
Introduction

Using a programming language requires a programmer to possess
a model of how that language works. Knowing the model does not
preclude working to the language's abstraction, indeed abstraction is
termed ‘selective ignorance’ by Andrew Koenig. This booklet provides a
model that can be selectively ignored while programming in Perl.

This booklet is for you if:
• you write Perl programs that work, but lack the confidence gained

by understanding what is beneath Perl's layer of abstraction,
• you need a model in order to reason about the way yours or other

people's Perl programs work,
• or you have just attended a Perl course and need a set of reminder

notes that cover the ‘dirty details’ part of the course.

This booklet is in no way a replacement for a decent Perl course or book.
It does not contain sufficient information or examples. It is, however, a
compact set of notes to help you understand Perl once a course has been
completed.

This booklet, although based on implementation details, does not
describe how to implement Perl. It only goes far enough under Perl's
abstraction to provide a coherent model of how things work, and in some
cases presents a simplified view.

If you find errors, would like to make suggestions for improvement, or
would like to provide any other feedback, then please send an email to
feedback@ignition-training.com.

Perl Distilled

December 2010

Martin Jones

Copyright © 2010 Ignition Training LLC, Some Rights Reserved

Except where otherwise noted, this work is licensed under
http://creativecommons.org/licenses/by-nd/3.0/

Licensing questions should be sent to: license@ignition-training.com.

Please send reports of errors, inaccuracies, and any suggestions
for improvement to: feedback@ignition-training.com.

Ignition Training LLC — www.ignition-training.com — +1 347-688-9844

References

1 Sriram Srinivasan (August 1997)

Advanced Perl Programming, 1st Edition, O'Reilly

2 brian d foy (July 2007)

Mastering Perl, 1st Edition, O'Reilly

3 Gisle Aas, Reini Urban (2010)
PerlGuts Illustrated
http://cpansearch.perl.org/src/RURBAN/
illguts-0.35/index.html

4 Simon Cozens, Arthur Corliss (2004)
Professional Perl Programming, Apress

http://cpansearch.perl.org/src/RURBAN/illguts-0.35/index.html
http://cpansearch.perl.org/src/RURBAN/illguts-0.35/index.html

$a = 10;
$b = "abc";
@b = (7, 4);

sub hi
{

say "hi";
}

$c = 3;
*d = \$c;
*e = *d;

Code

Notes
1. Symbols, such as variable names and subroutine names, are stored

in stashes (symbol table hashes). Only relevant symbols are shown
here. Stashes do not store the symbols in order; the sequence here
has been chosen to match the code. use strict has not been
used for this code sample.

2. Each symbol refers to a globvalue, held in a typeglob structure.
This has a slot for each of the ways a symbol may be used. The
slots for IO, FORMAT, NAME, and PACKAGE are not shown.
The ‘$’ slot of this typeglob refers to the scalar variable holding
the value ‘10’. Some slots remain undef.

3. The symbol b has values for both the scalar slot, and the array slot.
An array contains references to its scalar constituents.

4. Named subroutines also have entries in the stash. The ‘&’ slot
refers to code. This diagram ignores closures.

5. The *d = \$c statement sets the ‘$’ slot in d's typeglob to refer
to the same scalar as referred to through c . The slots are aliasing
the same variable. Whole typeglobs may be aliased as set up by:
*e = *d .

6. The ‘*’ slot refers to the globvalue itself. It provides the means by
which the whole globvalue can be identified.

Stashes and Typeglobs

$x = 3;
$main::y = 4;
$nm1::x = 5;
$nm1::nm2::x = 6;

package nm3;
$x = 7;

Code

Notes
1. Global symbols (normally just called variables) are visible to any

part of the program.
2. Global variable lifetimes are not bound to subroutine invocations.
3. Global variables live within namespaces.
4. Namespaces are implemented using stashes.
5. Namespaces can be nested using the ‘::’ slot in the typeglob.
6. Variables within a specific namespace can be accessed using the

:: syntax.
7. The main, ‘root’ level package is ‘main’.
8. Using just $::x is equivalent to $main::x , but is not equivalent

to $x .
9. Referring to a variable without qualification will look up the

symbol in the current default namespace, initially set to ‘main’.
10. The current, default namespace can be set using package .
11. package may appear multiple times inside a file.
12. The words package and namespace are often used interchangeably.

It can be clearer to think of the namespace as the physical
representation, and package as simply the way of choosing the
default namespace.

13. The effect of package lasts until the end of the block, or the end
of the file.

Namespaces and package

$v = 3;
@v = (4, 5);

$sr = \$v;
$ar = \@v;
$asr = \$v[0];

$aar = [6, undef, 7];
$ahr = {a => 8, b => 9};

$u = undef;
$ur = \undef;

$cr = \2;

Code

Notes
1. References are stored in scalar variables.
2. Anonymous variables do not have stash entries.
3. undef is a value and is not equivalent to a null pointer.
4. Logically, arrays contain undef values. The underlying

implementation does not physically store the undef values until
necessary.

