
Using Prolog as metalanguage for teaching
programming language concepts

Henning Christiansen
Roskilde University, Computer Science Dept.,
P.O.Box 260, DK-4000 Roskilde, Denmark

E-mail: henning@ruc.dk

1 Introduction

We describe our experiences with a methodology for teaching programming language
concepts in which Prolog is applied as metalanguage. Prolog can be seen as an in-
tegration of a logical specification language and a collection of practicalaccessories
expected for an interactive, general purpose programming environment. This, together
with the easy-to-extend-and-modify characteristics of Prolog programs, makes Prolog
ideal in a teaching context: Assuming the students have grasped the overall flavour
of Prolog, specifications written in Prolog are immediately understandable to them and
this understanding can be further supported by running small examples, either by them-
selves or by the lecturer using a projector and running computer session in the lecture
room.

We do not pretend to have made new contributions to the theory of programming
language descriptions. Our semantic descriptions are closely related to Plotkin’s op-
erational semantics [18] (see also [23]). But in our setting, these specifications are
actually running interpreters that serve as prototype implementations. In addition, they
are easily extended into prototypes of programming tools such as tracers, debuggers,
time-measurers, etc. so that these can be characterized in a systematic framework. The
familiar relation between typing/type checking and unification is also used for describ-
ing concise type-checkers with similar qualities.

In a course on programming languages, Prolog can also serve as an interesting ex-
ample of a “different” language compared with standard imperative or object-oriented
languages. In the teaching of Prolog in this context, it is obvious to emphasize Pro-
log’s inherent meta-circular facilities such as assert-retract and its approximation to
negation-as-failure and, at the syntactic level, operator declarations. The obvious im-
perfections of some of these facilities are not a problem: They can be featured in the
course as points of departures for critical discussions of language design and prag-
matics.1 Putting emphasis on a mathematically-logical (or simpler, a set-theoretic)
semantics for the core of Prolog helps students accept our in-Prolog specifications as

1A mechanism may be simplistic and error-prone but used in a proper way, preserve an acceptable se-
mantics.
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“formal” descriptions. Finally, this sort of language definitions serves also the extra
purpose as strong evidence for the qualities of declarative programming.

In the following, we describe our experiences with the methodology giving samples
of such language descriptions and explain how they are applied in our teaching. We
may at this point summarize a few observations.

� The approach appeals to students with or without a mathematical background.
It has been developed in a context with quit differentiated student backgrounds
with humanity and natural science students in the same class.

� It is easy for all students to grasp these language descriptions, that can be un-
derstood as “formal specifications” as well as “running prototypes”. The model
appeals to the students, much more than explicit mathematical formalisms such
as denotational semantics [13] that appear quite heavy to some students.

� Exercises related to these inherently theoretical topics can be given in a practical
setting: Extend textbook’s example with this and this new construction, modify
the semantics of another, etc. — and use the Prolog system for developing and
testing the solution.

� More complicated topics such as recursive procedures with side-effects or typing
for object-oriented languages can be taught by the learning-by-doing principle:
Brief informal introduction is given together with a small toolbox of auxiliary
predicate and the students must develop and test an executable specification in
Prolog. An introduction to relational algebra has also been giving in such a way.

� The learning methodology has proved very effective and efficient measured in
the materiel covered in lecture and the students exam marks. Student’s comments
indicate that they appreciate this form of learning.

1.1 Related work

Our methodology is currently documented in a locally printed textbook [6] in Danish,
which still needs to be matured in to an internally publishable edition.

The textbook by Slonneger and Kurtz [19] applies Prolog in a way quite similar to
ours, although they use Definite Clause Grammars extended with semantic and other
attributes in contrast to our interpreters and compilers that work directly on abstract
syntax trees. Although being a minor detail, the use of abstract syntax trees (as opposed
to lists of tokens) seems to be more appropriate to emphasize the structural aspects of
languages and to result in a simpler presentation. The biggest difference in the two
approaches is at the pedagogical level: Their book addresses a mathematically compe-
tent audience where our approach aims at a broader and inhomogeneous audience as
mentioned above. They also introduce to lambda calculus as well as to denotational,
algebraic and axiomatic semantics. We were unaware of [19] while our material was
developed in successive revisions of course notes.

