes before

the handler for the second. An except that doesn’t specify an exception

class catches everything, so if there is one, it must appear last, like the

else in an if-elif-else chain.

http://media.pragprog.com/titles/gwpy/code/construct/excepttype.cmd
http://media.pragprog.com/titles/gwpy/code/construct/exceptobj.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=244

EXCEPTIONS 245

!"#$%&'&(&$)*##$#

+#&,-.",&/*##$#

0)1"2*##$#

*2/"3,&$)

4,5)15#1*##$#

6$$783*##$#

Figure 12.3: Exception hierarchy

Functions and Exceptions

What if Python can’t find a matching exception handler in a particu-

lar try/except block? For example, what happens when Python tries to

divide by zero in the following code?

Download construct/uncaught.py

values = [-1, 0, 1]

for i in range(4): # one more than len(values)

try:

r = 1.0 / values[i]

print 'reciprocal of', values[i], 'at', i, 'is', r

except IndexError, e:

print 'error:', e

The answer is that Python keeps a stack of exception handlers, just

like its stack of function calls (see Figure 12.4, on the following page).

When an exception is raised, Python takes handlers off the exception

handler stack one by one until it finds a handler that matches and then

executes it. This means that the code to handle an exception can be a

long way away from the place where the exception occurred. It also

means that one exception handler can take care of exceptions from

many pieces of code.

http://media.pragprog.com/titles/gwpy/code/construct/uncaught.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=245

EXCEPTIONS 246

!"#$%&'$#()""*"+

,'-./0'"/1'234&567
...54&.8.9:9
...-*".3.#3.34&57
......54&.;8.3
..."'$4"3.54&.<.='3234&56

$">7
.../0'"/1'2?@6
'A('B$.C3,'A)""*"7
...B"#3$.DC3,'A.*4$.*-."/31'D
'A('B$.!"#$%&'$#()""*"7
...B"#3$.D)""*".E#$%.(/=(4=/$#*35D

C3,'A)""*"+

F'"*G#0#5#*3)""*"

HH&/#3HH

/0'"/1'

Figure 12.4: The exception handler stack

For example, suppose we are using several functions that calculate

statistics on numbers stored in lists. Some of those functions might

raise exceptions because of division by zero. We don’t particularly care

which function call is at fault, so we can deal with them all at once like

this:

Download construct/exceptfunc.cmd

def average(nums):

sum = 0.0

for n in nums:

sum += n

return sum / len(nums)

...other function definitions skipped...

values = read_values_from_file()

try:

print 'average:', average(values)

print 'median:', median(values)

print 'standard deviation:', std_dev(values)

except ArithmeticError:

print 'Error in calculations'

As you can see, the code that handles the error is outside the functions

that are doing the work. This means that the functions can focus on

doing their jobs and let whoever is calling them worry about how to

handle mistakes.

http://media.pragprog.com/titles/gwpy/code/construct/exceptfunc.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=246

EXCEPTIONS 247

Raising Exceptions

You don’t have to wait for Python to notice that something has gone

wrong—you can raise an exception yourself using the raise keyword,

followed by the type of exception that you want to raise. When you do

this, it’s good style to include an error message to explain what went

wrong:

Download construct/raise.cmd

>>> def divide(top, bottom):

... if bottom == 0:

... raise ValueError('divisor is zero')

... else:

... return top / bottom

...

>>> for i in range(-1, 2):

... try:

... print divide(1, i)

... except ValueError, e:

... print 'caught exception for', i

...

-1

caught exception for 0

1

You will still sometimes see the raise statement written like this:

raise ValueError, 'divisor is zero'

However, that style is now deprecated; that is, Python’s creator has said

that it will be removed from the language one day, so new programs

shouldn’t use it (and old ones should be fixed).

Exceptional Style

When working with exceptions, you should always follow two rules.

First, always indicate errors in functions by raising exceptions, rather

than returning None, -1, False, or some other “special” value.1 This adds

clarity by separating error-handling code from “normal” code; in addi-

tion, experience shows that, sooner or later, you are going to want some

of your functions to return those special values, at which point you will

have no way of distinguishing success from failure. Alternatively, you

1. Note that Python’s own str.find breaks this rule by returning -1 if something can’t be

found instead of throwing an exception. In this case, practicality beats purity. Returning

-1 is only slightly more efficient than raising an exception, but substring searches are so

common that Python’s designers decided it was worth it.

http://media.pragprog.com/titles/gwpy/code/construct/raise.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=247

EXCEPTIONS 248

will need to completely rewrite the code so that it both raises exceptions

and returns the appropriate values.

The second rule is often phrased as, “Throw low, catch high.” This

means that you should throw lots of very specific exceptions in the

lower levels of your program but catch them only at a higher level in the

exception hierarchy where you can take corrective action. For example,

instead of writing code like this:

def first():

try:

...body of first function...

except Exception, e:

print 'error occurred', e

def second():

try:

...body of second function...

except Exception, e:

print 'error occurred', e

if __name__ == '__main__':

first()

second()

a programmer should write this:

def first():

...body of first function...

def second():

....body of second function...

if __name__ == '__main__':

try:

first()

second()

except Exception, e:

print 'error occurred', e

Handling errors in a small number of places like this makes it easy to

change the way they are handled. If, for example, you decide to write

application errors to a log file as well as print them to the screen, you

have to change only one piece of code in the second example. Similarly,

if this program were made part of a larger application with a graphical

interface that required errors to be displayed in dialogs rather than

on the command line, there would be exactly one place to make the

change.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=248

TESTING 249

12.3 Testing

Now that we have looked at how to deal with errors, we can discuss

how to test programs so that they don’t happen. The first thing to point

out is that testing on its own is not enough to produce high-quality

software. As Steve McConnell said in [McC04], “Trying to improve the

quality of software by doing more testing is like trying to lose weight by

weighing yourself more often.” Every time you sit down to test a piece

of software, you should therefore start by asking yourself a few simple

questions: What kind of problem am I looking for? What’s the most

efficient way to find out if the problem exists?

Terminology

Let’s start by defining some terms. A functional test looks at the behav-

ior of the system as a whole, just as its eventual users will. A unit test

exercises just one isolated component of a program. For example, here’s

a simple-minded unit test of a function that compares two strings and

returns -1, 0, or 1 if the first comes before, is the same as, or comes

after the second alphabetically:

Download construct/compare_strings.py

if my_compare('abc', 'def') == -1:

print 'success'

else:

print 'failure'

In Nose, this would be as follows:

Download construct/compare_strings_nose.py

import nose

def test_compare():

'''Test comparison of unequal strings.'''

assert my_compare('abc', 'def') == -1

if __name__ == '__main__':

nose.runmodule()

Two more frequently used terms are black-box testing and glass-box

testing. As the name suggests, black-box testing considers only the

inputs and outputs of the code being tested, not its implementation.

(The term is borrowed from electrical engineering, where a black box is

often the thing being tested.) In glass-box testing, on the other hand,

the tester is able to look inside the program and see how it works.

http://media.pragprog.com/titles/gwpy/code/construct/compare_strings.py
http://media.pragprog.com/titles/gwpy/code/construct/compare_strings_nose.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=249

TESTING 250

Glass-box testing may sound more effective, since the tester is able to

see which parts of the code to stress. In practice, though, knowing how

something is implemented often leads to psychological bias. Thus, it is

therefore often better to treat the code the same way its eventual users

will and test it by comparing its actual behavior to its specification.

Regression testing is another term that comes up fairly often. It is the

practice of rerunning tests to make sure that recent changes haven’t

broken anything. Regression testing is practical only if the tests are

automated and if changes to program behavior are relatively infrequent.

If the first condition doesn’t hold, then human beings must retest man-

ually every time the program changes. This is boring, expensive, and

error-prone, so in practice, most projects don’t do it.

The second condition is a corollary of the first. If the program’s behavior

is changing on a daily basis, then the project’s automated tests have

to be rewritten every day as well, which cancels out the advantages of

automation. This is one of the main reasons why it’s important to spend

time up front on design before writing code.

Unit Testing

For now we will focus on unit testing, since that’s what programmers

do while they’re programming. If you would like to know more, [AW06,

Whi03, WT04] are practical guides on what to look for in desktop and

web applications and how to find security holes.

As discussed in Section 4.5, Testing, on page 70, a unit test can have

one of three outcomes: pass, fail, or error. To classify a result, though,

you must know how the code being tested is supposed to behave; that

is, you must have some kind of specification. The more precise that

specification is, the easier it will be to determine whether the code is

doing what it’s supposed to do.

Independence

For unit testing to be useful, every test must be independent; in other

words, the outcome of one test must not depend on the outcome of

other tests. There are two reasons for this. First, if this rule is violated,

then every time we change a test that runs early, we have to check all

subsequent tests to see whether they have been affected. The second,

and more important, reason is that failures in early tests can hide bugs

that later tests are supposed to find.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=250

TESTING 251

For example, try running this code:

Download construct/test_side_effects.py

import nose

numbers = [1, 3, -1, 5]

def test_max():

assert max(numbers) == 5

def test_min():

assert min(numbers) == -1

def test_append():

old_len = len(numbers)

numbers.append(99)

assert len(numbers) == old_len + 1

if __name__ == '__main__':

nose.runmodule()

If Nose decides to run the tests in the order they’re given, everything

will be OK. But if Nose runs the tests in a different order or if someone

decides to put the tests in alphabetical order, test_max will suddenly

start to fail, because test_append is changing the values it is being run

on.2 As a rule, therefore, the data structures manipulated in the test,

called its fixture, should be used only once.

Limitations

Now for the bad news. In practice, it’s practically impossible to com-

pletely test any nontrivial piece of software. Suppose that you have a

function that compares two seven-digit phone numbers and returns

True if the first is greater than the second. There are (10
72

) possible

inputs; if you can compare 100 million pairs of numbers per second, it

will take 15.5 days to check all combinations. If the inputs are seven-

character alphabetic strings, rather than numbers, it will take a little

more than twenty-five years, and that’s just the first function—your

program probably contains dozens, or thousands, many of which will

be much more complex.

2. Of course, part of the problem is the use of the global variable numbers. If each test

function used a local variable, it would be safe for test_append to its list.

http://media.pragprog.com/titles/gwpy/code/construct/test_side_effects.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=251

TESTING 252

Luckily, testing isn’t as futile as this analysis makes it sound. In prac-

tice, it’s usually enough to test the following:

• Boundary cases, such as sorting an empty list or list containing a

single value

• The Simplest interesting cases, such as sorting lists containing two

values (one where the items are in order and one where they are

not)

• The General cases, such as sorting a longer list

If your code works for these cases, there’s a good chance it will work for

all other cases as well.

Of course, you should also test cases that are expected to fail, since

error handling is part of a function’s specification too. Test with invalid

input or too little input or too much, and make sure it fails the way the

specification says it should. Finally, do a few sanity checks. If informa-

tion appears in two or more places, for example, check that all occur-

rences are still consistent after the action. For example, if a program

stores both a list of numbers and their sum, make sure that the sum

is still correct after any operation that manipulates the list.

Above all, remember that human beings are creatures of habit; we tend

to make the same kinds of errors over and over again. So, good testers

will test for common errors first, but great ones build catalogs of errors

to refer back to whenever they test a new piece of code. Here are some

tests that often turn up problems in code:

• For numbers: Zero; the largest and smallest allowed numbers; one

less and one more than the largest and smallest values.

• For data structures: Empty structures; structures containing ex-

actly one element; structures containing the maximum allowed

number of elements; structures containing duplicates (for exam-

ple, a letter appears three times in a string); structures containing

aliased values (for example, a sublist appears three times in an

outer list).

• For searching: No match found; one match found; multiple

matches found; everything matches.

Over time, you’ll commit fewer and fewer errors as you catalog them

and, subsequently, become more conscious of them. And that’s really

the whole point of focusing on quality. The more you do it, the less

likely it is for problems to arise.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=252

TESTING 253

Test-Driven Development

Since the late 1990s, a style of programming called test-driven devel-

opment (TDD) has become increasingly popular. The idea behind it

is that tests are actually specifications. Each test says, “Given these

inputs, this code should produce this result.” Therefore, programmers

who practice TDD write their test cases first and then write the code to

be tested.

This sounds backward, but studies have shown that it can actually

make programmers more productive, for several reasons:

• Tests provide a more precise specification than sentences.

• TDD gives programmers a finish line to aim for: a function is fin-

ished when its unit tests all pass.

• TDD ensures that tests actually get written, since even the best

programmers are often too tired or too rushed to write a good set

of tests after the code appears to be working.

• Writing tests first gives programmers a chance to “test-drive” the

code they’re about to write before actually writing it. For example,

if a programmers finds that it’s awkward to create tests for the

matrix functions she’s about to write, she can change the interface

before it is set in stone.

As an example of TDD, suppose we need to write a function that cal-

culates a running sum of the values in a list. For example, if the list is

[1, 2, 3], the result should be [1, 1+2, 1+2+3], which is [1, 3, 6]. This seems

simple enough, but look at what’s missing: it’s not clear if a new list

should be created or the old one should be overwritten, and there’s no

mention of how to handle errors.

Now look at this:

Download construct/running_sum_tdd.py

import nose

def test_empty_list():

assert running_sum([]) == []

def test_single_value():

assert running_sum([1]) == [1]

def test_two_values():

assert running_sum([1, 3]) == [1, 4]

def test_three_values():

assert running_sum([1, 3, 7]) == [1, 4, 11]

http://media.pragprog.com/titles/gwpy/code/construct/running_sum_tdd.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=253

DEBUGGING 254

def test_negative_values():

assert running_run([-1, 1]) == [-1, 0]

def test_mixed_types():

assert running_sum([1, 3.0]) == [1, 4.0]

def test_string():

try:

running_sum('string')

assert False

except ValueError:

pass

except:

assert False

def test_non_numeric():

try:

running_sum(['string'])

assert False

except ValueError:

pass

except:

assert False

Even without docstrings, these tests tell us that the function

• has to be able to handle a mix of integer and floating-point values,

• doesn’t have to add things that aren’t numbers, and

• should produce a ValueError exception when given invalid input.

That’s a pretty good specification.

12.4 Debugging

As most programmers have discovered, debugging3 is what you get to

do when you didn’t do enough testing. Tracking down and eliminating

bugs in your programs is part of every programmer’s life, so this chapter

introduces some techniques that can make debugging more efficient

and give you more time to do the things you’d rather be doing.

Debugging a program is like diagnosing a medical condition. To find

the cause, you start by working backward from the symptoms (or, in a

3. In 1945, Admiral Grace Hopper’s team “debugged” Harvard University’s Mark II Aiken

Relay Calculator by removing a moth trapped in one of the relays. However, the term dates

back to at least Thomas Edison’s time.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=254

DEBUGGING 255

program, its incorrect behavior), then come up with a solution, and test

it to make sure it actually fixes the problem.

At least, that’s the right way to do it. Many beginners make the mis-

take of skipping the diagnosis stage and trying to cure the program by

changing things at random. Renaming a variable or swapping the order

in which two functions are defined might actually fix the program, but

millions of such changes are possible. Trying them one after another in

no particular order can be an inefficient waste of many, many hours.

Here are some rules for tracking down the cause of a problem:

1. Make sure you know what the program is supposed to do. Some-

times this means doing the calculation by hand to see what the

correct answer is. Other times, it means reading the documenta-

tion (or the assignment) carefully or writing a test.

2. Repeat the failure. You can debug things only when they go wrong,

so find a test case that makes the program fail reliably. Once

you have one, try to find a simpler one; doing this often provides

enough clues to allow you to fix the underlying problem.

3. Divide and conquer. Once you have a test that makes the program

fail, try to find the first moment where something goes wrong.

Examine the inputs to the function or block of code where the

problem first becomes visible. If they are wrong, look at how they

were created, and so on.

4. Change one thing at a time, for a reason. Replacing random bits of

code on the off-chance they might be responsible for your prob-

lem is unlikely to do much good. (After all, you got it wrong the

first time....) Each time you make a change, rerun your test cases

immediately.

5. Keep records. After working on a problem for an hour, you won’t

be able to remember the results of the tests you’ve run. Like any

other scientist, you should keep records. Some programmers use a

lab notebook; others keep a file open in an editor. Whatever works

for you, make sure that when the time comes to seek help, you

can tell your colleagues exactly what you’ve learned.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=255

PATTERNS 256

12.5 Patterns

It’s hard to figure out what a program is supposed to do if it is cluttered

or disorganized. Good design is therefore the most important program-

ming tool of all.

One of the keys to organizing programs is to recognize that variables are

usually used in stereotypical ways. Learning to recognize these variable

roles helps us read code more quickly; it also helps us figure out when

something is going wrong. The following sections, taken from [KS04],

describe some typical roles.

Fixed Values

As the name suggests, a fixed value is a variable whose value doesn’t

change once it is assigned. Fixed values are often used to give human-

readable names to “magic numbers” like 9.81 (Earth-normal gravity in

meters per second squared) or 3.14159 (a rough approximation to pi).

By convention, they are placed at the top of the program, as in the

following example:

Download construct/fixedvalue.cmd

>>> SECONDS_PER_DAY = 24 * 60 * 60

>>> instant = 10**3

>>> while instant <= 10**7:

... print "%10d seconds is %8.2f days" % \

... (instant, (1.0 * instant / SECONDS_PER_DAY))

... instant *= 10

1000 seconds is 0.01 days

10000 seconds is 0.12 days

100000 seconds is 1.16 days

1000000 seconds is 11.57 days

10000000 seconds is 115.74 days

As this example shows, they are also often given uppercase names to

make them stand out from “normal” values.

Stepper and Counter

A stepper is a variable that “steps through” a sequence of values in

some predictable way. The index variables in for loops are almost always

steppers; so is the time variable in the previous example. A stepper

is very much like a counter, but the latter term normally refers to an

integer that keeps track of how many things have been seen so far.

http://media.pragprog.com/titles/gwpy/code/construct/fixedvalue.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=256

PATTERNS 257

Most-Wanted Holder

Normally, we search for a value in a collection by checking each value in

turn and keeping a reference to the best one seen so far. That reference

is called a most-wanted holder, since it holds the value we want most.

For example, here’s a function that searches for the largest value in a

list that is less than some threshold:

Download construct/largethresh.py

def largest_below_threshold(values, threshold):

'''Find the largest value below a specified threshold. If no value is

found, returns None.'''

result = None

for v in values:

if v < threshold:

result = v

break

if result is None:

return None

for v in values:

if result < v < threshold:

result = v

return result

Most-Recent Holder

A most-recent holder holds the value most recently seen from some

sequence of values. In a sense, a stepper is just a special case of a

most-recent holder. The only distinction is that the stepper is step-

ping through regular values (like the elements of a list), while a most-

recent holder is assigned values that can come from anywhere. Here’s

an example:

Download construct/mostrecent.py

A really simple number-guessing game

while True:

input = raw_input('Enter a number: ')

try:

val = int(input)

except ValueError:

print 'I said, a *number*...'

if val == 7:

print 'You guessed it!'

break

else:

print 'Try again'

http://media.pragprog.com/titles/gwpy/code/construct/largethresh.py
http://media.pragprog.com/titles/gwpy/code/construct/mostrecent.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=257

PATTERNS 258

Since users can type in anything they want, this program validates the

input (in other words, checks that it’s at least plausible) before doing

anything else with it.

Container

A container is a value that holds other values. Lists are clearly con-

tainers, but what about strings? They can be containers too, if we find

ourselves adding or removing characters:

Download construct/container.cmd

>>> whole = 'selenium'

>>> for i in range(len(whole)/2):

... print whole

... whole = whole[1:-1]

selenium

eleniu

leni

ni

This example shows that patterns like “stepper” and “container” are a

matter of interpretation, rather than part of the program itself. In the

previous example, the string "selenium" isn’t being modified in place—

that’s not allowed in Python. However, when we’re writing the program,

it’s helpful to think of it that way. So, is whole a container of characters

or a most-recent holder?

Gatherer

A gatherer (sometimes called an accumulator) collects individual values.

For example, the variable result in the following code is a gatherer; it

collects values by adding them:

Download construct/gatherer.py

def add_up(values):

'''Return the sum of the values in a list, or 0 if the list is empty.'''

result = 0

for sum in values:

result += sum

return result

Temporary

A temporary is a variable that exists only for a short time. Temporaries

are typically used to store partial results in order to make code easier

http://media.pragprog.com/titles/gwpy/code/construct/container.cmd
http://media.pragprog.com/titles/gwpy/code/construct/gatherer.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=258

PATTERNS 259

to read. For example, here’s a function that returns the two roots of a

quadratic equation:

Download construct/roots.py

from math import sqrt

def roots(a, b, c):

'''Return real roots of a quadratic, or None.'''

temp = b**2 - 4*a*c

if temp < 0:

return None

temp = sqrt(temp)

left = (-b + temp) / (2 * a)

right = (-b - temp) / (2 * a)

return left, right

Compare this with a version that uses fewer lines but doesn’t use a

temporary:

Download construct/roots_full.py

from math import sqrt

def roots(a, b, c):

'''Return real roots of a quadratic, or None.'''

if sqrt(b**2 - 4*a*c) < 0:

return None

left = (-b + sqrt(b*2 - 4*a*c)) / (2 * a)

right = (-b - sqrt(b**2 - 4*a*c)) / (2 * a)

return left, right

Did you spot the bug in the second version? Code that seems to be

repeated is never read as carefully as code that isn’t; using temporaries

to store intermediate results therefore reduces the chances of a lurking

bug.

One-Way Flag

A one-way flag is a variable whose value changes just once to show

that something has occurred.

http://media.pragprog.com/titles/gwpy/code/construct/roots.py
http://media.pragprog.com/titles/gwpy/code/construct/roots_full.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=259

SUMMARY 260

For example, this function finds the lines in a data file that were added

after a particular date:

Download construct/afterdate.py

def after_date(input_file, date):

'''Return the lines that were added to a file after a certain date.'''

keep_it = False

result = []

for line in input_file:

if keep_it:

result.append(line)

elif get_date(line) >= date:

keep_it = True

return result

The keep_it variable is initially set to False to signal that we haven’t yet

seen a line in the file added after the desired date. As soon as we do see

that line, the flag becomes True.

12.6 Summary

In this chapter, we learned the following:

• Specifying default values for parameters can make functions eas-

ier to use; letting them take variable-length parameter lists can

make them more flexible.

• When an error occurs in a program, the program should raise an

exception with a meaningful type and an informative error mes-

sage. Programs should catch exceptions only in a small number of

places where they can do something to report or correct the error.

• Functional testing looks at the program as a whole, while unit

testing focuses on its components, and regression testing checks

whether things that used to work still do.

• Unit tests should operate independently so that an error in one

will not affect the results reported for the rest.

• The most cost-effective way to test is to focus on boundary cases.

It’s also important to test that software fails when it’s supposed to.

• Test-driven development consists of writing unit tests first and

then writing code to make those tests pass. TDD helps program-

mers be more efficient by getting them to focus on what code is

supposed to before worrying about how it is going to work.

http://media.pragprog.com/titles/gwpy/code/construct/afterdate.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=260

EXERCISES 261

• To debug software, you have to know what it is supposed to do

and be able to repeat the failure. Simplifying the conditions that

make the program fail is an effective way to narrow down the set

of possible causes.

• Most variables in programs are used in one of a small number

of stereotyped ways. Knowing these patterns helps with design,

debugging, and communication.

12.7 Exercises

Here are some exercises for you to try on your own:

1. Python allows programmers to pass values to functions in any

order they like, provided they specify the parameters’ names. For

example:

>>> def byName(red, green, blue):

... print red, green blue

...

>>> byName(green=0.1, blue=0.5, red=0.4)

0.4 0.1 0.5

Why is this useful? Why is it dangerous? Explain why you do

or don’t think that Python (or any other programming language)

should allow this or not.

2. The total function in Section 12.1, Default Parameter Values, on

page 237 uses None as a default value for end. Why is this more

sensible than using an integer like -1?

3. Python actually provides two ways to create variable parameter

lists. The first, discussed in Section 12.1, Variable Parameter Lists,

on page 239, takes all the “extra” values passed to the function

call, puts them into a tuple, and assigns that tuple to a parameter

with a star (*) in front of its name. The second takes any extra

named parameters, puts them in a dictionary, and assigns it to a

parameter with two stars (**) in front of its name.

a) Find the description of this feature in the official Python doc-

umentation at http://www.python.org and give its URL.

b) Write a short example to show how this feature works, along

with 100–150 words of explanation.

c) When should you use this feature, and why?

http://www.python.org
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=261

EXERCISES 262

4. Your job is to come up with tests for a function called line_intersect,

which takes two lines as input and returns their intersection.

