
Appendix A 1

Logic Programming
with Prolog

Prolog programs are constructed from terms:

Constants can be either atoms or numbers:

• Atoms: Strings of characters starting with a
lower-case letter or enclosed in apostrophes.

• Numbers: Strings of digits with or without a
decimal point.

Variables are strings of characters beginning
with an upper-case letter or an underscore.

Structures consist of a functor or function
symbol (looks like an atom), followed by a list
of terms inside parentheses, separated by
commas.

Appendix A 2

Structures have two interpretations:

As predicates (relations):

presidentof(marySue, iowa).

prime(7).

between(rock,X,hardPlace).

As structured objects similar to records:

computer(name(herky), locn('MLH 303'),
 make('IBM'), model('RS6000'))

list(3, list(5, list(8, list(13, nil))))

Prolog Programs

A Prolog program is a sequence of statements,
called clauses , of the form

P0 :- P1, P2, …, Pn.

Each of P0, P1, P2, …, Pn is an atom or structure.

A period terminates every Prolog clause.

Appendix A 3

Declarative meaning:
“P0 is true if P1 and P2 and … and Pn are true”

Procedural meaning:
“To satisfy goal P0, satisfy goal P1

then P2 then … then Pn”.

• P0 is called the head goal of a clause.

• Conjunction of goals P1, P2, …, Pn forms
the body of the clause.

• A clause without a body is a fact :

“P.” means “P is true” or
 “goal P is satisfied”

• A clause without a head

“:- P1, P2, …, Pn.” or “?- P1, P2, …, Pn.”

is a query interpreted as

“Are P1 and P2 and … and Pn true?” or
“Satisfy goal P1 then P2 then … then Pn”

Appendix A 4

Lists in Prolog

A list of terms can be represented between
brackets:

[a, b, c, d]

Its head is “a” and its tail is “[b, c, d]”.

The tail of [a] is [], the empty list.

Lists may contain lists:

[3.3, [a, 8, []], [x], [p,q]] is a list of four items.

Special form to direct pattern matching:

• The term [X|Y] matches any list with at least
one element:

X matches the head of the list, and

Y matches the tail.

Appendix A 5

• The term [X,Y,77|T] matches any list with at
least three elements whose third element
is the number 77:

X matches the first element,

Y matches the second element, and

T matches rest of the list after the third item.

Using these pattern matching facilities, values
can be specified as the intersection of
constraints on terms instead of by direct
assignment.

Appendix A 6

Recursion

Most interesting algorithms involve repeating
some group of actions.

Prolog implements repetition using recursion.

Recursion is closely related to mathematical
induction, requiring two cases:

Basis : Solve some initial or small version of the
problem directly.

Recursion : Assuming the algorithm works on
smaller or simpler versions of the problem,
solve an arbitrary instance of the problem.

Example

sublist(S,L) succeeds if and only if the list S is a
sublist of the list L.

sublist([a,b,c], [a,b,c,d,e]) succeeds.

sublist([c,d], [a,b,c,d,e]) succeeds.

sublist([b,d], [a,b,c,d,e]) fails.

Appendix A 7

For list algorithms, the basis usually deals with
an empty list, certainly the smallest list.
(Some algorithms for lists do not handle the empty
list and so begin with a singleton list, [H]).

For the recursion step, we define the algorithm for
the arbitrary list, [H|T], assuming that it works
correctly for its tail T, a smaller list.

Sublist basis
The empty list is a sublist of any list.

sublist([], L). % 1

Sublist recursion

The list [H|T] is a sublist of the list [H|U] if the
list T is a sublist of the list U starting at the first
position.

sublist([H|T], [H|U] :- initialsublist(T,U). % 2
initialsublist([], L). % 3
initialsublist([H|T],[H|U] :- initialsublist(T,U). % 4

Or the list S is a sublist of the list [H|U] if it is a
sublist of U.

sublist(S, [H|U] :- sublist(S,U). % 5
Appendix A 8

These two cases correspond to the situation
where the sublist begins at the start of the list
or the sublist begins later in the list, the only
two possibilities.

Sample Executions

sublist([b,c,d], [a,b,c,d,e,f]) % 5

because sublist([b,c,d], [b,c,d,e,f]) % 2

because initialsublist([c,d], [c,d,e,f]) % 4

because initialsublist ([d], [d,e,f]) % 4

because initialsublist ([], [e,f]) % 3

sublist([b,d], [b,c,d]) fails % 2

because initialsublist([d], [c,d]) fails

and % 5

because sublist([b,d], [c,d]) fails % 5

because sublist([b,d], [d]) fails

Appendix A 9

Testing Primes in Prolog

Predicate prime

prime(P) succeeds iff P>0 is prime.

Assume the predicate
sqrt(N,S) iff S = floor(sqrt(N)).

prime(2).

prime(N) :- sqrt(N,S), okay(N,S,3).

where okay(N,S,D) succeeds iff no odd
integer, D ≤ M ≤ S, divides into N evenly.

%--

Predicate okay

okay(N,S,D) :- D>S.

okay(N,S,D) :- N =\= D* (N//D), D1 is D+2,
okay(N,S,D1).