Compiler writing in Prolog has been considered by several authors, e.g., [21, 15].
Semantics of programming languages specified in Prolog or Prolog-like languages (of-
ten implemented on top of Prolog) is not uncommon, e.g., [3, 4, 9, 17]. The close
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relation between attribute grammars [11] and Prolog has also been inspiring for the
referenced works, evident in the notation applied by [22] and formally spelled out
by [8].

1.2 Overview

In the following we first state the reasons for our choice of Prolog as metalanguage
and indicate the general pattern for the way it is used. In section 3 we give an example
of a language definition for a simple machine language; we detail here the way we
present it to the students and how we use such language descriptions as a means for
emphasizing important points. Sections 4 and 5 show defining interpreter and a small
compiler for while-programs. A variation of the methodology, by having the students to
develop the language descriptions themselves, is described in section 6 concerned with
type-checking and implementation of recursive procedures for a Pascal-like language.
Section 7 reviews briefly a series of other examples used in our course including LISP
with side-effects, relational algebra, Turing-machines, and programming tools such
as tracers and debuggers. Section 8 provides a conclusion including a discussion of
related work.

2 Why Prolog?

First of all, Prolog is an obvious second programming language for student brought
up with a language such as Java in order to indicate the diversity of the field: Concise
expression, an interactive language, free of writing thousands of classes, interfaces, and
methods before anything can be executed, reversibility, self-modifying programs, etc.

Secondly, a study of Prolog motivates considerations about the notion of a meta-
language: assert-retract take arguments that represent program text, the same goes for
Prolog’s approximation to negation-as-failure which essentially is a metalinguistic de-
vice within the language, and the problematic semantics of these features gives rise to a
discussion what requirements should be made to a metalinguistic representation.2 Op-
erator definitions in Prolog comprise syntactic metalanguage within the language, and
are also a perfect point of departure for a detailed treatment of priority and associativity
in programming language syntax.

To have Prolog serve as a general purpose metalanguage for characterizing pro-
gramming language notions, we use the following properties.

� Prolog terms with operator definitions provide an immediate representation of
abstract syntax trees in a textually pleasing form, cf. the following expression
which with one additional operator definition is a legal Prolog term:

while( x<y, (x:= x+y ; y:= y+1))

2The different answers produced for the two queries?- n+p(X),X=b and?- X=b, n+p(X) to the
program consisting ofp(a) shows the problem of using Prolog variables as a metalevel representation of
Prolog variables; see [7, 10] for more detailed discussions.
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� Structurally inductive definitions are expressed straightforwardly in Prolog by
means of rules and unification, e.g.,

statement(while(C,S), � � �):- condition(C, � � �),
statement(S, � � �), � � �.

� Data types for, say, symbol tables, variable bindings, are easily implemented by
Prolog structures and perhaps a few auxiliary predicates.

� Last but no least: Prolog is appears as a light-weight framework conceptually
speaking compared with, say, set and domain theory. Specifications are directly
executable and can be monitored in detail using a tracer, they can be developed
and tested incrementally and interactively. Students can easily modify or extend
examples and test their solutions.

In the course, we may start characterizing the set of abstract syntax trees for a (context-
free) language by a recursive Prolog program consisting of rules of the form

cat0( op(T 1, . . ., T n)):- cat1(T 1), . . ., catn(T n).

whereop names an operator combining phrases of syntactic categoriescat1, . . . , catn
into a phrase of categorycat0.

Syntax-directed definitions can be specified by adding more arguments correspond-
ing to the synthesized as well inherited attributes in an attribute grammar [11].

An important kind of definition is what we call adefining interpreterwhich to each
syntax associates itssemantic relationof tupleshs1; : : : ; ski by predicates of the form

catm( syntax-tree, s1, . . ., sk )

As an example, a defining interpreter for an imperative language may associate with
the statement “x:= x+1 ” a relation containing among others the following tuples.

h[x=7] , [x=8] i

h[x=666] , [x=667] i

h[x=1,y=32] , [x=2,y=32] i

h[a=17,x=1,y=32] , [a=17,x=2,y=32] i

In the course, we introduce also a general model of abstract machines by means of
which correct interpreters and translators are characterized; however, these definitions
are quite standard and not interesting to present here.

