

Paul Barry
Institute of Technology, Carlow, Ireland

Copyright ©2002 John Wiley & Sons Ltd
Baffins Lane, Chichester,
West Sussex PO19 1UD, England

National 01243 779777
International (+44) 1243 779777

e-mail (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on http://www.wileyeurope.com or http://www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except under the terms of the Copyright, Designs and
Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency
Ltd, 90 Tottenham Court Road, London, UK W1P 0LP, without the permission in writing of
the Publisher with the exception of any material supplied specifically for the purpose of
being entered and executed on a computer system for exclusive use by the purchaser of
the publication.

Neither the author nor John Wiley & Sons, Ltd accept any responsibility or liability for loss
or damage occasioned to any person or property through using the material, instructions,
methods or ideas contained herein, or acting or refraining from acting as a result of such
use. The author and publisher expressly disclaim all implied warranties, including mer-
chantability or fitness for any particular purpose. There will be no duty on the author or
publisher to correct any errors or defects in the software.

Designations used by companies to distinguish their products are often claimed as trade-
marks. In all instances where John Wiley & Sons, Ltd is aware of a claim, the product names
appear in capital or all capital letters. Readers, however, should contact the appropriate
companies for more complete information regarding trademarks and registration

Library of Congress Cataloging-in-Publication Data

(applied for)

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0 471 48670 1

Typeset in 9.5/12.5pt Lucida Bright by T&T Productions Ltd, London.
Printed and bound in Great Britain by Biddles Ltd, Guildford and Kings Lynn.
This book is printed on acid-free paper responsibly manufactured from sustainable
forestry in which at least two trees are planted for each one used for paper production.

Dedicated to Deirdre,

for continuing to put her ambitions on hold

while I pursue mine.

Contents

Preface xiii

1 Meet Perl 1

1.1 Perl’s Default Behaviour 1
1.1.1 Our first Perl program 2
1.1.2 Perl’s default variable 3
1.1.3 The strange first line explained 3

1.2 Using Variables in Perl 4
1.2.1 One of something: scalars 5
1.2.2 A collection of somethings: arrays and lists 6
1.2.3 Hashes 8
1.2.4 References 9
1.2.5 Built-in variables 12
1.2.6 Scoping with local, my and our 12

1.3 Controlling Flow 13
1.3.1 if 13
1.3.2 The ternary conditional operator 14
1.3.3 while 15
1.3.4 for 15
1.3.5 unless 16
1.3.6 until 16
1.3.7 foreach 16
1.3.8 do 17
1.3.9 eval 17
1.3.10 Statement modifiers 18

1.4 Boolean in Perl 19
1.5 Perl Operators 20
1.6 Subroutines 21

1.6.1 Processing parameters 21
1.6.2 Returning results 22
1.6.3 I want an array 23
1.6.4 In-built subroutines 23
1.6.5 References to subroutines 26

1.7 Perl I/O 26
1.7.1 Variable interpolation 28

1.8 Packages, Modules and Objects 29
1.8.1 Modules 30
1.8.2 Objects 30
1.8.3 The joy of CPAN 31

1.9 More Perl 32
1.10 Where To From Here? 32

viii Contents

1.11 Print Resources 32
1.12 Web Resources 33

2 Snooping 35

2.1 Thank You, Tim Potter 36
2.2 Preparing To Snoop 37

2.2.1 Installing NetPacket::* 37
2.2.2 Installing Net::Pcap 38
2.2.3 Installing Net::PcapUtils 39
2.2.4 Online documentation 39
2.2.5 Configuring your network interface 40

2.3 Building Low-Level Snooping Tools 41
2.3.1 loop = open + next 42
2.3.2 Optional parameters: loop and open 43
2.3.3 Optional parameters: the callback function 45
2.3.4 Ethernet Analysis 45
2.3.5 EtherSnooper (v0.01) 48
2.3.6 EtherSnooper (v0.02) 52
2.3.7 EtherSnooper (v0.03) 55
2.3.8 Displaying IP addresses 58

2.4 Snooping IP Datagrams 63
2.4.1 EtherSnooper (v0.05) 64
2.4.2 EtherSnooper (v0.06) 67

2.5 Transport Snoopers 69
2.5.1 Preparing to snoop UDP 70
2.5.2 Preparing to snoop TCP 70
2.5.3 The TCP and UDP gotcha! 71
2.5.4 Application traffic monitoring 75
2.5.5 EtherSnooper (v0.07) 81

2.6 The Network Debugger 83
2.6.1 Processing command-line parameters 85
2.6.2 Storing captured results 85
2.6.3 The NetDebug source code 86

2.7 Where To From Here? 95
2.8 Print Resources 95
2.9 Web Resources 96

3 Sockets 99

3.1 Clients and Servers 99
3.1.1 Client characteristics 100
3.1.2 Server characteristics 101

3.2 Transport Services 101
3.2.1 Unreliable transport 102
3.2.2 Reliable transport 103

3.3 Introducing the Perl Socket API 104
3.4 Socket Support Subroutines 105

3.4.1 inet_aton and inet_ntoa 105
3.4.2 Socket addresses 105
3.4.3 getservbyname and getservbyport 106
3.4.4 getprotobyname and getprotobynumber 106
3.4.5 gethostbyname and gethostbyaddr 107

3.5 Simple UDP Clients and Servers 108
3.5.1 Testing with localhost 108
3.5.2 The first UDP server 108
3.5.3 The first UDP client 111

Contents ix

3.6 Genericity and Robustness 112
3.7 UDP Is Unreliable 116

3.7.1 No flow control 117
3.8 Sending and Receiving with UDP 118
3.9 Dealing with Deadlock 120

3.9.1 Specifying a time-out 121
3.9.2 Checking for data 123
3.9.3 Spawning a subprocess 125

3.10 TCP Clients and Servers 130
3.10.1 The first TCP server 131
3.10.2 The first TCP client 134

3.11 A Common TCP Gotcha 140
3.12 More TCP Socket Communication 143

3.12.1 The remote syntax checker server 144
3.12.2 The remote syntax checker client 147

3.13 The Concurrent Syntax Checker 150
3.14 Object-Oriented Sockets 153

3.14.1 IO::Socket 154
3.14.2 IO::Socket::INET 154
3.14.3 An object-oriented client and server 156

3.15 Where To From Here? 158
3.16 Print Resources 158
3.17 Web Resources 159

4 Protocols 161

4.1 Gotcha! 161
4.1.1 What’s the deal with newline? 162

4.2 Working with the Web 164
4.2.1 HTTP requests and responses 164

4.3 The World’s Worst Web Browser 165
4.3.1 Embedded graphics 168
4.3.2 A persistent wwwb 169
4.3.3 A better get_resource 172

4.4 HTTP Status Codes 174
4.5 It’s the Gisle and Graham Show! 178

4.5.1 Getting libwww-perl and libnet 179
4.6 The Library for WWW Access in Perl 180

4.6.1 The libwww-perl classes 181
4.7 The LWPwwwb Program 181
4.8 Doing More with LWPwwwb 184

4.8.1 Parsing HTML 185
4.8.2 Some parsewwwb examples 187
4.8.3 The HTML::Parser examples 189

4.9 Building a Custom Web Server 190
4.9.1 The custom Web server source code 190

4.9.2 The custom Web server in action 196
4.10 The libnet Library 197

4.10.1 Working with Usenet 198
4.10.2 The news reading source code 199

4.11 Email Enabling simplehttpd 205
4.11.1 The simple mail transfer protocol 205
4.11.2 The Net::SMTP module 210
4.11.3 Creating simplehttp2d 211

x Contents

4.12 Other Networking Add-On Modules 213
4.12.1 Installing Net::Telnet 213
4.12.2 A Net::Telnet example 214

4.13 Where To From Here? 217
4.14 Print Resources 217
4.15 Web Resources 217

5 Management 221

5.1 Simple Management with ICMP 222
5.2 Doing the Ping Thing 222

5.2.1 Some ping examples 223
5.3 Doing the Net::Ping Thing 225
5.4 Tracing Routes 227

5.4.1 How traceroute works 228
5.5 Not So Simple Management with SNMP 229

5.5.1 A little SNMP history 229
5.6 The SNMP Management Framework 230
5.7 Managed Data 231

5.7.1 The TCP/IP MIB 231
5.8 The SNMP Protocol 235

5.8.1 SNMP’s operational model 235
5.8.2 A brief tour of SNMPv1, SNMPv2 and SNMPv3 235
5.8.3 SNMP communities 237

5.9 The Net::SNMP Module 237
5.9.1 The Net::SNMP methods 238

5.10 Working With Net::SNMP 240
5.10.1 Working with mnemonic object identifiers 242
5.10.2 The udpstats source code 243
5.10.3 The howlongup program 247

5.11 What’s Up? 249
5.11.1 Being more careful 254

5.12 Setting MIB-II Data 256
5.13 IP Router Mapping 258
5.14 Where To From Here? 266
5.15 Print Resources 266
5.16 Web Resources 267

6 Mobile Agents 269

6.1 What is a Mobile Agent? 269
6.1.1 Mobile agent = code + state 270
6.1.2 What is a mobile-agent environment? 270

6.2 Mobile-Agent Examples 270
6.2.1 Revisiting multiwho 270
6.2.2 Revisiting ipdetermine 271

6.3 Mobile-Agent Advantages/Disadvantages 272
6.4 Perl Agents 274

6.4.1 Preparing Perl for mobile agents 274
6.5 The Agent.pm Module 275
6.6 Ooooh, Objects! 276
6.7 The Default Mobile Agent 276
6.8 A Launching Mobile-Agent Environment 280
6.9 A One-Shot Location 282

Contents xi

6.10 Relocating To Multiple Locations 284
6.10.1 Processing multiple mobile agents 285
6.10.2 Identifying multiple locations 285
6.10.3 A multi-location mobile agent 287

6.11 The Mobile-Agent multiwho 292
6.12 The Mobile-Agent ipdetermine 293
6.13 The Cloning Mobile-Agent ipdetermine 297
6.14 Other Perl Agent Examples 304
6.15 Where To From Here? 305
6.16 Print Resources 305
6.17 Web Resources 305

Appendix A. Essential Linux Commands 307

Appendix B. vi Quick Reference 311

Appendix C. Network Employed 315

Appendix D. Sample NetDebug Results 317

Appendix E. The OIDs.pm Module 363

Index 369

Preface

The study of Computer Networking, long considered an adjunct to traditional
third-level computing programmes, has moved into the mainstream. The Insti-
tute of Technology, Carlow, where I lecture, was the first third-level college in
Ireland to develop an advanced four-year degree programme devoted entirely to
the study of Computer Networking. Students learn computing from a networking
perspective, and are trained in traditional programming technologies such as C,
C++ and Java. In addition, the established degree programmes have been peri-
odically reviewed to include new mainstream technologies, with recent emphasis
on including the technologies associated with computer networks, concentrating,
from a programming perspective, on network sockets.

Using a traditional programming language to program network sockets (and
networks in general) is a well-established practice. Unfortunately, some students
have difficulty grasping the details of these languages, and, consequently, struggle
with the complexities of programming network sockets. However, when a higher-
level language like Perl is used, students are more comfortable with it and enjoy
greater programming success.

Of course, there is more to programming the network than programming net-
work sockets. The modern network programmer needs to be able to analyse the
network traffic programs generate, interact with standard network protocols, and
manage complex networked systems.

What is in this book

This book supports the study of computer networking through the medium of
Perl programming.

Following an introduction to Perl (in Chapter 1, Meet Perl), the focus is on debug-
ging. Programmers know how to debug programs. When it comes to the network,
they need to know how to debug communications. In Chapter 2, Snooping, some
simple Perl programs are built to capture and analyse the traffic network applica-
tions generate. In the absence of any custom network applications, these simple
programs are used to analyse the traffic generated by some standard network
technologies.

xiv Preface

With the analysis tools in place, Chapter 3, Sockets, details the creation of a col-
lection of custom network applications using the Socket application programmer
interface. These are then developed to add increasing levels of sophistication.

The experience of building networked applications is good preparation for
interaction with the standard protocols of the Internet, the biggest computer net-
work of all. In Chapter 4, Protocols, the standard and add-on facilities of Perl are
used to interact with a selection of standard protocols and applications.

It is important to build robust custom network applications. It is also important
to be able to manage the networked environment within which these applications
operate. The Internet provides a standard mechanism to do this, and Perl is used
to program it in Chapter 5, Management.

Programming the Network with Perl concludes with Chapter 6, Mobile Agents,
which explores an area of computer networking that is generating considerable
research. Many believe Mobile-Agent Technology to be one of the ‘next big things’
on the Internet.

At the end of each chapter, a list of Print and Web Resources is provided to facil-
itate further study. All chapters conclude with a set of programming exercises.

Who should read this book?

Programming the Network with Perl evolved from my involvement in teaching
a 30 week computer networking module to a group of final-year undergradu-
ate software engineers. The material presented here is derived from the practical
material developed for the course. Since there is a high practical content related to
the study of computer networking, Programming the Network with Perl is highly
complementary to such a course. In addition, any course on programming Perl
will benefit from the real-world examples illustrated. The professional Perl pro-
grammer should also find the material interesting, as it is no longer enough to
program the computer – the modern programmer needs to know how to program
the network.

Platform notes

The Linux platform provides a host for our work. Not only is Linux a modern,
feature-rich operating system, it is also available free of charge, and is, therefore,
readily available. Linux provides excellent support to the Perl programmer. All the
code in Programming the Network with Perl should run unaltered on any Linux
platform, regardless of the underlying hardware technology. Users of UNIX or
BSD derived systems should experience no real problems running the code. When
working on Windows or Mac OS (prior to release X), getting the code in Chapter 2
to work will cause the most difficulty, although most of the code in the other
chapters should run unaltered on these non-UNIX operating systems. For readers
new to Linux, two appendixes provide quick references to the most frequently
used Linux commands and to the vi text editor.

Preface xv

The network used during the development of Programming the Network with
Perl is built from Ethernet hardware and TCP/IP software. The Ethernet network
is connected to the global Internet via a cisco router and an ATM connection. The
Network Employed appendix provides additional details on the network used (see
the diagram on p. 316).

Unless otherwise stated, use of at least release 5.6.0 of the Perl programming
language is assumed.

Accompanying website

Details of the mailing-list, source code, errata and other material related to Pro-
gramming the Network with Perl can be found on the book’s website, located at
http://glasnost.itcarlow.ie/˜pnb/index.html.

Your comments are welcome

I welcome all comments (good and bad) about Programming the Network with
Perl. Contact me via email at paul.barry@itcarlow.ie. Alternatively, write to
me care of the publisher.

Acknowledgments

Thanks to Mark T. Sebastian for providing a detailed technical review of the
manuscript, and to Greg McCarroll for his constructive criticism. My father, Jim
Barry, thoroughly proof-read the entire manuscript and suggested many improve-
ments to my writing style. A big thank-you to the team (Robert Hambrook, Jill
Jeffries and Karen Mosman) at John Wiley & Sons, Ltd. Thanks to Michael Baker,
John Hegarty, Austin Kinsella and Colm O’Connor at The Institute of Technology,
Carlow . Thanks, too, to the students of CW082-4 for helping to debug many of the
example programs. And hats off to Sam Clark (of T&T Productions Ltd) for turning
my amateur LATEX into that which you see before you now.

I would like to acknowledge a small group of inventors for their inventions:
Linus Torvalds for Linux, Bill Joy for vi, Leslie Lamport for LATEX and, of course,
Larry Wall for Perl. This book was inspired by the last invention, and produced
with the first three.

Programming the Network with Perl would never have been written without the
continued support of my wife, Deirdre. While I worked on the manuscript, Deirdre
looked after everything else. And with three little ones (all under 6 years of age),
everything else was oftentimes quite a handful. Thanks, Deirdre.

1

Meet Perl

This chapter introduces Perl to the non-Perl programmer. Competent Perl pro-
grammers need only skim through this material.

The main objective of this chapter is to provide sufficient Perl to allow read-
ers to comfortably work through the rest of Programming the Network with Perl.
Another is to show that Perl is a rather special programming technology: inter-
esting, powerful, useful and fun.

Newcomers to Perl are advised to work through a good introductory Perl text.
See the Print Resources section at the end of this chapter for suggestions.

For the purposes of this chapter, it is assumed that the reader is already a
programmer. Veterans of the ‘C type’ languages may find much of Perl familiar.
However, although Perl may look a lot like C, its behaviour is oftentimes a lit-
tle strange, and can consequently be quite unlike C. Fans of other programming
languages will, initially, just find Perl to be strange. Perl does not set out to be
strange, but it is sometimes so unlike the mainstream programming languages
that the differences are seen as strangeness in the eyes of ‘traditional’ program-
ming folk. Which leads into the first bit of Perl strangeness: default behaviour .

1.1 Perl’s Default Behaviour

Unlike other programming languages, Perl assumes a lot. It does a lot of things
by default, and unless told otherwise, a Perl program will inherit this default
behaviour. Think of this as Perl’s way of giving programmers something for noth-
ing. This is unlike the vast majority of programming languages, which generally
assume nothing, and where nothing is free.

2 Meet Perl

1.1.1 Our first Perl program

A simple example1 will help to illustrate this default behaviour:

#! /usr/bin/perl -w

while (<>)
{

print;
}

The first line (all that #! stuff) looks a little strange, so let us conveniently ignore it,
for now. The core of this program is the while loop, which is printing something
with a print statement. Just what is getting printed is not clear, but as the print
statement is in a loop, the assumption is that the printing is happening over and
over again (as long as the condition of the while loop is true). But, what is getting
printed?

The answer lies in the bit of code that has not been explained yet. No, not the
strange first line – that is still too strange to discuss – it is the other bit, the <>
bit. If you are reading this and saying ‘that cannot do much’, then welcome to the
wonderful world of Perl!

The <> is a Perl operator which, unless Perl is told otherwise, hooks a program
up to standard input and, when it appears in code, returns a line from standard
input to the program. Magically, the line of input comes into the program at the top
of the while loop, then makes its way (magically, again) to the print statement
and gets printed!

Now, if a selection of lines is fed to this program, they will all get printed one
after the other (remember: the print statement is within a loop, so the code
keeps executing while some condition is true). In this case, the program keeps
going while there are input lines to process. To get lines into the program, pass
them in from the keyboard (the hard way), or from a file (the easy way).

Use the vi editor to create a file containing the Perl code as shown above. For
want of a better name (and a distinct lack of imagination), let us call this program
first. At the Linux command prompt, enter the following command to test the
program’s functionality:

perl first /etc/passwd

The program should print each line from the /etc/passwd system file to the
screen, one line at a time, until it runs out of lines.

If something other than the content of the file appears, check to see if the Perl
code has been typed in correctly. You can ask Perl to check code for syntax errors
using the -c command-line switch. That is, typing perl -c first will check the
first program for errors, but not run it.

1Borrowed rather shamelessly from Chapter 2 of Nigel Chapman’s book: Perl: The Programmer’s
Companion. See the Print Resources section at the end of this chapter.

Perl’s Default Behaviour 3

So, this program will, by default, use the filename from the command-line as
standard input to the program. Perl finds the file, opens it, keeps reading from
the file one line at a time until there are no more lines to read, then closes the file
when the program ends. And all this behaviour happens by default.

As if that were not enough, the program actually does more. If it is provided
with more than one filename on the command-line, as follows:

perl first /etc/passwd /etc/inittab .bash_profile

it not only prints all the lines from /etc/passwd but, when it is done, moves
onto /etc/inittab and prints all the lines in that file, before moving onto
.bash_profile and printing any lines contained therein. Again, all this occurs
by default, free of charge, no questions asked!

A good question to ask at this point is: while the program is running, just where
does Perl put the line that it reads in with <> and then prints out with print? We
can answer this question after introducing another bit of Perl strangeness: the
default variable.

1.1.2 Perl’s default variable

Meet the default variable $_, the most used and abused variable in all of Perl.
The general rule-of-thumb is this: if a piece of Perl code expects a variable to

be used and one is not provided, 9 out of 10 pieces of code will use $_.
This is exactly what happens with <> and print in the first program. The

code could have been written as follows:

#! /usr/bin/perl -w

while ($_ = <>)
{

print $_;
}

To re-emphasize, this code is functionally identical to the code in the first pro-
gram (albeit, somewhat more explicit).

1.1.3 The strange first line explained

All that remains of the first program is an explanation of the strange #! line.
This line is actually doing two things. As the # symbol in Perl indicates the start
of a comment that extends to the end of the current line, the strange line is,
first and foremost, a comment that is ignored by the Perl interpreter. Secondly,
if the very first character of a file is # followed by a !, then the line takes on
special meaning on Linux (and UNIX-like) systems. The #! combination tells the
command processor to run the command identified by the rest of the line (in this

4 Meet Perl

case, it is the /usr/bin/perl -w part), and then send the rest of the file to it
as standard input. So, make the first program executable on Linux using the
following command:

chmod +x first

and then invoke the program as follows:

./first /etc/passwd /etc/inittab .bash_profile

Linux will find the Perl interpreter (rather conveniently called perl) located in the
/usr/bin directory and run the contents of the first file through it. This is a
cool feature of Linux (and UNIX), but of lesser importance if running on Mac OS
(prior to X) or one of the Windows varieties.

The -w part of the Perl command is a switch asking Perl to compile the code
with extra warnings enabled. Until you know what you are doing, the advice is to
always run Perl with the -w switch.

Oh, by the way (and in case you hadn’t noticed), Perl statements end with the ;
character, and blocks of code are enclosed in curly braces, { and }. Note, too, that
Perl is case sensitive (so be careful). And Perl is an interpreter , which means that
each time a program is run through Perl, the interpreter scans the code for errors,
converts the code to Perl’s internal bytecode format, optimizes the bytecode, then
runs it. If this all sounds slow, do not worry, in the big scheme of things, it really is
not. Once a Perl program is actually running inside the interpreter, its performance
compares favourably with the traditional compiled languages.

Whew! We are finally done with the first program. Which just goes to show
that it is sometimes much easier (and shorter) to write a few lines of Perl code
than it is to explain them!

1.2 Using Variables in Perl

So far, the only variable seen and used is $_, the default variable. Creating con-
tainers for variables in Perl is easy. Give the container a name (which is made up
of a combination of the letters A-Z, a-z, the digits 0-9 and the underscore charac-
ter), then precede the name with one of Perl’s special variable naming characters,
depending on what the variable will be used for:

$ – a scalar variable (one of something);

@ – an array variable (a collection of somethings, a list);

% – a hash variable (a collection of name/value pairs); and

\ – a referenced variable (a ‘pointer’ to something else, usually another variable).

Using Variables in Perl 5

1.2.1 One of something: scalars

When looking for a place to put one copy of something within a Perl program, use
a scalar. Here are some examples:

$greeting = "Welcome to Perl!";
$score = 20;
$score = "Goal!";
$next = <>;
$_the_answer = 42;
$WhoWantsToBeA = 1_000_000;

Some readers may be looking at the $greeting variable and saying ‘that’s not
one of something, that’s three words’, but they would only be half right. Yes, it
is three words, but they are contained within one single string, and Perl refers to
this single string with a scalar variable container.

Other readers may find it interesting (even strange) that the variable $score is
being set to two different types of values – one a number (20) and the other a string
(‘Goal!’). Assuming that these six lines were in fact a little Perl program, surely the
Perl interpreter would complain that the second usage of $score causes an error,
as $score was initially used within a numeric context? On the contrary, Perl does
not care what value is assigned to a scalar2, because Perl has no real notion of
variable types, at least not like that which readers might be used to in C, C++,
Pascal, or Java. So, it is OK (with Perl) to assign seemingly different typed values
to the same scalar variable.

