
 Unix and Perl to the Rescue!

 Your research has generated gigabytes of data and now you need to analyze it. You hate using

spreadsheets but it’s all you know, so what else can you do? This book will transform how you

work with large and complex data sets, teaching you powerful programming tools for slicing

and dicing data to suit your needs.

 Written in a fun and accessible style, this step-by-step guide will inspire and inform

non-programmers about the essential aspects of Unix and Perl. It shows how, with just a little

programming knowledge, you can write programs that could save you hours, or even days. No

prior experience is required and new concepts are introduced using numerous code examples

that you can try out for yourself. Going beyond the basics, the authors touch upon many

broader topics that will help those new to programming, including debugging and how to write

in a good programming style.

 KEITH BRADNAM is a project scientist in the Genome Center at the University of

California, Davis. He has extensive experience working with model organism databases

and spent four years as a project leader at WormBase, helping to develop this important

bioinformatics resource.

 IAN KORF is an Associate Professor in Molecular and Cellular Biology at the University of

California, Davis. His research seeks to understand structure and function in genomic DNA.

He has developed new tools for gene prediction, co-authored the only book devoted to BLAST

and helped in the development of BioPerl.

9781107000681pre_pi-vii.indd i9781107000681pre_pi-vii.indd i 11/5/2011 6:51:21 PM11/5/2011 6:51:21 PM

9781107000681pre_pi-vii.indd ii9781107000681pre_pi-vii.indd ii 11/5/2011 6:51:22 PM11/5/2011 6:51:22 PM

 Unix and Perl to the Rescue!
 A fi eld guide for the life sciences (and other data-rich pursuits)

 KEITH BRADNAM
University of California, Davis

 IAN KORF
University of California, Davis

9781107000681pre_pi-vii.indd iii9781107000681pre_pi-vii.indd iii 11/5/2011 6:51:22 PM11/5/2011 6:51:22 PM

cambridge university press

 Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

S ã o Paulo, Delhi, Tokyo, Mexico City

 Cambridge University Press

 The Edinburgh Building, Cambridge CB2 8RU, UK

 Published in the United States of America by Cambridge University Press, New York

 www.cambridge.org

 Information on this title: www.cambridge.org/97801107000681

 © Keith Bradnam and Ian Korf 2012

 This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written

permission of Cambridge University Press.

 First published 2012

 Printed in the United Kingdom at the University Press, Cambridge

 A catalogue record for this publication is available from the British Library

 Library of Congress Cataloguing in Publication data

 ISBN 978-1-107-00068-1 Hardback

 ISBN 978-0-521-16982-0 Paperback

 Cambridge University Press has no responsibility for the persistence or

accuracy of URLs for external or third-party internet websites referred to in

this publication, and does not guarantee that any content on such websites is,

or will remain, accurate or appropriate.

9781107000681pre_pi-vii.indd iv9781107000681pre_pi-vii.indd iv 11/5/2011 6:51:22 PM11/5/2011 6:51:22 PM

 Part 1 Introduction and background page 1

 1.1 Introduction 1

 1.2 How to use this book 3

 Part 2 Installing Unix and Perl 6

 2.1 What do I need in order to learn Unix and Perl? 6

 2.2 Installing Linux on a PC 8

 2.3 Installing a code editor 9

 Part 3 Essential Unix 11

 3.1 Introduction to Unix 11

 3.2 The Unix terminal 11

 3.3 The Unix command prompt 13

 3.4 Your fi rst Unix command 14

 3.5 The hierarchy of a Unix fi lesystem 17

 3.6 Finding out where you are in the fi lesystem 19

 3.7 How to navigate a Unix fi lesystem 20

 3.8 Absolute and relative paths 22

 3.9 Working with your home directory 23

 3.10 The Unix shell 25

 3.11 Environment variables 26

 3.12 Introduction to command-line options 28

 3.13 Man pages 32

 3.14 Working with directories 35

 3.15 The importance of saving keystrokes 37

 3.16 Moving and renaming fi les 42

 3.17 Moving and renaming directories 46

 3.18 How to remove fi les 47

 3.19 How to copy fi les and directories 49

 3.20 Working with text fi les 53

 3.21 Introduction to aliases 56

 3.22 Editing text fi les 60

 3.23 Automating Unix commands 63

 3.24 How to hide fi les and fi nd hidden fi les 66

 3.25 Creating a confi guration fi le 68

 3.26 Programming with Unix 73

 3.27 Unix fi le permissions 74

 3.28 How to specify which directories contain programs 77

 3.29 Creating useful shell scripts 81

 3.30 Unix summary 83

 Contents

9781107000681pre_pi-vii.indd v9781107000681pre_pi-vii.indd v 11/5/2011 6:51:22 PM11/5/2011 6:51:22 PM

Contentsvi

 Part 4 Essential Perl 85

 4.1 Hello world 85

 4.2 Scalar variables 87

 4.3 Use warnings 91

 4.4 Maths and functions 94

 4.5 Perl vs. perl 100

 4.6 Conditional statements 101

 4.7 Use strict 108

 4.8 Stopping programs 114

 4.9 Working with strings 116

 4.10 Dealing with special characters 122

 4.11 Matching operators 124

 4.12 The transliteration operator 130

 4.13 List context 134

 4.14 Introduction to Arrays 136

 4.15 Array manipulation 142

 4.16 The @ARGV array 148

 4.17 Defi ned and undefi ned variables 152

 4.18 Sorting 154

 4.19 Introduction to loops 158

 4.20 More loops 162

 4.21 Loop control 166

 4.22 Data input and output 171

 4.23 Reading and writing fi les 176

 4.24 Introduction to hashes 182

 4.25 Working with hashes 187

 4.26 Introduction to regular expressions 191

 4.27 Regular expression metacharacters 193

 4.28 Working with regular expressions 201

 4.29 Interacting with other programs 206

 4.30 Using functions and subroutines 211

 4.31 Returning data from a subroutine 215

 4.32 Part 4 summary 219

 Part 5 Advanced Unix 220

 5.1 Introduction to advanced Unix 220

 5.2 Introduction to process control 223

 5.3 The grep command 229

 5.4 Viewing and controlling program output 234

 5.5 Redirecting input and output 235

 5.6 Standard error 241

 5.7 Connecting commands with pipelines 243

 5.8 Advanced text manipulation 247

9781107000681pre_pi-vii.indd vi9781107000681pre_pi-vii.indd vi 11/5/2011 6:51:22 PM11/5/2011 6:51:22 PM

Contents vii

 Part 6 Advanced Perl 252

 6.1 Regular expressions revisited 252

 6.2 Function libraries 256

 6.3 References and two-dimensional arrays 262

 6.4 Records and other hash references 269

 6.5 Using references with subroutines 274

 6.6 Complex data structures 275

 6.7 Adding command-line options 281

 6.8 OOP basics 286

 6.9 CPAN 292

 Part 7 Programming topics 296

 7.1 Debugging strategies 296

 7.2 Common error messages 301

 7.3 Code beautifi cation 305

 7.4 Abstraction 311

 7.5 Data management 317

 7.6 Documentation 325

 7.7 Revision control 330

 7.8 Working with other people’s data 333

 7.9 Getting help 337

 Appendix 342

 Index 358

9781107000681pre_pi-vii.indd vii9781107000681pre_pi-vii.indd vii 11/5/2011 6:51:22 PM11/5/2011 6:51:22 PM

9781107000681pre_pi-vii.indd viii9781107000681pre_pi-vii.indd viii 11/5/2011 6:51:22 PM11/5/2011 6:51:22 PM

 Introduction and background 1

 1.1 Introduction

 Why this book?
 If this book had to have a mission statement, we would say that it is designed to help you

make the transition from computer user to computer programmer . 1

 We wrote this book with life scientists in mind. But it is equally appropriate for

anyone who needs to slice and dice large, diverse data sets. A few years ago, biologists

did not need to know how to program. With the arrival of the Human Genome Project

and other -omic technologies, biology has been transformed into an incredibly data-rich

science. While the science is moving ahead at a staggering rate, most people have not

changed themselves to match. Not everyone needs to know how to program, but for

those that desire it, this book will help them catch up quickly.

 We have both watched students struggle with trying to analyze mountains of data, and

sometimes the struggle has not been because the students lack the ability to tackle the prob-

lem. Rather, it is because they frequently lack the tools to tackle the problem. For many

people, data analysis means “using a spreadsheet.” Sometimes this is all you need, but for

many problems a programming solution will be faster, easier, and much more powerful.

 This is not a book for dummies or idiots. Conversely, it’s also not for super-geniuses.

It’s for ordinary educated people who haven’t needed to program until now. Whether the

topic is language, mathematics, or programming, some people learn faster than others.

But we all learn to read, write, multiply, and divide. And we can all learn to program.

Rest assured, you can program. We are happy to be your guides.

 Learning to program is a journey. Like other journeys, it takes time and effort. But

the rewards are worth every step. Not only will you be learning a new skill that you can

apply to your work, you will be seeing the world of data from a completely different

perspective. We guarantee you will fi nd this personally enlightening, and we are not

exaggerating when we say that your newfound knowledge will empower you more than

you can imagine.

 Why Unix?
 The Unix OS has been around since 1969 and it’s not likely to disappear any time soon.

Back then there was no such thing as a graphical user interface (GUI). You typed every-

thing. It may seem archaic to use a keyboard to issue commands today, but it’s much

easier to automate keyboard-driven tasks than mouse-driven tasks. There are several var-

iants of Unix (including Linux), though the differences do not matter much. Although

you may not have noticed it, Apple has been using Unix as the underlying OS on all of

their computers since 2001. 2

 1 Note that this doesn’t mean you need to grow a beard, start reading science-fi ction books, or wear T-shirts bearing unfath-

omable geeky slogans. Indeed, all of these clich é s about programmers should be tossed aside. Programmers are real

people … well, most of us are anyway.

 2 If you haven’t noticed it, that’s probably because it is “hidden” behind a very slick-looking GUI. But it’s there

nonetheless.

9781107000681c01_p1-5.indd 19781107000681c01_p1-5.indd 1 11/5/2011 5:49:02 PM11/5/2011 5:49:02 PM

Introduction and background2

 Increasingly, the raw output of biological research exists as in silico data, usually in

the form of very large text fi les that can grow to several gigabytes in size. Unix is par-

ticularly suited to working with such fi les and has several powerful (and fl exible) com-

mands that can process your data for you. The real strength of learning Unix is that most

of these commands can be combined in an almost unlimited fashion. If you can learn

just fi ve Unix commands, you will be able to do a lot more than just fi ve things.

 Why Perl?
 Perl is one of the most popular programming languages, and has a particularly strong

following in the bioinformatics community. People sometimes get argumentative about

which language is best. There is no single best language for everything. Perl does most

things very well, and is a fi ne programming language to learn. Other equally capable and

easy to use languages include Python and Ruby. Once you learn how to program well in

one language, adapting to other languages is trivial.

 Originally developed in 1987, Perl remains under active development and there is

therefore a lot of supporting material available to help you learn it. 3 You are very likely

to fi nd Perl pre-installed on just about every type of Unix/Linux-based OS, and it is also

available for Windows.

 Among programming languages, there is often a distinction between those that are

 interpreted (e.g., Perl, Python, Ruby) and those that are compiled (e.g., C, C++, Java).

People often call interpreted programs scripts . It is generally easier to learn program-

ming with a scripting language because you don’t have to worry as much about variable

types and memory allocation. The downside is that the interpreted programs often run

much slower than compiled ones. But let’s not get lost in petty details. Scripts are pro-

grams, scripting is programming, and computers can solve problems quickly regardless

of the language.

 About the authors
 Keith Bradnam started out his academic career studying ecology. This involved lots of

fi eld trips and throwing quadrats around on windy hillsides. He was then lucky enough

to be in the right place at the right time to do a Masters degree in bioinformatics (at a

time when nobody was very sure what bioinformatics was). From that point onwards he

has spent most of his waking life sat at a keyboard (often staring into a Unix terminal).

A PhD studying eukaryotic genome evolution followed; this was made easier by the fact

that only one genome had been completed at the time he started (this soon changed).

After a brief stint working on an Arabidopsis genome database he moved to working

on the excellent model organism database, WormBase, at the Wellcome Trust Sanger

Institute. It was here that he fi rst met Ian Korf and where they bonded over a shared love

of Macs, neatly written code, and English puddings. Ian then tried to run away and hide

in California at the UC Davis Genome Center, but Keith tracked him down and joined

his lab. Apart from doing research, he also gets to look after all the computers in the lab

and teach the occasional class or two. However, he would give it all up for the chance

 3 A good “fi rst port of call” would be www.perl.org, the offi cial web site of the Perl programming language.

9781107000681c01_p1-5.indd 29781107000681c01_p1-5.indd 2 11/5/2011 5:49:03 PM11/5/2011 5:49:03 PM

How to use this book 3

to be able to consistently beat Ian at foosball, but that seems unlikely to happen anytime

soon. Keith still likes Macs and neatly written code, but now has a much harder job fi nd-

ing English puddings.

 As a youth, Ian Korf’s favorite classes were sciences and his favorite pastime was

computer gaming. At the time, you wouldn’t have thought that hacking and writ-

ing computer games would be very useful skills for a budding molecular biologist.

Certainly nobody ever counseled Ian to do so, especially when he was doing it at

2 a.m.! But apparently the misspent hours of youth can sometimes turn out to be

worthwhile investments. Ian’s fi rst experience with bioinformatics came as a post-doc

at Washington University (St. Louis), where he was a member of the Human Genome

Project. He then went “across the pond” to the Sanger Institute for another post-doc.

There he met Keith Bradnam, and found someone who truly understood the role of

communication and presentation in science. Ian was somehow able to persuade Keith

to join his new lab in Davis, California. This book is but one of their hopefully useful

contributions.

 Acknowledgments
 This book evolved from a course that we both teach to graduate and undergraduate

students at UC Davis. We are grateful to the students for their patience with us, as this

course has evolved quite a bit since we started teaching it. Their feedback, and their

enthusiasm for learning Unix and Perl, have made this book what it is. We also would

like to thank Nancy Parmalee for helpful suggestions about the index

 Keith would also like to thank his wife Mel for her tireless support and understand-

ing throughout the long book-writing process. He would also like to express profound

gratitude to the wonders of caffeine, the relaxation afforded by his iTunes music library,

and to the entire nation of Belgium.

 Ian would like to thank all his students, past, present, and future. May your adven-

tures take you to lands unimagined, and your skills see you safely home.

 This book was written using Apple’s excellent “Pages” word-processing software,

with extensive use of Dropbox software by Dropbox Inc. to make the process of collab-

orative writing a joy. Code examples were written using TextMate by MacroMates Ltd

and TextWrangler by Bare Bones Software.

 1.2 How to use this book

 Or rather, how not to use this book

 Organization
This book is divided into seven parts (you are currently reading Part 1). You may be

impatient to start programming with Perl, but if you don’t know any Unix we suggest

that you start with Part 3, which will teach you the basics of Unix. When you fi nish that,

you can optionally jump ahead to Part 5, which covers some advanced Unix topics. Or

you might just want to proceed to Part 4, which covers all of the fundamentals of Perl.

The choice is yours. Of course, if you don’t yet have Unix and Perl installed on your

9781107000681c01_p1-5.indd 39781107000681c01_p1-5.indd 3 11/5/2011 5:49:03 PM11/5/2011 5:49:03 PM

Introduction and background4

computer, then you might want to start with Part 2, which covers how you can get Unix

and Perl for your PC.

 If you’ve never programmed, we hope that after learning the “essential” Perl of Part

4, you will be able to write many fantastic and powerful scripts. More importantly, we

hope that you will be able to write scripts that are actually useful . For this part of the

book, we’ve tried, where possible, to only ever introduce one new concept at a time.

Hopefully this will prevent you from being overloaded with too many new concepts at

once. This also keeps chapters short and, mostly, self-contained. For a few topics that

have increased complexity, we use two or more chapters to cover all aspects of that

topic.

 We have strived to make sure there are lots of examples. These are all scripts that we

encourage you to copy and try yourself. However, you may still gain much understand-

ing just from reading them. In addition to the examples, Part 4 of this book also features

a number of problems at the end of most chapters. 4 You are strongly encouraged to

tackle the problems. Ultimately, this it the best way to learn Perl (or any programming

language). For each problem we provide a solution, 5 but be aware that one of the famous

mottos associated with Perl is:

 TMTOWTDI 6 – There’s more than one way to do it

 We have hopefully provided solutions that are easily understandable, but if you want to

solve each problem in a different way then that is great.

 The topics covered in Part 4 might be all you ever need to know in order to solve

many different problems. However, we go further into the more advanced aspects of Perl

in Part 6. The distinction between “essential” and “advanced” is somewhat arbitrary. If

you fi nish Part 4 then you should at least have a look at Part 6.

 Part 7 covers many different subjects that are not unique to Perl. In general, this is

the section that focuses on “good programming practices.” Most subjects in this part are

relevant to many programming languages, though we also include two sections on how

to fi x broken Perl scripts.

 Finally, we should note that we do not cover every aspect of Unix and Perl. The

world of Unix is especially vast, and several books would be needed in order to cover

the myriad number of Unix command you could learn about. Likewise, we do not cover

every feature or function available in Perl. However, we strongly feel that this book cov-

ers all of the basics (and much more besides). Readers are therefore encouraged to use

this book as a launch pad for a journey into a much wider world of programming. If you

develop a hunger for learning about new Unix commands, Perl functions, and even new

programming languages, then dare to venture beyond the confi nes of this book. You will

be rewarded!

 4 We include some problems in the Unix section too, but not as many.

 5 Included in an appendix.

 6 Some people pronounce this “Tim Toady.”

9781107000681c01_p1-5.indd 49781107000681c01_p1-5.indd 4 11/5/2011 5:49:03 PM11/5/2011 5:49:03 PM

How to use this book 5

 Style conventions
 Each chapter has a main heading and a subheading. The subheadings are one area where

we have tried to infl ict our pun-tastic sense of humor on you. 7 We will often include both

Unix and Perl examples, which you should attempt to follow. The Unix examples will

include simple instructions of Unix commands that you should type, whereas the Perl

examples will contain complete scripts, accompanied by line numbering. E.g.:

 Example 1.2.1

 1. —#!/usr/bin/perl

 2. —print “The shortest script in the world?\n”;

 The line numbers are just there so we can refer to them in the text. You are not meant to

type the line numbers! Following just about every example will be a section that tries to

explain what the point of the example was. For the Unix examples, this will be a section

titled Explanation , but for the Perl scripts it will be a line-by-line breakdown of how the

script is working. E.g.:

 Understanding the script
 Line 2 contains a simple print statement.

 In addition to having worked-through examples, we will also set problems that you

should try to solve. Where appropriate, answers will be provided, but we encourage you

to try solving the problems without looking at the solution.

 Hopefully you will have noticed that we use a fi xed-width font for writing any Perl

or Unix code. This will be done for complete scripts and even when we mention a single

Unix command or Perl function within a sentence. E.g., we might mention that the Unix

command sed shares similarities with Perl’s substitution operator (s//).

 Sometimes we will show fragments of Perl scripts, just to illustrate a point or to dem-

onstrate the syntax of a command. We do not include line numbers for these examples,

and they are not intended to be run as complete scripts. E.g.:

 my @array_A = @array_B; # copying an array

 Occasionally, we will want to shout something at you because it is so important, and the

world will cease to exist if you fail to understand the critical point we are making. E.g.:

 The world will cease to exist if you fail to understand the critical point

we are making!

 Any time you see something written in this style, you should probably re-read it several

times and remember that we will be not-inconsiderably displeased if you fail to remem-

ber our advice!

 7 Footnotes, like this one, are another place where you might fi nd occasional diversionary comments on matters which may

not be entirely related to Unix and Perl. E.g., did you know that there are no words in the English language that rhyme

with the word “orange”?

9781107000681c01_p1-5.indd 59781107000681c01_p1-5.indd 5 11/5/2011 5:49:03 PM11/5/2011 5:49:03 PM

 Installing Unix and Perl 2

 2.1 What do I need in order to learn Unix and Perl?

 In addition to time, patience, and a beverage of your choice…
 This book is primarily intended to teach you how to program in Perl. But in order to do

that we want you to fi rst learn some Unix skills. You will need access to a computer that

is capable of running the Perl programming language and a Unix or Linux OS (OS).

You will also need to use a code editor program to write your Perl scripts. We’ll talk

about what specifi c software to choose in the next chapter, but fi rst let’s consider the

bigger picture, including a brief overview of how Unix and Linux differ and whether

that even matters.

 What computers can run Perl?
 As a programming language, Perl is platform agnostic. You can write (and run) Perl

scripts on just about any modern computer. 1 We will assume that >99% of the people

reading this use a PC (running Microsoft Windows and/or Linux), or an Apple Mac.

A small proportion of you may be using some other type of dedicated Unix platform,

such as a Sun or SGI machine. None of this really matters too much. All of the Perl

examples that we demonstrate in this book should work on any machine that you can

install Perl on.

 What computers can run Unix?
 While you can easily install Perl on most computers, the same is not quite so true

for Unix. We decided that this book should include an introduction to Unix because

a lot of in silico biological research happens on Unix/Linux platforms. So it makes

sense to learn how to run your Perl scripts within the context of a Unix OS. As we

mentioned in Chapter 1.1 , all modern Mac computers use Unix as the underlying OS.

This means that if you own (or have access to) a Mac computer that runs OS X, then

you don’t need to download or install anything in order to work through this book. 2 If

you don’t have access to a Mac and you own a PC running Windows, then we suggest

you add Linux to your machine (an overview of how to do this is provided in the next

chapter).

 Linux
 If you don’t have access to Unix, then hopefully you can install Linux instead. Linux

is often called a Unix- like OS, though this claim may offend any Linux purists read-

ing this. It is unusual in that its core components are all based on free and open-source

software. This doesn’t make it any less powerful or less secure that other OSs, and you

 1 If your defi nition of “modern” is running Windows 3.1 on a PC that features a 386DX processor, then you might be disap-

pointed to discover that you will probably need to purchase a new computer.

 2 Except for installing a code editor.

9781107000681c02_p6-10.indd 69781107000681c02_p6-10.indd 6 11/5/2011 5:49:58 PM11/5/2011 5:49:58 PM

What do I need? 7

might feel more comfortable knowing that the majority of web servers around the world

run Linux. Because the underlying code used by all Linux systems is freely available,

many companies have packaged together slightly different versions of the OS 3 that you

can download for free. This very attractive price point, coupled with the fact that it is

possible to run Linux without having to install anything on your computer’s hard drive

(see the next chapter) means that Linux is a great solution for PC owners wanting to

work through this book.

 Unix vs. Linux: part 1
 When we say that we want to teach you Unix, we are not talking about learning the

entire OS. 4 Instead, we want to teach you about a few of the Unix commands that you

will have to type into a program known as a terminal (which we will explore in Chapter

3.2). There are probably a few thousand Unix commands, but we are only aiming to

teach you 20 or so of the most essential ones. All of the Unix commands that we will

teach you are also available on Linux. This means that all we need from a Unix or Linux

OS is the ability to open a terminal program and run some Unix commands. All other

differences between Unix and Linux are not important for this book.

 Unix vs. Linux: part 2
 You do know that there is an exception to every rule, right? While we are confi dent in

saying that there are no important differences between Unix and Linux, you should be

aware that there are still differences, both between Unix and Linux and between differ-

ent versions of Unix/Linux. These differences can mean that some of the commands that

you type may produce slightly different output to what we show in this book. Sometimes

this is because one OS might have a newer version of a Unix command when compared

to another OS.

 This means it would be impossible to write this book in a way that makes it fully

compatible with all possible Unix and Linux variants, so we have written this book

using Apple’s version of Unix. 5 We are 99.9% sure that every Unix command we men-

tion will be available on whatever form of Unix or Linux you use, but bear in mind that

the output of our Unix examples might sometimes look different to yours.

 Learning Perl without learning Unix?
 If you are using a Windows PC, then you might not want to install Linux and you might

just want to learn Perl. That’s fi ne, but bear in mind that our Perl examples are written

from a Unix point-of-view, so we will show examples of how to run Perl scripts from

the perspective of a Unix system.

 3 Such packages are known as distributions and usually contain a slightly different mix of software tools and sometimes a

different GUI.

 4 Otherwise you could argue that learning to use a Mac is a way of learning how to use Unix.

 5 We have chosen Apple because we both use Apple computers for our work (including running Unix commands and writ-

ing Perl scripts).

9781107000681c02_p6-10.indd 79781107000681c02_p6-10.indd 7 11/5/2011 5:49:59 PM11/5/2011 5:49:59 PM

Installing Unix and Perl8

 2.2 Installing Linux on a PC

 There are virtually a dozen solutions
 There are four main ways you can install a Linux OS on your Windows PC:

 (1) Install Cygwin . This provides a Linux-like environment on your PC; it is free to

download.

 (2) Run Linux from a CD-ROM or install on a bootable fl ash drive. This is a good

solution for people who don’t want (or do not have permission) to modify the

contents of their hard drive.

 (3) Install a full Linux distribution on your computer, either as a replacement for

Windows or as a dual-boot option.

 (4) Run Linux by using virtualization software. There are many software packages

that will allow you to effectively install an OS inside another one.

 We will discuss each of these options in a little more detail in this chapter, though it

is beyond the scope of this book to provide detailed installation instructions, not least

because any instructions we could provide would quickly become out of date (the world

of Linux moves very quickly). Bear in mind that the internet contains a lot of informa-

tion about installing Linux on PCs.

 Linux distributions
 If you didn’t already know, you should be aware that there are many different versions

of Linux in existence. They differ in many respects, but the core functionality is very

similar no matter which one you choose. The web site www.livecdlist.com lists most of

the popular variants that are out there and provides a good starting point for choosing a

distribution. Fashions come and go in computing, and it is likely that this list will look

very different in a few years’ time. One of the most popular full-featured Linux OSs

out there at the time of writing is Ubuntu (available at ubuntu.com). For the purposes of

working through this book, any of the popular distributions will be fi ne, but if you want

to install Linux on a CD-ROM or fl ash drive you might want to choose a distribution that

requires less space (see the relevant section below).

 Installing Cygwin
 It is important to note that Cygwin isn’t a true form of Unix or Linux. It is software

that will result in you having a terminal window through which you can use many Unix

programs (including Perl). There are some differences between Cygwin and other types

of Unix, which may mean that not every Unix example in this book will work exactly as

described, but overall it should be suffi cient for you to learn the basics of Unix. At the

time of writing, Cygwin is free and is under active development. You can download it

from www.cygwin.com.

 Running from a CD-ROM or fl ash drive
 Storage capacities of USB fl ash drives continue to increase (and prices decrease), which

means it is possible to store entire OSs on them. It is also possible to boot your computer

9781107000681c02_p6-10.indd 89781107000681c02_p6-10.indd 8 11/5/2011 5:49:59 PM11/5/2011 5:49:59 PM

Installing a code editor 9

from a USB drive and run the OS that you have installed. Because not everyone has

a large-capacity fl ash drive, and because some people would like to run Linux from a

CD-ROM, there has been a demand for lightweight Linux distributions which omit some

of the less essential parts in order to fi t on a fl ash drive or CD-ROM. Linux distributions

such as Damn Small Linux (www.damnsmalllinux.org) go so far as to fi t an entire OS

into less than 50 MB of space. Other popular versions of Linux which are also

compact are Slax (available at www.slax.org) and Puppy Linux (www.puppylinux.com).

 The obvious advantages to these methods are that you don’t need to add anything to

your computer and you can easily take your Linux OS anywhere you go. Some of these

solutions will still require you to boot your computer from the fl ash drive or CD-ROM

(meaning that you can’t use Windows until you reboot). However, some of these solu-

tions can also be run without restarting your computer, meaning that you can access

Linux within a single window.

 Install Linux
 If you try out the method above and discover that you like Linux, you may want to make

it your main OS, or at least have it available to run alongside your Windows OS. It is

very common to fi nd “dual-boot” machines, which means you can choose which OS you

want to run from a menu after turning the machine on. Setting up Linux in this manner

will require suffi cient free space on your hard drive and you will also need administrator

privileges on your computer. Follow the instructions provided by your Linux distribu-

tion. Alternatively, rather than have a dual-boot system, you can make Linux your main

OS and run Windows using virtualization software.

 Virtualization software
 By installing suitable software, virtualization effectively allows you to run one (or more)

different OSs within your main OS. It is very commonly used to run Linux as a guest
OS within a Windows OS, and vice versa. 6 Most modern computers will have suffi cient

hardware to do this. Some virtualization software is free to download. This is another

fast-moving fi eld within the software industry and it is therefore hard to make spe-

cifi c suggestions as to which software to use. Some popular virtualization solutions that

are currently available include Microsoft Virtual PC, VirtualBox (free from Oracle),

VMware Player, and Parallels Workstation. However, please note that there are also

many other products available and we do not endorse any one of these products.

 2.3 Installing a code editor

 So I installed Perl and Linux, can I start writing code yet?
 The majority of this book will teach you how to write Perl scripts, and you will there-

fore need something to write them with. Like other scripting languages, Perl scripts are

just text fi les and can therefore be written with any software capable of producing a

 6 It’s also very common to see virtualization software used in such a way that one computer runs older versions of its own

OS (e.g., running Windows XP from within Windows 7).

9781107000681c02_p6-10.indd 99781107000681c02_p6-10.indd 9 11/5/2011 5:49:59 PM11/5/2011 5:49:59 PM

Installing Unix and Perl10

 plain-text-format fi le. Note that plain text specifi cally means text that is devoid of for-

matting. All OSs come with basic text editors that are capable of producing plain-text

fi les. 7 You should not use these editors. Nor should you use a fully fl edged word-proces-

sor program such as Microsoft Word. This point bears repeating:

 Do not use a word processor to write code, it will cause stress and grief!

 You should instead use a program that is specifi cally designed to write code. Such pro-

grams are known as text editors or source code editors , and include a number of features

that will greatly help you as you learn to program in Perl. The most important reason for

using a code editor is that they already know about the syntax of Perl (as well as many

other programming languages) and will change the color of what you write in a process

called syntax highlighting . A simple analogy would be to imagine that you could write

a sentence in English and have all the verbs and nouns automatically change to red or

blue. If you mistyped the name of a verb, then it wouldn’t turn red, and this would give

you instant visual feedback that there was a problem. As you will quickly learn, fi xing

bugs in code can be a troublesome task, so anything that helps you fi nd bugs as you write

them is to be welcomed.

 Apart from syntax highlighting, code editors have many other useful features and it

is essential to use them when writing any code. There are many free ones available and

you should ideally try out several to fi nd one that works for you. They all have slightly

different combinations of features and some are cross-platform, whereas others will

only be available for Macs, PCs, or Linux OSs. As a starting point, we would suggest

Notepad++ for Windows, TextWrangler for Macs, and Gedit or jEdit for Linux. Once

again, we are not trying to endorse any particular piece of software. As you start to type

a lot of code, the relationship between you and your code editor becomes very import-

ant, and it is highly recommended that you “test drive” other editors . 8

 7 Typically, this would be TextEdit on a Mac and Notepad on a Windows PC.

 8 Wikipedia has a very detailed page that compares the features of various text editors: http://en.wikipedia.org/wiki/

Comparison_of_text_editors.

9781107000681c02_p6-10.indd 109781107000681c02_p6-10.indd 10 11/5/2011 5:49:59 PM11/5/2011 5:49:59 PM

 Essential Unix 3

 3.1 Introduction to Unix

 No mouse required!
 By this point you should have a computer that runs a version of Unix or Linux. Everything

we do in this part of the book will involve typing commands using a program known as

the terminal (more on that in the next section). Unix contains many hundreds of com-

mands, but we only need to learn a small number in order to achieve most of what we

want to accomplish.

 You are probably used to working with programs like the Apple Finder or the

Windows File Explorer to navigate around the hard drive of your computer. Some

people are habituated to using the mouse to move fi les, drag fi les to the trash, etc.,

and it can seem strange switching from this to typing commands instead. Be patient,

and try – as much as possible – to stay within the world of the Unix terminal. We will

teach you many basics of Unix, such as: renaming fi les, moving fi les, creating text

fi les, etc. and you may sometimes be tempted to resort to doing this without using

Unix. Initially it will feel wrong to do something as simple as moving a fi le from one

folder to another by typing a command. Stick with it and it will start to become second

nature. Learning to do things by typing commands also gives you a back-up plan if

your mouse breaks!

 Throughout this part of the book we will provide lots of Unix examples that you

should also type yourself. Please make sure you complete and understand each task

before moving on to the next one. We will sometimes show the output of running vari-

ous commands. In some cases your output will look different to our output because it

is very unlikely that any two fi lesystems will be identical (even on computers with the

same OS). Hopefully, though, you will be able to follow all of these examples without

getting too lost.

 One fi nal note: Throughout the remainder of this part of the book we will refer to

Unix over and over again. Every time we mention the U-word, you can equally think of

the L-word (Linux). From the perspective of what we are trying to teach you, the two

are synonymous. 1

 3.2 The Unix terminal

 A window into a wider world
 A “terminal” is the common name 2 for a type of program that does two main things.

It allows you to send typed instructions to the computer (i.e., run programs, move/

view fi les, etc.) and it allows you to see the output that results from those instructions.

Historically, computers did not have any form of GUI, so the only way of interacting

 1 If this bothers you, then feel free to buy our special “Linux-edition” of this book. It is identical, except we change all

mentions of Unix to Linux.

 2 Also known as a “term” or a “tty.”

9781107000681c03_p11-84.indd 119781107000681c03_p11-84.indd 11 11/5/2011 6:02:23 PM11/5/2011 6:02:23 PM

Essential Unix12

with them was by typing commands to do everything. 3 The keyboard was the only form

of input and a single monitor screen was the only form of output. In modern-day OSs,

the terminal will be run as just one of many different applications; some people refer to

terminal applications as terminal emulators .

 You can count on all Unix/Linux OSs to have a terminal program, and it is common

for any such program to include “term,” “terminal,” or “tty” as part of its name – e.g.,

on Apple computers the default terminal application is simply named Terminal. Bear in

mind that all OSs will also allow you to download alternative terminal programs. These

will offer you different degrees of customization as well as slightly different features.

However, for the purposes of this book, the differences between any two terminal appli-

cations are trivial.

 After launching the terminal program, you should see something that looks a bit

like this:

 This is the standard Apple terminal program. Yours might look very different, 4 but

there should at least be some text inside the terminal window, and perhaps a blinking

cursor. The text might just be a single character such as a $, % , or # symbol, or it might

include other information such as the name of your computer or your login name.

 Customizing your terminal
 Before we go any further, you should note that your terminal program will very likely

let you alter the appearance of the terminal window. If you explore its options/settings/

preferences menu you will probably be able to do things like change the default colors,

style of font, and size of font. Initially it might be better to stick with the default settings

 3 Of course, there is the whole “pre-keyboard” era of punch cards and punch tape as forms of data input. But enough with

the history lesson.

 4 It is fairly common to see terminal programs use a two-color scheme of either: black on white, white on black, or the

 Matrix -esque green on black.

9781107000681c03_p11-84.indd 129781107000681c03_p11-84.indd 12 11/5/2011 6:02:24 PM11/5/2011 6:02:24 PM

The Unix command prompt 13

until you are comfortable using the program, but at some point you should set up your

terminal so it is to your liking. 5

 Note that you can resize terminal windows, or have multiple windows open side by

side. Some terminal applications will also let you open multiple tabs within a single

window. There will be many situations where it will be useful to have multiple terminals

open and it will be a matter of preference as to whether you want to have multiple win-

dows, or one window with multiple tabs (there will usually be keyboard shortcuts for

switching between windows or tabs).

 Before we go any further you might also want to check what keyboard commands

are used to close windows or tabs, just so you don’t accidentally do that. 6 For much of

this part of the book you will only need to use the terminal, so feel free to resize it to its

maximum window size. This might also help you avoid the temptation to start moving/

renaming fi les by using your OS’s fi le browser. Before we proceed with learning our

very fi rst Unix command, let’s reiterate that last point.

 Do not use your mouse. In the land of the terminal, the keyboard is king!

 3.3 The Unix command prompt

 We command you to read this section
 Hopefully your terminal window already contains some text. As mentioned in the last

chapter, this text might include your login name 7 or the name of the machine you are

using. The text traditionally ends with a punctuation character of some kind (most com-

monly a $ or % sign). Collectively, this text is known as the command prompt .

 Example 3.3.1
 It’s time for your fi rst interaction with the world of Unix. After you make sure that your

current terminal window is selected, take a deep breath and press the enter key on your

keyboard.

 Explanation
 Congratulations! You have just interacted with your Unix terminal. Hopefully the world

didn’t end and your computer is still intact. Most importantly, you should have noticed

that the text that was on the screen before you pressed enter has now been duplicated on

a new line. Every time you type any Unix command and press enter, the computer will

attempt to follow your instructions and then, when fi nished, return you to the command

prompt. Sometimes you might have to wait a while for a program to fi nish before the

command prompt returns, but once you see the prompt, then you know you are free to

 5 Terminal applications will use a fi xed-width font for the default font. There are good reasons for this and you should

probably not change it to any non-fi xed-width font (e.g., Times, Arial, etc.).

 6 Closing a terminal window will often, but not always, stop the program or command that you were running. If your

program had been running for a day and was just about to give you the answer to life, the universe, and everything else –

then you will have to wait another day for the answer.

 7 Also called the “user name.” It’s entirely possible to have one account name that you use to login to your computer (e.g.,

“keith”) and then have a different Unix login name (e.g., “themaster”).

9781107000681c03_p11-84.indd 139781107000681c03_p11-84.indd 13 11/5/2011 6:02:25 PM11/5/2011 6:02:25 PM

Essential Unix14

type your next command. Some forms of Unix provide a blinking cursor, which makes it

a bit easier to focus your eye on where you can type. Usually, a new terminal window will

have the current command prompt at the top of the window. But if you try pressing enter

20–30 times, the current command prompt will get moved to the bottom of the window.

 Examples of command prompts
 Depending on what version of Unix you are using, your command prompt might also be

set up to include the name of the current directory. 8 This might change as you navigate

to different directories on the computer (which we will be doing in a few chapters’ time).

Therefore, don’t be surprised if the text that makes up the command prompt changes

from time to time. Command prompts can also be customized to include a lot of other

information. Here are a few examples of what some command prompts can look like:

Prompt Description

 $ A single-character prompt

 % Another common single-character prompt

 bash-3.2$

The default prompt on Mac OS X. This prompt includes the

name and version number of something called the shell . More
of that in a later chapter.

 nigel@stonehenge$

A prompt that includes both details of the user name

(nigel) and the computer name (stonehenge). It’s very

 common to see this type of information included in the

prompt.

 nigel:/home %

A prompt that contains the user name as well as the name of

the current directory (/home). We’ll explore the syntax of

directory names later.

 Because of this huge diversity in command prompts, we will stick with using a

single dollar sign for all examples which include the command prompt. If we show you

the following:

 $ ls

 This should be interpreted as type the Unix command “ls” at the command prompt .
And if you’re wondering what the ls command does, then you only need to look at the

next chapter!

 3.4 Your fi rst Unix command

 Every journey starts with a single step

 Reminder, no mouse required!
 Everything we do in this part of the book will involve typing commands at the com-

mand prompt. Sometimes, newcomers to Unix are tempted to click the mouse to try to

 8 Directories are the same thing as what you might think of as “folders” when using a graphical fi le manager.

9781107000681c03_p11-84.indd 149781107000681c03_p11-84.indd 14 11/5/2011 6:02:25 PM11/5/2011 6:02:25 PM

Your fi rst Unix command 15

reposition the cursor somewhere else in the terminal window. In nearly all cases, this

will not achieve what you are trying to do. Clicking with a mouse will normally just grab

the focus of the terminal window and will not move the cursor. In any case, we know

that you will, of course, be following our advice not to use the mouse for this part of
the book!

 Your home directory
 Unix, like most OSs, keeps fi les arranged in a hierarchical structure. From the “top

level” of the computer, there will be a number of directories, each of which can contain

fi les and subdirectories, and each of those, in turn, can contain more fi les and directories

and so on, ad infi nitum . It’s important to note that you will always be “in” a directory

when using the terminal. The default behavior is that when you open a new terminal you

start in your own “home” directory (containing fi les and directories that only you can

modify).

 The ls command
 To see what fi les are in our home directory (or indeed in any directory), we need to use

the ls command. This command “lists” the contents of a directory. So why don’t they

call the command “list” instead? Well, this is a good thing because typing long com-

mands over and over again is tiring and time-consuming. There are many (frequently

used) Unix commands that are just two or three letters long. 9

 Example 3.4.1
 Let’s execute the ls command, and hopefully we shall see some output:

 $ ls

 Desktop Downloads Movies Pictures Sites

 Documents Library Music Public

 $

 Explanation
 There are fi ve things that you should note from the output of this command:

 (1) You will see different output to what is shown here. 10 This is expected. If you don’t

see any output at all that might still be okay (assuming that your current directory

doesn’t contain any fi les or other directories).

 (2) The $ character that you see before the ls command is the Unix command prompt

(see the previous chapter).

 (3) The output of the ls command lists nine different items. In this case, they are all

directories, 11 but they could also be fi les. We’ll learn how to tell them apart later.

Note that these directories are listed alphabetically in columns .

 9 Unix also features single-letter commands, such as w .

 10 Unless you also have an Apple computer and haven’t added any other fi les or folders to your home directory, in which

case your output might be identical.

 11 These are the default directories that are created for all new user accounts with Mac OS X.

9781107000681c03_p11-84.indd 159781107000681c03_p11-84.indd 15 11/5/2011 6:02:25 PM11/5/2011 6:02:25 PM

Essential Unix16

 (4) After the ls command fi nishes it produces a new command prompt, ready for you

to type your next command.

 (5) The ls command should be typed using lower-case letters. Unix usually (but not

always) distinguishes between lower- and upper-case characters, i.e., it is a case-

sensitive OS. Typing LS or Ls might not work. 12

 Example 3.4.2
 The ls command is used to list the contents of any directory, not necessarily the one

that you are currently in. Try the following:

 $ ls /usr

 X11 bin include libexec local share

 X11 R6 etc lib llvm-gcc-4.2 sbin standalone

 $

 Explanation
 We are now asking Unix to list the contents of the directory called “usr”. More spe-

cifi cally, the forward-slash character implies that this directory must be located at

the top level of the fi lesystem (we’ll return to this point in the next chapter). Before

we were simply running a Unix command, but we are now running a command and

providing it with an argument (the “/usr” part). Many Unix commands can be run

with or without arguments, though some commands will always require one or more

arguments.

 Always separate Unix commands from their arguments with a

space character!

 The “usr” directory is a common directory that is present on most (if not all) Unix

systems. On many Unix systems this is where all of the user accounts will be located.

However, we don’t need to understand what all of those directories are doing. 13 One

thing to note about this output is that the directories which start with upper-case letters

(X11 and X11R6) are placed before directories that start with lower-case letters. This

is one of the many things that can differ between different Unix systems. Your system

might show very similar output, but might order all directories alphabetically, regardless

of their case .

 12 This will work on Macs, which recognize commands typed in any combination of lower-and upper-case characters. This

is not true of all Unix systems though.

 13 You might be wondering how we know that these are all directories and not fi les. Well, you’ll have to wait a little longer

before we explain this.

9781107000681c03_p11-84.indd 169781107000681c03_p11-84.indd 16 11/5/2011 6:02:25 PM11/5/2011 6:02:25 PM

The hierarchy of a Unix fi lesystem 17

 3.5 The hierarchy of a Unix fi lesystem

 This will be a root-and-branch review
 Looking at a list of directories from within a Unix terminal can often seem confusing.

But bear in mind that these directories are exactly the same type of folders that you can

see if you use your computer’s graphical fi le management program. A tree analogy is

often used when describing computer fi lesystems because of the branching nature of

the directory structure. Like a tree, a Unix fi lesystem has roots, or more specifi cally, it

has a root , which is represented by a single forward-slash character (/). 14 The analogy

with the tree starts to break down a little as it is common to refer to the root level as the

“top” of the directory structure – think of it as an inverted tree if it helps. From the root

level (/) there are usually many (10–20) top-level directories. A small number of these

directories will be present on all Unix systems, but there will also be many directories

that are specifi c to different types of Unix. Here is a fi ctional example of what part of a

Unix tree might look like:

 In this example we show seven top-level directories below the root level. 15 These

directories may seem to have strange names, but you don’t really need to know what

they are for. The one thing to note from this schematic is that there is a “home” direc-

tory which in turn contains the home directories of three users (“david,” “derek,” and

“nigel”). We then show that David’s home directory contains more directories, one of

 14 On a standard Windows OS the equivalent to the root level would be C:\.

 15 These are the directories that occur on nearly all Unix systems.

9781107000681c03_p11-84.indd 179781107000681c03_p11-84.indd 17 11/5/2011 6:02:25 PM11/5/2011 6:02:25 PM

Essential Unix18

which (“Work”) contains some fi les. This schematic is highly simplifi ed – a full Unix

fi lesystem may contain several hundred directories, and many thousands of fi les. Note

that we shall return to this fi ctional fi lesystem in the next few chapters.

 Directories that exist inside other directories, are often referred

to as subdirectories.

 Example 3.5.1
 If you want to see what your own root level looks like you can simply run the ls com-

mand and tell it that you want to list the contents of the root directory (represented by a

single forward-slash character):

 $ ls /

 Applications System cores mach_kernel tmp

 Developer Users dev net usr

 Library Volumes etc private var

 Network bin home sbin

 Explanation
 This is the listing of the root directory on a computer running Mac OS X. Note that

it has a directory called “home” (like many Unix systems) but the actual home dir-

ectories of users are stored as subdirectories within the “Users” directory. There is

often a lot of variation as to where different Unix systems keep home directories, 16

and in the next chapter we will learn how to fi nd out where your own home directory

is located.

 Navigating the fi lesystem tree
 If we briefl y return to our fi ctional Unix fi lesystem, we should note that the directory

called “david” contains three subdirectories and is itself a subdirectory of the “home”

directory. If we wanted to copy or move some fi les that are in David’s “Work” directory

to Nigel’s home directory, we can trace a path that would navigate up three levels in the

directory tree (→ Work → david → home), and then navigate down one level (→ nigel).

If this concept of going up and down various branches seems intuitive to you, then

great! If it doesn’t, then it might help you to start thinking about your fi lesystem in this

way. This means that if you wanted to copy a fi le from David’s “Work” directory to his

“Docs” directory, you actually have to go up one level and then down one level (rather

than go directly across). 17

 16 Though it is very common to name the actual home directory after your login/user name.

 17 Of course the concepts of “up,” “down,” or “across” are somewhat misleading. All directories, programs, and other fi les

exist as series of binary 1s and 0s on a magnetic disk or other storage medium. However, these concepts can sometimes

make it a lot easier to understand how to use many different Unix commands.

9781107000681c03_p11-84.indd 189781107000681c03_p11-84.indd 18 11/5/2011 6:02:25 PM11/5/2011 6:02:25 PM

Finding out where you are in the fi lesystem 19

 3.6 Finding out where you are in the fi lesystem

 You should learn to use pwd PDQ
 As we have already mentioned, there may be many hundreds of directories on any Unix

machine. So how do you know which one you are in? In Unix, the current directory you

are in is known as the working directory . To fi nd out where you are, you can run the Unix

command pwd , which will p rint the w orking d irectory , and this is pretty much all this

command does. If you have opened a new terminal window you will normally be placed

in your home directory : 18

 $ pwd

 /Users/nigel

 In this example we are in the home directory of a user called “nigel,” who has his

home directory located as a subdirectory of the “Users” directory. Conversely, “Users”

is “above” the level of “nigel” and Unix would refer to this directory as the parent dir-

ectory of “nigel”.

 Slashes separate parts of the directory path
 As we have just seen, Unix uses forward-slashes to separate out the various parts of

a directory location. In the above example we can see that “nigel” must be a subdir-

ectory of “Users” because the two are separated by a single forward-slash character.

Collectively, the set of fi le and directory names that are combined with forward-

slashes is known as a path . A single path will always specify some unique location in

the fi lesystem.

 If a path starts with a forward-slash character, then this is the same thing as the

single forward-slash that represents the root level . In the above example, because it

starts with a forward-slash, we can infer that “Users” must be a directory one level

beneath the root directory. We shall return to the issue of navigating paths in the next

chapter.

 Remember to use pwd !
 As you become more familiar with Unix, you will fi nd yourself trying to switch

between different directories in the fi lesystem (which we will learn how to do in the

next chapter). The more you move around, particularly as you start using multiple ter-

minal windows, the more likely it is that you will get “lost” in the fi lesystem. When

you start running more complex commands (or Perl scripts) a common reason for

them not appearing to work is that you are not in the correct directory. As you start to

learn Unix, it is good to get into the habit of frequently running pwd to check that you

always know where you are.

 18 You can confi gure Unix to start your terminal sessions somewhere other than your home directory and this is sometimes

useful, but 99% of the time a new terminal will place you in your home directory.

9781107000681c03_p11-84.indd 199781107000681c03_p11-84.indd 19 11/5/2011 6:02:25 PM11/5/2011 6:02:25 PM

Essential Unix20

 3.7 How to navigate a Unix fi lesystem

 It’s time for a change
 We have previously seen how the ls command allows us to “look” at the contents of

any directory in a Unix fi lesystem. It is entirely possible, and sometimes desirable, to

perform actions with fi les or folders that are in different directories with respect to your

current working directory. However, we frequently want to change directories so we

are in the same directory as some fi le or program. We can do this using the cd com-

mand (c hange d irectory). Let’s return to our fi ctional Unix fi lesystem and see how the

user Nigel would change directory from his home directory to the temporary directory

“tmp”. 19 Feel free to repeat these steps from your own home directory:

 $ pwd

 /home/nigel

 $ cd /tmp

 $ pwd

 /tmp

 We start by confi rming that we are in Nigel’s home directory by running the pwd

command. We then use the cd command to change to /tmp. Note that the cd command

does not give you any output or feedback after you run it. If we knew what fi les we

were expecting to see in /tmp then we could run the ls command to check that this is

the intended location. However, it is always possible that two different directories could

contain identical contents. That is why we run the pwd command again, to confi rm that

we are really in /tmp.

 Changing directories in multiple steps
 Let’s imagine that we want to change directory to the “home” directory and then change

to David’s “Work” directory. We will omit the pwd confi rmation step from now on:

 $ cd /home

 $ cd david/Work

 There are two things to note here. First, notice how that second cd command does not

start with a forward-slash. You only need to include a forward-slash at the start of a Unix

path when you want to start navigating from the root level of the fi lesystem. Hopefully,

you also noticed that performing this in two steps is a little pointless. If you just want to

navigate from directory “A” to directory “B,” you can always do that in one step:

 $ cd /home/david/Work

 Can’t change directory?
 Remember that many Unix systems are case-sensitive . This means that if we had typed

“David” instead of “david” we might have seen an error message like the following:

 19 The “tmp” directory is used for storing various temporary output from programs. Be aware that it is automatically

emptied at periodic intervals, so you should not use it to store important fi les.

9781107000681c03_p11-84.indd 209781107000681c03_p11-84.indd 20 11/5/2011 6:02:25 PM11/5/2011 6:02:25 PM

How to navigate a Unix fi lesystem 21

 $ cd /home/David/Work

 cd /home/David/Work: No such file or directory

 We would also see this type of error message if we had misspelled any part of the path,

or missed out any of the forward-slashes . If we mistakenly typed something like:

 $ cd home/nigel

 instead of:

 $ cd /home/nigel

 without the leading forward-slash character, Unix will assume that we want to change

directory to a subdirectory of our current directory called “home”. It is important to be

able to appreciate the difference between the two commands shown above. The second

command will only ever specify a single location on the fi lesystem, as there can only

be one directory called “home” at the root level of the computer. In contrast, the fi rst

command could potentially work in multiple places as there could be another “home”

directory somewhere else in the fi lesystem. 20

 Changing to the parent directory
 One of the most common uses of the cd command is to navigate to the directory above

the one you’re currently in – e.g., you want to change from the “david” directory to

“home” or from “home” to “/”. This is straightforward if you know what the directory

above you is called. However, you may have forgotten where you are and you may not

want to keep on running the pwd command to fi nd out. Luckily, you can simply tell the

 cd command to go “up” one level by using the following syntax:

 $ cd ..

 Two dots (without a space) are used by Unix to refer to the parent directory. You can also

use this with the ls command to list the contents of the parent directory:

 $ ls ..

 If you wanted to navigate up two levels then you simply need to include a forward-slash

between two sets of double dots:

 $ cd ../..

 The use of the forward-slash is consistent with what we have already seen about Unix

paths, and the forward-slash acts as a delimiter that separates out different levels in the

overall directory hierarchy.

 When you run the previous command, Unix will try to go up two levels in the dir-

ectory hierarchy. If your current working directory was /bin , then you only have one

level above you, but Unix will not produce an error – it will simply take you up as far

as it can go.

 20 This is analogous to the fact that every US city can potentially have an address called “1600 Pennsylvania Avenue,” but

within a single city it is likely that there is only going to be one address with that name.

9781107000681c03_p11-84.indd 219781107000681c03_p11-84.indd 21 11/5/2011 6:02:25 PM11/5/2011 6:02:25 PM

Essential Unix22

 Assuming you are in a new terminal window which has put you in your home directory,

navigate to the root level of your fi lesystem, and then try to navigate back to your home

directory. Use the pwd and ls commands to keep on checking where you are and what

fi les and directories are present as you navigate.

 3.8 Absolute and relative paths

 We’re absolutely sure that this part is all relative
 In the last chapter we saw how we could navigate up a level by using the .. command,

which signifi es the parent directory. What if we wanted to navigate up some levels and

then back down again in one single operation? Can you think how we might navigate

from inside David’s “Desktop” directory to David’s “Docs” directory in one go? Clearly

we could do this with two separate cd commands:

 $ pwd

 /home/david/Desktop

 $ cd ..

 $ cd Docs

 But rather than run two separate commands, we can simply combine both paths from

each command:

 $ cd ../Docs

 You can read this as “navigate up one level and then navigate down one level into the

Docs directory.” In Unix this is known as a relative path – i.e., relative to our current

location (/home/david/Desktop), we can get to the Docs directory by navigating up one

level and then down one level. This has the net effect of traversing sideways in the dir-

ectory structure. A slightly longer example of a relative path would be:

 $ cd ../../../tmp

 We are now going up three levels and then down one level into the “tmp” directory. The

third “up” operation takes us to the root level. From here it becomes easier to navigate

to the “tmp” directly from the root level :

 $ cd /tmp

 This syntax is known as an absolute path . All absolute paths start from the root level

of the OS and specify a fi le or directory in relation to this fi xed starting point. It is

important to understand the difference between these two types of path. When we

start moving and copying fi les, we will often have to specify paths for both the source

and destination directories, and using the wrong type of path will be a likely source

of errors. 21

 21 Being able to specify the correct path will be important for some other Unix commands, and also for when we want to

start running our own Perl programs.

Problem

3.7.1

9781107000681c03_p11-84.indd 229781107000681c03_p11-84.indd 22 11/5/2011 6:02:25 PM11/5/2011 6:02:25 PM

Working with your home directory 23

 Absolute vs. relative paths
 Sometimes it will be quicker to change directories using the absolute path, and some-

times it will be quicker to use a relative path. However, you can only use an absolute

path if you know all of the intermediate directories that separate the root level and the

directory that you want to navigate to. With practice it will become obvious which type

of path you should use. This partly depends on getting to know a little bit about the lay-

out of your own fi lesystem. Changing to a new computer can sometimes be a little like

moving to a new town. You have to learn where everything is all over again and it takes

time to learn the fastest way of getting from “A” to “B.”

 One fi nal warning for this section. It’s entirely possible to do pointless things with

the cd command, such as:

 $ pwd

 /home/david/Desktop

 $ cd ../../../home/david/Docs

 or similarly:

 $ pwd

 /home/david/Desktop

 $ cd /home/david/Docs

 In these examples we needlessly navigated all the way to the top of the fi lesystem and

then back down again in order to just change directory to a directory that is at the same

level as where we started. If you want to do all of that unnecessary typing then just be

aware that Unix isn’t going to stop you. 22

 3.9 Working with your home directory

 (The) home (directory) is where the heart is

 What is a home directory?
 Of all the directories on a Unix fi lesystem that you will work with, the home directory

is probably the most important. This directory serves the same purpose as the “My

Documents” folder on a Windows computer, and it is where you will store various

fi les that are owned by you. 23 Refl ecting its special status, it has a few important prop-

erties that set it apart from other directories. It is common for your home directory to

be named after your real name or your login name (of course, the two might also be

the same). This means that if you have two or more users on your computer who have

the same name, they will need to use different names for their home directories.

 22 By extension, you can even navigate up and down the fi lesystem and end up right back where you started. We bet you’re

going to try that right now, aren’t you?

 23 These fi les will hopefully end up including the many Perl scripts you will be writing!

9781107000681c03_p11-84.indd 239781107000681c03_p11-84.indd 23 11/5/2011 6:02:25 PM11/5/2011 6:02:25 PM

Essential Unix24

 By default, new terminal windows should always place you inside your home direc-

tory. Of course, you can always confi rm the location of your home directory (in a newly

opened terminal window) with the pwd command:

 $ pwd

 /home/nigel

 Finding your way home
 One of the most common acts of “directory navigation” that you will perform is to return

to your home directory (from wherever you were). If you know where your home direc-

tory is, you can simply use the cd command to go there:

 $ cd /home/nigel

 Because you will want to perform this action over and over again and because you

might not always remember where your home directory is, 24 Unix provides several use-

ful shortcuts:

 $ cd ~nigel

 This command should be read as “change directory to the home directory of the user

called ‘nigel.’” The ~ character (known as a tilde) is used by Unix to refer to a home

directory. Note that you can use this syntax to navigate to directories beneath the level

of your home directory – e.g., the path ~david/Docs would refer to the “Docs” sub-

directory of David’s home directory. Additionally, you can use this syntax to navigate to,

or list the contents of, another user’s home directory:

 $ cd ~derek

 $ cd ~david

 $ ls ~derek

 $ ls ~david/Work

 If it is your home directory that you want to go to then you can save even more time by

omitting the user name altogether:

 $ cd ~

 A tilde on its own will always be understood by Unix to refer to your home directory.

If we want to save ourselves even more typing, we can take home directory navigation

to its extreme:

 $ cd

 If you don’t provide any other information to the cd command, then it will take you

to your home directory. This is the format of the command that you will end up using

the most. You shouldn’t proceed any further without fi rst trying to get lost somewhere

 24 On large, Unix-based networks, it’s entirely possible that your home directory may change location occasionally as it

might be moved from one disk to another by your system administrator.

9781107000681c03_p11-84.indd 249781107000681c03_p11-84.indd 24 11/5/2011 6:02:25 PM11/5/2011 6:02:25 PM

The Unix shell 25

in the labyrinth of your own Unix fi lesystem, before safely returning home with the cd

command .

 Try to get yourself “lost” in your fi lesystem. Change directory to the root level and then

start navigating to a different directory at the root level. Check that you can fi nd your

way home by simply typing cd and then confi rming your location with pwd.

 3.10 The Unix shell

 It’s time to come out of your shell

 What is the shell?
 The shell is a command-line interpreter that lets you interact with Unix. You might be

thinking that this sounds an awful lot like the terminal, but the two are very distinct.

A terminal is like a web browser. There are a lot of web browsers, and they all let you

interact with the internet. Similarly, there are a lot of terminal programs, and they all

give you a command-line prompt to issue commands and observe the output of those

commands.

 The shell takes what you type and decides what to do with it. Did you want to run

a program? Assign a variable? Autocomplete the name of a fi le? 25 Pipe the output from

one program to another? The shell is actually a scripting language somewhat like Perl.

It is not as powerful as Perl, but for some simple tasks a shell script is sometimes more

convenient and appropriate. In this book we only touch upon shell scripting, because we

prefer to do our programming in a more fully featured language.

 Your default shell
 Unix is a very fl exible OS, and it is therefore not surprising that there is more than one

kind of shell. 26 Here is a list of the most common shells :

 • Bourne shell – commonly known as sh . Named after its creator, Stephen Bourne,

this shell has remained a popular default shell ever since its original development

in 1977.

 • C shell – known as csh . Developed shortly after the Bourne shell, it quickly gave

rise to a related shell called the TENEX shell or tcsh . The latter shell contains

everything in csh plus some other useful features such as command-line comple-
tion . This is something that we will introduce you to in a few chapters.

 • Korn shell – known as ksh . Developed by David Korn in the early 1980s. It

includes many features of csh and is backwards compatible with sh .

 • Bourne-again shell 27 – known as bash . It is widely used and is currently the

default shell on computers running Mac OS X. It was developed a decade after sh .

 25 We have not discussed auto-completing or tab-completing yet, but it is one of the more useful features of a shell.

 26 Programmers become evangelical about languages, OSs, editors, and to no surprise, shells also.

 27 Unix developers love nothing more than a good pun.

Problem

3.9.1

9781107000681c03_p11-84.indd 259781107000681c03_p11-84.indd 25 11/5/2011 6:02:26 PM11/5/2011 6:02:26 PM

Essential Unix26

 • Z shell – known as zsh . This is the newest of all the shells mentioned so far, and

is gaining in popularity. Like most newer shells, it incorporates various elements of

all of the other shells that have gone before it, but it also includes new features such

as spelling correction (rare among Unix shells).

 For the purposes of this book, we only use a small subset of a shell’s capabilities, so

the differences among shells are minor. For simplicity, use whichever shell is the default

on your system (we will show you how to fi nd out what your default shell is in the next

chapter). There are a few important differences among shells, and we shall cover these

differences as and when they arise in the remaining chapters of this part of the book.

Bear in mind, however, that it is always possible to change shells (either temporarily or

permanently), so you shouldn’t feel chained to whatever your default shell is .

 3.11 Environment variables

 How much it rains is also an environment variable
 Unix keeps track of several special variables that are associated with your Unix account.

These are specifi cally known as environment variables . They are always written in

upper-case letters and always start with a dollar sign. We haven’t really covered vari-

ables yet, but they are one of the fundamental ways by which computer programs store

data. 28 A single variable will typically have a unique name and will contain some data

that can vary (hence the name variable). The leading dollar sign is a common way of

indicating that something is a variable. This helps distinguish variables from fi le/direc-

tory names, Unix commands, etc.

 There are many different environment variables, and they are used to store useful

pieces of information such as: which directories contain programs; your current direc-

tory; your favorite (Unix) text editor; and even your login name (in case you forget!).

Explanations about environment variables often go hand in hand with explanations

about the shell, because the two are closely coupled. It therefore makes sense that the

fi rst environment variable that we will introduce is $SHELL , which will contain the

name of your default shell.

 Example 3.11.1
 We can display the contents of any environment variable by using a Unix command

called echo . This command simply echoes back the contents of whatever text you type,

but if you type the name of an environment variable, then it echoes back the contents of

that variable. E.g.:

 $ echo SHELL

 SHELL

 $ echo $SHELL

 /bin/bash

 28 Unix and all programming languages use variables extensively. They are also used by many data-heavy applications, such

as database programs, spreadsheets, etc.

9781107000681c03_p11-84.indd 269781107000681c03_p11-84.indd 26 11/5/2011 6:02:26 PM11/5/2011 6:02:26 PM

Environment variables 27

 Explanation
 The fi rst use of the echo command simply repeats the text “SHELL” – indeed, it would

repeat the text of any regular words that you typed. 29 However, if we add the $ sign to

“SHELL” then we are instead talking about the environment variable $SHELL, and we

see that our user Nigel is using the bash shell on his computer. We also learn from this

that bash is a fi le that lives in the “/bin” directory.

 Example 3.11.2
 Let’s see some more environment variables for our user, Nigel:

 $ echo $USER

 nigel

 $ echo $HOME

 /home/nigel

 $ echo $PWD

 /tmp

 $ echo $EDITOR

 Emacs

 Explanation
 These commands reveal that: Nigel’s user name is “nigel”, his home directory is “/

home/nigel”, his current working directory is “/tmp”, and his preferred/default text edi-

tor is the program “Emacs .”

 The environment variables listed in these examples are part of the default set of

environment variables that are part of all Unix systems. Any additional software that

is installed on your computer may well add some new variables which will store data

relating to that software. The Unix command printenv can also be used to inspect

the content of any environment variable, but note that you don’t include the dollar sign

when using this command. E.g.:

 $ printenv USER

 Nigel

 If you run the printenv command without specifying any variable name, it shows you

a list of all environment variables along with their current settings.

 Working with environment variables
 Any time you include these variables as part of a command, Unix will work with the

 contents of the variable rather than the actual variable name. This means that it is

possible to use environment variables with regular Unix commands – e.g., if Nigel

 29 Using the echo command to repeat regular text might seem a bit pointless, but it can be used to add some specifi ed text

to a fi le.

9781107000681c03_p11-84.indd 279781107000681c03_p11-84.indd 27 11/5/2011 6:02:26 PM11/5/2011 6:02:26 PM

Essential Unix28

wanted to list the contents of his home directory , he could type any of the following

four commands:

 $ ls /home/nigel

 $ ls ~nigel

 $ ls ~

 $ ls $HOME

 The last option shows how it can sometimes be useful to work with environment vari-

ables when using other Unix commands. For the most part, you will not need to know

about many of the different environment variables that might be present as part of your

Unix account. Occasionally you will want to check what the current setting of a certain

variable is, and you will sometimes need to change that setting .

 3.12 Introduction to command-line options

 We command you to check out these options
 So far we have only introduced you to a small handful of Unix commands and we have

shown you how to run these commands to achieve their default behavior. Usually, the

default behavior of a command is all we want, but sometimes we would like to modify

the behavior and/or output of the command. For many Unix commands we can produce

alternative output by specifying what are known as command-line options when we run

the command.

 Revisiting the ls command
 Let’s assume that our user Nigel has just bought a new computer. The fi rst thing he

wants to do is see what the root level of his hard drive looks like. 30 He opens up his ter-

minal application and runs the following command:

 $ ls /

 Applications System cores mach_kernel tmp

 Developer Users dev net usr

 Library Volumes etc private var

 Network bin home sbin

 The ls command does a fi ne job of showing us the names of everything in Nigel’s root

directory, 31 but that’s about all it does. The default output doesn’t show us any infor-

mation about the sizes or modifi cation dates of the fi les or directories, or who created

them. It also doesn’t make it clear as to which of the listed items are fi les and which are

directories. Another limitation is that the default output is sorted alphabetically, which

might not be what we want.

 30 We think this seems like a perfectly reasonable thing to do. If you disagree, then you probably haven’t spent enough time

working with Unix yet.

 31 This listing displays the standard contents of a Mac computer’s root directory.

9781107000681c03_p11-84.indd 289781107000681c03_p11-84.indd 28 11/5/2011 6:02:26 PM11/5/2011 6:02:26 PM

Introduction to command-line options 29

 This is where command-line options can help us produce all of this extra informa-

tion that we might need. Command-line options in Unix are specifi ed by using a hyphen

character (-) after the command name, followed by various letters, numbers, or words.

If you add the letter “l” to the ls command it will give you a l onger output compared

to the default:

 $ ls -l /

 total 36494

 drwxrwxr-x+ 85 root admin 2890 Jun 28 11:35 Applications

 drwxrwxr-x@ 15 root admin 510 Oct 19 2009 Developer

 drwxrwxr-t+ 59 root admin 2006 Jun 23 13:04 Library

 drwxr-xr-x@ 2 root wheel 68 Jun 22 2009 Network

 drwxr-xr-x 4 root wheel 136 Jun 20 13:09 System

 drwxr-xr-x 6 root admin 204 Feb 22 09:45 Users

 drwxrwxrwt@ 5 root admin 170 Jun 29 11:43 Volumes

 drwxr-xr-x@ 39 root wheel 1326 Jun 20 13:04 bin

 drwxrwxr-t@ 2 root admin 68 Apr 15 00:26 cores

 dr-xr-xr-x 3 root wheel 4901 Jun 29 11:10 dev

 lrwxr-xr-x@ 1 root wheel 11 Oct 19 2009 etc -> private/etc

 dr-xr-xr-x 2 root wheel 1 Jun 29 11:11 home

 -rw-r--r--@ 1 root wheel 18661932 Jun 10 16:19 mach_kernel

 dr-xr-xr-x 2 root wheel 1 Jun 29 11:11 net

 drwxr-xr-x@ 6 root wheel 204 Oct 19 2009 private

 drwxr-xr-x@ 64 root wheel 2176 Jun 20 13:04 sbin

 lrwxr-xr-x@ 1 root wheel 11 Oct 19 2009 tmp -> private/tmp

 drwxr-xr-x@ 14 root wheel 476 Apr 21 14:38 usr

 lrwxr-xr-x@ 1 root wheel 11 Oct 19 2009 var -> private/var

 As you can see, the simple addition of -l makes a lot of difference to the output. For

each fi le or directory we now see much more information and all of the output is now

arranged into columns with the fi le or directory name in the last column. We don’t need

to understand all of this information at the moment, but you can hopefully see that the

penultimate column includes the last modifi cation date and time of the fi le or directory.

 One other thing about this long-form output that we’ll mention now is that the very

fi rst character describes something called the entry type . If it starts with a dash (-), the

item is a regular fi le – as we can see above, there is only one fi le at the root level of

Nigel’s computer. If it starts with a “d”, then the item is a directory; if it starts with an

“l”, then it is something called a symbolic link . 32 There are some other possibilities as

well, but these are the most common ones.

 32 Symbolic links are similar to “shortcuts” in the Windows OS and “aliases” in the Mac OS. Basically, a symbolic link is

a fi le that points to another fi le or directory (or even another symbolic link). Any action you perform against a symbolic

link will produce the same result as if you performed the same action against the original item. The exception to this is

that if you delete a symbolic link, you don’t delete the original item. The long listing of the ls command will also show

you what item the symbolic link is pointing to.

9781107000681c03_p11-84.indd 299781107000681c03_p11-84.indd 29 11/5/2011 6:02:26 PM11/5/2011 6:02:26 PM

Essential Unix30

 More command-line options for the ls command
 The ls command has many different command-line options. Here are a few examples;

we encourage you to run each of these commands in one or more directories on your

computer. The text following each command (after the #) is just an explanatory com-

ment, don’t type it:

 ls -t # sort output based on file modification date

 ls -S # sort output by size

 ls -r # reverse-sort the output

 ls -R # recursively list output of all directories below current level

 ls -1 # force output to be one entry per line

 These examples illustrate that command-line options can use lower- or upper-case let-

ters and also use numbers (such as in the last option).

 You can combine multiple options together (where appropriate) – e.g., maybe you

want to list items in a directory in a long format, and then reverse-sort items based on

their modifi cation date. This would mean that the most recently modifi ed items appear

at the bottom of the list. We could do this as shown here:

 $ ls -l -t -r /

 total 36494

 drwxr-xr-x@ 2 root wheel 68 Jun 22 2009 Network

 lrwxr-xr-x@ 1 root wheel 11 Oct 19 2009 var -> private/var

 lrwxr-xr-x@ 1 root wheel 11 Oct 19 2009 tmp -> private/tmp

 lrwxr-xr-x@ 1 root wheel 11 Oct 19 2009 etc -> private/etc

 drwxr-xr-x@ 6 root wheel 204 Oct 19 2009 private

 drwxrwxr-x@ 15 root admin 510 Oct 19 2009 Developer

 drwxr-xr-x 6 root admin 204 Feb 22 09:45 Users

 drwxrwxr-t@ 2 root admin 68 Apr 15 00:26 cores

 drwxr-xr-x@ 14 root wheel 476 Apr 21 14:38 usr

 -rw-r--r--@ 1 root wheel 18661932 Jun 10 16:19 mach_kernel

 drwxr-xr-x@ 39 root wheel 1326 Jun 20 13:04 bin

 drwxr-xr-x@ 64 root wheel 2176 Jun 20 13:04 sbin

 drwxr-xr-x 4 root wheel 136 Jun 20 13:09 System

 drwxrwxr-t+ 59 root admin 2006 Jun 23 13:04 Library

 dr-xr-xr-x 3 root wheel 4901 Jun 29 11:10 dev

 dr-xr-xr-x 2 root wheel 1 Jun 29 11:11 net

 dr-xr-xr-x 2 root wheel 1 Jun 29 11:11 home

 drwxrwxr-x+ 85 root admin 2890 Jun 30 10:49 Applications

 drwxrwxrwt@ 5 root admin 170 Jul 2 15:58 Volumes

 In this example we specify three different command-line options for the ls command.

Note that we could put these options in any order . In these situations, you can combine

all options by using the following syntax:

 $ ls -ltr /

9781107000681c03_p11-84.indd 309781107000681c03_p11-84.indd 30 11/5/2011 6:02:26 PM11/5/2011 6:02:26 PM

Introduction to command-line options 31

 This achieves exactly the same as the previous command, but saves you a little bit of typ-

ing. Some Unix commands have options that are mutually exclusive; you will be warned

if you attempt to use the options in an incompatible manner.

 One other useful command-line option for the ls command is the -p option. This

option simply adjusts the default output to additionally include a forward-slash charac-

ter for any items which are directories. Compare the following output to what we saw

before when we fi rst used the ls command in this chapter: 33

 $ ls -p /

 Applications/ System/ cores/ mach_kernel tmp

 Developer/ Users/ dev/ net/ usr/

 Library/ Volumes/ etc private/ var

 Network/ bin/ home/ sbin/

 Now it becomes a lot easier to distinguish the single item which isn’t a directory (“mach_

kernel”). The -p option also works if you use the long listing (-l option) .

 Command-line options may require additional information
 Let’s take a very quick look at another basic Unix command. Do you want to know what

the date and time is? Try the date command:

 $ date

 Fri Jul 2 17:17:45 PDT 2010

 The date command has a few basic options available – e.g., we could display the

current date in UTC format 34 with the -u option:

 $ date -u

 Sat Jul 3 00:19:39 UTC 2010

 One of the other options for the date command is -r . Unlike the options we have

seen so far, this option requires us to also specify some additional information. If we

don’t specify anything else, we will see something like this:

 $ date -r

 date: option requires an argument – r

 usage: date [-jnu] [-d dst] [-r seconds] [-t west]

 [-v[+|-]val[ymwdHMS]]

 [-f fmt date | [[[[[cc]yy]mm]dd]HH]MM[.ss]] [+format]

 Buried in that cryptic-looking usage statement is a clue that the -r option requires

some value which corresponds to “seconds.” The -r option will give you a date that

 33 Note that the “etc,” “tmp,” and “var” entries do not have a trailing forward-slash because they are symbolic links.

Although these can sometimes act like directories, they are considered by Unix to be a special type of fi le.

 34 UTC refers to Coordinated Universal Time which is approximately equivalent, but not identical to Greenwich Mean Time

(GMT).

9781107000681c03_p11-84.indd 319781107000681c03_p11-84.indd 31 11/5/2011 6:02:26 PM11/5/2011 6:02:26 PM

Essential Unix32

corresponds to the number of specifi ed seconds that have elapsed since January 1,

1970. 35 E.g.:

 $ date -r 123456789

 Thu Nov 29 13:33:09 PST 1973

 The point of this example is purely to illustrate that some command-line options work

on their own, and others require data. You might be wondering how you can fi nd out

about what command-line options are available for any given command. Luckily, we are

going to address that in the next chapter .

 Try listing the contents of your home directory and the root directory using various com-

mand-line options for the ls command. Make sure you try combining different options

together and try to see how the output changes.

 3.13 Man pages

 Time to man the battle stations
 If Unix commands have so many options, you might be wondering how you fi nd out

what they are and what they do. Thankfully, every Unix command should have an asso-

ciated “manual” which is just a formatted page of text that describes everything about

the command. These manuals are more commonly known as “man pages.” 36

 Example 3.13.1
 We can view man pages by using the Unix man command – e.g., if we want to see what

the whoami command does, we just type:

 $ man whoami

 Explanation
 What happens next is that Unix sends the contents of the manual to a Unix text-viewing

program, which gives you basic controls for scrolling through the document and search-

ing for specifi c text. The text-viewing program will almost certainly be a program called

 less . 37 This is what you should see if you type the above command:

 WHOAMI(1) BSD General Commands Manual WHOAMI(1)

 NAME

 whoami – display effective user id

 SYNOPSIS

 whoami

 DESCRIPTION

 35 No, we’re not quite sure why anyone would want to be able to do this, but we guess that some people must need to do it,

otherwise the command-line option wouldn’t exist. If you didn’t already know, January 1, 1970 is the date that all Unix

systems use (and many other computers too) as the starting point for what is called “Unix time.”

 36 For readers who were hoping that man pages would help them understand men, there is no such help from Unix.

Additionally, there are no woman pages of any kind.

 37 Though bear in mind that it is possible to change the program that is used as the man page viewer.

Problem

3.12.1

9781107000681c03_p11-84.indd 329781107000681c03_p11-84.indd 32 11/5/2011 6:02:26 PM11/5/2011 6:02:26 PM

Man pages 33

 The whoami utility has been obsoleted by the id(1) utility, and is equivalent to ”id -un”.

 The command ”id -p” is suggested for normal interactive use.

 The whoami utility displays your effective user ID as a name.

 EXIT STATUS

 The whoami utility exits 0 on success, and >0 if an error occurs.

 SEE ALSO

 id(1)

 BSD June 6, 1993 BSD

 (END)

 Unix man pages are formatted in a standard layout which includes sections for “name,”

“synopsis,” and “description.” The man page for the whoami command is very short

because this command does one thing, and one thing only … it tells you who you are. 38

If this command had any command-line options then they would all be described in the

“description” section.

 Controlling the man page viewer
 As already mentioned, the default man page viewer uses a Unix program called less .

This is something we will return to in a later section (Chapter 3.20), but for now you just

need to know the following essential keyboard shortcuts for controlling things:

 Scroll down one page

 b Scroll up one page

 j Scroll down one line

 k Scroll up one line

 q quit the less program.

 Some Unix commands have very long manual pages, and some are full of computer

jargon, which can make them hard to follow. It is typical to always list the command-line

options early on in the documentation, so you shouldn’t have to read too much in order

to fi nd out what any particular option is doing.

 Example 3.13.2
 Try using the man command to look at the man page for the ls command:

 $ man ls

 Explanation

 You should see that the “synopsis” part shows a lot of command-line options:

 LS(1) BSD General Commands Manual LS(1)

 NAME

 ls – list directory contents

 38 This is not as stupid as it may seem. Certain Unix users (e.g., system administrators) may be in charge of multiple

accounts on multiple machines. It is entirely possible to forget which user account you have logged in as.

9781107000681c03_p11-84.indd 339781107000681c03_p11-84.indd 33 11/5/2011 6:02:26 PM11/5/2011 6:02:26 PM

Essential Unix34

 SYNOPSIS

 ls [-ABCFGHLOPRSTUW@abcdefghiklmnopqrstuwx1] [file …]

 The “synopsis” part of the man page uses square brackets to denote things that are

optional – i.e., the set of 38 command-line options are by defi nition optional, as is the

need to specify the name of a fi le or directory after the ls command.

 Whenever you are unsure about how to use a command, your fi rst port of call should

always be the man page for that command.

 Searching man pages
 One other useful thing to know about the man command is that you can use it to search

through the documentation of all Unix commands. This can be very helpful when you

can’t remember the name of the command that you are looking for. To achieve this

behavior, you just need to use the -k command-line option, followed by a keyword that

you want to search for. 39

 Example 3.13.3
 If you wanted to see which commands might be related to compressing fi les, you could

try the following command:

 $ man -k compress

 compress(1), uncompress(1) - compress and expand data

 gzexe(1) – compress executable files in place

 gzip(1), gunzip(1), zcat(1) – compress or expand files

 zcmp(1), zdiff(1) – compare compressed files

 zip(1) – package and compress (archive) files

 zlib(3) – compression/decompression library

 znew(1) – recompress .Z files to .gz files

 zopen(3) – compressed stream open function

 Explanation
 The output consists of a list of other Unix commands that feature the keyword, along

with a brief description of that command. Don’t worry too much about the numbers that

appear in parentheses after the command names. 40 Note that we are only showing some

of the output from this command; one of the problems of searching man pages is that

a simple keyword can appear in the text of dozens of different man pages. If you have

more than a page of output, you’ll have to use the man page viewer commands to exit

back to the command-line prompt (i.e., press q to quit) .

 39 You can also use a completely different command (apropos) to search man pages. The apropos command does not

require a -k command-line option. Unix sometimes allows you to achieve the same goal in two different ways.

 40 Unix man pages are divided into different numbered sections, and it is the number of the section that appears after the

command name. Regular Unix commands are in section 1 (you will probably never need to know any more about what

the other sections cover).

9781107000681c03_p11-84.indd 349781107000681c03_p11-84.indd 34 11/5/2011 6:02:26 PM11/5/2011 6:02:26 PM

Working with directories 35

 Go back and look at all the commands we have seen so far (cd , pwd , etc.) and try view-

ing the man page for each one. You don’t have to read every part of each page, but try to

get used to the general layout of all of the man pages.

 3.14 Working with directories

 Make directories, not war

 Where should you create fi les for this book?
 Over the last few chapters we’ve had to make some digressions in order to teach you

about some important Unix concepts. Now it is time to actually start doing “stuff,”

which you will hopefully fi nd a little more enjoyable. But before we can do anything we

should fi rst ask you to choose a place to store all of the fi les and directories that you will

create as you work through the rest of this book. This place should ideally be a single

directory 41 that will subsequently have more subdirectories added. For now, we suggest

creating that directory in your home directory (details of how to do this will follow

shortly), but you may want to save it somewhere else (external hard drive, fl ash drive,

etc.) if you frequently work on different computers.

 Naming directories
 When working with a graphical fi le manager, we are accustomed to including spaces as

part of fi le or folder names (e.g., “My important text fi le.txt”). You can do this on a Unix

system too, but it does present an additional complication. Up till now we have used the

space character to separate out different parts of a Unix command – e.g., if you had to

type a Unix command that requires two arguments, we would separate those arguments

with one or more space characters.

 So how can we have a fi le or directory name that also includes a space? How does

Unix know that the space belongs to the directory name and isn’t just separating argu-

ments? Well, rather than tell you the solution we will instead suggest that any time you

create a fi le or directory in Unix, you use underscore characters rather than spaces. This

is a very common practice in Unix, and if we take our prior example of a text fi le, this

would now become “My_important_text_fi le.txt”. 42

 Making directories
 To make a new directory we can use the appropriately named mkdir command.

 Example 3.14.1
 Let’s create a “Unix_and_Perl” directory, which we will use throughout the rest of this

book. We’ll create this for our fi ctional user “Nigel,” and so the output you’re going to

 41 Of course, if you prefer a little chaos in your life, you might want to instead create 36 differently named directories in 36

different locations on your hard drive.

 42 If you really need to know how to do this, you need to include a backslash character before every space character you

use. This will make much more sense when you get into the Perl parts of the book later.

Problem

3.13.1

9781107000681c03_p11-84.indd 359781107000681c03_p11-84.indd 35 11/5/2011 6:02:26 PM11/5/2011 6:02:26 PM

Essential Unix36

see is for Nigel’s computer. Your output will differ (especially if you choose a different

directory name):

 $ cd

 $ pwd

 /Users/nigel

 $ mkdir Unix_and_Perl

 $ ls -lp

 drwx------+ 5 nigel staff 170 Feb 5 12:48 Desktop/

 drwx------+ 4 nigel staff 136 Oct 19 2009 Documents/

 drwx------+ 4 nigel staff 136 Oct 19 2009 Downloads/

 drwx------+ 27 nigel staff 918 Jan 14 13:43 Library/

 drwx------+ 3 nigel staff 102 Oct 19 2009 Movies/

 drwx------+ 3 nigel staff 102 Oct 19 2009 Music/

 drwx------+ 4 nigel staff 136 Oct 19 2009 Pictures/

 drwxr-xr-x+ 6 nigel staff 204 Jan 14 13:44 Public/

 drwxr-xr-x+ 5 nigel staff 170 Oct 19 2009 Sites/

 drwxr-xr-x 2 nigel staff 68 Jul 8 14:10 Unix_and_Perl/

 Explanation
 Notice that we fi rst run the cd command to navigate to Nigel’s home directory 43 and

then run the pwd command to confi rm its location. Then we run the mkdir command

and simply specify the name of the directory that we want to create. Finally, we use the

 -lp options of the ls command to get a long listing of the directory, which also adds

forward-slashes to the ends of any directory names.

 Example 3.14.2
 Now that we have a container directory for all of the Unix and Perl material that we

might create, we can also make some more specifi c subdirectories:

 $ mkdir Unix_and_Perl/Code

 $ mkdir -p Unix_and_Perl/Temp/Inside_temp

 $ cd Unix_and_Perl

 Explanation
 There are two things to note from this. First, the mkdir command can be used to create

directories inside existing directories. Of course we could have also just changed direc-

tory into the “Unix_and_Perl” directory before creating the “Code” subdirectory. Second,

you can create nested directories in one go if you use the -p command-line option. 44 This

 43 This is output from an actual Mac computer. Don’t confuse this with our “fi ctional” fi lesystem hierarchy that we showed

in earlier chapters in which Nigel’s home directory was located in /home.

 44 Of course, you can always fi nd out more about this (and any other options for the mkdir command) by looking at its

man page.

9781107000681c03_p11-84.indd 369781107000681c03_p11-84.indd 36 11/5/2011 6:02:26 PM11/5/2011 6:02:26 PM

The importance of saving keystrokes 37

allows us to create a directory “Inside_temp” plus its parent directory (“Temp”) in one

operation. If we had not specifi ed the -p option, we would have seen an error like so:

 mkdir: Temp: No such file or directory

 We will use the “Code” directory for storing any Unix or Perl scripts that we write in

subsequent chapters. The “Temp” directory will be a place for trying out various Unix

commands.

 Removing directories
 We only wanted to create the “Inside_temp” directory to illustrate the usefulness of

the mkdir command’s -p option. Now we should remove it by using the rmdir

command.

 Example 3.14.3
 Let’s navigate into the “Temp” directory and then remove the “Inside_temp” directory:

 $ cd Temp

 $ ls

 Inside_temp

 $ rmdir Inside_temp

 Explanation
 In this case we removed the “Inside_temp” directory while being located just one level

above it. However, we could have also removed the directory without having to use the

 cd command by doing either of the following:

 $ rmdir Temp/Inside_temp

 $ rmdir /Users/nigel/Unix_and_Perl/Temp/Inside_temp

 Hopefully you will realize that the fi rst of these examples uses the relative path to the

“Inside_temp” directory, whereas the second example uses the absolute path (revisit

 Chapter 3.8 if you need a refresher on absolute and relative paths).

 Note that the rmdir command will only remove empty directories (we’ll cover how to

remove directories that contain fi les later on). Also, you can remove a directory from

anywhere except if you are inside the directory you want to remove . 45

 3.15 The importance of saving keystrokes

 Or the art of accomplishing more by typing less
 When we interact with the world of Unix, most of that interaction occurs via the key-

board. If you can reduce the amount of typing you have to do in order to accomplish a

 45 Unix won’t let you remove the ground from beneath your feet.

9781107000681c03_p11-84.indd 379781107000681c03_p11-84.indd 37 11/5/2011 6:02:26 PM11/5/2011 6:02:26 PM

Essential Unix38

task then this is good for you in two ways. First, it makes you more productive because

you are spending more time running commands and getting results, and less time typ-

ing their names. Second, and more important, it will help you minimize the amount of

typing you do, which in turn will help lessen the risks of developing a repetitive strain

injury (RSI). 46 In addition to having very short command names, Unix offers a few other

ways to ease the load on your digits.

 Command-line completion
 Perhaps the most important time-saver to learn is something called command-line com-
pletion . This allows you to automatically complete the names of fi les, directories, and

programs as you type them. If you type enough letters that uniquely identify the name

of something and then press tab 47 … Unix will do the rest.

 Example 3.15.1
 Type the letters “tou” and then press the tab key on your keyboard. In the following

examples, we’ll use <tab> as a shortcut way of saying “press tab.”

 $ tou<tab>

 $ touch

 Explanation
 If this works, you should see the letters “ch” become magically added to the three letters

you have already typed. This forms the name of the Unix touch command (which we

will learn more about in a later chapter). In this case, command-line completion will

occur because there are no other standard Unix commands that start with the letters

“tou”. If this didn’t work it might be because you have a non-standard Unix command

on your system that also starts with “tou”, or that there is a fi le or directory in your

current location that starts with “tou”. When there are no possible completions for the

letters you have already typed, you may hear a beep. 48

 Command-line completion can be used to save time when typing program names,

but it is equally useful when working with fi les and directories. If you have yet

to type the name of a Unix command, then tab-completion will attempt to com-

plete from a list of all known commands and programs on the system. However, if

you have already typed the name of a valid command, then you can use command-

line completion to fi nish the name of whatever fi le or directory is required by the

command:

 46 Please do not underestimate the health risks that can result from overusing (or incorrectly using) a keyboard and

mouse. Unix and most programming languages make heavy use of various punctuation symbols on your keyboard, and

this usually means your fi ngers end up being stretched a little more than if you were just typing “regular” text. If you

routinely experience pain or discomfort while using a keyboard, you should stop typing and see your doctor.

 47 It is possible that in some Unix shells, other keys will be used to trigger the completion, but the tab key is the most

common trigger key, which is why command-line completion is also known as tab-completion.
 48 Some, but not all, Unix systems will use a beep sound to indicate errors or to serve as a warning/reminder.

9781107000681c03_p11-84.indd 389781107000681c03_p11-84.indd 38 11/5/2011 6:02:26 PM11/5/2011 6:02:26 PM

The importance of saving keystrokes 39

 Example 3.15.2
 We will navigate into our “Unix_and_Perl” directory using the cd command, but we

want to save as many keystrokes as possible when typing the directory name:

 $ cd U<tab>

 $ cd Unix_and_Perl/

 Explanation
 In this example we only have to type fi ve characters (c + d + space + U + tab) rather than

the full 16 characters that we would otherwise have had to type. If this doesn’t work for

you, it is most likely because you have another fi le or directory in your current directory

that starts with the letter “U”. Try typing one more letter at a time, and pressing tab after

each successive key press.

 Another way you can use command-line completion is to press tab twice to show

a list of all possible completions. The contents of such a list will depend on how many

characters of a fi le, directory, or program name have already been typed. It will also

depend on whether you have yet typed a full Unix command. You can even press tab

twice before typing anything at all. If you do this you will probably see a warning mes-

sage like this:

 Display all 1712 possibilities? (y or n)

 This suggests that, on our computer, there are 1712 different Unix commands and pro-

grams that can be run.

 Example 3.15.3
 Now we will use tab-completion to browse through some directories that are at the root

level of the computer:

 $ ls<tab><tab>

 ls lsbom lsdistcc lsm lsof lsvfs

 $ ls /u<tab>

 $ ls /usr/b<tab>

 $ ls /usr/bin/auto<tab><tab>

 autoconf autom4te automake-1.10 autoreconf autoupdate

 autoheader automake automator autoscan

 Explanation
 The fi rst part of this example shows that even when you have typed the name of an

existing command (in this case ls), there may be other Unix commands that match the

combination of letters that you have typed; in this case by pressing tab twice we see the

six Unix commands that all start with “ls”.

 Next we start listing the contents of anything that begins with the letter “u” at the root

level of the fi lesystem. This could be a mixture of fi les or directories, but in this case

there is only one directory (“usr”) and a single press of the tab key is enough to complete

9781107000681c03_p11-84.indd 399781107000681c03_p11-84.indd 39 11/5/2011 6:02:26 PM11/5/2011 6:02:26 PM

Essential Unix40

the name. We then type “b” and press tab to autocomplete the single matching directory

(“bin”). We then type four more letters and press tab twice to see all of the items in this

directory which start with “auto”. If there was only one item that started “auto” then we

would only need to press tab once.

 Using tab-completion can save you a lot of time when working with Unix. Imagine

if you had to type the following:

 $ ls -l /home/nigel/Work/Project_x/important_file.txt

 Without tab-completion this requires typing 52 characters. With tab-completion, this

might only involve typing 17 characters, less than one-third. Of course, this assumes

that each directory and fi le name can be completed after typing only a single character,

which may not be the case. Another major reason to use tab-completion is that it reduces

the possibility of making typos – imagine if you had typed the above instruction in full,

but had made a mistake and typed the following:

 $ ls -l /home/ngiel/Work/Project_x/important_file.txt

 The directory “ngiel” does not exist and Unix would complain:

 /home/ngiel/Work/Project_x/important_file.txt: No such file or directory

 Unix tells you that there is a problem, but doesn’t specifi cally tell you where the problem

might be. If you use tab-completion to type out every directory name, you will never

make a typo as the only directory names that you can type are those that you have man-

aged to tab-complete. We can’t recommend tab-completion enough . 49

 Always use tab-completion when typing any Unix command!

 Command history
 Another great time-saver derives from the fact that Unix stores a list of all the commands

you have typed during each session. You can see the history of all of your commands by

using the appropriately named history command :

 $ history

 1 ls

 2 cd /home/nigel/Work/Project_x

 3 ls -l

 4 ls -l /usr

 5 ls /bin

 6 pwd

 49 From many years of teaching Unix to students, we have found ourselves repeating this tip more than any other. This is

particularly because we have noticed that a huge proportion of mistakes that are made by newcomers to Unix are because

of typos – typos which would have been avoided if tab-completion had been used.

9781107000681c03_p11-84.indd 409781107000681c03_p11-84.indd 40 11/5/2011 6:02:26 PM11/5/2011 6:02:26 PM

The importance of saving keystrokes 41

 In this example we see the six previous commands we have typed. You can easily repro-

duce any of these commands by typing the appropriate number in the history list after an

exclamation mark – e.g., to reproduce the second command, just type:

 $!2

 cd /home/nigel/Work/Project_x

 At this point Unix will print out a reminder of what the full command is and will then

re-run that command.

 Keyboard navigation of command history
 It is common to want to repeat commands that were run recently. Rather than typing

 history and then selecting the appropriate command, it is often easier to access your

command history by using the up and down arrows. Press your up arrow once and you

should be able to access the last command you typed. Press it twice to access the second

from last command, and so on. You can then press the down arrow to move forwards

through your history. This can save you a lot of time! There are many other useful ways

of accessing items from your command history, and you should read the documentation

for whatever shell you are using to fi nd out more.

 Quick keyboard navigation of the command line
 If you use the previous tip and access the last command that you typed by pressing the

up arrow once, you will note that the full command appears at your command prompt.

However, the command is not executed and the cursor will be placed at the end of the

command. Sometimes you want to change one small aspect of what you typed – e.g.,

imagine that you retrieved the following from your command history:

 $ ls /home/nigel/Work/

 Maybe you ran this command but then realized that you actually wanted a long list-

ing. As the cursor will be placed at the end of the command, you would have to press

the back arrow several times to move the cursor to just after ls in order to add -l . A

quicker way of jumping to the start of a line is to press Ctrl + a (hold down the control

key and then press the letter “a” once). This should make the cursor jump to the start of

the line. This shortcut is one of a number provided by a software library called readline .

There are many other shortcuts provided by readline; here are just a few which might

be most useful to you:

 Ctrl + a move to start of line

 Ctrl + e move to end of line

 Ctrl + w delete previous word on command line

 Ctrl + l clear screen 50

 Practice navigating through some directories using the cd command, but make sure you

use tab-completion to type every directory name.

 50 Note that there is also a simple Unix command, clear , which does the same thing.

Problem

3.15.1

9781107000681c03_p11-84.indd 419781107000681c03_p11-84.indd 41 11/5/2011 6:02:27 PM11/5/2011 6:02:27 PM

Essential Unix42

 Practice accessing your command history (using either the history command, or up-

arrow navigation). Make sure you can repeat an older command.

 3.16 Moving and renaming fi les

 Or how you can learn to move heaven and Earth
 The next few chapters, including this one, will deal with Unix commands that help to work

with fi les, i.e., commands that will allow us to move, copy, rename, delete, and view fi les. In

order to learn how to use these commands, we will need to have some fi les to play with. The

Unix command touch lets us easily create some empty fi les that we can work with. 51

 Example 3.16.1
 Let’s create two new fi les in your newly created “Unix_and_Perl” directory. Remember

to always use tab-completion when typing fi le and directory names:

 $ cd ~/Unix_and_Perl

 $ ls

 Code Temp

 $ touch heaven.txt

 $ touch earth.txt

 $ ls -l

 total 0

 drwxr-xr-x 2 nigel staff 68 Jul 8 14:55 Code

 drwxr-xr-x 2 nigel staff 68 Jul 8 16:19 Temp

 -rw-r--r-- 1 nigel staff 0 Jul 19 15:10 earth.txt

 -rw-r--r-- 1 nigel staff 0 Jul 19 15:10 heaven.txt

 Explanation
 We fi rst ensure that we are in the “Unix_and_Perl” directory, which in this case is one

level below the home directory. Knowing this allows us to navigate there by using the

 ~/Unix_and_Perl syntax (see Chapter 3.9 for more information on using the tilde

character [~] to refer to your home directory).

 We then use the touch command to create two fi les which we give a .txt extension. 52

The ls -l command shows a long listing which confi rms that the two new fi les exist

and that they are zero bytes in size. 53 If we had wanted to, we could have also created

both fi les in one step:

 $ touch heaven.txt earth.txt

 51 This command does some other things as well as creating blank fi les. Look at its man page if you want to know more.

 52 This is not strictly necessary at this stage, because the fi les do not contain any text. Indeed, they do not contain anything

at all.

 53 The size of fi les (in bytes) is listed in the fi fth column of the long output. Every character in a fi le increases its size by one

byte.

Problem

3.15.2

9781107000681c03_p11-84.indd 429781107000681c03_p11-84.indd 42 11/5/2011 6:02:27 PM11/5/2011 6:02:27 PM

Moving and renaming fi les 43

 The mv command
 If you want to move a fi le in Unix, you need to use the mv command. Whenever we use

commands like mv , we must always bear in mind the two concepts of source and target .
The source is the location of the fi le (or directory) that we want to move; the target is the

location of the place where we want to move the fi le. Commands such as mv will always

expect you to specify a source and target location (in that order).

