
Perl Cheat Sheet

Functions
Get information on a function by typing, e.g., perldoc -f chomp at the command line.
Scalar
variables

while (defined ($x=<>)) {code} False if variable has never been set (or when you
try to read past the end of an input file)

length($x) Length of a string
chomp($line); Remove a newline at the end of a string
$short=substr ($long, 2, 5) Characters 3-7 of $long (first char is 0!)

Arrays push @arr, $x Add to end of array
$x = pop @arr; Remove last element of array, put in $x
shift @arr; (See also unshift) Remove first element of an arrray, put in $x
$size = scalar @arr; Number of things in the array
See also: split, join,
splice, sort

split string->array, join array->string,
delete part of array, sort array in many ways

Hashes @key = keys %hash The lookup terms in the hash
if (exists $hh{“Hsp”}) {...} See whether hash %hh has a value for key Hsp

Input/Output
and Files

open(HANDLE, ">outfile") or
die “Can’t open $outfile: $!\n”

Open outfile for writing, and associate it with
filehandle HANDLE. Use “<infile” for reading

print $x;
print HANDLE $x;

Prints to standard output (screen),
Print to filehandle HANDLE

warn “Something wrong\n”; Prints to standard error (screen)
$x=<HANDLE> Read a line from filehandle HANDLE, put in $x
close(HANDLE); Stop reading/writing a previously opened file

Exit exit; Exits the program
die "Something broke!\n"; Exits the program with error message

Operators and Loops
Assign
value

$x = 1 Sets variable to a value. Don’t confuse with ==,
which tests whether numerical values are equal

Math print 1 * (2 + 3/4) Regular math symbols
10%3==1; 12%3==0 Modulus (remainder) operator
$x += 4; Same as $x=$x+4; Also -= *= /=
$x++; Same as $x=$x+1;

Conditions if (.1 == 0.1) {print “same num”} Are numbers equal? Don’t confuse with = or eq
if (1 != 2) {print “diff num”} Are numbers different?
> < >= <= Are numbers greater than, less than, etc.
if (“a” eq “a”) {print “same text”} Does text have exactly the same letters?
if (“A” ne “a”) {print “diff text”} Does text have different letters?
if (($x > 1) && ($x < 2)) {code} Logical AND (true if both sides are true)
if (($x > 10) || ($x < -10)) {code} Logical OR (true if one or both sides are true)
=~ !~ Test for a match: See Matching cheat sheet

Loops foreach my $i (1 .. 100) {code}
(for and foreach are equivalent)

Sets $i to 1 and does code. Sets $i to 2, …
up to (and including) 100

 while ($a < $b) {code} Does code while the condition is true
(If condition is false, never enters the loop.)

Matching and Regular Expressions
Test for
Match

=~ Test for match if ($x =~ /abc/) {
 ...}

Does $x have the string “abc”
anywhere in it?

!~ Test for non-match if ($x !~ /abc/) {
 ...}

Does $x NOT have the string
“abc” anywhere in it?

$_ Default variable if (/abcd/) {
 s/bc/x/ }

// and s/// work on $_ by default,
no =~ needed

Substitute s/// Do a Substitution $x =~ s/abc/def/; Replace (only) first occurrence
of “abc” in $x with def

Match/ Sub
Options

i Ignore case. /abc/i Matches abc, ABC, aBc, etc.
g Global substitution. s/a/c/g Replace ALL occurrences

Special
Match Items

. Any one character
(except \n)

/a.c/ “arc”, “a9c”, but not “ac”.

[] Any one of. /[abc]/ Any one of “a”, “b”, or “c”. [a-
zA-Z] matches any letter

\d Digit (Same as [0-9]) /\d\d:\d\d/ “10:30” (but not “9:30”)
\s Space, tab, or newline /^\s*$/ An empty line.
\ Literally match special

characters: + * () / []
\ | { } ^ $ @

/1\+2/ “1+2”, not “1112”. The
backslash “quotes” or “escapes”
the plus sign.

Item
Locations

^ Beginning of a line /^a/ "arginine" but not "valine”.

$ End of a line /a$/ "beta" but not "beat".
Item
Repetitions

? An optional thing /ab?c/ “ac” or “abc”.
* Any number of copies

OR nothing at all
/a*/ "", "a", "aaa".

+ Any number of copies /a+b/ "ab" or "aaab" but not "b".
{ } m to n copies /ab{2,4}c/ “abbc”, “abbbc”, “abbbbc”, but

not “abc” or “abbbbbc”
Misc | One or the other /abc|def/ “abc” or “def”

()

Capture parts of match
in numbered variables

/a(b(..)e)f/ “abcdef”. This will also set $1 to
“bcde” and $2 to “cd”.

 AND group things
together for repetition,
etc.

/a(bc)+d/ “abcd” or “abcbcbcbcd”