More specifically:

• Lines are represented as pairs of distinct points, such as [[0.0,

0.0], [1.0, 3.0]].

• If the lines do not intersect, line_intersect returns None.

• If the lines intersect in one point, line_intersect returns the

point of intersection, such as [0.5, 0.75].

• If the lines are coincident (that is, lie on top of one another),

the function returns its first argument (that is, a line).

What are the six most informative test cases you can think of?

(That is, if you were allowed to run only six tests, which would tell

you the most about whether the function was implemented cor-

rectly?) Write out the inputs and expected output of these six tests,

and explain why you would choose them. Do not worry about error

handling (yet).

5. Your next job is to test whether line_intersect handles errors cor-

rectly. You have been told that it is supposed to raise a ValueError

exception if either argument is not a pair or pairs of floating-point

numbers and that it is supposed to raise a GeometryError excep-

tion if the two points used to define a line are not distinct (that is,

if something like [1.0, 1.0], [1.0, 1.0]] is given as an input). What six

tests would you write first to check that line_intersect was handling

errors correctly? In a sentence or two, explain whether you think

that testing error handling is more important than testing that the

function gives the correct answer for valid input, or vice versa.

6. A friend of yours has written a function called common_name that

takes two strings as input. The first is the one- or two-letter sym-

bol for a chemical element, such as "He" or "Fe". The second is the

two-letter international code for a language, such as "EN" (English)

or "DE" (Deutsch, that is, German). You have been told that the

function handles 106 elements and 26 languages. If you don’t

want to test every element with every language, then how many

different inputs do you have to give it to feel confident that it works

correctly? What assumptions are you making about those inputs

in doing your calculation?

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=262

EXERCISES 263

7. Another friend of yours has written a function called average,

which returns the average of a list of floating-point numbers. She

has tested it as follows:

Download construct/testfloat.py

from math import abs

from mylibrary import average

test_cases = [

[0.0, [0.0]],

[0.0, [-1.0, 1.0]],

[1.0, [0.0, 2.0]],

[2.0, [0.0, 1.0, 2.0, 3.0, 4.0]],

....

]

passes = failures = 0

for (expected, values) in test_cases:

actual = average(values)

if actual == expected:

passes += 1

else:

failures += 1

print 'passes:', passes

print 'failures:', failures

She has implemented average correctly, but several of her test

cases are failing. Explain why; identify which single line of code

she should change, and how to change it, to improve her tests.

8. A function called is_salt takes the chemical symbols of two elements

as input and returns True if the combination of those two elements

is a salt (in other words, a combination of an acid and a base).

You happened to know that the symbols for the elements that are

considered acids and bases are contained in sets called Acids and

Bases, respectively. A friend of yours thinks that an easy way to

test is_salt would be to simplify the Acids and Bases sets and then

run the tests:

Download construct/testsalt.py

Bases = set(["Mg"]) # nothing but magnesium

Acids = set(["Cl"]) # nothing but chlorine

def test_MgCl():

'''Works if the base is a base, and the acid is an acid.'''

assert is_salt("Mg", "Cl")

http://media.pragprog.com/titles/gwpy/code/construct/testfloat.py
http://media.pragprog.com/titles/gwpy/code/construct/testsalt.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=263

EXERCISES 264

def test_LiCl():

'''Doesn't work because the 'base' isn't a base.'''

assert not is_salt("Ar", "Cl")

def test_MgO():

'''Doesn't work because the 'acid' isn't an acid.'''

assert not is_salt("Mg", "O")

def test_neither():

'''Doesn't work because neither is right.'''

assert not is_salt("Ar", "O")

There are (at least) two things wrong with this idea. Briefly explain

what they are.

9. Using Nose, write four tests for a function called all_prefixes in a

module called testprefixes.py that takes a string as its input and

returns the set of all nonempty substrings that start with the first

character. For example, given the string "lead" as input, all_prefixes

would return the set {"l", "le", "lea", "lead"}. Include a comment ex-

plaining what crucial piece of information is missing from the

specification for all_prefixes that prevents you from testing it fully.

10. Using Nose, write the ten most informative tests you can think of

for a function called is_sorted in a module called testsorting.py that

takes a list of integers as input and returns True if they are sorted

in nondecreasing order, and False otherwise. If the argument is not

a list or if any of the values are not integers, the function should

raise a ValueError exception. Include a short comment justifying the

number of tests you chose to write.

11. The function remove_all takes two arguments: a list and an item

you want to completely remove from the list. If the item occurs in

the list multiple times, every instance of it is removed. If the item

does not occur in the list, the list remains unmodified.

Explain what is wrong with the following tests for the function

remove_all:

Download construct/remove_all.py

empty_list = []

one_item_list = ['He']

multi_item_list = ['Ne', 'Ar', 'He', 'He']

http://media.pragprog.com/titles/gwpy/code/construct/remove_all.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=264

EXERCISES 265

def test_remove_from_empty():

remove_all(empty_list, 'He')

assert len(empty_list) == 0

def test_remove_from_one_item_list():

remove_all(one_item_list, 'He')

assert len(one_item_list) == 0

def test_remove_something_else():

remove_all(one_item_list, 'Pb')

assert len(one_item_list) == 1

def test_remove_multiple():

remove_all(multi_item_list, 'He')

assert len(multi_item_list) == 2

12. At first glance, it seems that the only way to test a function that

reads from a file is to store some sample files on disk and have the

function open and read those files. However, the standard Python

library includes a module called StringIO (and a faster version called

cStringIO) that makes file I/O easier to test. Explain how in one

short paragraph, and then use cStringIO to test a function called

count_lines (taken from a module called file_util).

13. The following function is broken. The docstring describes what it’s

supposed to do:

Download construct/minmaxexercise.py

def find_min_max(values):

'''Print the minimum and maximum value from the given collection of

values.'''

min = None

max = None

for value in values:

if value > max:

max = value

if value < min:

min = value

print 'The minimum value is %s' % min

print 'The maximum value is %s' % max

What does it actually do? Use a debugger to verify. What line do

you need to change to fix it?

http://media.pragprog.com/titles/gwpy/code/construct/minmaxexercise.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=265

EXERCISES 266

14. The following function is also broken but only under certain cir-

cumstances:

Download construct/summationexercise.py

def summation(limit):

'''Return the sum of the numbers from 0 to limit.'''

total = 0

current = limit

while current != 0:

total += current

current -= 1

return total

a) What type of input causes the function to fail?

b) How does the function behave during a failure? Use a debug-

ger to step through what happens.

c) What do you need to change to fix it?

15. Under what circumstances will the following function throw an

exception? Use try and except to ensure the function returns the

correct value even when an exception occurs.

Download construct/reciprocalexercise.py

def compute_reciprocals(values):

'''Return a list of the reciprocals of the given list of values.

If a value has no reciprocal, it will be assigned a value of

None in the returned list.'''

reciprocals = []

for value in values:

reciprocals.append(1 / value)

return reciprocals

16. For each function, identify the role of the variables v0, v1, and so

on. Also, give each poorly named variable a better name.

Download construct/roleexercise1.py

def find_last(filename, string):

v0 = 0

v1 = [None, None]

v2 = open(filename, "r")

for v3 in v2:

v0 += 1

if string in v3:

v1 = [v0, v3]

return v1

http://media.pragprog.com/titles/gwpy/code/construct/summationexercise.py
http://media.pragprog.com/titles/gwpy/code/construct/reciprocalexercise.py
http://media.pragprog.com/titles/gwpy/code/construct/roleexercise1.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=266

EXERCISES 267

Download construct/roleexercise2.py

from math import sqrt

def standard_deviation(values):

v0 = 0.0

for v1 in values:

v0 += v1

v2 = v0 / len(values)

v3 = 0.0

for v4 in values:

v3 += (v4 - v2) ** 2

v5 = v3 / len(values)

return sqrt(v5)

17. Write three functions that compute the mean, median, and mode,

respectively, of a list of values. For each local variable you use,

indicate its role using comments. Don’t forget to identify the role

of variables you use in loops. Use the following to get started:

Download construct/roleexercise3.py

def mean(values):

'''Return the arithmetic mean of the list of values; i.e. the

sum of all the values divided by the total number of values.

If the list contains non-numeric elements, this function throws

a ValueError.'''

def median(values):

'''Return the median of the list of values. For an odd number

of values, if the numbers are sorted, the median occurs at the

center of the list. For an even number of values, the median is

the mean of the two middle values in the sorted list of values.'''

def mode(values):

'''Return a list containing the mode of the list of values. The

mode is the most frequently occurring values in the list. For example,

the mode of [0, 1, 0, 3, 2, 4, 1] is [0, 1].'''

18. Occasionally programmers don’t close files that they have opened.

This is bad style. The computer’s operating system allows a run-

ning program to have only a limited number of files open at any

time, so if programs don’t close files they’re done with, they will

eventually not be able to open new ones. Modify the following

function so that it always closes the file it has opened, even if

something goes wrong while the file’s contents are being read.

http://media.pragprog.com/titles/gwpy/code/construct/roleexercise2.py
http://media.pragprog.com/titles/gwpy/code/construct/roleexercise3.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=267

EXERCISES 268

Download construct/add_error_handling.py

def process_file(filename):

'''Read and print the contents of a file.'''

f = open(filename, 'r')

for line in f:

line = line.strip()

print line

19. Take another look at the function we wrote in Section 8.4, Multiline

Records, on page 177 to read molecule descriptions from a file:

Download fileproc/multimol_2.py

def read_molecule(r):

'''Read a single molecule from reader r and return it,

or return None to signal end of file.'''

If there isn't another line, we're at the end of the file.

line = r.readline()

if not line:

return None

Name of the molecule: "COMPND name"

key, name = line.split()

Other lines are either "END" or "ATOM num type x y z"

molecule = [name]

reading = True

while reading:

line = r.readline()

if line.startswith('END'):

reading = False

else:

key, num, type, x, y, z = line.split()

molecule.append((type, x, y, z))

return molecule

This function assumes that every file is correctly formatted. In

the real world, data files often aren’t. Lines may be missing or

in the wrong order, values may be out of order on a line, and so

on. In keeping with the philosophy of defensive programming, add

assertions to this function so that it fails with appropriate error

messages for badly formatted input.

http://media.pragprog.com/titles/gwpy/code/construct/add_error_handling.py
http://media.pragprog.com/titles/gwpy/code/fileproc/multimol_2.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=268

EXERCISES 269

20. Consider the following function:

def findButNotAfter(source, prefix, pattern):

'''Return the index of the first occurrence of 'pattern' in

'source' that is NOT immediately after an occurrence of

'prefix'. For example, findButNotAfter('abcdcd', 'ab', 'cd')

returns 4, since the first occurrence of 'cd' comes immediately

after an 'ab', but findButNotAfter('abxcdcd', 'ab', 'cd')

returns 3.'''

a) What ambiguities or omissions are there in this specification?

b) Rewrite the function’s docstring to address the shortcomings

you identified earlier.

c) Write at least ten Nose tests to check that the function meets

your revised specification.

d) Write a body for findButNotAfter that passes all of your tests.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=269

Chapter 13

Object-Oriented Programming
As you learned in Section 2.3, What Is a Type?, on page 22, a type

is a set of values along with the operations that can be performed on

those values. For example, the type bool consists of the values True and

False, plus the operations and, or, and not, while the type int has approx-

imately 2
32 values and a wide range of operations, such as addition and

subtraction.

Types like bool and int are built into programming languages because

they are useful in almost every program. Thousands of other types,

from File to Nematode, are just as useful, but not to as many people;

trying to include all of them would be a never-ending task and would

make the language so large that it would be practically impossible to

work with.

One of the greatest advances in computer science was the realization

that allowing programmers to define new types of their own can make

programs easier to write and understand. In almost all modern lan-

guages, including Python, programmers do this by defining a class and

then creating objects that are instances of the class. You can think of

a class as being like a species, like Pygoscelis antarctica (the chinstrap

penguin); its instances are then particular penguins.

Languages working this way are (unsurprisingly) called object-oriented.

This chapter will show you how to create object-oriented programs in

Python and why you would want to write programs that way. We will

start by showing how to create a simple class, then look at some of the

theory behind object-oriented programming, and finally examine some

of the “extras” Python provides to make programmers’ lives easier.

CLASS COLOR 271

13.1 Class Color

To explain classes, over the next few sections we will build a Color class

of our own that does the same things as the RGB model described in

Section 4.4, Pixels and Colors, on page 68. Let’s start with a very simple

(but not very useful) class definition:

Download oop/color_simple.py

class Color(object):

'''An RGB color, with red, green and blue components.'''

pass

Just as the keyword def tells Python that we’re defining a new function,

the keyword class signals that we’re defining a new type. The (object)

part says that class Color is a kind of object;1 the docstring describes

the features of a Color object, while pass says that the object is blank—

that is, it doesn’t store any data and doesn’t offer any new operations.

The following sections will add data and operations to Color to make

it more useful. Even without that, though, we can make a new Color

object and assign it to a variable called black:

Download oop/color_obj.cmd

>>> black = Color()

Using the name of the class as if it were a function tells Python to

find the class and build one instance of it. We can check that this has

worked by printing the value of black:

Download oop/color_show_raw.cmd

>>> black

<__main__.Color object at 0xb7dbd24c>

That tells us that an object has been created (and where it happens to

be in memory), but nothing more. To make the object more useful, we

need to attach some red, green, and blue values to it. One way to do

this—a very bad way, which we will clean up in a couple of sections—is

simply to assign the values we want:

Download oop/color_add_values.cmd

>>> black.red = 0

>>> black.green = 0

>>> black.blue = 0

1. This is needed for historical reasons, since early versions of Python did things a

slightly different way.

http://media.pragprog.com/titles/gwpy/code/oop/color_simple.py
http://media.pragprog.com/titles/gwpy/code/oop/color_obj.cmd
http://media.pragprog.com/titles/gwpy/code/oop/color_show_raw.cmd
http://media.pragprog.com/titles/gwpy/code/oop/color_add_values.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=271

CLASS COLOR 272

The variable black now refers to a Color object that has three instance

variables called red, green, and blue. To prove that they’re there, we can

examine their values:

Download oop/color_print_parts.cmd

>>> black.red

0

>>> black.green

0

>>> black.blue

0

An object’s instance variables are like the local variables in a function

call. Just as local variables can be accessed only inside their func-

tion and last only as long as the function call, instance variables can

be accessed (using dot notation) only through the object that contains

them and live only as long as that object.

Another way to think about objects is to compare them to dictionaries.

We could store these same RGB values using this:

black = {"red" : 0, "green" : 0, "blue" : 0"}

and then access them using black["red"] instead of black.red. As we’ll see,

though, objects allow us to do things that dictionaries can’t.

Methods

Before showing how instance variables ought to be created, let’s take

a look at how we can add operations to a class. Suppose, for example,

that we want to calculate the lightness of a color, that is, how close it is

to being pure white. By definition, a color’s lightness is the average of

its strongest and weakest RGB values scaled to lie between 0 and 1. As

a function, this is as follows:

Download oop/color_lightness_func.py

def lightness(color):

'''Return the lightness of color.'''

strongest = max(color.red, color.green, color.blue)

weakest = min(color.red, color.green, color.blue)

return 0.5 * (strongest + weakest) / 255

If we want to make the calculation a method of the class Color, we

simply move its definition into the class.

http://media.pragprog.com/titles/gwpy/code/oop/color_print_parts.cmd
http://media.pragprog.com/titles/gwpy/code/oop/color_lightness_func.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=272

CLASS COLOR 273

!"#!$%

!!"#$%!!

&%$'

&'(')*($+,-%.//

000123)2(.141&'(')56

000123)2(.*($+,-%.//56
#%(

)#%%*

+$"%

&'(')

!"#$%&'()$*+,(*-$'.

+*//%#0(23)2(.*($+,-%.//56

Figure 13.1: Automatic self

Download oop/color_lightness_method.py

class Color(object):

'''An RGB color, with red, green and blue components.'''

def lightness(self):

'''Calculate the lightness of this color.'''

strongest = max(self.red, self.green, self.blue)

weakest = min(self.red, self.green, self.blue)

return 0.5 * (strongest + weakest) / 255

Actually, we do one other thing as well. We take out the parameter color

and replace it with one called self. Whenever Python called a method

for an object, it automatically passes a reference to that object as the

method’s first argument (see Figure 13.1). This means that when we call

lightness, we don’t need to give it any arguments—Python supplies the

object itself for us. Inside the method, we can then access the object’s

instance variables using the usual dot notation on that variable:

Download oop/color_lightness_call.cmd

>>> purple = Color()

>>> purple.red = 255

>>> purple.green = 0

>>> purple.blue = 255

>>> purple.lightness()

0.5

The rule about self means that when you define a method, you must

include one more parameter than you’re actually going to pass in. Alter-

natively, when you call a method, you provide one less parameter than

the method’s definition seems to require. Forgetting this is a very com-

mon beginner’s mistake. Forgetting to put self in front of something that

you intended to be a member variable is another common beginner’s

mistake.

http://media.pragprog.com/titles/gwpy/code/oop/color_lightness_method.py
http://media.pragprog.com/titles/gwpy/code/oop/color_lightness_call.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=273

CLASS COLOR 274

For example, if the class was defined this way:

Download oop/broken_color_self.py

class Color(object):

'''An RGB color, with red, green and blue components.'''

def lightness(self):

'''Return the lightness of this color.'''

Fails: no such variables 'red', 'green', and 'blue'

strongest = max(red, green, blue)

weakest = min(red, green, blue)

return 0.5 * (strongest + weakest) / 255

then purple.lightness() would produce an error, because the variables

red, green, and blue don’t exist in lightness, even though purple.red, pur-

ple.green, and purple.blue have been assigned values.

Constructors

Let’s take another look at the color purple:

Download oop/color_purple.cmd

>>> purple = Color()

>>> purple.red = 128

>>> purple.green = 0

>>> purple.blue = 128

We could create more colors this way, but it requires us to type in the

name of the same variable over and over. What is worse—far worse—is

that if the user forgets to add all the right instance variables, then the

object’s methods will probably fail. For example, suppose we created

the color yellow:

Download oop/yellow_create_error.cmd

>>> yellow = Color()

>>> yellow.red = 128

>>> yellow.green = 128

That looks all right. Yellow is equal parts red and green, and both values

have been set. However, if we try to call lightness for this color, we get an

error, because we didn’t specify a value for yellow.blue:

Download oop/yellow_lightness_fail.cmd

>>> yellow.lightness()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 3, in lightness

AttributeError: 'Color' object has no attribute 'blue'

http://media.pragprog.com/titles/gwpy/code/oop/broken_color_self.py
http://media.pragprog.com/titles/gwpy/code/oop/color_purple.cmd
http://media.pragprog.com/titles/gwpy/code/oop/yellow_create_error.cmd
http://media.pragprog.com/titles/gwpy/code/oop/yellow_lightness_fail.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=274

CLASS COLOR 275

The solution to all of these problems is to allow users to provide values

for instance variables when new objects are created, like this:

Download oop/color_purple_init.cmd

>>> purple = Color(128, 0, 128)

We have already seen this with classes like str, which can be constructed

with parameters (for example, str(45)). In order to make it work, we need

to add a method to the class Color that will be run whenever a new Color

is created. Such a method is called a constructor, and the way to create

one in Python is to call it __init__:

Download oop/color.py

class Color(object):

'''An RGB color, with red, green and blue components.'''

def __init__(self, r, g, b):

'''A new color with red value r, green value g, and blue value b. All

components are integers in the range 0-255.'''

self.red = r

self.green = g

self.blue = b

The double underscores around the name signal that this method has a

special meaning to Python—in this case, that the method is to be called

when a new object is being created. There are other special methods,

some of which we’ll see later in this chapter. As with other methods,

Python automatically passes a reference to the object itself—in this

case, the one that is being created—as __init__’s first argument. It is then

up to __init__ to set up the object. For example, the expression Color(128,

0, 128) actually means the following:

• Create an object with no instance variables.

• Call Color’s __init__ method with that blank object as the first argu-

ment and the three color values as the second, third, and fourth

arguments.

• Return a reference to that object—which, thanks to __init__, now

has three instance variables—to whoever made the call.

With constructors, methods, and instance variables in hand, we can

now create classes that look and work like those that come with Python

itself.

http://media.pragprog.com/titles/gwpy/code/oop/color_purple_init.cmd
http://media.pragprog.com/titles/gwpy/code/oop/color.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=275

SPECIAL METHODS 276

13.2 Special Methods

When we introduced __init__ earlier, we said that Python provided other

special methods with underscores around their names as well. We can

use these special methods to make our types look and act more like

Python’s built-in types, which in turn can make our programs easier to

understand.

For example, the output Python produces when we print a Color isn’t

particularly useful:

Download oop/color_purple_no_str.cmd

>>> purple = Color(128, 0, 128)

>>> print purple

<color.Color object at 0x6b150>

This is behavior that object defines for converting objects to strings.

Since object can’t know anything about the meaning of the classes we

will derive from it, it just shows us where the object is in memory. If

we want to present a more useful string, we need to explore two more

special methods, __str__ and __repr__. __str__ is called when an informal,

human-readable version of an object is needed, and __repr__ is called

when more precise, but possibly less-readable, output is desired. In

particular, __str__ is called when print is used.

Let’s define Color.__str__ to provide useful output:

Download oop/color_str.py

class Color(object):

'''An RGB color, with red, green and blue components.'''

def __init__(self, r, g, b):

'''A new color with red value r, green value g, and blue value b. All

components are integers in the range 0-255.'''

self.red = r

self.green = g

self.blue = b

def __str__(self):

'''Return a string representation of this Color in the form of an RGB

tuple.'''

return '(%s, %s, %s)' % (self.red, self.green, self.blue)

http://media.pragprog.com/titles/gwpy/code/oop/color_purple_no_str.cmd
http://media.pragprog.com/titles/gwpy/code/oop/color_str.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=276

SPECIAL METHODS 277

Printing Color now gives more useful information:

Download oop/color_print.cmd

>>> purple = Color(128, 0, 128)

>>> print purple

(128, 0, 128)

Python has lots of other special methods; the official Python website

gives a full list. Among them are __add__, __sub__, and __eq__, which are

called when we add objects with +, subtract them with -, or compare

them with ==:

Download oop/color_full.py

class Color(object):

'''An RGB color, with red, green and blue components.'''

def __init__(self, r, g, b):

'''A new color with red value r, green value g, and blue value b.

All components are integers in the range 0-255.'''

self.red = r

self.green = g

self.blue = b

def __str__(self):

'''Return a string representation of this Color in the form

Color(red, green, blue).'''

return 'Color(%s, %s, %s)' % (self.red, self.green, self.blue)

def __add__(self, other_color):

'''Return a new Color made from adding the red, green, and blue

components of this Color to Color other_color's components. If the

sum is greater than 255, then the color is set to 255.'''

return Color(min(self.red + other_color.red, 255),

min(self.green + other_color.green, 255),

min(self.blue + other_color.blue, 255))

def __sub__(self, other_color):

'''Return a new Color made from subtracting the red, green, and blue

components of this Color from Color other_color's components. If

the difference is less than 0, then the color is set to 0.'''

return Color(max(self.red - other_color.red, 0),

max(self.green - other_color.green, 0),

max(self.blue - other_color.blue, 0))

def __eq__(self, other_color):

'''Return True if this Color's components are equal to Color

other_color's components.'''

http://media.pragprog.com/titles/gwpy/code/oop/color_print.cmd
http://media.pragprog.com/titles/gwpy/code/oop/color_full.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=277

MORE ABOUT DIR AND HELP 278

return self.red == other_color.red and self.green == \

other_color.green and self.blue == other_color.blue

This example shows these methods in action:

Download oop/color_full_use.cmd

>>> purple = Color(128, 0, 128)

>>> white = Color(255, 255, 255)

>>> dark_grey = Color(50, 50, 50)

>>> print purple + dark_grey

Color(178, 50, 178)

>>> print white - dark_grey

Color(205, 205, 205)

>>> print white == Color(255, 255, 255)

True

As you can see, if bright and dark are both colors, then Python inter-

prets the expression bright+dark to mean bright.__add__(dark). This is

called operator overloading, since we are overloading (that is, giving new

meaning to) Python’s built-in operators.