 Example 3.16.2
 Let’s move these two new fi les into the “Temp” directory that we created previously

(Chapter 3.14):

 $ ls

 Code Temp earth.txt heaven.txt

 $ mv earth.txt Temp/

 $ mv heaven.txt Temp/

 $ ls

 Code Temp

 $ ls Temp/

 earth.txt heaven.txt

 Explanation
 We use the mv command twice, once for each fi le that we want to move. The target
location for the move is the “Temp” directory. After moving the fi les, we confi rm that

the current directory no longer has the fi les and that they are instead in the “Temp” dir-

ectory. If you use tab-completion to type the name “Temp” Unix will automatically add

the trailing forward-slash character. This helps to remind you that “Temp” is a directory

and not a fi le. 54

 Renaming fi les
 In the last example, the destination for the mv command was a directory name (“Temp”).

However, the target could have also been a (different) fi le name, rather than a directory.

This is how you can use mv to rename fi les.

 Example 3.16.3
 Let’s make a new fi le and move it while renaming it at the same time:

 $ touch rags

 $ ls

 Code Temp rags

 $ mv rags Temp/riches

 54 When working with directories, you do not need to add a trailing forward-slash character to the name of the last directory

in any path, but it doesn’t hurt. This is another reason why using tab-completion is such a good habit to get into, because

it will always add the slash character for you. See the next chapter for more details.

9781107000681c03_p11-84.indd 439781107000681c03_p11-84.indd 43 11/5/2011 6:02:27 PM11/5/2011 6:02:27 PM

Essential Unix44

 $ ls

 Code Temp

 $ ls Temp/

 earth.txt heaven.txt riches

 Explanation
 In this example we create a new fi le (“rags”) and move it to a new location. In the process

we change the name (to “riches”). Hopefully, you are still using tab-completion rather

than typing out “rags” in full, but notice that you can’t use tab-completion for the word

“riches”. This is because until you press enter, the newly named fi le does not exist.

 The mv command can rename a fi le at the same time as moving it. The logical exten-

sion of this is using mv to rename a fi le without moving it; you have to use mv to do this

as Unix does not have a separate “rename” command.

 Example 3.16.4
 Let’s navigate into the “Temp” directory and rename the “riches” fi le.

 $ cd Temp/

 $ ls

 earth.txt heaven.txt riches

 $ mv riches rags

 $ ls

 earth.txt heaven.txt rags

 Explanation
 In this example, the mv command is being used to rename a fi le (“riches” to “rags”).

You should be aware that if there was already an existing fi le called “rags” then this fi le

would be overwritten by the move operation. The mv command doesn’t ask you for con-

fi rmation if the result of moving a fi le would overwrite an existing fi le. However, this is

an option that can be turned on by using an appropriate command-line option (see the

 mv man page).

 In the last example we fi rst change directory in order to rename the fi le, but note

that we could have stayed in the “Unix_and_Perl” directory and used the following

command:

 $ mv Temp/riches Temp/rags

 The point of this is that as long as you know where the source and target fi le is located,

you don’t have to be in the same directory to move or rename those fi les. This means

that you can always move or rename fi les from anywhere in your fi lesystem, as long as

you know the full paths to the source and target fi le:

 $ mv /Users/nigel/Unix_and_Perl/Temp/rags /tmp/

9781107000681c03_p11-84.indd 449781107000681c03_p11-84.indd 44 11/5/2011 6:02:27 PM11/5/2011 6:02:27 PM

Moving and renaming fi les 45

 In this case both the source and target locations are specifi ed using absolute paths (i.e.,

starting from the root level 55), and so this command would work from any directory on

the fi lesystem. Hopefully you will now start to see the advantage of typing Unix com-

mands rather than using a mouse and interacting with a graphical fi le manager .

 Using wildcard characters
 In Example 3.16.2, above, we moved two fi les in two steps. But it is usually possible,

and often desirable, to move many fi les in a single step. We can do this by using some-

thing called wildcard characters . Using wildcard characters is yet another way Unix can

help you save yourself from a lot of typing. The most common wildcard character in

Unix is the asterisk (*), and it is used to mean “match anything.” We could have used an

asterisk in Example 3.16.2 to move both fi les in one go:

 $ mv *.txt Temp/

 You can read this as “move any fi les whose names start with anything but end with

“.txt”. This would move any fi le from the current directory into the Temp directory as

long as its name ended with “.txt”. Given that we only had two fi les in the current direc-

tory, we could have also used the following commands:

 $ mv *t Temp/

 $ mv *ea* Temp/

 The fi rst example would work because there are no other fi les or directories in the direc-

tory that end with the letter “t” (if there was, then they would be moved too). Likewise,

the second example works because the two fi les are the only items in the directory that

contain the letters “ea” in their names. This example also reveals that the asterisk wild-

card can match “nothing at all” as well as “anything.” This means that *ea* will also

match any fi les that were named only “ea ”.

 The second most common wildcard character is the question mark (?) Try to understand

what the question mark does by fi rst using the touch command to create four fi les

called “fat”, “fi t”, “feet”, and “feat” inside the “Temp” directory. Then see what happens

when you run the following commands:

 $ ls *

 $ ls f*

 $ ls f*t

 $ ls *at

 $ ls f?t

 $ ls f??t

 55 See Chapter 3.8 for a refresher about absolute and relative paths.

Problem

3.16.1

9781107000681c03_p11-84.indd 459781107000681c03_p11-84.indd 45 11/5/2011 6:02:27 PM11/5/2011 6:02:27 PM

Essential Unix46

 3.17 Moving and renaming directories

 Don’t be embarrassed if this chapter moves you to tears
 Moving and renaming directories is done in exactly the same way that we move and

rename fi les (see previous chapter). This means we can use much of our knowledge of

working with fi les when working with directories. However, we will also show you that

there is one feature of directory names that distinguishes them from regular fi les.

 Example 3.17.1
 We will create a new temporary directory, then rename it, and then move it inside the

existing temporary directory:

 $ cd ~/Unix_and_Perl

 $ mkdir Temp2

 $ ls -p

 Code/ Temp/ Temp2/

 $ mv Temp2 Temp3

 $ ls -p

 Code/ Temp/ Temp3/

 $ mv Temp3 Temp

 $ ls -p Temp

 Temp3/ fat feet heaven.txt

 earth.txt feat fit rags

 Explanation
 After creating a new directory (“Temp2”), we fi rst confi rm that it is indeed a directory

by using the -p option of the ls command. We then use the mv command to rename

the directory to “Temp3”. Finally, we use the mv command one more time to move the

new directory inside the existing “Temp” directory. Note that if the “Temp” directory

didn’t already exist, this action would simply rename the directory. It is important that

you understand this distinction. 56

 Should directory names always end in a slash character?
 You may have noticed that directories sometimes include a forward-slash character after

their name, and sometimes they don’t, such as in the following two commands:

 $ ls Unix_and_Perl

 $ ls Unix_and_Perl/

 The two examples are not quite identical, but they produce identical output. So does the

trailing slash character in the second example matter? Well, not really. In both cases we

 56 It can sometimes seem confusing because it may not always be obvious whether you are moving or renaming something.

Once again, tab-completion is your friend. If the target fi le or directory name does not exist, then you can’t tab-complete

its name, and so you must be renaming an item.

9781107000681c03_p11-84.indd 469781107000681c03_p11-84.indd 46 11/5/2011 6:02:27 PM11/5/2011 6:02:27 PM

How to remove fi les 47

have a directory named “Unix_and_Perl” and it is optional as to whether you include

the trailing slash.

 Returning to the last step of Example 3.17.1, you should now appreciate that all of

the following commands are equivalent:

 $ mv Temp3 Temp

 $ mv Temp3/ Temp

 $ mv Temp3 Temp/

 $ mv Temp3/ Temp/

 The advantage of adding a trailing slash character is that it then becomes obvious that

the item in question must be a directory. This can help you more easily distinguish the

names of fi les and directories in long commands. When you tab-complete any Unix dir-

ectory name, you will fi nd that a trailing slash character is automatically added for you.

This becomes useful when that directory contains subdirectories which you also want to

navigate to. Imagine if you were trying to access a buried directory that was seven levels

below your current directory:

 $ cd aaa/bbb/ccc/ddd/eee/fff/ggg/

 If tab-completion didn’t add the trailing slash characters, you’d have to type the seven

slashes yourself. This might not seem like much, but every character counts; if tab-

completion is kind enough to offer to do the work for you, it would be rude to refuse

such assistance!

 Change directory to make sure that you are “in” a directory that is somewhere outside

your home directory (e.g., “/usr” or “/bin”). Without leaving this directory , perform the

following operations:

 (1) Create a directory called “Tears” inside your home directory

 (2) Create a directory called “123” inside “/tmp”

 (3) Create another directory (“XYZ”) inside “123”

 (4) Move the nested directory “123/XYZ” inside the “Tears” directory

 (5) Confi rm this move happened successfully

 (6) Now move just the “XYZ” directory to “/tmp”

 (7) Finally, remove all three temporary directories

 3.18 How to remove fi les

 Welcome to the most dangerous Unix command you will ever learn!
 In Chapter 3.14 we showed you how you can remove a directory with the rmdir com-

mand, but rmdir won’t remove directories if they contain any fi les. So how can we

remove the fi les that we have created in the “Unix_and_Perl” directory? To do this, we

will need to use the rm command, which is used for removing fi les. 57

 57 It can also be used for removing directories, which can be very useful but also very dangerous.

Problem

3.17.1

9781107000681c03_p11-84.indd 479781107000681c03_p11-84.indd 47 11/5/2011 6:02:27 PM11/5/2011 6:02:27 PM

Essential Unix48

 Please read the next section VERY carefully. Misuse of the rm command

can lead to needless death and destruction!

 The rm command
 Potentially, rm is a very dangerous command; if you delete something with rm , you will

not get it back. It does not go into the trash or recycle can, it is permanently removed. 58

With rm , it is possible to delete everything in your home directory (all fi les, directories,

and subdirectories); 59 that is why it is such a dangerous command.

 Let us repeat that last part again. If you misuse the rm command, it is possible to

delete every fi le you have ever created! Are you scared yet? You should be. Luckily there

is a way of making rm a little bit safer. We can use it with the -i command-line option,

which will ask for confi rmation before deleting anything: 60

 Example 3.18.1
 Let’s see the difference that the -i option makes to the rm command. To do this, we’ll

create two more temporary fi les inside the “Unix_and_Perl” directory:

 $ touch test1 test2

 $ ls

 Code Temp test1 test2

 $ rm test1

 $ ls

 Code Temp test2

 $ rm -i test2

 remove test2? y

 Explanation
 We use the touch command to make two test fi les. The fi rst is deleted by rm without
using the -i option. Notice how there is no warning – the fi le is deleted as soon as we

press enter, never to return. When we try deleting the second fi le, we instead use the -i

option and this time we are prompted as to whether we really want to remove the fi le.

 Making the rm command even more dangerous
 Just as we can use wildcard characters with the ls command, we can also use them with

the rm command. For example, we could have removed both temporary fi les in Example

3.18.1 by using the following:

 $ rm test?

 58 Of course, you might have a backup system in place, but this will rarely be successful at recovering a deleted fi le that you

had only just created.

 59 If you have administrator privileges on your computer then it is possible to delete everything !

 60 You can also use the -i option with the mv command; it behaves in the same way and will warn you before you

potentially overwrite a fi le.

9781107000681c03_p11-84.indd 489781107000681c03_p11-84.indd 48 11/5/2011 6:02:27 PM11/5/2011 6:02:27 PM

How to copy fi les and directories 49

 In this case, the question mark would represent any single character, so this would also

remove any fi les called “test5”, “testX”, or even “test?” 61 The more dangerous example

of the rm command would be (and do not type this!) :

 $ rm * —

 Any time you ever consider using the asterisk character in conjunction with the rm

command, you should fi rst step away from the keyboard and count to ten. After doing

so, check and double-check that you really have typed the command correctly before

pressing enter. The above command will delete all fi les in your current directory (assum-

ing that you have the permissions to do so). If you must type this command, please con-

sider typing the safer version :

 $ rm -i *

 Use the rm and rmdir commands to delete all of the additional temporary fi les and

directories you have created over the last few chapters. Remember that you can only use

 rmdir to remove a directory once you have fi rst removed all fi les in that directory. Also

remember that you can’t delete a directory if you are inside it (fi rst navigate to one level

above it). Make sure that you don’t remove the “Code” and “Temp” directories.

 3.19 How to copy fi les and directories

 Two fi les are better than one
 The way you can copy fi les and directories in Unix is almost identical to how you move

fi les. The cp (copy) command behaves in a very similar way to mv , though there are

some important differences.

 Example 3.19.1
 Let’s make a fi le and then copy it to a different location, and then make a copy of the

copy (renaming it in the process):

 $ pwd

 /Users/nigel/Unix_and_Perl

 $ touch test1

 $ cp test1 Temp/test1

 $ ls

 Code Temp test1

 $ ls Temp/

 test1

 $ cp Temp/test1 Temp/test2

 $ ls Temp/

 test1 test2

 61 It is generally considered to be a bad idea to include wildcard characters as part of a fi le or directory name. Consider this

a warning!

Problem

3.18.1

9781107000681c03_p11-84.indd 499781107000681c03_p11-84.indd 49 11/5/2011 6:02:27 PM11/5/2011 6:02:27 PM

Essential Unix50

 Explanation
 We make a test fi le in the “Unix_and_Perl” directory and copy it to the “Temp” direc-

tory. We then remain in the same directory but make a copy of our test fi le and rename

it in the process (from “test1” to “test2”).

 Because the act of copying could potentially overwrite an existing fi le, there is a -i

command-line option which works in exactly the same way as the -i option for the

 mv and rm commands (remember, you can check the man page if you want to know

more).

 Copying a fi le without specifying a target name
 In the fi rst part of Example 3.19.1, we copied a fi le to another directory and kept the

name unchanged. If you are not planning to change the name of a fi le when copying

it, you can omit the target fi le name. The following two commands are equivalent:

 $ cp test1 Temp/test1

 $ cp test1 Temp/

 The second form may or may not be more intuitive to you (think of it as saying “copy

the ‘test1’ fi le into the ‘Temp’ directory.” Remember, the trailing forward-slash after a

directory name is optional. This means that the following command is also equivalent

to the previous two:

 $ cp test1 Temp

 This is a situation where omitting the trailing slash can make things more confusing.

Are you copying the fi le and renaming it to a fi le called “Temp” or are you copying it

into a directory called “Temp”? 62 Including the forward-slash character makes it clearer

that you are copying to a directory. Of course, if you are using tab-completion, then the

forward-slash will be added automatically.

 Copying a fi le to the current directory
 Let’s imagine you want to copy a fi le (“test.txt”) from the “tmp” directory of your fi le-

system to your current directory (e.g., “/Users/nigel/Unix_and_Perl/Temp”). One way

you might think of achieving this would be something like:

 $ cp /tmp/test.txt ~/Unix_and_Perl/Temp/

 However, it becomes tedious to have to type out the full path of the target directory

when you are already inside that directory (i.e., when the target directory is the current

directory). Fortunately, Unix provides a shortcut. You can always refer to your current

directory by using a single dot .

 62 Appreciate that sometimes you will be working in directories that contain hundreds of other fi les and directories, so you

might not know the names of all the other items that are there. You might mean to copy a fi le and give it a new name

of “Temp,” but might be unaware that there is already a directory called “Temp” inside your current directory. One

consequence of this issue is that you can’t have a fi le and directory with the exact same name in the same place on a

Unix OS.

9781107000681c03_p11-84.indd 509781107000681c03_p11-84.indd 50 11/5/2011 6:02:27 PM11/5/2011 6:02:27 PM

How to copy fi les and directories 51

 Example 3.19.2
 Let’s see the new dot character in action. Remember, any time you see the dot as part of

a fi le operation, think of it as being identical to whatever the current directory name is.

 $ ls -p

 Code/ Temp/ test1

 $ cp Temp/test2 .

 $ ls

 Code Temp test1 test2

 $ cd Temp

 $ ls -l

 total 0

 -rw-r--r-- 1 nigel staff 0 Jul 28 16:33 test1

 -rw-r--r-- 1 nigel staff 0 Jul 28 15:43 test2

 # WAIT 1 MINUTE

 $ cp ../test1 .

 $ ls -l

 total 0

 -rw-r--r-- 1 nigel staff 0 Jul 28 16:34 test1

 -rw-r--r-- 1 nigel staff 0 Jul 28 15:43 test2

 Explanation
 The fi rst copy operation reads as “copy the fi le ‘test2’ from the ‘Temp’ directory to the

current directory.” We then navigate into the “Temp” directory and perform a long list-

ing before waiting for one minute. Then we copy the “test1” fi le from the parent direc-

tory (.. /) to the current directory.

 Hopefully, you noticed that we already had a fi le called “test1” in our current direc-

tory (“Temp”), so what happened? In this case the “test1” fi le from “Unix_and_Perl”

was copied to the “Temp” directory and overwrote the existing “test1” fi le that was

already there. We prove this by using the long listing format to see the fi le modifi cation

times. As long as you wait for at least one minute, you will see that the modifi cation time

for “test1” will be changed. Remember, if you want to avoid accidentally overwriting

fi les, you can use the cp -i syntax.

 How you can use the dot character to represent the current directory
 The dot character will always be taken to represent the current directory . This means that

you can issue pointless commands such as “change directory to the current directory”:

 $ pwd

 /Users/nigel/Unix_and_Perl/Temp

 $ cd .

 $ pwd

 /Users/nigel/Unix_and_Perl/Temp

9781107000681c03_p11-84.indd 519781107000681c03_p11-84.indd 51 11/5/2011 6:02:27 PM11/5/2011 6:02:27 PM

Essential Unix52

 You can also use it in conjunction with the ls command. Because the dot character is

referring to a directory, we also know that we can always append a forward-slash to it.

This means the following three commands all achieve the same thing:

 $ ls

 $ ls .

 $ ls ./

 In Example 3.19.1 we issued the ls command twice: Once to see the contents of the

current directory, and once more to see the contents of the “Temp” directory. The ls

command can list the contents of multiple directories at once, so we can replace the use

of two commands with just one:

 $ ls . Temp/

 .:

 Code Temp test1 test2

 Temp/:

 test1 test2

 This reads as “list the contents of the current directory and then the ‘Temp’ directory.”

When listing the contents of multiple directories, the output from ls adds the name of

each directory before showing its contents. We will see other useful ways to use the dot

character later on.

 Copying multiple items
 You will sometimes want to copy everything in your current directory to another loca-

tion (frequently your home directory). We can use an asterisk character on its own to

represent “all fi les or directories.” As we also know that the tilde character (~) is used to

represent your home directory, we can copy everything to our home directory with the

following command:

 $ cp * ~

 This can be a dangerous command to use because your current directory could poten-

tially contain thousands of fi les and/or directories. Copying large numbers of fi les in this

way could take a long time, and could also contribute to you running out of available

disk space. It is common to use the asterisk with some other characters to restrict the

copying to fi les of a certain type:

 $ cp *.txt ~—# only copy text files

 $ cp file* ~—# only copy files that start with “file”

 Copying directories
 If you want to copy a directory, you need to make a slight change to how you run the

 cp command.

9781107000681c03_p11-84.indd 529781107000681c03_p11-84.indd 52 11/5/2011 6:02:27 PM11/5/2011 6:02:27 PM

Working with text fi les 53

 Example 3.19.3
 Let’s try the most obvious way of copying a directory, and then see how to fi x the prob-

lem that will occur:

 $ cp Temp/ Temp2

 cp: Temp is a directory (not copied).

 $ cp -R Temp Temp2

 $ cp -R -v Temp Temp3

 Temp -> Temp3

 Temp/test1 -> Temp3/test1

 Temp/test2 -> Temp3/test2

 $ ls -p

 Code/ Temp/ Temp2/ Temp3/ test1 test2

 Explanation
 The fi rst attempt at copying fails. This is because the default behavior of Unix is to not

let you simply copy directories in the same way as fi les. 63 The solution is to use the -R

command-line option, which allows you to recursively copy a directory . 64 This means if

the source directory contains many subdirectories, these would also get copied (along

with all the fi les in those subdirectories).

 Notice that we make another copy of “Temp”, but this time we also include the -v

command-line option. This turns on verbose mode, which just means Unix will confi rm

all of the items that are copied. 65 It is often desirable to check on the progress of a com-

mand as it is running (especially if it is copying thousands of fi les). Note that many Unix

commands support a verbose mode.

 It is important that you are comfortable copying fi les and directories. Experiment by

making more copies of the temporary fi les and directories that we have already created.

Make sure you practice copying items to the current directory, and try to use wildcard

characters to only copy certain items. When you have fi nished, delete all of the temporary

fi les and directories (except the “Code” and “Temp” directories). In future, we’ll assume

that you have tidied up after yourself – we promise not to nag you any more about this!

 3.20 Working with text fi les

 A good example of where less is more
 One of the most common activities you will want to do on a computer is view the con-

tents of a fi le. On any Unix system it is very easy to view regular text fi les, also known as

 63 I wish we could defi nitively tell you why this is the default behavior, but we can’t. Most likely it is to prevent the

accidental copying of very large directories.

 64 The ls command has a similar option. Try it and see.

 65 Of course, you probably already know about this mode because you’ve read the man page. You have read the man page,

right?

Problem

3.19.1

9781107000681c03_p11-84.indd 539781107000681c03_p11-84.indd 53 11/5/2011 6:02:27 PM11/5/2011 6:02:27 PM

Essential Unix54

 plain-text fi les. 66 The plain-text fi le format is the lingua franca of the computing world,

and as such can be viewed on any type of computer. Programs that are written in any

scripting language (Perl, Python, etc.) always use plain text, and it is common to see

plain text used for documentation, particularly installation instructions.

 How to tell which fi les are text fi les
 The name of a fi le will help, particularly if it ends with .txt or .text. However, just

because a fi le is named something like “info.txt” doesn’t absolutely mean that it will be

a text fi le. It is perfectly possible, though pointless, to take a PNG image fi le and instead

give it a .txt fi le suffi x. Luckily, there is a Unix command called file , which can help

you determine whether something is a text fi le or not. Here is some example output to

show you how you can use the file command :

 $ file Unix_and_Perl

 Unix_and_Perl: directory

 $ file manual.pdf

 manual.pdf: PDF document, version 1.4

 $ file stuff.gz

 stuff.gz: gzip compressed data, was “stuff,” last modified: Thu Jul 29

 $ file test.pl

 test.pl: a /usr/bin/perl script text executable

 $ file README

 README: ASCII text

 Notice that the file command can often give you some very specifi c information about

different fi le types. It even informs you when you have a text fi le which is also an exe-

cutable script (as in the penultimate example with a Perl script). Finally, notice the name

of the last fi le in the list. “README” (in upper-case) is commonly used in Unix as the

name for fi les that contain some useful information. This might be installation instruc-

tions for a program, or it might be a description/summary of all of the fi les in the current

directory.

 Why you should avoid using text-editor applications to view text fi les
 From time to time you will come across a text fi le, and your fi rst thought will be to

switch to the graphical fi le browser and double click on the fi le in order to open it. This

is a bad idea for a few different reasons. First, we are trying to teach you to use Unix, so

you should try to avoid using the mouse and graphical fi le managers.

 66 Note that plain-text fi les are different from “rich-text format” fi les, which additionally let you store basic formatting

information (alignment, bold and italic fonts, etc.). Plain-text fi les do not contain any additional formatting. Note that

certain programs like Microsoft Word may create *.doc fi les which are actually stored in plain text, but which have a

lot of metadata associated with them. This means that while you can use regular Unix text viewers to look at them, they

might not make much sense as any meaningful content in the document will be buried in a sea of XML tags.

9781107000681c03_p11-84.indd 549781107000681c03_p11-84.indd 54 11/5/2011 6:02:27 PM11/5/2011 6:02:27 PM

Working with text fi les 55

 The second reason is that you might not know what your computer will use as the

default application for opening a text fi le. It might be Notepad (on Windows) or TextEdit

(on a Mac), but it’s possible that your computer may be set up to use a program like

Microsoft Word to open text fi les. Using Word to view the contents of a fi le which may

contain only one or two lines of plain text is like using a sledgehammer to crack a nut.

 Another issue is that you won’t always know the size of the text fi le you are trying to

open. In science, and bioinformatics in particular, it is common that a lot of raw data is

stored in very large text fi les – e.g., a fi le containing the human genome sequence might

be about 3 GB in size. The aforementioned text editors will try to open the entire fi le at

once, which can cause problems if your computer does not have suffi cient memory. This

may even crash the program – even if it doesn’t, it might make that program run very,

very slowly.

 A fi nal reason for not using text editors to view text fi les is that text editors can also

 edit the fi le. If you accidentally slip on a key while viewing a fi le you might change the

contents, and as many editors have an autosave function, you might be permanently

changing the contents. For data fi les used in science, this is generally known as a very
bad thing ! If you only want to view a fi le , use a text viewer, not a text editor.

 The less program
 Once upon a time the most popular text-viewing program on Unix was a program called

 more . 67 But then someone came along with a similar program that offered more func-

tionality, and they decided to name it less . Any time you need to view a text fi le in

Unix, we suggest you always try using the less program . One nice feature of less , is

that it handles very large text fi les very easily, and if the fi le is very large, it doesn’t try

to read the entire contents of the fi le into memory. To view a text fi le with less , simply

type less followed by the fi le (or fi les) that you want to view:

 $ less somefile.txt

 We have already seen the less program in use; any time you view a man page you are

probably seeing less in action (see Chapter 3.13). We documented the most basic key-

board controls in that earlier chapter. Some additional keyboard controls that are useful

to know are:

 h access “help” page (press “q” to quit help)

 g jump to start of fi le

 G jump to end of fi le

 / start searching forwards in the fi le

 ? start searching backwards in the fi le

 If you try searching you must also specify a pattern to search for – e.g., if you are

viewing a fi le with less and you type:

 /cheese<enter>

 67 The “more” program is still installed on most Unix systems.

9781107000681c03_p11-84.indd 559781107000681c03_p11-84.indd 55 11/5/2011 6:02:27 PM11/5/2011 6:02:27 PM

Essential Unix56

 it will search forwards in the fi le for the next occurrence of the string called “cheese”;

it will also highlight all matches to this string. Once you have performed any forwards

or backwards search, you can jump to the next match simply by typing / or ? (followed

by enter).

 Find some text fi les on your computer. If you already have some text fi les then that’s

great, otherwise download them or create them using a text editor. Check that these fi les

really are text fi les by using the fi le command. Use this command to inspect other types

of fi les that you fi nd in your Unix fi lesystem.

 Try using less to view your text fi les and ensure you can properly navigate around

those fi les. You must be able to move backwards and forwards (by a line at a time or a

page at a time). Can you jump to the end of the fi le? Can you fi nd a certain word and

search for all occurrences of that word? Finally, look at the help page within less and

try to use one or two keyboard controls that we haven’t mentioned here.

 3.21 Introduction to aliases

 Or, learn how Samuel Clemens became Mark Twain
 Hopefully you are starting to appreciate that there are a lot of commands in Unix. You

are probably already having trouble remembering the names of many of them, let alone

all of the options that many of those commands possess. Fortunately, Unix provides a

way for you to create alternative names for any command you want. One use of these

 aliases is to create easier-to-remember versions of existing commands (e.g., “move”

instead of mv or “copy” instead of cp). 68 If you do this, you should choose a name for

the alias which doesn’t already exist as a command. Another common use of aliases is

to make a shortcut for those commands where you typically use lots of command-line

options. For instance, if you fi nd yourself frequently typing ls -ltr (or even ls -l

 -t -r), then maybe you can save yourself some typing by creating an alias called “ltr”

which does the same thing.

 Creating aliases
 Aliases are created using the alias command , but the syntax can differ slightly depend-

ing on which shell you are using. 69 If you are using any of the bash family of shells

(sh , bash , ksh , or zsh), then the syntax for the alias command is:

 alias new_command_name= ‘ old_command_name ‘

 If you are using csh or tcsh , the syntax is slightly different and you can omit the

equals sign and any quotation characters:

 alias new_command_name old_command_name

 68 It is true that these aliases are longer than the commands they are linked to, but you may consider that a worthy tradeoff if

it means you don’t have to keep on looking up the name of a command in a book.

 69 This is one of the few instances where we need to show you how to do things in more than one way, depending on which

shell you are using. See Chapter 3.10 for a reminder about Unix shells.

Problem

3.20.1

9781107000681c03_p11-84.indd 569781107000681c03_p11-84.indd 56 11/5/2011 6:02:27 PM11/5/2011 6:02:27 PM

Introduction to aliases 57

 Example 3.21.1
 Let’s create the alias that we mentioned earlier. We want to be able to type “ltr” and get a

long listing from the ls command, reverse-sorted by modifi cation date. We’ll stick with

the bash syntax in this chapter:

 $ pwd

 /Users/nigel/Unix_and_Perl

 $ ltr

 bash: ltr: command not found

 $ alias ltr=‘ls -ltr’

 $ ltr

 total 0

 drwxr-xr-x 2 nigel staff 68 Jul 8 14:55 Code

 drwxr-xr-x 2 nigel staff 68 Jul 28 17:17 Temp

 Explanation
 We start by checking that “ltr” isn’t already an existing command. We then proceed to

defi ne our new alias using the alias command. As soon as we have typed the alias

command we have effectively made a new command ltr , which will do exactly the

same thing as typing ls -ltr . We confi rm this by running our new alias.

 How to see whether an alias already exists as a command
 In the previous example we tried seeing if a command exists by typing its name. This is

potentially very dangerous! What if the ltr command already existed and did some-

thing really nasty? Typing a command to see what it does is a bit like placing your hand

in a pan of water to see how hot it is! It is better to use the which command to see if

a potential alias already exists as a Unix command. The which command is normally

used to tell you which version of a program you will get when you type its name (it is

possible to have multiple versions of Unix programs installed). However, if your pro-

posed alias name doesn’t exist, which will return nothing at all, which tells you it is

safe to use that name as an alias: 70

 $ which ls

 /bin/ls

 $ which which

 /usr/bin/which

 which commandthatdoesnotexist

 $

 70 More specifi cally, the which command is searching your $PATH to fi nd commands. So it is possible, but unlikely, that

there is a command on your system but which isn’t in your $PATH. Furthermore, the which command doesn’t tell you if

the command exists but only as an alias.

9781107000681c03_p11-84.indd 579781107000681c03_p11-84.indd 57 11/5/2011 6:02:28 PM11/5/2011 6:02:28 PM

Essential Unix58

 Example 3.21.2
 If you do not specify any information to the alias command, then you can use it to

see a list of all of the aliases that have been created. Let’s create one more alias and then

check that we can see details of both of the aliases:

 $ which p

 $

 $ alias p=pwd

 $ p

 /Users/nigel/Unix_and_Perl

 $ alias

 alias ltr=‘ls -ltr’

 alias p=‘pwd’

 Explanation
 This time we start by using the which command to check that “p” isn’t already an

existing Unix command. Because which doesn’t fi nd any match, we assume it is safe

to create an alias called “p”. We then make “p” an alias for pwd and then test that it

works. Note that if the name of the alias does not include spaces, then you don’t need

to surround it with quotation marks. Finally, we run the alias command without any

arguments and it then shows us details of both aliases.

 You might not think it very useful to effectively shorten a three-letter command down

to one letter, but if you typed pwd 100 times in a day (which is not such an unlikely

scenario) then you would be saving yourself 200 keystrokes. Other aliases can save you

from even more typing.

 Creating aliases that replace existing aliases
 Sometimes you might want to change how an alias behaves. Alternatively, it’s possible

that you might try creating an alias which uses the same name as an existing alias that

you didn’t know about. If you try this, then the last alias you create replaces the func-

tionality of any earlier aliases that have the same name.

 Example 3.21.3
 We’ll make an alias, use it once and then change it to do something slightly different.

 $ which saycheese

 $ alias saycheese=‘echo cheese’

 $ saycheese

 cheese

 $ alias

 alias saycheese=‘echo cheese’

9781107000681c03_p11-84.indd 589781107000681c03_p11-84.indd 58 11/5/2011 6:02:28 PM11/5/2011 6:02:28 PM

Introduction to aliases 59

 alias ltr=‘ls -ltr’

 alias p=‘pwd’

 $ alias saycheese=‘echo CHEESE’

 $ saycheese

 CHEESE

 $ alias

 alias saycheese=‘echo CHEESE’

 alias ltr=‘ls -1’

 alias p=‘pwd’

 Explanation
 We fi rst create a new alias (“saycheese”) which simply prints the word “cheese”. After

testing this, we modify the alias to instead print “CHEESE” in upper-case characters.

This new functionality replaces the old behavior and we confi rm that there is only one

alias called “saycheese” by running the alias command.

 Aliases that change existing commands
 If you have been thinking “Hey, can I make an alias which has the same name as an

existing command?” then the answer is “Yes you can, but are you sure you really want

to?” This is something that has both advantages and disadvantages. One simple advan-

tage is that you can effectively change the default behavior of a command to include

one or more command-line options – back in Chapter 3.12 we introduced you to ls -p

which makes it easier to tell whether an item is a fi le or directory. Some people might

always like to know this, and might think that the extra info you get from this command-

line option should be the default. No problem! Simply type:

 $ alias ls=‘ls -p’

 If you do this then you will have changed the default behavior of the ls command. The

ability to do this can be really useful as it allows you to make certain commands safer

than normal. For instance, if you make rm alias to rm -i , then you will no longer be able

to delete a fi le without fi rst confi rming that you really want to delete it. Sounds good,

right? The problem, though, is what if you forget you have made an alias? Or worse, what

if someone else is using your computer who doesn’t know you have changed the default

behavior of their favorite command? There is also the potential for causing deliberate

mischief by making aliases perform undesirable actions, 71 so please bear in mind that:

 Changing the behavior of common Unix commands with aliases can

be dangerous!

 71 Just imagine what would happen if someone made an alias called mv that actually ran the copy command (cp) instead?

9781107000681c03_p11-84.indd 599781107000681c03_p11-84.indd 59 11/5/2011 6:02:28 PM11/5/2011 6:02:28 PM

Essential Unix60

 This isn’t to say that you should never use aliases to modify the default behavior

of commands (the authors do it all the time), but please tread carefully (especially

if other people might use your computer). Of course, the other danger of becoming

overly dependent on using aliases is that when you have to use someone else’s com-

puter you discover, to your horror, that their rm command deletes things without

asking!

 Temporarily turning off aliases
 If you create an alias that changes the default behavior of an existing command, it is easy

to temporarily restore the normal behavior. Simply prefi x the command with a backslash

or place it between quotation marks. For instance, if we assume that we created the ls

alias from the previous section that will automatically include the -p option:

 $ ls

 Code/ Temp/

 $ \ls

 Code Temp

 $ ‘ls’

 Code Temp

 The last two examples (temporarily) restore the default behavior of the ls command,

meaning the forward-slash character that appears after directory names is now omitted.

 How long do aliases last?
 If you create aliases using the alias command, you will fi nd that they are short-lived.

They are not saved. As soon as you close your terminal window, the alias is gone. This

also means they only exist in the terminal window in which they were created. If you

have two terminal windows open and create an alias in one of those windows, it will

not be available in the other window. In a couple of chapters’ time, we will learn how

to overcome this limitation and make aliases work in all your terminal windows, all of

the time .

 Create three aliases that make safer versions of the rm , mv , and cp commands. Make all

of these commands include a -i option by default. Use touch to create some test fi les

to test that these aliases are all working.

 3.22 Editing text fi les

 It’s time to fi re the editor
 So far we have only learned how to create empty fi les using the touch command. Now

we will learn how to edit any plain-text fi le using a Unix text editor. We will show you

how to use a basic, but functional, text editor but will also mention some of the other

commonly used Unix text editors that are out there.

Problem

3.21.1

9781107000681c03_p11-84.indd 609781107000681c03_p11-84.indd 60 11/5/2011 6:02:28 PM11/5/2011 6:02:28 PM

Editing text fi les 61

 How are Unix text editors different from word processors?
 The Unix text editors that we are talking about are those that are run from within the ter-

minal window. 72 These editors do not have any mouse control and all editing must there-

fore be done using keyboard shortcuts. You will not be able to do things such as italicize

text, add tables, or add images. Indeed, you will not be able to do many of the functions

that you might be used to doing with a typical word-processor program. Instead, you

will be able to create and edit text , though such editing may include a wide variety of

tools and manipulations.

 You might be thinking that Unix text editors sound rather primitive and limiting.

That is not the case at all. They excel at doing what needs to be done when working with

plain-text fi les, and some programs contain many complex features. The most common

Unix editors are available on just about any Unix machine you will ever use. This means

that if you take some time to learn the subtleties of one (or more) of these programs, then

you will be set up for editing fi les for the foreseeable future.

 Which Unix editor to use?
 We should preface this section by warning you that the subject of which editor to use

is a topic that inspires a vibrant debate within the Unix community. In fact, two of the

most venerable Unix editors inspire an almost religious fervor among their followers. 73

One of the oldest editors is called vi and dates back to 1976. This is the editor that you

can guarantee will be installed on all Unix systems. When you use vi , you are either in

something called insert mode or normal mode . This distinction can be very confusing

to the newcomer and vi has a steeper learning curve than other editors. Despite this, it

remains one of the most popular and widely used editors.

 In 1991, an extended form of vi was created called vim (Vi IMproved). Compared

to vi , there are many enhancements in vim , and it offers a far higher degree of custom-

ization. By and large, the operation of vim is very compatible with vi , and it remains a

very popular editor for Unix users.

 After vi , the next most popular editor is called “Emacs” (though the Unix com-

mand is just emacs in lower case) and like vi , it was also developed in 1976. As is the

Unix way, there are many different versions of Emacs, though the main functionality is

common to all variants. Emacs has less of a learning curve than vi , and is very custom-

izable. It is the rivalry between vi and Emacs that has become a famed part of Unix

culture. 74

 For the purposes of this book, we just want to get you up and running, using Unix

as quickly as possible. Therefore we are not going to tell you any more about vi , vim ,

or Emacs , though we do suggest that you try learning the basics of at least one of these

editors. Instead, we are going to introduce you to a basic editor called nano .

 72 Though there are also many Unix text editors that can be run within a windowed environment and which support mouse

control.

 73 We are not kidding about this. When meeting other Unix users, you should be very careful when disclosing what editor

you use. If they discover that you use what they consider to be the wrong editor, you might fi nd that they stop returning

your phone calls.

 74 See Wikipedia’s page on “Editor War” for a good overview.

9781107000681c03_p11-84.indd 619781107000681c03_p11-84.indd 61 11/5/2011 6:02:28 PM11/5/2011 6:02:28 PM

Essential Unix62

 The nano editor
 Compared to the editors mentioned in the last section, nano is a very young program

(developed in 1999) and it lacks a lot of the advanced tools that the other editors pos-

sess. However, it is easy to learn and is also installed on many different Unix systems.

It was initially created as a clone of another editor called “pico” (which is still available

on many Unix systems). The pico editor was originally part of a Unix email client called

“Pine,” but became popular as a text editor in its own right. In the event that your system

doesn’t have nano , check to see whether pico is installed. 75 Even though nano is

more basic than some other editors, it still has a reasonably complete set of features.

 How to use nano
 When you run nano , you can use it in three slightly different ways:

 (1) to edit an existing fi le;

 (2) to create a new named fi le and start editing it;

 (3) to create a new unnamed fi le and start editing it.

 The last option is invoked by simply typing the command nano with no further options.

If you do this, your terminal window becomes the nano editing window, and you will

no longer be able to type terminal commands until you exit the editor. The editor should

look like this:

 The gray cursor in the top-left of the window indicates that you can start typing some

text. The arrow keys on your keyboard can be used to move the cursor (assuming you

have fi rst typed some text). At the bottom of the window is a series of keyboard short-

cuts that you can type. The ^ character means control ; to exit the program you would

 75 Remember, you can use the which command to see whether a specifi ed program is installed.

9781107000681c03_p11-84.indd 629781107000681c03_p11-84.indd 62 11/5/2011 6:02:28 PM11/5/2011 6:02:28 PM

Automating Unix commands 63

use Control + x; to jump forward a page of text you would use Control + v; and to jump

backwards a page, control + y. The set of available keyboard shortcuts will often change

depending on what you are doing – e.g., if you try searching for some text with the con-

trol + w option, then you will see a new range of options related to searching for text.

The top line of the window (in black) shows you the name of the fi le you are working

with. In this example we didn’t specify a fi le name when we launched nano , which is

why it says “New Buffer”.

 If you have typed any text in a blank nano window and you then try exiting the

program, you will be asked if you want to “Save modifi ed buffer” and will be given yes/

no choices (type “y” or “n”). If you type “y” you will next be asked to type the name of

the fi le that you wish to create. By default, this will be saved in the directory in which

you launched nano .

 Some of the time you will want to use nano to create new fi les and you can do this

more easily by specifying the name of the new fi le at the same time you run nano :

 $ nano newfile.txt

 This will tell nano to get ready to create a new fi le in the current directory called “new-

fi le.txt”. Note that it won’t actually create this fi le until you specifi cally tell nano to

save it (control + o) or you try exiting the program and then tell nano to save.

 Most of the time you will probably use nano to edit existing text fi les. Remember,

as long as you know where a fi le is relative to your current location, you don’t need to

fi rst change directory to another location:

 $ nano file.txt # edit file called “file.txt” in current directory

 $ nano ../2nd.txt # edit file called “2nd.txt” in parent directory

 $ nano /tmp/tmp.txt—# edit file called “tmp.txt” in /tmp

 For now, this is about all you need to know about nano , but please feel free to read more

about it (access the nano help page by pressing control + g).

 Use nano to create a new text fi le called README in your “Unix_and_Perl/Temp” dir-

ectory. Put some random text in this fi le and then save it and exit. Check that you can

view the contents of this fi le using the less program. Try to fi nd an existing text fi le that

you can open with nano (but be careful to not make any changes to it), and practice navi-

gating through the fi le one page at a time. Finally, try using the control + w keyboard

shortcut to search for a specifi c word.

 3.23 Automating Unix commands

 The source of how to automate commands is the source command
 Chapter 3.21 introduced the concept of aliases . We ended that chapter by saying that

ideally we would prefer to not have to retype our aliases every time we open a new ter-

minal window. Over the next few chapters you will learn: How to store Unix commands

in fi les; how to treat those fi les as programs; and how to get things to happen automat-

ically as soon as you open a new terminal. The combination of these topics will allow

Problem

3.22.1

9781107000681c03_p11-84.indd 639781107000681c03_p11-84.indd 63 11/5/2011 6:02:28 PM11/5/2011 6:02:28 PM

Essential Unix64

you to put your aliases into a fi le which will be read automatically every time we open

a terminal.

 Reading the contents of text fi les with the source command
 There is an easy way of telling Unix to read the contents of a text fi le and treat each line

of the fi le as a Unix command. You can do this by simply using the source command

followed by the name of a text fi le that contains your instructions.

 Example 3.23.1
 Use nano to create a text fi le in your “Unix_and_Perl” directory that simply contains

one line with the following text:

 ls -R –l

 You don’t need to press enter at the end of the line, though it doesn’t hurt if you do this.

Save this fi le as “recursive_long_listing”, exit nano , and then check that you can view

the contents with the less program. Now type the following command and observe the

output it produces:

 $ source recursive_long_listing

 total 8

 drwxr-xr-x 2 nigel staff 68 Jul 8 14:55 Code

 drwxr-xr-x 2 nigel staff 68 Jul 28 17:17 Temp

 -rw-r--r-- 1 nigel staff 9 Aug 4 10:01 recursive_long_listing

 ./Code:

 ./Temp:

 Explanation
 We have taken a Unix command with a couple of command-line options and saved that

to a text fi le. The source command then reads that fi le and acts on its contents, mean-

ing that it runs the ls -R -l command. As a result, we get a long, recursive directory

listing of the current directory.

 If you use the source command, then you should only try reading fi les that contain

valid Unix commands. 76 If you replace the contents of the fi le from Example 3.23.1 with

the text “cheesecake”, and then try re-running the source command, you will see the

following:

 $ source recursive_long_listing

 bash: cheesecake: command not found

 There is no Unix command called “cheesecake” and so Unix, quite understandably, com-

plains that it can’t fi nd it. If you so desire, you can place multiple commands in a fi le and

 source will work through each command in turn. You could create a fi le that contained:

 76 You can also include the names of programs that you (or others) have written in Perl (or other languages). But that’s

another story for another day.

9781107000681c03_p11-84.indd 649781107000681c03_p11-84.indd 64 11/5/2011 6:02:28 PM11/5/2011 6:02:28 PM

Automating Unix commands 65

 ls /

 date

 echo $HOME

 If you ran the source command against the contents of such a fi le, it would: list the

contents of the root directory; print the date; and then show the location of your home

directory. In a few chapters’ time we will show you a more advanced way of doing the

same thing.

 Adding aliases to an alias fi le
 Now we know about the source command, we can do something useful such as put

a list of useful aliases into one fi le called “aliases”. Then, each time we open a new ter-

minal we can make them all available by typing:

 $ source aliases

 This is still not a perfect solution as you have to remember to type the command, but

at least it saves you from typing them all individually. There may be some aliases that

you only want to use when working on specifi c projects, so you can also create multiple

alias fi les if desired.

 Example 3.23.2
 Open a new terminal window (to ensure that no aliases will be available) and use nano

to create an “aliases” fi le in your “Unix_and_Perl” directory. For now we suggest you

include the following in this fi le, but feel free to add others. Also note that we are using

the bash -family syntax for the alias command: 77

 # Add slashes to directory names

 alias ls=‘ls -p’

 # make copy, move, and remove commands safer by adding -i option

 alias cp=‘cp -i’

 alias mv=‘mv -i’

 alias rm=‘rm -i’

 After saving this fi le check that it works by running the following commands:

 $ source aliases

 $ alias

 alias cp=‘cp -i’

 alias ls=‘ls -p’

 alias mv=‘mv -i’

 alias rm=‘rm -i’

 77 This syntax will work if you are using bash , sh , ksh , or zsh shells. To make it compatible with csh and tcsh shells,

you need to remove the equals sign and any quotation characters.

9781107000681c03_p11-84.indd 659781107000681c03_p11-84.indd 65 11/5/2011 6:02:28 PM11/5/2011 6:02:28 PM

Essential Unix66

 Explanation
 Note that we added a mixture of blank lines, and comments to the “aliases” fi le.

Comments are any line of text that start with a hash character (#). The source com-

mand will simply ignore these lines. 78 Commenting fi les is a very useful habit to get

into. 79 If you create aliases for complex commands you may not always remember what

that command is doing. Adding some simple comments to your aliases fi le will make it

much easier to look up what an alias is doing.

 After running the source command, we confi rm that the aliases have all been loaded

by running the alias command.

 3.24 How to hide fi les and fi nd hidden fi les

 Peekaboo!
 Most of the fi les that we work with in Unix are visible to you, i.e., they appear in the

output of the ls command. Occasionally, though, you might want to make some fi les

invisible. They will still exist, but won’t be shown in the default output of ls . As we will

see, Unix uses some of these hidden fi les for special reasons.

 How to hide a fi le
 Hiding a fi le is very easy. Just change the fi le’s name to include a dot character as the

very fi rst character.

 Example 3.24.1
 Let’s try hiding the “aliases” fi le that we created in the last chapter.

 $ ls

 Code/ Temp/ aliases

 $ mv aliases .aliases

 $ ls

 Code/ Temp/

 $ cat .aliases

 # turn on display of directory listing

 alias ls=‘ls -p’

 # make copy, move, and remove commands safer by adding -i option

 alias cp=‘cp -i’

 alias mv=‘mv -i’

 alias rm=‘rm -i’

 78 This is because anything you type after a hash character on the command-line will also be ignored by Unix. Try it and

see!

 79 We shall return to the subject of commenting in much greater detail in the Perl parts of this book.

9781107000681c03_p11-84.indd 669781107000681c03_p11-84.indd 66 11/5/2011 6:02:28 PM11/5/2011 6:02:28 PM

How to hide fi les and fi nd hidden fi les 67

 Explanation
 We fi rst confi rm that the “aliases” fi le exists. Note that the output from the ls command

is adding slashes to directory names. This is because we have used source to read the

contents of the aliases fi le (so that ls acts like ls -p) . 80

 After using the mv command to rename “aliases” to “.aliases” it no longer appears

when we run ls . We then use a command called cat to display the contents of the hid-

den fi le (to prove that it is still there). The cat command does nothing more than print

the entire contents of a fi le (or fi les). It is useful for quickly looking at small fi les . It also

returns you straight back to the command prompt (you don’t have to exit from cat like

you would do with less).

 How to see hidden fi les
 Now that you have learned to hide fi les it is only fair that we show you how you can

fi nd hidden fi les (if any are present). If you have previously spent any time looking at

the man page for the ls command , you may have noticed the -a option. This is all you

need to know in order to see any hidden fi les.

 Example 3.24.2
 Let’s see that hidden fi le in all of its invisible glory!

 $ ls -a

 ./——../——.aliases—Code/——Temp/

 Explanation
 The most important thing to notice from this output is that the addition of the -a option

now allows us to see the .aliases fi le. This option simply shows you any fi les that start

with a dot in addition to the normal ls output.

 You will also notice that we now see two additional items in the directory (. and ..).

What are these doing? Well, the other thing to notice is that they both include a / charac-

ter after their name, which tells us that these are directories. We have already seen both

of these items before: they refer to the current and parent directory. 81 This might seem a

little confusing to you because we don’t normally think of these things as actual direc-

tories. Don’t worry about them too much for now, just remember that as they both start

with a dot, we will always see them when we run ls -a . By extension, this means that

 any directory will also be hidden if its name starts with a dot.

 One fi nal thing to note about this output is the fact that our ls alias still works as

 ls -p even though we actually ran ls -a . From Unix’s point of view, our aliases fi le

has specifi ed that ls is always run as ls -p . This substitution will happen before you

add any further command-line options. If you want to override this behavior, remember

 80 We didn’t include this step in the example because we fi gure that you’re wise enough now to not have to be told every

single thing that we do.

 81 We fi rst saw . in Chapter 3.19 and .. back in Chapter 3.7 .

9781107000681c03_p11-84.indd 679781107000681c03_p11-84.indd 67 11/5/2011 6:02:28 PM11/5/2011 6:02:28 PM

Essential Unix68

you can always get the original version of a command by starting the command with a

backslash, like so:

 $ \ls -a

 aliases Code Temp

 Why hide fi les?
 The main use of hidden fi les and directories is to store confi guration settings for various

programs. Confi guration information is usually generated and modifi ed by the program

in question, and so it makes sense to hide it so as to prevent accidental modifi cation (or

deletion). Such fi les are typically stored in your home directory as this is the only direc-

tory that a program can assume will always exist. Some confi guration fi les are also used

to contain preferences and settings for the user. In the next chapter we will learn about

an important user confi guration fi le; by adding information to this fi le we can automate

the reading of our aliases.

 Make a new hidden directory inside your “Unix_and_Perl” directory and then move

it into your “Temp” directory. The point of this is to realize that all of the fi le/dir-

ectory manipulations you have learned so far will work equally well with hidden

items (this includes tab-completion). When you have fi nished, remove the hidden

directory.

 3.25 Creating a confi guration fi le

 Customize yourself … without tattoos or piercings
 Now that we have shown you how to create both aliases and hidden fi les, we can fi nally

achieve the goal of putting all of the aliases into a special confi guration fi le that will be

loaded automatically when you open a new terminal. As we shall see in later chapters,

this confi guration fi le can be used to do more than just store aliases, and we will also use

it to store other important settings. 82 Just remember that instructions that are added to

this fi le are always executed every time you open a new terminal window.

 Where to store the confi guration fi le
 As we mentioned in the previous chapter, hidden confi guration fi les (sometimes called

“dot fi les”) are always stored in your home directory. This is because it is the one direc-

tory that all users have; your Unix system doesn’t need to know the exact name of your

home directory because it can always access it through the $HOME environment variable

(see Chapter 3.11). When you create the new master confi guration fi le, you will have to

do this in your home directory and not in the “Unix_and_Perl” directory (or any other

directory that you are using for this book).

 82 Such as setting or modifying some of the environment variables that we learnt about in Chapter 3.11 .

Problem

3.24.1

9781107000681c03_p11-84.indd 689781107000681c03_p11-84.indd 68 11/5/2011 6:02:29 PM11/5/2011 6:02:29 PM

Creating a confi guration fi le 69

 What is the confi guration fi le called?
 The answer to this question very much depends on what type of Unix shell you are using

(see Chapter 3.10). Different shells tend to use differently named fi les to store your con-

fi guration settings, and there can also be multiple fi les involved:

Shell
Name of confi guration fi le

Login Other

Bourne shell (sh) .profi le

Bourne-Again shell (bash) .bash_profi le or .bash_login or .profi le .bashrc

C shell (csh) .login .cshrc

TENEX C shell (tcsh) .login .tcshrc

Korn shell (ksh) .login

Z shell (zsh) .zlogin or .zprofi le .zshrc

 You may feel justifi ed in fi nding this all a bit confusing. 83 The reason for some of

this confusion is that there is a distinction between something called your login shell
and other shells known as interactive shells . You really don’t need to worry too much

about this though. Just identify your current shell (by running echo $SHELL) and then

be prepared to create the corresponding fi le from the “login” column of the above table.

For two shells (bash and zsh) there are potentially multiple fi les that you can use and

these actually have an order of precedence. However, as a newcomer to Unix we expect

that you will only need to create one confi guration fi le at this point. Depending on your

shell, we suggest choosing .login , .profi le , or .zprofi le . 84

 Creating your confi guration fi le
 We are fi nally ready to set up your confi guration fi le. This is a happy day and may very

well change your life! We should point out that you may already have a confi guration

fi le present. This partially depends on who set up your account for you. In many busi-

ness environments it is common to add some default confi guration settings to all user

accounts. Let’s check:

 Example 3.25.1
 Make sure you are in your home directory:

 $ pwd

 /Users/nigel

 $ ls -a

 83 Though you should also thank us as we have taken the liberty of simplifying things a little. There are also global

confi guration fi les that affect all users, as well as confi guration fi les that are read at login time but take effect at logout

time.

 84 Once you become a Unix guru, you will want to revisit the setup of your confi guration fi les. For this book, we are only

ever working with the login shell. Many Unix programs allow you to access a shell without having to leave the program.

These interactive shells, depending on your choice of shell, might read a different confi guration fi le to your login shell.

Interactive shells are also the default when you do things like use the su command to change to another user.

9781107000681c03_p11-84.indd 699781107000681c03_p11-84.indd 69 11/5/2011 6:02:29 PM11/5/2011 6:02:29 PM

Essential Unix70

 . Desktop Pictures

 .. Documents Public

 .CFUserTextEncoding Downloads Sites

 .DS_Store Library Unix_and_Perl

 .bash_history Movies

 .lesshst Music

 Explanation
 We start by confi rming that we are in the home directory of our user, Nigel. We then list

all hidden fi les in the home directory. Notice that there are a few hidden fi les already

present. Your home directory may look very different, but don’t worry too much about

any hidden fi les that you see there (apart from confi guration fi les). In our case, we have a

relatively new account on a Mac computer (with a bash shell) and there are no existing

confi guration fi les. Check your directory for any of the possible confi guration fi les that

might be there. If you fi nd one, have a look at it using less .

 Assuming you don’t already have an existing confi guration fi le, we can build a new

one using the existing .aliases fi le that we made in the last chapter. Remember, our ali-

ases fi le was written using the correct syntax for the bash shell. If you are using csh

or tcsh as your shell, you’ll need to use the alternative syntax for the alias command

(see Chapter 3.21).

 Example 3.25.2
 Don’t follow this example if you already have an existing confi guration fi le. Instead, you

can just manually add information from the .aliases fi le to your pre-existing confi gur-

ation fi le using nano .

 $ cp Unix_and_Perl/.aliases .profile

 $ ls -a

 . profile Music

 .. Desktop Pictures

 .CFUserTextEncoding Documents Public

 .DS_Store Downloads Sites

 .bash_history Library Unix_and_Perl

 .lesshst Movies

 Explanation
 We simply copy our existing .aliases fi le to the home directory and rename it to .profi le .

Because “.profi le” is the name of one of the bash confi guration fi les, it will now be read

automatically for us every time we open a new terminal window. However, it is not read

automatically after creating or modifying it, so any time we make changes to it we’ll

need to re-read it using the command:

 $ source .profile

9781107000681c03_p11-84.indd 709781107000681c03_p11-84.indd 70 11/5/2011 6:02:29 PM11/5/2011 6:02:29 PM

Creating a confi guration fi le 71

 Or, if we want to ensure that we re-read it without fi rst changing directory to our home

directory, we can more explicitly refer to it using the tilde (~) syntax to refer to our home

directory:

 $ source ~/.profile

 Editing your confi guration fi le
 Over time your confi guration fi le will grow in size. You will probably add several more

aliases to it, and there will be various environment variables that you will want to mod-

ify. Some confi guration fi les often contain instructions to print a welcome message or

specify that another program or Unix command should always be run each time a shell

is opened. Remember, everything in this fi le will be read and acted upon by Unix in

every new terminal window. This means that if the fi rst thing you do after logging in is

to always change directory to somewhere like “Unix_and_Perl” you can simply add this

instruction to your confi guration fi le.

 Example 3.25.3
 Let’s make just a few more changes to our confi guration fi le. We’ll add a welcome mes-

sage that reminds us of the date, and then add some comments that will become more

useful later on. Use nano to edit your .profi le fi le to look like the following:

 ##########################

 #

 # .profile file for Nigel

 #

 ##########################

 # FIRST STEPS

 MYDATE=`date “+%H:%M:%S %m/%d/%y”`

 echo “Welcome $USER, the current time is $MYDATE”

 # ENVIRONMENT VARIABLES

 # (blank for now)

 # ALIASES

 # turn on display of directory listing

 alias ls=‘ls -p’

 # make copy, move, and remove commands safer by adding -i option

 alias cp=‘cp -i’

 alias mv=‘mv -i’

 alias rm=‘rm -i’

 Explanation
 We fi rst use comments to add a header that makes it clear who this confi guration fi le

belongs to. Next we do something using the date command which might look strange,

9781107000681c03_p11-84.indd 719781107000681c03_p11-84.indd 71 11/5/2011 6:02:29 PM11/5/2011 6:02:29 PM

Essential Unix72

but it’s not too complex. Effectively, we run the date command specifying a certain

format for the date and the result of this command is assigned to a variable which we call

 MYDATE . This is another instance where the choice of shell determines the syntax. The

example above shows the correct syntax for bash -family shells. For csh and tcsch

shells you need to use the set command:

 set MYDATE=`date “+%H:%M:%S %m/%d/%y”`

 We next use the echo command to print out a short message that relies on using the

environment variable $USER and our new variable $MYDATE . 85 You should note that

the whole date command is enclosed between a pair of backtick characters . 86 Finally,

we add suitable comments to delimit the various sections of this fi le (“First steps,”

“Environment variables,” and “Aliases”).

 To see the effects of these modifi cations, save the fi le and then run:

 $ source ~/.profile

 You should see something like:

 Welcome nigel, the current time is 14:28:20 08/05/10

 This is what should happen every time you open a new terminal window from now on.

One fi nal complication to be aware of is that some terminal applications let you choose

whether the shell used by the terminal is a login shell or not. Sometimes the default may

be that it is not a login shell. As the .profi le fi le is only read by login shells, you might

fi nd that your terminal application is not reading the contents of .profi le when you open

a new terminal window. If this is the case, open the settings/properties/preferences for

the terminal application and see if there is an option to enable the default shell to be a

login shell.

 Customizing your profi le
 You should feel free to customize your .profi le fi le to have a different welcome message

or no welcome message at all if you prefer. Some Unix users have .profi le fi les that con-

tain pages and pages of instructions. It’s not uncommon to add instructions to a .profi le

fi le to make it run scripts that do things such as produce a fortune for the day, 87 or tell

you the weather forecast for where you live. One of the most frequent “customizations”

that you will see in .profi le fi les are commands that change the format of your command

prompt . As mentioned in Chapter 3.3 , some users like the command prompt to include

useful information such as their user/machine name and/or the current directory. We

won’t go into the full details of how to do this in this book, other than to tell you that

in the bash shell, you can customize your command prompt by modifying the $PS1

environment variable.

 85 If this part sort of makes sense to you then you are on your way to understanding some basic aspects of programming.

 86 These are also known as backquote characters and are yet another character which occupies various locations on different

types of computer keyboard.

 87 Some versions of Unix still include the fortune command, which will produce a fortune for you.

9781107000681c03_p11-84.indd 729781107000681c03_p11-84.indd 72 11/5/2011 6:02:29 PM11/5/2011 6:02:29 PM

Programming with Unix 73

 3.26 Programming with Unix

 Stick to the script
 The goal of this book is to teach you enough Unix to make you comfortable writing

Perl scripts in a Unix environment. However, it is worth spending just a little bit of

time to show you that you can also write programs using Unix. As we have already

demonstrated, it is possible to put a set of Unix commands into a fi le and then execute

those instructions by using the source command. The next step is to treat the fi le

containing the instructions as if it was any other Unix command. We want to be able

to type the name of the fi le in order to run it and execute the instructions contained

within it.

 Running your fi rst Unix script
 The fi rst thing you should learn to do when learning any programming language is

to write a very simple program, just to check that the programming environment is

working. Traditionally, this program will do nothing more than print the words “hello

world ”.

 Example 3.26.1
 Use nano to put the following two lines into a new fi le. Save the fi le as “hello.sh” and

make sure it is saved in your ~/Unix_and_Perl/Code directory. 88

 # my first Unix shell script

 echo “Hello World”

 Now try running the following commands and observe the output:

 $ cd Unix_and_Perl/Code/

 $ hello.sh

 bash: hello.sh: command not found

 Explanation
 We have made a two-line “program.” The fi rst line is a simple comment to describe the

program, and the second line will just use the Unix echo command to print out some

text. The program name ends with “.sh” as this is a common suffi x for what are known

as shell scripts (programs that run in the Unix shell).

 You will have noticed that our newborn program doesn’t actually work. When you

type hello.sh as if it was a regular Unix command, you get a complaint back from

the shell that it can’t fi nd this command. In a moment we will explain what you need to

do in order to make this work, but it is important to fi rst understand that it is not enough

just to place Unix commands into a text fi le. 89

 88 We will use the “Code” directory to store all of our programs.

 89 Unless you’re happy to always use the source command.

9781107000681c03_p11-84.indd 739781107000681c03_p11-84.indd 73 11/5/2011 6:02:29 PM11/5/2011 6:02:29 PM

Essential Unix74

 How to turn fi les into programs
 There are two reasons why the “hello.sh” program did not work. The fi rst reason is

that, in Unix, you have to explicitly give permissions to fi les that are going to be run as

programs. Specifi cally, you need to add something known as the executable permission.

The second reason concerns the location of the program. Unix will only look in certain

locations for fi les that can be run as programs. You either have to make Unix know about

the location of the “Code” directory or perform a little shortcut in order to force Unix

to look for programs in the current directory. We will address both of these issues in the

following chapters .

 3.27 Unix fi le permissions

 We permit you to read this chapter
 Files and directories in Unix have three main types of permission: 90 read, write, and

execute . A fi le or directory can have any combination of these permissions and they are

either “on” or “off.” If you create a new fi le it will automatically gain read and write

permission, 91 but it won’t have execute permission; this is something we have to add

manually. Further complicating the issue is the fact that there are three different levels

of permissions: user, group, and other. 92 In Unix, any user can belong to one or more

groups of similar users (e.g., staff, grad students, administrators, etc.). It is sometimes

useful to have permission to read, execute, or write to fi les owned by other people in the

same group as you. Conversely, you might not want people who are not in your group to

have permissions to do anything with your fi les. This is what the “other” level of permis-

sions is for. You can think of this level of permissions as those that control what fi les and

directories are publicly accessible.

 Unix has a single command called chmod that controls the read, write, and execut-

able permissions for any fi le or directory at all three levels (user, group, and other). We

can see the current permissions for a fi le or directory by simply running ls -l :

 Example 3.27.1
 Let’s look at the permissions of some fi les and directories:

 $ cd Unix_and_Perl/

 $ ls -l

 total 0

 drwxr-xr-x 3 nigel staff 102 Aug 6 10:01 Code/

 drwxr-xr-x 2 nigel staff 68 Aug 4 14:26 Temp/

 $ ls -l Code/

 total 8

 -rw-r--r-- 1 nigel staff 49 Aug 6 10:01 hello.sh

 90 These permissions are more technically called “modes,” but we fi gured that “permissions” would make more sense to

you.

 91 It would be odd if this didn’t happen as otherwise you wouldn’t be able to view, modify, or remove your own fi les.

 92 You can think of “user” permissions as those that concern the owner of the fi les or directories in question.

9781107000681c03_p11-84.indd 749781107000681c03_p11-84.indd 74 11/5/2011 6:02:29 PM11/5/2011 6:02:29 PM

Unix fi le permissions 75

 Explanation
 The fi rst character in the long output from the ls command tells you whether something

is a fi le or directory (“-” or “d”). The next nine characters tell you the read, write, and

execute permissions at the level of user, group, and other. Read, write, and execute per-

missions are denoted by “r”, “w”, and “x”, respectively. Lack of permission is denoted

by “-”. Following the permissions is information related to the user (“nigel”) and the

primary group that they belong to (“staff”).

 We can now see that the “Code” and “Temp” directories are readable and execut-

able to anyone (user, group, or other) but are writeable only by the user. Directories

must have executable permission for you to be able to navigate into them with the cd

command.

 When we look at the long listing for our “hello.sh” fi le we see that it lacks any execut-

able permission, is readable to anyone, 93 but is writeable only by the user.

 The chmod command can be run in a number of different ways, but the simplest

usage can be understood with the following examples (using a fi ctional fi le called

“fi le.txt”):

 $ chmod u+x file.txt # add executable permission at the “user” level

 $ chmod g-r file.txt # remove read permission at the “group” level

 $ chmod o+w file.txt # add write permission at the “other” level

 Just use “+” or “−” to add or remove permissions and “u”, “g”, or “o” to denote the level.

You can also change permissions for all levels in one go, and also change permissions

for multiple fi les or directories:

 $ chmod a-w file.txt # remove write permission at all levels

 $ chmod a+w *—# add write permission at all levels to all files

 As you work through this book you will create many Perl scripts (and a few Unix

scripts too), and you will only ever need to add executable permission to a fi le at the user

level. Please be aware that chmod is potentially a dangerous command if misused. Not

only can you do stupid things 94 like this:

 $ chmod u-r hello.sh

 $ less hello.sh

 hello.sh: Permission denied

 but you also have the potential to let all users on your computer or network have the

ability to read and/or delete your fi les.

 Always check the results of using the chmod command!

 93 The default set of permissions for new fi les varies between different Unix OSs and can also be changed. On some

systems (such as Macs), any fi les created outside of the default set of directories (Desktop, Documents, Music, etc.) are

readable by any other user accounts on that computer.

 94 Actually, this might be useful for paranoid types who want to ensure that people who have access to their computer can’t

easily see their fi les.

9781107000681c03_p11-84.indd 759781107000681c03_p11-84.indd 75 11/5/2011 6:02:29 PM11/5/2011 6:02:29 PM

Essential Unix76

 Running your fi rst Unix script revisited
 Let’s fi x the permission on the “hello.sh” script and then see what happens when we try

to run it.

 Example 3.27.2
 Note that after adding executable permission, we will try running the script from two

different locations:

 $ cd

 $ chmod u+x Unix_and_Perl/Code/hello.sh

 $ ls -l Unix_and_Perl/Code/hello.sh

 -rwxr--r-- 1 nigel staff 49 Aug 6 10:01 Unix_and_Perl/Code/hello.sh

 $ Unix_and_Perl/Code/hello.sh

 Hello World

 $ cd Unix_and_Perl/Code/

 $ hello.sh

 bash: hello.sh: command not found

 Explanation
 We fi rst change directory to the home directory and run chmod to add executable per-

mission to the fi le. This is then confi rmed by running ls -l .

 Next, staying in the home directory, we try to “run” the program. We just type the

full path to the “hello.sh” fi le. The result is that the contents of the, now executable,

fi le are processed by the Unix shell and we see the “Hello World” output of the echo

command.

 We then change directory to the same directory that contains the “hello.sh” script

(“Unix_and_Perl/Code”) and attempt to run the program again by typing its name.

However, this time the program fails to run and we see the same error message as in the

example from the previous chapter.

 You might be scratching your head over this last example. In particular, you may be

wondering what the difference is between trying to run a program while being in a dif-
ferent directory from that program, and trying to run it from the same directory. The

solution awaits in the next chapter!

 File permissions on fi les from other computers
 If you transfer fi les between different computers, e.g., from a Unix/Linux machine to a

Windows PC, you may experience some surprises regarding fi le permissions. Put sim-

ply, a Windows PC won’t respect any fi le permissions that were set under Unix. The

reasons for this are not important; it just means that you must be careful when transfer-

ring fi les to a Unix/Linux machine from a PC, because all permissions might be turned

on. This situation can also apply when you use a Unix machine to access fi les on an

attached USB fl ash drive – e.g., if you plug a USB drive into a Mac and navigate to the

9781107000681c03_p11-84.indd 769781107000681c03_p11-84.indd 76 11/5/2011 6:02:29 PM11/5/2011 6:02:29 PM

How to specify which directories contain programs 77

fl ash drive in the terminal, 95 then all fi les and directories will be readable, writeable, and

executable. A fi ctional USB fl ash drive called “USB” which contained a directory and a

fi le might look like this:

 $ ls -l /Volumes/USB

 total 32

 drwxrwxrwx 1 nigel staff 16384 Dec 14 15:33 tmp_directory

 -rwxrwxrwx 1 nigel staff 0 Dec 14 15:33 tmp_file

 3.28 How to specify which directories contain programs

 Or why it’s good to stray from the $PATH
 The last chapter revealed that you can run a program while being in another directory,

but not if you are in the same directory as the program. To solve this apparent dilemma,

we have to learn a little bit more about Unix paths and about how Unix keeps a list of

specifi c directories that it expects to contain programs.

 Can a script have the same name as an existing Unix command?
 Let’s imagine what would happen if we created a new Unix shell script that just hap-

pened to share the same name as an existing Unix command – e.g., imagine that instead

of being called “hello.sh”, our script from the last chapter was called “pwd”. If you type

“pwd” into a Unix terminal you should rightfully expect to be able to run the pwd com-

mand. But if you were in the same directory that contains our newly named Unix script

“pwd”, what should happen? Should Unix run its own pwd command or our “pwd”

script? If you try this you will fi nd that Unix will run the pwd command. This is a good

thing. If you create a fi le which coincidentally shares the same name as a Unix com-

mand, you should expect the pre-existing command to always take priority.

 However, if we were in a different directory from our newly created “pwd” script,

we could get the script to work as long as we specifi ed an absolute or relative path to

the location of the program. 96 If we made a script called “pwd” and it was in our “Code”

directory then we could run the script from anywhere in the fi lesystem by typing:

 $ ~/Unix_and_Perl/Code/pwd

 This would work because we are describing an absolute path to the location of a

specifi c fi le in our fi lesystem and Unix would recognize that this fi le (“pwd”) is differ-

ent to the pre-existing pwd command. All you really need to understand is that typing

the name of a program, even when you are in the same directory as that program, will

not run the program. There is an easy fi x to this problem. You might remember from

previous chapters that a single dot character is used by Unix to refer to the current dir-

ectory . This provides a way to run a script even when we are in the same directory as

that script:

 95 All attached drives will be accessible from the /Volumes directory.

 96 See Chapter 3.8 for a refresher on absolute and relative paths.

9781107000681c03_p11-84.indd 779781107000681c03_p11-84.indd 77 11/5/2011 6:02:29 PM11/5/2011 6:02:29 PM

Essential Unix78

 Example 3.28.1
 Compare the output from the two following variants:

 $ pwd

 /Users/nigel/Unix_and_Perl/Code

 $ hello.sh

 bash: hello.sh: command not found

 $./hello.sh

 Hello World

 Explanation
 The fi rst example fails because Unix assumes we are trying to run a command called

“hello.sh” so it goes off to look in all of the places where it knows commands live (more

on this in a moment). The second example, with the addition of ./ before the fi le name,

works and Unix runs the script. You can read this second example as “run the fi le called

hello.sh that’s in this directory and don’t bother looking for any programs called ‘hello.

sh’ anywhere else.”

 Don’t worry too much if you fi nd this a little bit confusing. The important lesson

from this is that once you have made a script executable you can always run it by prefi x-

ing its name with a path (even if the path is just ./). This is a better solution than having

to use the source command, but it is still one stop short of being able to run our scripts

as if they were like any other Unix command. However, we are not fi nished yet!

 Modifying your path
 The fi nal piece of this puzzle is to understand that any time you try running a program,

Unix will check through a list of predefi ned directories to see if that program exists in

any of those locations. If it fi nds a match, then it will try running that program and will

stop looking in any other directory. If, after looking through all of the directories, it can-

not fi nd a match, it will report the dreaded “command not found” error. We can see the

list of places that Unix looks 97 for programs by printing the $PATH environment vari-

able. 98 Let’s see what this list looks like for our user, Nigel:

 $ echo $PATH

 /usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/X11/bin

 This output contains a list (separated by colons) of six directories on Nigel’s computer

which contain programs. When we say “programs” we just mean any fi le that has exe-

cutable permission. Unix doesn’t care what these programs do, or even if they work. All

 97 Of course, Unix isn’t really looking and we don’t want to give you a false impression that Unix is a sentient being. It

just makes it easier to describe. Otherwise we would have to say really dull things like “code in the computer’s memory

determines whether the name of the specifi ed fi le is an exact match to the names of fi les that are stored in designated

arrays that correspond to locations in the fi lesystem.”

 98 See Chapter 3.11 for a refresher on environment variables.

9781107000681c03_p11-84.indd 789781107000681c03_p11-84.indd 78 11/5/2011 6:02:29 PM11/5/2011 6:02:29 PM

How to specify which directories contain programs 79

of the Unix commands we have seen so far are just fi les with executable permissions that

live in one of these directories. The order of directories is important as it determines the

order in which Unix will search for programs.

 It is easy to modify the $PATH variable to include other directories, which is exactly

what we want to do. If we can add the “Code” directory on to the end of this list, then

Unix will know to also look in this directory. Let’s try modifying $PATH :

 Example 3.28.2
 Note that the following code includes two mutually exclusive options depending on

whether you are using the bash family of shells (sh , bash , ksh , zsh) or the csh

family of shells (csh and tcsh). Make sure you only type one of the two possible com-

mands that are shown (export or setenv).

 $ echo $PATH

 /usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/X11/bin

 # For shells in the bash family

 $ export PATH=$PATH:~/Unix_and_Perl/Code

 # For shells in the csh family

 $ setenv PATH $PATH\:~/Unix_and_Perl/Code

 $ echo $PATH

 /usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/X11/bin:/Users/

nigel/Unix_and_Perl/Code

 $ cd

 $ pwd

 /Users/nigel

 $ hello.sh

 Hello World

 Explanation
 We fi rst use the echo command to confi rm the contents of the $PATH environment

variable. Then we use one of two commands, depending on which shell we are using.

However, both the export and setenv commands achieve the same thing, albeit with

slightly differently syntaxes. 99 They both add the location of the “Unix_and_Perl/Code”

directory to the end of our current $PATH . You should read this assignment as “Take

the current value of $PATH , and add this new directory on to the end of the list.” It is

important to give an absolute path here.

 99 Note the difference in syntax between these two commands. The export command requires that there are no spaces

either side of the equals sign. The setenv command doesn’t need an equals sign, but does require that any colon

characters are “escaped” with backslashes. Alternatively, you could use either of the following syntaxes to avoid having

to use backslashes (where “whatever” is the name of some directory to be added to $PATH):

 setenv PATH ${PATH}:whatever

 setenv PATH $PATH”:”whatever

9781107000681c03_p11-84.indd 799781107000681c03_p11-84.indd 79 11/5/2011 6:02:29 PM11/5/2011 6:02:29 PM

Essential Unix80

 After adding a new directory to the $PATH , we confi rm that this has happened by

printing the value of $PATH again. The full path to the “Code” directory gets appended

to the end of the list and “~/” gets expanded to “/Users/nigel/”.

 We then navigate to Nigel’s home directory and try running the “hello.sh” program.

This time it works!

 Advantages of modifying $PATH
 Once you have added a new directory to your $PATH variable, you can use that dir-

ectory to store all of your scripts. Any program in that directory can then be run from

 anywhere in the fi lesystem (as long as the program fi le is executable). You also gain the

very useful advantage that you can use tab-completion when typing the program name.

Your scripts will be treated like any Unix command.

 If you wanted to, you could add multiple directories to $PATH (e.g., if you wanted

to maintain Unix and Perl scripts separately). You can always see where Unix fi nds your

programs by using the which command :

 $ which hello.sh

 /Users/nigel/Unix_and_Perl/Code/hello.sh

 This becomes important because you might want to develop two different versions of

the same program. If these different versions exist in different directories, then the fi rst

directory that occurs in the $PATH variable will be the one that Unix uses.

 Bear in mind that, at the moment, the changed $PATH variable will only exist in the

current terminal. Therefore, we need to move the command that changes your $PATH

into the .profi le fi le :

 Example 3.28.3
 This change will ensure that any terminal window you open will “know” about the

location of your “Code” directory. This also means that you should not store scripts any-

where else (unless you also add other directories to your $PATH). Modify your .profi le

fi le to include the following and, depending on your shell, make sure to only include the

 export or setenv command, but not both .

 # ENVIRONMENT VARIABLES

 # for bash-type shells…

 export PATH=$PATH:$HOME/Unix_and_Perl/Code

 # for csh-type shells…

 setenv PATH $PATH\:$HOME/Unix_and_Perl/Code

 Explanation
 Note that we use another environment variable ($HOME) to specify a full path to the

“Code” directory. We could also have used the “~/Unix_and_Perl/Code” format or even

“/Users/nigel/Unix_and_Perl/Code”. However, the last example is not always the best

choice. The physical location of home directories can sometimes change (e.g., if your

9781107000681c03_p11-84.indd 809781107000681c03_p11-84.indd 80 11/5/2011 6:02:29 PM11/5/2011 6:02:29 PM

Creating useful shell scripts 81

home directory is moved to an external disk). Using $HOME avoids the hard-coding of

a disk location into your $PATH variable, and will ensure that things will continue to

work even if your home directory moves.

 3.29 Creating useful shell scripts

 It’s time to come out of your shell
 So far we have created a single shell script that does nothing more than print the words

“Hello World”. This chapter will show you how to write some scripts that may actually

be useful in some “real world” scenarios.

 How to make a “proper” shell script
 So far we have seen that we can put a series of Unix commands into a fi le, make that

fi le executable, and then run it as if it was a program. This works, but lacks one feature

that we should strive to include in all future shell scripts. You may remember that there

are a number of different Unix shells (see Chapter 3.10) and that some Unix instructions

differ between the different shells. When we write any shell script we can – and should –

specifi cally indicate which type of shell we want to use to process the instructions. Basic

Unix commands will be understood by all types of shell, but many shells use some spe-

cifi c syntax for commands that won’t work in other shells.

 To ensure that a shell script will be processed by a specifi c type of shell, we just need

to add one line to the start of the script. This line is known as the interpreter directive
and should always occur in the fi rst line of the script. Additionally, it must always start

with the characters #! . 100 These two characters are sometimes referred to as “hash bang”

or “shebang.” They should be followed by a valid path to where the relevant shell com-

mand is installed. Let’s revisit our “hello.sh” script and make it into a proper shell script

by adding an interpreter directive.

 Example 3.29.1
 Use the nano editor to make your “hello.sh” fi le, which should still be inside your Code

subdirectory, resemble the following:

 #!/bin/bash

 # my first Unix shell script

 echo “Hello World”

 Note, that the only change we are making is to add a new line to the start of the script.

Save the changes, and exit the editor. We can now run this script by simply typing its

name:

 $ hello.sh

 Hello World

 100 These characters must be the fi rst two characters in the fi le. No spaces or blank lines should go before them. This is the

one situation where a line starting with a hash character (#) is not treated as a comment.

9781107000681c03_p11-84.indd 819781107000681c03_p11-84.indd 81 11/5/2011 6:02:29 PM11/5/2011 6:02:29 PM

Essential Unix82

 Explanation
 Some people will use “.sh” as a default fi le extension for any shell script, no matter what

the actual shell is, so you shouldn’t feel you have to end bash scripts with .bash, tcsh

scripts with .tcsh, etc. 101

 In this example we edited the “hello.sh” fi le in order to add the interpreter directive

(the shebang line). This line includes the location of the bash shell (/bin/bash).

When you try running any fi le that starts with a shebang line, Unix reads this as saying

“Aha, you want to use the program located at /bin/bash to interpret all of the instruc-

tions that follow.” If you don’t specify an interpreter directive, the instructions in a script

are handled by the default shell. In this case, the default shell is also bash , but it might

not have been. 102

 Making your shell script do something useful
 It is (fi nally) time for an example that might actually be of use to you.

 Example 3.29.2
 Use touch to create a new fi le called “status.sh” in your Code directory. You will then

need to use the chmod command to make the script executable. Finally, use nano to

add the following contents to the fi le:

 #!/bin/bash

 HOST=`hostname`

 KERNEL=`uname -rs`

 UPTIME=`uptime`

 echo “Username = $USER”

 echo “Hostname = $HOST”

 echo “Kernel details = $KERNEL”

 echo “Uptime = $UPTIME”

 The fi rst line of this script should ideally be appropriate for the type of shell you are run-

ning. 103 This script will provide some simple system status information. Run the script

by typing the fi le name; you should see four lines of output, which will be quite different

to what is shown here:

 $ status.sh

 Username = nigel

 101 Naming the fi le extension after the shell will probably only be useful if you write (or use) lots of scripts written in

different shells. Furthermore, some people might also use .script or .scr to name their shell scripts; it’s also the case that

some people won’t bother to give any fi le extension to their shell scripts at all. These are bad people.

 102 Adding a shebang line means you can send your bash scripts to a friend who uses a different shell by default. Their

shell might not understand all of the instructions in your bash script, but as long as your friend’s computer has the

 bash shell installed, your friend will be able to run your script.

 103 If you are running the zsh shell, then this line could be changed to #!/bin/zsh . You can fi nd out “where” your shells

are installed by using the which command – type which tcsh . Having said that, it may not matter as long as the

other shell in question is also installed on your machine – i.e., you can use csh as your default shell but still run bash

scripts if it is installed.

9781107000681c03_p11-84.indd 829781107000681c03_p11-84.indd 82 11/5/2011 6:02:29 PM11/5/2011 6:02:29 PM

Unix summary 83

 Hostname = stonehenge.ucdavis.edu

 Kernel details = Darwin 10.6.0

 Uptime = 11:16 up 4 days, 2:36, 3 users, load averages: 0.57 0.45 0.51

 Explanation
 Shell scripts can store data in something called variables . These are named containers

that can store different items (words or numbers) and behave like the environment vari-

ables we have already seen (Chapter 3.11).

 After the interpreter directive line (#!/bin/bash), the next three lines each assign

the output from a different Unix command to a variable. The fi rst example is where the

output from the hostname command is stored in a variable called $HOST . If you want

to capture the output of a Unix command, you need to place that command between a

pair of backtick characters . 104 The next two lines capture the output from the uname

and uptime command (we use a couple of command-line options for the former).

Remember that these are just regular Unix commands, and you can try running them on

their own.

 After capturing the output from three commands and storing this output in three dif-

ferent variables, we use the echo command to output the information. When you want

to access the content of a variable, it must be prefi xed with a dollar sign. Notice that the

fi rst thing to be printed is actually the contents of an environment variable (again, see

 Chapter 3.11).

 This is a very simple example which in some ways does nothing more than run a few

different Unix commands. However, there are times when that is exactly what you want

to do and having a script to run them all in one go can be a great time-saver . 105

 3.30 Unix summary

 Is this the end of the $PATH ?
 We have covered many different Unix commands in this part of the book, albeit a

small fraction of all of the commands available. We hope you are now comfortable in

basic directory navigation and in dealing with the essential aspects of fi le manipula-

tion (copying, moving, renaming, deleting, etc.). We recommend that at some point

you take the time to become familiar with one of the common Unix text editors

(vi , Emacs, nano , etc.); it also pays to learn some of the features of the less

command.

 We reiterate one fi nal time that if you really want to learn Unix, then you should,

where possible, try to stay in the world of the terminal. Try to refrain from using your

graphical fi le manager too much. Believe it or not, there are Unix programs available

that will do a lot of the regular activities you would otherwise use a graphical program

 104 Not to be confused with apostrophe characters!

 105 If you needed to access this information several times per day, then the convenience of running one shell script as

opposed to several different Unix commands can be signifi cant.

9781107000681c03_p11-84.indd 839781107000681c03_p11-84.indd 83 11/5/2011 6:02:30 PM11/5/2011 6:02:30 PM

Essential Unix84

 106 It’s possible that your Unix computer might not have all of these tools pre-installed, but they are available for most

fl avors of Unix.

 107 Though when you learn Perl, we will start by showing you another way of running Perl scripts that does not require the

scripts to be executable.

for. Want to check your email, play some music, or even browse the web? All such activ-

ities are available, with some limitations, from the comfort of your Unix terminal. 106

 From the point of view of learning Perl, one of the most important Unix commands

you need to know is chmod (to make your scripts executable 107). It will also be useful

to be able to modify your confi guration fi le (.profi le, .login, etc.) so as to properly con-

fi gure your $PATH variable to let Unix know about the directory you use to store your

scripts.

 What next?
 You are now equipped with enough Unix skills that you can proceed to Part 4 of this

book and start learning “Essential Perl.” However, if you are enjoying learning Unix,

then feel free to jump ahead to Part 5 (“Advanced Unix”) before returning to learn Perl.

Part 5 will focus much more on working with some fi le types that are very commonly

used in bioinformatics. It will also introduce many commands that have direct equiva-

lents within the Perl programming language. Finally, it will show you how you can chain

commands together in powerful combinations.

9781107000681c03_p11-84.indd 849781107000681c03_p11-84.indd 84 11/5/2011 6:02:30 PM11/5/2011 6:02:30 PM

 Essential Perl 4

 4.1 Hello World

 Your fi rst steps into the world of Perl programming
 The fi rst program most people learn to write in any programming language is usually a

“Hello World” program that just prints the words “Hello World” (surprise, surprise) to

the screen. This isn’t a legally binding requirement, and you could instead try to make

your fi rst program calculate the largest unknown prime number. However, all we ideally

want to do at this stage is to check that the programming environment is working prop-

erly, so it makes sense to keep your fi rst Perl script as simple as possible. Note that the

words “program” and “script” are often used interchangeably. If you don’t worry about

the difference, then neither will we.

 Example 4.1.1
 Enter the text below into your text editor (see Part 2 for details about text editors), but do
not include the numbers . The numbers are there only so we can reference specifi c lines.

Your fi rst Perl program is going to contain just two lines. This might not seem like much,

but it means you will have written more Perl code than the vast majority of people in the

world, who haven’t written any!

 1. # helloworld.pl by _insert_your_name_here_

 2. print(“Hello World!\n”);

 Understanding the script
 Line 1 starts with a hash character (#). Most of the time Perl sees a # , everything that

follows on that line will be considered a comment (we’ll deal with exceptions to this in

due course). 1 Programmers use comments to describe what a program does, who wrote

the program, what needs to be fi xed, etc. Think of comments as the notes you might

write in the margin of a text book; they should aid your understanding. It’s an extremely

good idea to put comments in your code, especially as your programs grow larger. Perl

will ignore everything after the hash sign so in theory you could embed a poem or even

a recipe in the comments of your script, though you would be considered strange if you

did this.

 Line 2 is the only line of this program that does anything. The print() function

takes a list of arguments and sends them to your terminal so they can be read by some-

one. 2 In this case, there is only one argument, which is the text “Hello World!\n” .

The pair of quotation marks are one way of letting Perl know that we are dealing with

text. The funny \n at the end of the text is called a newline character , which is like a

 1 All programming languages support commenting, and Perl uses the same hash character syntax as Unix (which we fi rst

saw in Chapter 3.23).

 2 An argument is just some piece of information that is provided to a particular piece of Perl code. We have already seen

that most Unix commands support one or more command-line arguments and functions in Perl are analogous to this. If

you fi nd the word “arguments” sounds strange, then you can think of them as “bits of required information.” If you are

still not happy about this then feel free to start an argument argument!

9781107000681c04_p85-219.indd 859781107000681c04_p85-219.indd 85 11/5/2011 6:26:44 PM11/5/2011 6:26:44 PM

Essential Perl86

carriage return. We shall return to the newline character later. Most of the time, each line

of Perl code will end with a semicolon . Think of this as like the period at the end of a

sentence. There are some exceptions to this, the most obvious of which is in line 1: com-

ments don’t require semicolons because they are not interpreted as part of the script.

 Use your text editor to save the program and make sure you name the fi le “hel-

loworld.pl”. It is common, though not strictly necessary, to add a “.pl” extension to the

names of your Perl scripts. This will help you identify them more quickly, and it will

also allow some editing programs to recognize that they are Perl scripts.

 So, now we have written and saved our fi rst Perl script, but how do we make it do

something? To run the program , switch to your terminal application (see Chapter 3.2)

and check that you are in the same directory as the script (ideally this will be a directory

called “Code”, “Scripts”, or “Perl”, etc.). Being in the wrong directory will be a frequent

cause of problems when working with Perl. For the rest of this book you should, if you

want an easy life, save all of your scripts in the same location. If you would prefer a life

of eternal frustration, then feel free to save every script in a different location … just

don’t come running to us when things go bad (and they will go bad). If you are in the

correct directory, type the following command and press return.

 perl helloworld.pl

 What is happening here is that we are telling our terminal to fi rst fi nd the program

called “perl” (wherever it is installed on the computer), and then send the contents of

our helloworld.pl fi le to the perl program. In this sense, perl is just like any other Unix

command you’ve already seen (assuming you read Part 3 of this book). If this works,

then great! You should now be basking in the glow of your success as a new Perl pro-

grammer. If it didn’t work, then welcome to the world of Perl debugging . It is still good

news when things don’t work as planned, because learning how to fi x broken scripts is

an even more important skill than writing scripts that work fi rst time. If it didn’t work,

then maybe you saw an error message like this one:

 Can’t open perl script “helloworld.pl”: No such file or directory

 This would suggest you may have forgotten to save the fi le, misspelled the fi le name,

or saved the fi le to someplace unintended. You should always use Unix tab-completion

(see Chapter 3.15) to prevent spelling mistakes when typing program names – don’t

type every letter of “helloworld.pl”; instead type “perl h” and then press tab to see if

you can autocomplete the fi le name. 3 This is such an important point that will save you

from hours, months, or even years of frustration (depending on your future career) that

we will mention it again:

 Always use Unix tab-completion when typing the names of Perl scripts!

 3 If tab-completion doesn’t appear to be working, it’s most likely because you are in the wrong directory.

9781107000681c04_p85-219.indd 869781107000681c04_p85-219.indd 86 11/5/2011 6:26:46 PM11/5/2011 6:26:46 PM

Scalar variables 87

 Example 4.1.2
 Let us explore the use of hash characters a little more. We have suggested that you can

use hash characters to initiate a comment in your script. But what if you wanted to actu-

ally print a hash character?

 1. # hashcheck.pl

 2. print(“This is a hash character: #\n”);

 3. # this is a comment

 4. print(“This is a print statement…\n”); # followed by a comment

 5. # print(“This line will never be printed\n”);

 Understanding the script
 As in the previous example, to run this script you need to be in the same directory as

the fi le, and then just type perl hashcheck.pl (assuming you named the script

“hashcheck.pl”).

 The lessons to learn from this short script are three-fold. First, you can obviously

print a # character, so Perl is smart enough to know that if a # character appears within

a pair of quotation characters, you probably want to print the character, rather than start

a comment. Second, you can have comments as entire lines by themselves (lines 1 and

3) or as add-on comments that immediately follow some code (line 4). Finally, you can

add a hash character to the start of an existing line of code to effectively silence that line

of code (line 5). This is known as commenting-out a line, and is frequently used when

writing and debugging Perl scripts.

 The world of programming would quickly become very tedious if your scripts only ever

said “Hello world” so modify the program to output three different lines of text. Note

that there are two different ways to do this.

 Try making a “deleterious mutation” to your program. For example, leave off the semi-

colon or one of the parentheses. Observe the error message when you try running it.

One of the most important aspects of programming is debugging. Probably more time is

spent debugging than programming, so it’s a good idea to start recognizing errors now. 4

Try making multiple mutations to your script and see whether you see multiple error

messages. Finally, ensure that you can remove the errors and get your script working

again.

 4.2 Scalar variables

 Variables make programming very able
 Imagine that we want to write a program to calculate some property of a DNA sequence.

The program might do something as simple as calculate the length of the sequence, or

 4 Part 7 of this book contains several chapters on debugging, though you should learn some more Perl before reading those

sections.

Problem

4.1.1

Problem

4.1.2

9781107000681c04_p85-219.indd 879781107000681c04_p85-219.indd 87 11/5/2011 6:26:46 PM11/5/2011 6:26:46 PM

Essential Perl88

maybe it is going to do something more complex, such as count all of the dinucleotide

frequencies in the sequence. Whatever it is we want to do, we clearly need to start with

the DNA sequence itself. It is conceivable that we might only ever want to work with a

single DNA sequence and therefore we could write a Perl script that is specifi c to that

one sequence. This is unlikely, however. We should expect any DNA-processing pro-

gram to work on any DNA sequence (within reason: very long sequences might take up

too much memory). Therefore our program will need to be able to somehow store and

manipulate the sequence, no matter what it is. That’s where variables come in.

 Variables hold data, and the data they hold are allowed to vary. In some cases you

might want to change the data between separate runs of your program – e.g., the fi rst

run of your program processes sequence A , and the second run processes sequence B . In

other cases, you might want to change the data during a single run of the program – e.g.,

you start with a DNA sequence but then you want to clip the ends of the sequence for

some reason and work with the shorter, clipped version.

 In Perl, the main variable type is called a scalar variable . A scalar holds one thing.

This thing could be a number, some text, or an entire genome. We will see other data

types later. You can always tell a scalar variable because it has a $ on the front (the dol-

lar sign is a mnemonic for scalar). For example, a variable might be named $x . When

speaking aloud, we do not say “dollar x”; we just call it “x”.

 Example 4.2.1
 Create a new plain-text document in your text editor. Enter the text below and save

this program as scalar.pl in your Code directory (or wherever you are saving your Perl

scripts).

 1. # scalar.pl by _insert_your_name_here_

 2.

 3. $x = 3;

 4. print($x, “\n”);

 Understanding the script
 Line 2 is deliberately blank. You should use spaces and blank lines to improve the read-

ability of your code. In this case we are separating the header section of the script from

the rest. In this script, the header is just a single line containing a comment; as we learn

more Perl, this header section will get longer and longer.

 Line 3 contains a variable assignment and it is actually doing two things. First, it’s

telling us that we’re going to be working with a new variable called $x., and second,

it’s assigning that variable a value of 3. Sometimes in Perl, we do these two steps (dec-

laration and assignment) separately, and sometimes we do them together.

 Line 4 prints the value of $x and then prints a new line. Notice the use of the comma

inside the print() function . Although we frequently will use the print() function

to print just one thing at a time, it can also print multiple things if they are separated

by commas . A better way of putting this is that the print function supports multiple
arguments .

9781107000681c04_p85-219.indd 889781107000681c04_p85-219.indd 88 11/5/2011 6:26:46 PM11/5/2011 6:26:46 PM

Scalar variables 89

 Run the program by typing the line below in your terminal. Observe the output and

go back through the code and the above line descriptions to make sure you understand

everything.

 perl scalar.pl

 Example 4.2.2
 Now try adding the following lines to your program:

 5. $s = “something”;

 6. print($s, “\n”);

 7. print(“$s\n”);

 Understanding the script
 Line 5 is another variable assignment , but unlike $x, our new variable $s gets a char-
acter string , which is just another term for some text.

 Lines 6–7 print our new variable $s in two slightly different ways, though both ways

include a newline character.

 Save the script and run it again. You should see that although lines 6–7 are dif-

ferent they produce exactly the same output. The print() function can print a list

of items (all separated by commas), but it often makes more sense to print just one

thing instead. It would have been possible to rewrite our very fi rst Perl script with the

following:

 print(“H”,”e”,”l”,”l”,”o”,” “,”W”,”o”,”r”,”l”,”d”,”!”,”\n”);

 Hopefully you will agree that printing this phrase as one string and not 13 separate

strings is a lot easier on the eye.

 Example 4.2.3
 Now try adding the following lines to your program:

 8. print “$s\n”;

 9. print ‘ $x $s\n ‘ ;

 10. print “$x $s\n”;

 Understanding the script
 Line 8 calls the print function but omits the parentheses . This introduces an important

aspect of programming with Perl: Not all formatting is mandatory. You do not have to

use parentheses for Perl functions, but they are often useful to keep a line organized and

to aid understanding. However, in most cases you will see the print function without

parentheses.

 Lines 9–10 feature two print statements which appear to be printing the same con-

tent, but which are using either single or double quotation characters .

9781107000681c04_p85-219.indd 899781107000681c04_p85-219.indd 89 11/5/2011 6:26:46 PM11/5/2011 6:26:46 PM

Essential Perl90

 When you run this script you should notice that the output from line 9 may not be

what you were expecting. Any text between single quotes will print exactly as shown.