3 Example: Defining interpreter for a machine language

We illustrate the way we intend these language descriptions applied in teaching by a
definition for a small machine language that we present here in very much the same
way as we do it to the students. The reader should imagine a lecture room with a
projector connected to a computer with a running Prolog session plus a blackboard
available for writing keywords and improvising different drawings and explanations.
Now the lecture is supposed to starts.
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Machine languages are characterized as sequences of simple state transformation
executed in their textual order, however broken by jump instructions whose meaning
depends on the labels in the current program. In order to provide a formal presentation
to the students, we introduce a simplified machine language by means of the following
sample program represented as a Prolog list. The (yet) uncommented example, by the
names chosen for the instructions, is intended to trigger the intuition of the existence
of some abstract machine.

[ push(2),
store(t),

7, fetch(x),
push(2),
add,
store(x),
fetch(t),
push(1),
subtract,
store(t),
fetch(t),
push(0),
equal,
n_jump(7)]

Without any further introduction, the teacher can execute this program by hand on the
blackboard. The semantics of such programs assumes a stack (that we can represent
as a Prolog list) and a storage of variable bindings (represented conveniently as lists
of “equations”, e.g.,[a=17,x=1,y=32] . Two auxiliary predicates are introduced in
order to work with stores.

store( VariableID, Value, Store, UpdatedStore)

fetch( VariableID, Value, Store)

The necessary Prolog code to implement these are shown to the students with the be-
haviour tested in the lecture room or by having the students to do small exercises them-
selves.

The central predicate in a defining interpreter is the following. The first argument
represents a sequence of instruction (a continuation) to be executed and the second one
passes the entire program around to all instructions to give the contextual meaning of
labels.

sequence( Sequence, WholeProgram, CurrentStack, CurrentStore, Final-
Stack, FinalStore)

Before giving the details of this, we set up a definition for a whole program as follows.

machine_program(Prog, FinalStack, FinalStore):-
sequence(Prog,Prog,[],[],FinalStack,FinalStore).
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The meaning of simple statements that transform the state are given by tail-recursive
rules such as the following: Do whatever state transition is indicated by the first in-
struction and give the resulting state to the continuation.

sequence([push(N)|Rest], Prog, S0, L0, S1, L1):-
sequence(Rest, Prog, [N|S0], L0, S1, L1).

sequence([fetch(Var)|Rest], Prog, S0, L0, S1, L1):-
fetch(Var,X,L0),
sequence(Rest, Prog, [X|S0], L0, S1, L1).

sequence([add|Rest], Prog, [X,Y|S0], L0, S1, L1):-
YplusX i s Y + X,
sequence(Rest, Prog, [YplusX|S0], L0, S1, L1).

These rules are tested on the computer and compared with drawings on the blackboard
if needed. The similar rule for subtraction is a good point for discussing the order of
the arguments:

sequence([minus|Rest], Prog, [X,Y|S0], L0, S1, L1):-
YminusX is Y - X,
sequence(Rest, Prog, [YminusX|S0], L0, S1, L1).

At this stage, the audience is warmed up for the more interesting cases. The uncondi-
tional jump instruction is defined as follows; it is assumed that the diverse use of the
append predicate has been exercised thoroughly with the students.

sequence([jump(E)|_], P, S0, L0, S1, L1):-
append(_, [E|Continuation], P),
sequence(Continuation, P, S0, L0, S1, L1).

Executing a few examples, perhaps complemented by a drawing on the blackboard —
and within a few minutes the students has grasped the principle of a continuation and
continuation semantics.

The following two rules defining conditional jumps serve as an immediate repeti-
tion of the principle.

sequence([n_jump(E)|_], P, [0|S0], L0, S1, L1):-
append(_, [E|Continuation], P),
sequence(Continuation, P, S0, L0, S1, L1).

sequence([n_jump(_)|Continuation], P, [1|S0], L0, S1, L1):-
sequence(Continuation, P, S0, L0, S1, L1).

Now we need only provide the rules for skipping over labels in a sequence and for
stopping a run.

sequence([Label|Rest], P, S0, L0, S1, L1):-
integer(Label),
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sequence(Rest, P, S0, L0, S1, L1).

sequence([],_,S,L,S,L).

Having some experience with Prolog programming, it is obvious to the students that
these rules are necessary in order to provide a complete definition. The entire defining
interpreter is now finished and can be tested on the sample program shown as an intro-
duction (and the students are receptive to the teachers proclamations concerning precise
language definitions at the one hand and the implementation of various languages by
an interpreter on the other).