5. Setting a variable to undef is not the same as having it refer to
undef .

6. Literals are treated as readonly.

References

my $i = "qed";

$a = \$i;
$b = ["bbc", "lhr"];
$c = [["omg", "tla"], "eta"];

Code

Notes
1. Shows regular scalar variable access. In this case, it will yield a

value that is a reference.
2. Going through one level of indirection onto a scalar variable.
3. Not permitted: reference to a scalar cannot be considered to be a

reference to an array.
4. All three syntaxes yield the same result. When reading an

expression involving -> , look at this, and the type of the brackets
to determine how to read the expression before going on to read
the $.

5. Yields a reference to the item in the previous point.
6. Accessing through two levels of indirection. Second syntax is a

shorthand form of the first.
7. Although not shown, -> can be used with the hash braces.

Reference Syntax

sub delim
{

my ($df, $db) = @_;
return sub
{

my $t = $df . $_[0] . $db;
return $t;

};
}

$quotes = delim("\"", "\"");
$parens = delim("(", ")");

Code

Notes
1. Subroutines consist of both the code to be executed, and a

scratchpad.
2. Scratchpads hold the my and captured variables for a subroutine.
3. Scratchpads use the whole symbol name to identify the variable

(they're not stashes).
4. Code is shared by closures.
5. The my variables are initialized upon each entry to the subroutine.
6. Captured variables are not re-initialized.
7. The diagram does not show what happens if a subroutine

calls itself either directly or indirectly. Scratchpads are more
complicated than shown in the diagram. In reality, they contain
one set of variables for each depth of recursion (either directly or
indirectly). A depth count is maintained for each subroutine.

8. This diagram only considers single threaded code.

Closures, my, and Captured Variables

our $a = 1;
our $b = 2;

my $x = 7;
my $y = 8;

sub s1
{

local $b = 3;
my $y = 6;

#2
s2($y);

#4
}

sub s2
{

my $a = 4;
$_[0] = 5;

#3
}

#1
s1();
#5

Code

Notes
The following points align with the comments in the code. The values
visible at that point in the execution of the program are shown.

1. The our variables have created entries in the current default
namespace, the my variables have been added to the scratchpad for
this file. Values – $a: 1, $b: 2, $x: 7, $y: 8

2. The local has provided a temporary value for $b . The old value
is restored at the end of the subroutine. Values – $a: 1, $b: 3, $x: 7,
$y: 6

3. The @_ takes aliases to its arguments, rather than copying the
values. Values – $a: 4, $b: 3, $x: 7, $y: 8

4. Side effect of calling s2 visible here in the change to $y . Values –
$a: 1, $b: 3, $x: 7, $y: 5

5. Values – $a: 1, $b: 2, $x: 7, $y: 8

Variable Resolution

my $s = 1;
my $r = \$s;
bless $r, "Daphne";

sub TiedScalar::TIESCALAR
{

my $tv = 0;
return bless \$tv, 'TiedScalar';

}

sub TiedScalar::FETCH
{

my ($tv) = @_;
return $$tv;

}

sub TiedScalar::STORE
{

my ($tv, $v) = @_;
$$tv = $v;

}

my $x = 5;
tie $x, 'TiedScalar';

Code

Notes
1. Blessing causes additional information to be added to a variable.
2. Blessing a variable allows it to know to which namespace it

belongs (the namespace typically contains methods relevent to that
‘type’).

3. It is the referent, rather than the reference, that receives the
blessing.

4. Tying a variable associates a hidden variable as a piece of magic.
5. The tied variable is in a namespace, i.e. it has been blessed.
6. The namespace includes the subroutines necessary to provide the

tied functionality.

bless and tie

------------ Base.pm ------------
package Base;

sub new { return bless { }, $_[0]; }
sub subB { }
1;

---------- Derived.pm ----------
package Derived;
use base 'Base';

sub new { return bless { }, $_[0]; }
sub subD { }
sub AUTOLOAD { }
1;

sub UNIVERSAL::fallback() { }

package ClientCode;
use Derived;

our $obj = new Derived();
$obj -> subD(); # Derived::subD
$obj -> subB(); # Base::subB
$obj -> fallback(); # UNIVERSAL::fallback
$obj -> random(); # Derived::AUTOLOAD

Code

Notes
This diagram uses a slightly different notation to show the subroutines in
the stash. To save space, (&) is appended to the subroutine entries.

1. The constructor for Derived blesses new objects with the
Derived namespace.

2. The implementation of subD can be found by directly looking in
the ‘blessed’ namespace of the variable.

3. The implementation of subB is found by following the @ISA
entry in the Derived namespace (the regular implementation is
more efficient than suggested though).

4. UNIVERSAL is the base class of all classes. Every object gains a
fallback method due to this code.

5. If an undefined method is called, then AUTOLOAD will be called
automatically, if it exists.

Subroutine Resolution