This is often desirable because you might want to print the string $x without it print-

ing the value 3. Using single quotes also means that \n loses its special meaning as a

newline character and it becomes a regular backslash character followed by the letter

“n”. This means the output from line 10 will follow immediately after the output from

line 9. The script output should look like this:

 $ perl scalar.pl

 3

 something

 something

 something

 $x $s\n3 something

 In contrast to using single quotes, any strings that are between double quotes undergo

a process called variable interpolation . This means that variables are always expanded

inside double quotes, and the print function will always show what values those vari-

ables contain.

 Example 4.2.4
 What happens if we try printing a variable that hasn’t been assigned anything? Try add-

ing the following two lines:

 11. $empty;

 12. print “This is a $empty value\n”;

 When you run the script you should fi nd that line 12 prints nothing at all for the $empty

variable (apart from the surrounding text). This sort of makes sense. If a variable doesn’t

contain anything then Perl can’t print it (or do anything else with it). As we will learn

later, we might want to be careful when trying to use these unassigned variables .

 Naming variables
 You can use (almost) anything for your variable names, though you should ideally try to

use names which are descriptive and not too long. Variables must begin with letters or

an underscore _ character. After the fi rst letter, you can use numbers too. In general, you

should use lower-case characters for your variable names. Upper-case variable names

have a special meaning (see chapter 7.3). A quick example should illustrate what makes

a good variable name. Which of the following is the best name for a variable that will

store a DNA sequence?

 $xyz = “ATGCAGTGA”; # not very descriptive

 $protein = “ATGCAGTGA”; # misleading

 $dna_sequence_variable = “ATGCAGTGA”; # needlessly long

 $sequence = “ATGCAGTGA”; # better

 $dna = “ATGCAGTAGA”; # even better

9781107000681c04_p85-219.indd 909781107000681c04_p85-219.indd 90 11/5/2011 6:26:46 PM11/5/2011 6:26:46 PM

Use warnings 91

 If you so desire, Perl allows you to assign a variable the same name as an existing

function in Perl. However, this can sometimes lead to confusion – a variable named

 $print might look a bit too similar to the print() function. Sometimes, though, the

choice of variable name is obvious: $length is often a good name for variables that

contain the length of something, even though there is also a length() function in Perl

(which we will learn about later).

 As shown in the example above, variable names can contain underscore characters to

separate “words.” This is often useful and helps make things easier to understand:

 $first_name = ”Harry”;

 $second_name = “Potter”;

 Hopefully you noticed that even though these two variable names are different lengths,

the second-half of each line of code is aligned to each other. This was done by adding an

extra space after $first_name . We hope that you agree that this makes things look

tidier and easier to read. There are lots of situations where adding spaces will make your

code appear clearer. Note that the following lines are all treated by Perl in exactly the

same way :

 $dna = “ATGCAGTGA”; # one space either side of the ‘ = ‘ sign

 $dna=“ATGCAGTGA”; # no spaces either side of the ‘ = ‘ sign

 $dna = “ATGCAGTGA”; # lots of spaces!

 Mutate your program. Try removing the $ from lines 3 and 5 and see what error

message(s) you get.

 Modify the program by changing the contents of the variables. Observe the output. Try

experimenting by creating more variables.

 What happens when you assign the contents of one variable to another variable? E.g.:

 $x = 100;

 $y = $x;

 Perl allows you to assign a string to a variable in a few different ways. What do you

think the difference is between the following (try printing the variable after each new

assignment)?

 $favorite_food = cheeseburgers;

 $favorite_food = ‘ cheeseburgers ‘ ;

 $favorite_food = “cheeseburgers”;

 4.3 Use warnings

 You have been warned!
 You’ve just written your fi rst few Perl scripts and this may have caused you to get giddy

and lightheaded as you experience the joys of seeing working Perl code in action. This

Problem

4.2.1

Problem

4.2.2

Problem

4.2.3

Problem

4.2.4

9781107000681c04_p85-219.indd 919781107000681c04_p85-219.indd 91 11/5/2011 6:26:46 PM11/5/2011 6:26:46 PM

Essential Perl92

section aims to bring you back down to earth, as we are now going to ask you to rewrite

all of the scripts you’ve just written.

 There are several habits that are widely considered to be “good working practices”

when writing Perl scripts. However, they are not always the easiest concepts to explain

(especially when you have just started to learn Perl) and so we will introduce them in

bite-sized chunks.

 The fi rst “good practice” we want to introduce stems from the fact that Perl is a very

tolerant programming language. It will often attempt to understand what you are trying

to do even if you haven’t written the code in the best possible way. This can be a good

thing, particularly if you are a sloppy programmer. However, this can also be a bad thing

as it will very possibly make you a sloppy programmer. Fortunately, Perl has a few ways

of forcing you to write better code and by “better,” we mean more accurate, understand-

able code that is less prone to causing unintended effects.

 Example 4.3.1
 The fi rst, and perhaps easiest, way to get Perl to improve our code is by making it warn

us when we are doing something stupid or undesirable. We can achieve this by adding a

single line of code to the header section of our scripts:

 1. # helloworld.pl by _insert_your_name_here_

 2. use warnings;

 3. print(“Hello World!\n”);

 Understanding the script
 Line 2 is the only difference between this script and the original version. This line effect-

ively tells Perl that we would like to be warned if we start writing certain types of “bad”

code. You can read this line of code as saying “Before we go any further with this script,

please turn on all of the extra checks that are specifi ed in the set of rules called warn-
ings .” Technically, these sets of rules are known as pragmas and Perl has more than 40

of them. However, in common practice you will probably only ever use a few of them.

 When you run this script you might be disappointed to see that the new use warn-

ings; line makes no difference whatsoever. This is because the script doesn’t contain

any code that would cause a warning. However, as you don’t yet know what all of the

bad things are that might cause warnings, you should get into the habit of including this

line in every script you write. This is another point that bears repeating:

 Always, always, always include “use warnings” in your Perl scripts!

 Example 4.3.2
 Let’s write a script where the warnings pragma will actually be of use.

 1. # warn.pl by _insert_your_name_here_

 2. # use warnings;

9781107000681c04_p85-219.indd 929781107000681c04_p85-219.indd 92 11/5/2011 6:26:46 PM11/5/2011 6:26:46 PM

Use warnings 93

 3.

 4. $dna = actgagtag;

 5. print “DNA is $dna\n”;

 6.

 7. $peptide = ‘ MYAGWRREKP ‘ ;

 8. print “Peptide is $peeptide\n”;

 Understanding the script
 Line 2 contains the use warnings; statement, but note that it is deliberately com-

mented out 5 so that Perl will ignore it (don’t worry, we will uncomment it soon).

 Line 4 assigns a string to a variable called $dna, and the following line attempts

to print the contents of that variable. Notice that we don’t use any quotation characters

around the DNA string.

 Line 7 assigns a string to a new variable ($peptide), but this time we use single

quotes. Finally, line 8 attempts to print the contents of $peptide but there is a delib-

erate typo here and $peptide is misspelled as $peeptide .

 Save this script as warn.pl. If you run this script you should fi nd that Perl does not

complain and just prints the following (expected) output:

 DNA is actgagtag

 Peptide is

 However, if we now uncomment line 2 to turn on warnings and then re-run the script

(making sure we save the changes fi rst), we should see some new output:

 Unquoted string “actgagtag” may clash with future reserved word at warn.pl line 4.

 Name “main::peeptide” used only once: possible typo at warn.pl line 8.

 Name “main::peptide” used only once: possible typo at warn.pl line 7.

 DNA is actgagtag

 Use of uninitialized value $peeptide in concatenation (.) or string at warn.pl line 8.

 Peptide is

 Among the four error messages that now appear, you should still notice that the script

still includes the same two lines of output as before. So what is happening here? By turn-

ing on warnings, Perl is now telling us about various things that might be problematic,

but it will still run the script.

 First, Perl warns us that “actgagtag” is an unquoted string (which it is) and it there-

fore might clash with a future reserved word. This just means that it might be possible

that in some future version of Perl “actgagtag” might actually become the name of a

built-in function (like print). This is obviously unlikely with a string such as “act-

gagtag” but what if the string you were assigning to $dna was just “tag”. It’s easier to

imagine “tag” being used as the name of a function. So this warning is a reminder that

we should always use quote characters (either single or double) when assigning a string

 5 Remember that Perl ignores code that follows any hash character (see Chapter 4.1).

9781107000681c04_p85-219.indd 939781107000681c04_p85-219.indd 93 11/5/2011 6:26:47 PM11/5/2011 6:26:47 PM

Essential Perl94

to a variable. This makes it clearer to Perl (and hopefully to you too) that you are just

working with a string. 6

 Next, Perl tells us that the variables “main::peeptide” and “main::peptide” are used

only once. Please ignore the “main::” part for now. 7 Generally when we introduce a

variable in a script we should be doing something with it apart from just declaring it

and assigning it a value. Perl spots when this might be the case and warns accordingly.

If we correct the $peeptide variable name this error should disappear because we

are now assigning a value to the variable $peptide and doing something with it.

This warning message will help you catch lots of typos that you make (and you will
make typos).

 Finally, the warnings pragma gives us an error message that will become very

familiar to you as you learn to program in Perl: “Use of uninitialized value .” This will

appear every time you try to do something with a variable that doesn’t contain any-

thing. We generally assume that variables should contain things; it makes no sense to

try printing a variable if it is empty. This is one of the most common error messages

you will see (assuming you have turned warnings on) and at times you might even

regret asking Perl to warn you about such things. Just bear in mind that, overall, the

usefulness of seeing all these warning messages far outweighs their annoyance. By

including the use warnings; line in your scripts, Perl will help you catch many

typos and will also alert you to errors in your code and to errors in the data you might

be trying to process.

 If your script produces error messages because of the warnings pragma, then you

should always try to fi x those errors straight away. Do not ignore these errors . Your code

will be better code if you fi x them, and in many cases your code might not work properly

(or at all) if you don’t fi x them. This point is worth repeating :

 A good script should not report any warnings!

 It is important to put the use warnings; line near the top of your script (i.e., in the script

“header” section). Try moving line 2 from the above script to line 6 (making sure it is

uncommented). What happens when you run the script?

 4.4 Maths and functions

 Summing up, Perl is very functional
 Perl, like most programming languages, supports a variety of mathematical operators

and functions. This makes it easy to perform most common mathematical tasks that you

might want to do. Let’s experiment with some of these.

 6 You code editor should highlight strings in a different color. This is very helpful because it helps you catch errors before

you run the program. If you are not seeing text in different colors, examine the help documentation for your editor and

look for syntax highlighting options.

 7 See Chapter 6.2 for more information.

Problem

4.3.1

9781107000681c04_p85-219.indd 949781107000681c04_p85-219.indd 94 11/5/2011 6:26:47 PM11/5/2011 6:26:47 PM

Maths and functions 95

 Example 4.4.1
 Write the program below, save it as math.pl , and then run it.

 1. # math.pl

 2. use warnings;

 3.

 4. $x = 3;

 5. $y = 2;

 6. $sum = $x + $y;

 7. print “Sum of $x and $y is $sum\n”;

 Understanding the script
 Lines 4 and 5 declare two variables and assign a numerical value to each. Notice that we

don’t add quotation marks around the numbers. This is deliberate and we shall return to

this issue shortly.

 Line 6 declares a new variable and rather than assign it a fi xed value or string, it is

assigned whatever the result of adding $x to $y is.

 It would be wrong if Perl only allowed you to add numbers. Like all programming

languages, Perl lets you perform the full range of mathematical operations (addition,

subtraction , division, multiplication , etc.). Furthermore, like most other programming

languages, Perl uses the standard shorthand symbols for division (/) and multiplication

(*). Let’s see all of these operators in action.

 Example 4.4.2
 Add the following lines to your script, but don’t add them all at once. Instead, this

time we are going to take a slightly different strategy. The program is getting longer.

If you type the whole thing and accidentally add lots of errors, it will become diffi cult

to debug. So instead, write only a few lines, and then save the script. Run the program,

and observe the output. Debug the script if there are any error messages. Try to get into

the habit of checking your program as you write it, and not only at the end, when it is

fi nished. As you get more experience, you will gain skill and confi dence and will not

need to check as frequently.

 8. print “$x plus $y is “, $x + $y, “\n”;

 9. print “$x minus $y is “, $x - $y, “\n”;

 10. print “$x times $y is “, $x * $y, “\n”;

 11. print “$x divided by $y is “, $x / $y, “\n”;

 12. print “$x modulo $y is “, $x % $y, “\n”;

 13. print “$x to the power of $y is “, $x ** $y, “\n”;

 Understanding the script
 Lines 8–13 perform a variety of mathematical operations with $x and $y . Notice that

we are not assigning the results of each mathematical operation to any variable. Instead

the results are printed directly to the screen. We can do this because the print()

9781107000681c04_p85-219.indd 959781107000681c04_p85-219.indd 95 11/5/2011 6:26:47 PM11/5/2011 6:26:47 PM

Essential Perl96

function allows you to print a list of arguments (separated by commas), and mathemat-

ical operations are processed before the arguments are sent to the print() function.

 This means that when Perl sees line 8, it realizes that it has to print three separate

things. First, there is the text string “$x plus $y is “ ; because this string is in

double quotes, Perl will check to see if it contains any variables and then replaces the

variable name with the contents of that variable. Next, Perl prints the result of $x +

$y . Because this text isn’t between quotes, Perl knows that you want to actually do the

math rather than print it as a string. Finally, the third argument to the print function is

the newline character.

 Line 12 contains the modulo operator % , which is something you may not have seen

before. Modulo gives the remainder after an integer divide. For example, 7 % 2 equals 1

because 7 divided by 2 is 3 with remainder 1.

 Numeric functions
 In addition to the mathematical operators we’ve just seen, there are a number of built-in

numeric functions : e.g., abs(), int(), log(), rand() , sin() . So far we have

only seen one Perl function, which is print() . Many functions in Perl are easy to

understand because they perform one specifi c operation on one specifi c value. The next

example illustrates this.

 Example 4.4.3
 Add the following lines to the program, run it, and observe the output.

 14. print “the absolute value of -$x is “, abs(-$x), “\n”;

 15. print “the natural log of $x is “, log($x), “\n”;

 16. print “the square root of $x is “, sqrt($x), “\n”;

 17. print “the sin of $x is “, sin($x), “\n”;

 18. print “a random number up to $y is “, rand($y), “\n”;

 Understanding the script
 Lines 14–17 behave in an identical way to lines 8–13, but we are now using some math-

ematical functions to transform our value of $x . Note how we are just inserting a single

value between the parentheses of the function. In this case the value in question is spe-

cifi ed by a variable ($x), but we could also use actual numbers or pieces of math that

would calculate a number, e.g.: sqrt(4) , sqrt(4 + 12) .

 Line 18 uses the rand() function, which generates a fractional 8 random number

between 0 and the number that you specify inside the parentheses. Being able to gener-

ate random numbers is very useful and provides a foundation for being able to perform

simulations. You should test that each time you run the script, this line of the code is

indeed producing a different random number.

 8 In a computer, numbers are generally stored either as integers or fl oating point numbers. Perl hides these details from you.

9781107000681c04_p85-219.indd 969781107000681c04_p85-219.indd 96 11/5/2011 6:26:47 PM11/5/2011 6:26:47 PM

Maths and functions 97

 Combining multiple functions at once
 Functions are incredibly useful in Perl, particularly because we can sometimes place

one function call inside another . We often want to generate random integers but as you

have just seen, the rand() function generates fractional numbers. Luckily, Perl has an

 int() function to turn fractional numbers into integers.

 Example 4.4.4
 Add the following line to your script to make your code generate a random integer.

 19. print “a random integer up to $sum is “, int(rand($sum)), “\n”;

 Understanding the script
 Notice how we place the rand() function call inside the int() function call. You

might be wondering how Perl knows what to do with these nested function calls. It

makes no sense to calculate the integer part of the code until you have fi rst generated the

random number. In situations like this, Perl will fi rst attempt to resolve the inner-most

part of the code. Once the rand() function returns a number, then this can be passed

to the int() function. 9

 This part of the code could have also been written as int rand $sum . This is

another example where you can omit parentheses if you like. But just because you can,

doesn’t always mean that you should.

 Hopefully, you also noticed that this line reuses the $sum variable from earlier in

the script. If we didn’t reuse the variable we could instead write $x + $y instead of

 $sum . However, if we then changed our mind and wanted $sum to be the product of $x

and $y we would have to change our code in three separate places. By using $sum as

a container for whatever our desired mathematical operation is, we only have to change

the one line which fi rst defi nes $sum . The idea of reusing code is an important one and

we elaborate on it in Chapter 7.4 .

 Operator precedence
 Let’s quickly discuss something called operator precedence . Some operators have

higher precedence than others. We’re used to seeing this in math where multiplication

and division come before addition and subtraction: 3 + 2 × 5 = 13. If you want to force

addition before multiplication, you can do this as (3 + 2) * 5 = 25. Perl has a lot of opera-

tors in addition to the mathematical operators and there are a lot of precedence rules.

Don’t bother memorizing them. The universal precedence rule is this: Multiplication

comes before addition, use parentheses for everything else.

 9 This whole line of code will be processed by Perl in the following order:

 (1) Determine contents of $sum

 (2) Calculate random number using $sum

 (3) Pass random number to integer function

 (4) Send integer value along with text string to the print() function

9781107000681c04_p85-219.indd 979781107000681c04_p85-219.indd 97 11/5/2011 6:26:47 PM11/5/2011 6:26:47 PM

Essential Perl98

 Mathematical shortcuts
 There are a few operations that are so common that Perl provides a shorthand way of

using them. Consider the following:

 $n = 2;

 $n = $n + 5;

 In this example we have a variable ($n) which we assign an initial value of 2, and then

we add 5 to it and reassign that back to itself. The result being that $n now contains a

value of 7. To save you some time when doing this, there is a simpler way:

 $n += 5;

 The += operator takes whatever variable is on the left of the operator and increments

it by whatever value is on the right of the operator. There are similar operators for sub-

traction (-=), multiplication (*=), and division (/=). Here is a quick summary of these

operators in action (the current value of $n is included as a comment):

 $n = 8

 $n += 7; # $n is now 15

 $n /= 3; # $n is now 5

 $n -= 1; # $n is now 4

 $n *= 2; # $n is now 8

 One other useful shortcut is for when you just want to increase or decrease the value

of a variable by 1. Perl uses two operators to do this: the increment (++) and decrement

(− −) operator :

 $n = $n + 1; # the longest way to write this

 $n += 1; # a shorter way of writing the same thing

 $n++; # even easier!

 $n--; # and this subtracts 1 from $n

 Understanding Perl functions
 Earlier we mentioned how the rand() function generates a random number between

0 and the number you specify inside the function. How did we learn that, and more

importantly, how could you learn that? Whereas we sometimes like to think that pro-

grammers learn by osmosis, the more mundane truth is that every Perl function has

an associated set of documentation . One place to fi nd out about this documentation

would be the book “Programming Perl,” published by O’Reilly Media (this book also

contains a whole lot of other stuff). But you can more easily fi nd out about Perl func-

tions by going to http://perldoc.perl.org/index-functions.html. This web page provides

an A–Z list of all Perl functions, and you should really get into the habit of making sure

you understand any function you use. The functions we have seen so far (print() ,

 rand() , etc.) are relatively straightforward, but many other functions are slightly

more complex.

9781107000681c04_p85-219.indd 989781107000681c04_p85-219.indd 98 11/5/2011 6:26:47 PM11/5/2011 6:26:47 PM

Maths and functions 99

 If you are learning Perl on a Unix-based system then you can also fi nd out about

Perl functions by viewing the perlfunc man page. 10 Type the following into your Unix

terminal (you do remember that you have to press “q” to exit the man page viewer, don’t

you?):

 man perlfunc

 Here is a short script that uses the rand(), int(), and sqrt() functions on three subsequent

lines of code. Can you rewrite the script to use them all on just one line of code? Note

that this code starts by creating a random number between 0 and 100.

 1. # 3_lines_to_1.pl

 2. use warnings;

 3.

 4. $random = rand(100);

 5. $integer = int($random);

 6. $square_root = sqrt($integer);

 7. print “The answer is $square_root\n”;

 In the last chapter we mentioned how we should always make sure we enclose our

strings inside single or double quotes. And if we have use warnings; in our scripts, then

we will be warned if we don’t do this. But in the scripts in this section we have assigned

numbers to variables without using quotes, and Perl didn’t complain. What would hap-

pen if you did the following?

 1. # strings_and_numbers.pl

 2. use warnings;

 3.

 4. $x = 3;

 5. $y = ‘ 3 ‘ ;

 6. $z = “3”;

 7.

 8. $sum = $x + $y + $z;

 9.

 10. print “x is $x, y is $y, and z is $z\n”;

 11. print “The sum of x, y, and z is $sum\n”;

 What do you think the following script will print?

 1. # integers.pl

 2. use warnings;

 3.

 4. $x = 1.1;

 5. $int_x = int($x);

 10 We return to other built-in methods of getting help with Perl at the very end of this book in Chapter 7.9 .

Problem

4.4.1

Problem

4.4.2

Problem

4.4.3

9781107000681c04_p85-219.indd 999781107000681c04_p85-219.indd 99 11/5/2011 6:26:47 PM11/5/2011 6:26:47 PM

Essential Perl100

 6.

 7. $y = 1.9;

 8. $int_y = int($y);

 9.

 10. print “int_x = $int_x, int_y = $int_y\n”;

 4.5 Perl vs. perl

 Stay on the $PATH
 We’ve already asked you to go back and edit all of your Perl scripts once. Surely we

wouldn’t be so cruel as to ask you to go back and edit them again? Umm … yes we

would. Sorry. But trust us, it will be worth it.

 Up to now, every time we have wanted to run a Perl script we have gone to a Unix

terminal and typed:

 perl helloworld.pl

 Let’s consider what is happening when we type this. Perl, the programming language, is exe-

cuted on Unix systems by running perl , the command. 11 Like other Unix commands (ls ,

 cd , grep , etc.) the perl command is just a fi le that lives somewhere in the Unix directory

tree. On many Unix systems, the perl command (along with many other commands) lives

inside the /usr/bin directory. If we wanted to, we could run a Perl script by typing:

 /usr/bin/perl helloworld.pl

 We can actually take the location of the perl command and include it within each Perl

script. This means that, with a couple of other small changes, we can run Perl scripts

just by typing their names.

 Example 4.5.1
 Edit your helloworld.pl script and add one new line to the top.

 1. #!/usr/bin/perl

 2. # helloworld.pl by _insert_your_name_here_

 3. use warnings;

 4.

 5. print(“Hello World!\n”);

 Understanding the script
 This fi rst line will be added at the top of every Perl script we write from now on. This line

of code is very similar to the line that appeared at the top of our Unix shell scripts (see

 Chapter 3.29). It lets Unix know that the perl program in the /usr/bin directory 12 can

read this fi le and understand the contents. This line isn’t a comment, though it behaves

 11 This is a widely used convention for distinguishing between the programming language (Perl with an upper case “P”) and

the program that interprets your code (perl with a lower case “p”).

 12 Note that perl is usually located in /usr/bin , but on some OSs it may be elsewhere. Some people therefore prefer

using #!/usr/bin/env perl , which fi nds perl using the env command. However, there are potential security

9781107000681c04_p85-219.indd 1009781107000681c04_p85-219.indd 100 11/5/2011 6:26:47 PM11/5/2011 6:26:47 PM

Conditional statements 101

like one because Perl effectively ignores the /usr/bin/perl part. 13 If you really

wanted to get technical, this line is an example of an interpreter directive and we saw

exactly the same sort of thing when we learned about Unix shell scripts (Chapter 3.29).

 Before we can run our Perl scripts by just typing their names, we also have to do two

more things. First, we need to ensure the fi les containing the Perl code are made execut-
able by using the chmod command (see Chapter 3.27):

 chmod u+x helloworld.pl

 Second, we need to make sure the directory containing our Perl scripts has been added

to the Unix $PATH environment variable (see Chapter 3.28). If we have performed both

of these steps then we can run the script just by typing:

 helloworld.pl

 You probably only need to type the letters “hellow” and tab-completion should take

care of the rest. If you try this and it doesn’t work, you may see an error message that

looks like this:

 -bash: helloworld.pl: command not found

 The “command not found” error will appear if you have either mistyped the name of the

command, or the specifi ed fi le is not in any directory that is in your $PATH . This might

also mean you have not changed your $PATH to include the directory containing your

Perl scripts. If you don’t see any error message then this means you should now be able

run your helloworld.pl script (and any other scripts in your Code directory) from any

directory on the fi lesystem. Test this by navigating to your root directory and checking

that you can still run helloworld.pl just by typing its name.

 4.6 Conditional statements

 If you understand this, then you are making progress
 Conditional statements are one of the foundations of programming. In their simplest

form, a conditional statement is simply: if condition , then do something. The condition

is some kind of test that must evaluate to either being true or false (programming lan-

guages don’t recognize the concept of “maybe”).

 The if statement
 The basic structure of an if statement in Perl is:

 if (condition) {

 code to be executed if condition is true

 }

risks with this method. We prefer /usr/bin/perl . If your perl binary is located in another directory, you can

simply add a symbolic link to /usr/bin (but, you’ll need to read about symbolic links fi rst … see the ln man page).

 13 It is possible to add a number of optional arguments to this line which control various aspects of how Perl runs the

program. So bear in mind that this line isn’t always ignored.

9781107000681c04_p85-219.indd 1019781107000681c04_p85-219.indd 101 11/5/2011 6:26:47 PM11/5/2011 6:26:47 PM

Essential Perl102

 Example 4.6.1
 The easiest conditional statement to learn is one that just tests whether two numbers

are equal to each other. Write the following code and save it as a new fi le (condi-

tional.pl). Notice that the header section of our script has now grown to three lines

and we have added a blank line after this section. Hopefully you will agree that the use

of blank lines keeps the different parts of the code clearly separated. Also note that on

line 9 there are two equals signs stuck together. This is not a mistake! Before you run

this script, remember to make it executable by using the chmod command (see previous

chapter). 14

 1. #!/usr/bin/perl

 2. # conditional.pl

 3. use warnings;

 4.

 5. $x = int(rand(2));

 6. $y = int(rand(2));

 7. print “x = $x, y = $y\n”;

 8.

 9. if ($x == $y) {

 10. print “x is equal to y\n”;

 11. }

 Understanding the script
 Lines 5 and 6 randomly assign $x and $y either a 0 or 1. Line 9 contains the conditional

statement and uses the == operator to test whether $x and $y are numerically equal .

Half of the time you run this script, $x and $y will have equal values. When they do,

line 10 prints their value. It is important to realize that line 10 is only evaluated if the

condition on line 9 is true.

 The condition is placed within parentheses and is then followed by an opening curly

brace character “ { ”. This denotes the start of a block of code , and when we start a block

we must always end it with a closing curly brace “ } ”; typically this is placed on its own

line as is the case with line 11.

 Note that this code between curly braces is indented . Indenting is used to show the

logical hierarchy of your code. The spacing is achieved by using a tab character. Many

code editors will be smart enough to put tabs in for you automatically.

 Did you notice that not every line in this script ended with a semicolon ? Lines with

opening or closing braces do not get semicolons.

 One of the most common errors of novice programmers is using a single equals sign to

test for equality. For example, if ($x = $y) . When this happens, $x is assigned the

 14 Remember, you will have to do this for every new script you create. Because fi le permissions are also copied when you

copy a fi le, you might want to make a Perl script “template” fi le. This will simply include the fi rst few lines from the

header section (but with the script name left blank). Make this template fi le executable and then simply copy it for each

new script you work on.

9781107000681c04_p85-219.indd 1029781107000681c04_p85-219.indd 102 11/5/2011 6:26:48 PM11/5/2011 6:26:48 PM

Conditional statements 103

value of $y . Not only does this destroy the value of $x , but it also makes the conditional

statement always true . 15

 Numerical comparison operators
 In addition to == , there are several other numerical comparison operators . These behave

in the same way as their mathematical counterparts.

Operator Meaning Example

 == equal to if ($x == $y)

 != not equal to if ($x != $y)

 > greater than if ($x > $y)

 < less than if ($x < $y)

 >= greater than or equal to if ($x >= $y)

 <= less than or equal to if ($x <= $y)

 Try changing line 9 of conditional.pl to use other numerical operators. For example,

print when $x and $y are not equal (you might want to change the print statement

too).

 9. if ($x != $y) {

 Alternation with if – else
 Being able to do something if a certain condition is met is a very useful feature of pro-

gramming languages. However, we might also want to do something else if the condi-

tion isn’t met. For example, if the cinema isn’t sold out then watch fi lm, else go home.

This is very straightforward in Perl.

 if (condition) {

 code to be executed if condition is true

 } else {

 code to be executed if condition is false

 }

 We use else to start a new block of code that will only be executed if the condition

is not met. It is important to understand that in any if–else statement, one of the two

blocks of code must be executed – a condition is either true or false, it can never be true

 and false. 16 As we are creating a new block of code, we once again use opening and clos-

ing curly braces to denote the start and end of the block. Add these lines to your program

from Example 4.6.1 (only lines 11–13 are new).

 15 Operators and functions often return values that are interpreted as true or false. Variable assignments return true if they

succeed, and they always succeed.

 16 Maybe if Schr ö dinger’s cat wrote Perl, then something could be both true and false.

9781107000681c04_p85-219.indd 1039781107000681c04_p85-219.indd 103 11/5/2011 6:26:48 PM11/5/2011 6:26:48 PM

Essential Perl104

 9. if ($x == $y) {

 10. print “x is equal to y\n”;

 11. } else {

 12. print “x is not equal to y\n”;

 13. }

 This new code now ensures that we always see some printed output no matter what the

combination of $x and $y are .

 Alternation with if – elsif – else
 Sometimes we might want to specify more than one test condition. Perl allows us to do

this very easily with the use of elsif statements. 17 The syntax for an if–elsif–else

statement looks like this:

 if (condition 1) {

 code to be executed if condition 1 is true

 } elsif (condition 2) {

 code to be executed if condition 2 is true

 } else {

 code to be executed if condition is false

 }

 We now have three blocks of code, but it is still the case that only one block of code will

ever be executed. If condition 1 is true, then Perl doesn’t even bother to look at what

condition 2 is. As long as you have one if statement, you can follow it with as many

 elsif statements as you want. Although you don’t have to end with an else state-

ment, it is usually a very good idea to do so if you want to make sure at least one of the

conditions is executed.

 If the results of the if and elsif conditional tests result in a single statement, it

is sometimes better to break out of the typical block structure, and format your code

slightly differently:

 if ($x == 1) {$y = 1}

 elsif ($x == 2) {$y = 2}

 elsif ($x == 3) {$y = 3}

 else {$y = 0}

 Notice that we have added spacing after if and else to ensure that all the conditions

and assignments line up. This not only makes your code easier on the eyes, it also helps

catch some kinds of bugs before they happen. Also note that there are no semicolons in

this syntax . 18

 17 Note the somewhat unusual spelling of elsif . You might fi nd yourself writing “elseif” by mistake.

 18 The last line of a block does not require a semicolon. Usually it is a good idea to add one anyway. Here, omitting the

semicolons makes the code look better.

9781107000681c04_p85-219.indd 1049781107000681c04_p85-219.indd 104 11/5/2011 6:26:48 PM11/5/2011 6:26:48 PM

Conditional statements 105

 Nested conditionals
 Conditional statements can contain other conditional statements. To show the hierarchy,

we will increase the indentation of the code, again by using the tab character.

 Example 4.6.2

 1. #!/usr/bin/perl

 2. # nested_conditional.pl

 3. use warnings;

 4.

 5. $x = int rand 20;

 6. print “x is $x\n”;

 7.

 8. if ($x < 10) {

 9. print “$x has a single digit\n”;

 10. if ($x % 2 == 0) {

 11. print “$x is an even number\n”;

 12. }

 13. }

 Understanding the script
 Line 5 creates a random number which is then printed on line 6. Note how we have

omitted the parentheses from the int() and rand() functions. Line 8 starts a nested

conditional and then we add a second conditional statement on line 10. The print state-

ment on line 11 will only be executed if $x is less than 10 and $x is an even number.

In case you forgot what the % operator does, it performs an integer divide and returns

the remainder.

 Note the extra indentation on line 11; it is common to see Perl scripts with many

levels of indentation. With experience, it becomes easy to glance at a Perl script and see

which parts of the code are at “the same level.”

 Evaluating truth in Perl
 So far we have shown you that we can use conditional statements to test whether certain

mathematical operations evaluate to true or false. But Perl, along with most program-

ming languages, will let you test whether anything evaluates to true or false. This can

initially seem strange, but it becomes a very powerful part of programming. Compare

the following:

 if ($x > 0) { code if true }

 if ($x) { code if true }

 The second example might confuse you. What does it mean to ask whether a variable

(or string) is true? Well, in Perl, most things evaluate as (logically) true, and it is there-

fore more important to fi rst consider what is evaluated as false. Zero is logically false.

9781107000681c04_p85-219.indd 1059781107000681c04_p85-219.indd 105 11/5/2011 6:26:48 PM11/5/2011 6:26:48 PM

Essential Perl106

An empty string is logically false. All other values are true . 19 So in the above example,

 $x could contain any number apart from 0, and it would evaluate as being true. It could

also contain any text string apart from ““ (an empty string).

 Testing whether a variable evaluates as true is used a lot as part of checking data. If

the contents of a variable were imported from a data fi le, then we might want to warn (or

stop the script) if the variable is empty.

 Logical (Boolean) operators
 Perl provides the logical operators and , or , and not , which allow you to chain condi-

tions together. These work a lot like they do in language. The conditional code from

Example 4.6.2 could therefore be rewritten like this:

 if ($x < 10 and $x % 2 == 0)

 It can become confusing if you chain a lot of conditions together, so keep things simple

for now and don’t use more than one Boolean operator at a time. Later, we will see that

Boolean operators are very convenient for chaining statements together.

 In addition to and , or , and not , Perl also has some funny symbols that mean

exactly the same thing: 20 && means “and,” || means “or,” ! means “not.”

 if ($x < 10 && $x % 2 == 0)

 The unless statement
 There are times when you want to test if something is not true. In Perl, we can do this

using two different syntaxes, using either not or ! :

 if (not $x) { code if not true }

 if (!$x) { code if not true }

 As an alternative, you can also use the unless statement. You cannot use elsif with

 unless , but you can use an else .

 unless ($I_am_sick) {

 $go_to_work = 1;

 } else {

 $stay_in_bed = 1;

 }

 Postfi x notation
 In English, we could say “if I have money, go to the store” or “go to the store if I have

money,” and they both have the same meaning. Perl allows you to do the same thing.

This is called postfi x notation . You do not need the parentheses around the conditional

 19 Undefi ned values are also logically false, but you should never see undefi ned values because you should always include

the use warnings pragma.

 20 They have lower operator precedence but otherwise work exactly in the same way. We prefer using the English-language

versions and not the funny symbols.

9781107000681c04_p85-219.indd 1069781107000681c04_p85-219.indd 106 11/5/2011 6:26:48 PM11/5/2011 6:26:48 PM

Conditional statements 107

statement in postfi x notation. As you can see, this reads very well. You can’t use elsif

or else with postfi x notation.

 $go_to_work = 1 unless $i_am_sick;

 $go_to_bed = 1 if $i_am_sick;

 We like using postfi x notation for one-line conditionals, but the typical if – elsif – -

else is the most common conditional construct.

 Trinary operator
 For very quick if – else statements, Perl also provides the trinary operator . Consider

the following typical conditional construct:

 if ($i_am_sick) {

 $go_to_work = 0;

 } else {

 $go_to_work = 1;

 }

 The following code does the exact same thing:

 $go_to_work = $i_am_sick ? 0 : 1;

 We don’t advocate using the trinary operator because it rarely makes code more read-

able. We only use it for very simple statements like the one above.

 Numeric precision and conditionals
 Although Perl hides the details, numbers in a computer are generally stored either as

 integer or fl oating point (decimal) numbers. Both ints and fl oats have minimum and

maximum values, and fl oats have limited precision. You have probably run into these

concepts with your calculator. If you keep squaring a number greater than 1.0 you

will eventually run into an overfl ow error. In Perl, this will happen at approximately

1e + 308. Similarly, if you repeatedly square a number less than 1.0, you will eventu-

ally reach an underfl ow error. In Perl, the closest you can get to zero is approximately

1e − 308.

 Floating point numbers do not have the exact value you may expect. For example, 0.1

is not exactly one-tenth. Perl sometimes hides these details. Consider the following:

 $x = 0.1 + 0.1 + 0.1;

 $y = 0.3;

 $answer = $x – $y;

 From this code you might expect $answer to store a value of zero. However, if you

tried printing out the value you would see that it equals some very small number such as

5.55111512312578e − 17. This is because adding the imprecise 0.1 three times does not

result in the same value as the imprecise 0.3.

 Since fl oating point numbers are approximations, you should not compare them in

conditional statements. Never ask whether ($x == $y) if the values are both fl oats

9781107000681c04_p85-219.indd 1079781107000681c04_p85-219.indd 107 11/5/2011 6:26:48 PM11/5/2011 6:26:48 PM

Essential Perl108

because, as we have just seen, 0.3 is not necessarily equal to 0.3. Instead, you should use

the abs() function to ask if their absolute difference is smaller than some acceptable

threshold value :

 $threshold = 0.001;

 if (abs($x – $y) < $threshold) {print “close enough\n”}

 4.7 Use strict

 A little bit of discipline can be good for you
 We’re afraid to tell you that, once again, we are going to introduce a topic that means

you should go back and rewrite your existing scripts. But we promise you that this will

be the last time we do this. 21 Compared to the last two set of changes that necessitated

rewriting your scripts, this one is probably the most important, but it is also the most

complex to fully explain. Since you just started programming, we will have to defer

some of the discussion until later.

 Imagine you are having a dinner party and you invite three friends: Alex, Jo, and

Chris. You set the table for four, serve the meal, and start a conversation. Someone

casually mentions their friend Dominique and suddenly Dominique is teleported into

the house and you have another mouth to feed. In reality, this doesn’t happen; but in

Perl, it does! Whenever you mention a new variable name, it automagically 22 springs

into life (and stays with your program even if you ask it to leave). Let’s see this

in action.

 Example 4.7.1
 Create the following program which fl ips a virtual coin. Half of the time, the program

will print “<heads>” and half of the time “<tails>”. Note that use warnings is delib-

erately omitted for now (we will add it back in the next chapter).

 1. #!/usr/bin/perl

 2. # coin.pl

 3.

 4. if (rand(1) < 0.5) {$coin = ‘ heads ‘ }

 5. else {$coin = ‘ tails ‘ }

 6. print “<$coin>\n”;

 Understanding the script
 There’s something slightly magical happening here, though it might not seem so. The

variable $coin is created either in line 4 or line 5 and its contents are printed on

line 6.

 21 Though we reserve the right to change our minds.

 22 We did not make up this word. It is used a lot in the Perl community.

9781107000681c04_p85-219.indd 1089781107000681c04_p85-219.indd 108 11/5/2011 6:26:48 PM11/5/2011 6:26:48 PM

Use strict 109

 Example 4.7.2
 Now remove line 5 and run the program again.

 1. #!/usr/bin/perl

 2. # coin.pl

 3.

 4. if (rand(1) < 0.5) {$coin = ‘ heads ‘ }

 5.

 6. print “<$coin>\n”;

 Understanding the script
 Half of the time, the program prints “<heads>” as before. The other half of the time it

prints “<>”. In this case $coin does not exist until the print statement. This might

not seem magical to you, but trust us, it is! Perl variables are created whenever you need

them. And in the case of line 6, the need can be in the middle of a print statement.

 Example 4.7.3
 Just to make sure you really understand this, add line 5 again, but this time misspell

 $coin as $cool .

 1. #!/usr/bin/perl

 2. # coin.pl

 3.

 4. if (rand(1) < 0.5) {$coin = ‘ heads ‘ }

 5. else {$cool = ‘ tails ‘ }

 6. print “<$coin><$cool>\n”;

 Understanding the script
 This program creates two different variables depending on the random number. Nobody

would do this intentionally, yet there is apparently nothing wrong with it from Perl’s

perspective. You could catch this kind of error with use warnings , but it would be

better to prevent such errors.

 use strict
 The strict pragma helps prevent a variety of common errors. There is a tiny amount

of extra work involved, but it is completely worth it. If your program includes use

 strict , Perl no longer creates variables automagically. You must declare your vari-

ables with the my keyword before you use them. This is very simple. Let’s revisit the

coin-fl ipping program.

 Example 4.7.4
 This will be your fi rst script with the use strict pragma in place, but it will defi nitely

not be your last!

9781107000681c04_p85-219.indd 1099781107000681c04_p85-219.indd 109 11/5/2011 6:26:48 PM11/5/2011 6:26:48 PM

Essential Perl110

 1. #!/usr/bin/perl

 2. # coin.pl

 3. use strict;

 4.

 5. my $coin;

 6. if (rand(1) < 0.5) {$coin = ‘ heads ‘ }

 7. else {$coin = ‘ tails ‘ }

 8. print “<$coin>\n”;

 Understanding the script
 We fi rst turn on the strict pragma by including the use strict statement on line 3.

This behaves just like the warnings pragma that we have already seen. As soon as Perl

gets to this line, it will turn on a new set of rules that the rest of the script will have to

comply with.

 Line 5 declares that you want to create a variable called $coin. We do this by using

the my keyword. Lines 6 and 7 no longer create $coin , they only set its value.

 What exactly does my do? It asks Perl to create some memory. The memory is not

assigned to any particular value. This happens later. You do this kind of thing in every-

day life. For example, you grab a piece of paper for a grocery list. Later, you add items

to the list. When you grab the paper, you are effectively saying “Let this piece of paper

be an empty grocery list.” In the same way, on line 5, you are telling Perl, “let $coin

represent an empty coin.” It gets fi lled with “heads” or “tails” on lines 6 and 7.

 Let’s see what happens when an uninvited guest tries to steal a meal at our imaginary

dinner table when we use strict .

 Example 4.7.5
 Note that on line 7 we once again misspell $coin as $cool . Previously, $cool

showed up (and didn’t leave). Time to get strict!

 1. #!/usr/bin/perl

 2. # coin.pl

 3. use strict;

 4.

 5. my $coin;

 6. if (rand(1) < 0.5) {$coin = ‘ heads ‘ }

 7. else {$cool = ‘ tails ‘ }

 8. print “<$coin>\n”;

 Now when you run the program you will see the following error message:

 Global symbol “$cool” requires explicit package name at coin.pl line 7.

 Alright, an error message! But what are “global symbols” and “explicit package

names”? Since we hated when our parents said “we’ll tell you when you’re older,” we

9781107000681c04_p85-219.indd 1109781107000681c04_p85-219.indd 110 11/5/2011 6:26:49 PM11/5/2011 6:26:49 PM

Use strict 111

will give you a brief explanation at the end of this chapter. But if it seems a little com-

plex, don’t worry – you will get it when you’re older. The main take-away message

here is that misspelled variable names are now an error that will prevent your program

from running .

 Scope
 Scope can be a confusing topic. If this section makes your head hurt, feel free to come

back to it later. But please take this one piece of advice with you:

 Always use strict!

 Variables declared with my are called lexical variables . Lexical variables exist within

a hierarchy defi ned by block structure (as denoted by use of curly braces). A lexical

variable exists from the line where it is declared until the closing curly brace. Note that

every fi le is also a block, so you can imagine that there are invisible curly braces at the

start and end of every fi le. This means that all of your Perl scripts will always contain at

least one block of code .

 Example 4.7.6
 Create the following program and run it. The output should be x=1 y=2 .

 1. #!/usr/bin/perl

 2. # scope.pl

 3. use strict;

 4.

 5. my $x = 1;

 6. if ($x == 1) {

 7. my $y = 2;

 8. print “x=$x y=$y\n”;

 9. }

 10.

 Understanding the script
 In this program, $x is created on line 5 and exists until the end of the program (which

in also the end of a block). This is not true of $y , which is created on line 7 and exists

only until line 9. At line 10, $y no longer exists. To use the technical jargon, we say that

 $y is in the scope of the block containing the conditional (if) statement. 23 One of the

reasons we indent code inside blocks is to show that all the indented statements belong

to the block. That is, $y belongs to the block from lines 6–9. It does not exist outside

this scope.

 23 If you fi nd the use of the phrase “in the scope of” confusing, you can replace it with “seen by” or “available to.”

9781107000681c04_p85-219.indd 1119781107000681c04_p85-219.indd 111 11/5/2011 6:26:49 PM11/5/2011 6:26:49 PM

Essential Perl112

 To illustrate this concept further, let’s intentionally break the program by violating

the scope of $y . Let’s try to make the program “see” $y in a place where $y should

never be seen.

 Example 4.7.7
 This program is the same as the previous one, except we have moved the print

statement of line 8 to the end of the script. Observe what happens when you run the

program.

 1. #!/usr/bin/perl

 2. # scope.pl

 3. use strict;

 4.

 5. my $x = 1;

 6. if ($x == 1) {

 7. my $y = 2;

 8. }

 9. print “x=$x y=$y\n”;

 You should see an error that reports:

 Global symbol “$y” requires explicit package name at scope.pl line 9.

 Understanding the script
 We’ve seen this kind of error message before. But that was when a variable was mis-

spelled. There isn’t anything misspelled here. The reason for the error is that lexical

variables live and die within block structure (memory is allocated to them when they are

declared and freed at the closing brace in the same scope). The variable $y is “born” on

line 7 and “dies” on line 8. You can’t print $y at line 9 because $y doesn’t exist any-

more. It only existed within the scope of where it was declared. Note that $x is “alive”

from line 5 until the end of the fi le. $x does not die until the program ends.

 A variable is said to have global scope if it is available to the entire program. A vari-

able with local scope has a more restricted availability. In the examples above, $x has

global scope and $y is local to the conditional statement. In general, you should declare

your variables in the most local scope possible. That way they won’t interfere with

variables in some other part of the program. This helps prevent some of the worst kinds

of bugs (those that are syntactically correct but semantically erroneous). Now let’s see

what happens when two variables in different scopes have the same name.

 Example 4.7.8
 Run the following script.

 1. #!/usr/bin/perl

 2. # scope.pl

9781107000681c04_p85-219.indd 1129781107000681c04_p85-219.indd 112 11/5/2011 6:26:49 PM11/5/2011 6:26:49 PM

Use strict 113

 3. use strict;

 4.

 5. my $x = 1;

 6. my $y = 3;

 7. if ($x == 1) {

 8. my $y = 2;

 9. print “inside: x=$x y=$y\n”;

 10. }

 11. print “outside: x=$x y=$y\n”;

 Understanding the script
 In this program, $y is declared twice, once outside the conditional and once inside. The

output shows that the two $y variables are completely separate. The declaration of $y

on line 8 is local to the if block. Within this inner scope, the new $y masks the more

global $y that was declared on line 6. It is common, and often desirable, to reuse vari-

able names within a program. As long as those variables are in different blocks of code,

i.e., they all have a different scope, this will not cause any problems .

 Why strict is essential
 With lexical variables, you can make sure whatever happens in a block stays in the

block and doesn’t unknowingly affect variables in a more global scope. This concept

becomes increasingly important as your programs grow in length and complexity. If

you use global variables , you have to keep track of all the variable names to make sure

you don’t unintentionally overwrite some variable used in another part of the program.

With lexical variables, each block can have its own set of private variable names. Not

only will this improve your ability to focus on the task at hand, it will also help you

share code among your programs and with other people. The real power of program-

ming comes when you join your code to other people’s code, and that can only really

happen if you get into the habit of using lexical variables.

 Symbol tables
 The last part of this chapter is potentially confusing. It might not make much sense right

now. Consider this optional reading.

 Every new word you create in your program is stored in a table. So far, all the new

words you have created were scalar variable names. But later, you will create other

things with names, such as arrays, hashes, and subroutines. These names you make up

are called symbols , and they are stored in your program’s symbol table , which is also

called a package . The name of your program’s package is main . This is sort of like a

family name. A variable you defi ne as $x is also known as $main::x . There are other

families your program may interact with one day, and these all have their own family

names. $Toolbox::x refers to a variable called $x in a symbol table called Toolbox.

The Toolbox $x is a completely different variable from your $x . Variables in a symbol

table are true global variables, available to the entire program.

9781107000681c04_p85-219.indd 1139781107000681c04_p85-219.indd 113 11/5/2011 6:26:49 PM11/5/2011 6:26:49 PM

Essential Perl114

 Lexical variables (those created with my) are not stored in a symbol table. They live

and die within blocks of code. Now let’s revisit the error message from Example 4.7.5.

 Global symbol “$cool” requires explicit package name at coin.pl line 7.

 This error is saying that if you want to use $cool , you have to say what package (fam-

ily) it belongs to. Otherwise, the assumption is that the variable is a lexical variable, and

no such lexical variable exists.

 4.8 Stopping programs

 Today is a good day to die()
 We often write scripts where we end up with some data in a variable, but we don’t

always know exactly what that variable will contain – maybe we have used the rand()

function to generate some data, or maybe the data are being read from a fi le that we

never actually looked at. This raises the possibility that maybe the data is missing or not

what you were expecting.

 A poorly written program will carry on regardless, oblivious to the fact that the

variable contains the wrong type of data. However, Perl provides the ability to stop a

program at any point, and we will often want to do this to prevent a program from run-

ning if the data is incorrect. We can do this by using one of two functions: die() or

 exit() .

 Example 4.8.1
 We use the die () function when we want to stop the script and print a warning mes-

sage at the same time.

 1. #!/usr/bin/perl

 2. # death_and_taxes.pl

 3. use strict; use warnings;

 4.

 5. my $tax_rate = int(rand(100));

 6. print “Tax rate is $tax_rate%\n”;

 7.

 8. if($tax_rate > 50){

 9. die “I can’t afford to pay that, I quit my job!\n”;

 10. }

 11.

 12. my $salary = 100000;

 13. my $tax = $salary * ($tax_rate/100);

 14. print “I have to pay $tax\n”;

 Understanding the script
 Note that line 3 includes both the strict and warnings pragmas on one line. We could also

put these on two separate lines. From Perl’s point of view, it treats these as two lines of

9781107000681c04_p85-219.indd 1149781107000681c04_p85-219.indd 114 11/5/2011 6:26:49 PM11/5/2011 6:26:49 PM

Stopping programs 115

code because of the two semicolons. All of our scripts from now onwards, will include

both of these pragmas.

 On line 5 we calculate a tax rate using the rand() function, and then ask (on line

8) whether that tax rate is above a certain level. If it is too high, then we use the die()

function to stop the script at that point. You can think of the die() function as acting

like print() but that it also stops the program. In this case, if the tax rate is too high

we don’t want to even consider looking at the rest of the code. The “rest of the code”

may only be three lines in this example, but it could be several hundreds of lines in other

scripts!

 Example 4.8.2
 Substitute lines 8–10 in the above script for the following:

 8. if($tax_rate > 50){

 9. print “I can’t afford to pay that, I quit my job!\n”;

 10. exit;

 11. }

 Understanding the script
 The outcome of this script should be identical to the previous example. However,

line 10 is now using the exit() function to stop the script. The exit() function

can be used at any point when you want to make your script stop. Note that exit()

doesn’t print out anything, which is why we added a print statement on the pre-

ceding line.

 There are some differences between how die() and exit() stop a program, but

it’s not worth discussing them here. The important point is that you should use die()

when you want your script to stop because of a problem , and you should use exit()

for all other occasions. You will most likely only use exit() when your scripts become

more complex and end up being embedded in other scripts.

 Example 4.8.3
 The most common use of the die () function is for performing a series of validity

checks on your data. When your scripts are working with biological data, you have to

remember that Perl does not know anything about the rules of biology, so it’s up to you

to check that your data is correct. Let’s write a short script to check whether a given

DNA sequence is the correct length to be considered a gene, i.e., that the length is a

multiple of three. 24 We can write a short script to check this.

 1. #!/usr/bin/perl

 2. # dna_checker.pl

 24 If you remember your biology, you’ll know that protein-coding genes consist of three-nucleotide codons that each specify

one amino acid. If you don’t remember your biology, consider this a free lesson.

9781107000681c04_p85-219.indd 1159781107000681c04_p85-219.indd 115 11/5/2011 6:26:49 PM11/5/2011 6:26:49 PM

Essential Perl116

 3. use strict; use warnings;

 4.

 5. my $dna = “ATGCACGTAGGTAACACTGACTGAA”;

 6. my $length = length($dna);

 7. die “$length is not a valid length\n” if (($length % 3) != 0);

 Understanding the script
 We calculate the length of the sequence and then use the modulo operator to divide the

length by 3. If the remainder is anything but zero, then this might not be a valid DNA

sequence, and so we have a die() statement to stop the script.

 We can imagine that this program could be a lot longer and perform many subsequent

operations on the $dna variable. But if $dna is not the right length, we might want to

stop the script immediately and warn that there is a problem.

 What makes a good die() statement?
 You don’t actually need to include any statement with the die () function . The follow-

ing code will stop a script, but not print anything (assuming the if condition evaluates

as true).

 die if ($pi != 3.14);

 However, it generally makes more sense to make the die() function print some-

thing that will tell you what the problem was. You should make the error message as

detailed as possible. All three of the following die() statements are better than not

having any statement at all, but the last example is the most useful as it will actually tell

you what the incorrect value of $pi was.

 die “Wrong number\n” if ($pi != 3.14);

 die “Wrong value for pi\n” if ($pi != 3.14);

 die “Error, $pi is not 3.14\n” if ($pi != 3.14);

 Let’s assume that your annual bonus is decided by the outcome of the rand() function.

Write a script that declares a variable $bonus, and then assigns it a random integer

between 0 and 3 (maybe this is your bonus in thousands of dollars, rupees, yuan, etc.).

Then add a test that will stop the script with a suitably worded die() statement if the

amount is zero.

 4.9 Working with strings

 How long is a piece of string? I don’t know, but the length() f
unction does
 From algebra, we are used to the idea of using variables in math. But what about strings?

Can you add, subtract, multiply, divide, and compare strings? Not exactly, but there are

analogous operations.

Problem

4.8.1

9781107000681c04_p85-219.indd 1169781107000681c04_p85-219.indd 116 11/5/2011 6:26:49 PM11/5/2011 6:26:49 PM

Working with strings 117

 Concatenation operator
 We often have two strings that we want to join together to make one string. Imagine you

have one variable which contains your fi rst name, and another variable that contains

your surname. Some operations would be easier to do if you could just join those vari-

ables together to form a new variable. In Perl, we do this with the concatenate operator,

which is represented by a single dot (.) character.

 Example 4.9.1
 Create the following program and run it. This program introduces the concatenate oper-

ator and just uses it to join two variables.

 1. #!/usr/bin/perl

 2. # strings.pl

 3. use strict; use warnings;

 4.

 5. my $s1 = “Hello “;

 6. my $s2 = “World\n”;

 7. print $s1 . $s2;

 8.

 9. my $s3 = $s1 . $s2;

 10. print $s3;

 Understanding the script
 In this example we join two strings ($s1 and $s2) and immediately print the con-

catenated result. It’s important to realize that the concatenation happens before the

 print() function. This would be more obvious as print($s1 . $s2) . Always

include spaces on either side of the dot character to improve the readability of your

code. 25

 Line 9 takes the same two strings and performs another concatenation. However, this

time the result is stored to a new variable before printing. If we wanted to, we could have

also created an equivalent string to $s3 :

 11. my $s4 = ‘ Hello ‘ . ‘ ‘ . ‘ World ‘ . “\n”;

 In this case, we concatenate four strings: the word “Hello,” a single space character,

the word “World,” and a newline character. Notice that we are using single quotes for

the fi rst three strings, but double quotes for the last string. The last string needs double

quotes so it is recognized as a newline character and not just a backslash and “n.” You

will often see Perl scripts that use double quote characters when single quotes would be

equally valid.

 25 In many languages, including the next major revision of Perl (version 6), a dot is used to access object attributes and

methods. For example, given a dog object, we could access the name and breed attributes by using dog.name and dog.

breed. Objects are a much more advanced topic, so for now just remember to put spaces between the things you want to

concatenate.

9781107000681c04_p85-219.indd 1179781107000681c04_p85-219.indd 117 11/5/2011 6:26:49 PM11/5/2011 6:26:49 PM

Essential Perl118

 In the earlier section on mathematical operators we learned that there are shortcuts for

when you want to add a value to a variable:

 $n += 5; # this is the same as $n = $n + 5;

 There is a similar shortcut for the concatenation operator (.=) and this can be conveni-

ent when you have a variable that behaves like a log fi le, collecting several different

pieces of output:

 my $log;

 $log = “Captain ‘ s log\n”;

 $log .= “Perl – the final frontier\n”; # concatenates on end of $log

 $log .= “These are the voyages of the Perl script Enterprise.pl\n”;

 Sometimes it is useful to “grow” a string in this way and print it out at a later point in

your script .

 String comparison operators
 Let’s look at some other string operators that can be used to compare strings. It will

hopefully make sense to you that you can compare strings to see if they are identical .

However, Perl also allows you to compare strings to see if one is greater or less than

another string.

 Example 4.9.2
 This script will use three of Perl’s string comparison operators. Try to guess what is

happening in lines 9 and 10.

 1. #!/usr/bin/perl

 2. # string_comparison.pl

 3. use strict; use warnings;

 4.

 5. my $s1 = “Apples”;

 6. my $s2 = “Oranges”;

 7.

 8. if ($s1 eq $s2) {print “same string\n”}

 9. elsif ($s1 gt $s2) {print “$s1 is greater than $s2\n”}

 10. elsif ($s1 lt $s2) {print “$s1 is less than $s2\n”}

 Understanding the script
 Lines 5 and 6 assign two strings to $s1 and $s2 , and then lines 8–10 print various

lines of output depending on the outcome of comparing the strings using three different

operators (eq , gt , and lt).

 It might make sense to compare any two strings by their length, but that’s not

what is happening. All three of these operators compare strings based on some-

thing known as their “ASCII value .” Put simply, this is a numerical value that is

9781107000681c04_p85-219.indd 1189781107000681c04_p85-219.indd 118 11/5/2011 6:26:49 PM11/5/2011 6:26:49 PM

Working with strings 119

associated with every character on your computer keyboard and many more that are

hidden. 26

 The eq operator on line 8 tests whether two strings are identical, but the lt and gt

operators test whether one string is “less than” or “greater than” another. To do this these

operators compare the ASCII value of the characters in each string. This means the letter

“A” of “Apples” (ASCII value = 65) is considered “less than” the letter “O” of “Oranges”

(ASCII value = 79). The length of the strings being compared is not important – “A”

is less than “BBB” and “CCC” is less than “D”. Due to the nature of ASCII values, all

lower-case letters have ASCII values higher than their upper-case counterparts.

 Note that for the sake of demonstrating all three string comparison operators, the above

script does not end with an else statement. There is no need for the last elsif statement;

if one string is not equal to or greater than another string, then it must be less than it.

 Repetition operator
 There are many operators and functions in Perl that you may not need to use very fre-

quently, and the repetition operator is in this category. However, it fulfi lls a simple but

useful role of just letting you make multiple repeats of any string. The repetition oper-

ator is represented by a single “ x ” character. 27

 Example 4.9.3
 As you write these scripts, try to predict what each line is going to do before you read

the explanation below. Also, any time you write a script that uses the rand() function,

you should make sure you run it several times to check you are getting different output

each time.

 1. #!/usr/bin/perl

 2. # haha.pl

 3. use strict; use warnings;

 4.

 5. my $number = int rand(20) +1;

 6. my $string = ‘ Ha ‘ x $number;

 7. print “$string\n”

 Understanding the script
 Lines 5 generates a random number from 1 to 20 and line 6 then creates a string of vari-

able length. It does this by using the repetition operator (x). The left-hand operand of

the repetition operator is a string, and the right-hand operand is a number. When you run

the program, the program will report strings such as “Ha Ha” and “Ha Ha Ha Ha Ha”

depending on the random number generated.

 26 Wikipedia provides a good overview of ASCII along with a list of the ASCII values for many different characters:

http://en.wikipedia.org/wiki/ASCII.

 27 Some people will see this and think it looks like a multiplication operator, but remember that Perl uses the asterisk

character for multiplication.

9781107000681c04_p85-219.indd 1199781107000681c04_p85-219.indd 119 11/5/2011 6:26:50 PM11/5/2011 6:26:50 PM

Essential Perl120

 length () function
 A string is a sequence of ASCII characters. It doesn’t matter if the characters are letters,

spaces, or special characters that don’t even print. 28 You can fi nd out how long a string

is with the length () function.

 Example 4.9.4
 A simple script to calculate the length of two strings:

 1. #!/usr/bin/perl

 2. # length.pl

 3. use strict; use warnings;

 4.

 5. my $s1 = “Hello World”;

 6. my $s2 = “Hello World\n\n”;

 7.

 8. print length($s1), “ “, length($s2), “\n”;

 Understanding the script
 $s1 and $s2 are very similar, but $s2 contains two newline characters (remember that

backslash-n represents a single character). This means that $s2 is two characters longer

than $s1 , and the output is therefore “11 13.”

 substr() function
 One of the most useful and powerful Perl functions is substr() , which is short for

substring. This function lets you operate on parts of a string . For example, you could

retrieve the fi rst six characters from a string, or the last fi ve, or something in the mid-

dle. The substr() function takes two or three arguments: a string, an offset , and an

optional length. Let’s see this in action.

 Example 4.9.5
 This script will demonstrate the different ways we can use substr() to extract text

from a string.

 1. #!/usr/bin/perl

 2. # substr.pl

 3. use strict; use warnings;

 4.

 5. my $quote = “Strive not to be a success, but rather be of value”;

 6. print substr($quote, 0, 6), “\n”; # Strive

 7. print substr($quote, -5), “\n”; # value

 8. print substr($quote, 19, 7), “\n”; # success

 28 We will learn about several special characters in the next chapter.

9781107000681c04_p85-219.indd 1209781107000681c04_p85-219.indd 120 11/5/2011 6:26:50 PM11/5/2011 6:26:50 PM

Working with strings 121

 Understanding the script
 Line 5 creates and assigns a string to a variable. 29 Line 6 uses substr() to extract the

fi rst six characters of $quote , which are then printed. Notice that the offset, the pos-

ition in the string which we start extracting from, is set to zero. The fi rst character in a

string is at position zero, not one. 30

 Line 7 prints the last fi ve characters. If you specify an offset that is negative,

you can extract from the right-hand side of a string. We could also have written

 substr($quote, 45) here. Notice that the optional length parameter was not given,

so the substring continues to the end of the string. If we had wanted to extract just the

last fi ve characters, we could specify it with substr($quote, -5, 5) . Line 8

extracts characters from the middle part of the string.

 Note that in the previous example, the original string in $quote was not changed

by lines 6–8. The substr() function copies part of the string and sends this to the

 print() function. But substr() can also change strings if you want it to. For

example, you could delete the fi rst fi ve characters. You can also insert strings into strings

and replace strings with other strings. To perform these kinds of tasks, one simply puts

 substr() on the left of an assignment operation as substr()= string .

 Example 4.9.6
 Add the following two lines to observe string replacement.

 9. substr($quote, 19, 7) = “clown”;

 10. print $quote, “\n”;

 Understanding the script
 Line 9 removes seven letters from $quote , beginning at position 19, and replaces them

with a new string. This results in the string “success” being replaced by “clown”. Note

that the strings are not the same length.

 Case conversion functions
 Perl has four functions for changing the case of characters: uc () , lc () , ucfirst () ,

 lcfirst () . The uc function converts an entire string to upper-case characters,

whereas ucfirst converts just the fi rst character. The lc equivalents convert strings

to lower-case characters.

 Example 4.9.7
 This script uses three of these functions to manipulate a simple text string:

 1. #!/usr/bin/perl

 2. # shout.pl

 29 This quote is from Albert Einstein.

 30 You might fi nd this strange, but it is a common practice in computing to start counting at zero rather than one. We will

see this again later, when we learn about arrays.

9781107000681c04_p85-219.indd 1219781107000681c04_p85-219.indd 121 11/5/2011 6:26:50 PM11/5/2011 6:26:50 PM

Essential Perl122

 3. use strict; use warnings;

 4.

 5. my $s = “HOMO sapiens\n”;

 6. print uc $s; # HOMO SAPIENS

 7. print lc $s; # homo sapiens

 8. $s = ucfirst(lc($s));

 9. print $s; # Homo sapiens

 Understanding the script
 The string on line 5 has mixed case and is therefore not the proper style for a taxonomic

classifi cation. Lines 6 and 7 print upper- and lower-case versions. Note that these lines

do not change the underlying content of $s , only the printed output is converted.

 Line 8 uses two functions to change the string to lower-case and then capitalize

the fi rst character. Note that Perl allows you to put $s on both sides of the assign-

ment, meaning that the original value of $s becomes overwritten by the modifi ed

version . 31

 4.10 Dealing with special characters

 Do you have an escape plan?
 As we have seen, Perl gives a special meaning to a lot of characters on your keyboard.

This is generally fi ne until we want to print some of those special characters. We’ve

already learned that we can put things in single quotes so they lose their special mean-

ing, but that is not always the best solution. Let’s imagine we want to print out the con-

tents of a variable called $salary and that we also want to include a dollar sign. We

might think of doing this:

 print “I earn $$salary\n”;

 However, this will not work and will produce an error. Perl expects that if there is a dol-

lar sign within a pair of double quotes then this is going to signify the name of a variable.

One solution would be to use single quotes for the dollar sign, but double quotes for the

rest of the string:

 print “I earn “, ‘ $ ‘ , “$salary\n”;

 This works, but requires that you print a list of three things, one of which has to be

enclosed in single quotes. That seems to be a lot of extra work just to do something quite

simple. Luckily for us, Perl provides an easy way to do what we want as you can ignore

the special meaning of a character by escaping it. To escape any character in Perl, just

prefi x it with a single backslash character (\):

 31 As always, Perl will evaluate the right-hand side of an assignment fi rst (i.e., everything after the equals sign), and will

resolve functions from the “inside-out” (the lc function must happen before the ucfirst function). With practice, it

becomes common to see a line of code like this and read it in the same way that Perl will execute it, rather than simply

reading it left to right.

9781107000681c04_p85-219.indd 1229781107000681c04_p85-219.indd 122 11/5/2011 6:26:50 PM11/5/2011 6:26:50 PM

Dealing with special characters 123

 print “This is a dollar symbol: \$\n”;

 print “This is a quotation mark: \”\n”;

 The backslash is itself a special character. This then raises the question of how do you

print a backslash character? The following looks like it might work, but it doesn’t quite

behave as expected.

 print “This is a backslash: \ \n”;

 If you try printing this line, the output will just look like:

 This is a backslash:

 The backslash character affects whatever character comes after it, so in the last

example, we are actually escaping the space character that precedes the \n , even though

the space character doesn’t need to be escaped. To escape a backslash character, we have

to use another backslash character!

 print “This is a backslash: \\\n”;

 print “This is a newline character: \\n\n”;

 This can end up looking a little confusing, but luckily we don’t usually need to print

too many backslash characters. Note that in the last example, we only need to escape the

fi rst backslash of \n . The “n” character that follows is just a regular character with no

special meaning and therefore needs no escaping.

 The ability to escape characters in this way will become more important as there are

many special characters in Perl, and sometimes you need to escape them in other situ-

ations apart from printing. We will therefore use escaping from time to time in the later

sections of this book .

 The tab character
 There are not too many special characters that you will use frequently apart from \n .

The other character you might need to use a lot is the tab character: \t . Anytime you

print \t within a double-quoted string, it will behave just like you have pressed the tab

character on your keyboard. 32 The following two lines show you an example line of code

and what it will look like when printed to your terminal:

 print “Three tabs: \t\t\t and a newline\n”; # this prints …

 Three tabs: and a newline

 Even though we have to type two characters to represent a tab, it is still only treated

as a single character by Perl (with a single ASCII value, just like \n). In this particu-

lar example, there are three tab characters surrounded by two space characters. This is

therefore a good time to remind you:

 Never assume that all whitespace only consists of space characters

 32 Historically, a tab character was equivalent to eight spaces on the keyboard of a mechanical typewriter. Many computer

programs will still print eight-character tabs, but it is increasingly common that different programs use a different number

of spaces. This is why pressing tab in different coding editors will sometimes indent code by different amounts. Just

remember, it’s all still one character internally.

9781107000681c04_p85-219.indd 1239781107000681c04_p85-219.indd 123 11/5/2011 6:26:50 PM11/5/2011 6:26:50 PM

Essential Perl124

 If you try counting the length of the string “ 12\t45 ,” it has a length of fi ve characters

even though it takes six characters to type it, and it will appear as even more characters

when printed.

 Tabs are often used to separate columns of text in many different data fi les. This

makes them suitable for importing into spreadsheet programs, but it also makes them

very easy to parse with a Perl script. Many data fi les use tabs to separate data in this way;

such fi les are called tab delimited or TSV (tab-separated values).

 4.11 Matching operators

 You have now met your match
 One of the most common tasks you may face as a programmer is to fi nd a string within

another string. Once you are able to do this, you can then ask questions such as “Does

this web page contain my email address anywhere within it?” or “Can I extract all zip

codes from this piece of text?” String matching is particularly common in various bio-

logical contexts – you might want to fi nd a restriction site in a DNA sequence, or maybe

you are trying to see if a protein sequence contains a particular peptide motif.

 Sometimes we want to fi nd an exact match to any given string, but other times we

want to perform a so-called fuzzy search, using a search pattern that specifi es one or

more possibilities. For example, if we are trying to fi nd whether “Bob” is mentioned

within a block of text that is stored in a scalar variable, we might want to fi nd “Bob,”

“bob,” or “BOB.” When we have found a match to a pattern, we often then want to

manipulate or modify the match. For example, maybe you want to correct a spelling

mistake in a word, or remove the last fi ve nucleotides from a DNA sequence. All of these

kinds of operations are relatively easy to do in Perl.

 The principle way in which Perl allows you to do all of this is with something called

the binding operator (=~). Unlike other operators we have seen so far, the binding oper-

ator is used in slightly different ways, depending on what code follows it. The three main

uses of it are for matching , substitution , and something called transliteration . Let’s start

off with some examples of how to match strings.

 Example 4.11.1
 Enter the program below and observe the output. The aim of this program is to see

whether a DNA sequence contains a specifi c restriction enzyme digest site. 33

 1. #!/usr/bin/perl

 2. # matching.pl

 3. use strict; use warnings;

 4.

 5. my $sequence = “AACTAGCGGAATTCCGACCGT”;

 6. if ($sequence =~ m/GAATTC/) {print “EcoRI site found\n”}

 7. else {print “no EcoRI site found\n”}

 33 Restriction sites are just places in a DNA sequence that have a particular pattern of nucleotides and which can be targeted

by something called a restriction enzyme, which cuts the DNA at that pattern.

9781107000681c04_p85-219.indd 1249781107000681c04_p85-219.indd 124 11/5/2011 6:26:50 PM11/5/2011 6:26:50 PM

Matching operators 125

 Understanding the script
 Line 5 assigns a short DNA sequence to a variable ($sequence). We then have an if – -

else statement on lines 6–7 which contains a slightly unusual-looking test condition

compared to what we have seen previously.

 The if – else statement contains the binding operator =~ , and this signifi es that we

are going to do some string manipulation. We follow the operator with an m followed

by two forward-slashes that contain the pattern we are searching for. The m// pattern

indicates that we are trying to match a string. 34

 You should read line 6 as “If the string stored in the $sequence variable matches

the pattern ‘GAATTC,’ then print a statement …”

 Matching and not matching
 The matching operator (m//) is very common in Perl, and it is used so frequently that

the m can be omitted. The following two lines are treated as the same by Perl:

 print “I ‘ ve found love!\n” if (“ungloves” =~ m/love/);

 print “I ‘ ve found love!\n” if (“ungloves” =~ /love/);

 We suggest you keep including the m for now as it will probably make it easier to dif-

ferentiate it from the substitution operator (which we will introduce shortly). Note that

when you use the matching operator, you are asking whether a string contains a pattern

 anywhere in that string. This also includes a match to the whole string itself:

 $string = “ABC”;

 print “Match\n” if ($string =~ m/A/); # true

 print “Match\n” if ($string =~ m/B/); # true

 print “Match\n” if ($string =~ m/C/); # true

 print “Match\n” if ($string =~ m/AB/); # true

 print “Match\n” if ($string =~ m/BC/); # true

 print “Match\n” if ($string =~ m/ABC/); # true

 print “Match\n” if ($string =~ m/abc/); # false

 print “Match\n” if ($string =~ m/AB C/); # false

 The last two examples illustrate that matches are case-sensitive and that the pattern

has to match exactly , i.e., if you add a space to the pattern, it will only match if a space

occurs in the string.

 We have previously shown how you can ask whether two numbers or two strings are

 not equal to each other. It also makes sense to ask whether one string does not match

another. To do this we use the “not match ” operator (!~).

 Example 4.11.2
 This script takes a name of a species and tries to check whether that name might belong

to a fruit fl y species. 35 We will just assume that if the species name contains the string

“Drosophila” then it is a valid fruit fl y species.

 34 As soon as you add m// after the binding operator, then we more commonly call the whole thing the matching operator,

even if this really is a binding operator followed by a pattern match.

 35 Most fruit fl ies belong in the genus Drosophila ; the most famous species of fruit fl y is Drosophila melanogaster .

9781107000681c04_p85-219.indd 1259781107000681c04_p85-219.indd 125 11/5/2011 6:26:50 PM11/5/2011 6:26:50 PM

Essential Perl126

 1. #!/usr/bin/perl

 2. # fly_check.pl

 3. use strict; use warnings;

 4.

 5. my $species = “Drosophila pseudoobscura”;

 6.

 7. if($species !~ m/Drosophila/){

 8. die “$species does not look like it is a fruit fly\n”;

 9. } else {

 10. print “$species looks like it is a fruit fly\n”;

 11. }

 12.

 Understanding the script
 Line 5 assigns a species name to a variable and then lines 7–9 ask if that name does not
match the pattern “Drosophila”. If the name doesn’t match then we use the die() func-

tion to stop the script. If we didn’t need to have the else statement we could have also

achieved the same outcome by using an unless statement with the regular matching

operator:

 unless ($species =~ m/Drosophila/) {

 die “$species does not look like it is a fruit fly\n”;

 }

 Identifying the location of the match
 Consider the following code:

 my $text = “I took a good look at the book”;

 print “Match” if ($text =~ m/oo/);

 Clearly we would expect the print statement to happen because $text does match

the pattern “oo”. But the pattern “oo” occurs four times in the input string, so which one

is Perl matching, or is it matching all of them? Perl will always try to match at the earli-

est position possible, so in this case it is matching the “oo” in “took.”

 In many cases you might only care that a match does occur and not where it

occurs. However, sometimes you will want to potentially loop through all matches in

a string, or identify the parts of the string that match (or the parts that don’t match).

We return to these issues in the later chapters that cover regular expressions (Chapters

4.26 – 4.28).

 Matching operators in Perl
 Below is a table that shows the full range of matching operators. We’ve just seen how to

make a match and a “not match.” Before we look at the substitution operator, try to guess

how it will work based on the example in this table .

9781107000681c04_p85-219.indd 1269781107000681c04_p85-219.indd 126 11/5/2011 6:26:50 PM11/5/2011 6:26:50 PM

Matching operators 127

Operator Meaning Example

 =~ m// match if ($s =~ m/GAATTC/)

 =~ // match if ($s =~ /GAATTC/)

 !~ // not match if ($s !~ m/GAATTC/)

 =~ s/// substitution $s =~ s/thing/other/;

 =~ tr/// transliteration $count = $s =~ tr/A/A/;

 Substitution
 In addition to matching things, we often want to substitute a pattern with a string; we

can do this using the substitution operator. You can think of this as a match and substi-

tute operator, as it can only substitute things if it fi rst fi nds a match. The syntax is very

similar to the matching operator, but we obviously need to specify a replacement string

in addition to the pattern that we are trying to match. The basic syntax is as follows: 36

 $string =~ s/match/replacement/;

 Note that we use an s instead of an m to indicate that this will be a substitution. The only

other difference is that we include a second string that will replace the matching pattern.

Let’s see how this works in practice.

 Example 4.11.3
 This script turns one string into another, and then subsequently modifi es just part of the

new string.

 1. #!/usr/bin/perl

 2. # currency_conversion.pl

 3. use strict; use warnings;

 4.

 5. my $currency = “pounds”;

 6. print “I used to get paid in $currency\n”;

 7.

 8. $currency =~ s/pounds/dollars/;

 9. print “But now I get paid in $currency\n”;

 10.

 11. my $replacement = “nuts”;

 12. $currency =~ s/llars/$replacement/;

 13. print “Ideally, I’d like to get paid in $currency\n”;

 This script should produce the output:

 I used to get paid in pounds

 But now I get paid in dollars

 Ideally, I’d like to get paid in donuts

 36 The syntax of this operator very closely resembles the syntax of the Unix sed command, which performs a very similar

function (among many other things). We will mention sed very briefl y in Chapter 5.8 .

9781107000681c04_p85-219.indd 1279781107000681c04_p85-219.indd 127 11/5/2011 6:26:50 PM11/5/2011 6:26:50 PM

Essential Perl128

 Understanding the script
 We start off with a string “pounds” that is stored in the $currency variable. Line 8

then uses “pounds” as a pattern and substitutes it with a string “dollars”. More specif-

ically, Perl is fi rst asking “Can I fi nd the pattern ‘pounds’ anywhere within the variable

 $currency ?” If there is a match, then Perl proceeds to the substitution step.

 Line 12 performs another substitution, but this time the replacement pattern is actu-

ally another variable rather than a fi xed string. You can use variables in either the match-

ing or replacement portion of the substitution operator (or both). Note that this second

replacement only affects part of the input string.

 Using options with the binding operator
 Let’s look at a very common problem that arises when you use the substitution operator

in its default mode. Luckily, it is a problem that is very easy to fi x.

 Example 4.11.4
 This script attempts to convert a DNA sequence into an RNA sequence. 37 Try to predict

what the output of this script will be before you run it.

 1. #!/usr/bin/perl

 2. # dna_to_rna.pl

 3. use strict; use warnings;

 4.

 5. my $dna = “ATGCAGGATGGGATCCTTTATTGA”;

 6. my $rna = $dna;

 7. $rna =~ s/T/U/; # convert thymine to uracil

 8. print “$dna\n$rna\n”;

 Understanding the script
 In this script we fi rst make a copy of our $dna variable and assign that to a new vari-

able ($rna). When you start writing Perl scripts that modify data, you will often want

to keep the original, unchanged data as well.

 You should have noticed that the output did not change all of the “T”s to “U”s. In fact,

the substitution operator only changes the fi rst occurrence of the matching pattern.

 Clearly we would like to be able to change all occurrences of a pattern, not just

the fi rst. Something else that we frequently want to do is to be able to change (or

match) text regardless of whether it is upper- or lower-case. Perl makes it very easy

to do both of these things by allowing you to specify additional options after you

specify the match or substitution. Here is how you can tell Perl to substitute all
matches (a so-called global replacement) and to also ignore the case of the string

being matched.

 37 RNA uses the nucleotide uracil (U) instead of thymine (T)

9781107000681c04_p85-219.indd 1289781107000681c04_p85-219.indd 128 11/5/2011 6:26:50 PM11/5/2011 6:26:50 PM

Matching operators 129

 $string =~ s/T/U/g; # global replacement of ‘ T ‘ to ‘ U ‘

 $string =~ s/T/U/i; # substitutes the first ‘ T ‘ or ‘ t ‘ in $string to U

 $string =~ s/T/U/gi; # global replacement of ‘ T ‘ or ‘ t ‘ to ‘ U ‘

 The g option tells Perl to replace globally, i.e., replace all occurrences of the match.

The i option instructs Perl to ignore the case of the match. Notice you can use multiple

options together (the order in which you specify the options does not matter). There are

a few more options that are available, but these are the two that you will use most fre-

quently. Time for another example!

 Example 4.11.5
 Hopefully, you are starting to get better at predicting what these scripts will do before

you run them.

 1. #!/usr/bin/perl

 2. # revelation.pl

 3. use strict; use warnings;

 4.

 5. my $text = “TREESWTREESOTREESOTREESDTREES”;

 6. $text =~ s/TREES//g;

 7. print “$text\n”;

 Understanding the script
 You should realize that line 6 of this script is performing a substitution. But notice that

there is no replacement pattern. When you don’t specify a replacement pattern you are

effectively specifying “nothing.” Therefore, this Perl code will replace all occurrence

of the string “TREES” with nothing – i.e., it will delete “TREES”. Because we include

the global option, we delete all occurrences of this string which then reveals a new

word . 38

 What do you think this script will do? Will it print anything at all?

 1. #!/usr/bin/perl

 2. # will_I_print_anything.pl

 3. use strict; use warnings;

 4.

 5. my $sequence = “AACTAGCGGAATTCCGACCGT”;

 6. my $empty_sequence = ““;

 7.

 8. if ($sequence =~ m//){

 9. print “I am here, therefore m// must match ‘ $sequence ‘ \n”;

 10. }

 11.

 38 This example is playing around with the idiom “Can’t see the wood for the trees.”

Problem

4.11.1

9781107000681c04_p85-219.indd 1299781107000681c04_p85-219.indd 129 11/5/2011 6:26:50 PM11/5/2011 6:26:50 PM

Essential Perl130

 12. if ($empty_sequence =~ m//){

 13. print “I am here, therefore m// must match ‘ $empty_sequence ‘ \n”;

 14. }

 4.12 The transliteration operator

 Transliteration is literally a bit like translation
 The transliteration operator gets its own chapter as it is a little bit different to the two

other matching operators that we introduced in the last chapter. If you have already

worked through Part 5 of this book then you may have seen that there is a tr command

in Unix (see Chapter 5.5). Perl’s transliteration operator behaves in the same way as this

command. It takes a list of characters and changes each item in the list to a character

in a second list, though we often use it with just one thing in each list. It automatically

performs this operation on all characters in a string (so no need for a “global” option).

 Example 4.12.1
 This script demonstrates the full range of abilities of the transliteration operator. Notice

how there are comments at the end of many of the lines. You don’t have to type these

comments, but adding comments to your scripts is a good habit to get into. Write the

script and then run it.

 1. #!/usr/bin/perl

 2. # transliterate.pl

 3. use strict; use warnings;

 4.

 5. my $text = “abc123abc123”;

 6.

 7. $text =~ tr/a/d/; # changes any occurrence of ‘ a ‘ to ‘ d ‘

 8. $text =~ tr/bc/xy/; # ‘ b ‘ becomes ‘ x ‘ , and ‘ c ‘ becomes ‘ y ‘

 9. $text =~ tr/123/321/; # 1 becomes 3, 2 stays as 2, 3 becomes 1

 10. $text =~ tr/dxy/DXY/; # capitalize the letters d, x, and y

 Understanding the script
 From experience, we would bet that many of you reading this have typed the script

exactly as it appears, and have then run it, only to be puzzled when nothing happened.

This requires a short diversion.

 Computers vs. humans
 Contrary to what many people think, computer programs are pretty faithful crea-

tures. 39 More loyal than any dog, they will only ever do what you tell them to.

 39 We are always surprised to see how many people think that programs deliberately do things to annoy them. Blame your

family, blame your government, but don’t blame your program.

9781107000681c04_p85-219.indd 1309781107000681c04_p85-219.indd 130 11/5/2011 6:26:51 PM11/5/2011 6:26:51 PM

The transliteration operator 131

This point bears repeating, and we will even go so far as to call it: Don’t blame the
program: rule #1:

 Programs will only do what you tell them to!

 If your program appears to do something stupid , then most of the time this will be

because you (probably unknowingly) told it to do something stupid. From time to time

you will also write scripts that don’t do what you were expecting them to. You should

then ask yourself: Did I actually ask it to do the thing I was expecting it to do? This leads

us directly to Don’t blame the program: rule #2 :

 Programs can work properly without appearing to do anything.

 You might one day write a program that will maybe solve the world’s energy crisis,

fi nd a cure for the common cold, or work out why the “World Series” in baseball is only

contested by two countries. Your code may be immaculate and may even be the most

powerful, well-written Perl code the world has ever seen. However, if your program

fails to print out any information, then the secrets to these problems will remain forever

unknown.

 In the example above, we deliberately did not include any print statements. This

was a test to see if you were paying attention. Without any print statements, the

program will work and do everything you asked of it. However, it won’t show you any

information because you didn’t tell it to. Okay, diversion over.

 Understanding the script (part 2)
 Add some print statements to your script so you can see what each instance of the tr

operator is doing to $text .

 1. #!/usr/bin/perl

 2. # transliterate.pl

 3. use strict; use warnings;

 4.

 5. my $text = “abc123abc123”;

 6.

 7. $text =~ tr/a/d/; # changes any occurrence of ‘ a ‘ to ‘ d ‘

 8. print “$text\n”;

 9. $text =~ tr/bc/xy/; # ‘ b ‘ becomes ‘ x ‘ , and ‘ c ‘ becomes ‘ y ‘

 10. print “$text\n”;

 11. $text =~ tr/123/321/; # 1 becomes 3, 2 stays as 2, 3 becomes 1

 12. print “$text\n”;

 13. $text =~ tr/dxy/DXY/; # capitalize the letters d, x, and y

 14. print “$text\n”;

 You should hopefully see that the tr operator is just converting one series of characters

into another. Line 7 shows how you can just change all occurrences of a single character

9781107000681c04_p85-219.indd 1319781107000681c04_p85-219.indd 131 11/5/2011 6:26:51 PM11/5/2011 6:26:51 PM

Essential Perl132

for another. In this sense, the tr operator behaves very much like the substitution oper-

ator (though no global option is needed). However, as lines 9–14 show, it becomes more

powerful when you specify a series of different characters that you want to change.

 It’s important to understand that line 9 is saying “Find any occurrence of b and

change to x, and also fi nd any occurrence of c and change to y.” It is not trying to fi nd

the string “bc”.

 Example 4.12.2
 In addition to changing a string, the transliteration operator can also be used to count

how many changes are made. This can be extremely useful when working with DNA

sequences.

 1. #!/usr/bin/perl

 2. # nucleotide_count.pl

 3. use strict; use warnings;

 4.

 5. my $sequence = “AACTAGCGGAATTCCGACCGT”;

 6. my $g_count = ($sequence =~ tr/G/G/); # parentheses are optional

 7. print “The letter G occurs $g_count times in $sequence\n”;

 Line 6 may appear confusing. The fi rst thing to note is that this line contains an assign-

ment, so we know that everything on the right of the = sign has to happen fi rst. It looks

like the transliteration operator is changing the letter G to itself, and in fact this is exactly

what is happening. This tells us that the $sequence variable will remain unchanged

(which is what we want).

 Taken as a whole, line 6 suggests that the tr operator is producing a value which is

assigned to $g_count . The output of the script should indeed tell us that $g_count

is equal to the number of G characters in $sequence . This reveals a useful feature of

the tr operator, it keeps track of how many changes it makes. Normally it does nothing

with this count, but if you ask Perl to assign the output of the transliteration to a variable,

then it will store the count in that variable.

 Alternative syntaxes of the binding operator
 You will reach a point in your programming career when you want to use a binding oper-

ator to match and/or modify a pattern that includes forward-slashes . Imagine we have a

web address stored in a scalar variable:

 $text = “http://genomes2go.com”;

 Now let’s imagine that we want to use the substitution operator to strip away the “http://”

part. Maybe you would fi rst try this:

 $text =~ s/http:////;

 Hopefully you will already get the feeling that this might not work. How will Perl know

that two of those forward-slashes are things that we want to delete and two of them are

9781107000681c04_p85-219.indd 1329781107000681c04_p85-219.indd 132 11/5/2011 6:26:51 PM11/5/2011 6:26:51 PM

The transliteration operator 133

part of the substitution operator itself? To cut a long story short, Perl won’t be able to

process this. There are two solutions to this problem. The fi rst involves the process of

 escaping a character. We fi rst saw this in Chapter 4.10 , when we were escaping certain

printed characters. However, you can also escape characters in the matching operators:

 $text =~ s/http:\/\///;

 This tells Perl that the fi rst two forward-slashes (which are escaped) are part of the pat-

tern. This will work, but it can still be confusing to look at, particularly when the strings

that you are matching include forward- and backward-slashes. Thankfully, Perl allows

you to choose alternatives instead of the two forward-slashes. 40 The following examples

all do exactly the same thing but each uses a different set of characters to act as the

delimiters for the substitution operator :

 $text =~ s!http://!!;

 $text =~ s@http://@@;

 $text =~ s#http://##;

 The last example is another, relatively rare, occasion where a hash character doesn’t

denote the start of a comment.

 If you use an alternative character that naturally comes in a pair (e.g., curly or square

brackets, or parentheses), then the syntax is a little different and you have to make sure

you use the opening and closing character to mark the matching part of the pattern, and

then the same pair of characters to surround the replacement part of the pattern. This

can actually make things a lot easier to understand, as this example with the tr operator

illustrates:

 $text =~ tr [abcdefgh]

 [hgfedcba];

 In this case we use two pairs of square brackets to denote the two range of characters,

rather than just three slashes. We have also wrapped one line of code across two lines of

the editor so we can line up the matching and replacement patterns. The above example

is functionally equivalent to the following two examples:

 $text =~ tr [abcdefgh] [hgfedcba]; # one line, with spaces

 $text =~ tr[abcdefgh][hgfedcba]; # one line, no spaces

 Write a script that takes the name of a web address (stored in a variable) and then:

 (1) Removes the http:// part of the name .

 (2) Stops the script if the remaining name is longer than 25 characters, otherwise .…

 (3) Converts the name to upper-case characters.

 (4) Counts the number of As, Bs, and Cs that are in the name.

 (5) Prints those counts.

 40 If you use alternative delimiters when using the matching operator, the “m” character before the fi rst delimiter is no

longer optional. This is another reason why it is a good habit to always include the “m”.

Problem

4.12.1

9781107000681c04_p85-219.indd 1339781107000681c04_p85-219.indd 133 11/5/2011 6:26:51 PM11/5/2011 6:26:51 PM

Essential Perl134

 4.13 List context

 Because sometimes, scalars get lonely
 Until now we have only worked with single variables or values, but hopefully you have

seen that this still allows you to accomplish a lot of tasks. However, we often want to

work with lists of things. In Perl, if you have multiple scalar values in parentheses sepa-

rated by commas , this is known as list context . Actually, it’s still list context even if you

have one or even zero scalar values in parentheses, because a list can have one or even

zero elements. A common use of lists is when we want to assign a set of values to a set

of variables.

 Example 4.13.1
 Create the following short program and run it.

 1. #!/usr/bin/perl

 2. # list.pl

 3. use strict; use warnings;

 4.

 5. my ($x, $y, $z) = (1, 2, 3);

 6. print “\$x=$x \$y=$y \$z=$z\n”;

 7.

 8. my ($a, $b, $c) = (“uno”, $y, ‘tres’);

 9. print “\$a=$a \$b=$b \$c=$c\n”;

 Understanding the script
 The code in line 5 takes a list of three values (1 , 2 , 3) and assigns them to a list of

three variables ($x , $y , $z). Note how we use the backslash character in the print

statement on line 6 in order to print the dollar sign. Without using lists, we would have

to use three separate lines of code in order to declare and initialize each variable with

a value. 41

 Line 8 is just meant to illustrate that lists can contain a mixture of strings and vari-

ables. After this list assignment, the new variable $b will contain whatever the current

value of $y is.

 Balancing list items
 If you assign a list of values to a list of variables, it might make sense that you should

have the same number of values as there are variables. Maybe we could call this a bal-
anced list. However, Perl doesn’t really care if one side of the list assignments contains

fewer, or more items than the other side. Perl may not care, but you should!

 41 If you need to assign the same value to multiple variables then you could achieve this in two lines:

 my ($x, $y, $z);

 $x=$y=$z=0;

9781107000681c04_p85-219.indd 1349781107000681c04_p85-219.indd 134 11/5/2011 6:26:51 PM11/5/2011 6:26:51 PM

List context 135

 Example 4.13.2
 Let’s look at what happens if we have an unbalanced list assignment. Once again, try to

predict what the output of the script will be before you run it.

 1. #!/usr/bin/perl

 2. # unbalanced_lists.pl

 3. use strict; use warnings;

 4.

 5. my ($a) = (1, 2);

 6. my ($b, $c) = (3);

 7. print “A = $a, B = $b, C = $c\n”;

 Understanding the script
 On line 5 we try assigning a list of two values to a (one-element) list. 42 As there is

nowhere for the second value to go, it is effectively discarded by Perl. If you try

assigning a set of values to a list, once the list is fi lled all subsequent values will be

ignored.

 On line 6, we try to do the reverse and assign just one value to a list containing two

variables. In this case $c receives no value and therefore remains undefi ned. When we

run the script you should see the dreaded Use of uninitialized variable error

message.

 What else can be assigned to a list?
 When you make a list assignment, you will most commonly assign a list of values to a

list of variables. Those values will typically be strings, but you can actually make a list

from functions that return values from a set of strings. This will sometimes save you a

few lines of code, but may not always be the best thing to do. As always, an example

will help illustrate the point.

 Example 4.13.3
 Imagine we want to determine the lengths of a number of strings. Ultimately, we want

to store the lengths of the strings in some new variables.

 1. #!/usr/bin/perl

 2. # crime_and_punishment.pl

 3. use strict; use warnings;

 4.

 5. my ($a, $b) = (‘crime’, ‘punishment’);

 6. my ($length_a, $length_b) = (length($a), length($b));

 7. print “Lengths are: $length_a, $length_b\n”;

 42 One-element lists can often confuse people as the lack of any commas can make you think that this is just a single scalar

variable. Any time you see a variable surrounded by parentheses, you are looking at a list.

9781107000681c04_p85-219.indd 1359781107000681c04_p85-219.indd 135 11/5/2011 6:26:51 PM11/5/2011 6:26:51 PM

Essential Perl136

 Understanding the script
 On line 5 we have a standard list assignment with $a and $b being assigned two

strings.

 We then have a second list assignment on line 6 which uses the length() function

to get the lengths from $a and $b and then assign these lengths to a new list. Note that

the right-hand side of the assignment is still a list; it has a pair of parentheses containing

comma-separated items. All that is different is that the items in the list are not values,

they are functions that return a set of values.

 By making line 6 use a list assignment we save ourselves one line of code – we would

otherwise do this with two lines of code:

 6. my $length_a = length($a);

 7. my $length_b = length($b);

 This is an example where you could argue that the effort to save one line of code is

not really worthwhile. The end result is a single line of code that requires a little more

inspection to work out what is going on. Remember that short and concise code is good,

but clean and understandable code is better .

 Swapping values
 Overall we mostly use lists in Perl to assign values. A much more powerful way to work

with lists of things will be addressed in the next section. One nice trick that you can

do with lists is to swap two values. You can do this because assignments in lists occur

simultaneously:

 ($x, $y) = ($y, $x);

 Exchange the value of $x and $y without using list context. This is one of those prob-

lems that appears diffi cult at fi rst, but once you see the solution, it will seem so obvious

that you can’t imagine how you didn’t think of it immediately. Before you look at the

solution, imagine how you would do it in real life. For example, given a glass of water

and a glass of milk, how would you switch the liquids?

 4.14 Introduction to Arrays

 A ray of light at the end of the list
 Lists are useful for declaring and assigning multiple variables at once, but they are tran-

sient. If we want to store the details of a list then we have to capture all the values into

separate variables. Ideally, there should be a way of referring to all of a list in one go,

and there should be a way to access individual items in a list. In Perl (and in most other

programming languages) we do this by using something called arrays .

 You can think of an array as a list that has been given a name. We refer to the

contents of an array as a set of elements . Each array element is a scalar variable that

we have seen so far, e.g., a number, letter, word, sentence, etc. In Perl, as in most

Problem

4.13.1

9781107000681c04_p85-219.indd 1369781107000681c04_p85-219.indd 136 11/5/2011 6:26:51 PM11/5/2011 6:26:51 PM

Introduction to Arrays 137

programming languages, an array is indexed by integers beginning with zero . The fi rst

element of an array is therefore the zero-th element. This might confuse you but that’s

just the way it is. Arrays in Perl are named using the “@” character. Let’s imagine

we have an array called @cards that contains fi ve playing cards; we can imagine

that each card in the array would be stored as a text string such as “7D” for “seven of

diamonds.”

 If we wanted to see what the individual elements of the @cards array were, we

could access them at array positions 0 through 4. It’s important to note that arrays always

have a start (the so-called zero-th position), an end (in this case, position 4), and a length

(in this case 5). Arrays may contain just one element, in which case the start and the end

would be the same. Arrays may also contain no elements whatsoever. Arrays are con-

tainers that hold scalars. They can be empty, or they can contain millions of elements.

 Example 4.14.1
 Our fi rst example with arrays will just show how to create an array and then print the

contents.

 1. #!/usr/bin/perl

 2. # arrays.pl

 3. use strict; use warnings;

 4.

 5. my @cards = (‘7D’, ‘2S’, ‘10H’, ‘3S’, ‘AC’);

 6.

 7. print “1st card in array is: $cards[0]\n”;

 8. print “2nd card in array is: $cards[1]\n”;

 9. print “5th card in array is: $cards[4]\n”;

9781107000681c04_p85-219.indd 1379781107000681c04_p85-219.indd 137 11/5/2011 6:26:51 PM11/5/2011 6:26:51 PM

Essential Perl138

 Understanding the script
 Line 5 creates an array called @cards and assigns it a list of fi ve strings. Because we are

including use strict , we also have to declare arrays with my .

 Lines 7–9 show how to access individual elements of an array. You specify a position

in the array by putting an integer value between square brackets . This integer value is

known as the “array index.” Note the use of the dollar sign. More on this in a moment.

 Lines 7–9 also shows that when you put a single array element within double quotes,

Perl will interpolate the array element to show you the value. This is the same behavior

as when we put a scalar variable between double quotes.

 Scalars vs. arrays
 We have previously been working with scalar variables, which are named using the $

sign. However, you will have noticed in the above example that we also use the $ sign

to name individual elements of an array. This might appear confusing, but there is a con-

sistent logic behind this.