As a final piece of candy, the following rule is added as the first one to the inter-
preter:

sequence([Inst|_],_,_,_,_,_):-
write(Inst), write(’ ’), fail.

This turns it into a functioning tracer, thus emphasizing the advantages of having formal
specifications integrated in general purpose, interactive programming environment.

The following exercises are given to the students in order to provide a hands-on
feeling and to give them an impression of the power in being able to design themselves
new language constructions and facilities.

� Extend language and interpreter with instructions for subroutines:jump_sub( to-
label, return-to-label) andreturn . Provide an interesting sample program in
the extended language for testing the solution.

� Write a Prolog program checking that labels are used in a consistent way (part
of exercise is to define what that means). Prize is given for the most elegant
solution.

� Design and implement an extension of the tracer so it becomes a debugger with
possibility to change variables, affect outcomes of conditional jumps and allow
arbitrary number of undo’s of execution steps.3

� Examples are shown of how subsequences of instructions can be replaced by
other and more efficient ones. Write a Prolog predicate that performs such opti-
mizations.

� Mathematically oriented students are given a few hints so they can work out a
mathematical version of what they have seen.

Moving up to the meta-pedagogical level, we conclude that this (part of a) lecture with
exercises, built around a seemingly innocent example, in a compact but digestive way
has established important pieces of knowledge and methodology that otherwise may
be quite an obstacle for some students.

3. . . last topic is perfect training for those students who wants to master the powerful control device
provided by Prolog’s backtracking.
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4 Example: Defining interpreter for while-programs

The detailed comments to the previous example have indicated the spirit in which we
communicate knowledge of computer languages to the students; the following exam-
ples are given in a more compact way. Now we consider while-programs of which the
following sample, representing Euclid’s algorithm for greatest common divisor, is a
prototypical example.

a:= 221 ; b:= 493 ;
while( a =\= b,

if( a>b, a:= a-b, b:= b-a))

Abstract syntax trees are represented as Prolog terms but at the same time with an
acceptable concrete appearance. A defining interpreter consists of the following predi-
cates.

program( program, final-storage)
statement( statement, storage-before, storage-after)
expression( expression, storage, integer)
condition( condition, storage, ftrue , false g)

Some of the rules of this interpreter are shown in the following; the most important
ones are for theif andwhile statements. Notice that we reuse the storage structure
and auxiliaries from the previous example.

program(P, Storage) :- statement(P, [], Storage).

statement((Var := Expression), L1, L2):-
expression(Expression, L1, Value),
store(Var,Value,L1,L2).

statement( (S1 ; S2), L1, L3):-
statement(S1, L1, L2),
statement(S2, L2, L3).

statement( if(Cond, Smt1, Stm2), L1, L2):-
condition(Cond, L1, Value),
(Value = true -> statement(Stm1, L1, L2)

; statement(Stm2, L1, L2)).

statement( while(Cond, Stm), L1, L2):-
condition(Cond, L1, Value),
(Value = true -> statement(

(Stm ; while(Cond, Stm)),L1,L2) ; L1=L2).

expression(Variable, L, V):- atom(Variable),
fetch(Variable,V,L).
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expression( Tal, _, Tal):- integer(Tal).

expression( (Exp1 + Exp2), L, Res):-
expression( Exp1, L, V1),
expression( Exp2, L, V2),
Res is V1 + V2.

condition( true, _, true).

condition( false, _, false).

condition( (Exp1 = Exp2), L, Res):-
expression( Exp1, L, V1),
expression( Exp2, L, V2),
(V1 = V2 -> Res = true ; Res = false).

Presentation of this defining interpreter and the exercises given can follow the pattern
we showed above. In case the students have been presented earlier for Hoare logic,
e.g., as part of a programming course, there is another good exercise in formalizing
this as an interpreter in Prolog.

5 Example: Compiler for while-programs

The structure of our defining interpreters can also be adapted to describe compilers.
We considered above a semantics for while-programs defined in terms of state trans-
formations and now we consider an alternate semantics capturing meanings by means
of sequences of machine instructions.4

We introduce two auxiliaries, one to generate new unused labels and another one
providing syntactic sugar for putting together sequences of instruction sequences and
single instructions. They are illustrated in the following example query.5

?- new_label(L1), new_label(L2), C1 = [push(1),add],
C2 <- L1 + push(7) + L2 + C1.