Note that variable names can start with and include the underscore character,
which can also be used to make literal numbers easier to read – simply place an
underscore where it is usual to expect a comma. So:

$WhoWantsToBeA = 1_000_000;

is equivalent to:

$WhoWantsToBeA = 1000000;

whereas:

$WhoWantsToBeA = 1,000,000;

sets the variable $WhoWantsToBeA to 1, but readers will have to wait until lists
are covered to find out why.

In the code, the $next variable is assigned the result of Perl processing the <>
operator. What happens is that a line of text from standard input is read into
the program and assigned to the $next variable. Note that <> on a line by itself
within a program does not take a line from standard input and put it into the
$_ variable, as this behaviour only works within loops, as was the case with the

2Well, just so long as it is one of something.

6 Meet Perl

first program. Be warned: if the <> operator appears on a line by itself within a
Perl program, a line is read in from standard input, but, as Perl has nowhere to put
the contents of the line, it is discarded, never to be seen again (unless read again
from standard input). Hence, the use of the $next variable in the above example.

1.2.2 A collection of somethings: arrays and lists

Here is an example that shows a relatively standard usage of arrays and lists in
Perl:

@networks = (’Ethernet’, ’Token-Ring’, ’Frame-Relay’, ’ATM’);

On the left of the assignment operator (the = symbol), there is an array called
@networks. Note the prefixed @ character, which indicates that this is an array
variable. On the right, there are four network names in the form of a Perl list.
The four names are surrounded by single quotes, enclosed in parentheses, and
separated by commas. The elements of the list are all ‘one of something’ scalar
values (in this case, strings). This single line of code takes the four network names
and assigns them to the first four elements of the @networks array.

In Perl, array indices start counting from zero, and the first element is actually
referred to as element 0. So, @networks is a four-element array with elements
numbered 0, 1, 2 and 3.

The current size of an array can be determined in one of two ways. Add one to
the value of the largest index (using $#), or assign the array to a scalar variable:

print "The size of the array is: ", ($#networks + 1), "\n";
$size = @networks;
print "The size of the array is: $size\n";

will print the following:

The size of the array is: 4
The size of the array is: 4

Looking at the code, the $size scalar value is substituted into the part of the dou-
ble quoted string that gets printed. This process is called variable interpolation,
and it will be returned to later on in this chapter. The first print statement is
actually printing a list, made up of a string, an expression, and another string3.

Arrays in Perl are automatically dynamic, so it is possible to add elements to
the array without first having to reserve space for them. Here is how to add more
network names into the array:

@networks = (@networks, (’FDDI’, ’Arcnet’));

3Did you notice this?

Using Variables in Perl 7

The $#networks variable now has the value 5, which means there are six elements
in the array.

Accessing a single, specific array element is accomplished using the standard
square bracket notation. The code which follows prints the word Token-Ring
(followed by the newline character):

print "$networks[1]\n";

When accessing a single, specific element of an array, we are no longer referring to
a collection of somethings, we are instead referring to the single, scalar element
located within the array (i.e. one of something). Hence, the use of the $ prefix in
the previous example as opposed to the @ prefix, which would refer to the entire
array.

Surprisingly (or strangely), Perl does not complain when code refers to a sin-
gle array element with the @ prefix. The following code will also print the word
Token-Ring (followed by the newline character):

print "@networks[1]\n";

Technically, this is a single element array slice, and should be avoided in situations
like this. Strange? Most definitely. Something to worry about? Probably not. Just
be sure to prefix single-element array accesses with $ and everything will be OK.

When used in a scalar context , arrays and lists have a value. An array has a
numeric value equal to the number of elements in the array, whereas a list has a
value equal to the first element in the list. This helps explain why the following
sets $WhoWantsToBeA to 1 and not 1,000,000 as might initially be expected:

$WhoWantsToBeA = 1,000,000;

Scalar context can be forced on an array by use of the inbuilt scalar subroutine.
This code tells Perl to treat the array as a scalar, even though it really still is an
array:

print "The size of the array is: ", scalar @networks, "\n";

An experienced Perl programmer may frown at the initial technique used when
creating the first version of the @networks array, which is repeated here:

@networks = (’Ethernet’, ’Token-Ring’, ’Frame-Relay’, ’ATM’);

and could be rewritten as follows:

@networks = qw(Ethernet Token-Ring Frame-Relay ATM);

This has exactly the same meaning as the initial code, and many Perl programmers
prefer it (mainly due to the fact that the latter requires less typing). The qw is called
the quoting operator and is shorthand for ‘quote words’.

8 Meet Perl

1.2.3 Hashes

The third Perl variable container is the hash, more formally known as the asso-
ciative array . Hashes are somewhat like arrays, in that they hold a collection of
scalar somethings. However, whereas arrays are indexed using numeric values,
hashes are indexed using string values (which are also called ‘keys’ or ‘names’).
Each string value index has associated with it a scalar value. These associations
are often referred to as name/value pairs.

Hashes in Perl are prefixed with a % character. Here is a hash which will hold
data on the maximum frame size for a collection of popular networking technolo-
gies:

%net_mtus;

To refer to the entire hash, use the % prefixed name. To refer to an individual ele-
ment, prefix the hash name with the $ character (just as was done when referring
to individual array elements). Here is how to add an element (which is referred to
as a ‘hash entry’) into the newly created hash:

$net_mtus{’Ethernet’} = 1500;

The name (or key) is the word Ethernet and has the value 1500 associated with
it. Lists can be used to initialize a hash:

%net_mtus = (’Token-Ring’, 4464, ’PPP’, 1500, ’ATM’, 53);

The list (which should have an even number of elements) is taken to contain a set
of name/value pairs. Note that this line of code refers to the entire hash using the
% prefix. This is shorthand for the following functionally identical code:

$net_mtus{’Token-Ring’} = 4464;
$net_mtus{’PPP’} = 1500;
$net_mtus{’ATM’} = 53;

Yet another version of this code takes advantage of the Perl feature which aliases
the => symbol with the comma. Additional (entirely optional) white space adds to
the readability of this code, and helps to highlight the name/value pairs:

%net_mtus = (’Token-Ring’ => 4464,
’PPP’ => 1500,
’ATM’ => 53);

It is often useful to think of => as meaning ‘has the value’ when working with
hashes.

Of note here is that, just like arrays, hashes grow dynamically and automatically
in Perl. Also important is the fact that hash keys are (and must be) unique4.

4The same restriction applies to array indices, although there tends to be much less fuss made
of this fact.

Using Variables in Perl 9

When a hash entry is created, a value part does not need to be initially specified.
The special value undef can be used to set a hash entry (or any variable) to the
undefined value:

$net_mtus{’SMDS’} = undef;

The above code is identical to:

$net_mtus{SMDS} = undef;

the only difference being that the single quotes are missing around the SMDS. In
‘Perl-speak’, this is referred to as a bareword . If a hash name contains no white-
space, the single quotes are generally not required.

A convenient way to clear an entire hash is to set it equal to an empty list:

%net_mtus = ();

Hashes (and arrays, for that matter) are very useful ‘right out-of-the-box’. For the
vast majority of the programs in Programming the Network with Perl, these inbuilt
variable containers are all that is needed. However, on occasion, more complicated
data structures help to simplify a solution. The problem with arrays and hashes
is that they can only store scalar values. This restriction, on first glance, seems
limiting in that it appears no method exists to provide for, say, storing an array in
a hash entry, or storing a hash in an array element. This restriction is overcome
by the use of references.

1.2.4 References

A reference is a Perl scalar variable container that refers to something else. The
‘something else’ can be one of a number of things, including another scalar, array,
hash, subroutine, or Perl object. In this subsection, references to scalars, arrays
and hashes are described. References to subroutines and objects will be discussed
in later sections.

If a scalar reference refers to an array, the scalar reference can then be, for
example, added to an existing hash, creating a hash entry that refers to an array.
The entry in the hash is still a scalar value (satisfying the restriction placed on
hash values), but as a reference, it now refers to something more complicated
than a scalar – in this case, an array.

Creating a reference is very easy. Simply place a \ before the thing to be refer-
enced. Here is code which creates a reference to an existing array, then adds the
reference into an existing hash:

%networks = ();
@ethernets = qw(Ethernet-II IEEE802.3 IEEE802.3-SNAP);

$e_ref = \@ethernets;

$networks{’Ethernet Standards’} = $e_ref;

10 Meet Perl

The ’Ethernet Standards’ hash entry now refers to the @ethernets array. It
is important to realize that the @ethernets array and the $e_ref scalar both
refer to the same data. If the array is changed, then what the scalar refers to also
changes. Think of the scalar reference as an alias to the array’s memory location.

To access the array (referred to in the hash), dereference the hash entry:

print "The Ethernet standards are: ";
print "@{$networks{’Ethernet Standards’}}\n";

As it is known that the $networks{’Ethernet Standards’} entry is a reference
to an array, prefix the use of the hash entry with the @ symbol. (The hash entry is
also enclosed in an extra pair of curly braces, although this is not strictly required.)
Read this code as: ‘access the array referred to by the hash entry’.

In the earlier code, the use of the $e_ref scalar is redundant. It is equally valid
to write the code this way:

%networks = ();
@ethernets = qw(Ethernet-II IEEE802.3 IEEE802.3-SNAP);

$networks{’Ethernet Standards’} = \@ethernets;

Even this can be shortened, if the sole purpose of having the @ethernets array is
to create a reference to it within a hash entry. Here is another, equally valid, way
to code this:

%networks = ();

$networks{’Ethernet Standards’} =
[’Ethernet-II’, ’IEEE802.3’, ’IEEE802.3-SNAP’];

By enclosing the list of array elements in square brackets, this code creates an
anonymous array (i.e. one that has no name). The array is then assigned to a hash
entry, and Perl is smart enough to use a reference.

Here is some code which shows the creation and use of references to scalars
and hashes:

$scalar = 42;
$refs = \$scalar;
print ’Both $scalar and $refs have the value: ’, ${$refs}, ".\n";

%hash = (’Name’ => "Paul Barry",
’Book’ => "Programming the Network with Perl",
’Year’ => 2002);

$array_of_hashes[0] = \%hash;

print "There’s a great book called ";
print "${$array_of_hashes[0]}{’Book’} by\n";
print "${$array_of_hashes[0]}{’Name’}, published in ";
print "${$array_of_hashes[0]}{’Year’}.\n";

Using Variables in Perl 11

Unfortunately, as shown in this piece of code, the syntax for accessing an indi-
vidual hash entry within an array of hashes is complex. To yield the string ‘Paul
Barry’ from the array of hashes, the code referred to it as:

${$array_of_hashes[0]}{’Name’}

which reads (from the inside out): ‘take whatever is at element zero of the
@array_of_hashes array, treat it as a hash, then access the value paired with
the Name key’. Thankfully, Perl provides an alternative syntax, which can reduce
this level of complexity. It is possible to yield ‘Paul Barry’ like this:

$array_of_hashes[0]->{’Name’}

or like this:

$array_of_hashes[0]{’Name’}

When the -> appears between a right and left bracket pair – either]{, }[, }{, or
][– its use is not required.

It is also possible to create and use anonymous hashes by enclosing the hash
entries in curly braces. Here is another (equally valid) way to populate the first
element of the $array_of_hashes array:

$array_of_hashes[0] =
{ ’Name’ => "Paul Barry",
’Book’ => "Programming the Network with Perl",
’Year’ => 2002 };

Or, this code would also do:

%hash = (’Name’ => "Paul Barry",
’Book’ => "Programming the Network with Perl",
’Year’ => 2002);

$array_of_hashes[0] = { %hash };

When working with the %networks hash of arrays (from earlier), either of the
following work, yielding the string ‘IEEE802.3’:

${$networks{’Ethernet Standards’}}[1];
$networks{’Ethernet Standards’}->[1];
$networks{’Ethernet Standards’}[1];

Which technique to use is a programmer preference, but be aware that many Perl
programmers freely mix their use of each, so it is important to be able to recognize
all of them.

To check if some variable is a reference, use the inbuilt ref subroutine, which
returns the type of reference as a string.

12 Meet Perl

1.2.5 Built-in variables

The Perl interpreter defines (and uses) a large collection of built-in variables. The
default variable ($_) has already been described. A full list of built-ins can be
viewed in the perlvar manual page. Type this command at the Linux command-
line to page through the material:

man perlvar

Here is a list of frequently used built-in variables (examples of their use – with
explanations – appear throughout Programming the Network with Perl).

$! – contains the operating system error code after some operation has failed.

$| – the auto-flush variable, which when set to 1 switches off buffering when Perl
writes to an output filehandle (such as standard output). With auto-flushing
off, the output buffer will typically not get flushed until a newline character
is written.

$1, $2, etc. – the pattern-match variables, created as the result of successful pat-
tern matches and regular expressions.

$a, $b – used by the inbuilt sort subroutine when doing comparisons.

$@ – when eval is used, $@ is set upon the return from eval.

@_ – the default array , used when processing parameters inside Perl subroutines.

@ARGV – contains the list of command-line parameters sent to a program.

@INC – lists the series of directories Perl searches when loading (and looking for)
add-on modules.

%ENV – a hash containing the current contents of the operating systems environ-
ment.

%SIG – a hash of operating system signals and signal handlers.

1.2.6 Scoping with local, my and our

Variable containers in Perl need not be declared prior to their first use. Perl will
automatically create them as needed. As a direct result of this behaviour, all vari-
able containers in Perl are global in scope.

It is possible to localize a global variable container to a block of code using
the inbuilt local subroutine. When local is used in a block, at the end of the
block the variable will revert to the value it had prior to entering the block within
which it appears. Within the block, the variable can be used in any which way. If
the block of code invokes a subroutine, the local value is visible (not the global)
within the invoked subroutine. Due to its strange behaviour, use of local tends
to be frowned upon nowadays. Consequently, none of the code in Programming
the Network with Perl uses local.

Controlling Flow 13

The inbuilt my subroutine can be used to give a variable container lexical scope.
The variable is not globally visible, nor is it visible by any invoked subroutine. It
is only visible within the block that declares it. When the use strict compiler
directive is used at the top of a Perl program, global variables are forbidden, and
my must be used. That is, of course, assuming the variable containers have not
been declared with our.

The inbuilt our subroutine is new as of release 5.6.0 of Perl. When our is used,
the variable container can be used as if it is global, even though it really is not.
This allows a program to use the use strict compiler directive, and still use
global variable containers when it is convenient (or necessary) to do so.

1.3 Controlling Flow

Perl has the usual collection of flow control statements: if, while and for. Perl
also has some of its own: unless, until and foreach. In addition, two built-
in subroutines (do and eval) can impact on a program’s flow of control. In this
section, we will look at each of these constructs in turn.

1.3.1 if

To decide on one or more courses of action, use the if statement. Assuming
the $net scalar is set to an appropriate value, a simple if statement might
be:

if ($net eq ’Token-Ring’)
{

print "The network is of the token passing variety.\n";
}

This code prints the message if the condition-part (i.e. the first line) of the if
statement is true. Veterans of the C-type programming languages need to note that
the use of curly braces is required by Perl. Two-way decisions are accommodated
by the use of an else statement:

if ($net eq ’Token-Ring’)
{

print "The network is of the token passing variety.\n";
}
else
{

print "The network is NOT a token passer.\n";
}

Multi-way decisions are also possible (note the strange spelling of elsif):

14 Meet Perl

if ($net eq ’Token-Ring’)
{

print "Your network is of the token-passing variety.\n";
}
elsif ($net eq ’Ethernet’)
{

print "Your network is of the CSMA/CD variety.\n";
}
elsif ($net eq ’Frame-Relay’)
{

print "Your network is of the ISDN variety.\n";
}
else # Assuming a value of ’ATM’ ...
{

print "Your network is of the cell-switching variety.\n";
}

This is the only way to perform a multi-way decision in Perl. C and Java program-
mers may miss the convenience of the switch statement, just as Pascal program-
mers may miss their case statement. To such programmers, Perl offers nothing
more than a shrug of apology (and a nod in the direction of code similar to that
shown above).

1.3.2 The ternary conditional operator

Perl supports the ternary conditional operator . The following if statement sets
the value of $do depending on the current value of $today:

if (($today eq ’Sat’) or ($today eq ’Sun’))
{

$do = "Play";
}
else
{

$do = "Work";
}

and is functionally identical to this (somewhat more compact) code:

$do = (($today eq ’Sat’) or ($today eq ’Sun’)) ? "Play" : "Work";

The condition-part of the if statement comes before the ? symbol. If the
condition-part is true, the value Play results, otherwise the value Work results
(with the : symbol separating the two possible results). The variable $do is, there-
fore, assigned an appropriate value.

Controlling Flow 15

1.3.3 while

The while statement was part of the first program written at the start of this
chapter. Like the if, curly braces are required with while statements.

Code inside the loop (i.e. within the curly braces) keeps executing while the
condition-part of the while statement is true. A loop can optionally include a
continue block which will execute at the end of each loop (or iteration).

Three statements provide programmers with the ability to fine tune the
behaviour of loops:

next – jump immediately to the bottom of the loop and execute the continue
block (if one exists), then start a new iteration if the condition-part evaluates
to true;

last – exit the loop, bypassing any continue block, and resume execution at the
first statement immediately following the loop;

redo – abandon the current iteration of the loop, jump to the first statement of
the loop, and re-execute the loop statements.

Example uses (with explanations where required) of these statements appear
throughout Programming the Network with Perl.

The while statement is often used to iterate through a hash, as follows:

while (($name, $value) = each %net_mtus)
{

print "$name has the value: $value\n";
}

The inbuilt each subroutine returns a name/value pair from the specified hash,
and with each iteration, the next name/value pair is returned until no more pairs
are left. Of note is that the name/value pairs come out of the hash in no particular
order (and most definitely not in the order that they were inserted).

1.3.4 for

The for statement iterates a fixed number of times over code, and is typically
used to process arrays. Here is how to print each element of the @networks array
on its own line:

for ($i = 0; $i <= $#networks; $i++)
{

print "$networks[$i]\n";
}

This code initializes $i to zero before the loop starts to iterate, then checks
to see if the value of $i is less than or equal to the largest index of the array
($#networks). If it is, the loop iterates, then the value of $i is incremented after

16 Meet Perl

the iteration completes, and prior to the test against $#networks is performed
again. The loop iterates until the entire array has been printed.

1.3.5 unless

In Perl, the unless statement is the opposite of if. This code prints the line for
values of $net other than Token-Ring:

unless ($net eq ’Token-Ring’)
{

print "The network is NOT of the token passing variety.\n";
}

The unless statement can have an else part, but no elsifs.

1.3.6 until

The while statement also has an opposite, the until statement. Rather than
iterating while a condition is true, this statement iterates until some condition is
true.

1.3.7 foreach

The for statement described earlier is used so often to process arrays that a
special shorthand version exists, the foreach statement. This code is identical to
the example used with for above:

foreach $i (@networks)
{

print "$i\n";
}

But be careful: while inside the loop, the $i variable is an alias to the actual
element within the @networks array. If $i is changed, so is the corresponding
array element.

The foreach statement can also be used to iterate over a hash:

foreach $name (keys %net_mtus)
{

print "$name has the value: $net_mtus{$name}\n";
}

Another inbuilt subroutine, keys, returns a list of all the name-parts of the named
hash. This list (array) is then used normally by the foreach. The keys subroutine
can also be used, in conjunction with scalar to calculate the number of elements
in any hash:

Controlling Flow 17

$size = scalar keys %net_mtus;

print "The size of the hash is: $size\n";

A common extension to the above hash traversal code is to call the sort or
reverse inbuilt subroutine to force an ordering on the hash name-parts:

foreach $name (sort (keys %net_mtus))
{

print "$name has the value: $net_mtus{$name}\n";
}

1.3.8 do

The do subroutine takes a block of code as its sole parameter, and executes the
block of code, returning the value of the last line of the code as the result of the
do.

The following example sets the value of $res to 15, then prints the value to the
screen, and illustrates the basic mechanism:

$res = do
{

$a = 5;
$b = 3;
$a * $b;

};
print $res;

A second form of do takes the name of a file as its sole parameter and executes
the contents of the file as a Perl program. Assuming a file called es1 exists in
the current working directory, this code opens the file from within the current
program and runs any Perl code contained therein:

do ’es1’;

1.3.9 eval

The eval subroutine takes a string as its sole parameter and executes the string
as a Perl program (or fragment thereof). This code does the same thing as the do
example:

$some_code = ’$a = 5; $b = 3; $res = $a * $b; print $res;’;
eval { $some_code };

What makes this eval code different5 from the equivalent do code is that a certain
amount of protection is provided by eval. Specifically, if the code within the eval

5Some would say ‘better’.

18 Meet Perl

block causes a fatal error (which would normally cause the Perl interpreter to exit
immediately from a program), eval catches the fatal error and provides a way to
recover from the error. The built-in variable $@ will be set by eval on exit from the
code block. If the value of $@ is set to the empty string, no fatal error occurred.
However, if the value of $@ contains a non-empty string, a fatal error occurred and
a description of the error is in $@. This, therefore, provides a simple, yet highly
useful, exception-handling mechanism.

In the code which follows, a call to the inbuilt die subroutine causes the gen-
eration of a fatal error (and message). When called outside an eval block, the
program would end immediately. When called inside an eval block, the evalu-
ated code ends and the $@ variable is set to the message from die.

Here is an eval example:

eval
{

print "This is Apollo 13. Mission Log.\n";
print "We are half-way to the Moon.\n";

die "Houston, we have a problem!\n";
};
if ($@)
{

print "Message from Apollo 13 - $@";
print "Let’s bring them home safely ... ";

}
else
{

print "Maybe 13 is not that unlucky after-all ... ";
}

Due to the fact that the call to die is within the eval block, the program can
recover gracefully from what would otherwise be a fatal error (and go on to save
the astronauts). The else part of the if statement will never execute in this code,
but is included here for illustration only.

1.3.10 Statement modifiers

In addition to the control flow mechanisms which enclose blocks of code, Perl
also provides support for statement modifiers. With these, individual statements
can be qualified. A series of examples will help to illustrate.

This code prints the words ‘Hello World’ if the value of $should_we has some
value (i.e. if it is defined):

print "Hello World" if defined($should_we);

This code prints the words ‘Hello World’ unless the value of $today is Saturday:

print "Hello World" unless $today eq ’Saturday’;

Boolean in Perl 19

This single line of code is another way of writing the first program from the
start of the chapter. The code takes lines of input from standard input (one at a
time) and prints them. It keeps going until there is no more input lines to process:

print while (<>);

It is possible to use until anywhere that while is used, and this is also true of
statement modifiers. When combined with do, statement modifiers provide for
loops that will iterate at least once, as the condition-part of the loop comes at the
end of the block. Here is the general form of the do. . .while construct:

do
{

Do something ...
}
while # some condition is true;

and here’s the general form of a do. . .until:

do
{

Do something ...
}
until # some condition is true;

1.4 Boolean in Perl

Strangely, Perl has no inbuilt Boolean type6. Instead, any Perl expression can be
used as a condition, and can be evaluated to be either true or false. A number of
rules help determine whether something is true or false as follows.

Strings – a string is true, unless it contains "0" or the empty string. (Strangely,
"00" and "0.00" are true.)

Numbers – a number is true, unless it evaluates to zero. (Strangely, this means
−42 is true.)

References – all references are true. (This is initially quite strange until one con-
siders what a reference contains.)

Undefs – anything with the undefined value is false. (This is not strange – how
can anything that is undefined possibly be true?)

Lists – empty lists are false, lists with any number of elements are true. (Like
undef, this is not at all strange.)

6Are you not getting used to all this Perl strangeness yet? After a while, it all becomes quite
normal. Strange, but true.

