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Preface

As we approach the fiftieth anniversary of the first programmable computer,
the twenty-fifth anniversary of the ‘software crisis’ is already long past, that
expression first having been used at an international conference in 1968. Thus
more than half of the history of computer science has been lived under the shadow
of our inability to manage the complexity of the artifacts we have created. Under
these circumstances, few would dare to suggest that the problems of our discipline
have a single technological solution. It is certainly not the purpose of this book
to suggest that logic programming, interesting and powerful though it may be,
is a panacea for the problems programmers face today.

A more encouraging possibility is that we may be able to find theories and
programming paradigms that link together different ways of understanding pro-
grams and computer systems. The purpose of this book is to explore to what
extent logic programming provides such a theory. Based on predicate logic, it
allows computing problems to be expressed in a completely ‘declarative’ way,
without giving instructions for how the problem is to be solved. An execution
mechanism, like the one embodied in implementations of Prolog, can then be
used to search efficiently and systematically for a solution to the problem. For
some problems, the simplest expression of the problem in logical terms also leads
to an effective procedure for solving it when a simple execution mechanism is
used. Other problems require either a more intelligent execution mechanism, or
need to be recast in such a way that a simple execution mechanism can find
solutions effectively. Through the medium of logic, we can separate the task of
capturing the problem from the task of finding an effective way to solve it.

The implementation of Prolog provides an excellent example of the construc-
tion of a software system that satisfies a strong, mathematical specification. In
the case of Prolog, this specification is the mathematical meaning that underlies
the declarative interpretation of logic programs, and the relevant mathematical
foundation is the model theory of Horn clause logic. The thread that links the
first part of this book (which presents the mathematical logic behind Prolog)
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Preface ix

with the last part (which describes how Prolog can be implemented) is this: that
the implementation of Prolog can be viewed as carrying out symbolic reasoning
with logical formulas, and its correctness is expressed in the fact that it faith-
fully realizes the inference rule of resolution, which is itself sound with respect
to the declarative meaning of programs. The soundness of the resolution rule is
established in the first part of the book, and its (almost) faithful implementation
in Prolog is explained informally in the last part, but in a way that reflects the
structure of a formal development by stepwise (data) refinement.

Another attractive feature of logic programming is the rich web of links it
has with other topics in computer science. These are some of the links that are
explored in this book:

• Relational databases, stripped of their inessentials, provide operations on
relations that are closely linked to ways of combining relations in logic
programming. We touch on these links in Chapter 2.

• Mathematical logic, important in formal methods of software development
and in artificial intelligence, is also the foundation of logic programming.
Studying logic programming is a good introduction to mathematical logic,
because the logic behind logic programming is simple, and allows results
like the soundness and completeness of inference systems to be proved in
the simplest possible setting. In these books, these results are established
for the Horn clause logic of Prolog in Chapters 5 to 7.

• Automated theorem proving is increasingly used in the verification of hard-
ware and software systems. It is closely related to logic programming, both
because they share some of the same foundations, and because logic pro-
gramming is a useful vehicle for implementing theorem provers. Some sim-
ple applications of logic programming to theorem proving are explored in
Chapter 11.

• Type systems for modern programming languages like ML are expressed
as systems of inference rules that are in effect logic programs. Compilers
for these languages infer types for the expressions in a program by using
the same techniques that we shall use to implement Prolog in Chapters 15
to 18.

In a wider sense, every computer system implements a kind of logic. By providing
input data, we give the system information about some part of the world. The
computer derives some other information which it presents as its output. If the
input data is accurate, and the rules we have built into the computer system are
sound, then the output data will describe a valid conclusion. Logic programming
depends explicitly on this view of computer systems by allowing both the program
and its input and output data to be expressed as sentences in formal logic.

Oriel College, Oxford J. M. S.
January, 1996



x Preface

Using this book

The chapters of this book can be grouped into four parts, each developing different
themes from the theory, application and implementation of logic programming.
Chapters 1 to 3 introduce the ideas of logic programming; writing programs
by defining relations, combining relations to define new ones, recursion in data
and programs. The exposition here is mainly by example, and many topics are
touched upon that are explored fully in later parts of the book.

Chapters 4 to 8 develop the ‘logical’ theme by presenting the semantics of
logic programs and developing the inference system of SLD–resolution that is
the logical basis of Prolog implementations. This is the most mathematical part
of the book, and develops in miniature the standard theory of mathematical logic,
including proofs that various inference systems for Horn clause logic are sound
and complete.

Chapters 9 to 13 present more practical topics, from the formulation of graph-
searching problems so that they can be solved by Prolog’s simple search strategy,
to applications of logic programming in parsing, algebraic simplification and sim-
ulating hardware circuits.

The final part of the book, in Chapters 14 to 18, picks up where the sec-
ond part left off. It explains how SLD–resolution can be implemented efficiently
by machine, using the conventional technology of Prolog implementation. These
chapters describe the functioning of an actual interpreter for a Prolog subset, and
the complete source code for this interpreter is included as Appendix C of this
book. The presentation in this part of the book is based on stepwise refinement
of data representations. The account begins with a simple implementation of
depth-first search that uses abstract data types like sequences, terms and substi-
tutions with corresponding abstract operations. Later chapters explain how these
abstract data types can be implemented using the concrete data types provided
by a machine.

Getting a copy of picoProlog

A distribution kit is available that contains the Pascal source code of the pico-
Prolog interpreter, code for all the example programs from the book, the ‘ppp’
macro processor that is needed to pre-process the picoProlog source and C source
code for a Pascal–to–C translator that can be used to compile it via C. The kit is
ready-to-build for Sun and Linux machines, and can be ported easily to MS–DOS
using either Turbo Pascal directly, or Turbo C and the Pascal–to–C translator.

You can obtain the kit by anonymous FTP from ftp.comlab.ox.ac.uk in the
directory /pub/packages/picoProlog. Teachers adopting the book who have no
access to FTP may obtain the distribution kit on floppy disk from the publisher.



Chapter 1

Introduction

What kind of thing is a computer program?
One answer is that a program is a collection of instructions for carrying out

some computing task. This is the answer that would have been given by the first
computer programmers, who had to describe in complete detail both how data
was stored in the memory of their computers and the sequence of data movements
and arithmetic operations needed to compute the solutions to problems. This
made programming tedious and error-prone, and so limited the ambition of most
programmers to fairly simple numerical problems. Luckily, computers were small
in those days too.

The same answer – that a program is a collection of instructions – is the basis
for the high-level languages like Fortran and Algol 60 that were invented to ease
the programming task; the successors of these languages, including Pascal, C
and Ada, are still with us today. These languages allowed programmers to assign
symbolic names to storage locations and write algebraic expressions instead of
explicit sequences of movements and operations. Programmers no longer needed
to concern themselves with the exact layout of data in memory, or with the exact
sequence of operations needed to evaluate an algebraic expression, but could leave
these details to be filled in by a compiler.

Despite all these benefits, programs in these languages are still made up of
commands that work by changing values stored in memory locations. Programs
are understood in terms of what happens when a computer obeys the commands.
For this reason, programming languages such as these are often described as
imperative, by analogy with the grammatical mood used to give commands in
natural language.

Another answer to the question ‘What kind of thing is a program?’ stems from
languages like Lisp and – of special interest in this book – like Prolog. The dis-
tinguishing feature of these declarative programming languages, at least in their
pure forms, is that programs are made up not of commands to be executed, but of
definitions and statements about the problem to be solved. Grammatically, they
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2 Introduction

are in the declarative mood, used for ordinary statements in natural language.
Unlike the commands in imperative programs, they can be understood in a way
that is independent of the mechanism that executes the program. Declarative
programs contain no explicit instructions to be followed by the computer that
executes them. Instead, the job of the computer is to manipulate the information
contained in the program so as to derive the solution to a given problem.

In logic programming, a program consists of a collection of statements ex-
pressed as formulas in symbolic logic. There are rules of inference from logic
that allow a new formula to be derived from old ones, with the guarantee that
if the old formulas are true, so is the new one. Because these rules of inference
can be expressed in purely symbolic terms, applying them is the kind of symbol-
manipulation that can be carried out by a computer. This is what happens when
a computer executes a logic program: it uses the rules of inference to derive new
formulas from the ones given in the program, until it finds one that expresses
the solution to the problem that has been posed. If the formulas in the program
are true, then so are the formulas that the machine derives from them, and the
answers it gives will be correct. To ensure that the program gives correct an-
swers, the programmer checks that the program contains only true statements,
and that it contains enough of them to allow solutions to be derived for all the
problems that are of interest. The programmer may also be concerned to ensure
that the derivations the machine must carry out are fairly short, so that the ma-
chine can find answers quickly, and this may affect the form in which definitions
are made and properties stated in the program. Nevertheless, each formula can
be understood in isolation as a true statement about the problem to be solved.

This kind of declarative programming allows the programmer to disregard the
precise sequence of actions that takes place when a program is executed, to a much
greater extent than is made possible even with high-level imperative programming
languages. In checking that the program gives correct answers, for example, the
programmer need only check that each logic formula in the program makes a
true statement about the problem, and need not worry about its relationship
with other parts of the program. This stands in stark contrast with imperative
programming, where the correctness of a command like ‘x := x + 1’ depends
crucially on its place in the whole program, including interactions with other
commands that use x, some of them millions of lines away.

1.1 Introducing logic programming

The contrast between imperative and declarative programming can be illustrated
by looking at two solutions to a small programming problem, one using the con-
ventional approach of Pascal, and the other using the approach of logic pro-
gramming. The problem is to provide a program that will help an architect in
designing motel suites. The client has already decided that each suite will have
two rooms, a lounge and a bedroom, and its floor plan will be something like
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Front Door Window

Living Room Bedroom

Bedroom Door

Window

Figure 1.1: Floor plan of motel suite

Figure 1.1. The program must determine the directions in which the doors and
windows may face, following these guidelines:

1. The lounge window should be opposite the front door to create a feeling of
space.

2. The bedroom door should be in one of the walls at right angles to the front
door to provide a little privacy.

3. The bedroom window should be in one of the walls adjacent to the bedroom
door.

4. The bedroom window should face East to catch the morning light.

In Pascal, directions might be represented by elements of an enumerated type,
like this:

type direction = (north, south, east, west);

Guidelines (1) and (2) constrain the design of the lounge. They can be expressed
in Pascal by writing a Boolean-valued function lounge that takes as arguments
proposed directions for the two doors and the lounge window, and checks whether
the guidelines are satisfied (see Figure 1.2). Names like fd and bw stand for
‘front door’ and ‘bedroom window’, and the two Boolean functions opposite and
adjacent have the obvious meanings.

Guidelines (3) and (4) concern the design of the bedroom, and they are ex-
pressed by the function bedroom that checks the directions for the bedroom door
and window. The functions lounge and bedroom are combined in the suite func-
tion that checks a set of choices for the whole motel suite.

Defining these functions seems to capture the essence of the problem, but the
Pascal program is not complete until we have shown how they are to be used in
a search for valid designs. For a simple problem like this one, and exhaustive
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function lounge(fd , lw , bd : direction): boolean;
begin

lounge := opposite(fd , lw) ∧ adjacent(fd , bd)
end;

function bedroom(bd , bw : direction): boolean;
begin

bedroom := adjacent(bd , bw) ∧ (bw = east)
end;

function suite(fd , lw , bd , bw : direction): boolean;
begin

suite := lounge(fd , lw , bd) ∧ bedroom(bd , bw)
end;

Figure 1.2: Pascal functions for checking motel suite designs

for fd := north to west do

for lw := north to west do

for bd := north to west do

for bw := north to west do

if suite(fd , lw , bd , bw) then

print(fd , lw , bd , bw)

Figure 1.3: Exhaustive search

search like the one shown in Figure 1.3 will do the job: it tries every combination
of four directions, printing out the combinations for which the suite function
returns true. Except for a few details (such as the procedure print for printing
out the answers) this completes the imperative solution.

How can the problem be solved using logic programming? Like the Pascal
solution, the heart of the program is a definition of the properties that describe
valid designs. Instead of the Boolean functions of the Pascal program, it uses a
notation more suited to symbolic calculation. In this notation, the definition of
lounge looks like this:

lounge(fd,bd, lw ) :−
opposite(fd, lw ), adjacent(fd,bd).

In this definition, the symbol ‘:−’ is to be read as ‘if’; think of it as looking a little
like the leftward-pointing arrow ‘⇐’ that is sometimes used in ordinary logic. The
comma that separates the formulas opposite(fd, lw ) and adjacent(fd,bd) is to
be read as ‘and’. Names like lounge stand for relations that hold between objects,
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and names like fd are variables that stand for any object. So the whole definition
means ‘Directions fd, bd and lw together form a valid design for the lounge if
fd is opposite to lw , and fd is adjacent to bd’. As in the Pascal program, we
assume that the relations opposite and adjacent have already been defined.

In the same notation, here is a definition of the relation bedroom that describes
valid designs for the bedroom:

bedroom(bd,bw ) :− adjacent(bd,bw ),bw = east .

Here the name ‘east ’ stands for a constant direction. This definition reads ‘Di-
rections bd and bw form a valid design for the bedroom if bd is adjacent to bw ,
and bw is the direction east ’.

The lounge and bedroom relations are combined in the following definition,
describing what constitutes a valid design for the whole suite:

suite(fd, lw ,bd,bw ) :−
lounge(fd, lw ,bd), bedroom(bd,bw ).

The final ingredient in the logic program is a statement of exactly what problem
is to be solved: i.e., that the program must find groups of four directions that
satisfy the suite relation. This is expressed by writing a goal or question like
this:

# :− suite(fd, lw ,bd,bw ).

The symbol # is just a conventional sign, used so that goals have the same
superficial form as other formulas in the program, with one atomic formula on
the left of the ‘:−’ sign and a list of atomic formulas on the right. It might be
pronounced ‘success’, so that the goal means ‘Success is achieved if direction fd,
lw , bd and bw together form a valid design for the motel suite’.

Unlike the Pascal program, the logic program contains no explicit instructions
for finding a solution to the problem, and there is nothing that corresponds to
the nested for–loops that search through all possible combinations of directions.
In fact, it may seem fanciful to call what we have written a program at all, since
it does not seem to describe a computational process; but this absence of explicit
instructions is one of the attractions of a declarative style of programming. It
turns out that there are powerful, general strategies for finding solutions to prob-
lems that have been expressed as logic programs. Each implementation of logic
programming includes such a strategy as a central component – for example,
many implementations of the logic programming language Prolog use a strategy
known as ‘SLD–resolution with depth-first search’. Whilst this strategy is not
the most powerful one, it is relatively easy to implement efficiently.

Having written a logic program, what can we do with it? One possibility is to
use the statements in the program to prove that certain relationships must hold.
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For example, suppose the facts

opposite(east , west) and adjacent(east , south)

are known. Putting fd = east , bd = south and lw = west into the definition of
lounge gives the formula

lounge(east , south, west) :−
opposite(east , west), adjacent(east , south).

This formula is obtained by substituting east for every occurrence of fd in the
definition of lounge, south for every occurrence of bd, and so on.

The symbol ‘:−’ means ‘if’ and the comma means ‘and’. Also, the two condi-
tions on the right of the ‘:−’ sign in the new formula are both known to be true.
So the conclusion on the left must be true as well:

lounge(east , south, west).

This formula says that there is a valid design for the lounge in which the front door
faces East, the bedroom door faces South, and the lounge window faces West.
We have reached this conclusion by very simple steps: substituting constants for
variables, and checking that two formulas are identical. These are operations
that (as we shall see in more detail later) can easily be carried out by machine.

Carrying on, we might substitute bd = south and bw = east into the defini-
tion of the bedroom relation to obtain the formula

bedroom(south, east) :− adjacent(south, east), east = east .

Again this formula has known facts on the right-hand side of the ‘:−’ sign, so
whatever is on the left-hand side must be true also: we may deduce the conclusion

bedroom(south, east).

As a final step, we might take an instance of the definition of suite, again
obtained by substituting constants for variables:

suite(east , west , south, east) :−
lounge(east , west , south), bedroom(south, east).

Again, the same constant has been substituted for every occurrence of each vari-
able. By good fortune, the two conditions that appear on the right-hand side are
exactly the same as the two facts we derived earlier. So we may conclude that
the formula

suite(east , west , south, east)
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is true: in other words, that a valid design for the motel suite can have the front
door facing East, the lounge window facing West, the bedroom door facing South,
and the bedroom window facing East. In fact, this design is the one shown in
Figure 1.1, if we take North to be towards the left of the picture.

In this sequence of logical steps, we worked ‘forwards’ from known facts to
desired conclusions, and we were able to prove that a certain set of choices con-
stituted a valid design for the motel suite. Such reasoning is of less use in finding

a valid design, rather than just checking that a proposed design is valid. For that
purpose, a different pattern of reasoning is more appropriate, one that works
‘backwards’ from problems we would like to solve towards the known facts that
are the ingredients of a solution. This method is used by Prolog as its way of
solving problems that call for the values of variables to be found.

Let us see how we might go about solving the motel design problem by hand,
using this ‘backwards’ method in essentially the same way as is used automatically
by Prolog. We wish to derive a conclusion of the form

suite(fd, lw ,bd,bw ).

How might we do this? Plainly, we must use the definition of the suite relation,
and this definition says that we must find a way of satisfying both the following
conditions:

lounge(fd, lw ,bd) and bedroom(bd,bw ),

with the variable bd taking the same value in both.
Leaving the second of these sub-problems aside for a moment, we concentrate

on the first one. To derive a conclusion like this, we plainly need to use the
definition of lounge, which it says that to derive a conclusion lounge(fd, lw ,bd),
we must satisfy both of these conditions:

opposite(fd, lw ) and adjacent(fd,bd),

with fd taking the same value in both.
We have now decomposed the problem into relations like opposite and adjacent

that we know how to deal with. But the condition opposite(fd, lw ) can be
satisfied in many ways. For example, we might try putting fd = north and
lw = south (as in Figure 1.1, but this time with North at the top of the picture).
We also need to satisfy the second condition, that is, adjacent(fd,bd), where we
are supposing for the moment that fd = north. There are two ways to do this,
so we first try putting bd = east , following Figure 1.1 again.

This completes a tentative solution to the lounge part of the problem, and
we can turn to the bedroom sub-problem we put aside earlier. By now, we have
chosen to put bd = east , so the problem we have to solve is bedroom(east ,bw ),
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or (expanding the definition of bedroom),

adjacent(east ,bw ) and bw = east

We can solve the first of these in two ways, by putting bw = north or bw =
south, but neither of these leads to a solution of the second part, since it is not
true that north = east or south = east . A dead end!

What has gone wrong is that we made arbitrary choices in solving the lounge

part of the problem, and these choices have turned out not to allow us to complete
the solution of the bedroom part. What we should do now is to go back and
change those choices, hoping that choosing differently will lead to more success
in completing the solution. This process of systematically exploring choices is an
automatic part of the execution of logic programs, and need not be an explicit
part of the logic program itself, unlike the nested for–loops of the Pascal program.

A sensible way to proceed is to revise the latest choice we made, leaving earlier
choices alone until we have explored all other possibilities for later ones. This
‘backtracking’ scheme is the one followed by Prolog. We first try revising our
choice of east as the value of bd, but unfortunately this does not help: we
chose bd = east to solve the problem adjacent(north,bd), and the only other
possibility is to put bd = west , but this does not lead to a solution of the bedroom

part of the problem either. Eventually, we hit on the idea of setting fd = east

and lw = west as our solution to the sub-problem opposite(fd, lw ), then taking
bd = south so that adjacent(fd,bd) is true, and taking bw = east to establish
adjacent(bd,bw ), finally checking that the requirement bw = east is satisfied
(it is!). These choices solve all the sub-problems, so we have found a design that
satisfies all the guidelines; in fact, the design is the same one we checked earlier.

We have discovered a solution to the motel design problem by trying different
possibilities in sequence, and that is what Prolog does when it is implemented on
ordinary, sequential computers. However, there is nothing in the program that
would prevent us from exploring several sets of choices concurrently, perhaps by
giving them to several assistants, or by using several processors in parallel to do
the same thing by machine. This potential for such a transparent exploitation of
parallelism is another attractive feature of declarative programming.

The problem of designing a motel suite has several solutions: another one has
fd = east , lw = west , bd = south, bw = east . It is quite natural for logic
programs to return several answers to the same question (and also natural for
them to return no answers at all, if the problem posed is in fact insoluble). We call
this feature of a program non-determinism. If a program is non-deterministic,
Prolog’s systematic search prints all the answers to a goal in the order they are
discovered. There is a sense in which our Pascal program also produces all the
answers, but only because the program prints the answers in an explicit sequence.
With the logic program, the treatment of multiple answers is natural and implicit.

Some real-time programs also exhibit a kind of non-determinism that is caused
by haphazard timing of events. This is different from the non-determinism of logic
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programming and much less useful. With these real-time programs, it is chance
(or the inner workings of the machine) that decides which answer is produced,
and the user must be prepared to accept any of the possible answers. With a
logic program, it is the environment of a program that decides which answer is
accepted, so that the user can ask for a list of all the answers from a program and
pick the one that is wanted, or can use the program as part of a larger program
that applies further constraints to the solutions. For example, here is a goal that
asks for a suite design satisfying the additional constraint that the front door
should face West:

# :− suite(fd, lw ,bd,bw ), fd = west .

The Prolog strategy (which always solves multiple subgoals by working from
left to right) would answer this question by generating all the solutions to the
original design problem, then rejecting the ones that did not satisfy the additional
requirement fd = west .

The logic programs we shall study in this book are usually made up of logical
formulas that look like this:

P :− Q1, Q2, . . . , Qn,

with P and the Qi being literals or atomic formulas like bedroom(bd,bw ). We
call these formulas Horn clauses, and we read them as asserting that if all the Qi

are true, then P is true also. Horn clauses are more restrictive than the formulas
of full predicate logic. For instance, predicate logic allows the connectives ‘and’
(which we write with a comma) and ‘implies’ (which is equivalent to our ‘:−’) to
be combined in any way we choose, not just in the fixed pattern demanded by
the syntax of Horn clauses. It also provides other connectives such as ‘or’ and
‘not’ that are not allowed in Horn clauses at all. Full predicate logic provides the
quantifiers ‘for all’ and ‘there exists’ that are only partially reflected in the way
we use variables in Horn clauses.

Despite these restrictions, Horn clauses are of special interest because many
computing problems can be expressed in Horn clause form, and it is possible
to build efficient mechanized theorem provers for theories that are expressed as
Horn clauses – and that is just what a Prolog implementation is, or should be.

A special case of Horn clauses occurs if we allow n = 0 in the formula above,
so that there are no Qi on the right-hand side, like this:

P :− .

We read this formula as stating simply that P is true. This makes sense, because
there are no formulas Qi that must be true for the clause to assert the P is true
also. Clauses like this, with no conditions on the right-hand side, are called unit

clauses or simply facts.
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A list of facts can be used to define a relation by listing all instances of it. For
example, the opposite and adjacent relations might be defined in this way:

opposite(north, south) :− .
opposite(south, north) :− .
opposite(east , west) :− .
opposite(west , east) :− .

adjacent(north, east) :− .
adjacent(north, west) :− .
adjacent(south, east) :− .
adjacent(south, west) :− .
adjacent(east , north) :− .
adjacent(east , south) :− .
adjacent(west , north) :− .
adjacent(west , south) :− .

As we shall see, this means that logic programs can be used like relational data-
bases.

Summary

• A logic program consists of a series of assertions written in the language of
formal logic.

• Results are derived from logic programs by symbolic reasoning.
• Logic programming systems solve goals by systematically searching for a

way to derive the answer from the program.

Exercises

1.1 A deluxe motel suite has two bedrooms, but must otherwise obey the design
rules listed in this chapter. Show how to modify the design program for use in
designing luxury suites. How many solutions to the problem are there? How
many can reasonably be built?

Practical exercise

This exercise illustrates the use of picoProlog to solve the motel design problem
discussed in Section 1.1. The Preface explains how to get a copy of picoProlog.
Alternatively, Appendix B explains how to do the practical exercises in the book
using an ordinary Prolog system in place of picoProlog.
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/* motel.pp */

suite(FD, LW, BD, BW) :-

lounge(FD, LW, BD),

bedroom(BD, BW).

lounge(FD, LW, BD) :-

opposite(FD, LW),

adjacent(FD, BD).

bedroom(BD, BW) :-

adjacent(BD, BW),

BW = east.

opposite(north, south) :- .

opposite(south, north) :- .

opposite(east, west) :- .

opposite(west, east) :- .

adjacent(north, east) :- .

adjacent(north, west) :- .

adjacent(south, east) :- .

adjacent(south, west) :- .

adjacent(east, north) :- .

adjacent(east, south) :- .

adjacent(west, north) :- .

adjacent(west, south) :- .

Figure 1.4: The file motel.pp

Included with the picoProlog system is the file motel.pp shown in Figure 1.4.
This contains the clauses of the motel design program, written using the conven-
tions that picoProlog expects. Names of variables like fd are written in upper
case, and both names of relations (like suite) and names of constants (like east)
are written in lower case. Each clause in the program ends with a full stop.
Comments are enclosed in the markers /* and */.

To start the picoProlog system and load this file of clauses, you should use the
command

$ pprolog motel.pp

at the operating system prompt. (In this and the following instructions, you
should type what appears in italic type.) PicoProlog prints a welcome message,
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then reads the clauses from the file motel.pp and stores them internally, before
printing its usual prompt:

Welcome to picoProlog

Loading motel.pp

# :-

PicoProlog is now waiting for you to type a goal to be solved. Let us ask it to
solve the motel design problem:

# :- suite(FD, LW, BD, BW).

Do not forget to include the final full stop, or picoProlog will just sit there and
wait for it. All being well, picoProlog will find a solution to the problem, and
display it like this:

FD = east

LW = west

BD = north

BW = east ?

PicoProlog now waits for your response. You can choose either to accept this
solution by typing a full stop (followed by a carriage return), or ask picoProlog to
find another solution, by typing just a carriage return. In the latter case, another
solution is displayed just like the first:

FD = east

LW = west

BD = south

BW = east ?

By continuing to reply with just a carriage return, you can get picoProlog to
produce all the solutions one after another. After it has shown the last solution,
it finally answers ‘no’, meaning that no (more) solutions could be found, and
returns to the ‘# :-’ prompt. At any point in the stream of answers, you can
type a full stop. PicoProlog then answers ‘yes’, meaning that an answer was
found and accepted, and immediately returns to its prompt.

You can end the session with picoProlog by typing the end-of-file character
(usually Control–Z or Control–D) at the prompt.



Chapter 2

Programming with relations

Logic programming works by defining relations between data items. In this chap-
ter, we look at some of the techniques that can be used to define new relations
in terms of existing ones. Drawing on database techniques, we examine various
ways of combining relations to derive the answers to questions.

The simplest way to define a relation is to give an explicit list of facts; that
is, to define the relation by a table. Figure 2.1 is a list of facts defining a
relation uses(person , program ,machine) that holds between certain people
and the software products and machines they use. This example looks more like
a database than a program, and we can use it like a database by formulating
queries about it as logical goals. For example, the goal

# :− uses(mike,x , sun).

asks ‘What software products does Mike use on the Sun?’. The goal can be
answered by searching the table for facts that match it; the first argument of
uses takes the value mike, and the third takes the value sun, but the second
argument may be anything. There are two solutions: one with x = compiler and
one with x = editor .

Relational database systems have the ability to answer questions by combining
information from more than one relation, and we can mimic this in logic program-
ming too. For example, Figure 2.2 defines a relation needs(program ,memory )
that relates programs to the amount of memory (in kilobytes) needed to run
them. With this information, we can answer a question like ‘What are the mem-
ory requirements of the programs people run on the Mac?’ by defining a new
relation:

answer(program ,memory ) :−
uses(person , program , mac),
needs(program ,memory ).

13
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uses(mike, compiler , sun) :− .
uses(mike, compiler , pc) :− .
uses(mike, compiler , mac) :− .
uses(mike, editor , sun) :− .
uses(mike, editor , pc) :− .
uses(mike, diary , pc) :− .
uses(anna, editor , mac) :− .
uses(anna, spreadsheet , mac) :− .
uses(jane, database, pc) :− .
uses(jane, compiler , pc) :− .
uses(jane, editor , pc) :− .

Figure 2.1: The uses relation

needs(compiler , 128) :− .
needs(editor , 512) :− .
needs(diary , 64) :− .
needs(spreadsheet , 640) :− .
needs(database, 8192) :− .

Figure 2.2: The needs relation

With this definition, the goal # :− answer(x ,y ) has answers in which x is a
program used on the Mac and y is the amount of memory it needs. In database
terms, the answer relation is called a view . It is a relation that is not stored
explicitly in the database, but computed in order to answer a query.

Relational databases provide a number of operations on relations that can
be used to solve many data-processing problems. These operations can all be
represented in logic programming, and they provide a useful classification of the
ways relations can be combined. It is the emphasis on relation-level (rather
than record-level) operations that give relational databases their name and their
claimed advantages over other kinds of database.

The operation of selection means restricting a relation with an extra condition,
as in the query ‘What are the memory requirements of programs that need more
than 256K?’, which is answered by the view

answer(program ,memory ) :−
needs(program ,memory ),memory > 256.

We assume here that the ordering relation > on numbers is defined elsewhere.
Selection with an extra condition that is an equation x = c, where c is a

constant, can also be achieved by substituting c for x in the rest of the query.
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For example, we can understand the question ‘How much memory does the editor
need?’ as asking ‘What are the memory requirements of the program that is the
editor?’, and answer it with the view

answer(program ,memory ) :−
needs(program ,memory ), program = editor

This is a direct example of selection, with the extra condition program = editor .
We can achieve the same effect by substituting editor for program and deleting
the equation:

answer(editor ,memory ) :−
needs(editor ,memory ).

This definition makes it more obvious that all the records that are in the answer

relation have editor as their program component.
Another database operation, projection, involves removing some of the argu-

ments of a relation (that is, some of the columns in the table of the relation). It
can be achieved by defining a view that has fewer arguments than the relation it
uses. For example, the question ‘What programs does each person use?’ can be
answered by the view

answer(person , program) :−
uses(person , program ,machine).

Here the third argument, machine , of the uses relation has been omitted from
the answer relation.

The uses relation contains the clause

uses(mike, compiler , sun) :− .

and this definition of answer lets us derive from it the conclusion

answer(mike, compiler) :− .

that records the fact that Mike uses the compiler, without specifying the machine.
The same conclusion can be derived from any clause in the uses relation that
mentions Mike and the compiler, whatever machine is involved.

It is often natural to combine projection and selection. For example, the
question ‘What programs need more than 256K of memory?’ is answered by the
view

answer(program) :−
needs(program ,memory ),memory > 256.
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This query selects those records from the needs relation with a memory field
larger than 256, then projects the result on just the program field. The actual
memory requirement has been omitted from the arguments of the answer relation,
so the answer contains just the program names.

A better view for answering the question ‘How much memory does the editor
need?’ is this one:

answer(memory ) :−
needs(editor ,memory ).

where the constant editor has been omitted from the arguments of the answer

relation. Again, this view combines selection and projection, by first selecting
records that satisfy the condition program = editor , then projecting on the
memory field.

The operation of relational join combines two relations by matching the values
of one or more fields. An example is provided by the all-embracing question ‘What
people use what programs on what machines, and how much memory do they
need?’. This question is answered by the view

answer(person , program ,machine ,memory ) :−
uses(person , program ,machine),
needs(program ,memory ).

This is the relational join of the uses and needs relations on the program field,
so called because program is the only field that occurs in both relations. The
answer is a list of values for all four variables. It contains the same information as
the two separate relations uses and needs , but is rather repetitious because each
program is associated with the same memory requirement each time it appears.

Again, relational join can be combined in a natural way with projection and
selection. For example, the following view answers the question ‘What are the
memory requirements of programs Anna uses on the Mac?’:

answer(program ,memory ) :−
uses(anna, program , mac),
needs(program ,memory ).

This view combines relational join with selection of the records that satisfy the
conditions person = anna and machine = mac, followed by projection on the
program and memory fields.

It is possible to join a relation with itself on some of its fields. This operation
is useful in answering questions like ‘Which programs are used by two different
people on the same machine?’. To answer this question, we first make a join of the
uses relation with itself on the program and machine fields, making a relation
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answer1 (person1, person2, program ,machine) that is true if person1 and
person2 both use program on machine :

answer1 (person1, person2, program ,machine) :−
uses(person1, program ,machine),
uses(person2, program ,machine).

This relation includes the case that person1 and person2 are in fact the same
person, so we select the records in which they are different, and finally project
on the program field:

answer(program) :−
answer1 (person1, person2, program ,machine),
person1 6= person2.

The definition of the sub-view answer1 could be merged with this to give a single
clause defining answer .

The relational operations of intersection, union and difference correspond to
conjunction, disjunction and negation in logic. Intersection can be used to answer
questions like ‘What programs do both Anna and Jane use?’ by combining two
sub-views with the ‘,’ operator (which is read as ‘and’), like this:

answer(program) :−
answer1 (program),
answer2 (program).

answer1 (program) :− uses(anna, program ,machine).

answer2 (program) :− uses(jane, program ,machine).

Here, the answer view is the intersection of the two views answer1 and answer2 ,
which are themselves obtained by selection and projection. Intersection is the
same as the special case of relational join in which a pair of relations have identical
fields, and the join is on all of them.

The answer view for our last query can actually be defined by a single clause,
like this:

answer(program) :−
uses(anna, program ,machine1),
uses(jane, program ,machine2).

The variable machine has been renamed here as machine1 in one literal and
machine2 in the other, so that the answers will include programs that are used
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by both Anna and Jane but on different machines. Without this renaming, the
results would be different. The view computed by the definition

answer(program) :−
uses(anna, program ,machine),
uses(jane, program ,machine).

answers instead the question ‘What programs do both Anna and Jane use on the

same machine?’. This view is obtained by joining the uses relation with itself on
the program and machine fields, then selecting and projecting.

The operation of relational union corresponds to ‘or’ in logic. Our Horn clause
notation has no symbol for ‘or’, but we can achieve the same effect by using more
than one clause in the definition of a relation. For example, the question ‘What
programs are used by either Anna or Jane?’ is answered by the view

answer(program) :− answer1 (program).
answer(program) :− answer2 (program).

where answer1 and answer2 are as before. If a program p is used by Anna – so
that it satisfies answer1 (p) – then we can derive the conclusion answer(p) using
the first clause in the definition of answer . Similarly, if p satisfies answer2 (p),
then the second clause allows us to derive the conclusion answer(p).

The final operation of relational algebra is difference of relations, and this can
be achieved by a combination of conjunction and negation. For example, the
question ‘What programs are used by Anna but not by Jane?’ can be expressed
in the view

answer(program) :−
answer1 (program),not answer2 (program).

The not operator is missing from our Horn clause notation, but a restricted
version, powerful enough for database applications, can be implemented using
the technique of negation as failure that is explained in Chapter 8. Briefly,
to prove notP , negation as failure requires that we attempt to prove P in-
stead. If we cannot prove P , then we conclude that notP is true; conversely,
if we do succeed in proving P , then notP is false. This is a valid form of
reasoning, provided that P contains no unknown variables, and we can ensure
that this is so in the example by arranging that the literal answer1 (p) is solved
first.

There are several important differences between the view of relational data-
bases presented here and the database systems that are used in practice. We have
been identifying the fields of relations by their position in the list of arguments,
and that becomes tedious to get right when the database contains more than
two or three relations with two or three fields each. Real databases have better
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naming schemes for fields, and associate types with the fields to prevent mistakes
and allow more economical storage. Real databases can maintain indexes for
their relations that allow joins and selections to be computed in a reasonable
time, even when there are thousands or millions of records in the relations. They
are carefully designed to make fast and economical use of disk storage.

On the other hand, logic programming is more general than relational data-
bases in many ways. Logic programs can define relations partly by plain facts and
partly by clauses that have variables and bodies that express constraints on the
values of the variables. The data in logic programs is not restricted to be atomic,
as with databases, and (as we shall see in the next chapter) relations over recur-
sive data structures can themselves be given recursive definitions. These things
have no analogues in relational databases.

Summary

• Relational databases work by combining relations (tables of data) using
operations that work on whole relations, rather than individual records.

• Queries about a database are answered by defining views, new relations
that are derived using the relational operators.

• The tables of relational databases can be expressed in logic programming
by relations that are defined as lists of facts.

• Each of these relational operators can be expressed in logic programming
by combining existing relations in the definition of a new one.

Exercises

2.1 The staff of an office run a coffee club, and they have set up a database
containing the following relations:

• manager(name), which is true if name is a manager.
• bill(name ,number,amount), which is true if name has been sent a bill

numbered number for amount .
• paid(number,amount ,date), which is true if a payment of amount was

made on date for the bill numbered number.

Define views that answer the following questions:

a. Which managers have been sent a bill for less than ten pounds?
b. Who has been sent more than one bill?
c. Who has made a payment that is less than the amount of their bill?
d. Who has received a bill and either not paid it at all, or not paid it before

February 1st?
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In each case, explain how the query can be expressed in terms of the six operations
of relational algebra. Use as a condition for selection the relation before(a,b)
that holds if date a is before date b, and use the constant feb1 to name February
1st.

Practical exercise

You might like to try running database queries like the ones discussed in this
chapter, or running your solutions to the exercises. To help with this, picoProlog
comes with a file database.pp that contains (in picoProlog form) the tables of
people and programs from Figures 2.1 and 2.2. It also contains the definition of
a relation greater(x ,y ) that holds if x is a larger integer than y .



Chapter 3

Recursive structures

In Chapter 1, we looked at a very simple programming problem that could be
solved by trying a finite set of choices drawn from only four possible directions.
Realistic programming problems are usually more complex than this. They in-
volve data that has more internal structure than the simple directions used in
the motel suite example, and they lead to programs that are able to produce
answers that are more complex than a simple list of facts. How can we represent
this complex data in the notation of logic? And how can we build programs that
are capable of more than a fixed, finite collection of choices?

The answers to both these questions are the same: we use recursion to build
data that has a nested structure and programs that relate answers to complex
problems with answers to their structural parts. We shall look at the data first,
using as an example one of the most useful recursive data structures, sequences
or lists.

3.1 Lists

Suppose we want to build a program that gives street directions between places
in a city that has a rectangular array of streets, as many American cities do. The
directions can be represented by finite sequences of moves, so that the sequence

North, East, South, South

would mean ‘Go one block North, then one block East and finally two blocks
South’. Any sequence of moves can be represented by a list , constructed accord-
ing to the following rules:

1. There is an empty list, which we write nil .
2. If x is an item and a is a list, then there is a list that consists of the item

21
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x followed by all the items in the list a. We write this list as x :a.
3. Nothing is a list except according to rules (1) and (2).

For example, the sequence of four moves is represented by the list

north:(east :(south:(south:nil))).

We can check that this expression really is a list by reasoning like this:

nil is a list because of rule (1).
So south:nil is a list because of rule (2).
So south:(south:nil) is a list because of rule (2).

and so on. To stop the notation from becoming cumbersome, we adopt the
convention that the ‘:’ symbol associates to the right, so that x :y :a means the
same as x :(y :a), and our list of moves can be written without parentheses as

north:east :south:south:nil .

Notice that any list is built up by starting with nil and repeatedly using the ‘:’
operation to add further elements, so any properly-constructed list must end in
nil . It is tempting at first to save writing and omit the ‘:nil ’ from the end of
expressions for lists, but the expression north:east :south:south does not mean the
same thing as north:east :south:south:nil – it is not a proper list because it ends
in south instead of nil . Including an explicit nil at the end of every list means
that we do not have to treat as a special case the singleton lists that contain just
one element. Instead, they are exactly the lists like east :nil that are made by
using the ‘:’ operation just once.

If we know how to get from x to y in our city, and we know how to get from
y to z , then we know one way of getting from x to z : just go via y . This is
probably not the best way of getting from x to z , but it is better than nothing.
The list of one-block moves that we would follow in going from x to z consists
of all the moves for getting from x to y , followed by all the moves for getting
from y to z .

Let us try to define a relation append(a,b,c) that is true of three lists a, b

and c exactly if c is the list that contains all the elements of a followed by all
the elements of b. As a first approximation, we might think of defining it by a
long list of facts like this:

append(nil , nil , nil) :− .
append(nil ,x :nil ,x :nil) :− .
append(nil ,x :y :nil ,x :y :nil) :− .

...
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append(p:nil , nil , p:nil) :− .
append(p:nil ,x :nil , p:x :nil) :− .
append(p:nil ,x :y :nil , p:x :y :nil) :− .

...

append(p:q:nil , nil , p:q:nil) :− .
append(p:q:nil ,x :nil , p:q:x :nil) :− .

...

This collection of facts could be arranged in a two-dimensional array, in which
each row corresponds to one possible length for the first argument a, and each
column corresponds to one length for the second argument b. Each element of
the array is a fact that can be used to solve append problems for exactly one
combination of lengths for the arguments: for example, the fact

append(p:nil ,x :y :nil , p:x :y :nil) :− .

can be used to solve any problem in which a list 1 and a list of length 2 are to be
joined. Plainly, any true instance of append appears somewhere in the array, but
it would be much more useful to summarize the contents of this infinite array in
a finite description that could be written out in full and used as a program for
appending lists. What we are looking for is a finite collection of clauses from
which all the facts in the array could be derived.

Actually, even the infinite array takes a big step in cutting down the size of the
problem, because it uses variables like p, q, x , y in place of constants. Instances
like

append(north:east :nil , south:south:nil , north:east :south:south:nil)

can be obtained by substituting constants for the variables that appear in a fact
from the array.

A second simplifying step is to notice that whatever appears as the second
argument of append also appears as a sub-expression of the third argument, like
this:

append(p:q:nil ,x :y :nil , p:q:(x :y :nil)) :− .

In this formula, I have put in a pair of parentheses that could have been omitted
according to our convention about ‘:’. We can reduce the two-dimensional array
of facts into a one-dimensional (but still infinite) array by summarizing each row
of the two-dimensional array as a single fact. Each of these facts uses a variable
for the second argument of append , and that variable can stand for any list:

append(nil ,b,b) :− .
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append(z :nil ,b, z :b) :− .
append(y :z :nil ,b,y :z :b) :− .
append(x :y :z :nil ,b,x :y :z :b) :− .

...

Again, every true example of the append relation is an instance of a fact from this
list. Just choose the fact according to the number of items in the first argument
of append , then fill in the second argument with a list of the right length.

There is still some pattern in this new list of facts, and it can be used to
summarize it further. If line i of the list is

append(a,b,c) :− .

then line i + 1 differs from it by adding a new element in front of both A and C,
like this:

append(x :a,b,x :c) :− .

We can make this into a Horn clause:

append(x :a,b,x :c) :− append(a,b,c).

If we take this clause together with the very first fact in the list (the one about
nil), then we obtain a finite definition of append :

append(nil ,b,b) :− . (app.1)
append(x :a,b,x :c) :− append(a,b,c). (app.2)

This is the definition that is often used in logic programming.
There is an appealing similarity between this pair of clauses that define append

and the three rules for building lists that began this chapter. The first rule for
building lists says the nil is a list, and the clause (app.1) tells us what happens
when the list nil is appended with another list. The second rule for building
lists says that we can build a list x :a if we already have a list a, and the clause
(app.2) tells us what happens when a list of this form is appended with another
list, provided we already know what happens with the list a itself. The third rule
for building lists does not correspond to anything in the program for append , but
to a principle that will apply whenever we use the program to solve problems:

No lists a, b and c satisfy the relation append(a,b,c) unless they can be
proved to do so using clauses (app.1) and (app.2).

This principle is an example of the closed world assumption. It is important
because it guarantees that the only solutions to append problems are the ones
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that are generated by the program, so that if a question about append has any
answers, they will be found by using the program.

3.2 Deriving facts about append

In Chapter 1, we found that the suite program could be used in two ways. The
simpler way was to derive from it the fact that a certain, known design was
correct. In a similar way, the append program can be used by deriving from it
the fact that certain lists satisfy the append relation. Later, we shall see how the
append program can be used to solve problems in which the lists involved are not
known in advance.

Let us first use the append program to derive a particular fact, say

append(1:2:nil , 3:4:nil , 1:2:3:4:nil).

I am using lists of numbers instead of lists of directions to save space. To derive
this fact, we will take certain instances of the clauses (app.1) and (app.2) –
obtained by substituting constants for the variables that appear in those clauses
– then appeal to the meaning of the ‘:−’ sign to derive what is on the left from
what is on the right. It may not be obvious what clauses we should use, and
what constants should be substituted for variables, but if we cannot guess how
to do the derivation, we can at least check that the processes of substitution and
matching are carried out properly as the derivation proceeds.

We begin with an instance of (app.1), obtained by substituting 3:4:nil for the
variable b:

append(nil , 3:4:nil , 3:4:nil). (1)

Now we take an instance of (app.2), substituting 2 for x , nil for a and 3:4:nil

for both b and c :

append(2:nil , 3:4:nil , 2:3:4:nil) :− append(nil , 3:4:nil , 3:4:nil). (2)

This formula has the form P :− Q, and the formula (1) is exactly identical to
the right-hand side Q. So we can deduce that the left-hand side P is true:

append(2:nil , 3:4:nil , 2:3:4:nil). (3)

Next, we take another instance of (app.2), this time substituting different con-
stants for the variables:

append(1:2:nil , 3:4:nil , 1:2:3:4:nil) :− append(2:nil , 2:4:nil , 2:3:4:nil). (4)
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The right-hand side of this formula exactly matches the fact (3), so again we can
derive the left-hand side as a conclusion:

append(1:2:nil , 3:4:nil , 1:2:3:4:nil). (5)

And this is exactly the conclusion we were aiming for.
At first, it might seem that the second clause in the definition of append is

useless, because it has append on the right-hand side as well as the left – so surely
it cannot be a good definition. The derivation we have just looked at shows that
this is not so, because (app.2) lets us derive more complicated append facts from
simpler ones, so it lets us build up facts about complex lists in the same way that
the lists themselves are built up with the ‘:’ operation.

The approach of working from known facts towards a desired conclusion is fine
for use by hand in proving append facts that are already known. But now that
there is an infinite space of possibilities to explore, it is not reasonable to expect
a machine to have the insight required to see what instances of which clauses
should be used. This is all the more so when the problem is to answer a goal like

# :− append(3:1:nil , 2:4:nil ,w ).

that contains variables. This goal asks for a w that is the result of appending
the lists 3:1:nil and 2:4:nil . Instead of blindly guessing a suitable list w and then
constructing the proof that it is right, the machine running the append program
finds the correct answer w and the proof that it is right simultaneously. Let us
follow the Prolog method for solving this problem, working backwards as we did
with the program for designing motel suites.

First, it is obvious that clause (app.1) cannot be used directly to solve this
goal. Why not? Because (app.1) can only establish append facts where the first
argument is nil , and here the first argument, 3:1:nil , is not the same as nil . If
the problem can be solved at all, it must be solved by using clause (app.2). Let
us compare the goal in hand with the left-hand side or head of (app.2):

# :− append(3 :1:nil , 2:4:nil , w ).

append(x : a, b, x :c) :− append(a,b,c).

If we are to use (app.2) to answer the goal, then these two formulas must match
exactly, and this can only happen if the parts connected by lines match; that
is, if x = 3, a = 1:nil , b = 2:4:nil and w = 3:c . These substitutions are the
minimum that must be done to make the goal and the head of (app.2) identical.
If we apply them to the right-hand side or body of (app.2), we obtain the new
goal

# :− append(1:nil , 2:4:nil ,c).
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If only we can find an answer to this new goal, we can obtain an answer to the
original goal by putting w = 3:c . To derive this answer, we take whatever deriva-
tion leads to an answer to the new goal, and add one extra step, using (app.2) and
applying the substitution we have just discovered to make the formulas match.

So now we try to solve the goal

# :− append(1:nil , 2:4:nil ,c).

Again (app.1) is no help, because the first argument of append is not nil . So we
try (app.2) again, changing the names of variables to prevent confusion:

# :− append( 1 :nil , 2:4:nil , c ).

append(x ′: a′, b ′, x ′:c ′) :− append(a′,b ′,c ′).

Again, the goal and the head of (app.2) can be made the same, this time by
setting x ′ = 1, a′ = nil , b ′ = 2:4:nil and c = 1:c ′. Filling in these values in the
body of (app.2) gives the new goal

# :− append(nil , 2:4:nil ,c ′).

So our original goal can be answered (with c = 1:c ′ and so w = 3:1:c ′) provided
we can answer this simpler goal.

But the new goal can be solved directly using (app.1). We rename the variable
b of (app.1) as b ′′ to avoid confusion, and compare the goal with the head of
(app.1):

# :− append(nil , 2:4:nil , c ′).

append(nil , b ′′, b ′′) :− .

The two match, provided we take c ′ = b ′′ = 2:4:nil , and the new goal is the
empty goal

# :− .

There is no more work to do, and we need only assemble the parts of the answer
that were discovered at each step to recover an answer to the original goal:

w = 3:c = 3:1:c ′ = 3:1:2:4:nil .

This may seem like an enormous effort just to append two lists, but the only
operations we have used – matching goals against the heads of clauses, and
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performing substitutions to generate new goals – are both easy to mechanize
efficiently, and it is this that makes logic programming practical.

Now let us consider a slightly different goal:

# :− append(u ,v , 1:2:3:nil).

This asks for a pair of lists u and v that when appended give the list 1:2:3:nil .
If we compare this goal with the heads of clauses (app.1) and (app.2), we find
that both of them match. Using (app.1) looks like this:

# :− append( u , v , 1:2:3:nil).

append(nil , b, b ) :− .

The match can be made with u = nil and v = b = 1:2:3:nil , and the new goal
is empty, indicating a direct answer to the original goal: u = nil , v = 1:2:3:nil .

Alternatively, we may use (app.2) like this:

# :− append( u , v , 1:2:3:nil).

append(x :a, b, x : c ) :− append(a,b,c).

The matching substitutions are x = 1, u = x :a = 1:a, v = b and c = 2:3:nil .
The new goal is

# :− append(a,b, 2:3:nil).

One way to answer this new goal is to use (app.1), giving the immediate answer
a = nil , b = 2:3:nil , and so leading to a second answer to the original goal:
u = 1:nil , v = 2:3:nil . Another way to answer the new goal is to use (app.2)
first; this generates a third goal, and so on. In all, the original goal has four
solutions:

u = nil , v = 1:2:3:nil ;
u = 1:nil , v = 2:3:nil ;
u = 1:2:nil , v = 3:nil ;
u = 1:2:3:nil , v = nil .

Like the multiple solutions to the problem of designing a motel suite, these can
all be found by exploring systematically the choices that can be made. A Prolog
system will find all four solutions and present them one after another.

The process (called unification) of matching the head of a clause with a goal to
be solved is the key to execution of logic programs. Unlike the pattern-matching
used in some functional programming languages, it involves information flow in
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both directions: from the goal to the clause that is being used to solve it, and
from the clause back to the goal. For example, in the last application of (app.2)
shown above, the matching tells us that the variable u in the goal should take
the value 1:a, and the variable c in the clause should take the value 2:3:nil .

A special feature of logic programs illustrated by this example is that they are
‘bi-directional’; there is no need to select in advance a fixed set of inputs and a
fixed set of outputs for a program. We can supply values for any combination
of the three arguments of append and have the machine compute values for the
others. We have looked at an example where we supplied the first two arguments,
and left the machine to compute the (unique) value of the third argument that
made the append relation true, and another example where we supplied the third
argument, and the machine would give a list of different possibilities for the other
two arguments.

Because of the generality of the unification process, we can place constraints
on the values that are found by using the same variable more than once in the
goal. For example, the goal

# :− append(x ,x , 1:2:3:1:2:3:nil).

asks for a list that, when appended with itself, gives the list 1:2:3:1:2:3:nil . A
Prolog system will succeed in solving this goal, finding the solution x = 1:2:3:nil .
In effect, it does so by generating pairs of lists that append to give 1:2:3:1:2:3:nil ,
and selecting from the seven such pairs of lists the one pair in which both lists
are the same.

It is even possible to supply none of the arguments of the append relation, as
in the goal

# :− append(x ,y , z).

This produces an infinite list of answers like this:

x = nil , z = y ;
x = a:nil , z = a:y ;
x = a:b:nil , z = a:b:y ;

...
...

In other words, this is exactly the list of facts about append that we summarized
in the recursive definition.

3.3 More relations on lists

Recursion provides us with a way to define other useful relations on lists. One
example is the relation list(a) that is true exactly when a is a list constructed
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according to our three rules. This relation can be defined by expressing two of
the three rules as Horn clauses:

list(nil) :− . (list.1)
list(x :a) :− list(a). (list.2)

The first of these clauses says that nil satisfies the relation list , and the second
says that if a satisfies list , so does x :a. From the two clauses, we can deduce
that various objects are lists. For example, the fact that 1:2:nil is a list can be
deduced as follows: list(nil) is true because of (list.1); so by applying (list.2)
with x = 2 and a = nil , we may deduce list(2:nil). Applying (list.2) again, this
time with x = 1 and a = 2:nil , we deduce list(1:2:nil).

The third rule about lists is implicit in the program. Just as with the append

relation, we say an object a satisfies the relation list(a) only if it can be proved
to do so from the definition of list . Any object that is not a proper list, perhaps
because it does not end in nil , cannot be proved from the definition to satisfy
the list relation.

We can think of the two clauses (list.1) and (list.2) as a specification of a
relation list , and ask what relations satisfy that specification. Certainly, the
relation we had in mind, the one that is true of proper lists and false of everything
else, satisfies the specification. But so do many other relations, for example the
one that is true of proper lists and also lists that end in 3 instead of nil . Even
the relation that is true of every object satisfies the specification. The relation
we intended to define by writing the clauses (list.1) and (list.2) is the least or
smallest relation that satisfies the specification. It is an important fact about
logic programs, which we shall prove in Chapter 5, that a program written as a
set of Horn clauses always has such a ‘least model’.

For now, we content ourselves with defining some other useful relations on lists.
Here is the definition of a relation member(x ,a) that is true if x is a member of
the list a:

member(x ,x :a) :− .
member(y ,x :a) :− member(y ,a).

The first clause says that x is a member of the list x :a, and the second says that
y is a member of x :a if it is a member of a. Neither of these clauses applies to
the empty list, because the empty list has no members. It is quite permissible
to write definitions that have no clause that applies to certain input values, and
the result is to define a relation that does not hold for these values.