 An array can consist of many elements, but each element of the array is a scalar

variable, so we write $cards[0] never @cards[0] . When you are working with a

single variable in Perl, we will always use the $ sign (think $ = single). Therefore, there

is no such thing as @cards[0] in Perl. 43 Writing @cards[0] is a common error of

new programmers and if you ever try doing this Perl will produce a suitable warning:

 Scalar value @cards[0] better written as $cards[0]

 Example 4.14.2
 Let’s look at some more ways we can assign values to an array.

 1. #!/usr/bin/perl

 2. # more_arrays.pl

 3. use strict; use warnings;

 4.

 5. my @dna = (‘A’, ‘T’, ‘C’);

 6. print “DNA is $dna[0] $dna[1] $dna[2] $dna[3]\n”;

 7.

 8. my $nt = “G”;

 9. $dna[3] = $nt;

 10. print “DNA is $dna[0] $dna[1] $dna[2] $dna[3]\n”;

 11.

 12. ($dna[0], $dna[3]) = ($dna[3], $dna[0]); # swap two values

 13. print “DNA is $dna[0] $dna[1] $dna[2] $dna[3]\n”;

 14.

 15. print “DNA is @dna\n”;

 43 Though this will change in Perl version 6, when such syntax will be valid.

9781107000681c04_p85-219.indd 1389781107000681c04_p85-219.indd 138 11/5/2011 6:26:52 PM11/5/2011 6:26:52 PM

Introduction to Arrays 139

 Understanding the script
 Line 5 creates an array (@dna) which initially consists of three nucleotides. Line 6 then

tries printing the fi rst four elements of this array. However, $dna[3] does not exist so

Perl will print a Use of uninitialized value error.

 Line 8 creates a new variable ($nt) and assigns it a value. On line 9 we then assign

 $nt as the fourth element of @dna . This illustrates that you can modify individual

elements of an array, and that array elements can be scalar variables as well as strings.

 Line 12 uses list context to swap the contents of two array elements (see the previous

section to learn about list context).

 Finally, line 15 shows that if you include an array name between double quotes, then

the entire array interpolates . By default, Perl will add spaces between each element in

the printed output. The output from lines 13 and 15 should be identical.

 Example 4.14.3
 A quick example to show you how you can save time when creating an array containing

lots of strings.

 1. #!/usr/bin/perl

 2. # quoting.pl

 3. use strict; use warnings;

 4.

 5. my @protein_A = (‘M’, ‘A’, ‘R’, ‘W’, ‘P’, ‘C’, ‘S’, ‘E’, ‘R’);

 6. my @protein_B = qw(M A R W P C S E R);

 7. print “@protein_A\n@protein_B\n”;

 Understanding the script

 When you initialize an array and want to add lots of strings, it can be tedious to add all

of those single quote characters around each element. Luckily, Perl has a “quote words ”

tool to help you out. Just use the qw() function and write a list of strings, separated by

spaces. Obviously, this is only useful if your array is going to include strings that are

single words, letters, numbers, etc.

 How long is a piece of ?string an array?
 It is very useful to know how long an array is (i.e., how many elements it contains).

You might want to use the length() function, but that returns the length of a string.

Finding the length of an array is simple though – you just evaluate it in scalar context .

This is most commonly done by simply assigning an array to a scalar variable.

 Example 4.14.4
 This is another script where you really should try to predict what is going to happen

before running it.

 1. #!/usr/bin/perl

 2. # array_length.pl

9781107000681c04_p85-219.indd 1399781107000681c04_p85-219.indd 139 11/5/2011 6:26:52 PM11/5/2011 6:26:52 PM

Essential Perl140

 3. use strict; use warnings;

 4.

 5. my $car = “Honda”;

 6. print “Length of \$car is “, length($car), “\n”;

 7.

 8. my @cars = (“Toyota”, “Ford”, “Ferrari”);

 9. print “Length of \@cars is “, length(@cars), “\n”;

 10.

 11. my $length = @cars;

 12. print “Length of \@cars is $length\n”;

 Understanding the script
 Lines 5 and 6 are hopefully familiar to you. We take a string and count how many char-

acters are in that string using the length() function.

 On line 8 we introduce an array called @cars . Note that $car and @cars are two

completely different things. Perl even allows you to give the exact same name to scalar

variables and arrays (and other things too). 44

 On line 9 we try to calculate the length of the @cars array using the length()

function, but we get a length of 1 rather than 3. The length() function is not meant to

be used for arrays. We’ll explain why it returns 1 in just a moment.

 Lines 11 and 12 give us what we were looking for and $length contains the cor-

rect length of the array. 45 This introduces a very useful concept in Perl. If you assign a

list or array to a scalar variable, then the scalar variable becomes the length of the list .
This is very useful and you will use it a lot in your Perl code. You can think of this in

another way: In any place where Perl is expecting a numerical value, you can usually

specify an array instead.

 Returning to line 9, what is happening here is that the length() function is expect-

ing a single scalar value, and so in this context @cars is evaluated as the length of the

array rather than the contents of the array. This means that the length() function is

calculating the length of the string “3” (the number of elements in @cars), which is

why it prints “1”.

 Scalar context vs. list context
 It is a common mistake to confuse the last two lines of code in the following example.

Can you work out what the difference is?

 my @cars = qw(Honda Ford BMW);

 my $length;

 $length = @cars;

 ($length) = @cars;

 44 Sometimes this is a good thing, sometimes this is a bad thing. It partly depends on how much it confuses you!

 45 Remember that $length is just a variable. Some people confuse $length with the length() function. We could

also have called the variable $length_of_cars_array .

9781107000681c04_p85-219.indd 1409781107000681c04_p85-219.indd 140 11/5/2011 6:26:52 PM11/5/2011 6:26:52 PM

Introduction to Arrays 141

 The third line of code calculates the length of the cars array and assigns that to the

 $length variable, which gets the value 3. But when we add parentheses around

 $length , we are now making a list, and the last line of code is therefore a list assign-
ment . It doesn’t look much like a list because there is only one thing in it, but it is still

a list. So the last line of code could be read as “take the @cars array and assign all of

its elements to a new list which will contain just one element, $length .” In this case,

 $length would contain “Honda”.

 In the language of Perl, we would say that in the third line above @cars is being

evaluated in scalar context , and in the fourth line it’s being evaluated in list context . This

can become very important because certain functions and operators in Perl will actu-

ally behave differently depending on what context is being used. Perl even provides a

 scalar() function so you can force the evaluation of an array in scalar context. This

provides another way you can determine the length of an array:

 $number_of_elements = scalar(@array);

 Array indexes
 So far we have only been using integer values as array indexes. Let’s look at other ways

we can access specifi c positions within an array.

 Example 4.14.5
 This script will make a short array that contains the names of some different types of DNA

and RNA molecule. It will then try printing out various elements from that array and indi-

cate which array position it is trying to print. If you can guess what all of these print()

statements will print, then you are well on your way toward becoming a Perl guru!

 1. #!/usr/bin/perl

 2. # array_indexes.pl

 3. use strict; use warnings;

 4.

 5. my @molecules = qw(DNA cDNA mRNA tRNA rRNA);

 6. my $number = 1;

 7.

 8. print “@molecules\n”;

 9.

 10. print “Position 0 = $molecules[0]\n”;

 11. print “Position $number = $molecules[$number]\n”;

 12. print “Position 2.01 = $molecules[2.01]\n”;

 13. print “Position 2.99 = $molecules[2.99]\n”;

 14. print “Position -1 = $molecules[-1]\n”;

 Understanding the script
 Line 10 is using the standard array index notation that we have seen so far. Line 11 is

just meant to illustrate that you can use a variable for the index position, as long as that

variable contains a number.

9781107000681c04_p85-219.indd 1419781107000681c04_p85-219.indd 141 11/5/2011 6:26:52 PM11/5/2011 6:26:52 PM

Essential Perl142

 Lines 12 and 13 show what happens when you use fl oating point numbers

instead of integers. Both of these values are rounded down , meaning that both of

these index positions will be equal to 2 (which is the third element of the array,

remember).

 Using a negative number for the array index position (line 14) has the effect of count-

ing from the tail end of the array. Therefore, position − 1 is always the last element of an

array. This means that if an array only has one element, you can access it at position 0

 and position − 1.

 This problem will just check that you have understood how to create lists and arrays,

and how to get data from them. First take a list of three things, and assign them to three

variables. Then copy those three variables into an array, and fi nally reverse their posi-

tions. The output from the script should consist of the three items before and after they

are reversed.

 4.15 Array manipulation

 Don’t try to push() me around
 Perl arrays are dynamic . That is, they grow and shrink automatically as you add/remove

data from them. It is very common to modify the contents of arrays, and it is also very

common to start off with an array full of things, and then remove one thing at a time.

Most of the time we add or remove things to either end of an array; Perl has four dedi-

cated functions to do this:

 Example 4.15.1
 To examine this dynamic behavior, we will fi rst learn to use the push () function to add

some new data on to the array. The push() function is used to add things to the end

Problem

4.14.1

9781107000681c04_p85-219.indd 1429781107000681c04_p85-219.indd 142 11/5/2011 6:26:52 PM11/5/2011 6:26:52 PM

Array manipulation 143

 46 For those of you who visualize arrays in a horizontal orientation, the “ends” will be the left- and right-most edges.

However, because there are probably some people who visualize arrays in a vertical fashion, we will try to avoid using

left/right/up/down notations.

 47 Admittedly these names are not the most consistent choices of verbs that could have been used. If “unshift” is the

opposite of “shift,” then you might expect “unpush” to be the opposite of “push” instead of “pop.”

of an array. For now, we will consider the “end” of an array to be the element with the

highest array index position. 46

 1. #!/usr/bin/perl

 2. # push.pl

 3. use strict; use warnings;

 4.

 5. my @species = (‘Homo sapiens’, ‘Felis catus’, ‘Bos taurus’);

 6.

 7. push @species, “Mus musculus”; # add one new element to end of array

 8. print “Fourth species is now $species[3]\n”;

 9.

 10. my $animal = “Pan troglodytes”;

 11. my $plant = “Arabidopsis thaliana”;

 12. push @species, $animal, $plant, “Drosophila melanogaster”;

 13.

 14. print “@species\n”;

 Understanding the script
 After defi ning a three-element array (line 5), we then use the push() function on line

7 to add one extra item to the @species array. Note that the syntax of push() is to

fi rst specify an array and then specify the thing to be added. You can include parentheses

if that makes it clearer for you:

 7. push(@species, “Mus musculus”);

 The thing that you push onto an array can be a string, variable, list of things, or even

another array. On line 12, we push two variables and one string onto the end of the @

species array.

 Common array functions
 We just saw push() as a way of adding an element to one end of an array. Naturally,

you might also want to remove elements from that end of the list. You can do this with

the pop() function . And of course, if you can add and remove elements to the end of

a list, you might also expect to be able to do the same to the start of the list . Perl allows

you to do this with two functions called unshift () and shift () . 47 Together, these

four functions allow you to add or remove items from the start or end of a list or array.

However, if you want to do even more complex array manipulations, then you can use

the splice () function. This function is the hardest one to understand, but also the

most powerful because it allows you to add, remove, or substitute array elements at any

9781107000681c04_p85-219.indd 1439781107000681c04_p85-219.indd 143 11/5/2011 6:26:52 PM11/5/2011 6:26:52 PM

Essential Perl144

position in an array, not just at the ends. The syntax of these operators are summarized

in the following table.

Function Meaning

 push(@array, “some value”) Add a value to the end of the list

 $popped_value = pop(@array) Remove a value from the end of the list

 $shifted_value = shift (@array) Remove a value from the front of the list

 unshift(@array, “some value”) Add a value to the front of the list

 splice(…) Everything above and more!

 Example 4.15.2
 Let’s see if we can make a simple script which demonstrates the four ways in which

you can manipulate the ends of an array. We can imagine that we have an array which

contains a shopping list, with items in the array listed in order of importance. This script

shows how we can make changes to either end of that list.

 1. #!/usr/bin/perl

 2. # the_ends_of_the_array_are_nigh.pl

 3. use strict; use warnings;

 4.

 5. my @list = qw(bread milk cheese apples);

 6. print “Starting list is: @list\n”;

 7.

 8. # don’t need bread after all

 9. my $removed_item = shift(@list);

 10. print “Have just removed $removed_item from \@list\n”;

 11.

 12. # want oranges instead of apples

 13. pop(@list);

 14. push(@list, “oranges”);

 15.

 16. # but most importantly, get some chocolate

 17. unshift(@list, “chocolate”);

 18.

 19. print “Final list is now: @list\n”;

 Understanding the script
 Line 5 uses the qw() function to easily add elements to the @list array without hav-

ing to quote each character.

 Line 9 then uses the shift() function to remove an item from the start of the list.

Rather than just discarding this array element, we can optionally assign it to a new vari-

able, which is what we do in this example.

9781107000681c04_p85-219.indd 1449781107000681c04_p85-219.indd 144 11/5/2011 6:26:52 PM11/5/2011 6:26:52 PM

Array manipulation 145

 Lines 13 and 14 then use the pop() function to remove the last element of @list

and then add a new item in its place using the push() function. Note that we don’t do

anything with the popped value.

 Line 17 uses the unshift() function to add an item to the front of the array .

 Copying and erasing arrays
 Two more aspects of arrays that we haven’t yet covered concern making a copy of an

array and deleting the contents of an array. Both operations are very simple.

 Example 4.15.3
 This is a simple example to show how you can combine , copy, and empty arrays.

 1. #!/usr/bin/perl

 2. # alphabet.pl

 3. use strict; use warnings;

 4.

 5. my @a_to_m = qw(a b c d e f g h i j k l m);

 6. my @n_to_z = qw(n o p q r s t u v w x y z);

 7.

 8. my @alphabet = (@a_to_m, @n_to_z);

 9. my @alphabet_copy = @alphabet;

 10.

 11. @alphabet = ();

 12.

 13. print “Original: @alphabet\n”;

 14. print “Copy: @alphabet_copy\n”;

 Understanding the script
 We fi rst defi ne two arrays which each hold half of the alphabet (lines 5 and 6). Next,

we make a list assignment to copy both arrays to one new array (line 8). Understand

that Perl will fi rst expand all arrays on the right-hand side of the equals sign. Both

arrays will become one long list, the contents of which then get assigned to @

alphabet .

 Line 9 makes a copy of the @alphabet array, simply by assigning it to a new array

name.

 On line 11 we empty the @alphabet array by assigning it an empty list (as rep-

resented by the open and close parentheses on their own). Note that this doesn’t delete

the array. Perl still knows that there is an array called @alphabet , it just no longer

contains anything.

 Finally, we print out both @alphabet and @alphabet_copy , but only the latter

array now contains anything.

9781107000681c04_p85-219.indd 1459781107000681c04_p85-219.indd 145 11/5/2011 6:26:53 PM11/5/2011 6:26:53 PM

Essential Perl146

 Making a string by joining together elements in an array
 We have seen that if you try printing an array between double quotes, then Perl inter-

polates the array and prints each element separated by a space. What if we want some-

thing other than spaces? An easy way to do this in Perl is with the join() function ;

this allows you to create a string from an array and put whatever you want between the

elements of the array. The syntax of the join() function is:

 join(‘separator’, @array)

 The separator can be a single character or a longer string, or a variable that contains a

string. The named array will be the thing you join together to form a string. You could

also write a list of items rather than an array name, and you could even include a list of

arrays:

 join(‘separator’, @array_A, @array_B, @array_C)

 Example 4.15.4
 Let’s say we want to create a CSV (comma-separated values) formatted string from an

array of gene names from the nematode Caenorhabditis elegans .

 1. #!/usr/bin/perl

 2. # array_to_string.pl

 3. use strict; use warnings;

 4.

 5. my @gene_names = qw(unc-10 cyc-1 act-1 let-7 dyf-2);

 6.

 7. my $joined_string = join(“,”, @gene_names);

 8. print “$joined_string\n”;

 Understanding the script
 Line 7 uses the join() function to combine all of the elements in the @gene_names

array. We specify that each element of the array should be joined with a comma

character.

 Note that the outcome of the join() function is assigned to a string. If we didn’t

need to store the string in a new variable, then we could have just used the following:

 5. print join(“, “, @gene_names), “\n”;

 Also note that the join() function does not affect the contents of the array that is

being joined .

 Making an array by splitting a string at delimiters
 The opposite behavior of join() is provided by the split() function . This divides

a string into an array . But we have to tell it what character or pattern to use in order to

split the array.

9781107000681c04_p85-219.indd 1469781107000681c04_p85-219.indd 146 11/5/2011 6:26:53 PM11/5/2011 6:26:53 PM

Array manipulation 147

 Example 4.15.5
 A simple example of splitting a sentence into an array of separate words.

 1. #!/usr/bin/perl

 2. # string_to_array.pl

 3. use strict; use warnings;

 4.

 5. my $sentence = “This is a sentence containing some words”;

 6. my @words = split(“ “, $sentence);

 7. print “First word = ‘$words[0]’, last word = ‘$words[-1]’\n”;

 Understanding the script
 The split() function on line 6 takes a string ($sentence) and splits it into an array

using a space character as the delimiter. 48 Note that the space characters are not kept in

the resulting array. Also note that the act of splitting a scalar variable does not destroy

or modify the variable.

 On line 7 we access the last array position of the @words array by using the − 1 index

position.

 If we want to convert a string into an array and split the string at every possible position,

we can use an empty string (““) in the split() function. More commonly, you will

use split () to take lines from a comma- or tab-separated value fi le and split every

item into an array; e.g., if we have read one line from a CSV fi le and stored it in a vari-

able $line , then we can do the following:

 my @fields = split(“,”, $line);

 The splice function
 The splice () function is very powerful and can be used to remove and/or add

elements at any position within an array. It is a quite diffi cult function to understand

though, because like many Perl commands it can be used in different ways; the func-

tionality depends on which of the optional arguments you provide. Each additional

option adds another level of complexity to the function. Let’s quickly look at the four

ways we can use splice() on an array called @array . Imagine that in each of

these examples, @array is reverted back to its starting condition after each use of the

 splice() function.

 my @array = qw(a b c d e f g h);

 splice(@array); # gets rid of everything in @array

 splice(@array, 3); # gets rid of everything from position 3 onwards

 splice(@array, 3, 2); # gets rid of two elements from position 3 onwards

 splice(@array, 3, 2, “D”, “E”); # replaces ‘d’ and ‘e’ with ‘D’ and ‘E’

 48 Later on we will learn much more powerful ways to represent space characters which will help us get round the problem

of what would happen if a sentence accidentally contained two spaces in a row.

9781107000681c04_p85-219.indd 1479781107000681c04_p85-219.indd 147 11/5/2011 6:26:53 PM11/5/2011 6:26:53 PM

Essential Perl148

 The fi rst example uses the minimum number of arguments and is rarely ever used as

it just removes everything from the named array. The second example provides more

fl exibility by specifying which position in the array you want to start removing elements

from. It will still remove all elements from that position onwards. The next example

offers more control by limiting how many items are removed. The last example offers

the most control and shows that you can specify a position in an array, and then remove

a certain number of elements at that position and replace them with new elements from

a specifi ed list. The list in this example is two strings (“D” and “E”), but could have also

been an array.

 Note that while you could use splice() to delete all of the elements from an array,

it is usually easier to assign the array an empty list, which we can denote by using an

empty pair of parentheses :

 @array = ();

 Note that this destroys the contents of the array, but not the array itself. You can still add

new elements to the array without having to re-establish the array name by using the

 my keyword.

 Create two arrays; the fi rst array should have an odd number of elements, and the second

can have any number (though don’t get too carried away!). We’ll let you use your imagin-

ation in deciding what these arrays are named and what they contain.

 Use the splice() function to replace the middle element of array 1 with all of the

elements of array 2. For added bonus points, 49 try to make your script work out what

the middle position of array 1 is going to be – assume that you don’t know how long the

array is, only that it contains an odd number of elements.

 4.16 The @ARGV array

 There is no argument about how useful this is.
 We have covered a lot of the basics of Perl, but so far all of our scripts have only dealt

with variables that have been defi ned within the script. From a programming perspective

this is generally considered to be a bad thing. Technically, we say that in these scripts

all of the variables are hard coded. This means that every time you run the script you

will get the same result, 50 and if you want a different result then you have to edit the

script. This is not desirable, and in some cases (e.g., you don’t have permission to edit

the script), it will not even be possible.

 Most of the time when we run scripts we ideally want to specify some external data

that the script should use. For example, let’s assume we want a script to multiply two

numbers together. It would be great if we could just specify some command-line argu-
ments when we run the program, and let those arguments become the numbers to be

multiplied:

 49 You did know that we award bonus points right?

 50 Unless of course, your script uses the rand() function, which is exactly why we have used it so much in the earlier

scripts.

Problem

4.15.1

9781107000681c04_p85-219.indd 1489781107000681c04_p85-219.indd 148 11/5/2011 6:26:53 PM11/5/2011 6:26:53 PM

The @ARGV array 149

 $ multiply.pl 6 9

 This is actually very easy to do in Perl because all of the items you specify after the script

name get placed into a special array. 51 And that array is called … drum roll please … the

 @ARGV array. It’s called @ARGV because it’s a vector (array) that contains command-

line arguments. We’ve had to wait until we introduced arrays before we could mention

the @ARGV array, but expect to see @ARGV used a lot more from this point onwards.

Let’s see some examples of how you can use it in your scripts.

 Example 4.16.1
 This script makes a simple calculator that uses the exponentiation operator to calculate

 X to the power of Y . You must specify both numbers as command-line arguments when

you run the script.

 1. #!/usr/bin/perl

 2. # pow.pl

 3. use strict; use warnings;

 4.

 5. print $ARGV[0] ** $ARGV[1], “\n”;

 Understanding the script
 Essentially, this is just a one-line script. If you provide two numbers when you run the

program, then both of these will automatically be available via the @ARGV array. Just

like regular arrays, we can access individual elements of @ARGV by using the array sub-

script notation. Line 5 uses the exponentiation operator (**) with the two values in @

ARGV and prints the result. If you didn’t specify two numbers (separated by one or more

spaces) after the script name, you will see a “Use of uninitialized value” error.

 Renaming elements stored in @ARGV
 A bad habit to get into is to keep on using the @ARGV name throughout your script. In a

short script, you may easily remember that $ARGV[1] corresponds to the year you were

born, and that $ARGV[4] contains your mother’s maiden name. However, as your scripts

get longer it will become harder to keep track of which element of @ARGV contains which

piece of data. Therefore you should adopt the following “good working practice”:

 Always assign the contents of @ARGV to another array or set of variables.

 In many cases, this should be the fi rst thing your script does. @ARGV is not a meaning-

ful name for your data, 52 so if $ARGV[1] is to contain your favorite fl avor of milkshake,

 51 There are many special variables in Perl and these are technically called “predefi ned names.” We will see some more of

these later in the book.

 52 No doubt, there is someone in the world who works on something that uses ARGV as an abbreviation for their data (the

Average Ratio of Goats to Vets?). If you are that person, then we apologize for any confusion you experience when using

@ARGV and we grant you, and only you, special dispensation to continue using @ARGV as an array name throughout

your script.

9781107000681c04_p85-219.indd 1499781107000681c04_p85-219.indd 149 11/5/2011 6:26:53 PM11/5/2011 6:26:53 PM

Essential Perl150

then $flavor is a better choice of name. Sometimes you will want to reassign @ARGV

to a number of different variables and sometimes you will just want to assign all of @

ARGV to a single array. This will largely depend on whether your command-line argu-

ments represent different types of thing (e.g., color, height, name), or whether they are

all of the same type (e.g., a list of species names).

 Example 4.16.2
 In this example we will use @ARGV to capture someone’s name and year of birth in order

to determine whether they were born in a leap year. After you type the script, run it as

follows:

 $ leapyear.pl “Andy Warhol” 1928

 1. #!/usr/bin/perl

 2. # leapyear.pl

 3. use strict; use warnings;

 4.

 5. my ($name, $year) = @ARGV;

 6.

 7. print “Hello $name. You were “;

 8.

 9. if ((($year % 4 == 0) and ($year % 100 != 0)) or ($year % 400 == 0)){

 10. print “born in a leap year.\n”;

 11. }

 12. else{

 13. print “not born in a leap year.\n”;

 14. }

 Understanding the script
 Line 5 takes the two elements specifi ed on the command line and assigns these to a list

containing $name and $year .

 Line 7 starts a print statement, but notice that there is no newline character

included; this statement will be concluded when we know whether the year was a leap

year or not.

 The if statement on line 9 then does the math (with the modulo operator) to cal-

culate whether $year is a leap year. This logic can be stated “If the year is divisible

by 4 and the year is not divisible by 100, or the year is divisible by 400, then it is a

leap year.”

 Checking what’s in @ARGV
 In the previous example, we used “Andy Warhol” as the name to be captured by $name .

It was important to place this within quotes so Perl recognized it as a single argument.

What would happen, though, if we mistakenly run the script like so:

 $ leapyear.pl Andy Warhol 1928

9781107000681c04_p85-219.indd 1509781107000681c04_p85-219.indd 150 11/5/2011 6:26:53 PM11/5/2011 6:26:53 PM

The @ARGV array 151

 In this case @ARGV gets three items, which is not what we want. Perl assumes that

command-line arguments will be separated by one or more space characters, unless they

are enclosed within quotes (single or double). 53

 It becomes very important to get into the habit of checking that @ARGV contains

what you expect it to contain. The fi rst thing to check is that there is the right number of

things in @ARGV ; then you can usually also check whether each item fi ts certain criteria.

If you are capturing someone’s age, then this should be a number between 0 and ~115.

As the next example shows, it is very common to use the die () function when check-

ing the contents of @ARGV .

 Example 4.16.3
 This script takes a pair of latitude and longitude coordinates and then attempts to deter-

mine whether those coordinates lie roughly within the state of Kansas, USA.

 1. #!/usr/bin/perl

 2. # not_in_kansas_anymore.pl

 3. use strict; use warnings;

 4.

 5. my ($latitude, $longitude) = @ARGV;

 6. die “Need latitude and longitude coordinates\n” if (@ARGV != 2);

 7.

 8. # check latitude and longitude

 9. if ($latitude < -90 or $latitude > 90){

 10. die “Latitude should be between -90 and +90\n”;

 11. }

 12. if ($longitude < -180 or $longitude > 180){

 13. die “Longitude should be between -180 and +180\n”;

 14. }

 15.

 16. # are we in Kansas?

 17. if (($latitude > 36 and $latitude < 41) and

 18. ($longitude > -103 and $longitude < -94)){

 19. print “We are (probably) in Kansas\n”;

 20. } else {

 21. print “We are not in Kansas anymore\n”;

 22. }

 Understanding the script
 On line 5 we capture two command-line arguments and place them in two variables that

we are going to assume contain a latitude and longitude coordinate.

 53 Strictly speaking this is a issue with Unix rather than with Perl, and the same logic applies if you want to run any Unix

command. Unix will use space characters as the delimiter between command-line arguments, unless they are placed

within quote characters.

9781107000681c04_p85-219.indd 1519781107000681c04_p85-219.indd 151 11/5/2011 6:26:53 PM11/5/2011 6:26:53 PM

Essential Perl152

 For this script to work we need two, and only two, arguments. We test whether there

are two arguments by checking the length of @ARGV on line 6. This is another example

of evaluating an array in scalar context – we ask whether an array (@ARGV) is not equal

to 2. This only makes sense if we are treating the array as a number, and so Perl does

the magic for us and calculates the size of the array. We stop the script with a die()

function if the length of the array is not equal to two.

 Any time you write a script that needs a certain number of arguments, you should

always check that you have the right number. There is no point proceeding if an argu-

ment might be missing.

 Lines 9–14 then check whether the values are in a sensible range to be considered

valid latitude and longitude coordinates. If they are not, then the script issues a die

statement which lets the user know what range of values are expected.

 If we reach line 17 then we know we must have two values which are suitable as a

pair of latitude/longitude coordinates. We then have a complex if statement which tests

whether those coordinates lie within a particular rectangle of land. 54 Note that we split

the if statement over two lines, and use whitespace to make it easier to read.

 Write a script that just counts how many things you specify on the command line. The

script should insist that you specify at least three command-line arguments.

 4.17 Defi ned and undefi ned variables

 This chapter is defi nitely the best place to learn about defi nition
 Scalar variables can be declared but not defi ned . Consider the following code:

 my $number;

 print “$number\n”;

 In this example the variable $number is declared on one line and we then try to print its

value, even though it doesn’t contain anything. In this situation we say that $number is

 undefi ned . It remains undefi ned until we assign it a value, at which point it is defi ned . If

you try printing an undefi ned value you will see an error such as:

 Use of uninitialized value in concatenation (.) or string …

 Undefi ned values are not necessarily bad, but you generally want to know if a variable

contains an undefi ned value (especially if you were expecting it to be defi ned).

 How to tell whether something is defi ned
 You will frequently write scripts that get their input data from text fi les which might

contain millions of values. It will be impossible to manually check these fi les to ensure

that every value is present. Sometimes an error in your input fi le (e.g., an accidentally

 54 Apologies to any Kansans who take offense at having their state described as being rectangular in shape. If you could just

straighten out the Missouri river, it would help our example a lot.

Problem

4.16.1

9781107000681c04_p85-219.indd 1529781107000681c04_p85-219.indd 152 11/5/2011 6:26:53 PM11/5/2011 6:26:53 PM

Defi ned and undefi ned variables 153

added blank line) will cause your variables to not contain any value. To determine if a

variable is defi ned, you can use the defined() function . This simply returns true if

the argument is defi ned and false if the argument is undefi ned. If you want your program

to quit if it fi nds an unexpected undefi ned variable, you can use a statement like this: 55

 die “error” if not defined $variable;

 Parentheses are optional, and you can also use the other form of the not operator

if you wish. This means that the following code is functionally equivalent to the above

example:

 die “error” if (!defined ($variable));

 Making a variable undefi ned
 If you want to intentionally make a scalar variable undefi ned, 56 you can use undef in

either a function or assignment context:

 my $var1 = “defined”;

 my $var2 = “defined”;

 undef($var1); # as function

 $var2 = undef; # as assignment

 print $var1; # reports uninitialized value

 print $var2; # reports uninitialized value

 You can also undef an array and it will destroy its contents. It does not, however, turn

the array into an undefi ned value. Only scalars can have undefi ned values.

 Undefi ned values are an essential debugging tool
 The combination of use warnings and undefi ned values makes debugging much

easier. Consider the following erroneous code, which is meant to simulate fl ipping

a coin.

 my $coin;

 if (rand() < 0.5) {$coin = “heads”}

 elsif (rand() >= 0.5) {$coin = “tails”}

 print “$coin\n”;

 There is nothing wrong with the syntax of this code. The error is a logical one. The

 rand() function is called twice, and each time it gets a different value. If the fi rst ran-

dom number generated is 0.71 and the second number is 0.12, neither of the conditions

will have been true. Therefore, sometimes $coin remains undefi ned. Being able to

identify errors in logic is really important, and undefi ned values are incredibly useful

for debugging . Not many programming languages have this feature, so rejoice that you

are learning Perl.

 55 Your error message will hopefully be more informative than this.

 56 There are occasions when you will want to “reset” the value of a variable.

9781107000681c04_p85-219.indd 1539781107000681c04_p85-219.indd 153 11/5/2011 6:26:53 PM11/5/2011 6:26:53 PM

Essential Perl154

 Special cases for undefi ned values
 In general, evaluating undefi ned variables causes a warning message to appear. There

are two exceptions to this rule:

 (1) Undefi ned values are logically false.

 (2) Undefi ned values can be incremented.

 Exception 1 means you can use undefi ned values in conditional statements. Exception 2

means you can treat undefi ned values as having a value of zero or an empty string. The

following code demonstrates both these properties and does not produce any warnings:

 Example 4.17.1

 1. #!/usr/bin/perl

 2. # undef_ok.pl

 3. use strict; use warnings;

 4.

 5. my ($var1, $var2);

 6. if (not $var1 or $var2) {

 7. $var1++;

 8. $var2 .= “foo”;

 9. print “$var1 $var2\n”;

 10. }

 Understanding the script
 Line 5 declares two variables without defi ning their contents. If you tried to print

these, Perl would report warning messages.

 Line 6 shows that you can perform logical tests with undefi ned values. They always

evaluate to false (which means that the if statement on this line will evaluate as true).

 Line 7 increments $var1 . Since this is a numeric context, zero is the initial value,

and after the statement $var1 has the value 1.

 Line 8 concatenates “foo” onto $var2 . This is string context, so the initial value of

 $var2 is an empty string.

 Line 9 prints the variables which results in “ 1 foo ”.

 4.18 Sorting

 This section will be very useful … sort of
 As in real life, lists are great, but sorted lists are even better. Imagine how tedious it

would be to look through a telephone book if it wasn’t sorted. Sorting lists and arrays

imposes order on your data, and it can also make it easier to perform certain mathem-

atical operations. For example, if you sort an array of numbers, then you know that you

can access the minimum value at array index 0 and the maximum value at array index

 − 1 (which corresponds to the last element in an array). Perl has an incredibly fl exible

9781107000681c04_p85-219.indd 1549781107000681c04_p85-219.indd 154 11/5/2011 6:26:53 PM11/5/2011 6:26:53 PM

Sorting 155

sorting function, but it can seem a little complicated, so you may want to come back and

read this part again later.

 Example 4.18.1
 Create the following program. We will be modifying it several times. Can you predict

what the sorted output will look like? Do you think the numbers should be sorted before

or after the strings?

 1. #!/usr/bin/perl

 2. use strict; use warnings;

 3.

 4. my @data = qw(3.14 1000 21 red blue yellow);

 5. print “before: @data\n”;

 6. @data = sort @data;

 7. print “after: @data\n”;

 Understanding the script
 Line 4 creates an array that contains both numbers and strings.

 Line 6 does the actual sorting using the appropriately named sort() function .

Note that we assign the sorted output back to the same array, but we could have also

assigned it to a new array (e.g., @sorted_array).

 The output from the program should look like this:

 before: 3.14 1000 21 red blue yellow

 after: 1000 21 3.14 blue red yellow

 This might not be what you were expecting. The three strings were sorted correctly, but

the numbers appear to be out of order. This is because all of the elements were sorted

alphabetically by their ASCII values (see Chapter 4.9). In ASCII, 1 is less then 2, which

is less than 3. Alphabetically, 1000 is less than 21. If we want to sort numerically, then

we have to change the default sorting behavior of Perl.

 Sorting numbers vs. sorting strings
 A sorting function must compare one value to another. In Perl, there are two operators

that allow you to compare pairs of values:

 <=> compares numbers ;

 cmp compares strings .

 These operators return − 1, 0, or +1, depending on whether the left-hand operand is less

than, equal to, or greater than the right-hand operand.

 “a” cmp “b”; # -1 because a is less than b alphabetically

 “b” cmp “a”; # +1

 “a” cmp “a”; # 0

 1 <=> 2; # -1 because 1 is less than 2 numerically

9781107000681c04_p85-219.indd 1559781107000681c04_p85-219.indd 155 11/5/2011 6:26:53 PM11/5/2011 6:26:53 PM

Essential Perl156

 2 <=> 1; # +1

 1 <=> 1; # 0

 “a” <=> “b”; # 0 because strings are numerically zero

 100 cmp 2 ; # -1 because 1 is less than 2 alphabetically

 To change the sorting behavior in Perl, you have to give the sort() function an

alternate syntax, which can look a little strange. Perl’s sort() function reserves

two variables called $a and $b for sorting. 57 When we use the default sorting behav-

ior we don’t see these special variables, but the following two lines of code are

equivalent:

 @data = sort @data; # basic alphanumeric sort

 @data = sort {$a cmp $b} @data; # same, but with all the details revealed

 The comparison routine is the part that happens inside the curly brackets after the sort .

Modify line 6 of your code from Example 4.18.1 to try out each of the following two

sorting assignments in turn:

 @data = sort {$a cmp $b} @data; # alphabetic

 @data = sort {$a <=> $b} @data; # numeric

 You should fi nd that the second example, sorting numerically, produces warnings. The

numbers are correctly sorted, but the strings are not:

 before: 3.14 1000 21 red blue yellow

 Argument “red” isn’t numeric in sort at sort.pl line 6.

 Argument “blue” isn’t numeric in sort at sort.pl line 6.

 Argument “yellow” isn’t numeric in sort at sort.pl line 6.

 after: red blue yellow 3.14 21 1000

 This warning message is fairly self-explanatory; you should sort numerically only if you

are sorting numbers, not strings. If you have a mixture of strings and numbers, you can

do the following to sort them:

 @data = sort {$a <=> $b or $a cmp $b} @data;

 This uses the Boolean or operator to chain the two comparisons. If the numeric sort

results in a zero, as would happen with a string, the alphabetic comparison is used

instead. Unfortunately, there are still warnings because we are comparing strings as

numbers. We can quiet these by temporarily turning off the warnings pragma. This is

done by placing “ no warnings; ” before the sort and “ use warnings; ” after

the sort:

 no warnings;

 @data = sort {$a <=> $b or $a cmp $b} @data;

 use warnings;

 57 For this reason, please don’t name your variables $a or $b . Note that you also don’t need to declare them with the my

operator.

9781107000681c04_p85-219.indd 1569781107000681c04_p85-219.indd 156 11/5/2011 6:26:54 PM11/5/2011 6:26:54 PM

Sorting 157

 You can put almost anything you want between the curly braces in order to sort data

in more imaginative ways. Let’s try sorting by the length of each string (in the case of

numbers, the length of the string representation of the number).

 @data = sort {length($a) <=> length($b)} @data;

 The output is as follows:

 before: 3.14 1000 21 red blue yellow

 after: 21 red 3.14 1000 blue yellow

 Reverse-sorting
 Sometimes you will want to perform a reverse-sort . This is easily done by just switching

the position of $a and $b when using either of the comparison operators:

 @data = sort {$b cmp $a} @data; # reverse alphabetic sort

 @data = sort {$b <=> $a} @data; # reverse numeric sort

 Alternatively, Perl also has a reverse() function which, unsurprisingly, can reverse

the order of an array. This function also works on strings .

 Example 4.18.2
 This short script shows how you can use the reverse() function in combination with

 sort() .

 1. #!/usr/bin/perl

 2. # reverse.pl

 3. use strict; use warnings;

 4.

 5. my @array = qw(b c h d e g a f); # unsorted

 6. my $string = “reversed”;

 7.

 8. my @reversed_array = reverse(sort @array);

 9. my $reversed_string = reverse($string);

 10. print “$reversed_string: @reversed_array\n”;

 Understanding the script
 After declaring an array and a string on lines 5 and 6, we use the reverse() function

to take the sorted array and then assign the reversed output to a new array.

 Line 9 shows how reverse can also be used on a string in exactly the same way.

 Write a script where you input a series of numbers on the command line. The script

should discard the highest and lowest values and print out what is remains. You might

want to revisit the “Array manipulation” chapter for this part. Your script should also

check that you have at least three input numbers and act appropriately if there are not

enough.

Problem

4.18.1

9781107000681c04_p85-219.indd 1579781107000681c04_p85-219.indd 157 11/5/2011 6:26:54 PM11/5/2011 6:26:54 PM

Essential Perl158

 4.19 Introduction to loops

 You might need to read this section over and over again
 Loops are one of the most important constructs in programming. Once you have mas-

tered loops, you can do some really useful programming. Loops allow us to do things

like count from 1 to 100, cycle through each element in an array, or even process every

line in an input fi le. In general, loops allow us to iterate through a list of numbers or a list

of things and do one or more actions in each iteration of the loop. There are three main

loops that are used in programming, the for loop, the foreach loop, and the while

loop; this chapter will focus on the fi rst of these three looping mechanisms.

 The for loop
 The for loop generally iterates over a series of integers, usually from zero to some

other number. You can think of the integer as a “loop counter” which keeps track of how

many times you have been through the loop (just like a lap counter during a car race).

The for loop has three important components that are specifi ed each time we create a

loop:

 (1) Initialization – provide some starting value for the loop counter.

 (2) Validation – provide a condition for when the loop should end.

 (3) Update – specify how the loop counter should be changed in each loop cycle.

 If we return to the car race analogy, we can imagine a car having to drive 10 laps

around a circular track. At the start of the race the car has not completed any laps, so

the loop counter would be initialized at zero. The race is clearly over when the counter

reaches 10 and each lap of the track updates the counter by 1.

 Example 4.19.1
 Create and run the following program that produces a simple for loop which will just

count from zero to nine. 58 This is a very short script because all our loop is going to do

is print out the count for each iteration of the loop.

 1. #!/usr/bin/perl

 2. # loop.pl

 3. use strict; use warnings;

 4.

 5. for (my $i = 0; $i < 10; $i++) {

 6. print “$i\n”;

 7. }

 Understanding the script
 On line 5 we set up the loop by specifying the three required components (initialization,

validation, and update). These components are always placed inside parentheses, and

 58 We could count from 1–10, but we are sticking with the programming concept that arrays start at position 0 rather than 1.

This will become more useful later, when we start looping through arrays.

9781107000681c04_p85-219.indd 1589781107000681c04_p85-219.indd 158 11/5/2011 6:26:54 PM11/5/2011 6:26:54 PM

Introduction to loops 159

are separated by semicolons. In this loop we fi rst declare a new variable (my $i) to act

as our loop counter. It is a convention in programming to use $i as a loop variable name

because of the use of i as a counter in mathematical notation; e.g.:

xi

i=0

n

∑

 You could name your loop counter anything you wanted to, but we suggest that for now

you use $i . Let’s look at the three main components of our loop:

 $i = 0 # initialization: start our loop with $i equal to zero

 $i < 10 # validation: keeps the loop going as long as $i is less than 10

 $i++ # update: $i is incremented by 1 during each loop iteration

 The contents of a loop are placed in a block of code just like when we have an if

statement. This means that the code has to be enclosed within a pair of curly braces and

the code is typically indented in the same way.

 In this loop there is only one line of code that does anything. This is the print state-

ment on line 6. It is critical that you realize that this line of code is executed ten times in

total. Each time Perl evaluates this line of code the value of $i will be different because

of the update step of the loop.

 Changing how the loop updates
 The “update” component of the loop should describe a way of modifying the value of

the loop counter variable, otherwise the loop will never end. Consider the following

“infi nite loop”:

 for (my $i = 0; $i < 10; 1) {

 print “$i\n”;

 }

 In this code, $i starts at zero but is never modifi ed by the update condition (which

is just set to be a true value). This means the code enters the loop and is never able to

leave because the validation condition ($i < 10) will never be met. If you try running

this code, your terminal window will become full zero values and you will need to press

Control + c to interrupt the script (this sends the Unix “interrupt” signal and is a useful

way of stopping scripts that run out of control).

 We often want to count upwards with intervals of 1. However, the for loop in Perl

lets you count upwards or downwards.

 Example 4.19.2
 Let’s make a loop to count down for a rocket launch and add suitable print statements

depending on the value of the countdown.

 1. #!/usr/bin/perl

 2. # countdown.pl

9781107000681c04_p85-219.indd 1599781107000681c04_p85-219.indd 159 11/5/2011 6:26:54 PM11/5/2011 6:26:54 PM

Essential Perl160

 3. use strict; use warnings;

 4.

 5. for (my $i = 10; $i >= 0; $i--) {

 6. print “$i) “;

 7. print “Ignition sequence started” if ($i == 9);

 8. print “We have ignition” if ($i == 3);

 9. print “LIFT OFF!” if ($i == 0);

 10. print “\n”;

 11. }

 Understanding the script
 Line 5 reverses the behavior of the three loop conditions. We now initialize $i to 10 and

count down using the decrement operator ($i--). We continue to stay in the loop as

long as $i is greater than or equal to zero.

 Inside the loop we have two print statements that always occur (lines 6 and 10) and

three print statements that are conditional on the value of $i .

 As well as counting up and down in increments of 1, we can change the interval to

be anything we want:

 Example 4.19.3
 This script uses numbers specifi ed on the command line to provide all the three values

used by the loop (start, end, and increment).

 1. #!/usr/bin/perl

 2. # you_decide.pl

 3. use strict; use warnings;

 4.

 5. my $usage = “usage: you_decide.pl <start> <end> <increment>\n”;

 6. die $usage unless @ARGV == 3;

 7.

 8. my ($start, $end, $increment) = @ARGV;

 9. die “Start value should be less than end\n” if ($start >= $end);

 10.

 11. for (my $i = $start; $i <= $end; $i += $increment) {

 12. print “$i\n”;

 13. }

 Understanding the script
 Lines 5 and 6 check that there are three values specifi ed on the command line. Note that

we store the usage message in its own variable.

 It makes sense to provide at least one other check to ensure that the start value is less

than the end value; this is done on line 9. You could also add a check to ensure that the

increment value was in a suitable range (relative to the start and end values).

9781107000681c04_p85-219.indd 1609781107000681c04_p85-219.indd 160 11/5/2011 6:26:54 PM11/5/2011 6:26:54 PM

Introduction to loops 161

 The for loop on line 11 uses all three of the user-specifi ed variables to control the loop.

If we wanted to streamline the code a little we could replace the above for loop with

the following:

 for (my $i = $start; $i <= $end; $i += $increment) {print “$i\n”}

 In this example we can reduce the whole loop down to a single line of code (meaning

we don’t need a semicolon at the end of the block). If you make a for loop which only

does one thing, it is sometimes cleaner to write the loop in this way.

 Looping through arrays
 One of the most common operations you will do as a programmer is to loop through the

contents of an array. Let’s do that now.

 Example 4.19.4
 To make it more interesting, this script will loop over two arrays simultaneously.

 1. #!/usr/bin/perl

 2. # loops.pl

 3. use strict; use warnings;

 4.

 5. my @animals = qw(cat dog cow);

 6. my @sounds = qw(meow woof moo);

 7.

 8. for (my $i = 0; $i < @animals; $i++) {

 9. print “$i) $animals[$i] $sounds[$i]\n”;

 10. }

 Understanding the script
 Lines 5 and 6 declare two different arrays, but both have three elements. As you can

see, the elements in the @sounds array pair up with the elements in the @animals

array.

 The for loop on line 8 starts at 0, which is where all arrays start, and con-

tinues as long as the loop variable $i is less than the length of the array. Notice

that we don’t store the array length anywhere. Instead, we can get Perl to deduce

the length by making it evaluate it in scalar context. It is very common to see this

syntax, e.g., $variable < @array , used in the validation component of for

loops.

 The important point about the loop itself is that the loop counter ($i) is also used

as the array index position for both arrays. You will see this behavior used a lot in for

loops!

 This script works only because both arrays are the same length and the information

in both arrays is connected. The script would not be of any use if one array was longer

than the other.

9781107000681c04_p85-219.indd 1619781107000681c04_p85-219.indd 161 11/5/2011 6:26:54 PM11/5/2011 6:26:54 PM

Essential Perl162

 Write a program that takes a series of numbers specifi ed on the command line and

then:

 (1) sorts them into ascending numerical order;

 (2) loops through the sorted values and prints each value alongside a running total.

 4.20 More loops

 For each thing in this section, you should spend a while learning it

 The foreach loop
 The for loop is great for looping through lists when the specifi c (numeric) position

in the list is important. But sometimes you just want to iterate through a list and you may

not care what position you are at, or even how long the list is. In these situations you can

use a foreach loop which allows you to iterate through the contents of an array with-

out using a loop counter variable. The basic syntax of a foreach loop looks like this:

 foreach my $thing (@array) {

 # code using $thing goes here

 }

 Rather than use a loop counter variable, the foreach loop uses a temporary vari-

able that receives a copy of each element in the array you are looping through. It is

common, though not essential, to name the temporary variable after the singular form

of the array name: 59

 foreach my $protein (@proteins) { …

 foreach my $result (@results) { …

 foreach my $species (@species) { …

 Let’s see the foreach loop in action:

 Example 4.20.1
 This is a script that takes a list of words and then counts which of those words are longer

than an arbitrary length.

 1. #!/usr/bin/perl

 2. # long_words.pl

 3. use strict; use warnings;

 4.

 5. my @words = qw(cat catastrophe dog doggedness fox foxtrotting);

 6. my @long_words;

 7.

 8. foreach my $word (@words) {

 59 Alternatively, you may want to name your arrays in the singular rather than plural. $result[0] sounds like it contains

a single item, while $results[0] sounds like it has multiple items. If an array is going to be indexed numerically, we

prefer the singular. If it is accessed in a foreach context, plural reads better.

Problem

4.19.1

9781107000681c04_p85-219.indd 1629781107000681c04_p85-219.indd 162 11/5/2011 6:26:54 PM11/5/2011 6:26:54 PM

More loops 163

 9. print “$word\n”;

 10. if (length($word) >= 10) {

 11. push(@long_words, $word);

 12. }

 13. }

 14.

 15. print “There were “, scalar(@long_words), “ long words:\n”;

 16. print “@long_words\n”;

 Understanding the script
 Line 5 populates the array that we will be looping through (@words), and line 6 declares

the array that will contain only the long words.

 On line 8 we have the foreach loop and we use $word as the temporary variable.

With each iteration of the loop $word will contain “cat” then “catastrophe” then “dog”

and so on. Remember, these are just copies of the data in the array.

 A simple if statement on line 10 checks to see whether the word is over a certain

length. If it is, then it gets pushed to the end of the @long_words array, and these

words are then reprinted on line 15.

 One important point when using the foreach loop is that you should never use a

 foreach loop to modify the array you are looping through. Imagine if line 10 in the

above example looked like this:

 10. push(@words, $word);

 Rather than pushing $word on to the @long_words array, this line of code is push-

ing $word on to the array that is the subject of the loop itself. This would mean that @

words would keep on growing in size, and the loop would never end.

 Looping using the range operator
 Note that you do not have to specify an array to loop through with the foreach oper-

ator. All that is needed is something that contains (or returns) a list of items. You can

even write the list yourself, and sometimes this is easier than storing those items in an

array. You could loop through the three domains of life like so:

 foreach my $domain (‘archaea’, ‘bacteria’, ‘eukaryotes’) {

 # do something with $domain here

 }

 Perl also provides something called the range operator, which is represented by two

dots (..) . This operator provides an easy way of specifying a range of consecutive

numbers or letters and it is often used in conjunction with foreach loops. Here is

another way you can loop through numbers 1 to 10:

 foreach my $i (1 .. 10) {

 # do something with $i

 }

9781107000681c04_p85-219.indd 1639781107000681c04_p85-219.indd 163 11/5/2011 6:26:54 PM11/5/2011 6:26:54 PM

Essential Perl164

 Perl uses the range operator to fi ll in the missing values between 1 and 10. This style

of loop is much more similar to the for loops that we saw earlier. If you want to be a

lazy typist (potentially an admirable quality if you are concerned about RSI), you can

even use for rather than foreach . This is because foreach is just a synonym of

 for . Here’s a short loop that cycles through each letter in the alphabet:

 for my $letter (‘a’ .. ‘z’) {print “$letter\n”}

 This is a foreach loop, though it is using the for synonym instead. One way of

thinking about this is that the range operator is indirectly specifying all of the three con-

ditions needed for a for loop. In the above example, the initialization component would

be that the loop starts at “a”; the validation component tells the loop to keep going until

it reaches “z”; and the update component will ensure that the loop covers all 26 letters

of the alphabet.

 The while loop
 The while loop continues to iterate as long as some condition is met, where the con-

dition is some notion of true or false . The “condition” part of a while loop can be as

simple or as complex as you want it to be. The basic syntax of a while loop looks like

this:

 while (condition) {

 # code to execute while condition remains true

 }

 It’s very similar to how the if statement works, with the difference that there should be

some code inside the while{…} block that will eventually cause the condition to be

false (thereby exiting the loop). Here is an example of a very simple while loop which

keeps doubling a number until some limit is reached:

 my $x = 1;

 while ($x < 1000) {

 print “$x\n”;

 $x += $x;

 }

 In this example the code will continue to loop while the value of $x is less than 1000,

and $x is doubled in each iteration of the loop. It is important that the test condition will

be testing something that is going to change; but it is possible to write code that contains

a test condition that will never be met, or that will always be met, such as:

 while (0) {

 print “this statement is never executed because 0 is false\n”;

 }

 while (1) {

 print “this statement loops forever\n”;

 }

9781107000681c04_p85-219.indd 1649781107000681c04_p85-219.indd 164 11/5/2011 6:26:54 PM11/5/2011 6:26:54 PM

More loops 165

 The fi rst while loop will never print anything at all because a zero value is always

treated as false by Perl; the loop will run only while the value of zero evaluates to true,

which is never going to happen.

 The second loop will start but never end because the test condition (“while 1 is true”)

is always true. In fact, anything which isn’t a zero or the null string (““) will always

evaluate as true. We often use while loops to loop through an array . Let’s see how we

can do that.

 Example 4.20.2
 This script contains a while loop that will cycle through each number in a list that you

specify on the command line. It will then report whether the number is odd or even:

 1. #!/usr/bin/perl

 2. # odd_or_even.pl

 3. use strict; use warnings;

 4.

 5. die “Specify at least 5 numbers\n” if (@ARGV < 5);

 6. my @numbers = @ARGV;

 7.

 8. while (@numbers) {

 9. my $number = shift(@numbers);

 10.

 11. if ($number % 2 == 0) {

 12. print “$number is even\n”;

 13. } else {

 14. print “$number is odd\n”;

 15. }

 16. }

 Understanding the script
 In each iteration through the loop, the array @numbers is shortened by removing one

item from the front of the list (using the shift function). The condition of the while

loop remains true as long as there is something in the @numbers array. Therefore, the

loop ends when the length of the array is 0 (empty).

 In this example, the array is emptied by the shift () function as we iterate through the

 while loop. This is often not what you want to happen (i.e., you want to keep the array

unmodifi ed), so most of the time you will loop through arrays with for or foreach .

 The do loop
 The do loop is a variation of the while loop, and is sometimes known as a do-while

loop; do loops are not used as often as the other loops. Unlike the while loop, it always

executes at least once. The basic syntax of the loop is:

9781107000681c04_p85-219.indd 1659781107000681c04_p85-219.indd 165 11/5/2011 6:26:55 PM11/5/2011 6:26:55 PM

Essential Perl166

 do {

 # code to be performed

 } while (test condition);

 Even if the test condition always evaluates as false, the code inside the do block will

still execute once.

 When to use each type of loop?
 There will be situations where you can use different types of loop structure to achieve

exactly the same goal for a program. Conversely, there are times when only one type of

loop will do. It might not always be clear to you how to make the correct choice, but with

practice it becomes more obvious. Sometimes you should fi rst ask yourself “Do I need

to keep track of the position in a loop?” If you don’t need to keep track of the position

then maybe a foreach or while loop is more appropriate. If the value of the loop

counter is important, then you might need to use a for loop. Experiment with different

loop structures to see what works and what doesn’t.

 To ensure you understand how to use each of the three main types of loop, write a script

that uses for , foreach , and while loops to loop backwards through a list of three

items.

 4.21 Loop control

 If this does not make a lasting impression, redo this chapter
before the next one
 By default, loops continue to iterate until they reach their end point, but there are times

when you will want a little more control. This can be achieved by use of the next ,

 redo , and last keywords. The next keyword immediately restarts the loop and

advances the loop counter variable. The redo keyword restarts the loop also, but does

not advance the loop variable. The last keyword terminates the entire loop. If we

return to our car race analogy of Chapter 4.19 , the next keyword has the effect of tel-

eporting the car forwards from wherever it is to the start line, advancing the lap counter

in the process. In contrast, the redo keyword teleports the car backwards to the start

line meaning the car has to do the lap again. The last keyword has the effect of raising

the black fl ag to a car and forcing it to exit the race immediately. The rest of this chapter

will show these keywords in use.

 next
 Sometimes we want to ignore certain values from a list or array if they don’t meet cer-

tain criteria. We have already seen this in action by the use of certain logical operators

(if , unless , etc.). Imagine we wanted to print out the squares of only those numbers

from a list that are even. We could do this like so:

 foreach my $number (1 .. 20) {

 if ($number % 2 == 0) {

Problem

4.20.1

9781107000681c04_p85-219.indd 1669781107000681c04_p85-219.indd 166 11/5/2011 6:26:55 PM11/5/2011 6:26:55 PM

Loop control 167

 my $square = $number ** 2;

 print “$number squared is $square\n”;

 }

 }

 However, this code means that we have to create an if block which adds an extra level

of indenting to our code. This is fi ne, but it makes our code a little messier than it other-

wise could be. Now let’s see how the same code could be rewritten by including a next

keyword.

 foreach my $number (1 .. 20) {

 next unless ($number % 2 == 0);

 my $square = $number ** 2;

 print “$number squared is $square\n”;

 }

 We now use next as part of an unless test to effectively skip to the next number if

the current number is odd. You can read this as “go to the next number unless the current

number is even.” Using next like this means we avoid a second level of indenting in the

code. It is important to appreciate that these loops still count from 1 to 20.

 It is very common to see next used at the start of a loop to skip over any undesir-

able values. Imagine you had to calculate the square root of each number in an array of

numbers and you wanted to add a line of code that would skip any negative numbers.

Your loop might therefore contain the following code that could check for any negative

numbers:

 next if ($number < 0);

 redo
 It is quite common to see the next keyword used in Perl scripts, but it is not quite so

common to see the redo keyword , even though they behave in a very similar way.

As mentioned earlier, the important point about redo is that it doesn’t advance the

loop counter variable. This means that if used incorrectly, you can get stuck in endless

loops.

 Example 4.21.1
 This simple program tries to (randomly) choose three colors from a list of six colors, but

it also ensures that one of those colors isn’t pink.

 1. #!/usr/bin/perl

 2. # avoid_pink.pl

 3. use strict; use warnings;

 4.

 5. my @colors = qw(white orange pink blonde brown blue);

 6.

 7. for (my $i = 1; $i <= 3; $i++){

9781107000681c04_p85-219.indd 1679781107000681c04_p85-219.indd 167 11/5/2011 6:26:55 PM11/5/2011 6:26:55 PM

Essential Perl168

 8. my $random_color = $colors[rand(@colors)];

 9. redo if ($random_color eq “pink”);

 10. print “$i $random_color\n”;

 11. }

 Understanding the script
 Line 5 creates an array of six different colors. We then have a for loop (lines 7–11)

which will count up to three.

 Inside the for loop, we fi rst choose a random element from the @colors array

and assign that to a separate variable (line 8). If the chosen color is pink we invoke the

redo keyword (line 9) and we re-run that iteration of the loop without iterating the loop

counter ($i).

 If the randomly selected color is anything other than pink then the if statement on

line 9 will evaluate as false and we proceed to line 10 where the color is printed.

 This script will only ever print three non-pink colors. 60 We use the redo keyword

because any time we choose pink we want to make the script “pick again.” If we used

the next keyword instead, the script could potentially produce no output at all (e.g., if

it chose pink three times in a row).

 last
 The fi nal way of controlling a loop is simply to quit the loop before it fi nishes. To do this

we use the last keyword . Any time Perl comes across this keyword it will immediately

stop the loop at that point. Like the next and redo keywords it is almost always used

as part of a logical test.

 Example 4.21.2
 Here is a program that takes one million guesses at what a very simple (three letter)

password might be. If it correctly deduces what the password is, it stops guessing.

 1. #!/usr/bin/perl

 2. # password_cracker.pl

 3. use strict; use warnings;

 4.

 5. my $password = “cat”;

 6. my @alphabet = (‘a’ .. ‘z’);

 7.

 8. for (my $i = 1; $i <= 1000000; $i++){

 9. my $first = $alphabet[rand(26)];

 10. my $second = $alphabet[rand(26)];

 11. my $third = $alphabet[rand(26)];

 12. my $guess = $first . $second . $third;

 60 Obviously we could just exclude “pink” as a color from the original array, but we could imagine scenarios where we

don’t know what the original colors are going to be – maybe a user specifi es the colors on the command line.

9781107000681c04_p85-219.indd 1689781107000681c04_p85-219.indd 168 11/5/2011 6:26:55 PM11/5/2011 6:26:55 PM

Loop control 169

 13.

 14. if ($guess eq $password){

 15. print “Attempt $i: the password is $guess!\n”;

 16. last;

 17. }

 18. }

 Understanding the script
 We create a password on line 5 and then use the range operator on line 6 to populate an

array with all of the letters of the alphabet. We then setup a for loop which will count

up to one million.

 Inside the for loop we use the rand() function three times in order to randomly

select three letters from the alphabet array (lines 9–11). We then use the concatenation

operator to combine them into a single string which is placed in a variable $guess .

 An if statement on lines 14–17 then checks to see whether the current value of

 $guess matches the password. If it does then we print the answer, along with the num-

ber of guesses it has taken, and use the last keyword to stop the script.

 In the preceding example we see the last keyword appear all by itself on a line of

code. However, it is still part of a logical test (the surrounding if statement); it is also

common to see last used as part of the alternative if syntax:

 last if ($condition == $target_value);

 Here is a more complex example that illustrates using redo and last together.

 Example 4.21.3
 This script fi nds any prime numbers that occur between 100 and 200.

 1. #!/usr/bin/perl

 2. # primes.pl

 3. use strict; use warnings;

 4.

 5. my $n = 0;

 6. while (1) {

 7. $n++;

 8. redo if ($n < 100); # keep skipping numbers until $n = 100

 9. last if ($n > 200); # breaks out of while loop

 10.

 11. my $prime = 1; # assumed true

 12. for (my $i = 2; $i < $n; $i++) {

 13. if ($n % $i == 0) {

 14. $prime = 0; # now known to be false

 15. last; # breaks out of for loop

 16. }

9781107000681c04_p85-219.indd 1699781107000681c04_p85-219.indd 169 11/5/2011 6:26:55 PM11/5/2011 6:26:55 PM

Essential Perl170

 17. }

 18.

 19. print “$n\n” if $prime;

 20. }

 Understanding the script
 Line 6 introduces a while loop, but the test condition for this loop is set to be always

true. This tells us that the loop will never end unless we deliberately break out of it using

the last keyword.

 Line 8 contains a redo . This short-circuits the while loop as long as $n is less

than 100. You could have also used next here, because there is no loop counter variable

in a while loop. Essentially, lines 7 and 8 of the loop will happen 99 times, but the loop

doesn’t go any further. Only on the 100th iteration will line 8 fail to evaluate as true.

 Line 9 uses the last function to terminate the while loop, effectively ending the

program, if $n is greater than 200.

 Lines 11–17 determine if a number is prime. These lines will only be executed while

 $n is greater than 99 and less than 201. This method starts off assuming $n is prime

(line 11). It then uses a for loop to check all the numbers between 2 and $n-1 to deter-

mine if $i is a factor of $n . If $i is a factor of $n (line 13), then there is no point in

calculating any further because $n is not prime. So $prime is set to false (line 14) and

the for loop is terminated using last (line 15).

 Loop labels
 Note that when you use last , it applies only to the current block of code that you are

in. If we have multiple blocks of code (as in the previous example), you need to be sure

which block will be exited:

 for (my $i = 0; $i < 10; $i++){

 for (my $j = 0; $j < 10; $j++){

 last if ($j > $i);

 print “$i vs $j\n”;

 }

 }

 In this example we have two nested for loops which both count from 0 to 9. The inner

loop contains a last keyword to stop the loop if the inner counter ($j) is greater than

the outer counter ($i). This use of last will only exit the inner loop and not the outer

loop. If you want to exit the outer loop, you can use loop labels. A label is generally

written in upper-case characters (to avoid confl icting with keywords) and followed by

a colon. Here is another version of the nested loop which uses a label for each loop

(OUTER: and INNER:).

 OUTER: for (my $i = 0; $i < 10; $i++) {

 INNER: for (my $j = 0; $j < 10; $j++) {

9781107000681c04_p85-219.indd 1709781107000681c04_p85-219.indd 170 11/5/2011 6:26:55 PM11/5/2011 6:26:55 PM

Data input and output 171

 next OUTER if $j > $i;

 print “$i vs $j\n”;

 }

 }

 In this example we now call next OUTER inside the inner for loop. This reads as “Jump

to the next iteration of the loop named OUTER .” Loop labels can sometimes make your

code more readable. But they can make your code confusing if you use them too often.

When in doubt, leave them out.

 Labels can be placed anywhere in your program. Every 1000 programs or so, you

might fi nd the need to employ the dreaded goto . 61

 goto BLOCK_OF_DOOM if $something_terrible;

 BLOCK_OF_DOOM: {

 # do something really important

 }

 4.22 Data input and output

 The ins and outs of getting data in and out
 So far our programs have only managed to include external data by using command-line

arguments when we run a script. This is a workable solution for some simple scripts,

but generally this is not a very common way to receive data. It is much more common

to have external data in a fi le , which is then read by a program. Fortunately, reading fi les

in Perl is incredibly simple.

 Reading from a fi le specifi ed on the command line
 The easiest way to read a fi le with Perl is to specify the fi le name after the script (so it

is added to the @ARGV array); this allows us to use a new operator which looks like <> .

This is Perl’s fi le operator ; it is used to read lines of text from fi les and it also keeps track

of how many lines it has seen.

 Example 4.22.1
 Create the program below, which will count the number of characters and lines in a spe-

cifi ed fi le. When you run it, include the name of a valid text fi le on the command line

 after the program name:

 $ line_count.pl some_text_file.txt

 The valid text fi le can even be one of the Perl scripts you have already written; just make

sure to specify the full path to the text fi le (if it is not in the current directory).

 1. #!/usr/bin/perl

 2. # line_count.pl

 61 The goto keyword is rarely used in Perl. Try to keep it that way. It does what you might expect: execution goes

immediately to the label.

9781107000681c04_p85-219.indd 1719781107000681c04_p85-219.indd 171 11/5/2011 6:26:55 PM11/5/2011 6:26:55 PM

Essential Perl172

 3. use strict; use warnings;

 4.

 5. die “Usage: line_count.pl <file>\n” if (@ARGV != 1);

 6. print “Processing file $ARGV[0]\n”;

 7.

 8. my $lines = 0;

 9. my $characters = 0;

 10.

 11. while (my $line = <>) {

 12. $lines++;

 13. $characters += length($line);

 14. }

 15. print “$lines\t$characters\n”;

 Understanding the script
 Lines 5 and 6 check that we have only one thing specifi ed on the command line, and then

print out the name of the fi le.

 On lines 8 and 9 we introduce two variables which will count the number of lines and

characters in the fi le. We also initialize both of these to contain a value of zero.

 Line 11 then introduces a while loop, but the condition of the loop might seem

strange to you as it contains something that we haven’t seen before. This is the <> fi le

operator. By default, this reads one line at a time from the fi le specifi ed by $ARGV[0] .

In this example we assign the contents of each line from the input fi le to a variable

($line). 62

 The while loop will continue to iterate as long as there are new lines to be read

from the input fi le. This means that on line 12, the value stored in $lines is incre-

mented by one for each iteration of the loop; it will end up containing a count of all

the lines in the fi le. The $characters variable on line 13 adds the length of the

current line to itself, such that it will end up counting all characters in the input fi le.

Finally, after exiting the while loop, we print out the fi nal values of $lines and

 $characters .

 If you use <> to read fi les that are specifi ed on the command line, then it is important

that you specify an actual fi le that can be read. If you specify a fi le that doesn’t exist, you

will see an error, but it does not stop the script:

 $ line_count.pl bad.txt

 Processing file bad.txt

 Can’t open bad.txt: No such file or directory at line_count.pl line 11.

 0 0

 62 Remember that $line and $lines are completely separate entities. They just happen to share a similar name.

9781107000681c04_p85-219.indd 1729781107000681c04_p85-219.indd 172 11/5/2011 6:26:55 PM11/5/2011 6:26:55 PM

Data input and output 173

 Reading multiple fi les and reading multiple lines
 The script you just wrote would be more powerful if it could calculate the line and char-

acter count of multiple fi les at once. Well, luckily you can do this with just a very minor

change to your script. 63 After modifying your script, you just need to specify multiple

fi les on the command line when you run the script:

 $ line_count.pl file1.txt file2.txt file3.txt

 This works because the fi le operator (<>) is really looping through everything in the @

ARGV array . If you wanted to, you could even use Unix wildcard characters to search all

text fi les in the current directory:

 $ line_count.pl *.txt

 The fi le operator is one of those things that can be used in different ways depending

on the context. In the earlier example, we assigned the output from each use of the <>

operator to a scalar variable. If we wanted to read just one line of the fi le we could do

this by using the fi le operator outside of the while loop:

 my $line = <>;

 However, if we instead assign the <> operator to an array , then all of the fi le is read: 64

 my @file = <>;

 print “$file[0]”; # print the first line of the file

 Note that it is also possible to read a line from a fi le without doing anything to it.

The following code is perfectly valid and would just read one line from a fi le (and throw

it away):

 <>;

 You might wonder why you would want to do this. Well, sometimes you might need to

ignore just the fi rst line of a fi le. The above code would read the fi rst line of a fi le and

any subsequent use of the fi le operator would read from line 2 onwards. This is because

the fi le operator keeps track of how many lines it has processed. This means you can

even process a fi le like this:

 <>; # skip 1st line of file

 my $second_line = <>; # keep 2nd line in variable

 <>; # skip 3rd line

 my $fourth_line = <>; # keep 4th line in new variable

 The default variable $_
 It’s time to learn some Perl magic. To do this we are going to write a very short script.

 63 In the earlier example, line 5 requires that only one command-line argument is specifi ed. Increase this value to be able to

process more fi les.

 64 You may want to be careful if you do this. Imagine if your fi le has one million lines; you might run out of memory if you

try to read the entire fi le in one go like this.

9781107000681c04_p85-219.indd 1739781107000681c04_p85-219.indd 173 11/5/2011 6:26:55 PM11/5/2011 6:26:55 PM

Essential Perl174

 Example 4.22.2
 The following script will do nothing more than print out the contents of whatever fi le

you specify when you run it. As with the previous script, make sure you specify a suit-

able text fi le.

 1. #!/usr/bin/perl

 2. # echo.pl

 3. use strict; use warnings;

 4.

 5. while (<>) {

 6. print;

 7. }

 Understanding the script
 You might be forgiven for thinking we have left something out from this script. But if

you run it you may be surprised to see that it is working. How is this possible? We don’t

specify a variable to store the output of the <> fi le operator and we don’t seem to include

anything for the print statement to print. What’s going on?

 The solution to this mystery lies with something called the default variable $_ . This

is one of several “magic” variables in Perl. Depending on the situation, Perl will automat-

ically assign some data to this variable. In this script, $_ contains each line of the input

fi le. Although you don’t see it, Perl is actually performing the following operation:

 5. while ($_ = <>) {

 The fi le operator should always assign the data that it reads from a fi le to a variable.

However, if you don’t include a variable and you are accessing the fi le operator as part

of a loop, then Perl will automatically assign it to $_ for you.

 The default variable is used by many of Perl’s functions and operators. This is also what

is happening on line 6. Because we don’t specify anything for the print() function to

print, Perl uses the $_ variable instead. Line 6 is exactly the same as if we had typed:

 6. print $_;

 You may initially fi nd the $_ default variable a strange thing, but you should get

used to using it because it is commonly used in lots of Perl programs. As you learn

more about Perl, you’ll discover that there are a lot of places where if you don’t specify

a variable, then Perl will use $_ instead. This sometimes has the advantage of greatly

simplifying your code. The disadvantage of this is that sometimes code can be so over-

simplifi ed it might, paradoxically, be harder for you to understand. Here is one more

quick example to show some other uses of the default variable:

 foreach (“Keith Bradnam”, “Ian Korf”){

 my ($first, $last) = split;

 print “First name: $first\n”;

 }

9781107000681c04_p85-219.indd 1749781107000681c04_p85-219.indd 174 11/5/2011 6:26:56 PM11/5/2011 6:26:56 PM

Data input and output 175

 The output from this code would be:

 First name: Keith

 First name: Ian

 This foreach loop would normally assign each item in the list to a temporary variable,

but in this example we don’t include any variable at all. Can you guess what happens

to each item? That’s right, they get assigned to $_ . The split() function in the loop nor-

mally requires a variable and a pattern that can be used to split the variable. However, if

you specify neither of these things, then Perl assumes you want to use whitespace as the

pattern, and $_ as the variable.

 Confusing? Yes, a little. But you do get used to it. For now, feel free to give names to

all of your variables instead of using $_ . By the way, in addition to $_ , there are a large

number of other special variables in Perl with equally strange symbols. We will show

you several more of them as we progress through this book.

 Reading from standard input
 In addition to reading data from fi les, and specifying arguments on the command line,

there is one other way to input data into a program. On Unix systems, standard input
usually refers to the data that is sent to a program. 65 When you are typing commands

in a Unix terminal, standard input is provided by the text you type on your computer

keyboard. We can make our Perl programs interactive by allowing them to receive input

while the program is running. This is done by using a special Perl fi lehandle called

 STDIN . 66 The following code will require a user to type some input:

 print “What is your name?\n”;

 my $name = <STDIN>;

 print “Hello $name\n”;

 If you include code like this in your scripts, then every time Perl sees <STDIN> , it

will wait until you enter some text. As soon as you press enter on your keyboard, Perl

will take all of the text you have typed and, in this case, place it in a variable.

 The <STDIN> fi lehandle can also be abbreviated to just <> , but as you might

remember, this is also used to process any fi les that are specifi ed on the command line.

This dual-identity of the fi le operator can get confusing! Imagine you had the following

code:

 #!/usr/bin/perl

 # stdin.pl

 use strict; use warnings;

 my $input = <>;

 print “$input\n”;

 65 We explore the concepts of standard input and output in more detail in Chapter 5.3 .

 66 This is the common name for standard input on all Unix computers.

9781107000681c04_p85-219.indd 1759781107000681c04_p85-219.indd 175 11/5/2011 6:26:56 PM11/5/2011 6:26:56 PM

Essential Perl176

 If you run the script without specifying any command-line arguments, then the script

will expect you to type some input. However, if you specify the name of a fi le on the

command line, then <> will read one line of input from that fi le.

 In general we would advise you to not rely too much on using <STDIN> to make

your scripts interactive. If your scripts have to stop to accept input from a user then they

will not be as fast as scripts where all the input data is specifi ed in advance (from fi les

or from the command line). It also means that your scripts are more diffi cult to put into

pipelines 67 with other programs .

 4.23 Reading and writing fi les

 Otherwise known as the ins and outs of ins and outs
 The previous section showed us how we can use <> to read fi les that are specifi ed on the

command line. However, if we want to open multiple fi les, then using <> is not always

a good solution as our scripts might not need to read all the fi les at once. Using <> also

assumes that we want to treat all of the fi les in the same way, but clearly we don’t always

want to do this. For example, one fi le might contain a list of email addresses and the

other fi le a list of postal addresses. You wouldn’t want to process both fi les with the same

code. The <> operator also doesn’t allow us to write new fi les or append to existing fi les.

The solution to all of these problems is to use the open() function. This can open a fi le

for reading or writing, but not both at the same time.

 The open() function
 The open() function can seem a little confusing because there are several different

ways it can be used. Let’s start off with learning how to use it in the most traditional

way. Any time you want to use the open() function to open a fi le you’ll need to spe-

cify three things:

 (1) the name of a fi le to open;

 (2) something called a fi lehandle ;

 (3) something called the mode .

 Filehandles are a type of special variable used when performing fi le operations.

Once you associate a fi le with a fi lehandle you no longer need to use the actual fi le name.

It is a convention to always use upper-case characters for fi lehandle names.

 The mode controls whether you are reading from, or writing to, the fi le in question.

The actual value for the mode borrows from how we access fi les in Unix. 68 I.e.

 < # read from a file

 > # write to a file

 >> # append to an existing file

 Okay, enough preamble! Time to see how we can open a fi le for reading.

 67 Pipelines are properly introduced in Chapter 5.7 .

 68 We cover this in more detail in Chapter 5.5 .

9781107000681c04_p85-219.indd 1769781107000681c04_p85-219.indd 176 11/5/2011 6:26:56 PM11/5/2011 6:26:56 PM

Reading and writing fi les 177

 Example 4.23.1
 Create the following program. This will read the contents of a fi le you specify on the

command line and then just print the same information to the screen but in upper-case

characters. 69

 1. #!/usr/bin/perl

 2. # shout.pl

 3. use strict; use warnings;

 4.

 5. my ($file) = @ARGV;

 6.

 7. open(IN, “< $file”);

 8.

 9. while (my $line = <IN>) {

 10. $line = uc($line);

 11. print “$line”;

 12. }

 13. close(IN);

 Understanding the script
 Line 5 takes the name of the fi le you specify on the command line and assigns it to an

appropriately named variable.

 Line 7 then uses the open() function to open the fi le for reading. Notice the argu-

ments that are used: IN is the name of the fi lehandle; “ < ” is the mode, telling us that

we are reading from the fi le; and $file contains the name of the fi le. In this example,

the mode and the fi le name are enclosed between double quotes (so the variable interpo-

lates). The fi lehandle should be named something suitable, e.g., IN, INPUT, DATA, etc.

It’s common to see fi lehandles named after the type of fi le they are reading, e.g., CSV,

FASTA, GFF. 70

 Line 9 should look a little familiar. Instead of using <> by itself, we now use our

named fi lehandle inside the brackets. Only the fi le associated with IN will be read. This

whole line reads as “while we can read a line from whatever fi le is associated with the

 IN fi lehandle and store that line in $line , perform the following code.…”

 Notice that when we print out our modifi ed line of output (line 11), we are deliber-

ately not including a newline character . That’s because each line of input that was read

from $file already ended with a newline. 71 So $line already contains a newline at

the end. We’ll explain a better way of dealing with this later.

 Finally, notice that there is a close() function on line 13. Every time you cre-

ate a fi lehandle with open() , you should get into the habit of closing the fi lehandle

 69 Please don’t ever use this program for any reason other than learning Perl. It’s impolite to shout.

 70 Note that Perl will expect you to use the name of a valid fi le that exists in the fi lesystem. That may, or may not, be the

case and later on we will show you how to check whether the named fi le actually exists before you try opening it.

 71 If you have a text fi le that contains multiple lines, then each line ends with a newline character, even though you don’t see

it. It also counts towards the length of characters on each line.

9781107000681c04_p85-219.indd 1779781107000681c04_p85-219.indd 177 11/5/2011 6:26:56 PM11/5/2011 6:26:56 PM

Essential Perl178

with close() . Ideally, you should do this as soon as you have fi nished working

with the fi le.

 Another way of specifying the read/write mode
 In the above example we specifi ed the mode in conjunction with the fi le name. Perl

mimics the behavior of Unix, where you can add as much whitespace as you like before

or after the fi le name, including none at all. If you’d prefer, you can even separate out the

mode and make that a separate argument. Furthermore, if you are opening a fi le for read-

ing, the “ < ” is actually optional. Finally, you can also specify a fi le by using its name

directly rather than providing a variable name. All of this means that if you have a fi le

called myfi le.txt, and this name is stored in a variable $file , then all of the following

do exactly the same thing:

 open(IN, “< $file “); # spaces either side of $file

 open(IN, “<$file”); # no spaces

 open(IN, “<myfile.txt”); # no spaces, using actual file name

 open(IN, “myfile.txt”); # no ‘<‘, still opens file for reading

 open(IN, “<“, $file); # three-argument form

 open(IN, “<“, “myfile.txt”); # three-argument form, using actual file name

 For now, we would suggest choosing just one of these methods and sticking with it. But

read the following section fi rst.…

 A better way of specifying a fi lehandle
 For a large part of Perl’s existence you had to specify a fi lehandle , as detailed above,

when opening a fi le. However, since version 5.6.0 of Perl, 72 a slightly different method

became available, and this is a method we prefer. 73 But because you might see a lot of

scripts using the older method, we felt we should show you that fi rst.

 The new method uses something called indirect fi lehandles and the basic difference

is that you can now use a regular scalar variable as the name of a fi lehandle:

 open(IN, “< $file”); # older method

 open(my $in, “< $file); # newer, indirect filehandle method

 You still have to declare the variable with the my keyword, but after that you use the

indirect fi lehandle just as if it was a regular fi lehandle:

 while (my $line = <$in>){

 print “$line”;

 }

 close($in);

 72 Version 5.6.0 was released in 2000, though many people will have learned the older method and sometimes it’s hard to

teach old dogs new tricks.

 73 The newer method means one less thing to explain. Filehandles are just scalars and you don’t need to learn to use special

upper-case fi lehandle names.

9781107000681c04_p85-219.indd 1789781107000681c04_p85-219.indd 178 11/5/2011 6:26:56 PM11/5/2011 6:26:56 PM

Reading and writing fi les 179

 There are some other subtle differences in using this form of fi lehandle, but as we prefer

it we will use it in all future examples.

 Using the fi le operator to read lines from a fi le
 In the last chapter we explained that any time you use the fi le operator <> and assign to

a scalar variable, you will read one line 74 from the fi le, and Perl will also remember the

current position in that fi le. The same is true when using named fi lehandles. Consider

the following code, which assumes you have already opened a fi lehandle called $in :

 my $first_line = <$in>;

 <$in>;

 while (my $line = <$in>) {…}

 The fi rst line in this example will read one line from the input fi le, which will be the fi rst

line of the fi le. The second line above reads the second line of the input fi le, but doesn’t

do anything with it. When we enter the while loop, the fi lehandle will be pointing to

the third line in the fi le.

 Checking that your fi le has opened successfully
 You should realize that if you try opening any fi le there is always the possibility that

you can’t open it or write to it. Most likely, this will be because you have typed the

fi le name incorrectly. It could also be because you don’t have the correct Unix fi le

permissions to read from, or write to, that fi le. It is important that you always check

that fi les have been opened correctly. There is no point proceeding with a script that

attempts to loop through one million lines from your input fi le, if the fi le name is

incorrect.

 The open() function , like many Perl functions, returns a true or false value to indi-

cate whether it was successful or unsuccessful. This is not a value that we need to store

in a variable; we can instead just test the entire open() operation:

 open(my $in, “< $file”) or die “Can’t open $file\n”;

 What is happening here? We’ve see the die () command before, but we haven’t seen it

used like this! This statement reads as “Try opening the specifi ed fi le, but if it can’t be

opened, then stop the script.” The or part of this statement is only evaluated if the open()

is unsuccessful. If it is successful then the open() function returns “true,” which means

the or part doesn’t need to evaluate what comes next. If you fi nd this confusing, don’t

worry about it for now. This syntax is commonly used for lots of Perl functions where

if the function fails, then you want to do something (usually die). Just remember that

you should:

 Always test that a fi lehandle is created successfully

 74 It is possible to change this default behavior to make the fi le operator read multiple lines at a time, but for 99% of what

you will probably be doing, reading one line at a time will be exactly what you want.

9781107000681c04_p85-219.indd 1799781107000681c04_p85-219.indd 179 11/5/2011 6:26:56 PM11/5/2011 6:26:56 PM

Essential Perl180

 We might go a little further and add that you should always print out a suitably use-

ful die() message. You might write a script that opens a dozen different fi les. If every

error message just said:

 Fail!

 then that doesn’t tell you which fi le failed to open. Another of Perl’s special variables is

the $! variable . This variable is only used when things fail, and it (hopefully) contains a

useful error message about the nature of the failure. This means that you can include the

following in your die statement when opening a fi le :

 my $file = “myfile.txt”;

 open(my $in, “<$file”) or die “Can’t open $file. $!”;

 This would print the following error message (if the fi le can’t be opened) 75 :

 Can’t open myfile.txt. No such file or directory

 Writing output
 The ability to read fi les is useful, but even more useful is the ability to create new output

fi les or append to existing fi les. Luckily we don’t have to learn much more in order to

be able to do this.

 Example 4.23.2
 This script will read a text fi le, reverse the contents of each line, and then print the modi-

fi ed output to a new fi le. After you run this script, check your directory for a new fi le

called <fi le>.rev where <fi le> is the name you specify on the command line when you

run the script.

 1. #!/usr/bin/perl

 2. # reversamatic.pl

 3. use strict; use warnings;

 4.

 5. die “Please specify a suitable text file\n” if (@ARGV != 1);

 6. my ($infile) = @ARGV;

 7.

 8. my $outfile = “$infile.rev”;

 9.

 10. open(my $in, “<$infile”) or die “error reading $infile. $!”;

 11. open(my $out, “>$outfile”) or die “error creating $outfile. $!”;

 12.

 13. while (<$in>) {

 14. chomp;

 15. my $rev = reverse $_;

 16. print $out “$rev\n”;

 75 Note that you don’t need to include a newline character when printing $! ; it will automatically include one for you.

9781107000681c04_p85-219.indd 1809781107000681c04_p85-219.indd 180 11/5/2011 6:26:56 PM11/5/2011 6:26:56 PM

Reading and writing fi les 181

 17. }

 18.

 19. close $in;

 20. close $out;

 Understanding the script
 Lines 5 and 6 check that we have a fi le specifi ed on the command line and then assign

the name of that fi le to a variable.

 Line 8 creates a suitable output fi le name by appending .“rev” to whatever the input

fi le name is. It is a common practice to create output fi le names that are based on the

input fi le name.

 Lines 10 and 11 then create fi lehandles for both the input and output fi les. Notice that

the output fi lehandle uses the “ > ” mode to symbolize that we are writing to a fi le. The

act of creating a fi lehandle for writing to a fi le is enough to actually create the fi le itself,

though at this point it will be empty. We use the “ or die …” syntax to check that both

fi lehandles were opened successfully.

 When we set up the while loop on line 13, notice that we don’t assign the fi le

operator to any variable. This should inform you that we are using the special default

variable $_ . Each line that is read from the input fi le will be stored in $_ .

 Line 14 introduces the chomp() function . This function simply removes a newline

character from the end of a variable (but only if one is present). Any line that you read

from an input fi le will normally end with a \n character. We often forget about this

character, but it’s there. It is quite common to chomp your $_ . Normally, you specify

a variable that you want to chomp , but if you don’t specify any, then Perl assumes you

want to chomp $_ .

 One of the most important lines in this script is line 16. We have modifi ed each line

of input, and stored the reversed string in $rev . Now we want to print this output to

whatever fi lehandle is specifi ed by $out . All we need to do is include the fi lehandle as

part of the print function.

 Lines 19 and 20 close the two fi lehandles. You should always get into the habit of

making sure that every open() function has a matching close() function.

 When writing to fi les using the “ > ” mode, you should know that if you mistakenly

try to write to a fi le that already exists, you will overwrite the fi le. This will happen as

 soon as you open the fi lehandle and all data in that fi le will be erased. You have been

warned!

 Until this chapter, we have only ever used the print() function without speci-

fying any fi lehandle at all, and we have seen that this will send output to the terminal.

However, we can now reveal that every time you print to the screen, Perl is in fact

using a special fi lehandle called STDOUT . This refers to something called stand-

ard output , which we cover in more detail in the Advanced Unix part of the book

(see Chapter 5.5). Printing to STDOUT is the default behavior when no fi lehandle

is specifi ed. For now you just need to know that the following two lines of code

9781107000681c04_p85-219.indd 1819781107000681c04_p85-219.indd 181 11/5/2011 6:26:56 PM11/5/2011 6:26:56 PM

Essential Perl182

behave identically, though for convenience we just use the former syntax and not

the latter:

 print ”Some output\n”; # no filehandle specified

 print STDOUT “Some output\n”; # now with STDOUT explicitly defined

 It’s very important that you understand how to use fi lehandles for both reading fi les and

writing to fi les. If you are unclear, you should review the contents of this section before

proceeding to the next section .

 The one thing we haven’t explained in this section is how to append to an existing fi le .

To do this, you just need to set the mode to “>>”. Write a script that attaches your name

to the end of any specifi ed fi le. Check that this script works by appending to an existing

fi le. Be careful not to use the “>” mode by mistake as you will overwrite the original

fi le.

 4.24 Introduction to hashes

 How can we explain this without making a hash of it?
 So far we have seen how we can store data in scalars and arrays. With these two data

types we have been able to write many useful programs. However, there are some situ-

ations where these two data types do not easily help us solve problems. Let’s take a look

at an example which illustrates the limitations of arrays.

 Example 4.24.1
 This script reports the population for a few specifi ed countries. To look up the popula-

tion for China, you would run the script like so:

 $ population.pl China

 1. #!/usr/bin/perl

 2. # population.pl

 3. use strict; use warnings;

 4.

 5. my ($search) = @ARGV;

 6. die “Usage population.pl <country_name>\n” unless (@ARGV ==

1);

 7.

 8. my @country = qw(Australia China France Russia);

 9. my @population = qw(21.4 1325.6 62.0 141.8);

 10.

 11. for (my $i = 0; $i < @country; $i++){

 12. if ($search eq $country[$i]) {

 13. print “$population[$i] million people\n”;

 14. }

 15. }

Problem

4.23.1

9781107000681c04_p85-219.indd 1829781107000681c04_p85-219.indd 182 11/5/2011 6:26:56 PM11/5/2011 6:26:56 PM

Introduction to hashes 183

 Understanding the script
 Line 5 retrieves the country from the command line and stores it in a variable called

 $search . Line 6 ensures that one thing, and one thing only, is specifi ed on the com-

mand line.

 Lines 8–9 use two arrays to store the names and populations of four different coun-

tries. Note the use of whitespace to align the name of the country with its respective

population.

 To fi nd and report the population for a country, the for loop on lines 11–15 compares

each country name with the search string. When the string matches, the population is

printed.

 In the above example we have two sets of information that are clearly related. Each

country has a population, and furthermore each country can only ever have one value for

its population. Our script is able to keep track of the association between the two data

sets because they are in the same order in both arrays. Whenever we want to get infor-

mation about a country we know that the name of the country and its population will be

at the same position in both arrays.

 Using two arrays like this is not a very good solution for storing the association

between the country’s name and its population. For instance, if we wanted to delete a

pair of values, we would have to use the splice() function on both arrays. As the

data sets become larger then this strategy also becomes very computationally ineffi cient.

You have to look through half the records on average before you fi nd the one you are

looking for.

 Let us now see a better way of managing this type of information, a way that allows

us to more easily keep the association between pairs of related items. It happens to be

very computationally effi cient too.

 What are hashes?
 In addition to scalars and arrays, Perl allows for a third data type called hashes . 76 It is

very common to use the analogy of a dictionary when explaining hashes. 77 Entries in

dictionaries consist of two related concepts: A word that you want to look up and an

associated defi nition for that word. You will never see a dictionary that contains the

same look-up word twice. There is no point because look-up words are clearly meant to

be unique. But the defi nitions associated with those words do not necessarily have to be

unique because a word can have multiple defi nitions. 78

 Conversely, we also know that two different words can both have exactly the same

meaning. If we think back to our previous example, we can imagine that it’s possible (if

a little unlikely) for two countries to have exactly the same population.

 76 In older versions of Perl these were also known as “associative arrays.”

 77 This might even be a legal requirement; if it is not, then maybe it should be.

 78 The dictionary on our Macs defi nes “hash” as either a “meat-based dish, usually served with potatoes” or a “mixture of

incongruous things; a mess.” Sadly it lacks the defi nition of a hash as a data type in the Perl programming language. Bad

dictionary!

9781107000681c04_p85-219.indd 1839781107000681c04_p85-219.indd 183 11/5/2011 6:26:56 PM11/5/2011 6:26:56 PM

Essential Perl184

 How do hashes work in Perl?
 Just like our dictionary example, hashes in Perl associate pairs of items. Strictly speak-

ing, we say that a hash contains keys and values . A key is like a look-up word in a

dictionary, and the value is like a defi nition. One small deviation from our dictionary

analogy is that a regular hash in Perl only has one value for each key. However, it is pos-

sible – and often desirable – to associate many values to one key. That will be covered in

Part 6 of this book. Once you create a key–value pair in a hash, you can always access

the value if you know the key. Hashes should ideally be used for storing pairs of things

that have some sort of meaningful connection. Here are some possible key–value pairs

that we might consider storing in a Perl hash.

Key Value

Social security number Name

Zip/postal code State/county

Computer serial number Make and model of computer

Running distance World record at that distance

 These examples all use keys that will contain unique values – there is only one zip

code with the value “95616.” Try not to fall into the trap of assuming that a key is going

to be unique. For example, certain actors’ names like “Harrison Ford” are so famous that

we only ever think of one person, but according to IMDB there are two famous actors

with that name. 79

 Hash syntax
 Just as we use dollar signs to denote scalar variables ($variable) and “at” symbols to

denote arrays (@array), we use yet another character to represent hashes: the percent

sign (%hash). We only use the percent sign when we are referring to the entire hash.

When we refer to one thing in the hash we use a dollar sign and a pair of curly braces .

Consider the following code:

 my %zip_code;

 $zip_code{‘95616’} = “California”;

 print “$zip_code{‘95616’}\n”;

 Here we declare a new hash (%zip_code) and then add one key–value pair to the hash.

When we deal with individual items in the hash, the key is always placed after the hash

name in curly braces and we prefi x the whole thing with a dollar sign. This is logically

consistent with how we deal with single items in arrays, which also use dollar signs. The

fi nal line above would print the value associated with the key “95616,” and so would

print “California.”

 Note that a hash cannot contain multiple entries that use the same key:

 my %favorites;

 $favorites{‘food’} = “cheeseburgers”;

 79 The fi rst Harrison Ford actor was a leading man in the silent fi lm era and starred in 87 fi lms.

9781107000681c04_p85-219.indd 1849781107000681c04_p85-219.indd 184 11/5/2011 6:26:56 PM11/5/2011 6:26:56 PM

Introduction to hashes 185

 $favorites{‘drink’} = “tea”;

 $favorites{‘color’} = “green”;

 $favorites{‘food’} = “pizza”;

 In this example, we add a number of different items to a hash (%favorites). After

declaring the hash, each line of code would increase the size of the hash by adding one

new key–value pair. However, the fourth hash assignment uses the same key as an earlier

assignment. As there can only be one hash entry that uses the “food” key, the previous

value (“cheeseburgers”) will be overwritten and the hash would end up containing three

key–value pairs.

 Some people fi nd hashes confusing. One way to think about them is that they are

arrays, but the indices are strings rather than integers. Consider the following two simi-

lar statements. Both print a single value from an array or hash. The number 0 is an index

in the array just as the string “key” is an index in the hash:

 print $array[0];

 print $hash{‘key’};

 As a convenience, the string inside the curly brackets does not need to be quoted . All of

these are equivalent.

 $hash{‘key’} = 1; # single quoted string

 $hash{“key”} = 1; # double quoted string

 $hash{key} =1; # unquoted string

 my $string = ‘key’;

 $hash{$string} = 1; # variable containing string

 Defi ning a hash
 We often want to add multiple key–value pairs to a hash when it is fi rst declared . Perl

offers a few different ways of doing this:

 # method 1

 my %starwars = (“Yoda”, “good”, “Vader”, “bad”, “Han”, “cool”);

 # method 2

 my %startrek = (“Vulcans”, “good”,

 “Borg”, “bad”,

 “Klingons”, “depends”);

 # method 3

 my %comics = (Spiderman => “hero ”,

 Venom => “villain”,

 Punisher => “unsure”);

 Methods 1 and 2 are identical except they differ in the use of whitespace . Most people

would probably say that method 2 looks cleaner and makes more sense. In both cases the

keys of the hash are immediately followed by their respective values. Method 3 looks a

little different as it introduces something that looks like an arrow (=>) but behaves just

9781107000681c04_p85-219.indd 1859781107000681c04_p85-219.indd 185 11/5/2011 6:26:57 PM11/5/2011 6:26:57 PM

Essential Perl186

like the commas in method 2, with the added bonus that we don’t have to quote the hash

keys. You can use quotes if you want to, but they are generally unnecessary. 80

 Let’s revisit the previous program that used a pair of arrays to associate countries and

populations. This time we will use a hash, and you will see how much better it is.

 Example 4.24.2

 1. #!/usr/bin/perl

 2. # population.pl

 3. use strict; use warnings;

 4.

 5. my ($search) = @ARGV;

 6. die “Usage population.pl <country_name>\n” unless (@ARGV == 1);

 7.

 8. my %population = (

 9. Australia => 21.4,

 10. China => 1325.6,

 11. France => 62.0,

 12. Russia => 141.8,

 13.);

 14.

 15. print “$population{$search} million people\n”;

 Understanding the script
 Lines 5–6 are the same as in Example 4.24.1, but lines 8–13 introduce new code which

declares a hash with key–value pairs for country and population. This means that we use

one data structure in place of the two arrays that we used before.

 Line 15 retrieves the population associated with the specifi ed country in one step.

In the previous array example we had to loop through the array of countries to fi nd the

name, and then report the population at this position in the array. The hash version is

much cleaner and much more effi cient.

 Naming hashes
 If you work with a lot of hashes, it can sometimes help to make the hash name explain

something about the data it contains. Hashes typically link pairs of connected data, e.g.,

the identifi er for a DNA sequence and the GC% content of that sequence; or the name of

a politician and the number of votes they received. Based on these two examples, which

of the following hash names make the most sense?

 %seq

 %sequences;

 %sequence_details;

 80 Except when your hash keys contain whitespace characters, reserved keywords, or function names, in which case you

need to use quotes.

9781107000681c04_p85-219.indd 1869781107000681c04_p85-219.indd 186 11/5/2011 6:26:57 PM11/5/2011 6:26:57 PM

Working with hashes 187

 %sequence2gc;

 %sequence_to_gc;

 %vote;

 %names;

 %name2votes;

 %name_to_votes;

 Choose suitable names for your hashes. You should, of course, be choosing suitable

names for all of your Perl variables.

 Write a script that creates two hashes. The fi rst hash should contain some key–value

pairs that are combinations of countries and the internet two-letter code for that country

(e.g., France = “fr,” China = “cn,” etc.). 81 These are good examples of keys and values

that are both unique. The second hash should reverse the order of keys and values, e.g.,

the key will be the two-letter code and the value will be the name of the country. The

fi nal part of your script will take an argument specifi ed on the command line and check

that value in both hashes to see if it exists and then print out the corresponding value. If

you specify “China” on the command line, then the script should print out “cn”; if you

specify “cn” your script should print out “China.”