20 Meet Perl

1.5 Perl Operators

In a number of the code examples seen so far, various code snippets have relied
on condition tests that have used comparison operators. They have been rather
sneakily used, without providing any detailed description. Nobody likes a sneak,
so here is the entire list of Perl operators (with brief explanations) in precedence
order, starting with those with the highest precedence.

-> – the infix dereference arrow operator, used when working with references
(and objects).

++ and -- – the increment and decrement operators.

** – the exponential operator.

!, ˜, \, + and - – the logical negation (!), bit-wise negation (˜), reference (\),
numeric affirmation (+) and arithmetic negation (-) operators.

=˜ and !˜ – the binding operators (used when working with regular expressions
and pattern matches).

*, /, % and x – the multiply, divide, modulus (%) and repetition (x) operators.

+, - and . – the addition, subtraction and concatenation (.) operators.

<< and >> – the left and right bit shifting operators.

<, >, <=, >=, lt, gt, le and ge – the relational operators. There are two of each,
one for working with numbers and the other for working with strings. Be
careful to use <, >, <= and >= when comparing numbers, and use lt, gt, le
and ge when comparing strings.

==, !=, <=>, eq, ne and cmp – the equality operators. As with the relational oper-
ators, different versions exist for use with numbers and for strings. The <=>
and cmp operators are used for comparison, and are typically used in con-
junction with the inbuilt sort subroutine.

& – the bit-wise AND operator.

| and ˆ – the bit-wise OR and eXclusive OR operators.

&& – the logical AND operator.

|| – the logical OR operator.

.. and ... – the range operators.

?: – the ternary conditional operator.

=, **=, +=, *=, &= and so on – the assignment operators.

, and => – the comma operator (typically used to separate list items).

not – a lower precedence alternative to !.

and – a lower precedence alternative to &&.

Subroutines 21

or and xor – lower precedence alternatives to || and a logical eXclusive OR oper-
ator.

1.6 Subroutines

Perl supports the creation of named, user-defined blocks of code, which go by the
generic name of ‘subroutine’7. Creating subroutines could not be easier: give the
subroutine a name, pass the name to the inbuilt sub subroutine together with the
block of code. Here is a simple example:

sub simple {
print "Hello from the simple subroutine!\n";

}

The subroutine can now be invoked (from within the program that defined it) in
one of four ways:

simple;
simple();
&simple;
&simple();

It rarely matters which of these techniques is used, as they all do the same thing,
i.e. invoke simple. When Perl gets picky about a particular style of invocation, the
interpreter will tell you.

1.6.1 Processing parameters

Every user-defined Perl subroutine can take any number of parameters. If simple
was invoked as:

simple("Hey! Print this!\n");

it would simply ignore the parameter, and Perl would not complain. Any parame-
ters that are sent to a subroutine become available within the default array , which
is called @_. Here is another version of simple that can process parameters:

sub simple {
$print_what = $_[0];

print $print_what;
}

where $_[0] refers to the first element of the @_ array. To print the entire array
contents, use this code:

7Also known as ‘function’, ‘procedure’, ‘routine’ and/or ‘method’, depending on your program-
ming background.

22 Meet Perl

sub simple {
print "@_";

}

If more than one parameter is passed, each becomes available within the subrou-
tine as a separately accessible array element. Let us assume that another version
of simple supports calls like this:

simple("On line one", "On line two");

To access each ‘line’ within simple, the subroutine could be rewritten to access
each element of the default array:

sub simple {
print $_[0], "\n";
print $_[1], "\n";

}

This technique is rarely seen, as most seasoned Perl programmers prefer to take
advantage of the inbuilt shift subroutine, which removes and returns the first
element from a named array, or the first element from the default array if no array
is specified. Once again, a rewritten simple illustrates this technique:

sub simple {
print shift, "\n";
print shift, "\n";

}

It is important to realize that when parameters are passed to any user-defined
subroutine, they are ‘flattened’ into a list. So, if a subroutine is written to expect as
parameters a hash, followed by an array, and then a scalar, the three parameters
will enter the subroutine as one long, flattened list (which is rarely what was
wanted). Pass the hash, array, and scalar as references to ensure they arrive in
the subroutine in the correct format. In this case, the @_ default array will contain
three elements: a hash reference, an array reference, and a scalar reference. Note,
too, that when accessed inside the subroutine, the references refer to the original
variable containers, so if they are changed within the subroutine, they will be
changed elsewhere. By default, all parameters are passed by value.

1.6.2 Returning results

A subroutine can return a value, and unless explicitly stated, this will be the value
of the last statement in the subroutine. The simple subroutine would therefore
return a true value (assuming the call to print was successful). To control what
value is returned, use the inbuilt return subroutine:

Subroutines 23

sub simple {
my $count = 0;
print shift, "\n";
$count++;
print shift, "\n";
$count++;

return($count);
}

This code will (always) return the value 2.

1.6.3 I want an array

Perl subroutines can be written to return either a scalar or a list. Consider the
inbuilt keys subroutine introduced during the discussion of hashes. When called
in what is known as list context , keys returns a list of hash name-values. When
called in scalar context , keys returns the number of elements in the hash.

By employing the services of the inbuilt wantarray subroutine, it is possible to
write a user-defined subroutine that works in a similar fashion:

sub return_hash_keys {
%a_hash = @_;

return (wantarray ? keys %a_hash : scalar keys %a_hash);
}

%net_mtus = (’Token-Ring’ => 4464,
’PPP’ => 1500,
’ATM’ => 53);

@keys = return_hash_keys(%net_mtus);
print "Hash keys: @keys\n";

$size = return_hash_keys(%net_mtus);
print "Hash size: $size\n";

The wantarray subroutine knows whether the user-defined subroutine has been
called in list or scalar context. If called in list context, wantarray evaluates to
true.

1.6.4 In-built subroutines

Perl has a large collection of inbuilt subroutines. The entire collection is docu-
mented in the perlfunc online documentation. Use this command to view the
manpage:

man perlfunc

24 Meet Perl

Alternatively, use the perldoc program (which comes with Perl) to search the
perlfunc manpage for documentation on a specific subroutine. For instance, to
view the documentation for the inbuilt print subroutine, use this command:

perldoc -f print

The inbuilt subroutines take a varying number of parameters. Check the documen-
tation for specifics. Be aware that some inbuilt subroutines can do different things
based on how they are invoked and used. The code in this chapter has already
used some of the more popular inbuilt subroutines. Here is an abbreviated list8:

alarm – signal an alarm to occur a number of seconds in the future;

chomp – deletes the trailing newline character from a scalar;

chop – deletes the last character from a scalar;

close – close a previously opened filehandle;

defined – returns true if a variable has a value associated with it;

delete – delete elements/entries from an array/hash;

die – exit the current program after displaying a user-specified message;

do – execute a block of statements as one, or read in a collection of statements
from another file and execute them;

each – used to iterate over a hash;

eof – test for the end-of-file condition;

eval – evaluate a block of code, and provide exception handling;

exists – returns true if a specific array element or hash entry exists;

exit – exit the current program;

fork – create a child process which is a clone of the current process;

gmtime – return the date and time relative to GMT;

goto – jump to a labelled location within a program9;

join – join a list of strings together;

keys – returns a list of keys for a specified hash;

last – exit from the current loop;

length – return the length of a scalar variable;

local – localize a variable;

localtime – return the date and time relative to the local time zone;

my – mark a variable as being lexically scoped;

8Subroutines of specific interest to network programmers are not presented here, as they are the
subject of Chapter 3.

9But real programmers never use goto, do they?

Subroutines 25

next – start the next iteration of the current loop;

open – open a file, and associate a filehandle with it;

our – declare a global variable;

pack – convert a collection of variables into a string of bytes;

package – declare a new namespace;

pop – treat an array like a stack, and pop the last element off the end of the array;

print – print something (to a named output handle);

printf – print to a particular format;

push – treat an array like a stack, then push an element onto the end of the array;

read – read a specified number of bytes from a filehandle;

redo – restart the current loop iteration;

ref – check to see whether a scalar is a reference, and if it is, return the type of
reference as a string;

return – return a value from a subroutine;

scalar – force a list to be treated as if it were a scalar;

shift – treat an array like a stack, and pop the first element off the start of the
array;

sleep – pause execution for a specified number of seconds;

sort – sort a list using string comparison order (by default), or by using some
user-specified ordering;

splice – remove specified elements from an array;

split – split a delimited string into a list of individual elements;

sprintf – like printf, except the result is assigned to a scalar;

sub – declare a subroutine;

substr – extract a substring from a string;

system – call an operating system command, and return its exit status to the
calling program;

time – returns the number of non-leap seconds since the operating system’s
‘epoch’10;

undef – take a previously defined variable, and undefine it;

unpack – the reverse of pack: extract a list of values from a string of bytes;

unshift – treat an array like a stack, and push an element onto the start of the
array;

wait – wait for a previously created child process to terminate;

10What the operating system thinks is the start of time. It varies from system to system.

26 Meet Perl

wantarray – return true if a subroutine was called within a list context, false
otherwise;

warn – sends output to standard error;

write – write a specified number of bytes to a filehandle.

Example uses of these inbuilt subroutines appear throughput Programming the
Network with Perl. If their meaning is not clear from the context in which they are
used, further description is provided.

1.6.5 References to subroutines

Perl allows references to subroutines.
Here is a preview of a code snippet from the end of Chapter 2 which assigns a

subroutine reference to a scalar called $packet_handler based on the value of
another scalar called $opt_u:

if ($opt_u)
{

$packet_handler = \&udp_both_packet;
}
else
{

$packet_handler = \&tcp_both_packet;
}

Note the use of the \ character which turns the call to the subroutine into a refer-
ence to the subroutine. Later in the code, the previously selected subroutine can
be invoked as follows:

&$packet_handler;

1.7 Perl I/O

Performing input and output (I/O) in Perl is as simple as it gets. Disk files have
associated filehandles, and each time some input and output is performed, the
code need only reference the correct filehandle to work. Filehandles can be opened
to read from, write to, or read/write to/from.

Four filehandles are automatically opened for every Perl program: STDIN, STD-
OUT, STDERR, and DATA. These correspond to standard input (usually the key-
board), standard output (usually the screen), standard error (usually the screen,
but sometimes a system log file), and the thoroughly strange ‘standard data’. The
DATA filehandle is associated with anything that comes after the __END__ symbol
at the end of a source code file, and is generally useful when testing code prior to
deployment.

Perl I/O 27

To read from a filehandle, enclose the filehandle in the <> angle brackets. This
code reads a line from standard input:

$line = <STDIN>;

which is longhand for:

$line = <>;

as Perl will assume standard input by default. Writing to output filehandles usually
involves the use of the inbuilt print subroutine. Here is how to write to standard
output:

print STDOUT "Writing to standard output, usually the screen.\n";

which is longhand for:

print "Writing to standard output, usually the screen.\n";

as Perl will assume standard output by default. To write to standard error, use
code similar to this:

print STDERR "Writing to standard error.\n";

or use the inbuilt warn subroutine which will always write to STDERR:

warn "Writing to standard error.\n";

To create filehandles, give them a name and associate them with a file. By conven-
tion, filehandle names are specified in uppercase, although Perl does not enforce
this as a rule. To open a file for reading, use code similar to the following:

open MYINFILE, "readme.txt" or die "Could not open: $!";

This code will open readme.txt and associate it with the MYINFILE filehandle,
or if something goes wrong, exit with an appropriate error message.

Once a filehandle is opened, read from it using the <> operator:

$a_line = <MYINFILE>;
@entire_file = <MYINFILE>;

Here the <> operator is used in both scalar and list context. Be careful when
using <> in list context, as reading a large file in one go can result in memory
problems.

To close a filehandle, call close on the filehandle name:

close MYINFILE;

which Perl will do anyway when your program ends.

28 Meet Perl

To write to a file, use code like this:

open MYOUTFILE, ">readme.txt" or die "Could not open: $!";

print MYOUTFILE "Writing to readme.txt\n";

close MYOUTFILE;

Note the > symbol before the name of the file to open for writing. To append to a
file, replace the first line above with this line (note the use of the >> symbol):

open MYOUTFILE, ">>readme.txt" or die "Could not append: $!";

To open a file for reading and writing, use this line:

open MYOUTFILE, "+<readme.txt" or die "Could not read/write: $!";

To open a file for writing then reading, use this line:

open MYOUTFILE, "+>readme.txt" or die "Could not write/read: $!";

But be careful with this, as the +> form will first delete the file if it already exists11,
then allow the program to write to the newly emptied file and read from it.

1.7.1 Variable interpolation

Some readers may have noticed two differing uses of the inbuilt print subroutine.
Here are some lines of code repeated from an earlier example:

print ’Both $scalar and $refs have the value: ’, ${$refs}, ".\n";

.

.

.

print "There’s a great book called ";
print "${$array_of_hashes[0]}{’Book’} by\n";

On occasion, the string that gets printed by print is enclosed in single quotes,
and at other times is enclosed in double quotes. The reason for the two styles has
to do with what happens to variable containers when used within each quote type.
The usage rule is very straightforward: when you want to print something literally,
use single quotes, when you want to include actual variable container values in
the output, use double quotes. The process of including variable containers in
double quoted strings is called interpolation. A short example will illustrate the
difference:

11Known, rather affectionately, as ‘clobbering’.

Packages, Modules and Objects 29

$mynet = "Ethernet";
$yournet = "Token-Ring";

print ’$mynet is incompatible with $yournet\n’;
print "\n$mynet is incompatible with $yournet\n";

will print the following:

$mynet is incompatible with $yournet\n
Ethernet is incompatible with Token-Ring

The first print statement outputs the string in its literal form, including the new-
line escape code at the end of the line. The second print statement interpolates
the $mynet and $yournet scalars, as well as the newlines at the start and end of
the string.

1.8 Packages, Modules and Objects

Perl supports the creation and use of namespaces, which are nothing more than a
place to put, group and organize a program’s variable containers and subroutines.
If no namespace is specified in a program, all the variables belong to the default
namespace, which is called main. Use package to create namespaces:

$ns = 30;

package MyNameSpace;

$ns = 100;
print ’The value of $ns is: ’, $ns, "\n";

package main;

print ’The value of $ns is: ’, $ns, "\n";

package MyNameSpace;

print ’The value of $ns is: ’, $ns, "\n";

which produces the following results:

The value of $ns is: 100
The value of $ns is: 30
The value of $ns is: 100

As each namespace has its own place to put things, this code actually has two
different variable containers called $ns, one in each of the namespaces. The fully
qualified name of each container is $main::ns and $MyNameSpace::ns.

30 Meet Perl

1.8.1 Modules

When a package statement, together with whatever code goes with it, is placed
in a separate file, it becomes a module that can be used by other programs. If the
MyNameSpace package from above was in a separate file (called MyNameSpace.pm),
the following code would import its variables and code into the current program:

use MyNameSpace;

1.8.2 Objects

Modules form the basis of Perl’s object-oriented capabilities (as well as being Perl’s
main code-reuse technology). The code for a Perl class is, by convention, placed
in a module file. Objects in Perl are, surprisingly, no more than a special type
of reference (in effect, a reference that has been marked as containing an object
by an inbuilt subroutine called bless). It is beyond the scope of this chapter to
describe the mechanics employed in creating Perl classes12. However, every Perl
programmer needs to know how to use objects created from the use of object-
oriented modules.

Let us pretend that some friendly programmer has created a truly useful mod-
ule for use with Perl, and that the module uses an object-oriented interface. Here
is how code might use the module then access its variable containers and sub-
routines (which are known as ‘methods’ in OO speak):

use ReallyDead;

$my_cool = ReallyDead->new(First => ’Elvis’, Last => ’Presley’);

print "$my_cool->{First} $my_cool->{Last} really is dead.\n";

The code uses the ReallyDead module, then calls the modules constructor, which
in this case is called new (but could just as easily have been called anything, as
using new is a convention). The constructor creates a new ReallyDead object
(passing two named arguments), which will then be referred to by the $my_cool
variable container. Remember, objects in Perl are a type of reference, so objects
are stored in scalars.

To access the data encapsulated within the object and call any subroutines
associated with the object, the infix dereference arrow operator is used to refer
to the instance data and methods. The code above, assuming the ReallyDead
module actually existed, would print the following:

Elvis Presley really is dead.

12However, we will learn a little about creating Perl objects in Chapter 6, Mobile Agents.

Packages, Modules and Objects 31

An alternative invocation technique exists when working with Perl objects, and is
known as the indirect object syntax. The call to the new constructor above could
have been written as:

$my_cool = new ReallyDead First => ’Elvis’, Last => ’Presley’;

and some Perl programmers prefer this technique.

1.8.3 The joy of CPAN

The module and object creation technology in Perl is useful. So useful, in fact, that
a large collection of third-party add-on modules have been developed for use with
Perl. Some of these modules come with Perl and are part of the Perl distribution.
These are the standard modules. Others are not part of the standard distribution,
but are instead made freely available on a central website to anyone with a use for
them. This central website13, is known as CPAN, the Comprehensive Perl Archive
Network.

CPAN is a truly wonderful place (if you are a Perl programmer, that is). It is
a large software repository of reusable Perl modules, of the object-oriented and
functional kind. On CPAN, the modules are organized by category, and cover every
conceivable programming activity, from working with database systems to pro-
cessing digital images. Of particular interest are the modules which provide sup-
port to the network programmer.

In addition to the standard networking modules (which come with Perl), a grow-
ing collection of third-party networking modules can be found in the following
CPAN categories.

• Networking, Device Control and Inter-process Communication.

• Authentication, Security and Encryption.

• World Wide Web, HTML, HTTP, CGI and MIME.

• Server and Daemon Utilities.

• Mail and Usenet News.

When creating modules for use with Perl, one simple rule needs to be adhered
to: do not reinvent the wheel, check CPAN! If the exact module required does not
already exist, a close match may. Take a copy of the close match, make it perform
the required way, then resubmit the newly modified module back to CPAN. The
entire Perl community benefits as a result of this practice.

Throughout Programming the Network with Perl, numerous third-party mod-
ules from CPAN are used. Installation instructions are supplied for each third-
party module employed. Refer to the Web Resources section at the end of this
chapter for more information on the CPAN website.

13Which is actually mirrored extensively on the Internet.

32 Meet Perl

1.9 More Perl

There is an awful lot more to Perl than is presented in this chapter. The intent
in this chapter has been to cover only the essentials necessary to support the
program code in the remainder of Programming the Network with Perl. Of the
pieces of Perl not covered, the integrated regular expression technology is by far
the most important14. This technology is often referred to as pattern matching,
and is thought of by many as Perl’s programming language within a programming
language.

All of the code in this chapter can be classified as being functional in nature. The
code specifies how Perl is to solve the problem, stating exactly what Perl should
do. With regular expressions, Perl can also be programmed in a declarative way.
The code specifies what is required, then leaves it to Perl to work out how to do
things. Perl’s regular expression technology is very powerful, and is one of the
main reasons for Perl’s popularity. It is especially useful when working with text
data.

A treatment of Perl’s regular expression technology is not appropriate for an
introductory chapter. However, at some stage, every Perl programmer needs to
master its capabilities. Refer to the Print Resources section at the end of this
chapter for suggested texts. Certain regular expressions are used in later chapters,
and when they are, they are accompanied by appropriate explanation.

1.10 Where To From Here?

Trying to cover all of Perl in just one chapter was never going to be easy. The classic
Perl text, Programming Perl, runs to well over one thousand pages! The great thing
about Perl is that any level of proficiency is acceptable within its programming
community. There is more than enough material in this chapter to allow the reader
to understand the rest of the programs in Programming the Network with Perl.
And, of course, there is plenty of additional material available elsewhere, should
it be required. Refer to the Print Resources and Web Resources sections below for
some guidelines on where to start your search.

As the authors of Programming Perl advise at the end of their first chapter:
have the appropriate amount of fun.

1.11 Print Resources

As a rule, I recommend the following book to programmers wishing to make
the move to Perl: Perl: The Programmer’s Companion by Nigel Chapman (Wiley,

14And totally strange, if regular expressions are new to you.

Web Resources 33

1997)15. This book contains an excellent and highly readable treatment of Perl’s
regular expression technology.

Additionally, every Perl programmer should have the following books in their
collection.

Programming Perl, 3rd edn, by Larry Wall, Tom Christiansen and Jon Orwant
(O’Reilly, 2000). This book is known among all Perl programmers as The Camel,
and is the ultimate reference text for Perl.

Perl Cookbook, by Tom Christiansen & Nathan Torkington (O’Reilly, 1998). The
title speaks for itself. The signal-handling code used at the end of Chapter 2 is
based on a technique described in Perl Cookbook, and many other code snippets
draw on material from this book.

Finally, when developing large-scale applications in Perl, it is advisable to master
the object-oriented capabilities of the language. The following book is another
must have: Object-Oriented Perl, by Damian Conway (Manning, 1999).

1.12 Web Resources

http://www.perl.com – The home of the Perl community, the Perl website.
Always start here when looking for something Perl related.

http://use.perl.org – The Perl gossip site.

http://www.perl.org – The Perl advocacy site. This is also the home of the Perl
Mongers.

http://www.cpan.org – The official location of CPAN, although nearly every Perl
website has a link to it. Also useful is the http://search.cpan.org website.

http://www.perldoc.com – The Perl 5.6 online documentation as a searchable
website.

http://www.tpj.com – The quarterly magazine of the Perl community, The Perl
Journal , maintains a Web presence at this address.

15The fact that Chapman’s book is published by the same publisher as Programming the Network
with Perl is purely coincidental. Honest.

34 Meet Perl

Exercises

1. If you have not done so already, run all of the code examples from this chapter
through Perl in order to convince yourself that they work the way you expect them
to.

2. Run the first program through the Deparse module with the following command:
perl -MO=Deparse first. Can you explain the output generated? If not, type man
B::Deparse at the Linux command-line to learn about this module. Remember this
module’s existence when debugging your Perl programs.

3. Type man perldebug to learn about the inbuilt Perl debugger. Run the first pro-
gram through the debugger.

4. Use any Web browser to surf to your nearest CPAN archive and download the
Devel::Coverage module16. Read any documentation associated with the mod-
ule, then install Devel::Coverage into Perl. Use the facilities of this module to
perform a coverage analysis on a Perl program of your choosing, preferably one
that you have written.

16You may have to search for the module first. Start at http://search.cpan.org.

2

Snooping

In order to program the network with any degree of certainty, a mechanism is
required to check that the data sent is the data received. Most programmers are
already familiar with using interactive debuggers to monitor and inspect their pro-
gram code while it runs. What is needed is an equivalent technology for network
communications.

In this chapter, Perl is used to develop a series of network analysis tools. These
simple, yet powerful, tools can be used to debug network communications on
Ethernet networks.

Such tools are known by a number of names: analyser, sniffer, peeker, traffic
monitor and (of course) snooper.

Writing a network analyser from scratch is not easy. Luckily, Perl’s CPAN
repository provides a series of modules that provide a high-level programming
interface to the libpcap library, which was initially developed by the Network
Research Group at Lawrence Berkeley National Laboratory. This library is a
system-independent programming interface (written in C) that provides for Eth-
ernet packet capturing.

Most Linux distributions include the libpcap library. Check to see if it is
installed on a Linux system with the following command:

find / -name libpcap* -print 2> /dev/null

If this command finds nothing, the library is not installed and it needs to be
downloaded from the Internet. See the Web Resources section at the end of this
chapter for details.

36 Snooping

2.1 Thank You, Tim Potter

CPAN contains a series of modules, developed by Tim Potter1, that can be used
to build a network analyser. These are as follows.

NetPacket::* – a collection of modules that can assemble/disassemble a number
of popular network protocols (most notably, the popular Internet protocols).

Net::Pcap – a Perl interface to the libpcap library.