We can use the member relation to test for membership. For example, the
goal # :− member(2, 1:2:3:nil) receives the answer ‘yes’, and the goal # :−
member(5, 1:2:3:nil) receives the answer ‘no’. It can also be used to generate the
members of a list, so that the goal # :− member(x , 1:2:3:nil) receives the three
answers x = 1, x = 2 and x = 3.
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To apply this idea, let us define dominates(x ,a) as the relation that is true
when x is greater than or equal to (geq) every member of the list a:

dominates(x , nil) :− .
dominates(x ,y :a) :− geq(x ,y ), dominates(x ,a).

Any number dominates the empty list, and a number x dominates the list y :a
if it is greater than or equal to y and dominates the list a. Now we can define
the relation maximum(x ,a) that that is true if x is the maximum of the list a:

maximum(x ,a) :− member(x ,a), dominates(x ,a).

This definition simply says that the maximum of a list a is a member of a that
is greater than or equal to every member of a. A goal like

# :− maximum(x , 3:1:4:2:nil).

is executed by solving the two immediate subgoals member(x , 3:1:4:2:nil) and
dominates(x , 3:1:4:2:nil). The Prolog strategy is to generate solutions to the
first member subgoal one after another, then test each one to see if it makes the
dominates subgoal true.

Another, more efficient, definition of maximum uses recursion directly. We
first define a relation max1 (x ,y ,a) that is true if x is the maximum number
among y and the members of list a:

max1 (x ,x , nil) :− .
max1 (x ,y , z :a) :− geq(y , z), max1(x ,y ,a).
max1 (x ,y , z :a) :− less(y ,x ), max1 (x , z ,a).

In terms of max1 , we can write a new definition of maximum:

maximum(x ,y :a) :− max1 (x ,y ,a).

This definition is more efficient as a program, because the maximum of a list is
found in a single pass through the list, rather than the multiple passes needed
by our earlier program.

We defined member directly by recursion, but there is another definition that
uses the append relation instead:

member(x ,a) :− append(u ,x :v ,a).

This definition says that x is a member of a if there are lists u and v such
that appending u and x :v gives the list a. With this definition, a goal like
# :− member(2, 3:1:2:4:nil) is executed by searching for a solution to the subgoal
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Figure 3.1: A binary tree

append(u , 2:v , 3:1:2:4:nil). By trying both clauses for append and backtracking,
Prolog is able to find a solution where u = 3:1:nil and v = 4:nil .

3.4 Binary trees

Lists, represented with nil and the ‘:’ operator, are the simplest and most useful
recursive data type, but logic programming also allows more general data struc-
tures. As an example, we consider here the type of binary trees with labels at
the leaves, defined by the following rules:

1. If x is any object, then tip(x ) is a binary tree.
2. If l and r are binary trees, then so is fork(l,r).
3. Nothing is a tree except according to rules (1) and (2).

For example, the binary tree shown in Figure 3.1 is represented by the term

fork(fork(tip(a), tip(b)),
fork(fork(tip(c), tip(d)), tip(e)))

These rules for forming trees have the same recursive character as the rules for
forming lists, and we can define relations on trees by recursion just as we used
recursion to define relations on lists.

We can use recursion to define a relation flatten(t ,a) between a tree t and a
list a that is true when a contains in order all the tips from t , so that if t is the
tree of Figure 3.1 then flatten(t , a:b:c:d :nil) is true.

flatten(tip(x ),x :nil) :− .

flatten(fork(l,r),c) :−
flatten(l,a), flatten(r,b), append(a,b,c).
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The first clause says that tip(x ) flattens to give the list containing just x ; the
second says that a tree fork(l,r) flattens to give a list c that is obtained by
flattening l and r separately and joining the results with append .

This definition of flatten can be used to find the flattened form of a given
binary tree, and it gives one list as the answer for each tree. Also, because of the
direction-less character of logic programming, it can be used to find trees that
flatten to a given list. Each list is the flattening of several trees, and backtracking
returns these trees one after another.

Summary

• Complex information can be modelled by data that has a nested structure.
• Relations over these data structures can be defined using recursion.
• Prolog solves goals by matching them with clauses from the program and

generating subgoals. If the goal uses a recursive relation, these subgoals
may use a simpler instance of the same relation.

Exercises

3.1 What is the result of executing the following goal?

# :− maximum(x , nil).

3.2 What solutions would a Prolog system display for the goal

# :− maximum(x , 3:1:3:2:nil).

using the two definitions of maximum from the text? Why?

3.3 Use recursion or definition in terms of append or other relations to define
the following relations on lists:

a. prefix (a,b) if list a is a prefix of list b.
Example: prefix (1:2:nil , 1:2:3:4:nil).

b. suffix(a,b) if list a is a suffix of list b.
Example: suffix(3:4:nil , 1:2:3:4:nil).

c. segment(a,b) if list a is a contiguous segment of list b.
Example: segment(2:3:nil , 1:2:3:4:nil).

d. sublist(a,b) if list a is a sub-list (not necessarily contiguous) of list b.
Example: sublist(1:3:nil , 1:2:3:4:nil).

e. delete(a,x ,b) if list b is the result of deleting a single occurrence of x from
list a. Example: delete(3:1:4:2:nil , 4, 3:1:2:nil).
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f. perm(a,b) if list a is a permutation of list b.
Example: perm(4:1:2:3:nil , 3:1:4:2:nil).

3.4 Define a relation last(a,x ) that is true if a is a non-empty list, and x is
its last element. Write definitions (a) using direct recursion, and (b) in terms of
append . What are the solutions of the goal # :− last(a, 3), where a is a variable?

3.5 How many answers does picoProlog display for the goal

# :− maximum(x , 3:1:3:2:nil)

using each of the definitions of maximum given in the text? Why is this?

3.6 When it is used as a Prolog program, the definition of flatten(t ,a) in the
text works well if it is given the tree t and asked to find its flattened form a, or
if it is given both t and a and asked to check that the relation holds. It works
less well, however, if given the list a and asked to find corresponding trees t .
Why is this? How can the problem be solved?



Chapter 4

The meaning of logic programs

We have seen how the simple logic of Horn clauses can be used to write computer
programs, and how symbolic reasoning can be used by hand or by computer as a
way of executing programs written in this way. The answers that are output by
a logic program are statements that can be derived from the program by steps of
symbolic derivation. In this chapter, we begin a closer look at logic programs by
giving precise rules for the syntax of a program, and more importantly, explaining
what a logic program means as a logical theory.

That programs have such a logical meaning at all is an aspect of the declarative
nature of logic programming. It is important because it allows us to understand
logic programs in a way that is independent of what happens when they are
executed. To ensure that the answers output by a logic program are correct, the
programmer need only ensure that the clauses of the program, when interpreted
according to their logical meaning, are true of the problem to be solved. It
is the responsibility of whoever implements a logic programming language to
ensure that its rules of reasoning are sound , that is, they deliver true conclusions
whenever they are applied to true premisses.

The programmer also needs to ensure that the program is capable of giving
answers to enough different questions to be useful. The empty program (con-
taining no clauses at all) certainly gives no incorrect answers, because it gives
no answers at all, but it is not a very interesting program. For this purpose, the
programmer needs to be sure that the clauses of the program contain all rele-
vant information about the problem, and also that the rules of reasoning used by
the implementation are complete, that is, any conclusion which follows from the
program can in fact be derived from it by the symbolic rules.

Defining a logical meaning for logic programs helps us to understand what in-
formation is expressed by clauses and programs. It also gives a reliable criterion
for judging whether the rules of reasoning embodied by a particular implemen-
tation of logic programming are sound and complete. So the logical semantics
given in this chapter are the beginning of two parallel stories. One story tells

35
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how programming problems can be expressed in the logic of Horn clauses. We
have already begun to tell this story in the first few chapters of this book, and
we will return to it later.

The other story tells how particular rules of reasoning (hopefully sound and
complete) can be embodied in an implementation of logic programming and used
to execute programs and solve goals. This story is told in the next few chapters,
where we shall find that a single rule of reasoning called SLD–resolution is the
basis for an effective, sound and complete procedure for solving goals. The story
is concluded in the last part of the book, where the implementation of SLD–
resolution in picoProlog is described.

The first section of this chapter contains a summary of the syntax of the
simplest kind of logic programs, without certain extensions that we shall add
later. In the main part of the chapter, we define the logical meaning of programs
written in this simple language. This prepares the way for the next chapter, which
formalizes the rules of reasoning we have been using informally, and contains a
proof that they are sound and complete.

4.1 Syntax

A typical program is the one that defines the flatten relation:

flatten(tip(x ),x :nil) :− .

flatten(fork(u ,v ),a) :−
flatten(u ,b), flatten(v ,c), append(b,c ,a).

Three kinds of name are used in this clause:

• flatten and append are relation symbols that name a relation between data
objects such as trees or lists. In Prolog, relation symbols can have any name
that begins with a lower-case letter. In this book, they are shown in lower-
case italics like this. Each relation symbol has a fixed number of arguments
(two for flatten, three for append); this number is called the arity of the
symbol.

• fork and tip are function symbols that construct data objects (in this case,
trees). In Prolog and in this book, function symbols have names that
could also be used for relation symbols, but they can be distinguished
by the fact that relation symbols are always outermost in a formula like
flatten(fork(u ,v ),a), and function symbols are used only in writing the
arguments of the formula.

• x , u , v , a, etc., are variables. In Prolog, variables can be given any name
that starts with an upper-case letter. In this book, they are shown in small
capitals like this .
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For convenience, some relation and function symbols, such as the list constructor
‘:’ and the equality sign ‘=’ are written as infix operators, so we can write

x = 1:2:3:4:nil

instead of something like

equal(x , cons(1, cons(2, cons(3, cons(4, nil))))).

These infix symbols are just a matter of syntactic convenience, and we could
manage without them by using an ordinary symbol instead, with only the disad-
vantage that our programs would be more difficult to read. Consequently, when
we discuss the meaning of logic programs and the mechanisms by which they
are executed, we can ignore the existence of infix symbols except in examples.
Most Prolog systems allow the programmer to introduce new infix symbols, but
picoProlog provides only a fixed collection, and new ones could be added only by
modifying picoProlog itself.

Both relation symbols and function symbols have a fixed arity or number of
arguments, and this number can be zero. Relation symbols with no arguments
are rather uninteresting, because they are the same as propositional variables like
‘it is raining’, or ‘I am wet’. We can write a clause that expresses the statement
‘If it is raining, then I’ll get wet’:

wet :− raining .

But programs built from clauses like this are not able to achieve any very useful
calculations.

On the other hand, function symbols with no arguments play a vital part
in most programs, because they are the same as constants such as the empty
list nil , or atomic data items like editor and mac in the database example of
Chapter 2. Constants are the basis on which we can build up more complex
terms by applying function symbols such as ‘:’ or fork .

In terms of this classification of the symbols they contain, we can summarize
the syntax of logic programs as follows:

• A program is a set of clauses. From a logical point of view, the order in
which these clauses are written has no importance.

• A clause is a formula

P :− Q1, . . . , Qn.

P is a literal called the head of the clause, and Q1, . . . , Qn are literals that
together form the body of the clause. In the case n = 0, there are no literals
in the body; such a clause is written P :− .
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• A literal or atom is a formula

p(t1, . . . , tk)

where p is a relation symbol of arity k and t1, . . . , tk are k terms. In the
case k = 0, the literal is written simply as p.

For the present, the terms ‘atom’ and ‘literal’ are synonymous. In Chap-
ter 8, however, we shall introduce negated literals notP , where P is an
atom of the form p(t1, . . . , tk).

• A term is either a variable like x or person , or it is a compound term

f(t1, . . . , tk)

where f is a function symbol of arity k, and t1, . . . , tk are k smaller terms.
A function symbol with no arguments is a constant, written simply as f .

In this summary, the words in italics are the ones we shall use to refer to parts of
programs. In discussing logic programming in general (rather than writing logic
programs themselves), we use a few extra notational conventions. Upper-case
letters such as C, P and Q refer to clauses and atoms, the letters t and u are
used for terms, and p and q are relation symbols.

Prolog does not require relation or function symbols to be declared, and unlike
picoProlog, most Prolog systems do not enforce our convention that they should
have a fixed arity, but it will be simpler for us to stick to this convention. We shall
talk about the alphabet of a program, meaning the sets of relation and function
symbols used in the program, together with their arities. In the flatten program,
there are two relation symbols: append of arity 3, and flatten of arity 2. There
are four function symbols: ‘:’ of arity 2, nil of arity 0, tip of arity 1 and fork

of arity 2. We can write down the alphabet of this program using the following
notation, in which a semicolon separates the relation symbols from the function
symbols:

{append/3, flatten/2; :/2, nil/0, tip/1, fork/2}.

More generally, we shall say ‘f/k is a function symbol’ as a short way of including
the information that f has arity k. We shall assume that the alphabet of every
program contains at least one constant symbol, because this allows us to avoid
a number of annoying difficulties with the theory. If a program does not contain
constant symbols already, we can always add one to its alphabet.

We say a program T is well-formed with respect to an alphabet L if all the
relation and function symbols used in T are drawn from L and used with the
correct arity. If L is an alphabet, we write Term(L) for the set of terms that are
well-formed with respect to L. We write GrTerm(L) for the set of well-formed
ground terms with respect to L, that is, the set of well-formed terms that contains
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no variables. Analogously, we write GrLit(L) for the set of well-formed ground

literals with respect to L.

4.2 Truth tables

The clauses of a logic program may contain complex terms with function symbols
and variables, and if we are to explain the meaning of logic programs, we must
give a meaning to them. We leave that for later, and begin by explaining the
meaning of the very simple logic programs that contain only relation symbols
with no arguments. Such relation symbols are like the propositional variables of
Boolean algebra, and we can explain the meaning of these programs using the
familiar method of truth tables.

For example, here is a clause the we could read as saying ‘I’ll get wet if it’s
raining’:

wet :− raining . (1)

There are two relation symbols, wet and raining in this clause, so there are four
possible assignments of the truth values true and false to them. Each row of
this truth table shows one truth assignment and the resulting truth value of the
clause:

wet raining (1)

T T T
T F T
F T F
F F T

A clause like (1) is considered true unless the right-hand side is true but the
left-hand side is false, something that happens in only one row of the truth table.

If we know that clause (1) is true, and also that the clause

miserable :− wet . (2)

is true (meaning ‘I’ll be miserable if I get wet’), then we expect that the clause

miserable :− raining . (3)

to be true as well, with the informal meaning ‘I’ll be miserable if it’s raining’. We
can use a truth table to check that this is a valid inference. The table has eight
rows, one for each assignment of truth values to the three symbols miserable,
wet and raining . Each row shows the truth values taken by the clauses (1), (2)
and (3).



40 The meaning of logic programs

miserable wet raining (1) (2) (3)

T T T T T T ∗
T T F T T T ∗
T F T F T T
T F F T T T ∗
F T T T F F
F T F T F T
F F T F T F
F F F T T T ∗

If clause (3) really does follow logically from clauses (1) and (2), then it should
be true in each row of the truth table where both (1) and (2) are true. These
rows are marked with ∗ in the truth table, and they all do contain a T for clause
(3) as well as clauses (1) and (2); we may conclude that clause (3) does follow
from clauses (1) and (2).

We can use truth tables to assign a ‘meaning’ to clauses as follows: we say that
the meaning of a clause is the set of rows in a truth table where the clause is given
the value T. This definition lets us judge whether a claimed conclusion follows
from stated premisses. We check that every row that makes all the premisses
true also makes the conclusion true. If so, then the conclusion really is a logical
consequence of the premisses.

This way of assigning meanings to clauses is also attractive because it assigns
the same meaning to clauses that are evidently equivalent from a logical point of
view. For example, the two clauses

miserable :− wet , cold .

and

miserable :− cold , wet .

both express the idea ‘I’ll be miserable if it’s cold and I get wet’. They have
the same mathematical meaning, because they are true in the same rows of a
truth table – in fact in all rows except the one where wet and cold are true but
miserable is false.

As a way of checking that one propositional formula follows from others, the
method of truth tables has the advantage that it can be carried out in a com-
pletely routine way. A disadvantage is that truth tables become very large unless
the number of different propositional variables is very small, and it then be-
comes more attractive to justify conclusions by symbolic reasoning than by the
exhaustive testing implied by truth tables. Even so, we can still use the idea of a
truth table as our criterion for judging whether a method of symbolic reasoning
is sound and complete.
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Methods that replace exhaustive testing by symbolic reasoning become even
more attractive when we extend the picture to include clauses that contain vari-
ables and function symbols. Analogues of truth tables exist in this broader
setting, and we shall use them as a criterion of truth against which symbolic
methods can be judged. However, these analogues of truth tables are no longer
based on finite arrays of T’s and F’s, but on infinite mathematical sets and func-
tions. The table has an infinite number of ‘rows’, so it is no longer possible to
check them all one by one.

4.3 Adding functions and variables

Truth tables work well enough for simple programs that contains only relation
symbols with no arguments, but something more is needed when relations can
have arguments that contain variables and function symbols. In place of rows in a
truth table, we will use interpretations that assign a truth value to each member
of the (perhaps infinite) set of literals that can be formed from the alphabet of
the program. If the relation symbols have no arguments, then the set of ground
literals is finite; they are just the relation signs themselves. In that case, an
interpretation is much the same as a row in the truth table, giving a truth value
(T or F) for each relation symbol.

More generally, we define an interpretation M over an alphabet L to be a set
M ⊆ GrLit(L) of ground literals formed from L. The idea is that the members
of M are the literals that are true, and all the others are false. If L contains
relation and function symbols that take arguments, then GrLit(L) is infinite,
because we can form infinitely many terms like nil , 0:nil , 0:0:nil , etc. The set of
interpretations is infinite too, because the set of all subsets of an infinite set is
also infinite.

Each row of a truth table shows the truth values taken by some premisses
and a conclusion when the literals take certain truth values. These truth values
for the formulas are calculated from the truth values for the literals by following
rules connected with the meaning of the logical operators. Following the analogy,
we now give rules that determine, for each interpretation, the truth value of a
clause with function symbols and variables.

We deal first with ground clauses, which may contain function symbols but
contain no variables. If M is an interpretation, we say the ground clause

P :− Q1, . . . , Qn.

is true in M exactly if either P ∈ M , or Qi /∈ M for some i. This agrees with
the rule we used earlier with truth tables: a clause is considered true unless all
the literals in the body are true, but the head of the clause is false. We translate
‘P is true’ by P ∈ M , because M contains exactly the ground literals that are
considered true under the interpretation.
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Now for clauses that contain variables: we say a clause C is true in an interpre-
tation M exactly if every ground instance of C is true in M . A ground instance of
a clause C with variables is any clause that can be obtained from C by system-
atically substituting ground terms for the variables of C. By ‘systematically’,
we intend that the same ground term should be substituted for each variable
wherever it appears. We shall be more precise about this when we introduce the
concept of a formal substitution in Section 4.4.

Finally, we say that a program T is true in an interpretation M if each clause
of the program, considered separately, is true in M . In this case, we also say that
M is a model of T , and write |=M T . Similarly, we write |=M C if an individual
clause C is true in M . The meaning of a program T is the set of all models of
T , that is, the set of all interpretations M such that |=M T .

If the clauses of T contain variables, it may be that the same variable appears
in several different clauses. We define the meaning of a program by treating the
clauses separately, allowing ground terms to be substituted for variables in each
clause independently of the others. Because of this, the value of a variable in
one clause is not related to its values in other clauses. On the other hand, we
required the same ground term to be substituted for a variable wherever it occurs
inside a single clause; this makes sure that within a clause, each variable refers
to a single value.

We say that a clause C follows from a program T (or that T entails C) if C
is true in every model of T . This is just like the criterion for entailment we used
with truth tables, because it is equivalent to saying that every interpretation
(row of the truth table) that makes all the clauses of T true also makes C true.

This way of giving meaning to logic programs says nothing about what happens
when a program runs. This makes it a little unsatisfying for us as programmers,
because we want to know what the computer does when we present it with
a program. On the other hand, this is exactly what we should expect for a
declarative programming language: programs have a meaning that is independent
of the way the programming language is implemented. Later, when we come to
describe the mechanisms by which logic programs are executed, we will have a
strong expectation about what the mechanisms should achieve, because executing
a program should produce all and only the conclusions that are entailed by the
program.

4.4 Substitutions

In describing what it means for a clause to be true in an interpretation, we used
the idea of systematically substituting ground terms for variables. We now make
this idea more precise by introducing formally the idea of a substitution and the
operation of applying a substitution to a term or clause to obtain an instance of it.

A substitution s:Var → Term(L) is a function from variables to terms. It
associates a term with each variable, and when we ‘systematically’ substitute
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terms for variables according to s, it is the term s(x ) that we substitute for each
occurrence of a variable x . We shall use the notation {x1 ← t1, . . . ,xn ← tn} for
the substitution that maps each of the variables xi to the corresponding term ti

(for 1 ≤ i ≤ n), and maps all other variables to themselves.
The instance of a term t under a substitution s is the term t[s] defined as

follows: if t is a variable x , then t[s] = s(x ). If f is a function symbol of arity k,
and t = f(t1, . . . , tk), then

t[s] = f(t1[s], . . . , tk[s]).

This last equation tells us how to form t[s] for a compound term t from the
arguments of t: we recursively apply the same substitution s to each of them,
then build the results into a new compound term that also has f as its function
symbol. Because the arguments of the original term are smaller than the term
itself, this equation lets us work out the instance under s of any term t. The
recursion stops with variable symbols (to which the first part of the definition
applies) and constants (which are unchanged by substitution). As a slight abuse
of notation, we write t[x ← u] as an abbreviation for t[{x ← u}], saving a pair
of braces.

We shall also use the notation P [s] for the instance of a literal P under the
substitution s: if P = p(t1, . . . , tk) then

P [s] = p(t1[s], . . . , tk[s]).

Also, we write C[s] for the instance of a clause C under s: if C is the clause

P :− Q1, . . . , Qn,

then C[s] is the clause

P [s] :− Q1[s], . . . , Qn[s].

A ground substitution is simply a substitution g such that g(x ) is a ground
term for every variable x . Plainly, if g is a ground substitution, then t[g] is a
ground term for every term t.

The main reason for introducing the idea of a substitution explicitly is that
substitutions themselves have helpful algebraic properties. For example, if r and
s are substitutions, then there is another substitution r⊲s called the composition

of r and s, such that t[r⊲s] = t[r][s] for all terms t. We can define the substitution
r ⊲ s by giving its action on variables: it is the substitution u such that

u(x ) = r(x )[s]

for all variables x . That is, to compute u(x ), we first apply r to x , then take the
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instance under s of the resulting term. We need to prove that this substitution
has the properties we desire, and this we do in the proposition below.

There is also an identity substitution I such that t[I] = t for all terms t. It
is defined by I(x ) = x for all variables x . Again, we must prove that I has the
desired properties.

PROPOSITION

Let t be a term, and let r, s and w be substitutions.

1. t[r ⊲ s] = t[r][s].
2. t[I] = t.
3. Composition is associative: (r ⊲ s) ⊲ w = r ⊲ (s ⊲ w).
4. The identity substitution I is a unit element for composition: I⊲s = s = s⊲I.

Proof: For part (1), we use induction on the structure of the term t; that is, if
P (t) is the property we wish to prove for all terms t, we first prove P (x ) for all
variables x , then prove for every function symbol f of arity k that P (f(t1, . . . , tk))
is implied by the induction hypotheses P (t1), . . . , P (tk). Since every term is built
up from variables by using a finite number of function symbols, it follows that
P (t) holds for all terms t.

Applying this idea to the specific problem in hand, we see that

x [r ⊲ s] = r(x )[s] = x [r][s]

for any variable x . Also, if f is a function symbol of arity k, and t1, . . . , tn are
such that ti[r ⊲ s] = ti[r][s] for each i, then

f(t1, . . . , tk)[r ⊲ s] = f(t1[r ⊲ s], . . . , tk[r ⊲ s])

= f(t1[r][s], . . . , tk[r][s])

= f(t1[r], . . . , tk[r])[s]

= f(t1, . . . , tk)[r][s].

This completes the proof of part (1). We leave part (2) as an exercise. The proof
requires another structural induction on t.

For parts (3) and (4), we are required to prove the equality of various substi-
tutions. For this, we use the fact that two substitutions are equal if they agree
on every variable. If x is any variable, then

x [(r ⊲ s) ⊲ w] = x [r ⊲ s][w] = x [r][s][w] = x [r][s ⊲ w] = x [r ⊲ (s ⊲ w)].

Also, x [I ⊲ s] = x [I][s] = x [s] = x [s][I] = x [I ⊲ s].

The concept of a substitution allows us to be more precise about the meaning of
logic programs, and specifically the ground instances of a clause C that we used
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in defining what it means for C to be true in a certain interpretation; they are
simply the instances C[g] where g is a ground substitution. Substitutions will
also let us formulate a set of rules of reasoning by which valid conclusions can be
derived from programs; that is the subject of the next chapter.

A particularly simple kind of substitution is one that acts as a permutation
on the set of variables. We call such a substitution s a renaming . Its defining
properties are that s(v ) is a variable for each v , and if v1 6= v2 then s(v1) 6=
s(v2). If clauses C and C ′ are such that C ′ = C[s] for some renaming s, we say
that C ′ is a variant of C. Because each renaming s has an inverse s′ such that
s ⊲ s′ = s′ ⊲ s = I, it follows that if C ′ is a variant of C then also C is a variant
of C ′. Variants are important in executing and reasoning with logic programs,
because replacing clauses from a program by variants of them allows us to avoid
confusion between the variables used in one application of a clause from those
used in another application.

Summary

• Logic programs are made up of Horn clauses that contain relation, function
and variable symbols.

• Programs can be given a meaning as logical theories. This meaning is
independent of any execution mechanism.

• Inference rules and execution mechanisms for logic programs can be assessed
by comparing their effect with the logical meaning of the program.

Exercises

4.1 Show using a truth table that the conclusion

valuable :− metal , yellow , heavy . (1)

follows from the two premisses

valuable :− gold , heavy . (2)

and

gold :− metal , yellow . (3)

4.2 At first, we defined |=M C first for C a ground clause. Later, we extended
the definition to allow C to be any clause. Show that the two definitions are
consistent, that is, if C is a ground clause then |=M C (in the earlier sense) if
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and only if |=M C[g] for all ground substitutions g. What part is played in the
proof by our assumption that L contains at least one constant?

4.3 Prove by structural induction that if the variable x does not appear in the
term t then t[X ← u] = t.

4.4 Complete the proof that t[I] = t for every term t.

4.5 Prove that if x and y are distinct variables, and x does not appear in w ,
then

t[x ← u][y ← w] = t[y ← w][x ← u[y ← w]].



Chapter 5

Inference rules

Our way of giving meaning to logic programs fixes precisely what it means for a
clause to be entailed by a program – and so what it means for an answer to a
goal to be correct – but it does not give us any practical way of checking whether
this is so for a particular program and a particular clause. In this chapter, we
begin to develop formal inference rules that allow conclusions to be derived from
programs in a way that can be checked by symbolic calculation. For each rule,
we prove as a theorem that any clause that can be derived according to the rule
is in fact entailed by the program – in other words, that the rule is sound.

5.1 Substitution and ground resolution

The first inference rule is the following rule of substitution, which we have in fact
been using since Chapter 1:

From a clause C, derive the instance C[s], where s is any substitution.

The soundness of this rule follows from the following proposition:

PROPOSITION

Let C be a clause, M be an interpretation and s be a substitution. If |=M C then
|=M C[s].

Proof: If |=M C, it follows by the definition of |=M that |=M C[g] for any ground
substitution g. If h is a ground substitution, then s ⊲ h is also a ground substi-
tution, since (s ⊲ h)(x ) = s(x )[h] is a ground term for each variable x . Putting
g = s ⊲ h, we deduce that |=M C[s ⊲ h]. But C[s][h] = C[s ⊲ h], so |=M C[s][h].
Since this is true for any ground substitution h, it follows that |=M C[s].

47



48 Inference rules

COROLLARY

For any program T , clause C and substitution s, if T |= C then T |= C[s].

Proof: Let M be any model of T . Then |=M C, and so by the proposition
|=M C[s] also. Therefore T |= C[s].

The substitution rule allows us to derive instances of a clause by ‘filling in’ the
values of variables, one of the key steps in the kind of derivation we carried out
in Chapter 1. The other key step is to combine two clauses that have a matching
literal, to derive a new clause. We consider first the special case used there, in
which both the clauses are ground. It is called the rule of ground resolution:

From two ground clauses

P :− Q1, . . . , Qj, . . . , Qn

and

Q :− R1, . . . , Rm

such that Q = Qj, derive the clause

P :− Q1, . . . , Qj−1, R1, . . . , Rm, Qj+1, . . . , Qn

obtained by taking a copy of the first clause and replacing Qj with the body
of the second clause.

We call the clause that is derived in this rule the ground resolvent of the first two
clauses on Qj . The soundness of the rule follows from the following proposition:

PROPOSITION

Let the three ground clauses above be C1, C2 and C3, and let M be an interpre-
tation. If |=M C1 and |=M C2 then |=M C3.

Proof: Using the definition of |=M , we can distinguish various (not mutually
exclusive) cases:

1. P is true in M . In this case, C3 is automatically true in M .
2. One of the Qi for i 6= j is false in M . Again C3 is true in M , because it

contains Qi in its body.
3. One of the Ri is false in M . Again the body of C3 contains Ri, so C3 is true

in M .

Because C1 is true in M , either P is true in M (case 1), or one of the Qi is false
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in M . In the latter case, either i 6= j (case 2), or Q = Qj is false in M . In that
case, the truth of C2 implies that one of the Ri is also false in M (case 3).

Combining the rule of substitution (using a ground substitution) with the rule of
ground resolution allows us to derive new ground clauses from a program. Both
rules say that if certain clauses are entailed by a program, then so is another
clause. We can build up elaborate derivations by using the output from one
application of a rule as input to another rule, so deriving more and more elaborate
conclusions from a program. Such a derivation can be set out as a list, in which
each item is justified by naming the rule that can be used to derive it from
preceding items.

EXAMPLE

The following program defines a relation reverse(a,b) that holds between two
lists a and b if the members of b are those of a in reverse order:

reverse(nil , nil) :− . (rev.1)
reverse(x :a,c) :− reverse(a,b), append(b,x :nil ,c). (rev.2)

append(nil ,b,b) :− . (app.1)
append(x :a,b,x :c) :− append(a,b,c). (app.2)

From this program, we can derive the fact

reverse(1:2:nil , 2:1:nil) :− .

by the derivation shown in Figure 5.1. In a derivation like this, each line is ob-
tained either by applying the rule of substitution (subst) to a program clause, or
by applying the rule of ground resolution (GR) to preceding lines in the deriva-
tion. Since each line depends only on program clauses or lines that have been
derived before it, we can be sure that each line (including the last) is entailed by
the program, and thus that the program entails the final conclusion.

Although derivations are traditionally presented as linear lists, the structure of
a derivation can be shown more clearly as a tree, as in Figure 5.2, where each
numbered node refers to a line in the derivation of Figure 5.1. At the leaves of
the tree are clauses derived from those in the program by the substitution rule.
All the clauses at interior nodes are derived from their two children by a step of
ground resolution. This example shows how the rules of substitution and ground
resolution can be used to derive answers to goals of the form # :− P that consist
of a single literal P . We simply look for a way to derive a ground clause P [g] :−
where P [g] is a ground instance of P .

Although it works, this procedure is inconvenient for manual use and inefficient
for machine implementation, because we are forced to guess the substitutions that
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1. reverse(1:2:nil , 2:1:nil) :− (rev.2), subst
reverse(2:nil , 2:nil), append(2:nil , 1:nil , 2:1:nil).

2. append(2:nil , 1:nil , 2:1:nil) :− append(nil , 1:nil , 1:nil). (app.2), subst

3. reverse(1:2:nil , 2:1:nil) :− 1, 2, GR
reverse(2:nil , 2:nil), append(nil , 1:nil , 1:nil).

4. reverse(2:nil , 2:nil) :− (rev.2), subst
reverse(nil , nil), append(nil , 2:nil , 2:nil).

5. reverse(nil , nil) :− . (rev.1)

6. reverse(2:nil , 2:nil) :− append(nil , 2:nil , 2:nil). 4, 5, GR

7. append(nil , 2:nil , 2:nil) :− . (app.1), subst

8. reverse(2:nil , 2:nil) :− . 6, 7, GR

9. reverse(1:2:nil , 2:1:nil) :− append(nil , 1:nil , 1:nil). 3, 8, GR

10. append(nil , 1:nil , 1:nil) :− . (app.1), subst

11. reverse(1:2:nil , 2:1:nil) :− . 9, 10, GR

Figure 5.1: Derivation of a reverse fact

are needed to make the derivation fit together properly. For example, in writing
down the first line of the example, the author was forced to guess that the reverse
of 1:2:nil would be 2:1:nil , and a machine might not have the insight to make
that guess correctly. A wrong guess would have been revealed only later in the
derivation, when the literals in the body of the clause would fail to match the
heads of other clauses.

To solve this problem, we need to use a different inference rule that combines
features of the rules of substitution and ground resolution, allowing decisions
about what to substitute for variables to be delayed until information is available
that allows the decision to be made correctly. We shall study this rule of general

resolution in the next chapter. First, however, we look at ways of using our
present inference rules to solve a wider class of problems.

5.2 Refutation

The goal

# :− append(1:2:nil , 3:4:nil ,a), append(a, 5:6:nil ,b).

asks for the lists 1:2:nil and 3:4:nil to be concatenated, and the result to be
concatenated with 5:6:nil to give the final answer b. We can use a trick to
extend our method of substitution and ground resolution to cope with goals like
this that contain more than one literal.
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Figure 5.2: Tree structure of the reverse derivation

The trick is to give a special meaning to the symbol # that we have been using
to write goals. We add # to the alphabet of the program as a relation symbol #/0
with no arguments, and add the goal to the program as an extra clause. Then
we try to use substitution and ground resolution to derive the empty clause # :−
from this augmented program. If we succeed, then we conclude that there are
values of the variables in the original goal that make all its literals true. As we
shall see, it is possible to find out from the derivation of # :− what these values
are.

Why does this method work? The precise claim is this: we start with a
program T with alphabet L, and a list of literals P1, . . . , Pn. We add the clause

# :− P1, . . . , Pn. (∗)

to T to get an augmented program T ′ over L′ = L ∪ {#/0}, and claim the
following:

PROPOSITION

If T ′ |= (# :−) then for each model M of T , there is a ground substitution g such
that |=M Pi[g] for each i.

Proof: Let M be a model of T . Then M is an interpretation over L, but we can
use it as an interpretation over L′ also. It makes # act like the propositional
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constant false, because # /∈ M . We know that M is not a model of T ′, because
T ′ |= (# :−) and # is false in M . So one of the clauses of T ′ is false in M , and
it can only be the clause (∗), because all the clauses of the original program T
are true in M . This means that there is a ground substitution g that makes Pi[g]
true in M for each i.

This trick changes our inference rules from a proof system into a refutation sys-
tem, because the trick is to add to the program the opposite of the fact we want
to prove (since # :− P is in effect P ⇒ false or notP ), and to show that the
resulting set of clauses is inconsistent by deriving a contradiction. This refutes
the assumption that the goal is allowing false, allowing us to conclude that some
choice of substitution makes it true.

5.3 Completeness

We have seen how substitution and ground resolution can be used to derive
consequences from logic programs, and that the rules are sound, so that the
only consequences that can be derived are ones that really do follow from the
program. A natural question is whether every valid consequence of the program
can be derived in this way. The answer is ‘yes’, as the following theorem states:

THEOREM [Completeness of substitution and ground resolution]
Let T be a program with alphabet L, and let P be a ground literal over L. If
T |= P , then the clause P :− can be derived from T by substitution and ground
resolution.

Proof: We prove the theorem by constructing a special model M0 of T , called the
least model of T , in which a ground literal R is true exactly if R :− is derivable
from T using substitution and ground resolution. If P is true in all models of
T , then it is true in this special model M0, and we can conclude that P :− is
derivable from T . So let M0 = {R | R :− is derivable from T }. We must show
that M0 really is a model of T . Let C = (Q :− R1, . . . , Rn) be a clause of T ,
and let g be a ground substitution. We must show that |=M0

C[g], i.e., that if
|=M0

Ri[g] for each i then also |=M0
Q[g]. Since C is a clause of T , we can use

the substitution rule to derive the clause

C[g] = (Q[g] :− R1[g], . . . , Rn[g]).

If |=M0
Ri[g] for each i, then (by the definition of M0) all the clauses Ri[g] :− are

derivable, so we can also derive Q[g] :− from these and C[g] by n steps of ground
resolution. Thus |=M0

Q[g], and we may conclude that |=M0
C. Since this is true

for each clause C of T , we conclude that M0 is a model of T . This completes the
proof.
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The least model M0 constructed in the proof is actually more interesting than the
theorem itself. The ground literals that are true in M0 are those that are derivable
from the program T . The closed world assumption of Chapter 3 states that these
literals are the ones that are actually true: thus the closed world assumption is
equivalent to saying that the least model of the program faithfully represents the
relations that the program is intended to describe. This is a safe assumption,
because the soundness of our inference rules guarantees that the ground literals
that are true in M0 are also true in every other model of the program. The closed
world assumption will become important in Chapter 8, where we shall assume
that any ground literal that is not true in M0 is in fact false.

The theorem establishes the ground-literal completeness of substitution and
ground resolution – in the sense that any ground literal that follows from a
program can be derived from it using these rules. We shall also be interested in
two other kinds of completeness for systems of inference rules:

• refutation completeness: that if every model of T contains values that satisfy
P1, . . . , Pn, then the empty goal can be derived from the augmented program
T ′ = T ∪ {# :− P1, . . . , Pn}. This follows immediately from ground-literal
completeness, because the symbol # is a ground literal.

• answer completeness: that any correct answer to a goal can be extracted
from a refutation. We shall explore this in Section 7.4.

In the next chapter, we shall abandon ground resolution in favour of the compu-
tationally more attractive rule of general resolution, but the work we have put
into the analysis of ground resolution will not be wasted, because results about
ground resolution can often be extended to cover general resolution too.

Summary

• Inference rules are syntactic rules that allow conclusions to be derived from
a program.

• An inference rule is sound if it allows only valid conclusions to be derived
from valid premisses.

• A system of inference rules is complete if it allows any valid conclusion to
be derived.

• The rules of substitution and ground resolution are sound and complete.

Exercises

5.1 Show that the following rule of commutation is sound: from the clause
P :− Q1, Q2 derive the clause P :− Q2, Q1. [More generally, if π is a permutation
of {1, . . . , n}, then from P :− Q1, . . . , Qn one may derive P :− Qπ(1), . . . , Qπ(n).]
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5.2 Prove the soundness of the following rule of factoring : if s is a substitution
such that Q1[s] = Q2[s], then from the clause P :− Q1, Q2 derive the clause
P :− Q1[s]. [More generally, if Qi[s] = Qj[s], then from the clause

P :− Q1, . . . , Qi, . . . , Qj, . . . , Qn.

one may derive the clause

P [s] :− Q1[s], . . . , Qi[s], . . . , Qj−1[s], Qj+1[s], . . . , Qn. ]

5.3 Prove the soundness of the following rule of direct resolution: from clauses
P :− Q1, . . . , Qn and Q :− R1, . . . , Rm (not necessarily ground) with Q = Qj,
derive the clause

P :− Q1, . . . , Qj−1, R1, . . . , Rm, Qj+1, . . . , Qn.



Chapter 6

Unification and resolution

The inference rules of substitution and ground resolution allow us to derive con-
sequences from programs, and the completeness theorem of Section 5.3 shows
that any valid consequence can be derived using the rules. But these particular
rules are rather inconvenient, because all the substitutions of ground terms for
variables must be done in advance, at the leaves of the proof tree, and the in-
formation needed to determine what substitutions are appropriate only becomes
available when we look at internal nodes, where clauses are combined by steps of
ground resolution.

In a step of ground resolution, the head of one clause is matched with a literal
in the body of another clause, and a new clause is made from them. For ground
clauses, the matching is simple: two literals match if they are identical. Our aim
now is to generalize the resolution rule so that it works on non-ground clauses.
In a resolution step, two literals P and Q will match if they have a common
instance, i.e., if there is a substitution s such that P [s] and Q[s] are identical.
The new clause that results from the resolution step will have its variables filled
in by applying the substitution s. For example, the two literals

append(1:2:nil , 3:4:nil ,w ) and append(x :a,b,x :c)

have a common instance append(1:2:nil , 3:4:nil , 1:c) that is obtained by applying
the substitution

{x ← 1,a← 2:nil ,b ← 3:4:nil ,w ← 1:c}

to both literals. We shall use this fact to justify an inference step that begins
with the goal

# :− append(1:2:nil , 3:4:nil ,w ).

55
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and the program clause

append(x :a,b,x :c) :− append(a,b,c).

and from them derives the new goal

# :− append(2:nil , 3:4:nil ,c).

This new goal is obtained by applying the matching substitution to the body of
the program clause.

This style of reasoning has a marked advantage, because the values to be
substituted for the variables in the goal and program clause can be discovered
as part of the matching process between the literals involved in the resolution
step, rather than being chosen in advance. The result of the step still contains
a variable c , and its value can be chosen according to the needs of subsequent
steps, without affecting the validity of the present one.

Unfortunately, the two literals that matched have many other common in-
stances, such as these:

append(1:2:nil , 3:4:nil , 1:2:3:4:nil),

append(1:2:nil , 3:4:nil , 1:3:v ).

We therefore face the problem of choosing which of the many common instances
to use in the resolution step. Choosing the last of the common instances shown
leads to a dead end, because it results in the new goal

# :− append(2:nil , 3:4:nil , 3:v ).

and that goal has no answer. What has happened here is that a value has been
chosen for the variable c before the information was available to determine what
that value should be. An impulsive guess has been made at the value of c , and
that guess turns out to be wrong.

Luckily, there is a best choice of a common instance, in the sense that any other
common instance of the two literals can be obtained from it by applying a further
substitution. Later resolution steps may actually make further substitutions, and
using this ‘best’ choice of substitution in the present step does not restrict their
freedom to do so. In our example, the best choice of substitution is the first
one we tried. In general, the best choice can be found by a pattern-matching
algorithm called unification.
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6.1 Unification

If t and u are two terms, we say a substitution s is a unifier of t and u if t[s] = u[s].
The terms t and u may have many unifiers, but we shall prove that if they have
any unifiers at all, then they have a most general unifier (m.g.u.). This is a
unifier r of t and u with the additional property that every other unifier s can
be written as s = r ⊲ w for some substitution w.

THEOREM [Unification]
If two terms t and u have any unifiers at all, then they have a most general
unifier.

Proof: The proof of this theorem is constructive, in the sense that it does not
consist merely of evidence that a most general unifier exists, but (at least implic-
itly) contains an algorithm for computing one. We shall need this algorithm later
as part of the implementation of picoProlog, so we make the algorithm explicit
as the program shown in Figure 6.1. The proof of the theorem is the proof that
this program works.

The program is written using data structures such as terms, substitutions,
and sequences, that are not directly provided by a programming language like
Pascal. For now, it will be enough to prove that this abstract version of the
algorithm works, and leave until later the details of how these data structures
can be implemented. The inputs to the program are two terms t and u, and
the outputs are a Boolean value ok that indicates whether the terms have any
unifiers, and if they do, a most general unifier r. As the program is executed,
the internal variable S holds a sequence of pairs of terms that are waiting to be
matched with each other.

The sequence S is used rather like a stack. Sometimes a number of new pairs
of terms are ‘pushed’ onto it by the command

S := 〈(p1, q1), . . . , (pk, qk)〉 � S

(in which the notation 〈. . .〉 denotes a sequence with the elements listed, and
the � operator is concatenation of sequences). Sometimes the first pair in S is
‘popped’ by the commands

(p, q) := head(S); S := tail(S).

The command

S := S[x ← q]

has the effect of replacing each pair (y, z) in S by the pair (y[x ← q], z[x ← q]),
in which q has been substituted for x throughout. In the rest of the proof, we
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function Unify(t, u: term; var r: substitution): boolean;
var S: sequence of (term × term);

ok : boolean;
p, q: term;

begin

S := 〈(t, u)〉; r := I; ok := true;
while ok ∧ (S 6= 〈〉) do begin

(p, q) := head(S); S := tail(S);
if (p is f(p1, . . . , pk)) ∧ (q is g(q1, . . . , qm)) then begin

if f = g then

S := 〈(p1, q1), . . . , (pk, qk)〉 � S
else

ok := false

end

else if (p is a variable x ) ∧ (p 6= q) then begin

if (x occurs in q) then

ok := false

else begin

r := r ⊲ {x ← q};
S := S[x ← q]

end

end

else if (q is a variable x ) ∧ (p 6= q) then begin

if (x occurs in p) then

ok := false

else begin

r := r ⊲ {x ← p};
S := S[x ← p]

end

end

else

{ t is a variable and t = u: do nothing }
end;
Unify := ok

end;

Figure 6.1: Unification algorithm

say a substitution k unifies S if y[k] = z[k] for every pair of terms (y, z) in S.
We are now ready to state the invariant that relate the values of the program

variables to the original terms t and u. The idea is that ok is false only if t and
u have no unifier, and if ok is true then any unifier w of t and u can be written
w = r ⊲ k for some substitution k that unifies S. So r represents the part of a
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unifier for t and u that has been discovered so far, and S represents the parts of
t and u that remain to be matched. More formally stated, the invariant consists
of the following two statements:

• If t and u have a unifier, then ok is true.
• If ok is true, then t[w] = u[w] for any substitution w if and only if there is

a substitution k such that w = r ⊲ k and k unifies S.

We must first show that the invariant is true initially. The initialization sets S
to the sequence 〈(t, u)〉 that contains just the pair (t, u), and r to the identity
substitution I, and ok to true. In this state, the invariant is true, because a
substitution k unifies S exactly if k unifies t and u, and so we can write

w = I ⊲ w = r ⊲ k,

where k = w unifies S.
The main part of the program is repeated until either ok is false, or the stack

S is empty. Let S0 be the value taken by S at the start of an execution of the
loop body. The program removes a pair (p, q) from S, then performs one of the
following actions:

Case 1: If p = f(p1, . . . , pk) and q = g(q1, . . . , qm) for some function symbols f/k
and g/m, then the action depends on whether f = g:

• If f 6= g, then p and q have no unifier, so there is no substitution that unifies
S0. The invariant lets us deduce that t and u have no unifier either, so ok

can be set to false.
• If f = g (and so k = m), then the program adds the k pairs (p1, q1),

. . . , (pk, qk) to S. Any substitution that unifies p and q also unifies these k
pairs of terms, and vice versa, so the invariant is maintained.

Case 2: If p = x is a variable and p 6= q, the action depends on whether the
variable x occurs in q.

• If so, then p and q have no unifier: for any substitution s, the term q[s] will
contain p[s] as a proper sub-term, so cannot be equal to it. The flag ok can
be made false.

• If x does not occur in q , the program sets r to r ⊲ {x ← q} and sets S to
S[x ← q], the result of applying the substitution {x ← q} to every pair in
S. For any substitution w, the invariant tells us that if w unifies t and u,
then w factors as w = r ⊲ k, where k unifies S0. In particular, k unifies p
and q. It follows that {x ← q} ⊲ k = k, since

k(x ) = p[k] = q[k] = x [x ← q][k] = ({x ← k} ⊲ k)(x ),
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and for any variable y different from x ,

k(y ) = y [k] = y [x ← q][k] = ({x ← q} ⊲ k)(y ).

So

w = r ⊲ k = r ⊲ ({x ← q} ⊲ k) = (r ⊲ {x ← q}) ⊲ k,

and w factors through r ⊲ {x ← q} just as it did through r. Also, k unifies
S[x ← q], since for any (y, z) in S,

(y[x ← q])[k] = y[{x ← q} ⊲ k] = y[k],

similarly (z[x ← q])[k] = z[k], and y[k] = z[k] because k unifies S0.
Conversely, if k unifies S[x ← q] then {x ← q} ⊲ k unifies S0, and so by

the invariant (r ⊲ {x ← q}) ⊲ k unifies t and u.

Case 3: If q is a variable and p 6= q then the situation is symmetrical with Case 2.

Case 4: If p = q = x is a variable, then the program leaves S equal to tail(S0).
This maintains the invariant, because any substitution unifies S exactly if it
unifies S0.

If the program terminates, either ok is false, or S is empty. If ok is false, the first
part of the invariant tells us that t and u have no unifiers. On the other hand, if
ok is true and S is empty, then every substitution k unifies S. The second part
of the invariant then tells us (taking k = I) that the substitution r = r ⊲ I is a
unifier of t and u. Also, if w is any other unifier of t and u, then w factors as
w = r ⊲ k for some substitution k. In short, if the program terminates, then it
does so in a state where ok is true exactly if t and u have a unifier, and if so, r
is a most general unifier of t and u.

Our final task is to prove that the program does terminate, whatever the values
of t and u. Notice that case 2 (and by symmetry case 3), if they do not lead to
immediate termination, reduce by 1 the number of distinct variables that occur
in S, because p = x occurs in S0, but x does not occur in q, and so does not
occur in S[x ← q]. Also, cases 1 and 4 leave the number of distinct variables
unchanged, but reduce by 2 the total number of function and symbols in elements
of S. Since the number of symbols in t and u is finite, these steps can only be
executed a finite number of times before S becomes empty.

As we have explained it, the unification theorem applies to pairs of terms. Lit-
erals, however, have the same form as terms, differing only in that the outermost
symbol is a relation instead of a function. An analogous result applies to literals,
and the same algorithm can be used to compute most general unifiers for them.
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EXAMPLE

Let us apply the unification algorithm to the literals append(w ,w , 1:2:1:2:nil)
and append(x :a,b,x :c). The algorithm begins with

S = 〈(append(w ,w , 1:2:1:2:nil), append(x :a,b,x :c))〉

r = I.

In the first iteration, it compares the two input literals and finds they are both
constructed with append/3. So Case 1 applies, and the new state is

S = 〈(w ,x :a), (w ,b), (1:2:1:2:nil ,x :c)〉

r = I.

The next iteration involves comparing w with x :a; here Case 2 applies. Because
w does not occur in x :a, the new component {w ← x :a} is added to r and
applied to the rest of S, giving

S = 〈(x :a,b), (1:2:1:2:nil ,x :c)〉

r = {w ← x :a}.

Next, the algorithm compares x :a and b. Here Case 3 applies, and the new state
is

S = 〈(1:2:1:2:nil ,x :c)〉

r = {w ← x :a,b ← x :a}.

In the next iteration, both p and q are constructed with :/2, so Case 1 applies,
and the new state is

S = 〈(1,x ), (2:1:2:nil ,c)〉

r = {w ← x :a,b ← x :a}.

Now the algorithm compares the terms 1 and x . Case 3 applies, and the new
value of r is obtained by composing the new component {x ← 1} with the
previous value. The new value is

r = {w ← x :a,b ← x :a} ⊲ {x ← 1}

= {w ← 1:a,b ← 1:a,x ← 1}.

Because the substitutions are composed, the value of x has been substituted into
the values recorded for w and b. The new state is

S = 〈(2:1:2:nil ,c)〉

r = {w ← 1:a,b ← 1:a,x ← 1}.
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A final application of Case 3 gives the state

S = 〈〉

r = {w ← 1:a,b ← 1:a,x ← 1,c ← 2:1:2:nil},

in which S is empty. At this point, the algorithm terminates with ok true, and
the final value of r is a most general unifier of t and u.

The values taken by S at various stages in the example illustrates the subtlety
of the argument that the algorithm terminates. The number of pairs in S grows
and shrinks, but each step involving a variable eliminates that variable from S,
and each other step reduces the total size of the terms in S. The very first step
increases the size of S from 1 to 3 pairs, but makes the total size of the terms
smaller by eliminating two occurrences of the append symbol.

6.2 Resolution

The inference rule of resolution generalizes and combines into one the two rules
of substitution and of ground resolution. Unlike ground resolution, it works on
clauses that may contain variables and produces a result that may also contain
variables. Here is the statement of the rule of resolution:

From the two clauses

P :− Q1, . . . , Qj, . . . , Qn.

and

Q :− R1, . . . , Rm.

where there exists a substitution s such that Q[s] = Qj[s], derive the clause

(P :− Q1, . . . , Qj−1, R1, . . . , Rm, Qj+1, . . . , Qn)[s].

We call this clause the resolvent of the two clauses on Qj under the substitution
s. It is obtained by replacing the literal Qj in the body of the first clause by the
whole body of the second clause, then applying the substitution s to the whole
clause. We immediately state and prove the soundness of this rule:

PROPOSITION

Let M be an interpretation, and let the three clauses above be C1, C2 and C ′

respectively. If |=M C1 and |=M C2 then |=M C ′.
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Proof: Let g be any ground substitution; we shall show that |=M C ′[g]. Since
|=M C1 and |=M C2, it follows by the substitution rule that |=M C1[s ⊲ g] and
|=M C2[s ⊲ g]. Also, Q[s ⊲ g] = Q[s][g] = Qj[s][g] = Qj[s ⊲ g], and C ′[g] is the
ground resolvent of C1[s ⊲ g] and C2[s ⊲ g] on the literal Qj [s ⊲ g]. Thus by the
ground resolution rule, |=M C ′[g]. Since this is true for any ground substitution
g, it follows that |=M C ′.

As before, soundness of the resolution rule follows immediately from this propo-
sition. In applying the resolution rule, it is natural to choose the substitution s
to be a most general unifier of Qj and Q. In this case, we call the resulting clause
the resolvent of C1 with C2 on Qj. As we shall show in the next section, these
are the only resolvents we need to consider when searching for a derivation.

EXAMPLE

Here is the reverse program from Chapter 5:

reverse(nil , nil) :− . (rev.1)
reverse(x :a,c) :− reverse(a,b), append(b,x :nil ,c). (rev.2)

append(nil ,b,b) :− . (app.1)
append(x :a,b,x :c) :− append(a,b,c). (app.2)

From this program, we can use resolution to derive the conclusion

reverse(x1:x2:nil ,x2:x1:nil) :− .

in which x1 and x2 are variables. This conclusion covers as a special case the
conclusion reverse(1:2:nil , 2:1:nil) :− that we derived from the same program by
substitution and ground resolution. In fact, as we shall see later, we can take
any derivation that uses ground resolution and produce a derivation that has the
same ‘shape’, but uses general resolution instead, with a conclusion that covers
the original conclusion as a special case.