L1 = 117
L2 = 118
C1 = [push(1),add]
C2 = [117,push(7),118,push(1),add]

Now a simple, non-optimizing compiler for while-programs can be presented as fol-
lows (selected rules only).

4As mentioned, the correctness of a translator has been defined for the students within a model of abstract
machines.

5Depending on the level of experience in Prolog programming, the students may be give as an exercise
to program these auxiliaries or are given the definitions in the lecture.
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program(P, K):- statement(P, K).

statement((S1 ; S2), C):-
statement(S1, C1),
statement(S2, C2),
C <- C1 + C2.

statement((Var := Exp), C):-
expression(Exp, C1),
C <- C1 + store(Var).

statement( if(Cond, Stm1, Stm2), C):-
condition(Cond, CondC),
statement(Statement1, C1),
statement(Statement2, C2),
new_label(L2), new_label(L_end),
C <- CondC +

n_jump(L2) +
C1 +
jump(L_end) +

L2 + C2 +
L_end.

statement( while(Cond, Stm), C):-
condition(Cond, CondC),
statement( Stm, C1),
new_label(Lstart), new_label(Lend),
C <- Lstart + CondC +

n_hop(Lend) +
C1 +
hop(Lstart) +

Lend.

expression(Number, C):-
integer(Number),
C <- push(Number).

expression( Variable, C):-
atom(Variable),
C <- fetch(Variable).

expression((Exp1 + Exp2), C):-
expression(Exp1, C1),
expression(Exp2, C2),
C <- C1 + C2 + add.
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These rules can be tested one after one during the lecture as they are introduced. Fi-
nally, we can combine the compiler with the defining interpreter for machine programs
as follows.

?- program( ( a:= 221 ; b:= 493 ;
while( a =\= b,

if( a > b,
a:= a-b,
b:= b-a))), C),

sequence( C, _, L).

C = [ stack(221),store(a),stack(493),store(b),
2,fetch(a),fetch(b),not_equal,n_jump(3),

fetch(a),fetch(b),greater,n_jump(0),
fetch(a),fetch(b),minus,store(a),jump(1),

0,fetch(b),fetch(a),minus,store(b),
1,jump(2),
3],

L = [a=17,b=17]

Student exercises may consist of adapting this compiler to extensions to the while-
language also considered in earlier exercises related to the defining interpreter. The
optimizer for machine programs considered in an earlier exercise can be applied at
different level of granularity.

The purpose of presenting this little compiler is manyfold: It illustrates the notions
of a compiler and of syntax-directed translation and makes the distinction between
interpretation and compilation clear, it shows how standard imperative constructs are
mapped into machine language, and it can serve as an appetizer for more serious studies
of compilers, e.g., [2]. Finally, it serves as an introduction to the larger learning-by-
doing exercise described in the following section.

6 Example: Do-it-yourself recursive procedures

Instead of always presenting ready solutions to the students, it is also motivating, once
they have become familiar with the principles, to work out nontrivial examples by
themselves.

In the following, we sketch a larger exercise in which a class of students had to
produce a type checker and an interpreter for a Pascal-like language with arrays and
side-effects. The following, recursive quicksort program is prototypical; notice that an
“ ˆ ” operator is used for array-indexing.

program(
(var(n,int); var(a, int_array(4))),
declare_proc( qsort, left, right,

(var(i,int); var(j,int); var(x,int); var(w,int)),
(i:= left; j:= right; x:= aˆ( (left+right)//2) ;
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repeat( (while(aˆi<x, i:= i+1) ;
while(x<aˆj, j:=j-1) ;
if(i=<j, (w:=aˆi; aˆi:= aˆj; aˆj:= w;

i:= i+1; j:= j-1))),
% until

i > j); % end repeat
if( left<j, proc_call(sort,left, j)) ;
if( i < right, proc(sort,i,right)) )

), % end proc qsort

% main program:
(n:= 4; a:= [30,10,40,20];

proc(qsort,1,n); write(a)))

The syntax, including scope and type principles, and semantics of the language was
described informally to the students and their task was to produce type-checker and
interpreter to be tested on a number of sample programs, including the one shown
above.

The students had programming experience in advance with this kind of languages
but the first systematic introduction to types and type-checking were given to them by
the text (plus brief introduction lecture) of the present exercise. In order to simplify
their work, they were given auxiliary predicates for working with symbol tables and
runtime stacks, but with only a sketchy explanation of how to use these tools for the
tasks. So the students’ task was to put the whole machinery together and test it.