Net::PcapUtils – a small set of utilities designed to make using the Net::Pcap
module convenient.

At the time of writing, the versions of these modules are 0.03 for NetPacket::*,
0.04 for Net::Pcap and 0.01 for Net::PcapUtils. In addition to the ability to
encode packets in each of the protocol types, the NetPacket modules can decode
packets, which is the exact functionality required when writing a network analyser.

The NetPacket::* collection includes modules for working with Ethernet
frames, ARP packets, IP datagrams (including ICMP and IGMP datagrams), UDP
datagrams and TCP segments.

When studying computer networking, it is usual to have the discussion struc-
tured around the study of a layered reference model (RM). The classic model is
the Open Systems Interconnect seven-layer model from the International Stan-
dards Organization, commonly referred to as the OSI-RM. Increasingly, the model
employed by the standard Internet technologies – the TCP/IP-RM – is replacing
the OSI-RM as the basis of study (due in no small part to the fact that the vast
majority of the world’s computer networks now run TCP/IP). The TCP/IP-RM is
simpler than the OSI-RM, and has only four layers, structured (from top to bottom)
as follows.

Application – protocols for providing application-level services to user pro-
grams (also referred to as ‘user-agents’). An example user program is a Web
browser, which implements the Hyper-Text Transfer Protocol (HTTP).

Transport – protocols for providing end-to-end data transportation services to
application protocols. With TCP/IP networks, two transport protocols exist:
the Transmission Control Protocol (TCP) for providing connection-oriented,
reliable service, and the User Datagram Protocol (UDP) for providing connec-
tionless, unreliable service.

Network – protocols for moving data from host to host and from network to net-
work. The Internet Protocol (IP) provides this service for TCP/IP networks.
Additional protocols provide support for primitive network management
(using ICMP, the Internet Control Message Protocol) and network multicast-
ing (using IGMP, the Internet Group Management Protocol).

1With help from Stephanie Wehner.

Preparing To Snoop 37

Host-To-Network – the underlying network technology (whatever that might be),
and the protocols associated with physically moving bits of data ‘across the
wire’. On TCP/IP networks, a technology called ARP (the Address Resolution
Protocol) helps IP to run on top of the underlying network hardware (which
in Programming the Network with Perl is Ethernet).

The TCP/IP-RM and the NetPacket::* protocols are an almost perfect match,
except for the protocols at the application layer (which have no NetPacket equiv-
alent).

The NetPacket::* modules provide a simple interface. A method called
decode takes a raw packet and returns a reference to a ‘packet-object’ for the
particular protocol. The packet-object returned from decode provides access to a
collection of instance data associated with the protocol being processed. Addition-
ally, a subroutine called strip allows a raw packet to be stripped of any protocol
header information, i.e. just the data part of the packet (its payload) is returned
by each module’s strip subroutine.

The Net::PcapUtils module provides a simple interface to the Net::Pcap
library by providing just three subroutines to the programmer: loop, open and
next (discussed in Section 2.3, p. 41).

2.2 Preparing To Snoop

With libpcap installed, the next task is to install each of the Perl CPAN modules
introduced in the last section. See the Web Resources section at the end of this
chapter for information on downloading the required modules from the CPAN
directory maintained by Tim Potter.

2.2.1 Installing NetPacket::*

The process of installing a third-party add-on module into an existing Perl instal-
lation has been standardized.

To begin, decompress and unpack the downloaded file:

gunzip NetPacket-0.03.tar.gz
tar xvf NetPacket-0.03.tar

This creates a directory called NetPacket-0.03 within which all of the files
needed to install NetPacket are located. To prepare for the install, change into
this directory and use Perl to create the required makefile:

cd NetPacket-0.03
perl Makefile.PL

38 Snooping

It should now be possible to build and test NetPacket using the standard Linux
make command:

make
make test

If things go well, the module is now ready to install. For the next command to suc-
ceed, superuser privilege is required. If not already logged in as root, temporarily
become the superuser as follows:

su

The root password will be required.
As the superuser, finish the install as follows:

make install
<ctrl-D>

Note the use of the <ctrl-D> key combination after the make install command.
This logs out the superuser. As a general rule, only work in superuser mode (i.e. as
root) for as long as is needed. It is generally a bad idea to do regular work logged
in as root. Trust me when I tell you that if you spend a lot of time logged in as
root, sooner or later, bad things will happen.

Test the installation using these two commands:

man NetPacket::Ethernet
perl -e ’use NetPacket::Ethernet’

The documentation for NetPacket::Ethernet should be displayed by the first
command here. The second command should display nothing; the Linux command
prompt should reappear after a short delay. If the second command displays a
message something along the lines of the following:

Can’t locate NetPacket/Ethernet.pm in @INC.
BEGIN failed--compilation aborted at -e line 1.

this means that the module has been installed incorrectly. If the online documen-
tation is missing, this too means that the module has been installed incorrectly.
Check that the above instructions have been followed correctly. If they have, check
any README and INSTALL files that came with the module for additional instal-
lation instructions to follow. If problems continue, ask your local Linux guru for
assistance2. If you are the local Linux guru, panic.

2.2.2 Installing Net::Pcap

The process of installing and testing the Net::Pcap module closely resembles
that for NetPacket. Here are the Linux commands to use:

2Remember to ask nicely.

Preparing To Snoop 39

gunzip Net-Pcap-0.04.tar.gz
tar xvf Net-Pcap-0.04.tar
cd Net-Pcap-0.04
perl Makefile.PL
make
su
make test
make install
<ctrl-D>
man Net::Pcap
perl -e ’use Net::Pcap’

2.2.3 Installing Net::PcapUtils

The process of installing and testing Net::PcapUtils closely resembles that for
Net::Pcap. Here are the Linux commands to use:

gunzip Net-PcapUtils-0.01.tar.gz
tar xvf Net-PcapUtils-0.01.tar
cd Net-PcapUtils-0.01
perl Makefile.PL
make
su
make test
make install
<ctrl-D>
man Net::PcapUtils
perl -e ’use Net::PcapUtils’

2.2.4 Online documentation

To view the documentation for any NetPacket module, simply issue a man com-
mand at the Linux command prompt. This command displays the documentation
for the TCP module:

man NetPacket::TCP

The Net::Pcap module provides a subroutine-for-subroutine Perl mapping to
the libpcap library. Once the library is installed on a Linux system, you can learn
about the library by accessing its man-page, as follows:

man pcap

This command will display a long, complicated list of subroutines and options.
The same is true of the Net::Pcap man-page, which helps explain the existence
of Net::PcapUtils.

40 Snooping

The online man-page, which is quite short, can be viewed with the following
command:

man Net::PcapUtils

2.2.5 Configuring your network interface

On Ethernet networks, the network interface card (NIC) operates in one of two
modes. In normal mode, the NIC will accept packets from the network if they
are addressed to the globally unique 48 bit Ethernet address associated with the
NIC. If the NIC is part of an Ethernet multicasting group (which will have its own
unique 48 bit address), these packets will also be accepted from the network.
The NIC accepts the packet and passes it onto the operating system for ultimate
delivery to some application that will process the packet’s data.

When an NIC is in normal mode, the computer within which it is installed can-
not be used for network snooping. The only network traffic that can be moni-
tored is that sent directly to/from the NIC’s 48 bit address, or its multicasting
addresses (if any). What is needed is a mechanism to allow a normal mode NIC
to accept all packets travelling on the network that it is connected to. On Ether-
net networks, this mechanism is called promiscuous mode. By setting an Ethernet
NIC into promiscuous mode, it is possible to accept all the traffic on a network
segment and analyse it.

The process of putting an NIC into promiscuous mode is operating system
dependent, and on Linux systems the /sbin/ifconfig command can be used.
Here is a typical output from /sbin/ifconfig (with no parameters):

eth0 Link encap:Ethernet HWaddr 00:05:02:97:50:F2
inet addr:149.153.100.67 Bcast:149.153.100.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:357231 errors:5 dropped:0 overruns:0 frame:0
TX packets:85 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
Interrupt:42

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:3924 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0

Two interfaces exist on this network device: ‘eth0’ refers to the Ethernet hard-
ware, and ‘lo’ refers to the loopback address (typically referred to as localhost).
Assuming the Linux system is connected to an Ethernet network using a single
NIC, commands similar to the following should switch on promiscuous mode:

su
/sbin/ifconfig eth0 promisc
<ctrl-D>

Building Low-Level Snooping Tools 41

Note the change to the third line of the output from /sbin/ifconfig after
promiscuous mode is switched ‘on’:

eth0 Link encap:Ethernet HWaddr 00:05:02:97:50:F2
inet addr:149.153.100.67 Bcast:149.153.100.255 Mask:255.255.255.0
UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1
RX packets:357231 errors:5 dropped:0 overruns:0 frame:0
TX packets:85 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
Interrupt:42

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:3924 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0

The following commands switch off promiscuous mode and return the NIC to
normal mode:

su
/sbin/ifconfig eth0 -promisc
<ctrl-D>

Setting an NIC into promiscuous mode is serious business. For these commands
to succeed, they need to be performed by the superuser.

2.3 Building Low-Level Snooping Tools

As discussed earlier, the Net::PcapUtils module provides three subroutines:
loop, open and next. By far the most convenient is loop, and it can be used to
build a very basic snooping tool:

#! /usr/bin/perl -w

use strict;
use Net::PcapUtils;

sub got_a_packet {
print "Got a packet!\n";

}

my $status = Net::PcapUtils::loop(\&got_a_packet);

if ($status)
{

print "Net::PcapUtils::loop returned: $status\n";
}

42 Snooping

This program, once started, will run forever or until it is killed by the operating
system. Every time a network packet is accepted from the NIC, the program prints
out the words ‘Got a packet!’ (followed by the newline character) to standard
output (usually the screen). Granted, this is not too exciting, but the structure of
this small program will form the basis of everything else built in this chapter.

This code begins with the standard (strange) first line which identifies where
the underlying operating system can find the Perl interpreter. The -w switch tells
Perl to compile the code with warnings enabled. This switch, together with the
use strict compiler directive, forces programmers to write Perl code as cleanly
and clearly as possible. It is probably overkill at this stage to be this paranoid with
such a small amount of code, but, as Perl programs get bigger, these restrictions
will more than justify their use.

Perl is then told that the program intends to use the services provided by
the Net::PcapUtils module. Next comes a very simple subroutine that, when
invoked, prints the words Got a packet! followed by the newline character.

The really useful line is the next one. Here it is again:

my $status = Net::PcapUtils::loop(\&got_a_packet);

This line calls the loop subroutine within the Net::PcapUtils module, passing
a reference to a subroutine as the only parameter. In this case, the subroutine
is got_a_packet. The loop subroutine will now arrange to call got_a_packet
every time a packet is accepted by the NIC. The got_a_packet subroutine, when
used in this manner, is referred to as a callback function. The call to loop is a fully
qualified name (i.e. Net::PcapUtils::loop) due to the fact that we are using the
use strict compiler directive.

The result of the call to Net::PcapUtils::loop is assigned to the scalar vari-
able $status. If the call to Net::PcapUtils::loop is OK, the value returned will
be the empty string. If an error has occurred, an error string is returned and placed
in $status. The code tests for this, and prints an appropriate error message if
necessary.

On its own, this program is not very useful. In the remainder of this chapter, this
program will be extended to do much more. Working upwards from the bottom
of the TCP/IP-RM, the extensions provide for a collection of tools that can be used
to snoop any TCP/IP Ethernet-based network.

2.3.1 loop = open + next

Before building the extensions, let us talk a little bit about the other subroutines
the Net::PcapUtilsmodule provides, open and next. These subroutines provide
for the manual opening of an NIC (using open) and the manual fetching of an
accepted packet from the NIC (using next).

Here is the simple snooper from the previous section rewritten to use open and
next instead of loop:

Building Low-Level Snooping Tools 43

#! /usr/bin/perl -w

use strict;
use Net::PcapUtils;

sub got_a_packet {
print "Got a packet!\n";

}

my $pkt_descriptor = Net::PcapUtils::open;

if (!ref($pkt_descriptor))
{

print "Net::PcapUtils::open returned: $pkt_descriptor\n";
exit;

}

while(1) # i.e. forever, or until "killed" ...
{

Net::PcapUtils::next($pkt_descriptor);
got_a_packet;

}

In this code, the call to Net::PcapUtils::open will return a valid reference to
a packet descriptor upon success, otherwise an error string is returned. The code
checks for a valid reference, and prints an error message if a valid reference is
not returned. Each time Net::PcapUtils::next is called, the packet descriptor
returned from Net::PcapUtils::open is passed to it.

For simple snoopers, this may seem like far too much trouble. However, as our
analysis requirements increase, the finer control provided by the use of open and
next will become increasingly important.

What is not shown here is that the Net::PcapUtils::next subroutine returns
a list containing two values: a scalar packet and a hash header. Typically, the call
to next would look like this:

my ($packet, %header) = Net::PcapUtils::next($pkt_descriptor);

Further processing of the packet and header information is then possible.

2.3.2 Optional parameters: loop and open

The loop and open subroutines can take a list of additional, optional parameters
when invoked. The list of parameters is the same and has the same meaning for
both loop and open.

44 Snooping

Let us look at each of them.

SNAPLEN – Default value: 100. The maximum number of bytes to capture for each
accepted packet. On Ethernet networks, the maximum value of SNAPLEN
cannot exceed 1500.

PROMISC – Default value: 1. Set to 0 to capture packets in normal mode, to 1 to
capture packets in promiscuous mode.

TIMEOUT – Default value: 1000. The number of milliseconds of read timeout.

NUMPACKETS – Default value: −1. The number of packets to capture, with -1
meaning ‘loop forever’.

FILTER – Default value: ’’. Apply a filter to the packets captured and accepted
from the NIC. Initially, all packets are accepted, regardless of type (i.e. there
is no filter). Useful filters include: ‘ip’, ‘udp’ and ‘tcp’.

USERDATA – Default value: ’’. This is the value to be passed as the first argu-
ment to the callback function.

SAVEFILE – Default value: ’’. The name of the file to read previously saved packet
data from. This data will be processed instead of the packet data arriving at
the NIC.

DEV – Default value: ’’. The name of the network interface to open (as a string),
for example: ‘eth0’.

Throughout this chapter, a number of examples will make use of these param-
eters. The default parameterless Net::PcapUtils::loop, using got_a_packet
as a callback function, is exactly the same as this explicit call:

Net::PcapUtils::loop(
\&got_a_packet,
SNAPLEN => 100,
PROMISC => 1,
TIMEOUT => 1000,
NUMPACKETS => -1,
FILTER => ’’,
USERDATA => ’’,
SAVEFILE => ’’,
DEV => ’’

);

As another example (and without getting too ahead of ourselves), here is a call to
loop that captures 1000 IP datagrams, and calls the got_a_packet subroutine
for each of them:

Building Low-Level Snooping Tools 45

Net::PcapUtils::loop(
\&got_a_packet,
NUMPACKETS => 1000,
FILTER => ’ip’

);

2.3.3 Optional parameters: the callback function

The Net::PcapUtils::loop subroutine will pass a set of parameters to the
callback function when it is invoked. Processing of these parameters is entirely
optional (as can be seen from the above snoopers where nothing is processed).
An array of values is passed into the callback function and the array is assigned
to three individual scalar variables to provide for further processing. The sec-
ond array element is in actual fact a reference to a hash (and the got_a_packet
subroutine needs to take this into consideration).

Let us rewrite got_a_packet to process the parameters:

sub got_a_packet {
my ($user_arg, $header, $packet) = @_;

print "Got a packet!\n\n";
print "The user argument is: ", $user_arg, "\n";
print "The header data is:\n";
foreach my $name (sort keys %{$header})
{

print " $name -> ${header}{$name}\n";
}
print "The packet data is: ", $packet, "\n\n";

}

For now, the further processing simply involves printing out the ‘raw’ values of
the parameters. In the subsections which follow, the services provided by the
NetPacket::* modules will be used to add meaning to the raw values. When this
version of the simple snooper is executed, do not expect the output to have any
real meaning (in fact, most of the output will look like garbage). It is necessary
to further process the Ethernet packet data (its payload) to understand what it
contains. More on this later.

2.3.4 Ethernet Analysis

The NetPacket::Ethernet module provides a subroutine called decode that,
when called with an Ethernet frame as its sole parameter, returns an object which
provides access to the instance data from the frame.

46 Snooping

� 48 bits � � 48 bits �

$dest_mac $src_mac

$type $data …

� 16 bits� � 46 to 1500 bytes (variable) �

Figure 2.1 The NetPacket::Ethernet frame format.

Within a NetPacket::Ethernet object, the instance data for Ethernet frames
has the following fields (refer to Figure 2.1 on p. 46):

dest_mac – the 48 bit address for the destination host (the network device des-
tined to receive the Ethernet frame);

src_mac – the 48 bit address for the source host (the network device sending the
Ethernet frame);

type – the type of data being sent in the frame;

data – the actual data contained in the Ethernet frame (its payload).

The type field is interesting, as it is used to uniquely identify the traffic being car-
ried within the payload of the Ethernet frame3. The NetPacket::Ethernet mod-
ule provides a small list of frame types (as Perl constants) that can be imported
into a Perl program, as follows:

use NetPacket::Ethernet qw(:types);

Here is the list of defined constants.

ETH_TYPE_IP – Internet Protocol version 4 datagrams.

ETH_TYPE_ARP – Address Resolution Protocol packets.

ETH_TYPE_RARP – Reverse Address Resolution Protocol packets.

ETH_TYPE_APPLETALK – Apple Computer’s AppleTalk packets.

ETH_TYPE_SNMP – Simple Network Management Protocol packets.

ETH_TYPE_IPv6 – Internet Protocol version 6 datagrams.

ETH_TYPE_PPP – Point-To-Point Protocol packets.

Compared with the entire list of Ethernet frame types, this is a very small subset
indeed (see the Web Resources section at the end of this chapter on how to obtain
the complete list).

To work with other frame types, simply define more Perl constants at the top
of a program. As the constants are something that will be used in a number of
programs, it is worthwhile creating a small Perl module to hold them:

3Although Ethernet technology rarely cares about the type of traffic being carried.

Building Low-Level Snooping Tools 47

package XtraType;

#
XtraType.pm - Some additional Ethernet frame types.
#

use 5.6.0;

require Exporter;

our @ISA = qw(Exporter);

We export all the symbols declared in this module by
default.
our @EXPORT = qw(

ETH_TYPE_NOVELL1
ETH_TYPE_NOVELL2
ETH_TYPE_TCP_IP_COMPRESSION

);

our @EXPORT_OK = qw(
);

our %EXPORT_TAGS = (
);

our $VERSION = 0.01;

use constant ETH_TYPE_NOVELL1 => 0x8137;
use constant ETH_TYPE_NOVELL2 => 0x8138;
use constant ETH_TYPE_TCP_IP_COMPRESSION => 0x876B;

1;

Call this module XtraType.pm and place it in the same directory as the programs
that will use it, which is accomplished with the following statement near the top
of a program:

use XtraType;

In the rest of the code in this chapter, the individual frame types are referred to
using their fully qualified names, for example:

XtraType::ETH_TYPE_TCP_IP_COMPRESSION;

This is not syntactically necessary, but, for the sake of clarity, will be the preferred
technique employed within Programming the Network with Perl.

48 Snooping

2.3.5 EtherSnooper (v0.01)

The start of the first Ethernet snooper contains these statements:

#! /usr/bin/perl -w

use 5.6.0;

use strict;
use Net::PcapUtils;
use NetPacket::Ethernet qw(:types);
use XtraType;

The program, which is called EtherSnooper, gives total counts for each Ethernet
frame type captured as part of the analysis. Two versions of the snooper will be
developed, one to capture 1000 packets, and another to capture three minutes
worth of network traffic.

Two hashes are used to store information within EtherSnooper. The first,
%type_totals, maintains a count for each frame type captured, and is initially
empty. The second, %type_desc, is used to provide descriptive text when display-
ing any results. The programs also keep a count of the total number of packets
accepted in a scalar called $num_packets.

Initialize the two hashes and the scalar as follows:

our %type_totals = ();

our %type_desc = (
0x0800 => ’IPv4’,
0x0806 => ’ARP’,
0x809B => ’AppleTalk’,
0x814C => ’SNMP’,
0x86DD => ’IPv6’,
0x880B => ’PPP’,
0x8137 => ’NOVELL1’,
0x8138 => ’NOVELL2’,
0x8035 => ’RARP’,
0x876B => ’TCP/IPc’

);

our $num_packets = 0;

Declaring these hashes as our allows them to be used as global variables, while still
satisfying the restrictions placed upon the program by the use strict compiler
directive.

The %type_totals hash is populated by yet another version of the got_a_
packet subroutine:

Building Low-Level Snooping Tools 49

sub got_a_packet {
my ($user_arg, $header, $packet) = @_;

my $frame = NetPacket::Ethernet->decode($packet);

$type_totals{ $frame->{type} }++;

$num_packets++;
}

In this version of the packet-processing callback function, the packet is passed
as a parameter and decoded as an Ethernet frame. What is returned is an object
of type NetPacket::Ethernet. It is then possible to access the instance data
for the frame type value using standard object instance accessing syntax (using
$frame->{type} in the above code).

Once the frame type is known, it is used to increment the %type_totals value
part associated with the frame type value. The code takes advantage of Perl’s
ability to dynamically grow a hash as required, as well as ensure that hash names
(or keys) are always unique. This may seem like a trick, but it is actually a much-
used Perl programming idiom.

The got_a_packet subroutine concludes by incrementing the $num_packets
scalar for each processed frame.

The rest of the program is similar to the first snooper developed earlier in this
chapter, except that the number of packets to accept is explicitly stated and a call
to display_results is made:

my $status = Net::PcapUtils::loop(
\&got_a_packet,
NUMPACKETS => 1000

);

if ($status)
{

print "Net::PcapUtils::loop returned: $status\n";
}
else
{

display_results;
}

To display meaningful results, the program processes the hashes, using another
standard Perl idiom. Worry if the value of $num_packets is something other than
1000:

sub display_results {
print "$num_packets frames processed.\n\n";

foreach my $etype (sort keys %type_desc)

50 Snooping

{
print "$type_desc{$etype} generated ";
if (exists $type_totals{$etype})
{

print "$type_totals{$etype} packets.\n";
}
else
{

print "no packets.\n";
}

}
}

And there you have it: a relatively useful Ethernet snooper, which displays infor-
mation on captured packets by frame type. Here are some results generated (dur-
ing a standard working day) on the network used during the writing of Program-
ming the Network with Perl :

1000 frames processed.

IPv4 generated 481 packets.
ARP generated 51 packets.
RARP generated no packets.
AppleTalk generated no packets.
NOVELL1 generated 2 packets.
NOVELL2 generated no packets.
SNMP generated no packets.
IPv6 generated no packets.
TCP/IPc generated no packets.
PPP generated no packets.

Oh dear, over 40% of the packets captured are not categorized.
To see what is happening, add the following lines of code to the very bottom of

the display_results subroutine:

print "\n\nRaw statistics:\n\n";
print "frame-type -> frequency\n\n";
foreach my $e_total (sort keys %type_totals)
{

printf "%lx -> %d\n", $e_total, $type_totals{$e_total};
}

In addition to the output generated above, EtherSnooper now displays output
similar to the following:

Raw statistics:

frame-type -> frequency

64 -> 296

Building Low-Level Snooping Tools 51

66 -> 5
a3 -> 2
aa -> 1
800 -> 481
806 -> 51
d9 -> 1
dc -> 2
6002 -> 1
8137 -> 2
22 -> 1
163 -> 2
25 -> 1
26 -> 29
28 -> 1
2a -> 1
2b -> 4
2c -> 68
238 -> 2
5a -> 1
5d -> 1
60 -> 14
62 -> 1
63 -> 32

The extra code prints out the Ethernet frame type value in HEX, then indicates
(to the right of the -> symbol) how many frames of that type were captured. HEX
800 is the Ethernet frame type for IP, and HEX 806 corresponds to ARP, and these
totals match. But, look at all those other frame types! A quick look at the IANA
Ethernet frame type file does not help solve this puzzle, as none of these frame
type values match with an assigned type in the file.