Our derivation begins with variants of (rev.1) and (rev.2):

1. reverse(x1:a1,c1) :− (rev.2)
reverse(a1,b1), append(b1,x1:nil ,c1).

2. append(x2:a2,b2,x2:c2) :− (app.2)
append(a2,b2,c2).

The head of (2) unifies with the append literal in the body of (1). The unifying
substitution is {b1 ← x2:a2,b2 ← x1:nil ,c1 ← x2:c2} and the resolvent is

3. reverse(x1:a1,x2:c2) :− 1, 2, R
reverse(a1,x2:a2), append(a2,x1:nil ,c2).
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Now we take a fresh variant of (rev.2) and a variant of (rev.1):

4. reverse(x4:a4,c4) :− (rev.2)
reverse(a4,b4), append(b4,x4:nil ,c4).

5. reverse(nil , nil) :− . (rev.1)

The head of (5) unifies with the reverse literal in the body of (4). The matching
substitution is {a4 ← nil ,b4 ← nil}, and the resolvent is

6. reverse(x4:nil ,c4) :− append(nil ,x4:nil ,c4). 4, 5, R

Now we take a variant of (app.1):

7. append(nil ,b7,b7) :− . (app.1)

and resolve it with (6). The matching substitution is {b7 ← x4:nil ,c4 ← x4:nil},
and the resolvent is

8. reverse(x4:nil ,x4:nil) :− . 6, 7, R

Now we can form a resolvent between (3) and (8), deriving

9. reverse(x1:x2:nil ,x2:c2) :− append(nil ,x1:nil ,c2). 3, 8, R

Finally, we resolve (9) with another variant of (app.1):

10. append(nil ,b10,b10) :− . (app.1)

We obtain the final result

11. reverse(x1:x2:nil ,x2:x1:nil) :− . 9, 10, R

To a human eye, this derivation seems more complicated than the original proof
by ground resolution, because each step involves unifying two literals that may
both contain variables. But the crucial difference between this style of derivation
and one using ground resolution is that unification can be done by a systematic
algorithm, and there is now no need to use insight in guessing what terms should
be substituted for variables to make the proof work.

6.3 Derivation trees and the lifting lemma

Our aim in this section is to show that derivations by ground resolution can be
‘lifted’ to make derivations by general resolution. This provides a way of showing
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that general resolution is complete, because every consequence of a program can
be derived by ground resolution, and this derivation can be lifted to use general
resolution. In fact, the result is even more useful than this suggests, because
lifting a derivation preserves its tree structure. This comes in useful later, when
we become interested in the shapes of derivation trees that must be considered in
the search for answers to a goal. Then, as now, we shall be able to work mostly
with ground resolution, and, as a final step, lift our results to the general case.

We begin with a more precise definition of derivation trees.

DEFINITION

The set of derivation trees for a program T , and the outcome of each derivation
tree are defined as follows:

1. If C is an instance of a clause of T , then leaf (C) is a derivation tree with
outcome C.

2. If D1 and D2 are derivation trees with outcomes C1 and C2, and C is a
resolvent of C1 with C2, then resolve(C, D1, D2) is also a derivation tree
with outcome C.

Derivation trees are usually drawn like the tree in Figure 5.2, since the flow of
logical implication then goes down the page in a natural way. The root, labelled
with the final outcome, is at the bottom, and at the top are leaves, each labelled
with an instance of a program clause. Derivations by substitution and ground
resolution are a special case of derivation trees, in which the leaves are labelled
with ground instances of clauses from T , and all the resolve nodes correspond
to steps of ground resolution. Another special case occurs when the leaves are
labelled with variants of program clauses rather than more specific instances,
and each resolution step uses the most general unifier of the two literals involved:
we call such a derivation tree strict.

The recursive definition of derivation trees gives a method of proving general
results about them: we can argue by structural induction on derivations. This
is quite different from an argument by structural induction on the clause that
is the outcome of the derivation. In one case, we are examining the reason why
the outcome is a clause, and in the other, we are examining the reason why it
is entailed by the program. This method of proof is used to establish our most
important result about derivation trees, the lifting lemma.

LEMMA [Lifting lemma]
Let T be a program and D be a derivation tree for T . Then there is a strict
derivation tree D′ for T such that

1. D′ has the same shape as D, in the sense that either D and D′ are both
leaves, or they are both constructed by resolve, and in that case, the two
immediate sub-trees of D′ have the same shape as those of D.
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2. Each sub-tree of D has an outcome that is an instance of the outcome of
the corresponding sub-tree of D′.

Proof: We argue by induction on the structure of D. If D is a leaf leaf (C[s]),
where C is a program clause and s is a substitution, then we may take D′ to be
leaf (C ′), where C ′ is any variant of C.

If D has the form resolve(C, D1, D2), and the lifting lemma is true of D1 and
D2, then let D′

1 and D′

2 be strict versions of D1 and D2. We may suppose that
no variable appears in both D′

1 and D′

2, since we can choose variants of program
clauses to make this so. Let

C1 = (P :− Q1, . . . , Qj, . . . , Qn)

C2 = (Q :− R1, . . . , Rm)

be the outcomes of D′

1 and D′

2. By hypothesis, there is a substitution s such
that C1[s] and C2[s] are the outcomes of D1 and D2 respectively. The clause C
is obtained from C1[s] and C2[s] by a step of resolution. Suppose it is resolution
on the literal Qj[s] under the substitution s′, so Q[s ⊲ s′] = Qj[s ⊲ s′], and

C = (P :− Q1, . . . , R1, . . . , Rm, . . . , Qn)[s ⊲ s′].

Since Q and Qj have a common instance, they have a most general unifier r, and
s ⊲ s′ factors through r, say s ⊲ s′ = r ⊲ k. Let C ′ be the resolvent of C1 and C2

on Qj under r, and let D′ = resolve(C ′, D′

1, D
′

2). Then D′ has the same shape as
D, its outcome C ′ is obtained by a resolution step under a most general unifier,
and C = C ′[k] is an instance of C ′. This completes the proof.

6.4 Completeness of resolution

The lifting lemma leads immediately to completeness results for general resolu-
tion. An example of such a result is the refutation completeness of resolution,
that if a goal G can be solved by a program T , then there is a refutation of
T ∪ {G} by resolution.

THEOREM [Refutation completeness of resolution]
Let T be a program and G a goal such that T ∪ {G} |= #. Then there is a strict
derivation tree for T ∪ {G} with outcome # :−.

Proof: By completeness of ground resolution, there is a derivation tree D for
T ∪{G} with outcome # :−. By the lifting lemma, we can find a strict derivation
tree D′ (of the same shape) for T ∪{G} whose outcome has # :− as an instance.
But the clause # :− is an instance of no clause but itself, so D′ is the required
strict derivation tree.
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Summary

• If two terms have a common instance, then they have a most general com-
mon instance, obtained by applying their most general unifier to either of
them.

• The existence of most general unifiers allows the rules of substitution and
ground resolution to be replaced by a single rule of resolution.

• Any derivation that can be carried out using substitution and ground reso-
lution can be mimicked using the rule of resolution.

• Any goal that has a solution for a given program can be solved by refutation
using the rule of resolution.

Exercises

6.1 What (if any) are the most general unifiers of the following pairs of terms?

a. f (x ,y ) and f (g(y ), h(z)).
b. f (x ,x ) and f (y , g(y )).
c. p(x , g(x ), h(y )) and p(g(y ), z , h(a)).

6.2 Suppose terms t, u and v are such that t and u have a unifier, and u and
v have a unifier. Prove or disprove the statement that t and v necessarily have a
unifier.

6.3 Let u1, u2, w1, w2 be terms. Consider the compound terms t1 = f(u1, w1)
and t2 = f(u2, w2), and suppose that u1 and u2 have a m.g.u. r and w1[r] and
w2[r] have a m.g.u. s. Show the r ⊲ s is most general unifier of t1 and t2.

6.4 The concept of most general unifier can be extended to sets of terms (in-
stead of just pairs): we say r is a unifier of a set S if t1[r] = t2[r] for all terms
t1, t2 ∈ S, and say r is a most general unifier (m.g.u.) of S if any other unifier s
factors as s = r ⊲ k for some substitution k.

If r is a m.g.u. of t1 and t2, and s is a m.g.u. of t1[r] and t3[r], prove that r ⊲ s
is a m.g.u. of the set {t1, t2, t3}. Prove also that if this set has any unifiers, then
it has a most general unifier that can be obtained in this way.

6.5 [Hard]

a. Let a relation � on terms be defined so that t � u if and only if t[s] = u
for some substitution s. Prove that � is reflexive and transitive, and find
an example that shows it is not anti-symmetric.

b. Let φ:Term ×Term → Var be a function that assigns a distinct variable to
each pair of terms, and define a binary operation ⊓ on terms as follows: if
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f is a function symbol of arity k, then

f(t1, . . . , tk) ⊓ f(u1, . . . , uk) = f(t1 ⊓ u1, . . . , tk ⊓ uk),

and for all other pairs of terms t and u, t ⊓ u = φ(t, u). Prove that t ⊓ u is
a greatest lower bound of t and u under ⊓.

c. Explain how unification can be used to find a least upper bound for two
terms t and u where one exists.



Chapter 7

SLD–resolution and answer substitutions

Resolution is a better candidate for machine implementation than ground reso-
lution, but it still suffers from some drawbacks. One is that there are several
ways that resolution might be used to produce a refutation of a goal. We might
try using clauses from the program directly on the goal, matching the clause
head with literals in the goal, and deriving a new goal, or we might try using
resolution to combine program clauses with each other, making new clauses that
can be used on the goal.

This choice of methods makes it appear that a machine searching for a refu-
tation must explore a large and complex search space, sometimes carrying out
resolution steps that do not involve the current goal at all. But luckily this com-
plexity is an illusion, because (as we shall show in this chapter) every refutation
can be recast in a ‘straight-line’ form, where every resolution step involves a clause
taken directly from the program and the goal that was produced in the previous
step. Derivation trees in straight-line form consist of a long, thin spine, with the
original goal at the top and the empty goal at the bottom. All the nodes that are
not on the spine are leaves, labelled with variants of program clauses. This means
that the machine can search for a refutation in a systematic way by starting with
the goal and repeatedly choosing a program clause to resolve with it. There is
still some choice here – and in fact it is this remaining element of choice that
makes logic programs non-deterministic – but the choice is severely restricted.

Another apparent source of complexity in searching for a refutation is that a
goal may have several literals, and we may choose to solve them in any order.
Even with straight-line derivations, we might choose to work on any one of the
goal literals in the first resolution step, and subsequently we may choose from
both the other literals of the original goal and the new literals introduced by pre-
vious resolution steps. It appears that, in order to succeed in finding a refutation,
we might have to consider the literals in a particular order, and even perhaps
interleave steps in the solution of one literal with the solution of other ones.
Again, this complexity is only apparent, because every straight-line refutation

69
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can be rearranged until the literals are solved in a predetermined order. To keep
the discussion simple, we shall consider only the strict left-to-right order that is
used by Prolog, but in fact the same argument shows that any choice of order is
permissible.

It is important to cut down the search space of derivations that a machine
must examine, because this makes execution of logic programs more efficient. If
we can show that every goal that has a refutation at all has one in a certain
restricted form, then we can build an execution mechanism that considers only
refutations in that restricted form. Also, if the form of refutations is restricted,
it may be possible to use more efficient data structures to represent derivations
inside the implementation. The Prolog approach, in which derivations have a
straight-line form and literals are considered in a fixed order, is known as SLD–

resolution. It allows a particularly simple and efficient form of search, and allows
derivations to be represented by a simple stack-like data structure similar to the
one used in implementing other programming languages.

The first part of this chapter treats SLD–resolution in more detail, showing
that resolution remains complete when we adopt the restrictions of straight-line
form and a fixed order of solving literals. The second part discusses a method
for extracting an answer substitution from a refutation, so that solving a goal
does not yield just a simple ‘yes’ or ‘no’, but also specific values of variables that
make the literals of the goal true if possible. Answer substitutions extracted by
this method are what Prolog displays when it has succeeded in solving a goal.
We shall prove that the answers extracted from refutations are correct, and that
every correct answer can be obtained in this way.

7.1 Linear resolution

DEFINITION

We say a derivation tree for an augmented program T ∪ {G} is linear if either
it is a leaf, or it is of the form fork(C, D1, D2), where D1 is linear and D2 is a
leaf.

A linear tree looks like Figure 7.1. The clauses Ci are (instances of) program
clauses, and the clauses C ′

i are derived by a resolution step that has a program
clause as its right-hand input. Obviously, the head of C ′

i+1 is an instance of the
head of C ′

i, so if a linear derivation is actually a refutation, then all the clauses
C ′

i along the spine are goals, C0 is an instance of the original goal G, and C ′

n is
the empty goal.

We are now going to show how any refutation that uses ground resolution

can be recast in linear form. We shall then use the lifting lemma to argue that
refutations using general resolution can also be put into linear form. The proof
depends on making moves that begin with a derivation that is not linear and end
with one that is a little bit more linear. Any non-linear derivation has at least
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C ′

n−1 Cn

C ′

n

C1C0

C ′

1 C2

C ′

2 C3

C ′

3

Figure 7.1: Linear derivation tree

one fork node that is not on the spine, as shown in Figure 7.2. The spine of the
derivation tree runs through C1 and C5, and C4 is a fork node that is not on the
spine. The wavy-topped triangles labelled D1, D2 and D3 may be any derivations
that have outcomes C1, C2 and C3 respectively.

If Figure 7.2 represents a valid derivation, then so does Figure 7.3. This
derivation contains the same clauses C1, C2 and C3 and has the same outcome
C5, but it has a different clause C4 inside. Suppose the clauses in the tree of
Figure 7.2 are as follows:

C1 = (P :− Q1, . . . , Qj, . . . , Qn)

C2 = (Q :− R1, . . . , Rk, . . . , Rm)

C3 = (R :− S1, . . . , Sp),

with C4 obtained from C2 and C3 by resolving on R = Rk:

C4 = (Q :− R1, . . . , Rk−1, S1, . . . , Sp, Rk+1, . . . , Rm),
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D1

D2 D3

C2 C3

C4

C5

C1

Figure 7.2: A non-linear derivation tree

D1 D2

D3
C2C1

C ′

4

C5

C3

Figure 7.3: Derivation tree after reshaping
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and C5 obtained from C1 and C4 by resolving on Q = Qj:

C5 = (P :−Q1, . . . , Qj−1, R1, . . . , Rk−1,

S1, . . . , Sp, Rk+1, . . . , Rm, Qj+1, . . . , Qn).

Remember that we are using ground resolution.
In the new tree, C ′

4 is obtained by resolving the clauses C1 and C2 on Q = Qj:

C ′

4 = (P :− Q1, . . . , Qj−1, R1, . . . , Rk, . . . , Rm, Qj+1, . . . , Qn),

then C5 is obtained by resolving C ′

4 with C3 on R = Rk, with the same result as
before. Thus Figure 7.3 shows a valid derivation.

A move like this is possible whenever a tree contains a fork node that is not
on the spine, and it reduces by one the number of such nodes. So by making
a sequence of moves, we can reduce any derivation tree to linear form. More
formally, the move is the basis for an argument that every clause that can be
derived from the augmented program by ground resolution can also be obtained
by linear ground resolution The argument is by mathematical induction on the
number of off-spine fork nodes.

The refutation completeness theorem for ground resolution tells us that any
goal that is false in every model of a program has a refutation from the program
by ground resolution. Combining this with the result we have just proved tells
us that such a goal also has a linear ground refutation. Actually, we are more
interested in general resolution than in ground resolution, so we now apply the
lifting lemma. If T ∪ {G} |= # then (by refutation completeness of ground
resolution) there is a derivation by ground resolution of # :− from T ∪ {G}. As
we have just argued, this derivation may be put into linear form. Finally, we apply
the lifting lemma: there is a strict derivation tree with the same shape as this
linear ground derivation (so it is also linear), such that each clause in the ground
derivation is an instance of the corresponding clause in the strict derivation.
In particular, the outcome # :− of the ground derivation is an instance of the
outcome of the strict derivation. But this goal is an instance of nothing except
itself, so the strict derivation is also a refutation of T ∪ {G}.

7.2 SLD–resolution

At each step in constructing a linear refutation, we must choose which literal in
the goal to match with program clauses. We now show that this choice does not
matter, in the sense that if there is a refutation that takes the literals in any
order, then there is one that takes them in left-to-right order. In other words,
linear resolution remains refutation complete if we further restrict it to operate
on goal literals from left to right. We call a refutation that obeys this further
restriction an SLD–refutation. (SLD stands for ‘Selected-literal Linear resolution
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G1 C1

G2 C2

G3

Figure 7.4: A fragment of a linear tree

for Definite clauses’, and ‘definite clauses’ are just Horn clauses under another
name.)

Again, we use an argument based on a move that replaces a bad fragment of
derivation tree with a better one, and again we work with ground resolution first
and then appeal to the lifting lemma, but the argument is a little more subtle this
time. The move begins with a fragment of a linear tree as shown in Figure 7.4;
G1, G2 and G3 are goals, and C1 and C2 are instances of program clauses. Let
us suppose that the resolution step that derives G2 from G1 and C1 does not use
the first literal of G1, but that the resolution step that derives G3 from G2 and
C2 does use the first literal of G2. Let the original goal and clauses be

G1 = (# :− P1, P2, . . . , Pk, . . . , Pn)

C1 = (P :− Q1, . . . , Qm)

C2 = (P ′ :− R1, . . . , Rp).

Let G2 be obtained from G1 and C1 by resolving on P = Pk where k > 1:

G2 = (# :− P1, P2, . . . , Pk−1, Q1, . . . , Qm, Pk+1, . . . , Pn).

Because k > 1, the first literal in G2 is identical with that in G1. Let G3 be
obtained by resolving with C3 on this literal P ′ = P1:

G3 = (# :− R1, . . . , Rp, P2, . . . , Pk−1, Q1, . . . , Qm, Pk+1, . . . , Pn).
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Our move exchanges the two resolution steps, so that now the first step resolves
G1 with C3 on P ′ = P1 to obtain the goal

G′

2 = (# :− R1, . . . , Rp, P2, . . . , Pk, . . . , Pn).

Then the second step resolves this with C2 on P = Pk to obtain the same out-
come G3 as before.

What does a move like this achieve? It moves the ‘good’ resolution step
closer to the top of the derivation tree, and pushes the ‘bad’ step further down.
Suppose we have a linear refutation of T ∪ {G} that does not obey left-to-right
order. Let G be the goal # :− P1, P2, . . . , Pm. At the top of the derivation
tree is G, and at the bottom is the empty goal # :−. Since all the literals of
G have disappeared by the time we reach the bottom of the tree, there must
be some step that involves resolution on the leftmost literal P1 of G. Repeated
moves can be used to bring this resolution step to the top of the tree, giving a
refutation that begins with a ‘good’ step, and these moves do not change the
height of the tree.

Now consider the rest of the tree, beginning with the outcome G1 of the first
(now good) step. It is a linear ground refutation of G1, and it is one step shorter
than the original refutation of G0. This suggests an inductive argument; we can
prove by induction on n that every linear refutation of length n can be arranged
to obey left-to-right order. The base case n = 0 is trivial, because the 0-step
derivation of # :− from itself is already an SLD–refutation. For the step case,
we first bring the right resolution step to the top of the tree by using a number
of our moves, then apply the induction hypothesis to all but the first step of the
tree. This gives an SLD–refutation of G1, and putting back the first step gives an
SLD–refutation of G. Finally, this result extends to general resolution through
the lifting lemma.

As we shall see later, SLD–resolution can be implemented in an especially
efficient way using a stack to hold the literals in the current goal. At each
resolution step, we pop a literal from the stack, match it with the head of a
program clause by unification, and if this is successful, push instances of the
literals in the body of the clause. This is the method used by Prolog.

Although this method can be implemented efficiently, and every goal has an
SLD–refutation if it has any refutation at all, the search for a refutation can
sometimes be much more difficult with SLD–resolution than if the literals are
taken in a more ‘intelligent’ order. For example, consider using the clause

grandparent(a,c) :− parent(a,b), parent(b,c).

to solve the goal # :− grandparent(x , fred). Expanding the grandparent literal
gives

# :− parent(a,b), parent(b, fred).
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A strictly left-to-right strategy would continue by solving the leftmost literal
parent(a,b). Effectively, the strategy would be to enumerate all pairs (a,b)
where a is a parent of b, and check each of them to see if b is a parent of
fred . This is much less effective than the alternative strategy of solving the
literal parent(b, fred) first (it can have at most two solutions), then looking for
solutions of parent(a,b) once the value of b is known. The left-to-right strategy
fails because it leads us to solve a literal that contains no information that is
specific to the goal being solved.

For this goal, it would be better to write the definition of grandparent in the
logically equivalent form

grandparent(a,c) :− parent(b,c), parent(a,b).

since the left-to-right order would then choose the correct literal to solve first.
But of course, that would not be any good if the goal were

# :− grandparent(mary ,x ).

In the absence of an intelligent selection strategy, Prolog programmers sometimes
need to write several versions of a definitions, each working well with a particular
pattern of known and unknown arguments. Often, however, the variety of pat-
terns that actually occurs in the execution of a program is not very great, and a
single ordering of literals will work for all of them.

7.3 Search trees

We have shown that it is sufficient to use linear derivations, and to adopt the
Prolog strategy of working from left to right. The only remaining choice we have
in constructing a refutation for a goal is which clause to use in each step. The
possible choices can be shown as a search tree, in which the original goal is shown
at the root, and the children of each node are the goals that can be derived from
it by using various clauses in a single step of SLD–resolution.

As an example, Figure 7.5 shows the search tree for the goal

# :− append(a,b, 1:2:nil).

with the usual two clauses for append . Each arc is labelled with the clause and
matching substitution that is used. Thus either of the clauses may be used on the
original goal. The clause (app.1) leads to an immediate solution, with a = nil

and b = 1:2:nil , and the clause (app.2) has a matching substitution with a = 1:a1

and leads to the new goal # :− append(a1,b, 1:nil). The new goal generated by
using (app.2) can itself be resolved with either clause, leading to the solutions
a = 1:nil , b = 2:nil and, after another step, a = 1:2:nil , b = nil .
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# :− append(a,b, 1:2:nil).

# :− . # :− append(a1,b, 2:nil).

# :− . # :− append(a2,b,nil).

# :− .

(app.1), a = nil , b = 1:2:nil (app.2), a = 1:a1

(app.1), a1 = nil , b = 2:nil (app.2), a1 = 2:a2

(app.1), a2 = b = nil

Figure 7.5: Search tree for an append goal

In this search tree, all the branches are finite and end in the empty goal. More
typical search trees have branches that end in failure, that is, a goal that is not
empty but matches no program clause. They may also have infinite branches
that correspond to infinite sequences of resolution steps that never lead to failure
or success.

Here is a program whose search tree has branches that end in failure, and also
infinite branches that can be followed forever. It describes the problem of making
a journey on a small airline serving European capitals (see Figure 7.6 for a map).

flight(london, paris) :− .
flight(london, dublin) :− .
flight(paris, berlin) :− .
flight(paris, rome) :− .
flight(berlin, london) :− .

journey(a,a) :− .
journey(a,c) :− flight(a,b), journey(b,c).

The first few clauses define a relation flight(a,b) that is true if there is a direct
flight from a to b with seats available. The last two clauses define a relation
journey(a,b) that is true if it is possible to make a journey of zero or more
flights from a to b. One possible journey begins and ends at a without taking
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Dublin

London

Berlin

Paris

Rome

Figure 7.6: Map of airline flights

any flights. Other journeys begin with a flight from a to another city b, and
continue with a further journey from b to the final destination c . Figure 7.7
shows the search tree when this program is used to execute the goal

# :− journey(london, rome).

To save space, the city names are represented by their initial letters, d , l , r , etc.
The diagram shows three finite branches and an infinite branch.

The leftmost branch (1) ends in failure. It corresponds to a decision to fly first
from London to Dublin. Since there are no available flights out of Dublin, this
leads to immediate failure. The next branch (2) ends in success, and corresponds
to flying from London to Paris, then from Paris to Rome. Next to it is a failure
branch (3) that represents an attempt to fly from London to Rome via Paris,
then continue on a circular tour that ends in Rome. Since Rome (like Dublin) is
a dead end, the branch ends in failure. Finally, branch (4) represents a decision
to fly round the circuit London–Paris–Berlin–London. After doing this, we are
left with the same problem we started with, namely the goal

# :− journey(london, rome).

The search tree below this point is a copy of the entire search tree, which is
therefore infinite. The whole search tree contains an infinite number of suc-
cess nodes, each representing a sequence of flights that goes round the circuit
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# :− journey(l , r).

# :− flight(l ,x1), journey(x1, r).

x1 = d x1 = p

# :− journey(d , r).

(1)

# :− journey(p, r).

# :− flight(p,x2), journey(x2, r).

x2 = r x2 = b

# :− .

(2)

# :− flight(r ,x3), journey(x3, r).

(3)

# :− journey(b, r).# :− journey(r , r).

# :− flight(b,x4), journey(x4, r).

x4 = l

# :− journey(l , r).

(4)

Figure 7.7: Search tree for # :− flight(london, rome).

a different number of times before finally ending in Rome. It also contains an
infinite branch that corresponds to flying round the circuit forever.

What will happen in practice when we try to solve a goal that has an infinite
search tree? The answer depends on the search strategy that is used to explore
the tree. Prolog’s search strategy is depth-first . It chooses one child of the root
node, and explores that child and all its descendants before considering any of its
other children. In other words, the search is a pre-order traversal of the search
tree. In Prolog, the order of visiting the children of a node corresponds to the
order in which clauses appear in the program. Thus, in the example, a flight from
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London to Dublin will be considered before a flight to Paris, because the clause

flight(london, dublin) :− .

appears earlier in the program than the clause

flight(london, paris) :− .

As we shall see in the last part of this book, depth-first search can be im-
plemented easily and efficiently, because the entire state of the search can be
represented by a single active path in the tree. However, depth-first search spoils
the completeness of SLD–resolution. If the search tree contains an infinite branch,
then depth-first search will never reach any node that comes after that branch
in the search order. That is, any node that would be to the right of the infinite
branch in a diagram of the tree. This means that a search tree may contain one
or more success nodes, but depth-first search may not find them because it gets
stuck on an infinite branch first.

In the example, the existence of an infinite branch does not prevent depth-
first search from finding the solutions, because the infinite branch is the rightmost
one in the tree. This is just a fortunate coincidence, and a different order for
the clauses in the flight relation would prevent the Prolog search strategy from
finding any solutions. For some, programs, there may be no fixed order for the
clauses that allows depth-first search to find solutions.

We call a search strategy fair if each node in the search tree is visited even-
tually, even if the search tree has infinite branches. An example of a fair search
strategy is breadth-first search, which visits all the nodes on each level of the
tree before beginning to visit the nodes on the next level. Thus breadth-first
search visits the original goal, then all the goals that can be derived from it by
one resolution step, then all the goals that can be derived in two resolution steps,
and so on. For any node in the search tree, there are only finitely many nodes
that come before it in this ordering, so the node will eventually be visited.

Depth-first search is not fair, because nodes that are to the right of an infinite
branch are never visited, no matter how long the search continues. One solu-
tion to this problem is to abandon depth-first search in favour of a fair search
strategy such as breadth-first search. Another solution, more practical for Prolog
programmers, is to rewrite the program so that its search space no longer contains
infinite branches. We shall look at techniques for doing this for graph-searching
programs in Chapter 9.

7.4 Answer substitutions

So far, our proof methods have been rather unsatisfying as ways of executing logic
programs, because they have enabled us to say whether a goal can be solved, but
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have not given any information about what values for the variables lead to a
solution. This information is implicitly present in the unifying substitutions that
are computed as part of resolution, and we now look at ways of extracting the
information from a refutation as an ‘answer substitution’, as Prolog does when
it displays the answer to a goal.

DEFINITION

Let T be a program and G = (# :− P1, . . . , Pn) be a goal. An answer substitution

for G with respect to T is a substitution s such that T |= Pi[s] for each i.

The idea is that composing all the unifiers along the spine of an SLD–refutation
will give us an answer substitution. Actually, this ‘extracted’ substitution is
not quite what we want, because it may involve variables that were not in the
original goal, but were introduced from a program clause. So we define also the
substitution that is ‘computed’ by a refutation, in which these extra variables
have been removed.

DEFINITION

The substitution s extracted from a derivation tree D for a program T is defined
as follows:

• If D = leaf (C[w]), where C is a program clause and w is a renaming, then
s = w.

• If D = fork(C, D1, D2), then s = s1⊲r, where s1 is the substitution extracted
from D1 and r is the unifying substitution of the resolution step which
derived C.

The substitution computed by a refutation D of a goal G is the substitution
s � vars(G), where s is the substitution extracted from D.

In this definition, the notation s �A stands for the restriction of a substitution s
to a set of variables A. It is defined by

(s � A)(x ) =

{

s(x ), if x ∈ A
x , otherwise

Thus s � A is the substitution that agrees with s on variables in the set A, and
leaves other variables unchanged. The substitution extracted from a refutation
D is thus the composition of all the unifiers along the leftmost branch of D,
restricted to the set of variables that actually appear in the goal G at its top.
Given these definitions, two questions naturally arise:

• Are the substitutions computed by refutations of a goal G correct answer
substitutions for G?
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• Can every correct answer substitution for G be obtained as the substitution
computed by a refutation of G?

These questions correspond closely to the concepts of soundness and completeness
of inference rules. The first question is answered positively by the following
theorem:

THEOREM [Answer correctness of resolution]
Let D be a refutation of T ∪ {G}, and let r be the substitution computed by D.
Then r is an answer substitution for G with respect to T .

Proof: We shall show by induction that the substitution s extracted from D is
an answer substitution for G. Since r agrees with s on the variables that actually
occur in G, the theorem follows from this. For simplicity, we assume that the
top node of the SLD–refutation D is leaf (G) (with no renaming).

We argue by induction on the length of D. If D has length zero, then it
consists of the single node leaf (# :−) and G is the empty goal # :−. For this
goal, any substitution is (vacuously) an answer substitution. If D has non-zero
length, suppose that the result holds for all shorter SLD–refutations. Consider
the first resolution step in D, and suppose it combines the goal

G = (# :− P1, . . . , Pn)

with the clause

C = (P :− Q1, . . . , Qm)

by matching P and P1 with unifier r. The outcome of this step is the goal

G′ = (# :− Q1, . . . , Qm, P2, . . . , Pn)[r].

The remainder of the refutation D is an SLD–refutation of G′ one step shorter
than D, so we may assume that the substitution s′ extracted from it is an answer
substitution for G′. The substitution extracted from D itself is s = r ⊲ s′.

Now let M be a model of T , and let g be any ground substitution. We are
assuming that s′ is an answer substitution for G′. Thus

|=M Qj[r][s
′][g] for all j, 1 ≤ j ≤ m,

and so

|=M Qj[s][g] for all j, 1 ≤ j ≤ m.

Because |=M C, and so by substitution |=M C[s], it follows that |=M P [s][g], or
equivalently that |=M P1[s][g]. Also, |=M Pi[s][g] for 2 ≤ i ≤ n. Since M and g
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are arbitrary, we may conclude that T |= Pi[s] for each i. Hence s is an answer
substitution for G.

So the answers computed by refutations are correct. Now for the other question:
Can all correct answers be obtained in this way? The answer is a qualified ‘yes’.
If s is an answer substitution for G, then there is a refutation of G that computes
an answer substitution r such that s = r ⊲ k for some k. If r is an answer
substitution, so is r ⊲ k for any k, so this is acceptable.

THEOREM [Answer completeness of resolution]
Let s be an answer substitution for a goal G with respect to a program T . Then
there is an SLD-refutation D of T ∪ {G} such that the substitution r computed
by D satisfies s = r ⊲ k for some substitution k.

Proof: Let vars(G) = {v1, . . . ,vn}, and let the alphabet of T and G be L.
Invent n new constant symbols a1, . . . , an not in L. Let m be the substitution
{v1 ← a1, . . . ,vn ← an}, and consider the ground goal G[s⊲m] over the extended
alphabet L ∪ {a1, . . . , an}.

Let G = (# :− P1, . . . , Pn). Because s is an answer substitution for G, it
follows that |=M Pi[s] and so |=M Pi[s ⊲ m] for each i and each model M of
T , and so T ∪ {G[s ⊲ m]} |= #. Hence by refutation completeness, there is an
SLD–refutation D0 of G[s ⊲ m]. Because G[s ⊲ m] is a ground goal, D0 computes
the identity substitution. The only places that the new constants ai appear in
the refutation are along the spine, because these constants do not appear in any
clause of the program T . So we can replace them by the original variables vi to
obtain an SLD–refutation D of G[s] that also computes the identity substitution.

The refutation D begins with G[s], an instance of G. Now apply the lifting
lemma to obtain an SLD–refutation D′ of G that has the same length as D. In
fact, the refutation D′ constructed in the proof of the lifting lemma computes a
substitution r′ such that s ⊲ r = r′ ⊲ k, where r is the substitution computed by
D (actually r = I) and k is another substitution. This fact can be proved by
induction on the length of D. We conclude that s = r′ ⊲ k as required.

Summary

• Any derivation from a program can be put into linear form, in which one
of the inputs to each resolution step is a clause taken from the program.

• A refutation that is in linear form can be rearranged so that subgoals are
solved in left-to-right order.

• From any refutation, we can extract a substitution that answers the goal.
The substitutions that can be obtained in this way correspond exactly with
the correct answers to the goal.
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Exercises

7.1 Reduce the derivation of reverse(x1:x2:nil ,x2:x1:nil) given in Chapter 6 to
the form of a derivation by SLD–resolution.

7.2 Define a relation palin(a) that is true of the list a is a palindrome, that
is, if it reads the same backwards as forwards. For example, 1:2:3:2:1:nil is a
palindrome, but 1:2:3:2:nil is not. Show the sequence of goals that are derived
in a successful execution of the goal # :− palin(1:x :y :z :nil). What answer
substitution is computed?



Chapter 8

Negation as failure

So far, we have treated in our theory only logic programs that are composed
entirely of Horn clauses, and have disallowed the use of the connective not.
In Chapter 2, we saw that negation was useful in expressing the operation of
relational difference, and – unlike the ‘or’ connective involved in relational union
– it cannot be avoided by rewriting the program. We therefore need to extend
our theory to cover negation, and we shall do so using the technique of negation

as failure. The idea is that, at least for some formulas P , if we attempt to prove
P and fail to do so, it is reasonable to deduce that notP is true.

In the next section, we apply this idea to the situation where goals may contain
uses of not, although the logic program itself contains only pure Horn clauses.
Section 8.2 extends this to allow not to be used in the bodies of program clauses
also. Finally, Section 8.3 explains how our semantic theory can be extended to
cover negation.

8.1 Negation in goals

The goal # :− member(5, 1:2:3:4:nil) asks whether 5 is a member of the list
1:2:3:4:nil . Prolog executes this goal by comparing 5 with each number in
the list and, finding that it is different from each of them, gives the answer
‘no’. This suggests a method for executing goals that involves negation, such
as # :− notmember(5, 1:2:3:4:nil): delete the not and execute the plain goal
that results. If Prolog answers ‘no’ for the plain goal, give the answer ‘yes’
for the negated goal, and if Prolog answers ‘yes’ for the plain goal, give the
answer ‘no’ for the negated goal. This method also gives the correct answer
for a goal like # :− notmember(2, 1:2:3:4:nil) that ought to fail. Prolog finds
that 2 is a member of 1:2:3:4:nil , so it gives the answer ‘yes’ to the plain goal
# :− member(2, 1:2:3:4:nil). Our method then tells us to answer ‘no’ to the
negated goal.
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This method is called negation as failure. It relies on the completeness of the
resolution method used to execute goals. If the goal has an answer, then we know
that resolution will find it. Consequently, when resolution fails to find an answer,
we may deduce that there is none, and thus that the literal in the goal is false
in the least model M0 of the program. Thus negation as failure interprets not

with respect to the least model, and relies on the closed world assumption, that
the literals that are true in the intended use of the program are exactly the ones
that are true in its least model, and thus may be derived from it by resolution.

Negation as failure works properly only for ground literals. If execution of
a non-ground goal # :− P succeeds, we may conclude only that some ground
instance of P is true in the least model M0, and not that every ground instance is
true; thus it would not be valid to conclude that every ground instance of notP
is false, and doing so can lead to wrong answers. For example, consider the goal

# :− notmember(x , 1:2:3:4:nil),x = 5. (∗)

We expect this goal to have the answer x = 5, because 5 is not a member
of the list 1:2:3:4:nil . But if negation as failure is used to execute this goal,
together with Prolog’s left-to-right strategy, then the following is what happens:
the subgoal notmember(x , 1:2:3:4:nil) is the first to be executed. Negation by
failure requires that we execute the goal # :− member(x , 1:2:3:4:nil) in its place
and reverse the result. Now this goal has several solutions, including x = 1, so
the goal succeeds, and we make the negated literal fail. Consequently, the whole
goal (∗) fails, although we expected it to succeed.

We could try executing the goal

# :− x = 5,notmember(x , 1:2:3:4:nil).

instead. This time, it is the subgoal x = 5 that is executed first. It succeeds,
setting x to 5 and leaving the new goal

# :− notmember(5, 1:2:3:4:nil).

As we have seen, this goal succeeds under negation as failure, and the final result
is the correct answer x = 5. In Prolog, it is the programmer’s responsibility to
ensure that any negated literal has become a ground literal before it is selected
for execution. As the program is written, the literal may contain variables, but
these variables must have been given ground values by the rest of the program
before the literal is reached in the usual left-to-right execution order.

Because they must become ground before they begin to be executed, negated
literals can never contribute anything to the answer substitution of a program,
but can only be used to test values found elsewhere. This places a restriction
on the use of negated literals in programs, but it is one that is satisfied when
negation is used to compute the difference of two relations as in the database
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queries of Chapter 2. For example, the following goal asks for programs that are
used by Mike, but not by Anna on the same machine:

# :− uses(mike, program ,machine),
not uses(anna, program ,machine).

If this goal is executed in left-to-right order, then a successful attempt to solve the
first subgoal uses(mike, . . .) results in specific values for the variables program

and machine , and the function of the subgoal not uses(anna, . . .) is to apply a
further test to these known values.

8.2 Negation in programs

So far we have restricted negation to goals that are ground literals, but it is also
useful to write program clauses that have negated literals in their bodies. In
database queries, this allows us to define views using relational difference, and
then use these views in formulating further views and queries.

As another example of negation inside program clauses, here is a program that
defines the relation subset(a,b) that holds between known lists a and b if every
member of a is also a member of b:

subset(a,b) :− notnonsubset(a,b).

nonsubset(a,b) :− member(x ,a),notmember(x ,b).

The relation nonsubset(a,b) holds if a is not a subset of b. This is so exactly if
there is a member x of a that is not a member of b. The relation subset(a,b)
holds exactly if the relation nonsubset(a,b) does not hold.

This program can be used to check that one list is a subset of another, and it
does so by checking the members one by one. For example, consider the goal

# :− subset(2:4:nil , 1:2:3:4:nil). (1)

We first expand the subset literal to obtain

# :− notnonsubset(2:4:nil , 1:2:3:4:nil). (2)

Now we use negation as failure, and try instead to solve the goal

# :− nonsubset(2:4:nil , 1:2:3:4:nil). (3)

which is immediately expanded into

# :− member(x , 2:4:nil),notmember(x , 1:2:3:4:nil). (4)
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The execution continues by solving the first subgoal member(x , 2:4:nil) to give
the solution x = 2. We next try to solve the goal

# :− notmember(2, 1:2:3:4:nil). (5)

As we saw in the preceding section, this goal fails, and this means that x = 2
is not a solution of (4). We try again with the other solution to the subgoal
member(x , 2:4:nil), that is, x = 4. This leads to the goal

# :− notmember(4, 1:2:3:4:nil). (6)

which also fails. This exhausts the members of 2:4:nil , so the goal (4) fails, and
so does (3). So by negation as failure, (2) succeeds, and so does the original goal
(1). Thus negation as failure executed the goal (1) by checking that each member
of the list 1:2:nil is also a member of 1:2:3:4:nil.

For the execution of a subgoal notP to work properly, it is necessary that P
should have become a ground literal before negation as failure is applied to it, for
the same reason that negation as failure could only be used for ground literals in
goals. In the subset example, if lists a and b are known, then solving the subgoal
member(x ,a) makes x known, and the negated subgoal notmember(x ,b) is
then ground, so negation as failure can be used. If either of the lists a or b were
not completely known, however, the negated subgoal would not become ground,
and negation as failure could not soundly be used.

It is worth comparing the program for subset with an alternative definition
that uses recursion instead:

subset(nil ,b) :− .

subset(x :a,b) :− member(x ,b), subset(a,b).

Unlike the program that uses negation, this program can be used to generate
subsets of a given set, and unlike the other program, this one depends on the
fact that sets are represented by lists. The program with negation depends only
on the existence of a member relation defined on sets, and it would continue to
work without change if sets were represented by (say) binary trees instead of
lists, provided a suitable member relation were defined.

8.3 Semantics of negation

The semantics of programs that include negation poses a problem. Unlike pro-
grams without negation, they do not necessarily have least models in the sense of
Section 5.3. Consider, for example, the program that contains the single clause

p :− not q . (∗)
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Here p and q are relation symbols with no arguments. This has a model in which
p is true and q is false, and also a model where p is false and q is true. Neither
of these models is smaller than the other, and their ‘intersection’ – in which both
p and q are false – is not a model.

One solution to this problem is to consider only stratified programs, where
the relations can be separated into layers, with relations in higher layers being
defined in terms of the ones in lower layers. Mutual recursion is allowed among
the relations in any layer, but any use of negation must refer to a relation in a
lower layer than the one being defined. For example, the program for subset is
stratified: member is in the lowest layer, nonsubset (which uses notmember) in
a layer above it, and subset (which uses notnonsubset) in a third layer.

A stratified program has a natural model that is built up as follows: the first
layer contains no negation at all, so we take the least model of that. Now we
treat relations from the first layer and their negation as fixed, and take the least
model of the second layer that is consistent with them. In this way we can take
least models of each successive layer, and finally build a model for the whole
program.

For example, the single clause (∗) is a stratified program with two layers. In the
lower layer is the relation q (for which there are no clauses). In the natural model,
q is false. In the upper layer is p, which is defined in terms of the negation of q.
It is true in the natural model, because not q is true. An example of a program
that is not stratified is the single clause

p :− not p. (∗∗)

This fails to be stratified because the clause defines p in terms of not p, and that
cannot possibly refer to a lower level than the one containing p. Interestingly
enough, this program only has one model, the one in which p is true.

Summary

• Negation as failure is a way of adding negation to Horn clause programs.
• It works for negated ground literals, and treats them with respect to the

least model of the program.
• The meaning of a program that contains negated literals in its clauses can

be explained by dividing the program into layers.

Exercises

8.1 A route-finding program for American cities uses a list like

north:east :west :north:nil
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to represent a path that goes North for one block, then East for a block, then
West for a block, and finally North again. This path can be optimized to
north:north:nil , because the instructions to go East and then immediately West
again can be deleted without affecting the feasibility of the path or its starting
and finishing points.

a. Define a relation optstep(a,b) that holds if path b is the result of deleting
from path a a successive pair of moves in opposite directions.

b. Use negation as failure to define a relation optimize(a,b) that holds if path
b can be obtained from path a by repeated application of optstep, but
cannot be further optimized in this way. Your program should correctly
answer questions like

# :− optimize(north:east :west :north:nil ,b).

where the first argument is a ground term.
c. Write another definition of optimize(a,b) by direct recursion on a. Com-

pare the efficiency of this definition with your answer to part (b).



Chapter 9

Searching problems

In Chapter 7, we used the problem of planning a sequence of airline flights to
illustrate the concept of search trees. In this chapter, we take a closer look at this
problem and, more generally, the problem of finding paths in a directed graph.

Like a map of the airline network, a directed graph consists of a collection of
places or nodes and some connections or arcs from one node to another. We call
the graph directed because these arcs have a direction, and there can be an arc
from A to B without there being an arc from B to A.

In searching problems, we are interested in exploring the nodes that can be
reached from a specified starting node by following the arcs. The graph may have
physical locations as its nodes and physical connections as its arcs, or it may be
more abstract. An example is the famous ‘water jugs’ problem. We are given
two jugs, one that holds seven litres of water and another that holds five litres.
We are allowed to fill the jugs from a tap, empty them into the sink, or pour
water from one jug to another, and we are required to measure out four litres of
water. We can represent this problem as searching a graph in which the nodes
are labelled by the amount of water in each jug, and the arcs show the possible
moves. For example, there is an arc from the node (5, 2) to the node (3, 5) that
corresponds to pouring water from the larger jug to the smaller one until the
smaller jug is full. The problem is to find a path in the graph from the starting
node (0, 0) to the node (4, 0) in which the large jug contains four litres of water.

These problems all concern the transitive closure of a directed graph, a new
graph that shares the same nodes as the original graph, but has an arc from A
to B exactly if there is a path from A to B in the original graph. Another way
of describing the transitive closure is to say it is the smallest graph (in the sense
that it has fewest arcs) that contains all the arcs of the original graph, but is also
transitive in the sense that whenever there is an arc from A to B and an arc from
B to C, there is also an arc from A to C. A useful variation on this theme is the
reflexive–transitive closure of a graph, which also has an arc from each node A
to itself.
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9.1 Representing the problem

In logic programming, we can represent a directed graph by a relation arc(a,b)
that holds if there is an arc on the graph from a to b. In simple examples, we
could define this relation by explicitly listing all the arcs, but in more complicated
situations, the arc relation might be defined by a program. Logic programming
allows us to use the same graph-searching program, however the arc relation is
defined.

In terms of arc, we can define another relation connected(a,b) that represents
the reflexive–transitive closure. One way to do this makes explicit the fact that
connected(a,b) holds if there is a path in the graph from a to b. In the following
program, a path of n arcs is represented by a list of n + 1 nodes, with each node
connected to the next by an arc:

connected(a,b) :− ispath(p), first(p,a), last(p,b).

ispath(a:nil) :− .
ispath(a:b:p) :− arc(a,b), ispath(b:p).

first(a:p,a) :− .

last(a:nil ,a) :− .
last(a:p,b) :− last(p,b).

The program becomes shorter and more efficient if we combine the three con-
ditions on p that are specified in the definition of connected into one relation
path(a,b, p), defining it directly by recursion:

connected(a,b) :− path(a,b, p).

path(a,a,a:nil) :− .
path(a,c ,a:b:p) :− arc(a,b), path(b,c ,b:p).

The path relation is often useful in itself, because it can not only determine
whether a and b are connected, but also return an explicit path between them.
If the path is not required, we can simplify the program still further, like this:

connected(a,a) :− .
connected(a,c) :− arc(a,b), connected(b,c).

These three ways of defining the connected relation are equivalent. This can
be shown using the program transformation methods that are the subject of
Chapter 13.
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An alternative way to define the connected relation is by writing directly the
fact that it is a reflexive and transitive relation containing arc:

connected(a,c) :− connected(a,b), connected(b,c).
connected(a,b) :− arc(a,b).
connected(a,a).

As a Prolog program, this definition is much less effective than the definitions
above. Consider what happens if we try to solve a goal such as

# :− connected(start , finish).

in which start and finish are constants. Assuming there is no direct arc from
start to finish, we must use the first clause to expand the goal into

# :− connected(start ,b1), connected(b1, finish).

This can be expanded by using the first clause again, generating

# :− connected(start ,b2), connected(b2,b1), connected(b1, finish).

Obviously, this expansion process could go on forever, leading to an infinite
branch in the search tree. By way of contrast, our earlier definitions of connected

always generate an arc subgoal as the first one to be solved after each expansion
step. This means that, at least for finite graphs without cycles, the expansion
process must eventually terminate.

Although this definition is not useful as a Prolog program, it gives us an op-
portunity to be precise about what is meant by defining the reflexive–transitive
closure as the ‘smallest’ relation with certain properties. As the program demon-
strates, the properties in question can be expressed as a Horn-clause program,
and the results of Section 5.3 guarantee that this program has a smallest model.
In this model, connected is interpreted as the smallest reflexive and transitive
relation that contains the given arc relation.

We can also check that the two definitions of reflexive–transitive closure are
equivalent. Let r1 be the relation that holds between two nodes if there is a path
from one to the other, that is, r1 is the relation defined by our first series of
programs for connected . It is easy to see that r1 is reflexive (because a:nil is a
path from a to a) and transitive (because a path from a to b can be joined with
a path from b to c to make a path from a to c), and that it contains the arc

relation. But the relation r2 defined by the new program is the smallest relation
that is reflexive and transitive and contains arc. So r1 contains r2.

Conversely, if r2 is the relation defined by the new program, then it satisfies
the clauses of our original program. The clause

connected(a,a) :− .
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is true of r2 because this is one of the clauses defining r2, and the clause

connected(a,c) :− arc(a,b), connected(b,c).

is true of r2 because it includes arc and is transitive. Thus r2 is one of the
relations that satisfy the clauses of our original program, so it contains r1, the
smallest such relation.

9.2 Avoiding cycles

The first series of programs in the preceding section work reasonably well for
searching finite graphs that have no cycles, that is, where there is never any
non-trivial path from a node to itself. Such graphs result in search trees that are
finite. If the graph has cycles, however, these programs behave badly, because
the cycles in the graph lead to infinite branches in the search tree, and Prolog’s
depth-first strategy can lead it to get stuck exploring an infinite branch. We saw
an example of this in Section 7.3.

There are two solutions to this problem with depth-first search. One is to
abandon Prolog in favour of an implementation of logic programming that has
a fair search strategy, such as breadth-first search. This solution sounds drastic,
but it can be made feasible by using Prolog as a vehicle for implementing fair
searching. Prolog systems often include non-logical features that make this easier,
but we look at a simple way of doing it in the next section.

Another way of avoiding the problems of depth-first search is to rewrite our
programs so that the search tree no longer contains infinite branches. For graph
searching, we can use the technique of loop avoidance. We replace the relation
connected(a,b) with a new relation conn1 (a,b, s), for s a list of nodes, that
holds if a is connected to b by a path that does not visit any member of s at an
intermediate point. In writing a recursive definition of this relation, we can add
each node visited to the list s of nodes to avoid later in the search. This ensures
that no cyclic paths are considered. Here is the program:

conn1 (a,a, s) :− .

conn1 (a,c , s) :−
arc(a,b),
notmember(b, s),
conn1 (b,c ,b:s).

The connected relation can now be defined like this:

connected(a,b) :− conn1 (a,b,b:nil).
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It is easy to extend this program to compute a path from a to b instead of just
finding whether on exists.

With this modified program, the search tree for a finite graph is finite, even if
the graph has cycles. This is because the number of nodes in the list s increases
by one in each successive level of the search tree, until s contains every reachable
node in the graph. For example, in the airline flight problem shown in Figure 7.6,
the beginning goal would be

# :− conn1 (london, rome, london:nil).

Taking the flight from London to Paris leads to the new goal

# :− conn1 (paris, rome, paris:london:nil).

There are now two possibilities. Taking the flight from Paris to Rome leads to
the new goal

# :− conn1 (rome, rome, rome:paris:london:nil).

that is solved immediately. Taking the flight from Paris to Berlin leads to the
goal

# :− conn1 (berlin, rome, berlin:paris:london:nil).

The important point is that it is not now possible to take the flight from Berlin
to London, because London is on the list of places that have already been visited.
Thus Berlin becomes a dead end in the search tree, and the whole search tree is
made finite.

This technique of loop avoidance can also be used to solve the ‘water jugs’
problem. We can represent a state of the system in which the large jug contains
x litres and the small jug contains y litres by the term state(x ,y ). The arc

relation can be defined using the built-in arithmetic relations of picoProlog. Here
is one clause that says it is possible to pour water from the large jug into the
small one until the small jug is full:

arc(state(x ,y ), state(u , 5)) :−
plus(x ,y , z), plus(u , 5, z).

The two plus literals in the body of this clause state that the total amount of
water z must be the same before and after the transfer. PicoProlog allows only
non-negative integers, so the final amount u in the large jug cannot be negative.
Other clauses for arc model the filling of the jugs from the tap and their emptying
into the drain, and other kinds of transfer from one jug to the other.
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9.3 Bounded and breadth-first search

Another method for removing infinite branches from the search tree is to place a
bound on the number of arcs to be traversed. The effect is to cut off the search
tree below a certain depth. Here is the definition of a relation conn2 (a,b,n), for
n a natural number, that holds if there is a path from a to b of at most n arcs:

conn2 (a,a,n) :− .

conn2 (a,c ,n) :−
plus(n1, 1,n),
arc(a,b),
conn2 (b,c ,n1).

Again, this program can easily be extended to return a path instead of just finding
whether one exists.

To use this program, we have to choose a suitable value for n . If the graph
being searched has a known diameter, that is, a known upper bound on the
shortest path length from one node to another, then that provides a reasonable
value for n . Otherwise, we can use a technique called iterative deepening . This
means trying first a small value of n . If this does not work, we try successively
larger values until we find one that does give a solution. It is possible to write
an outer Prolog program that calls the searching program iteratively, and stops
when a solution is found.

An attraction of iterative deepening is that it can be used with any combina-
torial search problem, not just graph searching. Any Horn clause program can
be modified to place a bound on the number of resolution steps. If the bound is
exceeded in executing a goal, the goal is made to fail. The idea is to replace each
relation r(x1, . . . ,xk) with a new relation r1 (x1, . . . ,xk ,b0,b) that holds if the
corresponding instance of r holds, and it is solved in at most b0 resolution steps,
and b is the difference between b0 and the number of resolution steps actually
used.

If the original program contains the clause

r(x , z) :− q(x ,y ), r(y , z).

then the modified program will contain the following clause:

r1 (x , z ,b0,b) :−
plus(b1, 1,b0), q1 (x ,y ,b1,b2), r1 (y , z ,b2,b).

We first count one resolution step for using the clause, and pass to the q1 subgoal
the number of steps remaining. It returns the number of steps left after it has
been solved, and we pass these to the recursive r1 subgoal for its use. Finally,
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r1 returns the number of steps still unused, and these are passed back to the
original caller of r1 .