 To solve this last part you will need to use the exists() function. This function

checks whether a specifi ed hash key exists; you can use it like this:

 print “$key exists\n” if exists($hash{$key});

 4.25 Working with hashes

 The key point about this chapter is the value it will provide
 Perl has many functions that work with hashes, and this chapter will explore several of

them and also show you ways of looping through and sorting hashes. Before we start

exploring the wondrous ways in which we can work with hashes, let’s fi rst check that

you can tell the difference between the following:

 1. $thing

 2. @thing

 3. $thing[0]

 4. $thing[$thing]

 5. %thing

 6. $thing{‘thing’}

 7. $thing{$thing}

 The point of this exercise is to remind you that it’s possible to end up with a Perl

script that reuses the same names for scalars, arrays, and hashes, and each of these can

be a different thing altogether. The answers to the above list are:

 81 If you’re interested, these abbreviations are called “country code top-level domains” or ccTLDs. If you are not interested

then you don’t need to read this note.

Problem

4.24.1

9781107000681c04_p85-219.indd 1879781107000681c04_p85-219.indd 187 11/5/2011 6:26:57 PM11/5/2011 6:26:57 PM

Essential Perl188

 (1) A scalar variable called $thing .

 (2) An array called @thing (no relation to $thing).

 (3) The fi rst element of the array called @thing .

 (4) The $thing -most element of the array @thing ($thing is a number).

 (5) A hash called %thing (no relation to $thing or @thing).

 (6) A key called “thing” in the hash called %thing .

 (7) A key in the %thing hash which will be equal to the value of $thing .

 If you are still confused by some of these differences , you should go back and revisit

the previous chapters and make sure you are comfortable with the differences between

scalars, arrays, and hashes.

 Adding and removing key–value pairs
 In the last chapter we saw that we can create hashes to represent useful lookups such as

countries and their corresponding populations. What if we want to add some new data to

an existing hash? This is incredibly simple; just assign a new key–value pair.

 my %sound; # empty hash

 $sound{‘dog’} = ‘woof’; # now contains a key and value

 $sound{‘cat’} = ‘meow’; # now contains two keys and values

 If the key already exists, it will be replaced with the new value.

 $sound{‘cat’} = ‘mew’; # redefined ‘cat’ key

 To remove a key–value pair, you use the aptly named delete keyword:

 delete $sound{‘cat’};

 Note that if you wanted to delete all of the key–value pairs from a hash, simply assign

an empty list to the hash:

 %sound = ();

 Determining whether a hash contains a specifi ed key
 To test if a particular key exists in a hash, you use the exists() function . This returns

“true” if the key is present in the hash and “false” otherwise. The exists() function

does not care if the value is defi ned or not, just if the key is there:

 print “Exists\n” if exists $hash{$key};

 If you want to determine if a key has a defi ned value, you can use the defined()

function . This returns true if the key exists and has a defi ned value. If you want to test

if a key exists and has a true value, 82 fi rst test if the key is defi ned (or exists), and then

test if it has a true value:

 if (defined $hash{$key} and $hash{$key}) …

 82 Remember that testing for logical “truth” is not the same thing as testing whether something is defi ned. If something is

(logically) true then it must also be defi ned, but the opposite situation is not always true. E.g., if $x contains “0” (zero) or

the empty string (““) then it is defi ned, but not true.

9781107000681c04_p85-219.indd 1889781107000681c04_p85-219.indd 188 11/5/2011 6:26:57 PM11/5/2011 6:26:57 PM

Working with hashes 189

 If you do this in the reverse order (testing for truth before testing for existence), you may

get a “use of uninitialized value” warning message, which we never want to see in any

of our programs.

 keys() and values()
 One of the most common things to do with a hash is to extract a list of all of the keys or all

of the values. To do this we can use the appropriately named keys() and values()

functions:

 my @keys = keys %hash;

 my @values = values %hash;

 my $keys = keys %hash; # scalar context, returns the number of keys

 my $values = values %hash; # as above

 The fi rst two examples use the keys and values functions in array context; both

operations extract a list of the keys or values and assign those to an array. However, as

the last two examples show, you can also use these functions in scalar context to return

the number of keys or values.

 Looping through hashes
 Unlike arrays, whose elements are in a defi ned order starting at 0, there is no obvious

order to the elements of a hash. If you execute the following code, there is no guarantee

that the keys or values will come out in alphabetical order, the order you added them, or

any other way that makes sense to you. 83

 foreach my $key (keys %hash) {print “$key\n”}

 When you loop over the keys of the hash, the order will often not be important. But if it

is important, you can sort the keys (see below) or defi ne an additional array that holds

the keys in the order you added them (see farther below). Now let’s see an example of

looping over some keys in a typical context.

 Example 4.25.1
 This script will simply take a list of all words that you input on the command line and

then count the occurrence of each word using a hash. It will then report them in the

default order. When you run this script make sure you duplicate some words on the com-

mand line – e.g.:

 $ word_count.pl apple banana apple cherry banana cherry cherry

 1. #!/usr/bin/perl

 2. # word_count.pl

 3. use strict; use warnings;

 4.

 5. # count words on the command line

 83 Unless you are a computer, in which case, you should be reading our other book, 01100101 01111000 01110100
01100101 01110010 01101101 01101001 01101110 01100001 01110100 01100101 .

9781107000681c04_p85-219.indd 1899781107000681c04_p85-219.indd 189 11/5/2011 6:26:57 PM11/5/2011 6:26:57 PM

Essential Perl190

 6. my %count;

 7. foreach my $word (@ARGV) {$count{$word}++}

 8.

 9. # loop through hash, printing word counts

 10. foreach my $word (keys %count) {

 11. print “$word\t$count{$word}\n”;

 12. }

 Understanding the script
 Line 6 defi nes a hash that will contain the counts of words. Line 7 loops over the words

stored in the @ARGV array and increments the count of each word that it comes across.

It is almost magical in its power.

 The fi rst word of our example input is “apple.” In the fi rst iteration of the loop,

 $count{apple} does not exist. Perl creates the key and gives it an undefi ned value.

The ++ operator increases the undefi ned value from 0 to 1. The end result is that

 $count{apple} contains the value of 1. The next word is “banana,” and after two

iterations of the loop, the count of “apple” and “banana” are both 1. On the third iteration,

“apple” is incremented to 2. This continues until all the words are counted. If the loop

syntax of line 7 seems too concise, consider this unnecessarily verbose alternative:

 foreach my $word (@ARGV) {

 if (not exists $count{$word}) {$count{$word} = 1}

 else {$count{$word}++}

 }

 Lines 10–12 loop over all the keys of the hash %count and report the counts for each

word. The order of the keys might not be what you expect. Try using several different

combinations of words and observe how the output changes.

 Looping through hashes in sorted order
 If you want to report the words in a specifi c order, the easiest solution is to sort the keys.

To perform the default alphabetical sort, change line 12 as follows:

 12. foreach my $word (sort keys %count) {

 In this example, the keys() function happens fi rst, and the list of keys is then passed to

the sort() function. Sometimes you may prefer to sort a hash by its values instead of the

keys. For example, rather than printing the words in alphabetical order, you might want to

print the most common words fi rst. The solution is simple, but a little confusing at fi rst.

Rather than comparing the keys themselves, you want to compare the values those keys

have. Instead of comparing $a and $b you compare $count{$a} and $count{$b} .

The following statement will sort in descending order by the value of each key–value pair :

 12. foreach my $word (sort {$count{$b} <=> $count{$a}} keys %count) {

 See Chapter 4.18 for more information on sorting.

9781107000681c04_p85-219.indd 1909781107000681c04_p85-219.indd 190 11/5/2011 6:26:57 PM11/5/2011 6:26:57 PM

Introduction to regular expressions 191

 Looping through hashes in a predefi ned order
 If you want to loop through the keys in the order you placed them into the hash, you have

to keep a separate array containing the keys. Every time you add a key to the hash, you

have to remember to push the key on to an array as well:

 my @keys_in_order;

 my %hash;

 $hash{‘thing’} = 1;

 push @keys_in_order, ‘thing’;

 $hash{$key} = $val;

 push @keys_in_order, $key;

 This strategy has some diffi culties, however. If a key is reassigned or deleted, the array

could get out of sync with the hash.

 Looping through a hash with while and each
 The canonical way to loop through a hash is with a foreach loop, but it is occasionally

more succinct to use each() in a while loop. Compare these two loops that perform

the same operation .

 while (my ($key, $value) = each %hash_with_long_name) {

 print “$key, $value\n”;

 }

 foreach my $key (keys %hash_with_long_name) {

 print “$key, $hash_with_long_name{$key}\n”;

 }

 The each() function returns a key–value pair every time it is called until it has

exhausted all the elements of the hash, at which point it returns false. It does not destroy

the hash. Like the keys() and values() functions, there is no order to how each()

retrieves information from a hash .

 Quick review

Function Meaning

 each %hash Returns a key–value pair from the hash

 keys %hash Returns an array of keys

 values %hash Returns an array of values

 exists $hash{key} Returns true if the key exists

 delete $hash{key} Removes the key and value from the hash

 4.26 Introduction to regular expressions

 There’s nothing “regular” about them
 We fi rst saw the matching and substitution operators in Chapter 4.11 : The former lets

you see whether a variable or string contains some specifi ed text, the latter lets you

9781107000681c04_p85-219.indd 1919781107000681c04_p85-219.indd 191 11/5/2011 6:26:57 PM11/5/2011 6:26:57 PM

Essential Perl192

substitute one string for another. When we used these operators before, we were only

searching for fi xed strings and the only fl exibility we had was whether to include the

“ignore case” option. These operators are actually much more powerful than they fi rst

appeared because we can use them to search for patterns instead of fi xed strings.

 Why do we need to search for patterns?
 Sometimes we don’t know exactly what text we are trying to match, but we know some-

thing about what possible variations could be considered a valid match. For instance, if

you were trying to fi nd the word “realize” in an email message, you might also want to

search for the British-spelling variant “realise.” We could probably think of many situ-

ations where being able to (computationally) deal with alternative spellings would be

useful. 84

 Aside from spelling problems, pattern-matching is an important issue for many

computer-related fi elds. Consider the problem of trying to extract email or web site

addresses from a piece of text. These are examples where we want to capture strings

that are highly variable but which are usually constrained by some invariant text: A web

site name should start with http:// and end with .com , .net , .gov , etc. Knowing

that all web site names are anchored in this way means it should be possible to make a

pattern that would match any valid URL.

 Let’s imagine a simple scenario and see how we might tackle it without using pat-

terns. Assume we want to search a fi le of recipes for spicy dishes that involve chili

peppers. The problem is that “chili” is not the only common spelling of this plant. One

solution would be:

 if ($text =~ m/chili/ or $text =~ m/chilli/ or

 $text =~ m/chillie/ or $text =~ m/chile/){

 print “Chili pepper\n”;

 }

 In this example we allow ourselves four alternative spellings (using the or logical oper-

ator) in order to be able to match all of the valid spelling alternatives. Although this

works, it is not a generalized solution – if there were ten different spellings of “chili,” the

code would have to be changed again and would start to get very long and unmanage-

able. Because of the similarities between the different spellings, you might think there

should be an easier way to capture all of the variants. Well, luckily there is.

 Regular expressions to the rescue
 Matching fl exible patterns is possible if we use something called regular expressions

(also commonly referred to as regexes or regexps). A regex is one defi ned pattern that

can be interpreted to potentially match many different strings. 85 Regexes are not unique

to Perl; they are used by several Unix commands (notably grep), and are implemented

 84 E.g., if you were looking for a particular Asian grilled lamb dish then you might be looking for a: kebab, kebap, kabab,

kebob, kabob, kibob, kebhav, or kephav. These are all valid English spellings in different countries.

 85 Of course, a pattern may also match just a single string, or even no strings at all.

9781107000681c04_p85-219.indd 1929781107000681c04_p85-219.indd 192 11/5/2011 6:26:57 PM11/5/2011 6:26:57 PM

Regular expression metacharacters 193

by many programming languages as well as many advanced text editors. 86 The power of

regexes is that they allow you to defi ne patterns which can be as broad or as specifi c as

you wish. For instance, you could create a regex which would match strings that contain

the name Ann , Anne , or Annie . However, you could also create a regex that describes a

pattern such as:

 any words that are 3–6 letters long, but contain two consecutive vowels and must be

the last word of a sentence, and not preceded by a hyphen.

 You may not have realized it, but we have already been using regexes. Consider the

following line of code:

 print “Match\n” if “Ian and Keith” =~ m/Keith/;

 Here we are using the matching operator to see whether a string (“Ian and Keith”) con-

tains the pattern “Keith”. In this case, the pattern “Keith” is a regex, it just happens to

be a regex that is only trying to match one thing. As we will see shortly, the real power

of regexes happens when they are used to match complex patterns, but we often want to

match fi xed strings, and that’s fi ne too.

 When you are writing your own scripts you should always try to make them as fl ex-

ible as possible (see Chapter 7.4 on Abstraction for more details). Using regexes to fi nd

and match patterns rather than fi xed strings is one way in which you can do this.

 4.27 Regular expression metacharacters

 ̂ If you are s[kc]eptical, you (probab|defi nite)ly won’t enjoy this
chapter!{1,3}$
 Regular expressions (regexes) rely on using many standard keyboard characters, which

are imbued with “special powers.” These metacharacters can be a little confusing

because they appear similar to characters that often have a completely different meaning

when you use them outside of the binding operator (=~). This chapter will cover many

of the metacharacters that are common to regexes on many different computer systems.

Because there are a lot of metacharacters, this chapter will include many short code

examples, rather than complete scripts.

 Alternation
 You can easily create a pattern to match more than one string by simply separating all of

the possibilities with the pipe character : | . 87 Here are some simple examples:

 print “Ancient element\n” if ($substance =~ m/earth|air|fire|water/i);

 print “Stop codon\n” if ($seq =~ m/TAA|TAG|TGA/i);

 print “Author’s name\n” if ($text =~ m/Ian|Keith/i);

 86 There are a few subtle differences in how different programming languages and Unix use regular expressions, but don’t

be too concerned by that at the moment.

 87 The pipe character is one of those characters that often lives in very different positions on your keyboard, depending on

what keyboard you own. Have a good look, it should be there somewhere.

9781107000681c04_p85-219.indd 1939781107000681c04_p85-219.indd 193 11/5/2011 6:26:57 PM11/5/2011 6:26:57 PM

Essential Perl194

 Note that in these examples, everything between the two forward-slashes of the match-

ing operator is the pattern that we are trying to match. So the last example has one pat-

tern that specifi es “Ian” or “Keith”; it is not two separate patterns. It is common to use

alternation as part of a larger pattern, in which case you also need to use parentheses ,

which act as grouping metacharacters:

 if ($word =~ m/fire (alarm|engine)/) {…} # ‘fire alarm’ or ‘fire engine’

 if ($sport =~ m/(basket|foot)ball/) {…} # basketball or football

 if ($name =~ m/Ste(v|ph)en/) {…} # Steven or Stephen

 Using alternation gives us the ability to more easily solve the chili pepper problem

from the last chapter:

 # method 1

 print “Chili pepper\n” if ($text =~ m/chili|chilli|chillie|chile/i);

 # method 2

 print “Chili pepper\n” if ($text =~ m/chil(i|li|lie|e)/i);

 The second method works because all of the possible spellings start with “chil”.

 Note that you can also use the alternation metacharacter but only provide one pos-

sibility. If you do this, you are effectively implying a second option of not matching the

pattern:

 if ($text =~ m/foot(ball|)/) {…} # matches football or foot

 Furthermore, you can also nest groups inside each other.

 if ($text =~ m/foot(ball(s|)|)/) {…} # footballs, football, or foot

 Character classes
 In our chili example all possible spelling variants end with “i” or “e” so we could pos-

sibly simplify our pattern if we could specify that the last character had to end with just

one of these two letters. Fortunately, regexes allow us to defi ne a character class , which

is a set of allowed characters. The basic syntax for using a character class is to put all of

the possible characters inside square brackets . Here are some examples :

 if ($word =~ m/reali[sz]e/) {…} # matches British and US spellings

 if ($hero =~ m/spider[-]man/) {…} # allow for space or hyphen as separator

 if ($year =~ m/198[048]/) {…} # matches Olympic years in the 1980s

 You can put as many characters as you want inside the square brackets, and can also

include non-alphanumeric characters. Note that character classes are only ever specify-

ing one character to match. In the fi nal example above, we specify a pattern that matches

four characters, the last of which must be one of three possible digits.

 It is very common to see character classes in solving various DNA/protein sequence

matching problems. A simple character class allows you to specify an “unknown” DNA

base where it must be one of four possibilities: 88

 88 If you wanted to include nucleotide ambiguity codes: N, R, Y, etc., then you could also put them inside the character

class.

9781107000681c04_p85-219.indd 1949781107000681c04_p85-219.indd 194 11/5/2011 6:26:57 PM11/5/2011 6:26:57 PM

Regular expression metacharacters 195

 my $dna = “ACGATGAGCCAGTG”;

 print “DNA contains proline codon\n” if ($dna =~ m/CC[ACGT]/);

 Note that we could also use character classes in addition to the alternation metacharacter

to solve our chili spelling problem:

 # method 3

 print “Chili pepper\n” if ($text =~ m/chil([ei]|l(i|ie))/i);

 Here we make use of a character class and two levels of grouping. This probably

introduces more complexity than is needed as it makes the regex very hard to read. This

can be a common problem and some regexes can quickly grow to fi ll an entire line of

code.

 Negated character classes
 Sometimes we want part of a pattern to match anything as long as it isn’t from a specifi c

range of characters. 89 We can do this with negated character classes which involve put-

ting a caret symbol (̂) inside the square brackets of the character class. If you wanted to

test a string to make sure it only contained vowels, you could do this:

 print “Vowels only please\n” if ($string =~ m/[^aeiou]/);

 Negated character classes can be used to help search for simple DNA motifs, i.e.,

report if a sequence contains a subsequence such as “T, followed by A or C, followed by

 anything but G, 90 and ending with C”:

 if ($dna =~ m/T[AC][^G]C/i) {…}

 Character ranges
 Another useful option when specifying a character class is to use a dash to specify a

 range of characters or numbers:

 print “Password contain numbers!\n” if ($password =~ m/[0–9]/);

 print “PIN contains letters!\n” if ($pin =~ m/[a-z]/i);

 print “Name contains A-K\n” if ($name =~ m/[A-K]);

 Note that in the second example we include the ignore-case option, otherwise this

pattern would only match lower-case letters. A better check for a suitable PIN would be

to use a negated character class to check that it only matches non-numbers :

 print “Not a PIN!\n” if ($pin =~ m/[^0–9]/);

 You can use character ranges with the transliteration operator to easily convert strings

from lower- to upper-case (or vice versa): 91

 $text =~ tr/[a-z]/[A-Z]/;

 89 This should not be confused with the “not match” operator ($!), which acts on a whole pattern and not specifi c parts of a

pattern.

 90 Matching “anything but G” would also include matching non-DNA characters such as “Z,” “3,” “@,” etc. But hopefully

any DNA-related script would also check that all characters are valid on another line of code.

 91 Of course, this is still not as easy as using the lc() and uc() functions.

9781107000681c04_p85-219.indd 1959781107000681c04_p85-219.indd 195 11/5/2011 6:26:58 PM11/5/2011 6:26:58 PM

Essential Perl196

 Anchors
 Most of the patterns we used in the last chapter were quite permissive, meaning they

might match more things that we want to. Let’s consider our “chili” matching example

again:

 print “Chili pepper\n” if ($text =~ m/chili|chilli|chillie|chile/i);

 This code works, but it would also return a match if $text was any of the following:

 chilliest

 visitchile.com

 trochile 92

 Clearly we would not want our script to match these words. Ideally, we want to

be able to anchor our patterns and specify that a pattern must match at the start and/

or end of a string. To ensure that a pattern matches from the beginning of a string, we

can use the caret (̂) symbol. This can be confusing because, as we saw earlier, the

caret symbol is also used as the negation metacharacter within a character class. Some

examples are:

 $text =~ m/^hat/; # matches hat, hate, hatch, etc., but not chat or what

 $text =~ m/^ /; # matches as long as $text starts with a space

 $text =~ m/^[^0–9]/; # matches as long as $text starts with a non-digit

 The last example uses the caret symbol as an anchor and negation character class meta-

character. If you want a pattern to only match if it occurs at the end of a string, you can

use the $ character, and this can also be combined with the ̂ anchor.

 $text =~ m/old$/; # matches old, bold, gold, etc., but not older

 $text =~ m/^unique$/; # will only match ‘unique’

 $text =~ m/^$/; # will match the empty string

 The second pattern in the above example uses both anchors, which is a common prac-

tice and ensures that the pattern has to match the entire string. The last example looks

like it wouldn’t match anything, but it matches the empty string “”. This can be very

useful for matching blank lines in a fi le, and you can use this with the next function to

skip any blank lines you come across while looping through a fi le:

 while (my $line = <$file>) {

 next if ($line =~ m/^$/); # skips to next line in file

 }

 Note that for the purposes of matching the “end” of a string, newline characters do not

count. This means that the following code will match:

 print “Match!\n” if (“The end\n” =~ m/end$/);

 92 Trochile is the suborder of birds that includes hummingbirds, but you knew that, right?

9781107000681c04_p85-219.indd 1969781107000681c04_p85-219.indd 196 11/5/2011 6:26:58 PM11/5/2011 6:26:58 PM

Regular expression metacharacters 197

 The dot metacharacter
 Outside of a regex, the dot symbol acts as Perl’s concatenation operator. However, inside

a regex the dot metacharacter has a very simple meaning: match any single character . 93

This means you can use the dot metacharacter as a wildcard to match anything at all:

 $text =~ m/.at/; # matches bat, cat, hat, 4at, #at, etc.

 $text =~ m/^…$/; # matches anything with exactly three characters

 You should only really use the dot metacharacter if you know that a character in your

pattern can be anything at all (including spaces and all forms of punctuation). Usually,

this is not the case and we often know that we want a letter, number, or range of certain

punctuation characters in a particular pattern.

 How to match special characters
 Consider the following code; will the print statement be executed?

 my $text = “A common plant used in research is A. thaliana”;

 print “Text contains pattern\n” if ($text =~ m/A./i);

 This code will print the specifi ed statement, but can you see what part of $text the

pattern is matching? It actually matches in six different places. The dot in the pattern is

acting as a metacharacter and not as a regular period. This means it matches anywhere

in $text where there is a letter “A” (upper- or lower-case) followed by any single char-

acter. From Perl’s point of view, as soon as it fi nds any match it will execute the print

statement, and so the pattern is actually matching the very fi rst two characters of $text

(the letter “A” and the space character).

 This may not have been what we wanted, so how could we make the dot character in

the pattern not act as a metacharacter? The answer is to prefi x the dot with a backslash,

which acts as an “escape character ”; we fi rst saw this in Chapter 4.10 . You can do this

for any of the metacharacters that are used in regexes:

 $text =~ m/Mr\./; # matches ‘Mr.’, no special meaning to ‘.’

 $text =~ m/a\|b/; # matches the string ‘a|b’

 $text =~ m/\(|\)/; # matches ‘(‘ or ‘)’

 $text =~ m/\\/; # matches ‘\’

 Note that in the fi nal example we are trying to match a backslash character, which

requires us to escape the character with yet another backslash character. 94

 Matching things that repeat
 We have already seen a lot of regular expression metacharacters, but in some ways we

have barely begun to get at their real power. Let’s imagine that we were looping over the

lines of a long fi le and we wanted to spot lines that might contain telephone numbers.

In the United States, telephone numbers have a standard format consisting of a three-

 93 One exception to this is that a dot metacharacter will not match a newline.

 94 When you start matching slash characters (forwards or backwards), it is sometimes easier on the eye to choose a different

delimiter for the matching operator, rather than use the default forward-slash character.

9781107000681c04_p85-219.indd 1979781107000681c04_p85-219.indd 197 11/5/2011 6:26:58 PM11/5/2011 6:26:58 PM

Essential Perl198

digit area code followed by a three-digit exchange code, and ending with a four-digit

subscriber number. However, people will often use different formatting when writing

these numbers:

 5551234567 # no spaces

 555 1234567 # one space for area code

 555 123 4567 # spaces for area and exchange codes

 (555) 123 4567 # parentheses around area code

 (555) 123–4567 # parentheses and hyphen

 555–123–4567 # just hyphens

 There are probably other permutations that we could come up with as well. So, how

could we begin to make a regex that could capture all of these? Let’s start by tackling

the easiest situation: a number with no spaces:

 $number =~ m/[0–9][0–9][0–9][0–9][0–9][0–9][0–9][0–9][0–9][0–9]/;

 It seems wasteful to have to reproduce the same pattern over and over again. Fortunately,

there are a series of quantifi er metacharacters which will help us make it much easier to

specify parts of a regex that we want to repeat. If we know that we want something to

occur exactly n times, then we can just append {n} after any part of a regular expres-

sion pattern:

 $text =~ m/a{5}/; # matches aaaaa

 $text =~ m/Yes!{3}/; # matches Yes!!!

 $text =~ m/.{10}/; # matches any 10-character string

 $text =~ m/A{2}|B{3}/; # matches two As or three Bs

 $text =~ m/[a-z]{4}/; # matches any four (lower-case) letters

 $text =~ m/(X|Y){5}/; # matches five Xs or five Ys

 The important point to note about using this quantifi er is that it only applies to the pre-

ceding character , not the entire pattern. The exceptions to this are when you use a quanti-

fi er after a character class or grouped pattern. In the last example above, the {5} quantifi er

applies to all of the (X|Y) pattern and not just to the last closing parentheses. We can now

easily use this quantifi er to more easily solve our telephone number problem:

 $number =~ m/[0–9]{10}/;

 However, this only matches exactly ten digits. If $number contained more or fewer dig-

its, it wouldn’t match. So how could we also make our regex also match UK telephone

numbers, which are 11 digits? The easy solution is that the {n} quantifi er can also be

used to specify a minimum and maximum value. If you want to match a pattern that

occurs between m and n times, the syntax is simply {m,n} . You can also use this quan-

tifi er to specify a minimum without specifying a maximum, with the syntax {m,} . Here

are some brief examples:

 $text =~ m/A{2}/; # match exactly two As

 $text =~ m/A{2,}/; # match two or more As

 $text =~ m/A{2,4}/; # match between two and four As, inclusive

9781107000681c04_p85-219.indd 1989781107000681c04_p85-219.indd 198 11/5/2011 6:26:58 PM11/5/2011 6:26:58 PM

Regular expression metacharacters 199

 There are three more quantifi ers that are very commonly used in regular expressions,

but which can be diffi cult to understand:

 + # match 1 or more times

 ? # match 0 or 1 time

 * # match 0 or more times

 The last two quantifi ers can be the most confusing because the concept of matching

something zero times is not always easy to grasp. Consider the following regex:

 $text =~ m/A*/;

 This reads as “match if $text contains zero or more copies of the letter A.” This means

it will always match because every possible string either contains the letter A or it

doesn’t. Therefore this quantifi er should always be used as part of some larger pattern:

 $text =~ m/[a-z]+ *[0–9]+/;

 This pattern simply matches a word (one or more letters) followed by any number of

spaces (including none at all) and then followed by one or more numbers.

 We can now use all of the regexes we have seen so far in order to tackle the telephone

number problem. First, let’s ignore the issues of parentheses that might occur in phone

numbers, and see if we can have one regex that captures all other possibilities:

 $number =~ m/^[0–9]{3}[-]?[0–9]{3}[-]?[0–9]{4}$/;

 This regex will match any phone number which has the following structure:

 (1) Starts with three digits: ^ [0 – 9]{3}

 (2) Zero or one space/hyphen characters: [-]?

 (3) Any three digits: [0 – 9]{3}

 (4) Zero or one space/hyphen characters: [-]?

 (5) Ends with four digits: [0 – 9]{4}$

 Note the use of both anchor characters (̂ and $) to ensure that $number would only

consist of this pattern.

 It is not too much more work to extend this pattern to also allow for parentheses

around the fi rst three digits:

 $number =~ m/^([0–9]{3}|\([0–9]{3}\))[-]?[0–9]{3}[-]?[0–9]{4}$/;

 The fi rst part of this regex has to use backslashes to escape the special meaning of the

parentheses characters. You can read the fi rst part as “match three digits ([0 – 9]{3}) or

match three digits that are fl anked by parentheses (\([0 – 9]{3}\)).” As you can see,

regexes can quickly become long and confusing .

 Advanced metacharacters
 All of the metacharacters we have seen so far are fairly standard among Unix and

many different programming languages. There are also some other metacharacters

used by Perl and some other languages which both simplify some existing patterns

and also make it easier to make complex patterns. These metacharacters all include

9781107000681c04_p85-219.indd 1999781107000681c04_p85-219.indd 199 11/5/2011 6:26:58 PM11/5/2011 6:26:58 PM

Essential Perl200

a leading backslash character and they all replace existing patterns that you might

otherwise use. Here are the new metacharacters, followed by the normal patterns they

equate to:

 \w [a-zA-Z0–9_] match any word character

 \d [0–9] match any digit

 \s [\ \t\n\r\f] match any whitespace character

 \W [^\w] match any non-word character

 \D [^0–9] match any non-digit

 \S [^\s] match any non-whitespace character

 Notice the word metacharacter (\w) will match both lower- and upper-case letters,

numbers, and also an underscore character. The whitespace character includes a regular

space, a tab character, a newline, and also some things that we’ve not even talked about

before. The last three metacharacters are all negated versions of the fi rst three metachar-

acters. 95 We can use these new metacharacters to do things such as:

 $text =~ m/\w+/; # match a single word

 $text =~ m/\w+\s+\w+/; # match two words separated by some spaces

 $text =~ m/\w+\W+\w+/; # match two words separated by some non-words

 $text =~ m/^\S/; # match if $text doesn’t start with whitespace

 $text =~ m/(\d|\s)/; # match if $text contains digits or whitespace

 $text =~ m/[\d\s]/; # same as previous example

 $text =~ m/\S+\s{2}\S+/; # match two spaces between non-space characters

 Note that the last example could be used to check a piece of text to see if you have acci-

dentally included two space characters between words. By using \S+ rather than \w+ ,

it doesn’t matter if a word is followed by a period, comma, etc. It can take time to learn

all of these metacharacters, but it is worth the effort.

 All of the short code examples so far have only used the matching operator. However, we

can also use regular expressions in conjunction with the substitution operator. Imagine

you had the following information in a fi le:

 1 Spider-Man

 2 Mr. Fantastic

 3 Superman

 4 Iron Man

 5 Captain America

 6 The Flash

 7 Batman

 You want to write a script to process this fi le and look for all the superheroes who have

“man” as part of their name. You then want to remove the leading number and space

character that starts each line, and then print out just the hero’s name.

 95 It takes a while to start thinking in terms of “non-words” and “non-digits,” but they are very useful.

Problem

4.27.1

9781107000681c04_p85-219.indd 2009781107000681c04_p85-219.indd 200 11/5/2011 6:26:58 PM11/5/2011 6:26:58 PM

Working with regular expressions 201

 Write a script that would match only those lines in the following text that contain US

state abbreviations (two letters) and zip codes (fi ve digits):

 CA 95616

 95618

 CA 90210

 TX

 DC 20500

 Assume that this text is inside a fi le you need to process. The script should print some

suitable output for those lines that contain both fi elds, but also warn if either fi eld is

missing. A good solution will also print some suitable message if neither of these fi elds

are present.

 4.28 Working with regular expressions

 Let’s go to (W|w)ork!
 The previous chapter introduced what might have seemed like hundreds of different

regular expression (regex) metacharacters, but it didn’t really cover many of the power-

ful ways in which you can use regexes in your scripts. This chapter will go over some

of the ways you can put regexes to good use. We could devote many more chapters

to regexes (and we will devote at least one more in Part 6), but this chapter should be

enough to arm you with all of the basics.

 Using regular expressions with the split function
 The binding operator (=~) is not the only place where we can use regexes. Another

common use is in conjunction with the split() function . We have already seen this

function before (in Chapter 4.15) and we learned how we could turn a scalar variable

into an array by splitting it at a fi xed character:

 my @array = split(/”,”/, $string); # split on commas

 But sometimes we will have data which is not so neatly separated. What if we have a line

of text with six text fi elds that are separated by variable amounts of whitespace:

 my $string = “First_name Second_name Age DOB Height Weight”;

 my @array = split(/” “/, $string); # split on space character

 Using this code would result in @array containing many empty elements because

of the multiple space characters between words in the input string. Of course, it is not

always easy to tell whether something consists of multiple spaces or a mixture of spaces

and tab characters. The better solution is to use a regex to split the string :

 my @array = split(/\s+/, $string); # split on whitespace character(s)

 This pattern (\s+) will use “one or more whitespace characters” as the delimiter when

splitting $string . It therefore doesn’t matter if the fi elds are separated by spaces or

tabs, and this method will ensure that @array ends up with just six elements.

Problem

4.27.2

9781107000681c04_p85-219.indd 2019781107000681c04_p85-219.indd 201 11/5/2011 6:26:58 PM11/5/2011 6:26:58 PM

Essential Perl202

 If you use split() without specifying the pattern or the variable, the pattern is

assumed to be whitespace and $_ is used as the variable. In addition, leading whitespace

is removed from the line. The following code snippet will print the fi rst and third col-

umns of a space-delimited fi le.

 while (<>) {

 my @array = split;

 print $array[0], “\t”, $array[2], “\n”;

 }

 Using variables inside regular expressions
 So far we have used various patterns to match against strings, but these patterns have

also been text strings. We can also use variables inside the matching operator and Perl

will use the contents of that variable as the pattern.

 Example 4.28.1
 This simple script takes some input from the command line and tests whether that input

matches the string “REGULAR EXPRESSIONS”. You should try running this script

with the following commands:

 $ pattern_test.pl “REG”

 $ pattern_test.pl “LAR\sEXP”

 $ pattern_test.pl “^\w{7}\s\w{11}$”

 1. #!/usr/bin/perl

 2. # pattern_test.pl

 3. use strict; use warnings;

 4.

 5. die “Please provide a pattern\n” if (@ARGV != 1);

 6.

 7. my $pattern = $ARGV[0];

 8. my $text = “REGULAR EXPRESSIONS”;

 9.

 10. if ($text =~ m/$pattern/){

 11. print “\’$pattern\’ matches \’$text\’\n”

 12. } else {

 13. print “\’$pattern\’ doesn’t match \’$text\’\n”

 14. }

 Understanding the script
 Line 7 takes the input string and assigns it to $pattern . This variable is then used as a

pattern to compare to $text (line 10). A simple if–else statement prints one of two

things depending on whether the pattern matches the text.

 You should hopefully notice that all of the example commands work. This means

you can include any regex metacharacter inside $pattern and it is understood by the

matching operator.

9781107000681c04_p85-219.indd 2029781107000681c04_p85-219.indd 202 11/5/2011 6:26:58 PM11/5/2011 6:26:58 PM

Working with regular expressions 203

 Note that you could also use multiple variables to specify different parts of a regex. The

following code would match if the $text variable contained either Batman, Batwoman ,

Catman, or Catwoman.

 my ($x, $y, $z) = (“bc”, “man”, “woman”);

 print “Match\n” if $text =~ m/[$x]at($y|$z)/i;

 How to capture parts of a matching pattern
 It is not always enough to know that some text matches a particular pattern. We often

want to extract just the specifi c parts that match. Fortunately, this is very easy to do in

Perl. We have already seen the grouping metacharacters () , which are used in conjunc-

tion with the alternation metacharacter | . These grouping metacharacters can also be

used to surround parts of a pattern that we want to be able to extract. If a pattern matches

a string, then the grouped parts of the pattern are stored in some special variables. The

fi rst group gets saved in a variable called $1 , the second group gets stored in $2 , the

third group in $3 , and so on. Imagine that we want to capture two names from a string

and put those in separate variables:

 “Batman vs Catwoman” =~ m/(\w+) vs (\w+)/;

 my $hero = $1;

 my $villain = $2;

 In this example we make groups from the two parts of the pattern that specify words.

These matches are automatically transferred to the special variables $1 and $2 , which

we immediately assign to some new variables. It is common to reassign the special vari-

ables as soon as possible because the contents of $1 might be replaced if the matching

operator is used again:

 “Weather is sunny” =~ m/Weather is (\w+)/; $1 contains ‘sunny’

 “Weather is cloudy” =~ m/Weather is (\w+)/; $1 now contains ‘cloudy’

 Example 4.28.2
 Let’s imagine we have a fi le (“dates.txt”) which contains dates as part of some longer

sentences. 96 It might look something like this:

 I was born on 03/01/1982

 On 11/23/2010 it will be my thirtieth birthday

 I am going to be 21 this year

 I’m looking forward to starting my new job on 06/15/10

 Something big is going to happen on 8/8 this year

 10/29/64 was the day that we were married

 Notice that the third line does not contain any date at all, and the fi fth line contains an

incomplete date (no year is specifi ed). Also, some dates use four digits for the year, and

others use two. The following script will process this fi le and print out the day, month,

 96 We will use the US month/day/year convention.

9781107000681c04_p85-219.indd 2039781107000681c04_p85-219.indd 203 11/5/2011 6:26:58 PM11/5/2011 6:26:58 PM

Essential Perl204

and year for any line that contains a complete date. To run this script, you’ll need to rec-

reate the dates.txt fi le and specify this when you run the script:

 $ find_dates.pl dates.txt

 1. #!/usr/bin/perl

 2. # find_dates.pl

 3. use strict; use warnings;

 4.

 5. die “Please provide an input file\n” if (@ARGV != 1);

 6.

 7. while (my $line = <>) {

 8. next unless $line =~ m#\d{1,2}/\d{1,2}/\d{2,4}#;

 9.

 10. $line =~ m#(\d{1,2})/(\d{1,2})/(\d{2,4})#;

 11. my ($month, $day, $year) = ($1, $2, $3);

 12. print “Month = $month, Day = $day, Year = $year\n”;

 13. }

 Understanding the script
 Line 7 introduces a while loop that will loop through all of the lines in the specifi ed fi le.

 The fi rst thing we do inside the loop is check whether $line contains a valid date.

To do this we use a regex \d{1,2}/\d{1,2}/\d{2,4} to match the date. This is

not a perfect solution as the year component will also match a three-digit year. 97 Because

our regex expression contains forward-slashes, we use a different delimiter (#) for the

matching operator.

 Line 8 checks for a match to our pattern as part of a next unless construct. The

 next command will skip to the next input line unless $line contains a date pattern.

We could have also written this with reversed logic, i.e., perform the next command if

 $line doesn’t match a date:

 next if $line !~ m#\d{1,2}/\d{1,2}/\d{2,4}#;

 When we reach line 10 we know that $line must contain a date, but we don’t yet

know where it is. The regex on line 10 is the same as the one on line 8, but now we place

grouping metacharacters around the parts of the pattern which will become the month,

day, and year.

 Line 11 uses list context to reassign the matching patterns from the special variables

($1 , $2 , and $3) to new variable names.

 Note that, in practice, we would not need to include line 10 at all, as we could instead

include the grouping metacharacters as part of line 8:

 8. next unless $line =~ m#(\d{1,2})/(\d{1,2})/(\d{2,4})#;

 This line of code would perform the twin functions of (1) checking to see whether there

is a match, and (2) capturing specifi c parts of the input to $1 , $2 , etc.

 97 We could also make a pattern for a two- or four-digit year with (\d{2}|\d{4}) .

9781107000681c04_p85-219.indd 2049781107000681c04_p85-219.indd 204 11/5/2011 6:26:58 PM11/5/2011 6:26:58 PM

Working with regular expressions 205

 Using the special variables ($1 , $2 , etc.) in substitutions
 We often have text from which we want to remove characters from either end. For

example, maybe the text contains quotation marks that we want to delete, or maybe we

want to strip the “www” and “.com” parts from a web address. This becomes very easy

to do when using regexes with the substitution operator . We can use the grouping opera-

tors to capture the part we want to keep and then just use $1 as the replacement part of

the substitution operator:

 my $url = “www.perlforever.com”;

 $url =~ s/www\.(\w+)\.com/$1/; # $url now contains ‘perlforever’

 Looping through multiple matches
 We can use the grouping metacharacters to capture multiple parts of a matching string,

but this is only useful if you know exactly how many matches to expect. If you don’t

know how many matches will be in a string, then we need to do something different.

Imagine we have a string that contains an unknown number of email addresses that we

wish to capture: 98

 my $text = ‘Email me at captain.kirk@starfleet.com or jim_kirk@gmail.com’;

 We could make a regular expression to capture a valid email address, 99 but if we

then try to use this with the matching operator, it will only ever match the fi rst email

address:

 if ($text =~ m/([\w\.]+@[\w\.]+\.[a-z]{2,4})/i) {

 my $email = $1; # $email gets captain.kirk@starfleet.com

 }

 To solve this problem we need to be able to loop through all possible matches in our

input string. This can be achieved by using a while loop in conjunction with the global

match option (/g), which we fi rst saw in Chapter 4.11 :

 while ($text =~ m/([\w\.]+@[\w\.]+\.[a-z]{2,4})/gi) {

 my $email = $1;

 }

 This loop reads as “while we can keep on fi nding matches to the pattern in $text ,

put each match in turn into $1 .” It is important to include the global match option

after the pattern, otherwise the loop will never end.

 Capturing all matches in one go
 Rather than looping through all possible matches in a string, we can also assign the

result of the matching operator to an array, and each array element will contain each of

the successive matches. You still need to use the global match option:

 98 The string is deliberately in single quotes so that we don’t need to escape the @ sign with a backlash. Otherwise, Perl

would think we were including some array names, and would try to replace them with their contents.

 99 This is not a straightforward problem, and the regular expression we use here is a very simplifi ed pattern that will not

match all email addresses.

9781107000681c04_p85-219.indd 2059781107000681c04_p85-219.indd 205 11/5/2011 6:26:59 PM11/5/2011 6:26:59 PM

Essential Perl206

 my @email = ($text =~ m/[\w\.]+@[\w\.]+\.[a-z]{2,4}/gi);

 # $email[0] gets captain.kirk@starfleet.com

 # $email[1] gets jim_kirk@gmail.com

 Capturing patterns like this in list context can also be useful when you know exactly

how many matches there will be, as you can avoid the need to use $1 , $2 , etc:

 my $text = “The meeting will be at 4:30 pm”;

 my ($hour, $minute) = ($text =~ m/\s+(\d+):(\d+)\s+[ap]m/);

 Note that this syntax works even if you wanted to capture just one pattern from a

string :

 my ($day) = ($text =~ m/\s+(\w+day)/);

 Summary
 Regular expressions are an incredibly useful part of Perl and are frequently used in areas

such as bioinformatics. Try not to be overwhelmed by all of the different metacharac-

ters we have introduced, but remember if you are ready to learn even more, then see

 Chapter 6.1 , which covers some advanced regular expression topics.

 The DNA sequences of protein-coding genes begin with a start codon (ATG), then have

a number of three-nucleotide (nt) codons before ending with a stop codon (TGA, TAA,

or TAG). Create a regex that will test whether an unknown variable ($seq) contains a

valid coding sequence. Award yourself bonus points if your regex copes with the follow-

ing criteria:

 (1) $seq can be upper or lower case (this varies a lot in bioinformatics!).

 (2) $seq might also contain N characters (unknown bases) in addition to A, C, G, and T.

 (3) $seq is at least 100 nt long (most coding genes are longer than this).

 (4) $seq has a length that is a multiple of three nt, i.e., $seq consists of codons.

 4.29 Interacting with other programs

 Perl is like the Force: it has a light side, a dark side, and it holds the
Universe together 100
 One of the things Perl excels at is being the glue between different programs. Consider

the following scenario. Your boss emails you several .doc fi les and instructs you to per-

form the following procedures on each fi le: (1) count the number of words; (2) deter-

mine if the word “patent” appears in the text; (3) convert the .doc fi le to a text fi le,

making sure that all characters are upper case. If you were only emailed one fi le, you

would probably open the document in a word processing program to complete the tasks.

But what would you do if there were thousands of fi les? If you’re a Perl programmer,

you write a few lines of code to glue a couple of programs together and then go and have

lunch while the program runs.

 100 Originally, this was a comment about duct tape, but it is equally true of Perl.

Problem

4.28.1

9781107000681c04_p85-219.indd 2069781107000681c04_p85-219.indd 206 11/5/2011 6:26:59 PM11/5/2011 6:26:59 PM

Interacting with other programs 207

 Capturing program output with the backticks operator
 Perl’s backticks operator ̀ is a very convenient way to run commands and capture the

output directly. The backtick looks like an apostrophe but is actually a different charac-

ter and will be hiding somewhere on your keyboard. 101 It’s another one of those charac-

ters that should always be used in pairs. Whatever you put between a pair of backticks

will be executed in the Unix shell, and the output will be returned to you in an array or

scalar, depending on how you asked for it.

 Example 4.29.1
 This example runs the Unix ls command twice using the backticks operator and simply

prints out the name of each fi le that ls fi nds.

 1. #!/usr/bin/perl

 2. # backtick.pl

 3. use strict; use warnings;

 4.

 5. my @files = `ls`; # output of command returned as an array

 6. foreach my $file (@files) {print $file}

 7.

 8. my $files = `ls`; # output of command returned as a string

 9. print $files;

 Understanding the script
 On line 5, we place the ls command inside a pair of backticks. The fi rst thing Perl will

do is run the command. Because the backticks are on the right-hand side of an assign-

ment, Perl will then assign whatever output is provided by the command to the named

variable (in this case an array). Each element of the @files array will contain a fi le

name followed by a newline.

 Lines 8–9 are similar to lines 5–6, but the output from the backticks operator is

assigned to a single scalar variable rather than to an array. Note that $files contains

all of the newline characters from the output of the ls command.

 Note that you can also use Perl’s qx // operator as an alternative to using backticks.

They behave in an identical manner, but the qx operator allows you to choose any pair

of delimiters to surround the command you want to execute – the following lines of code

are all equivalent to each other:

 my @files = `ls $dir`;

 my @files = qx/ls $dir/;

 my @files = qx(ls $dir);

 my @files = qx’ls $dir’;

 The last example uses single-quote characters as the delimiter, which means the com-

mand does not undergo variable interpolation.

 101 The location depends on your keyboard layout, but try the upper-left corner to begin with.

9781107000681c04_p85-219.indd 2079781107000681c04_p85-219.indd 207 11/5/2011 6:26:59 PM11/5/2011 6:26:59 PM

Essential Perl208

 How to check whether external commands ran successfully
 If you capture program output using the backticks operator, there is always the possibil-

ity the program didn’t run properly. This may cause your captured output to consist of an

error message, or maybe be completely blank. It is a good idea to test whether programs

ran properly or not; we can do this by inspecting the value of yet another of Perl’s spe-

cial variables, $? . This variable stores the exit status from any program you try running.

If a program runs successfully then the value of $? will be zero. 102

 Example 4.29.2
 This simple script uses backticks to run the Unix which command in order to deter-

mine the location of a program specifi ed on the command line.

 1. #!/usr/bin/perl

 2. # backtick_error_test.pl

 3. use strict; use warnings;

 4.

 5. die “Please specify the name of a Unix command\n” if (@ARGV != 1);

 6. my $program = shift;

 7.

 8. my $location = `which $program`;

 9.

 10. if ($?) {

 11. print “Error running \’which $program\’ command\n”;

 12. } else {

 13. print “$program is located at $location”;

 14. }

 Understanding the script
 As long as one, and only one, thing is specifi ed on the command line, it gets passed to a

variable $program using the shift function (lines 5–6).

 On line 8, we use backticks to run the Unix which command and the results are

saved to a variable. We then test the status of $? using an if-else block which either

prints an error message or the location of the specifi ed command .

 Running other programs with the system() function
 The backticks operator should mostly be used when you want to capture the output from

a command. Sometimes you might want your Perl script to run other commands (includ-

ing other Perl scripts) which don’t return any output. In these situations you should use

the system function. Like the backticks operator, system runs a command in the

shell and sets $? to zero if it succeeds, or a non-zero error code if it fails.

 102 Of course, just because a program runs successfully, it might still not contain the output you want.

9781107000681c04_p85-219.indd 2089781107000681c04_p85-219.indd 208 11/5/2011 6:26:59 PM11/5/2011 6:26:59 PM

Interacting with other programs 209

 Example 4.29.3
 Here is a short script that just runs the Unix clear command to clear the screen. As this

command produces no output, we will use system to run it. 103

 1. #!/usr/bin/perl

 2. # clearscreen.pl

 3. use strict; use warnings;

 4.

 5. system(“clear”);

 6. die “error running clear\n” if ($?);

 Understanding the script
 On line 5 we run the clear command via the system function and then we test the

exit status on line 6 by inspecting $? , and issue a die command if the clear com-

mand did not run correctly. 104

 In practice there are easier ways of testing the exit status of a system function call

than the way we just showed you. If the system function worked without any problem it

will return a zero. This can be tested immediately as part of a logical test using the or

operator. Remember that when we use the or operator, we provide a list of possible con-

ditions to test. Perl checks each condition in turn and as soon as any condition returns

true, Perl knows that it doesn’t need to check the remaining conditions. Previously we

have used the or operator as part of an if statement, but let’s see how it can be used on

its own with the system function:

 system(“$command”) == 0 or die “Error running $command\n”;

 If the system function returns zero, then the “ == 0 ” part of the code will evaluate as true

and therefore Perl doesn’t need to evaluate the rest of the or condition. This means that

nothing else happens, which is what you want. Alternatively, if system fails, it will contain

a non-zero exit status. This is not equal to zero and so Perl proceeds to evaluate the next

part of the or condition. In this case, the die function must be run before Perl can evaluate

the truth of the entire statement, and running the die function means the script will end. 105

 The system function is useful when you want to run a command and you don’t

need to capture the output directly into your script. If you do need the output, you can

redirect the results of the system call to a fi le and then read the output from a fi le fol-

lowing an open statement.

 You can also use the system() function by passing it a list of items, where the

fi rst item would specify the program you want to run, and the subsequent items would

become arguments to that program :

 system(“ls -l”, $file) == 0 or die “Can’t run ls -l against $file\n”;

 103 This would be a somewhat pointless script if all it is going to do is run the clear command. But for the sake of teaching

you some Perl, we will lower our standards and be a little bit pointless.

 104 Having a die command as the last line of a script is also a little bit pointless. Perhaps we should rename this script to

pointless.pl.

 105 Alternatively, use the syntax: system(“$command”) && die “Can’t run $command\n” ;

9781107000681c04_p85-219.indd 2099781107000681c04_p85-219.indd 209 11/5/2011 6:26:59 PM11/5/2011 6:26:59 PM

Essential Perl210

 Using pipes to send and receive output from a program
 Previously we saw that the open function allows one to read from, or write to, fi les.

You can also use the open function to read from, or write to, programs. This is done by

appending or prepending a pipe character to the command to be run as part of the open

function. 106 The syntax can look very similar to how you open a fi le for reading:

 open(my $fh, ”file”); # open the file called ‘file’ for reading

 open(my $fh, ”prog |”); # run the command ‘prog’ and capture output

 open(my $fh, “| prog”); # send input to the command called ‘prog’

 Example 4.29.4
 This script uses two pipes: one to read output from the ls command, and one to send

input to the wc command.

 1. #!/usr/bin/perl

 2. # pipes.pl

 3. use strict; use warnings;

 4.

 5. open(my $in, “ls |”) or die “Can’t open pipe: $!”;

 6. while (<$in>) {print}

 7. close $in;

 8.

 9. open(my $out, “| wc”) or die “Can’t open pipe: $!”;

 10. print $out “this sentence has 1 line, 10 words, and 51 letters\n”;

 11. close $out;

 Understanding the script
 Lines 5–7 show how you can read from a process. Line 5 associates the $in fi lehandle

with the ls command. Note the pipe symbol that follows the command name. Once the

fi lehandle is connected to ls , each time the fi lehandle $in is accessed, one line of out-

put from the ls program will be read.

 Line 6 uses a while loop to read one line at a time from the output of the ls com-

mand. Each line is stored in $_ and then printed. Line 7 closes the pipe. 107

 Lines 9–11 show how you can write to a process, in this case the wc command. Here,

the pipe symbol is placed before the program name, just as you would do on a Unix

command line (see Chapter 5.7).

 Line 10 prints to the fi lehandle specifi ed by $out , which effectively means that the

 print command is being used to send input to the wc program. The wc command will

only print its output when the fi lehandle is closed or when the script is terminated. Note

that this line does not print the text “this sentence has 1 line, 10 words, and 51 letters” to

the screen. This string is only ever used as input to the wc command.

 106 The syntax borrows a lot from how we use pipelines in Unix (see Chapter 5.7).

 107 You don’t have to close your pipes necessarily, because they will automatically close when the variable goes out of

scope. But it’s never a bad idea.

9781107000681c04_p85-219.indd 2109781107000681c04_p85-219.indd 210 11/5/2011 6:26:59 PM11/5/2011 6:26:59 PM

Using functions and subroutines 211

 Being able to read from and write to programs is very powerful. You can automate a

lot of tasks this way . What if you want to read and write to a process? You might try to

do something like this:

 open(my $inout, “| program |”) or die; # sorry, does not work

 Unfortunately, fi lehandles only support reading or writing to a process, but not both.

If you want to read and write to the same process, you have to use the Perl modules

 IPC::Open2 or IPC::Open3 . 108

 4.30 Using functions and subroutines

 Subroutines can get you out of a dysfunctional relationship

 Writing effi cient code
 Good Perl programs should not try to reinvent the wheel, and the environmentally

friendly mantra of “Reduce, Reuse, Recycle” also works well as a manifesto for pro-

gramming. But what should you do if two (or more) parts of your Perl script need to

do exactly the same thing? Maybe you have a script that needs to process two fi les and

count how many lines match a certain pattern in both fi les. Part of your script might end

up looking like this:

 my ($file_A, $file_B, $pattern) = @ARGV;

 # file 1

 my $line_count1 = 0;

 open(my $input_A, “$file_A”) or die “Can’t open $file_A $!”;

 while (<$input_A>) {

 chomp;

 $line_count1++ if m/$pattern/;

 }

 close($input_A);

 print “$line_count1 lines matched $pattern\n”;

 # file 2

 my $line_count2 = 0;

 open(my $input_B, “$file_B”) or die “Can’t open $file_B $!”;

 while (<$input_B>) {

 chomp;

 $line_count2++ if m/$pattern/;

 }

 close($input_B);

 print “$line_count2 lines matched $pattern\n”;

 108 Perl modules are pre-packaged parcels of Perl code that are used to achieve a specifi c goal or tackle a certain problem.

An online repository of free Perl modules is available at http://cpan.org. Chapter 6.2 of this book contains a brief

introduction on how to use modules.

9781107000681c04_p85-219.indd 2119781107000681c04_p85-219.indd 211 11/5/2011 6:26:59 PM11/5/2011 6:26:59 PM

Essential Perl212

 Hopefully you will have noticed the tremendous amount of redundancy in this code. The

two halves of the script are essentially identical, except that they are working with differ-

ent fi les, and use different counter variables. It would be much more effi cient if we could

parcel up all of the lines of code that are doing the same thing, and treat them almost as

a separate script. Then we could just send it the name of a fi le and a pattern as input, and

get back the line count as output. Well, what we have just described is something called

a subroutine , which are used by all programming languages, including Perl.

 The syntax of a subroutine
 To make a basic subroutine we just need to create a block of code and give it a name

using the special sub keyword. We then call that code from somewhere else in the script

using the name we have given it. The simplest subroutines can be used to achieve some

repetitive tasks, such as printing a set of error messages and exiting a script:

 sub print_error {

 print “You did something wrong\n”;

 print “We cannot be held accountable for your stupidity\n”;

 print “Goodbye\n”;

 exit(0);

 }

 This code describes a subroutine called print_error . It is declared with the sub key-

word and then all of the code inside the subroutine is indented within a block. Subroutines

can be defi ned anywhere in a program, but it is common to put them at the end of a Perl

script. In other languages you might fi nd them at the beginning. 109 You can do it either way,

but try to be consistent. We can run the code contained within a subroutine just by specify-

ing the name of it from somewhere else in the script. Sometimes you might want to call a

subroutine if some condition has been met, but you can also just call it on its own:

 # subroutine call with no conditionals

 print_error();

 # subroutine calls based on conditional statements

 print_error() if ($bad_thing_happened);

 unless ($result eq “good”) {

 print_error();

 }

 We can imagine this code being used in a script that has to check for errors in many dif-

ferent places. The advantage of using a subroutine for this is that if you needed to change

the error message, you only have to change the code in one place.

 Note that when calling subroutines we generally include parentheses after the sub-

routine name. 110 Because of this, you might be thinking, “Hmm, those subroutine calls

 109 Subroutine defi nitions are global, so your script will know where to fi nd them even if the code that uses a subroutine

occurs earlier in the script than the subroutine itself.

 110 But also see the last section of this chapter.

9781107000681c04_p85-219.indd 2129781107000681c04_p85-219.indd 212 11/5/2011 6:26:59 PM11/5/2011 6:26:59 PM

Using functions and subroutines 213

look an awful lot like Perl functions .” Well, that’s because they are! Writing a subroutine

is just the same as writing your own function , and in this sense the words “subroutine”

and “function” are pretty much interchangeable.

 Passing data to subroutines
 Subroutines become much more powerful when you pass data to them and you can pass

one or more items to a subroutine in a number of ways. Items to be passed should be

specifi ed between the parentheses that follow the subroutine name:

 fruits(“apples”); # passes one string to the ‘fruits’ subroutine

 add_them_up(1, 5, 4); # passes three numbers

 mean_size($small, $big); # passes two variables

 math(“mean”, @numbers); # pass a string and an array

 how_many_words(@words); # passes the contents of the @words array

 count(split /\s+/, $text); # passes the results of the split() function

 No matter how you specify the parameters to be passed, they are always passed as a

single list of scalars. In the fourth example above, a string and an array are passed. The

array will lose its identity and will be added on to the end of a list that starts with the spe-

cifi ed string.

 Upon arrival in a subroutine the contents of the list that has been passed are imme-

diately placed in a special Perl variable called @_ . 111 You can access this array like any

normal array – e.g., $_[0] will contain the name of the fi rst item you pass to the sub-

routine. However, just like when you work with @ARGV , it is often best to fi rst reassign

the contents of @_ to new variables that have more meaningful names. Let’s imagine we

have a subroutine called process_fruit() and we want to pass three items to it:

 process_fruit(“apple”, 5, “green”);

 Now we will consider four different ways we could potentially deal with these items

once they “arrive” inside the subroutine:

 # method 1, list assignment

 sub process_fruit {

 my ($fruit, $quantity, $color) = @_;

 }

 # method 2, array assignment

 sub process_fruit {

 my @fruit_details = @_;

 }

 # method 3, scalar and array assignment

 sub process_fruit {

 my ($fruit, @details) = @_;

 }

 111 Apart from also having an underscore, this special array has nothing to do with the special variable $_ . Except that they

are both “special” of course!

9781107000681c04_p85-219.indd 2139781107000681c04_p85-219.indd 213 11/5/2011 6:26:59 PM11/5/2011 6:26:59 PM

Essential Perl214

 # method 4, using shift

 sub process_fruit {

 my $fruit = shift;

 my $quantity = shift;

 my $color = shift;

 }

 The fi rst method just reassigns the @_ array to a new list of variables. This is useful

if the things being sent represent different categories of data. Alternatively, if you are

passing a list of the same type of things, it is often better to assign the data to an array

(method 2). For example, if your subroutine was calculating some property from a set

of numbers, you would probably want to keep those numbers in a single array. Method

3 shows that you can still keep some items as single scalars, and some items as an array.

The last method exploits a special property of the shift () function . Inside a subrou-

tine, each invocation of shift will remove an item from the @_ array – i.e., shift is just

a shortcut for shift(@_) . It is important to note that all of these methods pass copies

of the original data. You can modify data in a subroutine and it won’t affect the original

version of that data . 112

 Alternative syntaxes when calling subroutines
 So far we have been calling all of our subroutines in exactly the same way, placing

parentheses after the subroutine name, and optionally specifying a list inside the par-

entheses. This is our preferred syntax, and it is also the same syntax used by most pro-

gramming languages. We suggest you do not deviate from this practice. However, you

will see some alternative syntaxes. Let’s look at all the ways that we could potentially

call the print_error subroutine we saw earlier.

 1. print_error(); # preferred, with no parameters

 2. print_error(2, 3); # preferred, with two parameters

 3. print_error; # omitting trailing parentheses

 4. print_error 2, 3; # two parameters, no parentheses

 5. & print_error; # prefixed by an ampersand character

 6. main::print_error; # prefixed by package name

 7. &::print_error 2, 3; # oh, give me a break!

 8. $obj->print_error(); # OOP syntax

 Lines 1 and 2 demonstrate the preferred syntax. Please use this always.

 Lines 3 and 4 omit the trailing parentheses. It is common to omit parentheses for

Perl built-in functions like print . You can omit parentheses for your own subroutines

if you declare your subroutines before you call them (i.e., put them at the start of your

program). You can also omit parentheses if you prototype your functions. 113

 112 There is a way for a subroutine to process the original version of data and not a copy, but we won’t be able to explain

this until we have introduced the subject of references in Chapter 6.3 . This means that if your script has a large array

that takes up 1 GB of memory, and you then pass that array to a subroutine, then your script will need an extra 1 GB of

memory.

 113 Prototyping a subroutine tells it what kinds of arguments it takes. This is generally necessary in compiled programming

languages. In Perl, it is unnecessary and provides only a minor convenience. We have therefore omitted its description.

9781107000681c04_p85-219.indd 2149781107000681c04_p85-219.indd 214 11/5/2011 6:26:59 PM11/5/2011 6:26:59 PM

Returning data from a subroutine 215

 Line 5 prefi xes an ampersand before the function name. The ampersand was actually

a required part of the Perl syntax at one time. Now it is only required for function refer-

ences, which is not a topic we cover in this book.

 Line 6 adds the package name to the prefi x. If this statement makes little sense, don’t

worry about it. It’s not so important right now. But consider reading Chapters 4.7 and 7.4 .

 Line 7 includes the ampersand, defaults the package name to main, and includes

arguments without parentheses. All legal, but we’ll beat you over the head if we catch

you doing it.

 Line 8 shows the object-oriented syntax. See Chapter 6.8 for more information.

 4.31 Returning data from a subroutine

 One good (re)turn deserves another
 Sometimes it is enough to just send data to a subroutine, but usually we also want to

 return a value (or values). This is particularly true for subroutines which process data

in order to produce a result from a calculation. Returning data from a subroutine can be

done by using the aptly named return keyword. You can return multiple values in a

return statement, or even none. Sometimes we just return 1 or 0 to indicate success or

failure. Here is an example of a subroutine that returns the product of two numbers:

 my $result = product(4, 5);

 sub product {

 my ($x, $y) = @_;

 my $product = $x * $y;

 return $product;

 }

 This code returns the contents of the variable $product from the subroutine and this is

immediately assigned to the $result variable. If you wanted to be concise, you could

return the result of a calculation directly, without fi rst storing it in a separate value: 114

 sub calculation {

 my ($x, $y) = @_;

 return $x * $y;

 }

 In most cases we will return values from subroutines, which are immediately assigned

to new variables. However, if you don’t need to store the returned value, you can still do

things like print it:

 # print but don’t store returned value

 print product(4, 5),”\n”;

 114 If you wanted to be really concise, this whole subroutine could be further reduced to:

 sub product { return $_[0] * $_[1] }

9781107000681c04_p85-219.indd 2159781107000681c04_p85-219.indd 215 11/5/2011 6:26:59 PM11/5/2011 6:26:59 PM

Essential Perl216

 You should also be aware that if you return a value but don’t do anything with it, then

Perl will not complain or produce any error message. The following code example is

valid, if not a little pointless:

 # don’t do anything with returned value

 product(4, 5);

 You might fi nd this next part strange, but you can also return values from a subrou-

tine without using the return operator. Consider the following code:

 print “1 + 2 = “, add(1, 2), “\n”;

 sub add {

 my ($x, $y) = @_;

 $x + $y;

 }

 This code will result in the string “1 + 2 = 3” being printed, even though we didn’t seem

to return anything from the subroutine. This is because in the absence of any return

operator, Perl will always return the last expression evaluated . Note that the last expres-

sion to be evaluated may not always be the last line of the subroutine.

 Returning multiple values from a subroutine
 Just as you can send multiple items to a subroutine, you can also return multiple items.

Returned items are always passed as a single list of scalars – i.e., in the same way that

parameters are passed to a subroutine. Let’s consider how we might deal with the return

values from some fi ctional (and unseen) subroutines:

 my @numbers = (1, 2, 5, 8, 10);

 my $mean = mean(@numbers); # send array, assign to scalar

 my ($min, $max) = min_and_max(@numbers); # send array, assign to list

 my @odd_numbers = find_odd(@numbers); # send array, assign to array

 my $odd_mean = mean(find_odd(@numbers));

 In the last example, we send an array to one subroutine, find_odd() , and then the

returned values are immediately sent to another subroutine, mean() , the result of which

is assigned to a single variable ($odd_mean).

 Using multiple return statements
 You can place multiple return statements within a subroutine and it is often desirable

to do so. Usually this will be done as part of a set of conditional statements, e.g., if A
then return X, else if B then return Y . When Perl reaches any return statement it will

exit the subroutine at that point.

 In Chapter 4.16 we showed some code that calculated whether any given year was a

leap year or not; let’s revisit that code and place it in a subroutine:

 sub leap_year {

 my ($year) = @_;

9781107000681c04_p85-219.indd 2169781107000681c04_p85-219.indd 216 11/5/2011 6:27:00 PM11/5/2011 6:27:00 PM

Returning data from a subroutine 217

 if ((($year % 4 == 0) and ($year % 100 != 0)) or ($year % 400 == 0)) {

 return 1;

 } else {

 return 0;

 }

 }

 This subroutine is passed a single variable (hopefully a four-digit year) and it just returns

“1” if it is a leap year or “0” if it isn’t. We could alternatively return text such as “This is

a leap year,” but in some ways it is better to keep the subroutine simple and let the call-

ing code decide what to do. Returning true/false values such as 1 or 0 keeps our code as

fl exible as possible and allows us to access the subroutine in different ways :

 # basic if-else

 if (leap_year($year)) {

 print “Leap year\n”;

 } else {

 print “Not a leap year\n”;

 }

 # only print if true

 print “Leap year\n” if leap_year($year);

 # print unless true

 print “Not a leap year\n” unless leap_year($year);

 Writing a custom sorting function
 In Chapter 4.18 we learned to use the sort function and we also learned how we could

modify the default behavior of this function by including a short block of code after the

function name:

 @data = sort {$a <=> $b or $a cmp $b} @data;

 Subroutines offer another way to write even more complex sort functions, or just allow

us to hide the complexity of the sorting code.

 Example 4.31.1
 This script creates a subroutine to perform the same alphanumeric sort as just shown.

 1. #!/usr/bin/perl

 2. use strict; use warnings;

 3.

 4. my @data = qw(3.14 1000 21 red blue yellow);

 5. print “before: @data\n”;

 6. @data = sort alphanumeric @data;

 7. print “after: @data\n”;

 8.

 9. sub alphanumeric {

9781107000681c04_p85-219.indd 2179781107000681c04_p85-219.indd 217 11/5/2011 6:27:00 PM11/5/2011 6:27:00 PM

Essential Perl218

 10. no warnings;

 11. my $result = $a <=> $b or $a cmp $b;

 12. use warnings;

 13. return $result;

 14. }

 Understanding the script
 On line 6, the contents of the @data array are sent to the alphanumeric subrou-

tine. Whatever this subroutine returns is stored back to @data , overwriting the original

contents of the array.

 To quiet the warning messages associated with comparing strings as numbers, we

need to temporarily turn off the warnings pragma on line 10. The comparison is per-

formed on line 11 and stored in a new variable. The result is not immediately returned

because we need to turn warnings back on at line 12. Note that $a and $b were not

declared as lexical variables because these are special variables defi ned by Perl.

 The output is free of warning messages with both strings and numbers sorted

properly.

 before: 3.14 1000 21 red blue yellow

 after: red blue yellow 3.14 21 1000

 You can make up many kinds of sorting function. These do not need to use the <=>

or cmp operators . As long as your function returns − 1, 0, or +1, it will work with Perl’s

 sort .

 When to use subroutines?
 Subroutines should be used any time, perhaps even every time, you fi nd yourself writing

the same lines of code in multiple places. Even if that repeated code is only a few lines

long, there are benefi ts to be gained by placing it in a subroutine. Imagine you have two

lines of code that are reused in ten different places in your script. If you decide to update

the functionality of that code (or fi x a bug), you would have to edit your script in ten

different places. If you put the code in a subroutine, you would only have to make one

change.

 Subroutines can also help improve the readability of your code. Rather than see all of

the details of how you calculate some mathematical function, it might be cleaner to keep

that code in a subroutine, which keeps it hidden from the main body of the code.

 Once you develop your own useful functions by using subroutines, you will fi nd

that you want to use them again and again. One way to reuse code is to simply copy-

and-paste your functions from one program to another. However, an ever better way is

to place that subroutine in a function library . This will be explored in Chapter 6.2 .

9781107000681c04_p85-219.indd 2189781107000681c04_p85-219.indd 218 11/5/2011 6:27:00 PM11/5/2011 6:27:00 PM

Part 4 summary 219

 4.32 Part 4 summary

 if ($current_Perl_knowledge < $target_Perl_knowledge) {redo} else {next}
 If you have made it this far and have worked through all of the Perl chapters, then we

have to congratulate you. Well done! We have covered a lot of material and hopefully

you will have understood much of it. We also hope that you can already see practical

uses and applications for the Perl you have learned. This part of the book was designed

to equip you with the basic set of skills you will need to accomplish most problems that

you might want to tackle. But don’t let the word “basic” fool you, the skills we have

covered are both diverse and powerful. You can now write scripts to perform mathem-

atical operations; process text fi les and do complex pattern matching; and loop through

lists and arrays in myriad ways.

 You may want to stop now and take a breather. You’ve certainly earned it! Take a

short vacation maybe, but whatever you do, don’t leave it too long before you return to

Perl. Like learning any language (including French, Spanish, etc.) memories will fade

with time if you don’t keep with it. The best way to really understand Perl is to keep

on using it and maybe even start to consider what lies ahead. And what does lie ahead?

Well, next is a return to Unix to learn some more advanced concepts. However, if you

are hungry to learn even more Perl, then feel free to jump ahead to Part 6 “Advanced

Perl” to see more of the powerful ways you can put Perl to work for you. The distinction

between what we have called “Essential” and “Advanced” Perl is very arbitrary. The

topics in Part 6 may allow you to tackle new problems, but in some cases they may just

help you tackle existing problems in a more effi cient manner.

9781107000681c04_p85-219.indd 2199781107000681c04_p85-219.indd 219 11/5/2011 6:27:00 PM11/5/2011 6:27:00 PM

 Advanced Unix 5

 5.1 Introduction to advanced Unix

 Where you will become BFF with GFF
 The average life scientist will spend a lot of time working with data. Increasingly, this

data will exist in the form of large data sets that will have been downloaded or extracted

from one of the many large biological databases that are accessible on the internet. Such

 in silico data might consist of a small number of very large fi les, a large number of very

small fi les, or anything in between these extremes. However, in many cases the default

fi le format for those fi les will be plain text. The actual format of the plain-text fi le will

vary a lot, but the fact that it is plain text means there are many Unix commands that are

just waiting to get their hands on your data.

 This part of the book will cover a small number of extremely powerful Unix com-

mands that are well suited for slicing and dicing text fi les. If you are reading this part of

the book after working through the “Essential Perl” section then you will spot the simi-

larities between some of these commands and some of the operators in Perl. Conversely,

if you have yet to start learning Perl, you will fi nd this section introduces many topics

that will be revisited as you learn Perl.

 In addition to providing many powerful commands, Unix also lets you combine

those commands in myriad combinations that can enable you to tackle complex tasks. In

a nutshell, you can set the output from any one Unix command (which goes to the screen

by default), to act as input to another Unix command. In this way you can chain together

several commands. Such pipelines will also be covered in this part of the book.

 Example fi les
 To effectively demonstrate the Unix commands that we introduce in this part of the

book, we require some example fi les to work with. These fi les are freely available from

our “Unix and Perl for Biologists” web site:

 http://unixandperl.com.

 If you don’t have access to these fi les (or don’t want to download them), you will still be

able to learn a lot from following the examples in the chapters of this part of the book.

We will also show snippets of the example fi les.

 GFF and FASTA fi le formats
 GFF and FASTA are two fi le formats that are commonly used in bioinformatics for stor-

ing genomic sequence information. Some of the examples in this part of the book will

make use of some fi les that are in this format. Wikipedia gives a good overview of both

of these fi le formats, but the following sections provide a brief description.

 FASTA fi le format
 It is increasingly common for biologists to have to work with large fi les that contain com-

puter representations of DNA or protein molecules. These sequence fi les may contain

9781107000681c05_p220-251.indd 2209781107000681c05_p220-251.indd 220 11/5/2011 6:32:15 PM11/5/2011 6:32:15 PM

Introduction to advanced Unix 221

anything from the sequence of a single gene, to the sequence of an entire genome. Such

fi les can therefore vary in size from a few bytes, up to several gigabytes. The FASTA

fi le format is a commonly used format for representing such sequence data. FASTA fi les

contain one or more sequences and each sequence must have an associated header line , 1

which must start with a > character. Apart from that, there are very few restrictions as to

how the content of a FASTA fi le should be structured. 2 The content of each header line

should ideally be unique , and headers typically contain some form of sequence identifi er

that refers to the sequence that follows. Here is a sample from a FASTA fi le provided by

the Saccharomyces Genome Database (SGD):

 >YAR060C SGDID:S000000086, Chr I from 217148–217483, reverse complement,

Dubious ORF

 ATGTCAAAAACCGATGTCAAAAAATCTCGTGAGGCCTCCGGAATTTTGACGCTGCAAGTC

 AATCTACGGGAAAGAAGAAATTTTTTAAACTTAATGCAAAATAAGCTTTTTTCTTGGAAA

 ATAAGATTTTCGGCAATAAAAGGTAAATGCAGCCAAAAATCAAAATACTTCAGAAGAAGT

 CGTAGCGAGGACTGCTACGTGGAAGCGGATTTGAAGATCCTTTCCAGAACAAGAAGGAGC

 CGAAAGCTGCCAGGAACTGTTCCTGATTTTTTAGGAAAACAATTAATAGGTATCTCGTCT

 AGCGTAGTATCTCGAGTTTCCAGAAGTTGCAGATAA

 >YAR061W SGDID:S000000087, Chr I from 218131–218334, pseudogene

 ATGCCTTATCACTATTTATTTTTGGCACTCTTCACCTACCTGGCCACGTCCAATGTTGTT

 TCAGGAAGTACACAAGCATGCCTGCCAGTGGGCCCGAGGAAAAATGGGATGAATGTCAAC

 TTTTATAAATACTCATTACTGGATTCAACAACGTATTCCTACCCGCAATATATGACTTCT

 GGATATGCCTCGAATTGGAATTAG

 >YAL030W SNC1 SGDID:S000000028, Chr I from 87287–87388,87502–87753, intron

sequence removed, Verified ORF

 ATGTCGTCATCTACTCCCTTTGACCCTTATGCTCTATCCGAGCACGATGAAGAACGACCC

 CAGAATGTACAGTCTAAGTCAAGGACTGCGGAACTACAAGCTGAAATTGATGATACCGTG

 GGAATAATGAGAGATAACATAAATAAAGTAGCAGAAAGAGGTGAAAGATTAACGTCCATT

 GAAGATAAAGCCGATAACCTAGCGGTCTCAGCCCAAGGCTTTAAGAGGGGTGCCAATAGG

 GTCAGAAAAGCCATGTGGTACAAGGATCTAAAAATGAAGATGTGTCTGGCTTTAGTAATC

 ATCATATTGCTTGTTGTAATCATCGTCCCCATTGCTGTTCACTTTAGTCGATAG

 This example shows three sequences, and each is preceded by its own header line. 3

The sequences that follow each header line are all in upper-case characters and each

line of sequence contains 60 characters only. In this case, the sequences represent the

open reading frames (ORFs) that correspond to some genes that occur on chromosome

I of the Saccharomyces cerevisiae genome. Each sequence therefore begins with a start

codon (ATG) and ends with a valid stop codon. The header line for each ORF contains

two different database identifi ers, and the third ORF also has a gene designation (SNC1).

 1 Also known as the defi nition or description line.

 2 Please note, however, that some bioinformatics programs or databases will impose their own formatting requirements for

a FASTA fi le (e.g., specifying that sequence characters are only lower case or upper case or requiring a fi xed number of

sequence characters per line).

 3 The header lines in this example are all contained on a single line, though for display purposes we have had to wrap them

across two lines.

9781107000681c05_p220-251.indd 2219781107000681c05_p220-251.indd 221 11/5/2011 6:32:17 PM11/5/2011 6:32:17 PM

Advanced Unix222

Additionally, the header lines are being used to store the chromosome coordinates of the

ORF along with some other useful information.

 Note that FASTA fi les may contain spaces and/or blank lines among the sequence and

some fi les may even use upper- and lower-case characters to denote different sequence

features. It is also possible that the header lines are so packed with information that they

become longer than the sequence that follows. The following is another example of a

valid, if untidy, FASTA fi le :

 >1

 ACGTACGT

 A C G T A C G T

 A C G T A C G T

 >2

 gatcaag GTAGGCGATTGCACCAGAGTTTCACGTTAGTTTCAG ttcaccac

 GFF
 GFF (generic feature format) is a text-fi le format used extensively in bioinformatics. It

is used to describe details of genomic features, notably their coordinates in relation to

a larger sequence (e.g., a gene, a BAC clone, or an entire chromosome). Historically,

GFF was mostly used to describe details of genes (e.g., their exon/intron structure),

but is now used to describe just about any feature that can be localized to a region of a

sequence. The region in question can range from a single nucleotide (nt) up to the entire

length of the sequence.

 GFF fi les always consist of nine tab-delimited columns of information. Each column

contains a certain type of information:

 (1) Sequence name – this could be the name of a BAC clone or the name/number of a

chromosome or chromosome arm.

 (2) Source – when most gene information was provided in the form of computer

predictions, the source column would typically list the program that was used to

predict the gene structure. These days this fi eld is often repurposed for different

means, and might contain the name of the database from which the GFF fi le was

produced.

 (3) Feature – the feature is the item that the whole line is referring to. It might be a

well-known biological entity such as an exon or an intron, or it might refer to more

generic elements such as “repeat_region” or “similarity.” Typically, this fi eld does

not contain any spaces.

 (4) Start coordinate of feature.

 (5) End coordinate of feature.

 (6) Score – this fi eld was commonly used to store details of whatever score a gene

prediction program assigned to a feature, i.e., how accurate it believed the feature

to be. These days this fi eld is typically left empty, though the fi le format requires

there to be something present, so you will very commonly see a dot character in

this column.

9781107000681c05_p220-251.indd 2229781107000681c05_p220-251.indd 222 11/5/2011 6:32:17 PM11/5/2011 6:32:17 PM

Introduction to process control 223

 (7) Strand information – either a plus or minus symbol to represent which strand of

DNA the feature is associated with.

 (8) Frame – another fi eld associated with gene structure. Specifi cally, this refers to

the reading frame of the “exon” or “CDS” feature and describes the relationship

between the fi rst nt of the exon/CDS and the codon that the nucleotide is contained

in. Exons/CDSs can either be in frame 0, 1, or 2, which means they begin with

the fi rst, second, or third nt of a codon. As this fi eld is meaningless for any feature

which isn’t an exon or CDS, it is also common to see this fi eld only contain a dot

character.

 (9) Attribute fi eld – often used to include one or more database identifi ers that relate

to the feature in question. Some databases add a lot of information to this fi eld

which often makes the whole line wrap around your screen.

 Here is a very short example of a GFF fi le, again taken from the SGD database :

 chrI SGD repeat_region 1 62 . – . ID=TEL01L

 chrI SGD telomere 1 801 . – . ID=TEL01L

 chrI SGD repeat_region 63 336 . – . ID=TEL01L

 chrI SGD gene 335 649 . +.- ID=YAL069W

 chrI SGD CDS 335 649 . + 0 Parent=YAL069

 Note that features from different lines can overlap in their coordinate space. GFF fi les

will sometimes contain a feature called “chromosome,” the coordinates of which defi ne

the range of all other features. Also note that in the case of the last two lines, there are

two different features (“gene” and “CDS”) that occupy the same range of coordinates.

Overall, each line in a GFF fi le should be unique .

 As we learn more about the myriad number of features that can describe any given

genome, the size of the respective GFF fi le for that genome continues to grow. It is not

uncommon to see GFF fi les that contain over one million lines. Some genome databases

produce separate GFF fi les for each chromosome, such that the fi rst column is the same

for all lines in the fi le. Other databases will produce a single GFF fi le for an entire gen-

ome. Because each record is contained on one line, GFF fi les are very suitable for pro-

cessing by Unix commands and Perl scripts .

 5.2 Introduction to process control

 Unix users are licensed to (use the) kill (command)
 This book will hopefully equip you with the skills to run Unix commands and to write

(and run) Perl scripts. These skills are to be treasured; mastery of this knowledge will

allow you to write many amazing programs and utilize many powerful Unix commands.

However, knowing how to start a program is sometimes less important than knowing

how to stop it. In computer terminology, programs that are running on your computer

(including Unix commands and Perl scripts) are known as processes ; the ability to stop,

pause, and restart such programs is known as process control .

9781107000681c05_p220-251.indd 2239781107000681c05_p220-251.indd 223 11/5/2011 6:32:17 PM11/5/2011 6:32:17 PM

Advanced Unix224

 Why would we need to stop a program?
 In an ideal world we would all write Perl scripts that are perfectly constructed and which

always work fi rst time. However, we do not live in that world! Let’s consider a problem-

atic Perl script:

 Example 5.2.1
 The aim of this script is to simply use a for loop to count to 100, but to also print an

additional message when the counter reaches a user-specifi ed number. Can you spot

what the problem is?

 1. #!/usr/bin/perl

 2. # liveforever.pl

 3. use strict; use warnings;

 4.

 5. # set target number, check it is less than 100

 6. die “Usage: liveforever.pl <target integer>\n” unless (@ARGV == 1);

 7. my ($target) = @ARGV;

 8. die “Target integer must be less than 100\n” if ($target >= 100);

 9.

 10. for (my $i = 0; $i < 100; $i++){

 11.

 12. # count up to 100

 13. print “$i\n”;

 14.

 15. # print special message when $i reaches target number

 16. print “$target was your magic number!\n” if ($i = $target);

 17.

 18. }

 Understanding the script
 The error in this script occurs on line 16. The condition for the if statement should only

be executed if $i is equal to $target . However, the author of this program has made

a common mistake of making a variable assignment ($i = $target) rather than test-

ing for equality ($i == $target). The result of this is that each iteration of the for

loop will see line 15 evaluated, and every time we get to line 15 we reset $i to the value

of whatever $target is. 4 This value will always be less than 100 (the condition of the

 for loop) and so the loop will run forever.

 The result of running the code in the above example will be a script that will never ter-

minate and which will fi ll up your terminal window with never-ending output. We there-

fore need to stop the program. But how?

 4 In this case, the variable assignment becomes the test for the if statement. Because you can always assign a value to a

variable, it will always evaluate as true.

9781107000681c05_p220-251.indd 2249781107000681c05_p220-251.indd 224 11/5/2011 6:32:17 PM11/5/2011 6:32:17 PM

Introduction to process control 225

 Interrupting a program
 The fi rst thing you can do with runaway programs that need to be stopped is to press

Control + c . This keyboard combination will send the special Unix interrupt signal to

stop the command. This should stop most basic Perl scripts that are stuck in any sort of

endless loop. In fact, this keyboard shortcut works with most Unix commands, 5 and is

an essential piece of Unix to know if you ever get “stuck.” Depending on what it is that

you are interrupting, you may or may not see any additional output. In many cases, the

command/program will just stop immediately.

 Bear in mind that there may be problems that result if you interrupt a program

before it has fi nished – a program may have just made a large temporary fi le, but was

interrupted before it deleted it. Trying to stop a program by sending the interrupt signal

can be useful, but you should also appreciate that not all programs can be interrupted

in this way.

 Why else might you want to stop a program?
 Having a Perl script stuck in an endless loop is a problem that is quite easy to spot

(assuming you are looking at the terminal). However, sometimes an error in a Perl

script might be causing other problems that might not lead to any suspicious output

on your screen.

 Sometimes you will run a program and not be sure how long it should take to fi nish.

If you sit there waiting for the fi nal output of the program to appear in your terminal

window, you might not be able to tell whether the program is still running or has crashed

(or got “stuck”). Errant Perl scripts might cause your computer to run out of memory, or

might try to open too many fi les at once. These types of problem can often be “felt” as

your computer typically becomes very sluggish and unresponsive. A further complica-

tion might arise if you are running several (different) Perl scripts and/or Unix commands

at once. How can you tell which one is causing the problem?

 In these situations, you ideally need to be able to (1) identify which command or

program is causing the problem, and (2) stop it. There are several Unix commands that

exist exactly for this type of process control, and we will briefl y introduce you to three

of them.

 The top command
 At any given time a Unix computer might be running anywhere between 50 and 500 dif-

ferent processes. 6 All of the Perl scripts we have seen so far will become a single process

when they are run. However, more complex programs can be written such that, when

running, they consist of multiple processes – a word processor program might initially

consist of a single process, but might launch additional processes to handle tools such

as the spell-checker. Normally, you don’t care about any of these details, but if you are

 5 Try it by running a Unix command that will take a long time (such as a recursive directory listing of the root directory: ls

-R /) and then press Control + c to check that you can interrupt the command.

 6 Or thousands. It depends on the computer, how many users are logged in, and what they are doing. After booting up, a

typical Mac computer (with a single user logged in) might launch between 50 and 100 processes.

9781107000681c05_p220-251.indd 2259781107000681c05_p220-251.indd 225 11/5/2011 6:32:17 PM11/5/2011 6:32:17 PM

Advanced Unix226

trying to track down an errant Perl process it is useful to know that there are potentially

lots of other different processes happening.

 The top command allows you to see most of the processes that are running on your

computer in real time. 7 Unlike many other Unix commands, the output of the top com-

mand can vary a lot depending on the size of your terminal window (more information

can be displayed as you make the window wider). Here is some representative output of

the top command:

 Processes: 86 total, 4 running, 82 sleeping, 378 threads 15:43:27

 Load Avg: 2.23, 1.99, 1.33 CPU usage: 56.69% user, 26.33% sys, 16.96% idle

 SharedLibs: 7188K resident, 6188K data, 0B linkedit.

 MemRegions: 14599 total, 590M resident, 24M private, 387M shared.

 PhysMem: 856M wired, 1214M active, 431M inactive, 2501M used, 1598M free.

 VM: 207G vsize, 1042M framework vsize, 21081612(0) pageins, 605503(0)

pageouts.

 Networks: packets: 40418356/25G in, 44593385/39G out.

 Disks: 3034501/85G read, 3302451/80G written.

 PID COMMAND %CPU TIME #TH #WQ #POR #MREG RPRVT RSHRD RSIZE VPRVTVSIZE VSIZE

 29122 top 6.4 00:00.23 1/1 0 24 43 1216K+ 264K 1792K+ 18M 2379M

 29097 System

Event

 0.0 00:00.23 2 1 66 105 2872K 6124K 8516K 30M 2685M

 29095- iTunes 2.5 00:12.53 17 2 338 600 68M- 82M+ 113M 91M- 1128M

 29092- Pages 0.0 00:15.47 4 1 129 501 12M- 97M+ 72M 17M- 1099M

 29064 bash 0.0 00:00.01 1 0 17 25 284K 748K 924K 17M 2378M

 29063 su 0.0 00:00.02 2 1 36 55 2756K 296K 3868K 23M 2391M

 29058 bash 0.0 00:00.00 1 0 17 25 260K 748K 964K 9576K 2378M

 29057 login 0.0 00:00.01 1 0 22 54 448K 312K 1580K 10M 2379M

 29056 perl5.10.0 42.0 04:02.31 1/1 0 14 39 488K 260K 1540K 18M 2380M

 29039 bash 0.0 00:00.02 1 0 17 25 260K 748K 972K 9576K 2378M

 29038 su 0.0 00:00.02 2 1 36 54 2724K 296K 3836K 22M 2390M

 28999 bash 0.0 00:00.01 1 0 17 25 284K 748K 964K 17M 2378M

 28998 login 0.0 00:00.01 1 0 22 54 448K 312K 1580K 10M 2379M

 28994- Terminal 107.3 10:53.46 4/1 1 109 152 11M+ 33M- 35M 47M+ 942M

 Bear in mind that this output will look completely different on your computer

(different versions of the top command might also display the output in a slightly

different way). The fi rst thing to note is that this command will keep on running (and

updating the display) until you press “q” to quit it. The output will change as you launch

different applications on your computer, or run different Unix and Perl programs. The

fi rst eight lines of output are showing various strands of information about the cur-

rent state of memory, disk use, and network traffi c on the computer. Following that are

details of currently running processes. The fi rst four columns of this particular output

show us:

 7 Most computers typically have some graphical program for viewing the same information (e.g., Activity Monitor on a

Mac).

9781107000681c05_p220-251.indd 2269781107000681c05_p220-251.indd 226 11/5/2011 6:32:17 PM11/5/2011 6:32:17 PM

Introduction to process control 227

 (1) PID – process ID (we will refer to this later).

 (2) COMMAND – the name of the command/program that is running (might be

truncated).

 (3) %CPU – the percentage load on the CPU that the command in question accounts

for. 8

 (4) TIME – the length of time the process has been running.

 The other columns are not so important for the purposes of this chapter. 9 In the list

of running processes you can see one entry for the top command itself. You might

also spot an entry “perl5.10.0.” This process corresponds to the errant Perl script from

Example 5.2.1 that is still running on our computer (though in theory this could be refer-

ring to any Perl script that is active). We now know that this process has an identifi er

(29056) which we shall use later to stop the script. The top command makes it easier to

spot which processes, if any, are consuming large amounts of CPU and/or memory.

 The ps command
 Sometimes you just want to see details of only those processes that belong to you. To do

this we can run the ps command (ps = process status), which shows us details of cur-

rently running processes. The default output is far less overwhelming when compared to

the output of the top command. As we still have the liveforever.pl script from

Example 5.2.1 running on our computer, we need to open a new terminal window before

we can run this command:

 $ ps

 PID TT STAT TIME COMMAND

 29039 s000 S 0:00.02 bash

 29056 s000 R+ 17:36.54 /usr/bin/perl liveforever.pl 24

 29064 s001 S 0:00.02 bash

 You might think that the ps command is suggesting that very few processes are

currently running, but bear in mind that the default output of ps will usually show you

only the running processes that are connected to your terminal. 10 So by default, you

won’t see details of any graphical programs that are running on your computer, or any

processes generated by any other user. The ps command has a very large number of

command-line options which can drastically change both the amount and type of infor-

mation shown. You should look at the man page for this command, because sometimes

only seeing the default output will not be enough. In this example we see fi ve columns

of information in the output:

 (1) PID – process ID . This is the same information as in the output of the top

command.

 8 The values in this column may not sum to 100% if there are multiple processors or processor cores on your computer (as

is the case with most modern computers).

 9 The other columns deal with memory usage (among other things). See the man page for more information, which will

also show you how to change the display of what information is shown by default.

 10 By “connected” we mean those processes that were run from this terminal session (as opposed to scripts running in other

terminal windows or any programs you ran yesterday in a terminal window which you subsequently closed).

9781107000681c05_p220-251.indd 2279781107000681c05_p220-251.indd 227 11/5/2011 6:32:17 PM11/5/2011 6:32:17 PM

Advanced Unix228

 (2) TT – a confusing title that refers to something known as the controlling terminal .
Basically, each terminal window you have open has its own identifi er. In this case,

we have two windows open (s000 and s001).

 (3) STAT – the state of the process. R indicates a running process, S indicates a sleep-

ing process (see the man page for more info about this and other states).

 (4) TIME – the amount of CPU time accumulated by the process.

 (5) COMMAND – details of the command/program that is running.

 We usually see one process for the Unix shell that is being run in each terminal win-

dow (in this example we are using the default bash shell). This means the ps command

typically produces at least one line of output even if you are not running anything. In this

example we also see details of our errant Perl script. The main thing to remember from

this section is that if you have recently run a Perl script which hasn’t fi nished, you can

easily fi nd out the identifi er of the corresponding process by using the ps command .

 The kill command
 The preceding two sections both show you how you can fi nd the process ID of any run-

ning process. If that process belongs to you, then you can easily stop it with the Unix

 kill command. To stop a process, you just need to supply the necessary process ID :

 $ kill 29056

 This will not cause any other output to appear in the terminal where you run the kill

command. However, in the other terminal window (which still contains our endlessly

running Perl script) you would see something like this:

 24 was your magic number!

 25

 24 was your magic number!

 25

 24 was your magic number!

 25

 Terminated

 Specifi cally, the kill command is used to send a “terminate” signal to a running

process. The “terminate” signal will try to let the running process fi nish in a clean man-

ner, i.e., closing any fi le connections the process had opened. Sometimes this is not

enough though, as some processes cannot be killed in this manner. A fi nal solution is to

send the more deadly “kill” signal. This forces a process to stop without fi rst cleaning

up any fi le connections and will sometimes work when the standard kill command

doesn’t. To send the “kill” signal, you just need to add “-9” to the command: 11

 $ kill -9 29056

 11 There are other signals that you can force the kill command to send to a process. E.g., kill -2 sends the interrupt

signal, which is exactly the same signal that is produced by pressing Control + c. See the kill man page for more

details.

9781107000681c05_p220-251.indd 2289781107000681c05_p220-251.indd 228 11/5/2011 6:32:17 PM11/5/2011 6:32:17 PM

The grep command 229

 This will cause the script to stop with a slightly different output:

 24 was your magic number!

 25

 24 was your magic number!

 25

 24 was your magic number!

 25

 Killed

 There is much more you can learn about process control and we encourage you to

try to learn more when you get a chance. As you write larger and more complex scripts,

it becomes useful to be able to understand more about how those scripts are running as

processes. Process control also allows you to pause processes and switch them between

the foreground and background . 12 However, the essential take-home messages of this

chapter are:

 (1) All programs and commands run as processes .

 (2) All processes have an identifi er which top and ps can reveal.

 (3) The kill command needs these identifi ers in order to stop processes .

 5.3 The grep command

 Have haystacks? Want to fi nd needles? Then grep is the tool for you
 Many text-based data fi les use a common syntax of one record per line . 13 From a “learn-

ing Unix” point of view, the content and format of those records is less important than

the fact that each record is self-contained on one line. This is important because many

Unix commands, such as grep , work on a line-by-line basis. Let’s imagine we have a

very simple data fi le called “heroes_and_villains.txt” that looks like this: 14

 Batman Bruce Wayne Hero DC

 Catwoman Selina Kyle Villain DC

 Doctor Doom Victor von Doom Villain Marvel

 Doctor Octopus Otto Octavius Villain Marvel

 Invisible Woman Susan Storm Richards Hero Marvel

 Iron Man Tony Stark Hero Marvel

 Poison Ivy Pamela Isely Villain DC

 Rogue Anna Marie Hero Marvel

 Spider-Man Peter Parker Hero Marvel

 Supergirl Linda Danvers Hero DC

 Superman Clark Kent Hero DC

 The Riddler Edward Nigma Villain DC

 12 Sending a running process into the background can return control of the terminal in order to issue more commands (the

original command continues to run and will still send its output to the same terminal window).

 13 As was the case with the GFF fi les we saw in the last chapter.

 14 This fi le is also available on our www.unixandperl.com web site (see the previous chapter for more information).

9781107000681c05_p220-251.indd 2299781107000681c05_p220-251.indd 229 11/5/2011 6:32:17 PM11/5/2011 6:32:17 PM

Advanced Unix230

 Two-Face Harvey Dent Villain DC

 Wonder Woman Diana Prince Hero DC

 This data fi le conforms to the one-record-per-line format and contains a list of comic

book heroes and villains, with details of the character’s real name, and whether they

appear in comics published by DC or Marvel. Now let’s imagine that we would like to

ask some questions about the data in this fi le:

 (1) Which lines contain the letters “Man”?

 (2) Which lines contain the letters “Man” or “man”?

 (3) Which lines don’t contain the letters “Man” or “man”?

 (4) Which lines only contain the word “Man” (i.e., fl anked by spaces)?

 (5) How many villains are there?

 (6) Which specifi c lines contain two vowels in a row?

 For such a small fi le, we could obviously answer all of these questions by manually

searching through the fi le by eye. But what if this fi le contained details of every hero and

villain ever created ? Clearly, you would have to resort to using some other tool to get the

answers. That’s where grep comes in. This Unix command allows you to very quickly

search a fi le (or fi les) to see which lines match (or don’t match) a specifi ed pattern.

 Using grep to quickly search text fi les for patterns
 The basic syntax of the grep command is:

 grep [options] <pattern> <file>

 where <pattern> is the pattern of characters you want to search for and <fi le> is the

name of the fi le (or fi les) you are searching against. As we shall see later on, the patterns

you might use can become quite complex. 15 Like many other Unix commands, grep

has many useful command-line options, and we shall see some of these in action in just

a moment. Let’s work through the questions we asked earlier to see how we can answer

them using grep .

 Example 5.3.1
 Which lines contain the letters “Man”?

 $ grep Man heroes_and_villains.txt

 Iron Man Tony Stark Hero Marvel

 Spider-Man Peter Parker Hero Marvel

 Explanation
 The default implementation of grep is case-sensitive, so searching for “Man” will not

match “man” (or “MAN,” “MaN,” etc.). The default output simply prints the lines which

match the pattern. If you want, you can optionally enclose the search term between

 15 If you have already worked through the Perl chapters on regular expressions then you’ll see the concept of patterns in

Unix is very similar to those that are used by Perl.