Operator overloading is a powerful tool but should be used very care-

fully. Take addition—we could easily define __add__ so that it modified

the object it was being called on, instead of creating a new one:

Download oop/color_add_bad.py

class Color(object):

...other definitions as before...

def __add__(self, other_color):

'''This is a bad way to define this method.'''

self.red += other_color.red

self.green += other_color.green

self.blue += other_color.blue

return self

Python won’t stop us from doing this—it doesn’t understand the in-

tended meaning, or semantics, of our code. However, just as nobody

would expect adding the integers i and j to change the value of i, nobody

would expect adding colors to change the colors being added. If our

definitions of operators don’t meet people’s expectations, it is our fault,

not theirs, when they use those operators incorrectly.

13.3 More About dir and help

We discussed functions help and dir in Section 4.1, Importing Modules,

on page 50 and the sidebar on page 55. Notice that the contents of a

Color object include the instance variables and all the Color methods.

http://media.pragprog.com/titles/gwpy/code/oop/color_full_use.cmd
http://media.pragprog.com/titles/gwpy/code/oop/color_add_bad.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=278

MORE ABOUT DIR AND HELP 279

Download oop/color_dir.cmd

>>> black = Color(0, 0, 0)

>>> dir(black)

['__add__', '__class__', '__delattr__', '__dict__', '__doc__', '__eq__',

'__getattribute__', '__hash__', '__init__', '__module__', '__new__',

'__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__str__',

'__sub__', '__weakref__', 'blue', 'distance', 'green', 'red']

Since we have written docstrings, we can get help on class Color:

Download oop/color_help.cmd

>>> help(Color)

Help on class Color in module color_full_distance:

class Color(__builtin__.object)

| An RGB color, with red, green and blue components.

|

| Methods defined here:

|

| __add__(self, other_color)

| Return a new Color made from adding the red, green, and blue

| components of this Color to Color other_color's components.

| If the sum is greater than 255, then the color is set to 255.

|

| __eq__(self, other_color)

| Return True if this Color's components are equal to Color

| other_color's components.

|

| __init__(self, r, g, b)

| A new color with red value r, green value g, and blue value b. All

| components are integers in the range 0-255.

|

| __str__(self)

| Return a string representation of this Color in the form

| Color(red, green, blue).

|

| __sub__(self, other_color)

| Return a new Color made from subtracting the red, green, and blue

| components of this Color from Color other_color's components.

| If the difference is less than 0, then the color is set to 0.

|

| lightness(self)

| Return the lightness of this color.

| --

| Data descriptors defined here:

|

| __dict__

| dictionary for instance variables (if defined)

|

| __weakref__

| list of weak references to the object (if defined)

http://media.pragprog.com/titles/gwpy/code/oop/color_dir.cmd
http://media.pragprog.com/titles/gwpy/code/oop/color_help.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=279

A LITTLE BIT OF OO THEORY 280

Toward the end of the help text, there is a __dict__ item described, and

it says “dictionary for instance variables.” Python implements instance

variables using dictionaries, and you can inspect this variable:

Download oop/color_dict.cmd

>>> black.__dict__

{'blue': 0, 'green': 0, 'red': 0}

Whenever you assign to an instance variable, it changes the contents

of the object’s dictionary. You can even change it yourself directly,

although we don’t recommend it.

Before looking at another class example, let’s take a short detour and

look at some of the theory behind object-oriented programming.

13.4 A Little Bit of OO Theory

Classes and objects are programming’s power tools. They let good pro-

grammers do a lot in very little time, but with them, bad programmers

can create a real mess. This section will introduce some underlying the-

ory that will help you design reliable, reusable object-oriented software.

Encapsulation

To encapsulate something means to enclose it in some kind of con-

tainer. In programming, encapsulation means keeping data and the

code that uses it in one place and hiding the details of exactly how

they work together. For example, each instance of class file keeps track

of what file on disk it is reading or writing and where it currently is in

that file. The class hides the details of how this is done so that pro-

grammers can use it without needing to know the details of how it was

implemented.

One of the biggest benefits of encapsulation is that it allows program-

mers to change their minds about one part of a program without having

to rewrite other parts. For example, suppose we want to represent rect-

angular sections of images.

http://media.pragprog.com/titles/gwpy/code/oop/color_dict.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=280

A LITTLE BIT OF OO THEORY 281

Our first attempt might store the XY coordinates of the rectangle’s

bottom-left and upper-right corners, like this:

Download oop/rectangle_corners.py

class Rectangle(object):

'''Represent a rectangular section of an image.'''

def __init__(self, x0, y0, x1, y1):

'''Create a rectangle with non-zero area. (x0,y0) is the

lower left corner, (x1,y1) the upper right corner.'''

self.x0 = x0

self.y0 = y0

self.x1 = x1

self.y1 = y1

def area(self):

'''Return the area of the rectangle.'''

return (self.x1 - self.x0) * (self.y1 - self.y0)

def contains(self, x, y):

'''Return True is (x,y) point is inside a rectangle,

and False otherwise.'''

return (self.x0 <= x <= self.x1) and \

(self.y0 <= y <= self.y1)

Later, we might decide that it would be better to store the rectangle’s

lower-left corner and XY size, like this:

Download oop/rectangle_size.py

class Rectangle(object):

'''Represent a rectangular section of an image.'''

def __init__(self, x0, y0, width, height):

'''Create a rectangle with non-zero area. (x0,y0) is the

lower left corner, width and height the X and Y extent.'''

self.x0 = x0

self.y0 = y0

self.width = width

self.height = height

def area(self):

'''Return the area of the rectangle.'''

return self.width * self.height

http://media.pragprog.com/titles/gwpy/code/oop/rectangle_corners.py
http://media.pragprog.com/titles/gwpy/code/oop/rectangle_size.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=281

A LITTLE BIT OF OO THEORY 282

def contains(self, x, y):

'''Return True if (x,y) point is inside a rectangle,

and False otherwise.'''

return (self.x0 <= x) and (x <= self.x0 + width) and \

(self.y0 <= y) and (y <= self.y0 + height)

If we made this change, we would obviously also have to change every

piece of software that created new rectangles. However, we wouldn’t

have to change code that used the area or contains methods—since they

hide the details of how they calculate their results, we can change their

operation without affecting anything else.

Polymorphism

Polymorphism means “having more than one form.” In programming, it

means that an expression involving a variable can do different things

depending on the type of the object to which the variable refers. For

example, if obj refers to a string, then obj[1:3] produces a two-character

string. If obj refers to a list, on the other hand, the same expression pro-

duces a two-element list. Similarly, the operator left + right can produce

a number, a string, or a list, depending on the types of left and right.

Polymorphism is used throughout modern programs to cut down on

the amount of code programmers need to write and test. It lets us write

a generic function to count nonblank lines:

Download oop/line_counter.py

def non_blank_lines(thing):

'''Return the number of non-blank lines in thing.'''

count = 0

for line in thing:

if line.strip():

count += 1

return count

and then apply it to a list of strings, a file, a web page on a site halfway

around the world (see Section 8.1, Files Over the Internet, on page 160),

or a single string wrapped up in the StringIO class to look like a file.

Each of those four types knows how to be the subject of a loop; in other

words, each one knows how to produce its “next” element as long as

there is one and then say “all done.” That means that instead of writing

four functions to count interesting lines or copying the lines into a list

and then applying one function to that list, we can apply one function

to all those types directly.

http://media.pragprog.com/titles/gwpy/code/oop/line_counter.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=282

A LITTLE BIT OF OO THEORY 283

Languages like Java and C++ require programmers to declare in ad-

vance that classes are polymorphic to one another (usually by using

inheritance, which is described in a moment). Python has a more re-

laxed approach. If the classes provide methods with the same names

and the same number of arguments, then instances of one can be sub-

stituted for instances of the other without any extra work. This means

that if you want to create something that can be used in place of a file,

all you have to do is give it methods like read and readlines. Similarly, if

someone else wants to create their own kind of rectangles for your code

to use, all they have to do is provide the right kind of constructor and

the methods area and contains.

At least, that’s all they should have to do. Right now, though, the class

Rectangle isn’t properly encapsulated, so it would actually be harder

for someone to write a replacement than it ought to be. The reason

is that right now, users of the class have to deal with the rectangle’s

implementation to get its corner points. In our first implementation,

for example, a user would write r.x1 to get the rectangle’s maximum X

extent, while in the second case, she would write r.x0 + r.width.

The way to make polymorphism easier is to encapsulate all of the imple-

mentation details by only ever talking to class instances through meth-

ods. If we do this, our first implementation becomes as follows:

Download oop/rectangle_corners_enc.py

class Rectangle(object):

'''Represent a rectangular section of an image.'''

def __init__(self, x0, y0, x1, y1):

...as before...

def area(self):

...as before...

def contains(self, x, y):

...as before...

def get_min_x(self):

'''Return the minimum X coordinate.'''

return self.x0

def get_min_y(self):

'''Return the minimum Y coordinate.'''

return self.y0

http://media.pragprog.com/titles/gwpy/code/oop/rectangle_corners_enc.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=283

A LITTLE BIT OF OO THEORY 284

def get_max_x(self):

'''Return the maximum X coordinate.'''

return self.x1

def get_max_y(self):

'''Return the maximum Y coordinate.'''

return self.y1

while our second becomes the following:

Download oop/rectangle_size_enc.py

class Rectangle(object):

'''Represent a rectangular section of an image.'''

def __init__(self, x0, y0, width, height):

...as before...

def area(self):

...as before...

def contains(self, x, y):

...as before...

def get_min_x(self):

'''Return the minimum X coordinate.'''

return self.x0

def get_min_y(self):

'''Return the minimum Y coordinate.'''

return self.y0

def get_max_x(self):

'''Return the maximum X coordinate.'''

return self.x0 + width

def get_max_y(self):

'''Return the maximum Y coordinate.'''

return self.y0 + height

More advanced programmers usually take advantage of a built-in func-

tion in Python called property to do some of the work that we’re doing

by hand in these examples; see the Python library documentation for

details and examples.

http://media.pragprog.com/titles/gwpy/code/oop/rectangle_size_enc.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=284

A LITTLE BIT OF OO THEORY 285

Inheritance

Giving one class the same methods as another is one way to make them

polymorphic, but it suffers from the same flaw as initializing an object’s

instance variables from outside the object. If a programmer forgets just

one line of code, the whole program can fail for reasons that will be

difficult to track down. A better approach is to use a third fundamental

feature of object-oriented programming called inheritance, which allows

you to recycle code in yet another way.

To explore how this is done, suppose we are trying to simulate the

ecosystem of a tide pool. The pool contains all sorts of living things

that float around and interact with their neighbors. Each critter moves

around in its own special way and has its own favorite food. We define

a class Organism that represents this living thing:

Download oop/organism.py

class Organism(object):

'''A thing that lives in a tide pool.'''

def __init__(self, name, x, y):

'''A living thing that is at location (x,y) in the tide pool.'''

self.name = name

self.x = x

self.y = y

def __str__(self):

'''Return a string representation of this Organism.'''

return '(%s, [%s, %s])' % (self.name, self.x, self.y)

def can_eat(self, food):

'''Report whether this Organism can eat the given food.

Since we don't know anything about what a generic organism

eats, this always returns False.'''

return False

def move(self):

'''Ask the organism to move. By default, this does nothing,

since we don't know anything about how fast or how far a

generic organism would move.'''

return

The class Organism has three instance variables: name, x, and y (the

latter two representing its coordinates within the pool). It also has four

methods: __init__, __str__, can_eat, and move. Since we don’t know any-

http://media.pragprog.com/titles/gwpy/code/oop/organism.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=285

A LITTLE BIT OF OO THEORY 286

thing about the Organism, it never actually moves and doesn’t eat any-

thing.

Not all real organisms behave like our generic Organism. Crabs walk,

green algae float, and mussels swim—though not the same way fish do.

Some eat plants; some eat animals; green algae “eat” sunlight through

photosynthesis.

We can define these specific types of organisms as new classes. Rather

than defining each one from scratch, we start with our generic organism

by replacing object with Organism in the class header:

Download oop/arthropod_header.py

class Arthropod(Organism):

pass

Here, the keyword pass means “do nothing to the definitions inherited

from Organism.” We call Organism the parent or superclass, and we call

Arthropod the child or subclass. Arthropod inherits instance variables

and methods from its parent Organism, so an Arthropod object automati-

cally has the instance variables name, x, and y and the methods __init__,

__str__, can_eat, and move:

Download oop/arthropod_basic.py

>>> blue_crab = Arthropod('Callinectes sapidus', 0, 0)

>>> print blue_crab

(Callinectes sapidus, 0, 0)

However, we want the Arthropod class to be more than just a generic

Organism, which means giving it its own instance variables, methods,

or both. In this case, a leg_count instance variable is needed, which

requires changing the definition of __init__:

Download oop/arthropod_init.py

class Arthropod(Organism):

'''An arthropod that has a fixed number of legs.'''

def __init__(self, name, x, y, legs):

'''An arthropod with the given number of legs that exists at location

(x, y) in the tide pool.'''

Organism.__init__(self, name, x, y)

self.legs = legs

In the first line of __init__, we call the constructor from class Organ-

ism to initialize the three instance variables, which are name, x, and y.

The second line creates the leg_count instance variable and initializes

http://media.pragprog.com/titles/gwpy/code/oop/arthropod_header.py
http://media.pragprog.com/titles/gwpy/code/oop/arthropod_basic.py
http://media.pragprog.com/titles/gwpy/code/oop/arthropod_init.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=286

A LITTLE BIT OF OO THEORY 287

it. Arthropod.__init__ overrides Organism __init__, so when an instance of

Arthropod calls __init__, the version defined in that class is called, rather

than the one in the parent class:

Download oop/arthropod_init_result.py

>>> lobster = Arthropod('Homarus gammarus', 0, 0)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: __init__() takes exactly 5 arguments (4 given)

>>> lobster = Arthropod('Homarus gammarus', 0, 0, 10)

The call to the Arthropod constructor with only three arguments results

in an error. Once a function is overridden, the parent’s version of the

function cannot be called from outside the class definition.

Notice, though, that when we print an instance of Arthropod, the num-

ber of legs isn’t reported:

Download oop/arthropod_str.py

>>> lobster = Arthropod('Homarus gammarus', 0, 0, 10)

>>> print lobster

(Homarus gammarus, 0, 0)

This happens because we haven’t overridden the __str__ method, so

Organism.__str__ is still being called. Fixing this is straightforward:

Download oop/arthropod_str_override.py

class Arthropod(Organism):

'''An arthropod that has a fixed number of legs.'''

def __init__(self, name, x, y, legs):

'''An arthropod with the given number of legs that exists at location

(x, y) in the tide pool.'''

Organism.__init__(self, name, x, y)

self.legs = legs

def __str__(self):

'''Return a string representation of this Arthropod.'''

return '(%s, %s, [%s, %s])' % (self.name, self.legs, self.x, self.y)

Of course, a child class can also have methods that are not part of the

parent class:

Download oop/arthropod.py

class Arthropod(Organism):

'''An arthropod that has a fixed number of legs.'''

http://media.pragprog.com/titles/gwpy/code/oop/arthropod_init_result.py
http://media.pragprog.com/titles/gwpy/code/oop/arthropod_str.py
http://media.pragprog.com/titles/gwpy/code/oop/arthropod_str_override.py
http://media.pragprog.com/titles/gwpy/code/oop/arthropod.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=287

A LONGER EXAMPLE 288

Figure 13.2: Jmol: an open source Java viewer for chemical structures

in 3D

def __init__(self, name, x, y, legs):

'''An arthropod with the given number of legs that exists at location

(x, y) in the tide pool.'''

Organism.__init__(self, name, x, y)

self.legs = legs

def __str__(self):

'''Return a string representation of this Arthropod.'''

return '(%s, %s, [%s, %s])' % (self.name, self.legs, self.x, self.y)

def is_decapod(self):

'''Return True if this Arthropod is a decapod.'''

return self.legs == 10

def leg_count(self):

'''Return the number of legs this Arthropod possesses.'''

return self.legs

13.5 A Longer Example

Molecular graphic visualization tools allow for interactive exploration

of molecular structures. Most read PDB-formatted files, which we de-

scribe in Section 8.4, Multiline Records, on page 177.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=288

A LONGER EXAMPLE 289

In a molecular visualizer, every atom, molecule, bond, and so on, has

a location in 3D space, usually defined as a vector, which is an arrow

from the origin to where the structure is. All of these structures can be

rotated and translated.

A vector is usually represented by x, y, and z coordinates that specify

how far along the x-axis, y-axis, and z-axis the vector extends.

Here is how ammonia can be specified in PDB format:

Download fileproc/ammonia.pdb

COMPND AMMONIA

ATOM 1 N 0.257 -0.363 0.000

ATOM 2 H 0.257 0.727 0.000

ATOM 3 H 0.771 -0.727 0.890

ATOM 4 H 0.771 -0.727 -0.890

END

In our simplified PDB format, a molecule is made up of numbered

atoms. In addition to the number, an atom has a symbol and (x, y, z)

coordinates. For example, in one of the atoms in ammonia is nitrogen

with symbol N at coordinates (0.257, -0.363, 0.0). In the following sections,

we will look at how we could translate these ideas into object-oriented

Python.

Class Atom

We might want to create an atom like this, using information we read

from the PDB file:

Download oop/atom.py

nitrogen = Atom(1, "N", 0.257, -0.363, 0.0)

To do this, we’ll need a class called Atom with a constructor that creates

all the appropriate instance variables:

Download oop/atom.py

class Atom(object):

'''An atom with a number, symbol, and coordinates.'''

def __init__(self, num, sym, x, y, z):

'''Create an Atom with number num, string symbol sym, and float

coordinates (x, y, z).'''

self.number = num

self.center = (x, y, z)

self.symbol = sym

http://media.pragprog.com/titles/gwpy/code/fileproc/ammonia.pdb
http://media.pragprog.com/titles/gwpy/code/oop/atom.py
http://media.pragprog.com/titles/gwpy/code/oop/atom.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=289

A LONGER EXAMPLE 290

To inspect an Atom, we’ll want to provide __repr__ and __str__ methods:

Download oop/atom.py

def __str__(self):

'''Return a string representation of this Atom in this format:

(SYMBOL, X, Y, Z)

'''

return '(%s, %s, %s, %s)' % \

(self.symbol, self.center[0], self.center[1], self.center[2])

def __repr__(self):

'''Return a string representation of this Atom in this format:

Atom("SYMBOL", X, Y, Z)

'''

return 'Atom(%s, "%s", %s, %s, %s)' % \

(self.number, self.symbol, \

self.center[0], self.center[1], self.center[2])

We’ll use those later, when we define a class for molecules.

In visualizers, one common operation is translation: move an atom to

a different location. We’d like to be able to write this in order to tell the

nitrogen atom to move up by 0.2 units:

Download oop/atom.py

nitrogen.translate(0, 0, 0.2)

This code works as expected if we add the following method to class

Atom:

Download oop/atom.py

def translate(self, x, y, z):

'''Move this Atom by adding (x, y, z) to its coordinates.'''

self.center = (self.center[0] + x,

self.center[1] + y,

self.center[2] + z)

Class Molecule

Remember that we read PDB files one line at a time. When we reach

the line containing COMPND AMMONIA, we know that we’re building a

complex structure: a molecule with a name and a list of atoms.

http://media.pragprog.com/titles/gwpy/code/oop/atom.py
http://media.pragprog.com/titles/gwpy/code/oop/atom.py
http://media.pragprog.com/titles/gwpy/code/oop/atom.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=290

A LONGER EXAMPLE 291

Here’s the start of a class for this, including an add method that adds

an Atom to the molecule:

Download oop/molecule.py

class Molecule(object):

'''A molecule with a name and a list of Atoms.'''

def __init__(self, name):

'''Create a Compound named name with no Atoms.'''

self.name = name

self.atoms = []

def add(self, a):

'''Add Atom a to my list of Atoms.'''

self.atoms.append(a)

As we read through the ammonia PDB information, we add atoms as

we find them; here is the code from Section 8.4, Multiline Records, on

page 177 rewritten to return a Molecule object instead of a list of tuples:

Download oop/multimol_2.py

from molecule import Molecule

from atom import Atom

def read_molecule(r):

'''Read a single molecule from reader r and return it,

or return None to signal end of file.'''

If there isn't another line, we're at the end of the file.

line = r.readline()

if not line:

return None

Name of the molecule: "COMPND name"

key, name = line.split()

Other lines are either "END" or "ATOM num kind x y z"

molecule = Molecule(name)

reading = True

while reading:

line = r.readline()

if line.startswith('END'):

reading = False

else:

key, num, kind, x, y, z = line.split()

molecule.add(Atom(num, kind, float(x), float(y), float(z)))

return molecule

http://media.pragprog.com/titles/gwpy/code/oop/molecule.py
http://media.pragprog.com/titles/gwpy/code/oop/multimol_2.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=291

A LONGER EXAMPLE 292

If we compare the two versions, we can see the code is nearly identical.

It’s just as easy to read the new version as the old—more so even,

because it includes type information. Here are the __str__ and __repr__

methods:

Download oop/molecule.py

def __repr__(self):

'''Return a string representation of this Molecule in this format:

Molecule("NAME", (ATOM1, ATOM2, ...))

'''

res = ''

for atom in self.atoms:

res = res + repr(atom) + ', '

Strip off the last comma.

res = res[:-2]

return 'Molecule("%s", (%s))' % (self.name, res)

def __str__(self):

'''Return a string representation of this Molecule in this format:

(NAME, (ATOM1, ATOM2, ...))

'''

res = ''

for atom in self.atoms:

res = res + str(atom) + ', '

Strip off the last comma.

res = res[:-2]

return '(%s, (%s))' % (self.name, res)

We’ll add a translate method to Molecule to make it easier to move:

Download oop/molecule.py

def translate(self, x, y, z):

'''Move this Compound, including all Atoms, by (x, y, z).'''

for atom in self.atoms:

atom.translate(x, y, z)

And here we call it:

Download oop/molecule.py

ammonia = Molecule("AMMONIA")

ammonia.add(Atom(1, "N", 0.257, -0.363, 0.0))

ammonia.add(Atom(2, "H", 0.257, 0.727, 0.0))

ammonia.add(Atom(3, "H", 0.771, -0.727, 0.890))

ammonia.add(Atom(4, "H", 0.771, -0.727, -0.890))

ammonia.translate(0, 0, 0.2)

http://media.pragprog.com/titles/gwpy/code/oop/molecule.py
http://media.pragprog.com/titles/gwpy/code/oop/molecule.py
http://media.pragprog.com/titles/gwpy/code/oop/molecule.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=292

SUMMARY 293

13.6 Summary

In this chapter, we learned the following:

• In object-oriented languages, new types are defined by creating

classes. Classes support encapsulation; in other words, they com-

bine data and the operations on it so that other parts of the pro-

gram can ignore implementation details.

• Classes also support polymorphism. If two classes have methods

that work the same way, instances of those classes can replace

one another without the rest of the program being affected. This

enables “plug-and-play” programming, in which one piece of code

can perform different operations depending on the objects it is

operating on.

• Finally, new classes can be defined by inheriting features from

existing ones. The new class can override the features of its parent

and/or add entirely new features.

• When a method is defined in a class, its first argument must be a

variable that represents the object the method is being called on.

By convention, this argument is called self.

• Some methods have special predefined meanings in Python; to sig-

nal this, their names begin and end with two underscores. Some

of these methods are called when constructing objects (__init__) or

converting them to strings (__str__ and __repr__); others, like __add__

and __sub__, are used to imitate arithmetic.

13.7 Exercises

The best way to learn how to do object-oriented programming is to

go back through the examples and exercises of previous chapters and

see which ones are easier or more naturally written using classes and

objects. You can also create object-oriented programs that represent

things in the real world. For example, what classes would you use to

model the stars, planets, moons, rings, and comets that make up a

solar system? What methods should each class have? How and where

would you keep track of things like orbital parameters? How would you

prevent programmers from accidentally putting a star in orbit around

a comet or something equally silly?