By making this modification systematically to every clause in the program,
we obtain a version of the program that performs bounded search. An outer
wrapper can turn this into a program that searches by iterative deepening.

The method of breadth-first search can be simulated inside a Prolog program
if we change slightly the way the graph is represented. In place of the relation
arc(a,b), we use a relation next(a, s) that holds if s is the list of immediate
neighbours of a, that is, a list that contains in some order all the nodes b such
that arc(a,b). Pure logic programming allows us to define the arc relation in
terms of the next relation like this:

arc(a,b) :− next(a, s), member(b, s).

However, we cannot define next in terms of arc directly, although many Prolog
systems provide a built-in relation listof that makes it possible:

next(a, s) :− listof (b, arc(a,b), s).

The listof relation cannot, unfortunately, be defined by a logic program.
In terms of next , we can define a relation reach(s ,b), for s a list of nodes,

that holds if b can be reached from any node in the list s :

reach(b:s ,b) :− .

reach(a:s ,b) :−
next(a,t),
append(s ,t ,u),
reach(u ,b).

Given a value for a, there is only one solution to the subgoal next(a,t), so there
is almost no branching in the search tree for this program. Instead, the program
maintains an explicit list of the nodes that are adjacent to nodes that it has
visited, and visits them one by one, adding their neighbours to the list.

The search is in breadth-first order, because the neighbours of each node are
added to the back of the list of nodes to visit, so all the neighbours of the
starting node will be visited before the nodes that are neighbours of these nodes in
turn. Replacing the append literal with append(t , s ,u) would reverse this order,
making the algorithm perform depth-first search instead, visiting the children of
each node before its siblings.
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Summary

• Searching a graph is an instance of the problem of computing the transitive
closure of a relation. Depth-first search performs badly if the graph has
cycles.

• Other search strategies, such as loop-avoidance, breadth-first search and
bounded search, perform better for such problems.

• These search strategies can be simulated in Prolog by modifying the pro-
gram appropriately.

Exercises

9.1 Augment the loop-avoidance algorithm so that each arc can have a name,
and the relation arc(n ,a,b) holds if n is the name of an arc from a to b.
Redefine the conn relation so that it assembles a list of arcs in the path by name.
Complete the definition of the arc relation for the ‘water jugs’ problem, adding
a name for each move. What is the shortest method for measuring four litres of
water, ending in the state state(4, 0)?

9.2 Write a logic program to solve the following puzzle: A farmer must ferry a
wolf, a goat and a cabbage across a river using a boat that is too small to take
more than one of the three across at once. If he leaves the wolf and the goat
together, the wolf will eat the goat, and if he leaves the goat with the cabbage,
the goat will eat the cabbage. How can he get all three across the river safely?

9.3 Arithmetic expressions can be represented by terms that use the function
symbols add/2, subtract/2, multiply/2 and divide/2, so that the expression (4 +
4 ∗ 4)/4 would be represented by the term

divide(add(4, times(4, 4)), 4).

Define a relation trial(e) that holds if e represents a well-formed arithmetic
expression in which the operands are four copies of the digit 4. How many such
expressions are there? [Hint: such expressions have a bounded depth and a
bounded number of operators.]

9.4 The puzzle called ‘Towers of Hanoi’ consists of three spikes, on which five
perforated discs of varying diameters can be placed. The rules state that no disc
may ever be placed on top of a smaller disc. The discs are initially all on the first
spike, and the goal is to move the discs one at a time so that they all end up (in
decreasing order of size) on the third spike. Formulate this puzzle as a graph-
searching problem. Calculate the number of states that the system can occupy,
and suggest a search method that will lead to a solution in a reasonable time.
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Parsing

Parsing is the problem of determining whether a given string conforms to the
syntax rules of a language. It is an good application for logic programming,
because the rules of a language can be expressed as clauses in a logic program,
and (at least in principle) parsing a string amounts to solving a goal with that
logic program.

10.1 Arithmetic expressions

As an example, we shall use the following set of rules for the syntax of arithmetic
expressions in the variables x and y:

expr ::= term | term ‘+’ expr | term ‘-’ expr

term ::= factor | factor ‘*’ term | factor ‘/’ term

factor ::= ‘x’ | ‘y’ | ‘(’ expr ‘)’

The first rule says that an expression (expr) may be either a term, or a term
followed by a plus sign and another expression, or a term followed by a minus
sign and another expression. Thus an expression is a sequence of terms separated
by plus and minus signs. Similarly, a term is a sequence of factors separated by
multiplication and division signs. A factor is either a variable (‘x’ or ‘y’), or an
expression in parentheses.

The simplest way to translate these rules into a logic program is to make
each syntactic class such as expr or term correspond to a one-argument relation,
arranging that expr(a) is true if and only if the string (list of characters) a forms
a valid member of the class expr , and so on. Because one form of expression is
simply a term, we can write down the clause

expr(a) :− term(a).

99
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expr(a) :− term(a).
expr(a) :−

append(b,c ,a), term(b),
append(“+”, e ,c), expr(e).

expr(a) :−
append(b,c ,a), term(b),
append(“-”, e ,c), expr(e).

term(a) :− factor(a).
term(a) :−

append(b,c ,a), factor(b),
append(“*”, e ,c), term(c).

term(a) :−
append(b,c ,a), factor(b),
append(“/”, e ,c), term(c).

factor(“x”) :− .
factor(“y”) :− .
factor(a) :−

append(“(”,b,a), append(c , “)”,b), expr(c).

Figure 10.1: First program for parsing expressions

Another possibility for an expression is a term followed by a plus sign and another
expression. This can be expressed using the append relation:

expr(a) :−
append(b,c ,a), term(b),
append(d, e ,c),d = “+”, expr(e).

To be a valid expression of this kind, a string a must split into two parts b and
c , where b is a valid term, and c consists of a plus sign followed by another
expression. This last condition is expressed using another instance of append .
Fixed symbols like ‘+’ and ‘x’ can be translated by constant strings. A useful
notation uses double quotes for strings, so that “+” means ‘+’:nil and “mike”
means ‘m’:‘i’:‘k’:‘e’:nil . Using this notation, we can translate the whole set of
rules to give the logic program shown in Figure 10.1.

This translation is correct in a logical sense, but it is very inefficient when run
as a program. For example, to parse the string “x*y+x”, we must use the second
clause for expr , splitting the string into a part “x*y” that satisfies term, and
a part “+x” that is a plus sign followed by an expr . The Prolog strategy uses
backtracking to achieve this, splitting the input string at each possible place until
it finds a split that allows the rest of the clause to succeed. This means testing
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each of the strings “ ”, “x”, “x*” with the relation term, before finally succeeding
with “x*y”. Testing the subgoal term(“x*y”) leads to even more backtracking,
so the whole process is extremely time-consuming.

10.2 Difference lists

An equivalent but more effective translation uses a technique called difference

lists to eliminate the calls to append and drastically cut down the amount of
backtracking. The idea is to define a new relation expr2 (a,b) that is true if the
string a can be split into two parts: the first part is a valid expression, and the
second part is the string b. This relation could be defined by the single clause

expr2 (a,b) :− append(c ,b,a), expr(c).

But we can do better than this by defining expr2 directly, without using append

or expr . For example, the second clause for expr leads to this clause for expr2 :

expr2 (a,d) :− term2 (a,b), eat(‘+’,b,c), expr2(c ,d).

Here we have used a relation term2 that is related to term as expr2 is related
to expr , and a special relation eat . The whole clause can be read like this: to
chop off an expression from the front of a, first chop off a term to give a string
b, then chop off a plus sign from b to give a string c , and finally chop of an
expression from c to give the remainder d. The technique is called ‘difference
lists’ because the pair (a,d) represents a list of characters that is the difference
between a and d. The relation eat is defined by the single clause

eat(x ,a,b) :− a = x :b.

It is true if the string b results from chopping off the single character x from the
front of a.

Other rules can be re-formulated in a similar way. For example, the rule

factor ::= ‘(’ expr ‘)’

can be re-formulated as

factor2 (a,d) :− eat(‘(’,a,b), expr2(b,c), eat(‘)’,c ,d).

Figure 10.2 shows the complete set of rules translated in this style. In order to
test a string such as “(x+y)-x” for conformance to the syntax rules, we formulate
the query

# :− expr2 (“x*y+x”, “ ”).



102 Parsing

expr2 (a,b) :− term2 (a,b).
expr2 (a,d) :− term2 (a,b), eat(‘+’,b,c), expr2(c ,d).
expr2 (a,d) :− term2 (a,b), eat(‘-’,b,c), expr2(c ,d).

term2 (a,b) :− factor2 (a,b).
term2 (a,d) :− factor2 (a,b), eat(‘*’,b,c), term2(c ,d).
term2 (a,d) :− factor2 (a,b), eat(‘/’,b,c), term2(c ,d).

factor2 (a,b) :− eat(‘x’,a,b).
factor2 (a,b) :− eat(‘y’,a,b).
factor2 (a,d) :− eat(‘(’,a,b), expr2(b,c), eat(‘)’,c ,d).

Figure 10.2: Second program for parsing expressions

This asks whether it is possible to chop off an expression from the front of “x*y+x”
and leave the empty string; in other words, whether “x*y+x” is itself a valid
expression. Solving this goal involves backtracking among the different rules,
but much less than before.

10.3 Expression trees

In applications such as compilers, it is useful to build a tree that represents the
structure of the input program. In our example of arithmetic expressions, we
might represent the expression “x*y+x” by the term

add(multiply(vbl(x ), vbl(y)), vbl(x )).

Representing the expression like this makes it easy to evaluate it for given values
of x and y, or to translate it into machine code in a compiler.

We can extend our parser so that it can build a tree like this, in addition
to checking that a string obeys the language rules. We extend the relation
expr2 (a,b) into a new relation expr3 (t ,a,b) that is true if the difference be-
tween string a and string b is an expression represented by t . One clause in the
definition of expr3 is this:

expr3 (add(t1,t2),a,d) :−
term3 (t1,a,b), eat(‘+’,b,c), expr3(t2,c ,d).

As before, this says that an expression may have the form term ‘+’ expr . The
added information is that if the term on the left of ‘+’ is represented by the tree
t1, and the expression on the right is represented by t2, then the whole expression
is represented by the tree add(t1,t2).



10.3 Expression trees 103

Other clauses in the parser can be augmented in similar ways. One clause
allows an expression in parentheses to be used as a factor; it turns into the new
clause

factor3 (t ,a,d) :−
eat(‘(’,a,b), expr3 (t ,b,c), eat(‘)’,c ,d).

The tree for the whole factor is the same as the tree for the expression inside. In
this way, we can be sure that parentheses have no effect on the ‘meaning’ of an
expression, except insofar as they affect the grouping of operators.

Once the whole parser has been augmented in this way, we can use it to analyse
strings and build the corresponding tree. For example, the goal

# :− expr3 (t , “x*(y+x)”, “ ”).

will succeed, with the answer

t = multiply(vbl(x ), add(vbl(y), vbl(x ))).

Rather unusually, the parser can also be used ‘backwards’, producing a string
from a tree. For example, the goal

# :− expr3 (add(vbl(x ), multiply(vbl(x ), vbl(y))),a, ).

has several answers, and the first one found by Prolog is a = “x+x*y”. The
other answers have extra parentheses added around various sub-expressions. This
‘unparsing’ function might be useful for generating error messages in a compiler,
or for saving expression trees in a text file so they could be parsed again later.

The parser for expressions has an unfortunate flaw. The expression “x-y-x”
would be assigned the tree

subtract(vbl(x ), subtract(vbl(y), vbl(x ))),

that is, the same tree as would be assigned to the expression “x-(y-x)”. This is
wrong, because the usual convention is that operators ‘associate to the left’, so
the correct tree would be

subtract(subtract(vbl(x ), vbl(y)), vbl(x )),

the same as for the expression “(x-y)-x”. The problem is with the syntax rule

expr ::= term ‘-’ expr ,

and others like it. This rule suggests that where several terms appear interspersed
with minus signs, the most important operator is the leftmost one. The other
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minus signs must be counted as part of the expr in this rule, not part of the term,
because a term cannot contain a minus sign except between parentheses.

We could correct the syntax rules by replacing this rule with

expr ::= expr ‘-’ term,

but unfortunately this would lead to the clause

expr(a,d) :− expr(a,b), eat(‘-’,b,c), term(c ,d).

This clause behaves very badly under Prolog’s left-to-right strategy, because a
call to expr leads immediately to another call to expr that contains less infor-
mation. For example, the goal expr(“x-y”, “ ”) immediately leads to the subgoal
expr(“x-y”,b), and so to an infinite loop. This is called left recursion, because
the body of the rule for expr begins with a recursive call. Left recursion causes
problems for top–down parsing methods like the one that naturally results from
Prolog’s goal-directed search strategy.

The solution to this problem is to rewrite the grammar, avoiding left recursion.
The following syntax rules are equivalent to our original ones, in that they accept
the same set of strings:

expr ::= term exprtail

exprtail ::= empty | ‘+’ term exprtail | ‘-’ term exprtail

term ::= factor termtail

termtail ::= empty | ‘*’ factor termtail | ‘/’ factor termtail

factor ::= ‘x’ | ‘y’ | ‘(’ expr ‘)’

The idea here is that an exprtail is a sequence of terms, each preceded by a plus
or minus sign. In order to build the tree for an expression, we translate the rules
for exprtail into a four-argument relation exprtail(t1,t ,a,b) that is true if the
difference between a and b is a valid instance of exprtail , and t is the result of
building the terms onto the tree t . By building on the terms in the right way,
we obtain the correct tree for each expression. The complete translation of the
new set of rules is shown in Figure 10.3.

10.4 Grammar rules in Prolog

The technique of building parsers by direct translation of syntax rules is so useful
that many Prolog systems implement a special notation for it. In this notation,
the clause

expr(add(t1,t2),a,d) :−
term(t1,a,b), eat(‘+’,b,c), expr(t2,c ,d).
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expr(t ,a,c) :− term(t1,a,b), exprtail(t1,t ,b,c).

exprtail(t1,t1,a,a) :− .
exprtail(t1,t ,a,d) :−

eat(‘+’,a,b), term(t2,b,c),
exprtail(add(t1,t2),t ,c ,d).

exprtail(t1,t ,a,d) :−
eat(‘-’,a,b), term(t2,b,c),
exprtail(subtract(t1,t2),t ,c ,d).

term(t ,a,c) :−
factor(t1,a,b), termtail(t1,t ,b,c).

termtail(t1,t1,a,a) :− .
termtail(t1,t ,a,d) :−

eat(‘*’,a,b), factor(t2,b,c),
termtail(multiply(t1,t2),t ,c ,d).

termtail(t1,t ,a,d) :−
eat(‘/’,a,b), factor(t2,b,c),
termtail(divide(t1,t2),t ,c ,d).

factor(vbl(x ),a,b) :− eat(‘x’,a,b).
factor(vbl(y),a,b) :− eat(‘y’,a,b).
factor(t ,a,d) :−

eat(‘(’,a,b), expr(t ,b,c), eat(‘)’,c ,d).

Figure 10.3: Final program for parsing expressions

is written as

expr(add(t1,t2))→ term(t1), [‘+’], expr(t2).

An arrow replaces the usual ‘:−’ sign, and means that the literals in the head and
body of the clause are translated specially. Each ordinary literal in the clause
has two implicit arguments for their input and output strings. Actual symbols
are written in square brackets, and translate into calls to eat .

Many Prolog systems allow grammar rules like this to be included in any
program, and perform the translation as the program is loaded into the Prolog
system.
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Summary

• Syntax rules can be represented directly as logic programs.
• The technique of difference lists makes them work well as Prolog programs

for parsing.
• Parsers written in this way can also build a representation of expressions as

trees.
• Many Prolog systems provide special notation for building parsers.

Exercises

10.1 Use the technique of difference lists to write a definition of the relation
flatten (from Chapter 3) that does not use append .

10.2 The parser for expressions in the text does not allow spaces to appear in
expressions, so that “x*y+x” is recognized as a valid expression, but “x * y + x”
is not. Define a relation space(a0,a) that is true if the difference between a0 and
a consists of zero or more spaces, and use this relation to write a new parser for
expressions that ignores spaces before each symbol.

10.3 Define a relation number(n ,a,b) that holds if the difference between a

and b is a non-empty sequence of decimal digits, and the integer n is the integer
value of this number. Use this relation to extend the parser for expressions to
allow integer constants in addition to the existing forms of expressions.

10.4 A good sequence consists either of the single number 0, or of the number
1 followed by two other good sequences: thus 1:0:1:0:0:nil is a good sequence, but
1:1:0:0:nil is not. Define a relation good(a) that is true if a is a good sequence.
Modify your program if necessary so that the Prolog goal # :− good(a) will
enumerate all good sequences in order of increasing length.



Chapter 11

Evaluating and simplifying expressions

In the preceding chapter, we saw that algebraic expressions can be represented
by tree-structured terms, and defined parsing relations that link the textual form
of an expression with its representation as a tree. This representation of expres-
sions as trees is an important technique in building compilers, where algorithms
for checking language rules and generating object code are much more readily
expressed in terms of the tree than in terms of the textual form of an expression.

This chapter introduces some of the techniques that are used to build compil-
ers and other programs that manipulate symbolic expressions, by showing logic
programs that evaluate or simplify algebraic expressions represented as trees.

11.1 Evaluating expressions

Simple arithmetic expressions are made up of operators like addition and mul-
tiplication, together with integer constants. We can represent the operators by
function symbols add and multiply, and the constants directly by integers, so that
the expression 3 ∗ 4 + 5 would be represented by the term add(times(3, 4), 5).

PicoProlog provides a built-in relation integer(x ) that is true if x is a (positive)
integer, and built-in relations plus(x ,y , z) and times(x ,y , z) that are true if z

is the result of adding or multiplying the integers x and y . These relations allow
us to define recursively a relation value(e ,v ) that is true if v is the value of
expression e :

value(x ,x ) :− integer(x ).

value(add(e1, e2),v ) :−
value(e1,v1), value(e2,v2),
plus(v1,v2,v ).

107
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value(multiply(e1, e2),v ) :−
value(e1,v1), value(e2,v2),
times(v1,v2,v ).

The value of an expression that is an integer constant is that constant itself,
and the value of an expression such as add(e1, e2) can be found by taking the
values of the sub-expressions e1 and e2 separately, then adding them together.
We could put this program together with a parser built along the lines suggested
in Chapter 10 to define a relation calculator(s ,v ) that holds if v is the value of
the string s considered as an arithmetic expression:

calculator(s ,v ) :− expr(e , s , “ ”), value(e ,v ).

For example, the goal # :− calculator(“(3+4)*5”,x ) would give the answer
x = 35. Our relation for evaluating expressions does not need to deal explic-
itly with expressions that contain parentheses, because these are handled by
the parser. The tree it builds for an expression reflects the grouping that is
implied by parentheses, and the evaluation is done according to this grouping
structure.

The next step in sophistication is to allow expressions that contain variables as
well as constants. For example, the expression x + 3 ∗ y, which we can represent
by the term add(vbl(x ), multiply(3, vbl(y))). The variables in this expression are
represented by terms like vbl(x ). Notice that, from picoProlog’s point of view,
this term is a constant that consists of the function symbol vbl applied to the
atomic constant x . The term vbl(x ) represents a completely known expression,
whereas vbl(x ) is an unknown expression that might be either the expression
vbl(x ) or the expression vbl(y).

To evaluate an expression that contains variables, we need to know what value
to give to each variable when it appears in the expression. This information can
be represented by a list of terms val(x ,v ) where x is a variable name like x or
y , and v is an integer, its value. For example, the list

val(x , 3):val(y , 4):nil

represents the state of affairs in which x has value 3 and y has value 4. We call
such a list an assignment.

Here is the definition of a relation lookup(x ,a,v ), for a an assignment, that
holds if a gives the value v to variable x :

lookup(x ,a,v ) :− member(val(x ,v ),a).

This definition uses the member relation from Chapter 3 in a clever way, because
typically the variable x in the term val(x ,v ) will be known when the member

literal comes to be solved, but the value v will not be known. The effect is
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that val(x ,v ) will be matched with successive elements of the list a until an
element is found that has x as its first component, and the value of v is then the
corresponding second component. We could also define lookup by direct recursion
like this:

lookup(x , val(x ,v ):a,v ) :− .
lookup(x , val(y ,w ):a,v ) :− lookup(x ,a,v ).

This lookup relation gives us the vital ingredient needed to extend the value

relation defined earlier, giving a relation eval(e ,a,v ) that holds if v is the value
of expression e under assignment a:

eval(x ,a,x ) :− integer(x ).
eval(vbl(x ),a,v ) :− lookup(x ,a,v ).

eval(add(e1, e2),a,v ) :−
eval(e1,a,v1), eval(e2,a,v2), plus(v1,v2,v ).

eval(multiply(e1, e2),a,v ) :−
eval(e1,a,v1), eval(e2,a,v2), times(v1,v2,v ).

The rules for addition and multiplication are as before, except that the assign-
ment a supplied for the whole expression is passed on to the recursive calls of
eval that deal with the operands. The real change is the clause that deals with
variables, whose values are found by using lookup and the assignment a.

11.2 Simplifying expressions

Using terms to represent algebraic expressions makes it easy to write programs
that manipulate expressions symbolically. The aim in this section will be to
explore this idea by defining a relation simplify(e1, e2) that holds for expressions
e1 and e2 if e1 can be simplified algebraically to give e2. Such a relation might
be used in a compiler to optimize expressions, reducing the number of arithmetic
operations needed to evaluate them. It can also be used to carry out a simple
kind of algebraic proof, because we can prove that two expressions are equal by
simplifying both of them and checking that the results are the same.

In the domain of Boolean expressions, we say that an expression is a tautology
if it has value 1 or true whatever Boolean values are given to the variables it
contains. One way of checking that an expression is a tautology is to evaluate it
for every combination of values, checking that the answer is 1 each time. Another
way is to simplify the expression algebraically and check that the result is the
logical constant 1. The practical exercise at the end of this chapter asks you to
implement both these methods.
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Simplifying an expression involves some specific information about the oper-
ators that may be present in the expression. For example, we might use the
fact that adding 0 to an expression or multiplying it by 1 leaves the value of
the expression unchanged. We can express this information by clauses like the
following:

simp(add(e , 0), e) :− .
simp(multiply(e , 1), e) :− .
simp(add(0, e), e) :− .
simp(multiply(1, e), e) :− .

These clauses form part of the definition of a relation simp(e1, e2) that holds if
e1 can be simplified in one step to give e2. Later, we shall use simp to define our
desired relation simplify, taking into account at that stage the possibility that
simplifying an expression will take several steps, with each step leading to the
next.

We might also use the fact that multiplication distributes over addition, i.e.,
that a ∗ (b + c) = a ∗ b + a ∗ c, by adding the following clause to simp:

simp(multiply(a, add(b,c)),
add(multiply(a,b), multiply(b,c))) :− .

Such a simplification step might be useful in proving algebraic identities, but in
a compiler we might choose to use the equation the other way, thereby reducing
the number of multiplications needed to evaluate the expression.

These specific rules for simp contain some of the information we need about
the algebraic properties of the operators, but they are not very useful on their
own. For example, one of the rules will allow us to simplify x ∗ 1 – represented
by the term multiply(vbl(x ), 1) – to obtain the result x, but it will not allow us
to simplify the expression x ∗ 1 + y, which is represented by the term

add(multiply(vbl(x ), 1), 0).

This happens because the left-hand side of our simplification rule appears not as
the whole expression to be simplified, but only as a sub-expression, and our rules
so far work only on whole expressions.

This problem is solved by adding rules that show how to simplify expressions
by simplifying their sub-expressions.

simp(add(a,b), add(a1,b)) :− simp(a,a1).
simp(add(a,b), add(a,b1)) :− simp(b,b1).
simp(multiply(a,b), multiply(a1,b)) :− simp(a,a1).
simp(multiply(a,b), multiply(a,b1)) :− simp(b,b1).
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The first clause here says that if we can simplify the expression a, then we can
also simplify the expression add(a,b) – we simply replace a by its simplified form
and leave b unchanged. The second clause says that we can simplify the same
expression by replacing b instead of a with a simplified form, and the third and
fourth clauses say the same things for an expression multiply(a,b).

If both a and b can be simplified, say to a1 and b1 respectively, then the ex-
pression add(a,b) can undergo two stages of simplification, giving first add(a1,b)
then add(a1,b1). Thus it is not necessary to allow explicitly for simplifying the
expression add(a,b) on both sides at once, provided we provide the more gen-
eral facility of simplifying an expression in several steps. This facility is useful in
other contexts. For example, the expression (x + 1) ∗ y can be simplified first to
x ∗ y + 1 ∗ y using the fact that multiplication distributes over addition, then in
another step to x∗y+y, using the fact that 1 is a unit element for multiplication.

We can provide this kind of multi-step simplification by using the reflexive–
transitive closure of the simp relation, rather than simp itself. The relation we
define should be reflexive, because the original expression may not allow any
simplification, and it should be transitive, because several steps may be needed
to put an expression into its simplest form. Using simply the reflexive–transitive
closure of simp would give a relation that holds between any expression and all
its simplified forms, whether they are fully simplified or still subject to further
simplification. We can define a more useful relation by restricting the simplified
expression to be irreducible, so that no more simplification is possible. Negation
as failure is useful for this:

simplify(x ,y ) :− simp(x ,x1), simplify(x1,y ).
simplify(x ,x ) :− not reducible(x ).

reducible(x ) :− simp(x ,y ).

A special relation reducible has been introduced here: reducible(x ) holds if there
is any y such that simp(x ,y ) is true. The requirement that negated literals
should be ground is satisfied in the program, because the variable y is hidden
inside the definition of reducible.

Summary

• Algebraic expressions can be represented as trees.
• The value of an algebraic expression can be obtained by analysing the ex-

pression recursively, calculating the value of the expression in terms of the
values of its sub-expressions.

• Algebraic expressions can be simplified by applying equations as left-to-right
rewriting rules.
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Exercises

11.1 Using the picoProlog built-in relations plus, times and integer , extend
the definition of the relation value(e ,v ) to allow operators subtract(x ,y ) and
divide(x ,y ) for subtraction and division without fractional or negative results.
Combine this with your answer to a previous exercise to show how the numbers
from 0 to 9 can each be written using exactly four copies of the digit 4.

11.2 The value of an expression let x = e1 in e2 under an assignment a is the
same as the value of e2 under an assignment where x takes the value that e1 is
given under a, so that the expression let y = x + 1 in y ∗ y has value 4 ∗ 4 = 16
under an assignment that gives x the value 3. Define a relation update(a,x ,v ,b)
that holds if b is an assignment that agrees with a except that it gives x the
value v . Representing let-expressions by terms of the form let(x , e1, e2), extend
the eval relation of Section 11.1 to handle them.

Practical exercise

Boolean expressions containing operators like ∧, ∨, ¬ and ⇒ can be represented
by tree structures, just like arithmetic expressions. For example, the expression
p ∨ (q ∧ ¬p) could be represented by the term

or(vbl(p), and(vbl(q), neq(vbl(p)))).

(neg is used here as the name for ¬ to avoid confusion with picoProlog’s built-in
not.)

Write a program that checks whether a given Boolean expression is a tautology.
Part of this program should be a relation eval(e ,a,v ) that holds if the Boolean
expression e has truth-value v (either 0 or 1) when its variables take the values
given by pairs val(x ,u) in the list a. You will also need:

• a relation variables(e ,b) that holds if b is the list of variables that appear
in expression e , with duplicates removed. Example:

variables(or(vbl(p), and(vbl(q), neg(vbl(p)))), p:q :nil)

• a relation assign(b,a) that holds if a is a list of assignments for the variables
in the list b, each chosen from the values 0 and 1. Examples:

assign(p:q :nil , val(p, 0):val(q , 0):nil)

assign(p:q :nil , val(p, 0):val(q , 1):nil)

assign(p:q :nil , val(p, 1):val(q , 0):nil)

assign(p:q :nil , val(p, 1):val(q , 1):nil)
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These three relations eval , variables and assign then allow us to build a tautology-
checker as follows:

tautology(e) :− not falsifiable(e).

falsifiable(e ,b) :− variables(e ,b), assign(b,a), eval(e ,a, 0).

That is, a formula is a tautology if it is not falsifiable, and a formula is falsifiable
if there is a way of assigning values to the variables that occur in it that makes the
formula have the value 0. An optional extension to this part of the exercise would
be to build a parser for Boolean expressions, using the methods of Chapter 10,
and integrate it with the tautology checker.

Another possibility is to build a program that simplifies Boolean expressions
using algebraic rules. Some of the rules that could be included are that 1 is a
unit element for ∧ and a zero element for ∨, and vice versa:

P ∨ 0 = P = 0 ∨ P

P ∨ 1 = 1 = 1 ∨ P

P ∧ 0 = 0 = 0 ∧ P

P ∧ 1 = P = 1 ∧ P

Other useful rules are that ∧ distributes over ∨, and ∨ distributes over ∧:

P ∧ (Q ∨R) = (P ∧Q) ∨ (P ∧R)

P ∨ (Q ∧R) = (P ∨Q) ∧ (P ∨R)

You could also add de Morgan’s laws, and the equation ¬¬P = P , but adding
the fact that ∨ and ∧ are commutative results in disaster (Why?).

Lengthy sequences of simplifications will cause picoProlog to run out of mem-
ory, because the program requires too much information to be saved in case
backtracking is needed. The following definition of the simplify relation is equiv-
alent to the one in the text, except that it produces only one simplified form of an
expression, and it does not consume more and more storage space if simplifying
an expression takes many steps:

simplify(x ,y ) :− onestep(x ,x1, f), simplify1(f ,x1,y ).

onestep(x ,y , yes) :− simp(x ,y ), !.
onestep(x ,x , no) :− .

simplify1 (yes,x ,y ) :− simplify(x ,y ).
simplify1 (no,x ,x ) :− .
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Some programming tricks have been used to make this program more efficient.
These tricks depend on Prolog’s cut operation (!), which is explained in Sec-
tion 14.3.

• The cut operation reduces the amount of potential backtracking in the pro-
gram, on the assumption that we are only interested in finding one simpli-
fied form of a given expression, and not all possible simplified forms. This
means that picoProlog does not need to store information that is used in
backtracking.

• Adding the cut makes it possible to delete the test that the final expression
is irreducible, because the control behaviour of the program ensures that
simplification steps will be taken for as long as they are possible.

• Most importantly, the program has been rearranged so that the main rela-
tion simplify is recognized as being ‘tail recursive’. This makes it possible
for picoProlog to treat the recursive definition of simplify as if it were a loop,
saving the stack space that would be needed to execute a truly recursive
relation.

The efficient program is less easy to understand than the original one, but this
does not matter much, because we can keep the original program as a specification
for what the optimized program should do, and the optimization affects only
one small part of the whole program for simplifying expressions: all the specific
knowledge about algebra is contained in the relation simp, and that is unaffected
by this optimization.



Chapter 12

Hardware simulation

This chapter shows how logic programming can be used to build simple simu-
lations of CMOS logic circuits. These circuits are built from two types of tran-
sistors: p–transistors and n–transistors (see Figure 12.1). Each transistor has
three wires called the source, the gate and the drain. In the simple model of tran-
sistor behaviour that we shall use, a p–transistor acts as a switch that connects
the source and drain together if the gate is connected to the ground rail (which
represents logic 0). If the gate is connected to the power rail (representing logic
1), then the source and drain are not connected together. With an n–transistor,
the roles of logic 0 and logic 1 are reversed, and it is when the gate is connected
to the power rail that the transistor connects its source and drain together.

This model of CMOS logic ignores the fact that transistors are really analogue
devices that can respond to voltages intermediate between the two supply rails.
It also ignores dynamic effects that depend on timing and the storage of charge,
modelling only the stable states of a circuit. All these simplifications mean that
the simulations we shall build are not very accurate. The most we can hope for
is that combinational circuits that do not work in our simulation are guaranteed
not to work in practice. This is better than nothing, because it allows us to use
simulation as a way of testing circuit designs and finding at least some of the
mistakes in them.

The simplest CMOS circuit is the inverter shown in Figure 12.2. This circuit
contains two transistors, a p–type and an n–type. The n–transistor is arranged so
that it connects the output z to logic 0 when it conducts, and it does so when its
gate, connected to the input a, is a logic 1. The p–transistor has a symmetrical
function, and connects z to logic 1 whenever the input a is at logic 0. Together,
the two transistors ensure that the output is connected to the appropriate logic
level whatever level is present at the input.

We can build a simulation of this circuit using logic programming. The first
step is to build simulations of individual transistors. A p–transistor is simulated
by defining a relation ptran(s ,g,d) that is true if there is a stable state of a
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source drain

gate gate

drain source

p–type n–type

Figure 12.1: p– and n–transistors

power

ground

input a output z

Figure 12.2: CMOS inverter

p–transistor in which the signals at the source, gate and drain are s , g and
d respectively. There are two stable states for the p–transistor. In one state,
the gate is connected to ground, so the transistor is conducting, and the source
and drain have the same voltage. In the other state, the gate is connected to the
power rail, so the transistor is not conducting, and the source and drain may have
different voltages. These stable states are reflected in the following definition of
ptran:

ptran(x , 0,x ) :− .
ptran(x , 1,y ) :− .

In the first clause, the requirement that the source and drain have the same
voltage is reflected by using the same variable x for both arguments. An n–
transistor is modelled by the relation ntran(s ,g,d), defined as follows:

ntran(x , 1,x ) :− .
ntran(x , 0,y ) :− .

This simply reverses the roles of 0 and 1.
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Apart from the wires, the only other components in the inverter circuit are
the power and ground rails, and we can simulate them with two relations pwr(x )
and gnd(x ), defined like this:

pwr(1) :− .
gnd(0) :− .

Actually, we could manage without these relations and just substitute 0 and 1
wherever they are needed, but using these relations allows a more systematic way
of connecting circuits together.

We are now ready to put the components together to make a simulation of
the inverter circuit. The inverter has two external connections, so it is simulated
by defining a relation inverter with two arguments, so that inverter(a, z) is true
if there is a stable state of the circuit in which the input has voltage a and
the output has voltage z . A circuit is in a stable state if all its components
are stable, and every wire carries the same voltage at all its connections. The
inverter relation is defined as follows:

inverter(a, z) :−
pwr(p), gnd(q),
ptran(p,a, z),
ntran(z ,a,q).

The body of this clause contains one literal for each component, and variables
are used instead of wires to join the components together. For example, point p

of the circuit is connected to the power rail and to the source of the p–transistor,
so p appears as the argument of the pwr literal and as the first argument of
the ptran literal. Internal connections are neatly hidden, because some of the
variables that appear in the clause body do not appear as arguments of the
clause head.

Having defined this relation, we can ask questions about the stable states of
the circuit. For example, this goal asks what the output may be if the circuit is
stable with input 1:

# :− inverter(1, z).

The only answer is z = 0, because the n–transistor conducts, connecting the
output to ground. We can also supply a value for the output and ask what
values of the input would lead to a stable state:

# :− inverter(a, 0).

The only answer is a = 1, because if a were zero, then the p–transistor would
conduct, connecting the output to power.
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Figure 12.3: NAND gate

This bi-directional behaviour of the simulation is useful in some ways, because
it extends the variety of questions we can ask about the circuit. In other ways
it is a disadvantage, because it reveals that our model of CMOS circuits does
not distinguish properly between inputs and outputs. If we make a the input
and z the output, the circuit of Figure 12.2 works correctly as an inverter, with
the transistors driving the output to the opposite logic level to the input. But if
we try to make a the output and z the input, the circuit fails to work, because
transistors cannot drive their gates. Our simulation does not reflect this fact.

Nevertheless, it is interesting to build simulations of more complex circuits.
Figure 12.3 shows a NAND gate with two inputs a and b and one output z .
The output is logic 1 unless both inputs are at logic 1, in which case the output
is logic 0. The circuit contains two p–transistors in parallel that are responsible
for driving the output high when either one input or the other is low. The two
n–transistors in series are responsible for driving the output low when both the
inputs are high.

Here is a clause that simulates the NAND circuit:

nand(a,b, z) :−
pwr(p), gnd(q),
ptran(p,a, z), ptran(p,b, z),
ntran(z ,a,r), ntran(r,b,q).

Like the inverter simulation, this definition of nand(a,b, z) can be used forwards
to calculate the output z from the inputs a and b, or backwards to to find what
values of the inputs can lead to a given output.
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The next step in building simulations is to put together small circuits like our
NAND gate and inverter to make larger circuits. For example, Figure 12.4 shows
how a NAND gate and an inverter can be connected to make an AND gate, whose
output is logic 1 exactly if both inputs are a logic 1. To build a simulation of the
AND gate, we define and(a,b, z) in terms of the nand and inverter relations:

and(a,b, z) :−
nand(a,b,w ),
inverter(w , z).

The and relation simulates our circuit by simulating the individual transistors
that make it up, but we have constructed it by putting together larger building
blocks.

What happens if we try to simulate a short circuit like the one shown in
Figure 12.5? The simulation of this circuit is defined by

short(x ) :− pwr(x ), gnd(x ).

With this definition, the goal # :− short(x ) has no answers. This means that
the circuit has no stable states, and current will always continue to flow. Our
simple physical model of CMOS logic does not cover this situation. In reality,
the current that flows may be so large that the circuit overheats.

A similar phenomenon occurs if we try to connect the output of an inverter
back to its input, as shown in Figure 12.6. This circuit is simulated by the goal
# :− inverter(x ,x ). Again, this goal has no solutions, indicating that the circuit
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has no stable states. In practice, the circuit will either oscillate, or it will enter a
state in which both transistors of the inverter are partially conducting, and the
output is at an unpredictable voltage intermediate between logic 0 and logic 1.
Neither outcome is covered by our model.

Summary

• The stable states of a single transistor can be modelled by a logic program.
• Circuits that contain many transistors can be modelled by defining new

relations in terms of the transistor relations, using variables to represent
the wires.

• Simulations of complex circuits can be made by combining relations in a
way that reflects the hierarchical structure of the circuit itself.

Exercises

12.1 Write a program that simulates the circuit shown in Figure 12.7, in which
two NAND gates are connected in a ring. Determine the stable states of the
circuit and explain why it can be used to build computer memory.
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Figure 12.8: An XOR gate

12.2 Figure 12.8 shows a clever implementation of an XOR gate using only six
transistors. (Both transistors in the parallel pair are needed because of electrical
effects that are not captured in our simulations.) Build a logic program that
simulates the circuit, and show that the output z is at logic 1 if exactly one of
the inputs a and b are at logic 1.



Chapter 13

Program transformation

We have seen that only SLD–resolution is needed to execute logic programs,
and that it involves only resolution steps in which one of the input clauses is a
goal, and the other is a clause from the program. In this chapter, we look at
an application for the more general kind of resolution in which both inputs may
be proper clauses. The application is transforming a logic program to obtain
another program with the same meaning. The hope is that, if the transformation
is carried out with the right intuitions, then the new program will be more efficient
than the old one.

Although pure logic cannot help us to estimate whether a transformed program
is more efficient than the original one, it can guarantee that the transformed
program gives the same answers. The reason for this is simple; if we derive each
clause in the new program from the clauses of the original program, then any
conclusion derived from the new program could also be derived from the original
program by joining the derivations together.

13.1 Unfolding and symbolic execution

The simplest kind of transformation is to unfold a program, replacing a call to
a relation by the body of a clause. The following three clauses define a relation
ord(a) that is true if a is an ordered list of numbers:

ord(nil) :− . (ord.1)
ord(x :nil) :− . (ord.2)
ord(x :y :a) :− x < y , ord(y :a). (ord.3)

The first two clauses deal with the special cases where a has zero or one elements,
and the third deals with lists of two or more elements. Such a list is ordered if
the first element is less than the second and the tail of the list is also ordered.
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If this definition of ord were used in a program that often tested short lists to
see if they were ordered, then it might be more efficient to treat lists of length
2 as a special case also. We can derive a clause that covers exactly this case
by using resolution on the clauses in the definition. Taking clauses (ord.2) and
(ord.3), we can match them up like this:

ord(x :y :a) :− x < y , ord(y : a )

ord(u :nil) :−

The matching substitution is {a← nil ,u ← y}, and the resolvent is the clause

ord(x :y :nil) :− x < y .

This is precisely the special case we wanted.
This kind of unfolding is similar to the transformation we can do to ordinary

imperative programs by expanding subroutine calls in-line. The benefits and
costs are the same, in that we save the cost of a subroutine call or resolution step
at the expense of making the program larger. More radical transformations can
be achieved by unfolding a program, rearranging the result, then folding again.

13.2 Fold–unfold transformation

Here is a definition of the relation elem(a,n ,x ) that is true when the element of
the list a at position n is x , counting from zero:

elem(x :a, 0,x ) :− . (elem.1)
elem(x :a, s(n),y ) :− elem(a,n ,y ). (elem.2)

In place of the built-in numbers of Prolog, this definition uses a number system in
which zero is represented by the term 0, and n +1 is represented by the term s(n)
– so 3 would be represented by s(s(s(0))). This number system would be very
inefficient if we actually used it in a program, but it will make the transformation
we are about to do more convenient. In terms of elem, we can define a relation
consec(x ,y ,a) that is true if x and y are consecutive elements of a:

consec(x ,y ,a) :− elem(a,n ,x ), elem(a, s(n),y ). (consec.1)

Now the challenge is this: to design a version of consec that does not use elem.
We can begin by resolving (consec.1) with a variant of (elem.1):

consec(x ,y ,a) :− elem( a, n ,x ), elem(a, s(n),y ).

elem(z :b, 0, z ) :−
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This generates the resolvent

consec(x ,y ,x :b) :− elem(z :b, s(0),y ).

Two more resolution steps, one with (elem.2) and another with (elem.1) allow us
to derive the clause

consec(x ,y ,x :y :c) :− .

This clause is one of the clauses in our desired definition of consec, covering the
case that the first element selected is the very first element of the list.

Another clause can be obtained by resolving (consec.1) with (elem.2):

consec(x ,y ,a) :− elem( a, n , x ), elem(a,n , s(x ))

elem(z :b, s(m),w ) :− elem(b,m ,w )

The resolvent is

consec(x ,y , z :b) :− elem(b,m ,x ), elem(z :b, s(s(m)),y ).

Now we resolve again with (elem.2), this time choosing the second elem literal.
The result is

consec(x ,y , z :b) :− elem(b,m ,x ), elem(b, s(m),y ).

The body of this clause is just a variant of the body of (consec.1), so we make a
final folding step, replacing the body with a call to consec:

consec(x ,y , z :b) :− consec(x ,y ,b).

We have now derived two clauses that together make up a new definition of
consec:

consec(x ,y ,x :y :c) :− . (consec.2)
consec(x ,y , z :b) :− consec(x ,y ,b). (consec.3)

This new definition is more efficient than the old one, even ignoring the inef-
ficiency caused by using terms to represent numbers. To find two consecutive
elements of a list, the old definition would count the position of one element,
then count again to find the other one, requiring two traversals of the list. The
new definition finds both elements in a single traversal, saving about half the
work.
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The steps in deriving the new program from the old one have, with one excep-
tion, been steps of resolution between clauses drawn from the old program. The
exception is the folding step, which uses the definition of consec backwards. Our
definition of consec tells us that the clause

consec(x ,y , z :b) :− elem(b,m ,x ), elem(b, s(m),y ).

follows from the clause

consec(x ,y , z :b) :− consec(x ,y ,b).

But we want to know the converse! Although there are models of the program in
which the first of these clauses is true but the second is false, we are interested in
the least model of the program, where the ground atoms that are true are exactly
those that can be derived from the program. In this model, the folding step is
justified, because we know that an atom consec(x ,y ,b) can be derived only by
using the clause (consec.1).

Logically speaking, what we have done is this: if T0 is the program containing
(consec.1) together with the definition of elem, and T1 is the program containing
(consec.2) and (consec.3), we have shown that any ground atom P that can be
derived from T1 could also be derived from T0. In short, we have shown that T1

gives no answers that would not also be given by T0. The new program is at least
partially correct, in that all the answers it gives are correct.

We can check that the new program is totally correct, giving all the answers
that could be given by the original program, by examining the search tree in the
old program for the goal # :− consec(x ,y ,a), shown in Figure 13.1. At each
node of the tree all matching clauses are shown, and we can check that every
path has been covered by the clauses we have derived. So if any pair of elements
X and Y can be shown to satisfy consec(x ,y ,a) using the old program, they
can be shown to do so using the new program also.

13.3 Improving the reverse program

So far, our transformations have used only unfolding and folding, staying entirely
within the logic of Horn clauses. More sophisticated transformations may need
us to apply laws that cannot be expressed purely as Horn clauses.

The reverse program from Section 5.1 provides an example:

reverse(nil , nil) :− . (rev.1)
reverse(x :a,c) :− reverse(a,b), append(b,x :nil ,c). (rev.2)

append(nil ,b,b) :− . (app.1)
append(x :a,b,x :c) :− append(a,b,c). (app.2)
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# :− consec(x ,y ,a).

# :− elem(a,n ,x ), elem(a, s(n),y ).

# :− elem(b, 0,y ).

# :− .

n = 0,a = z :b

# :− elem(z :b, s(0),y ).

b = y :c

n = s(m),a = z :b

# :− elem(b,m ,x ), elem(z :b, s(s(m)),y ).

# :− elem(b,m ,x ), elem(b, s(m),y ).

Figure 13.1: Search tree for # :− consec(x ,y ,a).

Although it is a simple definition of reverse, this program is rather inefficient,
because it repeatedly uses append to add elements to the end of the reversed list.
This makes the running time of the program quadratic in the length of the input
list. We can derive a more efficient program for reverse by transformation.

The first step is to introduce a new relation revapp that combines reverse and
append , perhaps inspired by the body of clause (rev.2):

revapp(a,c ,d) :− reverse(a,b), append(b,c ,d).

We can now start to unfold. Resolving the definition of revapp with (rev.1) gives
the new clause

revapp(nil ,c ,d) :− append(nil ,c ,d).

in which the matching substitution has filled in the first argument with the
specific value nil . We can resolve this with (app.1) to obtain the clause

revapp(nil ,c ,c) :− .

that deals directly with the case that revapp’s first argument is nil .



13.3 Improving the reverse program 127

p

vu w

q

z

Figure 13.2: Associativity of append

What if the first argument is non-nil? We can resolve the definition of revapp

with (rev.2) to obtain

revapp(x :e ,c ,d) :−
reverse(e , f), append(f ,x :nil ,b), append(b,c ,d).

So far we have used just Horn clause reasoning, but the next step uses the fact
that provided p and q do not appear elsewhere in the clause, the two literals

append(u ,v , p), append(p,w , z)

can be replaced by the two literals

append(v ,w ,q), append(u ,q, z).

As Figure 13.2 shows, this transformation uses the fact that appending lists is an
associative operation. A formal proof of this fact would need induction on lists.

Applying the transformation results in the following clause:

revapp(x :e ,c ,d) :−
reverse(e , f), append(x :nil ,c ,g), append(f ,g,d).

The term x :nil now appears as the first argument of append , so we can use the
definition of append to unfold the literal and solve it. In two resolution steps, we
derive first

revapp(x :e ,c ,d) :−
reverse(e , f), append(nil ,c ,h), append(f ,x :h ,d).

and then

revapp(x :e ,c ,d) :−
reverse(e , f), append(f ,x :c ,d).
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The final step is to notice that the body of this clause is an instance of the body
of the clause defining revapp, so we can fold to obtain

revapp(x :e ,c ,d) :− revapp(e ,x :c ,d).

The final part of the transformation process is to show that reverse can be defined
in terms of revapp. This requires another law, that the literal append(a, nil ,b)
can be interchanged with a = b, in other words, that nil is a right unit for the
append operation. We apply this law as follows: start with the (evidently true)
clause

reverse(a,b) :− reverse(a,c),c = b.

Now replace c = b by the equivalent append literal:

reverse(a,b) :− reverse(a,c), append(c , nil ,b).

Finally, fold with the definition of revapp:

reverse(a,b) :− revapp(a, nil ,b).

This completes the derivation of a definition of reverse that does not use append :

reverse(a,b) :− revapp(a, nil ,b). (rev.3)

revapp(nil ,b,b) :− . (revapp.1)
revapp(x :a,b,c) :− revapp(a,x :b,c). (revapp.2)

This program can solve a goal # :− reverse(a,b), where a is a list of length n,
in n + 2 resolution steps: (rev.3) is applied first, followed by n applications of
(revapp.2) that reduce a to nil , and finally an application of (revapp.1). This is
much more efficient than the quadratic version of reverse we began with.

Summary

• Unfolding allows special-case clauses to be derived from a program by sym-
bolic execution.

• Folding, combined with unfolding, allows programs to be transformed to
improve their pattern of recursion.

• More general transformations combine folding and unfolding with the use
of algebraic properties of the relations involved.



13.3 Improving the reverse program 129

Exercises

13.1 Use unfolding to derive a clause for the ord relation that deals with lists
of length 3.

13.2 Write a definition of consec in terms of append , and use program trans-
formation to derive from it the same direct recursive definition of consec that
was derived in the text.

13.3 Use program transformation to show the equivalence of the first and sec-
ond definitions of connected given in Section 9.1.

13.4 A path in a binary tree is a list of tokens, each l or r . For example, the
path r :l :nil is a path in the tree

fork(tip(1),
fork(fork(tip(2), tip(3)),

tip(4)))

that leads to the sub-tree fork(tip(2), tip(3)).

a. Define by recursion a relation select(t , p,u) that holds if p is a path in the
tree t that leads to sub-tree u .

b. Define a relation replace(t , p,u ,t ′) that holds if t ′ is the result of replacing
in t the sub-tree selected by p with the new sub-tree u .

c. Find a non-recursive definition of select in terms of replace.
d. The relation change is defined by

change(t ,u ,u ′,t ′) :−
select(t , p,u), replace(t , p,u ′,t ′).

By unfolding and folding, transform this definition of change into a recursive
definition that does not use the auxiliary relations select and replace.



Chapter 14

About picoProlog

The remainder of this book contains a description of picoProlog, a simple but
complete implementation of a logic programming language similar to Prolog.
The main differences are that real Prolog has a more flexible – and thus more
complicated – syntax, and that implementations of real Prolog come with a larger
selection of ‘built-in’ relations. Many of these relations have no real meaning in
terms of logic, but perform useful functions connected with input/output and so
on. Despite the small size of the picoProlog implementation presented here (it
consists of about 2000 lines of Pascal), it runs at a useful speed, and can be used
to run all the logic programs contained in earlier chapters of the book.

The implementation is an interpreter, that is, a program that inputs a logic
program and carries out directly the actions required to execute it. Many Pro-
log implementations also include a compiler, a program that translates a logic
program into machine code that when it is run carries out the actions described
by the logic program. As with any language implementation, compiling logic
programs instead of interpreting them can provide an immense improvement in
execution speed, because the analysis of what actions are needed to execute the
program is carried out once and for all by the compiler, and object code that
is generated specially for each program can achieve these actions faster than
the general-purpose code in an interpreter. For simplicity, in this book we con-
sider only an interpreter, although many of the data structures used to represent
logic programs and states of execution would be the same in a compiler-based
implementation.

There are several reasons to present an implementation of logic programming
in a book that also discusses the theory behind logic programs and the practice
of writing them. One reason is to complete the story behind the proof theory
of Horn clause programs contained in Chapters 5 to 7, by showing that SLD–
resolution can be used as the basis of an efficient execution mechanism, and
confirming that the actions of a Prolog system can (with a few reservations) be
viewed as symbolic reasoning using resolution.
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Another purpose is to give the reader some understanding of the cost in space
and time of executing typical logic programs. Too many Prolog programs are
unnecessarily cramped in style, because their designers suspect that any pro-
gram that does not closely resemble a conventional, imperative program will be
hopelessly inefficient. Often, the reverse is true, and a program that exploits the
unique features of logic programming can be made to work well. Such a program
is often faster than an equivalent program written in a more imperative style.
This is particularly likely if the ‘imperative’ program relies on the non-logical
features of many Prolog systems, which can be used to simulate the effect of the
assignment command of imperative programming, but only in a very inefficient
way.

The first part of this chapter is a summary of the picoProlog language, and
can be used as a manual for the picoProlog system. Chapters 15 and 16 describe
in more detail the most interesting parts of the system, the part that implements
depth-first search of the SLD–tree of a goal, and the part that implements substi-
tutions and unification. Chapter 17 contains notes on the Pascal dialect in which
the interpreter is written and the macro processor that is used to extend Pas-
cal for present purposes. The chapter also describes the supporting parts of the
picoProlog system, such as the syntax analyser that parses picoProlog programs.
Chapter 18 describes three optimizations that are included in the picoProlog
interpreter. Though not essential to a working Prolog system, these optimiza-
tions greatly reduce the execution time and memory needs of Prolog programs.
In particular, they allow programs that have a simple iterative form to run in
constant space.

14.1 The picoProlog language

The input to picoProlog is a program written in an ascii variant of the notation
we have been using throughout this book. Here is a summary of the syntax of
the language:

program ::= { clause }

clause ::= [ atom | ‘#’ ] ‘:-’ [ literal { ‘,’ literal } ‘.’

literal ::= [ ‘not’ ] atom

atom ::= compound | term ‘=’ term

term ::= primary [ ‘:’ term ]

primary ::= compound | variable | number | string | char | ‘(’ term ‘)’

compound ::= ident [ ‘(’ term { ‘,’ term } ‘)’ ]

As in our earlier discussion of parsing (Chapter 10), each equation defines a
certain class of phrases in the language. Here we use a few extra notations for
convenience: [ stuff ] stands for an optional occurrence of stuff , and the notation
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{ stuff } stands for ‘zero or more’ occurrences of stuff . In particular, the notation
term { ‘,’ term } stands for one or more instances of term separated by commas.
Various sorts of primitive symbols are not defined by the syntax summary above:

• an ident is any non-empty sequence of letters, digits and underscore char-
acters that begins with a lower-case letter.

• a variable is any non-empty sequence of letters, digits and underscore char-
acters that begins with an upper-case letter or an underscore.

• a number is any non-empty sequence of digits.
• a string is any sequence of characters other than the double-quote character

("), enclosed in double-quotes.
• a char is any single character, enclosed in single quotes.