%--

Appendix A 10

Predicate sqrt

Consider this Wren program

program sqrt is
var n,sqrt,odd,sum : integer ;

begin
read n;
sqrt:=0; odd:=1; sum:=1;
while sum<=n do

sqrt:=sqrt+1;
odd:=odd+2;
sum:=sum+odd

end while ;
write sqrt

end

Trace
n sqrt odd sum
28 0 1 1

1 3 4
2 5 9
3 7 16
4 9 25
5 11 36

Appendix A 11

Translate the while loop into Prolog as follows:

sqrt(N,S) :- loop(N,0,1,1,Ans).

loop(N,Sqrt,Odd,Sum,Ans) :-
Sum =< N,
Sqrt1 is Sqrt+1,
Odd1 is Odd+2,
Sum1 is Sum+Odd,
loop(N,Sqrt1,Odd1,Sum1,Ans).

loop(N,Sqrt,Odd,Sum,Sqrt) :- Sum > N.

This last clause returns the value in the second
parameter as the answer by unifying the last
parameter with that second parameter.

%--

Appendix A 12

List Processing

member(X,L) means item X is in list L

member(X,[X|T]).

member(X,[H|T]) :- member(X,T).

prefix(P,L) means list P is a prefix of list L

prefix([],L).

prefix([H|T],[H|U]) :- prefix(T,U).

suffix(S,L) means list S is a suffix of list L

suffix(S,S).

suffix(S,[H|T]) :- suffix(S,T).

sublist(Sb,L) means list Sb is a sublist of list L

sublist(Sb,L) :- prefix(Sb,L).

sublist(Sb,[H|T]) :- sublist(Sb,T).

Appendix A 13

concat(A,B,C) means list C is the concatenation
of lists A and B

concat([], L, L).
concat([H|T], L, [H|M]) :- concat(T, L, M).

Alternative Definitions

prefix(P,L) :- concat(P,Q,L).

suffix(S,L) :- concat(R,S,L).

sublist(Sb,L) :- concat(A,Sb,C), concat(C,D,L).

Appendix A 14

take(N,L,NewL) means list NewL consists of the
first N elements of list L

take(0,L,[]).

take(N,[H|T],[H|R]) :- N>0, M is N-1,
take(M,T,R).

drop(N,L,NewL) means list NewL is L with its first
N elements removed

drop(0,L,L).

drop(N,[H|T],R) :- N>0, M is N-1,
drop(M,T,R).

nth(N,L,X) means item X is the Nth item in list L

nth(1,[H|T],H).

nth(N,[H|T],X) :- N>0, M is N-1, nth(M,T,X).

Factorial:

fac(0,1).

fac(N,F) :- N>0, N1 is N-1, fac(N1,R), F is N* R.

Appendix A 15

substitute(X,NX,L,NL) means NL is the list
resulting from replacing all occurrences of item
X in L by item NX

substitute(X,NX,[],[]).

substitute(X,NX,[X|T],[NX|U])
:- substitute(X,NX,T,U).

substitute(X,NX,[H|T],[H|U])
:- substitute(X,NX,T,U).

spliteven(L,Pre,Suf) means list L is split into a
prefix and a suffix of the same length (±1)

len([],0).

len([H|T],N) :- len(T,M), N is M+1.

eq(M,N) :- N-2<M, M<N+2.

spliteven(L,Left,Right) :- concat(Left,Right,L),
len(Left,M), len(Right,N),
eq(M,N).

Alternative : Try using take and drop.

Appendix A 16

nodups(L,NDL) means NDL is the list containing
the items in L with all duplicates removed

nodups([],[]).

nodups([H|T],L) :- member(H,T),
nodups(T,L).

nodups([H|T],[H|U]) :- nodups(T,U).

flatten(L,FlatL) means FlatL is the list L with
all atomic items on the top level, for example
flatten([a,[b,c],[[d],a]], [a,b,c,d,a])

Three predefined predicates:

atom(A) succeeds if A is an atom.

number(N) succeeds if N is a number.

atomic(X) :- atom(X).

atomic(X) :- number(X).

flatten([],[]).

flatten([H|T],[H|U]) :- atomic(H), flatten(T,U).

flatten([H|T],R) :- flatten(H,A), flatten(T,B),
concat(A,B,R).

Appendix A 17

Set Operations

subset(SubS,S) means every item in list SubS
is also in list S

subset([],S).

subset([H|T],S) :- member(H,S),
subset(T,S).

union(L1,L2,Union) means list Union is the set
union of L1 and L2 (no duplicates assuming L1
and L2 have none)

union([],S,S).

union([H|T],S,R) :- member(H,S),
union(T,S,R).

union([H|T],S,[H|U]) :- union(T,S,U).

diff(L1,L2,Setdiff) means list Setdiff is the set
difference of L1 and L2

diff([],S,[]).

diff([H|T],S,R) :- member(H,S), diff(T,S,R).

diff([H|T],S,[H|U]) :- diff(T,S,U).
Appendix A 18

Utility Predicates

get0(N)
N is bound to the ascii code of the next
character from the current input stream
(normally the terminal keyboard).
When the current input stream reaches its
end of file, a special value is bound to N and
the stream is closed.

26, the code for control-Z or
-1, a special end of file value.

put(N)
The character whose ascii code is the value
of N is printed on the current output stream
(normally the terminal screen).

see(F)
The file whose name is the value of F, an
atom, becomes the current input stream.

seen
Close the current input stream.

Appendix A 19

write(T)
The Prolog term given by T is displayed on
the current output stream.

tab(N)
N spaces are printed on the output stream.

nl
Newline prints a linefeed character on the
current output stream.

abort
Immediately terminate the attempt to satisfy
original query and return control to top level.

name(A,L)
A is a literal atom or a number, and L is a list
of the ascii codes of the characters
comprising the name of A.

| ?- name(A,[116,104,101]).
A = the

| ?- name(1994,L).
L = [49, 57, 57, 52]