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=293

Chapter 14

Graphical User Interfaces
Most of the programs in previous chapters are not interactive. Once

launched, they run to completion without giving us a chance to steer

them or provide new input. The few that do communicate with us do so

through the kind of text-only command-line user interface, or CLUI, that

would have already been considered old-fashioned in the early 1980s.

As you already know, most modern programs interact with users via a

graphical user interface, or GUI, which is made up of windows, menus,

buttons, and so on. In this chapter, we will show you how to build sim-

ple GUIs using a Python module called Tkinter. Along the way, we will

introduce a different way of structuring programs called event-driven

programming. A traditionally structured program usually has control

over what happens when, but an event-driven program must be able to

respond to input at unpredictable moments. As we shall see, the easiest

way to do this is to use some of Python’s more advanced features.

Tkinter is one of several toolkits you can use to build GUIs in Python,

and other languages have toolkits of their own. However, knowing how

to put buttons and sliders on the screen is only part of knowing how to

create an application that people will understand, use, and enjoy. To do

the latter, you will also need to know something about graphic design

and other aspects of human-computer interaction. Hundreds of books

have been written on the subject (we particularly like [Joh07]), and you

can find hundreds of tutorials and resources on the Web.

THE TKINTER MODULE 295

Figure 14.1: A root window

14.1 The Tkinter Module

Tkinter comes with Python and allows us to create windows, buttons,

menus, text areas, checkboxes, and many other widgets. We usually

start by importing everything in the Tkinter module into our program:1

Download gui/import.py

from Tkinter import *

Every Tkinter GUI application starts by creating a root window and

saving a reference to it in a variable:

Download gui/getwindow.py

window = Tk()

The root window is initially empty (see Figure 14.1). It acts as the out-

ermost container for the application; all the other widgets we create will

depend on it. If the window on the screen is closed, the window object

is destroyed (though we can create a new root window by calling Tk()

again). All of the applications we will create have only one main win-

dow, but additional windows can be created using the TopLevel widget

(see Figure 14.2, on the next page).

1. We said in Section 4.1, Importing Modules, on page 50 that import * was bad style

because of the risk of name collision. We are using it here because most online tutorials

about Tkinter are written this way. In your applications, you should use import Tkinter as tk

and then use tk.thing to refer to its elements.

http://media.pragprog.com/titles/gwpy/code/gui/import.py
http://media.pragprog.com/titles/gwpy/code/gui/getwindow.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=295

BASIC GUI CONSTRUCTION 296

Widget Description

Button A clickable button

Canvas An area used for drawing or displaying images

Checkbutton A clickable box that can be selected or unselected

Entry A single-line text field that the user can type in

Frame A container for widgets

Label A single-line display for text

Listbox A drop-down list that the user can select from

Menu A drop-down menu

Message A multiline display for text

Menubutton An item in a drop-down menu

Text A multiline text field that the user can type in

TopLevel An additional window

Figure 14.2: Tkinter widgets

14.2 Basic GUI Construction

The next step in developing a GUI is to add widgets to the root window.

The simplest widget is a Label, which is used to display short pieces of

text. When we create one, we must specify its parent widget, which is

the widget that the label is placed inside. In our case, the parent widget

is the root window of the application. We also need to provide the text

that is to be displayed, which can be done by setting the label’s text

attribute when we construct it. (By convention, we do not place spaces

on either side of the equal sign when setting the value of attributes like

text.)

Download gui/label.py

from Tkinter import *
window = Tk()

label = Label(window, text="This is our label.")

label.pack()

The last line of this little program is crucial. Like other widgets, Label

has a method called pack that places it in its parent and then tells

the parent to resize itself as necessary. If we forget to call this method,

the child widget (in this case, the label) won’t be displayed or will be

displayed improperly. After label.pack() is called, on the other hand, we

see the GUI shown in Figure 14.3, on the following page.

http://media.pragprog.com/titles/gwpy/code/gui/label.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=296

BASIC GUI CONSTRUCTION 297

Figure 14.3: A window with a label

Labels are often used to display static text that never changes, such as

copyright information. Often, though, applications will want to update

a label’s text as the program runs to show things like the currently

open file or the time of day. One way to do this is simply to assign a

new value to the widget’s text using named parameters (Section 12.1,

Named Parameter, on page 241):

Download gui/label-dict.py

from Tkinter import *
import time

window = Tk()

label = Label(window, text="First label.")

label.pack()

time.sleep(2)

label.config(text="Second label.")

Run the previous code one line at a time from the Python command

prompt to see how the label changes. This code will not display the

window at all if run all at once as a script or from within Wing 101. In

those cases, the call to window.mainloop() is needed to tell the program

to pay attention to the outside world.

Mutable Variables

There is a better way to manage the interactions between a program’s

GUI and its variables, and the reason it’s better brings us face to face

with the biggest difference between the applications we have seen in

previous chapters and event-driven GUI applications. Suppose we want

to display a string, such as the current time, in several places in a

GUI—the application’s status bar, some dialog boxes, and so on. As-

signing a new value to each widget each time the string changes isn’t

http://media.pragprog.com/titles/gwpy/code/gui/label-dict.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=297

BASIC GUI CONSTRUCTION 298

Immutable Type Tkinter Mutable Type

int IntVar

string StringVar

bool BooleanVar

double DoubleVar

Figure 14.4: Tkinter mutable types

hard, but as the application grows, so too do the odds that we’ll forget

to update at least one of the widgets that’s displaying the string. What

we really want is a string that “knows” which widgets care about its

value and can update them itself when that value changes.

Since Python’s strings, integers, doubles, and Booleans are immutable,

Tkinter provides types of its own that can be updated in place and

that can notify widgets whenever their values change (see Figure 14.4).

Rather than set the text of the label using an immutable type such

as string, we can set it using the corresponding mutable type, such as

StringVar. Whenever a new value is assigned to that StringVar, it tells the

label, and any other widgets it has been assigned to, that it’s time to

update.

The values in Tkinter mutable types are set and retrieved using the set

and get methods. To show how they work, the following code creates a

Tkinter string variable called data and sets its value to "Data to display".

It then creates a label to display the contents of data:

Download gui/label-variable.py

from Tkinter import *
window = Tk()

data = StringVar()

data.set("Data to display")

label = Label(window, textvariable=data)

label.pack()

window.mainloop()

Notice that this time we set the textvariable attribute of the label rather

than the text attribute. Any time the program changes the contents of

data, the text the label is displaying will automatically change as well.

The relationships between the three main variables in this program are

shown in Figure 14.5, on the next page.

http://media.pragprog.com/titles/gwpy/code/gui/label-variable.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=298

BASIC GUI CONSTRUCTION 299

!"#"

$"%&$

!"#$#%$&%'()*+#,!

'()!*'

Figure 14.5: Widgets and mutable variables

There is one small trap here for newcomers: because of the way the

Tkinter module is structured, you cannot create a StringVar or any other

mutable variable until you have called the Tk() function to create the

top-level window. This doesn’t make much difference in this case, but

as we’ll see in a moment, it sometimes forces programmers to do things

in an unintuitive order.

Frame

To show the real power of mutable variables, we need to create a GUI

that has several widgets. We will use this as an opportunity to introduce

another widget called Frame. A frame isn’t directly visible on the screen;

instead, its purpose is to organize other widgets. To create a GUI that

displays three labels, for example, the following code puts a frame in

the root window and then adds the labels to the frame one by one:

Download gui/frame.py

from Tkinter import *

window = Tk()

frame = Frame(window)

frame.pack()

first = Label(frame, text="First label")

first.pack()

second = Label(frame, text="Second label")

second.pack()

third = Label(frame, text="Third label")

third.pack()

window.mainloop()

http://media.pragprog.com/titles/gwpy/code/gui/frame.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=299

BASIC GUI CONSTRUCTION 300

Figure 14.6: A window with a frame and three labels

The resulting GUI is shown in Figure 14.6, while in Figure 14.7, on the

next page, we can see how the five widgets are organized. Note that we

call pack on every widget; if we omit one of these calls, that widget will

not be displayed.

Putting the three labels in the same frame is equivalent to putting the

labels directly into the main window widget, but we can use multiple

frames to format the window’s layout. Here we use two frames con-

taining the three labels and put a border around the second frame. We

specify the border width using the borderwidth attribute (0 is the default)

and the border style using relief (FLAT is the default). The other border

styles are SUNKEN, RAISED, GROOVE, and RIDGE.

Download gui/frame2.py

window = Tk()

frame = Frame(window)

frame.pack()

frame2 = Frame(window, borderwidth=4, relief=GROOVE)

frame2.pack()

first = Label(frame, text="First label")

first.pack()

second = Label(frame2, text="Second label")

second.pack()

third = Label(frame2, text="Third label")

third.pack()

window.mainloop()

Entry

Two widgets let users enter text. The simplest one is Entry, which allows

for a single line of text. If we associate a StringVar with the Entry, then

http://media.pragprog.com/titles/gwpy/code/gui/frame2.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=300

MODELS, VIEWS, AND CONTROLLERS 301

!"#$%!

&'()*

&"'+,

+*-%#$

,."'$

Figure 14.7: Structure of a three-label GUI

whenever a user types anything into that Entry, the StringVar’s value will

automatically be updated to the contents of the Entry. If that same String-

Var is also bound to a label, then the label will display whatever is cur-

rently in the Entry without us doing any extra work. The following code

shows how to set this up, and we can see what the GUI looks like in

Figure 14.8, on the following page:

Download gui/entry.py

from Tkinter import *

window = Tk()

frame = Frame(window)

frame.pack()

var = StringVar()

label = Label(frame, textvariable=var)

label.pack()

entry = Entry(frame, textvariable=var)

entry.pack()

window.mainloop()

14.3 Models, Views, and Controllers

Using a StringVar to connect a text-entry box and a label is the first

step toward separating models, views, and controllers, which is the key

to building larger GUIs (and many other kinds of applications). As its

name suggests, a view is something that displays information to the

user, like Label.

http://media.pragprog.com/titles/gwpy/code/gui/entry.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=301

MODELS, VIEWS, AND CONTROLLERS 302

Figure 14.8: An entry and a label tied together

Many views, like Entry, also accept input, which they display immedi-

ately. The key is that they don’t do anything else: they don’t calculate

average temperatures, move robot arms, or do any other calculations.

Models, on the other hand, just store data, like a piece of text or the

current inclination of a telescope. They also don’t do calculations; their

job is simply to keep track of the application’s current state (and, in

some cases, to save that state to a file or database and reload it later).

Sitting beside an application’s models and views are its controllers,

implementing its intelligence. The controller is what decides whether

two gene sequences match well enough to be colored green or whether

someone is allowed to overwrite an old results file. Controllers may

update an application’s models, which in turn can trigger changes to

its views.

The following code shows what all of this looks like in practice. Here,

the model is a simple integer counter, which is implemented as an IntVar

so that the view will update itself automatically. The controller is the

function click, which updates the model whenever a button is clicked.

Four objects make up the view: the root window, a Frame, a Label that

shows the current value of counter, and a button that the user can click

to increment counter’s value:

Download gui/mvc.py

Initialization.

from Tkinter import *

The controller.

def click():

counter.set(counter.get() + 1)

http://media.pragprog.com/titles/gwpy/code/gui/mvc.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=302

MODELS, VIEWS, AND CONTROLLERS 303

if __name__ == '__main__':

More initialization.

window = Tk()

The model.

counter = IntVar()

counter.set(0)

The views.

frame = Frame(window)

frame.pack()

button = Button(frame, text="Click", command=click)

button.pack()

label = Label(frame, textvariable=counter)

label.pack()

window.mainloop()

The first two arguments used to construct the Button should be familiar

by now. The third, command=click, tells it to call the function click each

time the user presses the button. This makes use of the fact that, in

Python, a function is just another kind of object and can be passed as

an argument like anything else.

The click function in the previous code does not have any parame-

ters but uses the variable counter that is defined outside the function.

Variables like this are called global variables, and their use should be

avoided, since they make programs hard to understand. It would be

better to pass any variables the function needs into it as parameters.

We can’t do this using the tools we have seen so far, because the func-

tions that our buttons can call must not have any parameters. We will

show you one way to avoid using global variables in the next section,

and we’ll show you another in Section 13.1, Class Color, on page 271.

Using Lambda

The simple counter GUI shown earlier does what it’s supposed to, but

there is room for improvement. For example, suppose we want to be

able to lower the counter’s value as well as raise it.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=303

MODELS, VIEWS, AND CONTROLLERS 304

Using only the tools we have seen so far, we could add another button

and another controller function like this:

Download gui/mvc2.py

Initialization.

from Tkinter import *
window = Tk()

The model.

counter = IntVar()

counter.set(0)

Two controllers

def click_up():

counter.set(counter.get() + 1)

def click_down():

counter.set(counter.get() - 1)

The views.

frame = Frame(window)

frame.pack()

button = Button(frame, text="Up", command=click_up)

button.pack()

button = Button(frame, text="Down", command=click_down)

button.pack()

label = Label(frame, textvariable=counter)

label.pack()

window.mainloop()

This seems a little clumsy, though. The two functions click_up and

click_down are doing almost the same thing; surely we ought to be able

to combine them into one. While we’re at it, we ought to pass counter

into the function explicitly, rather than using it as a global variable:

Download gui/mvc_one_func.py

The model.

counter = IntVar()

counter.set(0)

One controller with parameters.

def click(variable, value):

variable.set(variable.get() + value)

http://media.pragprog.com/titles/gwpy/code/gui/mvc2.py
http://media.pragprog.com/titles/gwpy/code/gui/mvc_one_func.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=304

MODELS, VIEWS, AND CONTROLLERS 305

The problem with this is figuring out what to pass into the buttons,

since we can’t provide any arguments for the functions assigned to

the buttons’ command attributes when creating those buttons.2 Tkinter

cannot read our minds—it can’t magically know how many arguments

our functions require or what values to pass in for them. For that rea-

son, it requires that the controller functions triggered by buttons and

other widgets take zero arguments so they can all be called the same

way. It is our job to figure out how to take the two-argument function

we want to use and turn it into one that needs no arguments at all.

We could do this by writing a couple of wrapper functions:

Download gui/mvc_wrapper_func.py

def click_up():

click(counter, 1)

def click_down():

click(counter, -1)

but this gets us back to two nearly identical functions that rely on

global variables. A better way is to use a lambda function, which allows

us to create a one-line function anywhere we want without giving it a

name.3 Here’s a very simple example:

Download gui/lambda_1.py

>>> lambda: 3

<function <lambda> at 0x00A89B30>

>>> (lambda: 3)()

3

The expression lambda: 3 on the first line creates a nameless function

that always returns the number 3. The second expression creates this

function and immediately calls it, which has the same effect as this:

Download gui/lambda_2.py

>>> def f():

... return 3

...

>>> f()

3

2. If we tried to pass parameters to click_up when creating the button, then Python would

call click_up and assign the result of the call to the command parameter, instead of assign-

ing the function itself to command.

3. The name lambda function comes from the Lambda Calculus, a mathematical system

for investigating function definition and application that was developed in the 1930s by

Alonzo Church and Stephen Kleene.

http://media.pragprog.com/titles/gwpy/code/gui/mvc_wrapper_func.py
http://media.pragprog.com/titles/gwpy/code/gui/lambda_1.py
http://media.pragprog.com/titles/gwpy/code/gui/lambda_2.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=305

MODELS, VIEWS, AND CONTROLLERS 306

However, the lambda form does not create a new variable or change an

existing one. Finally, lambda functions can take arguments, just like

other functions:

Download gui/lambda_4.py

>>> (lambda x: 2 * x)(3)

6

So, how does this help us with GUIs? The answer is that it lets us write

one controller function to handle different buttons in a general way

and then wrap up calls to that function when and as needed. Here’s

the two-button GUI once again using lambda functions:

Download gui/mvc3.py

Initialization.

from Tkinter import *
window = Tk()

The model.

counter = IntVar()

counter.set(0)

General controller

def click(var, value):

var.set(var.get() + value)

The views.

frame = Frame(window)

frame.pack()

button = Button(frame, text="Up", command=lambda: click(counter, 1))

button.pack()

button = Button(frame, text="Down", command=lambda: click(counter, -1))

button.pack()

label = Label(frame, textvariable=counter)

label.pack()

window.mainloop()

This code creates a zero-argument lambda function to pass into each

button just where it’s needed. Those lambda functions then pass the

right values into click. This is cleaner than the preceding code because

the function definitions are enclosed in the call that uses them—there

is no need to clutter the GUI with little functions that are used only in

one place.

http://media.pragprog.com/titles/gwpy/code/gui/lambda_4.py
http://media.pragprog.com/titles/gwpy/code/gui/mvc3.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=306

STYLE 307

Note, however, that it is a very bad idea to repeat the same function

several times in different places—if you do that, the odds are very high

that you will one day want to change them all but will miss one or two.

If you find yourself wanting to do this, reorganize the code so that the

function is defined only once.

14.4 Style

Every windowing system has its own look and feel—square or rounded

corners, particular colors, and so on. In this section, we will see how to

change the appearance of a GUI’s widgets to make an application look

more distinctive.

A note of caution before we begin: the default styles of most windowing

systems have been chosen by experts trained in graphic design and

human-computer interaction. The odds are that any radical changes on

your part will make things worse, not better. In particular, be careful

about colors (several percent of the male population has some degree

of color blindness) and font sizes (many people, particularly the elderly,

cannot read small text).

Fonts

Let’s start by changing the size, weight, slant, and family of the font

used to display text. To specify the size, we provide the height as an

integer in points. We can set the weight to either bold or normal and

the slant to either italic (slanted) or roman (not slanted).

The font families we can use depend on what system the program is

running on. Common families include Times, Courier, and Verdana,

but dozens of others are usually available. One note of caution, though:

if you choose an unusual font, people running your program on other

computers might not have it, so your GUI might appear different than

you’d like for them.

The following sets the font of a button to be 14-point, bold, italic, and

Courier. The result is shown in Figure 14.9, on the following page.

Download gui/font.py

from Tkinter import *
window = Tk()

button = Button(window, text="Hello", font=("Courier", 14, "bold italic"))

button.pack()

window.mainloop()

http://media.pragprog.com/titles/gwpy/code/gui/font.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=307

STYLE 308

Figure 14.9: A button with customized text font

Colors

Almost all widgets have background and foreground colors, which can

be set using the bg and fg attributes, respectively. As the following code

shows, we can set either of these to a standard color by specifying the

color’s name, such as white, black, red, green, blue, cyan, yellow, or

magenta:

Download gui/color.py

from Tkinter import *
window = Tk()

button = Label(window, text="Hello", bg="green", fg="white")

button.pack()

window.mainloop()

The result is shown in Figure 14.10, on the next page. As you can

see, pure white text on a bright green background is not particularly

readable.

We can choose more colors by specifying them using the RGB color

model introduced in Section 4.4, Pixels and Colors, on page 68. As we

said there, RGB values are conventionally written in hexadecimal (base-

16) notation; the best way to understand them is to play with them.

http://media.pragprog.com/titles/gwpy/code/gui/color.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=308

STYLE 309

Figure 14.10: A label with color

The following color picker does this by updating a piece of text to show

the color specified by the red, green, and blue values entered in the text

boxes:

Download gui/colorpicker.py

from Tkinter import *

def change(widget, colors):

'''Update the foreground color of a widget to show the RGB color value

stored in a dictionary with keys 'red', 'green', and 'blue'. Does

not check the color value.

'''

new_val = '#'

for name in ('red', 'green', 'blue'):

new_val += colors[name].get()

widget['bg'] = new_val

Create the application.

window = Tk()

frame = Frame(window)

frame.pack()

Set up text entry widgets for red, green, and blue, storing the

associated variables in a dictionary for later use.

colors = {}

for (name, col) in (('red', '#FF0000'),

('green', '#00FF00'),

('blue', '#0000FF')):

colors[name] = StringVar()

colors[name].set('00')

entry = Entry(frame, textvariable=colors[name], bg=col, fg="white")

entry.pack()

http://media.pragprog.com/titles/gwpy/code/gui/colorpicker.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=309

STYLE 310

Display the current color.

current = Label(frame, text=' ', bg='#FFFFFF')

current.pack()

Give the user a way to trigger a color update.

update = Button(frame, text='Update', command=lambda: change(current, colors))

update.pack()

Run the application.

mainloop()

This is the most complicated GUI we have seen so far but can be under-

stood by breaking it down into a model, some views, and a controller.

The model is three StringVars that store the hexadecimal strings repre-

senting the current red, green, and blue components of the color to

display. These three variables are kept in a dictionary indexed by name

for easy access. The controller is the function change, which concate-

nates the strings to create an RGB color and applies that color to the

background of a widget. The views are the text-entry boxes for the color

components, the label that displays the current color, and the button

that tells the GUI to update itself.

This program works, but neither the GUI nor the code is very attractive.

It’s annoying to have to click the update button, and if a user ever types

anything that isn’t a two-digit hexadecimal number into one of the text

boxes, it results in an error. The exercises will ask you to redesign both

the appearance and the structure of this program.

Layout

One of the things that makes the color picker GUI ugly is the fact

that everything is arranged top to bottom. Tkinter uses this layout by

default, but we can usually come up with something better.

To see how, let’s revisit the example from Figure 14.8, on page 302,

placing the label and button horizontally. We tell Tkinter to do this

by providing a side argument to the pack method. The code to do this is

shown here, and the result can be seen in Figure 14.11, on the following

page:

Download gui/side.py

from Tkinter import *
window = Tk()

frame = Frame(window)

frame.pack()

http://media.pragprog.com/titles/gwpy/code/gui/side.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=310

STYLE 311

Figure 14.11: A window with horizontal layout

label = Label(frame, text="Name")

label.pack(side="left")

entry = Entry(frame)

entry.pack(side="left")

window.mainloop()

Setting side to "left" tells Tkinter that the leftmost part of the label is to

be placed next to the left edge of the frame, and then the leftmost part

of the entry field is placed next to the right edge of the label—in short,

that widgets are to be packed using their left edges. We could equally

well pack according to the right, top, or bottom edges, or we could mix

packings (though that can quickly become confusing).

For even more control of our window layout, we can use a different

layout manager called grid. As its name implies, it treats windows and

frames as grids of rows and columns. To add the widget to the window,

we call grid instead of pack. Do not call both! The grid call can take

several parameters, which are shown in Figure 14.12, on the next page.

In the following code, we place the label in the upper left (row 0, column

0) and the entry field in the lower right (row 1, column 1). As you can

see in Figure 14.13, on page 313, this leaves the bottom-left and upper-

right corners empty:

Download gui/grid.py

from Tkinter import *
window = Tk()

frame = Frame(window)

frame.pack()

label = Label(frame, text="Name:")

label.grid(row=0, column=0)

entry = Entry(frame)

entry.grid(row=1, column=1)

window.mainloop()

http://media.pragprog.com/titles/gwpy/code/gui/grid.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=311

A FEW MORE WIDGETS 312

Parameter Description

row The number of the row to insert the widget into. Row

numbers begin at 0.

column The number of the column to insert the widget into. Col-

umn numbers begin at 0.

rowspan The number of rows the widget occupies. The default is 1.

columnspan The number of columns the widget occupies. The default

is 1.

Figure 14.12: grid() parameters

14.5 A Few More Widgets

To end this chapter, we will look at a few more commonly used widgets.

Text

The Entry widget that we have been using since the start of this chapter

allows for only a single line of text. If we want multiple lines of text, we

use the Text widget instead, as shown here:

Download gui/text.py

from Tkinter import *

def cross(text):

text.insert(INSERT, 'X')

window = Tk()

frame = Frame(window)

frame.pack()

text = Text(frame, height=3, width=10)

text.pack()

button = Button(frame, text="Add", command=lambda: cross(text))

button.pack()

window.mainloop()

Text provides a much richer set of methods than the other widgets we

have seen so far. We can embed images in the text area, put in tags,

select particular lines, and so on. The exercises will give you a chance

to explore its capabilities.

http://media.pragprog.com/titles/gwpy/code/gui/text.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=312

A FEW MORE WIDGETS 313

Figure 14.13: A window with grid layout

Figure 14.14: A window with a text field

Figure 14.15: A checkbutton-based color picker

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=313

A FEW MORE WIDGETS 314

Checkbutton

Checkbuttons, often called checkboxes, have two states, on and off.