Numbers and characters are atomic objects in picoProlog. Strings are equivalent
to lists of characters, so that the string "mike" is a shorthand for the list written
’m’:’i’:’k’:’e’:nil. This means that ordinary list-processing relations like
append and reverse work equally well on strings. The routine that prints answers
to queries in the picoProlog system examines each list to see if it is actually a
string, and if so it uses string notation to print it.

Another thing not shown in the syntax summary is the fact that comments
can appear in picoProlog programs. Like the comments of Pascal, they begin
with /* and end with */. Comments do not nest, and may appear anywhere a
blank space would be allowed.

14.2 Built-in relations

The picoProlog language has a number of built-in relations.

• The relation plus(x ,y , z) holds if x , y and z are numbers and x +y = z .
The relation times(x ,y , z) holds if x , y and z are numbers and x×y = z .
These relations are implemented in such a way that any two of x , y and
z can be specified, and picoProlog will find the third number (if any) that
completes the equation. If fewer than two values are known at the time
picoProlog tries to solve the goal, a run-time error occurs.

• The relation integer(x ) is true if x is a known integer, and the relation
char(x ) is true if x is a known character. Both relations are judged false if
x is an unknown variable at the time of solving the goal, even though there
are many substitutions for x that would make them true.

• If p is a term that would be a valid literal, then the relation notp is true
if attempting to prove p results in failure, and it is false if attempting to
prove p results in success. Provided p is a ground literal at the time of
solving the goal, this is an implementation of negation as failure. If p is
not a valid literal (for example, if it is a number or an unknown variable),
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a run-time error occurs. If p is a valid literal but is not ground, the results
are unpredictable.

• The relation x = y is defined exactly as if the picoProlog program contained
the clause x = x :− . It is provided as a built-in relation for the sake of
convenience.

• The relation false (with no arguments) is defined to be always false, just as
if it were defined by the empty set of clauses. It is provided as a built-in
relation for convenience. PicoProlog reports an error if a program contains a
call to any other relation with no clauses, because that is usually a mistake.

• The relation ‘!’ (with no arguments) is the cut symbol. Its effect is described
in the next section.

Most Prolog implementations have many more built-in relations than are pro-
vided by picoProlog. The small number of built-in relations in picoProlog provide
a guide to the way others are implemented.

14.3 The cut symbol

The cut symbol ‘!’ may appear as a literal in the body of a goal or clause. It is
treated by picoProlog as if it is logically true, but it has the side-effect of causing
picoProlog to discard certain alternatives to the derivation that lead to the cut.
This effect is most easily explained through an example:

p(x ) :− q(x ).
p(x ) :− r(x ,y ), !, s(y ).
p(x ) :− t(x ).

This definition has three clauses, and picoProlog’s top-to-bottom rule for trying
clauses means that they will be tried in the order that they are written. In solving
the goal # :− p(fred), picoProlog will reach the second clause only if the first
clause has failed because q(fred) is false. If it reaches the cut symbol, then it has
just found the first solution to the literal r(fred ,y ), and if the cut symbol were
not there, it would be just about to attempt the literal s(y ) for some value of y .
At this point, picoProlog is exploring a particular derivation, but it is keeping
several alternatives for later exploration if this one fails. There may be other
solutions of r(fred ,y ); there may be derivations that use the third clause in the
definition of p, and there may be alternatives to the derivation that lead to the
goal # :− p(fred) in the first place.

The cut symbol discards all but the last group of alternatives; that is, it
discards all the alternatives that have been created since the p(fred) literal was
selected for execution. This means that if the p(fred) literal is going to be solved
at all, it will be by solving s(y ), with the current value for y that was obtained by
solving r(fred ,y ). Alternative derivations that were created before the selection



134 About picoProlog

of the p(fred) literal are not discarded by the cut, and neither are alternatives
(such as alternative ways of solving s(y )) that are created after the cut has been
executed.

There are several reasons for introducing cut symbols into a program. Dis-
carding alternatives to the current derivation can allow picoProlog to reclaim the
storage space that is used to save them, and to save the time that would be spent
in exploring them. It may be that we know these alternatives cannot lead to a
solution, so that discarding them does not affect the set of solutions generated
by the program, or it may be that we are interested only in the first solution
found by the program, and do not care if other solutions are discarded. In that
case, adding cuts to the program can make it more efficient without affecting its
proper functioning.

For example, in the program for p(x ), we might know that the value of x

would always be supplied, and that no value of x can lead to both a solution
of r(x ,y ) and a solution of t(x ). Perhaps r(x ,y ) can be satisfied only if x

is an even number (and for only one value of y ), and t(x ) is satisfied only
if x is odd. In that case, the cut symbol shown in the program would not
discard any alternatives that could possibly lead to a solution. When the cut
symbol is reached, we know that x is even, and in that case the third clause
for p cannot possibly be used. Discarding this alternative instead of exploring
it saves the time that would be wasted in trying to solve t(x ) for an even value
of x , and allows the space needed to record the alternative to be reclaimed
and re-used.

A common use of cuts is in recursive definitions that define a relation on lists
by pattern matching. For example, here is a version of append that has a cut in
one of its clauses:

append(x :a,b,x :c) :− !, append(a,b,c).
append(nil ,b,b) :− .

This definition is useful if append is always used in such a way that the first
argument is known (i.e., it is not a variable). If the head of the first clause
matches the goal, we know that the first argument of append is of the form
x :a, so it cannot match the nil that appears in the head of the second clause.
This makes the cut harmless, because we know that the second clause will only
be discarded if it cannot match the goal. It is also beneficial, because it saves
the time needed to match the second clause, and it allows storage space to be
recovered. In fact, the cut makes it possible for picoProlog to recover all the
working space needed for append . We can also see that if the second clause
matches a goal, then the first clause cannot match. However, there is no need for
a cut in the second clause, because if picoProlog reaches the second clause, then
it has already tried and discarded the first one.

Adding a cut like this spoils the generality of the append program, because we
cannot use the version that contains a cut to split a list into two parts. The cut
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discards all but the first solution to a goal like

# :− append(a,b, 1:2:3:4:nil).

That is, it discards all but the solution with a = 1:2:3:4:nil and b = nil . An
application that needed to do both jobs would need two versions of append , one
with the cut and one without.

Whether it is actually necessary to include cuts like this one depends on the
sophistication of the Prolog implementation being used. Many systems are able
to determine by analysing the program that the second clause cannot match if
the first argument of append is known and the first clause matches, so they are
able to achieve the same efficiency without an explicit cut. With such systems,
the same version of append can be used both to join lists and to take them apart,
without any loss of efficiency. Even in picoProlog, the indexing feature described
in Chapter 18 means that (at least in simple situations like this one) the cut is
not needed.

The use of cuts to improve the efficiency of a program is easy to defend on
practical grounds. A less defensible use of cuts is to cover up a logical error in
the program. For example, suppose we define max (x ,y , z) to be true if z is the
maximum of x and y :

max (x ,y ,x ) :− geq(x ,y ).
max (x ,y ,y ) :− lt(x ,y ).

(where geq means ‘greater or equal’ and lt means ‘less than’). This program is
designed to be used when the first two arguments are known integers, and the
third is an unknown variable, intended to receive the output. As a first step in
improving the efficiency, we notice that it is pointless to try the second clause if
the test geq(x ,y ) has succeeded. So we can add a cut like this:

max (x ,y ,x ) :− geq(x ,y ), !.
max (x ,y ,y ) :− lt(x ,y ).

This cut improves the efficiency of the program without affecting its logical mean-
ing. But now we see that if the second clause is tried at all, then it must be
because the test geq(x ,y ) has failed. In that case, the test lt(x ,y ) is bound to
succeed, and we may as well delete it, like this:

max (x ,y ,x ) :− geq(x ,y ), !.
max (x ,y ,y ) :− .

This last change improves the speed of the program a little more, but it means
that we can no longer read and understand the meaning of each clause separately,
because the second clause says something that is true only if we have already tried
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and rejected the first clause. Also, the program works properly only if the first
and second arguments of max are known and the third is unknown at the time
the clauses are used. If we ask

# :− max (4, 3, 3).

then the execution goes like this: the goal does not match the head of the first
clause, because the first and third arguments in the goal are different. So the first
clause is discarded, and we try the second clause. This matches, so we produce
the answer ‘yes’. Of course, the correct answer is ‘no’, because the maximum of
4 and 3 is not 3 but 4.

Cuts of the first kind, which discard no solutions at all, or discard only solutions
that are actually correct but not of any interest, are often called green cuts.
Cuts of the second kind, like the one in our max program, are called red cuts.
They discard solutions that would otherwise be found by the program, but are
incorrect in terms of the problem to be solved. Red cuts tend to make programs
more difficult to understand, and it is best to avoid them if the efficiency gain
is minor, as it would be in the max example. In other situations, the saving of
work may be much larger than avoiding a superfluous test lt(x ,y ), and then the
use of a red cut may be justified.

14.4 Implementation overview

PicoProlog is implemented by a program of about 2000 lines, written in a subset
of standard Pascal. The program is divided into 20 modules that are largely
independent of each other (see Table 14.1). Because the picoProlog program is
written in Pascal, the boundaries of these modules are not marked formally in
the source code, and they cannot be checked by the compiler, but this does not
reduce the benefits of designing the program in a modular way.

Some of these modules implement general-purpose facilities that are either not
provided in standard Pascal, or are provided in a form that is not quite the one
we need. Among these, the string buffer module provides storage for variable-
length character strings, and the character input module provides simple input
of characters from text files and the keyboard. The memory allocation module
manages the blocks of storage that are used to store the picoProlog program and
the data structures that represent an executing goal.

Other modules use standard compiler techniques to analyse the syntax of
a picoProlog program and build a data structure that represents it internally.
There is a symbol table that stores information about each identifier or vari-
able name that appears in the program, and an additional table of variable

names that records information about the variables that appear in the present
goal or clause. The picoProlog program is divided into meaningful tokens by
the scanner, and the tokens are assembled into goals and clauses by a parser,
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1. Coding conventions
2. Error handling
3. String buffer
4. Representation of terms
5. Memory allocation
6. Character input
7. Representation of clauses
8. Stack frames and interpreter registers
9. Symbol table

10. Building terms on the heap
11. Printing terms
12. Scanner
13. Variable names
14. Parser
15. Trail
16. Unification
17. Interpreter
18. Built-in relations
19. Garbage collection
20. Main program

Table 14.1: Modules of picoProlog

which constructs an internal representation of the program that is later used to
execute it.

The most interesting parts of the implementation are those that execute goals.
At each stage, the state of execution is recorded in a stack, and there is a module
that defines the layout of stack frames, each representing a goal that has been
derived from the original goal by SLD–resolution. The main interpreter manip-
ulates this stack in order to execute the goal by depth-first search, and calls the
unification algorithm to match goal literals against the heads of clauses. An extra
stack, called the trail , records which variables in the picoProlog program have
had values assigned to them by the unifying substitution in each resolution step,
so that these assignments can be removed when the execution backtracks.

A few more modules complete the implementation. There is a collection of
procedures for building terms that is used by the parser, and a procedure for
printing terms that is used to display the answers when execution succeeds.
Another module implements the built-in relations. Finally, there is a garbage

collector that recycles storage that has been allocated but is no longer accessible.
The next few chapters describe the implementation of picoProlog in more

detail. Chapter 15 explains how to use a stack to represent the state of a depth-
first search, and Chapter 16 explains how substitution and unification are im-
plemented. The crucial question in both these chapters is how the abstract
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structures of logic can be made concrete in computer memory in an efficient way,
so that each step in the execution of a picoProlog program has a cost that is
proportionate to the progress it achieves.

Chapter 17 is a more concrete account of picoProlog, including notes on the
macro processor that is used to implement small extensions to Pascal, and in-
formation about the supporting routines (such as the parser) that complement
the execution mechanism described in the earlier chapters. Chapter 18 describes
some refinements that make picoProlog more efficient: the garbage collector, an
indexing scheme and the optimization of tail recursion.

A complete listing of the source code of picoProlog appears in Appendix C,
and Appendix D contains a cross-reference listing that lists the line numbers
where each identifier is used. For details of how to get a machine-readable copy
of the source code, see the Preface.



Chapter 15

Implementing depth-first search

The basis of the picoProlog interpreter is an implementation of a depth-first
search in the search tree of a goal. This chapter contains an outline of the algo-
rithms and data structures used in the implementation. We begin by showing the
very simple search algorithm as a logic program, then describe how the algorithm
can be translated into Pascal, and how the state of the search can be represented
so that each resolution step has a small, fixed cost. Finally, we discuss some
optimizations to the algorithm and some details of the choice of data structures.

15.1 Depth-first search

Given a logic program P , we can define a binary relation ⊢ on goals as follows:

G ⊢ G′ if and only if G′ is obtained from G by a step of SLD–resolution
with a clause from the program.

The problem solved by the picoProlog interpreter is this: given a goal G0, find
whether there is an SLD–refutation of G0; that is, whether G0 ⊢

∗ ♥, where
♥ = (# :−) is the empty goal, and ⊢∗ is the reflexive–transitive closure of ⊢.
Actually, we are also interested in the answer substitutions computed by SLD–
refutations of G0, but we can add them later. Thus the problem to be solved
by the picoProlog interpreter is an instance of the graph-searching problems
discussed in Chapter 9, and it uses one of the searching methods studied there,
depth-first search. We begin with a version of the program from Section 9.3, in
which we imagine that the goals of one logic program have been represented by
terms that can be manipulated by another logic program:

exec(g0) :− dfs(g0:nil).

139
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dfs(g:s) :− success(g).
dfs(g:s) :− next(g,a), append(a, s , s1), dfs(s1).

Here exec(g0) is the relation that is true if the goal represented by g0 has an
SLD–refutation, and dfs(s) is true of a list of goals s if any one of them has
an SLD–refutation. The program uses the two relations success(g), true if g

represents the empty goal, and next(g,a), true if a is the list of goals g ′ such
that g ⊢ g ′.

We shall begin our development of picoProlog by translating this logic program
into Pascal. At first, we shall use an extended version of Pascal that has sequences
as a data type, with a number of built-in operations. Later we shall explain
how these sequences can be represented and manipulated using the data types
and operations of standard Pascal. The advantage of presenting the picoProlog
system in this way is that it allows us to separate the explanation of the broad
strategy for implementing logic programming from the details of how to fit the
data structures into computer memory.

We shall use a number of simple operations on sequences in our initial designs.
We write 〈x1, x2, . . . , xn〉 for the sequence s that contains the n elements x1, x2,
. . . , xn in that order. We write length(s) for its length n, and for 1 ≤ i ≤ n, we
write s(i) for the element xi that appears in position i of s, counting from 1. If s
is non-empty, then head(s) = x1 is the first element of s, and last(s) = xn is its
last element. The sequence tail(s) = 〈x2, . . . , xn〉 contains all elements of s but
the first, and front(s) = 〈x1, . . . , xn−1〉 contains all elements of s but the last. We
write s � t for the concatenation of sequences s and t, a sequence that contains
all the elements of s in their original order, followed by all the elements of t.

Figure 15.1 shows a translation of this logic program into our extended dialect
of Pascal. The program uses a Boolean function success(G) that returns true if
G is the empty goal, and a sequence-valued function next(G) that returns – in
some order – the list of goals G′ such that G ⊢ G′. There are two invariants that
are maintained in the program:

• Every goal G in the sequence s is derivable from the original goal G0, that
is, G0 ⊢

∗ G.
• If G0 has a refutation, so does some goal G in the sequence s, that is, if

G0 ⊢
∗ ♥ then G ⊢∗ ♥ for some G ∈ s.

These invariants are first established by the initialization s := 〈G0〉, and they are
maintained by the assignment

s := next(G) � tail(s)

in the loop body, so they are true throughout execution of the loop, and remain
true at its end. If the loop terminates, then either found is true, or s = 〈〉. If
found is true, then head(s) is the empty goal, and the first invariant tells us that
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function Execute(G0: goal): boolean;
var s: sequence of goal ;

G: goal ;
found : boolean;

begin

s := 〈G0〉; found := false;
while (s 6= 〈〉) ∧ ¬ found do begin

G := head(s);
if success(G) then

found := true

else

s := next(G) � tail(s)
end;
Execute := found

end;

Figure 15.1: Depth-first search

G0 ⊢
∗ ♥, so the search has succeeded. If s is empty, then the second invariant

tells us that G0 has no refutation, so the search has ended in failure.
This reasoning from invariants allows us to conclude that the depth-first search

procedure is partially correct, in the sense that if the procedure terminates, then
the answer – yes or no – that it gives is the right one. Unfortunately, depth-first
search is not totally correct, because it may fail to terminate even if the goal G0

has a solution. The search may become stuck in an infinite branch of the search
tree, and never find solutions that are present in other branches.

15.2 Representing the goal list

In the depth-first search algorithm, the sequence s contains goals that are waiting
to be investigated. Solving any one of these goals would complete a solution of the
original goal. The sequence variable behaves like a stack, in that each step in the
search involves ‘popping’ the first element of s, and ‘pushing’ in its place the list of
goals that can be derived in a single resolution step. An efficient implementation
of picoProlog must make the operations needed in each resolution step as cheap
as possible, so we must look for an appropriate way of representing s to make
this pushing and popping quick.

The representation used in picoProlog (and in most other Prolog implementa-
tions) depends on the insight that s is always made up of fragments of next(G)
for various goals G. For example, suppose that initially s = 〈G0〉, and sup-
pose that next(G0) = 〈G1, G2, G3, G4〉, next(G1) = 〈〉, next(G2) = 〈H1, H2〉, and
next(H1) = 〈K1, K2, K3〉. Then successive values of s after each iteration of the



142 Implementing depth-first search

loop will be

〈G0〉

〈G1, G2, G3, G4〉

〈G2, G3, G4〉

〈H1, H2, G2, G3, G4〉 = 〈H1, H2〉 � 〈G2, G3, G4〉

〈K1, K2, H2, G2, G3, G4〉 = 〈K1, K2〉 � 〈H2〉 � 〈G2, G3, G4〉.

At each stage, the value of s is made up by concatenating suffixes of the various
sequence next(G) where G = G0, G2, or H1. By a suffix of a sequence t, we mean
a sequence v such that t = u � v for some u. In general, the sequence s can be
written in the form

s = sn � sn−1 � . . . � s1,

where each si is a suffix of next(G) for some goal G. If s has this form, so does
the new sequence next(G) � tail(s) that is assigned to s in the loop body. If sn

is non-empty, then this new sequence can be written as

next(G) � tail(sn) � sn−1 � . . . � s1.

This insight suggests that, instead of representing s directly (say by a linked list),
we should store the sequence of sequences ss = 〈s1, . . . , sn−1, sn〉 of which s is
made up, because this grows or shrinks by only one element per resolution step.
This indirect way of representing s will be an economical one provided that we
can find a good way of representing the sequences si that are suffixes of next(G)
for a goal G, and we turn to this problem next.

For any goal G, let proc(G) be the list of program clauses for the relation that is
named in the first literal of G. These are the clauses that can potentially be used
in the first step of solving G. Then next(G) is the sequence of clauses obtained
by resolving G with successive elements of proc(G), and collecting the resolvents
from those resolution steps that do not fail. This allows us to represent next(G)
and its suffixes by ordered pairs (G, t), where t is a suffix of proc(G). Building
a pair like this does not require that we immediately compute the resolvents of
G with each program clause, as would be required if we represented next(G)
directly. Also, there are very few possible sequences proc(G) – just one for each
relation in the program – so these sequences can be computed in advance. We
should use a representation for these lists of clauses that makes it easy to take
suffixes, for example, linked lists.

Combining these two decisions – to represent s as a sequence of sequences,
and to represent the individual sequences as (G, t) pairs – leads us to consider
representing s as a stack of frames, with each frame containing a goal and a list
of clauses. As we develop the implementation further, we shall add more fields
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to each frame, but the essential meaning of a stack frame will remain the same:
it represents the sequence of goals that can be obtained by resolving a certain
goal with each member of a list of clauses, and solving any one of these goals
completes the solution of the original goal G0.

A particular benefit of this representation is that resolution steps are delayed
until their results are needed. It may happen that a solution is found before
some of the goals in next(G) are reached in the search. In this case, any effort
spent in computing these goals would be wasted, and our representation avoids
this waste.

Resolution is still needed when we need to know explicitly what goal is the
head of the sequence s, so that it can be stored as part of a new frame, or tested
to see if it is the empty goal. To allow for this, we introduce a new variable
current that represents explicitly the first element of s, and a flag ok to say
whether current is valid. If ok is true, then the sequence s consists of the explicit
goal current , followed by all the goals stored in stack . Otherwise, s consists of
just the goals in stack , disregarding the contents of current . Adding the current

variable also makes it possible to represent the initial state, where s = 〈G0〉: we
just set current to G0 and stack to the empty sequence.

15.3 Representing goals

In the preceding section we chose a way of representing sequences of goals that
allowed the operations we needed to be implemented cheaply. But goals are
themselves sequences of literals, and we must also choose a representation for
them that makes resolution efficient.

When a goal # :− P1, P2, . . . , Pn takes part in a resolution step, the first literal
P1 is replaced by the body of a program clause to give a new goal, say

# :− Q1, . . . , Qm, P2, . . . , Pn.

If we consider the first goal to be (in effect) the sequence 〈P1, P2, . . . , Pn〉, then
we can write this new goal as

〈Q1, . . . , Qn〉 � 〈P2, . . . , Pn〉.

The unifying substitution must be applied to this new goal, but let us ignore
that for the moment. Substitution apart, the operation of replacing the head of
a sequence with another sequence is the same one that we saw with lists of goals.
Just as the list of goals waiting to be solved is made up of suffixes of procedures,
so each goal is made up of suffixes of clause bodies.

We can exploit this fact as follows: instead of storing a complete goal in each
frame, we store just the first few literals, together with directions for where to
look for the rest of the goal. The literals that are stored directly are the remaining
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Frame 3: goal = 〈Q2, . . . , Qm〉

parent = 1

proc = procedure for Q2

parent = 1

Frame 2: goal = 〈Q1, Q2, . . . , Qm〉

proc = rest of procedure for Q1

Frame 1: goal = 〈P1, P2, . . . , Pn〉

parent = 0

proc = rest of procedure for P1

Figure 15.2: Stack layout

part of the first clause body that makes up the goal. The rest of the goal is made
up of parts of clause bodies from further down the stack, so the ‘directions’ lead
to a parent frame, another stack frame where the next part of the goal can be
found.

To continue the example, suppose the first resolution step (using the clause
P1 :− Q1, Q2, . . . , Qm) is followed by another one that uses the unit clause Q1 :− .
Then the stack will look like Figure 15.2. Frame 3 contains a representation of
the goal

# :− Q2, . . . , Qm, P2, . . . , Pn.

The first few literals are stored in the frame itself, and the rest are found in
frame 1, the parent of frame 3.

Frame 1 contains the sequence 〈P1, P2, . . . , Pn〉, but P1 is the literal that took
part in the resolution step that created frame 2 and lead to frame 3. So in the
goal that is represented by frame 3, this literal is replaced by the subgoals Q1,
Q2, . . . , Qm, and we can ignore it. The parent of frame 1 is shown as frame 0,
because there are no more literals in the goal.

In general, a goal will consist of pieces from many clauses, and there will be
a longer chain of pointers to parent frames. The goal consists of all the literals
from its own frame, followed by all literals but the first from each succeeding
parent frame.
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15.4 Answer substitutions

We have been ignoring the fact that the unifying substitution must be applied to
the new goal after each resolution step. This means that the result of a resolution
step cannot be formed just by concatenating pieces of the goal and clauses that
were the inputs of the resolution step, and our representation will need to be
changed to reflect this fact. A solution to this problem is not to store the goal
itself, but to store separately the current answer substitution and a goal to which
the substitution should be applied to get the current goal. At each resolution
step, we add the unifying substitution to the accumulated answer by composing
them, but leave for the future the task of applying the substitution to the new
goal. The answer substitution could be applied to each literal just before it takes
part in a future resolution step, or (as we shall see in the next chapter) the task of
applying the substitution could be merged with the task of computing a unifier,
so that the substitution does not have to be carried out separately.

To use this idea, we must add another field to each stack frame that will contain
the answer substitution built up so far, which should be applied to the goal as
part of future resolution steps. Frames nearer the top of the stack represent the
results of carrying out more resolution steps than those further down the stack,
so they will contain more specific answer substitutions. For the present, we will
postpone the question of how substitutions are represented, and just imagine
that our programming language has a type subst of substitutions, and also has
the operations on substitutions that we need, such as applying a substitution to
a term, unifying two terms to give a substitution, or composing two substitutions
to give a third one.

15.5 Depth-first search revisited

We now apply the ideas we have discussed so far by showing a version of the
depth-first search algorithm that uses the data structures we have designed. It
differs from the code shown in Appendix C in several respects:

• Substitutions are treated here as an abstract data type provided with the
operations we need. We discuss the implementation of this data type in
Chapter 16, and that implementation is used in the code.

• Sequences or lists, which we use to represent goals, clauses and stacks,
are also treated as an abstract data type, with operations like head , tail

and concatenation (�). The choice of appropriate representations of these
sequences, say as arrays or linked lists, is discussed in Section 15.7.

• The program fragments given here use the record types of Pascal to repre-
sent objects with several components. In the code of Appendix C, macros
are used in place of these record types. We shall later define these macros
so that records can be represented as segments of a large array.
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The interpreter operates on a stack of frames, each one a record with this type:

type frame = record

f goal : goal ; f answer : subst ;
f parent : integer ;
f retry : sequence of clause;

end;

The program uses several variables:

var

stack : sequence of frame;
ok : boolean;
current : goal ; answer : subst ;
goalframe: integer ;
proc: sequence of clause;

The sequence stack is the stack of frames. The Boolean flag ok indicates whether
the other variables have any significance; it is true just after a successful resolution
step, and false if a resolution step has just failed. When ok is true, current

contains the first part of the goal currently being solved, and answer contains
the answer substitution built up so far. The rest of the current goal is found in a
chain of stack frames linked by their parent fields, starting at stack(goalframe).
The variable proc has significance only within the main loop of the interpreter;
there, it contains a list of clauses that have yet to be tried on the current goal.

The top level of the interpreter algorithm is contained in procedure Execute:

procedure Execute(G0: goal);
begin

stack := 〈〉; ok := true;
current := G0; answer := I; goalframe := 0;
while true do begin

if ok then begin

if current = 〈〉 then return;
proc := Proc(current)

end

else begin

Backtrack ;
if ¬ ok then return;

end;
Step;
if ok then Unwind

end

end;
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Each iteration of the main loop carries out one resolution step. The first part
of the loop body finds the goal that should take part in the step and the list of
clauses proc that have yet to be tried on it. If ok is true, this is the new goal that
was generated in the last resolution step, and all the clauses from its procedure
have yet to be tried. Otherwise, there is no current goal, and the procedure
Backtrack is called to reset the stack to a previous state. It resets current to a
previously saved value, and sets proc to the list of clauses that were not tried
before. On return from Backtrack , the value of ok indicates whether it succeeded
in finding a place to begin searching again.

The next part of the loop body is a call to the procedure Step, which carries
out a resolution step between the goal and the first clause of proc. It sets ok to
false if the step fails, and true if it succeeds. In that case, it updates current ,
goalframe and answer to represent the new goal and answer substitution. Finally,
if the step succeeds, a procedure called Unwind is called. This unwinds the chain
of parent pointers, until it finds a frame where there are still literals to be solved,
or it reaches the end of the chain. This ensures that the variable current contains
the empty sequence only if the current goal is itself empty.

There are two ways that Execute can return. One way is if current becomes
empty, indicating success. The other way is if Backtrack fails to find an unex-
plored alternative after a resolution step has failed. This means that the entire
search tree for the goal has been explored without finding a solution, so the whole
execution has ended in failure.

We now look at the details of carrying out a resolution step, as implemented
by the procedure Step.

procedure Step;
var unifier : subst ;

begin

if proc = 〈〉 then

ok := false

else begin

PushFrame;
ok := Unifier(Apply(head(current), answer),

Apply(head(proc).c lhs , answer), unifier);
if ok then begin

current := head(proc).c rhs;
answer := answer ⊲ unifier

end

end

end;

On entry to this procedure, current contains the first part of a goal, and proc

contains a list of clauses that have not yet been tried on it. Our job here is to
try the first of these clauses, saving the rest in a stack frame to be tried later.



148 Implementing depth-first search

The procedure first deals with the case that the proc is empty; in that case,
the attempt at resolution fails. Otherwise, it calls PushFrame to create a new
frame on the stack. This frame will contain the current values of the interpreter
variables, together with the tail of proc. Then it calculates the results of applying
the current answer substitution to the first literal of the goal and the head of the
first clause in proc, and tries to unify them. If the unification succeeds, the new
goal is the right-hand side of clause, followed by the rest of the previous goal. The
new answer substitution is obtained by composing the old answer substitution
with the unifier that was just computed.

Creating a new frame on the stack is simple, because we just need to make a
frame record that contains copies of the current values of the interpreter variables
and add it to the end of stack :

procedure PushFrame;
var f : frame;

begin

f.f goal := current ;
f.f answer := answer ;
f.f parent := goalframe;
f.f retry := tail(proc);
stack := stack � 〈f〉;
goalframe := length(stack);

end;

If a resolution step fails, we need to find an earlier goal that still has untried
clauses. This is achieved by the Backtrack procedure:

procedure Backtrack ;
begin

while (stack 6= 〈〉) ∧ ¬ ok do begin

current := last(stack).f goal ;
answer := last(stack).f answer ;
goalframe := last(stack).f parent ;
proc := last(stack).f retry ;
stack := front(stack);
ok := (proc 6= 〈〉)

end

end;

The loop repeatedly discards the top frame from the stack until either the stack
is empty, or a frame is found with a non-empty f retry field.

After a successful resolution step, Unwind is called. The new goal is repre-
sented as the literals in current , followed by the uncompleted parts of goals in
a chain of ancestor frames, linked together by their parent fields. If the clause
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used in the resolution step was a unit clause, current will now be empty, even
though there are still unsolved literals further along the chain. Unwind searches
the chain until either it finds a frame that contains some literals that are still
to be solved, or it reaches the end of the chain, meaning that the new goal is
actually empty.

During the search, it may be that a frame that has been completed is the top
one on the stack, and that it contains no alternative clauses that have yet to be
tried. If so, then we say that the corresponding clause has succeeded determi-

nately, and the top frame can be discarded, because it will be never be needed
again. This ‘success-popping’ gives an important efficiency improvement, because
it means that solving a subgoal will leave nothing behind on the stack unless there
is a possibility of backtracking. In effect, subgoals that succeed determinately
behave like subroutine calls in conventional programming languages. One way
of ensuring that a subgoal succeeds determinately is to place appropriate cuts in
the clauses that are used solve it.

procedure Unwind ;
var parent : integer ;

begin

while (current = 〈〉) ∧ (frame > 0) do begin

current := tail(stack(goalframe).f goal);
parent := stack(goalframe).f parent

if (goalframe = length(stack)
∧ (stack(goalframe).f retry = 〈〉) then

stack := take(stack , goalframe − 1);
goalframe := parent

end

end;

This completes the implementation of depth-first search.

15.6 Choice points

In the Backtrack procedure, frames are removed from the stack one at a time,
until a frame is uncovered that contains untried clauses. Several frames may be
thrown away in this process, and it is pointless to remove them one at a time if
they could all be removed together. This suggests that it might be worth keeping
track of the latest choice point, that is, the nearest frame to the top of the stack
that contains some untried clauses. Then Backtrack could go straight to the right
frame.

We can do this by adding an interpreter variable choice that contains the index
of the choice point, or zero if there have been no choices so far. To enable the
value of this variable to be restored on backtracking, we also add a field choice
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to each frame that records the value of choice when the frame was created. The
Backtrack procedure can now be rewritten like this:

procedure Backtrack ;
var prev : integer ;

begin

ok := (choice > 0);
if ok then begin

current := stack(choice).f goal ;
answer := stack(choice).f answer ;
goalframe := stack(choice).f parent ;
proc := stack(choice).f retry ;
prev := stack(choice).f choice;
stack := take(stack , choice − 1);
choice := prev

end

end

The take function is defined so that take(s, k) contains the first k elements of
sequence s. If s = 〈x1, x2, . . . , xn〉 and 0 ≤ k ≤ n then

take(s, k) = 〈x1, x2, . . . , xk〉.

Take is used here to discard the part of the stack that has been added since the
last choice point.

Keeping track of the latest choice point costs some time and some space, and it
would not be worthwhile if the only benefit were a slight increase in the efficiency
of backtracking. The real benefits will be revealed in the next chapter, where
we discuss the representation of terms and substitutions. In short, we shall be
able to treat variables in an especially efficient way on backtracking of they have
been created since the last choice point. Recording the last choice point also
provides a way to implement the cut symbol. When a cut is executed, the choice

variable is simply reset to the value it had when the frame for the current goal
was created. This causes any choice points that have occurred since then to be
ignored in backtracking, thereby fixing the choices that have been made.

15.7 Choosing representations

The decisions we have made about representing states of the interpreter have
introduced several kinds of sequences and lists. The entire state of the interpreter
is a sequence of stack frames, each frame contains a list of untried clauses, and
each goal or clause body is a list of literals. Because the sequence types we
have used are not really part of Pascal, we must choose a real Pascal data type
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to represent each kind of sequence. There are several Pascal types to choose
from: a sequence can be represented by an array, or a linked list, or even by a
file. Each choice makes some operations on the sequence efficient, and some less
efficient. For example, an array makes it easy to find an element of the sequence
by numerical index, but hard to add a new element at the front. A linked list
makes it easy to add new elements in any position, but harder to find an element
by number.

Here are the choices of representation that picoProlog uses for each kind of
sequence:

• Interpreter states are represented by linked lists of stack frames. We add
to each stack frame a pointer to the immediately preceding frame, so the
whole stack is linked by pointers from the back to the front. This makes it
easy to add and delete frames at the end of the stack.

We have described the parent and choice fields of stack frames as the
numeric indexes of frames in the stack, and finding elements by number is
not very efficient with linked lists. To avoid this problem, we can replace
these fields by pointers to stack frames.

It would also be possible to represent the stack as an array of frames, and
the parent and choice fields could then remain as simple indexes. PicoProlog
does not use this solution, because it would mean allocating a fixed amount
of storage for the array, whereas using a linked list allows storage for stack
frames to be allocated from the same pool that is used for other kinds of
object.

• Lists of clauses are represented by linked lists. This makes it efficient to take
the head and tail of a list of clauses. In a resolution step, we try matching
with the clause at the head of the list, and save the tail of the list for use on
backtracking. This representation also makes it easy to add more clauses
to the procedure for a relation as picoProlog reads in its program from a
file.

• The lists of literals in goals (and clause bodies) are represented by segments
of a large array A. Each segment contains a series of pointers to the literals
of a goal, and is terminated by a null pointer. A goal is represented by a
starting index s in the large array, and the literals of the goal extend from
that point as far as the next null pointer. The literals in the goal starting
at s are

A[s], A[s + 1], . . . , A[s + n− 1],

where A[s + n] is the first null pointer following A[s]. This representation
makes it easy to find the head and tail of a goal: the head of the goal
starting at s is A[s], and its tail is the goal starting at s + 1. The empty
goal is represented by an index s such that A[s] is a null pointer.



152 Implementing depth-first search

Summary

• Prolog uses depth-first search, implemented using a stack.
• For efficiency, resolution steps are delayed until their results are needed.
• Goals and lists of clauses can be represented in a way that allows resolution

to use little time and storage.



Chapter 16

Representing terms and substitutions

The discussion of depth-first search in Chapter 15 ignored the question of how
terms and substitutions should be represented, pretending that data types of
terms and substitutions were available in our extended dialect of Pascal, together
with operations such as unifying two terms to give a substitution, or applying a
substitution to a term. We now turn to the problem of implementing these data
types.

In picoProlog, terms are represented as reference-linked tree structures. Space
for these structures is allocated from two storage pools:

• the heap area holds the clauses that make up the picoProlog program. The
contents of this area do not change as a goal is executed.

• the global stack area holds terms that are created during execution of a goal.
Space is allocated from this area as new terms are created in resolution steps,
and space is released when backtracking happens, and terms that have been
created during recent resolution steps are no longer needed.

In addition to these two storage pools, there is also a local stack area, used to
allocate storage for stack frames.

16.1 Representing terms

The conventional techniques of Pascal programming provide a natural way to
represent terms as reference-linked tree structures. Each term is represented by
a variant record with a tag that identifies the kind of term, and other fields that
give information relevant to terms of that kind (see Figure 16.1).

• Compound terms have kind = func ; they have a function symbol func

and a number of arguments, each one a term itself. The arguments are
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type

term = ↑blob;
blob = record

case kind : (func , int ,chrctr,cell,ref) of

func :
(func: symbol ;

arg : array [1 . . max ] of term);
int :

(ival : integer);
chrctr:

(cval : char);
cell:

(val : term);
ref :

(index : integer);
end;

Figure 16.1: Representation of terms

represented by an array arg of pointers to other records. Ideally, this array
of pointers would have a different size in different records, because different
function symbols may have different numbers of arguments, but Pascal does
not allow that, so the array is shown here as always having a fixed size max .

• Other kinds of term like integers (with kind = int) and characters (with
kind = chrctr) have a field that contains the value, a simple integer or
character.

• Variables are represented by two kinds of records. Those with kind = ref

are the variables that appear in program clauses, and those with kind =
cell are variables that have been introduced during execution of a goal.
The interpretation of the index and val fields of these records is explained
later, in Section 16.2. Together, these two kinds of record allow an efficient
representation of the answer substitution for the derivation currently being
explored, and efficient renaming of variables in a program clause that is
used to extend the derivation.

As we shall see in Chapter 17, the pointers and record structures of Pascal do
not provide quite what we need for implementing picoProlog, because there is
no provision for variable-size arrays, and because Pascal forces on us a storage
allocation mechanism for pointers (via new and dispose) that is not adequate for
our needs. For the present, we ignore these difficulties; later, I shall explain how
they can be overcome by replacing records and pointers by segments of a large
array and indexes into the array, thereby getting round the limitations of Pascal.
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16.2 Substitutions

Although substitutions were defined in Chapter 4 as infinite functions from vari-
ables to terms, the substitutions we encounter in executing picoProlog programs
actually affect only a finite number of variables, so it is sufficient to represent the
substitution as a finite mapping, ignoring all the variables that have not so far
been used in the execution.

There are several ways in which these finite mappings could be stored. For
example, we could use an array a[1..maxvars ] of terms to represent a mapping,
so that a[i] is the term that should be substituted for the variable numbered i.
This representation can be made to work, but it does not take into account the
main operation on substitutions that is needed in picoProlog. That operation is
composition, and specifically the operation

r := r ⊲ {x ← u[r]}

where r is a Pascal variable that holds the current answer substitution, and
{x ← u[r]} is a fragment of a unifier that is being computed during a resolution
step. This operation is costly if the substitution r is represented by an array
a, because it requires the new fragment of substitution w = {x ← u[r]} to be
applied to each element a[i]:

for i := 1 to maxvars do a[i] := Apply(a[i], w)

This takes time that is (at the very best) proportional to the number of variables
in use.

A better way of representing substitutions takes into account the fact that
the unification algorithm builds them up by successive composition. Instead of
directly storing the function that maps variables to the terms that are substi-
tuted for them, we store a binding function from which this information can be
recovered. Like a substitution, a binding function maps variables to terms, but it
is used differently. The difference is most easily seen by comparing the operation
t[r] of applying a substitution r to a term t with the operation t〈b〉 of applying
a binding function b to the same term. Here is the definition of t[r], copied from
Section 4.4:

v [r] = r(v )

f(t1, . . . , tk)[r] = f(t1[r], . . . , tk[r]).

Compare this with the following definition of t〈b〉:

v 〈b〉 =

{

b(v )〈b〉, if v ∈ dom b
v , otherwise

f(t1, . . . , tk)〈b〉 = f(t1〈b〉, . . . , tk〈b〉).
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The big difference is in the way variables are treated. The substitution r gives
directly the term to be substituted for a variable v , but the binding function
gives a term b(v ) that needs to be subjected to substitution by b again to obtain
the final answer b(v )〈b〉. This recursive substitution stops with variables that are
outside the domain of the function b, since for them v 〈b〉 is simply equal to v .

We say a substitution r is represented by a binding function b if t[r] = t〈b〉 for
all terms t. It is not immediately obvious that all the substitutions we need can
be represented by binding functions, nor that the definition of t〈b〉 is sufficiently
well-founded to serve as an implementation of the operation t[r]. The calculations
involved in verifying this are too complicated to give here, but it is nevertheless
true that every answer substitution computed in picoProlog can be represented
by a binding function, and that the definition of t〈b〉 can be used to extract
answer substitutions from the binding functions that represent them.

The major advantage of using binding functions rather than using substitu-
tions directly is that the operation

r := r ⊲ {x ← u[r]}

that is used in the unification algorithm can be replaced by

b := b ∪ {X 7→ u},

the operation of extending the function b so that it maps x to the term u. If b
itself is represented (say) by an array, then this operation can be carried out by
changing a single element of the array, which is much cheaper than applying the
new substitution to every element. The conditions under which this represen-
tation works can be expressed in terms of the substitution r that b represents.
They are as follows: that r is idempotent, i.e., r ⊲ r = r, that x [r] = x , and
that x does not occur in u[r]. Luckily, all three conditions are met whenever this
operation is needed in picoProlog.

Another advantage of binding functions is that the operation b := b∪{x 7→ u}
is reversible by removing x from the domain of b again, an operation we may
write as

b := b\{x}.

If b is represented by an array, this corresponds to resetting the appropriate
element of the array to a null value.

In the algorithm for depth-first search developed in Chapter 15, we kept a
substitution in each stack frame, so that the current answer substitution could
be restored to its former value on backtracking. The fact that extending a bind-
ing function is a reversible operation makes this unnecessary, and we need keep
only the current answer substitution itself. If we need them, previous answer
substitutions can be recovered by undoing the intervening binding operations,
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provided we keep a record of which variables have been added to the binding
function at each stage. In picoProlog, this set of variables is recorded in a special
stack called the trail.

Keeping only one answer substitution means that we need to represent only
a single binding function b. This means that b can be stored by having a single
term-valued field val in the record for each variable v . If v is in the domain of
b, then this field contains b(v ); otherwise it contains nil .

16.3 Renaming

So far, we have been ignoring the problem of renaming the variables in program
clauses. Before a clause can be used in a resolution step, its variables must be
renamed, so that they are different from the variables that have appeared in
earlier steps of the derivation. This is particularly obvious if the same clause is
used more than once in a derivation, because without renaming the variables in
the clause would have to take the same values each time the clause was used.

A naive way of implementing renaming would be to copy out each clause before
it was used, systematically replacing each variable with a fresh one. This would
be time-consuming, taking a time that was proportional to the size of the clause.
What is worse, the effort of copying out the clause might be completely wasted,
because the head of the clause might fail to match the current goal, causing the
resolution step to fail and the clause to be discarded immediately.

We need a way to implement renaming without copying, with a cost that is
proportional to the number of different variables in the clause, rather than the
size of the whole clause. This is achieved by the following plan: before saving a
clause as part of the program, we replace all its variables by numbered markers,
represented by nodes with kind = ref . For example, the familiar clause

append(x :a,b,x :c) :− append(a,b,c)

would be stored as

append(@1:@2, @3, @1:@4) :− append(@2, @3, @4),

where the symbol @i means a ref node with index = i. To make a renamed
variant of a clause stored in this way, we make an array of n fresh variables
(where n is the number of variables in the original clause), and pair it up with
the stored form of the clause.

Storage for this array of fresh variables can conveniently be allocated as part
of a stack frame, since renaming always takes place as part of a resolution step
that creates a new frame. The local variables are elements of an array local that
we now add to each stack frame. Thus a variant of the clause is represented by
a pair (c, f), where c is the stored skeleton of the clause – with ref nodes in
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place of the variables – and f is the address of a local stack frame that contains
the fresh variables f↑.local [1], . . . , f↑.local [n]. Creating such a pair is relatively
cheap, since the skeleton can be shared by all instances of the clause.

Using clauses that are represented by (c, f) pairs requires a change throughout
the interpreter. Every clause, and every term that may be part of a clause, must
be accompanied by a pointer to the stack frame that contains its variables. Parts
of the interpreter such as the unification algorithm, or the subroutine that prints
out a term, need a frame pointer as an extra argument. Whenever they encounter
a ref node, they look up the corresponding variable in the stack frame and use
that instead.

A problem arises when a term that is part of a clause is to be assigned as the
value of a variable, because we have not provided space to store the frame that
goes with the term. There are two solutions to this problem: one is to add a field
to each variable for storing the frame part of the (c, f) pair. This approach is
called ‘full structure-sharing’. Its advantage is that it is never necessary to make
a copy of a term, but making it work well requires a careful analysis of the Prolog
program to determine which variables need space on the global stack, and which
can exist purely on the local stack.

We shall adopt the other approach, called ‘copy-on-use’. In this scheme, vari-
ables have only a single field that contains a term. If a term that comes with
a frame pointer is to be assigned to the variable, it is necessary to make a copy
of the term in the global stack, with ref nodes replaced by the actual variables
from the stack frame. This approach requires some copying of terms, but for
many programs it is as effective as full structure-sharing, without the need for a
complex analysis of the Prolog program.

16.4 Printing terms

The subroutine PrintTerm prints a readable representation of a term. It nicely
illustrates the combined effect of our two mechanisms for representing substitu-
tions, using binding functions and val fields to represent answer substitutions,
and using skeletons and frames to implement renaming. This subroutine is used
by the picoProlog system to print the answer substitution after execution of a
goal has succeeded, by printing each variable that appeared in the goal together
with its image under the answer substitution.

Figure 16.2 shows a simplified version of PrintTerm that prints all compound
terms using the basic notation f(t1, . . . , tn). The version incorporated into pico-
Prolog itself is more complicated, because it attempts to use notations like infix
‘:’ and ‘=’ for appropriate terms, and to display strings in double quotes rather
than as lists of characters.

Like many procedures that manipulate terms, PrintTerm uses the function
Deref to handle substitution and renaming. The name of this function reflects
that fact that it ‘dereferences’ terms by following the pointers associated with
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procedure PrintTerm(t: term; e: frame);
var t1 : term

begin

t1 := Deref (t, e);
case t1↑.kind of

func :
PrintCompound(t1 , e);

int :
write(t1↑.ival : 1);

chrctr:
write(’’’’, t1↑.cval , ’’’’);

cell:
PrintVar(t1 )

end

end;

procedure PrintCompound(t: term; e: frame);
var f : symbol ; i: integer ;

begin

f := t↑.func;
WriteString(name(f));
if arity(f) > 0 then begin

write(’(’);
PrintTerm(t↑.arg[1], e);
for i := 2 to arity(f) do begin

write(’, ’);
PrintTerm(t↑.arg[i], e)

end;
write(’)’)

end

end;

Figure 16.2: Code for printing terms

cell and ref nodes. The arguments to Deref are a term and a frame. Its result
is also a value of type term that represents the same term as the arguments, but
the result is never a ref node, and if it is a cell node, then its val field is nil ,
so it represents a variable that is not affected by the current answer substitution.
Thus the rest of the code for PrintTerm need not be concerned with renaming
variables and applying the answer substitution.

Once Deref has been applied to the argument t, we can examine its kind

field to determine what kind of term it is. Integers and characters are easy to
print. Compound terms are printed by the PrintCompound routine, which calls
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function Deref (t: term; e: frame): term;
var t1 : term

begin

t1 := t;
if t1↑.kind = ref then

t1 := e↑.local [t1↑.index ];
while (t1↑.kind = cell) ∧ (t1↑.val 6= nil) do

t1 := t1↑.val ;
Deref := t1

end

Figure 16.3: Code for Deref

PrintTerm recursively to print each argument. Variables that survive Deref are
not affected by the answer substitution. PicoProlog prints them using names like
‘L106’ that are calculated from the address of the variable.

The code for Deref (Figure 16.3) reveals the steps that may need to be followed
in renaming variables and applying the answer substitution. First, a term may
be a ref node that refers to a variable in the frame. Because of the copy-on-use
rule, the value of a variable cannot contain any ref nodes, so the frame need be
used at most once. On the other hand, the val fields that represent the answer
substitution can make a chain of many links that must be followed before the final
value is found. These long chains can be made if several variables have been made
to ‘share’ before one of them is eventually assigned a non-variable term as value.

16.5 The trail

The depth-first search algorithm of Chapter 15 saved an answer substitution in
each frame. We have now decided to represent substitutions as binding functions,
and have observed that the operation of extending a binding function is reversible.
This means that we need keep only one answer substitution, provided we can keep
track of which variable bindings must be undone in order to return to a previous
state.

A good way to keep track of variable bindings is to add another stack, the trail,
to the interpreter. It contains pointers to variables that have become bound,
and we record the position of the stack pointer for the trail when each stack
frame is created on the local stack. When backtracking becomes necessary, the
previous binding state can be restored by popping variables off the trail stack
and resetting them until the stack pointer is back where it was when the choice
frame was created.

Items are added to the trail stack as variables become bound, and are removed
on backtracking, so the trail stack grows and shrinks in the same way as the global
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stack. In picoProlog, the trail is implemented as a linked list using space allocated
in the global stack area. Since each variable appears in the trail at most once,
the total amount of space used for the trail is at most linear in the number of
variables used in the execution.

Some variables that become bound during execution do not need to be recorded
on the trail. There is no need to record the binding of variables that have
themselves been created since the last choice point, since these variables will
be discarded when backtracking happens, and it does not matter whether they
are reset before being discarded or not. We call other variables critical. They will

survive backtracking, so they need to be recorded on the trail when they become
bound. Each time a variable becomes bound, we test whether it is critical and
(if so) record it on the trail.

When a cut is executed, the latest choice point may be removed, so that the
choice point reverts to an earlier frame. This means that variables that were
critical before the cut may no longer be critical afterwards, and part of the work
of executing a cut is to remove entries for these variables from the trail.

16.6 Unification

The unification algorithm used by picoProlog is similar to the one described
in Section 6.1, but uses recursion in place of an explicit stack to store pairs
of terms waiting to be unified. We present the algorithm here as operating on
abstract substitutions by composition, though the actual program acts on binding
functions by extension, as was described in Section 16.2.

The function Unify takes two terms as arguments, and returns a Boolean value
that indicates whether the two terms can be unified. As a side effect, the value of
the global variable answer is augmented by composing it with the most general
unifier of the two terms. The initial value of answer is also applied to the two
terms before unification, so that the statement

ok := Unify(t1, t2)

sets ok to true if t1[answer ] and t2[answer ] are unifiable, and in that case, the
final value of answer is answer0 ⊲ r, where answer0 is the initial value of answer ,
and r is a most general unifier of t1[answer0] and t2[answer0]. This dependence
on the answer variable makes our version of Unify rather specialized, but this
version is exactly the one needed in the procedure Step of Section 15.5, and it
has the efficient implementation shown in Figure 16.4.

The function begins by applying Deref to both arguments. After Deref has
done its work, the rest of the task amounts to a case analysis. If either term is a
variable, then the most general unifier simply substitutes the other term for it.
If neither term is a variable and they are not both integers or both characters or
both compound terms, they cannot be unified. Two integers or two characters
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function Unify(t1 , t2 : term): boolean;
var u1 , u2 : term;

i: integer ;
match: boolean;

begin

u1 := Deref (t1 , answer); u2 := Deref (t2 , answer);
if u1 = u2 then

Unify := true

else if u1↑.kind = cell then begin

answer := answer ⊲ {u1 ← u2 [answer ]};
Unify := true

end

else if u2↑.kind = cell then begin

answer := answer ⊲ {u2 ← u1 [answer ]};
Unify := true

end

else if u1↑.kind 6= u2↑.kind then

Unify := false

else

case u1↑.kind of

func :
if u1↑.func 6= u2↑.func then

Unify := false

else begin

i := 1; match := true;
while match ∧ (i ≤ arity(u1↑.func)) do begin

match := Unify(u1↑.arg[i], t2↑.arg[i]);
i := i + 1

end;
Unify := match

end;
int :

Unify := (u1↑.ival = u2↑.ival);
chrctr:

Unify := (u1↑.cval = u2↑.cval)
end

end;

Figure 16.4: Code for unification
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can be unified (by the identity substitution) if they have the same value, and not
otherwise. Two compound terms can be unified if they have the same function
symbol, and the arguments can be unified cumulatively, with the unifier from
the first pair of arguments being applied to the rest of the arguments before
unification, and so on. Because the answer substitution is implicitly applied to
the arguments of Unify , this cumulative effect is achieved by making a series of
recursive calls of Unify, one for each pair of corresponding arguments.

A vital element that is missing here is the ‘occur check’, that the variable v

does not occur in the term w when an element {v ← w} is added to the answer
substitution. Omitting the occur check is a tradition in Prolog implementation,
and it means that Prolog does not implement the logic of Horn clauses correctly.
This is a great weakness, but it is partly justified by the observation that the
fastest correct unification algorithms known are still too slow to be used in a
practical Prolog implementation. We want the cost of matching a pattern such
as x :a against input data such as 3:1:4:1:nil to be proportional to the size of the
pattern alone. Correct unification requires an occur check that also scans the
whole of the input data, and this data may be arbitrarily large. In the example,
before binding a to the term 1:4:1:nil , it is necessary to check that this list con-
tains no occurrences of a, and that would be bound to take proportionally more
work if the list contained 1000 elements instead of just three. This explains why
Prolog implementors find the compromise of omitting the occur check impossible
to resist.

Summary

• Substitutions are represented in Prolog systems in a way that allows effi-
cient composition of an existing answer substitution with a new substitution
component.

• Clauses are kept as skeletons, allowing their variables to be renamed simply
by allocating a frame on the stack.

• The occur check, which is needed for a correct unification algorithm, is
usually omitted in Prolog implementations for the sake of speed.



Chapter 17

Implementation notes

In this chapter are collected some notes on the parts of picoProlog that surround
and support the execution mechanism discussed in the preceding two chapters.
There is a parser that reads picoProlog programs and builds the internal struc-
tures that represent them, with a lexical analyser and symbol table, all built
using conventional compiler techniques. There are also routines that manage
the different areas of storage that are used to store and execute picoProlog pro-
grams. The purpose of this chapter is to provide information that will be useful
in projects that extend or improve the picoProlog system.