9781107000681c05_p220-251.indd 2309781107000681c05_p220-251.indd 230 11/5/2011 6:32:17 PM11/5/2011 6:32:17 PM

The grep command 231

single or double quotes (this is necessary if you want to search for a string of characters

that contain a space).

 Example 5.3.2
 Which lines contain the letters “Man” or “man”?

 $ grep -i Man heroes_and_villains.txt

 Batman Bruce Wayne Hero DC

 Catwoman Selina Kyle Villain DC

 Invisible Woman Susan Storm Richards Hero Marvel

 Iron Man Tony Stark Hero Marvel

 Spider-Man Peter Parker Hero Marvel

 Superman Clark Kent Hero DC

 Wonder Woman Diana Prince Hero DC

 Explanation
 By simply specifying the -i command-line option, grep will perform a case-insensi-

tive search and will therefore match the names of an additional set of heroes and villains,

as well as the two matches from the last example.

 Example 5.3.3
 Which lines don’t contain the letters “Man” or “man”?

 $ grep -i -v Man heroes_and_villains.txt

 Doctor Doom Victor von Doom Villain Marvel

 Doctor Octopus Otto Octavius Villain Marvel

 Poison Ivy Pamela Isely Villain DC

 Rogue Anna Marie Hero Marvel

 Supergirl Linda Danvers Hero DC

 The Riddler Edward Nigma Villain DC

 Two-Face Harvey Dent Villain DC

 Explanation
 The -v option turns the logic of the grep command upside down and instead shows

lines that don’t match the pattern. In this case we combine it with the -i option (we

could also specify these options as -iv or -vi).

 Example 5.3.4
 Which lines only contain the word “Man”?

 $ grep -w Man heroes_and_villains.txt

 Iron Man Tony Stark Hero Marvel

 Spider-Man Peter Parker Hero Marvel

9781107000681c05_p220-251.indd 2319781107000681c05_p220-251.indd 231 11/5/2011 6:32:17 PM11/5/2011 6:32:17 PM

Advanced Unix232

 Explanation
 The -w option asks grep to only fi nd the pattern if it occurs as an isolated word, rather

than being part of a larger word. This means the pattern has to be fl anked by whitespace

(tabs and space characters), or other non-word characters such as hyphens in this case. 16

This means that the “Man” in “Spider-Man” is considered a match. The -w option also

allows the pattern to occur at the start or end of a line. This means that a line in the input

fi le that only contained the word “Man” would also count as a match.

 Example 5.3.5
 How many villains are there?

 $ grep -c Villain heroes_and_villains.txt

 6

 Explanation
 Rather than showing you lines that match a pattern, the -c option simply shows you a

count of how many lines match the specifi ed pattern.

 Example 5.3.6
 Which specifi c lines contain two vowels in a row?

 $ grep -n -i [aeiou][aeiou] heroes_and_villains.txt

 2:Catwoman Selina Kyle Villain DC

 3:Doctor Doom Victor von Doom Villain Marvel

 4:Doctor Octopus Otto Octavius Villain Marvel

 7:Poison Ivy Pamela Isely Villain DC

 8:Rogue Anna Marie Hero Marvel

 12:The Riddler Edward Nigma Villain DC

 13:Two-Face Harvey Dent Villain DC

 14:Wonder Woman Diana Prince Hero DC

 Explanation
 The -n option forces the inclusion of the matching line numbers at the start of the out-

put. We can look for two vowels in a row by using the syntax [aeiou][aeiou] . 17 Of

course, the word “villain” itself contains two adjacent vowels and so all villains will be

included in the output.

 16 Non-word characters are those which aren’t word characters, which is anything that isn’t a letter, digit, or underscore

character.

 17 Don’t worry if this doesn’t make sense. This pattern is an example of a regular expression , which will be revisited in far

greater detail when you cover “Essential Perl” in Part 4. If you’ve already read Part 4 and this still doesn’t make sense,

then perhaps you need to go back and refresh your memory!

9781107000681c05_p220-251.indd 2329781107000681c05_p220-251.indd 232 11/5/2011 6:32:17 PM11/5/2011 6:32:17 PM

The grep command 233

 Searching multiple fi les at once
 There are many commands like grep that can work with one or more fi les. If we had

split our “heroes_and_villains.txt” fi le into two separate fi les (“heroes.txt” and “villains.

txt”) then we could use grep to search both of them by specifying *.txt instead of a

single fi le name – for example, if we wanted to fi nd lines that contained the letters “der”

or “ler” we could do the following:

 $ grep -i [dl]er *.txt

 heroes.txt:Spider-Man Peter Parker Hero Marvel

 heroes.txt:Wonder Woman Diana Prince Hero DC

 villains.txt:The Riddler Edward Nigma Villain DC

 When searching multiple fi les, grep will always include the name of the matching fi le

at the start of the output. 18 Hopefully, you will have started to appreciate that there is

a lot of functionality to the grep command. Read its man page to see all of the other

wondrous things it can do.

 Using grep with FASTA fi les
 As we saw in the previous chapter, the FASTA fi le format is a commonly used format

for representing sequence data. FASTA fi les can contain one or more sequences, each

of which must have an associated header line which starts with a > character. Apart

from that, there are very few restrictions on how the content of a FASTA fi le should be

structured. Unlike GFF fi les, however, the information for each record is always spread

across multiple lines (at least two). This means you should be very careful when using

 grep to search for specifi c patterns within a FASTA fi le. Imagine you had downloaded

the sequences of every gene from the chromosome I of the yeast genome from the SGD

database 19 and you then wanted to search for those genes that contained the sequence

“CGTATAT”. You might try this:

 $ grep -n -i CGTATAT yeast_chr1_orfs.fa

 185:GAAAAGATTCATCAACTGGCCAAAAATAAACTAGCTTTAGATTCGTATATCAGTGAAGAT

 1456:ACTACCGTTAGTGATGACTTTGAAGGGTACGTATATACTTTTGACAACAATCTAAGCCAG

 1548:GGGATCCAGTCAGCCGTATATTCATCGTTAAATGGTGTAAATGGTTTAGAGGGATGGAGA

 1771:GTGTCACAAGGCTCCGAATCCGTAGTCTCATGGACAACTTTAACACACGTATATTCCATC

 1800:CCTCAAGTACCTCCTGAAACGACTATATTTGATTACGTAACGTATATCCTTACTGGCAGG

 We use the -i option to make our search case-insensitive , and we use -n to show

which lines contain the sequence of interest. Hopefully you have realized that the answer

is possibly incorrect. This fi le actually contains seven occurrences of the pattern and not

fi ve as shown. The grep command missed two occurrences which are each split across

two lines of the fi le – the end of the fi rst line below ends with six of the seven desired

nucleotides, with the last nucleotide in the pattern starting the line that follows :

 18 If you also use the -n option, then you will see both the name of the fi le that contains the pattern plus the number of the

line that contains the pattern in that fi le.

 19 These fi les are available from either yeastgenome.org or from the web site that accompanies this course: http://

unixandperl.com.

9781107000681c05_p220-251.indd 2339781107000681c05_p220-251.indd 233 11/5/2011 6:32:17 PM11/5/2011 6:32:17 PM

Advanced Unix234

 ATGGCACCAAGTATAGCAACGGTAAAGATAGCCAGGGACATGGTTTTGCCATTACGTATA

 TTTGTCAATAGAAAGCAGATCCTTCAAACCAATGATAAGACTAGCAATAAGTCGAATGCC

 The lesson to be learned here is simple:

 Be very careful when using grep for patterns that might occur across

 multiple lines

 5.4 Viewing and controlling program output

 Who let the cat out of the bag?
 Back in Chapter 3.20 we learned that we can view text fi les by using the less com-

mand. This is a perfect tool for when you might want to navigate to a certain position

within a fi le, or search for specifi c text. Sometimes, though, we just want to quickly see

what is in a fi le, and don’t want to do anything else. The cat command often provides

the best way to do this. You just specify the name of a fi le (or fi les) after the command

name:

 $ cat yeast_chr1_orfs.fa

 >YAL027W SAW1 SGDID:S000000025, Chr I from 94688–95473, Verified ORF

 ATGGCACCAAGTATAGCAACGGTAAAGATAGCCAGGGACATGGTTTTGCCATTACGTATA

 TTTGTCAATAGAAAGCAGATCCTTCAAACCAATGATAAGACTAGCAATAAGTCGAATGCC

 ACTATATTTGAAGCACCATTATTATCAAATAACTCCATAATCTGCTTAAAATCACCAAAT

 ACAAGAATATATTTATCGCAACAAGATAAGAAGAATCTTTGTGACGAGATCAAGGAGGAC

 CTGTTATTGATTGTTTACGAACTAGCGTCCCCGGAAATCATCAGTTCCGTACTCAGCAAA

 ATAAGAGTTGGTCATTCTACTGATTTCCAAATCAACGTTCTGCCCAAACTTTTTGCAGGT

 GCCGATACGGATAATGCGGTAACTTCTCACATCCAGTCTGTGACAAGGCTGGCTAAATTC

 AAATACAAGTTGCACTACAAACATAAGTGGGAGCTCGACATATTCATCAACAGCATTAAG

 AAGATCGCCAATTTAAGGCACTATTTGATGTTTCAAACATTAACATTAAACGGTTTCTCA

 TTAAATGCAGGACCCAAAACGTTATTAGCTAGGAAAATAGAAAAACAGCCCCAGGTACCT

 AATTTGTTAATAGAAAATGGGGACGCTGATGCCCTGGATACACCGGTGGAAGAGGATATA

 AAACCTGTAATAGAATTTATGTACAAGCCTGTTATTAATTTAGGTGAAATTATTGATGTA

 CATGTGTTGCATAGGCCTAGAAGACATAAGGTACGTACCCAGTCGAAGCAACCCCAGGAG

 GAATGA

 >tL(CAA)A

 GGTTGTTTGGCCGAGCGGTCTAAGGCGCCTGATTCAAGCTCAGGTATCGTAAGATGCAAG

 AGTTCGAATCTCTTAGCAACCA

 >YAL028W FRT2 SGDID:S000000026, Chr I from 92901–94487, Verified ORF

 ATGCAAAATGCTCAAATAAAGAGCTCTTCTAAAGGCAGCGGAATAGATGGTACAGATCGC

 AATAGCAAAGATGGTGTAGAAAAGAGACCCCTGGAAGATGTAAAGCAAATGATTGACGCT

 In this example we are only showing a small fraction of all of the actual output (this

fi le contains almost 3000 lines of data). So in this sense, the cat command is most use-

ful when you want to view fi les that will fi t within your terminal window. When the cat

9781107000681c05_p220-251.indd 2349781107000681c05_p220-251.indd 234 11/5/2011 6:32:17 PM11/5/2011 6:32:17 PM

Redirecting input and output 235

command fi nishes, it immediately returns you to the command prompt. So what should

you use when you want to quickly look at some fi les which might be very large? Well,

fortunately, there are a couple of ways of dealing with this to make things more manage-

able (other than sending the Unix interrupt signal, Control + c; see Chapter 5.2).

 head and tail
 Two other very useful commands for viewing text fi les are head and tail . By default

these commands just show you the fi rst or last ten lines of a fi le:

 $ head yeast_chr1_orfs.fa

 >YAL027W SAW1 SGDID:S000000025, Chr I from 94688–95473, Verified ORF

 ATGGCACCAAGTATAGCAACGGTAAAGATAGCCAGGGACATGGTTTTGCCATTACGTATA

 TTTGTCAATAGAAAGCAGATCCTTCAAACCAATGATAAGACTAGCAATAAGTCGAATGCC

 ACTATATTTGAAGCACCATTATTATCAAATAACTCCATAATCTGCTTAAAATCACCAAAT

 ACAAGAATATATTTATCGCAACAAGATAAGAAGAATCTTTGTGACGAGATCAAGGAGGAC

 CTGTTATTGATTGTTTACGAACTAGCGTCCCCGGAAATCATCAGTTCCGTACTCAGCAAA

 ATAAGAGTTGGTCATTCTACTGATTTCCAAATCAACGTTCTGCCCAAACTTTTTGCAGGT

 GCCGATACGGATAATGCGGTAACTTCTCACATCCAGTCTGTGACAAGGCTGGCTAAATTC

 AAATACAAGTTGCACTACAAACATAAGTGGGAGCTCGACATATTCATCAACAGCATTAAG

 AAGATCGCCAATTTAAGGCACTATTTGATGTTTCAAACATTAACATTAAACGGTTTCTCA

 $ tail yeast_chr1_orfs.fa

 ACCTTAATTGCCATTCCTGGTTCCCTCTTATTTTGGTTAATATTCTTCCCAATTTATGCT

 TCTATATTTCCTCATGCTAACATCTCAAGAGAGTATTATGGTGTGGTTAAACACACGTAT

 GGATCCGGTGTATTTTGGTTAACTTTGATCGTTTTACCAATTTTTGCACTGGTAAGAGAT

 TTTCTATGGAAGTACTATAAAAGAATGTATGAACCAGAAACGTATCATGTTATTCAAGAA

 ATGCAGAAATACAATATCAGCGACTCTAGGCCGCACGTTCAGCAATTTCAAAATGCCATC

 AGGAAGGTGAGGCAAGTGCAAAGAATGAAAAAACAAAGAGGATTTGCCTTTTCACAGGCT

 GAAGAGGGTGGGCAAGAAAAAATTGTCAGAATGTATGATACTACTCAAAAGAGAGGTAAG

 TACGGTGAATTACAAGATGCTTCGGCGAACCCCTTTAATGACAATAATGGACTGGGAAGT

 AACGACTTTGAAAGTGCAGAACCGTTCATTGAAAATCCATTTGCTGATGGTAATCAAAAT

 TCAAATAGATTCAGTTCTTCGAGAGATGATATTTCATTTGATATATGA

 Often you will look at a fi le just to see what type of fi le it is, or you may only be

interested in the fi rst few lines. In these situations the head command will save time

compared to using less . Both of these commands also support a -n option that allows

you to see a user-specifi ed number of lines:

 $ head -n 1 yeast_chr1_orfs.fa

 >YAL027W SAW1 SGDID:S000000025, Chr I from 94688–95473, Verified ORF

 5.5 Redirecting input and output

 You redirect your left arm in, your left arm out …
 So far we have learned that we can type any Unix command, press enter, and then

(hopefully) see the results of that command appear on our screen. However, some Unix

9781107000681c05_p220-251.indd 2359781107000681c05_p220-251.indd 235 11/5/2011 6:32:18 PM11/5/2011 6:32:18 PM

Advanced Unix236

commands will produce output that we might want to keep in order to do further work

with it. Imagine we wanted to fi nd the details of any ORFs on yeast chromosome I that

start within the fi rst 999 base pairs of the chromosome. We could use the grep com-

mand with the -E option to specify a regular expression that does this: 20

 $ grep -E “from [0–9]{1,3}-” yeast_chr1_orfs.fa

 >YAL069W SGDID:S000002143, Chr I from 335–649, Dubious ORF

 >YAL068W-A SGDID:S000028594, Chr I from 538–792, Dubious ORF

 If we wanted to store the two-line output from this command, our only solution would

be to use copy and paste. It’s not a great solution, particularly if the output to be copied

doesn’t fi t on your screen. Luckily the solution to this problem is simple – you just need

to redirect the output.

 Standard output
 If you run any Unix command that produces output, then you might always expect to see

that output appear in your terminal window. If it doesn’t appear there then you wouldn’t

be able to see it; you might think this would be a very bad thing. However, Unix actually

treats the output from programs like a stream of data that can be redirected to different

places. The offi cial term for the output from any command is standard output 21 and

people sometimes speak of standard output being “attached” to something, e.g., to your

computer screen.

 If you want to “capture” the output from a command, you can easily achieve this by

redirecting standard output into a fi le. To do this, you simply use the redirect operator

which is represented by the > character. Just place this character after any command that

has output that needs redirecting and then provide a name of a fi le to write the output

to. Note that when you redirect a command’s output to a fi le you won’t see any of the

command’s output in the terminal. 22

 Example 5.5.1
 Let’s assume you have downloaded the FASTA fi le that we have already been working

with. Let’s capture the details of any “Verfi ed” ORFs:

 $ pwd

 /Users/nigel/Unix_and_Perl

 $ ls -l

 total 328

 drwxr-xr-x 6 nigel staff 204 Sep 13 17:17 Code

 drwxr-xr-x 2 nigel staff 68 Sep 16 16:08 Temp

 -rw-r--r--@ 1 nigel staff 165971 Sep 16 14:47 yeast_chr1_orfs.fa

 20 If you’ve worked through Part 4 then you will hopefully know about regular expressions; if not then maybe have a quick

look at Chapter 4.26 .

 21 Often abbreviated to stdout.

 22 You may still see some output, e.g., error messages, and we will deal with this in the next chapter.

9781107000681c05_p220-251.indd 2369781107000681c05_p220-251.indd 236 11/5/2011 6:32:18 PM11/5/2011 6:32:18 PM

Redirecting input and output 237

 $ grep “Verified” yeast_chr1_orfs.fa > verified_orfs.txt

 $ ls -l

 total 344

 drwxr-xr-x 6 nigel staff 204 Sep 13 17:17 Code

 drwxr-xr-x 2 nigel staff 68 Sep 16 16:08 Temp

 -rw-r--r-- 1 nigel staff 6103 Sep 16 16:11 verified_orfs.txt

 -rw-r--r--@ 1 nigel staff 165971 Sep 16 14:47 yeast_chr1_orfs.fa

 $ head verified_orfs.txt

 >YAL027W SAW1 SGDID:S000000025, Chr I from 94688–95473, Verified ORF

 >YAL028W FRT2 SGDID:S000000026, Chr I from 92901–94487, Verified ORF

 >YAL019W FUN30 SGDID:S000000017, Chr I from 114920–118315, Verified ORF

 >YAL033W POP5 SGDID:S000000031, Chr I from 82707–83228, Verified ORF

 >YAL027W SAW1 SGDID:S000000025, Chr I from 94688–95473, Verified ORF

 >YAL028W FRT2 SGDID:S000000026, Chr I from 92901–94487, Verified ORF

 >YAL019W FUN30 SGDID:S000000017, Chr I from 114920–118315, Verified ORF

 >YAL033W POP5 SGDID:S000000031, Chr I from 82707–83228, Verified ORF

 >YAL035W FUN12 SGDID:S000000033, Chr I from 76428–79436, Verified ORF

 >YAL038W CDC19 SGDID:S000000036, Chr I from 71787–73289, Verified ORF

 Explanation
 We fi rst confi rm that the only fi le in the directory is the fi le of yeast ORFs from chromo-

some I. Then we use grep to fi nd those lines in the input fi le that contain the word

“Verifi ed.” However, rather than have the output go to the screen, we use the redirect

operator to send it to a new fi le called “verifi ed_orfs.txt” instead. We then confi rm that

this fi le has been produced and we use the head command to look at the fi rst ten lines

of this fi le.

 You should be careful when using redirection. If you accidentally redirect a com-

mand’s output to a fi le that already exists, then the fi le will be overwritten with the out-

put from the Unix command. This will happen even if the command in question doesn’t

produce any output. For example:

 $ grep “Clark Kent” yeast_chr1_orfs.fa > grep_output.txt

 If we assume the phrase “Clark Kent” doesn’t occur anywhere in the fi le of yeast

ORF sequences, then we know that the grep command won’t actually fi nd any-

thing. However, if there was any existing text in the fi le “grep_output.txt” then it will

be overwritten with “nothing,” causing it to become an empty fi le. You can prevent

redirection from overwriting a fi le by turning on the noclobber setting . You might want

to consider adding the following to your login script:

 set -o noclobber # for bash-type shells

 set noclobber # for c-type shells

9781107000681c05_p220-251.indd 2379781107000681c05_p220-251.indd 237 11/5/2011 6:32:18 PM11/5/2011 6:32:18 PM

Advanced Unix238

 You should try to ensure that the name of any redirected output fi le makes sense

and informs you about what data it might contain. 23 The simple ability to redirect pro-

gram output now gives you much more power as you can now save the results of your

commands .

 Appending to an existing fi le
 Sometimes you will want to create a new fi le using the output of a Unix command, but

many times you might want to add to an existing fi le instead. You can easily do this with

the append redirect operator >> . Imagine that you had a text fi le which you just needed

to add one more line to. Rather than using a text editor, you could instead use the echo

command and append the output to the fi le like so:

 echo “P.S. I’m learning Unix … it’s great!” >> letter_to_grandad.txt

 Bear in mind that appended text gets added immediately after the last character in a fi le;

Unix won’t insert a blank line for you.

 Using redirects with the cat command
 The cat command that was introduced in the previous chapter becomes more powerful

when used in conjunction with the redirection operators. For example, imagine you have

some text fi les that you want to combine into one larger text fi le. You could do this like so:

 $ cat a.txt > all.txt

 $ cat b.txt >> all.txt

 $ cat c.txt >> all.txt

 $ cat 1.txt >> all.txt

 $ cat 2.txt >> all.txt

 $ cat 3.txt >> all.txt

 In this example the contents of each successive fi le are added to the contents of all.txt,

which is created by the fi rst command (the only one to use the standard redirect operator

rather than the append operator). Of course, you could also do this in one step, like so:

 $ cat a.txt b.txt c.txt 1.txt 2.txt 3.txt > all.txt

 The cat command will read each fi le in turn and redirect all output to a single fi le. We

can further shorten this operation by using a wildcard character:

 $ cat *.txt > all.txt

 However, this method does not give you any control as to the order in which fi les will be

combined. 24 They will be combined in an order determined by the ASCII values of their

fi le names, meaning that fi les that start with numbers would appear in the fi nal output

fi le before any fi les that start with letters.

 23 The world of Unix practitioners is full of people who stare at their directory listings and ponder what might be contained

in fi les named “output” or “fi le.” Just because you might know today that a fi le called “stuff” contains some really

important research results, you might not remember this in a week’s time.

 24 It would also capture other .txt fi les that you might not want included in all.txt.

9781107000681c05_p220-251.indd 2389781107000681c05_p220-251.indd 238 11/5/2011 6:32:18 PM11/5/2011 6:32:18 PM

Redirecting input and output 239

 Standard input
 Now that we have grasped the concept of standard output and how to redirect it, we can

learn about the related, but opposite, data stream standard input . 25 This refers to the data,

usually text, that are provided as input for a Unix program. Just as there is a default des-

tination for the standard output of commands (the computer screen), so there is a default

source of data for standard input – the keyboard.

 Standard input can be a little confusing, but just remember that it is only referring to

the input used by commands . Most Unix commands we have seen so far take their input,

if required, from a fi le that you specify on the command line. Consider the following

simple command:

 $ less some_text_file.txt

 In this scenario the less command sees that “some_text_fi le.txt” is specifi ed as an

argument to the command. This is separate from standard input and when you run com-

mands like less , you are never prompted to type any more input. However, a few Unix

programs – such as tr – will require some typed input after the command has started,

and this input will come from standard input. The tr command functions just like the

transliteration operator in Perl (Chapter 4.12); you can specify a character (or range of

characters) that are to be changed into another character (or range of characters). After

specifying which characters are to be changed, you press enter and then the command

will wait for you to provide some input text that the modifi cations will affect:

 $ tr ‘A’ ‘a’

 CAT

 CaT

 BANANA

 BaNaNa

 In this example the user typed “CAT” and the tr command then changed the “A” to “a”

and printed the output. The user then typed “BANANA” and the tr command changed

it to “BaNaNa”. To get out of the text input mode you can use Control + d , which is

the Unix keyboard shortcut that ends text entry. This is a little different to how we have

been using Unix, and in this example the text manipulation would rely solely on the user

providing data via standard input.

 Redirecting standard input
 Just as we can redirect standard output to a fi le, so we can redirect standard input to

come from a fi le. To do this we use the < redirect operator. Generally, this is used much

less than redirecting standard output, but there are occasions where it is useful or neces-

sary. It makes using the tr command much more straightforward, as rather than having

to type the text we want to change, we can just read it from a fi le:

 $ tr ‘A’ ‘a’ < yeast_chr1_orfs.fa

 >YaL027W SaW1 SGDID:S000000025, Chr I from 94688–95473, Verified ORF

 25 Also known as stdin.

9781107000681c05_p220-251.indd 2399781107000681c05_p220-251.indd 239 11/5/2011 6:32:18 PM11/5/2011 6:32:18 PM

Advanced Unix240

 aTGGCaCCaaGTaTaGCaaCGGTaaaGaTaGCCaGGGaCaTGGTTTTGCCaTTaCGTaTa

 TTTGTCaaTaGaaaGCaGaTCCTTCaaaCCaaTGaTaaGaCTaGCaaTaaGTCGaaTGCC

 aCTaTaTTTGaaGCaCCaTTaTTaTCaaaTaaCTCCaTaaTCTGCTTaaaaTCaCCaaaT

 aCaaGaaTaTaTTTaTCGCaaCaaGaTaaGaaGaaTCTTTGTGaCGaGaTCaaGGaGGaC

 CTGTTaTTGaTTGTTTaCGaaCTaGCGTCCCCGGaaaTCaTCaGTTCCGTaCTCaGCaaa

 aTaaGaGTTGGTCaTTCTaCTGaTTTCCaaaTCaaCGTTCTGCCCaaaCTTTTTGCaGGT

 GCCGaTaCGGaTaaTGCGGTaaCTTCTCaCaTCCaGTCTGTGaCaaGGCTGGCTaaaTTC

 aaaTaCaaGTTGCaCTaCaaaCaTaaGTGGGaGCTCGaCaTaTTCaTCaaCaGCaTTaaG

 aaGaTCGCCaaTTTaaGGCaCTaTTTGaTGTTTCaaaCaTTaaCaTTaaaCGGTTTCTCa

 In this example we perform the same text manipulation as before, but we instruct the

 tr command to now read from the “yeast_chr1_orfs.fa” fi le. Note that we only show a

small fraction of the resulting output, but it is obvious that all occurrences of “A” have

been changed to “a”.

 There are very few commands like tr that need to read from standard input in this

way. However, you should appreciate that you can redirect standard input for many of

the commands we have already seen. For example, the following two commands will

achieve the same result, even though they are behaving slightly differently:

 $ grep “pattern” datafile

 $ grep “pattern” < datafile

 The fi rst example is using the fi le called “datafi le” as an argument to the grep com-

mand. The second example is instead telling grep to read the contents of the fi le as

standard input. There are many commands where the two syntaxes can be used inter-

changeably and the results will be exactly the same. 26 Don’t worry about it too much

if you fi nd the concept of standard input confusing. In a couple of chapters’ time, we

will learn another way of providing input to commands which will hopefully be easier

to understand .

 Redirecting standard input and output
 One fi nal thing to mention is that you can redirect both the input and output of a single

Unix command. If we revisit the tr command one more time, we can specify that it reads

text input from one fi le and sends the processed output to a new fi le, all in one go:

 $ tr ‘A’ ‘a’ < yeast_chr1_orfs.fa > processed_dna.fa

 Once again, we should point out that you won’t see this used very much, and if you’d

prefer to not know about this then we give you our full consent to immediately forget

about this example.

 26 However, there are some command-line options that might not work as expected when reading from redirected standard

input. Also, note that redirected standard input can only read from a single fi le, whereas you might want grep (or other

commands) to read multiple fi les.

9781107000681c05_p220-251.indd 2409781107000681c05_p220-251.indd 240 11/5/2011 6:32:18 PM11/5/2011 6:32:18 PM

Standard error 241

 5.6 Standard error

 In which you will learn to see the (standard) error of your ways
 If you’ve been thinking “Wow, I really loved learning about standard input and standard

output, I wish there was another Unix data stream that I could study!” then you’re in

luck. This short chapter will complete the trinity of Unix data streams and briefl y teach

you about something called standard error . 27 This is a secondary form of output that can

be produced by any Unix command.

 Example 5.6.1
 This example should hopefully reveal most of what you need to know about how stand-

ard error works. Follow the instructions carefully; there is a deliberate typo included in

this example and you need to reproduce the typo:

 $ echo “Spiderman” > hero

 $ echo “Venom” > villain

 $ cat hero villain

 Spiderman

 Venom

 $ cat hero villlain

 Spiderman

 cat: villlain: No such file or directory

 $ cat hero villlain > hero_and_villain

 cat: villlain: No such file or directory

 $ cat hero_and_villain

 Spiderman

 Explanation
 We fi rst use the echo command to put some text into two separate fi les and we confi rm

that this has happened by using the cat command to display the contents of both fi les.

 Then we try viewing the contents of both fi les again, but this time we include an

error in one of the fi le names. The cat command shows us the fi rst fi le (“hero”), but we

see a Unix error that there is no fi le called “Villlain.”

 We next try repeating the command, but this time we redirect standard output into

a fi le. Notice that you still see the same error message appear on the screen though.

Finally, we confi rm that the new fi le (“hero_and_villain”) only received the contents of

the correctly named fi le.

 Many Unix commands will produce error messages, most commonly when used

incorrectly. It is important to appreciate that error messages are controlled by a separate

 27 Often referred to as stderr.

9781107000681c05_p220-251.indd 2419781107000681c05_p220-251.indd 241 11/5/2011 6:32:18 PM11/5/2011 6:32:18 PM

Advanced Unix242

data stream (standard error) from the normal output of the command. This is mostly a

good thing as it means that if you redirect standard output to a fi le, that fi le will not con-

tain the error messages.

 Redirecting standard error
 Most of the time you will probably be happy with the default situation, where standard

error is always attached to your screen, even when standard output is redirected to a fi le.

But there are occasions when you might want to capture standard error to a fi le too, or

maybe even turn off standard error altogether. This can all be accomplished by Unix,

though the implementation can vary a little between different types of Unix shell.

 The basic point to remember is that Unix uses some special “labels” for these data

streams; 28 standard output is labeled data stream “1” and standard error is data stream “2.”

For the sake of completeness, we’ll also let you know that standard input is data stream

“0.” You mostly only need to know about these numbers if you want to redirect standard

error. In practice, you just need to use these numbers before the redirect operator – let’s

look at how we can redirect the standard error stream of a command to a fi le:

 $ cat hero villlain

 Spiderman

 cat: villlain: No such file or directory

 $ cat hero villlain 2> errors

 Spiderman

 $ cat errors

 cat: villlain: No such file or directory

 The fi rst cat command is the same as in Example 5.6.1 and both standard output and

standard error streams get displayed on the screen. The second cat command uses the

 2> syntax to redirect standard error to a fi le called “errors.” When using this syntax, the

only thing you see on the screen is the standard output (i.e., the contents of the “hero”

fi le). Note that you must not put a space between the 2 and the > when redirecting stand-

ard error like this. If you wanted to append standard error on to the end of an existing

fi le, then you can do this by using 2>> instead of 2> .

 Another common practice is to combine standard output and standard error into one

stream. This means that if you want to capture errors from a program, they would end

up in the same fi le that you redirect standard output to. When combining both output

streams, you need to use “ &> ” for the redirect: 29

 $ cat hero villlain &> hero_and_villain

 $ cat hero_and_villain

 Spiderman

 cat: villlain: No such file or directory

 28 More precisely, these “labels” are known as “fi le descriptors,” but that sounded a little boring to us, so we’re calling them

labels.

 29 Again we warn you that the syntax of data stream redirection can vary slightly between different Unix shells and that

there are also different syntaxes for achieving the same thing.

9781107000681c05_p220-251.indd 2429781107000681c05_p220-251.indd 242 11/5/2011 6:32:18 PM11/5/2011 6:32:18 PM

Connecting commands with pipelines 243

 Other combinations of redirecting standard output and standard error are also

possible, 30 but it is perhaps more useful to let you know that you can effectively “turn

off” standard error – sometimes you want to see a command’s standard output on the

screen but not have it interrupted by error messages. The solution is to redirect standard

error to a fi le on the fi lesystem called the null device : /dev/null . This fi le is common

to all Unix systems and acts as a “black hole” that essentially just discards any data it

receives and doesn’t produce any data you can read. It might sound a strange concept,

but it’s useful for when you want to do things like the following:

 $ cat hero villlain 2> /dev/null

 Spiderman

 This command reads as “use cat to display the contents of the following two fi les but if

there is any error messages on the standard error stream , then redirect those someplace

where I won’t ever see them.” One fi nal warning concerning the wisdom of hiding the

standard error stream should be stated at this point:

 Error messages are usually there for a good reason!

 5.7 Connecting commands with pipelines

 Improvements to your understanding of Unix are defi nitely in the pipeline
 Being able to redirect the output of a command to a fi le, and then being able to use that

fi le as input to another command starts to give us the ability to build workfl ows. For

example, we could use grep to extract the header lines from a FASTA fi le and then

use grep again to extract just those lines that didn’t contain the “Dubious” keyword.

Finally, we could count how many lines we have in the fi nal output by using a program

such as the word-count command, wc :

 $ grep “>“ yeast_chr1_orfs.fa > yeast_headers

 $ grep -v “Dubious” yeast_headers > not_dubious

 $ wc -l not_dubious

 102 not_dubious

 In this scenario we have to redirect standard output to produce two intermediate out-

put fi les in order to get to the fi nal answer. We use the -l option of the wc command

to just count lines. 31 We might not have any real need to keep these intermediate fi les

around, and if the original fi le was huge, we could end up with large temporary fi les

as well. Fortunately, Unix has a very powerful solution that allows you to combine

 30 If you wanted to, you can perform any combination of redirecting the two output streams. I.e., standard output and/or

standard error can be redirected to a fi le and/or to standard output and/or standard error. We’ll leave it up to you to fi nd

out more about these various possibilities, though you probably won’t have much use for most of them. However, it can

sometimes be useful to have standard output and standard error both redirected to different fi les.

 31 By default, the word-count program displays the number of lines, words, and bytes in any input fi le.

9781107000681c05_p220-251.indd 2439781107000681c05_p220-251.indd 243 11/5/2011 6:32:18 PM11/5/2011 6:32:18 PM

Advanced Unix244

 multiple commands together without having to write any intermediate output to a fi le.

Unix achieves this by letting you build pipelines .

 How pipelines work
 A pipeline refers to a set of commands that are linked together. You can take the output

of any Unix command and tell Unix to then use that output as input for a subsequent

command . There is no practical limit to how many commands you can combine in this

way, though it is necessary that any command in the pipeline actually produces output

and in turn passes it to another command that can receive standard input. The actual

magic of joining commands together is done by the pipe character |, which sort of looks

like a vertical pipe. 32 This means we can rework the earlier example into a single pipe-

line, like so:

 $ grep “>“ yeast_chr1_orfs.fa | grep -v “Dubious” | wc -l

 102

 This pipeline uses two pipes: the output of the fi rst grep command is sent “down a

pipe” as input to the second grep command; in turn, this grep command sends its out-

put to the wc program. Note that the pipeline does not write to any fi les.

 Piping output into the less command
 It is very common to use a pipeline to just send the fi nal output of a command (or set of

commands) to a program like less so you can have more control over the output. If we

wanted to look at some of the initial output of the last example, we could do this:

 $ grep “>“ yeast_chr1_orfs.fa | less

 The output of the grep command is passed to the less program. At this point the

user would have access to the results and be able to use any of the tools available in the

 less program, e.g., jump to the end of the data or search for a specifi c pattern. Note

that the output is still not stored in any fi le though. If you work with large data fi les, then

it becomes very useful to always send the output from any text manipulations to less .

 Using cat to start a pipeline
 A common use of the cat command is to start a pipeline. This allows you to avoid hav-

ing to redirect standard input with the < operator. We could take the fi le of yeast ORFs

and send it to the tr command to modify the DNA sequence:

 $ cat yeast_chr1_orfs.fa | tr ‘ACGT’ ‘acgt’ > modified_dna.fa

 Using cat in this way achieves the same result as if you had instead specifi ed that tr

should read from redirected standard input. However, the underlying behavior is a little

different, as Unix will need to run an additional process (the cat command) to com-

plete the task. For practical purposes you won’t notice any losses in performance by

constructing your pipeline in this way.

 32 This is one of those characters that lives on different places on different computer keyboards, but you will need to use the

“shift” key in order to produce this character.

9781107000681c05_p220-251.indd 2449781107000681c05_p220-251.indd 244 11/5/2011 6:32:18 PM11/5/2011 6:32:18 PM

Connecting commands with pipelines 245

 Advanced pipeline construction
 The ability to combine different Unix commands in a pipeline means that knowledge of

just a handful of commands gives you a diverse toolkit to solve different problems. For

example, let’s consider how we can create a pipeline to perform a series of manipula-

tions to a GFF fi le (see Chapter 5.1).

 Let’s imagine we are interested in whether the genomic features that occur at either

end of yeast chromosome IV (the longest chromosome in the genome) are very different

to each other. We have a single GFF fi le 33 which contains details of all features across

the 16 chromosomes of the yeast genome (nearly 17 000 features in total). About 2000

of these features are on chromosome IV, so we can aim to compare just 20 features (1%)

that occur at either end of this chromosome. Before we show you one way of doing this

with a Unix pipeline, just imagine how you might attempt to do this without knowledge

of Unix. Maybe you would try to write a Perl script? As you will soon see, many prob-

lems that might even be hard to achieve in Perl can sometimes be relatively straightfor-

ward in Unix. Here is one solution (note that this command wraps on to a second line):

 $ grep -E “^chrIV” yeast_genome.gff | sort -n -k 4 | head -n 20 | cut -f 3 | sort | uniq

 ARS

 CDS

 binding_site

 chromosome

 gene

 nucleotide_match

 repeat_region

 telomere

 $ grep -E “^chrIV” yeast_genome.gff | sort -r -n -k 4 | head -n 20 | cut -f 3 | sort | uniq

 CDS

 binding_site

 gene

 nucleotide_match

 repeat_region

 telomere

 In just two Unix pipelines we get all of the information we wanted and we see that the

types of feature that occur at either end of yeast chromosome IV are mostly the same.

These pipelines introduce some new Unix commands, which also use several command-

line options. Here is a brief breakdown of how these pipelines work (remember to view

the man pages for these commands to fi nd out more):

 (1) Use grep to fi nd lines in the GFF fi le which start with the pattern “chrIV”;

 (2) sort the resulting output with the sort command , but sort numerically (-n) using

the values in column 4 (-k 4), which is the start coordinate of each feature;

 (3) take only the fi rst 20 lines of resulting output using the head command;

 33 You can download this fi le from our Unix and Perl web site: www.unixandperl.com.

9781107000681c05_p220-251.indd 2459781107000681c05_p220-251.indd 245 11/5/2011 6:32:18 PM11/5/2011 6:32:18 PM

Advanced Unix246

 (4) use the cut command to cut 34 out only those values in column 3 (-f 3), which is

the GFF “feature” fi eld;

 (5) sort the resulting output alphabetically;

 (6) pass the sorted output to the uniq command , which removes redundancies and

keeps only unique output. 35

 The second pipeline is identical to the fi rst except that the fi rst sort command add-

itionally uses the -r option to do a reverse-sort, meaning it will get the last features on

chromosome IV (those with the highest start coordinates).

 How to test pipelines
 You may sometimes be tempted to write a pipeline that chains together a dozen or so

commands. If you run a complex pipeline without testing it only to fi nd that it doesn’t

work, then you will have no idea which of the many steps is causing the problem.

Therefore, when you construct complex pipelines in this way, it is essential to get into

the habit of testing each step. Check that the output of the fi rst command in the pipeline

produces what you are expecting (remember, you can always pipe output to the less or

 head commands). Then add the second command in the pipeline and test again. Repeat

for every step until you know what effect every command is having on the fi nal output.

 Also, when fi rst testing pipelines you may not need to use the entire input fi le. If your

initial data fi le is very large, as many GFF and FASTA fi les are, then it might take sev-

eral minutes for your pipeline to run. You might only need a very small amount of data

to test that your pipeline works. If you had a GFF fi le which had over one million lines,

you could fi rst do something like this:

 $ head -n 10000 big_file.gff > small_file.gff

 As long as the smaller fi le is representative of the bigger fi le, then you can use it for all of

your testing and things will be much quicker. Only when your pipeline is working with

your small test fi le should you consider moving to working with your very large fi le.

 How to optimize pipelines
 If you are constructing a pipeline to process a very large fi le, then sometimes the order

of the commands within the pipeline can be very important. Let’s imagine a simple

example. You want to convert the DNA sequence of a yeast chromosome to lower-case

characters and then use grep to show any lines which contain a particular DNA pattern

(“atgtag”). We could do this like so:

 $ cat yeast_chr1_dna.fa | tr ‘A-Z’ ‘a-z’ | grep ‘atgtag’

 However, in doing this we are using the tr command to modify every line that is in the

input fi le, even though the subsequent grep command might only be keeping a small

 34 By default, the cut command assumes that columns are tab-delimited (which is the case with GFF fi les), but you can

specify to use other delimiters too (see the man page).

 35 This step is not strictly necessary because the sort command has a -u option which achieves the same thing.

9781107000681c05_p220-251.indd 2469781107000681c05_p220-251.indd 246 11/5/2011 6:32:18 PM11/5/2011 6:32:18 PM

Advanced text manipulation 247

fraction of those input lines. It would therefore be more effi cient to fi rst use grep only

to fi nd the lines that we are interested in, and then use tr to format the text: 36

 $ cat yeast_chr1_dna.fa | grep ‘ATGTAG’ | tr ‘A-Z’ ‘a-z’

 In this example, you might not notice much difference in speed between the two meth-

ods. This is because our pipeline is short and the yeast chromosome sequence in question is

(relatively) small. However, if you run the same pipeline against the entire human genome

sequence, then the difference between the two methods becomes much more noticeable.

On our Mac computer the former method took three minutes to process a fi le containing

the human genome sequence, whereas the latter method took just under one minute. 37 In

general you should always try to put commands like grep , which might be fi ltering the

data, earlier in the pipeline. This will reduce the work for any commands that follow .

 5.8 Advanced text manipulation

 In which we come to the end of the line
 Unix is a great OS for working with bioinformatics data because such data often exists

in the form of structured text fi les and there are so many useful commands that can be

used to slice-and-dice text fi les. This is the fi nal chapter in this part of the book and

it will introduce two other extremely powerful Unix commands that can be used to

manipulate text. But fi rst we will take a quick look at an issue that can arise when work-

ing with text fi les produced on a non-Unix OS.

 Line endings
 When you press the return/enter key on your keyboard you may think that this causes

the same effect no matter what computer you are using. The visible effects of hitting this

key are indeed the same – if you are in a word processor or text editor, then your cursor

will move down one line. However, the underlying effects of pressing enter can differ

depending on what OS your computer is running.

 Technically speaking, pressing enter generates something called a newline , which is

a special character that is represented internally by either a line feed or carriage return

character, or a combination of both characters. It all depends on your OS. This is some-

thing that you normally never need to know about, except if you are a Unix user and

you receive a text fi le that was generated on a non-Unix system. If this happens then you

might fi nd that what looked like a multi-line text fi le now looks like one long line of text

with strange ̂ M characters appearing where you would expect the newlines to be. For

example, a text fi le that looks like this on a non-Unix computer:

 a,1,alpha

 b,2,beta

 36 Note that you could also avoid using the cat command in the second example because we could just specify a fi le name

as an argument to grep . This might not be any quicker, but it might be cleaner and easier to follow.

 37 Any bioinformatician who is reading this several years after this book’s publication might want to take this moment to

laugh at how slow our early twenty-fi rst-century computers were.

9781107000681c05_p220-251.indd 2479781107000681c05_p220-251.indd 247 11/5/2011 6:32:18 PM11/5/2011 6:32:18 PM

Advanced Unix248

 c,3,gamma

 d,4,delta

 might instead look something like this when you look at it with less :

 a,1,alpha^Mb,2,beta^Mc,3,gamma^Md,4,delta

 The strange ̂ M characters represent carriage returns. Fortunately the carriage return

can also be represented by a special escape sequence \r . This means you can “fi x” such

fi les by simply using the tr command to change any occurrence of \r to \n (the spe-

cial escape sequence that represents a newline character):

 $ tr ‘\r’ ‘\n’ < old_file > new_file

 This will run the tr command and make it change any carriage returns in a fi le to

newline characters. This is only a short overview of dealing with computer line end-

ings and we explore a more effi cient, Perl-based solution of handling line endings in

 Chapter 7.8 . 38 You just need to remember that if you receive or download a text fi le

that looks kind of strange when you look at it with less , then there may well be an

easy fi x for it .

 The sed command
 There is a Unix command that is so powerful and fl exible that people have written entire

books about it. The sed command can be used to perform a wide variety of text manipu-

lations. If you have already worked through Part 4 of this book then you will quickly

see that Perl’s substitution operator is based on the sed command. One of the (many)

functions of this command is to substitute any one text string for another. This happens

on a line-by-line basis.

 If you look again at the yeast GFF fi le that we used previously, you will see that each

line starts with “chr” and then the chromosome number. Let’s use the cut command to

get just the fi rst three columns of this GFF fi le and then we can show the fi rst ten lines

using head :

 $ cut -f 1–3 yeast_genome.gff | head

 chrI SGD chromosome

 chrI SGD repeat_region

 chrI SGD telomere

 chrI SGD repeat_region

 chrI SGD gene

 chrI SGD CDS

 chrI SGD repeat_region

 chrI SGD nucleotide_match

 chrI SGD binding_site

 chrI SGD gene

 38 See also the Wikipedia page on “Newline” for a far greater overview of this subject.

9781107000681c05_p220-251.indd 2489781107000681c05_p220-251.indd 248 11/5/2011 6:32:18 PM11/5/2011 6:32:18 PM

Advanced text manipulation 249

 If we wanted to change the “chr” to instead say “chromosome,” we could do it like

this:

 $ cat yeast_genome.gff | sed ‘s/chr/Chromosome /’ | cut -f 1–3 | head

 Chromosome I SGD chromosome

 Chromosome I SGD repeat_region

 Chromosome I SGD telomere

 Chromosome I SGD repeat_region

 Chromosome I SGD gene

 Chromosome I SGD CDS

 Chromosome I SGD repeat_region

 Chromosome I SGD nucleotide_match

 Chromosome I SGD binding_site

 Chromosome I SGD gene

 The “s” part of the sed command puts it in “substitute” mode, where you specify

one pattern (between the fi rst two forward-slashes) to be replaced by another pattern

(specifi ed between the second set of forward-slashes). Note that this doesn’t actually

change the contents of the fi le, it just changes the screen output from the previous com-

mand in the pipeline.

 By default, sed only changes the fi rst occurrence of the pattern that it fi nds. Just like

in Perl, we can make it perform all possible replacements on each line by appending a

“global” switch. If we wanted to “highlight” potential start codons 39 in a DNA sequence,

we could make them stand out like so:

 $ cat yeast_chr1_dna.fa | sed ‘s/ATG/- ATG -/g’ | grep ATG | head

 CAACCCACTGCCACTTACCCTACCATTACCCTACCATCCACC- ATG -ACCTACTCACCATAC

 TGTTCTTCTACCCACCATATTGAAACGCTAACAA- ATG -ATCGTAAATAACACACACGTGCT

 TACCCTACCACTTTATACCACCACCAC- ATG -CCATACTCACCCTCACTTGTATACTGATTT

 TACGTACGCACACGG- ATG -CTACAGTATATACCATCTCAAACTTACCCTACTCTCAGATTC

 CACTTCACTCC- ATG -GCCCATCTCTCACTGAATCAGTACCAA- ATG -CACTCACATCATT- ATG -

 ACATACGTTATACCACTTTTGCACCATATACTTACCACTCCATTTATATACACTT- ATG -TC

 AATAATACATAAACATATTGGCTTGTGGTAGCAACACTATC- ATG -GTATCACTAACGTAAA

 AGTTCCTCAATATTGCAATTTGCTTGAACGG- ATG -CTATTTCAGAATATTTCGTACTTACA

 CAGGCCATACATTAGAATAAT- ATG -TCACATCACTGTCGTAACACTCTTTATTCACCGAGC

 AATAATACGGTAGTGGCTCAAACTC- ATG -CGGGTGCT- ATG –ATACAATTATATCTTATTTCC

 In this example the sed command will process each line in turn, and change all occur-

rences of “ATG” to “- ATG -”. Without the “g” option on the end of the command, sed

would only change the fi rst occurrence it fi nds. Remember, this replacement is occurring

on a line-by-line basis. If a potential start codon spans two lines in the fi le, then sed

will not “see” it. The sed command is worthy of further study, so you are encouraged

to look at its man page and/or read up more about it on the internet .

 39 Start codons are represented by the nucleotides ATG and are required at the start of protein-coding genes.

9781107000681c05_p220-251.indd 2499781107000681c05_p220-251.indd 249 11/5/2011 6:32:18 PM11/5/2011 6:32:18 PM

Advanced Unix250

 The awk command
 It is a little unfair to describe awk as just another Unix command. Like Perl, it is a

fully fl edged scripting language and can be used to write very powerful programs

for text manipulation. 40 However, you don’t need to learn all of the complexities of

AWK (the programming language) when you can achieve many useful things through

simple use of awk (the command). There are many web sites devoted to AWK, and

so this section will give only a brief glimpse into some of the things you can do

with it.

 The following examples are all used in conjunction with the yeast_genome.gff fi le.

The very fi rst example will simply print the contents of the fi le, using AWK’s print func-

tion. This is not a particularly useful way of using AWK, but as you will see, it becomes

easy to add just a few more arguments to this command to do many useful things. The

comments before each command indicate what the command will achieve, but you are

encouraged to try these yourself:

 # print out contents of input file

 $ awk {‘print’} yeast_genome.gff

 # print out first column of file

 $ awk {‘print $1’} yeast_genome.gff

 # print out column 5 then column 1

 $ awk {‘print $5, $1’} yeast_genome.gff

 # print out start and end coordinates only if start coordinate is > 10,000

 $ awk ‘{if ($4 > 10000) print $4, $5}’ yeast_genome.gff

 # print out start and end coordinates of features, plus their lengths

 $ awk ‘{print $4, $5, $5 – $4 + 1}’ yeast_genome.gff

 # same as above … whitespace is optional

 $ awk ‘{print $4,$5,$5-$4+1}’ yeast_genome.gff

 # print lines that contain the word ‘intron’

 $ awk ‘/intron/ {print}’ yeast_genome.gff

 # same as above, print is implied

 $ awk ‘/intron/’ yeast_genome.gff

 # print line numbers of features using NR variable (NR = number of records)

 $ awk ‘{print NR, $3}’ yeast_genome.gff

 # use ‘END’ statement to only print the total number of lines in file

 $ awk ‘END {print NR}’ yeast_genome.gff

 40 The development of the Perl programming language was partly due to a desire by Larry Wall, the creator of Perl, to

overcome some of the limitations of AWK. So without AWK, there may have been no Perl, and hence you would

probably be doing something less useful than reading this book right now.

9781107000681c05_p220-251.indd 2509781107000681c05_p220-251.indd 250 11/5/2011 6:32:18 PM11/5/2011 6:32:18 PM

Advanced text manipulation 251

 # calculate sum length of all introns in UTRs and print out total

 $ awk ‘/UTR_intron/ {lengths += ($4-$3+1)} END {print “total length of UTR

 introns = “ lengths}’ yeast_genome.gff

 Hopefully this last example begins to show you some of the power of the awk command.

In many cases, it can be quicker to extract simple information from text fi les using AWK

rather than writing a Perl script .

9781107000681c05_p220-251.indd 2519781107000681c05_p220-251.indd 251 11/5/2011 6:32:18 PM11/5/2011 6:32:18 PM

 Advanced Perl 6

 6.1 Regular expressions revisited

 Are you greedy for more?
 This chapter will cover a few “beyond-the-basics” topics that were left out of the earlier

chapters on regular expressions 1 (Chapters 4.26 – 4.28). This chapter still omits many,

many aspects of regex use and you should consult the offi cial Perl documentation to

fi nd out more.

 Greedy quantifi ers
 Consider the following code. Can you guess what will end up in $match ?

 my $text = “Old password = opensesame, new password = abracadabra”;

 my ($match) = $text =~ m/password = (.+)\s/;

 We use the grouping metacharacters to capture the subpattern .+ as part of a larger pat-

tern. The grouped subpattern will match one or more occurrences of any single charac-

ter. However, we follow the grouped pattern with \s , meaning that the subpattern ends

when it matches some whitespace. As the $text string does not end with a whitespace

character, this means that $match will never contain “abracadabra”. So, what will it

contain? In this example our regular expression can match one of two different strings:

 (1) “password = opensesame,”

 (2) “password = opensesame, new password =”

 The second match could happen because it still satisfi es the regular expression pattern

of the string “password =” followed by one or more of any character at all, followed by

a whitespace character. So which of the two strings will the regex match? By default,

repetition quantifi ers are greedy and will always try to match as many characters as pos-

sible. In this example, the regex will match the longer of the two strings and $match

would end up containing “opensesame, new password =”.

 If you try to match multiple groups from a string, and each group uses a greedy repe-

tition quantifi er, then the fi rst grouping will be the greediest and subsequent groups will

have to fi ght over what is left :

 “Peter Parker is Spider-man” =~ m/(.*)er(.*)/;

 # $1 gets ‘Peter Parker is Spid’

 # $2 gets ‘-man’ though this pattern also matches ‘ Parker is Spider-man’

 Non-greedy matching
 You can override the default greedy behavior by appending a ? after any repetition

quantifi er. This is known as a non-greedy quantifi er:

 1 Also known as regexes or regexps.

9781107000681c06_p252-295.indd 2529781107000681c06_p252-295.indd 252 11/5/2011 7:26:19 PM11/5/2011 7:26:19 PM

Regular expressions revisited 253

 my ($match) = “A to Z, a to z” =~ m/(a.*?z)/i; # $match gets ‘A to Z’

 my ($match) = “Excited!!!!!” =~ m/(!{3,5}?)/; # $match gets ‘!!!’

 my ($match) = “Anne” =~ m/(Anne??)/; # $match gets ‘Ann’

 Note that in the last example the question mark character serves two different functions;

fi rst as the repetition metacharacter meaning “match zero or one times,” and then as the

non-greedy quantifi er (which essentially forces the preceding metacharacter to match

zero times) .

 Using regular expressions with the default variable $_
 If you are using a regex to try to match the contents of the default variable ($_), you can

simplify your code because the matching operator will inspect this variable if no other

variable is specifi ed:

 # normal usage

 print “Match\n” if ($text =~ m/\w{3,5}$/);

 # using default variable

 print “Match\n” if m/\w{3,5}$/;

 Notice that if you are using the default variable, you don’t need to include the binding

operator (=~). When looping through a fi le using the <> operator, you can produce some

very concise code. Imagine we were processing a fi le and we wanted to change any line

which ended “today.” to instead end with “yesterday.”:

 #!/usr/bin/perl

 # back_in_time.pl

 use strict; use warnings;

 while(<>){

 next if m/^$/; # skip blank lines

 s/today\.$/yesterday\./;

 print;

 }

 In this example, the matching and substitution operators and the print function are all

working with $_ . 2

 Rules for matching
 Regexes will always try to match as early as possible in the target string. Depending on

the pattern, this can sometimes confl ict with some other principles of how regexes try to

match . Consider the following:

 my ($match) = “The fat cat sat on the mat” =~ m/([mscf]at)/;

 The character class in this example means that “mat” should be the fi rst pattern con-

sidered by Perl and “mat” is a valid match to the input string. However, “mat” matches

 2 If you wanted to remove the newline characters from each input line, you could also use chomp , which is yet another

function that will work with the default variable if no other variable is specifi ed.

9781107000681c06_p252-295.indd 2539781107000681c06_p252-295.indd 253 11/5/2011 7:26:20 PM11/5/2011 7:26:20 PM

Advanced Perl254

later in the string than “sat”, “cat”, or “fat”, so $match will end up containing “fat”.

This means that even though Perl will normally match the fi rst alternative it can, this is

overruled if a later alternative matches earlier in the string.

 Matching word boundaries
 There are still some metacharacters we have not seen before. The most common one you

might see is the \b metacharacter , which matches at a word boundary . This is defi ned as

a position between a word and non-word character or vice versa.

 my ($match) = “Three, two, one” =~ m/\b(\w{3})\b/; # $match gets ‘two’

 In this example you might think that \b behaves a lot like \W , and you are correct.

However, the non-word part of the \b metacharacter also includes matching the start or

end of a string. Consider the difference between the following:

 my ($match) = “A B C” =~ m/\W(\w)\W/; # $match gets ‘B’

 my ($match) = “A B C” =~ m/\b(\w)\b/; # $match gets ‘A’

 Remember that \b will match any position where you go from a non-word to a word

character (as in the example above), and also when you go from a word to a non-word

character:

 “Spider-man” =~ m/\b-\b/; # matches

 Because \b matches between characters, it is known as a zero-width

assertion . If you try to capture the match, the \b does not capture

any characters :

 my ($match) = “Spider-man” =~ m/(\b-\b)/; # $match gets ‘-’ and not ‘r-m’

 Like many of the other metacharacters, the \b metacharacter has a negated version, \B .

This matches anything which isn’t a word boundary .

 Tracking the details of a match
 When you are looping through a set of matches within one string, you might be inter-

ested in knowing what position in the string you are at with each match. This can be

accessed using the pos() function, which returns the offset of the last match. Here

is an example of how you can use the pos() function; the output of the code is also

included :

 my $text = “Bruce Wayne is Batman”;

 while ($text =~ /(\w+)/g) {

 my $position = pos($text);

 print “Word \’$1\’ ends at position $position\n”;

 }

 # output

 Word ‘Bruce’ ends at position 5

 Word ‘Wayne’ ends at position 11

9781107000681c06_p252-295.indd 2549781107000681c06_p252-295.indd 254 11/5/2011 7:26:20 PM11/5/2011 7:26:20 PM

Regular expressions revisited 255

 Word ‘is’ ends at position 14

 Word ‘Batman’ ends at position 21

 Even if you don’t use the grouping metacharacters, it is still possible to fi nd out what

part of a string was matched to a pattern . The matching portion of any regex is stored

within another special Perl variable $& . This variable is one of a set of three; the two

other variables ($` and $’) capture the text to the left and right of the match :

 “Let’s meet on Monday at 4:00 pm” =~ m/\w+day/i;

 print “$`\n”; # prints ‘Let’s meet on ‘

 print “$&\n”; # prints ‘Monday’

 print “$’\n”; # prints ‘ at 4:00 pm’

 Using backreferences
 We have already seen how grouped patterns are stored in the special variables $1 , $2 ,

etc. These variables can be used outside of the regex. However, you can also refer to any

matches from grouped patterns inside a regex by using something called backreferences .
These have a syntax of \1 , \2 , etc.

 print “Match\n” if (“woof woof” =~ m/(\w{4}) \1/); # matches

 In this example the \1 backreference is referring to the pattern that gets matched inside

the preceding grouping characters. So whatever string is matched by \w{4} will also

be used again as \1 . Backreferences are therefore well suited for detecting duplicated

strings – for example, maybe you wanted to see whether a DNA sequence contains a

tandem duplication of any three nucleotides: 3

 my ($match) = “ATGCACGCAGCACACCCCTAG” =~ m/([ACGT]{3})\1/;

 print “$match\n”; # $match gets ‘GCA’

 Using variables in regular expressions
 Consider the following code, which would loop over every line of a fi le and try to match

a regex stored in a variable $pattern . Notice that we have to escape the meaning of

the metacharacters in $pattern by using backslashes:

 my $pattern = “\\b\\w{1,5}\$”; # find short words at ends of lines

 while(my $line = <>){

 chomp($line);

 print “$line contains \’$1\’\n” if ($line =~ m/($pattern)/);

 }

 This code would work as expected, but behind the scenes Perl has to reevaluate the con-

tents of $pattern for each line of the loop. This is because it is possible that the variable

could be changed by some other code that occurs inside the while loop. If you know that

a variable isn’t going to be changed, you can speed things up by adding an /o option to

 3 Note that this code will only fi nd the fi rst occurrence of any tandem duplication. You would need to loop through the

string to fi nd all occurrences.

9781107000681c06_p252-295.indd 2559781107000681c06_p252-295.indd 255 11/5/2011 7:26:21 PM11/5/2011 7:26:21 PM

Advanced Perl256

the matching operator. This tells Perl to only evaluate the regex pattern once. The rele-

vant line of code from the above example would now look like this:

 print “$line contains \’$1\’\n” if ($line =~ m/($pattern)/o);

 Prohibiting variable interpolation inside regular expressions
 Sometimes you might want a regex to search for actual variable names. In these cases

you don’t want a regex to undergo variable interpolation . A simple way around this is to

use single-quote characters as the delimiters for the matching operator:

 my $pattern = “Some text”;

 print “Match\n” if ($line =~ m’$pattern’);

 This code will try to match the characters $pattern and not the contents of the $pat-

tern variable. The behavior of using single quotes as the delimiters matches the behav-

ior of quoting strings with single characters.

 6.2 Function libraries

 Write once, use many times
 At the end of Part 4 of this book, we learned how we could parcel up useful pieces of

code into subroutines . At some point you will create an amazing subroutine that per-

forms some piece of Perl magic, and you will realize you want to perform the same

magic in another program. The obvious solution is to copy-and-paste the subroutine

from one program to another. Since subroutines are like mini programs, this often works

just fi ne. But what if you discover an error in the function and now you want to fi x all

the programs that use it? You’ll have to fi x each program with the function. Not only is

this laborious, but copy-and-paste is one of the more heinous crimes in programming.

Thankfully there is a better solution.

 Modules
 A function library is a fi le of functions that can be shared among programs. You only

have to write the function once, and you can reuse it in as many programs as you want.

In Perl-speak, a function library is called a package or module . Perl module fi les are

saved with the .pm suffi x (for Perl module). The fi rst line of a module uses the package

statement and the last line is simply 1; . All of the functions go between those state-

ments. There is no limit to the number of functions you can place in a library. Enough

talk, let’s see this in action!

 Example 6.2.1
 Save the following code as “Library.pm” in the directory where you store your Perl

scripts. This is not a particularly descriptive name, but it will do for now.

 1. package Library;

 2. use strict; use warnings;

 3.

9781107000681c06_p252-295.indd 2569781107000681c06_p252-295.indd 256 11/5/2011 7:26:21 PM11/5/2011 7:26:21 PM

Function libraries 257

 4. sub gc {

 5. my ($seq) = @_;

 6.

 7. $seq = uc($seq); # convert to upper case to be sure

 8. my $g = $seq =~ tr/G/G/;

 9. my $c = $seq =~ tr/C/C/;

 10. my $gc = ($g + $c) / length($seq);

 11.

 12. return $gc;

 13. }

 14.

 15. 1;

 Understanding the code
 Line 1 contains the name of the library in a package statement. Generally, there is

only one package statement per fi le. Line 2 ensures that the strict and warnings

pragmas are used in the library even if they are not in the main program. Lines 4–13

defi ne a function for calculating the GC composition of a nucleotide sequence. A library

must “return true,” and line 15 ensures that this occurs.

 The gc() function in “Library.pm” can now be used in any program you write. The

syntax should be familiar: we just use the library .

 Example 6.2.2

 1. #!/usr/bin/perl

 2. # library_test.pl

 3. use strict; use warnings;

 4. use Library;

 5.

 6. my ($seq) = @ARGV;

 7. my $gc = Library::gc($seq);

 Understanding the script
 Line 4 contains the use Library statement. Notice that this is in the header with the

other use statements; when Perl sees this line, it will attempt to import the contents of

“Library.pm.” You do not need to include the “.pm” suffi x when instructing Perl to use

a library.

 Once a library is imported, all of its functions are available to the program. Functions

are called in the same way we would call a subroutine ; the only difference is that we

must also prepend the library name as shown on line 7. 4

 4 It is possible to automatically import functions so you don’t have to prefi x the library name. This is a dangerous practice

so we don’t advocate it (or even describe it). If you want to live dangerously, look it up yourself.

9781107000681c06_p252-295.indd 2579781107000681c06_p252-295.indd 257 11/5/2011 7:26:21 PM11/5/2011 7:26:21 PM

Advanced Perl258

 Library PATH
 From the Unix section of this book, you should be familiar with your $PATH envir-

onment variable (see Chapter 3.28). Just like Unix commands, Perl libraries can exist

in various places on your computer. In the previous example, we saved the two fi les

 Library.pm and library_test.pl in the same directory (we hope you did too).

If you didn’t save them in the same directory, you would have seen an error that looks

something like this: 5

 Can’t locate Library.pm in @INC (@INC contains: /path1:/path2)

 Perl looks for libraries in a variety of places, including the current working directory.

If you want to see all the places Perl is looking, try printing the special @INC variable.

 1. #!/usr/bin/perl

 2. print join(“\n”, @INC), “\n”;

 If you move Library.pm to any of the locations listed in the @INC array, Perl will be

able to fi nd it. Some of these locations may be protected, however, so you shouldn’t put

your libraries in those locations. Instead, you should add your personal library location

to @INC . Like other things in Perl, there’s more than one way to do it. First, let’s move

 Library.pm to another location so Perl can’t fi nd it.

 $ mkdir lib

 $ mv Library.pm lib/

 $ perl library_test.pl

 Now try running library_test.pl again. If you didn’t see error messages before,

you should see them now. Perl can’t fi nd Library.pm anymore. There are several

ways to tell Perl where it is. One way is to add a use lib statement in the header of

your script. 6

 use lib “/complete/path/to/your/code/directory/lib”;

 The disadvantage of this is that if you take your script and module to another computer

your Library.pm fi le will probably end up in a new location, so you may have to edit

the script accordingly. An alternative is to use Perl’s -I command-line option that lets

you specify the location of a Perl library:

 $ perl -I /path/to/library script.pl

 You can also use this -I option as part of the “shebang” line:

 #!/usr/bin/perl -I /path/to/library

 However, this raises the same issue as before – you may have to edit your script depend-

ing on the computer you are working on. The best way to have Perl read library paths is

to use the $PERL5LIB environment variable . This works very similarly to your $PATH

 5 Your error message will look different. There may be many paths shown with long and potentially strange names.

 6 You might be tempted to use the push() function to add your personal library directory onto the @INC array, but this

doesn’t work because libraries are loaded during compilation and push() occurs later, at run-time.

9781107000681c06_p252-295.indd 2589781107000681c06_p252-295.indd 258 11/5/2011 7:26:21 PM11/5/2011 7:26:21 PM

Function libraries 259

variable (which lets you provide a colon-separated list of directories). With this strategy,

you don’t need to edit your scripts, just your .profile or .cshrc . 7

 export PERL5LIB=/path/to/library:${PERL5LIB} # bash

 setenv PERL5LIB /path/to/library:${PERL5LIB} # csh

 The package statement
 The package statement actually declares something called a namespace . All of the

functions and global variables (and some other things) in any Perl module (or script)

are part of a specifi c namespace . We saw above that the gc() function was part of

 Library , and when we called it from the script, it was named Library::gc() .

Suppose we used another library named Module that also had a slightly different

 gc() function. You can imagine that it might cause problems having more than

one function named gc() , but since the two gc() functions are in different name-

spaces, there is no confl ict at all. The namespace of your program is called main ::

or :: for short. If you also have a gc() function in your program, this can be

called as gc() , main::gc() or ::gc() . The following example clarifi es these

concepts.

 Example 6.2.3

 1. #!/usr/bin/perl

 2. use strict; use warnings;

 3. use Library;

 4. use Module;

 5.

 6. my $seq = “AACGCTTAAcgA”;

 7. sub gc {return 0.5}

 8.

 9. gc($seq); # calls function on line 7

 10. main::gc($seq); # calls function on line 7

 11. ::gc($seq); # calls function on line 7

 12. Library::gc($seq); # calls function from Library.pm

 13. Module::gc($seq); # calls function from Module.pm

 Understanding the script
 Lines 3 and 4 load two libraries: one that you created before (in Example 6.2.1), and

another that you will need to create (see below). Note that the variable assignment on

line 6 deliberately includes some lower-case characters. Line 7 defi nes a gc() function

in the main program which simply returns 0.5.

 Lines 9–11 call the function on line 7 using alternative syntaxes, but note that the

syntax used on line 9 is the preferred form. Line 12 calls gc() from Library.pm and

 7 Or .bashrc or .login , etc. See Chapter 3.25 for more details.

9781107000681c06_p252-295.indd 2599781107000681c06_p252-295.indd 259 11/5/2011 7:26:21 PM11/5/2011 7:26:21 PM

Advanced Perl260

line 13 calls gc() from Module.pm. The two functions are not identical because

 Module::gc() only counts upper-case characters:

 1. package Module;

 2. sub gc {$_[0] =~ tr[GC][CG] / length $_[0]}

 3. 1;

 Package variables
 It is often useful for libraries to contain variables for their own use. For example, several

functions might want to access a translation table for the genetic code. Each function

could defi ne its own table, but it is better to store it just once.

 Example 6.2.4

 1. package MolBio;

 2. use strict; use warnings;

 3. my %GENCODE = (

 4. ’AAA’ => ‘K’, ‘AAC’ => ‘N’, ‘AAG’ => ‘K’, ‘AAT’ => ‘N’,

 5. ’ACA’ => ‘T’, ‘ACC’ => ‘T’, ‘ACG’ => ‘T’, ‘ACT’ => ‘T’,

 6. ’AGA’ => ‘R’, ‘AGC’ => ‘S’, ‘AGG’ => ‘R’, ‘AGT’ => ‘S’,

 7. ’ATA’ => ‘I’, ‘ATC’ => ‘I’, ‘ATG’ => ‘M’, ‘ATT’ => ‘I’,

 8. ’CAA’ => ‘Q’, ‘CAC’ => ‘H’, ‘CAG’ => ‘Q’, ‘CAT’ => ‘H’,

 9. ’CCA’ => ‘P’, ‘CCC’ => ‘P’, ‘CCG’ => ‘P’, ‘CCT’ => ‘P’,

 10. ’CGA’ => ‘R’, ‘CGC’ => ‘R’, ‘CGG’ => ‘R’, ‘CGT’ => ‘R’,

 11. ’CTA’ => ‘L’, ‘CTC’ => ‘L’, ‘CTG’ => ‘L’, ‘CTT’ => ‘L’,

 12. ’GAA’ => ‘E’, ‘GAC’ => ‘D’, ‘GAG’ => ‘E’, ‘GAT’ => ‘D’,

 13. ’GCA’ => ‘A’, ‘GCC’ => ‘A’, ‘GCG’ => ‘A’, ‘GCT’ => ‘A’,

 14. ’GGA’ => ‘G’, ‘GGC’ => ‘G’, ‘GGG’ => ‘G’, ‘GGT’ => ‘G’,

 15. ’GTA’ => ‘V’, ‘GTC’ => ‘V’, ‘GTG’ => ‘V’, ‘GTT’ => ‘V’,

 16. ’TAA’ => ‘*’, ‘TAC’ => ‘Y’, ‘TAG’ => ‘*’, ‘TAT’ => ‘Y’,

 17. ’TCA’ => ‘S’, ‘TCC’ => ‘S’, ‘TCG’ => ‘S’, ‘TCT’ => ‘S’,

 18. ’TGA’ => ‘*’, ‘TGC’ => ‘C’, ‘TGG’ => ‘W’, ‘TGT’ => ‘C’,

 19. ’TTA’ => ‘L’, ‘TTC’ => ‘F’, ‘TTG’ => ‘L’, ‘TTT’ => ‘F’

 20.);

 21. sub translate_codon {

 22. my ($codon) = @_;

 23. if (exists $GENCODE{$codon}) {return $GENCODE{$codon}}

 24. else {return ‘X’}

 25. }

 26. sub translate_sequence {

 27. my ($seq) = @_;

 28. my $pep;

 29. for (my $i = 0; $i < length($seq); $i += 3) {

 30. my $codon = substr($seq, $i, 3);

9781107000681c06_p252-295.indd 2609781107000681c06_p252-295.indd 260 11/5/2011 7:26:21 PM11/5/2011 7:26:21 PM

Function libraries 261

 31. if (exists $GENCODE{$codon}) {$pep .= $GENCODE{$codon}}

 32. else {$pep .= ‘X’}

 33. }

 34. return $pep;

 35. }

 36. 1;

 Understanding the script
 Lines 3–20 defi ne a global variable containing the genetic code. 8 Since this variable is

not designed to have its contents changed, it is declared in all upper-case characters to

convey that it is a constant. 9

 Lines 21–35 contain two functions that both use the $GENCODE variable. The fi rst

simply returns a single amino acid character that corresponds to the codon that is passed

to the function. The second function takes a sequence and sequentially extracts a string

consisting of three nucleotides, i.e., codons. These are used as a look-up key in the

 %GENCODE hash to extract the corresponding amino acid. Each amino acid is then con-

catenated onto the end of a variable that stores the peptide sequence and this is returned

by the function.

 You might wonder why translate_sequence() does not call translate_

codon() . This could replace lines 30–32 with a single function call:

 $pep .= translate_codon(substr($seq, $i, 3));

 While it is true that such a substitution would make the code more compact and abstract,

nucleotide sequences can be very long. If you translated an entire chromosome, you

would end up making millions of calls to translate_codon() . Generally, we advo-

cate choosing abstraction over performance, but there are situations, like this, where the

gain from abstraction is minor compared to the obvious overhead.

 Nested namespaces
 Namespaces can contain other namespaces separated by the double-colon scope oper-

ator . This helps organize related libraries. The concept is similar to folders that contain

other folders. In fact, this is the way Perl stores nested libraries. For example, suppose

you need a library that provides some descriptive statistics. 10 You would include a state-

ment in your script such as the following:

 use Statistics:: Descriptive;

 This instructs Perl to look for a fi le called “Descriptive.pm” inside a directory called

“Statistics.” Note that you can have both a directory named “Statistics” and a library

called “Statistics.pm” in the same directory. While nested libraries are a useful feature,

 8 Most of the organisms we think about on a daily basis use this genetic code, but there are many species (especially

microorganisms) that do not.

 9 It is possible to declare true constants in Perl using the constants pragma.

 10 See Chapter 6.9 for how to fi nd additional libraries.

9781107000681c06_p252-295.indd 2619781107000681c06_p252-295.indd 261 11/5/2011 7:26:21 PM11/5/2011 7:26:21 PM

Advanced Perl262

we do not recommend that you make nested libraries at this point. They become

necessary with some kinds of object-oriented programming that we do not cover in

this book . 11

 6.3 References and two-dimensional arrays

 Got spreadsheets?
 So far, all of the arrays we have used have been one-dimensional. For example, the fol-

lowing array holds three values in linear order.

 my @array = (‘Mouse’, ‘Mus musculus’, ‘Rodent’);

 If you placed this data in a spreadsheet, you could put all of these values in a single row

or a single column .

Mouse

Mus musculus

Rodent

 But what if you wanted to store the content of an entire spreadsheet in an array? How

could you represent data that looked like this:

Mouse Mus musculus Rodent

Human Homo sapiens Primate

Cow Bos taurus Ungulate

 A natural way to represent such data is a two-dimensional array. But before we

show you how to do that, we must fi rst discuss some things that are known in Perl as

 references .

 One way to think about references is that they behave a little bit like a Windows

shortcut or a Mac alias, which act as clickable “bookmarks” for frequently accessed

applications and fi les. When you create a shortcut/alias, you get an icon that mimics the

original fi le, but does not duplicate it. You can make multiple shortcuts or aliases for a

single application and place these in different folders across your fi lesystem. When you

open a shortcut/alias of a document, you can make some edits and the changes appear

in the original fi le. However, if you delete a shortcut/alias, it does not delete the original

fi le. References in Perl behave a lot like shortcuts/aliases. The analogy is imperfect, but

it is a useful place to begin.

 Array references
 Here is a simple array assignment:

 11 In Chapter 6.8 we introduce object-oriented programming (OOP). However, we do not cover inheritance with isa

relationships, which usually employs nested libraries. While OOP is powerful and beautiful, it can be horrible if done

incorrectly. We therefore suggest you use libraries for a year or two before you start to write your own.

9781107000681c06_p252-295.indd 2629781107000681c06_p252-295.indd 262 11/5/2011 7:26:21 PM11/5/2011 7:26:21 PM

References and two-dimensional arrays 263

 my @author = (‘Keith’, ‘Ian’);

 If we want to create a reference to this array , then we need to use the backslash

operator :

 my $author_ref = \@author;

 Here we create $author_ref , which is a scalar variable that “points to” the @author

array. You may, or may not, fi nd this confusing! Without the backslash character, we

would just be assigning an array to a list and $author_ref would end up containing

the size of @author . It is the backslash character that is therefore important in making

 $author_ref a reference.

 Note that $author_ref is still a scalar in that it holds the contents of one

thing, and yet the thing that it points to can be an array containing many things. If

you try printing the value of $author_ref , you will get a strange string such as

 ARRAY(0x100800f40) . This indicates that the variable is a reference to an array.

The strange hexadecimal 12 number in parentheses is its memory address.

 The Perl ref() function lets you ask if a scalar variable is a reference (as opposed

to being a regular scalar variable). In this chapter, we will only be looking at array refer-

ences. If you use ref() on something that is not a reference, it returns false.

 print ref($author_ref); # prints ARRAY

 print ref(“something”); # prints nothing

 Using array references
 An array reference can be used very similarly to an array, but with a slightly different

syntax. Since $author_ref is a scalar variable we cannot do $author_ref[0] .

Instead we use the arrow operator 13 -> like this:

 print $author_ref->[0]; # prints ‘Keith’

 You can sort of read this backwards as “print the zero-th element of the array that is

pointed to by the scalar called $author_ref ”. Both $author[0] and $author_

ref->[0] occupy the exact same location in the computer’s memory. If you change

one, you change the other:

 $author_ref->[0] = ‘Keith Bradnam’;

 print $author[0]; # will now print ‘Keith Bradnam’

 Conversely, if you make an array reference undefi ned or even turn it into a regular scalar

variable, it does not affect the array that it formerly pointed to:

 $author_ref = undef; # make reference undefined

 print $author[0]; # will still print ‘Keith’

 $author_ref = “cheese”; # can repurpose variable to act as a normal scalar

 12 Hexadecimal digits include 0–9 followed by a–f. For example, b is the hexadecimal equivalent of 11 and ff is the

hexadecimal equivalent of 255. Hexadecimal numbers are indicated by the 0x prefi x.

 13 This is actually called the infi x operator, but we prefer arrow operator because it looks more like an arrow than an infi x

(whatever that looks like).

9781107000681c06_p252-295.indd 2639781107000681c06_p252-295.indd 263 11/5/2011 7:26:21 PM11/5/2011 7:26:21 PM

Advanced Perl264

 The -> operator lets you dereference individual elements of an array. But some-

times you need to dereference an entire array. For example, we use entire arrays when

sorting. To deference the whole array , we can prefi x the scalar with the array symbol.

Alternatively, we can use the array symbol in front of a block containing the scalar. The

following three statements are identical:

 push @author, ’Nigel’;

 push @$author_ref, ’Nigel’;

 push @{$author_ref}, ‘Nigel’;

 The only difference here is that the fi rst example is adding a string to an array whereas

the last two examples are adding a string to a dereferenced array; but it is always the

same array that is modifi ed.

 Seeing the combination of @ and $ signs together can take a while to get used to.

With experience, you will glance at something like that and instinctively see that you are

dealing with a reference to an entire array. Any operation you perform on an array can

just as easily be performed on a dereferenced array. For example, looping through the

elements of an array reference is as straightforward as:

 foreach my $author (@$author_ref) {print “$author\n”}

 As we will see below, there are times when the syntax of the block format @{$sca-

lar} is preferred.

 Anonymous array composer
 In the above examples, $author_ref was a reference to the array @author . Creating

references to arrays in this way makes sense when the array was created before you

needed to create the reference. But what if you want to create the array at the same time

as you make a reference? In this scenario we can actually skip making the @author

array and go straight to the array reference using something called the anonymous array
composer . This has a complicated name, but in practice, it just means replacing the par-

entheses that we would use to denote an array with square brackets :

 my $author_ref = [‘Keith’, ‘Ian’];

 The reason we call this anonymous is because the array has no name. 14 The array ref-

erence has a name ($author_ref), but the array it points to does not. Just to be clear,

the following two strategies both do the same thing.

Named array Anonymous array

 my @array = (‘Keith’, ‘Ian’);

 my $array_ref = \@array;

 print $array_ref->[0];

my $array_ref = [‘Keith’, ‘Ian’];

 print $array_ref->[0];

 14 This is where the shortcut/alias analogy breaks down. An anonymous array is like an invisible fi le with no name that can

only be accessed by its alias.

9781107000681c06_p252-295.indd 2649781107000681c06_p252-295.indd 264 11/5/2011 7:26:21 PM11/5/2011 7:26:21 PM

References and two-dimensional arrays 265

 The reason we are discussing references and the anonymous array constructor is

because these are the secret ingredients for making arrays of multiple dimensions. If you

only need to work with one-dimensional data, then you could use an anonymous array,

but it would probably make more sense to use a regular array .

 Two-dimensional arrays
 Enough talk, time for some action. Let’s make a two-dimensional array. Here is the data

we want to represent:

Mouse Mus musculus Rodent

Human Homo sapiens Primate

 We can make ordinary arrays for each row as follows:

 my @row0 = (‘Mouse’, ‘Mus musculus’, ‘Rodent’);

 my @row1 = (‘Human’, ‘Homo sapiens’, ‘Primate’);

 Now we need to put both of these one-dimensional arrays into another array to make

it two-dimensional. There are four different ways we can do this. Let’s start by using

array references:

 my $row_ref0 = \@row0;

 my $row_ref1 = \@row1;

 my @table = (

 $row_ref0,

 $row_ref1,

);

 Now we have a two-element array, where each element is a reference to another array. It

is worth pausing to contemplate the data structure we have just created. We have a regu-

lar array (@table) that can be used just like any other array we have shown you. The

only difference is that rather than containing regular scalars, it contains scalars that are

references to other arrays. Also note that this is still a one-dimensional array until such a

point that you need to dereference the contents of any array element. Only at that point

will you be dealing with a two-dimensional data structure.

 We can simplify the creation of the @table array by omitting the need to fi rst make

named references for each array – we can add references to the row arrays directly:

 my @table = (

 \@row0,

 \@row1,

);

 Unless you had a specifi c need to have a named reference to a specifi c row, this is a more

straightforward way of creating the two-dimensional table. Now we want to show you

an even simpler way of creating this table through the use of anonymous array construc-

tors and named variables:

9781107000681c06_p252-295.indd 2659781107000681c06_p252-295.indd 265 11/5/2011 7:26:22 PM11/5/2011 7:26:22 PM

Advanced Perl266

 my $row0_ref = [‘Mouse’, ‘Mus musculus’, ‘Rodent’];

 my $row1_ref = [‘Human’, ‘Homo sapiens’, ‘Primate’];

 my @table = (

 $row0_ref,

 $row1_ref,

);

 The end result is the same as before, but we now avoid having to create arrays to

hold each row of data. However, this reproduces the earlier situation of making named

array references that we might not need to use again. Let’s move on to the fourth way of

building the table of data. In the following strategy, we name only the two-dimensional

array, and not the arrays or references. The relationship between data contained in the

rows and columns becomes much more obvious in this syntax:

 my @table = (

 [‘Mouse’, ‘Mus musculus’, ‘Rodent’],

 [‘Human’, ‘Homo sapiens’, ‘Primate’],

);

 Hopefully you will agree that this is a simpler and tidier way of making our two-

dimensional array. Note how the commas that occur outside square brackets denote each

element in the fi rst dimension, and the commas inside the square brackets denote elem-

ents in the second dimension. You can access an entire row as $table[1] . This holds

a reference to an array. If you print $table[1] you will fi nd it has a strange string

such as ARRAY(0x1008000c0) because it is an array reference. How can you get to

a single cell? From what we learned above, when you want to dereference a scalar, you

use the -> operator. So $table[1]->[1] contains Homo sapiens . The arrow in

this case is optional. This is a good thing, because $table[1][1] looks a lot better.

To recap, if you wanted to print the contents of the fi rst “cell” in the table, you could do

either of the following:

 print $table[0]->[0];

 print $table[0][0];

 You can read both of these lines of code as “print the zero-th element of the array that

is pointed to by the reference that exists at the zero-th element of the @table array.”

 Now let’s put everything we have covered so far into a working script:

 Example 6.3.1
 Since this is longer than most scripts, you should write part of it, check that it runs, and

then write some more. For example, write lines 1–9, then up to 11, then up to 17, and

fi nally up to 23. As you write line 14, make sure you use @{$zoo[$i]} rather than

 @$zoo[$i] . 15

 15 The reason is because @$zoo binds tighter than $zoo[$i] so Perl thinks that $zoo is a scalar variable. To force the

array to be recognized, it must be in a block as {$zoo[$i]} .

9781107000681c06_p252-295.indd 2669781107000681c06_p252-295.indd 266 11/5/2011 7:26:22 PM11/5/2011 7:26:22 PM

References and two-dimensional arrays 267

 1. #!/usr/bin/perl

 2. # zoo.pl

 3. use strict; use warnings;

 4.

 5. my @zoo = (

 6. [“Mouse”, “Mus musculus”, “Rodent”],

 7. [“Human”, “Homo sapiens”, “Primate”],

 8. [“Cow”, ”Bos taurus”, ”Ungulate”],

 9.);

 10.

 11. print “$zoo[1][2]\n”; # will print ‘Primate’

 12.

 13. for (my $i = 0; $i < @zoo; $i++) {

 14. for (my $j = 0; $j < @{$zoo[$i]}; $j++) {

 15. print “$zoo[$i][$j]\n”;

 16. }

 17. }

 18.

 19. foreach my $row (@zoo) {

 20. foreach my $column (@$row) {

 21. print “$column\n”;

 22. }

 23. }

 Understanding the script
 Lines 5–9 defi ne a two-dimensional array using anonymous array constructors for the

rows.

 Line 11 shows how you can access a single element of the array.

 Lines 13–17 show how you can loop through all the rows and columns of the array

by using a nested for loop.

 Lines 19–23 do the same thing, but use a foreach loop instead.

 Reading two-dimensional arrays from a fi le
 If you have a lot of data, it would be laborious to write out all of the contents as

part of your Perl code. In addition to developing sore wrists, you might make an

error while typing. Therefore, it’s much better to read data from fi les. 16 Even in the

internet age, plain-text fi les based on the comma-separated values (CSV) and tab-

separated values (TSV) formats are very common. Let’s see how we can read these

from Perl.

 16 See Chapter 6.4 for an overview of data management strategies.

9781107000681c06_p252-295.indd 2679781107000681c06_p252-295.indd 267 11/5/2011 7:26:22 PM11/5/2011 7:26:22 PM

Advanced Perl268

 Example 6.3.2
 This program will read data from a CSV fi le, which we also need to create, so fi rst make

a fi le with the following contents and name it something like species.csv: 17

 Mouse,Mus musculus,Rodent

 Human,Homo sapiens,Primate

 Cow,Bos taurus,Ungulate

 Now create the following program. When you run it, remember to specify the name of

the CSV fi le as a command-line argument:

 $ zoo_reader.pl species.csv

 1. #!/usr/bin/perl

 2. # zoo_reader.pl

 3. use strict; use warnings;

 4.

 5. my @table;

 6. while (<>) {

 7. my ($common, $scientific, $family) = split(/,/, $_);

 8. push @table, [$common, $scientific, $family];

 9. }

 Understanding the script
 The while loop on line 6 reads from the fi le specifi ed by the fi le operator (<>), which

will be whatever fi les are specifi ed on the command line or even STDIN.

 Line 7 splits each input line from the fi le into three variables. The next line then adds

these three variables to an anonymous array which is then pushed, as a single element,

onto the end of the @table array.

 While this script will work, it is a poor solution because it is hard-coded to work

with only three columns of data in the input fi le. Additionally, we are choosing variable

names that suggest a specifi c kind of data. To be more useful, the script should work

with any number of columns. We can do that by changing lines 7 and 8:

 7. my @array = split(/,/, $_);

 8. push @table, \@array;

 Now each line of the CSV fi le is split into an array. If there are 100 columns , the array will

have 100 elements. This is pushed onto the @table to make a two-dimensional array.

 To change from using CSV fi les to TSV fi les, all we have to edit is the pattern in the

 split() function:

 7. my @array = split(/\t/, $_);

 17 Or download the fi le from www.unixandperl.com.

9781107000681c06_p252-295.indd 2689781107000681c06_p252-295.indd 268 11/5/2011 7:26:22 PM11/5/2011 7:26:22 PM

Records and other hash references 269

 For even more generality, you might imagine changing the string in the split to a variable

that could be defi ned elsewhere in the program or – even better – be defi ned by the user

as a command-line argument .

 7. my @array = split(/$separator/, $_);

 Something strange?
 Take another look at the code in Example 6.3.2. Does line 8 look strange to you? If not,

don’t worry about it. Move along. But if you’re worried about @array getting deleted

each time the script iterates through the while loop, then you are thinking very deeply.

Lexical variables are supposed to live and die in curly braces, right? Yes. And in fact, @

array is created each time we iterate through the loop. But the memory corresponding

to @array does not get destroyed because it still has a reference. We discuss this some-

what confusing topic in Chapter 6.6 in the subsection about garbage collection .

 6.4 Records and other hash references

 We ate corned beef and potatoes last night … yep, another hash reference
 Some people read books from start to fi nish, whereas others like to skip around. If

you’re a skipper and haven’t read the previous chapter, please do that fi rst. Otherwise

this part won’t make much sense.

 Hash references and the anonymous hash constructor
 In the last chapter we showed you how to make references to arrays, so it makes sense

to now show you how you can also make references to hashes. Not surprisingly, hash

references work in a very similar way to array references. To make a hash reference,

you also need to use the backslash operator . Let’s create a simple hash and then make a

reference to it:

 my %sound = (dog => ‘woof’, cat => ‘meow’);

 my $sound_ref = \%sound;

 As you can see, the syntax for making hash references is exactly the same as the syntax

for making array references. As you might expect, there is also an anonymous hash con-

structor that allows you to make a hash reference without a named hash. The syntax is a

littler different than before; simply substitute curly brackets for the parentheses:

 my $sound_ref = {dog => ‘woof’, cat => ‘meow’};

 This produces a hash which has no name, but which is referenced by the variable

 $sound_ref . To dereference a single element of a hash, you need to use the ->

operator:

 print $sound_ref->{dog}; # prints ‘woof’

 You can read this as “print the value for the hash key ‘dog,’ which is pointed to by the

 $sound_ref reference.” To dereference the entire hash , you prefi x the scalar with a %

9781107000681c06_p252-295.indd 2699781107000681c06_p252-295.indd 269 11/5/2011 7:26:22 PM11/5/2011 7:26:22 PM

Advanced Perl270

symbol. In this way you can use a dereferenced hash anywhere that you can use a hash.

Again, sometimes the block notation (shown below) is required:

 my @animals = keys %{$sound_ref};

 Let’s put these new hash reference concepts into a script to try them out.

 Example 6.4.1

 1. #!/usr/bin/perl

 2. # hash_ref.pl

 3. use strict; use warnings;

 4.

 5. my $sound = {dog => ‘woof’, cat => ‘meow’};

 6. $sound->{cow} = ‘moo’;

 7. foreach my $animal (keys %$sound) {

 8. print “$animal says $sound->{$animal}\n”;

 9. }

 Understanding the script
 Line 5 creates a reference to an anonymous hash and line 6 adds another key–value pair to

the hash. Finally, lines 7–9 loop through the entire hash, displaying the key–value pairs.

 Hash references as database records
 One of the most common uses of a hash reference is to represent a record from a data-

base . For example, let’s say we have a simple address book. Each card in the address

book contains attributes for a person’s name and email. One specifi c card might look

like this: 18

 my $card = {

 name => ‘Ian’,

 email => ‘atagcgaat@gmail.com’

 };

 An address book may contain many cards. To hold multiple cards, you use an array,

of course. An array of hash references is a kind of two-dimensional data structure.

Dimension 1 contains the cards; dimension 2 contains the attributes on each card. To

add a hash reference to an array, we can simply push it on.

 my @address_book;

 push @address_book, $card;

 To reiterate for clarity: in this example we take a reference ($card) that points to

an anonymous hash. Because $card behaves like a normal scalar variable we can add

 18 If you translate the email address in the genetic code, it is isoleucine, alanine, asparagine, or IAN. Yes, you can email Ian

at this address. If you have learned this much Perl, Ian would be happy to hear from you.

9781107000681c06_p252-295.indd 2709781107000681c06_p252-295.indd 270 11/5/2011 7:26:22 PM11/5/2011 7:26:22 PM

Records and other hash references 271

it as a single item to an array. The @address_book array is a normal array, but it just

happens to contain elements which are hash references.

 If we wanted to, we don’t even have to create a named reference to the hash. Instead,

we can defi ne the elements of the @address_book array as hash references: 19

 my @address_book = (

 {name => ‘Ian’, email => ‘atagcgaat@gmail.com’},

 {name => ‘Keith’, email => ‘whykeith@me.com’},

);

 Let’s see this in action.

 Example 6.4.2

 1. #!/usr/bin/perl

 2. # address_book.pl

 3. use strict; use warnings;

 4.

 5. my @address_book = (

 6. {name => ‘Ian’, email => ‘atagcgaat@gmail.com’},

 7. {name => ‘Keith’, email => ‘whykeith@me.com’},

 8.);

 9.

 10. foreach my $card (@address_book) {

 11. print “$card->{name} $card->{email}\n”;

 12. }

 Understanding the script
 Lines 5–8 create an address book with two cards. Note how the attributes are aligned

using whitespace in order to keep everything organized.

 Lines 10–12 show how to loop through all the hash references in the array. Remember

that the hash is anonymous, but when we use a foreach loop we have to assign a vari-

able which will represent each item in the array. $card is just a temporary variable

that is a placeholder for each element of @address_book , and each element will be

a reference to a hash .

 Reading records from a fi le
 In the last chapter, we read the following CSV data into a two-dimensional data structure

that used only arrays to contain the data:

 Mouse,Mus musculus,Rodent

 Human,Homo sapiens,Primate

 Cow,Bos taurus,Ungulate

 19 This array includes one of Keith’s email addresses. Ian has no idea if Keith wants to hear from you. He didn’t bother to

ask. Try it and fi nd out.…

9781107000681c06_p252-295.indd 2719781107000681c06_p252-295.indd 271 11/5/2011 7:26:22 PM11/5/2011 7:26:22 PM

Advanced Perl272

 A two-dimensional array is not the best way to describe this type of data. Hashes let us

give names to attributes rather than numbers. Which of the following do you fi nd more

descriptive?

 $animal->[0];

 $animal->{common_name};

 Let’s read the data into an array of hashes and navigate through the data structure

by using a while loop. You may like to compare this code to Example 6.4.2 from the

previous chapter:

 Example 6.4.3

 1. #!/usr/bin/perl

 2. # zoo_reader2.pl

 3. use strict; use warnings

 4. my @database;

 5. while (<>) {

 6. my ($com, $sci, $fam) = split(/,/, $_);

 7. push @database, {

 8. common_name => $com,

 9. scientific => $sci,

 10. family => $fam,

 11. };

 12. }

 13.

 14. foreach my $animal (@database) {

 15. print “$animal->{common_name}\n”;

 16. }

 Understanding the script
 Lines 5–12 read one line at a time from the CSV fi le specifi ed on the command line.

More specifi cally, lines 7–11 convert the data into an anonymous hash, and push a ref-

erence to the hash onto the @database array. Note how the key–value pairs on lines

8–10 are aligned with each other, and each attribute has its own line. This is a very com-

mon programming practice that makes the logic clear.

 Lines 14–16 then loop through the array of hashes, printing just the common name

of each animal.

 Hashes of hashes and hashes of arrays
 We have explored two-dimensional arrays and also arrays of hashes. In both these cases,

the fi rst dimension was an array. You can easily make this a hash instead. All you need to do

is assign names instead of numbers. One reason to do this is that it makes searching much

faster. Let’s revisit the address book example. Suppose you have an address book contain-

ing many “cards” and that you already have some code that retrieves this data from a fi le:

9781107000681c06_p252-295.indd 2729781107000681c06_p252-295.indd 272 11/5/2011 7:26:22 PM11/5/2011 7:26:22 PM

Records and other hash references 273

 my @address_book = read_address_book(“some_file”);

 Now, let’s suppose that @address_book contains a few million records. We can

search for any single record using the following construct, but note that this will take a

relatively long time:

 foreach my $card (@address_book) {

 if ($card->{name} eq ‘Ian’) {do_something($card)}

 }

 Using an unsorted list like this means that, on average, we have to search half the list

to fi nd a match. If the names are instead placed in a hash, the retrieval is much faster.

For example, if you want to index your address book by name, you could use the fol-

lowing code:

 my %index;

 foreach my $card (@address_book) {

 $index{$card->{name}} = $card;

 }

 This code creates a new hash (%index) where each key of the hash is just the

“name” fi eld from the hash of arrays. The value associated with each key is a reference

to the array of all information about that person. If you fi nd this syntax confusing, just

remember that Perl tends to work from the inside out. The fi rst thing that happens in the

above code is that Perl resolves the $card->{name} part. This will produce a single

string which can then be assigned to the hash key for the new hash (%index). Only then

can Perl associate this key with a value. With this hash in place, you can retrieve any

card with just a simple look-up:

 my $card = $index{‘Ian’};

 This method assumes that names are unique, which might not be true, depending on

the type of data you have. If you have redundant names, then you have to store an array

of cards for each name.

 foreach my $card (@address_book) {

 push @{ $index{$card->{name}} }, $card;

 }

 This now means that %index is a three-dimensional data structure ! Dimension 1

is a hash where the key is a name, and the associated value is a reference to an array.

Dimension 2 is the array of cards associated with each name. Dimension 3 is the attributes

on the cards. Unsurprisingly, this can be very confusing, so let’s access a single element

to make the dimensions obvious. Suppose I want to get the email address for the fi rst

card whose name is “Ian.” Here’s how we can do that:

 print $index{Ian}[0]{email}

9781107000681c06_p252-295.indd 2739781107000681c06_p252-295.indd 273 11/5/2011 7:26:22 PM11/5/2011 7:26:22 PM

Advanced Perl274

 In trying to decipher this, you should read from left to right. First, we have a hash

key ($index{Ian}), and the value associated with that key is a reference to an array.