It turns out that the values are not Ethernet frame types at all, but are instead
IEEE 802.3 length values. Ethernet hardware can carry frames with different frame
formats. When used by technology that generates Ethernet II (or DIX) frames, the
two bytes in the header which follow the 48 bit destination and source addresses
correspond to the Ethernet frame type value. When used by technology that gen-
erates Ethernet frames based on the IEEE 802.3 standards, the same two bytes
correspond to the length of the frame. It just so happens that the network used
during the development of Programming the Network with Perl carries more than
one Ethernet frame format: Ethernet II frames (which carry mostly TCP/IP traffic)
and the IEEE 802.3 frame format (which is used by Novell NetWare).

Having agreed to disagree on the format of Ethernet frames, the Ethernet II
and IEEE 802.3 standards developers agreed (thankfully) that no Ethernet II frame
type would have a value less than HEX 05DC (which is decimal 1500). So, when
a snooper sees a frame type less than 1501, it is OK to assume that the frame is
formatted as a variation of the IEEE 802.3 format, and that the frame type value
is actually a length value.

52 Snooping

To take this into consideration, change the got_a_packet subroutine to check
the value of the frame type field prior to updating the hash:

if ($frame->{type} < 1501)
{

$type_totals{ 1500 }++;
}
else
{

$type_totals{ $frame->{type} }++;
}

and add these lines to the bottom of display_results:

print "\nNon Ethernet II (DIX) frames generated";
print " $type_totals{1500} packets.\n";

Here is the output generated by this updated version of EtherSnooper :

1000 frames processed.

IPv4 generated 484 packets.
ARP generated 15 packets.
RARP generated no packets.
AppleTalk generated no packets.
NOVELL1 generated 3 packets.
NOVELL2 generated no packets.
SNMP generated no packets.
IPv6 generated no packets.
TCP/IPc generated no packets.
PPP generated no packets.

Non Ethernet II (DIX) frames generated 498 packets.

2.3.6 EtherSnooper (v0.02)

The second version of the EtherSnooper captures packets for three minutes (as
opposed to stopping after 1000 accepted packets). To do something for a number
of minutes in Perl, use code similar to this:

my $minute = 3;
my $now = time;
my $then = $now + (60 * $minute);
while (($now = time) < $then)
{

; # Do whatever you want to do here.
}

Building Low-Level Snooping Tools 53

Calling Perl’s inbuilt time subroutine returns the number of seconds since the
operating systems epoch. The value returned is assigned to $now. Adding 180
seconds to $now turns it into $then. The loop iterates as long as $now is less than
$then, and $now is updated each time (no pun intended) the loop iterates.

It is tempting to try and integrate this timing code into EtherSnooper (v0.01),
as follows:

my $minute = 3;
my $now = time;
my $then = $now + (60 * $minute);

while (($now = time) < $then)
{

my $status = Net::PcapUtils::loop(
\&got_a_packet,
NUMPACKETS => 1

);
}

The call to Net::PcapUtils::loop only captures a single packet each time it is
called. Each time Net::PcapUtils::loop executes it opens the NIC, configures
the NIC using the provided parameters, then calls the callback function for each
packet accepted by the NIC (which is only ever going to be one). As this will happen
each time the while loop iterates, this code ends up opening and configuring
the NIC far too often. In short, the code is wasteful. It may also exhibit resource
problems when executed over long periods of time.

To overcome this problem, rewrite EtherSnooper to use open and next to create
v0.02. Here is the entire program:

#! /usr/bin/perl -w

use 5.6.0;

use strict;
use Net::PcapUtils;
use NetPacket::Ethernet qw(:types);
use XtraType;

our %type_totals = ();

our %type_desc = (
0x0800 => ’IPv4’,
0x0806 => ’ARP’,
0x809B => ’AppleTalk’,
0x814C => ’SNMP’,
0x86DD => ’IPv6’,
0x880B => ’PPP’,
0x8137 => ’NOVELL1’,

54 Snooping

0x8138 => ’NOVELL2’,
0x8035 => ’RARP’,
0x876B => ’TCP/IPc’

);

our $num_packets = 0;

sub got_a_packet {
my $packet = shift;

my $frame = NetPacket::Ethernet->decode($packet);

if ($frame->{type} < 1501)
{

$type_totals{ 1500 }++;
}
else
{

$type_totals{ $frame->{type} }++;
}

$num_packets++;
}

sub display_results {
print "$num_packets processed.\n\n";

foreach my $etype (sort keys %type_desc)
{

print "$type_desc{$etype} generated ";
if (exists $type_totals{$etype})
{

print "$type_totals{$etype} packets.\n";
}
else
{

print "no packets.\n";
}

}
print "\nNon Ethernet II (DIX) frames generated";
print " $type_totals{1500} packets.\n";

}

my $pkt_descriptor = Net::PcapUtils::open;

if (!ref($pkt_descriptor))
{

print "Net::PcapUtils::open returned: $pkt_descriptor\n";
exit;

}

Building Low-Level Snooping Tools 55

my $minute = 3;
my $now = time;
my $then = $now + (60 * $minute);

my ($next_packet, %next_header);

while (($now = time) < $then)
{

($next_packet, %next_header) =
Net::PcapUtils::next($pkt_descriptor);

got_a_packet($next_packet);
}

display_results;

Working down through the v0.02 code, changes were made to the got_a_packet
subroutine as there is now a single parameter which contains the packet con-
tents. Nearer the bottom of the code the call to Net::PcapUtils::loop has
been replaced by an equivalent call to Net::PcapUtils::open. The code to run
for three minutes controls the loop which calls Net::PcapUtils::next on each
iteration. The got_a_packet subroutine is now called explicitly, as opposed to
relying on the callback function mechanism from v0.01. At the end, the same
display_results subroutine is invoked after a successful run.

Even though more code had to be written, v0.02 of EtherSnooper is not only less
wasteful than v0.01, it is also more extendable. Here are some results generated
by this program:

4431 frames processed.

IPv4 generated 2074 packets.
ARP generated 148 packets.
RARP generated no packets.
AppleTalk generated no packets.
NOVELL1 generated 139 packets.
NOVELL2 generated no packets.
SNMP generated no packets.
IPv6 generated no packets.
TCP/IPc generated no packets.
PPP generated no packets.

Non Ethernet II (DIX) frames generated 2070 packets.

2.3.7 EtherSnooper (v0.03)

EtherSnooper is now easy to extend. Let us add code to determine the busiest
hosts on the network, where ‘busiest’ is defined as the host that receives the most

56 Snooping

Ethernet frames and the host that sends the most Ethernet frames. All that is
required is a mechanism to count the number of occurrences of each address
captured.

Just as a hash exists to record details of the frame types (%type_totals), define
two more hashes to record details of the source and destination addresses, which
are both initially empty:

our %src_hosts = ();
our %dest_hosts = ();

With the hashes in existence, make changes to the got_a_packet subroutine to
count the occurrences of each address captured. Here is the new version of the
subroutine:

sub got_a_packet {
my $packet = shift;

my $frame = NetPacket::Ethernet->decode($packet);

if ($frame->{type} < 1501)
{

$type_totals{ 1500 }++;
}
else
{

$type_totals{ $frame->{type} }++;
}

$src_hosts{ $frame->{src_mac} }++;
$dest_hosts{ $frame->{dest_mac} }++;

$num_packets++;
}

The same programming idiom used to update %type_totals is used to update
the %src_hosts and %dest_hosts hashes. With the data acquired, change the
display_results subroutine to print the busiest hosts:

sub display_results {
print "$num_packets frames processed.\n\n";

my $busiest_mac = 0;
my $busiest_count = 0;

print "The busiest hosts were:\n\n";

while (my ($host, $count) = each %src_hosts)
{

if ($count > $busiest_count)
{

Building Low-Level Snooping Tools 57

$busiest_mac = $host;
$busiest_count = $count;

}
}

print "Source: $busiest_mac with ";
print "$busiest_count frames\n";

$busiest_mac = 0;
$busiest_count = 0;

while (my ($host, $count) = each %dest_hosts)
{

if ($count > $busiest_count)
{

$busiest_mac = $host;
$busiest_count = $count;

}
}

print "Destination: $busiest_mac with ";
print "$busiest_count frames\n";

}

Using hash traversal code, display_results works through %src_hosts and
%dest_hosts and determines the address of the busiest sending and receiving
hosts.

Here are some results generated by EtherSnooper (v0.03):

3905 frames processed.

The busiest hosts were:

Source: 00d0d3a50002 with 136 frames
Destination: ffffffffffff with 3405 frames

The busiest destination address is the Ethernet broadcast address (all-Fs). On
LANs running Novell NetWare, a certain amount of broadcast traffic is quite com-
mon, although this amount appears to be surprisingly high. (In actual fact, it
turned out that a large number of misconfigured workstations had been recently
installed onto the network used during the writing of Programming the Network
with Perl. Every one of the workstations were busy broadcasting their existence,
and it was not until the entire network’s performance suffered that the problem
was discovered and, ultimately, diagnosed.)

Use this version of display_results to see the statistics for all of the captured
hosts:

sub display_results {
print "$num_packets frames processed.\n\n";

58 Snooping

foreach my $etype (sort keys %type_desc)
{

print "$type_desc{$etype} generated ";
if (exists $type_totals{$etype})
{

print "$type_totals{$etype} packets.\n";
}
else
{

print "no packets.\n";
}

}

print "The host statistics are:\n\nSources:\n\n";

foreach my $host (sort keys %src_hosts)
{

print "Host: $host, Count: $src_hosts{$host}.\n";
}

print "\nDestinations:\n\n";

foreach my $host (sort keys %dest_hosts)
{

print "Host: $host, Count: $dest_hosts{$host}.\n";
}

}

The foreach statements traverse each hash and print the results ordered by
address.

2.3.8 Displaying IP addresses

When addresses are displayed by EtherSnooper (v0.03), they appear as HEX
strings, representing the 48 bits of an Ethernet address. On a TCP/IP network,
Ethernet frames used by the Internet have an associated IP address (which is 32
bits long).

If the Ethernet frame contains an IP datagram, the frame type will be set to
NetPacket::Ethernet::ETH_TYPE_IP. If this is the case, the facilities of the
NetPacket::IP module can be used to decode the IP datagram and determine
the IP addresses in use. EtherSnooper (v0.04) will display an IP address with its
associated Ethernet address when printing results.

Another hash is required to store the Ethernet address to IP address mappings,
which can be declared near the top of the program, as follows:

our %e2ip = ();

Building Low-Level Snooping Tools 59

The %e2ip hash is keyed by Ethernet address, with an IP address associated with
each key. As usual, populate the hash in (yet another) version of got_a_packet:

sub got_a_packet {
my $packet = shift;

my $frame = NetPacket::Ethernet->decode($packet);

if ($frame->{type} < 1501)
{

$type_totals{ 1500 }++;
}
else
{

$type_totals{ $frame->{type} }++;
}

$src_hosts{ $frame->{src_mac} }++;
$dest_hosts{ $frame->{dest_mac} }++;

if ($frame->{type} == NetPacket::Ethernet::ETH_TYPE_IP)
{

my $ip_datagram = NetPacket::IP->decode(
NetPacket::Ethernet::eth_strip($packet));

$e2ip{ $frame->{src_mac} } = $ip_datagram->{src_ip};
$e2ip{ $frame->{dest_mac} } = $ip_datagram->{dest_ip};

}

$num_packets++;
}

With the Ethernet frame decoded and the statistics recorded, the code checks
to see if the frame type is NetPacket::Ethernet::ETH_TYPE_IP. If it is, Ether-
Snooper takes the frame and strips off the Ethernet header information using the
NetPacket::Ethernet::eth_strip subroutine, producing the frames payload.
The payload is then passed to the decode method of the NetPacket::IP module,
which creates an IP datagram object from it.

This method of encapsulating IP datagrams in the payload of Ethernet frames
clearly demonstrates the computer networking layered architecture at work. As
data moves down through the ‘stack’ of layers, each protocol adds header infor-
mation to the payload. The frame is then moved from the source host to the
destination host ‘across the wire’, where the data then moves up through the lay-
ers, with each protocol removing its header information before passing up the
payload to the layer above. As the EtherSnooper program pulls the frame directly
off the wire, it needs to do its own processing of the frame in order to remove any
header information that is not required (see Figure 2.2 on p. 60).

The object – called $ip_datagram in the code – has associated with it a col-
lection of IP instance data (refer to Figure 2.3 on p. 64). Of particular inter-
est are the fields containing the source and destination IP addresses, stored in

60 Snooping

� �� � � �
Ethernet Network Cable

�

Data ETH

� �

Data IP

� �

Data TCP

� �

Data

�

�
�

�
�Sending

�
�

eth_strip($frame)

�
ip_strip($datagram)

�
tcp_strip($segment)

�
$data

�

�
�

�
�EtherSnooper

�
DataETH

� �
DataIP

� �
DataTCP

� �
Data

�

�
�

�
�Receiving

Figure 2.2 How EtherSnooper works.

$ip_datagram->{src_ip} and $ip_datagram->{dest_ip} fields. The values in
these fields are used to update the %e2ip hash every time got_a_packet is called.

For this code to work, we need to use the modules as follows (at the top of the
program):

use NetPacket::Ethernet qw(:types :strip);
use NetPacket::IP;

The program indicates its intention to use the NetPacket::Ethernet module
with particular reference to the predefined frame types as well as the strip-
ping subroutine, which in this case is eth_strip. The program also uses the
NetPacket::IP module.

A small change is required to the display_results subroutine to display the
IP addresses:

sub display_results {
print "$num_packets frames processed.\n\n";

foreach my $etype (sort keys %type_desc)
{

print "$type_desc{$etype} generated ";
if (exists $type_totals{$etype})
{

print "$type_totals{$etype} packets.\n";
}

Building Low-Level Snooping Tools 61

else
{

print "no packets.\n";
}

}
print "\nNon Ethernet II (DIX) frames generated";
print " $type_totals{1500} packets.\n";

print "\nThe host statistics are:\n\nSources:\n\n";

foreach my $host (sort keys %src_hosts)
{

if (exists $e2ip{$host})
{

print "Host: $host ($e2ip{$host}), ";
print "Count: $src_hosts{$host}.\n";

}
else
{

print "Host: $host, Count: $src_hosts{$host}.\n";
}

}

print "\nDestinations:\n\n";

foreach my $host (sort keys %dest_hosts)
{

if (exists $e2ip{$host})
{

print "Host: $host ($e2ip{$host}), ";
print "Count: $dest_hosts{$host}.\n";

}
else
{

print "Host: $host, Count: $dest_hosts{$host}.\n";
}

}
}

Prior to printing out the results line for each source and destination, the code
checks to see if an entry exists in %e2ip, and if it does, prints out the IP address
associated with the Ethernet address. If no entry exists, no IP address is printed.
In the next chapter, code is provided to turn IP addresses into IP names.

Here is an extract from results generated by EtherSnooper (v0.04). The actual
results were several hundred lines long:

4945 frames processed.

IPv4 generated 2961 packets.

62 Snooping

ARP generated 278 packets.
RARP generated no packets.
AppleTalk generated no packets.
NOVELL1 generated 7 packets.
NOVELL2 generated no packets.
SNMP generated no packets.
IPv6 generated no packets.
TCP/IPc generated no packets.
PPP generated no packets.

Non Ethernet II (DIX) frames generated 1699 packets.

The host statistics are:

Sources:

Host: 0002fd06ebed, Count: 2.
Host: 00036bd95d58, Count: 93.
Host: 0005025796a2 (149.153.100.65), Count: 257.
Host: 0005027148a0 (149.153.100.106), Count: 6.

.

.

.
Host: 00105a42187a (149.153.100.20), Count: 4.
Host: 00105af5bdde, Count: 3.
Host: 00b0d065878c (149.153.134.2), Count: 20.
Host: 00b0d065878d (149.153.130.33), Count: 4.
Host: 00b0d0658790, Count: 3.

.

.

.
Host: 00b0d06587ba, Count: 3.
Host: 00d0d3a53f7d (149.153.50.104), Count: 10.
Host: 08000228826f (149.153.100.7), Count: 2.
Host: 0800090fe547, Count: 4.
Host: 080009f9fdf4, Count: 3.

Destinations:

Host: 0005025796a2 (149.153.100.65), Count: 846.
Host: 0080192d295c (149.153.100.23), Count: 223.
Host: 00d0d3a50002 (149.153.1.5), Count: 32.
Host: 01000ccccccc, Count: 3.
Host: 01000cdddddd, Count: 116.
Host: 01005e000001 (224.0.0.1), Count: 4.
Host: 01005e000002 (224.0.0.2), Count: 4.
Host: 01005e00000d (224.0.0.13), Count: 6.
Host: 01005e000116 (224.0.1.22), Count: 307.
Host: 01005e000123 (224.0.1.35), Count: 8.

Snooping IP Datagrams 63

Host: 01005e00013c (224.0.1.60), Count: 25.
Host: 01005e3796d0 (229.55.150.208), Count: 18.
Host: 0180c2000000, Count: 90.
Host: 030000000001, Count: 2.
Host: ffffffffffff (149.153.113.255), Count: 3261.

This extract shows IP addresses for those Ethernet frames that are carry-
ing IP traffic. The most used destination address is the broadcast address
149.153.113.255 (which has associated with it the all-Fs Ethernet address). The
reason for all the broadcast traffic is attributed, once again, to the collection of
misconfigured workstations on the LAN, as discussed previously on p. 57, § 2.3.7.
By including the IP address mappings in the results, this version of EtherSnooper
has further isolated the problem to those machines on the 149.153.113.0 sub-
network.

Here is the EtherSnooper (v0.04) call to open the NIC:

my $pkt_descriptor = Net::PcapUtils::open;

It is tempting to apply a filter to this call, as follows:

my $pkt_descriptor =
Net::PcapUtils::open(FILTER => ’ip’);

This has the effect of only accepting Ethernet frames carrying IP datagrams in
their payload. On a network that carries traffic for more than one network tech-
nology (such as the Internet, NetWare and AppleTalk), this would have the effect
of skewing the displayed results, as only IP traffic would be accepted and counted.
If filters are used, be sure that this is what is required.

2.4 Snooping IP Datagrams

The strategy employed while building the first four versions of EtherSnooper can
be used to snoop any of the protocols the NetPacket::* modules support. The
technique is always the same.

1. Use the Correct Modules: at the top of the program, specify the modules and
options that the program will use.

2. Create the Hashes: decide on the statistics that will be gathered, and define
the required number of hashes to store the information.

3. Modify got_a_packet: populate the hashes every time a frame is accepted
by the NIC.

4. Modify display_results: post-process the hashes to display meaningful
results.

64 Snooping

� 32 bits �

$ver $hlen $tos $len

$id $flags $foffset

$ttl $proto $cksum

$src_ip

$dest_ip

$options …

$data …

Figure 2.3 The NetPacket::IP datagram format.

Two additional versions of EtherSnooper will now be developed. EtherSnooper
(v0.05) snoops IP datagrams and collects data on the Time-To-Live (TTL) field.
The results of this version of the program display the average TTL value for the
IP datagrams captured, as well as the minimum and maximum TTL values.

EtherSnooper (v0.06) snoops IP datagrams and collects data on the different
protocols being carried by IP. This functionality is very similar to EtherSnooper
(v0.02), except that the snooper is capturing statistics at a higher layer (as opposed
to the Host-To-Network Layer).

To learn more about the instance fields for the datagram object created by the
decode subroutine from NetPacket::IP, refer to the online documentation for
the NetPacket::IP module and to Figure 2.3 on p. 64.

2.4.1 EtherSnooper (v0.05)

Here is the code to EtherSnooper (v0.05), which processes each IP datagram’s TTL
value:

#! /usr/bin/perl -w

use 5.6.0;
use integer;
use strict;

use Net::PcapUtils;
use NetPacket::Ethernet qw(:strip);
use NetPacket::IP;

our %ttl_totals = ();

our $num_datagrams = 0;

Snooping IP Datagrams 65

sub got_a_packet {
my $packet = shift;

my $ip_datagram = NetPacket::IP->decode(
NetPacket::Ethernet::eth_strip($packet));

$ttl_totals{ $ip_datagram->{ttl} }++;
$num_datagrams++;

}

sub display_results {
print "$num_datagrams datagrams processed.\n\n";

my $min_ttl = 256;
my $max_ttl = 0;
my $average_ttl = 0;

while (my ($ttl_key, $ttl_value) = each %ttl_totals)
{

if ($ttl_key < $min_ttl)
{

$min_ttl = $ttl_key;
}
if ($ttl_key > $max_ttl)
{

$max_ttl = $ttl_key;
}
$average_ttl =

$average_ttl + ($ttl_key * $ttl_value);
}

$average_ttl = ($average_ttl / $num_datagrams);

print "Minimum TTL value: $min_ttl\n";
print "Maximum TTL value: $max_ttl\n";
print "Average TTL value: $average_ttl\n\n";

print "TTL distribution analysis:\n\n";

foreach my $ttlkey (sort {$a <=> $b} keys %ttl_totals)
{

print "TTL: $ttlkey, ";
print "frequency: $ttl_totals{$ttlkey}.\n";

}
}

my $pkt_descriptor =
Net::PcapUtils::open(FILTER => ’ip’);

66 Snooping

if (!ref($pkt_descriptor))
{

print "Net::PcapUtils::open returned: $pkt_descriptor\n";
exit;

}

my $minute = 3;
my $now = time;
my $then = $now + (60 * $minute);

my ($next_packet, %next_header);

while (($now = time) < $then)
{

($next_packet, %next_header) =
Net::PcapUtils::next($pkt_descriptor);

got_a_packet($next_packet);
}

display_results;

The code uses both the NetPacket::Ethernet and NetPacket::IP modules.
A hash called %ttl_totals is created to store the captured TTL values, and is
populated each time got_a_packet is invoked.

The display_results subroutine processes the %ttl_totals hash to deter-
mine the smallest, largest and average TTL values, before printing the results to
the screen. The distribution of TTL values is then printed using a simple foreach
construct.

IPv4 TTL values are 8 bits long, which means they can contain values in the range
1–255 (which explains the initial values of the $min_ttl and $max_ttl scalars
in the code). The recommended default value for TTL is 60, although some IP
software vendors disregard this recommendation.

The code for v0.05 includes the use integer compiler directive at the top of
the program. This turns on integer arithmetic, as opposed to floating point (which
is the default), and helps keep the printed output tidy.

Here are some results produced by EtherSnooper (v0.05):

2022 datagrams processed.

Minimum TTL value: 1
Maximum TTL value: 255
Average TTL value: 91

TTL distribution analysis:

TTL: 1, frequency: 499.
TTL: 2, frequency: 6.
TTL: 4, frequency: 1.

Snooping IP Datagrams 67

TTL: 10, frequency: 18.
TTL: 32, frequency: 72.
TTL: 64, frequency: 2.
TTL: 128, frequency: 1423.
TTL: 255, frequency: 1.

As the code filters on the IP protocol, the non-Ethernet II frames have no bearing
on the statistics gathered.

A small or large average TTL value may indicate problems on a network. When
the TTL value reaches zero, the router processing the datagram will discard it and
class it as undeliverable. Each time a router sees an IP datagram, the TTL value
is reduced by one. In this way, an undeliverable IP datagram will eventually be
discarded.