PicoProlog is implemented in a tiny subset of Pascal that avoids nested pro-
cedures and functions, procedures and functions that take other procedures or
functions as arguments, conformant array parameters, arrays indexed by types
other than integer , sets, typed file I/O, floating-point numbers, pointers, enu-
merated types, variant records, non-local goto statements and with statements.
By keeping to this small subset, the author hopes to make the program easier
to translate into other languages, and easier to understand by those who do not
know Pascal very well.

On the other hand, we extend the Pascal subset by using macros. The source
code of the picoProlog system must be passed through a simple macro processor
before it is submitted to the Pascal compiler. The primary reason for this is that
Pascal’s record and pointer types are almost useless for the kind of programming
involved in efficient implementation of Prolog. In Pascal, records have a fixed size,
and there is no alternative to the primitive storage allocation facility provided by
new and dispose. So instead of using records and pointers, most of the data in
picoProlog is kept in a big array mem . Instead of records, we allocate contiguous
segments of mem, and instead of pointers, we use indexes into the array. The seg-
ments of mem allocated for different records of the same kind can have different
sizes, provided we take care that one record does not overlap another one.

There is a big disadvantage of this decision to ignore the data structuring
features of Pascal, because in place of the usual notation p↑.val for the val field

164
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of the record pointed to by p, we are forced to write something like mem[p + 2].
This is obscure, and likely to cause bugs if the layout of records is ever changed,
especially if different kinds of record have different information at offset 2. A
partial solution to this problem would be to define a family of Pascal functions
for accessing the fields of each kind of record. For example, one of them would
be a function Val that takes a pointer value p (represented by an integer), and
returns the contents of the record’s val field, taken from the mem array:

function Val(p: integer): integer ;
begin

Val := mem [p + 2]
end;

This is a little inefficient, since each access to a field of a record would require a
function call. More seriously, it does not provide a way of changing the fields of
a record, because you cannot write an assignment like Val(p) := 3 and hope that
it will be equivalent to mem[p + 2] := 3. A better solution is to use macros. We
could define t val as a macro so that the expression t val(p) is textually replaced
by mem [p + 2] before the program is compiled. This avoids the inefficiency
of a function call, and works whether the expression appears on the left-hand
side of an assignment or one the right-hand side. For example, the assignment
t val(p) := t val(q) is textually expanded into mem[p + 2] := mem[q + 2], a legal
Pascal statement that has the desired effect.

17.1 Macros

The macro processor used for compiling picoProlog is called ‘ppp’ (for Pascal
Pre-Processor). Pascal source code for ppp is included in the distribution kit
for picoProlog. It is a simplified version of the macro processor described in
Chapter 8 of the book Software Tools in Pascal by B. W. Kernighan and P.
J. Plauger (Addison–Wesley, 1981).

A macro call looks very much like a Pascal function call: it consists of an
identifier, possibly followed by a list of arguments in parentheses. To make it
easier to distinguish macros from functions, most of the macros in the picoProlog
code have been given names that contain an underscore character. Not all Pascal
compilers allow identifiers that contain an underscore, but this does not matter,
because all macro names are eliminated during the macro processing stage before
the code reaches the Pascal compiler.

Whenever ppp finds an identifier that has been defined as a macro, it col-
lects the arguments of the macro as follows: if the identifier is immediately fol-
lowed by an left parenthesis, then ppp reads the following text without expanding

macros until it finds a matching right parenthesis. Thus the whole argument
list is a text in which left and right parentheses are properly nested. Inside the
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argument list, each argument is separated from the next by a comma that is not
enclosed in parentheses. For example, if t_arg is defined as a macro, then the
text t_arg(t_arg(p,1),i) is a macro call with arguments t_arg(p,1) and i.
The first comma does not separate two arguments because it appears inside an
inner set of parentheses.

Each macro is associated with a definition, a text that may contain the argu-

ment markers $1, $2, and so on up to $9. After collecting the arguments of a
macro, ppp replaces the whole macro call with a copy of the definition, expand-
ing each argument marker with a copy of the corresponding argument. Missing
arguments are replaced by the empty text.

Continuing the example, if the t_arg macro is defined as mem[$1+$2+2], then
the macro call t_arg(t_arg(p,1),i) will be replaced by the text mem[t_arg(p,
1)+i+2]. The fact that one of the arguments contains another macro call does
not affect the expansion process at this stage.

After the replacement has been made, ppp examines the whole text again
to look for further macro calls. It is at this point that macro calls are rec-
ognized within the replacement text of a macro, or inside the arguments of a
macro call. In the example, the nested call t_arg(p,1) is now expanded. Its
arguments are p and 1, so the call is replaced by mem[p+1+2], giving the result
mem[mem[p+1+2]+i+2]. This text no longer contains any macro calls, so it is
output as the final result of macro expansion.

In the example, the expression that results from macro expansion could be
simplified a little by replacing the sub-expression p+1+2 by p+3. This simpli-
fication is not attempted by ppp. Although the simplified expression might be
evaluated a little more quickly, the effect is not big enough to have a noticeable
effect on performance. In any case, simplifications like this one are often done
automatically by optimizing compilers, so there is some hope that the inefficiency
will be eliminated at a later stage in the compilation process.

There are two macros that are not expanded in the usual way, but are built-in
to ppp. One of these is the define macro that is used to define other macros.
It takes two arguments, and has the effect as defining the first argument as the
name of a macro, with the second argument as its definition. The t_arg macro
that we have been using as an example would be defined like this:

define(t_arg, mem[$1+$2+2])

Each call of the define macro is replaced by the empty text, so no trace of the
definition is left after macro expansion. If the same macro is defined several times,
it is the most recent definition that is used at each point. The define macro can
also be used with only one argument. The effect is to define the argument as the
name of a macro, with the empty text as its definition.

The other built-in macro is ifdef. It is called with either two or three ar-
guments. If the first argument is the name of a macro, then a call of ifdef

is replaced by its second argument. If the first argument is not the name of a
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macro, then the call is replaced by the third argument if present, and otherwise
by the empty text. It is particularly useful to combine ifdef with define. For
example, the text

define(abort, goto 999)

ifdef(turbo, define(abort, halt))

has the effect of defining abort as an abbreviation for goto 999 in most versions
of picoProlog. To install the program using Turbo Pascal, we add the definition
define(turbo) at the beginning of the program. Among other things, this causes
abort to be redefined as a call to Turbo Pascal’s built-in halt procedure.

A couple of extra rules about argument expansion should be mentioned. One
is that the special argument marker $0 is replaced by the list of all the arguments
of the macro, separated by commas. This allows a limited kind of macro with
a variable number of arguments, like the following panic macro that prints a
message and stops the program:

define(panic, begin writeln(’Panic: ’, $0); abort end)

Calls like panic(n, ’ is too large’) can be used to print a message that is
more than a simple string. It expands to the text

begin writeln(’Panic: ’, n, ’ is too large’); abort end

This provides a convenient way around Pascal’s limitations that prohibit variable-
length strings and variable numbers of arguments to procedures. Another special
argument marker is $$, which expands to a single dollar sign.

Macro calls are not expanded inside Pascal string constants or inside com-
ments delimited by curly brackets. This prevents surprises when a macro name
is accidentally used inside a string, and even makes it possible to ‘comment out’
macro definitions.

In addition to providing a more readable way to access data structures, macros
are used in the code of picoProlog to get round a few other small limitations of
Pascal. We have already seen one of these, the panic macro. Macros also let us
get round the silly restriction that labels must be numbers instead of meaningful
names. We simply define a few macros that have meaningful labels as their names
and expand to plain numbers:

define(found, 1)

define(exit, 2)

define(done, 3)

Then we can write goto found instead of goto 1. Many implementations of
Pascal allow identifiers as labels, but using macros makes this feature available
in all implementations.
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One drawback of using macros is that the compiler reads a different text from
the one that the programmer wrote, making its error messages a little more
difficult to understand. Also, if any macro calls or replacement texts contain
newline characters, then lines in the output of the macro processor may not
match up with lines in the original program text, so compiler error messages that
mention line numbers may be misleading. This can be frustrating, especially if
the error messages are otherwise unhelpful.

17.2 String handling

Standard Pascal provides only very weak facilities for handling character strings.
Many implementations of Pascal contain better facilities as extensions, but using
these extensions would make picoProlog more difficult to move from one Pascal
implementation to another. Instead, picoProlog includes its own simple collection
of routines for handling strings.

There are two representations for strings: either as a fixed-length array of char-
acters (a tempstring), or as a segment of the global array charbuf (a permstring).
The tempstring representation is used to store the characters of a string as they
are input, and the function SaveString (line 98) can then be used to allocate a seg-
ment of the charbuf array and turn the string into a permstring, where the string
is represented by the index in charbuf of its first character. In both representa-
tions, the end of a string is indicated by a special character endstr. In the ascii

character set, endstr can be defined as the otherwise unused character chr(0)
with numeric value 0.

The technique of allocating segments of a large character array is useful be-
cause it makes it possible to store long strings, without wasting space if the
strings turn out to be short. If most strings are stored in the charbuf array, then
we can afford to be generous with the maximum length of a tempstring, and this
is the only fixed limit on the length of a string.

17.3 Memory allocation

Space for the data structures described in previous chapters is allocated from
three parts of a single large array mem. The areas are defined by the global
variables hp, lsp and gsp:

• The heap area is used to store the clauses of a picoProlog program. It
extends from mem[1] to mem [hp]. During execution of a goal, the program
is fixed and so the size of the heap does not change, but the heap grows
upwards when the program is being input.

• The local stack area is used for stack frames and their local variables. It
extends from mem[hp + 1] to mem [lsp], and grows upwards.
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Figure 17.1: Layout of the mem array

• The global stack area is used for terms constructed during execution of a
goal. It extends from mem[gsp] to mem[memsize ] and grows downwards.

The portion of the array from mem[lsp +1] to mem[gsp−1] is free, and both the
stacks can grow by occupying parts of the free portion at opposite ends. Since
the heap does not change as a goal is executed, there is no need for a free space
between it and the local stack.

As the picoProlog program runs, both stacks expand and contract. The local
stack expands as frames are added for successive resolution steps, and contracts
when a clause body is completed determinately. The global stack grows as new
terms are created, and both stacks contract on backtracking. Most of the time,
this stack-like behaviour is enough to ensure that some free memory is always
available. However, if the stacks ever grow so large that the free area vanishes,
then execution must stop for lack of memory space.

If this happens, one last possibility remains. Some of the space that has
been allocated on the global stack may store terms that are no longer needed,
because the local variables that pointed to them have been discarded. PicoProlog
includes a garbage collector that traces pointers to determine which storage is
really needed. It reclaims any ‘garbage’ space that is no longer needed, and makes
it available for re-use by compacting together all the needed objects in the global
stack area. More details of the garbage collector appear in Chapter 18.
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17.4 Symbol table

The symbol table contains an entry for each identifier or variable name used in
the picoProlog program. It is organized as a hash table, with collisions handled
by searching adjacent elements of the table. The symbol table has two purposes.
One is to allow symbols to be represented in the rest of picoProlog by simple
numbers rather than the strings that are their names, so that comparing sym-
bols for equality is a cheap operation. Each identifier appears just once in the
symbol table, so its index can be used as a unique representation of the identi-
fier. Two identifiers are equal if and only if they occupy the same entry in the
symbol table.

The other purpose of the symbol table is to store certain information about
each identifier. A function or relation symbol has a fixed number of arguments
that is kept in the arity field of its entry in the symbol table. Relation symbols
either have a list of clauses stored in the proc field, or have an action code that
identifies them as built-in relations.

The primary interface to the symbol table is the function Lookup (line 347),
which takes a name represented as a tempstring and returns the index of the
entry for that name in the symbol table, creating a new entry if necessary. It first
computes a hash function from the string, and this determines the starting point
for a sequential search of the table. The search finishes when it reaches either
the desired symbol, or a vacant slot, indicated by a name field that contains −1
instead of a valid permstring value. If the symbol is not found, then it is entered
into the vacant slot.

Good performance for this kind of hash table depends on having plenty of va-
cant records where unsuccessful searches can be stopped, so Lookup does not allow
the table to become more than hashfactor per cent full, where hashfactor

is about 90. It is better to stop immediately than to let the system grind slowly
to a halt because the table is too full.

The procedure InitSymbols (line 395) puts all the built-in symbols of picoProlog
into the hash table using the same look-up mechanism. A few moments could
be saved each time picoProlog starts by pre-computing the locations of these
symbols, but the time saved would not be worth the risk of getting the locations
wrong.

17.5 Lexical analysis

The parts of picoProlog that read the input program are built using similar
techniques to those used in most compilers. The job is split into two parts: lexical

analysis, which divides the input into meaningful groups of characters called
tokens, and syntactic analysis or parsing, which assembles the stream of tokens
into clauses, checking them against the grammar of the picoProlog language and
building the internal structures that represent the clauses.
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The job of procedure Scan (line 693) is to break the picoProlog program into
tokens. For example, if the program begins with the clause

append(X:A, B, X:C) :- append(A, B, C).

then the first few tokens will be

append ( X : A , B , X : C ) :- ...

A token may consist of an identifier like append or X, or a punctuation symbol of
one or more characters, like ( or :-. The spaces between tokens are discarded as
the input is split into tokens, as are any comments that appear in the picoProlog
program.

When Scan is called, it reads the next token from the input and sets the global
variable token to a value that indicates what kind of token it is. Continuing, the
example, if Scan were called repeatedly, the values returned in token would be

ident , lpar, varble , colon , varble , comma, varble , comma,
varble , colon , varble , rpar, arrow , . . .

The value of token indicates only the kind of token that was found, so all identi-
fiers are represented by the same value ident ; but there is another global vari-
able tokval that Scan fills with the symbol value associated with the identifier.
Variables (starting with an upper-case letter), numbers, character constants and
strings are treated in similar ways. Each class is represented by a single value of
token, but there are other global variables that return more precise information
in each case. The value of a number or the ascii code of a character constant
are put in tokival , and there is a tempstring buffer called toksval that holds the
actual characters of each string constant. The implementation of Scan is lengthy
but fairly simple. We can usually tell from the first character of a token what
kind of token it is, so Scan contains a big case statement that examines one
character from the input. Each arm reads the remaining characters of a token,
setting token and the other global variables appropriately.

It is convenient to let the lexical analyser read the input file as a simple stream
of characters, rather than as the sequence of separate lines that is provided by the
input facilities of Pascal. To perform the translation (which probably reverses a
translation done by the Pascal run-time library), there is a procedure GetChar

(line 232). The end of a line is marked by a special character endline , defined
to be the ascii code for newline, and the end of an input file is indicated by the
special character endfile .

GetChar also deals with switching between input from a file and input from
the keyboard, and allows a single character to be ‘pushed back’ onto the input
stream using the procedure PushBack (line 242). Sometimes the lexical analyser
cannot recognize the end of a token without seeing the next character beyond it.
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For example, the end of a number cannot be recognized except by seeing that the
following character is not a digit. In such cases, the PushBack mechanism can
be used to save the extra character to be read again as part of the next token.

17.6 Syntax analysis

The job of parsing or syntactic analysis is to take the stream of tokens produced
by lexical analysis, check it against the grammar of the language, and build the
internal data structures that represent each clause in the program. The method
used in picoProlog is called recursive descent, because it is based on a set of
mutually recursive procedures, each responsible for recognizing a certain class of
phrases. This is the easiest way to construct a parser by hand, without the aid of
special software tools. Since the picoProlog language has a fairly simple syntax,
it is quite easy to build a parser from scratch in this way.

In the method of recursive descent, the parser contains one procedure for each
kind of phrase in the grammar given in Section 14.1: one procedure ParseClause

for clauses, another called ParseTerm for terms, one called ParseFactor for fac-
tors, and so on. The job of each procedure is to ‘consume’ the tokens that make
up one instance of its kind of phrase. The procedure is called in a situation where
the token variable contains the first token of a phrase. It fetches more tokens by
calling Scan, and when it returns, token contains the first token after the phrase.

Just as a phrase belonging to one class is made up from elements that are
phrases of other kinds, so the analysis procedures call each other in a mutu-
ally recursive way to analyse sub-phrases. For example, a compound term may
have arguments that are themselves terms, so the procedure ParseCompound

calls ParseTerm to analyse each argument. Each of these arguments may be a
compound term itself; if so, then ParseTerm calls ParseCompound recursively
to analyse it. The pattern of recursive calls in the parser exactly mirrors the
pattern of recursion on the grammar it is designed to recognize.

Here is a simple implementation of the ParseCompound procedure:

{ ParseCompound – parse a compound term }
procedure ParseCompound ;
begin

Eat(ident);
if token = lpar then begin

Eat(lpar);
ParseTerm;
while token = comma do

begin Eat(comma); ParseTerm end;
Eat(rpar)

end

end;
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This procedure corresponds to the grammar rule

compound ::= ident [ ‘(’ term { ‘,’ term } ‘)’.

Each item in the rule that corresponds to a single token has been replaced by
a call to the procedure Eat (line 851), which checks that the current value of
token is as expected, and uses Scan to get the next token. The two occurrences
of term have been replaced by calls to the ParseTerm procedure. The square
brackets (meaning an optional phrase) correspond to an if statement, and the
curly brackets (meaning a repeated phrase) correspond to a while loop in the
analysis procedure. In both cases, the condition is expressed in terms of the next
token from the input.

There are two differences between this way of building parsers and the trans-
lation of grammar rules into logic programs that we discussed in Chapter 10.
First, the sequence of tokens that makes up the input is not represented by an
explicit list, but by the sequence of values taken by the token variable as the
Scan procedure is called repeatedly. Second, Pascal has nothing corresponding
to the backtracking of Prolog, so each decision about which rule to use has to
be made irrevocably, knowing only the first token of a phrase. For example, in
ParseCompound , the decision whether the term has arguments is made by test-
ing whether the next token is an opening parenthesis, and the decision whether
there are further arguments is made each time by testing whether the next token
is a comma. Not all grammars allow all necessary decisions to be made just by
looking at the next token, but picoProlog (by design if not by accident) does
allow this, making recursive descent an appropriate choice of analysis method.

Full Prolog implementations typically use a different parsing method called
operator precedence parsing, because the full syntax of Prolog includes many
kinds of infix operators, and even allows the Prolog programmer to define new
operators. It is difficult to handle this using recursive descent alone.

There are a couple more things to explain about the parser in picoProlog:
how it builds the internal structures that represent the clauses it has read, and
what happens if there is a syntax error in the input. The data structures are
built by making each analysis procedure into a parameterless function that re-
turns a representation of its phrase. Each function receives representations of its
sub-phrases as the results of the other analysis procedures it calls, and receives
information about identifiers and constants from the lexical analyser in the global
variables tokval , etc. It uses these to construct the representation of the whole
phrase, which it returns as its own result. For comparison with the simple code
above, the full version of ParseCompound appears at line 863 of Appendix C.

The parser builds each clause in the heap area, and replaces the variables in the
input clause with ref nodes, ready for the clause to be used with the renaming
scheme explained in Chapter 16. The procedure VarRep (line 811) manages a
little table of variable names that gives the correct index for each variable in the
present clause. If the clause is a goal, this table is saved during the execution of
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the goal, and used by the function ShowAnswer (line 821) to display the answer
substitution in the familiar ‘var = value’ form.

If an input clause contains syntax errors, the parser adopts a simple strategy
for recovery, implemented by procedures ShowError (line 665) and Recover (line
675). After printing an error message, they set a flag errflag to prevent a cascade
of further error messages, then discard characters up to the next full stop (or,
if input is from the keyboard, the end of the line). The token variable is set to
dot , the code for a full stop.

To make this strategy work, the analysis routines are written in such a way
that they will not scan past a full stop. The result is that all the active analysis
procedures will exit without consuming any more tokens, and control returns to
the procedure ReadClause (line 963), the outermost layer of the parser. Here
errflag is reset, and the process of reading a clause is tried again. This recovery
strategy is not perfect, because it discards the whole of any clause that contains
an error, and it can be confused by stray full stop, especially full stops inside
strings, but it is easy to implement and fairly effective in practice.

17.7 Trail

The trail stack is kept as a linked list using storage allocated from the global
stack area. The global variable trhead points to the top item on the stack, and
each item t contains a pointer x reset(t) to a variable that has become bound,
and a pointer x next(t) to the item below it.

As discussed in Section 16.5, a variable need be added to the trail only is it
is critical, that is, if it will still exist after backtracking. This observation is
important for efficient use of storage, because a large fraction of bindings affect
only ‘local’ variables of a clause that will be thrown away if the clause fails. The
test whether a variable is critical is implemented in the macro critical (line 988)
by comparing its address with the values of the local and global stack pointers
at the last choice point.

There are three procedures that act on the trail. Save (line 990) tests if a
variable is critical, and if so adds it to the trail; it is called whenever a variable
becomes bound. Restore (line 999) undoes the bindings that have been recorded
on the trail since the last choice point, restoring all variables to their previous
state. Commit (line 1009) is called as part of executing a cut, and removes from
the trail any variables that are no longer critical. This is necessary because the
space occupied by non-critical variables may be reclaimed as part of success-
popping, and leaving them on the trail would result in dangling pointers.



17.8 Unification 175

17.8 Unification

The unification algorithm is implemented in the function Unify (line 1083). It
is exactly the algorithm explained in Section 16.6, but there are a few details of
the coding that should be explained here.

To allow for success-popping, it is important that no variable is ever bound to
an object with a shorter lifetime. Variables on the global stack must not point
to items on the local stack, and no variable on either stack may point to other
items nearer to the top of the same stack. Consequently, if two variables are to be
bound together, it is necessary to compare their lifetimes and bind the one that
will be discarded first. This is done in procedure Share (line 1075), which uses a
tricky macro lifetime to compute a numeric measure of an object’s lifetime.

17.9 Interpreter

Procedure Execute (line 1306) and its subroutines implement the depth-first
search procedure discussed in Chapter 15. It incorporates a couple of refinements
that are described in more detail in Chapter 18, but we give a brief summary
here.

The first refinement is that the clauses that are tried against a goal are not all
the clauses for the relevant relation, but only those that pass an initial ‘filtering’
test, chosen so that clauses that fail the test are certain not to solve the goal.
This is implemented by a function Search that takes a goal and a list of clauses,
and discards from the beginning of the list any clauses that fail the test. The
Search function is used in procedure Resume (line 1279) to compute the initial
procedure for a goal, and also in procedure Step (line 1227) to compute the list
of clauses to be used on backtracking.

The second refinement is that a different method can sometimes be used to
solve the last subgoal in a clause body. This method, called the tail recursion
optimization (TRO), allows some programs to be executed in less storage space
than would otherwise be needed. The refinement is implemented by adding a
test to the Step procedure that detects when TRO can be used, and a procedure
TroStep (line 1191) that carries out a resolution step using the improved method.

The main loop of the execution mechanism is in procedure Resume (line 1279).
It is made into a separate procedure because the execution mechanism is called
recursively as part of the implementation of the built-in relation not.

17.10 Built-in relations

Each built-in relation is implemented as a Boolean function with no parameters.
When one of these functions is called, the arguments of the relation are available
in the global array av . The job of the Boolean function is to return true if the
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relation is true of these arguments, and false if not; the function may also set the
values of variables in the arguments. If the function returns true, it should set
current to point to the next subgoal to be solved, usually g rest(current). There
follow brief notes on the implementation of each built-in relation:

• The cut symbol ! is implemented in DoCut (line 1351) by resetting the
choicepoint variable to the value it had when the calling frame was created,
thereby freezing all choices made since that time. The Commit operation
is used to discard from the trail any bindings that are no longer critical.

• If p is a valid literal, then the subgoal call(p) behaves as if p itself appeared
in place if the subgoal. This behaviour is implemented in DoCall (line 1360)
by a trick, using a dummy clause whose body consists of a single variable.

• Negation as failure, notp, is implemented in DoNot (line 1376) by calling
the execution mechanism recursively to solve p. If the recursive call ends in
failure, then DoNot returns true; otherwise, it commits to the first solution
and returns false.

• The arithmetic relations plus and times are implemented by DoPlus (line
1408) and DoTimes (line 1430). Each involves a case analysis according to
which arguments are known integers and which are unknown, and in each
case, the unknown arguments are calculated from the known ones.

• The relation x = y is implemented in DoEqual (line 1456) by unifying x

and y . If this succeeds then the unifying substitution becomes part of the
answer substitution of the executing goal. This gives exactly the same effect
as if the relation were defined by the clause

x = x :− .

so making it a built-in relation is purely a matter of convenience.
• The tests integer(x ) and char(x ) are implemented by DoInteger (line 1463)

and DoChar (line 1470). They are implemented by a straightforward test
of the t kind field of the argument.

17.11 Main program

The main program of picoProlog deals with the command-line arguments and the
opening of input files. Pascal provides no standard way of doing these things,
so the main program uses a small collection of procedures that are not standard
Pascal, but can be implemented easily with most compilers. The parameterless
function

function argc: integer ;

should return the number of command-line arguments, including the program
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name. Thus if picoProlog were started with the command

$ pprolog motel.pp

then the argc function would return 2. The arguments themselves are accessed
using the procedure

procedure argv(i: integer ; var arg : tempstring);

This should store the string that is argument number i in the arg parameter,
terminating it with the character chr(0). Arguments are numbered from zero,
with argument number zero being the program name.

To open a named file for reading, the main program uses the function

function openin(var f : text ; var name: tempstring): boolean;

This function is passed the name of the file (terminated by chr(0)) as its name

argument. It should attempt to open the file for reading and associate it with
the Pascal file variable f , returning true if the file is successfully opened. If the
file cannot be opened, the program should not crash, but openin should return
false.

The main program uses these procedures in a straightforward way to read in
the clauses from each of the files named on the command line, and finally reads
a sequence of goals from the keyboard.



Chapter 18

Interpreter optimizations

In this chapter, we describe briefly three improvements that are incorporated in
the picoProlog interpreter:

• Garbage collection for the global stack recovers storage space that has be-
come inaccessible, but is not recovered by the usual stack-like behaviour of
the storage mechanism.

• Indexing quickly discards from a procedure those clauses that ‘obviously’ fail
to match a goal literal. This saves the time needed to carry out unification
for those clauses, and enables the interpreter to detect that some goals are
determinate without the help of cuts.

• Tail recursion is treated specially. When the last literal in a clause body
is reached, it is sometimes possible to reclaim the stack space used by the
clause before executing the literal. This allows recursive relations of a simple
form to be executed in constant space.

The three refinements work well together: indexing makes more goals determi-
nate, so their working space can be recovered early by the garbage collector, and
it also makes more tail calls amenable to special treatment. These refinements
are important, because they allow a Prolog system with a finite amount of storage
to execute programs that have a simple pattern of recursion without any limit
on the recursion depth. Broadly speaking, if a program could be written with a
loop in a conventional programming language, the same program can naturally
be written in Prolog in such a way that a Prolog system with these refinements
can execute it in constant space.
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18.1 Garbage collection

As picoProlog programs are executed, much of the storage that is allocated is
reclaimed by the usual process of contracting the stacks on backtracking or deter-
minate success. But some storage may not be reclaimed in this way, even though
it has become inaccessible to the program. An example is a program like this:

translation(x , z) :− analyse(x ,y ), !, synthesize(y , z).

All the global stack space allocated during execution of analyse(x ,y ) that is
not part of the immediate result y will no longer be accessible after the cut,
because even backtracking cannot then return to analyse(x ,y ). The purpose of
the garbage collector is to reclaim this storage.

The garbage collector is the most subtle and complicated part of the picoProlog
system. Because it has to analyse the whole network of pointers in the system
state, it breaks all the abstraction boundaries that keep other parts of the system
simple. It must do so, because it must discover what parts of the allocated storage
are accessible from any part of the state.

Another source of complexity, even compared to other garbage collectors, is
the kind of garbage collection that Prolog demands. We do not want to lose the
advantages of stack-like reclamation of global stack space on backtracking, so the
garbage collector must work by compacting all the accessible storage in a way
that preserves the order of data in memory. This makes the task of the garbage
collector more difficult than it would be if it simply linked the garbage into a free
list, as some storage allocation schemes do.

For garbage collection to work, it must be possible to find all the pointers
that lead into the global stack from outside. These pointers may be stored in
the interpreter’s ‘register’ variables such as call or trhead , or in the fields of a
local stack frame. During a resolution step, pointers into the global stack are also
held in the local variables of interpreter procedures like Unify. This would cause
great problems if we allowed garbage collection to take place in the middle of
a resolution step, especially because items in the global stack are moved during
garbage collection. Consequently, we arrange that the garbage collector is called
only at ‘quiet’ times, when the only pointers into the global stack are held in
interpreter registers or local stack frames.

The main loop of the interpreter includes a test whether the amount of free
storage left is less than a certain threshold gclow . If so, the garbage collector
is called before the next resolution step begins. If storage runs out during a
resolution step, execution of the goal is abandoned without much grace. This
scheme is reasonable, because the amount of storage consumed during a resolution
step is bounded by the size of the largest program clause, for global stack space
is consumed by copying out parts of the clause. In theory, we could calculate
this bound for each Prolog program and use it in place of the constant value
gclow , but picoProlog does not bother with this. When the garbage collector
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runs, it must find at least gchigh words of free space, otherwise execution stops
immediately. This prevents the situation where a program calls the garbage
collector many times in quick succession before finally running out of space.

The garbage collector is implemented as the procedure Collect (line 1668),
and is based on the ‘LISP 2 garbage collector’ described in the answer to an
exercise on page 602 of the book Fundamental Algorithms by Donald E. Knuth
(Addison–Wesley, 1973). Its work is divided into four phases:

1. Mark all accessible storage in the global stack.
2. Compute the new location of that each accessible block will have after

storage has been compacted.
3. Adjust internal and external pointers to global stack items to point to the

new locations of the items.
4. Compact the accessible storage towards the top of the mem array.

During phase 1, the accessible storage is marked by modifying the t kind field
of each node. During phase 2, the distance that a node will move relative to
the bottom of the stack is stored in a special field t shift that is added to each
node for use by the garbage collector. This information is used in phase 3 to
adjust pointers to the node. Further details of the implementation are contained
in comments in the code.

18.2 Indexing

In solving a goal literal P , the usual method is to take the list of clauses for
same relation as P (the procedure for P ), and try them in sequence until a clause
matches P . The other clauses may be tried later after backtracking. The indexing
optimization works by filtering out from the procedure some of the clauses that
do not match, so increasing the likelihood that each of the remaining clauses does
match. There are two benefits in this: first, the test applied in filtering the list
of clauses is much cheaper than allocating a frame and performing unification,
so time is saved if some of the clauses for a relation can be filtered out. The
second benefit is obtained after a matching clause has been found. If there are
no remaining alternatives in the procedure, there is no need to mark the stack
frame as a choice point, and no need to visit it again on backtracking. Filtering
the list of clauses makes it more likely that there will be no alternatives that have
not been discarded, and so increases the chance of avoiding backtracking.

An implementation of indexing requires a quick and effective test that com-
pares a goal literal with the head of a clause. This test must say ‘yes’ when the
two literals can be unified, but may say ‘no’ otherwise. It does not matter much
if the test says ‘yes’ when the two literals cannot actually be unified, but it must
not say ‘no’ if they can be unified. Since all the clauses in a procedure share the
same relation symbol as the goal, it is pointless to use the relation symbol for
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filtering. Instead, picoProlog (and many other Prolog implementations) filter the
clauses according to an index computed from the first argument of the relation.

The function Key (line 1120) computes an integer index key(t) from a com-
pound term t. The function is chosen so that if two terms t1 and t2 are unifiable
then key(t1) = key(t2) or key(t1) = 0 or key(t2) = 0. This is achieved by mak-
ing key(t) depend on the outermost function symbol in the first argument of t,
and putting key(t) = 0 if the first argument of t is a variable. If a goal literal
and a clause head are mapped to different non-zero integers by the key func-
tion, then they are not unifiable, so there is no point in trying to use the clause
to solve the goal. Each clause c has the key value of its head stored in a field
c key(c), and the function Search (line 1143) uses these values to find the first
clause in a procedure that is not discarded by indexing. Search is used both to
find the first clause to try when a new goal is adopted, and also to determine
the list of clauses that are saved in a stack frame for use on backtracking. The
effect of using Search in this way is the same as filtering the whole procedure
all at once.

It is unfortunate that the choice of key function introduces an asymmetry
among the arguments of a relation by treating the first argument specially, but
this fits in well with the natural programming style in which the first few ar-
guments of a relation are its usual inputs and the last few are its outputs. A
relation that is defined by recursion on lists will often have a clause that applies
when the first argument is nil , and one that applies when the first argument is
x :a. Indexing on the outermost function symbol allows picoProlog to choose the
right clause each time, and avoid backtracking to try the other clause.

18.3 Tail recursion

When the interpreter executes the last literal in a clause body, the resolution
step replaces the literal by the body of the matching clause. Normally, this is
represented by adding a new frame to the stack, with the current frame as its
parent. The new frame contains the clause body as its goal, and the current
frame contains no further subgoals to be solved. If execution of the clause body
succeeds, the next subgoal to be solved will come from the parent frame of the
original frame.

Under certain conditions, it is possible to release the storage occupied by
the current frame before starting to solve the subgoals in the new frame, and
to arrange that the new frame shares the same parent as the current frame.
If execution of the subgoals in the new frame succeeds, control will then pass
directly to the parent of the current frame. This is known as the tail recursion

optimization.
The advantage of this optimization is particularly great in the case of relations

that are defined in a ‘tail recursive’ way, that is, where the only recursive calls
in the definition appear as the last literals in clause bodies, as in the following
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definition of revapp, taken from Section 13.3:

revapp(nil ,b,b) :− .
revapp(x :a,b,c) :− revapp(a,x :b,c).

In this definition, the recursive call of revapp appears as the only literal in a
clause body, so it is certainly the last one. Reversing a list with n elements leads
to n recursive calls of revapp, and normally this would lead to n frames being
created on the local stack. With the tail recursion optimization, however, the first
of these frames is released at the same time that the second one is created, and
the second one is released at the same time that the third one is created, and so
on. The program needs no more than a certain fixed amount of local stack space,
however long the list that is being reversed. The tail recursion optimization has
turned the recursive behaviour of the program into a loop-like behaviour.

The tail recursion optimization cannot always be used when the last literal
of a clause is being solved, because sometimes the frame that would be dis-
carded might still be needed later for backtracking. So before deciding to use
the optimization, the interpreter must check that both the calling relation and

the relation being called are free from non-determinism. If there are still clauses
for the calling relation that have not been tried, then backtracking may return
to the current frame to try those clauses. Also, if there are alternatives to the
clause that is being used to solve the tail call, then backtracking will return to
the current frame to find the goal to which those alternatives should be applied.
In picoProlog, a macro tro test (line 1180) checks that these conditions are satis-
fied before the tail recursion optimization is used. It also checks that the current
frame is not the bottom one on the stack, because the variables in that frame are
needed to print the answer.

If the test succeeds, then the current frame will not be visited by backtracking.
Before discarding it, we also need to make sure that there are no outside references
to its local variables. Because the current frame is on top of the stack, and links
between variables are always directed downwards in the local stack, we can be
sure that any references to the current frame must come from the new frame. We
can avoid such references by a dirty trick: before unifying the current subgoal
with the head of the clause, we slide the current frame upwards on the stack,
and allocate space for the new frame underneath it. That way, any references
from one frame to the other will lead from the old frame to the new one, and
the old frame can then be discarded safely. This rather convoluted manoeuvre is
accomplished by the procedure TroStep (line 1191).

In an interpreter, the tail recursion optimization costs some time, because it
is necessary to test whether it can be applied, and if so, to make the complex
moves needed to discard the old frame early. In comparison, the time benefit of
going straight from the new frame to the parent of the current frame on success
is negligible. The real benefit of this optimization is the space it saves, because
it allows simple programs – those that could be written as loops in conventional
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programming languages – to be executed in constant stack space. In a Prolog
implementation based on a compiler, the benefit of the tail recursion optimization
is even clearer, because the test whether it can be applied can be carried out once
and for all by the compiler, and need not be repeated every time a relation is
used by the running program.

Additional space may be saved in an implementation that also includes a
garbage collector, because storage on the global stack can be reclaimed as soon
as the stack frames that reference it have been discarded. The tail recursion
optimization also combines well with indexing, because part of the test whether
the optimization can be applied involves checking that there are no untried clauses
for either the calling or the called relation, and indexing makes this more likely
by discarding alternatives earlier.

18.4 A concluding example

The three refinements we have described work well together. For example, let us
consider the problem of computing the sum of a list of numbers. We can define
a relation sum(a, s) that holds if s is the sum of list a:

sum(nil , 0) :− .
sum(x :a, s) :− sum(a, s1), plus(x , s1, s).

Using the techniques of Chapter 13, we can transform the program into the
following tail recursive form:

sum(a, s) :− sum1 (a, 0, s).

sum1 (nil , s0, s0) :− .
sum1 (x :a, s0, s) :− plus(s0,x , s1), sum1 (a, s1, s).

The relation sum1 is defined so that sum1 (a, s0, s) holds if s is equal to s0 plus
the sum of the elements of a. The transformed program is called tail recursive
because the recursive call of sum1 occurs at the end of its clause.

Indexing of the first argument of sum1 allows picoProlog to determine which of
the two clauses for sum1 applies to each goal, and calls to sum1 execute without
backtracking and without creating any choice points, even without including
any cuts in the program. Because there are no choice points, the tail recursion
optimization applies, and the program executes in a constant amount of stack
space: the stack space needed to sum a list of 1000 elements is no bigger than that
needed to sum a list of 3 elements. Each recursive call of sum1 replaces one stack
frame by another one that differs only in the values of its variables, as a subgoal
of the form sum1 (x :a, s0, s) is replaced by one of the form sum1 (a, s1, s), where
s1 = s0 +x . Finally, after a call to sum has succeeded, the associated frames are
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popped from the local stack, and the only global stack data that is accessible is
the result. Any space allocated to hold intermediate results can be reclaimed by
the garbage collector.

If we were to write a Pascal function to sum a list of numbers, it would probably
look rather like this:

function Sum(a0: list): integer ;
var a: list ; s: integer ;

begin

a := a0; s := 0;
while a 6= nil do begin

s := s + head(a);
a := tail(a)

end

end;

In each iteration of the loop, the values of variables s and a change as follows: the
first element of a is added to s, then the first element is removed from a. This is
exactly the same change as takes place in the Prolog program as one stack frame
is replaced by another.

What we have just shown is that a simple Prolog program for the same task
is executed in essentially the same way. The difference in efficiency between the
Pascal program and the picoProlog program is the difference between a program
that is compiled and one that is interpreted. With a Prolog compiler that uses
the refinements discussed in this chapter, this difference can be eliminated too,
and Prolog programs can run at the almost the same speed as a Pascal program
for the same problem.
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In conclusion

In this book, we have looked at logic programming from three complementary
points of view: as a mathematical theory based on logic, as a medium for express-
ing the solutions of problems and as a programming language that is implemented
on computers. Each of these three points of view is important in the history of
logic programming.

The mathematical theory of logic programming draws on concepts from math-
ematical logic, and the theorems of soundness and completeness for Horn clause
resolution mirror results that can be proved using similar methods in the more
general setting of first order predicate calculus. It was Alan Robinson who first
discovered that the single rule of Resolution was complete for the clausal form
of predicate calculus, and invented the unification algorithm that is an essential
part of resolution. These results were reported in the classic paper ‘A machine-
oriented logic based on the resolution principle’. (Details of books and papers
cited here may be found in the Further Reading section below.)

Kowalski’s book Logic for Problem Solving opened up the field by showing that
many common problems from artificial intelligence had a natural representation
as logic programs. As we have seen, problems like combinatorial searching and
parsing have natural expressions as logic programs.

New ideas in programming are of little use unless they lead to computer pro-
grams that really work. In the case of logic programming, this means that there
is a need for implementations of Prolog that work at speeds comparable to other
languages. David H. D. Warren did important work here, by showing how to im-
plement Prolog for the DEC–10 computer in a demonstrably efficient way. The
data structures used in all Prolog implementations to represent goals and clauses
are based on his early work. His famous article with Luis and Fernando Pereira,
‘Prolog: the language and its implementation compared with Lisp’, showed that
Prolog programs could achieve the same order of speed as comparable programs
written in Lisp, but with a versatility and elegance that the Lisp programs could
not match. High-performance Prolog implementations use compilers instead of

185



186 In conclusion

the interpreter techniques we studied in picoProlog. Nevertheless, the data struc-
tures are the same, and refinements like garbage collection, indexing and opti-
mized tail calls carry across to implementations based on compilers.

In the author’s view, the true importance of logic programming should not
be seen as depending solely on Prolog. Although Prolog is undeniably the most
successful realization of logic programming ideas, it is weak as a programming
language. It does not support notions like modularity and strong compile-time
typing that help with the construction of large and reliable software, and practical
details like input/output are not well integrated with the logic programming part
of Prolog: hence our avoidance of them in this book. One solution to these
problems with Prolog is to design new and better logic programming languages
that remedy the defects and deficiencies. Recent developments in this direction
have been made by P. M. Hill and J. W. Lloyd at the University of Bristol and
are described in their book, The Gödel Programming Language.

Another view is that logic programming is just one of a network of ideas that
can be used in understanding and building complex systems. Prolog can be
used for prototyping, and for constructing appropriate parts of a larger system,
other parts of which may be built using more traditional techniques. From this
point of view, the links between logic programming and other ideas in computer
science are as important as its strength as a programming paradigm in its own
right. In this book, we have touched on links with databases, the theory of
programming languages, theorem proving and hardware design. The techniques
that we have studied in the implementation of picoProlog provide other links:
with other declarative programming paradigms such as functional programming,
with the type systems of programming languages like ML and with the technology
of automatic theorem proving.



Further reading

Rather than attempt a comprehensive bibliography, which would run into many
thousands of entries, I will restrict myself here to recommending some of the
books and papers I have found helpful in studying logic and logic programming.
These works themselves contain references to more sources. Besides these, there
are several journals and periodic conferences that are entirely devoted to the
subject. First, two book on the the theory of logic programming; the first of
these is the standard account, and the second is a more accessible textbook.

• J. A. Lloyd, Foundations of Logic Programming, second edition, Springer-
Verlag, 1987.

• C. J. Hogger, Essentials of Logic Programming, Oxford University Press,
1990.

The following book by Kowalski concentrates on the expression of typical artificial
intelligence problems in Horn clause logic.

• R. Kowalski, Logic for Problem Solving, North Holland, 1979.

For programming in Prolog itself, two useful texts are

• W. F. Clocksin and C. S. Mellish, Programming in Prolog, Springer-Verlag,
1981.

• L. Sterling and E. Y. Shapiro, The Art of Prolog: Advanced Programming

Techniques, MIT Press, 1986.

A lot of information about Prolog implementation techniques is contained in

• D. Maier and D. S. Warren, Computing with Logic: Logic Programming with

Prolog, Benjamin Cummings, 1988.
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The techniques used in building Prolog compilers (rather than interpreters) are
covered in

• H. Aı̈t-Kaci, Warren’s Abstract Machine: A Tutorial Reconstruction, MIT
Press, 1991.

Considered as a programming language, Prolog is relatively primitive. Some
possible directions for future development are shown by the language Gödel,
described in

• P. M. Hill and J. W. Lloyd, The Gödel Programming Language, MIT Press,
1994.

For a book on logic, with almost no reference to computer programming, the
author recommends

• H. B. Enderton, A Mathematical Introduction to Logic, Academic Press,
1972.

This book follows the standard development of mathematical logic, from which
many concepts are borrowed in the theory of logic programming. Rather charm-
ingly, the book contains a single Fortran statement on page 16.

Finally, some of the primary literature on logic programming is quite easy to
read, and worth looking up. A good place to start are the papers

• J. A. Robinson, ‘A machine-oriented logic based on the resolution principle’,
J. ACM., 12, 1 (January 1965), pp. 23–41.

• M. H. van Emden and R. A. Kowalski, ‘The semantics of predicate logic as
a programming language’, J. ACM., 23, 4 (October 1976), pp. 733–42.

• D. H. D. Warren, L. M. Pereira and F. Pereira, ‘Prolog: the language and its
implementation compared with Lisp’, Proc. Symp. on AI and Programming
Languages, SIGPLAN Notices, 12, 8 (August 1977), pp. 109–15.



Appendix A

Answers to the exercises

1.1 Modify the lounge relation to allow two bedroom doors, but leave the bedroom relation
unchanged:

suite(fd, lw ,bd1,bd2,bw1,bw2) :−
lounge(fd, lw ,bd1,bd2), bedroom(bd1,bw1), bedroom(bd2,bw2).

lounge(fd, lw ,bd1,bd2) :−
opposite(fd, lw ), adjacent(lw ,bd1), adjacent(lw ,bd2).

bedroom(bd,bw ) :−
adjacent(bd,bw ),bw = east .

There are eight solutions to the goal

# :− suite(fd, lw ,bd1,bd2,bw1,bw2).

However, some of these describe suites that cannot be built with rectangular rooms inside a
rectangular boundary.

2.1 a. Join the manager and bill relations on the name field, select the records that satisfy
amount > 10, and then project on the name field:

answer(name) :−
manager(name), bill(name,number,amount),amount > 10.

b. Join the bill relation with itself on the name field, select the records that satisfy number1 6=
number2, then project on the name field:

answer(name) :−
bill(name,number1,amount1),
bill(name,number2,amount2),
number1 6= number2.
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c. Join the bill and paid relations on the number field, select the records in which the amount
paid is less than amount of the bill, and finally project on the name field:

answer(name) :−
bill(name,number,amount1),
paid(number,amount2,date),
amount2 < amount1.

d. Define a relation prompt(number) that holds if number is the number of a bill that was
paid before February 1st. This relation can be defined by selecting from the paid relation
and projecting on the number field:

prompt(number) :− paid(number,amount ,date), before(date, feb1 ).

Now define a relation issued(number) that is true if someone has been given a bill numbered
number. Define it by projecting the bill relation on the number field:

issued(number) :− bill(name,number,amount).

The difference of these two relations gives a relation late(number) that holds if the bill
numbered number has been issued, but has not been paid promptly:

late(number) :− issued(number),not prompt(number).

Finally, we can obtain the names of late payers by joining with the bill relation on the
number field and projecting on the name field:

answer(name) :− bill(name,number,amount), late(number).

3.1 The goal fails because their is no solution to the subgoal member(x ,nil). This accurately
reflects that fact that only non-empty lists have a maximum element.

3.2 The solution x = 3 is displayed twice if we use the definition of maximum in terms of
member and dominates . This is because their are two ways of deriving the fact that 3 is a
member of the list 3:1:3:2:nil . With the direct definition of maximum, the solution is displayed
only once.

3.3 In terms of append and other relations:

a. prefix (a,b) :− append(a,c ,b).
b. suffix (a,b) :− append(c ,a,b).
c. segment(a,b) :− prefix (c ,b), suffix (a,c).
e. delete(a,x ,b) :− append(c ,x :d,a), append(c ,d,b).

By recursion:

a. prefix (nil ,b) :− .
prefix (x :a,x :b) :− prefix (a,b).

b. suffix (b,b) :− .
suffix (a,x :b) :− suffix (a,b).
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c. segment(a,b) :− prefix (a,b).
segment(a,x :b) :− segment(a,b).

d. sublist(nil ,nil) :− .
sublist(a,x :b) :− sublist(a,b).
sublist(x :a,x :b) :− sublist(a,b).

e. delete(x :a,x ,a) :− .
delete(y :a,x ,y :b) :− delete(a,x ,b).

f. perm(nil ,nil) :− .
perm(x :a,b) :− delete(b,x ,c), perm(a,c).

3.4 a. By recursion:

last(x :nil ,x ) :− .
last(x :a,y ) :− last(a,y ).

b. In terms of append :

last(a,x ) :− append(b,x :nil ,a).

The goal # :− last(a, 3) has infinitely many solutions of the form a = x1:x2: . . . :xn :3:nil .

3.5 With the first definition of maximum (the one in terms of member and dominates), the
answer x = 3 is displayed twice, because there are two ways of showing that 3 is a member of the
list 3:1:3:2:nil , and picoProlog is enumerating proofs rather than the answers themselves. With
the other definition of maximum, the answer is only displayed once, because there is only one
way of deriving the answer in this case.

3.6 Because of Prolog’s left-to-right rule, the clause

flatten(fork(l,r),c) :− flatten(l,a),flatten(r,b), append(a,b,c).

does not work well if only the list c is given, because it causes the subgoal flatten(l,a) to be
solved first, and that subgoal does not contain any of the given information. The result is that
Prolog blindly tries all trees l and r, looking for pairs of trees whose flattened forms join to
give c . This search will go on forever, finding only some of the correct solutions.

For this use of flatten, it is better to rewrite the clause as

flatten(fork(l,r),c) :− append(a,b,c),flatten(l,a),flatten(r,b).

This leads to a systematic search of the ways of splitting c into two parts a and b, followed by
systematic searches for ways of building trees for the two parts.

There is a further problem: one of the ways of splitting a list into two parts is to have one
part be nil , and the other part be the whole list. Choosing this split results in an attempt to
solve the original problem as a sub-problem of itself, and hence to an infinite search. A solution
to this problem is to require both parts of the split to be non-empty, like this:

flatten(fork(l,r),c) :− append(x :a,y :b,c),flatten(l,x :a),flatten(r,y :b).

4.1 The problem involves the five literals valuable, metal , yellow , heavy and gold , so the truth
table has 32 = 25 rows. We present it here in a compact form, allowing ‘∗’ to stand for both T
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and F, and using ‘?’ to stand for an unknown result:

valuable metal yellow heavy gold (1) (2) (3)

T ∗ ∗ ∗ ∗ T ? T
F F ∗ ∗ ∗ T T ?
F T F ∗ ∗ T T ?
F T T F ∗ T ? ?
F T T T T F T F
F T T T F F F T

For example, the first line of this compact table stands for 16 lines of the full table, and records
the fact that (1) is true whenever valuable is true, regardless of the values of the other literals.
The table shows that (1) is false only if either (2) or (3) is false, so demonstrating that (1) follows
from (2) and (3) together.

4.2 If C is a ground clause then C[g] = C for any substitution g; so if |=M C then |=M C[g].
Conversely, suppose that |=M C[g] for all ground substitutions g, and let g0 be any ground
substitution. Then |=M C[g0], so |=M C. We need to assume that the alphabet contains at least
one constant, for otherwise there are no ground terms, and so no ground substitutions g0.

4.3 If t is a variable y , then y is different from x , since x does not appear in t. Consequently

t[x ← u] = y [x ← u] = y = t.

If t is a compound term f(t1, . . . , tk) and x does not appear in t, then x does not appear in
any of the ti. So we may assume as induction hypotheses that ti[x ← u] = ti for each i. We
deduce that

t[x ← u] = f(t1, . . . , tk)[x ← u] = f(t1[x ← u], . . . , tk[x ← u])

= f(t1, . . . , tk) = t.

This completes the proof.

4.4 We use structural induction on t. If t is a variable x , we calculate

x [I] = I(x ) = x .

If t is a compound term f(t1, . . . , tk), and ti[I] = ti for each i, then

f(t1, . . . , tk)[I] = f(t1[I], . . . , tk[I]) = f(t1, . . . , tk).

This completes the proof.

4.5 We prove that the two substitutions

s1 = {x ← u]} ⊲ {y ← w},

s2 = {y ← w} ⊲ {x ← u[y ← w]}

are equal by showing that they have the same effect on any variable v .
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If v is different from both x and y , then clearly s1(v ) = s2(v ) = v . If v is the same as x ,
we find

s1(x ) = x [x ← u][y ← w] = u[y ← w],

s2(x ) = x [y ← w][x ← u[y ← w]] = x [x ← u[y ← w]] = u[y ← w].

And if v is the same as y , we find

s1(y ) = y [x ← u][y ← w] = y [y ← w] = w,

s2(y ) = y [y ← w][x ← u[y ← w]] = w[x ← u[y ← w]] = w.

5.1 Let M be a structure, and suppose |=M C, where C = (P :− Q1, Q2). Let g be any ground
substitution; then |=M C[g], so either P [g] is true in M , or one of Q1[g], Q2[g] is false in M .
Putting this another way, either P [g] is true, or one of Q2[g], Q1[g] is false. In other words,
|=M C′[g], where C′ = (P :− Q2, Q1). Since this is so for any ground substitution g, it follows
that |=M C′.

5.2 From the given clause P :− Q1, Q2, we may derive the clause P [s] :− Q1[s], Q2[s] by the
rule of substitution. But Q1[s] = Q2[s], so this is the same as P [s] :− Q1[s], Q1[s]. The desired
result P [s] :− Q[s] may be derived from this by the following rule of direct factoring: from
A :− B, B derive A :− B.

For soundness of this rule, let M be a structure, and suppose that |=M C, where C = (A :−
B, B). Let g be any ground substitution. We may assume that |=M C[g], and must show that
|=M C′[g], where C′ = (A :− B). But C[g] = (A[g] :− B[g], B[g]), so either A[g] is true in M or
one of the literals B[g] is false in M (and so both are false). Hence |=M C′[g] as required.

5.3 Let M be a model of the two premisses C1 and C2, let C′ be the proposed conclusion, and
let g be a ground substitution. By the rule of substitution, M is a model of C1[g] and C2[g].
Hence by the rule of ground resolution, M is a model of C′[g], the ground resolvent of C1[g] and
C2[g] on Q[g] = Qj [g]. Thus M is a model of C′[g] for every g, and so M is a model of C′.

6.1 a. {x ← g(h(z)),y ← h(z)}.
b. There are no unifiers.
c. {x ← g(a),y ← a, z ← g(g(a))}.

6.2 If t and v are different constants foo and baz , and u is a variable x , then t and u have a
unifier {x ← foo}, and u and v have a unifier {x ← baz}, but t and v have no unifier.

6.3 We first show that t1[r ⊲ s] = t2[r ⊲ s]. Expanding the left-hand side,

t1[r ⊲ s] = f(u1, w1)[r][s] = f(u1[r][s], w1[r][s]).

Now u1[r] = u2[r] because r unifies u1 and u2, and w1[r][s] = w2[r][s] because s unifies w1[r] and
w2[r]. Also t2[r ⊲ s] = f(u2[r][s], w2[r][s]) as above.