When a user clicks a checkbutton, the state changes (see Figure 14.15,

on the previous page). We use a Tkinter mutable variable to keep track

of the user’s selection. Typically, a VarInt variable is used, and the values

1 and 0 indicate on and off, respectively. In the following code, we use

three checkbuttons to create a simpler color picker, and we use the

config method to change the configuration of a widget after it has been

created:

Download gui/checkbutton.py

from Tkinter import *

window = Tk()

frame = Frame(window)

frame.pack()

red = IntVar()

green = IntVar()

blue = IntVar()

for (name, var) in (('R', red), ('G', green), ('B', blue)):

check = Checkbutton(frame, text=name, variable=var)

check.pack(side='left')

def recolor(widget, r, g, b):

color = '#'

for var in (r, g, b):

color += 'FF' if var.get() else '00'

widget.config(bg=color)

label = Label(frame, text='[]')

button = Button(frame, text='update',

command=lambda: recolor(label, red, green, blue))

button.pack(side='left')

label.pack(side='left')

window.mainloop()

Menu

The last widget we will look at is Menu.

http://media.pragprog.com/titles/gwpy/code/gui/checkbutton.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=314

A FEW MORE WIDGETS 315

The following code uses this to create the simple text editor shown in

Figure 14.16, on the following page:

Download gui/menu.py

from Tkinter import *
import tkFileDialog as dialog

def save(root, text):

data = text.get('0.0', END)

filename = dialog.asksaveasfilename(

parent=root,

filetypes=[('Text', '*.txt')],

title='Save as...')

writer = open(filename, 'w')

writer.write(data)

writer.close()

def quit(root):

root.destroy()

window = Tk()

text = Text(window)

text.pack()

menubar = Menu(window)

filemenu = Menu(menubar)

filemenu.add_command(label='Save', command=lambda : save(window, text))

filemenu.add_command(label='Quit', command=lambda : quit(window))

menubar.add_cascade(label = 'File', menu=filemenu)

window.config(menu=menubar)

window.mainloop()

The program begins by defining two functions: save, which saves the

contents of a text widget, and quit, which closes the application. The

save function uses tkFileDialog to create a standard “Save as...” dialog

box, which will prompt the user for the name of a text file.

After creating and packing the Text widget, the program creates a menu-

bar, which is the horizontal bar into which we can put one or more

menus. It then creates a File menu and adds two menu items to it

called Save and Quit. We then add the File menu to the menu bar and

run mainloop.

http://media.pragprog.com/titles/gwpy/code/gui/menu.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=315

OBJECT -ORIENTED GUIS 316

Figure 14.16: A window with a menu

14.6 Object-Oriented GUIs

The GUIs we have built so far have not been particularly well struc-

tured. Most of the code to construct them has not been modularized

in functions, and they have relied on global variables. We can get away

with this for very small examples, but if we try to build larger applica-

tions this way, they will be difficult to understand and debug.

For this reason, almost all real GUIs are built using classes and objects

that tie models, views, and controllers together in one tidy package.

In the counter shown next, for example, the application’s model is a

member variable of the class Counter called self.state, and its controllers

are the methods upClick and quitClick.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=316

SUMMARY 317

Download gui/oogui.py

from Tkinter import *

class Counter:

'''A simple counter GUI using object-oriented programming.'''

def __init__(self, parent):

'''Create the GUI.'''

Framework.

self.parent = parent

self.frame = Frame(parent)

self.frame.pack()

Model.

self.state = IntVar()

self.state.set(1)

Label displaying current state.

self.label = Label(self.frame, textvariable=self.state)

self.label.pack()

Buttons to control application.

self.up = Button(self.frame, text='up', command=self.upClick)

self.up.pack(side='left')

self.right = Button(self.frame, text='quit', command=self.quitClick)

self.right.pack(side='left')

def upClick(self):

'''Handle click on 'up' button.'''

self.state.set(self.state.get() + 1)

def quitClick(self):

'''Handle click on 'quit' button.'''

self.parent.destroy()

if __name__ == '__main__':

window = Tk()

myapp = Counter(window)

window.mainloop()

14.7 Summary

In this chapter, we learned the following:

• Most modern programs provide a graphical user interface (GUI)

for displaying information and interacting with users. GUIs are

http://media.pragprog.com/titles/gwpy/code/gui/oogui.py
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=317

EXERCISES 318

built out of widgets, such as buttons, sliders, and text panels; all

modern programming languages provide at least one GUI toolkit.

• Unlike command-line programs, GUI applications are usually

event-driven. In other words, they react to events such as key-

strokes and mouse clicks when and as they occur.

• Experience shows that GUIs should be built using the Model-View-

Controller pattern. The model is the data being manipulated; the

view displays the current state of the data and gathers input from

the user, while the controller decides what to do next.

• Lambda expressions create functions that have no names. These

are often used to define the actions that widgets should take when

users provide input, without requiring global variables.

• Designing usable GUIs is as challenging a craft as designing soft-

ware. Being good at the latter doesn’t guarantee that you can do

the former, but dozens of good books can help you get started.

14.8 Exercises

Here are some exercises for you to try on your own:

1. Write a GUI application with a button labeled “Good-bye.” When

the button is clicked, the window closes.

2. Write a GUI application with a single button. Initially, the button

is labeled 0, but each time it is clicked, the value on the button

increases by 1.

3. What is a more readable way to write the following?

x = lambda(): 3

4. A DNA sequence is a string made up of As, Ts, Cs, and Gs. Write

a GUI application in which a DNA sequence is entered, and when

the Count button is clicked, the number of As, Ts, Cs and Gs are

counted and displayed in the window (see Figure 14.17, on the

next page).

5. In Section 2.6, Local Variables, on page 32, we wrote a function

to convert degrees Fahrenheit to Celsius. Write a GUI application

that looks like Figure 14.18, on the next page.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=318

EXERCISES 319

Figure 14.17: Occurrence of letters in a DNA sequence

Figure 14.18: A temperature conversion GUI

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=319

EXERCISES 320

Figure 14.19: Temperature conversion results

When a value is entered in the text field and the Convert button is

clicked, the value should be converted from Fahrenheit to Celsius

and displayed in the window, as shown in Figure 14.19.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=320

Chapter 15

Databases
In earlier chapters, we used files to store data. This is fine for small

problems, but as our data sets become larger and more complex, we

need something that will let us search for data in many different ways,

control who can view and modify the data, and ensure that the data is

correctly formatted. In short, we need a database.

Many different kinds of databases exist. Some are like a dictionary that

automatically saves itself on disk, while others store backup copies of

the objects in a program. The most popular by far, however, are rela-

tional databases, which are at the heart of most large commercial and

scientific software systems. In this chapter, we will introduce the key

concepts behind relational databases and then show you how to per-

form a few common operations. If you would like to know more, there

are thousands of books to turn to; [Feh03] is a good place for newcom-

ers to start.

15.1 The Big Picture

A relational database is a collection of tables, each of which has a fixed

number of columns and a variable number of rows. Each column in a

table has a name and contains values of the same data type, such as

integer or string. Each row, or record, contains values that are related

to each other, such as a particular patient’s name, age, and blood type.

Superficially, each table looks like a spreadsheet or a file with one

record per line (see Section 8.1, One Record per Line, on page 160),

but behind the scenes, the database does a lot of work to keep track of

which values are where and how the tables relate to one another.

THE BIG PICTURE 322

There are many different brands of database to choose from, including

commercial systems like Oracle, IBM’s DB2, and Microsoft Access, and

open source databases like MySQL and PostgreSQL. Our examples use

one called SQLite. It isn’t fast enough to handle the heavy loads that

sites like Amazon.com experience, but it is free, it is simple to use, and

as of Python 2.5 the standard library includes a module called sqlite3

for working with it.

A database is usually stored in a file, or in a collection of files. These

files are not formatted as plain text—if you open them in an editor, they

will look like garbage, and any changes you make will probably corrupt

the data and make the database unusable. Instead, you must interact

with the database in one of two ways:

• By typing commands into a GUI, just as you type commands into a

Python interpreter. This is good for simple tasks but not for writing

applications of your own.

• By writing programs in Python (or some other language). These

programs import a library that knows how to work with the kind of

database you are using and use that library to create tables, insert

records, and fetch the data you want. Your code can then format

the results in a web page, calculate statistics, or do whatever else

you want.

As shown in Figure 15.1, on the following page, database libraries can

work in two different ways. The simplest is to manipulate the database

directly, just as a program would manipulate a file. In most cases,

though, the library never actually touches the database itself. Instead,

it communicates with a separate program called a database manage-

ment system, or DBMS, which may run on a separate machine and

which is designed to manage connections from dozens or hundreds

of programs at once. Setting up a DBMS isn’t hard, but it isn’t triv-

ial either; the fact that SQLite takes the “direct” approach is another

reason we chose to use it in this chapter.

Python and other languages do their best to hide the disparity between

these two approaches, and between different DBMSs, by having every

database-specific library implement the same application programming

interface, or API. A library’s API is just the set of functions it provides for

programs to call. If two libraries provide the same API, then programs

can switch from one to the other without any code having to be rewrit-

ten. We have already seen this idea in the picture module introduced

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=322

FIRST STEPS 323

!"#
$%&&'()*

!"#"$"%&
'(#)*+,
'-*.-"/

0123
+,-*./0123

Figure 15.1: Database architecture

in Section 4.3, Objects and Methods, on page 60, which treated GIF,

JPEG, and PNG images the same way. In the examples in this chapter,

our programs all start with this line:

Download db/db_import.cmd

>>> import sqlite3 as dbapi

which means, “Find version 3 of the SQLite library, and import ver-

sion 2 of the database API from it using the name dbapi.” If we change

our minds later and want to use MySQL as a database, we would just

change this line to this:

Download db/db_mysql.cmd

>>> import MySQLdb as dbapi

and leave the rest of our code alone.

Python’s database API hides some of the differences between different

database systems, but not all of them. To put data into a database

or get information out, we must write commands in a special-purpose

language called SQL, which stands for Structured Query Language and

is pronounced either as “sequel” or as the three letters “S-Q-L.” There

are international standards for SQL, but unfortunately, every database

interprets those standards differently or adds a few “improvements”

that no other database provides. As a result, SQL that works for one

database system may work differently, or not at all, for another. Tools

like SQLAlchemy (http://www.sqlalchemy.org/ and [Cop08]) have been

built to hide the differences between SQL dialects, but they are beyond

the scope of this course.

15.2 First Steps

That’s enough theory; let’s create a database and start doing things

with it. As a running example, we will use the predictions for regional

http://media.pragprog.com/titles/gwpy/code/db/db_import.cmd
http://media.pragprog.com/titles/gwpy/code/db/db_mysql.cmd
http://www.sqlalchemy.org/
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=323

FIRST STEPS 324

Region Population

Central Africa 330993

Southeastern Africa 743112

Northern Africa 1037463

Southern Asia 2051941

Asia Pacific 785468

Middle East 687630

Eastern Asia 1362955

South America 593121

Eastern Europe 223427

North America 661157

Western Europe 387933

Japan 100562

Figure 15.2: Estimated world population in 2300

populations in the year 2300 shown in Figure 15.2, which is taken

from http://www.worldmapper.org. (These values are shown graphically

in Figure 15.3, on the next page.)

As promised earlier, we start by telling Python that we want to use sqlite3

by importing the database API:

Download db/db_import.cmd

>>> import sqlite3 as dbapi

Next we must make a connection to our database by calling the data-

base module’s connect method. This method takes one string as a

parameter, which identifies the database we want to connect to. Since

SQLite stores each entire database in a single file on disk, this is just

the path to the file. If the database does not exist, it will be created.

Download db/db_connect.cmd

>>> con = dbapi.connect('population.db')

Once we have a connection, we need to get a cursor. Like the cursor in

your editor, this keeps track of where we are in the database so that

if several programs are accessing the database at the same time, the

database can keep track of who is trying to do what:

Download db/db_cursor.cmd

>>> cur = con.cursor()

http://www.worldmapper.org
http://media.pragprog.com/titles/gwpy/code/db/db_import.cmd
http://media.pragprog.com/titles/gwpy/code/db/db_connect.cmd
http://media.pragprog.com/titles/gwpy/code/db/db_cursor.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=324

FIRST STEPS 325

Figure 15.3: World populations in 2300 shown graphically

We can now actually start working with the database. The first step is

to create a table to store the population data. To do this, we have to

describe the operation we want in SQL, put that SQL in a string, and

tell the database to execute that string. The general form of the SQL

statement for table creation is as follows:

CREATE TABLE TableName(ColumnName Type, ColumnName Type, ...)

where the names of tables and columns are like the names of variables

in a program and the types are chosen from the types the database

supports (which we will talk about in a couple of paragraph). To cre-

ate a two-column table to store region names as strings and projected

populations as integers, we use this:

Download db/db_create.cmd

>>> cur.execute('CREATE TABLE PopByRegion(Region TEXT, Population INTEGER)')

<sqlite3.dbapi2.Cursor object at 0x00AEEC50>

Our table is called PopByRegion; as you can see, executing the command

returns a cursor object, which in this case we don’t actually need.

The most commonly used data types in SQLite databases are listed in

Figure 15.4, on the following page, along with the corresponding Python

data types. A few of these deserve some more explanation:

• Python stores integers using a single 32-bit word of memory if the

value will fit into it or a more complex multiword structure if it

will not. When fetching values from a database, the sqlite3 library

decides which to use based on the size of those values.

http://media.pragprog.com/titles/gwpy/code/db/db_create.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=325

FIRST STEPS 326

Type Python Equivalent Use

NULL NoneType Means “know nothing about it”

INTEGER int or long Integers

REAL float 8-byte floating-point numbers

TEXT unicode or str Strings of characters

BLOB buffer Binary data

Figure 15.4: SQLite data types

• As we said way back in Section 3.1, Strings, on page 39, Python

normally stores strings using ASCII, which represents each char-

acter using a single byte and includes only those characters com-

mon in English. Python and other (programming) languages use

another scheme called Unicode to represent characters from other

alphabets like Cyrillic, Arabic, Devanagari, and Thai. By default,

sqlite3 represents strings taken from databases as Unicode; we will

see in a moment how to get it to use the more familiar str.

• The term BLOB stands for Binary Large OBject, which to a data-

base means a picture, an MP3, or any other lump of bytes that

isn’t of a more specific type. The Python equivalent is a type we

have not seen before called buffer, which also stores a sequence of

bytes that have no particular predefined meaning. We will not use

BLOBs in our examples, but the exercises will give you a chance

to experiment with them.

After we create a table, our next task is to insert data into it. We do this

one record at a time using the INSERT command, whose general form is

as follows:

INSERT INTO TableName VALUES(Value1, Value2, ...)

As with the parameters to a function call, the values are matched left

to right against the columns. For example, we insert data into the Pop-

ByRegion table like this:

Download db/db_insert.cmd

>>> cur.execute('INSERT INTO PopByRegion VALUES("Central Africa", 330993)')

>>> cur.execute('INSERT INTO PopByRegion VALUES("Southeastern Africa", 743112)')

...

>>> cur.execute('INSERT INTO PopByRegion VALUES("Japan", 100562)')

http://media.pragprog.com/titles/gwpy/code/db/db_insert.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=326

RETRIEVING DATA 327

Notice that the number and type of values in the INSERT statements

matches the number and type of columns in the database table. If we

try to insert a value of a different type than the one declared for the

column, the library will try to convert it, just as it converts the integer

5 to a floating-point number when we do 1.2 + 5. For example, if we insert

the integer 32 into a TEXT column, it will automatically be converted to

“32”; similarly, if we insert a string into an INTEGER column, it is parsed

to see whether it represents a number. If so, the number is inserted.

If the number of values being inserted does not match the number of

columns in the table, the database reports an error, and the data is not

inserted. Surprisingly, though, if we try to insert a value that cannot be

converted to the correct type, such as the string “string” into an INTEGER

field, SQLite will actually do it (though other databases will not).

Saving Changes

After we’ve inserted data into the database or made any other changes,

we must commit those changes using the connection’s commit method:

Download db/db_commit.cmd

>>> con.commit()

Committing to a database is like saving the changes made to a file in a

text editor. Until we do it, our changes are not actually stored and are

not visible to anyone else who is using the database at the same time.

Requiring programs to commit is a form of insurance. If a program

crashes partway through a long sequence of database operations and

commit is never called, then the database will appear as it did before

any of those operations was executed.

15.3 Retrieving Data

Now that we have data in our database, we can start to run queries

to search for data that meets specified criteria. The general form of a

query is as follows:

SELECT ColumnName, ColumnName, ... FROM Table

where TABLE is the name of the table we want to get data from and the

column names specify which values we want. For example, this query

retrieves all the data in the table PopByRegion:

Download db/db_query_allYear2300.cmd

>>> cur.execute('SELECT Region, Population FROM PopByRegion')

http://media.pragprog.com/titles/gwpy/code/db/db_commit.cmd
http://media.pragprog.com/titles/gwpy/code/db/db_query_allYear2300.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=327

RETRIEVING DATA 328

Once the database has executed this query for us, we can access the

results one record at a time by calling the cursor’s fetchone method,

just as we can read one line at a time from a file using readline:

Download db/db_fetchone.cmd

>>> print cur.fetchone()

(u'Central Africa', 330993)

The fetchone method returns each record as a tuple (Section 5.9, Other

Kinds of Sequences, on page 99) whose elements are in the order spec-

ified in the query. If there are no more records, fetchone returns None.

By default, TEXT values in the database are returned as Unicode strings

(as indicated by the u prefix in front of the string ’Central Africa’). We can

tell sqlite3 to return strings as type str instead by assigning the type str

to the cursor’s text_factory member:

Download db/db_fetchone_2.cmd

con.text_factory = str

>>> print cur.fetchone()

('Northern Africa', 1037163)

Just as files have a readlines method to get all the lines in a file at

once, database cursors have a fetchall method that returns all the data

produced by a query as a list of tuples:

Download db/db_query_allYear2300_2.cmd

>>> print cur.fetchall()

[('Souteastern Africa', 743112), ('Asia Pacific', 785468), ('Middle East',

687630), ('Eastern Asia', 1362955), ('South America', 593121), ('Eastern

Europe', 223427), ('North America', 661157), ('Western Europe', 387933),

('Japan', 100562)]

Notice that the tuples are not sorted in any way. Like a dictionary or

a set (Chapter 9, Sets and Dictionaries, on page 185), a database store

records in whatever order it think is most efficient. To put the data in a

particular order, we could sort the list returned by fetchall. However, it

is more efficient to get the database to do the sorting for us by adding

an ORDER BY clause to the query like this:

Download db/db_query_sort.cmd

>>> cur.execute('SELECT Region, Population FROM PopByRegion ORDER BY Region')

>>> cur.fetchall()

[('Asia Pacific', 785468), ('Central Africa', 330993), ('Eastern

Asia', 1362955), ('Eastern Europe', 223427), ('Japan', 100562),

('Middle East', 687630), ('North America', 661157), ('Northern

Africa', 1037463), ('South America', 593121), ('Southeastern Africa',

743112), ('Southern Asia', 2051941), ('Western Europe', 387933)]

http://media.pragprog.com/titles/gwpy/code/db/db_fetchone.cmd
http://media.pragprog.com/titles/gwpy/code/db/db_fetchone_2.cmd
http://media.pragprog.com/titles/gwpy/code/db/db_query_allYear2300_2.cmd
http://media.pragprog.com/titles/gwpy/code/db/db_query_sort.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=328

RETRIEVING DATA 329

By changing the column name after the phrase ORDER BY, we can change

the way the database sorts. As the following code shows, we can also

specify whether we want values sorted in ascending (ASC) or descending

(DESC) order:

Download db/db_query_sort_2.cmd

>>> cur.execute('SELECT Region, Population FROM PopByRegion

ORDER BY Population DESC')

>>> cur.fetchall()

[('Southern Asia', 2051941), ('Eastern Asia', 1362955), ('Northern

Africa', 1037463), ('Asia Pacific', 785468), ('Southeastern Africa',

743112), ('Middle East', 687630), ('North America', 661157), ('South

America', 593121), ('Western Europe', 387933), ('Central Africa',

330993), ('Eastern Europe', 223427), ('Japan', 100562)]

Rather than getting all columns, we can specify one or more columns

by name. We can also use * to indicate that we want all columns, just

as we would use import * to import all of the contents of a module:

Download db/db_more_queries.cmd

>>> cur.execute('SELECT Region FROM PopByRegion')

[('Central Africa',), ('Southeastern Africa',), ('Northern Africa',),

('Southern Asia',), ('Asia Pacific',), ('Middle East',), ('Eastern

Asia',), ('South America',), ('Eastern Europe',), ('North America',),

('Western Europe',), ('Japan',)]

>>> cur.execute('SELECT * FROM PopByRegion')

[('Central Africa', 330993), ('Southeastern Africa', 743112),

('Northern Africa', 1037463), ('Southern Asia', 2051941), ('Asia

Pacific', 785468), ('Middle East', 687630), ('Eastern Asia', 1362955),

('South America', 593121), ('Eastern Europe', 223427), ('North

America', 661157), ('Western Europe', 387933), ('Japan', 100562)]

Query Conditions

Much of the time, we want only some of the data in the database. (Think

about what would happen if you asked Google for all of the web pages

it had stored.) We can select a subset of the data by using the keyword

WHERE to specify conditions that the rows we want must satisfy. For

example, we can get the regions with populations greater than 1 million

using the greater-than operator:

Download db/db_where.cmd

>>> cur.execute('SELECT Region FROM PopByRegion WHERE Population > 1000000')

>>> print cur.fetchall()

[('Northern Africa',), ('Southern Asia',), ('Eastern Asia',))]

http://media.pragprog.com/titles/gwpy/code/db/db_query_sort_2.cmd
http://media.pragprog.com/titles/gwpy/code/db/db_more_queries.cmd
http://media.pragprog.com/titles/gwpy/code/db/db_where.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=329

UPDATING AND DELETING 330

Operator Description

= Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Figure 15.5: SQL relational operators

The relational operators that may be used with WHERE are listed in Fig-

ure 15.5. Not surprisingly, they are the same as the ones that Python

and other programming languages provide.

As well as these relational operators, we can also use the Boolean oper-

ators AND, OR, and NOT. To get a list of regions with populations greater

than 1 million that have names that come before the letter L in the

alphabet, we would use this:

Download db/db_where_2.cmd

>>> cur.execute('SELECT Region FROM PopByRegion

WHERE Population > 1000000 AND Region < "L"')

>>> print cur.fetchall()

[('Eastern Asia',))]

WHERE conditions are always applied row by row—they cannot be used

to compare two or more rows. We will see how to do that in Section 15.7,

Using Joins to Combine Tables, on page 334.

15.4 Updating and Deleting

Data often changes over time, so we need to be able to change the infor-

mation stored in databases. To do that, we use the UPDATE command,

as shown here:

Download db/db_update.cmd

>>> cur.execute('SELECT * FROM PopByRegion WHERE Region = "Japan"')

>>> cur.fetchone()

('Japan', 100562)

>>> cur.execute('UPDATE PopByRegion SET Population = 100600

WHERE Region = "Japan"')

>>> cur.execute('SELECT * FROM PopByRegion WHERE Region = "Japan"')

>>> cur.fetchone()

('Japan', 100600)

http://media.pragprog.com/titles/gwpy/code/db/db_where_2.cmd
http://media.pragprog.com/titles/gwpy/code/db/db_update.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=330

TRANSACTIONS 331

We can also delete records from the database:

Download db/db_delete.cmd

>>> cur.execute('DELETE FROM PopByRegion WHERE Region < "L"')

>>> cur.execute('SELECT * FROM PopByRegion');

>>> cur.fetchall()

[('Southeastern Africa', 743112), ('Northern Africa', 1037463),

('Southern Asia', 2051941), ('Middle East', 687630), ('South America',

593121), ('North America', 661157), ('Western Europe', 387933)]

In both cases, all records that meet the WHERE condition are affected. If

we do not include a WHERE condition, then all rows in the database are

updated or removed. Of course, we can always put records back into

the database:

Download db/db_delete_2.cmd

>>> cur.execute('INSERT INTO PopByRegion VALUES ("Japan", 100562)')

To remove an entire table from the database, we can use the DROP

command:

DROP TABLE TableName

For example, if we no longer want the table PopByRegion, we would exe-

cute this:

Download db/db_drop.cmd

>>> cur.execute('DROP TABLE PopByRegion');

When a table is dropped, all the data it contained is lost. You should be

very, very sure you want to do this (and even then, it’s probably a good

idea to make a backup copy of the database before deleting any sizable

tables).