A large average TTL may result in undeliverable IP datagrams surviving for
too long on the network, which could result in wasted network resources and
(possibly) congestion. A small average TTL value may result in IP datagrams being
discarded too soon, which could result in IP datagram retransmission (assuming
some higher-level protocol is monitoring for such occurrences and performing
the retransmission – IP as a technology is unreliable and does not care when a
datagram is discarded).

2.4.2 EtherSnooper (v0.06)

Here is the code to EtherSnooper (v0.06), which processes the higher-level proto-
cols carried by IP:

#! /usr/bin/perl -w

use 5.6.0;

use strict;
use Net::PcapUtils;
use NetPacket::Ethernet qw(:strip);
use NetPacket::IP qw(:protos);

our %ip_type_totals = ();

our %ip_type_desc = {
0 => ’IP’,
1 => ’ICMP’,
2 => ’IGMP’,
4 => ’IP/IP’,
6 => ’TCP’,
17 => ’UDP’

};

our $num_datagrams = 0;

68 Snooping

sub got_a_packet {
my $packet = shift;

my $ip_datagram = NetPacket::IP->decode(
NetPacket::Ethernet::eth_strip($packet));

$ip_type_totals{ $ip_datagram->{proto} }++;

$num_datagrams++;
}

sub display_results {
print "$num_datagrams processed.\n\n";

foreach my $iptype (sort keys %ip_type_desc)
{

print "$ip_type_desc{$iptype} generated ";
if (exists $ip_type_totals{$iptype})
{

print "$ip_type_totals{$iptype} datagrams.\n";
}
else
{

print "no datagrams.\n";
}

}
}

my $pkt_descriptor =
Net::PcapUtils::open(FILTER => ’ip’);

if (!ref($pkt_descriptor))
{

print "Net::PcapUtils::open returned: $pkt_descriptor\n";
exit;

}

my $minute = 3;
my $now = time;
my $then = $now + (60 * $minute);

my ($next_packet, %next_header);

while (($now = time) < $then)
{

($next_packet, %next_header) =
Net::PcapUtils::next($pkt_descriptor);

got_a_packet($next_packet);
}

display_results;

Transport Snoopers 69

This code is so close to EtherSnooper (v0.02), that there is not much to say about
it.

The capturing is happening at the network layer, so the code filters on the
IP protocol. Statistics are captured by got_a_packet and then processed by
display_results.

Here are some results produced by EtherSnooper (v0.06):

2102 datagrams processed.

IP generated no datagrams.
ICMP generated 9 datagrams.
UDP generated 1659 datagrams.
IGMP generated 47 datagrams.
IP/IP generated no datagrams.
TCP generated 381 datagrams.

As with EtherSnooper (v0.05), non-Ethernet II frames have no bearing on the statis-
tics gathered. The statistics gathered are quite surprising: look at all that UDP traf-
fic! Nearly every computer networking text describing TCP/IP short-shifts UDP as
a protocol that is used by few applications (when compared with the number
employing TCP). So, if applications are not using UDP to transport data, what is?

Returning to the problem of the misconfigured, broadcasting workstations from
earlier, it transpired that they were broadcasting UDP datagrams. This fact alone
accounts for the large number of UDP datagrams captured by this version of
EtherSnooper.

2.5 Transport Snoopers

The versions of EtherSnooper seen thus far have concerned themselves with pro-
ducing results generated from the header fields of the analysed frames. No atten-
tion has been paid to the data being carried in the frames. To get to the stage
where the data can be analysed (where ‘analysed’ means ‘debugged’), the data
need to be processed. In fact, it only makes real sense to process the data at the
application layer, where the data have real meaning.

In addition, the EtherSnoopers have all operated at the Host-To-Network or Net-
work layers. Before getting to the application layer, an understanding of how appli-
cation data is handled by the Transport Layer is required.

On TCP/IP networks, data is transported by one of two technologies. If the appli-
cation can withstand some data loss, the lightweight, unreliable User Datagram
Protocol (UDP) is used. If data loss is intolerable, the reliable, highly monitored
Transport Control Protocol (TCP) is used. Support for analysing both technologies
is available in the NetPacket::TCP and NetPacket::UDP modules.

The technique for interacting with each module is as seen earlier: use the correct
module, define hashes, modify got_a_packet and modify display_results.

70 Snooping

2.5.1 Preparing to snoop UDP

The fields associated with the UDP datagram, as defined in NetPacket::UDP, are
as shown in Figure 2.4 on p. 72. To process UDP datagrams, start the program as
follows:

#! /usr/bin/perl -w

use 5.6.0;

use strict;
use Net::PcapUtils;
use NetPacket::Ethernet qw(:strip);
use NetPacket::IP qw(:strip);
use NetPacket::UDP;

Within got_a_packet, extract the UDP datagram as follows:

my $udp_datagram = NetPacket::UDP->decode(
NetPacket::IP::ip_strip(

NetPacket::Ethernet::eth_strip($packet)));

The call to the decode subroutine returns a UDP object (which is called $udp_
datagram in this code) which provides access to the instance data associated with
the UDP datagram. To get the UDP datagram, the code takes the Ethernet frame,
strips off the Et hernet header, leaving the IP datagram. The call to ip_strip then
removes the IP headers from the datagram and passes the payload to the UDP
decode subroutine.

When opening the NIC, request a filter on UDP datagrams:

my $pkt_descriptor = Net::PcapUtils::open(
FILTER => ’udp’,
SNAPLEN => 1500

);

The call to Net::PcapUtils::open specifies that the SNAPLEN parameter should
be set to 1500 bytes, the maximum frame size for Ethernet. The snooper is inter-
ested in getting at the data contained in the frame, so it captures all of it, as
opposed to only capturing the first 100 bytes (which would only capture some of
the header information).

2.5.2 Preparing to snoop TCP

To process TCP segments (refer to Figure 2.5 on p. 72), start the program as
follows:

#! /usr/bin/perl -w

use 5.6.0;

Transport Snoopers 71

use strict;
use Net::PcapUtils;
use NetPacket::Ethernet qw(:strip);
use NetPacket::IP qw(:strip);
use NetPacket::TCP;

Within got_a_packet, extract the TCP segment as follows:

my $tcp_segment = NetPacket::TCP->decode(
NetPacket::IP::ip_strip(

NetPacket::Ethernet::eth_strip($packet)));

The call to the decode subroutine returns a TCP object (which is called $tcp_
segment in this code) which provides access to the instance data associated with
the TCP segment. To get the TCP segment, the code takes the Ethernet frame,
strips off the Ethernet headers, leaving the IP datagram. The call to ip_strip
then removes the IP headers from the datagram and passes the payload to the
TCP decode subroutine.

When opening the NIC, request a filter on TCP segments:

my $pkt_descriptor = Net::PcapUtils::open(
FILTER => ’tcp’,
SNAPLEN => 1500

);

As with UDP data capturing, this code sets SNAPLEN to 1500 to ensure the entire
Ethernet frame (header and data) is captured.

Figure 2.2 (on p. 60) shows EtherSnooper ‘stripping’ as it relates to each of the
layers of the network ‘stack’. By successive calls to each layer’s strip subrou-
tine, a snooping program (running its NIC in promiscuous mode) can eventually
determine the data originally created by the sending user-agent. The program can
then do with the data whatever it pleases. It is important to realize that neither
the sending nor the receiving user-agent has any knowledge that snooping has
occurred. The snooper simply takes a copy of the data transmitted on the wire.

2.5.3 The TCP and UDP gotcha!

When discussing snooping UDP and TCP traffic above, the code filtered on the
protocol of interest when invoking Net::PcapUtils::open. This has the effect of
ensuring that when the ‘protocol packet’ (either a UDP datagram or TCP segment)
makes it as far as the got_a_packet subroutine, the code can invoke the correct
decode subroutine, because it already knows the ‘type’ of packet to expect.

However, when it comes to UDP, this does not guarantee that an entire UDP
datagram is decoded. The reason for this has to do with the way UDP datagrams
are created and handled by the network.

72 Snooping

� 32 bits �

$src_port $dest_port

$len $cksum

$data …

Figure 2.4 The NetPacket::UDP datagram format.

� 32 bits �

$src_port $dest_port

$seqnum

$acknum

$hlen $reserved $flags $winsize

$cksum $urg

$options …

$data …

Figure 2.5 The NetPacket::TCP segment format.

When a UDP datagram is created, the UDP technology hands the entire datagram
to IP for delivery. If the UDP datagram is larger than the Maximum Transmission
Unit (MTU) supported by the underlying networking technology4, the IP technol-
ogy will break the large UDP datagram into as many smaller parts as are required
to send the UDP datagram across the network. This process is referred to as IP
fragmentation. When the parts (or fragments) arrive at their destination, the IP
technology rebuilds the large UDP datagram before passing it to UDP for further
processing. This process is referred to as IP re-assembly.

Figure 2.6 (on p. 73) illustrates this mechanism on an Ethernet network. A
3000 byte UDP datagram is passed to IP for delivery. IP then creates three separate
1000 byte IP datagrams prior to transmission. Of the three IP datagrams created,
only the first IP datagram will contain the UDP header information. (In reality,
the possibility of IP breaking the 3000 byte datagram into three even 1000 byte
fragments is unlikely. Typically, IP will stuff as much data as it can into an IP
datagram. But, to illustrate the point, let us keep the mathematics simple.)

With this in mind, a problem surfaces when EtherSnooper snoops a packet des-
ignated as carrying UDP data. The Ethernet header will indicate that IP traffic is
being carried in its payload. The IP header will indicate that UDP traffic is being
carried in its payload. However, without processing the ‘fragmentation options’

41500 bytes for Ethernet, and 4464 bytes for Token-Ring (the 4 megabyte variety).

Transport Snoopers 73

1K DataIP

�
To Network

1K DataIP

�
To Network

1K DataIP

�
To Network

3K DataUDP

�
�

�
�

�
���

�
�

�
�

�
��� �

3K Data

�

�
�

	

�

User Agent

Figure 2.6 UDP/IP fragmentation.

associated with the IP datagram, it is not possible to determine if the IP payload
is an entire UDP datagram or just part of one (and if it is part of one, just where
in the entire UDP datagram the part belongs).

So, to work with UDP data within EtherSnooper, additional code is required to
make sense of the (possibly fragmented) IP datagrams.

The instance fields $ip_datagram->{flags} and $ip_datagram->{foffset}
contained in the IP datagram object hold the information needed to determine if
fragmentation has occurred.

Possible values for the $ip_datagram->{flags} field are as follows.

000 – (decimal 0) this datagram may be fragmented, or this is the last and/or only
fragment.

001 – (decimal 1) this datagram may be fragmented, and more fragments are
coming.

010 – (decimal 2) do not fragment this datagram.

Used in combination with the value of $ip_datagram->{foffset}, these values
determine if an IP datagram is part of a fragmented one or not, as the foffset
value identifies where in the datagram the fragment belongs.

Obviously, if flags is set to 2, then this is a non-fragmented IP datagram,
because the network device that created the datagram set this flag, forbidding
fragmentation to occur.

74 Snooping

If foffset is set to 0 and flags is set to 1, we are at the start of a fragmented
IP datagram (as more fragments are coming). This is the first fragment.

If foffset is greater than 0 and flags is set to 0, we are at the end of a frag-
mented IP datagram. This is the last fragment. The value of foffsetwill be greater
than zero when fragmentation has occurred.

If foffset is greater than 0 and flags is set to 1, we are somewhere in the
middle of a fragmented IP datagram. The value of foffset for this fragment as
it relates to all the other values of foffset for all the other fragments provides a
mechanism to work out where in the original IP datagram the fragment belongs.

This logic could not be easier to write in Perl, and in the code which follows,
got_a_packet (taken from v0.06 of EtherSnooper) will count the number of frag-
mented IP datagrams, but not process them. The count will be stored in a global
scalar called $num_fragments. Only complete, non-fragmented datagrams are
processed further by this subroutine:

sub got_a_packet {
my $packet = shift;

my $ip_datagram = NetPacket::IP->decode(
NetPacket::Ethernet::eth_strip($packet));

$num_datagrams++;

if ($ip_datagram->{foffset} > 0)
{

$num_fragments++;
exit;

}

$ip_type_totals{ $ip_datagram->{proto} }++;
}

Reassembling a fragmented IP datagram is complicated by the fact that there is
no guarantee all the fragments will arrive, that they will arrive in the correct order,
that they will arrive without error, and that they will not be duplicated. IP is, after
all, an unreliable, best-effort technology. It was designed that way.

Out-of-order arrivals and duplicates are easily dealt with by the choice of the
correct data structure. By using a Perl hash keyed on foffset (with the value part
containing the fragments data), code can ensure that duplicates are dealt with, as
the key values in hashes are automatically unique. If duplicate fragments do arrive,
they will simply update the already existing hash entry, and uniqueness will be
maintained. By keying on foffset – and once all the fragments have arrived –
the code can sort on the keys to produce the correct data order. But, what if a
fragment is lost? And what if another fragmented IP datagram starts to arrive
before the code is finished dealing with the current one?

Transport Snoopers 75

One possible solution is to use another hash keyed on the value of the fragment
identifier, which is stored in the $ip_datagram->{id} field. Each fragment asso-
ciated with a fragmented IP datagram will have the same value for id. To complete
the solution, the value part of this hash will contain a reference to the hash which
contains the fragments (as discussed in the last paragraph). As the program runs,
this hash-of-hashes will contain any number of fragmented IP datagrams in the
process of being reassembled.

Code can be added to got_a_packet to update the hash-of-hashes each time
the subroutine is invoked. The code can also check to see if the latest fragment
completes the IP datagram and take any appropriate action.

Of course, the program still has to deal with the problem of lost fragments. How
long should the code wait before determining any particular IP datagram cannot
be reassembled? Coming up with a reasonable answer – and implementation – is
a suggested exercise (see the end of this chapter).

With TCP traffic, the situation discussed above as it relates to UDP is very dif-
ferent. TCP will endeavour to ensure the successful transmission of any data
entrusted to it. To this end, TCP tries to ensure that IP fragmentation never hap-
pens to the traffic it generates. Figure 2.7 (on p. 76) illustrates TCP’s behaviour.
The 3000 bytes of data are ‘fragmented’ by TCP before being handed off to IP for
delivery. Each IP datagram created will carry in its payload a chunk of TCP data
and the appropriate TCP header information.

However, fragmentation will occur when TCP traffic has to travel through a net-
work segment that has a smaller MTU than the sending and receiving networks
MTU values. For example, data created on a Token-Ring network and destined for
a FDDI network can create TCP segments as large as 4352 bytes5. However, if the
Token-Ring and FDDI networks are connected by an Ethernet segment, then the
large TCP segments will be fragmented (by IP) in order to allow for their transmis-
sion over Ethernet. So, it is quite possible to snoop TCP data and experience the
same fragmentation difficulties associated with UDP snooping.

Additional code is therefore required to take this possibility into consideration
when snooping TCP.

2.5.4 Application traffic monitoring

It is possible to snoop user-agent data using the techniques from the last section.
What is missing is a mechanism to determine what application the data is associ-
ated with. Does the captured data belong to a standard Web browser, email client,
file transfer, or terminal emulation application? Or does the data belong to some
non-standard or custom network application?

To learn more about the data, EtherSnooper needs to examine the protocol port-
numbers associated with the data. Both UDP and TCP use protocol port-numbers

5FDDI’s MTU is 4352 bytes, whereas Token-Ring’s is 4464 bytes.

76 Snooping

DataIP

�
To Network

DataIP

�
To Network

DataIP

�
To Network

1K DataTCP

�

1K DataTCP

�

1K DataTCP

�

3K Data

�
�

�
�

�
���

�
�

�
�

�
��� �

�
�

�
�

�

User Agent

Figure 2.7 TCP/IP fragmentation.

to multiplex application traffic onto a single network connection. And network
programmers use protocol port-numbers to associate network traffic with appli-
cations.

The protocol port-number information is available in both the UDP and TCP
header (and is available to EtherSnooper as instance fields of the decoded UDP
and TCP objects – refer to Figures 2.4 and 2.5 on p. 72). Within the appropri-
ate got_a_packet subroutine, refer to the source and destination protocol port-
numbers as follows (for UDP traffic):

$udp_datagram->{src_port}
$udp_datagram->{dest_port}

and as follows (for TCP traffic):

$tcp_segment->{src_port}
$tcp_segment->{dest_port}

The meaning of a large number of protocol port-numbers (both for UDP and TCP)
has been standardized by the Internet Assigned Numbers Authority (IANA). Refer
to the Web Resources section at the end of this chapter for the location from
which to download the current list of assignments. Protocol port-numbers oper-
ate within a 16 bit range, so they start at 0 and go up to 65 535. Within this range,
the IANA reserves the first 1024 ports as well-known port-numbers (i.e. 0–1023).

Transport Snoopers 77

Located in the range 1024–49 151 are the registered ports, and the rest (49 152–
65 535) are referred to as dynamic or private ports. In practice, these ranges man-
date that only standard, agreed-to, well-known services should be allocated a pro-
tocol port-number below 1024. Above 1023, a custom application can choose any
port-number, with the assumption that on shared computers, a clash may occur
with an already existing, custom service6.

A quick look at the downloaded port-numbers file confirms that a lot of assign-
ments have been made. Here is a small extract:

.

.

.

To the extent possible, these same port assignments
are used with the UDP [RFC768].

The range for assigned ports managed by the IANA is 0-1023.

.

.

.

vettcp 78/tcp vettcp
vettcp 78/udp vettcp
Christopher Leong <leong@kolmod.mlo.dec.com>
finger 79/tcp Finger
finger 79/udp Finger
David Zimmerman <dpz@RUTGERS.EDU>
http 80/tcp World Wide Web HTTP
http 80/udp World Wide Web HTTP
www 80/tcp World Wide Web HTTP
www 80/udp World Wide Web HTTP
www-http 80/tcp World Wide Web HTTP
www-http 80/udp World Wide Web HTTP
Tim Berners-Lee <timbl@W3.org>
hosts2-ns 81/tcp HOSTS2 Name Server
hosts2-ns 81/udp HOSTS2 Name Server

.

.

.

The version of the port-numbers file this extract is taken from is 9487 lines long
(close to 160 pages). Despite its length, the file conforms to a reasonably standard
format. Paragraphs of text introduce the three types of assignments, comments
start with a # character, and the actual assignment entry lines detail: a descriptive

6However, in reality, this is quite rare.

78 Snooping

keyword, a port-number/protocol designation, and a protocol description (which
may also include a contact email address or reference). Note how the UDP and
TCP assignments are ‘mixed’ in the one file.

To produce a version of EtherSnooper to capture statistics based on the protocol
port-number assignments would be madness – populating a hash with upwards
of 9000 entries (generated from the port-numbers file) is not something to do
on a whim. So, let us just worry about the well-known ports.

Here is a small Perl program that will take the downloaded port-numbers file
and create two new files: well-known-udp, which will contain the well-known
UDP port-number assignments; and well-known-tcp, which will contain the well-
known TCP port-number assignments:

#! /usr/bin/perl

Process the IANA ’port-numbers’ file so that we just
have the well-known ports (i.e. < 1024) for the TCP
and UDP protocols. Two new files are created:
#
well-known-udp - well-known ports for TCP.
well-known-tcp - well-known ports for UDP.

open PORTNUMS, ’port-numbers’ or die "Ooops: $!";

open PROCESSED_TCP, ’>well-known-tcp’ or die "Ooops: $!";
open PROCESSED_UDP, ’>well-known-udp’ or die "Ooops: $!";

while ($_ = <PORTNUMS>)
{

next if /Unassigned/;
next if /Reserved/;
next if /ˆ#/;

next unless m[/(udp|tcp)];

m[(\d+)/(udp|tcp)];

print PROCESSED_TCP $_ if ($1 < 1024) and m[/tcp];
print PROCESSED_UDP $_ if ($1 < 1024) and m[/udp];

}

close PROCESSED_TCP;
close PROCESSED_UDP;

close PORTNUMS;

This is the first time the code in Programming the Network with Perl has made
use of Perl’s regular expression, pattern-matching technology. For this reason, let
us go through the code in some detail.

Transport Snoopers 79

After the standard first line, and a comment as to the program’s purpose, three
files are opened:

open PORTNUMS, ’port-numbers’ or die "Ooops: $!";

open PROCESSED_TCP, ’>well-known-tcp’ or die "Ooops: $!";
open PROCESSED_UDP, ’>well-known-udp’ or die "Ooops: $!";

The port-numbers disk-file is opened for reading, and subsequently the well-
known-tcp and well-known-udp disk-files are created for writing. The code then
loops through the port-numbers disk-file one line at a time and executes the code
within the while for each line (which is stored in the $_ default variable):

while ($_ = <PORTNUMS>)
{

Three next if statements come next:

next if /Unassigned/;
next if /Reserved/;
next if /ˆ#/;

Within a loop, next will cause the current loop iteration to end, returning control
to the top of the loop prior to starting the next iteration. By appending an if to
the next, the code only performs the next if the conditional part is true. The
conditionals are all pattern matches, which (in order) search the current line from
the port-numbers disk-file for the word ‘Unassigned’, the word ‘Reserved’, and
the # character at the start of the line. The code has no interest in lines that contain
these ‘patterns’, so it ignores them (thanks to the use of next).

A fourth next statement follows:

next unless m[/(udp|tcp)];

This statement searches the line for the string ‘/udp’ or ‘/tcp’, and discards the
line if neither of these strings appear in the file. This has the effect of discarding
the paragraphs of text that introduce each section of the file.

The while loop ends with a further pattern match, followed by two conditional
print statements:

m[(\d+)/(udp|tcp)];

print PROCESSED_TCP $_ if ($1 < 1024) and m[/tcp];
print PROCESSED_UDP $_ if ($1 < 1024) and m[/udp];

}

The pattern match has the effect of matching a number ((\d+)), followed by a
slash character (/), followed by the string ‘udp’ or the string ‘tcp’ ((udp|tcp)).
Refer to the extract from the port-numbers file above to see where the matches
occur for this pattern.

80 Snooping

If a match on the number occurs (i.e. if a number is found on the line), Perl
automatically arranges to put the match into a variable called $1. The conditional
part of the print statements use the value of $1 (together with one final string
match) to decide which of the two output files to write to.

When the while loop terminates, the three opened files are then closed
(although Perl will do this automatically if the explicit close statements are miss-
ing):

close PROCESSED_TCP;
close PROCESSED_UDP;

close PORTNUMS;

After a successful execution of this program, two new files are produced, called
well-known-udp and well-known-tcp.

These files are a more reasonable size, with 681 lines for the UDP well-known
port assignments, and 683 lines for the TCP well-known port assignments.

It is now reasonable to use the values from these files to populate hashes that
can then be referred to in a version of EtherSnooper.

Here is code to process the well-known TCP port assignments:

my %tcp_desc = ();

open WELLKNOWN_TCP, ’well-known-tcp’ or die "Ooops: $!";

while ($_ = <WELLKNOWN_TCP>)
{

chomp;

m[(\d+)/tcp];

$tcp_desc{$1} = $_;
}

close WELLKNOWN_TCP;

The code defines a hash called %tcp_desc to contain the information. This hash
is keyed on the protocol port-number, and has as its value part the entire line
from the file.