Now suppose p is any unifier of t1 and t2; we show that p factors through r ⊲ s. Since p unifies
t1 and t2, it also unifies u1 and u2, so p factors through r, say p = r ⊲ q. But p also unifies w1 and
w2, so w1[r][q] = w1[p] = w2[p] = w2[r][q], and q unifies w1[r] and w2[r]. Since s is the m.g.u. of
w1[r] and w2[r], it follows that q factors through s, say q = s ⊲ k. Putting the pieces together,
we find that

p = r ⊲ q = r ⊲ (s ⊲ k) = (r ⊲ s) ⊲ k,
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and p factors through r ⊲ s. Since this happens for any unifier p of t1 and t2, it follows that r ⊲ s
is a most general unifier of t1 and t2.

6.4 First, r ⊲ s is a unifier of {t1, t2, t3} because t1[r ⊲ s] = t1[r][s] = t2[r][s] = t2[r ⊲ s] (since r
is a unifier of t1 and t2), and t1[r ⊲ s] = t1[r][s] = t3[r][s] = t3[r ⊲ s] (since s is a unifier of t1[r]
and t2[r]).

Moreover, r ⊲ s is a most general unifier; for if p is another unifier of {t1, t2, t3} then p unifies
t1 and t2 in particular, so p factors through r, say p = r ⊲ q. We now find that t1[r][q] = t1[p] =
t3[p] = t3[r][q], so q unifies t1[r] and t3[r], and hence q factors through the m.g.u. s, say q = s ⊲ k.
Summarizing, p = r ⊲ q = r ⊲ s ⊲ k, and p factors through r ⊲ s.

Finally, if {t1, t2, t3} has a unifier p, then p unifies t1 and t2 in particular, and so they have a
m.g.u. r, and p factors through r, say p = r ⊲ q. As above, q unifies t1[r] and t2[r], so these have
an m.g.u. s, and an m.g.u. of {t1, t2, t3} is r ⊲ s.

6.5 a. The relation � is reflexive because t[I] = t and so t � t for any term t. Also, � is
transitive. If t � u and u � w, say t[s] = u and u[r] = w, then t[s ⊲ r] = t[s][r] = u[r] = w,
so t � w. However, preceq is not anti-symmetric; for example, if x and y are distinct
variables, then x � y (because x [x ← y ] = y ), and similarly y � x , but x 6= y .

b. We first show that for any terms t and u, t ⊓ u is a lower bound of t and u. Let s0 be the
substitution defined by

s0(v ) =

{

t, if v = φ(t, u)
v , otherwise.

Then φ(t, u)[s0] = t for all terms t and u. We now use structural induction to extend this
result, showing that (t ⊓ u)[s0] = t for all t and u. It follows that t ⊓ u � t, and the proof
that t ⊓ u � u is similar. The actual proposition P (w) proved by induction on w is the
following:

For all t and u, if w = t ⊓ u then w[s0] = t.

The base case occurs when w is a variable. If so, and w = t ⊓ u, then w = φ(t, u); we
examined this case above. For the induction step, we assume that P (w1), . . . , P (wk) hold,
and show P (w) where w = f(w1, . . . , wk). If so, and w = t ⊓ u, then t = f(t1, . . . , tk)
for some terms t1, . . . , tk, and similarly u = f(u1, . . . , uk), with wi = ti ⊓ ui for each i.
Applying the induction hypothesis, we find that wi[s0] = ti for each i, and so w[s0] = t.
This completes the proof that t ⊓ u � t.

To show that t ⊓ u is a greatest lower bound, suppose w[s1] = t and w[s2] = u for some
term w. Define a substitution s by

s(v ) = s1(v ) ⊓ s2(v ).

We claim that w[s] = t ⊓ u, so w � t ⊓ u.
Again we argue by structural induction, the actual proposition Q(w) proved by induction

being the following:

For all t and u, if w[s1] = t and w[s2] = u, then w[s] = t ⊓ u.

For the base case, if w is a variable v , then

w[s] = s(v ) = s1(v ) ⊓ s2(v ) = w[s1] ⊓ w[s2] = t ⊓ u.
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For the step case, we assume that Q(w1), . . . , Q(wk) hold, and show Q(w) where w =
f(w1, . . . , wk). If w[s1] = t, then t = f(t1, . . . , tk) with ti = wi[s1] for each i. Also if
w[s2] = u, then u = f(u1, . . . , uk) with ui = wi[s2] for each i. Applying the induction
hypothesis, we conclude that wi = ti ⊓ ui for each i, and so

w[s] = f(w1[s], . . . , wk[s]) = f(t1 ⊓ u1, . . . , tk ⊓ uk) = t ⊓ u.

This completes the proof.
c. If u′ = u[s] is a variant of u having no variables in common with t, and t and u′ have a

most general unifier r, then t[r] is a least upper bound of t and u.

7.1

1. reverse(x1:a1,c1) :− reverse(a1,b1), append(b1,x1:nil ,c1). (rev.2)

2. reverse(x2:a2,c2) :− reverse(a2,b2), append(b2,x2:nil ,c2). (rev.2)

3. reverse(x1:x2:a2,c1) :− 1, 2, R
reverse(a2,b2), append(b2,x2:nil ,b1), append(b1,x1:nil ,c1).

4. reverse(nil ,nil) :− . (rev.1)

5. reverse(x1:x2:nil ,c1) :− append(nil ,x2:nil ,b1), append(b1,x1:nil ,c1). 3, 4, R

6. append(nil ,b6,b6) :− . (app.1)

7. reverse(x1:x2:nil ,c1) :− append(x2:nil ,x1:nil ,c1). 5, 6, R

8. append(x8:a8,b8,x8:c8) :− append(a8,b8,c8). (app.2)

9. reverse(x1:x2:nil ,x2:c8) :− append(nil ,x1:nil ,c8). 7, 8, R

10. append(nil ,b10,b10) :− . (app.1)

11. reverse(x1:x2:nil ,x2:x1:nil) :− 9, 10, R

7.2 One possibility is to define palin in terms of reverse:

palin(a) :− reverse(a,a).

We can use the following definition of reverse (see Chapter 13):

reverse(a,b) :− revapp(a,nil ,b).

revapp(nil ,b,b) :− .
revapp(x :a,b,c) :− revapp(a,x :b,c).

The following sequence of goals is derived in solving # :− palin(1:x :y :z :nil):

# :− palin(1:x :y :z :nil).

# :− reverse(1:x :y :z :nil , 1:x :y :z :nil).

# :− revapp(1:x :y :z :nil ,nil , 1:x :y :z :nil).

# :− revapp(x :y :z :nil , 1:nil , 1:x :y :z :nil).

# :− revapp(y :z :nil ,x :1:nil , 1:x :y :z :nil).

# :− revapp(z :nil ,y :x :1:nil , 1:x :y :z :nil).

# :− revapp(nil , z :y :x :1:nil , 1:x :y :z :nil).

# :− .
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The final step involves unifying the lists z :y :x :1:nil and 1:x :y :z :nil , yielding the answer substi-
tution {z ← 1,y ← x}.

8.1 a. In terms of the relation opposite from Chapter 1:

optstep(x :y :a,a) :− opposite(x ,y ).
optstep(x :a,x :b) :− optstep(a,b).

or (more cleverly),

optstep(a,b) :− append(p,x :y :q,a), opposite(x ,y ), append(p,q,b).

b. This is an example of transitive closure (see Chapter 9):

optimize(a,a) :− not improvable(a).
optimize(a,c) :− optstep(a,b), optimize(b,c).

improvable(a) :− optstep(a,b).

The improvable relation is needed so that the test improvable(a) is ground whenever a is.
c. The trick is to introduce a relation adjoin, defined so that adjoin(x ,a,b) is true if b is a

path equivalent to x :a, but optimal if a is itself optimal:

optimize(nil ,nil) :− .
optimize(x :a,c) :− optimize(a,b), adjoin(x ,b,c).

adjoin(x ,nil ,x :nil) :− .
adjoin(x ,y :a,a) :− opposite(x ,y ).
adjoin(x ,y :a,x :y :a) :− not opposite(x ,y ).

This solution is plainly linear in the length of a, but the previous solution is quadratic,
because each optimization step is linear, and there may be n/2 of them.

9.1 The relation conn(a,b, p, s) is defined to mean that p is a path from a to b that avoids
nodes in s :

connected(a,b, p) :− conn(a,b, p,a:nil).

conn(a,a,nil , s) :− .
conn(a,c ,n :p, s) :− arc(a,b,n ),notmember(b, s), conn(b,c , p,b:s).

arc(empty7, state(x ,y ), state(0,y )) :− .
arc(empty5, state(x ,y ), state(x , 0)) :− .
arc(pour7to5, state(x ,y ), state(0,v )) :− plus(x ,y ,v ), leq(v , 5).
arc(pour5to7, state(x ,y ), state(u , 0)) :− plus(x ,y ,u ), leq(u , 7).
arc(fill5from7, state(x ,y ), state(u , 5)) :− plus(x ,y , z), plus(u , 5, z).
arc(fill7from5, state(x ,y ), state(7,v )) :− plus(x ,y , z), plus(7,v , z).
arc(fill7, state(x ,y ), state(7,y )) :− .
arc(fill5, state(x ,y ), state(x , 5)) :− .

leq(x ,y ) :− plus(x ,w ,y ).
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Executing the goal

# :− connected(state(0, 0), state(4, 0), p).

gives the answer

p = fill7:fill5from7:empty5:pour7to5:fill7:fill5from7:empty5:nil

in addition to several longer ones.

9.2 Use (for example) the term state(left , left , right , left) to name the state in which the farmer,
the wolf and the cabbage are on the left bank, and the goat is alone on the right bank. The
relation opposite(a,b) is true if a and b are different banks of the stream:

opposite(left , right) :− .
opposite(right , left) :− .

A state is unsafe if the wolf and goat or the goat and cabbage are on the same bank, but the
farmer is on the opposite bank:

unsafe(state(a,b,b,c)) :− opposite(a,b).
unsafe(state(a,b,c ,c)) :− opposite(a,c).

Using negation as failure, we can now define a relation safe(s) that checks whether state s is safe:

safe(s) :− not unsafe(s).

Use the term take(x ,a,b) to name the move of taking object x from bank a to bank b. Then
we can define a relation arc(n ,x ,y ) that is true if move n takes state x to state y :

arc(take(wolf ,a,b), state(a,a,c ,d), state(b,b,c ,d)) :− opposite(a,b).
arc(take(goat ,a,b), state(a,c ,a,d), state(b,c ,b,d)) :− opposite(a,b).
arc(take(cabbage,a,b), state(a,c ,d,a), state(b,c ,d,b)) :− opposite(a,b).
arc(take(boat ,a,b), state(a,c ,d, e), state(b,c ,d, e)) :− opposite(a,b).

For example, taking the wolf from a to b requires that the farmer and the wolf are on bank a

beforehand, and results in both being on the opposite bank b, while the goat and cabbage do
not move. With this set-up, we can use the path-finding program from the preceding exercise to
solve the goal

# :− connected(state(left , left , left , left), state(right , right , right , right), p).

9.3 Each expression must contain exactly three operators, so we define trial in terms of a
relation trial1 (e,b0,b) that is true if e is an expression containing not more than b0 operators,
and b is the number left over:

trial(e) :− trial1 (e, 3, 0).

trial1 (e,b0,b) :−
plus(b1, 1,b0), trial1 (e1,b1,b2), trial1 (e2,b2,b), combine(e1, e2, e).

trial1 (4,b0,b0) :− .
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combine(e1, e2, add(e1, e2)) :− .
combine(e1, e2, subtract(e1, e2)) :− .
combine(e1, e2,multiply(e1, e2)) :− .
combine(e1, e2, divide(e1 , e2)) :− .

There are five possible structures for an expression with three operators op; symbolically, they are
op(4, op(4, op(4, 4))), op(4, op(op(4, 4), 4) and their mirror images, and the symmetrical structure
op(op(4, 4), op(4, 4)). The operators op can be chosen from the four possibilities in 43 = 64 ways,
giving a total of 5× 64 = 320 expressions.

9.4 We can represent the state as a term towers(a,b,c), where a, b and c are the lists of
discs on each spike, in decreasing order of size. We can define a relation legal(x ,a) to hold if disc
x can legally be added to a spike holding discs a:

legal(x ,nil) :− .
place(x ,y :nil) :− less(x ,y ).

Any disc can be added to an empty spike; a disc can be added to a non-empty spike exactly if it
is smaller than the top disc already on the spike. Now we can write clauses for a relation move

like this:

move(towers(x :a,b,c), towers(a,x :b,c),move12) :− legal(x ,b).
move(towers(x :a,b,c), towers(a,b,x :c),move13) :− legal(x ,c).
. . .

There are six such clauses altogether. To calculate the number of states, observe that we can
place the largest disc on any spike, then the next smaller disc either on an empty spike or on
top of the largest disc. Following this procedure, we have a free choice for each disc, so there
are 35 = 243 states in all. As is well known, there is a solution in 25 − 1 = 31 moves. Without
programming the solution explicitly, it can be found fairly quickly using loop-avoidance.

10.1

flatten(t ,a) :− flat1 (t ,a,nil).

flat1 (tip(x ),x :a,a) :− .
flat1 (fork(t1,t2),a0,a) :−

flat1 (t1,a0,a1),
flat1 (t2,a1,a).

This version of flatten avoids the need to append the flattened forms of the trees t1 and t2 in
order to construct the flattened form of fork(t1,t2).

10.2 Define space like this:

space(a,c) :− eat(‘ ’,a,b), space(b,c).
space(a,a).

This relation can be used in a new definition of expr by systematically inserting calls to space
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wherever eat is used. For example, the clause

expr(add(t1,t2),a,d) :−
term(t1,a,b), eat(‘+’,b,c), expr(t2,c ,d).

becomes

expr(add(t1,t2),a, e) :−
term(t1,a,b), space(b,c), eat(‘+’,c ,d), expr(t2,d, e).

Alternatively, we could modify the definition of eat to ignore spaces itself.

10.3 It is helpful to use a relation digit(c ,k) that holds if the character c is a decimal digit
and k is the corresponding numeric value:

digit(‘0’, 0) :− .
digit(‘1’, 1) :− .

. . .

We can define a first version of number as follows:

number(a0,a) :−
eat(c ,a0,a1), digit(c ,k),number1(a1,a).

number1(a0,a) :−
eat(c ,a0,a1), digit(c ,k),number1(a1,a).

number1(a0,a0) :− .

This version does not compute the value of the number. To do that, we add two extra arguments
to the relation number1, so that number1(n0,n ,a0,a) holds if the difference between a0 and a

is a (possibly empty) sequence of digits, and the value of the number composed by adding these
digits after the number n0 is n :

number(n ,a0,a) :−
eat(c ,a0,a1), digit(c ,k),number1(k ,n ,a1,a).

number1(n0,n ,a0,a) :−
eat(c ,a0,a1), digit(c ,k),
times(n0, 10,n1), plus(n1,k ,n2),
number1(n2,n ,a1,a).

number1(n0,n0,a0,a0) :− .

Extending the parser for expressions is a simple matter of adding the clause:

factor(n ,a0,a) :− number(n ,a0,a).

10.4 We just need to build a parser for the grammar

good ::= ‘0’ | ‘1’ good good
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The program is as follows:

good(a) :− good1(a,nil).

good1(0:a0,a0) :− .
good1(1:a0,a) :− good(a0,a1), good(a1,a).

To improve the control behaviour of the goal # :− good(a) (and yield the solutions in increasing
order of length), we can add a call to the list predicate (see page 30):

good(a) :− list(a), good1(a,nil).

Solving the goal # :− good(a) with this definition of good causes Prolog to generate lists a of
increasing length whose elements are all unknown variables, then solve the subgoal good1(a,nil).
Since the length of the first argument of good1 goes down in each recursive call, the program is
well-behaved.

11.1

value(x ,x ) :− integer(x ).
value(add(p,q), z) :− value(p,x ), value(q,y ), plus(x ,y , z).
value(subtract(p,q), z) :− value(p,x ), value(q,y ), plus(y , z ,x ).
value(times(p,q), z) :− value(p,x ), value(q,y ), times(x ,y , z).
value(divide(p,q), z) :−

value(p,x ), value(q,y ),not y = 0, times(y , z ,x ).

11.2 Define update by

update(nil ,x ,v , val(x ,v ):nil) :− .
update(val(x ,w ):a,x ,v , val(x ,v ):a) :− .
update(val(y ,w ):a,x ,v , val(y ,w ):b) :−

notx = y , update(a,x ,v ,b).

Extend eval by adding the clause

eval(let(x , e1, e2),a,v ) :−
eval(e1,a,v1), update(a,x ,v1,b), eval(e2,b,v ).

12.1

flipflop(a,b,x ,y ) :− nand(a,y ,x ),nand(b,x ,y ).

There are five stable states:

a = 0 b = 0 x = 1 y = 1;
a = 0 b = 1 x = 1 y = 0;
a = 1 b = 0 x = 0 y = 1;
a = 1 b = 1 x = 0 y = 1;
a = 1 b = 1 x = 1 y = 0.

The use of this circuit as a memory element is explained by the existence of two stable states in
which the inputs are both 1.
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12.2

xor(a,b, z) :−
pwr(p), gnd(q),
ptran(p,a,c),ntran(c ,a,q),
ptran(a,b, z),ntran(z ,b,c),
ptran(b,a, z),ntran(z ,c ,b).

The goal # :− xor(a,b, z) reveals that there are four stable states, one for each combination of
the inputs a and b, and the output z always has the correct value.

13.1

ord(x :y :a) :− x < y , ord(y : a )

ord(u :v :b) :− u < v , ord(v :b).

This gives the resolvent

ord(x :y :v :b) :− x < y ,y < v , ord(v :b).

Now resolve with (ord.2):

ord(x :y :v :a) :− x < y ,y < v , ord(v : b )

ord(w :nil) :−

This gives the desired special case:

ord(x :y :v :nil) :− x < y ,y < v .

13.2 In terms of append :

consec(x ,y ,a) :− append(b,x :y :c ,a). (1)

Resolving this with (app.1) gives b = nil , a = x :y :c and

consec(x ,y ,x :y :c) :− .

Resolving (1) with (app.2) gives b = u :b ′, a = u :a′ and

consec(x ,y ,u :a′) :− append(b ′,x :y :c ,a′).

which we can fold with (1) to give

consec(x ,y ,u :a′) :− consec(x ,y ,a′).

13.3 Define the relation path by

path(a,b, p) :− ispath(p),first(p,a), last(p,b).
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Unfolding the definitions of ispath, first and last , followed by a folding step, then gives a direct
definition of path by recursion. The clause

connected(a,b) :− path(a,b, p).

is obtained by folding the original definition of connected with the clause defining path.

13.4 a. The definition is by simultaneous recursion on the tree and the path:

select(t ,nil ,t) :− .
select(fork(l,r), l :p,u ) :− select(l, p,u ).
select(fork(l,r), r :p,u ) :− select(r, p,u ).

b. Again we use simultaneous recursion on the path and the subject tree:

replace(t ,nil ,u ,u ) :− .
replace(fork(l,r), l :p,u , fork(l′,r)) :− replace(l, p,u , l′).
replace(fork(l,r), r :p,u , fork(l,r′)) :− replace(r, p,u ,r′).

c. The answers to parts (a) and (b) share a common pattern:

select(t , p,u ) :− replace(t , p,u ,t).

d. The transformation results in the following direct definition of change:

change(t ,t ,u ′,u ′) :− .
change(fork(l,r),u ,u ′, fork(l′,r)) :− change(l,u ,u ′, l′).
change(fork(l,r),u ,u ′, fork(l,r′)) :− change(r,u ,u ′,r′).
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Using an ordinary Prolog system

Most of the programs in this book can also be run using an ordinary Prolog
system, with only small changes of notation. For example, standard Prolog omits
the ‘:−’ from unit clauses, so the clause we have been writing as

opposite(north, south) :− .

would be written

opposite(north, south).

in Prolog. Goals are written with ‘?−’ like this: ?− opposite(x ,y ).
The most significant difference between picoProlog and standard Prolog sys-

tems is that picoProlog does not provide the list notation of standard Prolog.
There are two choices here: one choice is to translate the programs from the
book to use the standard notation, so that the famous append program becomes

append([ ],b,b).
append([x | a],b, [x | c ]) :− append(a,b,c).

You can then write goals like ?− append([1, 2], [3, 4],x ).
The other choice is to ignore Prolog’s list notation, and use infix colon instead.

To do this, you must declare ‘:’ as an infix symbol by executing the goal

?− op(50, xfy , :).

Taking this approach means that programs and goals must be written as shown
in this book: you cannot mix this notation with Prolog lists, because the Prolog
list [1, 2, 3] is not equal to the term 1:2:3:nil .

203
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Another difference between picoProlog and standard Prolog is that picoProlog
provides arithmetic facilities through the built-in relations plus and times, and
the facilities provided by Prolog are different. This problem is solved by adding
to each program the following definitions of these relations:

plus(a,b,c) :− integer(a), integer(b), !,c is a + b.
plus(a,b,c) :− integer(b), integer(c), !,c > b,a is c − b.
plus(a,b,c) :− integer(c), integer(a), !,c > a,b is c − a.
plus(a,b,c) :− write(‘Bad arguments to plus’), nl , abort .

times(a,b,c) :− integer(a), integer(b), !,c is a ∗ b.
times(a,b,c) :−

integer(b), integer(c), !,c mod b =:= 0,a is c/b.
times(a,b,c) :−

integer(c), integer(a), !,c mod a =:= 0,b is c/a.
times(a,b,c) :− write(‘Bad arguments to times’), nl , abort .

Most other built-in relations of picoProlog are exactly the same as the standard
ones of Prolog: !, =, not, call , integer . Standard Prolog has no character objects,
and represents characters by the integers that are their ascii codes; thus there is
no char relation. Finally, there is a standard built-in relation fail that behaves
exactly like picoProlog’s false, but any relation with no clauses behaves the same
way, so you can continue to use false.
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PicoProlog source code

pprolog.p – picoProlog interpreter

{ Copyright (C) J. M. Spivey 1992 }

{ This is the ‘picoProlog’ interpreter described in the book ‘An Introduction to Logic
Programming through Prolog’ by Michael Spivey (Prentice Hall, 1995). Copyright is
retained by the author, but permission is granted to copy and modify the program for
any purpose other than direct commercial gain.5

The text of this program must be processed by the ‘ppp’ macro processor before it can
be compiled. }

program picoProlog (input , output);

define(turbo)

{ tunable parameters }10

const

maxsymbols = 511; { max no. of symbols }
hashfactor = 90; { percent loading factor for hash table }
maxchars = 2048; { max chars in symbols }

15 maxstring = 128; { max string length }
maxarity = 63; { max arity of function, vars in clause }
memsize = 24576; { size of mem array }
gclow = 512; { call GC when this much space left }
gchigh = 4096; { GC must find this much space }

{ special character values }20

define(endstr, chr (0)) { end of string }
define(tab , chr(9)) { tab character }
define(endline , chr(10)) { newline character }
define(endfile , chr(127)) { end of file }

205
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C.1 Coding conventions

{ We ignore Pascal’s stupid rule that all global variables must be declared together at the
start of the program; likewise all global types and all global constants. Many Pascal
compilers relax the rule to make large programs easier to read and write; but if your
Pascal compiler enforces it, you know what to do, and a text editor is the tool for
the job. }

25

{ Most Pascal compilers implement a ‘default’ part in case statements. The macro
default should be defined as the text that comes between the ordinary cases and the
default part. If the default part is like an ordinary case, but labelled with a keyword (say
‘others’), then the definition of default should include the semicolon that separates it
from the preceding case, like this: ‘; others:’. If your Pascal doesn’t have default parts
for case statements, most of them can be deleted, since they are only calls to bad tag

put there for robustness. The only other one (in Scan) will need a little more work. }

30

35

ifdef (turbo, define(default, else))

{ Some Pascal implementations buffer terminal output, but provide a special procedure
to flush the buffer; the flush out macro should be defined to call whatever procedure is
necessary. A call to flush out follows each prompt for input from the terminal, and the
progress messages from the garbage collector. }

40

define(flush out)

{ Pascal’s numeric labels make code that uses goto statements unnecessarily obscure, so
we define a few macros that have meaningful names but expand to plain integers that
can be used as labels. }45

define(end of pp, 999)
define(found , 1)
define(exit , 2)
define(done , 3)

50 define(found2 , 4)

{ When something goes drastically wrong, picoProlog sometimes needs to stop immedi-
ately. In standard Pascal, this is achieved by a non-local jump to the label end of pp,
located at the end of the main program. But some Pascal compilers don’t allow non-
local jumps; they often provide a halt procedure instead. The macro abort should be
defined to do whatever is needed. }55

label end of pp;
define(abort , goto end of pp)
ifdef (turbo, define(abort , halt))

{ Here are a few convenient abbreviations: }
60 define(incr , $1 := $1 + 1) { increment a variable }

define(decr , $1 := $1− 1) { decrement a variable }
define(return, goto exit) { return from procedure }
define(skip) { empty statement }

C.2 Error handling

{ These macros print an error message, then either arrange for execution of a goal to
abandoned (by clearing the run flag), or abandon the whole run of picoProlog. They
use the $0 feature to allow for a list of arguments.

65
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Errors during execution of a goal are reported by exec error ; it sets the run flag to
false, so the main execution mechanism will stop execution before starting on another
resolution step. }

70 var run: boolean ; { whether execution should continue }
dflag : boolean ; { switch for debugging code }

define(exec error ,
begin writeln ; write(’Error: ’, $0); run := false end)

define(panic, begin writeln; writeln(’Panic: ’, $0); abort end)
75 define(bad tag , panic(’bad tag ’, $2: 1, ’ in ’, $1))

C.3 String buffer

{ The strings that are the names of function symbols, variables, etc. are saved in the
array charbuf : each string is represented elsewhere by an index k into this array, and
the characters of the string are charbuf [k], charbuf [k + 1], . . . , terminated by the
character endstr. charptr is the last occupied location in charbuf .

In addition to these ‘permanent’ strings, there are ‘temporary’ strings put together for
some short-term purpose. These are kept in arrays of size maxstring, and are also
terminated by endstr. }

80

type

permstring = 1 . . maxchars ;
85 tempstring = array [1 . . maxstring] of char ;

var

charptr : 0 . . maxchars ;
charbuf : array [1 . . maxchars ] of char ;

{ StringLength – length of a tempstring }
90 function StringLength(var s: tempstring): integer ;

var i: 0 . . maxstring;
begin

i := 0;
while s[i + 1] 6= endstr do incr (i);

95 StringLength := i
end;

{ SaveString – make a tempstring permanent }
function SaveString(var s: tempstring): permstring ;

var i: 0 . . maxstring;
100 begin

if charptr + StringLength(s) + 1 > maxchars then

panic(’out of string space’);
SaveString := charptr + 1; i := 0;
repeat

105 incr (i); incr (charptr ); charbuf [charptr ] := s[i]
until s[i] = endstr

end;
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{ StringEqual – compare a tempstring to a permstring }
function StringEqual(var s1 : tempstring; s2 : permstring): boolean ;

110 var i: integer ;
begin

i := 1;
while (s1 [i] 6= endstr) ∧ (s1 [i] = charbuf [s2 + i− 1]) do incr (i);
StringEqual := (s1 [i] = charbuf [s2 + i− 1])

115 end;

{ WriteString – print a permstring }
procedure WriteString(s: permstring);

var i: 1 . . maxchars ;
begin

120 i := s;
while charbuf [i] 6= endstr do

begin write(charbuf [i]); incr (i) end

end;

C.4 Representation of terms

{ It is now time to give the details of how terms are represented. Each ‘term’ is an index
into the mem array that points to a small block of contiguous words. The first word
indicates the number and layout of the words that follow. It packs together the size of
the node, and an integer code that determines the kind of term: func for a compound
term, int for an integer, and so on. Macros t kind(t) and t size(t) extract these from
the first word of a term t. There is also a bit in the first word that is used by the
garbage collector for marking. The second word of the node, t shift(t) = mem[t + 1] is
also reserved for the garbage collector.

125

130

The layout of the remaining elements of mem that make up the term depends on the
t kind field. For a func term, there is the function symbol t func(t), and a variable
number of arguments, which may be referred to as t arg(t, 1), t arg(t, 2), . . . , t arg(t, n)
where n is the arity of t func(t).135

For an int term, there is just the integer value t ival (t), and for a chrctr term there
is the character value t cval (t), which is actually the code ord(c). cell nodes represent
variables and have a t val field that points to the value. ref nodes are the numeric
markers in program clauses that refer to a slot in the frame for a clause; the t index

field is the index of the slot. undo nodes do not represent terms at all, but items on
the trail stack; they share some of the layout of terms, so that they can be treated the
same by the garbage collector. }

140

type

pointer = integer ; { index into mem array }
145 define(null, 0) { null pointer }

type term = pointer ;
define(t tag,mem [$1])

define(t kind , t tag($1) div 256) { one of func , int , . . . }
define(t size, t tag($1) mod 128) { size in words }

150 define(marked , (t tag($1) mod 256 ≥ 128)) { GC mark }
define(add mark , t tag($1) := t tag($1) + 128)
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define(rem mark , t tag($1) := t tag($1)− 128)
define(make tag, 256 ∗ $1 + $2)

define(t shift ,mem[$1 + 1]) { for use by gc }
155 define(func , 1) { compound term }

define(t func,mem[$1 + 2]) { function symbol }
define(t arg,mem[$1 + $2 + 2]) { arguments (start from 1) }

define(int , 2) { integer }
define(t ival ,mem [$1 + 2]) { integer value }

160 define(chrctr, 3) { character }
define(t cval ,mem[$1 + 2]) { character value }

define(cell, 4) { variable cell }
define(t val ,mem[$1 + 2]) { value or null if unbound }

define(ref , 5) { variable reference }
165 define(t index ,mem[$1 + 2]) { index in frame }

define(undo, 6) { trail item }
{ see later }

define(term size, 3) { . . . plus no. of args }

C.5 Memory allocation

{ Storage for most things is allocated from the big array mem . This array is in three
parts: the heap and local stack, which grow upwards from the bottom of mem, and the
global stack, which grows downwards from the top of mem.

170

The heap stores the clauses that make up the program and running goal; it grows only
while clauses are being input and not during execution, so there is no need for free
space between the heap and local stack. Program clauses become a permanent part of
the heap, but goal clauses (and clauses that contain errors) can be discarded; so there
is an extra variable hmark that indicates the beginning of the present clause.

175

The local stack holds activation records for clauses during execution of goals, and the
global stack other longer-lived data structures. Both stacks expand and contract during
execution of goals. Also, there is a garbage collector that can reclaim inaccessible
portions of the global stack. }180

var

lsp, gsp, hp, hmark : pointer ;
mem: array [1 . . memsize] of integer ;

{ LocAlloc – allocate space on local stack }
185 function LocAlloc(size: integer): pointer ;

begin

if lsp + size ≥ gsp then panic(’out of stack space’);
LocAlloc := lsp + 1; lsp := lsp + size

end;

{ GloAlloc – allocate space on global stack }190

function GloAlloc(kind , size: integer): pointer ;
var p: pointer ;

begin

if gsp − size ≤ lsp then

195 panic(’out of stack space’);
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gsp := gsp − size; p := gsp;
t tag(p) := make tag(kind , size);
GloAlloc := p

end;

{ HeapAlloc – allocate space on heap }200

function HeapAlloc(size: integer): pointer ;
begin

if hp + size > memsize then panic(’out of heap space’);
HeapAlloc := hp + 1; hp := hp + size

205 end;

define(is heap, ($1 ≤ hp)) { test if a pointer is in the heap }
define(is glob, ($1 ≥ gsp)) { test if it is in the global stack }

C.6 Character input

{ Pascal’s I/O facilities view text files as sequences of lines, but it is more convenient
for picoProlog to deal with a uniform sequence of characters, with the end of a line
indicated by an endline character, and the end of a file by an endfile character.
The routines here perform the translation (probably reversing a translation done by
the Pascal run-time library). They also allow a single character to be ‘pushed back’ on
the input, so that the scanner can avoid reading too far. }

210

var

215 interacting: boolean ; { whether input is from terminal }
pbchar : char ; { pushed-back char, else endfile }
infile: text ; { the current input file }
lineno: integer ; { line number in current file }
filename: permstring ; { name of current file }

{ FGetChar – get a character from a file }220

function FGetChar (var f : text): char ;
var ch: char ;

begin

if eof (f) then

225 FGetChar := endfile

else if eoln(f) then

begin readln(f); incr(lineno); FGetChar := endline end

else

begin read(f, ch); FGetChar := ch end

230 end;

{ GetChar – get a character }
function GetChar : char ;
begin

if pbchar 6= endfile then

235 begin GetChar := pbchar ; pbchar := endfile end

else if interacting then

GetChar := FGetChar (input)
else

GetChar := FGetChar (infile)
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240 end;

{ PushBack – push back a character on the input }
procedure PushBack (ch : char );
begin

pbchar := ch

245 end;

C.7 Representation of clauses

{ Clauses in the picoProlog program (and goals to be executed) have head and body
literals in which the variables are replaced by ref nodes. The clause itself is a segment
of mem that has some fields at fixed offsets, followed by a variable-length sequence of
pointers to the literals in the body of the clause, terminated by null. Goal clauses have
the same representation, but with head = null. Macros c rhs and c body are defined
so that c rhs(c) is a pointer to the beginning of the sequence of pointers that makes up
the clause body, and c body(c, i) is the i’th literal in the body itself.

250

Partially executed clause bodies are represented in the execution mechanism by the
address of the pointer p to the first unsolved literal. For cleanliness, we provide macros
g first(p) and g rest(p) that respectively return the first literal itself, and a pointer
that represents the remaining literals after the first one. The test for the empty list is
g first(p) = null.

255

The number of clauses tried against a goal literal is reduced by using associating each
literal with a ‘key’, calculated so that unifiable literals have matching keys. }

260 type clause = pointer ;
define(c nvars ,mem[$1]) { no. of variables }
define(c key ,mem[$1 + 1]) { unification key }
define(c next ,mem [$1 + 2]) { next clause for same relation }
define(c head ,mem [$1 + 3]) { clause head }

265 define(c rhs , ($1 + 4)) { clause body (ends with NULL) }
define(c body ,mem[c rhs($1) + $2− 1])
define(clause size, 4) { ... plus size of body + 1 }

define(g first ,mem[$1]) { first of a list of literals }
define(g rest , ($1) + 1) { rest of the list }

C.8 Stack frames and interpreter registers

{ The local stack is organized as a sequence of frames, each corresponding to an active
copy of a program clause. Most fields in a frame are copies of the values of the inter-
preter’s ‘registers’ when it was created, so here also is the declaration of those global
registers. The tp register that points to the top of the trail stack is declared later.

270

The last part of a frame is a variable-length array of cells, containing the actual variables
for the clause being used in the frame. The variables are numbered from 1, and each
cell is of length term size, so the f local macro contains the right formula so that
f local(f, i) is a pointer to the i’th cell. }

275
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type frame = pointer ;
define(f goal ,mem [$1]) { the goal }

280 define(f parent ,mem [$1 + 1]) { parent frame }
define(f retry,mem[$1 + 2]) { untried clauses }
define(f choice ,mem[$1 + 3]) { previous choice-point }
define(f glotop,mem [$1 + 4]) { global stack at creation }
define(f trail ,mem[$1 + 5]) { trail state at creation }

285 define(f nvars ,mem[$1 + 6]) { no. of local variables }
define(f local , ($1 + 7 + ($2− 1) ∗ term size))
define(frame size , 7) { . . . plus space for local variables }

{ frame size – compute size of a frame with n variables }
define(frame size, (frame size + ($1) ∗ term size))

290 var

current : pointer ; { current goal }
call : term; { Deref ’ed first literal of goal }
goalframe : frame; { current stack frame }
choice : frame; { last choice point }

295 base: frame; { frame for original goal }
proc: clause; { clauses left to try on current goal }

{ Deref is a function that resolves the indirection in the representation of terms. It looks
up references in the frame, and follows the chain of pointers from variable cells to their
values. The result is an explicit representation of the argument term; if the frame is
non-null, the result is never a ref node, and if it is a cell node, the t val field is
empty. }

300

{ Deref – follow var and cell pointers }
function Deref (t: term; e: frame): term;
begin

305 if t = null then panic(’Deref’);
if (t kind(t) = ref) ∧ (e 6= null) then

t := f local (e, t index (t));
while (t kind(t) = cell) ∧ (t val(t) 6= null) do

t := t val (t);
310 Deref := t

end;

{ This is a good place to put the forward declarations of a few procedures and functions. }
procedure PrintTerm(t: term; e: frame; prio: integer); forward;
function ParseTerm : term; forward;

315 function DoBuiltin(action : integer): boolean ; forward;
procedure Collect ; forward;
function Key(t: term; e: frame): integer ; forward;

{ In the actual definition of a procedure or function that has been declared forward, we
repeat the parameter list in a call to the macro fwd . Standard Pascal requires this to
be replaced by the empty string, but some implementations allow the parameter list to
be repeated and check that the two lists agree. }

320

define(fwd)
ifdef (turbo, define(fwd , $0))
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C.9 Symbol table

{ The names of relations, functions, constants and variables are held in a hash table. It
is organized as a ‘closed’ hash table with sequential search: this is simple but leaves
much room for improvement. The symbol table is not allowed to become more full than
hashfactor per cent, since nearly full hash tables of this kind perform rather badly.

325

Each symbol has an s action code that has a different non-zero value for each built-in
relation, and is zero for everything else. User-defined relations have a chain of clauses
that starts at the s proc field and is linked together by the c next fields of the clauses. }330

type symbol = 1 . . maxsymbols ; { index in symtab }

var

nsymbols: 0 . . maxsymbols ; { number of symbols }
symtab: array [1 . . maxsymbols] of record

335 name: integer ; { print name: index in charbuf }
arity : integer ; { number of arguments or -1 }
action : integer ; { code if built-in, 0 otherwise }
proc: clause { clause chain }

end;
340 cons , eqsym, cutsym,nilsym,notsym: symbol ;

{ We define selector macros for symbols, just as for terms }
define(s name, symtab[$1].name)
define(s arity , symtab[$1].arity)
define(s action , symtab[$1].action)

345 define(s proc, symtab[$1].proc)

{ Lookup – convert string to internal symbol }
function Lookup(var name: tempstring): symbol ;

label found ;
var h, i: integer ; p: symbol ;

350 begin

{ Compute the hash function in h }
h := 0; i := 1;
while name[i] 6= endstr do

begin h := (5 ∗ h + ord(name[i])) mod maxsymbols ; incr (i) end;

355 { Search the hash table }
p := h + 1;
while s name(p) 6= −1 do begin

if StringEqual(name, s name(p)) then goto found ;
decr (p);

360 if p = 0 then p := maxsymbols

end;

{ Not found: enter a new symbol }
{ Be careful to avoid overflow on 16 bit machines: }
if nsymbols ≥ (maxsymbols div 10) ∗ (hashfactor div 10) then

365 panic(’out of symbol space’);
s name(p) := SaveString(name);
s arity(p) := −1;
s action(p) := 0; s proc(p) := null;
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found :
370 Lookup := p

end;

type keyword = array [1 . . 8] of char ;

{ Enter – define a built-in symbol }
function Enter(name: keyword ; arity : integer ; action : integer): symbol ;

375 var s: symbol ; i: integer ; temp: tempstring;
begin

i := 1;
while name[i] 6= ’ ’ do

begin temp[i] := name[i]; incr (i) end;
380 temp[i] := endstr; s := Lookup(temp);

s arity(s) := arity ; s action(s) := action ;
Enter := s

end;

{ Codes for built-in relations }
385 define(cut , 1) { !/0 }

define(call, 2) { call/1 }
define(plus , 3) { plus/3 }
define(times , 4) { times/3 }
define(isint , 5) { integer/1 }

390 define(ischar, 6) { char/1 }
define(naff , 7) { ¬ /1 }
define(equality , 8) { = /2 }
define(fail, 9) { false/0 }

{ InitSymbols – initialize and define standard symbols }
395 procedure InitSymbols;

var i: integer ; dummy: symbol ;
begin

nsymbols := 0;
for i := 1 to maxsymbols do s name(i) := −1;

400 cons := Enter(’: ’, 2, 0);
cutsym := Enter(’! ’, 0,cut);
eqsym := Enter(’= ’, 2, equality );
nilsym := Enter(’nil ’, 0, 0);
notsym := Enter(’not ’, 1,naff);

405 dummy := Enter(’call ’, 1,call);
dummy := Enter(’plus ’, 3, plus);
dummy := Enter(’times ’, 3,times);
dummy := Enter(’integer ’, 1, isint);
dummy := Enter(’char ’, 1, ischar);

410 dummy := Enter(’false ’, 0, fail)
end;

{ AddClause – insert a clause at the end of its chain }
procedure AddClause(c: clause);

var s: symbol ; p: clause;
415 begin

s := t func(c head(c));
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if s action(s) 6= 0 then begin

exec error(’can’’t add clauses to built-in relation ’);
WriteString(s name(s))

420 end

else if s proc(s) = null then

s proc(s) := c
else begin

p := s proc(s);
425 while c next(p) 6= null do p := c next(p);

c next(p) := c
end

end;

C.10 Building terms on the heap

{ Next, some convenient routines that construct various kinds of term in the heap area:
they are used by the parsing routines to construct the internal representation of the
input terms they read. The routine MakeRef that is supposed to construct a ref node
in fact returns a pointer to one from a fixed collection. This saves space, since all clauses
can share the same small number of ref nodes. }

430

type argbuf = array [1 . . maxarity ] of term;

{ MakeCompound – construct a compound term on the heap }435

function MakeCompound (fun: symbol ; var arg : argbuf ): term;
var p: term; i, n: integer ;

begin

n := s arity(fun);
440 p := HeapAlloc(term size + n);

t tag(p) := make tag(func ,term size + n);
t func(p) := fun;
for i := 1 to n do t arg(p, i) := arg [i];
MakeCompound := p

445 end;

{ MakeNode – construct a compound term with up to 2 arguments }
function MakeNode(fun: symbol ; a1 , a2 : term): term;

var arg : argbuf ;
begin

450 arg[1] := a1 ; arg[2] := a2 ;
MakeNode := MakeCompound (fun , arg)

end;

var refnode: array [1 . . maxarity ] of term;

{ MakeRef – return a reference cell prepared earlier }
455 function MakeRef (offset : integer): term;

begin

MakeRef := refnode[offset ]
end;
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{ MakeInt – construct an integer node on the heap }
460 function MakeInt(i: integer): term;

var p: term;
begin

p := HeapAlloc(term size);
t tag(p) := make tag(int ,term size);

465 t ival (p) := i; MakeInt := p
end;

{ MakeChar – construct a character node on the heap }
function MakeChar (c: char ): term;

var p: term;
470 begin

p := HeapAlloc(term size);
t tag(p) := make tag(chrctr,term size);
t cval(p) := ord(c); MakeChar := p

end;

{ MakeString – construct a string as a Prolog list of chars }475

function MakeString(var s: tempstring): term;
var p: term; i: integer ;

begin

i := StringLength(s);
480 p := MakeNode(nilsym,null,null);

while i > 0 do

begin p := MakeNode(cons ,MakeChar (s[i]), p); decr(i) end;
MakeString := p

end;

{ MakeClause – construct a clause on the heap }485

function MakeClause(nvars : integer ; head : term;
var body : argbuf ; nbody : integer): clause;

var p: clause; i: integer ;
begin

490 p := HeapAlloc(clause size + nbody + 1);
c nvars(p) := nvars ; c next(p) := null; c head(p) := head ;
for i := 1 to nbody do c body(p, i) := body [i];
c body(p,nbody + 1) := null;
if head = null then c key(p) := 0

495 else c key(p) := Key(head ,null);
MakeClause := p

end;

C.11 Printing terms

{ These routines print terms on the user’s terminal. The main routine is PrintTerm ,
which prints a term by recursively traversing it. Unbound cells are printed in the form
’L123’ (for local cells) or ’G234’ (for global cells): the number is computed from the
address of the cell. If the frame is null, reference nodes are printed in the form ’@3’. }

500
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{ operator priorities }
define(maxprio, 2) { isolated term }
define(argprio , 2) { function arguments }

505 define(eqprio , 2) { equals sign }
define(consprio, 1) { colon }

{ IsString – check if a list represents a string }
function IsString(t: term; e: frame): boolean ;

label done;
510 const limit = 128;

var i: integer ;
begin

i := 0; t := Deref (t, e);
while i < limit do begin

515 if (t kind(t) 6= func) ∨ (t func(t) 6= cons) then

goto done

else if t kind(Deref (t arg(t, 1), e)) 6= chrctr then

goto done

else

520 begin incr (i); t := Deref (t arg(t, 2), e) end

end;
done:

IsString := (t kind(t) = func ) ∧ (t func(t) = nilsym)
end;

{ ShowString – print a list as a string }525

procedure ShowString(t: term; e: frame);
begin

t := Deref (t, e);
write(’"’);

530 while t func(t) 6= nilsym do begin

write(chr (t cval (Deref (t arg(t, 1), e))));
t := Deref (t arg(t, 2), e)

end;
write(’"’)

535 end;

{ PrintCompound – print a compound term }
procedure PrintCompound(t: term; e: frame; prio: integer);

var f : symbol ; i: integer ;
begin

540 f := t func(t);
if f = cons then begin

{ t is a list: try printing as a string, or use infix : }
if IsString(t, e) then

ShowString(t, e)
545 else begin

if prio < consprio then write(’(’);
PrintTerm(t arg(t, 1), e,consprio − 1);
write(’:’);
PrintTerm(t arg(t, 2), e,consprio);

550 if prio < consprio then write(’)’)
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end

end

else if f = eqsym then begin

{ t is an equation: use infix = }
555 if prio < eqprio then write(’(’);

PrintTerm(t arg(t, 1), e,eqprio − 1);
write(’ = ’);
PrintTerm(t arg(t, 2), e,eqprio − 1);
if prio < eqprio then write(’)’)

560 end

else if f = notsym then begin

{ t is a literal ’not P’ }
write(’not ’);
PrintTerm(t arg(t, 1), e,maxprio)

565 end

else begin

{ use ordinary notation }
WriteString(s name(f));
if s arity(f) > 0 then begin

570 write(’(’);
PrintTerm(t arg(t, 1), e,argprio);
for i := 2 to s arity(f) do begin

write(’, ’);
PrintTerm(t arg(t, i), e,argprio)

575 end;
write(’)’)

end

end

end;

{ PrintTerm – print a term }580

procedure PrintTerm fwd((t: term; e: frame; prio: integer));
begin

t := Deref (t, e);
if t = null then

585 write(’*null-term*’)
else begin

case t kind(t) of

func :
PrintCompound(t, e, prio);

590 int :
write(t ival (t): 1);

chrctr:
write(’’’’, chr (t cval (t)), ’’’’);

cell:
595 if is glob(t) then

write(’G’, (memsize − t) div term size : 1)
else

write(’L’, (t− hp) div term size: 1);
ref :

600 write(’@’, t index (t))
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default

write(’*unknown-term(tag=’, t kind(t): 1, ’)*’)
end

end

605 end;

{ PrintClause – print a clause }
procedure PrintClause(c: clause);

var i: integer ;
begin

610 if c = null then

writeln(’*null-clause*’)
else begin

if c head(c) 6= null then begin

PrintTerm(c head(c),null,maxprio);
615 write(’ ’)

end;
write(’:- ’);
if c body(c, 1) 6= null then begin

PrintTerm(c body(c, 1),null,maxprio);
620 i := 2;

while c body(c, i) 6= null do begin

write(’, ’);
PrintTerm(c body(c, i),null,maxprio);
incr(i)

625 end

end;
writeln(’.’)

end

end;

C.12 Scanner

{ The Scan procedure that reads the next token of a clause or goal from the input, together
with some procedures that implement a crude form of recovery from syntax errors.

630

Scan puts an integer code into the global variable token ; if the token is an identifier, a
number, or a string, there is another global variable that contains its actual value.

The recovery mechanism skips input text until it finds a full stop or (if the input was
from the terminal) the end of a line. It then sets token to dot , the code for a full stop.
The parser routines are designed so that they will never read past a full stop, and final
recovery from the error is achieved when control reaches ReadClause again. }

635

var

token: integer ; { last token from input }
640 tokval : symbol ; { if token = ident , the identifier }

tokival : integer ; { if token = number, the number }
toksval : tempstring ; { if token = strcon , the string }
errflag : boolean ; { whether recovering from an error }
errcount : integer ; { number of errors found so far }
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{ Possible values for token: }645

define(ident , 1) { identifier: see tokval }
define(variable , 2) { variable: see tokval }
define(number, 3) { number: see tokival }
define(chcon , 4) { char constant: see tokival }

650 define(strcon , 5) { string constant: see toksval }
define(arrow , 6) { ’:-’ }
define(lpar, 7) { ’(’ }
define(rpar, 8) { ’)’ }
define(comma, 9) { ’,’ }

655 define(dot , 10) { ’.’ }
define(colon , 11) { ’:’ }
define(equal, 12) { ’=’ }
define(negate , 13) { ’not’ }
define(eoftok , 14) { end of file }

{ syntax error – report a syntax error }660

define(syntax error ,
begin if ¬ errflag then

begin ShowError ; writeln($0); Recover end end)

{ ShowError – report error location }
665 procedure ShowError ;

begin

errflag := true; incr(errcount);
if ¬ interacting then begin

write(’"’); WriteString(filename);
670 write(’", line ’, lineno: 1, ’ ’)

end;
write(’Syntax error - ’)

end;

{ Recover – discard rest of input clause }
675 procedure Recover ;

var ch: char ;
begin

if ¬ interacting ∧ (errcount ≥ 20) then

begin writeln(’Too many errors: I’’m giving up’); abort end;
680 if token 6= dot then begin

repeat

ch := GetChar

until (ch = ’.’) ∨ (ch = endfile)
∨ (interacting ∧ (ch = endline));

685 token := dot

end

end;

define(is upper , ((($1 ≥ ’A’) ∧ ($1 ≤ ’Z’)) ∨ ($1 = ’ ’)))
define(is letter , (is upper($1)

690 ∨ (($1 ≥ ’a’) ∧ ($1 ≤ ’z’))))
define(is digit , (($1 ≥ ’0’) ∧ ($1 ≤ ’9’)))
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{ Scan – read one symbol from infile into token . }
procedure Scan;

var ch, ch2 : char ; i: integer ;
695 begin

ch := GetChar ; token := 0;
while token = 0 do begin

{ Loop after white-space or comment }
if ch = endfile then

700 token := eoftok

else if (ch = ’ ’) ∨ (ch = tab) ∨ (ch = endline) then

ch := GetChar

else if is letter(ch) then begin

if is upper (ch) then token := variable

705 else token := ident ;
i := 1;
while is letter(ch) ∨ is digit(ch) do begin

if i > maxstring then

panic(’identifier too long’);
710 toksval [i] := ch; ch := GetChar ; incr(i)

end;
PushBack (ch);
toksval [i] := endstr; tokval := Lookup(toksval );
if tokval = notsym then token := negate

715 end

else if is digit(ch) then begin

token := number; tokival := 0;
while is digit(ch) do begin

tokival := 10 ∗ tokival + (ord(ch)− ord(’0’));
720 ch := GetChar

end;
PushBack (ch)

end

else begin

725 case ch of

’(’: token := lpar;
’)’: token := rpar;
’,’: token := comma;
’.’: token := dot ;

730 ’=’: token := equal;
’!’: begin token := ident ; tokval := cutsym end;
’/’:

begin

ch := GetChar ;
735 if ch 6= ’*’ then

syntax error(’bad token "/"’)
else begin

ch2 := ’ ’;
ch := GetChar ;

740 while (ch 6= endfile) ∧ ¬ ((ch2 = ’*’) ∧ (ch = ’/’)) do

begin ch2 := ch; ch := GetChar end;
if ch = endfile then
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syntax error (’end of file in comment’)
else

745 ch := GetChar

end

end;
’:’:

begin

750 ch := GetChar ;
if ch = ’-’ then

token := arrow

else

begin PushBack (ch); token := colon end

755 end;
’’’’:

begin

token := chcon ; tokival := ord(GetChar ); ch := GetChar ;
if ch 6= ’’’’ then

760 syntax error(’missing quote’)
end;

’"’:
begin

token := strcon ; i := 1; ch := GetChar ;
765 while (ch 6= ’"’) ∧ (ch 6= endline) do

begin toksval [i] := ch; ch := GetChar ; incr(i) end;
toksval [i] := endstr;
if ch = endline then begin

syntax error(’unterminated string’);
770 PushBack (ch)

end

end

default

syntax error(’illegal character "’, ch, ’"’)
775 end

end

end

end;

{ PrintToken – print a token as a string }
780 procedure PrintToken(t: integer);

begin

case t of

ident :
begin write(’identifier ’); WriteString(s name(tokval )); end;

785 variable:
begin write(’variable ’); WriteString(s name(tokval )); end;

number: write(’number’);
chcon : write(’char constant’);
arrow : write(’":-"’);

790 lpar: write(’"("’);
rpar: write(’")"’);
comma: write(’","’);
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dot : write(’"."’);
colon : write(’":"’);

795 equal: write(’"="’);
strcon : write(’string constant’)
default

write(’unknown token’)
end

800 end;

C.13 Variable names

{ As the parser reads an input clause, the routines here maintain a table of variable names
and the corresponding run-time offsets in a frame for the clause: for each i, the name
of the variable at offset i is vartable[i]. Each clause contains only a few variables, so
linear search is good enough.