15.5 Transactions

Database operations are almost always grouped into a transaction. No

operation in a transaction can be committed unless every single one

can be successfully committed in sequence. If an operations fails, the

transaction must be rolled back. That causes all the operations in the

transaction to be undone. Using transactions ensures the database

doesn’t contain half-baked results. Databases create transactions auto-

matically. As soon as you try to start an operation, it becomes part

of a transaction. When you commit the transaction successfully, the

changes becomes permanent, and the database creates a new one.

http://media.pragprog.com/titles/gwpy/code/db/db_delete.cmd
http://media.pragprog.com/titles/gwpy/code/db/db_delete_2.cmd
http://media.pragprog.com/titles/gwpy/code/db/db_drop.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=331

TRANSACTIONS 332

Imagine a library that may have multiple copies of the same book. It

uses a computerized system to track its books by their ISBN number.

Whenever a patron signs out a book, the following code is executed by

one of the library computers:

Download db/db_transaction_1.cmd

cur.execute('SELECT SignedOut FROM Books WHERE ISBN = "%s"' % isbn)

signedOut = cur.fetchone()[0]

cur.execute('UPDATE Books SET SignedOut = %d

WHERE ISBN = "%s"' % (signedOut + 1, isbn))

cur.commit()

When a patron returns a book, the reverse happens:

Download db/db_transaction_2.cmd

cur.execute('SELECT SignedOut FROM Books WHERE ISBN = "%s"' % isbn)

signedOut = cur.fetchone()[0]

cur.execute('UPDATE Books SET SignedOut = %d

WHERE ISBN = "%s"' % (signedOut - 1, isbn))

cur.commit()

What if the library had two computers that handled book signouts and

returns? Both computers connect to the same database. What would

happen if one patron tried to return a copy of Gray’s Anatomy, while

another was signing out a different copy of the same book at the exact

same time? Here’s one possibility:

Download db/db_transaction_3.cmd

Computer A: cur.execute('SELECT SignedOut FROM Books WHERE ISBN = "%s"' % isbn)

Computer A: signedOut = cur.fetchone()[0]

Computer B: cur.execute('SELECT SignedOut FROM Books WHERE ISBN = "%s"' % isbn)

Computer B: signedOut = cur.fetchone()[0]

Computer A: cur.execute('UPDATE Books SET SignedOut = %d

WHERE ISBN = "%s"' % (signedOut + 1, isbn))

Computer A: cur.commit()

Computer B: cur.execute('UPDATE Books SET SignedOut = %d

WHERE ISBN = "%s"' % (signedOut - 1, isbn))

Computer B: cur.commit()

Notice that Computer B counts the number of signed-out copies before

Computer A updates the database. After Computer A commits its

changes, the value that Computer B fetched is no longer accurate. If

Computer B were allowed to commit its changes, the library database

would account for more books than the library actually has!

http://media.pragprog.com/titles/gwpy/code/db/db_transaction_1.cmd
http://media.pragprog.com/titles/gwpy/code/db/db_transaction_2.cmd
http://media.pragprog.com/titles/gwpy/code/db/db_transaction_3.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=332

USING NULL FOR MISSING DATA 333

Fortunately, databases can detect such a situation and would prevent

Computer B from committing its transaction.

15.6 Using NULL for Missing Data

In the real world, we often don’t have all the data we want. We might be

missing the time at which an experiment was performed or the postal

code of a patient being given a new kind of treatment. Rather than leave

what we do know out of the database, we may choose to insert it and

use the value NULL to represent the missing values. For example, if there

is a region whose population we don’t know, we could insert this into

our database:

Download db/db_null.cmd

>>> cur.execute('INSERT INTO PopByRegion VALUES ("Mars", NULL)')

On the other hand, we probably don’t ever want a record in the data-

base that has a NULL region name. We can prevent this from ever hap-

pening, stating that the column is NOT NULL when the table is created:

Download db/db_null_2.cmd

>>> cur.execute('CREATE TABLE Test (Region TEXT NOT NULL, Population INTEGER)')

Now when we try to insert a NULL region into our new Test table, we get

an error message:

Download db/db_null_3.cmd

>>> cur.execute('INSERT INTO Test VALUES (NULL, 456789)')

Traceback (most recent call last):

File "<string>", line 1, in <string>

sqlite3.dbapi2.IntegrityError: Test.Region may not be NULL

Stating that the value must not be NULL is not always necessary, and

imposing such a constraint may not be reasonable in some cases.

Rather than using NULL, it may sometimes be more appropriate to use

the value zero, an empty string, or false. You should do so in cases

where you know something about the data and use NULL only in cases

where you know nothing at all about it.

In fact, some experts recommend not using NULL at all because its

behavior is counterintuitive (at least until you’ve retrained your intu-

ition). The general rule is that operations involving NULL produce NULL

as a result; the reasoning is that if the computer doesn’t know what

one of the operation’s inputs is, it can’t know what the output is either.

http://media.pragprog.com/titles/gwpy/code/db/db_null.cmd
http://media.pragprog.com/titles/gwpy/code/db/db_null_2.cmd
http://media.pragprog.com/titles/gwpy/code/db/db_null_3.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=333

USING JOINS TO COMBINE TABLES 334

Adding a number to NULL therefore produces NULL, no matter what the

number was, and multiplying by NULL also produces NULL.

Things are more complicated with logical operations. The expression

NULL OR 1 produces 1, rather than NULL, because of the following:

• If the first argument was false (or 0, or the empty string, or some

equivalent value), the result would be 1.

• If the first argument was true (or nonzero, or a nonempty string)

the result would also be 1.

The technical term for this is three-valued logic. In SQL’s view of the

world, things aren’t just true or false—they can be true, false, or un-

known, and NULL represents the latter. Unfortunately, different data-

bases interpret ambiguities in the SQL standard in different ways, so

their handling of NULL is not consistent. NULL should therefore be used

with caution and only when other approaches won’t work.

15.7 Using Joins to Combine Tables

When designing a database, it often makes sense to divide data between

two or more tables. For example, if we are maintaining a database of

patient records, we would probably want at least four tables: one for the

patient’s personal information (such as their name date of birth), a sec-

ond to keep track of their appointments, a third for information about

the doctors who are treating them, and a fourth for information about

the hospitals those doctors work in (see Figure 15.6, on the following

page). We could store all of this in one table, as shown Figure 15.7,

on the next page, but then a lot of information would be needlessly

duplicated.

If we divide information between tables, though, we need some way to

pull that information back together. For example, if we want to know

the hospitals at which a patient has had appointments, we need to

combine data from all four tables to find out:

• What appointments the patient has had

• Which doctor each appointment was with

• Which hospital that doctor works at

The right way to do this in a relational database is to use a join. As the

name suggests, a join combines information from two or more tables to

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=334

USING JOINS TO COMBINE TABLES 335

!"#$%&#'(()$&#*%&#

+),#)-.)/($#"0

!"#$%&#

'()#(*

'"#%

&"+%

,$*#-'".

&"+%

"''*%//

&"+%

-(/!$#"0

Figure 15.6: Dividing data between tables

!"#$%&#'()*#)+',--)$&#.%&#'/)0-$#"1

-"#$%&# 2)*#)+ 2"#%3$+#42"5 4)0-$#"1 "22+%00

!"#$%

!"#$%

!"#$%

&'$(

&'$(

)*+,-./-.0

)*1/-)0-)2

)*+,-./-.0

)*+,-./-.0

)*1/-)0-)2

3'4'5#

6%7895

6#'5#':#;

6%7895

<'=

0..,-.*-.) >%58:'"

?';8

>%58:'"

?';8

?';8

0..,-.*-)/

0..,-).-./

0..,-.*-),

0..,-))-.)

20@A'"5B8@C8D

,@?"E@C8D

20@A'"5B8@C8D

,@?"E@C8D

,@?"E@C8D

Figure 15.7: A bad database design

create a new set of records, each of which can contain some or all of

the information in the tables involved.

To begin, let’s add another table that contains the names of countries,

the regions that they are in, and their populations:

Download db/db_add_tables.cmd

>>> cur.execute('CREATE TABLE PopByCountry(Region TEXT, Country TEXT,

Population INTEGER)')

http://media.pragprog.com/titles/gwpy/code/db/db_add_tables.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=335

USING JOINS TO COMBINE TABLES 336

and then insert data into the new table:

Download db/db_insert_2.cmd

>>> cur.execute('INSERT INTO PopByCountry VALUES("Eastern Asia", "China",

1285238)')

Inserting data one row at a time like this requires a lot of typing. It is

simpler to make a list of tuples to be inserted and write a loop that

inserts the values from these tuples one by one:

Download db/db_insert_3.cmd

>>> countries = [("Eastern Asia", "DPR Korea", 24056), ("Eastern Asia",

"Hong Kong (China)", 8764), ("Eastern Asia", "Mongolia", 3407), ("Eastern

Asia", "Republic of Korea", 41491), ("Eastern Asia", "Taiwan", 1433),

("North America", "Bahamas", 368), ("North America", "Canada", 40876),

("North America", "Greenland", 43), ("North America", "Mexico", 126875),

("North America", "United States", 493038)]

>>> for c in countries:

... cur.execute('INSERT INTO PopByCountry VALUES (?, ?, ?)', (c[0], c[1], c[2]))

...

>>> con.commit()

This time, the call to execute has two arguments. The first is the SQL

command with question marks as placeholders for the values we want

to insert. The second is a tuple of values, which the database matches

up against the question marks from left to right when it executes the

command.

Now that we have two tables in our database, we can use joins to com-

bine the information they contain. There are several types of joins; we

will begin with inner joins, which involve the following:

1. Constructing the cross product of the tables

2. Discarding rows that do not meet the selection criteria

3. Selecting columns from the remaining rows

These steps are shown graphically in Figure 15.8, on the following page.

First, all combinations of all rows in the tables are combined, which

makes the cross product. Second, the selection criteria specified by

WHERE is applied, and rows that don’t match are removed. Finally, the

selected columns are kept, and all others are discarded.

In an earlier query, we retrieved the names of regions with projected

populations greater than 1 million. Using an inner join, we can get the

names of the countries that are in those regions.

http://media.pragprog.com/titles/gwpy/code/db/db_insert_2.cmd
http://media.pragprog.com/titles/gwpy/code/db/db_insert_3.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=336

USING JOINS TO COMBINE TABLES 337

!"#$%&'()#*"

+,&$-().%&*/"

!"#$%&&

##!!&'

()*+,-./0*1)

23-+4/05,-16)

!"#$%&&

##!!&'

!"#$%&'()#*"

+,&$-().%&*/"

73.8391)

:-,,.9).;

"<='

<"

23-+4/05,-16) :-,,.9).; <"

()*+,-./0*1) 73.8391) "<='

()*+,-./0*1)

23-+4/05,-16)

0123455

##!!&'

()*+,-./0*1)

23-+4/05,-16)

73.8391)

:-,,.9).;

"<='

<"

!"#$%&'()#*" !"#$%&& ()*+,-./0*1) 6,'7,8*" "<='

()*+,-./0*1)

23-+4/05,-16)

!"#$%&&

##!!&'

()*+,-./0*1)

23-+4/05,-16)

73.8391)

:-,,.9).;

"<='

<"

9,:;<=%7*,' 9,:;<>,?'$&<

!""#$%&'($')"%"$>3?@AB,813.CB,813./D/>3?@AE3F.+-ACB,813.!"

!""#$%&'($')"%"$>3?@AB,813.C>3?F9)+13./G/!======!#

*&+#,-"$.%&(($#%&/,.-$

!""#$.&0,+1($>3?@AB,813.CB,813./21//>3?@AE3F.+-ACE3F.+-A%

Figure 15.8: Inner joins in action

The query and its result look like this:

Download db/db_inner_join.cmd

>>> cur.execute('''

SELECT PopByRegion.Region, PopByCountry.Country

FROM PopByRegion INNER JOIN PopByCountry

WHERE (PopByRegion.Region = PopByCountry.Region)

AND (PopByRegion.Population > 1000000)

''')

>>> print cur.fetchall()

[('Eastern Asia', 'China'), ('Eastern Asia', 'DPR Korea'),

('Eastern Asia', 'Hong Kong (China)'), ('Eastern Asia', 'Mongolia'),

('Eastern Asia', 'Republic of Korea'), ('Eastern Asia', 'Taiwan')]

To understand what this query is doing, we can analyze it in terms of

the three steps outlined earlier:

1. Combine every row of PopByRegion with every row of PopByCountry.

PopByRegion has two columns and twelve rows, while PopByCountry

has three columns and eleven rows, so this produces a temporary

table with five columns and 132 rows (see Figure 15.9, on the next

page).

http://media.pragprog.com/titles/gwpy/code/db/db_inner_join.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=337

USING JOINS TO COMBINE TABLES 338

!"#$%&'()*%+,&

-./$0"&1$"%#()*%+,&

223442

562778

9.%$0"%#()*%+,& 73256:2

-./$0"%#()1+&

)1+&(;&,+*+,

83<7467

5=<6:=

>+??'"(@&1$:=5:23

@&1$"%#()1+&

-./$0()A"%+,&

72:84<<

<42787

@&1$"%#(@/%.B" 882685

C;D(E.%"&

F.#G(E.#G(H!0+#&I

9.%$0()A"%+,&

J"1$"%#(@/%.B"

K&B&#

::77<5

2=5422

733<:8

@&1$"%#()1+&

@&1$"%#()1+&

863<:

=5:6

C;D(E.%"&@&1$"%#()1+& 863<:

C;D(E.%"&@&1$"%#()1+& 863<:

C;D(E.%"&@&1$"%#()1+& 863<:

C;D(E.%"&@&1$"%#()1+& 863<:

C;D(E.%"&@&1$"%#()1+& 863<:

C;D(E.%"&@&1$"%#()1+& 863<:

C;D(E.%"&@&1$"%#()1+& 863<:

C;D(E.%"&@&1$"%#()1+& 863<:

C;D(E.%"&@&1$"%#()1+& 863<:

C;D(E.%"&@&1$"%#()1+& 863<:

C;D(E.%"&@&1$"%#()1+& 863<:

!"#$%&'()*%+,&

-./$0"&1$"%#()*%+,&

223442

562778

9.%$0"%#()*%+,& 73256:2

-./$0"%#()1+&

)1+&(;&,+*+,

83<7467

5=<6:=

>+??'"(@&1$:=5:23

@&1$"%#()1+&

-./$0()A"%+,&

72:84<<

<42787

@&1$"%#(@/%.B" 882685

9.%$0()A"%+,&

J"1$"%#(@/%.B"

K&B&#

::77<5

2=5422

733<:8

F.#G(E.#G(H!0+#&I@&1$"%#()1+& =5:6

F.#G(E.#G(H!0+#&I@&1$"%#()1+& =5:6

F.#G(E.#G(H!0+#&I@&1$"%#()1+& =5:6

F.#G(E.#G(H!0+#&I@&1$"%#()1+& =5:6

F.#G(E.#G(H!0+#&I@&1$"%#()1+& =5:6

F.#G(E.#G(H!0+#&I@&1$"%#()1+& =5:6

F.#G(E.#G(H!0+#&I@&1$"%#()1+& =5:6

F.#G(E.#G(H!0+#&I@&1$"%#()1+& =5:6

F.#G(E.#G(H!0+#&I@&1$"%#()1+& =5:6

F.#G(E.#G(H!0+#&I@&1$"%#()1+& =5:6

F.#G(E.#G(H!0+#&I@&1$"%#()1+& =5:6

LLL LLL LLLLLL LLL

Figure 15.9: An inner join in progress

2. Discard rows that do not meet the selection criteria. The join’s

WHERE clause specifies two of these: the region taken from Pop-

ByRegion must be the same as the region taken from PopByCountry,

and the region’s population must be greater than 1 million. The

first criterion ensures that we don’t look at records that combine

countries in North America with regional populations in East Asia;

the second filters out information about countries in region whose

populations are less than our threshold.

3. Finally, we select the region and country names from the rows that

have survived.

To find the regions where one country accounts for more than 10 per-

cent of the region’s overall population, we would also need to join the

two tables.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=338

KEYS AND CONSTRAINTS 339

Download db/db_duplicates.cmd

>>> cur.execute('''

SELECT PopByRegion.Region

FROM PopByRegion INNER JOIN PopByCountry

WHERE (PopByRegion.Region = PopByCountry.Region)

AND ((PopByCountry.Population * 1.0) / PopByRegion.Population > 0.10)''')

>>> print cur.fetchall()

[('Eastern Asia',), ('North America',), ('North America',)]

We use multiplication and division in our WHERE condition to calcu-

late the percentage of the region’s population by country as a floating-

point number. The resulting list contains duplicates, since more than

one Eastern Asian country accounts for more than 10 percent of the

region’s population. To remove the duplicates, we add the keyword DIS-

TINCT to the query:

Download db/db_distinct.cmd

>>> cur.execute('''

SELECT PopByRegion.Region

FROM PopByRegion INNER JOIN PopByCountry

WHERE (PopByRegion.Region = PopByCountry.Region)

AND ((PopByCountry.Population * 1.0) / PopByRegion.Population > 0.10)''')

>>> print cur.fetchall()

[('Eastern Asia',), ('North America',)]

15.8 Keys and Constraints

Our query in the previous section relied on the fact that our regions

and countries were uniquely identified by their names. A column in a

table that is used this way is called a key. Ideally, a key’s values should

be unique, just like the keys in a dictionary. We can tell the database

to enforce this constraint by adding a PRIMARY KEY clause when we cre-

ate the table. For example, when we created the PopByRegion table, we

should have specified the primary key:

Download db/db_primary_key.cmd

>>> cur.execute('CREATE TABLE PopByRegion (Region TEXT NOT NULL,

Population INTEGER NOT NULL, PRIMARY KEY (Region))');

Just as a key in a dictionary can be made up of multiple values, the

primary key for a database table can consist of multiple columns.

http://media.pragprog.com/titles/gwpy/code/db/db_duplicates.cmd
http://media.pragprog.com/titles/gwpy/code/db/db_distinct.cmd
http://media.pragprog.com/titles/gwpy/code/db/db_primary_key.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=339

KEYS AND CONSTRAINTS 340

The following code uses the CONSTRAINT keyword to specify that no two

entries in the table being created will ever have the same values for

region and country:

Download db/db_constraint.cmd

>>> cur.execute('''

CREATE TABLE PopByCountry(

Region TEXT NOT NULL,

Country TEXT NOT NULL,

Population INTEGER NOT NULL,

CONSTRAINT Country_Key PRIMARY KEY (Region, Country))

''')

A table can also contain one or more foreign keys. As the name sug-

gests, these are values that aren’t guaranteed to be unique in that table

but that are (unique) keys in another table. Going back to the example

of patients, appointments, doctors, and hospitals, suppose the hospi-

tal’s name is the primary key in the HOSPITAL table. The DOCTOR table

could then have a column called HOSPITAL_NAME to identify where the

doctor worked. This column would be a foreign key, since its values

wouldn’t be unique in DOCTOR (many doctors could work at the same

hospital) but would be unique in the HOSPITAL table.

In practice, most database designers do not use real names as primary

keys. Instead, they usually create a unique integer ID for each “thing”

in the database, such as a driver’s license number or a patient ID.

This is partly done for efficiency’s sake—integers are faster to sort and

compare than strings—but the real reason is that it is a simple way to

deal with hospitals (or people) that have the same name. There are a

lot of Jane Smiths in the world; using that name as a primary key in a

database is almost guaranteed to lead to confusion. Giving each person

a unique ID, on the other hand, ensures that they can be told apart.

Using unique IDs in this way also makes some operations much easier

to implement. For example, imagine what would happen in a database

Dusing a hospital’s name as a primary key if the hospital changed its

name. Someone would have to write code that found every use of that

hospital’s name and changed it to the new value. If the hospital was

identified by an integer hospital ID, then renaming the hospital would

be as simple as replacing one string with another—the doctor records

that referred to the hospital would not have to be updated.

http://media.pragprog.com/titles/gwpy/code/db/db_constraint.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=340

ADVANCED FEATURES 341

Aggregate Function Description

AVG Average of the values

MIN Minimum value

MAX Maximum value

COUNT Number of non-null values

SUM Sum of the values

Figure 15.10: Aggregate functions

15.9 Advanced Features

The SQL we have seen so far is powerful enough for many everyday

tasks, but other questions require more powerful tools. This chapter

introduces a handful and shows when and how they are useful. If you

need to do things that are even more complicated, you may want to add

[Bea05] and [VH07] to your reading list.

Aggregation

Our next task is to calculate the total projected world population for

the year 2300. We will do this by adding up the values in PopByRegion’s

Population column using the SQL aggregating function SUM:

Download db/db_aggregate.cmd

>>> cur.execute('SELECT SUM (Population) FROM PopByRegion')

>>> cur.fetchone()

(8965762,)

SQL provides many other aggregation functions (see Figure 15.10). All

of these are associative; that is, the result doesn’t depend on the order

of operations.1 This ensures that the result doesn’t depend on the order

in which records are pulled out of tables, which is something that only

the database knows.

Grouping

What if we only had the table PopByCountry and wanted to find the pro-

jected population for each region? We could get the table’s contents into

a Python program using SELECT * and then loop over them to add them

1. Addition and multiplication are associative, since 1 + (2 + 3) produces the same

results as (1 + 2) + 3, and 4 * (5 * 6) produces the same result as (4 * 5) * 6. By contrast,

subtraction is not: 1 - (2 - 3) is not the same thing as (1 - 2) - 3.

http://media.pragprog.com/titles/gwpy/code/db/db_aggregate.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=341

ADVANCED FEATURES 342

up by region, but again, it is simpler and more efficient to have the

database do the work for us. In this case, we use SQL’s GROUP BY to

collect results into subsets:

Download db/db_group.cmd

>>> cur.execute('SELECT SUM (Population) FROM PopByCountry GROUP BY Region')

>>> cur.fetchall()

[(1364389,), (661200,)]

Since we have asked the database to construct groups by Region and

there are two distinct values in this column in the table, the database

divides the records into two subsets. It then applies the SUM function to

each group separately to give us the projected populations of Eastern

Asia and North America (see Figure 15.11, on the next page).

Self-Joins

SQL is powerful, but it isn’t always obvious how to translate a simple

question into selects, joins, and Boolean conditions. Once you have

seen a few examples of common cases, though, it is easy to apply the

pattern in other situations.

A common example is the problem of comparing a table’s values to

themselves. Suppose that we want to find pairs of countries whose

populations are close to one another—say, within 1,000 of one another.

Our first attempt might look like this:

Download db/db_self1.cmd

>>> cur.execute('SELECT Country FROM PopByCountry

WHERE (ABS(Population - Population) < 1000)')

>>> cur.fetchall()

[('China',), ('DPR Korea',), ('Hong Kong (China)',), ('Mongolia',),

('Republic of Korea',), ('Taiwan',), ('Bahamas',), ('Canada',),

('Greenland',), ('Mexico',), ('United States',)]

The output is definitely not what we want, and there are two reasons

why. First, the phrase SELECT Country is going to return only one coun-

try per record, but we want pairs of countries. Second, the expression

ABS(Population - Population) is always going to return zero; since we’re

subtracting each country’s population from itself, every results will be

less than 1,000, so the names of all the countries in the table will be

returned.

What we actually want to do is compare the population in one row with

the populations in the other rows. To do this, we need to join PopBy-

Country with itself (see Figure 15.12, on page 344) using an INNER JOIN.

http://media.pragprog.com/titles/gwpy/code/db/db_group.cmd
http://media.pragprog.com/titles/gwpy/code/db/db_self1.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=342

ADVANCED FEATURES 343

!"#$%&"'()*%

!"#$%&'()#*+,

!"#$%&'()#*+,

-,%,(,.

/)0*+"

123

452367

8,.$)#9&'.*,

8,.$)#9&'.*,

/"9:";*,

<)=>?;*+&"@&A"#),

1BC6

B4BD4

+,-).*(/0-1,

+,-).*(/0-1,

/"9:";*,

<)=>?;*+&"@&A"#),

1BC6

B4BD4

22343

!"#$%&'()#*+, 4565B1

8,.$)#9&'.*, BB3D3

5"*)6/07.*18, -,%,(,.