The prescribed time for the work was one week on half time, including writing
a small report documenting their solutions; they could work in groups of up to three
students. The most experienced students had the type-checker and interpreter running
after four or five hours, and all students within a class of some 30 students solved the
task within the prescribed time. All solutions were of good quality and there was no ob-
vious difference between those produced by students with a mathematical background
and by those without. In the general, the students characterized this exercise as difficult
and challenging, but one of the most interesting ones from which they had learned a
quite lot.

For our reader we show some fragments of a possible solution. Let us make precise
some assumptions about the language. Procedures take always two integer parameters
and local (as well as global) variable declarations may introduce integer and array
variables. There are no local procedures, so the runtime stack can be organized as a
list of stack frames, each being a list of bindings; looking up a variable can be done by
looking first in the topmost frame and if not found, in the bottom frame.

The anticipated solution makes recursive calls to same and previous procedures
possible. The type checker can be defined by a predicatetc_ cat{ tree, current-table,
updated-table) for those syntactic categoriescat whose phrases are intended to intro-
duce new nomenclature, and with fewer arguments for other syntactic categories. A
sufficient type checker rule for a single procedure declaration is the following.

tc_proc_decl(
declare_proc(ProcId,ParId1,ParId2,LocalVarDecls, Stm),
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Table1, Table2):-
tc_identifier(ProcId),
Table2 = [(ProcId, procedure2) | Table1],
tc_identifier(ParId1), tc_identifier(ParId2),
Table3 = [(ParId2, int),(ParId1, int)|Table2],
tc_var_decl(LocalVarDecls,Table3,Table4),
tc_statement(Stm,Table4).

Correct typing of a procedure call is expressed in the following way.

tc_statement( proc_call(ProcId, Exp1, Exp2),Table):-
symbol_tabel_find(ProcId, Table, procedure2),
tc_expression(Exp1,Table,int),
tc_expression(Exp2,Table,int).

For the interpreter, we give the flavour of a solution by showing the most complicated
rule which is the one for procedure calls. Each statement is executed relative to a table
of procedure closures and a runtime stack and produces an updated runtime stack. The
procedural meaning of local variable declarations is to extend a current stack frame
with “locations” for the variables as to produce a new frame.

statement(proc_call(ProcId, Exp1, Exp2),
ProcTable, Stack1, Stack2):-

member( proc(Id,ParId1, ParId2, LocalVarDecls, Stm),
ProcTable),!,

expression(Exp1, Stack1, ParValue1),
expression(Exp2, Stack1, ParValue2),
var_decl(LocalVarDecls,

[(ParId2,ParValue2),(ParId1,ParValue1)], StackFrame),
statement(Stm, [StackFrame|Stack1],

ProcTable, [_|Stack2]).

7 Other examples

We sketch briefly a number of other examples which have been used in our course.
Logic circuits modelled in Prolog is a standard example used in many Prolog text books
and is obvious to apply in our context due to metalinguistic aspects (modelling the
language of logic circuits); we refrain from giving details. The following examples
show different aspects of Prolog as well as other languages and programming tools.

7.1 LISP modelled with assert-retract

This example goes to the limit of our paradigm of using Prolog as a logical specification
language. In this way, the presentation becomes a bit provocative and can initiate
discussions about what requirements should be made in general to a specification and
to metalanguages.
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By means of Prolog’s assert and retract facilities, we define an interpreter for a
small LISP-like language with function definitions and variable assignments modelled
as side-effects. This way we provide a model of an interactive LISP environment [12].
Here follow a few rules that show the principle; notice also the pragmatic aspect present
in error messages in some rules.

lisp([quote,X], X).

lisp( [plus,X,Y], Value):-
lisp(X, Xvalue),
lisp(Y, Yvalue),
Value is Xvalue + Yvalue.

lisp([car,X], Value):-
lisp(X, Xvalue),
(Value = [Value | _] -> true

;
nl, write(’CAR of non-list: ’),
write(Xvalue), abort).

lisp([setq,Var,X], Xvalue):-
lisp(X, Xvalue),
asserta((lisp(Var, Xvalue):- !)).

The last rule gives rise to a discussion of binding times and a critique of Prolog for
the lack of indication of different binding times forVar , X and for Xvalue ; this
is another way of showing the problems inherent in the nonground representation of
Prolog in itself.