If the input clause turns out to be a goal, the table is saved and used again to display
the answer when execution succeeds. }

805

var

nvars : 0 . . maxarity ; { no. of variables so far }
vartable: array [1 . . maxarity ] of symbol ; { names of the variables }

{ VarRep – look up a variable name }810

function VarRep(name: symbol): term;
var i: integer ;

begin

if nvars = maxarity then panic(’too many variables’);
815 i := 1; vartable [nvars + 1] := name; { sentinel }

while name 6= vartable [i] do incr(i);
if i = nvars + 1 then incr(nvars);
VarRep := MakeRef (i)

end;

{ ShowAnswer – display answer and get response }820

function ShowAnswer(bindings : frame): boolean ;
var i: integer ; ch: char ;

begin

if nvars = 0 then ShowAnswer := true

825 else begin

for i := 1 to nvars do begin

writeln ;
WriteString(s name(vartable [i])); write(’ = ’);
PrintTerm(f local(bindings , i),null, eqprio − 1)

830 end;
if ¬ interacting then

begin writeln ; ShowAnswer := false end

else begin

write(’ ? ’); flush out ;
835 if eoln then

begin readln ; ShowAnswer := false end

else
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begin readln(ch); ShowAnswer := (ch = ’.’) end

end

840 end

end;

C.14 Parser

{ Here are the routines that parse input clauses. They use the method of recursive descent,
with each class of phrase recognized by a single function that consumes the tokens of
the phrase and returns its value. Each of these functions follows the convention that
the first token of its phrase is in the global token variable when the function is called,
and the first token after the phrase is in token on return. The value of the function is
the internal data structure for the term; this is built directly in the heap, with variables
replaced by ref nodes. Syntax errors are handled by skipping to the next full stop,
then trying again to find a clause. }

845

{ Eat – check for an expected token and discard it }850

procedure Eat(expected : integer);
begin

if token = expected then

begin if token 6= dot then Scan end

855 else if ¬ errflag then begin

ShowError ;
write(’expected ’); PrintToken(expected);
write(’, found ’); PrintToken(token); writeln;
Recover

860 end

end;

{ ParseCompound – parse a compound term }
function ParseCompound : term ;

var fun: symbol ; arg : argbuf ; n: integer ;
865 begin

fun := tokval ; n := 0; Eat(ident);
if token = lpar then begin

Eat(lpar); n := 1; arg[1] := ParseTerm ;
while token = comma do

870 begin Eat(comma); incr(n); arg [n] := ParseTerm end;
Eat(rpar)

end;
if s arity(fun) = −1 then

s arity(fun) := n
875 else if s arity(fun) 6= n then

syntax error (’wrong number of args’);
ParseCompound := MakeCompound (fun, arg)

end;

{ ParsePrimary – parse a primary }
880 function ParsePrimary : term;

var t: term;
begin
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if token = ident then t := ParseCompound

else if token = variable then

885 begin t := VarRep(tokval ); Eat(variable) end

else if token = number then

begin t := MakeInt(tokival ); Eat(number) end

else if token = chcon then

begin t := MakeChar (chr (tokival )); Eat(chcon) end

890 else if token = strcon then

begin t := MakeString(toksval ); Eat(strcon ) end

else if token = lpar then

begin Eat(lpar); t := ParseTerm ; Eat(rpar) end

else begin

895 syntax error (’expected a term’); t := null

end;
ParsePrimary := t

end;

{ ParseFactor – parse a factor }
900 function ParseFactor : term;

var t: term;
begin

t := ParsePrimary ;
if token 6= colon then

905 ParseFactor := t
else begin

Eat(colon);
ParseFactor := MakeNode(cons , t,ParseFactor )

end

910 end;

{ ParseTerm – parse a term }
function ParseTerm fwd(: term);

var t: term;
begin

915 t := ParseFactor ;
if token 6= equal then

ParseTerm := t
else begin

Eat(equal);
920 ParseTerm := MakeNode(eqsym , t,ParseFactor )

end

end;

{ CheckAtom – check that a literal is a compound term }
procedure CheckAtom(a: term);

925 begin

if t kind(a) 6= func then

syntax error (’literal must be a compound term’)
end;

{ ParseClause – parse a clause }
930 function ParseClause(isgoal : boolean): clause;

label done;



226 PicoProlog source code

var head , t: term;
body : argbuf ;
n: integer ;

935 minus : boolean ;
begin

if isgoal then

head := null

else begin

940 head := ParseTerm ;
CheckAtom(head);
Eat(arrow )

end;

n := 0;
945 if token 6= dot then begin

while true do begin

n := n + 1; minus := false ;
if token = negate then

begin Eat(negate); minus := true end;
950 t := ParseTerm ; CheckAtom(t);

if minus then body [n] := MakeNode(notsym, t,null)
else body [n] := t;
if token 6= comma then goto done;
Eat(comma)

955 end

end;
done:

Eat(dot);

if errflag then ParseClause := null

960 else ParseClause := MakeClause(nvars , head , body , n)
end;

{ ReadClause – read a clause from infile }
function ReadClause: clause;

var c: clause;
965 begin

repeat

hp := hmark ; nvars := 0; errflag := false;
if interacting then

begin writeln ; write(’# :- ’); flush out end;
970 Scan;

if token = eoftok then c := null

else c := ParseClause(interacting)
until (¬ errflag) ∨ (token = eoftok);
ReadClause := c

975 end;
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C.15 Trail

{ The trail stack records assignments made to variables, so that they can be undone on
backtracking. It is a linked list of nodes with a t kind of undo allocated from the global
stack. The variables for which bindings are actually kept in the trail are the ‘critical’
ones that will not be destroyed on backtracking. }

980 type trail = pointer ;
{ Nodes on the trail share the t tag and t shift fields of other nodes on the global stack,

plus: }
define(x reset ,mem [$1 + 2]) { variable to reset }
define(x next ,mem[$1 + 3]) { next trail entry }

985 define(trail size, 4)

var trhead : trail ; { start of the trail }

{ critical – test if a variable will survive backtracking }
define(critical , (($1 < choice) ∨ ($1 ≥ f glotop(choice))))

{ Save – add a variable to the trail if it is critical }
990 procedure Save(v: term);

var p: trail ;
begin

if critical(v) then begin

p := GloAlloc(undo,trail size);
995 x reset(p) := v; x next(p) := trhead ; trhead := p

end

end;

{ Restore – undo bindings back to previous state }
procedure Restore;

1000 var v: term;
begin

while (trhead 6= f trail(choice)) do begin

v := x reset(trhead);
if v 6= null then t val (v) := null;

1005 trhead := x next(trhead)
end

end;

{ Commit – blank out trail entries not needed after cut }
procedure Commit ;

1010 var p: trail ;
begin

p := trhead ;
while (p 6= null) ∧ (p < f glotop(choice)) do begin

if (x reset(p) 6= null) ∧ ¬ critical(x reset(p)) then

1015 x reset(p) := null;
p := x next(p)

end

end;
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C.16 Unification

{ The unification algorithm is the naive one that is traditional in Prolog implementations.
Tradition is also followed in omitting the ‘occur check’.1020

Nodes of type cell may only point to terms that are independent of any frame: i.e.,
they may not point to terms in the heap that may contain ref nodes. So there is a
function GloCopy that copies out enough of a term onto the global stack so that any
cell can point to it. No copy is needed if the term is already on the global stack, or if
it is a simple term that cannot contain any ref ’s. }1025

{ GloCopy – copy a term onto the global stack }
function GloCopy(t: term; e: frame): term;

var tt : term; i, n: integer ;
begin

1030 t := Deref (t, e);
if is glob(t) then

GloCopy := t
else begin

case t kind(t) of

1035 func :
begin

n := s arity(t func(t));
if is heap(t) ∧ (n = 0) then GloCopy := t
else begin

1040 tt := GloAlloc(func ,term size + n);
t func(tt) := t func(t);
for i := 1 to n do

t arg(tt , i) := GloCopy(t arg(t, i), e);
GloCopy := tt

1045 end

end;
cell:

begin

tt := GloAlloc(cell,term size);
1050 t val(tt) := null;

Save(t); t val(t) := tt ;
GloCopy := tt

end;
int ,chrctr:

1055 GloCopy := t
default

bad tag(’GloCopy’, t kind(t))
end

end

1060 end;
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{ When two variables are made to ‘share’, there is a choice of which variable is made to
point to the other. The code takes care to obey some rules about what may point to
what: (1) Nothing on the global stack may point to anything on the local stack; (2)
Nothing on the local stack may point to anything nearer the top of the local stack.
Both these rules are necessary, since the top part of the local stack may be reclaimed
without warning. There is another rule that makes for better performance: (3) Avoid
pointers from items nearer the bottom of the global stack to items nearer the top.

1065

The tricky lifetime macro implements these rules by computing a numerical measure of
the lifetime of an object, defined so that anything on the local stack is shorter-lived than
anything on the global stack, and within each stack items near the top are shorter-lived
than items near the bottom. }

1070

{ lifetime – measure of potential lifetime }
define(lifetime , ($1 ∗ (2 ∗ ord(is glob($1))− 1)))

{ Share – bind two variables together }
1075 procedure Share(v1 , v2 : term);

begin

if lifetime(v1 ) ≤ lifetime(v2 ) then

begin Save(v1 ); t val(v1 ) := v2 end

else

1080 begin Save(v2 ); t val(v2 ) := v1 end

end;

{ Unify – find and apply unifier for two terms }
function Unify(t1 : term; e1 : frame; t2 : term; e2 : frame): boolean ;

var i: integer ; match: boolean ;
1085 begin

t1 := Deref (t1 , e1 ); t2 := Deref (t2 , e2 );
if t1 = t2 then { Includes unifying a var with itself }

Unify := true

else if (t kind(t1 ) = cell) ∧ (t kind(t2 ) = cell) then

1090 begin Share(t1 , t2 ); Unify := true end

else if t kind(t1 ) = cell then

begin Save(t1 ); t val (t1 ) := GloCopy(t2 , e2 ); Unify := true end

else if t kind(t2 ) = cell then

begin Save(t2 ); t val (t2 ) := GloCopy(t1 , e1 ); Unify := true end

1095 else if t kind(t1 ) 6= t kind(t2 ) then

Unify := false

else begin

case t kind(t1 ) of

func :
1100 if (t func(t1 ) 6= t func(t2 )) then

Unify := false

else begin

i := 1; match := true;
while match ∧ (i ≤ s arity(t func(t1 ))) do begin

1105 match := Unify(t arg(t1 , i), e1 , t arg(t2 , i), e2 );
incr(i)

end;
Unify := match

end;
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1110 int :
Unify := (t ival (t1 ) = t ival (t2 ));

chrctr:
Unify := (t cval (t1 ) = t cval (t2 ))

default

1115 bad tag(’Unify’, t kind(t1 ))
end

end

end;

{ Key – unification key of a term }
1120 function Key fwd((t: term; e: frame): integer);

var t0 : term;
begin

{ The argument t must be a direct pointer to a compound term.
The value returned is key(t): if t1 and t2 are unifiable,

1125 then key(t1 ) = 0 or key(t2 ) = 0 or key(t1 ) = key(t2 ). }

if t = null then panic(’Key’);
if t kind(t) 6= func then bad tag(’Key1’, t kind(t));

if s arity(t func(t)) = 0 then

Key := 0
1130 else begin

t0 := Deref (t arg(t, 1), e);
case t kind(t0 ) of

func : Key := t func(t0 );
int : Key := t ival (t0 ) + 1;

1135 chrctr: Key := t cval (t0 ) + 1;
ref ,cell: Key := 0

default

bad tag(’Key2’, t kind(t0 ))
end

1140 end

end;

{ Search – find the first clause that might match }
function Search(t: term; e: frame; p: clause): clause;

var k: integer ;
1145 begin

k := Key(t, e);
if k 6= 0 then

while (p 6= null) ∧ (c key(p) 6= 0) ∧ (c key(p) 6= k) do

p := c next(p);
1150 Search := p

end;

C.17 Interpreter

{ The main control of the interpreter uses a depth-first search procedure with an explicit
stack of activation records. It includes the tail-recursion optimization and an indexing
scheme that uses the hash codes computed by Key . }
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1155 var ok : boolean ; { whether execution succeeded }

define(debug point , if dflag then begin write($1, ’: ’);
PrintTerm($2, $3,maxprio); writeln end)

{ PushFrame – create a new local stack frame }
procedure PushFrame(nvars : integer ; retry: clause);

1160 var f : frame; i: integer ;
begin

f := LocAlloc(frame size(nvars));
f goal(f) := current ; f parent(f) := goalframe ;
f retry(f) := retry; f choice(f) := choice;

1165 f glotop(f) := gsp; f trail(f) := trhead ;
f nvars(f) := nvars ;
for i := 1 to nvars do begin

t tag(f local (f, i)) := make tag(cell,term size);
t val (f local (f, i)) := null

1170 end;
goalframe := f ;
if retry 6= null then choice := goalframe

end;

{ Tail recursion can be used only under rather stringent conditions: the goal literal must
be the last one in the body of the calling clause, both the calling clause and the called
clause must be determinate, and the calling clause must not be the original goal (lest
the answer variables be lost). The macro tro test(p) checks that these conditions are
satisfied, where p is the untried part of the procedure for the current goal literal. }

1175

{ tro test – test if a resolution step can use TRO }
1180 define(tro test , (g first(g rest(current)) = null) ∧ (choice < goalframe)

∧ ($1 = null) ∧ (goalframe 6= base))

{ If the tro test macro returns true, then it is safe to discard the calling frame in a resolu-
tion step before solving the subgoals in the newly-created frame. TroStep implements
this manoeuvre: read it after you understand the normal case covered by Step.

Because the calling frame is to be discarded, it is important that no pointers from the
new frame to the calling frame are created during unification. TroStep uses the trick of
swapping the two frames so that Unify will make pointers go the right way. The idea
is simple, but the details are made complicated by the need to adjust internal pointers
in the relocated frame. }

1185

{ TroStep – perform a resolution step with tail-recursion }1190

procedure TroStep;
var temp: frame; oldsize ,newsize, i: integer ;

begin

if dflag then writeln(’(TRO)’);

1195 oldsize := frame size(f nvars(goalframe)); { size of old frame }
newsize := frame size(c nvars(proc)); { size of new frame }
temp := LocAlloc(newsize);
temp := goalframe + newsize; { copy old frame here }

{ Copy the old frame: in reverse order in case of overlap }
1200 for i := oldsize − 1 downto 0 do mem[temp + i] := mem[goalframe + i];
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{ Adjust internal pointers in the copy }
for i := 1 to f nvars(goalframe) do begin

if (t kind(f local(temp, i)) = cell)
∧ (t val (f local (temp, i)) 6= null)

1205 ∧ (goalframe ≤ t val (f local(temp, i)))
∧ (t val (f local (temp, i)) < goalframe + oldsize) then

t val(f local(temp, i)) := t val(f local(temp, i)) + newsize

end;

{ Overwrite the old frame with the new one }
1210 f nvars(goalframe) := c nvars(proc);

for i := 1 to f nvars(goalframe) do begin

t tag(f local (goalframe , i)) := make tag(cell,term size);
t val (f local (goalframe , i)) := null

end;

1215 { Perform the resolution step }
ok := Unify(call , temp, c head(proc), goalframe);
current := c rhs(proc);
lsp := temp − 1

end;

{ The Step procedure carries out a single resolution step. Built-in relations are treated
as a special case; so are resolution steps that can use the tail-recursion optimization.
Otherwise, we allocate a frame for the first clause for the current goal literal, unify the
clause head with the literal, and adopt the clause body as the new goal. The step can
fail (and Step returns false) if there are no clauses to try, or if the first clause fails to
match. }

1220

1225

{ Step – perform a resolution step }
procedure Step;

var retry: clause;
begin

1230 if s action(t func(call)) 6= 0 then

ok := DoBuiltin(s action(t func(call)))
else if proc = null then

ok := false

else begin

1235 retry := Search(call , goalframe , c next(proc));
if tro test(retry) then

TroStep

else begin

PushFrame(c nvars(proc), retry);
1240 ok := Unify(call , f parent(goalframe), c head(proc), goalframe);

current := c rhs(proc);
end

end

end;

{ The Unwind procedure returns from completed clauses until it finds one where there is
still work to do, or it finds that the original goal is completed. At this point, completed
frames are discarded if they cannot take part in future backtracking. }

1245
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{ Unwind – return from completed clauses }
procedure Unwind ;

1250 begin

while (g first(current) = null) ∧ (goalframe 6= base) do begin

debug point(’Exit’, g first(f goal (goalframe)), f parent(goalframe));
current := g rest(f goal (goalframe));
if goalframe > choice then lsp := goalframe − 1;

1255 goalframe := f parent(goalframe)
end

end;

{ The Backtrack procedure undoes all the work that has been done since the last non-
deterministic choice (indicated by the choice register). The trail shows what assign-
ments must be undone, and the stacks are returned to the state they were in when the
choice was made. The proc register is set from the f retry field of the choice frame: this
is the list of clauses for that goal that remain to be tried }

1260

{ Backtrack – roll back to the last choice-point }
procedure Backtrack ;

1265 begin

Restore;
current := f goal (choice); goalframe := f parent(choice);
call := Deref (g first(current), goalframe);
proc := f retry(choice); gsp := f glotop(choice);

1270 lsp := choice − 1; choice := f choice(choice);
debug point(’Redo’, call , goalframe);

end;

{ Resume is called with ok = true when the interpreter starts to execute a goal; it either
returns with ok = true when the goal succeeds, or returns with ok = false when it
has completely failed. After Resume has returned true, it can be called again with
ok = false to find another solution; in this case, the first action is to backtrack to the
most recent choice-point. }

1275

{ Resume – continue execution }
procedure Resume;

1280 label exit ;
begin

while run do begin

if ok then begin

if g first(current) = null then return;
1285 call := Deref (g first(current), goalframe);

debug point(’Call’, call , goalframe);
if (s proc(t func(call)) = null)

∧ (s action(t func(call)) = 0) then begin

exec error(’call to undefined relation ’);
1290 WriteString(s name(t func(call)));

return

end;
proc := Search(call , goalframe , s proc(t func(call)))

end

1295 else begin

if choice ≤ base then return;
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Backtrack

end;
Step;

1300 if ok then Unwind ;
if gsp − lsp ≤ gclow then Collect

end;
exit :
end;

{ Execute – solve a goal by SLD-resolution }1305

procedure Execute(g: clause);
label exit ;

begin

lsp := hp; gsp := memsize + 1;
1310 current := null; goalframe := null; choice := null; trhead := null;

PushFrame(c nvars(g),null);
choice := goalframe ; base := goalframe ; current := c rhs(g);
run := true; ok := true;
repeat

1315 Resume;
if ¬ run then return;
if ¬ ok then

begin writeln ; write(’no’); return end;
ok := ShowAnswer(base)

1320 until ok ;
writeln; write(’yes’);

exit :
end;

C.18 Built-in relations

{ Each built-in relation is a parameterless boolean-valued function: it finds its arguments
from the call in call , carries out whatever side-effect is desired, and returns true exactly
if the call succeeds.

1325

Two routines help in defining built-in relations: GetArgs dereferences the argument of
the literal call and puts them in the global array av ; and NewInt makes a new integer
node on the global stack. }

1330 var

av : argbuf ; { GetArgs puts arguments here }
callbody : pointer ; { dummy clause body used by call/1 }

{ GetArgs – set up av array }
procedure GetArgs;

1335 var i: integer ;
begin

for i := 1 to s arity(t func(call)) do

av [i] := Deref (t arg(call , i), goalframe)
end;
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{ A couple of macros that abbreviate accesses to the av array: }1340

define(a kind , (t kind(av [$1]) = $2))
define(a ival , t ival (av [$1]))

function NewInt(n: integer): term;
var t: term;

1345 begin

t := GloAlloc(int ,term size);
t ival (t) := n;
NewInt := t

end;

{ DoCut – built-in relation !/0 }1350

function DoCut : boolean ;
begin

choice := f choice(goalframe);
lsp := goalframe + frame size(f nvars(goalframe)) − 1;

1355 Commit ;
current := g rest(current);
DoCut := true

end;

{ DoCall – built-in relation call/1 }
1360 function DoCall : boolean ;

begin

GetArgs;
if ¬ a kind(1, func) then begin

exec error(’bad argument to call/1’);
1365 DoCall := false

end

else begin

PushFrame(1,null);
t val (f local (goalframe , 1)) :=

1370 GloCopy(av [1], f parent(goalframe));
current := callbody ;
DoCall := true

end

end;

{ DoNot – built-in relation ¬ /1 }1375

function DoNot : boolean ;
var savebase : frame;

begin

GetArgs;
1380 if ¬ a kind(1, func) then begin

exec error(’bad argument to call/1’);
DoNot := false

end

else begin

1385 PushFrame(1,null);
savebase := base; base := goalframe ; choice := goalframe ;
t val (f local (goalframe , 1)) :=

GloCopy(av [1], f parent(goalframe));



236 PicoProlog source code

current := callbody ; ok := true;
1390 Resume;

choice := f choice(base); goalframe := f parent(base);
if ¬ ok then begin

current := g rest(f goal (base));
DoNot := true

1395 end

else begin

Commit ;
DoNot := false

end;
1400 lsp := base − 1; base := savebase

end

end;

{ Procedures DoPlus and DoTimes implement the plus/3 and times/3 relations: they
both involve a case analysis of which arguments are known, followed by a call to Unify

to unify the remaining argument with the result. The times/3 relation fails on divide-
by-zero, even in the case times(X, 0, 0), which actually has infinitely many solutions. }

1405

{ DoPlus – built-in relation plus/3 }
function DoPlus : boolean ;

var result : boolean ;
1410 begin

GetArgs;
result := false;
if a kind(1, int) ∧ a kind(2, int) then

result := Unify(av [3], goalframe ,NewInt(a ival (1) + a ival (2)),null)
1415 else if a kind(1, int) ∧ a kind(3, int) then begin

if a ival (1) ≤ a ival (3) then

result := Unify(av [2], goalframe,
NewInt(a ival (3)− a ival (1)),null)

end

1420 else if a kind(2, int) ∧ a kind(3, int) then begin

if a ival (2) ≤ a ival (3) then

result := Unify(av [1], goalframe,NewInt(a ival(3)− a ival (2)),null)
end

else

1425 exec error(’plus/3 needs at least two integers’);
current := g rest(current);
DoPlus := result

end;

{ DoTimes – built-in relation times/3 }
1430 function DoTimes : boolean ;

var result : boolean ;
begin

GetArgs;
result := false;

1435 if a kind(1, int) ∧ a kind(2, int) then

result := Unify(av [3], goalframe ,
NewInt(t ival (av [1]) ∗ t ival (av [2])),null)
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else if a kind(1, int) ∧ a kind(3, int) then begin

if a ival (1) 6= 0 then

1440 if a ival (3) mod a ival (1) = 0 then

result := Unify(av [2], goalframe ,
NewInt(a ival (3) div a ival (1)),null)

end

else if a kind(2, int) ∧ a kind(3, int) then begin

1445 if a ival (2) 6= 0 then

if a ival (3) mod a ival (2) = 0 then

result := Unify(av [1], goalframe ,
NewInt(a ival (3) div a ival (2)),null)

end

1450 else

exec error(’times/3 needs at least two integers’);
current := g rest(current);
DoTimes := result

end;

{ DoEqual – built-in relation = /2 }1455

function DoEqual : boolean ;
begin

GetArgs;
current := g rest(current);

1460 DoEqual := Unify(av [1], goalframe, av [2], goalframe)
end;

{ DoInteger – built-in relation integer/1 }
function DoInteger : boolean ;
begin

1465 GetArgs;
current := g rest(current);
DoInteger := a kind(1, int)

end;

{ DoChar – built-in relation char/1 }
1470 function DoChar : boolean ;

begin

GetArgs;
current := g rest(current);
DoChar := a kind(1,chrctr)

1475 end;

{ DoBuiltin – switch for built-in relations }
function DoBuiltin fwd((action : integer): boolean);
begin

case action of

1480 cut : DoBuiltin := DoCut ;
call: DoBuiltin := DoCall ;
plus : DoBuiltin := DoPlus ;
times : DoBuiltin := DoTimes ;
isint : DoBuiltin := DoInteger ;

1485 ischar: DoBuiltin := DoChar ;
naff : DoBuiltin := DoNot ;
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equality : DoBuiltin := DoEqual ;
fail: DoBuiltin := false

default

1490 bad tag(’DoBuiltin’, action)
end

end;

C.19 Garbage collection

{ Finally, here is the garbage collector, which reclaims space in the global stack that is
no longer accessible. It must work well with the stack-like expansion and contraction
of the stack, so it is a compacting collector that does not alter the order in memory of
the accessible nodes.

1495

The garbage collector operates in four phases: (1) Find and mark all accessible storage.
(2) Compute the new positions of the marked items after the global stack is compacted.
(3) Adjust all pointers to marked items. (4) Compact the global stack and move it to
the top of mem. That may seem complicated, and it is; the garbage collector must
know about all the run-time data structures, and is that one piece of the system that
cuts across every abstraction boundary.

1500

Because of the relocation, Collect should only be called at ‘quiet’ times, when the only
pointers into the global stack are from interpreter registers and the local stack. An
example of a ‘non-quiet’ time is in the middle of unification, when many recursive
copies of the unification procedure are keeping pointers to bits of term structure. To
avoid the need to collect garbage at such times, the main control of the interpreter
calls Collect before each resolution step if the space left is less than gclow . If space
runs out in the subsequent resolution step, execution is abandoned without much grace.
This plan works because the amount of space consumed in a resolution step is bounded
by the maximum size of a program clause; this size is not checked, though. }

1505

1510

var shift : integer ; { amount global stack will shift }

{ Visit – recursively mark a term and all its sub-terms }
procedure Visit(t: term);

1515 label exit ;
var i, n: integer ;

begin

{ We reduce the depth of recursion when marking long lists by
treating the last argument of a function iteratively, making

1520 recursive calls only for the other arguments. }
while t 6= null do begin

if ¬ is glob(t) ∨ marked(t) then return;
add mark (t);
case t kind(t) of

1525 func :
begin

n := s arity(t func(t));
if n = 0 then return;
for i := 1 to n− 1 do Visit(t arg(t, i));

1530 t := t arg(t, n)
end;
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cell:
t := t val(t);

int ,chrctr:
1535 return

default

bad tag(’Visit’, t kind(t))
end

end;
1540 exit :

end;

{ MarkStack – mark from each frame on the local stack }
procedure MarkStack ;

var f : frame; i: integer ;
1545 begin

f := hp + 1;
while f ≤ lsp do begin

for i := 1 to f nvars(f) do

if t kind(f local (f, i)) = cell then

1550 Visit(t val(f local(f, i)));
f := f + frame size(f nvars(f))

end

end;

{ CullTrail – delete an initial segment of unwanted trail }
1555 procedure CullTrail(var p: trail);

label exit ;
begin

while p 6= null do begin

if x reset(p) 6= null then

1560 if ¬ is glob(x reset(p)) ∨ marked(x reset(p)) then

return;
p := x next(p)

end;
exit :

1565 end;

{ MarkTrail – remove dead trail nodes, mark the rest. }
procedure MarkTrail ;

var p: trail ;
begin

1570 CullTrail(trhead); p := trhead ;
while p 6= null do

begin add mark(p); CullTrail(x next(p)); p := x next(p) end

end;

{ Relocate – compute shifts }
1575 procedure Relocate;

var p: pointer ; step: integer ;
begin

shift := 0; p := gsp;
while p ≤ memsize do begin

1580 step := t size(p); t shift(p) := shift ;
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if ¬marked(p) then

shift := shift + step;
p := p + step

end

1585 end;

{ AdjustPointer – update a pointer }
procedure AdjustPointer(var p: term);
begin

if (p 6= null) ∧ is glob(p) then begin

1590 if ¬marked(p) then

panic(’adjusting pointer to unmarked block’);
p := p + shift − t shift(p)

end

end;

{ AdjustStack – adjust pointers in local stack }1595

procedure AdjustStack ;
var f : frame; i: integer ; q: pointer ;
label found , found2 ;

begin

1600 f := hp + 1;
while f ≤ lsp do begin

q := f glotop(f);
while q ≤ memsize do begin

if marked(q) then goto found ;
1605 q := q + t size(q)

end;
found :

if q ≤ memsize then AdjustPointer(q);
f glotop(f) := q;

1610 q := f trail(f);
while q 6= null do begin

if marked(q) then goto found2 ;
q := x next(q)

end;
1615 found2 :

AdjustPointer(q);
f trail(f) := q;

for i := 1 to f nvars(f) do

if t kind(f local (f, i)) = cell then

1620 AdjustPointer(t val(f local(f, i)));
f := f + frame size(f nvars(f));

end

end;

{ AdjustInternal – update internal pointers }
1625 procedure AdjustInternal ;

var p, i: integer ;
begin

p := gsp;
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while p ≤ memsize do begin

1630 if marked(p) then begin

case t kind(p) of

func :
for i := 1 to s arity(t func(p)) do

AdjustPointer(t arg(p, i));
1635 cell:

AdjustPointer(t val(p));
undo:

begin

AdjustPointer(x reset(p));
1640 AdjustPointer(x next(p))

end;
int ,chrctr:

skip

default

1645 bad tag(’Adjust’, t kind(p))
end

end;
p := p + t size(p)

end

1650 end;

{ Compact – compact marked blocks and un-mark }
procedure Compact ;

var p, q, step, i: integer ;
begin

1655 p := gsp; q := gsp;
while p ≤ memsize do begin

step := t size(p);
if marked(p) then begin rem mark(p);

for i := 0 to step − 1 do mem [q + i] := mem[p + i];
1660 q := q + step

end;
p := p + step

end;
gsp := gsp + shift ;

1665 for i := memsize downto gsp do mem [i] := mem[i− shift ];
end;

{ Collect – collect garbage }
procedure Collect ;
begin

1670 write(’[gc’); flush out ;

{ Phase 1: marking }
Visit(call); MarkStack ; MarkTrail ;

{ Phase 2: compute new locations }
Relocate;

1675 { Phase 3: adjust pointers }
AdjustPointer(call); AdjustPointer(trhead);
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AdjustStack ; AdjustInternal ;

{ Phase 4: compact }
Compact ;

1680 write(’]’); flush out ;
if gsp − lsp ≤ gchigh then exec error(’out of memory space’)

end;

C.20 Main program

{ Initialize – initialize everything }
procedure Initialize ;

1685 var i: integer ; p: term;
begin

dflag := false; errcount := 0;
pbchar := endfile ; charptr := 0;
hp := 0; InitSymbols;

1690 { Set up the refnode array }
for i := 1 to maxarity do begin

p := HeapAlloc(term size);
t tag(p) := make tag(ref ,term size);
t index (p) := i; refnode[i] := p

1695 end;

{ The dummy clause call(p) :− p is used by call/1. }
callbody := HeapAlloc(2);
g first(callbody) := MakeRef (1);
g first(g rest(callbody)) := null

1700 end;

{ ReadFile – read and process clauses from an open file }
procedure ReadFile;

var c: clause;
begin

1705 lineno := 1;
repeat

hmark := hp;
c := ReadClause;
if c 6= null then begin

1710 if dflag then PrintClause(c);
if c head(c) 6= null then

AddClause(c)
else begin

if interacting then

1715 begin pbchar := endfile ; readln end;
Execute(c);
writeln;
hp := hmark

end

1720 end
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until c = null

end;

ifdef (turbo, {$I pplib.inc})

{ ReadProgram – read files listed on command line }
1725 procedure ReadProgram ;

var i0 , i: integer ;
arg : tempstring;

begin

i0 := 1;
1730 if argc > 1 then begin

argv (1, arg);
if (arg [1] = ’-’) ∧ (arg [2] = ’d’)

∧ (arg [3] = endstr) then begin

dflag := true;
1735 incr(i0 )

end

end;
for i := i0 to argc − 1 do begin

argv (i, arg);
1740 filename := SaveString(arg);

if ¬ openin(infile, arg) then begin

write(’Can’’t read ’); WriteString(filename); writeln ;
abort

end;
1745 write(’Reading ’); WriteString(filename); writeln ;

ReadFile ;
closein(infile);
if errcount > 0 then abort

end

1750 end;

begin { main program }
writeln(’Welcome to picoProlog’);
Initialize;
interacting := false; ReadProgram ;

1755 interacting := true; lineno := 1; ReadFile ;
writeln;

end of pp:
end.
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1439–42, 1445–8

a kind , 1341, 1363, 1380, 1413–15, 1420,
1435, 1438, 1444, 1467, 1474

a1 , 447, 450
a2 , 447, 450
abort , 57–8, 74, 679, 1743, 1748
action , 315, 337, 344, 374, 381, 1477,

1479, 1490
add mark , 151, 1523, 1572
AddClause, 413, 1712
AdjustInternal , 1625, 1677
AdjustPointer , 1587, 1608, 1616, 1620,

1634–6, 1639–40, 1676
AdjustStack , 1596, 1677
arg , 436, 443, 448, 450–51, 864, 868–70, 877,

1727, 1731–3, 1739–41
argbuf , 434, 436, 448, 487, 864, 933, 1331
argc, 1730, 1738
argprio, 504, 571, 574
argv , 1731, 1739
arity , 336, 343, 374, 381
arrow , 651, 752, 789, 942
av , 1331, 1338, 1341–2, 1370, 1388, 1414,

1417, 1422, 1436–7, 1441, 1447, 1460

Backtrack , 1264, 1297
bad tag , 75, 1057, 1115, 1127, 1138, 1490,

1537, 1645
base, 295, 1181, 1251, 1296, 1312, 1319,

1386, 1391–3, 1400
bindings , 821, 829

body , 487, 492, 933, 951–2, 960

c body , 266, 492–3, 618–23

c head , 264, 416, 491, 613–14, 1216,
1240, 1711

c key , 262, 494–5, 1148

c next , 263, 425–6, 491, 1149, 1235

c nvars , 261, 491, 1196, 1210, 1239, 1311

c rhs , 265, 266, 1217, 1241, 1312

call, 386, 405, 1481

call , 292, 1216, 1230–31, 1235, 1240, 1268,
1271, 1285–90, 1293, 1337–8, 1672, 1676

callbody , 1332, 1371, 1389, 1697–9

cell, 162, 308, 594, 1047–9, 1089–93, 1136,
1168, 1203, 1212, 1532, 1549, 1619, 1635

ch, 222, 229, 242, 244, 676, 682–4, 694, 696,
699–704, 707, 710–12, 716–22, 725, 734–5,
739–42, 745, 750–51, 754, 758–9, 764–70,
774, 822, 838

ch2 , 694, 738–41

charbuf , 88, 105, 113–14, 121–2

charptr , 87, 101–5, 1688

chcon , 649, 758, 788, 888–9

CheckAtom , 924, 941, 950

choice , 294, 988, 1002, 1013, 1164, 1172,
1180, 1254, 1267–70, 1296, 1310–12, 1353,
1386, 1391

chr , 21–4, 531, 593, 889

chrctr, 160, 472, 517, 592, 1054, 1112,
1135, 1474, 1534, 1642

clause size, 267, 490
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clause, 260, 296, 338, 413–14, 487–8, 607,
930, 963–4, 1143, 1159, 1228, 1306, 1703

closein , 1747
Collect , 316, 1301, 1668
colon , 656, 754, 794, 904, 907
comma, 654, 728, 792, 869–70, 953–4
Commit , 1009, 1355, 1397
Compact , 1652, 1679
cons , 340, 400, 482, 515, 541, 908
consprio, 506, 546–50
critical , 988, 993, 1014
CullTrail , 1555, 1570–72
current , 291, 1163, 1180, 1217, 1241, 1251–3,

1267–8, 1284–5, 1310–12, 1356, 1371,
1389, 1393, 1426, 1452, 1459, 1466, 1473

cut , 385, 401, 1480
cutsym, 340, 401, 731

debug point , 1156, 1252, 1271, 1286
decr , 61, 359, 482
Deref , 303, 310, 513, 517, 520, 528, 531–2,

583, 1030, 1086, 1131, 1268, 1285, 1338
dflag , 71, 1156, 1194, 1687, 1710, 1734
DoBuiltin , 315, 1231, 1477, 1480–88
DoCall , 1360, 1365, 1372, 1481
DoChar , 1470, 1474, 1485
DoCut , 1351, 1357, 1480
DoEqual , 1456, 1460, 1487
DoInteger , 1463, 1467, 1484
done, 49, 509, 516–18, 522, 931, 953, 957
DoNot , 1376, 1382, 1394, 1398, 1486
DoPlus , 1408, 1427, 1482
dot , 655, 680, 685, 729, 793, 854, 945, 958
DoTimes , 1430, 1453, 1483
dummy, 396, 405–10

e1 , 1083, 1086, 1094, 1105
e2 , 1083, 1086, 1092, 1105
Eat , 851, 866–71, 885–93, 907, 919, 942, 949,

954, 958
end of pp, 46, 56, 57, 1757
endfile , 24, 225, 234–5, 683, 699, 740–42,

1688, 1715
endline, 23, 227, 684, 701, 765, 768
endstr, 21, 94, 106, 113, 121, 353, 380, 713,

767, 1733
Enter , 374, 382, 400–410
eoftok , 659, 700, 971–3
eqprio, 505, 555–9, 829
eqsym , 340, 402, 553, 920
equal, 657, 730, 795, 916, 919

equality , 392, 402, 1487
errcount , 644, 667, 678, 1687, 1748
errflag , 643, 662, 667, 855, 959, 967, 973
exec error , 72, 418, 1289, 1364, 1381, 1425,

1451, 1681
Execute, 1306, 1716
exit , 48, 62, 1280, 1303, 1307, 1322, 1515,

1540, 1556, 1564
expected , 851, 853, 857

f choice , 282, 1164, 1270, 1353, 1391
f glotop, 283, 988, 1013, 1165, 1269,

1602, 1609
f goal , 279, 1163, 1252–3, 1267, 1393
f local , 286, 307, 829, 1168–9, 1203–7,

1212–13, 1369, 1387, 1549–50, 1619–20
f nvars , 285, 1166, 1195, 1202, 1210–11,

1354, 1548, 1551, 1618, 1621
f parent , 280, 1163, 1240, 1252, 1255, 1267,

1370, 1388, 1391
f retry, 281, 1164, 1269
f trail , 284, 1002, 1165, 1610, 1617
fail, 393, 410, 1488
FGetChar , 221, 225–9, 237–9
filename, 219, 669, 1740–42, 1745
flush out , 42, 834, 969, 1670, 1680
found , 47, 348, 358, 369, 1598, 1604, 1607
found2 , 50, 1598, 1612, 1615
frame size , 287, 289
frame size, 289, 1162, 1195–6, 1354,

1551, 1621
frame, 278, 293–5, 303, 313, 317, 508, 526,

537, 581, 821, 1027, 1083, 1120, 1143,
1160, 1192, 1377, 1544, 1597

fun, 436, 439, 442, 447, 451, 864, 866, 873–7
func , 155, 441, 515, 523, 588, 926, 1035,

1040, 1099, 1127, 1133, 1363, 1380,
1525, 1632

fwd , 322–3, 581, 912, 1120, 1477

g first , 268, 1180, 1251–2, 1268,
1284–5, 1698–9

g rest , 269, 1180, 1253, 1356, 1393, 1426,
1452, 1459, 1466, 1473, 1699

gchigh , 19, 1681
gclow , 18, 1301
GetArgs, 1334, 1362, 1379, 1411, 1433, 1458,

1465, 1472
GetChar , 232, 235–9, 682, 696, 702, 710,

720, 734, 739–41, 745, 750, 758, 764–6
GloAlloc, 191, 198, 994, 1040, 1049, 1346
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GloCopy , 1027, 1032, 1038, 1043–4, 1052,
1055, 1092–4, 1370, 1388

goalframe , 293, 1163, 1171–2, 1180–81,
1195, 1198–202, 1205–6, 1210–13, 1216,
1235, 1240, 1251–5, 1267–8, 1271, 1285–6,
1293, 1310–12, 1338, 1353–4, 1369–70,
1386–8, 1391, 1414, 1417, 1422, 1436,
1441, 1447, 1460

gsp, 182, 187, 194–6, 207, 1165, 1269, 1301,
1309, 1578, 1628, 1655, 1664–5, 1681

halt , 58
hashfactor, 13, 364
head , 486, 491, 494–5, 932, 938–41, 960
HeapAlloc, 201, 204, 440, 463, 471, 490,

1692, 1697
hmark , 182, 967, 1707, 1718
hp, 182, 203–6, 598, 967, 1309, 1546, 1600,

1689, 1707, 1718

i0 , 1726, 1729, 1735, 1738
ident , 646, 705, 731, 783, 866, 883
ifdef , 37, 58, 323, 1723
incr , 60, 94, 105, 113, 122, 227, 354, 379,

520, 624, 667, 710, 766, 816–17, 870,
1106, 1735

infile, 217, 239, 1741, 1747
Initialize , 1684, 1753
InitSymbols, 395, 1689
input , 8, 237
int , 158, 464, 590, 1054, 1110, 1134, 1346,

1413–15, 1420, 1435, 1438, 1444, 1467,
1534, 1642

interacting , 215, 236, 668, 678, 684, 831,
968, 972, 1714, 1754–5

is digit , 691, 707, 716–18
is glob, 207, 595, 1031, 1073, 1522,

1560, 1589
is heap, 206, 1038
is letter , 689, 703, 707
is upper , 688, 689, 704
ischar, 390, 409, 1485
isgoal , 930, 937
isint , 389, 408, 1484
IsString, 508, 523, 543

Key , 317, 495, 1120, 1129, 1133–6, 1146
keyword , 372, 374
kind , 191, 197

lifetime , 1073, 1077

limit , 510, 514
lineno, 218, 227, 670, 1705, 1755
LocAlloc, 185, 188, 1162, 1197
Lookup, 347, 370, 380, 713
lpar, 652, 726, 790, 867–8, 892–3
lsp, 182, 187–8, 194, 1218, 1254, 1270, 1301,

1309, 1354, 1400, 1547, 1601, 1681

make tag , 153, 197, 441, 464, 472, 1168,
1212, 1693

MakeChar , 468, 473, 482, 889
MakeClause , 486, 496, 960
MakeCompound , 436, 444, 451, 877
MakeInt , 460, 465, 887
MakeNode , 447, 451, 480–82, 908, 920, 951
MakeRef , 455, 457, 818, 1698
MakeString , 476, 483, 891
marked , 150, 1522, 1560, 1581, 1590, 1604,

1612, 1630, 1658
MarkStack , 1543, 1672
MarkTrail , 1567, 1672
match, 1084, 1103–5, 1108
maxarity , 16, 434, 453, 808–9, 814, 1691
maxchars , 14, 84, 87–8, 101, 118
maxprio, 503, 564, 614, 619, 623, 1157
maxstring, 15, 85, 91, 99, 708
maxsymbols, 12, 331–4, 354, 360, 364, 399
mem, 147, 154–65, 183, 261–8, 279–85,

983–4, 1200, 1659, 1665
memsize, 17, 183, 203, 596, 1309, 1579,

1603, 1608, 1629, 1656, 1665
minus, 935, 947–51

naff , 391, 404, 1486
name, 335, 342, 347, 353–4, 358, 366, 374,

378–9, 811, 815–16
nbody , 487, 490–93
negate , 658, 714, 948–9
NewInt , 1343, 1348, 1414, 1418, 1422, 1437,

1442, 1448
newsize, 1192, 1196–8, 1207
nilsym, 340, 403, 480, 523, 530
notsym, 340, 404, 561, 714, 951
nsymbols, 333, 364, 398
null, 145, 305–8, 368, 421, 425, 480, 491–5,

584, 610, 613–14, 618–23, 829, 895, 938,
951, 959, 971, 1004, 1013–15, 1050, 1126,
1148, 1169, 1172, 1180–81, 1204, 1213,
1232, 1251, 1284, 1287, 1310–11, 1368,
1385, 1414, 1418, 1422, 1437, 1442, 1448,
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1521, 1558–9, 1571, 1589, 1611, 1699,
1709–11, 1721

number, 648, 717, 787, 886–7
nvars , 486, 491, 808, 814–17, 824–6, 960,

967, 1159, 1162, 1166–7

offset , 455, 457
ok , 1155, 1216, 1231–3, 1240, 1283, 1300,

1313, 1317–20, 1389, 1392
oldsize , 1192, 1195, 1200, 1206
openin , 1741
ord , 354, 473, 719, 758, 1073
output , 8

panic, 74, 75, 102, 187, 195, 203, 305, 365,
709, 814, 1126, 1591

ParseClause , 930, 959–60, 972
ParseCompound , 863, 877, 883
ParseFactor , 900, 905, 908, 915, 920
ParsePrimary , 880, 897, 903
ParseTerm , 314, 868–70, 893, 912, 917, 920,

940, 950
pbchar , 216, 234–5, 244, 1688, 1715
permstring, 84, 98, 109, 117, 219
picoProlog , 8
plus , 387, 406, 1482
pointer , 144, 146, 182, 185, 191–2, 201, 260,

278, 291, 980, 1332, 1576, 1597
PrintClause, 607, 1710
PrintCompound , 537, 589
PrintTerm , 313, 547–9, 556–8, 564, 571, 574,

581, 614, 619, 623, 829, 1157
PrintToken , 780, 857–8
prio, 313, 537, 546, 550, 555, 559, 581, 589
proc, 296, 338, 345, 1196, 1210, 1216–17,

1232, 1235, 1239–41, 1269, 1293
PushBack , 242, 712, 722, 754, 770
PushFrame, 1159, 1239, 1311, 1368, 1385

ReadClause, 963, 974, 1708
ReadFile, 1702, 1746, 1755
readln , 227, 836–8, 1715
ReadProgram , 1725, 1754
Recover , 663, 675, 859
ref , 164, 306, 599, 1136, 1693
refnode, 453, 457, 1694
Relocate, 1575, 1674
rem mark , 152, 1658
Restore, 999, 1266
result , 1409, 1412–14, 1417, 1422, 1427,

1431, 1434–6, 1441, 1447, 1453

Resume, 1279, 1315, 1390
retry, 1159, 1164, 1172, 1228, 1235–6, 1239
rpar, 653, 727, 791, 871, 893
run, 70, 73, 1282, 1313, 1316

s action , 344, 368, 381, 417, 1230–31, 1288
s arity , 343, 367, 381, 439, 569, 572, 873–5,

1037, 1104, 1128, 1337, 1527, 1633
s name, 342, 357–8, 366, 399, 419, 568,

784–6, 828, 1290
s proc, 345, 368, 421–4, 1287, 1293
s1 , 109, 113–14
s2 , 109, 113–14
Save, 990, 1051, 1078–80, 1092–4
savebase, 1377, 1386, 1400
SaveString, 98, 103, 366, 1740
Scan, 693, 854, 970
Search, 1143, 1150, 1235, 1293
Share, 1075, 1090
shift , 1512, 1578–82, 1592, 1664–5
ShowAnswer , 821, 824, 832, 836–8, 1319
ShowError , 663, 665, 856
ShowString , 526, 544
size, 185, 187–8, 191, 194–7, 201, 203–4
skip, 63, 1643
Step, 1227, 1299
step, 1576, 1580–83, 1653, 1657–62
strcon , 650, 764, 796, 890–91
StringEqual , 109, 114, 358
StringLength, 90, 95, 101, 479
symbol , 331, 340, 347–9, 374–5, 396, 414,

436, 447, 538, 640, 809–11, 864
symtab, 334, 342–5
syntax error , 661, 736, 743, 760, 769, 774,

876, 895, 927

t arg , 157, 443, 517, 520, 531–2, 547–9,
556–8, 564, 571, 574, 1043, 1105, 1131,
1338, 1529–30, 1634

t cval , 161, 473, 531, 593, 1113, 1135
t func, 156, 416, 442, 515, 523, 530, 540,

1037, 1041, 1100, 1104, 1128, 1133,
1230–31, 1287–90, 1293, 1337, 1527, 1633

t index , 165, 307, 600, 1694
t ival , 159, 465, 591, 1111, 1134, 1342,

1347, 1437
t kind , 148, 306–8, 515–17, 523, 587, 602,

926, 1034, 1057, 1089–95, 1098, 1115,
1127, 1132, 1138, 1203, 1341, 1524, 1537,
1549, 1619, 1631, 1645

t shift , 154, 1580, 1592
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t size, 149, 1580, 1605, 1648, 1657
t tag , 147, 148–52, 197, 441, 464, 472, 1168,

1212, 1693
t val , 163, 308–9, 1004, 1050–51, 1078–80,

1092–4, 1169, 1204–7, 1213, 1369, 1387,
1533, 1550, 1620, 1636

t0 , 1121, 1131–5, 1138
t1 , 1083, 1086–95, 1098–100, 1104–5, 1111–15
t2 , 1083, 1086–95, 1100, 1105, 1111–13
tab, 22, 701
temp, 375, 379–80, 1192, 1197–200,

1203–7, 1216–18
tempstring, 85, 90, 98, 109, 347, 375, 476,

642, 1727
term size , 168, 286, 289, 440–41, 463–4,

471–2, 596–8, 1040, 1049, 1168, 1212,
1346, 1692–3

term, 146, 292, 303, 313–14, 317, 434–7, 447,
453–5, 460–61, 468–9, 476–7, 486, 508,
526, 537, 581, 811, 863, 880–81, 900–901,
912–13, 924, 932, 990, 1000, 1027–8,
1075, 1083, 1120–21, 1143, 1343–4, 1514,
1587, 1685

text , 217, 221
times , 388, 407, 1483
token, 639, 680, 685, 696–7, 700, 704–5,

714, 717, 726–31, 752–4, 758, 764, 853–4,
858, 867–9, 883–92, 904, 916, 945, 948,
953, 971–3

tokival , 641, 717–19, 758, 887–9
toksval , 642, 710, 713, 766–7, 891

tokval , 640, 713–14, 731, 784–6, 866, 885

trail size , 985, 994

trail , 980, 986, 991, 1010, 1555, 1568

trhead , 986, 995, 1002–5, 1012, 1165, 1310,
1570, 1676

tro test , 1180, 1236

TroStep, 1191, 1237

tt , 1028, 1040–44, 1049–52

turbo, 9, 37, 58, 323, 1723

undo, 166, 994, 1637

Unify , 1083, 1088–96, 1101, 1105, 1108,
1111–13, 1216, 1240, 1414, 1417, 1422,
1436, 1441, 1447, 1460

Unwind , 1249, 1300

v1 , 1075, 1077–80

v2 , 1075, 1077–80

variable, 647, 704, 785, 884–5

VarRep, 811, 818, 885

vartable, 809, 815–16, 828

Visit , 1514, 1529, 1550, 1672

WriteString, 117, 419, 568, 669, 784–6, 828,
1290, 1742, 1745

x next , 984, 995, 1005, 1016, 1562, 1572,
1613, 1640

x reset , 983, 995, 1003, 1014–15,
1559–60, 1639



Index

algebraic simplification, 109–11
alphabet of a program, 38
answer completeness, 53, 83
answer correctness, 82
answer substitutions, 70, 80–83
atomic formulas, 9
atoms, 38
augmented program, 51

backtracking, 8
backwards reasoning, 7
bi-directional programs, 29
binary trees, 32
body of a clause, 37
bounded search, 96–7
breadth-first search, 80, 94, 97
built-in relations, 95, 97, 107, 130, 132–3,

175–6

clauses, 37
closed world assumption, 24, 53, 86
Collect procedure, 180
Commit procedure, 174
completeness, 35, 52–3
composition of substitutions, 43, 81, 155
compound terms, 38
computed substitution of a derivation

tree, 81
conjunction, 17
connected relation, 92
constants, 37
critical macro, 174

cut symbol (!), 114, 133–6
cycles in a graph, 94

databases, 13–20
declarative programming, 1–2, 8, 35
depth-first search, 5, 79, 80, 139–41, 145–9
derivation trees, 65
diameter of a graph, 96
difference lists, 101–2
difference of relations, 17, 18
directed graphs, 91
disjunction, 17
DoCall function, 176
DoChar function, 176
DoCut function, 176
DoEqual function, 176
DoInteger function, 176
dominates relation, 31
DoNot function, 176
DoPlus function, 176
DoTimesfunction, 176

Eat procedure, 173
empty list, 21
evaluating expressions, 107–9
Execute procedure, 175
extracted substitution of a derivation tree, 81

facts, 9
fair search strategy, 80, 94
flatten relation, 32
forwards reasoning, 7
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function symbols, 36

GetChar procedure, 171
grammar rules in Prolog, 105
ground instances of a clause, 42
ground resolvents, 48
ground substitutions, 43
ground terms and literals, 38
ground-literal completeness, 53

hardware simulation, 115–20
head of a clause, 37
Horn clauses, 9

indexes, 19
InitSymbols procedure, 170
instances of a term, 43
interpretations, 41
intersection of relations, 17
iterative deepening, 96

join, relational, 16
journey relation, 77

Key function, 181

least model of a program, 30, 52–3, 86
left recursion, 104
lexical analysis, 170–72
lifting lemma, 65–6, 70, 73, 74, 75, 83
linear derivation trees, 70
linear resolution, 70–73
list relation, 30
listof relation, 97
lists, 21–2
literals, 9, 38
Lookup function, 170
lookup relation, 108
loop avoidance, 94

maximum predicate, 31
member relation, 30, 85, 108
models of a program, 42
most general unifier, 57 see also unification
multiple answers, 8

negated literals, 38
negation, 17
negation as failure, 18, 85–9, 111, 132, 197
non-determinism, 8
notational conventions, 38

outcome of a derivation tree, 65

parallelism, 8
parsing, 99–106
Pascal subset used by picoProlog, 164
path in a directed graph, 91
path relation, 92
picoProlog, 10–12, 20, 36, 37, 57, 131–6,

passim

ppp (Pascal Pre-Processor), 165–8
predicate logic, 9
programming languages, 1
programs, 37
projection, 15
Prolog, 5
propositional variables, 37
PushBack procedure, 171

quantifiers, 9

ReadClause procedure, 174
real-time programs, 8
Recover procedure, 174
recursion, 21–33
reflexive–transitive closure, 91, 111
refutation, 50–52
refutation completeness, 53, 66
relation symbols, 36
relational databases, 13–20
relational join, 16
relations, 4, 13
renaming, 45
resolution, 62–4
resolvents, 62
Restore procedure, 174
restriction of a substitution, 81
Resume procedure, 175
reverse relation, 49, 63
rule of ground resolution, 48
rule of substitution, 47
rules of inference, 2

Save procedure, 174
SaveString function, 168
Scan procedure, 171
Search function, 181
search strategy, 79
search trees, 76–80, 91
selection, 14
Share procedure, 175
ShowAnswer function, 174
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ShowError procedure, 174
simplify relation, 111
singleton lists, 22
SLD–resolution, 5, 36, 70, 73–6
soundness, 35
Step procedure, 175
stratified programs, 89
strict derivation trees, 65
subset relation, 87
substitutions, 42
syntax analysis, 99–106, 172–4

tail recursion, 114
terms, 38
Towers of Hanoi, 98
trail stack, 137, 157, 160–61, 174, 176

transitive closure, 91
TroStep procedure, 175, 182
tro test macro, 182
truth tables, 39–41

unification, 28, 57–62, 161–3
Unify function, 175
union of relations, 17, 18
unit clauses, 9

variables, 5, 36
VarRep procedure, 173
views, 14

water jugs problem, 91, 95
well-formed programs, 38