/)0*+"

123

452367

9:;:2<

5"*)6/07.*18,

!"#$%&'(&<):*"9&)*+&,#-%$./&EF/�&G"=>;,$*"9!

1//%&2/3/,./+&,#3$-*2"

Figure 15.11: Summation

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=343

ADVANCED FEATURES 344

!"#$%&"'()*%

!"#$%&'()#*+,

!"#$%&'()#*+,

-����

0.*$)/&1$,$)2

34567

389495

:,2$)#.&'2*, ;,*<,. =399

!"#$%&'()#*+,

!"#$%&'()#*+,

-,.,/,

0.*$)/&1$,$)2

34567

389495

:,2$)#.&'2*, ;,*<,. =399

!"#$%&'()#*+,

!"#$%&'()#*+,

-,.,/,

0.*$)/&1$,$)2

34567

389495

:,2$)#.&'2*, ;,*<,. =399

!"#$%&'()#*+,

!"#$%&'()#*+,

-,.,/,

0.*$)/&1$,$)2

34567

389495

:,2$)#.&'2*, ;,*<,. =399

!"#$%&'()#*+,

!"#$%&'()#*+,

-,.,/,

0.*$)/&1$,$)2

34567

389495

:,2$)#.&'2*, ;,*<,. =399

!"#$%&'()#*+,

!"#$%&'()#*+,

-,.,/,

0.*$)/&1$,$)2

34567

389495

:,2$)#.&'2*, ;,*<,. =399

!"#$%&'()#*+,

!"#$%&'()#*+,

-,.,/,

0.*$)/&1$,$)2

34567

389495

:,2$)#.&'2*, ;,*<,. =399

!"#$%&"'()*%!"#$%%!&$'()*!+',-!',%)./

Figure 15.12: Joining a table to itself

This will result in the rows for each pair of countries being combined

into a single row with six columns: two regions, two countries, and two

populations. To tell them apart, we have to give the two instances of

the PopByCountry table temporary names (in this case A and B) to each

table:

Download db/db_self_join.cmd

>>> cur.execute('''

SELECT A.Country, B.Country

FROM PopByCountry A INNER JOIN PopByCountry B

WHERE (ABS(A.Population - B.Population) <= 1000)

AND (A.Country != B.Country)''')

>>> cur.fetchall()

[('Republic of Korea', 'Canada'), ('Bahamas', 'Greenland'), ('Canada',

'Republic of Korea'), ('Greenland', 'Bahamas')]

Notice that we have used ABS to get the absolute value of the population

difference. If we simply wrote this:

(A.Population - B.Population) <= 1000

then our results would have included pairs like (’Greenland’, ’China’),

because every negative difference is less than 1,000. If we want each

pair of countries to appear only once, we could rewrite the second half

of the condition as follows:

A.Country < B.Country

which would rule out half of each duplicated pair of countries.

http://media.pragprog.com/titles/gwpy/code/db/db_self_join.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=344

ADVANCED FEATURES 345

Nested Queries

Up to now, our queries have involved only one SELECT command. Since

the result of every query looks exactly like a table with a fixed number

of columns and some number of rows, we can run a second query on

the result, that is, run a SELECT on the result of another SELECT, rather

than directly on the database’s tables. Such queries are called nested

queries and are analogous to having one function call another, which

might in turn call a third.

To see why we would want to do this, let’s try to write a query on the

PopByCountry table to get the regions that do not have a country with a

population of exactly 8,764. Our first attempt looks like this:

Download db/db_nested_1.cmd

>>> cur.execute('''

SELECT DISTINCT Region

FROM PopByCountry

WHERE (PopByCountry.Population != 8764)

''')

>>> cur.fetchall()

[('Eastern Asia',), ('North America',)]

This result is wrong—Hong Kong has a projected population of 8,764,

so Eastern Asia should not have been returned. Because there are other

countries in Eastern Asia whose populations are not 8,764, though,

Eastern Asia was included in the final results.

Let’s rethink our strategy. What we have to do is to find out which

regions include countries with a population 8,764 and then exclude

those regions from our final result—basically, find the regions that fail

our condition and subtract them from the set of all countries (see Fig-

ure 15.13, on the next page). The first step is to get those regions that

have countries with a population of 8,764:

Download db/db_nested_2.cmd

>>> cur.execute('''

SELECT DISTINCT Region

FROM PopByCountry

WHERE (PopByCountry.Population = 8764)

''')

>>> cur.fetchall()

[('Eastern Asia',)

http://media.pragprog.com/titles/gwpy/code/db/db_nested_1.cmd
http://media.pragprog.com/titles/gwpy/code/db/db_nested_2.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=345

SUMMARY 346

!"#$%&'()#*"

+,&$-().%&*/"

!"#$%&'()#*"

+,&$-().%&*/"

0!1!23(45035+23(6%7*,'

869:((((((((((((;,<=>2,?'$&>

@0!1!23(45035+23(6%7*,'

(869:((((((((((((;,<=>2,?'$&>

(AB!6!(((((((((((@;,<=>2,?'$&>C;,<?D"$*,'(E(FGHIJJ

AB!6!(((((((((((6%7*,'(+93(5+(@K

E

Figure 15.13: Nested negation

Now we want to get the names of regions that were not in the results of

our first query. To do this, we will use a WHERE condition and NOT IN:

Download db/db_nested_3.cmd

>>> cur.execute('''

SELECT DISTINCT Region

FROM PopByCountry

WHERE Region NOT IN

(SELECT DISTINCT Region

FROM PopByCountry

WHERE (PopByCountry.Population = 8764))

''')

>>> cur.fetchall()

[('North America',)]

This time we got what we were looking for. Nested queries are often

used for situations like this one where negation is involved.

15.10 Summary

In this chapter, we learned the following:

• Most large applications store information in relational databases.

A database is made up of tables, each of which stores logically

related information. A table has one or more columns, each of

which has a name and a type, and zero or more rows, or records.

In most tables, each row can be identified by a unique key, which

consists or one or more of the values in the row.

• Commands to put data into databases, or get data out, are writ-

ten in a specialized language called SQL. SQL is supposed to be

http://media.pragprog.com/titles/gwpy/code/db/db_nested_3.cmd
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=346

EXERCISES 347

a standard, but there are significant differences in how different

databases implement it.

• SQL commands can be sent to databases interactively from GUIs

or command-line tools, but for larger jobs, it is more common to

write programs that create SQL and process the results. Since

SQL’s data types are not always exactly the same as those in the

language used to write the program, it may be necessary to trans-

late from one to the other.

• Changes made to a database do not actually take effect until they

are committed. This ensures that if two or more programs are

working with a database at the same time, it will always be in a

consistent state. However, it also means that operations in one

program can fail because of something that another program is

doing.

• SQL queries must specify the table(s) and column(s) that values

are to be taken from. They may also specify Boolean conditions

those values must satisfy and the ordering of results.

• Simple queries work on one row at a time, but programs can join

tables to combine values from different rows. Queries can also

group and aggregate rows to calculate sums, averages, and other

values.

• Databases can use the special value NULL to represent missing

information. However, it must be used with caution, since opera-

tions on NULL values do not behave in the same way as operations

on “real” values.

15.11 Exercises

Here are some exercises for you to try on your own:

1. In this exercise, you will create a table to store the population and

land area of the Canadian provinces and territories according to

the 2001 Census. Our data is taken from http://www12.statcan.ca/

english/census01/home/index.cfm.

a) Create a new database called census.db.

b) Make a database table called Density that will hold the name

of the province or territory (TEXT), the population (INTEGER), and

the land area (REAL).

http://www12.statcan.ca/english/census01/home/index.cfm
http://www12.statcan.ca/english/census01/home/index.cfm
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=347

EXERCISES 348

Province/Territory Population Land Area

Newfoundland and Labrador 512930 370501.69

Prince Edward Island 135294 5684.39

Nova Scotia 908007 52917.43

New Brunswick 729498 71355.67

Quebec 7237479 1357743.08

Ontario 11410046 907655.59

Manitoba 1119583 551937.87

Saskatchewan 978933 586561.35

Alberta 2974807 639987.12

British Columbia 3907738 926492.48

Yukon Territory 28674 474706.97

Northwest Territories 37360 1141108.37

Nunavut 26745 1925460.18

Figure 15.14: 2001 Canadian census data

c) Insert the data from Figure 15.14.

d) Display the contents of the table.

e) Display the populations.

f) Display the provinces that have populations of less than 1

million.

g) Display the provinces that have populations less than 1 mil-

lion or greater than 5 million.

h) Display the provinces that do not have populations less than

1 million or greater than 5 million.

i) Display the populations of provinces that have a land area

greater than 200,000 square kilometers.

j) Display the provinces along with their population densities

(population divided by land area).

2. For this exercise, add a new table called Capitals to the database.

Capitals has three columns—province/territory (TEXT), capital (TEXT),

and population (INTEGER)—and it holds the data shown in Fig-

ure 15.15, on the next page.

a) Retrieve the contents of the table.

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=348

EXERCISES 349

Province/Territory Capital Population

Newfoundland and Labrador St. John’s 172918

Prince Edward Island Charlottetown 58358

Nova Scotia Halifax 359183

New Brunswick Fredericton 81346

Quebec Quebec 682757

Ontario Toronto 4682897

Manitoba Winnipeg 671274

Saskatchewan Regina 192800

Alberta Edmonton 937845

British Columbia Victoria 311902

Yukon Territory Whitehorse 21405

Northwest Territories Yellowknife 16541

Nunavut Iqaluit 5236

Figure 15.15: 2001 Canadian census data: capital city populations

b) Retrieve the populations of the provinces and capitals (in a

list of tuples of the form (province population, capital popula-

tion)).

c) Retrieve the land area of the province whose capitals have

populations greater than 100,000.

d) Retrieve the provinces with land densities less than 2 people

per square kilometer and capital city populations more than

500,000.

e) Retrieve the total land area of Canada.

f) Retrieve the average capital city population.

g) Retrieve the lowest capital city population.

h) Retrieve the highest province/territory population.

i) Retrieve the provinces that have land densities within 0.5 of

each other.

3. Write a Python program that creates a new database and executes

the following SQL statements. How do the results of the SELECT

statements differ from what you would expect Python itself to do?

Why?

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=349

EXERCISES 350

CREATE TABLE Numbers(Val INTEGER)

INSERT INTO Numbers Values(1)

INSERT INTO Numbers Values(2)

SELECT * FROM Numbers WHERE 1/0

SELECT * FROM Numbers WHERE 1/0 AND Val > 0

SELECT * FROM Numbers WHERE Val > 0 AND 1/0

4. A friend of yours has written a run_query function that will execute

a single SQL query against a database and return the results,

doing all of the required setup and teardown automatically:

def run_query(db, query):

'''Return the results of running the given query on database db.'''

con = sqlite.connect(db)

cur = con.cursor()

cur.execute(query)

data = cur.fetchall()

cur.close()

con.close()

return data

Example of use.

run_query(db, 'SELECT * FROM Precipitation')

Modify this function so that it will use a tuple of arguments if one

is provided so that both the previous call and the following one

will work:

run_query(db, 'SELECT City, Temp, Snow FROM Precipitation

WHERE Snow >= (?) and Temp > (?)', (s,t))

http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=350

Appendix A

Bibliography

[AW06] Mike Andrews and James A. Whittaker. How to Break Web

Software. Addison-Wesley, Boston, MA, 2006.

[Bea05] Alan Beaulieu. Learning SQL. O’Reilly & Associates, Inc,

Sebastopol, CA, 2005.

[Cop08] Rick Copeland. Essential SQLAlchemy. O’Reilly & Asso-

ciates, Inc, Sebastopol, CA, 2008.

[DEM02] Allen Downey, Jeff Elkner, and Chris Meyers. How to Think

Like a Computer Scientist: Learning with Python. Green Tea

Press, Needham, MA, 2002.

[Feh03] Chris Fehily. SQL: Visual QuickStart Guide. Peachpit Press,

Berkeley, CA, 2003.

[GL07] Michael H. Goldwasser and David Letscher. Object-Oriented

Programming in Python. Prentice Hall, Englewood Cliffs, NJ,

2007.

[Guz04] Mark Guzdial. Introduction to Computing and Programming

in Python: A Multimedia Approach. Prentice Hall, Englewood

Cliffs, NJ, 2004.

[Hoc04] Roger R. Hock. Forty Studies That Changed Psychology.

Prentice Hall, Englewood Cliffs, NJ, 2004.

[Hynnd] R. J. Hyndman. Time series data library.

http://www.robjhyndman.com/TSDL, n.d. Accessed on 19

September 2006.

http://www.robjhyndman.com/TSDL

APPENDIX A. BIBLIOGRAPHY 352

[Joh07] Jeff Johnson. GUI Bloopers 2.0: Common User Interface

Design Don’ts and Dos. Morgan Kaufmann Publishers, San

Francisco, 2007.

[KS04] Marja Kuittinen and Jorma Sajaniemi. Teaching roles of

variables in elementary programming courses. In ITiCSE 9,

pages 57–61, 2004.

[LA03] Mark Lutz and David Ascher. Learning Python. O’Reilly &

Associates, Inc, Sebastopol, CA, 2003.

[Lak76] Imre Lakatos. Proofs and Refutations. Cambridge University

Press, Cambridge, United Kingdom, 1976.

[McC04] Steve McConnell. Code Complete: A Practical Handbook

of Software Construction. Microsoft Press, Redmond, WA,

2004.

[Pyt] Python education special interest group (edu-sig).

http://www.python.org/community/sigs/current/edu-sig/.

[VH07] John L. Viescas and Michael J. Hernandez. SQL Queries

for Mere Mortals: A Hands-On Guide to Data Manipulation in

SQL. Addison-Wesley, Reading, MA, 2007.

[Whi03] James A. Whittaker. How to Break Software. Addison-Wes-

ley, Reading, MA, 2003.

[Wil05] Greg Wilson. Data Crunching: Solve Everyday Problems

using Java, Python, and More. The Pragmatic Programmers,

LLC, Raleigh, NC, and Dallas, TX, 2005.

[Win06] Jeannette M. Wing. Computational thinking. Communica-

tions of the ACM, 49(3):33–35, 2006.

[WT04] James A. Whittaker and Herbert H. Thompson. How to

Break Software Security. Addison-Wesley, Reading, MA,

2004.

[Zel03] John Zelle. Python Programming: An Introduction to Com-

puter Science. Franklin Beedle & Associates, Wilsonville,

OR, 2003.

http://www.python.org/community/sigs/current/edu-sig/
http://books.pragprog.com/titles/gwpy/errata/add?pdf_page=352

Index
Symbols
< (less than) operator, 111, 330

<= (less than or equal to) operator, 111,

330

with strings, 117

> (greater than) operator, 111, 330

with strings, 117

>= (greater than or equal to) operator,

111, 330

* (asterisk)

multiplication operator, 22, 25

working with lists, 89

selecting all database columns, 329

string repeat operator, 42

for variable parameter lists, 240, 261

** (exponentiation) operator, 22, 25

**= (exponentiation assignment)

operator, 29

*= (multiplication assignment) operator,

29

\ (backslash) as escape character, 43

[] (brackets)

for dictionary values, 191

empty list ([]), 84

for lists, 81

{ } (curly brackets) for dictionaries, 192

: (colon)

in functions, 30

in list slices, 93

, (comma), ending print statements, 46

= (assignment) operator, 26, 27, 111

= (equal to) operator (databases), 330

== (equal to) operator, 111

with objects, 277

!= (not equal to) operator, 111, 330

- (negation) operator, 22, 25, 36

- (subtraction) operator, 22, 25

with objects, 277

-= (subtraction assignment) operator,

29

() (parentheses) for tuples, 99

% (modulo) operator, 21, 22, 25

% (string formatting) operator, 46

%= (modulo assignment) operator, 29

. (period) for identifying modules, 51

+ (addition) operator, 22, 25

with lists, 88, 97

with objects, 277

+ (concatenation) operator, 40

+ (unary plus) operator, 36

+= (addition assignment) operator, 29

for comments, 104

" (quotes)

for strings, 40

inside strings, 42

" (quotes)

for strings, 40

inside strings, 42

/ (division) operator, 20–22, 25

/= (division assignment) operator, 29

>>> prompt, 19

A
abs function, 33

Absolute value, 33

Accumulators, 258

Actual values, comparing with expected

values, 73

__add__ method, 277

add method (sets), 186

add_text function (media module), 66

Adding data to files, 181

Adding lists together, 88, 97

Addition (+) operator, 22, 25

with lists, 88, 97

with objects, 277

Addition assignment (+=) operator, 29

AGGREGATION 354 CHARACTERS

Aggregation, database, 341

Algorithms, 203–212

defined, 203

measuring running time, 211

binary search, 221

categorizing by, 234

linear search, 216–218

sorting, 226–228

searching, 204–210

sentinel search, 216

using for loops, 215

sorting, 222–228

bubble sort, 235

insertion sort, 225–226

mergesort algorithm, 229–233

more-efficient examples, 228–229

selection sort, 222–226

Aliasing lists, 94–95

AND operator, 109

in database query conditions, 330

with numbers, 115–116

APIs (application programming

interfaces), 322

append method, 95

Append mode (opening files), 182

Application programming interfaces

(APIs), 322

Arguments, function, 31

Arithmetic operators, 25

combining with other operators,

112–114

ASC keyword (SELECT statements), 329

Ascending-order sorts, databases, 329

Assertions (in testing), 268

Assigning to variables, see Variables

Assignment statements, 26, 27, 29,

111

assigning list values, 85

multivalued assignment, 136

Associative operations, defined, 341

Asterisk (*)

exponentiation (**) operator, 22, 25

exponentiation assignment (**=)

operator, 29

multiplication assignment (*=)

operator, 29

multiplication operator, 22, 25

working with lists, 89

selecting all database columns, 329

string repeat operator, 42

for variable parameter lists, 240, 261

AVG function, 341

B
Background color, widget (Tkinter), 308

Backlash (\) as escape character, 43

Balanced colors, 200

Binary search, 218–221

built-in (bisect module), 221

running time, 221

bisect module, 221

bisect_left method (bisect module), 221

bisect_right method (bisect module), 221

Black-box testing, 249

BLOB data type (SQLite), 325, 326

bool type, 109, 270

Boolean logic, 108–118

one-way flags, 259

Boolean operators, 109–110

applying to integers, floats, and

strings, 114–118

combining with other operators,

112–114

for database query conditions, 330

BooleanVar type (Tkinter), 298

Border styles, Frame widget (Tkinter),

300

borderwidth attribute (Frame widget), 300

Boundary cases, 75, 252

Brackets []

for dictionary values, 191

empty list ([]), 84

for lists, 81

Brackets { } for dictionaries, 192

break statement, 149–150, 153

Breakpoints, 144

Bubble sort, 235

Bugs, see Debugging

Built-in functions, 33, 55

for lists, 87–89

__builtins__ module, 55

Button widget (Tkinter), 295

C
calendar module, 78

Call stack, 146

Canvas widget (Tkinter), 295

capitalize method, 61

Catching exceptions, 242, 248

Chaining methods, 62

Characters, 39

see also Strings

CHECKBUTTON WIDGET (TKINTER) 355 DATA FILES

Checkbutton widget (Tkinter), 295, 314

Child classes, 286

Choices, 108–126

Boolean logic, 108–118

conditional statements in loops, 153

if statements, 118–124

nested, 124

storing conditionals, 125–126

choose_file function, 64, 67

class keyword, 271

Classes, 270

Color class (example), 271–275

constructors, 274–275

encapsulation, 280

inheritance, 285–287

methods of, 272–274

Clause, defining, 121

clear method (dictionaries), 194

clear method (sets), 186

click function, 302

Closing files, 267

Coding style, see Programming style,

notes on

Collections, see Dictionaries; Lists;

Sets; Tuples

Collisions, 198

Colon (:)

in functions, 30

in list slices, 93

Color class (example), 271–275

Colors, GUI, 308–310

Colors, image, 68–69

balanced, 200

common values, list of, 68

functions for, 68

grayscale, 158

models and representations of, 72

Columns in data records, 171–174

Columns in database tables, 321

Columns in printed output, 45

Combined operators, 28

Combining database tables, 334–339

self-joins, 342–344

Comma (,), ending print statements, 46

Command-line arguments, 103

filenames as, 161

Comment (#) character, 104

Comments in program code, 103

in modules, 59

commit method, 327

Comparison (==) operator, 111

with objects, 277

Comparison (=) operator (databases),

330

Comparisons, see Boolean logic;

Relational operators

Computational thinking, 14

Computer programs

defined, 13

executing, 17

statements of, 17

value of, 11

Concatenating lists, 88, 97

Concatenating strings, 40

Concatenation (+) operator, 40

Conditional logic, see Choices

Conditional loops, see while loops

Conditional statements in loops, 153

Conditionals, storing, 125–126

Conditions

for database queries, 329–330

defined, 118

connect method, 324

Constants (fixed values), 53, 256

CONSTRAINT keyword, 340

Constraints, database, 339–340

Constructors, 274–275

Containers, 258

continue statement, 151–153

Control flow statements, 108

see also for loops; if statements

Controllers, 302, 316

Conversion types, 46

COUNT function, 341

Counted loops, 131

for loops, 89–140

looping over multiple objects, 138

while loops, 140–147

Counters, 256

CREATE TABLE statement (SQL), 325

create_color function (media module), 68

crop_picture function (media module), 65

Curly brackets { } for dictionaries, 192

Current working directory, 66

Cursor (databases), 324

D
%d conversion specifier, 46

darken function (media module), 68

Data collections, see Dictionaries;

Lists; Sets; Tuples

Data files, see Files

DATA RECORDS IN FILES 356 EXCEPTION OBJECTS

Data records in files, 159

containing one value only, 160–170

extending across multiple lines,

177–179

with fields at fixed positions,

174–176

looking ahead when processing,

179–180

missing values in, 165

with multiple fields, 171–174

Data structure testing, 252

Data types for SQLite, 325, 327

Database management system (DBMS),

322

Databases, 321–346

aggregation, 341

connecting to, 324

creating tables, 325

grouping, 341

inserting data into, 326

joining tables, 334–339

self-joins, 342–344

keys and constraints, 339–340

missing data, NULL for, 333–334

nested queries, 345–346

saving changes to, 327

DBMS (database management system),

322

Debugging, 254–255

infinite loops, 144–146

see also Testing

def keyword, 30

Default parameter values (functions),

237

DELETE commands (SQL), 331

Deleting from databases, 330–331

Delimiters, 159

Depreciated, defined, 247

DESC keyword (SELECT statements), 329

Descending-order sorts, databases, 329

__dict__ variable, 280

Dictionaries, 190–197

classes as, 272

of dictionaries, 200

inverting, 197

looping over contents of, 193

methods for, 194

removing entries from, 193

updating, 192

difference method (sets), 186

dir function, 278

Directories

current working directory, 66

see also Files

distance function (media module), 68

Distinct collections, defined, 185

DISTINCT keyword (SELECT commands),

339

Division (mathematical), 21

Division (/) operator, 20–22, 25

Division assignment (/=) operator, 29

Docstrings, 103

in modules, 59

Dot (.) for identifying modules, 51

Double quotes, for strings, 40

Double quotes, inside strings, 42

DoubleVar type (Tkinter), 298

Downscaling images, 157

DROP commands (SQL), 331

E
elif keyword, 121

else clause, 123

Empty lists, 84

Empty string, 40

Encapsulation, 280

End-of-line (\n) character, 43, 44

Entry widget (Tkinter), 295, 300

enumerate function, 135–137

EOL errors, 44

__eq__ method, 277

Equal to (==) operator, 111

with objects, 277

Equal to (=) operator (databases), 330

Equality operators, 111

with objects, 277

Equality operators (databases), 330

Error management, see Exceptions

Error testing, see Debugging; Testing

Errors

indentation errors, 120

infinite loops, 142–146

out-of-range indices, 83

specific exceptions for, 244

variable assignment, 29

Errors of type, see Type errors

Escape characters, 42–43

Evaluating expressions, 19

see also Expressions

Event-driven programming, 294

except keyword, 242–243

Exception objects, 243–244

EXCEPTIONS 357 GET_WIDTH FUNCTION (MEDIA MODULE)