Having built the hash, reference its data as follows:

print "$tcp_desc{69}\n";
print "$tcp_desc{80}\n";
print "$tcp_desc{110}\n";
print "$tcp_desc{434}\n";

The above lines of code produce the following output:

tftp 69/tcp Trivial File Transfer
www-http 80/tcp World Wide Web HTTP
pop3 110/tcp Post Office Protocol - Version 3
mobileip-agent 434/tcp MobileIP-Agent

Transport Snoopers 81

2.5.5 EtherSnooper (v0.07)

Let us create a new version of EtherSnooper to gather statistics on the TCP traffic
being carried on the network. Here is the code:

#! /usr/bin/perl -w

use 5.6.0;

use strict;
use Net::PcapUtils;
use NetPacket::Ethernet qw(:strip);
use NetPacket::IP qw(:strip);
use NetPacket::TCP;

our %tcp_proto_totals = ();

our $num_datagrams = 0;

sub got_a_packet {
my $packet = shift;

my $tcp_segment = NetPacket::TCP->decode(
NetPacket::IP::ip_strip(

NetPacket::Ethernet::eth_strip($packet)));

if ($tcp_segment->{src_port} < 1024)
{

$tcp_proto_totals{ $tcp_segment->{src_port} }++;
}
if ($tcp_segment->{dest_port} < 1024)
{

$tcp_proto_totals{ $tcp_segment->{dest_port} }++;
}

$num_datagrams++;
}

sub display_results {
print "$num_datagrams segments processed.\n\n";

my %tcp_desc = ();

open WELLKNOWN_TCP, ’well-known-tcp’ or die "Ooops: $!";

while ($_ = <WELLKNOWN_TCP>)
{

chomp;

m[(\d+)/tcp];

$tcp_desc{$1} = $_;
}

82 Snooping

close WELLKNOWN_TCP;

foreach my $port (sort keys %tcp_proto_totals)
{

print "Port: $port, ";
print "generated $tcp_proto_totals{$port} segments.\n";
print "Protocol-port: $tcp_desc{$port}.";
print "\n\n";

}
}

my $pkt_descriptor = Net::PcapUtils::open(
FILTER => ’tcp’,
SNAPLEN => 120

);

if (!ref($pkt_descriptor))
{

print "Net::PcapUtils::open returned: $pkt_descriptor\n";
exit;

}

my $minute = 3;
my $now = time;
my $then = $now + (60 * $minute);

my ($next_packet, %next_header);

while (($now = time) < $then)
{

($next_packet, %next_header) =
Net::PcapUtils::next($pkt_descriptor);

got_a_packet($next_packet);
}

display_results;

This version of EtherSnooper conforms closely to the model used to produce all
the previous versions. When opening the NIC, the code sets the value of SNAPLEN
to 120, which ensures that we capture the IP and TCP header information, which
is required to produce statistics7. Statistics are only gathered for the well-known
ports (i.e. those that are less than 1024).

Here are some self-explanatory results generated by this code:

2302 segments processed.

Port: 110, generated 36 segments.
Protocol-port: pop3 110/tcp Post Office Protocol Version 3.

7TCP/IP reserves up to 60 bytes for the IP header, and up to a further 60 bytes for the TCP header.

The Network Debugger 83

Port: 119, generated 55 segments.
Protocol-port: nntp 119/tcp Network News Transfer Protocol.

Port: 80, generated 2211 segments.
Protocol-port: www-http 80/tcp World Wide Web HTTP.

It is a rather trivial exercise to change EtherSnooper (v0.07) to gather statistics on
UDP traffic, as opposed to TCP. So trivial, in fact, that it is left as an exercise to
the reader.

It is also trivial to further filter the capturing to a specific IP address. Create a
scalar to hold the IP address of interest:

my $filter_address = ’149.153.100.23’;

When calling got_a_packet include an additional parameter:

got_a_packet($filter_address, $next_packet);

Then adjust got_a_packet to filter on the IP address:

sub got_a_packet {
my ($ip_addr, $packet) = @_;

my $ip_datagram = NetPacket::IP->decode(
NetPacket::Ethernet::eth_strip($packet));

if (($ip_datagram->{src_ip} eq $ip_addr) or
($ip_datagram->{dest_ip} eq $ip_addr)

{
my $tcp_segment =

NetPacket::TCP->decode($ip_datagram->{data});

$tcp_proto_totals{ $tcp_segment->{src_port} }++;
$tcp_proto_totals{ $tcp_segment->{dest_port} }++;

$num_datagrams++;
}

}

This version of got_a_packet creates an IP datagram object, then checks to see
if it has a match on either the source or destination IP address (as carried in the IP
datagram). If there is a match, the payload from the IP datagram is used to create
a TCP segment object, which is then used to provide access to the TCP protocol
port-number data. The $num_datagrams scalar is only updated if the IP address
matches.

2.6 The Network Debugger

It is now possible to snoop at each of the network layers described at the start of
this chapter. And it is not going to take much to turn EtherSnooper into a network

84 Snooping

debugger, which can be used to both analyse and test applications running on a
TCP/IP network.

A requirement exists to make the debugger (which will be called NetDebug)
as generic as possible, as it would be too unwieldy to have to make changes to
the source code every time we wanted to do something different. A number of
command-line parameters will be defined to provide a simple mechanism to turn
the generic into the specific, as follows.

-c count – specifies the number of packets to capture and, if specified, overrides
any value set for the -m parameter (see the -m parameter, below).

-d ip-addr – specifies a destination IP address to filter on, which is used in con-
junction with the -s parameter. (The ip-addr value is specified in standard
dotted-decimal notation.)

-m – specifies the number of minutes to capture for, with a default value of
1 minute (see the -c parameter, above).

-n – a Boolean that, when specified, puts the NIC into normal mode. The default
is promiscuous mode.

-p protocol port-number – specifies the decimal protocol port-number to filter
on. If not specified, traffic for every protocol port-number is captured.

-s ip-addr – specifies a single (or source) IP address to filter on, which can be used
on its own, or in combination with the -d parameter. If not specified, all IP
sources are debugged. (The ip-addr value is specified in standard dotted-
decimal notation.)

-u – a Boolean that, when specified, captures UDP traffic as opposed to TCP traffic
(which is the default).

-v – a Boolean that, when specified, switches on verbose mode. When ‘on’, Net-
Debug will log considerably more detail about each packet captured. The
default setting for this switch is ‘off’.

For example, the following command-line runs the network debugger, captur-
ing HTTP Web traffic (using protocol port-number 80) from the 149.153.100.67
network device to/from the 149.153.100.23 network device:

./netdb -s149.153.100.67 -d149.153.100.23 -p80

Whereas this command-line captures 250 UDP datagrams (using verbose mode)
to and from the networking segment NetDebug is running on:

./netdb -c250 -uv

The Network Debugger 85

2.6.1 Processing command-line parameters

The technology for processing command-line parameters in Perl is well estab-
lished, and the standard module Getopt::Std makes things very convenient.

The following code fragment initializes a series of scalar variables to hold the
values of each of the command-line parameters:

use Getopt::Std;

our ($opt_c, $opt_d, $opt_m, $opt_n);
our ($opt_p, $opt_s, $opt_u, $opt_v);

getopts(’c:d:nm:p:s:uv’);

After using the standard module, the code declares eight scalar variables to hold
the value of each command-line parameter (the names of the variables must con-
form to that shown, namely $opt_ followed by the letter associated with the
parameter). A call to getopts extracts any command-line parameters from the
operating system and sets the appropriate variable. The string sent to the getopts
subroutine indicates which parameters are Boolean switches, and which are not.
If a : is appended to the letter, the parameter is not a Boolean switch.

The above getopts call sets $opt_n, $opt_u and $opt_v as Boolean values,
whereas $opt_c, $opt_d, $opt_m, $opt_p and $opt_s will have values associated
with them.

2.6.2 Storing captured results

NetDebug will not display any results on the screen, for two reasons.
Firstly, by avoiding direct screen I/O, NetDebug can be executed to operate

as a background process on Linux (and UNIX-like) systems using the standard
‘trailing-ampersand’ notation. For example, this command-line will run NetDebug
as a background process for five minutes, returning the user to the command-line
immediately (to enter more interactive commands) as opposed to forcing the user
to wait five minutes to issue another command:

./netdb -m5 &

Secondly, screen I/O tends to be relatively slow (compared with writes to memory
or secondary storage). If NetDebug takes too long writing results to the screen,
a potential problem may arise: if NetDebug is busy writing to the screen, it may
miss packets arriving at the NIC. So, NetDebug tries to avoid this problem before
it occurs, by not using screen I/O. Results will be written to secondary storage
instead. This has the added advantage of producing a record of every execution
of NetDebug.

The results will be stored in a disk-file called netdb.log. Standard file handling
code will be used to open, write to and close the file:

86 Snooping

open NETDEBUG, ">>netdb.log" or
die "NETDEBUG: Could not open log file: $!";

.

.

.
print NETDEBUG "Log something useful.\n";

.

.

.
close NETDEBUG;

The log file is opened in append mode, so as not to destroy any previously existing
results. Delete the log file if starting afresh. Note, too, that the log file will grow
large very quickly.

2.6.3 The NetDebug source code

The code for NetDebug starts with the now familiar collection of use statements:

#! /usr/bin/perl -w

use 5.6.0;

use strict;

use Net::PcapUtils;

use NetPacket::Ethernet qw(:strip);
use NetPacket::IP qw(:strip);
use NetPacket::UDP;
use NetPacket::TCP;

use Getopt::Std;

Next, a collection of global variables are declared as our variables, as they will be
used later in the program, as well as within NetDebug’s subroutines:

our $num_datagrams = 0;

our ($opt_c, $opt_d, $opt_m, $opt_n);
our ($opt_p, $opt_s, $opt_u, $opt_v);

our $packet_handler;

The NetDebug subroutines appear near the top of the source code file. In Perl,
there is no real requirement to define subroutines before they are used8, but,

8Well, when code uses use strict, the rules change.

The Network Debugger 87

to keep things nice and orderly, they are all defined together, at the top of the
NetDebug source code file.

First up, three subroutines log details about the packets captured. The first logs
details about an IP datagram, the second logs details about a UDP datagram, and
finally, the third subroutine logs details about a TCP segment. The IP logging sub-
routine is called for each packet captured, and it is here that the $num_datagrams
counter is incremented, whereas the UDP and TCP logging subroutines log valid
UDP and TCP traffic, respectively.

The code in each subroutine is straightforward. An object of the appropriate
protocol is passed as a parameter, then this object is used to print details about
the ‘protocol packet’ to the log file. Note the effect of $opt_v:

sub display_ip_details {
my $ip_obj = shift;

print NETDEBUG ’- ’ x 36, "\n";
print NETDEBUG "$ip_obj->{src_ip} -> $ip_obj->{dest_ip}";
print NETDEBUG " (id: $ip_obj->{id}, ttl: $ip_obj->{ttl})\n\n";

$num_datagrams++;
}

sub display_udp_details {
my $udp_obj = shift;

print NETDEBUG "UDP Source: $udp_obj->{src_port} -> ";
print NETDEBUG "UDP Destination: $udp_obj->{dest_port}\n";
if ($opt_v)
{
print NETDEBUG "UDP Length: $udp_obj->{len}, ";
print NETDEBUG "UDP Checksum: $udp_obj->{cksum}\n";

}
print NETDEBUG "UDP Data:\n\n$udp_obj->{data}\n";

}

sub display_tcp_details {
my $tcp_obj = shift;

print NETDEBUG "TCP Source: $tcp_obj->{src_port} -> ";
print NETDEBUG "TCP Destination: $tcp_obj->{dest_port}\n";
print NETDEBUG "TCP Header Length: $tcp_obj->{hlen}, ";
print NETDEBUG "TCP Checksum: $tcp_obj->{cksum}\n";
if ($opt_v)
{
print NETDEBUG "TCP Sequence Number: $tcp_obj->{seqnum}\n";
print NETDEBUG "TCP Ack Number: $tcp_obj->{acknum}\n";
print NETDEBUG "TCP Flags: $tcp_obj->{flags}\n";
print NETDEBUG "TCP Window Size: $tcp_obj->{winsize}\n";

88 Snooping

print NETDEBUG "TCP Urgent Pointer: $tcp_obj->{urg}\n";
print NETDEBUG "TCP Options: $tcp_obj->{options}\n";
print NETDEBUG "TCP Reserved: $tcp_obj->{reserved}\n";

}
print NETDEBUG "TCP Data:\n\n$tcp_obj->{data}\n";

}

The display_udp_details and display_tcp_details subroutines are called
by one of two subroutines, one called udp and another called tcp. These sub-
routines take an object of the appropriate protocol, then check to see if the -p
command-line parameter was specified. If it was, the code checks for a match on
the protocol port-number before processing the object further (with no match
resulting in an ignored object). If no -p command-line parameter was specified,
the code processes the object anyway:

sub udp {
my $udp_datagram_obj = shift;

if (defined($opt_p))
{

if (($udp_datagram_obj->{src_port} == $opt_p) or
($udp_datagram_obj->{dest_port} == $opt_p))

{
display_udp_details($udp_datagram_obj);

}
}
else
{

display_udp_details($udp_datagram_obj);
}

}

sub tcp {
my $tcp_segment_obj = shift;

if (defined($opt_p))
{

if (($tcp_segment_obj->{src_port} == $opt_p) or
($tcp_segment_obj->{dest_port} == $opt_p))

{
display_tcp_details($tcp_segment_obj);

}
}
else
{

display_tcp_details($tcp_segment_obj);
}

}

The Network Debugger 89

The -s and -d command-line parameters can be used to specify source and desti-
nation IP addresses to filter on. The user either specifies both parameters, a single
(source) parameter, or no IP address parameters on the command-line. To handle
each of these three cases, three subroutines handle UDP datagrams and a further
three subroutines handle TCP segments:

sub udp_both_packet {
my $ip_obj = shift;

my $udp_datagram =
NetPacket::UDP->decode($ip_obj->{data});

if ((($ip_obj->{src_ip} eq $opt_s) and
($ip_obj->{dest_ip} eq $opt_d)) or

(($ip_obj->{src_ip} eq $opt_d) and
($ip_obj->{dest_ip} eq $opt_s)))

{
display_ip_details($ip_obj);
udp($udp_datagram);

}
}

sub tcp_both_packet {
my $ip_obj = shift;

my $tcp_segment =
NetPacket::TCP->decode($ip_obj->{data});

if ((($ip_obj->{src_ip} eq $opt_s) and
($ip_obj->{dest_ip} eq $opt_d)) or

(($ip_obj->{src_ip} eq $opt_d) and
($ip_obj->{dest_ip} eq $opt_s)))

{
display_ip_details($ip_obj);
tcp($tcp_segment);

}
}

sub udp_single_packet {
my $ip_obj = shift;

my $udp_datagram =
NetPacket::UDP->decode($ip_obj->{data});

if (($ip_obj->{src_ip} eq $opt_s) or
($ip_obj->{dest_ip} eq $opt_s))

{
display_ip_details($ip_obj);
udp($udp_datagram);

}
}

90 Snooping

sub tcp_single_packet {
my $ip_obj = shift;

my $tcp_segment =
NetPacket::TCP->decode($ip_obj->{data});

if (($ip_obj->{src_ip} eq $opt_s) or
($ip_obj->{dest_ip} eq $opt_s))

{
display_ip_details($ip_obj);
tcp($tcp_segment);

}
}

sub udp_packet {
my $ip_obj = shift;

my $udp_datagram =
NetPacket::UDP->decode($ip_obj->{data});

display_ip_details($ip_obj);
udp($udp_datagram);

}

sub tcp_packet {
my $ip_obj = shift;

my $tcp_segment =
NetPacket::TCP->decode($ip_obj->{data});

display_ip_details($ip_obj);
tcp($tcp_segment);

}

For NetDebug, the got_a_packet subroutine takes the captured Ethernet frame
and decodes it as an IP datagram. The IP object is passed to the appropriate ‘packet
handler’ subroutine for processing9:

sub got_a_packet {
my $packet = shift;

my $ip_datagram = NetPacket::IP->decode(
NetPacket::Ethernet::eth_strip($packet));

&$packet_handler($ip_datagram);
}

The display_results subroutine has very little to do, as most of the ‘dis-
playing’ is performed by one of the aforementioned logging subroutines. The

9The code to set up the packet handler will be explained shortly.

The Network Debugger 91

display_results subroutine logs the number of datagrams processed, then
time-stamps the file:

sub display_results {
print NETDEBUG ’- ’ x 36, "\n";
print NETDEBUG "$num_datagrams datagrams processed.\n\n";
print NETDEBUG scalar localtime, " - netdebug END run.\n\n";

}

With the subroutines defined, it is now time to look at the program code used by
NetDebug. Any command-line parameters are processed by a call to the getopts
subroutine, then the log file is opened and time-stamped:

getopts(’c:d:nm:p:s:uv’);

my $minutes = defined($opt_m) ? $opt_m : 1;
my $promisc = defined($opt_n) ? 0 : 1;

open NETDEBUG, ">>netdb.log" or
die "NETDEBUG: Could not open log file: $!";

print NETDEBUG scalar localtime, " - netdebug BEGIN run.\n\n";

During the call to got_a_packet, the code makes a call to a referenced subroutine
(&$packet_handler). The reference to this subroutine is set depending on the
value of the -s, -d and -u command-line parameters:

if (defined($opt_s) and defined($opt_d))
{

if ($opt_u)
{

$packet_handler = \&udp_both_packet;
}
else
{

$packet_handler = \&tcp_both_packet;
}

}
elsif (defined($opt_s) or defined($opt_d))
{

if ($opt_u)
{

$packet_handler = \&udp_single_packet;
}
else
{

$packet_handler = \&tcp_single_packet;
}

}
else

92 Snooping

{
if ($opt_u)
{

$packet_handler = \&udp_packet;
}
else
{

$packet_handler = \&tcp_packet;
}

}

The value of the $filter scalar is set depending on the value of the -u command-
line parameter, then $filter is used when calling Net::PcapUtils::open. The
SNAPLEN value is set to 1500 to ensure that the entire datagram is captured (header
and payload). The rest of the program is similar to that developed for each version
of EtherSnooper :

my $filter = ($opt_u) ? ’udp’ : ’tcp’;

my $pkt_descriptor = Net::PcapUtils::open(
FILTER => $filter,
SNAPLEN => 1500,
PROMISC => $promisc

);

if (!ref($pkt_descriptor))
{

print "Net::PcapUtils::open returned: $pkt_descriptor\n";
exit;

}

Prior to calling Net::PcapUtils::next, a check is made to determine if the -c
command-line parameter was specified. If it was, NetDebug iterates the required
number of times until the packet count is exhausted. Otherwise, NetDebug iter-
ates for a specified number of minutes (as set by the value assigned to the -m
command-line parameter):

my ($next_packet, %next_header);

if (defined($opt_c))
{

while ($num_datagrams <= $opt_c)
{

($next_packet, %next_header) =
Net::PcapUtils::next($pkt_descriptor);

got_a_packet($next_packet);
}

}
else
{

The Network Debugger 93

my $now = time;
my $then = $now + (60 * $minutes);

while (($now = time) < $then)
{

($next_packet, %next_header) =
Net::PcapUtils::next($pkt_descriptor);

got_a_packet($next_packet);
}

}

display_results;

close NETDEBUG;

A subtle problem surfaces when NetDebug is used to capture traffic on a quiet
network for a specified period of time. To illustrate the problem, let us assume
that NetDebug is invoked from the command-line as follows:

./netdb -m3

Here, NetDebug is being asked to capture three minutes worth of TCP-based traffic
using any protocol port-number. Now, let us assume that the network is very
quiet, and that there are currently very few TCP segments being generated and
sent. When the code arrives at the call to Net::PcapUtils::next, NetDebug will
sit and wait (block) for a TCP segment to arrive, prior to proceeding. If no TCP
segment arrives for ten minutes, NetDebug waits for ten minutes. The segment
is processed, then NetDebug immediately exits as the three minute timer will
have expired10. The problem is that NetDebug should have finished after three
minutes, somehow noticing when the three minutes was up, and acted on the
timer expiration.

Perl provides support for this type of behaviour. By calling the inbuilt alarm
subroutine, it is possible to generate an ALRM signal, which NetDebug can then
catch and process, even if it is sitting waiting for a packet to arrive as a result of
a call to Net::PcapUtils::next. Rewrite the timer loop as follows:

$SIG{ALRM} = sub { die; };

eval
{

alarm((60 * $minutes) + 1);

my $now = time;
my $then = $now + (60 * $opt_m);

while (($now = time) < $then)
{

10This problem can also occur with EtherSnooper.

94 Snooping

($next_packet, %next_header) =
Net::PcapUtils::next($pkt_descriptor);

got_a_packet($next_packet);
}

alarm(0);
};
alarm(0);

The alarm is set to go off one second after the number of minutes to capture.
At over 300 lines long, this is the longest Perl program yet seen in Programming

the Network with Perl. However, despite its length, the code is straightforward and
easy to follow. This is how it should be, and it is a testament to the power of Perl
and the CPAN repository.

Here is a small, edited extract from some results generated by an early version
of NetDebug which was pressed into active service when trying to determine why
the misconfigured workstations (identified earlier in this chapter) were generating
so many UDP broadcasts:

Wed Jan 24 16:21:36 2001 - netdebug BEGIN run.

- -
149.153.134.27 -> 149.153.134.255 (id: 12388, ttl: 128)
UDP Source: 137 -> UDP Destination: 137
- -
149.153.130.14 -> 149.153.130.255 (id: 64027, ttl: 128)
UDP Source: 137 -> UDP Destination: 137
- -
149.153.112.2 -> 149.153.112.255 (id: 7271, ttl: 128)
UDP Source: 138 -> UDP Destination: 138
- -
149.153.112.11 -> 149.153.112.255 (id: 34816, ttl: 128)
UDP Source: 137 -> UDP Destination: 137
- -
149.153.112.11 -> 149.153.112.255 (id: 35328, ttl: 128)
UDP Source: 137 -> UDP Destination: 137
- -
149.153.112.11 -> 149.153.112.255 (id: 35584, ttl: 128)
UDP Source: 137 -> UDP Destination: 137
- -
149.153.124.14 -> 149.153.124.255 (id: 22727, ttl: 128)
UDP Source: 138 -> UDP Destination: 138
- -
149.153.130.108 -> 149.153.130.255 (id: 5633, ttl: 128)
UDP Source: 137 -> UDP Destination: 137
- -
149.153.112.16 -> 149.153.112.255 (id: 25513, ttl: 128)
UDP Source: 137 -> UDP Destination: 137

Where To From Here? 95

- -
149.153.20.131 -> 149.153.20.255 (id: 9504, ttl: 128)
UDP Source: 137 -> UDP Destination: 137
- -
149.153.112.16 -> 149.153.112.255 (id: 25769, ttl: 128)
UDP Source: 137 -> UDP Destination: 137
- -
371 datagrams/segments processed.

Wed Jan 24 16:27:05 2001 - netdebug END run.

The UDP 137 and 138 well-known protocol port-numbers, as assigned by IANA,
correspond to the NETBIOS Name Service and the NETBIOS Datagram Service. The
workstations are convinced they are actually servers and are broadcasting their
existence to all and sundry. The problem is that no one is listening, nor respond-
ing, so the workstations keep trying and the network is suffering a broadcast
storm. This is not good.

The results produced by the ‘production’ NetDebug tend to be quite long (espe-
cially if verbose mode is ‘on’). Rather than present the results here (and risk dou-
bling the size of this chapter), refer to Appendix D, Sample NetDebug Results,
for sample invocations of NetDebug, together with the logged results and a brief
commentary.

Each set of results in the appendix show the logged application-level protocol
data. It is therefore possible to use the contents of the log file to debug the com-
munications between network devices. This capability will be most useful when
writing and debugging custom network applications, which is the topic of the next
chapter.