The fi rst element of this array ([0]) is itself a reference to a hash, and we then ask for

the value associated with a specifi c key ({email}). We shall return to such complex

data structures again in Chapter 6.5 .

 6.5 Using references with subroutines

 Don’t pass up on this opportunity to learn how to pass arrays to
subroutines
 In the last two chapters we saw how references allow us to make useful data structures

such as two-dimensional arrays and records. In this chapter we continue to explore more

uses of references.

 Pass arrays and hashes to subroutines as references
 Up to now we have never passed multiple arrays or hashes to a subroutine. Why?

Because they would get damaged by passing through the special @_ variable. Consider

the following code:

 compare_two_arrays(@a, @b);

 sub compare_two_arrays {

 my (@array1, @array2) = @_;

 # etc.

 }

 The intention is to fi ll up @array1 and @array2 in the subroutine from the @a and

 @b arrays via @_ . Unfortunately, in list context, Perl cannot determine the size of the

arrays. So what happens is that @array1 gets all of the data from @a and @b , whereas

 @array2 ends up containing nothing. This means you can’t ever pass multiple arrays

to a subroutine. 20 The solution to this problem is to pass references to arrays:

 compare_two_arrays(\@a, \@b);

 sub compare_two_arrays {

 my ($ar1, $ar2) = @_;

 foreach my $e1 (@$ar1) {

 foreach my $e2 (@$ar2) {

 # something

 }

 }

 }

 Now the subroutine is passed two things which we can assign to a pair of variables.

Those variables ($ar1 and $ar2) become references to each array, and as long as you

remember to dereference them within the subroutine you can still access the original

 20 Technically, you can pass multiple arrays … but they will always be received as a single array in the subroutine.

9781107000681c06_p252-295.indd 2749781107000681c06_p252-295.indd 274 11/5/2011 7:26:22 PM11/5/2011 7:26:22 PM

Complex data structures 275

array data. The same strategy works with hashes. As a general rule, always pass arrays

and hashes by reference.

 Pass scalar references to minimize overhead in @_
 We said earlier that you can create references to scalars, arrays, and hashes; but so far

we have only dealt with array and hash references. The fact is that you probably won’t

have to use scalar references very often. There are times, however, when they are very

useful. Consider the following code:

 my_function($scalar);

 sub my_function {

 my ($thing) = @_;

 }

 The value of $scalar is copied into @_ , which in turn is copied into $thing . What if

 $scalar contains something huge, like the DNA sequence of an entire human chromo-

some? Unfortunately, you will now have multiple copies of this data. This could reduce

the performance of your computer if there is not much free memory left. Considering

that other processes also need memory, you shouldn’t be wasteful of it.

 Generally, we like to focus on making code beautiful (see Chapters 7.3 and 7.4), but

if a script uses an excessive amount of memory (or CPU), then some amount of ugliness

may be appropriate. To minimize the amount of memory copied through @_ , you can

pass a scalar reference instead.

 print gc_content(\$chromosome), “\n”;

 sub gc_content {

 my ($chr_ref) = @_;

 my $Gs = $$chr_ref =~ tr/G/G/;

 my $Cs = $$chr_ref =~ tr/C/C;

 return ($Gs + $Cs) / length($$chr_ref);

 }

 So now we have a variable ($chromosome) in the main body of the script and a

reference to that variable ($chr_ref) in the subroutine. Notice that to dereference a

scalar variable we have to use a second $ symbol. Once again we can also use curly

braces to say the same thing. The following are equivalent :

 $$chr_ref

 ${$chr_ref}

 6.6 Complex data structures

 Life beyond fl atland
 Some kinds of data are naturally complex and do not fi t neatly into spreadsheets. For

example, this book contains a title, sections, chapters, and paragraphs. Let’s look at

these from the bottom up. A chapter can be considered an array of paragraphs. If you

9781107000681c06_p252-295.indd 2759781107000681c06_p252-295.indd 275 11/5/2011 7:26:22 PM11/5/2011 7:26:22 PM

Advanced Perl276

wanted to store the paragraphs of Chapter 4.1 in an array, you might do something

like this:

 my @chapter_4_1 = (

 ”paragraph 1 contents… “,

 ”paragraph 2 contents… “,

 ”paragraph n contents… “,

);

 A section contains a number of named chapters. One way to store this would be as a

hash, where each key is the name of the chapter and each value is a reference to the

paragraphs:

 my %section_4 = (

 ”4.1 Hello World” => \@chapter_4_1,

 ”4.2 Scalar variables” => \@chapter_4_2,

 “4.3 Use warnings => \@chapter_4_3,

);

 A book contains a title, and named subsections:

 my %book = (

 title => “Unix and Perl”,

 sections => {

 Introduction => \%section_1,

 Installation => \%section_2,

 Essential_Unix => \%section_3,

 Essential_Perl => \%section_4,

 Advanced_Unix => \%section_5,

 Advanced_Perl => \%section_6,

 },

);

 If we wanted to get to a particular paragraph, we could do so as follows:

 print $book{sections}{Essential_Perl}{“4.3 Use warnings”}[0];

 A book is a fairly complex entity. 21 A lot of scientifi c data is equally complex.

 Too much nesting is confusing
 When you start to use deeply nested data structures, processing the data can get very

confusing. Let’s consider a simplifi ed view of a typical genome sequence and all the

genes that a genome sequence can contain. 22

 Primarily, we can divide a genome into a set of named chromosomes. 23 In turn, each

chromosome will contain many protein-coding genes, which will have one or more

 21 There is nothing like writing a book that makes this so apparent!

 22 The authors are biologists and sometimes we feel compelled to use biological examples.

 23 Although most chromosomes are numbered, letters (X and Y) are used to denote sex chromosomes.

9781107000681c06_p252-295.indd 2769781107000681c06_p252-295.indd 276 11/5/2011 7:26:22 PM11/5/2011 7:26:22 PM

Complex data structures 277

names. Each gene can encode one or more transcripts. Finally, each transcript consists

of exons and each exon has a start and end coordinate. In Perl, we could represent this

information by using a multi-dimensional hash/array structure. Given such an organiza-

tion, you could access the beginning of an exon as follows:

 print $genome{$chrom}{$gene}[$transcript][$exon]{begin};

 If you fi nd this code confusing, then that is a perfectly normal reaction. Such com-

plex data structures can be used to solve lots of problems, but they can also create a lot

of headaches. If we wanted to print out all the information for an entire genome, it would

take a lot of nested foreach loops:

 foreach my $chrom (keys %genome) {

 foreach my $gene (keys %{$genome{$chrom}}) {

 foreach my $tx (@{$genome{$chrom}{$gene}}) {

 foreach my $exon (@$tx) {

 print “$exon->{begin} $exon->{end}\n”;

 }

 }

 }

 }

 It’s rarely a good idea to use so many nested loops within a script. In a complex pro-

gram, it can be diffi cult to see which parts are scoped to which loops, especially if the

loop contains a lot of other code. Our own personal rule is not to descend more than two

loops deep. Furthermore, we prefer to not have any set of nested loops (or a subroutine)

occupy more than a single viewable page of code.

 You might be wondering just how you can avoid the type of code we show above?

The solution is to break the nested loop into subroutines. This also makes the code more

readable. Here is a better alternative to the four loops that were used in the above code:

 foreach my $chrom (keys %genome) {

 foreach my $gene (keys %{$genome{$chrom}}) {

 report_exons($genome{$chrom}{$gene};

 }

 }

 sub report_exons {

 my ($gene) = @_;

 foreach my $transcript (@$gene) {

 foreach my $exon (@$transcript) {

 print “$exon->{begin} $exon->{end}\n”;

 }

 }

 }

 In this new code arrangement we have two nested foreach loops that would loop

over each gene from each chromosome. We then call a subroutine (report_exons)

9781107000681c06_p252-295.indd 2779781107000681c06_p252-295.indd 277 11/5/2011 7:26:22 PM11/5/2011 7:26:22 PM

Advanced Perl278

for each gene that we are inspecting, and this subroutine loops over all the transcripts

and exons of each gene. In biology, a gene is often one of the more important “units”

of data and scripts may often want to report lots of statistics at the level of the gene. By

reworking the code and including a subroutine, we can more easily access information

for any specifi c gene without having to loop over all genes.

 Digging yourself out of multi-dimensional hell
 There are times when you want to explore a complex data structure, but you’ve forgotten

what the structure was. Was $data a reference to an array of hashes or a hash of arrays?

We don’t advocate being disorganized enough to ask yourself this question, but we ask

ourselves it often enough that we had better answer it. One way to explore a variable and

all its substructures is with Perl’s built-in Data::Dumper module. Let’s give it a go.

 Example 6.6.1

 1. #!/usr/bin/perl

 2. # dump.pl

 3. use strict; use warnings;

 4. use Data::Dumper;

 5.

 6. my $thing = [0, 1, [2, 3, {hello => ‘world’}], 6];

 7. Dumper($thing);

 This code creates a reference to an anonymous array which itself contains several tiers

of higher-order structure. If you run this script you should see output as follows:

 $VAR1 = [

 0,

 1,

 [

 2,

 3,

 {

 ’hello’ => ‘world’

 }

],

 6

];

 Understanding the script
 The Dumper() function takes a reference and recursively descends through all levels

of the data structure that are pointed to by the reference. It then prints out the data that

exists at each level.

 As you can see, the indentation in the Dumper() output shows the hierarchy of the data

structure. The output is valid Perl, and you could paste this into another program.

9781107000681c06_p252-295.indd 2789781107000681c06_p252-295.indd 278 11/5/2011 7:26:22 PM11/5/2011 7:26:22 PM

Complex data structures 279

 We don’t like the output of Dumper() very much because it is not very descriptive.

It’s easy to make a program that does the same type of thing with a prettier display. Let’s

build it! We’ll call our new function display() . Since we may want to use this code

in a lot of different programs, we will create a library. If you already have a library, you

can add the display() function below to your library. If not, then you should create

a new Perl module fi le called Toolbox.pm .

 Example 6.6.2

 1. package Toolbox;

 2.

 3. sub display {

 4. my ($thing, $level) = @_;

 5.

 6. no warnings;

 7. my $tab = “\t” x $level;

 8. print “$thing\n”;

 9. $level++;

 10. use warnings;

 11.

 12. if (ref($thing) eq ‘ARRAY’) {

 13. for (my $i = 0; $i <@$thing; $i++) {

 14. print “\t$tab [$i] = “;

 15. display($thing->[$i], $level);

 16. }

 17. } elsif (ref($thing) eq ‘HASH’) {

 18. foreach my $k (sort keys %$thing) {

 19. print “\t$tab $k => “;

 20. display($thing->{$k}, $level);

 21. }

 22. }

 23. }

 24. 1;

 Understanding the code
 On line 4, the display() subroutine receives two items. The fi rst will be a reference

to whatever data structure it is that we want to view; the second will keep track of how

many levels deep we have descended into that data structure.

 Lines 6–10 prints whatever is in $thing . Warnings are temporarily silenced so that

undefi ned values don’t cause error messages.

 Lines 12–22 prints each element of an array or hash depending on whether $thing

is a reference to an array or hash.

 Note that lines 15 and 20 both include a call to the display() function … from

within the display() function! Such recursion can be confusing at fi rst, but it means

you can produce very powerful code. In this case we want to be able to descend through

9781107000681c06_p252-295.indd 2799781107000681c06_p252-295.indd 279 11/5/2011 7:26:23 PM11/5/2011 7:26:23 PM

Advanced Perl280

all levels of a data structure. When you reach a level which has no more references and

just contains “regular” variables, then no more recursion will occur.

 Let’s create a test script that will use our new Toolbox::display() function.

 Example 6.6.3

 1. #!/usr/bin/perl

 2. # dump.pl

 3. use strict; use warnings;

 4. use Toolbox;

 5.

 6. my $thing = [0, 1, [2, 3, [4, 5]], 6];

 7. Toolbox::display($thing);

 The output is as follows:

 ARRAY(0x100863120)

 [0] = 0

 [1] = 1

 [2] = ARRAY(0x100800f00)

 [0] = 2

 [1] = 3

 [2] = HASH(0x1008001f0)

 hello => world

 [3] = 6

 Compared to the Dumper() output that we saw earlier, our new display() func-

tion adds more indenting to help separate out the different levels of the data structure.

It also adds details to remind you whether you are exploring an array or a hash at any

given level .

 Garbage collection and reference counts
 Consider this last part of the chapter as optional reading. You might fi nd it helpful to

know how Perl manages memory. On the other hand, you might just fi nd this extremely

confusing.

 When you use the my keyword you are asking Perl to give you a piece of memory.

This memory is created when you request it, and is returned to your computer once the

execution reaches a closing brace in the same scope. The following endless loop allo-

cates and frees memory continuously:

 while (1) {

 my $variable = ‘something’;

 }

 What’s happening “under the hood” is that the memory associated with $variable

is given a reference count of 1 when it is created on line 2. When the execution hits

9781107000681c06_p252-295.indd 2809781107000681c06_p252-295.indd 280 11/5/2011 7:26:23 PM11/5/2011 7:26:23 PM

Adding command-line options 281

the closing brace at line 3, the reference count is decremented by 1 to 0. Any memory

location with a reference count of 0 is given back to your computer. The act of freeing

unused memory is called garbage collection .

 Now let’s consider a problem we posed in Chapter 6.3 . Specifi cally, how can the

contents of the variable @array exist in @table if @array is recreated with each

pass through the loop?

 1. #!/usr/bin/perl

 2. # csv_reader.pl

 3. use strict; use warnings;

 4.

 5. my @table;

 6. while (<>) {

 7. my @array = split(/,/, $_);

 8. push @table, \@array;

 9. }

 If you make a reference to a variable with the backslash operator, you increase

its reference count by one. This is why the memory associated with @array is not

destroyed each time through the loop. The reference count of the memory associated

with @array on line 7 is equal to 1. But on line 8, its reference count is increased to 2

due to the backslash. At line 9, the reference count is reduced by 1 when @array goes

out of scope. But the memory location still has a reference count of 1, so it is not freed.

Consequently, @table fi lls up with array references.

 Reference count garbage collection is very effi cient, but it has problems with circular

references. The following code assigns $variable a reference to itself, so its refer-

ence count drops to 1 and never 0. Consequently, my $variable keeps allocating and

never freeing memory .

 1. while (1) {

 2. my $variable;

 3. $variable = \$variable;

 4. }

 Caution: this could crash your computer!

 6.7 Adding command-line options

 The use of options is also optional
 Most of the Unix command-line programs you will use have options that control

how they behave. For example, the Unix ls command lists the current directory,

but if you want to see fi les sorted by date, you can type ls -lt . Your Perl programs

can easily have this same behavior. There are two built-in modules for processing

command-line options, Getopt::Std and Getopt::Long . Using these modules

9781107000681c06_p252-295.indd 2819781107000681c06_p252-295.indd 281 11/5/2011 7:26:23 PM11/5/2011 7:26:23 PM

Advanced Perl282

means you can add more functionality to your programs. Depending on the needs of

your program, you can use command-line options instead of, or in conjunction with,

the @ARGV array.

 Getopt::Std
 Getopt::Std is used for single-character options. The behavior of these options is

just like other command-line Unix programs. If there are multiple options, they can be

concatenated together. For example -l -t can be written as -lt or -tl . For options

that take an additional parameter, such as -o for an output fi le, the space between the

option and the parameter may be omitted: both -o file or -ofile mean the same

thing. Let’s see this in action. The following script can be a template for most of your

programs.

 Example 6.7.1

 1. #!/usr/bin/perl

 2. # getopt_std.pl

 3. use strict; use warnings;

 4. use Getopt::Std;

 5.

 6. my $usage = “usage: getopt.pl [options] <arguments…>

 7. options:

 8. -v version

 9. -f flag

 10. -p <some parameter>

 11. ”;

 12. die $usage unless @ARGV;

 13.

 14. my %opt;

 15. getopts(‘hvfp:’, \%opt);

 16.

 17. if ($opt{h}) {print $usage; exit}

 18. if ($opt{v}) {print “version 1.0\n”; exit}

 19. if ($opt{f}) {print “flag is turned on\n”}

 20. if ($opt{p}) {print “Parameter is: $opt{p}\n”}

 21.

 22. print “Other arguments were: @ARGV\n”;

 Understanding the script
 Lines 1–4 are typical header information material with the addition of

 Getopt::Std .

 Lines 6–11 contain a typical usage statement , which is just meant to remind the user

about all of the options supported by the program. Note that the string stored in $usage

is spread across several lines.

9781107000681c06_p252-295.indd 2829781107000681c06_p252-295.indd 282 11/5/2011 7:26:23 PM11/5/2011 7:26:23 PM

Adding command-line options 283

 The die() function on line 12 will print the usage message only if the program is

not given any arguments on the command line. Many Perl scripts will typically require

the names of one or more fi les as input, and so you want to stop your script immediately

and print the usage statement if such fi les are not specifi ed. If your program does not

require any arguments, then you should omit line 12.

 Lines 14–15 are all that are required to remove the options from the command

line and place them into the special %opt variable. The string ‘ hvfp: ‘ is the crucial

part. This specifi es that there are four options: -h , -v , -f , and -p . The colon follow-

ing p indicates that -p expects an additional argument. The other options do not take

arguments.

 Lines 17–20 perform different actions depending on the options present. These are

simple one-liners here, but could be much more complex in a larger program.

 Note that if the user specifi es the -h option (for “help”), then the script will print the

usage statement and exit. This is another commonly used method of printing out a usage

statement and -h will frequently, but not always, print out help information in many

Unix programs. This script includes two ways of printing out the help information – this

is a good thing!

 Line 22 prints any other arguments that were specifi ed on the command line.

 Experiment with the following command-line options of getopt_std.pl to see

what happens:

 $ getopt_std.pl # prints $usage

 $ getopt_std.pl -h # prints $usage

 $ getopt_std.pl -v # prints version

 $ getopt_std.pl -x # reports an error: there is no option -x

 $ getopt_std.pl -fpx # reports flag on, -p is x

 Getopt::Long
 Getopt::Long is used for longer, more descriptive options, for example --ver-

sion . Long option names are preceded with two dashes. For options that take an argu-

ment, you do not omit the space between the option and the argument. You can either do

 --option x or --option=x . Here is the equivalent template.

 Example 6.7.2

 1. #!/usr/bin/perl

 2. # getopt_long.pl

 3. use strict; use warnings;

 4. use Getopt::Long;

 5.

 6. my $usage = “usage: getopt.pl [options] <arguments…>

 7. options:

 8. --version

 9. --help

9781107000681c06_p252-295.indd 2839781107000681c06_p252-295.indd 283 11/5/2011 7:26:23 PM11/5/2011 7:26:23 PM

Advanced Perl284

 10. --flag

 11. --number <number>

 12. --string <string>

 13. ”;

 14.

 15. my $flag; # some Boolean flag

 16. my $number; # will contain a number

 17. my $string; # will contain a string

 18.

 19. GetOptions(

 20. ”flag” => \$flag,

 21. ”number=i” => \$number,

 22. ”string=s” => \$string,

 23. ”version” => sub {print “1.0\n”; exit},

 24. ”help” => sub {print $usage; exit},

 25.);

 26.

 27. if ($flag) {print “flag turned on\n”}

 28. if ($string) {print “string set: $string\n”}

 29. if ($number) {print “number set: $number\n”}

 30.

 31. print “Other arguments were: @ARGV\n”;

 Understanding the script
 Lines 1–4 are typical header material, but note that we are now using Getopt::Long

rather than Getopt::std .

 Lines 6–13 contain the familiar usage statement.

 Lines 15–17 declare variables that will correspond to each of the possible command-

line options that could be chosen by the user of the program.

 Lines 19–25 is a call to the GetOptions() function to parse the specifi ed com-

mand-line options. Line 20 shows how to set a simple fl ag option. This option will con-

trol an aspect of the program in an on-or-off manner.

 Lines 21 and 22 show how to associate arguments with particular options. The argu-

ment can be checked for a numeric value as shown in line 21. The use of the equals sign

tells the GetOptions() function that this option needs a mandatory argument. You

can’t run the script just by typing -number without additionally specifying a number. 24

The i and s signify that the options will receive an integer and a string respectively.

There is also an f option for fl oating point numbers . If you specify that an option should

contain a number and then you run the script and provide a string instead, you will get

an error message from the Getopt function.

 24 Sometimes it is useful to have a command-line option where the argument isn’t mandatory. In this case use a colon (:)

character instead of an equals sign.

9781107000681c06_p252-295.indd 2849781107000681c06_p252-295.indd 284 11/5/2011 7:26:23 PM11/5/2011 7:26:23 PM

Adding command-line options 285

 Lines 23 and 24 contain anonymous subroutines for reporting version and usage

information. What is an anonymous subroutine? It is a subroutine that exists only as

a reference. It’s similar to an anonymous array or anonymous hash in that regard. In

general, we do not suggest people use anonymous subroutines, which is why we do not

specifi cally address subroutine references in this book. But this one example is harmless

and convenient.

 Lines 27–29 have been added to test which command-line options have been speci-

fi ed. Some programs will echo back the options that have been chosen to provide extra

confi rmation.

 Try experimenting with the script by running the following command-line options:

 $ getopt_long.pl # no help this time

 $ getopt_long.pl --version # prints version

 $ getopt_long.pl --help # prints usage

 $ getopt_long.pl --flag --number=2 # flag on, number is 2

 $ getopt_long.pl --string hooray # string is hooray

 Getopt::Std or Getopt::Long ?
 Both of these modules contain a great deal more functionality than is shown here. You

should read the full Getopt documentation to discover what else they can do. Some

people are happy to just use the standard version of the Getopt function, and others

prefer the long version. As you add more and more options to your script, using the

standard version can mean you run out of suitable single-letter characters for certain

options – for example, if you use -h for a help option and then you want to add an

option to specify the name of a valid host machine, you can’t use -h again. 25 In contrast,

if you use the long version and add lots of options then it can take a lot more typing to

actually run a command. Compare:

 $ my_script.pl -f -v -b -r

 $ my_script.pl --fast --verbose --backup –recursive

 However, one advantage of using the long format for options is that they can always be

reduced to the shortest unique string. All of the following would be equivalent:

 $ my_script.pl --fast --verbose --backup --recursive

 $ my_script.pl --fas --verb --back --recurs

 $ my_script.pl --f --v --b ––r

 We suggest you experiment with both versions and use whichever one you prefer. 26 Just

don’t invent your own !

 25 Though you can use -H if you so desire.

 26 One of the authors of this book prefers using the shorter syntax for command-line options and the other fi nds this

maddening. Of course, the other author always uses long options, which is probably detested just as much by the fi rst

author.

9781107000681c06_p252-295.indd 2859781107000681c06_p252-295.indd 285 11/5/2011 7:26:23 PM11/5/2011 7:26:23 PM

Advanced Perl286

 6.8 OOP basics

 Not oops, but object-oriented programming
 Object-oriented programming (OOP) is a style of programming that focuses on data.

OOP actually encompasses a large body of related programming practices that would

take a long time to discuss in detail. In this chapter we will give a brief overview of OOP

and focus on the parts that will help you use objects. We have intentionally omitted some

aspects of OOP. 27

 Objects and classes
 An object is some kind of thing. A person is an object. A dog is an object. Although

people and dogs are both mammals, they are not the same kind of thing. People are

people, dogs are dogs. 28 They look different : dogs have sharp teeth and visible tails.

They behave differently: dogs bark when they are excited and greet one another by sniff-

ing. In the language of OOP, we say that people and dogs belong to different classes .
 All objects are instances of a class . You are an instance of the person class, as is each

of the authors of this book. We are all different objects, but we all belong to the same

class. In OOP, all data has to belong to a class.

 The new constructor
 In Perl, to create an object (an instance of a class), we use something called the new con-

structor. When we use new , we also have to specify the class from which we are creating

a new object. The syntax looks like this:

 my $object = new Class;

 The new constructor is actually a function inside a fi le called Class.pm . Essentially

this means that if you want to write the code to create a class (for people, dogs, proteins,

etc.), that class has to have a function called new that will let you create a new object. As

 new behaves like a regular Perl function, we could also write the above code as:

 my $object = Class::new();

 As you can see, $object is a scalar variable. But the exact contents of that scalar are

hidden. Is it a hash reference? An array reference? Don’t ask. It’s an object, and the

internals are intentionally hidden .

 Attributes
 An object has certain attributes. For example, if we return to our example of a “per-

son” class then we can imagine that this class defi nes attributes for hair color, height,

date of birth, etc. These attributes are shared by all objects in that class. However,

each object could have attributes with very different values. To access an object’s

attributes you use the -> operator followed by the attribute name. Let’s imagine we

 27 In particular, we do not discuss inheritance , which is a wonderful bit of abstraction. In the hands of a non-expert,

however, inheritance leads to poorly designed code.

 28 Some people and most dogs do not accept this as truth.

9781107000681c06_p252-295.indd 2869781107000681c06_p252-295.indd 286 11/5/2011 7:26:23 PM11/5/2011 7:26:23 PM

OOP basics 287

have some object-oriented code that lets us access various fi ctional attributes of the

“person” class:

 print $chris->hair_color; # print attributes for the $chris object

 print $chris->height;

 print $chris->date_of_birth;

 print $alex->hair_color; # print attributes for the $alex object

 print $alex->height;

 print $alex->date_of_birth;

 Is $chris->hair_color some kind of alternative syntax for a hash reference? No.

 $chris is an object and hair_color is an attribute. We don’t ask questions about

the internals of an object.

 Methods
 An object can perform specifi c actions called methods . A method is the OOP name for

a function/subroutine. To call a method, you again use the familiar -> operator . Some

methods take parameters, others do not. The syntax for calling a method is:

 $object->method(@parameters); # with parameters

 $object->method(); # no parameters

 $object->method; # no parameters

 You may have noticed that calling a method with no parameters ($object->method)

appears very similar to accessing an attribute for an object ($object->attribute).

The reason for this is that attributes are hidden behind accessor methods. That is, they

are functions that return some attribute of the object.

 Note that Perl does not interpolate functions/methods inside double quotes. The fol-

lowing syntax does not work as expected:

 print “$alex->height\n”; # incorrect syntax

 Encapsulation
 One of the most important OOP concepts is encapsulation . This strives to separate the

interface (what you interact with) from the implementation (the actual code). The only

way to interact with an object is through its methods. What actually happens once a

method is invoked should be irrelevant to the user. From a developer standpoint, encap-

sulation allows one to change the underlying code without breaking programs that

depend on the object. As long as the interface to the object remains consistent, any

programs that use the object will be unaffected.

 OOP code reads better
 Statements written in OOP code often look more readable than code which doesn’t use

OOP. This is because they put the object at the center of attention. Consider the clarity

of the following code:

 $ian->eat(‘pizza’, ‘salad’) if $ian->is_hungry;

9781107000681c06_p252-295.indd 2879781107000681c06_p252-295.indd 287 11/5/2011 7:26:23 PM11/5/2011 7:26:23 PM

Advanced Perl288

 You could probably show this line of code to someone who has never programmed

and they would still understand the general meaning of it. In a non-OOP style, the same

functionality might be written as follows:

 Person::eat($ian, ‘pizza’, ‘salad’) if Person::is_hungry($ian);

 Note that in the second example we had to specify the library/class (Person) contain-

ing the eat() and is_hungry() functions. When we instead use objects, they know

what class they belong to, so we don’t need to tell them where to fi nd their functions.

They also pass themselves automatically to their methods, unlike in the non-OOP code

example (where $ian has to be sent to each function). This is more than just syntactic

sugar, it’s a philosophy that data and functions are tightly bound to each other.

 Your fi rst class
 The discussion so far has been mostly theoretical. Let’s build a class and create objects

to see how things actually work. The class will represent a circle, so we will call it

 Circle . The defi ning attribute of a circle is its radius. To construct a circle of radius 3,

we will therefore want to be able to do something like this:

 my $c = new Circle(3);

 Before we can run this code, we fi rst have to create the Circle class. We will do

this in a step-wise fashion to explain all of the parts in detail. The class fi le is just like

any other Perl module , so it will be named Circle.pm . It will live in the normal place

where you put your libraries, and it will begin and end with the usual statements.

 Example 6.8.1, Part 1: constructor

 1. package Circle;

 2. use strict; use warnings;

 3.

 4. my $PI = 3.1415926;

 5.

 6. sub new {

 7. my ($class, $radius) = @_;

 8. my $self = bless {}, $class;

 9. $self->{rad} = $radius;

 10. return $self;

 11. }

 Understanding the code
 Line 4 sets a global constant for pi. This scope of this variable is global to the entire

package, i.e., it will be available to any function/subroutine we write. Internal data that

can be used by several functions should always have a scope that makes them usable by

all of the package. In OOP-speak, we call such variables class variables . We don’t need

 $PI just yet, but we will later.

 Lines 6–11 contain the new constructor , which has the syntax of a regular Perl

subroutine .

9781107000681c06_p252-295.indd 2889781107000681c06_p252-295.indd 288 11/5/2011 7:26:23 PM11/5/2011 7:26:23 PM

OOP basics 289

 Line 7 reads two arguments, the class name and the radius. Normally, we would

expect a Perl subroutine that receives two parameters to be sent two parameters from

the code that calls the subroutine. This is not the case when using OOP syntax. When

we write code to call this subroutine, the class name will be sent automatically. This

means we expect the code that calls this subroutine to pass only one parameter, the

radius.

 Line 8 contains the bless keyword . This turns an ordinary anonymous hash into an

object of some class. 29 It is common to call an object $self or $this .

 Line 9 stores the radius in the object’s anonymous hash using the key rad . We could

have chosen any string for this key because users never see the internals of an object.

 Line 10 returns the object.

 So far our class allows us to create a circle object, but not do anything with that

object. We could write a program that creates a circle with the following line:

 my $c = new Circle(3);

 If we run this code we would create a new object ($c) which was created by sending

details of a radius (3) to the Circle class. Remember, when using OOP syntax, the

class name is automatically sent to the new constructor. An alternative syntax that does

the same thing, but in a much uglier way, would be:

 my $c = new Circle::new(“Circle”, 3); # not recommended

 For our object to be even a little bit interesting, we will have to give it some attributes.

As we discussed before, all access to an object is through a method/function interface.

Therefore, we are going to need a subroutine called radius so we will be able to do the

following:

 print $c->radius, “\n”;

 Here is the equivalent non-OOP syntax:

 print Circle::radius($c), “\n”; # not recommended

 Note how the OOP syntax is much cleaner. We don’t have to specify what package the

radius function is in. We also don’t have to pass the object to the radius function. This

all happens automatically in OOP syntax. Let’s see exactly how that happens by adding

the necessary radius method to the Circle class:

 Example 6.8.1, Part 2: accessor retrieving attribute

 12. sub radius {

 13. my ($self) = @_;

 14. return $self->{rad};

 15. }

 29 There is no reason you have to use an anonymous hash here. It could have been an array reference or even a scalar

reference. But hash references are the most common.

9781107000681c06_p252-295.indd 2899781107000681c06_p252-295.indd 289 11/5/2011 7:26:23 PM11/5/2011 7:26:23 PM

Advanced Perl290

 Understanding the code
 Lines 13 copies the object from @_ . Like any other subroutine, parameters are passed

to methods via @_ . In OOP syntax, the object is automatically passed as the fi rst

argument.

 Line 14 returns the radius from where the radius was stored. In this case we have

already stored the radius using the string “rad” (see Part 1 of the example).

 As a user of this code, you would only need to know that after creating a new object

for a circle, you can extract the radius for the object by using the radius method.

Obviously, this might not seem that impressive, given that you would already have to

know the radius in order to create the object. Time to make our object a little more use-

ful; let’s add an attribute for the area of the circle. This will be used in a simple fashion,

like so:

 print $c->area;

 We could have computed the area and stored this when we fi rst created the object.

Instead, we are going to do something more interesting: we are going to compute the

attribute. From the user’s perspective, they will have no idea if the area was stored ahead

of time or if it is being computed each time. More importantly, the user doesn’t need to

know. They just need to know that the area method will return the area of the circle

object $c . Here’s how we will make the area method:

 Example 6.8.1, Part 3: accessor computing attribute

 16. sub area {

 17. my ($self) = @_;

 18. return $PI * $self->{rad} ** 2;

 19. }

 Understanding the code
 Line 17 gets the object from @_ .

 Line 18 computes the area of the circle by accessing the radius from the circle object

and using this in conjunction with the pi constant that was defi ned earlier. The value of

the area is then returned.

 You might think it is a waste of CPU cycles to compute the area each time you need

it. If you access the area attribute quite frequently, this may be true. 30 If so, then you

probably should compute the area once in the constructor and store this in the object.

Alternatively, if you create many circle objects, and very rarely ask about the area, it

would be a waste of CPU to compute the area for every object.

 Surely there must be some way to compute the attribute only once if you need it, and

not at all if you don’t need it? In fact, there is! All we have to do is compute and store

 30 Of course, such simple math is not really a burden to compute. But for the sake of the example, imagine it is.

9781107000681c06_p252-295.indd 2909781107000681c06_p252-295.indd 290 11/5/2011 7:26:24 PM11/5/2011 7:26:24 PM

OOP basics 291

the attribute after someone asks for it. Let’s add a new method for circumference. Again,

using this is straightforward:

 print $c->circumference, “\n”;

 Example 1, Part 4: accessor memorizing attribute

 20. sub circumference {

 21. my ($self) = @_;

 22. if (not defined $self->{circ}) {

 23. $self->{circ} = 2 * $PI * $self->{rad};

 24. }

 25. return $self->{circ};

 26. }

 Understanding the code
 Line 21 retrieves the object from @_ .

 Line 22 asks if the circ key exists in the anonymous hash underlying the object.

The fi rst time this function is accessed, the circ key does not exist. Every time after-

ward, the key will exist because of the next line.

 Line 23 computes the circumference and stores it in the hash with key circ .

 Line 25 returns the circumference.

 Below is a program to test-drive our new “Circle” class. From the perspective

of this script, the radius , area , and circumference accessor methods all

behave in exactly the same way. As we have just seen, they are all a little different

internally. Encapsulation hides these details from the user and presents a consistent

interface:

 1. #!/usr/bin/perl

 2. # object.pl

 3. use strict; use warnings;

 4. use Circle;

 5.

 6. my $c = new Circle(3);

 7. print $c->radius, “\n”;

 8. print $c->area, “\n”;

 9. print $c->circumference, “\n”;

 Remember, you will very likely end up using OOP code that has been written by

someone else. With this example you might not care about how their code calculates

the radius, area, and circumference of a circle, you just need to know how to use it. You

might use such code and then discover that there is an update to the Circle.pm fi le. That

update might drastically change the underlying code, but none of this would affect your

script.

9781107000681c06_p252-295.indd 2919781107000681c06_p252-295.indd 291 11/5/2011 7:26:24 PM11/5/2011 7:26:24 PM

Advanced Perl292

 When to use OOP
 Many software libraries use OOP syntax (see the next chapter), so all programmers

should be able to use objects. However, not everyone needs to write their own classes;

many expert Perl programmers have never written a class, and you don’t have to either.

In fact, we suggest you don’t write classes just yet. Eventually you will see where

OOP is useful and where it is a burden, and you will choose your programming style

appropriately.

 6.9 CPAN

 It’s comprehensive
 If you have come this far in the book, take a moment to celebrate! Put down the book.

Sing at the top of your lungs, watch a movie, eat a delicious dessert, run around the

block naked, or whatever it is you do when you celebrate. 31 You have mastered the most

important parts of Unix and Perl!

 Are you back? Good. Your job as a programmer is about to become a lot easier. In

this chapter we are going to show you how to tap into a huge world of free Perl software:

the Comprehensive Perl Archive Network (CPAN). 32

 Searching for free code
 Before you start writing a complex piece of software, check CPAN fi rst! It’s possible that

someone has already done some of the hard work. Good programmers write reusable

code. Great programmers reuse code. Go to http://search.cpan.org and try searching for

something. You may be amazed at what you can fi nd.

 Installing modules
 One way to install a new module is to use one of the CPAN modules that comes pre-

installed with Perl. You can use this by entering the following on the command line:

 $ sudo perl -MCPAN -e shell

 This opens a CPAN shell where you can type commands. The “sudo” part is necessary

to be able to have permission to copy the Perl module to somewhere on your fi lesystem

outside of your home directory. Note that you might not have permission to do this if

you are not the administrator on the computer you are using. If this works, you should

see the following prompt:

 cpan[1]>

 Try asking for help:

 cpan[1]> help

 31 You may also do all of these things at the same time if you so desire.

 32 Not to be confused with the US cable network station that covers political news: C-SPAN.

9781107000681c06_p252-295.indd 2929781107000681c06_p252-295.indd 292 11/5/2011 7:26:24 PM11/5/2011 7:26:24 PM

CPAN 293

 This will show you quite a bit of information.

 Let’s install a module for descriptive statistics:

 cpan[2]> install Statistics::Descriptive

 You should see some output showing that the module is being built, tested, and installed.

To quit, hit “q”; now all of your programs can use this module. For starters, try getting

help about the module by using the perldoc command:

 $ perldoc Statistics::Descriptive

 It’s also possible to download a module from the CPAN web site and install it with-

out using the CPAN shell. However, the method for doing this is not quite as user-

friendly. After downloading and unpacking the module, there will be a directory (based

on the module name) which should contain a README and INSTALL fi le. Read and

follow the instructions in these fi les. These will usually be along the lines of running the

following commands:

 $ cd module-name

 $ perl Makefile.PL

 $ make

 $ make test

 $ make install

 Where do modules live?
 Whatever OS you are using, there will usually be one default location where Perl mod-

ules are installed. For example, on modern Mac computers, which are based on a Unix

OS, this will be the following directory: 33

 /System/Library/Perl/5.10.0

 It is common to refer to a collection of modules as a “library” and it is therefore com-

mon to also name directories that contain modules either “library” or “lib”. If you add

new Perl modules (using the method above) they will be added to the default location.

As mentioned previously, you might not have permission to add fi les to this directory. If

you don’t have permission to install them in the default location, you should always be

able to add them to your home directory. You can do this (on Unix systems) by changing

one of the installation steps shown above, namely:

 $ perl Makefile.PL PREFIX=/Users/nigel/lib

 This would work on a Unix system where /Users/nigel is the location of a

home directory, and lib is a subdirectory you want to use for Perl modules (though you

can name this anything you want). Obviously, this would only work if the user “nigel”

is the person installing the module.

 33 This will obviously be different if you have a different version of Perl.

9781107000681c06_p252-295.indd 2939781107000681c06_p252-295.indd 293 11/5/2011 7:26:24 PM11/5/2011 7:26:24 PM

Advanced Perl294

 Using modules
 Some modules use OOP syntax and some do not. Some modules go so far as to offer both

styles; it depends on the author. Let’s try to use the Statistics::Descriptive

module:

 1. #!/usr/bin/perl

 2. # stats.pl

 3. use strict; use warnings;

 4. use Statistics::Descriptive;

 5.

 6. my $stat = new Statistics::Descriptive::Full;

 7. $stat->add_data(1, 2, 4, 8);

 8. print $stat->mean, “\n”;

 9. print $stat->median, “\n”;

 10. print $stat->harmonic_mean, “\n”;

 Sometimes it is relatively easy to work out what a module is doing (even when

you have never used it before). In this script, we fi rst have to make an object ($stat)

that will handle the statistical computations (line 6) (see the previous chapter for

more information about using objects). We then use the add_data() function

to generate some data for the object to work with (line 7). The following lines then

call various functions to calculate the mean, median, and harmonic mean of those

numbers.

 The documentation that accompanies each module should always provide full details

of how it should be used. Do not assume you will understand everything about the mod-

ule without fi rst reading the documentation!

 Using modules installed in non-standard locations
 If you have installed a Perl module in a non-standard location, your script may not know

where to fi nd it. Perl will fi rst look in the default location and also in the current working

directory. If the Perl module is installed anywhere else, then Perl will not know about it

and will therefore not be able to use it. One solution to this is to specify the alternative

location of the module inside the script by adding the following line:

 4. use lib “/Users/nigel/lib”;

 Perl will now know to look for modules in the specifi ed directory in addition to the

default locations. This is not the best solution, however, because if you want to move

your own Perl library to another directory you would have to change all of your scripts

that use that library.

 On Unix systems you can specify a Unix environment variable called $PERL5LIB . 34

This variable stores the location of the directory (or directories) that you want to use for

 34 See Chapter 3.11 in order to refresh your memory about environment variables.

9781107000681c06_p252-295.indd 2949781107000681c06_p252-295.indd 294 11/5/2011 7:26:24 PM11/5/2011 7:26:24 PM

CPAN 295

any Perl library that isn’t installed in the default location. On a Mac I would simply need

to edit the .profi le fi le 35 in my home directory to include the line:

 export PERL5LIB=$PERL5LIB:/Users/nigel/lib

 This takes the existing value of $PERL5LIB and appends on a new location (/Users/

nigel/lib). Perl would then know to check the location of whatever directories are

specifi ed by $PERL5LIB in addition to the default library location.

 35 On other Unix systems you may need to edit another fi le such as .bashrc or .login. See Chapter 3.25 .

9781107000681c06_p252-295.indd 2959781107000681c06_p252-295.indd 295 11/5/2011 7:26:24 PM11/5/2011 7:26:24 PM

 Programming topics 7

 7.1 Debugging strategies

 De bug is in de computer
 In some ways, writing Perl scripts is easy. It’s getting them to work properly that is the

hard part. The process of removing errors and fi xing problems is called debugging and

it usually accounts for the majority of the time you will spend working on any given

script. Finding and fi xing bugs is one of your most important skills. Like any skill, it

takes time to learn. In the beginning, you may blankly stare at an error message for what

seems like an eternity, and Perl’s error messages will make as much sense to you as if

they were written in Klingon. 1 But with a little practice, you will learn to recognize the

different types of errors and implement the appropriate debugging strategies without

much thought.

 It’s important to realize that the problems that will require debugging will not be

limited to errors in your actual code. More generally we can divide all of the issues that

might require debugging into several categories :

 (1) errors that are caused before your Perl code is even evaluated;

 (2) errors in the code itself, further divided into:

 (2.1) compile-time errors;

 (2.2) run-time errors;

 (3) other problems (often due to various forms of user error).

 Use Perl’s built-in syntax checker
 You should get into the habit of checking your code before you run it. Perl has a built-in

tool for checking the syntax of your script; this can be utilized by supplying the -c

option to the Perl command. For example, if you have a script called script.pl , then

simply run:

 $ perl -c script.pl

 Note that this does not run the script, it just checks the script for potential errors. If your

script contains no syntax errors, you will see a message saying:

 script.pl syntax OK

 However, if your script contains errors you will see all of those errors just as you would

if you actually run it. If possible, you should never run a script that produces any error

or warning messages.

 1 We’d like to believe that somewhere in a parallel universe there exists a programming language which gives you error

messages such as “Hey Bob, I notice that on line 23 you forgot to put any data in variable $x, and then on line 32 you’re

trying to access an array element but you forgot to include the closing square bracket.”

9781107000681c07_p296-341.indd 2969781107000681c07_p296-341.indd 296 11/5/2011 6:39:50 PM11/5/2011 6:39:50 PM

Debugging strategies 297

 General strategies for debugging
 Programming languages like Perl have sophisticated, and therefore complicated, debug-

ging tools. But for simple scripts, these tools can be overkill. Here is some basic advice

on how to go about fi xing your scripts:

 (1) Stay calm and don’t blame the computer. In nearly all cases, the computer is only

ever doing what you have told it to do. 2

 (2) Check and re-check your code. Most errors – probably the vast majority – are due

to very simple typos in your script. You will have probably looked right at the error

without realizing it.

 (3) Start with the fi rst error message you see. Subsequent error messages are likely to

all stem from the fi rst problem in your script. Fix one, and you may fi x them all.

 (4) Use the ability to “comment out ” lines of code to see if “turning off” a single line

of code removes the error message (more on this later).

 (5) Sometimes a program will start to work but then fail at some unknown point

within your code. Consider adding simple print statements to work out where the

program is failing.

 (6) Use a suitable code editor . Most editors will provide syntax highlighting , mean-

ing they will color various parts of code depending on their content/function. This

often provides visual feedback that you have not typed a piece of code correctly.

 Compile-time vs. run-time errors
 In general, there are two kinds of bugs in a program, compile-time errors and run-time

errors . A program that does not even begin to run has a compile-time error . A program

that exhibits errors (like crashing) after it starts running has run-time errors .

 Example 7.1.1
 The line below contains two errors (unbalanced quotes and parentheses). Any program

containing this line of code will not run because it produces a compile-time error.

 print(“hello world));

 Example 7.1.2
 The following line will lead to a run-time error if the value of $z is zero or undefi ned

(which Perl treats as zero in a numeric context).

 $x = $y / $z;

 Obviously, we want our programs to be error-free, but if you had to choose between

compile-time and run-time errors, compile-time errors are better. Errors that show up

only after a program has been running for minutes or hours can be laborious to debug.

 2 We know that some of you may never agree with us on this point. If you are the type of person who is likely to curse at

their computer and believe that it is “lying” or “cheating” then maybe programming is not the best vocation for you.

9781107000681c07_p296-341.indd 2979781107000681c07_p296-341.indd 297 11/5/2011 6:39:51 PM11/5/2011 6:39:51 PM

Programming topics298

One of the reasons we suggest people include use strict is because it changes mis-

spelled variable names from run-time errors to compile-time errors. We also suggest

including use warnings to catch run-time errors that result from undefi ned values.

There are many more reasons to use strict and use warnings , so make sure every

program has these statements.

 Commenting-out code
 One of the most common tools for debugging is commenting-out a line of code to deter-

mine if it is the line that is causing the error. This is as simple as placing the comment

symbol # at start of a line to prevent it from compiling. 3 If the program now runs, you

have isolated which line caused the error. Then it is a matter of fi nding out what part of

the line is not syntactically correct. Most of the time, Perl error messages point you to

the exact offending line, and may offer advice on how to fi x it, but this is not always the

case. Sometimes the error occurs in a preceding statement.

 Example 7.1.3
 If you run the following script, you will receive the error message shown below.

 1. #!/usr/bin/perl

 2. # example3.pl

 3. use strict; use warnings;

 4.

 5. $x = 1;

 6. $y = 2

 7. $z = 3;

 Scalar found where operator expected at example3.pl line 7, near “$z”

 (Missing semicolon on previous line?)

 syntax error at example3.pl line 7, near “$z “

 In your early days as a programmer, you will see the “Missing semicolon on previous

line” error message quite frequently. In this example the semicolon was indeed miss-

ing from line 6. If you comment-out line 6, you will fi nd that the program runs with no

errors.

 Commenting-out multiple lines with pod tags
 Sometimes you might want to comment-out many lines at once. While you could begin

every line with a #, there is a more convenient way. Perl supports multi-line com-

ments via its documentation system called “pod,” which is an acronym for Plain Old

Documentation. To learn more about how to use pod, see Chapter 7.6 on Documentation.

For debugging purposes, we only need to know that a pod comment begins with =some-

thing and ends with =cut . The something can be anything. For debugging, it makes

sense to use =debug .

 3 Though be careful. If you comment out a line which is the opening or closing part of a block of code (e.g., the fi rst line of

a for loop) you will be introducing more errors. So only comment out self-contained lines of code.

9781107000681c07_p296-341.indd 2989781107000681c07_p296-341.indd 298 11/5/2011 6:39:51 PM11/5/2011 6:39:51 PM

Debugging strategies 299

 Example 7.1.4
 Lines 2 through 5 are skipped by Perl. Only the fi rst line will do anything.

 1. print “something\n”;

 2. =debug

 3. print “for\n”;

 4. print “nothing\n”;

 5. =cut

 Commenting out with __END__
 Perl stops parsing the script once it sees the __END__ token . Note that this has two

underscore characters on each side. If you want to comment-out many lines near the end

of a program, this is the most convenient method. You can also store notes to yourself or

even internal data after the __END__ of a program. See Chapter 7.5 for more informa-

tion on storing internal data.

 Example 7.1.5
 The following program prints “hello world” but nothing else.

 1. #!/usr/bin/perl

 2. use strict; use warnings;

 3.

 4. print “hello world\n”;

 5. __END__

 6. print “goodbye”;

 7. I can write anything down here!

 Debugging run-time errors
 Run-time errors can be incredibly frustrating to debug, especially if they appear some-

what randomly. One of the simplest but most effective debugging strategies is using

 print statements at critical junctures in your code.

 Example 7.1.6
 The following script attempts to loop through a series of user-specifi ed numbers to cal-

culate a total, and then loop through them again to calculate what percentage of the total

each number represents. However, the script contains a deliberate error. Can you spot

it?

 1. #!/usr/bin/perl

 2. use strict; use warnings;

 3.

 4. die “Specify at least five numbers\n” if (@ARGV < 5);

 5.

 6. my @numbers = (@ARGV);

 7. my ($array_length) = @numbers;

9781107000681c07_p296-341.indd 2999781107000681c07_p296-341.indd 299 11/5/2011 6:39:51 PM11/5/2011 6:39:51 PM

Programming topics300

 8.

 9. my $total = 0;

 10.

 11. for (my $i = 0; $i < $array_length; $i++){

 12. $total += $numbers[$i];

 13. }

 14.

 15. for (my $i = 0; $i < $array_length; $i++){

 16. my $percent = ($numbers[$i] / $total) * 100;

 17. print “$numbers[$i] is $percent percent of the total\n”;

 18. }

 Understanding the script
 The error is on line 7, which mistakenly tries to calculate the array length by assigning

the array to a list rather than to a single scalar variable. This line should be:

 7. my $array_length = @numbers;

 This error means that $array_length will just contain the fi rst number specifi ed

on the command line. If this is less than the number of specifi ed values, the script will

run but produce misleading output. If the fi rst number is greater than the number of spe-

cifi ed values, then the script will produce error messages.

 Debugging the script
 The easiest way to debug this script would be to add some simple print statements. For

example, on line 8 you could add a print statement to check that $array_length is

the right length, or you could add a print statement to line 14 to check that $total is

correct.

 This is a highly simplistic example, but hopefully it illustrates the point that you

should never assume you always know what a variable contains .

 The Perl debugger
 Perl includes a debugging mode that allows you to step through programs line-by-line

and view the contents of variables. The debugger can be very useful as it allows you to

run your script in a very controlled way; in a way, it’s a bit like having a remote control

for your script. You can make the debugger run your script until a specifi c line of code is

reached, and then you can switch to executing one line of code at a time.

 The debugger might seem a little intimidating if you are new to Perl and so we are

not going to cover it in this book. However, if you are curious to learn more, then note

that there is a Unix man page for the debugger as well as a separate man page that gives

more of an introductory tutorial to how the debugger works:

 man perldebtut

 man perldebug

9781107000681c07_p296-341.indd 3009781107000681c07_p296-341.indd 300 11/5/2011 6:39:51 PM11/5/2011 6:39:51 PM

Common error messages 301

 Other (non-Perl) errors
 Many developers of computer code spend a lot of time trying to make their programs as fool-

proof as possible. A well-designed program should hopefully reduce the ways in which the

user can break it (intentionally or otherwise). However, as a species we have developed a

remarkable ability to be very inventive with our own stupidity. We have all seen people hurl

abuse at their computers (both verbal and physical) when they run into a problem which

they think is the computer’s fault, only to then realize that they forgot to do something very

obvious. Here are a few situations that you will hopefully never fi nd yourself in.

 Program changes not saved.

 If you make changes to your program but don’t save them, then those changes will not

be applied when you run the script. Always check that the script you are running is saved

 before you run it. Many code editors will offer visual feedback if a program has not been

saved. 4 Repeat after us: edit, save, run; edit, save, run; edit, save, run.…

 The program you are editing is not the same as the program you are running.

 Occasionally, you might make copies of your programs and your directory might end

up with programs named things like script1.pl, script1b.pl, script2.pl, new_script2.pl.

This is a bad habit to get into and you might fi nd yourself editing one script but trying

to run another. You will become very frustrated when every change you make to your

script has seemingly no effect. See Chapter 7.7 on revision control to fi nd out how to

avoid this situation.

 The program runs, has no errors, but doesn’t print any output.

 It might seem mysterious when your Perl program, which you so carefully wrote, doesn’t

seem to do anything. It is therefore worth asking yourself the question “Did I ask it to do

anything?” More specifi cally, have you made sure your program is printing any output?

Making your program calculate the answer to life, the universe, and everything is one

thing … but if you don’t print out the answer, then it will remain a mystery.

 7.2 Common error messages

 This is also a common error message
 There are a number of error messages that you might see which are not really Perl errors,

even though they might result from what you write (or don’t write) in your Perl script.

However, most error messages you see will be because of a problem, usually a typo, in

your script. In this chapter, we’ll fi rst look at a few “non-Perl” error messages before

explaining some of the more common Perl error messages. Finally, we’ll include a table

 4 E.g., if you are using any form of text editor on an Apple computer, there will always be a black dot within the red “close

window” icon on the top left of any window which contains an unsaved document.

9781107000681c07_p296-341.indd 3019781107000681c07_p296-341.indd 301 11/5/2011 6:39:52 PM11/5/2011 6:39:52 PM

Programming topics302

of many of the most common error messages, along with a quick explanation as to how

you can fi x them.

 Non-Perl error messages

 Permission denied

 Do you have the permission to run the script? Have you run the Unix chmod command

to add executable permissions (see Chapter 3.29)?

 command not found

 You’ve either mistyped the name of your Perl program 5 or the program is not in a dir-

ectory the Unix system knows about (technically speaking the directory is not in your

 path). If you are using a specifi c directory to contain all of your Perl scripts, make

sure that this directory has been added to your Unix $PATH environment variable (see

 Chapter 3.28).

 bad interpreter: No such file or directory

 The fi rst line of a Perl script should let the Unix system know where it can fi nd a copy of

the Perl program that will understand your code. This will often be in /usr/bin/perl .

If you make any typo in this line (e.g., omitting a slash), then Unix will be looking for

Perl in the wrong place, and things will fail.

 use: command not found

 Remember we told you that you can include whitespace anywhere in your program?

Well, there is one exception to that rule: the fi rst line of your script cannot be blank!

This is sometimes a very hard error to spot as everything else can seem normal.

Unix only looks at the fi rst line of a fi le in order to determine whether it should be

sent off to be interpreted by another program (e.g., Perl). If the line is blank, Unix

will attempt to execute all of the following lines of Perl code as Unix commands.

Because Unix also supports the use of hash characters to comment out lines, it will

not report any error until it gets to the fi rst line of Perl code, which is nearly always

a use declaration.

 Common Perl error messages
 There are a lot of different Perl error messages, though in common practice a small

number of messages will cover most of the problems you encounter. If you are using a

Unix system you can fi nd a description of these errors by looking at the perldiag man

page. You can also tell Perl to produce more informative error messages by including the

 diagnostics pragma in your scripts:

 use diagnostics;

 5 If you continue to type program names for yourself then you are your own worst enemy. Repeat after us: use tab-

completion, use tab-completion, use tab-completion .…

9781107000681c07_p296-341.indd 3029781107000681c07_p296-341.indd 302 11/5/2011 6:39:52 PM11/5/2011 6:39:52 PM

Common error messages 303

 What follows is a brief description of some of the most common error messages you

will encounter:

 Missing right curly or square bracket at script.pl line X, or… Unmatched

right curly bracket at script.pl line X

 Hopefully these two error messages are both very obvious. [These are square brack-

ets] and {these are curly brackets}. Unless you are using them as text characters (e.g.,

within a print statement), then they always come in pairs. Make sure your ones are in

pairs.

 syntax error at script.pl line X, near Y

 Syntax errors are among the most frequent errors you will see. On the plus side, they are

usually very easy to fi x. On the negative side, they can sometimes be very hard to spot

as they frequently involve a single character that is either missing or surplus to require-

ments. Most commonly they might be due to one of the following:

 (1) Unmatched parentheses – just like brackets, items that are in parentheses should

always be a double act.

 (2) A missing semicolon – if you start writing some code, then it has to end (at some

point) with a semicolon. The main exceptions to this rule are for the very fi rst line

of a script (#!/usr/bin/perl) or when a line ends in a closing curly bracket

“ } ”; also note that you can write one line of Perl code across several lines of your

text editor, but this is still one line of code, and so needs one semicolon.

 (3) A missing comma – Perl uses commas in many different ways; have you forgotten

to include one in a place where Perl requires one?

 (4) Inventing new Perl commands and operators – if you write if ($a === $b) ,

then you have invented a new operator (===), which will cause a syntax error as

Perl will have no idea what you mean.

 Can’t find string terminator “““ anywhere before EOF at script.pl line X

 Did you make sure you have pairs of quotation mark characters? If you have an odd

number of single or double quote characters, then you might see this error.

 use of uninitialized variable in…

 Your scripts will do many things with variables. You will add their values, calculate their

lengths, and print their contents to the screen. But what if the variable doesn’t actually

contain any data? Maybe you were expecting to fi ll it with data from the command line

or from processing a fi le, but something went wrong? If you try doing something with a

variable that contains no data, you will see this error.

 Global symbol “$variable” requires explicit package name at

 You wouldn’t happen to be using the strict package and not declaring a variable with

 my would you? If you defi nitely have included use strict , then maybe check that all

your variable names are spelled correctly. You might have introduced a variable as my

$apple but then later incorrectly referred to it as $appple .

9781107000681c07_p296-341.indd 3039781107000681c07_p296-341.indd 303 11/5/2011 6:39:52 PM11/5/2011 6:39:52 PM

Programming topics304

 A table of common error messages and what they mean
 This table is by no means comprehensive, but it hopefully tackles most of the common

error messages you might see and offers some possible solutions. 6

Error message Description/solution

 Argument “xyz” isn’t numeric… Perl is expecting a number, and you have given Perl

something else, e.g., text or a variable containing text

 Array found where operator expected…
An operator (e.g., +, ==, >, eq.) is missing and an array name

has been used instead

 bad interpreter: No such fi le or directory…
Check the fi rst line of your script (#!/usr/bin/perl); you have

probably made a typo

 Bareword found where operator expected…
Most likely due to a typo in a Perl operator; e.g., typing

“eqq” rather than “eq”

 Bareword “x” not allowed while “strict
subs” in use

You probably left off a $ @ or % on a variable name, or

quotation marks off of a string

 Can’t fi nd string terminator ““” anywhere
before EOF…

Probably a mismatched pair of quotation marks; these

characters should come in pairs

 Can’t locate xyz.pm in…
You’ve added a “use” statement, but the module name you

are trying to use does not exist; possibly a typo

 Can’t modify constant item in scalar
assignment

You may be doing an assignment with the variables swapped.

 $a = 5 is correct, but 5 = $a is not; 5 is a constant

 Command not found
Possible typo when you typed the script name in the terminal,

or the script is in a directory that is not in your Unix $PATH .

 Global symbol “$xyz” requires explicit
package name at…

You probably forgot to include the “use strict” line

 Name main::xyz used only once: possible
typo

This generally occurs with fi lehandles that are misspelled;

use indirect fi lehandles as lexical variables instead of symbol

table fi lehandles

 Permission denied…
Have you run the chmod command to give your script

executable permission?

 print () on unopened fi lehandle…
If your script is printing output to a fi le, you have to fi rst open

a fi lehandle for the output fi le

 Scalar found where operator expected…
An operator (e.g., +, ==, >, eq.) is missing and a variable or

array/hash element has been used instead

 Search pattern not terminated…

When you use the matching operator (=~), there should

be a pair of forward-slashes (or other matching delimiters)

surrounding the search pattern

 String found where operator expected…
An operator (e.g., +, ==, >, <=, eq, etc.) is missing, and some

text has been added in its place

 6 The error messages in this table are simplifi ed. The full error messages will include the script name and the line number

that contains the error. They will also sometimes include variable or module names. For convenience we have just used

 xyz as a substitute for any variable/module name.

9781107000681c07_p296-341.indd 3049781107000681c07_p296-341.indd 304 11/5/2011 6:39:52 PM11/5/2011 6:39:52 PM

Code beautifi cation 305

Error message Description/solution

 Syntax error at…
Often due to a missing semicolon/comma, or other typo (e.g.,

typing “g” instead of “gt” or “iff” instead of “if”)

 Undefi ned subroutine &main::xyz

You have misspelled the name of a subroutine or forgotten

to save your fi le after making one; in either case, Perl can’t

fi nd it

 Unquoted string “xyz” may clash with
future reserved word

You probably left off a $ @ or % on a variable name or

quotation marks off of a string

 Use of uninitialized variable in…

You are working with a variable (or array/hash element) that

doesn’t contain any data, even though it probably should; this

is more common when the data is coming from a fi le or is

specifi ed on the command line

 xyz.pm did not return a true value A Perl module (library) must return true after being read; the

easiest way to ensure this is to have the last line of your fi le

contain a true value (e.g., 1).

 7.3 Code beautifi cation

 Appearance matters
 Beautiful fl awed programs are better than ugly correct programs.

 What? How can a fl awed program possibly be better than a correct one? Programs

evolve over time. Features are added and removed. The data they interact with can

change. Programmers also change (even if it is the same person, their programming

practices change over time). While it is important for a program to complete a task now,

any really useful program must complete tasks many more times in the future. Beautiful

code is easier to understand, maintain, and extend. Ugly code can be nearly impossible

to modify or even comprehend.

 You will often be in situations where you need to write a short script which is only

intended to be used once. This will tempt you to write the script quickly and you will

probably not care too much about how it looks. However, you then discover that the

program will actually be very useful and you promise yourself that you will tidy it all up

and make it look pretty, but “not right now.” A year later you might fi nd yourself needing

to amend that script and you open it up in your code editor only to realize that you no

longer have any idea what it is doing because you never got around to tidying it up. It

will be an ugly mess and you might fi nd yourself having to rewrite the whole thing just

so you can understand it. The obvious solution to this undesirable situation is to make

all your scripts look beautiful … all the time .

 Beauty in programming occurs in a variety of different contexts. There is the code

itself: comments, spacing, variable names, etc. that lead to outward beauty. There is also

the inner beauty of abstraction. This chapter deals with the code you see. The next chap-

ter addresses abstraction.

 This chapter has a lot of advice on how your programs should look. Don’t feel

you have to follow all of the advice exactly. It is important to program idiomatically.

By that, we mean that your style should fi t with your culture. If you are working

9781107000681c07_p296-341.indd 3059781107000681c07_p296-341.indd 305 11/5/2011 6:39:52 PM11/5/2011 6:39:52 PM

Programming topics306

with a team that uses a two-space indent and CamelCase, 7 by all means, do that

also. But just because some particular practice is common doesn’t make it correct.

Use your best judgment. For example, if your programming culture doesn’t include

 strict and warnings , you should either demand that others change or consider

running away.

 Indentation
 As we learned all the way back in Chapter 4.6 , whenever you have a block of code, you

indent the block by one tab character 8 to show the logical hierarchy. This book gener-

ally uses a style of code indentation called “one true brace.” There are several common

indentation styles (see http://en.wikipedia.org/wiki/Indent_style). If you don’t like one

true brace indentation, feel free to choose one of the other common styles. But do not

make up your own style! Your primary job as a programmer is to write programs that

can be easily understood by others, and inventing new programming paradigms defeats

that goal.

 Blocks of code can themselves contain other blocks, in which case the inner block

is indented one extra level.

 if (condition 1) {

 # one tab

 if (condition 2) {

 # two tabs

 }

 }

 Are these multiple levels of indentation necessary? Strictly speaking, no. But consider

the following nested conditional.

 if($x>$y){print”1\n”;if($x<5){print”2\n”;}}else{print”3\n”;}

 The logic is much more obvious when written with standard indentation rules.

 if ($x > $y){

 print “1\n”;

 if ($x < 5) {

 print “2\n”;

 }

 } else {

 print “3\n”;

 }

 7 Mixing capital and lowercase letters can look like the humps of a camel.

 8 Tab characters are usually four or eight characters in width. It depends on your editor. We set our editors to four

spaces. Some people prefer to indent with spaces so the indentation is consistent regardless of the tab setting. In some

communities, two spaces is preferred to tabs.

9781107000681c07_p296-341.indd 3069781107000681c07_p296-341.indd 306 11/5/2011 6:39:52 PM11/5/2011 6:39:52 PM

Code beautifi cation 307

 Line length
 There is a long tradition in programming that lines should contain no more than 80

characters. 9 Although it is not necessary to follow this practice, many programmers still

do. The programs in this book generally have short lines, but it is easy to make longer

lines when you start nesting lots of blocks. If you fi nd yourself writing exceedingly long

lines that force your editor to scroll sideways, consider breaking the line into pieces. A

long line such as this:

 if ($my_car_is_in_the_shop == 1 and $the_buses_are_not_running == 1) {

 can be re-written like this:

 if ($my_car_is_in_the_shop == 1 and

 $the_buses_are_not_running == 1) {

 As well as splitting the single line of code across two lines in our coding editor, we also

make sure the two variables are aligned with each other. Furthermore, we insert spaces

after the fi rst variable to line up the two equality operators.

 Variable and function names
 In general, variable names should be lower case . There are, of course, exceptions. Global

variables should begin with upper-case characters and constants should be all capitals.

 my $local;

 my $Global;

 my $CONSTANT = 5; # pseudo-constant

 use constant PI => 3.1415926; # true constant

 Variables with small scopes should have small names. For example, using $i as a

counter in a loop is not only okay, it is preferred. Variables with larger scope should have

longer, more descriptive names. When variable names contain multiple words, there are

two common conventions: underscores and CamelCase. We prefer underscores, but both

styles are completely acceptable. Don’t mix them in the same program, however.

 my $long_variable_name; # underscore

 my $longVariableName; # CamelCase

 Variable names tend to be nouns. Function names tend to be verbs. Function names

follow the same general rules as variable names. Class names begin with a capital let-

ter. Class methods are also generally capitalized (except new). Instance methods and

attributes are lower case.

 my $obj = new Something; # capital class name

 $obj->attribute; # lowercase

 $obj->method_name; # underscore

 $obj->methodName; # CamelCase with first letter underscore

 9 Punch cards and terminals were often 80 columns wide.

9781107000681c07_p296-341.indd 3079781107000681c07_p296-341.indd 307 11/5/2011 6:39:52 PM11/5/2011 6:39:52 PM

Programming topics308

 Comments
 One of the simplest ways to beautify your program is to employ comments to break up

code into sections based on what the code does. Major sections of code can be com-

mented with larger blocks of comments. There are a number of ways you can do this.

Unlike indentation, religious wars are not being fought about this, and you could invent

your own style without offending anyone:

 ##

 # Major subheading

 # some descriptive text about this section

 ##

 ####################

 # Minor subheading #

 #################### cute, but maybe too much!

 ()_() /

 #------------------# (o.o)

 # Minor subheading # ()_(),

 #------------------#

 # minor subheading

 Whitespace
 If used properly, whitespace characters (tabs, newlines, spaces) can improve the read-

ability of your code. However, if used improperly they can confuse people, especially

if you are breaking with standard practices. As we saw earlier, tabs are used to show

hierarchy in block structure. Spaces are used to separate operators and functions, and to

align related statements on different lines. Newlines are used to separate lines and parts

of the program that do different things. For a quick summary:

 Bad

 $f=1;for($i=1;$i<=$n;$i++){$f*=$i}#factorial

 Good

 # factorial

 $f = 1;

 for ($i = 1; $i <= $n; $i++){

 $f *= $i;

 }

 Spaces
 Keywords like if , else , for , and my , should have whitespace on either side:

 if($x == 1) # bad

 if ($x == 1) # good

9781107000681c07_p296-341.indd 3089781107000681c07_p296-341.indd 308 11/5/2011 6:39:52 PM11/5/2011 6:39:52 PM

Code beautifi cation 309

 Although functions can look a little bit like keywords in some circumstance, there is

no space between the name and the opening parentheses. If functions are called without

parentheses, then a space is present:

 print (“hello”); # bad

 print(“hello”); # good

 print”hello”; # bad

 print “hello”; # good

 Most of the time, operators like == should have spaces on either side. The unary 10

operators such as comma and auto-increment are an exception and bind directly to vari-

able names:

 my ($x, $y, $z); # trailing space after comma

 $x++; # no space

 There should be no space between an array or hash name and its brackets:

 $array[0]; # good

 $array [0]; # bad

 Similarly, when using references, there should be no spaces around the arrow;

 $ref->{something}; # good

 $ref -> {something}; # bad

 $ref-> {something}; # bad

 $ref ->{something}; # bad

 Aligning with spaces
 When performing several assignments, align the operators:

 Ugly

 $x = 1;

 $height = 4;

 $precision = 7.135;

 Pretty

 $x = 1;

 $height = 4;

 $precision = 7.135;

 Similarly, when you have simple switches, break out of block structure and align the

conditions and braces:

 10 Operators with a single operand are called unary operators. Those with two operands are binary operators. There is only

one trinary operator (see Chapter 4.6).

9781107000681c07_p296-341.indd 3099781107000681c07_p296-341.indd 309 11/5/2011 6:39:52 PM11/5/2011 6:39:52 PM

Programming topics310

 Cumbersome

 if ($x == 1) {

 do_something;

 } elsif ($x == 2 and $y == 1) {

 do_something_else;

 } else {

 die;

 }

 Ugly

 if ($x == 1) {do_something}

 elsif ($x == 2 and $y == 1) {do_something_else}

 else {die}

 Pretty

 if ($x == 1) {do_something}

 elsif ($x == 2 and $y == 1) {do_something_else}

 else {die}

 Separate thoughts with newlines
 While you can add comments to break up all the different “thoughts” in a program,

sometimes a newline is more appropriate. For example, if you want to calculate the

standard deviation, you fi rst need to calculate the mean, then the variance. Using a little

vertical spacing helps keep these different thoughts organized:

 # descriptive statistics #

 my $mean = 0;

 for my $v (@v) {$mean += $v/@v}

 my $var = 0;

 for my $v (@v) {$var += ($v – $mean) ** 2}

 my $std = sqrt($var);

 Separate header and footer material
 Separate header material from the body of the program. If you have footer material,

separate that too:

 #!/usr/bin/perl

 # my_witty_program_name.pl

 use strict; use warnings;

 use SomethingElse;

 # body of program

9781107000681c07_p296-341.indd 3109781107000681c07_p296-341.indd 310 11/5/2011 6:39:52 PM11/5/2011 6:39:52 PM

Abstraction 311

 END {

 # cleanup routines

 }

 Similarly, separate header and footer material in subroutines :

 sub something {

 my ($x, $y) = @_;

 # body of subroutine

 return $f, $q;

 }

 7.4 Abstraction

 The inner beauty of programming
 At various points in this book, we talk about the importance of abstraction. This chapter

serves to organize and reinforce those ideas. One goal of this chapter is to make your

programs more general and more robust. Another goal is to convey the aesthetic side of

software development.

 Abstraction in art is a movement away from reality and all its everyday confl icts.

It is sometimes confusing, and its departure from common references means it is not

always beautiful at fi rst sight. But after some time with a piece, you may fi nd that the

abstraction makes its beauty more profound. Abstraction in programming has a simi-

lar feel. Code that solves a problem in a very general way can be confusing to read and

can take a lot of effort to write. Why do all this stuff when all I want to do is solve one

simple problem? The reason is that code which can be easily applied to new situations

is not simply more useful, it also has a kind of transcendent beauty. What the heck are

we talking about? Have we lost our minds? No! We just love programming! While the

main goal of this book is to help you solve real-world problems with Unix and Perl,

we also hope you will become a connoisseur of abstract art (well, the programming

kind anyway).

 Example 7.4.1
 The following code computes the circumference and area of a circle that has a radius

of 4.

 1. # circle attributes v1

 2. $circumference = 2 * 3.1415926 * 4;

 3. $area = 3.1415926 * 4 * 4;

 On the one hand, there is nothing wrong with this code as it correctly computes the

desired answers. But changing to a different-sized circle requires editing the code in sev-

eral places. Not only is this laborious, but a user might make a mistake while typing.

9781107000681c07_p296-341.indd 3119781107000681c07_p296-341.indd 311 11/5/2011 6:39:52 PM11/5/2011 6:39:52 PM

Programming topics312

 Example 7.4.2
 One obvious, and easy, improvement to Example 7.4.1 can be made simply by storing

all the values in variables:

 1. # circle attributes v2

 2. $radius = 4;

 3. $pi = 3.1415926;

 4.

 5. $circumference = 2 * $pi * $radius;

 6. $area = $pi * $radius ** 2;

 Using variables achieves two things. Not only does it make the code easier to under-

stand, but it is also easier to use. To change the radius, you simply change one value.

Much better! Unfortunately, this still requires that the user edit the code. From a devel-

oper standpoint, you can trust users about as far as you can throw them. Even if you have

super-strength, don’t encourage users to edit your programs.

 Example 7.4.3
 It is very easy to bring user-defi ned parameters into your program. Simply put them on

the command line.

 1. # circle attributes v3

 2. ($radius) = @ARGV;

 3. $pi = 3.1415926;

 4.

 5. $circumference = 2 * $pi * $radius;

 6. $area = $pi * $radius ** 2;

 In any situation where a script contains some parameter that you might want to

change between separate runs of the script, you should never hard code this into your

script. Use @ARGV , as in this example, or consider using the Getopt Perl module (see

 Chapter 6.7).

 The previous examples are incredibly simple, but they illustrate two very important

points: (1) generalization and (2) separation of interface and implementation . To make

code more general, you should factor out the common parts. For example, rather than

use 3.1415926 each time you need a value for pi, you can simply defi ne a variable once

and use it throughout your program. We will see greater and greater levels of general-

ization below.

 The interface of a program defi nes how a user interacts with it. The interaction might

be through a web page, graphical application, or just on the command line. The imple-

mentation is the code itself. Some users are developers, and their interaction is not just

with programs, but also with subroutines, libraries, and classes. Regardless of who the

users are, a functional unit of code should not require editing. It should have well-

defi ned inputs and outputs and no side-effects.

9781107000681c07_p296-341.indd 3129781107000681c07_p296-341.indd 312 11/5/2011 6:39:52 PM11/5/2011 6:39:52 PM

Abstraction 313

 Subroutines
 Subroutines can make the logic of a complicated program much easier to see. We

use subroutines every day in life. For example, you may think about the errands you

need to do in a day as “go grocery shopping, clean the kitchen, make dinner.” Each

of these activities encapsulates a great number of specifi c subactivities. Defi ning sub-

routines means you can think about the big picture without getting distracted by the

details.

 Example 7.4.4
 The following code opens two fi les and reports any identical lines between the fi les.

Lines 1–3 read one fi le, and lines 5–7 read the other. The comparisons are in lines

9–13.

 1. open(my $fh1, “<“, $ARGV[0]) or die “error opening

$ARGV[0]”;

 2. @line1 = <$fh1>;

 3. close $fh1;

 4.

 5. open(my $fh2, “<“, $ARGV[1]) or die “error opening $ARGV[1]”;

 6. @line2 = <$fh2>;

 7. close $fh2;

 8.

 9. foreach $line1 (@line1) {

 10. foreach $line2 (@line2) {

 11. print $line1 if $line1 eq $line2;

 12. }

 13. }

 This part of the book is about abstraction, but we need to make a slight digression

for safety. Lines 1–3 and 5–7 are nearly identical. You might therefore write lines 1–3,

copy-and-paste to get lines 5–7, and then do a little editing as necessary. This kind of

copy-and-paste programming sometimes leads to horrifi c run-time bugs. The practice is

born of laziness, and can do more damage than you can possibly imagine. Please, try not

to do this! Instead, any time you need to write code twice, write a subroutine instead.

 Example 7.4.5
 This script is functionally identical to Example 7.4.4, but defi nes a single subroutine to

retrieve lines from a fi le.

 1. @line1 = get_lines_from_file($ARGV[0]);

 2. @line2 = get_lines_from_file($ARGV[1]);

 3.

 4. foreach $line1 (@line1) {

 5. foreach $line2 (@line2) {

 6. print $line1 if $line1 eq $line2;

9781107000681c07_p296-341.indd 3139781107000681c07_p296-341.indd 313 11/5/2011 6:39:52 PM11/5/2011 6:39:52 PM

Programming topics314

 7. }

 8. }

 9.

 10. sub get_lines_from_file {

 11. my ($file) = @_;

 12. my @line;

 13. open(IN, $file) or die “error opening $file”;

 14. @line = <IN>;

 15. close IN;

 16. return @line;

 17. }

 Example 7.4.5 is much easier to read and understand than Example 7.4.4 because

of the abstraction provided by the function name (get_lines_from_file). It is also

easier to modify and maintain. For example, maybe you want the script to only compare

lines in the input fi les if those lines start with a certain character. Making this modifi ca-

tion requires editing just the one subroutine, and not two different loops. Example 7.4.5

is longer than Example 7.4.1, and it takes more initial effort to program with abstraction.

However, the reward is reaped many times over in the long run. As an added bonus, the

code is more aesthetically pleasing.

 You could place lines 4–8 from the above code into another subroutine called

 print_identical_lines() . Then the entire logic of the program would be stated in

the fi rst three lines. But this is going a little too far. If the code is not being used multiple

times, it is a little overzealous to make it into a subroutine.

 Libraries
 As shown above, subroutines make parts of your code re-usable. But what if you want

to share the same clever piece of code in several different programs? For example, you

have written a program that reads a DNA sequence and calculates the codon usage.

Later, you decide you want to make another program that reads a DNA sequence and

calculates its melting temperature. Both programs must read a DNA sequence. One

way to get the code from the fi rst program to the second is to copy and paste it. STOP!

Don’t do that. Never copy and paste. Not only is it dangerous, there is a more general,

and more beautiful solution. Subroutines can be shared between different programs.

You can write code once and share it with as many programs as you like. All you have

to do is place your subroutines into a library (also called a module). 11 This is easier than

you might imagine. A library that contains various DNA analysis subroutines might be

called SequenceTools. A library fi le ends with the suffi x .pm , so the library fi le would

then be called SequenceTools.pm .

 The simplest form of library is just a fi le of subroutines. Example 7.4.6 shows how

to create a library. Perl requires that libraries return a true value when read, so it is cus-

tomary that the last line of a fi le contains the number 1:

 11 We explain libraries in more detail in Chapter 6.2 .

9781107000681c07_p296-341.indd 3149781107000681c07_p296-341.indd 314 11/5/2011 6:39:52 PM11/5/2011 6:39:52 PM

Abstraction 315

 Example 7.4.6

 1. # SequenceTools.pm

 2. sub read_sequence {} # actual code omitted for brevity

 3. sub codon_usage {}

 4. sub melting_temperature {}

 5. 1;

 In order for Perl to fi nd your library, it must be in the library path (see Chapter 6.2).

To use the library, you simply use it. The program to calculate melting temperature

would look something like this:

 Example 7.4.7

 1. #!/usr/bin/perl

 2. use strict; use warnings;

 3. use SequenceTools;

 4. my $dna = read_sequence($ARGV[0]);

 5. my $tm = melting_temperature($dna);

 There is a major problem with creating libraries this way. Suppose you use two

libraries and each one defi nes a function called read_sequence() . Which function

will be called? Thankfully, Perl reports an error message, but how do you prevent this

situation? In the C language, the convention is to prefi x function names with the author

initials or an abbreviation of the library. So read_sequence() might become st_

read_sequence() . While you could do this in Perl, it would be a little strange because

there is a much better alternative. The package statement allows you to associate func-

tions with specifi c libraries:

 Example 7.4.8

 1. package SequenceTools;

 2. sub read_sequence {} # actual code omitted for brevity

 3. sub codon_usage {}

 4. sub melting_temperature {}

 5. 1;

 The fi rst line of Example 7.4.8 contains a package statement. This creates a name-
space , here called SequenceTools . All the subroutines in SequenceTools actually

have longer, more formal names. The scope operator :: separates namespaces from

functions (and other namespaces). The result of this is that the name of a function such

as codon_usage() can be more formally referred to as SequenceTools::codon_

usage() . Namespaces can contain other namespaces. Think of a namespace as a

 directory, and subroutines as fi les.

9781107000681c07_p296-341.indd 3159781107000681c07_p296-341.indd 315 11/5/2011 6:39:52 PM11/5/2011 6:39:52 PM

Programming topics316

 The namespace of the main body of a Perl program is, appropriately, called main .

So, the subroutine called get_lines_from_file() that we saw back in Example

7.4.5 is more formally main::get_lines_from_file() . Code inside a particular

namespace does not need to use the longer name. But when you want to call a function

in another namespace, you must include the namespace (which is generally the same as

the library name). Let’s look at an example to make this clear.

 Example 7.4.9

 1. #!/usr/bin/perl

 2. use strict; use warnings;

 3. use SequenceTools;

 4. my $dna = SequenceTools::read_sequence($ARGV[0]);

 5. my $tm = SequenceTools::melting_temperature($dna);

 Libraries make code easier to share, maintain, and extend. As with other generaliz-

ing methods, there is a little initial cost in making a library. But the cost is incredibly

small. Every programmer should make a library or two. Once you start using them, you

won’t be able to program without them.

 The only thing better than your library is someone else’s. There are a lot of clever

programmers who have already made powerful libraries. 12 Using your imagination, a

little glue code, and other people’s libraries, you can create programs that do amazing

things beyond your own capabilities. Want to write a program that reads graphics fi les

and performs some image manipulations? No problem! How about connecting to a rela-

tional database and making automated queries? Trivial! Want to make a web robot that

scours the web for email addresses or credit card numbers? You shouldn’t, but it’s easy.

 Object-oriented programming
 Object-oriented programming (OOP) is a level of abstraction above function libraries.

Most of the Perl libraries you will want to use employ OOP principles, so we believe

that all Perl programmers must be able to use objects. We covered OOP in more detail

in Chapter 6.8 , but we’ll include a short refresher here.

 The fundamental unit in OOP is the class . We classify things in everyday life. For

example, there are a lot of vehicles we call cars. A specifi c car is an instance of a class.

An instance is also called an object . Say it aloud, “an object is an instance of a class.”

Substitute the word example for instance if you like: “An object is an example of a class.”

You are an instance/example of the person class. You also happen to be an example of

a mammal, and classes can encapsulate this kind of hierarchy. For now, let’s consider a

simple car class. All cars have various attributes such as year, make, model, and color. In

Perl, you access an object’s attributes with the arrow syntax as $object->attribute

or optionally as $object->attribute() . Why the trailing parentheses? Because the

attributes are actually parameterless functions.

 12 See Chapter 6.9 on CPAN for details of where to fi nd many libraries written by others.

9781107000681c07_p296-341.indd 3169781107000681c07_p296-341.indd 316 11/5/2011 6:39:52 PM11/5/2011 6:39:52 PM

Data management 317

 print $car->color;

 print “antique” if $car->year() < 1980;

 Objects also have methods , which are actions that objects perform. For example, a

car class may defi ne a method for drive .

 $car->drive(“south”, 10, “km”);

 This looks a little bit like a function call. In a non-OOP syntax, the code might look

something like this:

 CarLibrary::drive($car, “south”, 10, “km”);

 As you can see, the OOP syntax is prettier. To create an object of a particular class, you

generally call a constructor whose name is usually new . Constructors are class methods .

They don’t require objects. The preferred way to call the constructor is as follows:

 $car = new Car;

 It might be more illuminating to see the more awkward syntax, where it is more apparent

that the new() function is inside a fi le called Car.pm .

 $car = Car::new();

 It is common to give an object some attributes when you construct it. These are

sometime passed to the object as a list, and sometime as a hash. It depends on who wrote

the class and what style the author prefers.

 $car = new Car (year => 2010, make => ‘Honda’, model => ‘Civic’);

 $van = new Car (1989, ‘Toyota’, ‘Previa’);

 An object keeps all the attributes and methods for some piece of data in a cohesive unit.

With objects, you can think more about how pieces of data should interface with each

other and less about the underlying implementation (code).

 7.5 Data management

 The persistence of memory
 There are many different ways to interact with data, and no one method is best for all

situations. Sometimes, a very simple solution like having your data spread across a set

of CSV fi les on a USB fl ash drive is all that is necessary. At other times, an online rela-

tional database may be more appropriate. In this chapter, we will examine some of the

common ways to read and write data.

 Hard-coded data
 The simplest kind of data is the kind that is hard-coded into your programs. For example,

you might store the value for pi or e in scalar variables:

 my $pi = 3.1415926;

 my $e = 2.7182818;

9781107000681c07_p296-341.indd 3179781107000681c07_p296-341.indd 317 11/5/2011 6:39:52 PM11/5/2011 6:39:52 PM

Programming topics318

 Data that is frequently accessed from subroutines can be stored outside the sub-

routine if it is suffi ciently large. For example, if you have a table for Kyte–Doolittle

hydrophobicity values and a subroutine that calculates hydrophobicity for any protein

sequence, the organization should be as follows:

 my %KDH = (

 A => 1.8, C => 2.5, D => -3.5, E => -3.5, F => 2.8,

 G => -0.4, H => -3.2, I => 4.5, K => -3.9, L => 3.8,

 M => 1.9, N => -3.5, P => -1.6, Q => -3.5, R => -4.5,

 S => -0.8, T => -0.7, V => 4.2, W => -0.9, Y => -1.3,

);

 sub kd_hydrophobicity {

 my ($prot) = @_;

 my $hydro = 0;

 for (my $i = 0; $i < length($prot); $i++) {

 $hydro += $KDH{substr($prot, $i, 1)};

 }

 }

 If you put the table inside the subroutine, the data structure has to be initialized every

time the program runs. For small pieces of data, it is better to keep as much internal to

the subroutine to make the subroutine more self-suffi cient and easier to understand.

 __END__ and __DATA__ tokens
 If you have a large amount of data that you don’t want to hard-code into variables,

you can store this at the end of the program and read it with the DATA fi lehandle. For

example, you could store the genetic code as follows:

 #!/usr/bin/perl

 use strict; use warnings;

 my %GeneticCode;

 while (<DATA>) {

 my ($codon, $amino_acid) = split;

 $GeneticCode{$codon} = $amino_acid;

 }

 __END__

 AAA Lys

 AAC Asp

 AAG Lys

 AAT Asp

 ACA Thr

 ACC Thr

 :

 TTT Phe

9781107000681c07_p296-341.indd 3189781107000681c07_p296-341.indd 318 11/5/2011 6:39:52 PM11/5/2011 6:39:52 PM

Data management 319

 You can use the __END__ or __DATA__ tokens to separate data from other things at the end

of the program. If you are using both __END__ and __DATA__ , always put __END__ fi rst.

Otherwise everything, including the __END__ token, will be considered data.

 __END__

 notes to myself

 __DATA__

 actual data

 CSV and TSV
 Text fi les continue to be one of the most common interchange formats. They are easy to

read, and simple to parse. They are also somewhat more future-proof compared to most

other fi le formats. Two very common formats are comma-separated values (CSV) and

tab-separated values (TSV). Both of these formats are usually record-based: each line of

the fi le corresponds to a different unit of some kind. For example, a record-based CSV

fi le of people might look like this:

 Korf,Ian,F

 Bradnam,Keith,R

 Parsing such a fi le is very simple with the split() function. The natural way to

store such records internally is as an array of hashes:

 my @people;

 while (<>) {

 my ($last, $first, $mi) = split(/,/, $_);

 push @people, {

 last => $last,

 first => $first,

 mi => $mi,

 };

 }

 It is easy to print such information by using the join() function. You might also want

to include a “separator” variable that will easily allow you to print your data in TSV or

CSV format:

 my $separator = $tab ? “\t” : “,”;

 foreach my $p (@people) {

 print join($separator,

 $p->{last},$p->{first}, $p->{mi});

 }

 XML
 One of the most convenient ways to represent complex data is XML. This text-based

format allows one to nest data to any depth. Here is an example XML fi le containing the

same data as the CSV fi le shown above:

9781107000681c07_p296-341.indd 3199781107000681c07_p296-341.indd 319 11/5/2011 6:39:52 PM11/5/2011 6:39:52 PM

Programming topics320

 <?xml version=‘1.0’?>

 <people>

 <person>

 <last>Korf</last>

 <first>Ian</first>

 <mi>F</mi>

 </person>

 <person>

 <last>Bradnam</last>

 <first>Keith</first>

 <mi>R</mi>

 </person>

 </people>

 Comparing the XML and CSV formats, it’s clear that XML is a lot more verbose.

Each value has opening and closing tags and some degree of indentation. 13 Is this extra

baggage necessary? For some kinds of data, defi nitely not. But there are times when data

becomes highly nested and XML becomes very convenient. Looking at the XML fi le,

you can imagine it would be diffi cult to parse. Fortunately, there is a free Perl module

called XML::Simple that makes reading and writing XML very easy. 14 For example, if

the XML information shown above was stored in a fi le called “people.xml,” then here is

how you could parse this information:

 #!/usr/bin/perl

 use strict; use warnings;

 use XML::Simple;

 use Data::Dumper;

 my $xml = new XML::Simple;

 my $data = $xml->XMLin(“people.xml”);

 print Dumper($data);

 The output of the Dumper($data) module would look like this:

 $VAR1 = {

 ’person’ => [

 {

 ’first’ => ‘Ian’,

 ’last’ => ‘Korf’,

 ’mi’ => ‘F’

 },

 {

 ’first’ => ‘Keith’,

 ’last’ => ‘Bradnam’,

 13 Like Perl, indentation in XML is not required but helps readability.

 14 There are several modules for reading XML. See CPAN (and see Chapter 6.9 if you don’t know about CPAN).

9781107000681c07_p296-341.indd 3209781107000681c07_p296-341.indd 320 11/5/2011 6:39:52 PM11/5/2011 6:39:52 PM

Data management 321

 ’mi’ => ‘R’

 }

]

 };

 This shows that each person is a hash and the collection is stored as an array (just like

how we stored the CSV records). XML::Simple hands the entire data back as a hash

reference. If you wanted to loop through all of the people listed in the XML data, you

could do it like this:

 foreach my $p (@{$data->{person}}) {

 print “$p->{first} $p->{last}\n”;

 }

 Persistent hashes with dbmopen
 Imagine you have a large data fi le stored in some text format which can be imported

by Perl as some sort of hash structure. Every time you need to access some informa-

tion, your Perl script has to read all of the fi le. Even if you wanted to modify a single

value, then you would still need to read the entire fi le, modify the desired value, and

then write the fi le to disk again. Fortunately, Perl provides a more effi cient way of

working with large hashes. Effectively, you can store your hash as a fi le and treat it

like a miniature database . To associate a hash with a fi le, you use the dbmopen()

function. This takes three arguments: the hash, the name of the fi le, and the fi le per-

missions in octal. In this example, we create a new hash and associate it with a fi le

called “my_database”:

 #!/usr/bin/perl

 use strict; use warnings;

 my %hash;

 dbmopen(%hash, “my_database”, 0666);

 $hash{`date`} = 1;

 foreach my $date (keys %hash) {print $date}

 After performing a dbmopen() , a new fi le will be created. In the example above,

the fi le will be called my_database.db . 15 If you try to view the fi le with the Unix

command less , you will fi nd it is a binary fi le, not a text fi le. In addition to dbmo-

pen() Perl also has several other ways to interact with fi les using the DB_File mod-

ule. However, if you need to do more complex fi le operations, we suggest using a

relational database.

 Storable.pm
 For reading and writing data structures that are more complex than simple hashes, Perl

provides the Storable package . This allows you to read/write arbitrarily complex data

 15 Depending on your OS, the fi le may have a different extension.

9781107000681c07_p296-341.indd 3219781107000681c07_p296-341.indd 321 11/5/2011 6:39:53 PM11/5/2011 6:39:53 PM

Programming topics322

structures to your fi lesystem with the store() and retrieve() functions. Here is an

example of how to write data to a fi le:

 2. #!/usr/bin/perl

 3. # store.pl

 4. use strict; use warnings;

 5. use Storable;

 6.

 7. my %table = (

 8. array => [1, 2, 5],

 9. hash => {dog => ‘woof’,cat => ‘meow’},

 10. string => “hello world”,

 11.);

 12. store(\%table, “db.storable”);

 The single line of code on line 11 will both create a fi le (“db.storable”) and write the

contents of the hash to that fi le. This next script shows how simple it is to retrieve the

data:

 1. #!/usr/bin/perl

 2. # retrieve.pl

 3. use strict; use warnings;

 4. use Storable;

 5.

 6. my $data = retrieve(‘storable_file’);

 7. print $data->{array}[0], “\n”;

 From a retrieval point of view, the original name of the hash (%table) is not relevant,

but obviously you do need to know something about the hash structure to effi ciently

extract information.

 SQL databases
 Most of the information on the internet is stored in relational database management

systems (RDBMS). Common RDBMS include Oracle, MySQL, PostgreSQL, DB2,

and SQLite. Some RDBMS are expensive, others are free. All are extremely useful for

organizing and searching complex data. One of the great advantages of RDBMS is that

they all use a common language called SQL (structured query language). 16 Therefore, if

you know how to use one database, you can use them all. 17 If you are working with a lot

of data, taking some time to learn SQL will be time well spent. After Perl, it’s probably

the most important thing a data jockey needs to know.

 There are more books about SQL than there are about Perl. So how exactly are we

going to cover both SQL and Perl–SQL interaction at the end of a chapter? Very briefl y!

To get started with SQL, the fi rst thing you need is some RDBMS software. Even though

 16 In truth, not all relational databases use SQL. There are many non-SQL databases in existence. But if you were designing

a new database today, you would use a SQL RDBMS.

 17 This is also not quite true. There are subtle differences among the various databases.

9781107000681c07_p296-341.indd 3229781107000681c07_p296-341.indd 322 11/5/2011 6:39:53 PM11/5/2011 6:39:53 PM

Data management 323

some OSs already have an RDBMS installed, we suggest you use SQLite. One of the

hassles in setting up an RDBMS is defi ning owners, users, and their permissions. While

these security features are important to protect data, they are a distraction for the fi rst-

time user. SQLite databases are contained in a single fi le. If you can read from and write

to this fi le, you can read from and write to the database. Here’s what SQLite says about

itself:

 SQLite is a software library that implements a self-contained, serverless, zero-con-

fi guration, transactional SQL database engine. SQLite is the most widely deployed

SQL database engine in the world. The source code for SQLite is in the public

domain.

 SQLite may already be installed on your computer. Try typing sqlite in a terminal

to fi nd out. 18 If SQlite is not installed, download it from sqlite.org and follow the instal-

lation instructions.

 Let’s assume you have a fi le of people, addresses, and occupations as follows:

Name Address Occupation

Steve Jobs Cupertino Tycoon

Jennifer Jones Nottingham Sales

Willy Loman Brooklyn Sales

Nigel Tufnel Squatney Musician

 Let’s create this in SQLite. First, you have to create a database. Enter the following

command in your terminal:

 $ sqlite3 test.db

 This creates a fi le called test.db . It will also report a little information and enter into

an interactive mode with an sqlite> prompt.

 SQLite version 3.6.21

 Enter . “help” for instructions

 Enter SQL statements terminated with a “;”

 sqlite>

 At the prompt type the following (note that it will add indentation for you

automatically):

 create table People (

 name TEXT,

 address TEXT,

 occupation TEXT

);

 18 Remember to tab-complete. sqlite may be named sqlite3 .

9781107000681c07_p296-341.indd 3239781107000681c07_p296-341.indd 323 11/5/2011 6:39:53 PM11/5/2011 6:39:53 PM

Programming topics324

 Congratulations, you have just created your fi rst SQL database! Now to insert some

values:

 insert into People values (“Steve Jobs”, “Cupertino”, “Tycoon”);

 insert into People values (“Jennifer Jones”, “Nottingham”, “Sales”);

 insert into People values (“Willy Loman”, “Brooklyn”, “Sales”);

 insert into People values (“Nigel Tufnel”, “Squatney”, “Musician”);

 You can display all the rows with an SQL select statement.

 sqlite> select * from People;

 This will show you everything in the People database. By default, fi elds are separated

by a vertical bar:

 Steve Jobs|Cupertino|Tycoon

 Jennifer Jones|Nottingham|Sales

 Willy Loman|Brooklyn|Sales

 Nigel Tufnel|Squatney|Musician

 Of course, you would never want to enter all of your data by hand and, ideally, you

would be using some other application to retrieve and view the data (instead of the ter-

minal). If you are going to be a database power-user, you should have your programs

interacting directly with database.

 DBI and DBD
 To use Perl to connect to your SQLite database you need to use the DBI and DBD::SQLite

modules . Install these as required. Now let’s try a simple script that connects to the

database, inserts some data, and then does some simple reporting . The following script

barely scratches at the surface of what is possible with Perl and SQL. Think of this as a

Hello World script for SQLite:

 #!/usr/bin/perl

 use strict; use warnings;

 use DBI;

 # connect to SQLite database

 my $dbh = DBI->connect(“dbi:SQLite:dbname=test.db”, ““, ““) or die;

 # insert a new row

 $dbh->do(‘INSERT INTO People VALUES(“Ian Korf”, “UCD”,

“Professor”)’);

 # report all people in the database

 my $sth = $dbh->prepare(‘SELECT * FROM People’);

 $sth->execute;

 while (my $result = $sth->fetchrow_hashref) {

 print “$r->{name} from $r->{address} works as

$r->{occupation}\n”;

 }

9781107000681c07_p296-341.indd 3249781107000681c07_p296-341.indd 324 11/5/2011 6:39:53 PM11/5/2011 6:39:53 PM

Documentation 325

 The combination of Perl and an SQL database is incredibly powerful. But it is also a

little complicated. We suggest you read the entirety of this book and also an introductory

SQL book before you mix the two.

 Relationships
 The previous examples showed how you can use Perl to interact with a simple SQL data-

base. However, the database we created was not actually relational. Did you notice that

the “occupation” fi eld contained redundant data? You may have hundreds or thousands

of people, yet only a handful of different occupations. We can factor out the occupations

into a separate table so we have two tables that share a relationship.