Exceptions, 242–248

functions and, 245–246

raising, 242, 247

style tips, 247–248

try and except keywords, 242–243

Exclusive or, 110

Executing imported modules, 56

Executing programs, 17

Expected values, comparing with

actual values, 73

Exponentiation (**) operator, 22, 25

Exponentiation assignment (**=)

operator, 29

Exponentiation function (pow), 34

Expressions, 19–22

Extracting data from files, see Files,

reading

F
%f conversion specifier, 46

False value, 108

converting to number, 118

fetchall method, 328

fetchone method, 328

Fields in data records

at fixed positions, 174–176

missing values, 165

multiline records, 177–179

multiple per record, 171–174

File objects, 101

Filenames as parameters, 161

Files, 159–183

closing, 267

creating new, 182

headers in, 162

as lists, 100–103

missing values, 165

for storing databases, 322

writing to, 181–182

see also Directories

Files, reading

looking ahead when processing,

179–180

multiline records, 177–179

multiple fields per record, 171–174

one field per record, 160–170

positional data, 174–176

find method, 61, 247

Finite numeric precision, 23, 24

Fixed values, 256

Fixed-width file formats, 174

FIXME comments, 104

Fixtures (in tests), 251

FLAT value, relief attribute, 300

float function, 47

float type, 21

Floating-point numbers, 21

applying Boolean operators to,

114–118

comparing integers to, 112

rounding, 34

user input of, 47

Folders, see Directories

Fonts, GUI, 307

for loops, 89–92, 131, 140

for linear search, 215

looping over dictionaries, 193

Foreground color, widget (Tkinter), 308

Format strings, 45

Formatted printing, 45

Frame widget (Tkinter), 295, 299

Frames, 146

Frozen sets, 190

Function calls, 31, 32

Function groups, see Modules

Functional testing, defined, 260

Functions, 30–34, 237–242

aliasing in, 94

built-in, 33, 55

default parameter values, 237–239

defining vs. calling, 32

exceptions and, 245–246

lambda functions, 303–307

for lists, 87–89

named parameters, 241

one-way flags, 259

testing with modules, 70–76

test_ functions, 71

using classes as, 271

variable parameter lists, 239–241

Functions in classes, see Methods

G
Gatherers, 258

General test cases, 252

get method (dictionaries), 194, 196

get_blue function (media module), 68

get_color function (media module), 68

get_green function (media module), 68

get_height function (media module), 65

get_red function (media module), 68

get_width function (media module), 65

GLASS-BOX TESTING 358 ISSUBSET METHOD (SETS)

Glass-box testing, 249

Global variables, 303

Graphical user interfaces (GUIs),

294–318

basic construction of, 296–301

models, views, and controllers,

301–316

object-oriented, 316

styles of, 307–311

colors, 308–310

fonts, 307

layouts, 310–311

Tkinter module, 295

Graphics, see Images

Grayscale images, 158

Greater than (>) operator, 111, 330

with strings, 117

Greater than or equal to (>=) operator,

111, 330

grid layout manager, 311

GROUP BY clause (SELECT command), 342

Grouping, database, 341

GROOVE value, relief attribute, 300

GUI, see Graphical user interfaces

H
Hash codes, 189

Hash tables, 189–190

Header data in files, 162

Help documentation

comments in program code, 103

docstrings, 103

docstrings in modules, 59

help function, 51, 278

Helper functions, 169

Heterogeneity of lists, 85

Hexadecimal color representation, 72

I
IDE, see Integrated development

environment

IDLE, 19

if statements, 118–124

nested, 124

using elif keyword, 121

using else clause, 123

using multiple, 121

Images, 64–67

pixels and colors, 68–69

scaling, 157

superimposing (example), 138

transforming or reflecting, 157

Immutability of numbers and strings,

86

import statement, 50, 53, 295n

Importing modules, 50–54

testing if module is imported, 58

Inclusive or, 110

Indentation in if statements, 119, 120

Independence of tests, 250

index method, 204

Indices for list items, 83

determining, 132–135

enumerating through list elements,

135–137

see also Lists

Infinite loops, 142–146

__init__ method, 275

Inner joins, 336, 342

Input from users, 46

loops for, 148–149

INSERT commands (SQL), 326

insert method, 95

Insertion sort, 225–226

insort_left method (bisect module), 221

insort_right method (bisect module), 221

Instance variables, 272

Instances of classes, 270

int type, 20, 270

operations with float type, 22

int function, 47

INTEGER data type (SQLite), 325

Integers, 20

applying Boolean operators to,

114–118

comparing to floating-point

numbers, 112

inserting in printed content, 46

user input of, 47

Integrated development environment

(IDE), 18

Interfaces, see Graphical user

interfaces (GUIs)

Internet, processing files over, 160

Interpreter, 18

Interrupting (breaking) loops, 149–150,

153

intersection method (sets), 186

IntVar type (Tkinter), 298

Inverting dictionaries, 197

islower method, 61

issubset method (sets), 186

ISSUPERSET METHOD (SETS) 359 MERGESORT ALGORITHM

issuperset method (sets), 186

isupper method, 61

items method (dictionaries), 194

Iterations of loops

defined, 89

interrupting (breaking), 149–150,

153

skipping to next, 151–153

iteritems method (dictionaries), 195

J
Joining database tables, 334–339

self-joins, 342–344

Joining strings, 40

K
Key-value pairs, see Dictionaries

keys method (dictionaries), 194

Keys, database, 339–340

L
Label widget (Tkinter), 295

pack method, 296

Lambda functions, 303–307

Layouts, GUI, 310–311

len method, 87, 134

Less than (<) operator, 111, 330

Less than or equal to (<=) operator,

111, 330

with strings, 117

ligthen function (media module), 68

Linear search, 214–218

running time, 217–218

sentinel search, 216

using for loops, 215

List methods, 95–97

List searches, see Searching

List sorts, see Sorting

Listbox widget (Tkinter), 295

Lists, 81–105

aliasing, 94–95

alternatives to, 99–100

built-in functions for, 87–89

as containers, 258

disappearing (or so it seems), 96

empty lists, 84

enumerating elements of, 135–137

files as, 100–103

merging two sorted lists, 230–233

modifying, 85–86

nesting, 97–98

processing list items, 89–92

ragged lists, 139–140

slicing, 92–93

walking through, 208

load_picture function, 64

Local variables, 32–33, 146

Logic, conditional, see Choices

Logical operations with NULL, 334

Logical operators, see entries at

Boolean

Look and feel, GUI, 307–311

colors, 308–310

fonts, 307

layouts, 310–311

Loops, 131–154

counted loops, 131

looping over multiple objects, 138

over dictionary contents, 193

enumerating through list elements,

135–137

for loops, 89–92, 92, 131, 140

infinite loops, 142–146

interrupting with break, 149–150,

153

nesting, 90, 137

using break with, 150

skipping interactions with break,

151–153

style notes, 153

for user input, 148–149

walking through lists, 208

while loops, 140–147

see also specific loop by name

lower method, 61

M
__main__ variable, 57

Maps, see Dictionaries

Mathematical expressions, 19

MAX function, 341

max method, 87

media module, 60, 64

pixel and color functions, 68

Memory model

lists, 83

for variable assignment, 26

Menu widget (Tkinter), 295, 314

Menubutton widget (Tkinter), 295

merge function, 231

Mergesort algorithm, 229–233

MESSAGE WIDGET (TKINTER) 360 OPENING FILES

Message widget (Tkinter), 295

Methods, 61, 272–274

chaining together, 62

constructors, 274–275

for dictionaries, 194

inheritance, 285–287

for lists, 95–97

overriding, 287

polymorphism, 282–284

for sets, 185–187

special methods, 276–278

Methods for strings, see String

methods

MIN function, 341

min method, 87

Missing data in database, NULL for,

333–334

Missing values in data records, 165

Models, 302, 316

Modes for opening files, 181

Modes of file access, 100

Modules, 50–78

defining custom, 54–60

executing when imported, 56

for file processing, 159

for images (example), 64–67

importing, 50–54

style notes on, 76

for testing functions, 70–76

testing if imported, 58

writing comments in, 59

Modulo (%) operator, 21, 22, 25

Modulo assignment (%=) operator, 29

Mosaic filter, 157

Most-recent holder, 257

Most-wanted holder, 257

Multiline data records, 177–179

Multiline strings, 43–44

Multiplication (*) operator, 22, 25

with lists, 89

Multiplication assignment (*) operator,

29

Multivalued assignment, 136

Mutability of lists, 86, 94

Mutable variables (Tkinter), 297–299

N
\n (newline) character, 43, 44

__name__ variable, 57

Named parameters, 241

with widgets (Tkinter), 297

Naming variables, 34

Negation (-) operator, 22, 25, 36

Nested if statements, 124

Nested database queries, 345–346

Nested lists, 97–98

ragged lists, 139–140

Nested loops, 90, 137

using break with, 150

Newline (\n) character, 43, 44

None value, returned from list

methods, 96

Normalizing strings, 44

Nose library, 71

Not equal to (!=) operator, 111, 330

NOT NULL keywords, 333

NOT operator, 109

in database query conditions, 330

with numbers, 114

NULL data type, 325

how to use, 333

for missing data, 333, 334

Number comparisons, see Relational

operators

Numbers

converting True and False to, 118

as immutable, 86

testing with, 252

from user input, 47

Numeric precision, 23, 24

Numerical analysis, 24

O
Object-oriented GUIs, 316

Object-oriented programming (OOP),

270–293

Color class (example), 271–275

special methods, 276–278

theory of, 280–287

encapsulation, 280

inheritance, 285–287

polymorphism, 282–284

Objects, 63, 270

constructors, 274–275

encapsulation, 280

exception objects, 243–244

inheritance, 285–287

polymorphism, 282–284

One-way flags, 259

OOP, see Object-oriented programming

open function, 100

Opening files, 162, 181

OPERANDS 361 RAW_INPUT FUNCTION

see also Reading files; Writing to files

Operands, 19

Operating system (OS), 17

Operations in classes, see Methods

Operations in computer programs, 13

defining new, 14

Operations, database, see

Transactions, database

Operators, 19

arithmetic operators, 25

Boolean operators, 109–110

applying to integers, floats, and

strings, 114–118

combined operators, 28

combining different types of,

112–114

Boolean operators

for database query conditions, 330

relational operators

for database query conditions, 330

overloaded, defined, 40

overloading, 278

relational operators, 111–112

with set methods, 187

OR operator, 109

in database query conditions, 330

NULL with, 334

with numbers, 115–116

ORDER BY clause, 328

Order of precedence, see Operator

precedence

Out-of-range indices, 83

Outdated comments, 105

Overloaded operators, defined, 40

Overloading operators, 278

Overriding methods, 287

P
pack method, entry widget, 310

Parameters, function, 31, 33, 146

default values for, 237–239

filenames as, 161

named, 241

self parameter, 273

variable parameter lists, 239–241

Parent classes, 286

Parent widgets (Tkinter), 296

Parentheses () for tuples, 99

pack method (Label widget), 296

pass keyword, 271

pass statement, 72

Patterns, 256–260

containers, 258

fixed values, 256

gatherers (accumulators), 258

most-recent holders, 257

most-wanted holders, 257

one-way flags, 259

steppers and counters, 256

temporary variables, 258

Period (.) for identifying modules, 51

Pictures, see Images

Pixels, 68–69

Polymorphism, 282–284

pop method, 95, 199

Positional data in files, 174–176

pow function, 34

Precedence, operator, 25, 112–114

Precision, numeric, 23, 24

PRIMARY KEY clause (CONSTRAINT

command), 339

print statement, 44–46

formatted printing, 45

Processing files, see Files

Profiling, 211

binary search algorithms, 221

families of algorithms, 234

linear search algorithms, 216–218

sort algorithms, 226–228

Programming style, see Style,

programming

Programs, see Computer programs

Prompt, Python (>>>), 19

Python, good for teaching with, 15

Q
Quality assurance (QA), 70

Queries, database, 327–330

avoiding duplicate results, 339

conditions for, 329–330

nested, 345–346

Quotes, for strings, 40

Quotes, inside strings, 42

R
Ragged lists, 139–140

raise keyword, 247

RAISED value, relief attribute, 300

Raising exceptions, 242, 247

range function, 132–135

raw_input function, 46

in loops, 148–149

READ METHOD 362 SELECT COMMANDS (SQL)

read method, 101

Read mode (opening files), 181

Reading files

looking ahead when, 179–180

with multiline records, 177–179

with multiple fields per record,

171–174

with one field per record, 170

with positional data, 174

Reading from databases, 327–330

avoiding duplicates, 339

query conditions, 329–330

Reading from files, 100

readline method, 101

REAL data type (SQLite), 325

Real numbers, precision of, 24

Records (data) in files, 159

extending across multiple lines,

177–179

looking ahead when processing,

179–180

missing values in, 165

with multiple fields, 171–174

one per line, 160–170

Records in database tables, 321

updating or deleting, 330–331

Reflecting images, 157

Regression testing, 250

Relational databases, 321–346

aggregation, 341

connecting to, 324

creating tables, 325

grouping, 341

inserting data into, 326

joining tables, 334–339

self-joins, 342–344

keys and constraints, 339–340

missing data, NULL for, 333–334

nested queries, 345–346

retrieving data from, 327–330

query conditions, 329–330

without duplicates, 339

saving changes to, 327

transactions, 331–333

updating and deleting from, 330–331

Relational operators, 111–112

combining with other operators,

112–114

for database query conditions, 330

with strings, 117

relief attribute (Frame widget), 300

Remainder (%) operator, 21, 22, 25

Remainder assignment (%=) operator,

29

Reminders, comments as, 104

remove method, 95, 186, 206

Repeating strings with * operator, 42

Repeating things, see Loops

replace method, 61

__repr__ method, 276

Resizing images, 157

Return address, 146

return statement

function calls, 30, 31

Return value, 147

reverse method, 95

RGB color model, 72

RIDGE value, relief attribute, 300

Rolling back transactions, 331

Root window (Tkinter), 295

adding widgets to, 296

round function, 34

Rounding numbers, 21, 34

Running time, measuring, 211

binary search, 221

categorizing algorithms by, 234

linear search, 216–218

sort algorithms, 226–228

Runtime stack, 146

S
%s conversion specifier, 46

save_as function (media module), 65

Saving changes to databases, 327

Saving data to files, see Files, writing to

Scaling images, 157

Scope, variable, 33

Searching

binary search, 218–221

built-in (bisect module), 221

timing algorithms for, 221

choosing an algorithm for, 204–210

linear search, 214–218

sentinel search, 216

timing algorithms for, 216–218

using for loops, 215

test strategies for, 252

SELECT commands (SQL), 327–330

DISTINCT keyword, 339

GROUP BY clause, 342

nested, 345–346

ORDER BY clause, 328

SELECTION SORT 363 SUM FUNCTION

query conditions, 329–330

Selection sort, 222–226

self parameter, 273

Self-joins, 342–344

Semantics, code, 278

Sentinel search, 216

Sequences, see Dictionaries; Lists;

Sets; Tuples

Sequences, enumerating elements of,

135–137

Set operations, 185–187

set_blue function (media module), 68

set_color function (media module), 68

set_green function (media module), 68

set_red function (media module), 68

Sets, 185–190

frozen sets, 190

storage in hash tables, 189–190

Shells, 18

show function, 64

side argument, pack method, 310

Simplest interesting test cases, 252

Single quotes, for strings, 40

Single quotes, inside strings, 42

Size, picture

determining, 65

editing, 65

Skipping iterations of loops, 151–153

Slicing lists, 92–93

sort method, 95

sorted function, 197

Sorting, 222–228

bubble sort, 235

in databases, 328

improving efficiency of, 228–229

insertion sort, 225–226

mergesort algorithm, 229–233

selection sort, 222–226

timing algorithms for, 226–228

Sparse vectors, 201

split method, 61, 169

SQL (Structured Query Language), 323

SQLite library, 322, 323

data types for, 325, 327

sqrt function, 51

Square brackets []

for dictionary values, 191

empty list ([]), 84

for lists, 81

Stack Data tab (Wing 101), 145

Starred parameters (functions), 239

startswith method, 61

Statements

see also Expressions

Statements, program, 17

Step Into button (Wing 101), 145

Step Over button (Wing 101), 145

Step size, 133

Stepper variables, 256

Stopping (breaking) loops, 149–150,

153

__str__ method, 276

String formatting (%) operator, 46

String methods, 61–62

Strings, 39–47

applying Boolean operators to,

114–118

as containers, 258

escape characters, 42–43

as immutable, 86

inserting in printed content, 46

multiline, 43–44

normalizing, 44

print statement, 44–46

as sequences, 99

stripping whitespace from, 102

user input, 46

StringVar type (Tkinter), 298

strip method, 61, 102

Structure testing, 252

Structured Query Language (SQL), 323

Style, programming

being too clever, 117

debugging strategies, 255

exceptions, 247–248

loops, 153

naming variables, 34

test-driven development, 253

using modules, 76

writing comments, 104

Styles of graphical user interfaces

(GUIs), 307–311

colors, 308–310

fonts, 307

layouts, 310–311

__sub__ method, 277

Subclasses, 286

Subtraction (-) operator, 22, 25

with objects, 277

Subtraction assignment (-=) operator,

29

SUM function, 341

SUM METHOD 364 VARIABLES

sum method, 87

SUNKEN value, relief attribute, 300

Superclasses, 286

Superimposing images (example), 138

symmetric_difference method (sets), 186

Syntax errors, 30

sys.argv variable, 103

filenames as parameters, 161

T
\t (tab) character, 43, 45

Tab (\t) character, 43, 45

Tables in relational databases, 321

combining (joining), 334–339

self-joins, 342–344

creating, 325

removing, 331

TDD (test-driven development), 253

Temporaries, 258

test_ files, 71

Test-driven development (TDD), 253

Testing, 249–254

black-box and glass-box testing, 249

cases for, types of, 252

disappearing lists, 96

functional testing, defined, 260

functions, with modules, 70–76

independence of tests, 250

limitations of, 251

regression testing, 250

terminology of, 249–250

unit testing, 250

using reminder comments, 104

see also Debugging

text attribute (Label widget), 296

TEXT data type (SQLite), 325

text_factory method, 328

Text strings, see Strings

Text style, GUI

fonts of, 307

Text widget (Tkinter), 295, 312

textvariable attribute (Label widget), 298

Three-valued logic, 334

Tkinter module, 295

mutable variables, 297–299

TODO comments, 104

Top-down design, 203

TopLevel widget (Tkinter), 295

Transactions, database, 331–333

Transforming images, 157

Troubleshooting, see Debugging;

Testing

comments about bugs, 104

True value, 108

converting to number, 118

Truth tables, 110

try keyword, 242–243

Tuples, 99, 190

enumerating elements of, 135–137

Type errors

adding different data types, 41

adding lists and strings, 88

wrong number of parameters, 33

Types, 20, 22–25, 270

creating new, 270

see also specific type by name

U
Unary minus (-) operator, 22, 25, 36

Unary plus (+) operator, 36

Undoing transactions, 331

Unicode scheme, 326

union method (sets), 186

Unique IDs in databases, 339

Unit testing, 250

defined, 260

independence of tests, 250

limitations of, 251

Unordered collections, defined, 185

UPDATE commands (SQL), 330

update method (dictionaries), 194

Updating databases, 330–331

Updating dictionaries, 192

upper method, 61

urllib module, 160

urlopen function (urllib module), 160

User input, 46

loops for, 148–149

User interfaces, see Graphical user

interfaces (GUIs)

V
Values in data records, see Fields in

data records

values method (dictionaries), 194

Variable parameter lists, 239–241

Variables, 25–30

assigning lists to, 83

assigning values to, 25, 26, 29

multivalued assignment, 136

conditionals stored as, 125–126

VIEWS 365 WRITING TO FILES

creating, 25

global, 303

importing from modules, 52

instance variables, 272

local, 32–33, 146

most-recent holders, 257

most-wanted holders, 257

mutable, Tkinter, 297–299

naming, tips for, 34

scopeof, 33

steppers, 256

temporaries, 258

Views, 301, 316

Virtual machine, 18

W
Walking through lists, 208

WHERE keyword (SELECT statements), 329

while loops, 140–147

Whitespace, stripping from strings, 102

Widgets (Tkinter), 295

adding to root window, 296

colors of, 308

layout of, 310

parent widgets, 296

Windowing systems, see Graphical

user interfaces (GUIs)

Wing 101, 18, 144

Working directory, 66

Write mode (opening files), 181

Writing to files, 181–182

The Pragmatic Bookshelf
Available in paperback and DRM-free PDF, our titles are here to help you stay on top of

your game. The following are in print as of April 2009; be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails: Second

Edition

2006 9780977616633 719

Agile Web Development with Rails, Third Edition 2009 9781934356166 784

Augmented Reality: A Practical Guide 2008 9781934356036 328

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Deploying Rails Applications: A Step-by-Step

Guide

2008 9780978739201 280

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Developing Facebook Platform Applications with

Rails

2008 9781934356128 200

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Google Maps API, V2: Adding Where to Your

Applications

2006 PDF-Only 83

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Hello, Android: Introducing Google’s Mobile

Development Platform

2008 9781934356173 200

Interface Oriented Design 2006 9780976694052 240

Continued on next page

pragprog.com

WRITING TO FILES 367 WRITING TO FILES

Title Year ISBN Pages

Learn to Program, 2nd Edition 2009 9781934356364 230

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

My Job Went to India: 52 Ways to Save Your Job 2005 9780976694014 208

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide, Second Edition

2004 9780974514055 864

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails Recipes 2006 9780977616602 350

Rails for .NET Developers 2008 9781934356203 300

Rails for Java Developers 2007 9780977616695 336

Rails for PHP Developers 2008 9781934356043 432

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy Production-Ready

Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192

Ship it! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

Stripes ...And Java Web Development Is Fun

Again

2008 9781934356210 375

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 200

Continued on next page

Title Year ISBN Pages

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Practical Programming’s Home Page

http://pragprog.com/titles/gwpy

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/gwpy.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/gwpy
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/gwpy
www.pragprog.com/catalog

	Contents
	Introduction
	Programs and Programming
	A Few Definitions
	What to Install
	For Instructors
	Summary

	Hello, Python
	The Big Picture
	Expressions
	What Is a Type?
	Variables and the Assignment Statement
	When Things Go Wrong
	Function Basics
	Built-in Functions
	Style Notes
	Summary
	Exercises

	Strings
	Strings
	Escape Characters
	Multiline Strings
	Print
	Formatted Printing
	User Input
	Summary
	Exercises

	Modules
	Importing Modules
	Defining Your Own Modules
	Objects and Methods
	Pixels and Colors
	Testing
	Style Notes
	Summary
	Exercises

	Lists
	Lists and Indices
	Modifying Lists
	Built-in Functions on Lists
	Processing List Items
	Slicing
	Aliasing
	List Methods
	Nested Lists
	Other Kinds of Sequences
	Files as Lists
	Comments
	Summary
	Exercises

	Making Choices
	Boolean Logic
	if Statements
	Storing Conditionals
	Summary
	Exercises

	Repetition
	Counted Loops
	while Loops
	User Input Loops
	Controlling Loops
	Style Notes
	Summary
	Exercises

	File Processing
	One Record per Line
	Records with Multiple Fields
	Positional Data
	Multiline Records
	Looking Ahead
	Writing to Files
	Summary
	Exercises

	Sets and Dictionaries
	Sets
	Dictionaries
	Inverting a Dictionary
	Summary
	Exercises

	Algorithms
	Searching
	Timing
	Summary
	Exercises

	Searching and Sorting
	Linear Search
	Binary Search
	Sorting
	More Efficient Sorting Algorithms
	Mergesort: An Nlog2N Algorithm
	Summary
	Exercises

	Construction
	More on Functions
	Exceptions
	Testing
	Debugging
	Patterns
	Summary
	Exercises

	Object-Oriented Programming
	Class 4-1Color
	Special Methods
	More About dir and help
	A Little Bit of OO Theory
	A Longer Example
	Summary
	Exercises

	Graphical User Interfaces
	The Tkinter Module
	Basic GUI Construction
	Models, Views, and Controllers
	Style
	A Few More Widgets
	Object-Oriented GUIs
	Summary
	Exercises

	Databases
	The Big Picture
	First Steps
	Retrieving Data
	Updating and Deleting
	Transactions
	Using NULL for Missing Data
	Using Joins to Combine Tables
	Keys and Constraints
	Advanced Features
	Summary
	Exercises

	Bibliography
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