The following rule for function definitions with a single parameter emphasizes the
problem but shows also many interesting programming languages aspects such as ex-
tensibility, parameter transmission and, again, different binding times.6

lisp([defun, F, Param, Body], F):-
asserta((lisp( [F, Arg], Value):- !,

lisp(Arg, ArgValue),
asserta((lisp(Param, ArgValue):- !)).
lisp( Body, Value),
retract((lisp(Param, ArgValue):- !)) )).

Here the teacher has agood occasion for critisizing the nonground representation for
very practical reasons: It makes the specification almost unreadable. This suggest the
design of a new syntax (from [5]) for a ground representation with one or more prefix
asterisks to indicate binding time for represented variables.7

6Running a definition for a recursive LISP function in a Prolog environment that reflects assertions im-
mediately in the program window illustrates in an effective way the principle of a recursion stack.

7The present rule does not show multiple asterisks, but we can illustrate their use by the an alternative
way of indicating the rule to be asserted when the actual parameter has been evaluated:lisp(Param,
**result):- **result = *argValue.
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lisp([defun, F, Param, Body], F):-
new_asserta(

(lisp([F, *arg], *value):- !,
lisp(*arg, *argValue),
new_asserta((lisp(Param, *argValue):- !)).
lisp(Body, *value),
new_retract((lisp(Param,*argValue):- !)))).

The possible exercises to be given to the students following the lecture include:

� Extend the interpreter to handle theeval function and test it on given examples.

� Implement a version with call-by-name parameters.

� Examine the given interpreter and add complete error messages; what does “com-
plete” mean?

� Analyze the interpreter to figure out what happens when formal parameters are
setq ed inside the body of a functions. Discuss different possible semantics and
test them.

� Write a definition of a nullary predicaterun_lisp that adds a read-eval-print
loop upon the interpreter.

� Add a debugging facility to the interpreter.

� Implement the suggestednew_asserta andnew_retract predicates.

� Write program transformers that can apply to the body of function definitions,
e.g., getting rid of explicit parameter references and using substitution by means
of Prolog variables instead.

7.2 Turing machines

Turing machines are an interesting topic in itself in a programming language course,
and showing a Turing-machine interpreter in Prolog is an obvious way to provide a
truly dynamic model of a Turing machine, especially when a tracing facility is added.
The definition of such an interpreter is straightforward and not shown here. The exis-
tence of the interpreter shows that Prolog is Turing-complete and playing with it warms
up the student for the proof of undecidability of the halting problem. Exercises con-
sist of writing small Turing-machines (including a “copy machine” often used in the
mentioned proof) and extending the interpreter to handle multi-tape machines.

7.3 Playing with Vanilla and Prolog source-to-source compilation

The familiar Vanilla self-interpreter for Prolog [20] is a perfect example to illustrate
the notion of a self-interpreter.
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solve(true).
solve((A,B)):- solve(A), solve(B).
solve(A):- clause(A,B), solve(B).

It may appear a bit absurd and useless to the students until we begin modifying it into
a tracer by adding the following stuff to its last rule.

solve(A):-
trace_code((write(’Enter ’), write(A), nl),

(write(’Fail ’), write(A), nl)),
clause(A,B),
trace_code((write(’Try ’), write((A:- B)), nl ),

(write(’Drop ’), write((A:- B)), nl)),
solve(B),
trace_code((write(’Succeed ’), write(A), nl)).

trace_code( Forwards, Backwards):-
Forwards ; Backwards, fail.

Further extensions make it into a debugger which allows the user to affect program
execution similarly to standard Prolog debuggers.

Efficiency measuring of programs can also be incorporated, but we can also use
source-to-source compilation instead (and thus provide an opportunity to show this
phenomenon). Half a page of Prolog code can implement a translator thatretract s
each clause of the form

Head:- Body

andassert s another one of the form

Head:- CountClauseEntranceAndBacktrack, Body,
CountClauseExitAndRe-entrances

where the added pieces of code maintains global counters foreach clause.
This is an entertaining and systematic way to study and characterize programming

tools and interesting exercises can be given of implementing similar and other tools.