Name Address Occupation_id

Steve Jobs Cupertino 1

Jennifer Jones Nottingham 2

Willy Loman Brooklyn 2

Nigel Tufnel Squatney 3

Occupation Occupation_id

Tycoon 1

Sales 2

Musician 3

 Factoring out all the common data into separate tables is called normalizing . The

reverse is called de-normalizing . For greatest data integrity, data should be normalized

as much as possible. One reason for this is that it makes it much easier to change many

records at a time. For example, suppose one wanted to change the “Tycoon” occupation

to “Business.” In a normalized database, this simply requires changing the text in the

occupation table. In a non-normalized database, one would have to change each value of

“Tycoon” to “Business.” The normalized database also uses less memory, though quer-

ies are often slower than in de-normalized databases. It is therefore a common practice

to have two databases with the same information. One database is normalized and keeps

live data. Periodically, a de-normalized version is created for searching. In a sense, the

normalized database is the DNA and the de-normalized versions are RNA. 19

 7.6 Documentation

 Self-help books for programmers
 As your software becomes more complex, documentation becomes increasingly import-

ant. Documentation can take the form of personal notes to yourself, instructions for

other developers, or manuals for non-programming users.

 19 Probably not the best analogy, but this is what you get from biologist authors.

9781107000681c07_p296-341.indd 3259781107000681c07_p296-341.indd 325 11/5/2011 6:39:53 PM11/5/2011 6:39:53 PM

Programming topics326

 Why add documentation?
 When you fi rst write a new script, it will always seem obvious and intuitive to you.

The idea that you might ever forget why you wrote a particular piece of code will seem

unlikely. This is why you will be tempted to not add any comments, and to omit any docu-

mentation. But after you fi nish writing a script it becomes very easy to forget about the

gory details of how it all works. More importantly, it becomes easy to forget all about why

you chose to come up with the particular solution your code contains. Many of the scripts

you write will solve particular problems and may only need to be used infrequently. It is

very likely that you will sometimes need to return to a script you haven’t looked at or run

for many months (or even years). Let’s quickly consider the four likely scenarios that will

arise in which a script is needed that has remained dormant for over a year:

 (1) You need to run the script again.

 (2) Someone else wants to run your script.

 (3) You need to edit the code (to add a new feature or fi x a bug).

 (4) Someone else wants to edit your code.

 Without proper documentation you might only have “vague ideas” of how to use

your script. You might have to look at all the code again and spend hours, if not days,

deciphering it. When someone else wants to use it, you will quickly realize that people

can ask really awkward questions, like: “How do I run it to do X?”; “Is there an option

to do X and Y?”; “Can you explain to me, in detail, how I gain maximum performance

from your script?” If you don’t document your code, you will always need to explain

your program to others.

 As tedious as it can be to have to verbally explain how your program works to

someone else, this is still infi nitely more fun than having to edit a script that contains

no comments or other documentation. When you do this with your own script, you will

be shocked at how little you remember of how it worked. You might also fi nd yourself

troubled as to what the subroutine called “process_data” is actually doing or why you

ever thought that “stuff” was a good name for an array. At least you will know that any

blame lies with you and no-one else was hurt or injured by your lack of documenta-

tion. Finally, consider the fourth item on the list. When you have to edit someone else’s

code, and when that code contains not so much as a single comment, then the whole

experience can become one of the most frustrating and bitter experiences in your life . 20

Frequently, the only way you will properly understand a script that has no documenta-

tion is to rewrite the whole thing from scratch. Even if you only do this once in your

entire career as a programmer, it will be enough to create a deep resentment toward the

person who fi rst wrote the script. Don’t be that person!

 We don’t care if you lie, cheat, or steal. We do care if you don’t

document code. 21

 20 The authors can both claim this with direct personal experience.

 21 Okay, we do care a little bit when people lie, cheat, or steal … just not as much as when people don’t add any comments

or write documentation.

9781107000681c07_p296-341.indd 3269781107000681c07_p296-341.indd 326 11/5/2011 6:39:53 PM11/5/2011 6:39:53 PM

Documentation 327

 Comments
 Comments are best used for notes to yourself. You should not assume that users are pro-

grammers or that they will read your source code. So don’t write anything for users in

your comments. Do use comments to explain why you chose to solve problems in a cer-

tain way (especially if it is an unusual solution). Also use comments to explain what the

point of subroutines and other large blocks of code are. Finally, use comments to explain

a little bit about what type of data will be contained in certain variables. This is particu-

larly important when you use variables whose names are not intuitive. Adding just a few

words to explain a block of code can save you (and others) a lot of time in future.

 Usage
 A usage statement briefl y tells command-line users how to run your program. Usage

statements are reminders of how to use the software, and should not be the only source

of documentation unless the program is very simple. There are a number of different

styles of usage statements. Below we show a typical one that includes simple options

processing (fi rst covered in Chapter 6.7). This program takes two mandatory arguments

and some optional parameters. The text of the usage statement is displayed if the pro-

gram is run without arguments.

 1. #!/usr/bin/perl

 2. use strict; use warnings;

 3. use Getopt::Std;

 4.

 5. my $version = “1.0b”;

 6. my %opt;

 7. getopts(‘ab:v’, \%opt);

 8.

 9. my $usage = “

 10. usage: $0 [options] <file> <threshold>

 11. options:

 12. -a

 13. -b <int>

 14. ”;

 15. die $usage unless @ARGV == 2;

 16.

 17. if ($opt{h}) {die $usage}

 18. if ($opt{v}) {die $version}

 19.

 20. # etc.

 Note how the usage statement (stored in $usage) is split across multiple lines in this

example (lines 10–14). You could instead write this on one line and use newline char-

acters, but doing it this way makes it very easy to see what the fi nal message will look

like. This script also features a new variable ($0) on line 10; this special variable simply

contains the name of the program that is being executed.

9781107000681c07_p296-341.indd 3279781107000681c07_p296-341.indd 327 11/5/2011 6:39:53 PM11/5/2011 6:39:53 PM

Programming topics328

 A good program will always prompt you with usage instructions when you fail

to specify the correct set of command-line arguments. However, some programs take

no arguments, and in these cases it is common to trigger usage statements with -h or

 -help or --help . Programs often report a version number with the -v or -version or

 --version fl ag. Try running perl -v in your terminal. 22

 __END__ and __DATA__
 One convenient place to put longer internal documentation is at the end of the program.

Anything after the __DATA__ keyword can be read from the DATA fi lehandle. 23

 #!/usr/bin/perl

 use strict; use warnings;

 # etc.

 if ($opt_h) {while (<DATA>) {print}}

 __END__

 Private info

 __DATA__

 This program is designed to …

 README fi les
 One common way to document your programs is to include a separate plain-text fi le,

often called README . All by itself, a fi le named README might be confusing, but

larger programs are generally distributed in a directory containing several fi les. So a fi le

called README is not going to be confusing. Other fi les distributed with software often

include INSTALLATION, LICENSE, and HISTORY.

 The contents of a README are up to you. Ideally, you should include some gen-

eral information from the outset to let people know what kind of software it is. You

should also include some examples of how to use the software in addition to explicit

instructions.

 Plain Old Documentation (pod)
 Perl has a very powerful documentation system called pod . This is a kind of mark-up

language you can use within your programs. This keeps the documentation and code in

one fi le. One of the advantages of pod is that you can export it to a variety of formats.

This gives your software documentation a professional look.

 A section of pod generally begins with =head1 and ends with =cut . In the code

below, lines 3–8 are not part of the code, they are part of the documentation. The blank

lines at 2, 4, 7, and 9 improve readability, and may be necessary depending on the pod

tool you use (see below).

 22 At the time of this writing, Perl is at version 5.10. If you see version 6 (or later), then it may be time to fi nd a new edition

of this book because Perl is expected to undergo a number of important changes.

 23 See Chapter 7.5 on data management for more information.

9781107000681c07_p296-341.indd 3289781107000681c07_p296-341.indd 328 11/5/2011 6:39:53 PM11/5/2011 6:39:53 PM

Documentation 329

 1. my $x = 1;

 2.

 3. =head1

 4.

 5. Everything in this area is documentation. The heading level

 6. determines the indentation.

 7.

 8. =cut

 9.

 10. my $y = 2;

 Pod offers four levels for heading and other paragraph formatting options. There are

also font tags for bold-face, italic, and such. Without getting into too much detail, let’s

look at some pod mark-up in a pretend module called Sequence.pm .

 1. package Sequence;

 2. use strict; use warnings;

 3.

 4. my %GeneticCode;

 5.

 6. =head1 NAME

 7.

 8. Sequence

 9.

 10. =head1 SYNOPSIS

 11.

 12. use Sequence;

 13. my $dna = Sequence::read_fasta(file);

 14. my $pro = Sequence::translate($dna);

 15.

 16. =head1 DESCRIPTION

 17.

 18. Sequence is a non-OOP library containing functions for

 19. handling DNA, RNA, and protein sequences.

 20.

 21. =head2 read_fasta(file)

 22.

 23. Reads a fasta file and returns sequence in a single string.

 24.

 25. =cut

 26.

 27. sub read_fasta { }

 28.

 29. =head2 translate(sequence)

 30.

9781107000681c07_p296-341.indd 3299781107000681c07_p296-341.indd 329 11/5/2011 6:39:53 PM11/5/2011 6:39:53 PM

Programming topics330

 31. Translates a DNA or RNA sequence into protein.

 32.

 33. =cut

 34.

 35. sub translate { }

 Only fi ve lines of this fi le have actual source code. Lines 1 and 2 are the familiar header.

Line 4 has a variable declaration that will presumably be fi lled out elsewhere. Lines 27

and 35 are subroutine declarations with code omitted. Note that the documentation for

each subroutine is only a few lines away. This is really convenient because if you change

a line of code that affects the documentation, you don’t have to open another fi le and edit

it. Out-of-date documentation can be misleading, and keeping the code and documenta-

tion close to each other helps prevent this from happening.

 To convert the embedded pod into a pretty document, we can use a number of pod

translators that come with Perl (try tab-completion of pod2<tab>):

 $ pod2text Sequence.pm

 $ pod2html Sequence.pm > Sequence.html

 $ pod2man Sequence.pm > Sequence.man && man ./Sequence.man

 Additionally, there is usually a perldoc command on most Unix systems. This com-

mand will let you see just the pod documentation that is contained within a Perl script

or module. Just type:

 $ perldoc myscript.pl

 7.7 Revision control

 This chapter is now at version 1.12
 When you fi rst learn to program in Perl (or any language), you are usually focused on

the short-term goal of writing a program to solve a specifi c problem. This is obviously

an important goal, but in an ideal world you should also consider some longer-term

goals, namely:

 (1) What is the best way of upgrading your program to meet future needs?

 (2) Will you ever need to let other people contribute to a script?

 (3) What can you do if you want to be able to use a script on multiple computers?

 You may think that these goals do not apply to your program; you might think your

script is just a small program that you might not need to use again after a week or two

of use. However, it is often hard to predict what the future holds. Maybe your little pro-

gram goes on to be a central tool in your research, and maybe other people’s research

too. Maybe you get requests to add features to your program or you forge a partnership

with someone who wants to collaborate on the development of the code. You may end

up having to install your program on every computer in your lab, and then you will need

a way to keep them all updated with the latest version of your code.

9781107000681c07_p296-341.indd 3309781107000681c07_p296-341.indd 330 11/5/2011 6:39:53 PM11/5/2011 6:39:53 PM

Revision control 331

 The best approach to dealing with all of these issues is to develop your program from

the outset in a way that provides fl exibility to cope with all of these potential demands.

This can all be done using something called revision control software . 24 The essence of

revision control (RC) is that you use some additional software to manage the develop-

ment of your scripts. Let us explore some of the concepts surrounding RC before we

mention some specifi c software you can use.

 Naming scripts and giving them version numbers
 Let’s imagine you have a Perl script called script.pl . 25 It works and has served you

well, but now you want to experiment by adding some new functionality. However, you

also want to keep the original script around in case your new code doesn’t work prop-

erly. The novice programmer will copy their original script and rename the new version

something like script2.pl .

 You may be thinking “where is the harm in that?” but the problem occurs when you

start adding more and more functionality (as well as bug fi xes, speed improvements,

etc.). Over time your code directory will end up looking something like this:

 script.pl

 script2.pl

 script3.pl

 script_test.pl

 script2b.pl

 script_new.pl

 script3.1.pl

 Hopefully you get the picture. It can quickly become a mess and you will lose track

of which script is doing what. Alternatively, you might decide you no longer need an

early version of your script and delete it because you have subsequently improved it.

Then you discover, a year after deleting it, that the old version actually did something

right and your later versions introduced some fl aws you didn’t appreciate at the time.

 Using RC software avoids all of this mess. Such software typically keeps one master

copy of the script, which is the current, latest copy. However, it also keeps track of all
of the changes you have ever made to your script. Every change you make increments

a version number for the script. This version number is controlled by the RC software,

but you can also control when you want your script to switch to a major version number

change (e.g., from version 1.0 to 2.0). RC software doesn’t do all of this automatically –

there is some work involved on your part, but that work is worth the effort. Once you

have access to the history of every change you made to a script, you can do things such

as roll back to an older version, or compare two specifi c versions. From your point of

view, you are still working with one copy of your script in your code directory, the RC

software keeps track of all the changes elsewhere.

 24 Also known as version control , source control , or source code management (SCM).

 25 Please don’t ever give this name to any of your scripts!

9781107000681c07_p296-341.indd 3319781107000681c07_p296-341.indd 331 11/5/2011 6:39:53 PM11/5/2011 6:39:53 PM

Programming topics332

 Collaborative code development
 If you wanted to let someone else contribute to one of your scripts, you could maybe

share a computer or email code back and forth, but this clearly isn’t very practical. What

if you had a really big script and there were 100 collaborators who all needed potential

access to your code?

 RC software allows you to do this. The exact method of how this is done varies with

the particular type of software, but in general you develop your code in a way that allows

you to control who else is allowed to edit your code. Most importantly, other people can

edit your code independently of you. Edits that people make are not applied to the mas-

ter copy of the code until people specifi cally sign-off on the changes they have made.

This process is called committing changes.

 In many cases, people might be editing different parts of the code, e.g., different

subroutines. In these situations the change by programmer A to subroutine 1 will not

affect the changes by programmer B to subroutine 2. But what if two people decide to

edit the same lines of code at the same time? In these situations, the RC software will

spot that this has happened and typically the person who was the last to commit their

changes will be told that their changes are in confl ict with the latest version of the code.

The exact details of how all of this works are not important, all you need to know is that

the software is smart enough to manage all of the changes.

 Keeping your code in sync across multiple computers
 You might develop some software that needs to be run on multiple computers. Without

using RC software you could end up with different computers having different versions

of your code. 26

 When you use RC software you typically can run a single command, which has the

effect of updating one or more scripts on that computer to whatever the latest version is.

This means that if you use RC software then you can ensure your scripts are effectively

backed up to multiple computers. 27

 Other benefi ts of using revision control
 This is not the book to go into all of the details of what RC software can do for you.

However, you should be aware that you can use such software to keep a production copy

of your script and then also make a development version at the same time. This is called

 branching . When you have fi nished working on your development copy, you can merge

changes back into the main copy of the code.

 RC software also lets you comment on all of the changes you make. These com-

ments are external to the script and allow others to clearly see why you made the changes

you did (this is essential when developing code with others). 28 These comments can also

 26 If you don’t plan to learn how to use any RC software, then at least try learning about the Unix rsync command.

 27 This is not a substitute for having a proper back-up policy, and is no substitute at all if you fail to keep at least two

computers updated with the latest version of your scripts.

 28 Commenting on code changes is only useful if you bother to write comments that describe changes in a meaningful way.

“Fixed bug” is not a useful comment, whereas “Fixed the issue that caused a crash when trying to import fi les that were

not in a correct format” is.

9781107000681c07_p296-341.indd 3329781107000681c07_p296-341.indd 332 11/5/2011 6:39:53 PM11/5/2011 6:39:53 PM

Working with other people’s data 333

be useful for you to review the history of your own scripts. Maybe your boss wants you

to produce a list of all of the major code development you have done over the last year.

With RC software, this can usually be done by typing a single command.

 If you ever need to develop code with others, then you should defi nitely use RC

software. Even if you will only ever be working on code by yourself, you should still

consider learning to use it. Of course, it will initially involve some extra time and effort,

but the benefi ts outweigh these initial costs.

 Which RC software should you use?
 There are many different software products you can use for revision control. Some are

free and some are not. Some work across different OSs, whereas some are platform-

specifi c. The most popular free ones are CVS, Subversion, and Git. CVS is the oldest

of these, having been available since 1990. There is therefore a lot of available support

in terms of online documentation, books, etc. Subversion was independently developed

to be a successor to CVS and has been around since 2000. There are many similarities

between the two systems, meaning that if you learn one, it will not be hard to transition

to the other. Git is the newest of the three systems and was developed in 2005. It takes a

very different approach to version control compared to CVS and Subversion, though all

three systems achieve many of the same goals.

 We suggest you compare the different RC software solutions available for your plat-

form and choose one based on the features you desire. 29 If you work in an environment

where other people may already be using some form of RC software, then it obviously

makes sense to consider using the same software as them.

 7.8 Working with other people’s data

 A chapter where we return to the end of the line
 Assuming you have fi nished the Essential Unix and Essential Perl parts of this book, you

now have a very attractive skill set. You can solve a lot of important real-world prob-

lems. You may even fi nd yourself wanting to help other people with their data problems.

Great! But before you start to unleash Unix and Perl on masses of data, learn the fi rst

rule of data wrangling:

 Rule #1: never trust anyone , not even yourself

 What exactly do we mean by this? One of the greatest sources of frustration when ana-

lyzing real data is the inconsistencies caused by “human error .” If you don’t identify the

errors at the beginning, it can ruin everything that follows. For example, you may be

given a spreadsheet with columns containing the fi rst name, last name, email, etc. of a

large number of clients. The person who performed the data entry may have accidentally

 29 Wikipedia has some excellent pages describing various RC software, including a page that compares the main features of

nearly 30 different types of software: http://en.wikipedia.org/wiki/Comparison_of_revision_control_software

9781107000681c07_p296-341.indd 3339781107000681c07_p296-341.indd 333 11/5/2011 6:39:53 PM11/5/2011 6:39:53 PM

Programming topics334

placed both the fi rst and last names in the fi rst column and left the second column empty.

A script that processes such a fi le could break if the last name was absolutely required.

Data that is automatically produced can also contain human errors because humans pro-

gram the machines. You must get in the practice of checking the integrity of your data

at every conceivable step. Sometimes these measures will seem terribly silly, but such

“sanity checks” can identify serious problems with the data and save countless hours of

work.

 Text vs . binary fi les
 The very fi rst sanity check is to ensure your data fi le is in a plain-text format and is not

a binary fi le. 30 Text fi les often have a .txt extension to their fi le name, but they can have

many other extensions or no extensions at all. The only thing you can really say about a

fi le name that ends “.txt” is that whoever named it intended for it to be a text fi le. Binary

fi les can have fi le extensions such as .exe or no extension at all. A binary fi le can even

have a .txt extension, though it would probably be a human error if one did.

 Ultimately, there is no guarantee that you can determine if a fi le is text or binary from

the fi le name alone. For this reason, you should always look inside a fi le to determine

what kind of fi le it is. One of the simplest ways to examine a fi le is to read it with the

Unix less command. Locate a music or photo fi le on your computer and try reading it

with less . If it is a binary fi le, less may issue a warning such as:

 “Customized.mp3” may be a binary file. See it anyway?

 If you continue (type “y”), you may fi nd some unintelligible output. That’s because

the fi le is binary. Try this with any of your Perl or Unix scripts and you will see no

such warnings. So how does less know what is and is not binary? Text fi les have

a very specifi c pattern due to the way they map bits to symbols. The most common

encodings are UTF8 and ASCII. 31 In these eight-bit encodings, each letter (or other

symbol) corresponds to exactly one byte. For example, the binary string 01100101

corresponds to the letter “e”. Even though there are eight bits in one byte, the highest

bit (farthest left) is not used. If you looked at the bits of a text fi le, you would therefore

see a regular pattern where every byte begins with a zero. Here is an example of four

bits from a text fi le.

 01100101 01111000 01110100 01100101

 Binary fi les can encode their data however the authors choose. The fi rst bit of a byte

is not always zero. This makes it fairly simple for a program such as less to determine

if a fi le is binary or not: just look at the fi rst bit of every byte.

 An alternative way of determining what “type” a fi le is, is to simply use the Unix

 file command . This will tell you whether a fi le is text or not, plus it will also provide

you with a whole lot of other information:

 30 Perl can read binary fi les as well as text fi les, but in this book we only discuss text fi les. They are easier to process and are

human-readable.

 31 These encodings are mostly interchangeable. We always recommend people look at the Wikipedia page for ASCII.

9781107000681c07_p296-341.indd 3349781107000681c07_p296-341.indd 334 11/5/2011 6:39:53 PM11/5/2011 6:39:53 PM

Working with other people’s data 335

 $ file README.txt

 REAMDE.txt: ASCII text

 $ file webpage.html

 webpage.html: HTML document text

 $ file script.pl

 script.pl: a /usr/bin/perl script text executable

 $ file image.png

 image.png: PNG image, 700 x 700, 8-bit/color RGB, non-interlaced

 $ file song.mp3

 song.mp3: Audio file with ID3 version 2.2.0, contains: MPEG ADTS, layer III,

v1, 160 kbps, 44.1 kHz, JntStereo

 Line endings
 We have now arrived at one of the most common sources of errors with OPD (other

people’s data). This is literally the end of the line, a subject we addressed briefl y in

 Chapter 5.8 . There are three common ways to end a line of text: Unix, Macintosh, and

Windows. Whatever method is used, the goal is always the same. Any press of the return

or enter key on your keyboard should move the cursor to the next line of whatever text-

based program you are using.

 The Unix end-of-line character is synonymously known as line feed, control-J, 10

(decimal), 0A (hexadecimal) or 00001010 (binary).

 The Mac end-of-line character is the carriage return, control-M, 13 (decimal), 0D

(hexadecimal) or 000010111 (binary).

 Windows uses two characters, carriage return followed by line feed .

 These differences can be a frequent source of confusion when working with text

fi les that were originally produced on a different computer system to the one you are

using. So what does this mean to you? If you are on a Unix system and someone gives

you a fi le saved on Windows, your fi le may end up containing extra characters at the

end of each line. If they give you a Mac fi le, it may all appear as a single line of text

with no newlines. 32 If you open the fi le with less , the carriage returns will appear as

 ̂ M characters. 33

 Imagine someone hands you a spreadsheet saved in a text format and upon reviewing

it with less you realize it has not been saved with Unix line breaks. What should you

do? You can open it in your favorite text editor and then save it with the appropriate line

endings (most text editors will allow you to switch to whatever line ending you like).

But what if you had to convert 1000 fi les? That could give you an injury! So let’s write

our own converter.

 32 Starting with OS X, line endings on the Mac have been control-J. But for backward compatibility, control-M is also

allowed. Many programs still use control-M.

 33 The ^ symbol is a way of specifying what are known as “control characters.” So you should read ̂ M as “control-M.”

Some people fi nd this confusing as two ASCII characters are being used to represent something which internally is stored

as only one character (the carriage return). Control characters often appear in inverse colors, so if your program uses

white text on a black background, ̂ M may appear as black text on a white background.

9781107000681c07_p296-341.indd 3359781107000681c07_p296-341.indd 335 11/5/2011 6:39:53 PM11/5/2011 6:39:53 PM

Programming topics336

 To convert from Mac to Unix, the script needs to change every occurrence of a car-

riage return to a line feed (also called newline characters). Just as we have seen that Perl

uses \n to represent newline characters, Perl uses \r as the special symbol for carriage

return . You can imagine writing a program that looks something like this:

 #!/usr/bin/perl

 use strict; use warnings;

 while (my $line = <>) {

 $line =~ s/\r/\n/g;

 print $line;

 }

 For Windows fi les, you would need to change the substitution part to s/\r\n/\n/g .

 It turns out that Perl has some convenient command-line options that will help us

accomplish this task. The -e option to the perl command is used to execute a piece of

Perl code on the command line. 34 This means we can briefl y revisit Chapter 4.1 and learn

a new way of printing “hello world”:

 perl -e ‘print “hello world\n”‘

 There are a few other command-line options that are frequently used in conjunction

with -e , and one of the most common ones is the -p option, which allows you to print

each line of any input fi le you process (after applying some Perl code to that line). The

following Perl command – and it is a command and not a script – will convert a Mac or

Windows fi le to Unix:

 perl -pe ‘s/\r\n?/\n/g’ < mac_or_windows_file.txt > unix_file.txt

 This very simple command will loop over each line of the specifi ed input fi le, apply

the Perl code to that line, and then print the output, which we redirect into a new out-

put fi le. Notice that we have changed the regex in the substitution so it will substitute

a carriage return followed by zero or one newlines. This makes it work with both Mac

and Windows fi les. To run this command with less typing, you can make it an alias (see

 Chapter 3.21):

 alias to_unix=“perl -pe ‘s/\r\n?/\n/g’” # sh shells

 alias to_unix “perl -pe ‘s/\r\n?/\n/g’” # csh shells

 Normally we don’t suggest making your programs so short because they become hard to

read. But this is so cute we had to share it.

 Expectations about OPD
 In many cases you should be able to form some fi rm ideas about what “good” data

should look like, even before you receive, download, or generate it. These fi rm ideas

should form the basis of your sanity checks . For instance, if you downloaded a fi le

containing millions of DNA or protein sequences, then you know, a priori, that there are

 34 This command-line option opens up a whole new world of what are known as “Perl one liners”, which are short Perl

commands you run on the command line and which often do some very powerful processing of input text fi les. We don’t

cover Perl one liners in any more detail in this book, but we encourage you to look them up on the internet.

9781107000681c07_p296-341.indd 3369781107000681c07_p296-341.indd 336 11/5/2011 6:39:53 PM11/5/2011 6:39:53 PM

Getting help 337

some characters that should never appear in those sequences. 35 Equally, if you down-

loaded some DNA sequences that correspond to genes, then the coding portion of those

sequences should have a length which is a multiple of three nucleotides.

 As we have mentioned, you should always look at the data fi rst. But there will usu-

ally be more data than you can inspect by eye. In light of that, if you have any suspicions

about the data then it is entirely appropriate to spend an hour or two writing a simple

“checking” script that just ensures the data looks valid. Don’t be the bad programmer

who instead spends a week working on a script that will analyze your 5 GB fi le of gen-

ome data, only to then discover you have mistakenly downloaded a digital copy of the

fi lm “Superbabies 2.”

 Sometimes you might not know exactly what the “rules” are to which your data (or

OPD) should adhere. However, you should often be able to come up with some appropriate

“guesstimates” for what constitutes good data. For example, start coordinates should come

before end coordinates; lengths of “things” tend to be non-zero values; ages of fossils/

excavations/ancient civilizations should not be older than 4.6 billion years. These types

of things are all good candidates for data sanity checks. Even when all of your data can

potentially take on any possible value, you might still have some expectations that a cer-

tain proportion of the data points should fall into a range between X and Y . There are a lot

of bad data in the world, and at some point you will receive some of them. So remember:

 Never trust OPD … always examine it!

 7.9 Getting help

 Or how to fi nd pearls of wisdom about the wisdom of Perl
 Although it pains us to say it, there will be times when you encounter a problem and this

book won’t be able to help you solve it. This may be because you are learning one of the

many aspects of Unix or Perl we have not covered in this book, 36 or maybe it’s because

we have explained something particularly badly. 37 Whatever the reason, you might have

reached a point where hours – or even days – of debugging have still not fi xed your prob-

lem and you now fi nd yourself banging your head against a wall in frustration . This fi nal

chapter of the book will point you to a few places where you can go for help.

 Built-in support tools
 You may not need to go very far to fi nd help for your Unix or Perl problem. There are

probably a couple of support mechanisms that are already available on your computer.

We have already explained, way back in Chapter 3.13 , that every Unix command

has its own set of documentation contained in man pages; these can be accessed by

using the Unix man command. But what about Perl? Earlier in this part of the book

 35 For example, X is never a valid character by which to represent a nucleotide and J does not correspond to any amino acid.

 36 There is far, far more to Unix and Perl than we have included in this book and if you are learning new material not

covered here, then this news will fi ll our hearts with joy.

 37 If you have found our explanations confusing or unsatisfactory then this news will fi ll our hearts – and potentially our

wallets should you return the book – with sadness.

9781107000681c07_p296-341.indd 3379781107000681c07_p296-341.indd 337 11/5/2011 6:39:53 PM11/5/2011 6:39:53 PM

Programming topics338

we mentioned a perldoc command that can be used to view any pod documentation

contained within a Perl script (see Chapter 7.6). This command can also help you in

many other ways.

 You can look up a description for any Perl function by simply providing the -f argu-

ment to the perldoc command and then adding a valid function name. Imagine you

wanted to refresh your memory as to how Perl’s integer function works:

 $ perldoc -f int

 int EXPR

 int Returns the integer portion of EXPR. If EXPR is omitted, uses

 $_. You should not use this function for rounding: one because

 it truncates towards 0, and two because machine representations

 of floating point numbers can sometimes produce

 counterintuitive results. For example, “int(-6.725/0.025)

 produces -268 rather than the correct -269; that’s because it’s

 really more like -268.99999999999994315658 instead. Usually,

 the “sprintf”, “printf”, or the “POSIX::floor” and

 “POSIX::ceil” functions will serve you better than will int().

 You can also use this command with the -m option to fi nd out about any of the built-in Perl

modules that are available. Maybe you can’t remember the syntax of the Getopt::std

module:

 $ perldoc -m Getopt::Std

 package Getopt::Std;

 require 5.000;

 require Exporter;

 =head1 NAME

 getopt, getopts – Process single-character switches with switch clustering

 =head1 SYNOPSIS

 use Getopt::Std;

 getopt(‘oDI’); # -o, -D & -I take arg. Sets $opt_* as a side-effect.

 getopt(‘oDI’, \%opts); # -o, -D & -I take arg. Values in %opts

 getopts(‘oif:’); # -o & -i are boolean flags, -f takes an argument

 # Sets $opt_* as a side-effect.

 getopts(‘oif:’, \%opts); # options as above. Values in %opts

 =head1 DESCRIPTION

 The getopt() function processes single-character switches with switch

 clustering. Pass one argument which is a string containing all switches

 that take an argument. For each switch found, sets $opt_x (where x is the

 switch name) to the value of the argument if an argument is expected,

 or 1 otherwise. Switches which take an argument don’t care whether

 there is a space between the switch and the argument.

9781107000681c07_p296-341.indd 3389781107000681c07_p296-341.indd 338 11/5/2011 6:39:53 PM11/5/2011 6:39:53 PM

Getting help 339

 In this example we are only showing some of the output of the perldoc command.

Also note that the -m option shows you any pod format documentation that is present

as well as the underlying Perl code from the module. If a Perl module doesn’t have

any documentation, you will just see the actual Perl code (which still might be useful

to you).

 One of the most powerful ways you can use the perldoc command is to search the

text of the Perl FAQ. 38 This FAQ covers an impressive list of common – and some not so

common – questions a programmer might ask. To search it, just use the -q option and

specify a word or phrase to search with. Imagine you were curious as to how you could

shuffl e an array:

 $ perldoc -q shuffle

 How do I shuffle an array randomly?

 If you either have Perl 5.8.0 or later installed, or if you

have

 Scalar-List-Utils 1.03 or later installed, you can say:

 use List::Util ‘shuffle’;

 @shuffled = shuffle(@list);

 Once again, we are only showing a shortened version of the actual output you would

see. In this case there is only one entry in the FAQ that mentions the word “shuffl e.” If

there were multiple entries they would all be listed one after another, each with its own

header. If you searched the FAQ for questions relating to the word “process” you would

see the following FAQ entries:

 How do I process/modify each element of an array?

 How do I process an entire hash?

 How do I process each word on each line?

 How do I start a process in the background?

 How can I call backticks without shell processing?

 How do I close a process’s filehandle without waiting for it to complete?

 How do I fork a daemon process?

 If you want to know more about how you can use the perldoc command then you will

be happy to know it also has its own man page. If you are ever stumped by a Perl prob-

lem, try searching the FAQ; it has the answers to many questions . 39

 Unix and Perl support on the internet
 Both Unix and Perl predate the invention of the world wide web. 40 Therefore, it is not

surprising that one can fi nd a staggering amount of Unix- and Perl-related information

on the internet. There are thousands and thousands of web sites devoted to Unix and Perl

 38 Frequently Asked Questions … asking what FAQ means is also a FAQ.

 39 Although we are nearing the very end of this book, we should point out that one important question that is answered by

the FAQ is the fundamental issue of “What is Perl?”

 40 The web dates back to 1991, whereas Unix has been around since 1969 and the fi rst version of Perl was available in

1987.

9781107000681c07_p296-341.indd 3399781107000681c07_p296-341.indd 339 11/5/2011 6:39:54 PM11/5/2011 6:39:54 PM

Programming topics340

that will educate and inform you at every conceivable level of complexity or functional-

ity. 41 Given the millions of people that use these fantastic software tools, it is often easier

to start any troubleshooting by assuming the following premise:

 Whatever problem you are experiencing, someone else has had it, fi xed it,

and probably blogged about it.

 Realizing this means you can often expect to fi nd dozens of web sites that will all list

the solution to whatever basic problem you are having. Though, of course, you should

be careful when blindly relying on other people’s code or instructions as it may fi x your

problem but only in a fl awed way. 42

 Rather than relying on what might be a correct solution that you fi nd posted on a

web site, it is sometimes better to ask for help. You might fi nd code on the web that you

can use to fi x your problem, but you might not be able to understand such code. It can

be dangerous to use code that you don’t fully understand, so we recommend asking an

expert. But who can you ask?

 One of the great things about the Unix and Perl community is that there are lots of

friendly and knowledgeable people out there who will be happy to help you with your

problem. One of the best places to fi nd such people is via the discussion newsgroups

that make up Usenet. 43 There are over 125 Usenet discussion groups related to Perl

and 40 related to Unix (not to mention more groups that focus on Linux). All of these

groups can be easily viewed at Google’s “Groups” interface (http://groups.google.com).

You can browse the groups, search for specifi c questions, or just go ahead and ask a

question. 44 The most popular groups for Unix and Perl are comp.unix.shell and comp.

lang.perl.

 The Google Groups site also hosts another set of discussion groups that are similar

to, though separate from, the Usenet groups. We have created a Google discussion group

for the specifi c coverage of Unix and Perl issues in a biological context. The group is

called “Unix and Perl for Biologists,” which you should be able to easily fi nd from a

web search engine, or from searching at http://groups.google.com. The authors – not to

mention a few hundred other group members – see every question posted on this forum

and we welcome yours.

 When posting questions on any discussion forum please remember to follow stand-

ard posting etiquette 45 and also make sure you add suffi cient details about your problem,

including:

 41 One of these sites is the offi cial Perl site at http://perl.org.

 42 Over the years Unix and Perl have changed and they continue to change. Check the date on any advice you fi nd on the

internet. A solution to your problem that is on a web site that hasn’t changed since 1998 might not be the latest and

greatest solution.

 43 Usenet is a collection of thousands of different discussion forums that are available for discussing just about every

subject you might care to think of (and plenty that you wouldn’t). Some of these groups are over 30 years old and are still

actively used, particularly those groups that relate to different aspects of computing.

 44 These groups allow posting and/or reading by email or you can subscribe to posts as an RSS feed … or you can just use a

web browser (or other dedicated desktop client) to browse the groups.

 45 Demanding instant answers, insulting other posters, and generally acting in a rude manner are all behaviors that make it

unlikely your question will be answered.

9781107000681c07_p296-341.indd 3409781107000681c07_p296-341.indd 340 11/5/2011 6:39:54 PM11/5/2011 6:39:54 PM

Getting help 341

 (1) a copy of the Perl code that produces an error or problem;

 (2) a description of what output you were expecting;

 (3) details of the format or content of any input data;

 (4) a copy of the exact Unix or Perl command that was run; 46

 (5) the version number of Perl;

 (6) the type of Unix shell;

 (7) a description of any other hardware or software details which might prove relevant

(e.g., amount of RAM, OS, etc.).

 The more information you provide, the more likely it is that you will get rapid and

detailed help! As a fi nal note, we will just remark that the only thing better than getting

help from such a discussion group is being the person who helps someone else with their

problem . As you become more profi cient in the ways of Unix and Perl, it is a worthy

action to help pass this knowledge on to others. If you will allow us a fi nal indulgence,

we’d like to end this book by paraphrasing a famous Chinese proverb:

 Give a person a Perl script, and you might satisfy their needs for

a day; teach a person how to write Perl scripts, and you’ll satisfy their needs

for a lifetime

 Happy coding!

 46 People are often surprisingly vague in describing their computing problems and frequently there is not any problem with

the Perl code, only with how it is being run.

9781107000681c07_p296-341.indd 3419781107000681c07_p296-341.indd 341 11/5/2011 6:39:54 PM11/5/2011 6:39:54 PM

 Appendix

 Remember, there’s more than one way to do it!
 At the end of some of the Unix and Perl chapters, we have provided one or more prob-

lems for you to tackle. For the Perl problems, it is important to realize that nearly all

problems can be solved in a myriad of different ways. Some solutions will comprise

elements that are clearly “variants on a theme,” whereas others might include ideas

that are completely unrelated. This can be great for creative thinkers, but at the same

time it can be daunting for people who want to know the right way to do something.

Sometimes, two different solutions may be functionally identical and will differ only in

the readability of the code and in their use of Perl’s many magical shortcuts. 1

 Be wary of people who claim that a specifi c Perl script offers the “best” solution to

a problem. The “best” solution to any problem can be highly subjective. For example,

some people want their code to run as fast as possible; others want it to be as understand-

able as possible; the two approaches are not always mutually compatible. In this appen-

dix we mostly provide just one solution for each of the problems we have described. We

have endeavored to choose solutions that are easy to understand but we encourage you

to think of alternative solutions as well.

 Unix solutions
 Note that many of the Unix problems are very open ended and so in many cases the

“solutions” listed below describe very general ideas about solving the problem, or may

just list a useful tip or fact about the relevant subject matter.

 Solution 3.7.1
 We can’t provide an exact solution as it will largely depend on the layout of your fi lesys-

tem. Remember, you could navigate to your root level directly by using cd / , or you

could just keep navigating upwards multiple times (cd ..).

 Solution 3.9.1
 The only solution for this problem is to realize that simply running the cd command is

enough to return you to your home directory.

 Solution 3.12.1
 There are several command-line options for the ls command that work very well

together. Do you want to list all fi les (including “hidden” fi les 2) with a long-form listing

that reverse-sorts them by the fi le modifi cation time, shows fi le sizes in human readable

format, and adds a slash after the names of directories? It’s as simple as:

 $ ls -alhtrp

 Solution 3.13.1
 Try to become familiar with the typical sections of a man page. The “Synopsis,”

“Description,” and “Examples” sections will probably be the most useful to you, espe-

cially the latter (if present).

 1 E.g., use of $_ or @_.

 2 Covered in Chapter 3.24 .

Solutions to problems

9781107000681app_p342-357.indd 3429781107000681app_p342-357.indd 342 11/5/2011 6:45:12 PM11/5/2011 6:45:12 PM

Appendix 343

 Solution 3.15.1
 There are times when you will have lots of fi les that all start with the same letter, and in

those situations you might want to type 2–3 characters before reaching for the tab char-

acter to autocomplete. As your fi lesystem grows over time, and you fi nd yourself having

to navigate through multiple levels of directory structure, the use of tab-completion will

save you incalculable amounts of time.

 Solution 3.15.2
 There are many other Unix tools that can be used to help navigate your history of com-

mands, but in practice you will fi nd yourself using the up arrow a lot just to get back to

a recent command.

 Solution 3.16.1
 The fi rst example should list everything in the current directory (potentially includ-

ing the fi les you created earlier in this chapter). The second and third examples

should achieve the same result, because all of the fi les that start with “f” also end

with “t”. The last two examples should hopefully reveal the function of the question

mark character. In Unix, you use the question mark to match any single character. 3

Compared to the asterisk, it can give you a little more control and precision when

matching fi le names.

 Solution 3.17.1
 Hopefully you realized that steps 2 and 3 could be combined by use of the -p option of

the mkdir command:

 $ cd /bin

 $ pwd

 /bin

 $ mkdir ~/Tears

 $ mkdir -p /tmp/123/XYZ

 $ mv /tmp/123/ ~/Tears/

 $ ls ~/Tears

 123

 $ mv ~/Tears/123/ /tmp

 $ rmdir /tmp/123/XYZ/

 $ rmdir /tmp/123/

 $ rmdir ~/Tears/

 Solution 3.18.1
 There are obviously many different ways you could remove these fi les. Assuming you

have created all of the fi les and directories from the last few exercises, here is one pos-

sible solution:

 First, navigate to the “Temp” directory and check what you need to remove:

 3 Note that this specifi cally refers to when you are trying to match fi le names. Some Unix shells may also use the question

mark for other uses.

9781107000681app_p342-357.indd 3439781107000681app_p342-357.indd 343 11/5/2011 6:45:13 PM11/5/2011 6:45:13 PM

Appendix344

 $ pwd

 /Users/nigel/Unix_and_Perl

 $ ls

 Code Temp

 $ cd Temp

 $ ls -p

 Temp3/ fat feet heaven.txt

 earth.txt feat fit rags

 We can use a wildcard to remove many fi les in one go, but we still ensure that we

use the -i option:

 $ rm -i f*t

 remove fat? y

 remove feat? y

 remove feet? y

 remove fit? Y

 We can use a wildcard to remove the text (.txt) fi les, and then remove the “rags” fi le

separately:

 $ rm -i *.txt

 remove earth.txt? y

 remove heaven.txt? y

 $ rm -i rags

 remove rags? Y

 Notice that we could also remove all fi les in one go by providing them as a list to

the rm command:

 $ rm -i f*t *.txt rags

 The “Temp3” directory is empty so this is easy to remove with the rmdir command:

 $ rmdir Temp3

 Solution 3.19.1
 There is no real solution for this problem, so here’s a hint instead. If you use your graph-

ical fi le manager to empty your trash folder in order to delete fi les, it sometimes doesn’t

work. This can happen if the OS knows that another program is still working with the

fi le in question. In these situations you can usually use the rm and rmdir commands to

remove fi les and directories from your trash folder. On a Mac the trash folder exists as a

hidden directory in your home directory called “.Trash” (the dot character is important).

You can just “ cd ~/.Trash ” and then remove the fi le.

 Solution 3.20.1
 Press “G” to jump to the end of the fi le, and “g” to jump back to the beginning. You can

jump “x” percentage of the way through a fi le by simply typing a number followed by

the percentage sign, followed by return/enter.

9781107000681app_p342-357.indd 3449781107000681app_p342-357.indd 344 11/5/2011 6:45:13 PM11/5/2011 6:45:13 PM

Appendix 345

 To search for a string, press the forward-slash character and then type your search pattern

followed by return/enter. This will take you to the next match and highlight all matches in

the fi le. You can jump to the next match by just pressing forward-slash and return/enter.

Search backwards by using a question mark character rather than a forward-slash.

 Solution 3.21.1
 Here is how you would create an alias for the rm command. Note that we fi rst illustrate

the default behavior of the rm command, which is to delete a fi le without asking for

confi rmation:

 $ touch aaa

 $ ls

 Code Temp aaa

 $ rm aaa

 $ ls

 Code Temp

 $ alias rm=‘rm -i’

 $ touch aaa

 $ ls

 Code Temp aaa

 $ rm aaa

 remove aaa?

 Solution 3.22.1
 To fi nd out more about using the nano editor, press Control + G to access the built-in

help system.

 Solution 3.24.1
 Here is our solution:

 $ pwd

 /Users/nigel/Unix_and_Perl

 $ mkdir .invisible

 $ mv .invisible/ Temp/

 $ ls -a Temp/

 ./ ../ .invisible/

 $ rmdir Temp/.invisible/

 $ ls -a Temp/

 ./ ../

 Perl solutions
 Solution 4.1.1
 Two possible ways of printing three lines of output are shown below. First, we will use

one print() statement for each line of output:

9781107000681app_p342-357.indd 3459781107000681app_p342-357.indd 345 11/5/2011 6:45:13 PM11/5/2011 6:45:13 PM

Appendix346

 1. # solution 1A – use multiple print statements

 2. print(“Hello World!\n”);

 3. print(“How are you?\n”);

 4. print(“Goodbye World!\n”);

 Alternatively, we can use multiple newline characters to achieve the same output but

with just one print() statement:

 1. # solution 1B – use one print statement

 2. print(“Hello World!\nHow are you?\nGoodbye World!\n”);

 Hopefully, you can see that each time Perl sees a newline character it behaves like it

is hitting the return/enter key on your keyboard. In this example, we can get three lines

of output fairly easily with just one line of Perl code. However, this might not be the

best solution. If each line of text was quite long then we’d have to wrap our line of code

around the screen of our code editor. It would still work, but it might look a bit ugly,

and we never want to write ugly code (at least not on purpose). This raises an important

point: Code that is longer but easier to understand is nearly always preferable to concise

code that is hard to understand.

 Solution 4.1.2
 1.# solution 2A

 2. print(“Hello World!\n);

 Here we have removed just a single character from the script. Can you spot it? It’s the

missing closing quote character. A lot of things in Perl come in pairs (quotes, paren-

theses, etc.), and having an unmatched number will result in an error. In this case, the

error should say something like:

 Can’t find string terminator ‘“‘ anywhere before EOF at helloworld.pl line 2.

 This error message may not be the most human-friendly error message you will ever see,

but it does point out that a missing “ character is part of the problem. By the way, “EOF”

means “end of fi le.” If this was our error message then we would probably write “end of

fi le” rather than “EOF,” but as we didn’t write Perl, it’s a bit out of our control.

 Solution 4.2.1
 Without the dollar symbols Perl doesn’t know that x and s are variables, and so you

should see two error messages like this:

 Can’t modify constant item in scalar assignment at scalar.pl line 3, near “3;”

 Substitution pattern not terminated at test.pl line 5.

 These error messages might seem hard to understand at the moment, but you should

at least recognize that both error messages correctly identify which lines of your code

contain the problems.

 Solution 4.2.2
 The following code should hopefully show you that you can assign a variable many dif-

ferent values. Note the use of comments to explain various issues and note that line 9

intentionally omits a newline character.

9781107000681app_p342-357.indd 3469781107000681app_p342-357.indd 346 11/5/2011 6:45:13 PM11/5/2011 6:45:13 PM

Appendix 347

 1. $x = 3;

 2. print “x is $x\n”;

 3. $x = 5;

 4. print “x is now $x\n”;

 5. $x = 10; # assigning $x a new value but not doing anything with it

 6.

 7. $y; # declaring a variable without assignment

 8. $y = 2; # assigning a value

 9. print ‘$y is ‘; # single quote printing to print the text $y

 10. print “$y\n”; # double quote printing to get the contents of $y

 Solution 4.2.3
 If you assign one variable to another, then this is like making a copy of the fi rst variable.

After you have made the copy you can then change the value of the fi rst variable without

affecting the value of the second:

 1. $x = 100;

 2. print “x is $x\n”;

 3. $y = $x;

 4. $x = 200;

 5. print “x is $x and y is $y\n”;

 Solution 4.2.4
 In this problem, the three alternatives all print the same result. You will typically assign

strings to variables using single quotes or double quotes. As we will shortly learn, it is

not a good idea to use no quotes at all (though it will work in this example). The diffe-

rence between single quotes and double quotes is that single quotes contain exactly what

is between the quotes. Single quotes do not perform variable interpolation or recognize

special character codes such as \n . Let’s look at an example to make this clear.

 1. $favorite_food = ‘cheeseburgers’;

 2.

 3. print ‘I like $favorite_food\n’;

 4. print “\n”;

 5.

 6. print “I like $favorite_food\n”;

 Line 3 outputs: I like $favorite_food\n

 Line 4 outputs: I like cheeseburgers

 If you want to simplify your life, you can use double quotes all the time. We use

single quotes when we want to convey that a string is not going to change.

 Solution 4.3.1
 You should notice that if you move use warnings; so it is after the $dna = act-

gagcac; line then you should no longer see the error about an “unquoted string.”

This is because Perl only turns on warnings at the point in the script where it sees use

9781107000681app_p342-357.indd 3479781107000681app_p342-357.indd 347 11/5/2011 6:45:13 PM11/5/2011 6:45:13 PM

Appendix348

warnings; and this is why it should always be among the fi rst few lines of code in

your scripts.

 Solution 4.4.1
 Simply nest all three functions inside one another:

 1. # 3_lines_to_1.pl

 2. use warnings;

 3.

 4. $answer = sqrt(int(rand(100)));

 5. print “The answer is $answer\n”;

 You could also have omitted all the parentheses from line 4:

 $answer = sqrt int rand 100;

 Solution 4.4.2
 You should have seen that Perl handles quoted and unquoted numbers in the same way, and

all three variables ($x , $y , and $z) should print the value 3. Behind the scenes, Perl has

two basic data types: numbers and strings. If we include the warnings pragma in a script,

then we have learned that strings should be quoted, but this doesn’t apply to numbers.

 Perl is generally smart enough to know that sometimes you will use numbers as

strings, and conversely if you have created a string which only contains numbers, then

Perl will treat it as a number instead. Actually, this in only true in those situations where

you are trying to use a string as a number. For example, in line 8 of the script, we add

 $x , $y , and $z and put their sum in a new variable $sum . When we print $sum we

get the expected answer 9. However, internally Perl noticed that $y and $z are actually

strings not numbers (because of the quotes). They stay as strings until we try adding

them together at which point Perl sensibly realizes that you probably want to treat them

as numbers instead of strings.

 If this all sounds terribly confusing, then don’t worry. The take-home message is that

Perl will try to make sense of your numbers and strings for you. This is in contrast to

most other programming languages, where you cannot interchange numbers and strings

like this. Just remember that you don’t need to quote numbers when you fi rst declare

them.

 Solution 4.4.3
 You may (or may not) be surprised to see that this script prints:

 int_x = 1, int_y = 1

 If you were expecting the second integer to be rounded up to 2, you should understand

that the int() function simply discards the fractional part of the number (i.e., every-

thing after the decimal point); it doesn’t do any rounding. Perl does provide a way of

rounding numbers and we will see that later on.

 Solution 4.8.1
 There are lots of ways to test for zero. Here is one way to do it. You should try running

this script several times to check that it works with different random numbers:

9781107000681app_p342-357.indd 3489781107000681app_p342-357.indd 348 11/5/2011 6:45:13 PM11/5/2011 6:45:13 PM

Appendix 349

 1. #!/usr/bin/perl

 2. # bonus.pl

 3. use strict; use warnings;

 4.

 5. my $bonus = int rand (4);

 6. print “Bonus is $bonus thousand dollars\n”;

 7.

 8. if ($bonus == 0){

 9. die “Boo hoo. No bonus\n”;

 10. }

 Note that we have to use rand(4) to get a random integer between 0 and 3. This is

because the int() function rounds down. Here are two more ways you could test the

value of $bonus :

 unless ($bonus < 0 or $bonus > 0) {

 die “Boo hoo. No bonus\n”;

 }

 die “Boo hoo. No bonus\n” if (!$bonus);

 The fi rst of these methods works but is overly complex. The second example more sim-

ply asks whether $bonus evaluates as not true , which it will if it is zero. Note that this

last example also uses the postfi x notation; it is very common to see die() statements

used in this way.

 Solution 4.11.1
 This script will print both statements from lines 8 and 13 because both of the if state-

ments will evaluate as true. This might seem strange because no pattern was specifi ed

for either matching operator. However, if you don’t specify a pattern, then the matching

operator matches everything, including the empty string.

 Solution 4.12.1
 To solve this script we need to utilize a mixture of different things that we have learned

from the last few sections. Here is one possible solution.

 1. #!/usr/bin/perl

 2. # url_handler.pl

 3. use strict; use warnings;

 4.

 5. my $url = “http://unixandperlforever.com”;

 6.

 7. # first trim the ‘http://’ part of the URL

 8. $url =~ s#http://##;

 9.

 10. # now check length and die if too long

 11. if(length($url) > 25){

 12. die “$url contains more than 25 characters\n”;

9781107000681app_p342-357.indd 3499781107000681app_p342-357.indd 349 11/5/2011 6:45:13 PM11/5/2011 6:45:13 PM

Appendix350

 13. }

 14.

 15. # make name all upper case

 16. $url = uc($url);

 17.

 18. # now count each A, B, or C

 19. my $a = $url =~ tr/A/A/;

 20. print “There are $a As in $url\n”;

 21.

 22. my $b = $url =~ tr/B/B/;

 23. print “There are $b Bs in $url\n”;

 24.

 25. my $c = $url =~ tr/C/C/;

 26. print “There are $c Cs in $url\n”;

 Note the use of comments and whitespace in this script. Also note how we declare three

variables to store the counts of A, B, and C and assign them a value with the tr operator

all in one go. If the tr operator makes no changes, then it will return a value of zero.

Finally, we should mention that as soon as you include if statements in your code, then

you should always try to test your code with example data that will trigger either possi-

bility. If you wrote a similar program to ours but only used a web site name that was 25

characters or less, then you would never be entirely sure whether the if statement on

lines 11–13 was working properly.

 Solution 4.13.1
 The simple solution to this is just to introduce a third variable to act as a temporary

“holding cell”:

 1. #!/usr/bin/perl

 2. # swap.pl

 3. use strict; use warnings;

 4.

 5. my ($x, $y) = (“case”, “book”);

 6. print “$x $y\n”;

 7.

 8. my $z = $x; # make a copy of $x

 9. $x = $y; # copy $y to $x

 10. $y = $z; # and now copy what was $x to $y

 11.

 12. print “$x $y\n”;

 Solution 4.14.1
 We need to reverse the array, but as the array only has three elements, then we just need

to swap the fi rst and last elements with each other. If you remember from the section on

lists, swapping items is very easy in Perl.

 1. #!/usr/bin/perl

 2. # abc.pl

9781107000681app_p342-357.indd 3509781107000681app_p342-357.indd 350 11/5/2011 6:45:13 PM11/5/2011 6:45:13 PM

Appendix 351

 3. use strict; use warnings;

 4.

 5. my ($one, $two, $three) = qw(alpha bravo charlie);

 6.

 7. my @list = ($one, $two, $three);

 8. print “BEFORE: @list\n”;

 9.

 10. ($list[0], $list[2]) = ($list[2], $list[0]); # the swap

 11. print “AFTER: @list\n”;

 Solution 4.15.1
 Apart from being able to use the splice() function properly, the other issue to solve

for this problem is how to calculate what the middle position of an odd-length array

is. You can do this simply by dividing the array length by 2, and then taking the inte-

ger of that value. If your array has seven elements, the middle position is provided by

 int(7/2). Because int() rounds down, this will give you the value “3,” which is the

fourth (middle) position in the array.

 Putting all this together, here is one solution to the problem.

 1. #!/usr/bin/perl

 2. # these_are_a_few_of_my_favorite_things.pl

 3. use strict; use warnings;

 4.

 5. my @thingS_i_like = qw(cheese music spiders perl cinema);

 6. print “OLD: @thingS_i_like\n”;

 7. my @more_thingS_i_like = qw(gadgets satire macs);

 8.

 9. my $length_of_array = @thingS_i_like;

 10. my $middle_position = int($length_of_array / 2);

 11.

 12. splice(@thingS_i_like, $middle_position, 1, @more_thingS_i_like);

 13.

 14. print “NEW: @thingS_i_like\n”;

 Note that if we had wanted to, we could have avoided having to write lines 9 and 10, and

instead combined this information directly into line 12:

 splice(@thingS_i_like, int(@thingS_i_like/2), 1, @more_thingS_i_like);

 As always, Perl will know that parts of this line have to be evaluated before other

parts. Perl would fi rst deduce that if we are using int() function, that this requires

a number and therefore the @things_i_like array will be evaluated in scalar

context to give its length. That length can then be divided by 2 and the resulting

value can be passed to the int() function. Only then can Perl perform the entire

 splice() command. If you fi nd this too confusing, then it’s perfectly fi ne to do

things in multiple steps. As always, it is most important that things are clear and

understandable.

9781107000681app_p342-357.indd 3519781107000681app_p342-357.indd 351 11/5/2011 6:45:13 PM11/5/2011 6:45:13 PM

Appendix352

 Solution 4.16.1
 We only asked you to count the number of items in @ARGV , we don’t need to actually do

anything with those items. This means we can simply assign @ARGV to a single variable

and that will give us the count. We then just need a simple if–else statement to stop

the script if there are too few items, otherwise print out the count.

 1. #!/usr/bin/perl

 2. # count_things.pl

 3. use strict; use warnings;

 4.

 5. my $count = @ARGV;

 6.

 7. if ($count < 3){

 8. die “Please specify at least three things\n”

 9. }

 10. else {

 11. print “You specified $count things\n”;

 12. }

 Note that it would be fairly unusual to simply count the number of command-line argu-

ments without doing anything else with them. In most scripts you would instead fi rst

assign them to another array and then count them:

 5. my @things = @ARGV;

 6. my $count = @things;

 Solution 4.18.1
 We can use @ARGV to store our input numbers, but we also want a suitable die() state-

ment to check that @ARGV contains at least three elements. Then we can use the sort()

function to (numerically) sort @ARGV and assign the output to a new array. Then high-

est and lowest values will be the fi rst and last elements of this array. To remove the end

elements, we just use the shift() and pop() functions:

 1. #!/usr/bin/perl

 2. # sort_input.pl

 3. use strict; use warnings;

 4.

 5. # stop script if there are not enough numbers

 6. die “Specify at least 3 numbers\n” if (@ARGV < 3);

 7.

 8. my @sorted_input = sort { $a <=> $b } @ARGV;

 9.

 10. # discard ends of array

 11. shift(@sorted_input); # discard first array element

 12. pop(@sorted_input); # discard last array element

 13.

 14. print “Final output is @sorted_input\n”;

9781107000681app_p342-357.indd 3529781107000681app_p342-357.indd 352 11/5/2011 6:45:13 PM11/5/2011 6:45:13 PM

Appendix 353

 Solution 4.19.1
 The trick to solving this script is to introduce a variable which will contain the running

total. This variable needs to be declared before the for loop, but will be modifi ed within

the loop (using the += operator):

 #!/usr/bin/perl

 # sum.pl

 use strict; use warnings;

 die “usage: sum.pl x y z etc.\n” unless @ARGV;

 my @input = sort { $a <=> $b } @ARGV; # numeric sort

 my $total = 0;

 for (my $i = 0; $i < @input; $i++) {

 $total += $input[$i];

 print “Number: $input[$i] Running total: $total\n”;

 }

 Each iteration of the loop sees the current value of $input[$i] added to whatever is

already in $total .

 Solution 4.20.1
 To solve this using a for loop, we have to realize that if we are counting backwards then

we need to start with the highest array index (position 2 if there are three items in the

array) and then use the decrement operator to count backwards. The validation step will

therefore be true as long as the loop counter is greater or equal to zero.

 For the foreach loop, we just need to fi rst reverse the list using the reverse()

function. We can then assign each item to a temporary value.

 We calculate the while loop last as this loop is going to use the pop() function to

remove one element at a time from the end of the array. When this loop fi nishes there

will be no items left in the array.

 1. #!/usr/bin/perl

 2. # loops.pl

 3. use strict; use warnings;

 4.

 5. my @list = qw(start middle end);

 6.

 7. # for loop

 8. for (my $i = @list -1; $i >= 0; $i--) {

 9. print “$list[$i]\n”;

 10. }

 11.

 12. # foreach loop

 13. foreach my $item (reverse(@list)) {

 14. print “$item\n”;

 15. }

 16.

9781107000681app_p342-357.indd 3539781107000681app_p342-357.indd 353 11/5/2011 6:45:13 PM11/5/2011 6:45:13 PM

Appendix354

 17. # while loop

 18. while (@list) {

 19. my $item = pop(@list);

 20. print “$item\n”;

 21. }

 Solution 4.23.1
 The key part of this problem is realizing that if you want to append to an existing fi le,

you don’t need to loop through the contents. You just open a fi lehandle in append mode,

and then print to that fi lehandle.

 1. #!/usr/bin/perl

 2. # signature.pl

 3. use strict; use warnings;

 4.

 5. my ($file) = @ARGV;

 6. die “Please specify a file to sign\n” if (@ARGV != 1);

 7.

 8. my $name = “Keith Bradnam & Ian Korf”;

 9.

 10. open(my $out, “>>$file”) or die “error appending to $file. $!”;

 11. print $out “$name\n”;

 12. close $out;

 Solution 4.24.1
 It is sometimes useful to create reciprocal hashes so you can effectively look up either

the key or the value. You should only do this if you know that the values of the hashes

are unique. Here is one possible solution to the problem:

 1. #!/usr/bin/perl

 2. # countries.pl

 3. use strict; use warnings;

 4.

 5. die “Specify a country name or two-letter code\n” if (@ARGV != 1);

 6. my ($input) = @ARGV;

 7.

 8. my %countries_to_codes = (“Australia” => “au”,

 9. “China” => “cn”,

 10. “France” => “fr”);

 11.

 12. my %codes_to_countries = (“au” => “Australia”,

 13. “cn” => “China”,

 14. “fr” => “France”);

 15.

 16. if (exists $countries_to_codes{$input}){

 17. print “$input = $countries_to_codes{$input}\n”;

 18. } elsif (exists $codes_to_countries{$input}){

9781107000681app_p342-357.indd 3549781107000681app_p342-357.indd 354 11/5/2011 6:45:13 PM11/5/2011 6:45:13 PM

Appendix 355

 4 Functions that do the same thing on scalars, arrays, and hashes are not all that common in Perl and not everyone knows

that you can reverse a hash like this. Though we can’t guarantee that this knowledge will impress your friends at a party,

feel free to try.

 19. print “$input = $codes_to_countries{$input}\n”;

 20. } else{

 21. print “$input was not found in either hash\n”;

 22. }

 This script fi rst checks that we have only one thing specifi ed on the command line

and then proceeds to set up both hashes. Lines 16–22 then perform an if-elsif-

else statement to check all possible situations. In this case the else statement cap-

tures the possibility that the specifi ed input does not exist in either hash.

 Note that the exists() function, like so many others in Perl, does not require the

parentheses surrounding the name of the hash key you are testing.

 In this example we know that each key and value is unique. It is not always common

for every value in a hash to be unique, but when that is the case, you could also create the

second hash more simply by using the reverse() function (which works on hashes

as well as scalars and arrays 4):

 my %codes_to_countries = reverse %countries_to_codes;

 Finally, note that we could also achieve the same functionality by using a single hash.

This is possible because if we combine the keys from both hashes, they will still be

unique. Such a hash would look like this:

 my %countries = (“Australia” => “au”,

 “China” => “cn”,

 “France” => “fr”,

 ”au” => “Australia”,

 ”cn” => “China”,

 ”fr” => “France”);

 Solution 4.27.1
 Here is a relatively straightforward way of solving this problem:

 1. #!/usr/bin/perl

 2. # hero.pl

 3. use strict; use warnings;

 4.

 5. die “No file specified\n” if (@ARGV != 1);

 6. while (my $hero = <>) {

 7. chomp($hero);

 8. if($hero =~ m/man/i){

 9. $hero =~ s/[0–9] //;

 10. print “$hero\n”;

 11. }

 12. }

9781107000681app_p342-357.indd 3559781107000681app_p342-357.indd 355 11/5/2011 6:45:13 PM11/5/2011 6:45:13 PM

Appendix356

 We fi rst check that a fi le is specifi ed on the command line and then loop through that

fi le with a while loop. Each input line is assigned to $hero ; we then chomp that line

to remove the trailing newline character. Although it is not necessary in this program,

chomping your input lines is generally a good practice.

 Line 8 establishes an if statement to see if the line matches the pattern “man” (we

include the ignore-case option to match “man” and “Man”).

 If there is a match we use the substitution operator to remove a single digit and space

character. Remember, if you don’t specify a replacement pattern, you are just removing

characters.

 Solution 4.27.2
 Here is one possible solution:

 1. #!/usr/bin/perl

 2. # address_check.pl

 3. use strict; use warnings;

 4.

 5. die “No file specified\n” if (@ARGV != 1);

 6.

 7. while (my $address = <>) {

 8. chomp($address);

 9. print “$address: “;

 10. if ($address =~ m/^\w{2}\s\d{5}$/) {

 11. print “State and zip code present\n”;

 12. } elsif ($address =~ m/^\d{5}$/) {

 13. print “state code missing\n”;

 14. } elsif ($address =~ m/^\w{2}$/) {

 15. print “zip code missing\n”;

 16. } else {

 17. print “state and zip code missing\n”;

 18. }

 19. }

 After looping through the fi le we fi rst check if each line starts with a state code (̂ \w{2})

and ends with a zip code (\s\d{5}$). If this does not match, then we proceed to use

two more elsif statements to check whether either the state or zip code is present.

Finally, we include an else statement to warn us if neither fi eld is present.

 Solution 4.28.1
 The following regex includes both anchor metacharacters (̂ and $) to ensure that $seq

does not contain anything else. It also includes the “ignore case” option and deals with

unknown characters by adding “N” into the character class:

 $seq =~ m/^ATG[ACGTN]+(TGA|TAA|TGA)$/i;

 This regular expression will match sequences that contain at least seven valid characters

(e.g., “ATGATGA” would match to this regex). Note that the pattern ends by specifying

all three possible stop codons. We could also write this part like so:

9781107000681app_p342-357.indd 3569781107000681app_p342-357.indd 356 11/5/2011 6:45:13 PM11/5/2011 6:45:13 PM

Appendix 357

 T(GA|AA|GA)

 On the one hand, this simplifi es the regex by shortening it by two characters, but on the

other hand this reduces the “readability” of the pattern as it becomes slightly less obvi-

ous that we are dealing with stop codons.

 Ensuring that the sequence must be a minimum of 100 nt can be done by swap-

ping the + quantifi er for {94,} ; the remaining 6 nt will come from the start and stop

codons:

 $seq =~ m/^ATG[ACGTN]{94,}(TGA|TAA|TGA)$/i;

 The fi nal, and most diffi cult, step is to ensure the sequence is a multiple of 3 nt. One way

to do this is to fi rst defi ne a single codon ([ACGTN]{3}), and then put that in a group

with another repetition modifi er to ensure that it occurs at least 32 times (this makes 96

nt, with the remainder coming from the start and stop codons):

 $seq =~ m/^ATG([ACGTN]{3}){32,}(TGA|TAA|TAG)$/i);

9781107000681app_p342-357.indd 3579781107000681app_p342-357.indd 357 11/5/2011 6:45:13 PM11/5/2011 6:45:13 PM

 Index

 Symbols

 -- (auto-decrement operator), 98

 - (hyphen). See hyphen

 __DATA__ token, 318–19 , 328

 __END__ token, 299 , 318–19 , 328

 , (comma). See comma

 ; (semicolon). See semicolon

 :: (scope operator), 261 , 315

 ! (logical ‘not’ operator), 106

 != (not equal operator), 103

 !~ (not match operator), 125

 ? (question mark). See question mark

 . (dot). See dot

 .. (dot-dot). See dot-dot

 ./ (dot-slash), 78

 .= (concatenation operator), 118

 .login fi le, 69

 .profi le fi le, 69 , 70 , 71 , 72 , 80

 .zprofi le fi le, 69

 ‘ (single quotes). See quotation characters)

 “ (double quotes). See quotation characters)

 (). See parentheses

 []. See square brackets

 {}. See curly braces

 @ (at-sign). See arrays

 @_ array, 213–14

 @ARGV array, 148–52 , 171 , 173

 @INC array, 258

 * (asterisk). See asterisk

 ** (exponentiation operator), 95 , 149

 *= (multiplication operator), 98

 / (forward slash). See forward slash

 /= (division operator), 98

 /dev/null, 243

 \ (backslash). See backslash

 \1, \2, \3 (backreferences), 255

 \B (non-word boundary metacharacter), 254

 \b (word boundary metacharacter) , 254

 \d (digit metacharacter), 200

 \D (non-digit metacharacter), 200

 \n (newline). See newline

 \r (carriage return). See carriage return

 \S (non-whitespace metacharacter), 200

 \s (whitespace metacharacter), 200

 \t (tab). See tab

 \W (non-word metacharacter), 200

 \w (word metacharacter), 200

 & (ampersand), 214

 && (logical ‘and’ operator), 106

 # (pound sign). See pound sign

 #! (hashbang), 81

 % (percent sign). See percent sign

 ̀ ` (backticks). See backticks

 ̂ (caret). See caret

 ̂ M (Ctrl + M), 247

 + (plus sign). See plus sign

 ++ (auto-increment operator), 98

 += (addition operator), 98

 < (less than sign)

 fi lehandle read mode, 176

 less than operator, 103

 redirecting standard input, 239

 <= (less than or equal to operator), 103

 <=> (spaceship operator), 155

 <> (fi le operator), 171–73 , 175

 = (assignment operator), 88

 -= (subtraction operator), 98

 == (equality operator), 102 , 103

 => (hash assignment operator), 185

 =~ (binding operator), 124 , 128 , 132

 -> (arrow operator). See arrow operator

 > (greater than sign)

 fi lehandle write mode, 176

 greater than operator, 103

 in FASTA header lines, 221

 redirecting standard output, 238

 >= (greater than or equal to operator), 103

 >> (double greater than sign)

 appending standard output, 238

 fi lehandle append mode, 176

 | (vertical bar). See pipe character

 || (logical ‘or’ operator), 106

 ~ (tilde), 24 , 52

 $ (dollar sign). See dollar sign

 $_ (default variable), 173–75 , 253

 $! (system error variable), 180

 $? (exit status variable), 208

 $’ (postmatch variable), 255

 $& (match variable), 255

9781107000681ind_p358-368.indd 3589781107000681ind_p358-368.indd 358 11/5/2011 8:23:41 PM11/5/2011 8:23:41 PM

Index 359

 $` (prematch variable), 255

 $0 (program name variable), 327

 $1, $2, $3 (regular expression

matches), 203 , 204 , 255

 $a and $b (special package

variables), 156 , 190

 $HOME (environment variable), 27 , 28 ,

68 , 81

 $i (loop counter variable), 159

 $PATH (environment variable), 77 , 78 ,

80 , 101

 $PERL5LIB (environment variable), 258

 $SHELL (environment variable), 26

 $USER (environment variable), 27

 2-dimensional arrays, 265–69

 2-dimensional data structures, 272

 abs function, 108

 absolute paths, 22 , 77

 abstraction in programming, 311–17

 addition operator (+), 95

 alias command, 56

 aliases, 56–60 , 63 , 65

 ampersand (&), 214

 and (logical operator), 106

 angle brackets (<>), 171

 anonymous arrays, 264 , 265

 anonymous hashes, 269

 answer to life, the universe, and everything,

 301

 append operator (.=), 118

 append redirection operator (>>), 238

 arrays

 @ARGV array, 148–52 , 171 , 173

 accessing elements, 137–39 , 141

 adding to, and removing from, 142–45

 combining array elements, 146

 compared to scalar variables, 138

 copying, 145

 creating from string, 146

 deleting, 145

 determining length, 139

 interpolation, 139

 looping over contents, 161–63 , 165

 overview, 136–38

 pop function, 143

 push function, 142

 qw function, 139 , 144

 references to, 263

 shift function, 143 , 165 , 214

 sorting, 154

 splice function, 143 , 147

 unshift function, 143

 arrow operator (->)

 accessing array references, 263

 in object-oriented programming, 286 , 287

 ASCII values, 118 , 155 , 238

 assignment operator (=), 88

 asterisk (*)

 as multiplication operator, 95

 as wildcard character (Perl), 199

 as wildcard character (Unix), 45 , 49 , 52

 auto-decrement operator (--), 98 , 160

 auto-increment operator (++), 98

 awk command, 250–51

 backreferences, 255

 backslash (\)

 as reference operator, 263 , 269

 escaping special characters, 122

 escaping Unix commands, 60

 backticks (``)

 in Unix, 72 , 83

 Perl operator, 207–08

 bareword error messages, 304

 beautifi cation of code, 305–11

 binding operator (=~), 124 , 128 , 132

 bless keyword, 289

 blocks of code, 102 , 103 , 111 , 159 , 170

 caret (^)

 as regular expression anchor, 196

 negated character class metacharacter, 195

 carriage return (\r), 248 , 335–36

 case of characters

 associated ASCII values, 119

 case-sensitivity in Unix, 16 , 20

 for fi lehandle names, 176

 how to convert. See changing character case

 ignoring with grep command, 231 , 233

 ignoring with matching operator, 129 , 195

 in FASTA sequence fi les, 222

 when naming variables, 90 , 307

 cat command, 67 , 234–35 , 238 , 244

 cd command, 20–21 , 22 , 23 , 24–25

9781107000681ind_p358-368.indd 3599781107000681ind_p358-368.indd 359 11/5/2011 8:23:41 PM11/5/2011 8:23:41 PM

Index360

 changing character case

 using Perl character functions, 121

 using transliteration (Perl), 130 , 195

 using transliteration (Unix), 239 , 244

 changing directories. See cd command

 chmod command, 74 , 75 , 76 , 101

 chomp function, 181

 circular references. See endless loop

 classes, 286 , 288–91

 clear screen, 41

 close function, 177

 cmp operator, 155 , 218

 code editors, 9–10 , 297

 columns

 creating by splitting a string, 147 , 201

 extracting from text fi le, 246 ,

248 , 250

 in CSV and TSV fi les, 124 , 319

 in GFF fi les, 222

 in multidimensional data structures, 262 ,

 266 , 267 , 268

 sorting data by column, 245

 combining

 array elements to form strings, 146

 arrays, 145

 multiple command-line options, 30

 standard input/output/error streams, 242

 strings, 117

 text fi les, 238

 Unix commands, 243

 comma (,)

 separated values. See CSV

 separating function arguments, 88

 separating list items, 134

 command not found errors, 302

 command prompts, 14 , 72

 command-line completion. See tab-completion

 command-line options, 28–32 , 281

 commenting-out code, 87 , 297 , 298

 comments

 in Perl, 85 , 87 , 308 , 327

 in Unix, 66

 comparing

 fl oating point numbers, 107

 numbers, 103 , 155

 strings, 118 , 155

 Unix to Linux, 7

 compile-time errors, 297

 Comprehensive Perl Archive Network

(CPAN), 292–93

 computers vs humans, 130

 concatenation operator (.=), 118

 conditional statements, 105

 else, 104

 elsif, 104

 if, 103

 nested conditionals, 105

 postfi x notation, 106

 trinary operator, 107

 unless, 106

 using fl oating point numbers, 107–08

 while, 164–65

 confi guration fi les in Unix, 72

 control characters in Unix

 Ctrl + a, 41

 Ctrl + c, 159 , 225

 Ctrl + d, 239

 Ctrl + e, 41

 Ctrl + l, 41

 Ctrl + w, 41

 copying fi les and directories, 49–53

 cp command, 49

 CPAN (Comprehensive Perl Archive

Network), 292–93

 creating

 2-dimensional data structures, 265

 aliases to commands, 56

 array references, 263

 arrays, 137

 arrays from strings, 146

 directories, 35

 empty fi les, 42

 hash references, 269

 key/value pairs for hash, 185

 modules, 314

 multidimensional data structures, 272

 new text fi les, 62

 objects, 286

 random numbers, 96

 shell scripts, 81

 SQL databases, 323

 strings from arrays, 146

 Unix confi guration fi les, 68

 CSV (comma-separated values), 146 , 147 ,

 267 , 319

 curly braces {}

9781107000681ind_p358-368.indd 3609781107000681ind_p358-368.indd 360 11/5/2011 8:23:41 PM11/5/2011 8:23:41 PM

Index 361

 in anonymous hash syntax, 269

 in hash key syntax, 184

 to denote blocks of code, 102 , 103 , 159 ,

 212

 use in dereferencing, 264 , 270

 current directory, 19 , 50 , 51 , 77

 cut command, 246 , 248

 Cygwin, 8

 dash (-). See hyphen

 DATA token. See __DATA

 Data::Dumper module, 278–80

 databases

 creating using dbmopen function, 321

 creating using Storable package, 321

 DBI and DBD::SQLite modules, 324

 hash references as database records, 270

 normalization and denormalization, 325

 relational database management systems

(RDBMS), 322

 SQLite, 323–24

 Structured Query Language (SQL), 322–24

 date command, 31 , 71

 dbmopen function, 321

 debugging, 86 , 153 , 296

 by commenting-out code, 87 , 297 , 299

 common error messages, 301–05

 compile-time vs run-time errors, 297

 different types of error, 296

 general strategies for, 297

 Perl syntax checker (-c option), 296

 using the Perl debugger, 300

 with print statements, 299–300

 decrement operator (--), 160

 default variable ($_), 173–75 , 253

 defi ned function, 153 , 188

 deleting fi les, 47–49

 dereferencing. See references

 diagnostics pragma, 302

 die function, 114 , 115 , 116 , 151 , 179

 differences

 between dogs and people, 286

 between functions from multiple

modules, 259

 between lexical and global variables,

112 , 113

 between scalar and list context, 140

 between scalars, arrays, and hashes, 187

 between text and binary fi les, 334

 between text editors and word processors,

 61

 between types of line endings, 335

 between Unix shells, 56 , 69 , 79

 between various loop constructs, 166

 digit metacharacter (\d), 200

 directories

 distinguishing from fi les, 31 , 75

 parent directories, 19 , 21

 working with directories in Unix, 35–37

 documentation

 for Perl, 98 , 325–30

 man pages in Unix, 32–34

 pod (Plain Old Documentation), 328–30

 dollar sign ($)

 as regular expression anchor, 196

 how to print, 122

 prefi x for scalar variables, 88 , 138

 DON’T PANIC!. See help

 dot (.)

 as concatenation operator, 118

 as directory location, 50 , 51 , 67 , 77

 at start of fi lenames, 66

 in regular expressions, 197

 dot-dot (..)

 as parent directory, 21 , 51 , 67

 range operator, 163

 dot-profi le fi le (.profi le), 69 , 70 , 71 , 72 , 80

 dot-slash (./), 78

 each function, 191

 echo command, 26–27

 editing text. See text editors

 else statement, 104

 elsif statement, 104

 emacs command, 61

 embedding data inside scripts, 318

 encapsulation, 287

 END token. See __END

 endless loop. See circular references

 environment variables, 26–28 , 80 , 258

 eq operator, 118

 equality

 testing for numerical equality, 102

 testing for numerical inequality, 103

 testing strings for equality, 118

 equality operator (==), 102 , 103

9781107000681ind_p358-368.indd 3619781107000681ind_p358-368.indd 361 11/5/2011 8:23:41 PM11/5/2011 8:23:41 PM

Index362

 error messages. See debugging

 escaping special characters, 122–23 , 133 , 197

 executable permission, 74

 executing scripts. See running scripts

 exists function, 188

 exit function, 115

 exit status variable ($?), 208

 exponentiation operator (**), 149

 export command, 79

 extracting

 codons from DNA sequence, 261

 columns from a fi le, 246 , 250

 data from a database fi le, 322 , 324

 elements from an array, 143

 embedded Perl script documentation, 330

 fi rst or last lines from a fi le, 235

 keys and values from hashes, 189

 matching lines from a fi le, 243

 parts of a pattern match, 203 , 255

 position of a matching pattern, 254

 substrings from a string, 120

 FASTA fi les, 220–22 , 233

 fi le command, 54 , 334

 fi le permissions, 74–77

 changing permissions, 75

 chmod command, 75

 viewing current permissions, 74

 fi lehandles, 176 , 178 , 181

 fi les

 appending to fi le, 182

 checking fi le opened successfully, 180

 fi le operator (<>), 171–73 , 175

 reading from, 171–75 , 176–80

 writing to, 180–82

 fi lesystem hierarchy, 17–18

 fl oating point numbers

 as array indices, 142

 precision of, 107–08

 specifying with Getopt::Long module, 284

 for loop, 158–61 , 164

 foreach loop, 162–63

 forward slash (/)

 as delimiter for matching operator, 125

 as directory delimiter, 19 , 21 , 43

 as division operator, 95

 as root level indicator, 17 , 20

 at end of directory names, 46 , 50

 how to match, 132

 frustration, 326 , 333 , 337

 function libraries. See modules

 functions

 compared to subroutines, 213

 documentation, 98

 naming, 307

 nesting inside one another, 97

 numerical functions, 96

 use of parentheses, 89

 garbage collection, 269 , 280–81

 genome sequence as multidimensional

structure, 276

 Getopt::Long module, 283–85

 Getopt::Std module, 283 , 285

 GFF fi les, 220 , 222–23 , 245

 global matches, 128 , 205

 global symbol error messages, 303

 global symbols, 110

 greater than operator (>), 103

 greater than or equal to operator (>=), 103

 greedy quantifi ers, 252

 grep command, 229–33 , 236

 gt operator, 118

 hash sign (#). See pound sign

 hashes, 182–91

 adding/removing key-value pairs, 188

 assignment operator (=>), 185

 checking existence of key, 188

 defi ning, 185–86

 extracting keys and values, 189

 looping over contents, 189–91

 naming, 186

 references to, 269–71

 saving as a database fi le, 321

 sorting, 190

 syntax, 185

 head command, 235

 hello world program, 73 , 85

 help, 337–41

 built-in support tools, 339

 online support, 341

 Perl FAQ, 339

 hidden fi les in Unix, 66–68

9781107000681ind_p358-368.indd 3629781107000681ind_p358-368.indd 362 11/5/2011 8:23:41 PM11/5/2011 8:23:41 PM

Index 363

 history command, 40

 home directories, 15 , 17 , 18 , 19 , 23–25 , 28 , 80

 hyphen (-)

 as subtraction operator, 95

 specifying character range, 195

 if statement, 103

 ignoring case. See case of characters

 increment operator (++), 98

 indenting code, 102 , 105 , 111 , 212 , 306

 int function, 97

 interpreter directive, 81 , 101

 interrupting running programs, 159

 invisible fi les. See hidden fi les in Unix

 join function, 146

 karma, 341

 keyboard navigation

 of command history, 41

 of the command-line, 41

 keys function, 189–90

 killing Unix processes, 228

 last keyword, 168

 lc function, 121

 lcfi rst function, 121

 length function, 120

 less command, 33 , 55

 less than operator (<), 103

 less than or equal to operator (<=), 103

 lib pragma, 258

 libraries. See modules

 line endings, 247–48 , 335–36

 line feed character, 247 , 335

 Linux

 comparison with Unix, 7

 distributions, 8

 how to install, 8 , 9

 list directory contents. See ls command

 lists

 assigning values to, 134–36 , 141

 list context, 134 , 139 , 206

 list context vs scalar context, 140

 swapping values, 136

 logical operators, 106

 login shells, 72

 loops, 158–71

 $i as loop counter, 159

 do loop, 165

 for loop, 158–61 , 164

 foreach loop, 162–63

 labelled loops, 170

 last keyword, 168

 loop control, 166–71

 looping over arrays, 161–63 , 165

 looping over hashes, 189–91

 looping over range, 163–64

 while loop, 164–65

 ls command, 15–16 , 28–31 , 52 , 67

 lt operator, 118

 main namespace, 113 , 259 , 316

 making directories, 35–37

 man command, 32–34

 matching operator, 124–26 , 133

 alternative delimiters, 132–33 , 204

 using the default variable ($_), 253

 matching patterns. See regular expressions

 mathematical operators, 94–98

 methods, 287

 mkdir command, 35–37

 modules, 256–62

 from CPAN. See CPAN

 how to use, 257 , 294 , 314–16

 in object-oriented programming, 288

 installing, 293

 namespaces, 259

 specifying location, 258–59 , 294–95

 use in abstracting code, 314–16

 modulo operator (%), 95

 moving directories, 46

 moving fi les, 43–45

 multidimensional data structures,

273 , 280

 multiplication operator (*), 95

 mv command, 43–45

 my keyword, 109

 namespaces, 259 , 261 , 315

 naming scripts, 331

 nano command, 62–63

 negation operator (!), 106

 new constructor, 286 , 288

9781107000681ind_p358-368.indd 3639781107000681ind_p358-368.indd 363 11/5/2011 8:23:42 PM11/5/2011 8:23:42 PM

Index364

 newline (\n)

 at ends of input fi les, 177

 compared to other line ending characters,

 247 , 336

 escaping special meaning, 90 , 123

 how to remove from strings, 181

 length of, 120

 overview, 85

 next keyword, 166–67

 noclobber setting, 237

 non-digit metacharacter (\D), 200

 non-whitespace metacharacter (\S), 200

 non-word boundary metacharacter (\B), 254

 not (logical operator), 106

 not equal operator (!=), 103

 not match operator (!~), 125

 null device, 243

 numerical comparison operators, 103

 object-oriented programming (OOP),

286–92

 attributes, 286–87

 bless keyword, 289

 class variables, 288

 classes, 286 , 288–91

 encapsulation, 287

 methods, 287

 new constructor, 286 , 288

 objects vs classes, 286

 use in abstracting code, 316–17

 OOP. See Object-oriented programming

 open function, 179 , 210

 operator precedence, 97

 or (logical operator), 106

 other peoples’ data (OPD), 333–37

 package statement, 256 , 259

 packages. See namespaces

 parent directories, 19 , 21

 parentheses ()

 as delimiter for matching operator, 133

 as grouping metacharacters, 194 ,

203 , 204

 as part of function names, 89

 assigning an empty list, 148

 in conditional statements, 102 , 106

 indicating list context, 134 , 141

 to indicate precedence, 97

 paths, 19 , 77–80

 absolute paths, 22 , 77

 absolute vs relative paths, 23 , 37

 modifying $PATH, 78–80

 relative paths, 22

 viewing contents of $PATH, 78

 pattern matching. See regular expressions

 percent sign (%)

 as hash prefi x, 184

 as modulo operator, 95

 perl command, 86 , 100

 Perl one-liners, 336

 perldoc command, 330 , 338–39

 permission denied errors, 302

 permissions. See fi le permissions

 pipe character (|)

 in regular expressions, 193 , 203

 in Unix pipelines, 220 , 243–47

 reading from/writing to processes, 210–11

 plus sign (+)

 addition operator, 95

 wildcard character (Perl), 199

 pod (Plain Old Documentation), 328–30

 pop function, 143

 pos function, 254–55

 pound sign (#)

 as alternative delimiter for matching

operator, 204

 as comment character, 66 , See comments

 pragmas, 92 , 109

 print function, 85 , 88 , 89 , 96

 print working directory, 19

 printenv command, 27

 process control, 223–29

 interrupt signal, 225

 interrupting running programs, 159

 kill command, 229

 process ID (PID), 227 , 228

 ps command, 227–28

 top command, 225–27

 profi le fi le. See .profi le fi le

 program control in Perl

 capturing Unix output, 207–11

 checking whether programs ran

successfully, 208

 die function, 114 , 115 , 116 , 151 , 179

 exit function, 115

 overview, 114

9781107000681ind_p358-368.indd 3649781107000681ind_p358-368.indd 364 11/5/2011 8:23:42 PM11/5/2011 8:23:42 PM

Index 365

 prompts, 14 , 72

 ps command, 227–28

 push function, 142

 pwd command, 19

 question mark (?)

 as non-greedy quantifi er in Perl, 252

 as wildcard character (Perl), 199 , 253

 as wildcard character (Unix), 45 , 49

 quotation characters

 as delimiters for matching operator, 256

 in hash keys, 185

 single vs double, 89 , 117 , 122

 unquoted string error, 93

 when providing command-line arguments,

 150

 when using numbers, 95 , 99

 qw function, 139 , 144

 qx operator, 207

 rand function, 96

 range operator (..), 163–64

 read permission. See fi le permissions

 README fi les, 328

 recursive copying, 53

 recursive subroutines, 279

 redirecting input, output, and error, 235–43

 appending output to existing fi les, 238

 redirecting error, 242–43

 redirecting input, 239–40

 redirecting output, 236–38

 with pipelines, 244

 redo keyword, 167

 ref function, 263

 references, 262–81

 2-dimensional arrays, 265–69

 2-dimensional data structures, 272

 anonymous arrays, 264 , 265

 anonymous hashes, 269

 dereferencing arrays, 264

 dereferencing hashes, 269

 dereferencing scalars, 275

 garbage collection, 269 , 280–81

 multidimensional data structures, 273 , 280

 passing to subroutines, 275

 testing whether a scalar is a reference, 263

 to arrays, 262–65

 to hashes, 269–71

 to scalars, 275

 viewing complex data structures, 278

 regular expressions, 191–206 , 252–56

 advanced metacharacters, 199–200 , 254

 capturing matching patterns, 203–06 , 255

 character classes, 194 , 195

 character ranges, 195

 determining position of matches, 254

 how to match metacharacters, 197

 matching at start or end of strings, 196

 matching rule precedence, 253

 matching word boundaries, 254

 specifying alternative patterns, 193

 using quantifi ers, 197–99 , 252–53

 using variables in patterns, 202

 with grep command, 236

 with split function, 201

 working with default variable ($_), 253

 relative paths, 22

 removing directories, 37

 removing fi les, 47–49

 renaming directories, 46

 renaming fi les, 43–45

 repetition operator (x), 119

 return keyword, 217

 reverse function, 157

 revision control, 330–33

 rm command, 59

 rmdir command, 37

 root directory, 17 , 18

 root level, 19 , 22 , 23 , 28

 running scripts, 76 , 78 , 86

 running Unix programs in Perl. See system

function

 run-time errors, 297

 Saccharomyces Genome Database (SGD),

 221 , 223 , 233

 sanity checks, 336

 scalar context, 140 , 152

 scalar function, 141

 scalar variables. See variables

 scope, 111–13

 scope operator (::), 261 , 315

 scripting in Unix. See shell scripts

 sed command, 248–49

 semicolon (;), 86 , 102 , 104

 setenv command, 79

9781107000681ind_p358-368.indd 3659781107000681ind_p358-368.indd 365 11/5/2011 8:23:42 PM11/5/2011 8:23:42 PM

Index366

 shell scripts, 74 , 77 , 83

 shells, 25–26

 associated confi guration fi les, 69

 list of common shells, 25

 shift function, 143 , 165 , 214

 sort command, 245

 sorting in Perl, 154–57

 creating custom sort functions, 217

 reverse sort, 157

 sort function, 155 , 156–57

 using <=> and cmp, 157

 using $a and $b, 156 , 190

 source command, 64–66 , 70

 space characters in fi le names, 35

 spaceship operator (<=>), 155

 Spinal Tap, 17

 splice function, 143 , 147

 split function, 146 , 175 , 201

 SQL. See databases

 SQLite, 323–24 , See databases

 square brackets []

 array index syntax, 138

 as alternative delimiter for binding operator,

 133

 in anonymous array syntax, 264

 specifying a character class, 194

 standard error, 241–43

 standard input

 in Perl, 175–76

 in Unix, 239–40

 standard output

 in Perl, 181

 in Unix, 236

 STDERR. See standard error

 STDIN. See standard input

 STDOUT. See standard output

 Storable package, 321–22

 strict pragma, 109–11 , 298

 strings, 122

 ASCII values, 119 , 155

 comparing, 118–19

 concatenation operator, 118

 creating from array, 146

 extracting substrings, 120–21

 length of, 120

 matching. See matching operator

 repetition operator, 119

 reversing, 157

 splitting into array, 146

 substituting, 127–29

 Structured Query Language (SQL), 322–24

 stupidity of users, 131 , 301 , 333

 subdirectories, 18

 subroutines, 211–18

 @_ array, 213–14

 as functions in a module, 257

 calling, 213

 compared to functions, 213

 in object-oriented programming, 288

 passing arrays or hashes, 274

 passing data to, 213–14

 returning data from, 217

 syntax, 212

 use in abstracting code, 313

 substitution operator, 127–29 , 132 , 205

 substr function, 120–21

 subtraction operator (-), 95

 superheroes, 185 , 194 , 200 , 203 , 229 , 241 ,

 242 , 252 , 254

 symbol tables, 113

 symbolic links, 29

 syntax error messages, 303

 syntax highlighting, 10 , 297

 system function, 209

 tab (\t), 123 , 306

 tab-completion, 38–40 , 47 , 86

 tab-separated values. See TSV

 tail command, 235

 terminal applications, 11–13

 text editors

 Emacs, 61

 nano, 62

 vi, 61

 vim, 61

 text fi les

 editing, 60–63

 README fi les, 328

 viewing, 55

 vs binary fi les, 334

 working with, 53

 tilde (~), 24 , 52

 top command, 225–27

 touch command, 42

9781107000681ind_p358-368.indd 3669781107000681ind_p358-368.indd 366 11/5/2011 8:23:42 PM11/5/2011 8:23:42 PM

Index 367

 tr command, 239 , 248

 transliteration operator, 130 , 131

 trinary operator, 107

 trust no-one, 333

 truth, evaluating in Perl, 105

 TSV (tab-separated values), 124 , 147 ,

267 , 319

 uc function, 121

 ucfi rst function, 121

 undef function, 153

 undefi ned variable. See variables

 uninitialized values, 94

 uniq command, 246

 uniqueness

 of FASTA headers, 221

 of hash keys, 184

 of lines in a GFF fi le, 223

 unless statement, 106

 unshift function, 143

 usage statements, 31 , 282 , 327

 use keyword, 91–94 , 257

 use of uninitialized variable errors, 303

 values function, 189

 variables

 assigning values, 88 , 89

 declaring, 88 , 110 , 152

 defi ned variable, 152

 defi ned vs undefi ned, 152–54

 differences between scalars, arrays, and

hashes, 188

 evaluating in scalar context, 139

 in Perl, 87–91

 in shell scripts, 83

 inside regular expressions, 255

 interpolation, 90 , 96 , 256

 lexical variables, 111 , 114

 naming, 90–91 , 307

 scalars, 88 , 138

 scalars vs arrays, 138

 scope, 111–13

 version control. See revision control

 vertical bar (|). See pipe character

 vi command, 61

 viewing text fi les

 with cat command, 67 , 234

 with head and tail commands, 235

 with less command, 55

 vim command, 61

 virtualization, 8 , 9

 warnings, 92–94 , 109 , 153 , 156 , 298

 wc command, 243

 which command, 57 , 80

 while loop, 164–65

 whitespace

 \s metacharacter, 200

 tabs vs spaces, 123

 use in beautifying code, 91 , 185 , 308

 use in split function, 175 , 201

 wildcard characters, 45 , 48 , 197

 word boundary metacharacter (\b) , 254

 word metacharacter (\w), 200

 working directory, 19

 write permission. See fi le permissions

 XML (eXtensible Markup Language), 319–21

9781107000681ind_p358-368.indd 3679781107000681ind_p358-368.indd 367 11/5/2011 8:23:42 PM11/5/2011 8:23:42 PM

	Unix and Perl to the Rescue!
	Contents
	Part 1 Introduction and background page
	1.1 Introduction
	1.2 How to use this book

	Part 2 Installing Unix and Perl
	2.1 What do I need in order to learn Unix and Perl?
	2.2 Installing Linux on a PC
	2.3 Installing a code editor

	Part 3 Essential Unix
	3.1 Introduction to Unix
	3.2 The Unix terminal
	3.3 The Unix command prompt
	3.4 Your fi rst Unix command
	3.5 The hierarchy of a Unix fi lesystem
	3.6 Finding out where you are in the fi lesystem
	3.7 How to navigate a Unix fi lesystem
	3.8 Absolute and relative paths
	3.9 Working with your home directory
	3.10 The Unix shell
	3.11 Environment variables
	3.12 Introduction to command-line options
	3.13 Man pages
	3.14 Working with directories
	3.15 The importance of saving keystrokes
	3.16 Moving and renaming fi les
	3.17 Moving and renaming directories
	3.18 How to remove fi les
	3.19 How to copy fi les and directories
	3.20 Working with text fi les
	3.21 Introduction to aliases
	3.22 Editing text fi les
	3.23 Automating Unix commands
	3.24 How to hide fi les and fi nd hidden fi les
	3.25 Creating a confi guration fi le
	3.26 Programming with Unix
	3.27 Unix fi le permissions
	3.28 How to specify which directories contain programs
	3.29 Creating useful shell scripts
	3.30 Unix summary

	Part 4 Essential Perl
	4.1 Hello world
	4.2 Scalar variables
	4.3 Use warnings
	4.4 Maths and functions
	4.5 Perl vs. perl
	4.6 Conditional statements
	4.7 Use strict
	4.8 Stopping programs
	4.9 Working with strings
	4.10 Dealing with special characters
	4.11 Matching operators
	4.12 The transliteration operator
	4.13 List context
	4.14 Introduction to Arrays
	4.15 Array manipulation
	4.16 The @ARGV array
	4.17 Defi ned and undefi ned variables
	4.18 Sorting
	4.19 Introduction to loops
	4.20 More loops
	4.21 Loop control
	4.22 Data input and output
	4.23 Reading and writing fi les
	4.24 Introduction to hashes
	4.25 Working with hashes
	4.26 Introduction to regular expressions
	4.27 Regular expression metacharacters
	4.28 Working with regular expressions
	4.29 Interacting with other programs
	4.30 Using functions and subroutines
	4.31 Returning data from a subroutine
	4.32 Part 4 summary

	Part 5 Advanced Unix
	5.1 Introduction to advanced Unix
	5.2 Introduction to process control
	5.3 The grep command
	5.4 Viewing and controlling program output
	5.5 Redirecting input and output
	5.6 Standard error
	5.7 Connecting commands with pipelines
	5.8 Advanced text manipulation

	Part 6 Advanced Perl
	6.1 Regular expressions revisited
	6.2 Function libraries
	6.3 References and two-dimensional arrays
	6.4 Records and other hash references
	6.5 Using references with subroutines
	6.6 Complex data structures
	6.7 Adding command-line options
	6.8 OOP basics
	6.9 CPAN

	Part 7 Programming topics
	7.1 Debugging strategies
	7.2 Common error messages
	7.3 Code beautifi cation
	7.4 Abstraction
	7.5 Data management
	7.6 Documentation
	7.7 Revision control
	7.8 Working with other people’s data
	7.9 Getting help

	Appendix
	Index