7.4 Do-it-yourself relational algebra

In section 6 we showed how type-checking and implementation of recursive procedures
can be taught by having the students to develop an implementation in Prolog. We have
also applied a similar approach for an introduction to relational algebra. A small exam-
ple of a database is informally introduced with the notions of a relational schema (with
named, untyped attributes) and database tuples, and operationsunion , intersect ,
where hsimple-conditioni, andjoin where the latter is defined in terms of coinciding
attribute names. A representation of base relations is shown with schema and tuples
given as Prolog facts, e.g.:
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schema(costumer,
[costumer_no, costumer_name, costumer_city]).

tuple(costumer, [k17, jensen, roskilde]).
tuple(costumer, [k29, hansen, copenhagen]).

The students’ tasks is now to complete the definitions for theschema and tuple
predicates so that an arbitrary relational expression can be interpreted as first argument.

The conditions were the same as for the task described in section 6, one week on
half time, including writing a small report documenting the solutions. This task has
been given to several classes of students and all students usually succeed in produc-
ing acceptable solution, althoughjoin often causes problems to some of them. The
students’ comments on working with this task are usually very positive.

7.5 Other applications of Prolog

Our course on programming languages includes also elementary material on lexical
analysis and parsing. Here Prolog can be used as the ready-at-hand tool for the students
to implement finite state machines (comparing with a generic interpreters for regular
expressions8, and different parsing methods.

8 Conclusion

We have shown how Prolog can be used as metalanguage in the teaching of program-
ming language concepts in a way that employs the core of Prolog as an executable,
formal specification language combining it with the advantages of using an interactive
Prolog programming environment. Specification of language semantics are written as
interpreters that can be easily extended into tracers and debuggers and interactive and
extensible aspects of programming environment can also be charactericed in this way.
Simple compilers and type-checkers can also be described in a similar way. This appli-
cation of Prolog makes it also obvious to use in parallel Prolog as an interesting object
of study in itself discussing its advantages and slight imperfections with the students.

These specifications written in Prolog are concise, easy to communicate to the stu-
dents and — what is the most important for an effective learning — the students can
execute and modify these specifications, and develop nontrivial specifications on their
own, once they have grasped the principles. The method has been applied over a num-
ber of years at Roskilde University where the education structure is such that teaching
in computer science addresses in the same class both “traditional” computer science
students with a mathematical background and students from humanities (who have
other strong qualifications, not to forget). This is a big challenge from a pedagogical
point of view and it motivated our development of this methodology that we believe to
be useful also in other contexts where an effective introduction to program language
studies is needed. This can be students (of computer science or other studies) who need
a compact treatment because other material takes a higher priority or as an introduction
to more formal studies of programming languages, their semantics and implementation.

8Also a good point to discuss program specialization and partial evaluation.
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We should also emphasize that working in this way gives the student a first-hand
impression of declarative programming as a powerful tool for fast prototype imple-
mentation of new language constructs. The students should be able to transfer these
experiences to other domains as well.

We gave an overview of related work in section 1.1 and we could identify a similar
approach in the textbook [19]. As already mentioned, that book addresses exclusively a
mathematically competent audience where we approach a broader audience, including
students from humanities. In this light, our main contribution is to prove that Prolog
as metalanguage for programming languages (and their semantics) is a very effective
means for teaching these inherently complicated and technical items to this wider au-
dience.

Prolog textbooks tend to concentrate on artificial intelligence applications, includ-
ing (in most cases very simplified) natural language processing. It is also interesting to
notice the difference between our context and the Prolog textbook case: Our purpose
of is clearly to be descriptive using executable speciation. We are in this way not con-
strained by requirements of robustness, scalability and ultimate efficiency, thus having
a context in which the qualities of logic programming comes best to their right.

On the theoretical side on programming language semantics, we do not add any-
thing new: Thecore of most of our examples can be identified using other symbols
within existing textbooks, e.g., [23]. However, the possibility to extend the specifica-
tions to become running programming tools such as tracers and debuggers seems to be
new.

It seems obvious that the functional programming language ML to a large extent
could take over the role we have given Prolog in our methodology; we have not con-
sidered this in detail and at the time of writing we are not aware of such an approach.
A related approach using Scheme, although with different goals, is [1]. Finally we can
mention tools for executing formal language definitions based on a particular formal-
ism; we can mention Mosses’ SIS system [14] as an early such system which is based
on the lambda calculus and Centaur [3].

Acknowledgment: This research is supported in part by the IT-University of Copen-
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