2.7 Where To From Here?

In this chapter, the interface provided by Net::PcapUtils was used to build a
set of simple, yet highly useful, snooping tools, as well as The Network Debugger.
This may be all most programmers ever need to know. To learn and do more,
graduate from using Net::PcapUtils to working directly with the Net::Pcap
module. Tim Potter provides a series of Perl scripts located in the t directory of
the Net::Pcap installation directory to get you started. Have fun.

Another Perl module that may be of interest is Net::RawIP by Sergey Kolychev.
This is an alternative interface to the libpcap library. Find Net::RawIP at any
CPAN repository.

2.8 Print Resources

An excellent companion text to this chapter is: Internet Core Protocols: The Defini-
tive Guide, by Eric A. Hall (O’Reilly, 2000). This book covers the following protocols

96 Snooping

in considerable depth: IP, ARP, ICMP, IGMP, UDP and TCP. The discussion is con-
siderably enhanced by the authors use of screenshots from a commercial network
analyser – Surveyor Lite by Shomiti Systems.

An excellent treatment of networking technology is Computer Networks, 3rd edn,
by Andrew S. Tanenbaum (Prentice-Hall, 1996). This is one of the classic textbooks
in this area, and is written by a highly respected author. Chapter 4 includes a
description and commentary on the various Ethernet standards.

2.9 Web Resources

The most recent release of the libpcap library (in C source code form) can be
downloaded from http://www.tcpdump.org. Once downloaded, unpack the con-
tents of the file using the following commands:

uncompress libpcap.tar.Z
tar xvf libpcap.tar

Change into the newly created libpcap directory and read the README and
INSTALL files for instructions on building and installing the library. Note: root
privileges may be required to install the library. Check the documentation.
Alternatively, search the website for the Linux distribution being used on your
computer, as some vendors provide optional, prebuilt library packages for down-
load. This is particularly convenient if the distribution uses RPM (the RedHat Pack-
age Manager), and an RPM for libpcap is available.

http://www.cpan.org/modules/by-module/Net/TIMPOTTER/ – the CPAN dir-
ectory of Tim Potter.

Commercial network analysers are available for most platforms.

Surveyor Lite from Shomiti Systems operates on the Windows platform and is
available from http://www.shomiti.com.

Macintosh users can download a demo of EtherPeek from WildPackets (formerly
‘The AG Group’), which is available online at http://www.wildpackets.com.
EtherPeek is also available for Windows.

A number of full-featured analysers exist for the Linux platform (most of them
available for free). The best-known technology is tcpdump.

http://www.iana.org/assignments/ethernet-numbers – a relatively com-
plete list of Ethernet types.

http://www.iana.org/assignments/port-numbers – the current list of as-
signed protocol port-numbers.

Web Resources 97

Exercises

1. Study the rest of the NetPacket::* modules and create versions of EtherSnooper
capable for capturing statistics on ICMP, IGMP and ARP traffic. Are you surprised
by the amount of traffic these protocols generate on your network?

2. Create a new version of EtherSnooper (v0.07) that gathers statistics on UDP traffic
as opposed to TCP.

3. Expand on the version of EtherSnooper from the last exercise to take into consid-
eration fragmented UDP datagrams (as fragmented by IP, that is). Use the hash-of-
hashes technique described in this chapter to implement IP fragment reassembly.
[Questions to consider include: how will your code deal with lost fragments? What is
the downside of putting too much functionality into the got_a_packet subroutine
(if any)?]

4. Can you improve on NetDebug, with ‘improve’ meaning ‘do the same with less code’?

5. Using an appropriate reference text, research the meaning of the ‘options’ field con-
tained within each TCP header, then develop a version of EtherSnooper to capture
and interpret options 1–8.

6. Following on from the last exercise, research the meaning of the ‘flags’ field con-
tained within each TCP header, then develop a version of EtherSnooper to capture
and interpret the ‘flags’ used during TCP connection establishment and tear-down.

7. Ask your local network administrator to identify the format of the Ethernet frames
carried on your LAN. If the IEEE 802.3 SNAP format is used, develop a version of
EtherSnooper to process the Ethernet frame type information contained within the
SNAP header.

8. Download the tcpdump program from http://www.tcpdump.org and install it on
your Linux computer. Read the supplied documentation to learn how to use this
advanced packet-sniffing technology, then configure tcpdump to emulate the func-
tionality provided by NetDebug.

3

Sockets

In this chapter a series of custom network applications are built using Perl.
The techniques used to build custom network applications have been standard-

ized for quite some time. Two types of application programmer interface (API)
have gained favour among network programmers: the XTI API , initially developed
by AT&T Bell Laboratories (where it is known as TLI), and the Socket API , devel-
oped at the University of California, Berkeley. Of the two, the Socket API has the
largest following, and has been ported to most operating systems. Consequently,
the Socket API is the de facto standard.

On the Windows platform, the Socket API is referred to as WinSock, whereas
programmers using Mac OS (prior to X) know it as Gusi . Slight platform-specific
variations to the API exist on these non-UNIX platforms. However, the Socket API
built into Linux closely matches the original API, which was initially developed on
the UNIX operating system.

The Socket API is designed to provide programmers with a platform-indepen-
dent interface to the functionality of the network. By abstracting the details of
the physical network, the API allows programmers to concentrate on the details
of an application, as opposed to the details of a network.

The standard distribution of Perl provides direct support for the Socket API
as built into the underlying operating system. Two programming interfaces to
the API exist within Perl, a functional interface and an object-oriented one. The
functional interface is described and used first. The latter part of this chapter
describes the object-oriented interface.

3.1 Clients and Servers

The Socket API provides support for the mechanics of network programming.
Although this is an important aspect of network programming, programmers also

100 Sockets

need to concern themselves with the proper design of the applications they build.
Consequently, a number of design models have been developed.

The distributed model provides for the different parts of a custom network
application to be located on a collection of geographically dispersed network
devices. When working within this model, programmers need not concern them-
selves with the physical network location of the resources they use (i.e. where
the various parts are to be found). Instead, the application is developed in the
traditional way, as if it were executing on a single computer. Special tools are
employed to break the application into its different parts, prior to distribution
on the network. Examples of this model include the Remote Procedure Call (RPC)
technology developed at Sun MicroSystems, and the Common Object Request Bro-
ker Architecture (CORBA) as promoted by The Object Management Group. Any
further discussion of this model is beyond the scope of this book.

The mobile-agent model provides an operating environment within which cus-
tom network applications can transport themselves from one networking device
to another while they are executing. This interesting technology is the topic of
Chapter 6.

The client/server model , by far the most common, splits an application into two
major components. Each component is in effect a separate program, and the two
communicate across the network by way of standard messages.

As an example of the client/server model, consider how the World Wide Web
works. The Web browser provides for the viewing of hyperlinked, text documents.
These documents are stored at a large collection of remote websites, connected
to the global Internet. Based on the actions of the user, the Web browser sends a
request message to a website asking for the delivery of a particular document. The
website finds the document, and sends a response message containing the docu-
ment to the Web browser. The Web browser receives the document, and renders
its contents on the screen. In this example, the Web browser is the client and the
website is the server.

Within the client/server model, the local client typically requests some service
from the remote server. The server responds to the client with the results gener-
ated as a consequence of satisfying the service request. In addition to the World
Wide Web, most of the applications used daily by millions on the Internet con-
form to the client/server model, and these include electronic mail, file transfer,
terminal emulation and network news.

3.1.1 Client characteristics

The client application (or user-agent), regardless of the application domain, con-
forms to a set of characteristics, as follows.

Active – the client actively initiates the communication by contacting the remote
server and requesting some service.

Transport Services 101

Interactive – the client provides access to the services of the remote server to
some interactive user, as the client is integrated into an application-level
software program.

Temporary – the client is started by a user when needed, interacts with a remote
server, and, when finished, is shut down by the user. It is very rare indeed
for a client to execute for an extended period of time.

The client application temporarily becomes a client to the server, sends a request
message and waits for a response. When not interacting with the remote server,
the client is interacting with the user. Clients do not necessarily contact the same
server each time they are invoked (just think about how the World Wide Web
works). They can run on any network device, but are typically found on user com-
puters: PCs, Macs and workstations.

3.1.2 Server characteristics

The remote server application (or daemon) also conforms to a set of characteris-
tics, as follows.

Passive – the server waits passively for a client to initiate contact prior to per-
forming some service.

Non-Interactive – the server typically executes as a background process and,
therefore, does not directly support interactions with a user of the network
device it is executing on (other than perhaps logging error and status mes-
sages to a disk-file or system log).

Permanent – once started, the server runs continuously until it is shutdown by
the operating system administrator.

When a client contacts a server, the server springs into life and services the
client’s request. A response message is sent to the client, after which the server
waits, passively again, for another client to contact it. If no client ever contacts
the server, the server does nothing but wait.

Servers can execute on any network device. However, it is customary to find
them installed as a privileged process on large, centralized computer systems,
although this is not a hard-and-fast rule. For instance, it is common when testing
custom network applications to execute the client and server on the same network
device.

3.2 Transport Services

The Socket API supports the mechanics of network programming, and the
client/server model provides a workable design. The last consideration is the
selection of an appropriate transport service.

102 Sockets

A transport service arranges to send application data from one end-system
network device to another end-system network device. The transport service does
not concern itself with how this is accomplished by the underlying networking
technology. It is concerned only that the services provided by the network layer
allow it to send its data through the network.

Within TCP/IP networks, two transport service protocols are available to the
network programmer, the User Datagram Protocol (UDP) and the Transmission
Control Protocol (TCP). Based on the characteristics of the custom network appli-
cation being designed, one or other of these transport service protocols is selected
to build the application.

3.2.1 Unreliable transport

UDP, the User Datagram Protocol, is a lightweight, unreliable transport service
protocol. It is ‘lightweight’ because it provides very little additional functionality
over and above that provided by the TCP/IP Network Layer Protocol, the Internet
Protocol (IP). Indeed, only the provision of support for the protocol port-number
is required of UDP. It is ‘unreliable’ in that it does not concern itself with trying
to ensure that the application data arrives at the destination end-system, that it
arrives without error, that it is not duplicated, nor that it arrives in the order in
which it was sent (one or more UDP datagrams within the data stream may have
been delayed). UDP is a best-effort transport service.

Another important transport-level technology is the provision of flow control
services. Without flow control, a fast sender can easily swamp a slow receiver with
data. UDP provides no flow control mechanism to the network programmer. UDP
does not even check that a remote system is ready to receive data or that it is
operational. UDP sends the data to the network and, rather optimistically, hopes
for the best.

So, when is it appropriate to use UDP, if ever? When the custom network appli-
cation can withstand some data loss, UDP may be appropriate, especially if the
application does not want to incur large overhead when communicating. An exam-
ple application might be the provision of a video-feed over a wide-area network
(WAN). Typically, it is more important to get a steady stream of data through the
network than it is to ensure every single bit of data is delivered. If the odd packet
goes astray (or becomes corrupt), it should not impact the viewing pleasure of the
user, especially if ‘odd’ works out at 1 packet in every 10 000 delivered. The show
must go on, after all.

Another important use of UDP occurs on the local-area network (LAN). LAN
technology is designed to conform to best-effort data delivery principles, and is,
therefore, classed as unreliable. However, as LANs are typically implemented in
hardware, they tend to operate in a highly reliable manner. This contradiction
in terms can be exploited by the unreliable UDP when operating on a LAN. By
piggybacking UDP on top of the ‘reliable’ LAN, a custom network application may

Transport Services 103

not suffer data loss, but only when operating on the LAN. Move the application
from the LAN to a wide-area network (WAN) and the lack of any inherent reliability
in the underlying network has the potential to exhibit unreliable results.

The classic example of using UDP on LANs occurs with the Domain Name System
(DNS), used to translate Internet names (glasnost.itcarlow.ie) into Internet
numbers (149.153.100.67). As each Internet site maintains a DNS server on its
LAN, it makes sense to configure the network devices attached to the LAN to use
UDP to contact the DNS, and keep the communication overhead associated with
this service to a minimum.

UDP can, of course, be made more reliable by the addition of program logic to
deal with its shortcomings. However, program logic has to be added to the appli-
cation using UDP. Adding additional program logic to handle the unreliable nature
of UDP is very rarely justified. If more reliable communications are required, TCP
should be considered.

3.2.2 Reliable transport

TCP, the Transport Control Protocol, is a highly monitored, reliable transport
service protocol. TCP monitors the communication between two end-systems to
ensure that reliable communication is maintained. TCP will ensure that all data
sent are received. Data will arrive without error, will not be duplicated and will
maintain the order in which they were sent (even if one or more of the TCP seg-
ments within the stream are delayed). TCP accomplishes this by using a variety
of technologies. Any further discussion of these is beyond the scope of Program-
ming the Network with Perl. Please refer to the Print Resources section at the end
of this chapter for suggested further reading.

Flow control services are central to the design of TCP. A fast sender will never
swamp a slow receiver with data, as TCP will always arrange to throttle back the
fast sender so that it sends data at a speed which the receiver can handle. This
helps to ensure that TCP connections remain reliable. TCP also ensures that the
remote system is both operational and willing to receive data before commencing
any data transfer.

The vast majority of custom network applications on TCP/IP networks use TCP
as their transport service protocol, as they cannot tolerate any level of data loss.
What use would a file transfer program be if its users could not depend on the
entire file being transferred in an error-free manner? The same goes for terminal
emulation programs and Web applications. From the network programmers point
of view, TCP is very useful precisely because it provides this reliable service as
a standard feature. The programmer specifies that TCP is the transport service
protocol to use, then builds the custom network application confident that any
communication will be reliable.

Of course, there are occasions when it is not appropriate to use TCP, since
inbuilt reliability comes at a price. Typically, TCP carries with it considerable over-

104 Sockets

head. Connections need to be established before communication can occur, and
this can be time consuming. Once established, the connection needs to be con-
stantly monitored to ensure it is performing as required, i.e. in a reliable manner.
If data is lost, becomes corrupted or is duplicated, TCP employs a number of tech-
niques to recover from these errors. Retransmission of previously sent data can
occur frequently, and TCP must maintain a considerable amount of state informa-
tion about each communication. If the custom network application can tolerate
this overhead, TCP should be used. However, not all applications need this level
of reliability. Returning to the example of the video-feed application from the
discussion of UDP, it is clear that TCP would be a poor choice for this type of
application. Losing one packet in every ten thousand is not a problem for the
video-feed application when using UDP, but, if TCP is employed, the delivery of
data to their destination application is delayed while TCP tries to deliver the com-
plete data stream. TCP identifies and locates the missing segment, retransmits
the segment, and reorders the data on the receiving system, prior to making it
available for delivery. This inevitably leads to noticeable delays on the receiving
end-system. Not quite the movie-going experience most people are used to, nor
willing to accept.

3.3 Introducing the Perl Socket API

In this section, the Perl Socket API is introduced. Subsequent sections use the API
to develop UDP and TCP custom network applications.

The Perl Socket API arranges for a network connection (called a socket) to appear
to the program in the form of a standard input/output handle. When working with
files, the input/output handle is a filehandle, were the <> operator and inbuilt
print subroutine can be used to read from and write to the opened disk-file.
When the input/output handle is a sockethandle, <> and print can be used to
read from and write to the opened network connection (when TCP is used).

When working with sockets, put the following lines of code at the top of each
custom network application:

#! /usr/bin/perl -w

use strict;
use Socket;

As usual, the strange first line (with warnings enabled) is followed by a use
strict compiler directive which gently forces the programmer to write more
structured Perl code. The code then uses the standard Socket module which
comes with Perl. This module provides access to the Socket API as implemented
by the underlying operating system. It is assumed that these lines of code appear
before each of the code snippets in the remainder of this chapter.

Socket Support Subroutines 105

3.4 Socket Support Subroutines

Before considering writing custom network applications, let us look at a collec-
tion of support subroutines provided to the network programmer, which are them-
selves part of the Perl Socket API.

3.4.1 inet_aton and inet_ntoa

On TCP/IP networks, every network device is assigned at least one unique 32 bit
address, known as an IP Address. Although computing devices are designed to
process bits, human beings tend not to be. When referring to an IP address,
humans describe the 32 bits in dotted-decimal notation. So, instead of referring to
01111111000000000000000000001, the dotted-decimal equivalent can be used,
which is 127.0.0.1. The problem this creates is that the relatively low-level Socket
API expects IP addresses in 32 bit format.

To keep things convenient for humans and computers, the inet_aton subrou-
tine provides for the translation of any given dotted-decimal notation to the equiv-
alent binary form. The inet_ntoa subroutine translates from any given binary
form to dotted-decimal notation. The binary form is often referred to as a packed
binary address. Here is how to use these subroutines:

my $ip = ’127.0.0.1’;
my $binary = inet_aton($ip);
my $dotted_decimal = inet_ntoa($binary);

which results in the scalar $dotted_decimal having the value 127.0.0.1. These
subroutines are often combined with another subroutine called sockaddr_in to
create a socket address.

3.4.2 Socket addresses

A socket address is the combination of a packed binary address and a protocol
port-number, and socket addresses are manipulated with the sockaddr_in sub-
routine. In Perl, sockaddr_in is actually two subroutines in one1. When used in
scalar context, the subroutine creates a socket address from a combination of a
packed binary address and protocol port-number. When used in list context, the
subroutine takes a socket address as its sole parameter, and returns the protocol
port-number and packed binary address (which can then be passed to inet_ntoa
to determine the dotted-decimal notation). Another code snippet demonstrates
the standard usage of sockaddr_in:

my $ip = ’127.0.0.1’;
my $port = 80;

1Perl strangeness strikes again!

106 Sockets

my $binary = inet_aton($ip);
my $socket_addr = sockaddr_in($port, $binary);
my ($socket_port, $socket_binary) = sockaddr_in($socket_addr);
my $socket_dotted_decimal = inet_ntoa($socket_binary);

The first invocation of sockaddr_in creates a socket address from the sup-
plied protocol port-number and the packed binary address, and places the socket
address into the scalar $socket_addr. The second invocation of sockaddr_in
takes the socket address and extracts the original protocol port-number (80, the
well-known port for the HTTP) and packed binary address, which is then passed
to inet_ntoa to determine the original IP address, 127.0.0.1.

The use of the hard-coded value of 80 in the above code is often discouraged,
since it is better practice not to rely on hard-coded numeric values.

3.4.3 getservbyname and getservbyport

The Socket API provides a subroutine that allows the programmer to look up the
correct numeric value for a well-known application service. It is perhaps safer to
replace:

my $port = 80;

with the following:

my $port = getservbyname(’http’, ’tcp’);

The two parameters passed to the getservbyname subroutine specify the appli-
cation service to look up, as well as the transport service protocol. The second
parameter is needed, since some application services can use both UDP and TCP
(for example, DNS). When used in list context, getservbyname returns consid-
erably more port information on the application level service. See the perlfunc
manpage for additional details.

Another related subroutine is getservbyport, which takes a protocol port-
number and returns the service name. Like getservbyname, the behaviour of this
subroutine varies depending on whether it is called in scalar or list context.

3.4.4 getprotobyname and getprotobynumber

The need for getservbyname and getservbyport helps explain the existence of
a few more utility subroutines. Rather than litter the API (and the program code
that uses it) with numeric constants, the designers of the Socket API decided to
leave the choice of numeric constants as an implementation detail. For example,
rather than dictate the use of 17 as the internal identifier for the UDP protocol,
code can determine the correct identifier to use, as follows:

my $trans_service_id = getprotobyname(’udp’);

Socket Support Subroutines 107

This sets $trans_service_id to whatever numeric constant decided upon by the
Socket API implementers on the operating system being used2. Again, invoking
getprotobyname in list context will produce more information. As will be seen
in the code examples later in this chapter, getprotobyname is used extensively
to identify the transport service associated with the socket being used.

If the numeric constant is known, the getprotobynumber subroutine can be
used to determine the protocol name associated with the constant. However, this
subroutine is not often used (or needed).

3.4.5 gethostbyname and gethostbyaddr

Two additional subroutines provide for the translation of Internet names into
packed binary form, and vice versa.

The gethostbyname subroutine takes an Internet name as its sole parameter
and, in scalar context, returns a packed binary address. In list context, it returns
additional information on the Internet name (or hostname).

The gethostbyaddr subroutine takes two parameters, a packed binary address
and an address family identifier . As the initial intent of the Socket API designers
was to provide a networking API that could be adapted to any networking tech-
nology (not just TCP/IP), the second parameter is required, and should be set to
AF_INET when working with TCP/IP. Like gethostbyname, the behaviour of this
subroutine differs in scalar and list context. In scalar context (the most used and
useful form), gethostbyaddr returns the Internet name associated with an IP
address.

Some code will help to demonstrate the standard usage of these subroutines:

my $packed_binary_addr = gethostbyname(’tyndall.itcarlow.ie’);
my $ip_addr = inet_ntoa($packed_binary_addr);
print "tyndall’s IP address is: $ip_addr\n";
my $ip_name = gethostbyaddr($packed_binary_addr, AF_INET);
print "$ip_addr has the following name: $ip_name\n";

This code will produce the following output:

tyndall’s IP address is: 149.153.1.5
149.153.1.5 has the following name: ns.itcarlow.ie

Note how the name associated with 149.153.1.5 is not, as might be expected,
tyndall.itcarlow.ie. The administrator of the DNS server running on the
itcarlow.ie network has associated more than one name with 149.153.1.5.
The ns.itcarlow.ie name is referred to as the canonical name for this network
device, and this is what gethostbyaddr returns.

2Which will more than likely be 17, but it may not be.

108 Sockets

3.5 Simple UDP Clients and Servers

It is now time to build some simple custom network applications.
The specification for the first UDP client and server is straightforward. The

server will wait for a client to send data to it at a predetermined protocol port-
number. When data arrives on the port, the server prints the received data on the
screen, and then returns to a waiting status. No acknowledgment of successful
receipt is sent to the client. The server repeats this behaviour until terminated
by the operating system (which can be accomplished interactively on Linux by
pressing Ctrl-C).

The client, when invoked, will send a string to the server at a predetermined
protocol port-number, then exit. The client does not concern itself with whether
or not the data arrives. Note that the client does not check that the server is up
and operating prior to sending data. Remember, this is UDP, and as a transport
service it is one shot, best effort and unreliable.

3.5.1 Testing with localhost

When developing custom network applications, it is often inappropriate to build
and test the application on a live network, for the same reasons that it is inap-
propriate to build and test a new non-networked application on a production
system. Within TCP/IP networks, a hostname/IP address combination is reserved
for testing new applications. The IP address is 127.0.0.1 and the hostname
is localhost. When used by network applications, either of these arrange for
network-bound traffic to loopback within a networked device, which has the effect
of keeping the traffic off the live network. It is therefore possible to execute the
client and server parts of the custom network application on the same network
device while they are being developed, then, when their behaviour is deemed
acceptable, move the parts to their deployment hosts.

When using Linux, it is convenient within the X Window System graphical envi-
ronment to open two terminal windows (called xterms), one for the client and
another for the server. If the X Window environment is not running, use two vir-
tual console screens to achieve the same result. Using the Alt key in combination
with the <- or -> key moves from one virtual console to the next.

3.5.2 The first UDP server

The code for the server starts as follows:

#! /usr/bin/perl -w

use strict;
use Socket;

Simple UDP Clients and Servers 109

use constant SIMPLE_UDP_PORT => 4001;
use constant MAX_RECV_LEN => 1500;
use constant LOCAL_INETNAME => ’localhost’;

my $trans_serv = getprotobyname(’udp’);

my $local_host = gethostbyname(LOCAL_INETNAME);
my $local_port = SIMPLE_UDP_PORT;
my $local_addr = sockaddr_in($local_port, $local_host);

After the standard first line and required use statements, three constants are
defined as follows.

SIMPLE_UDP_PORT – the protocol port-number of the service, which is set to 4001
so as not to conflict with any well-known UDP service.

MAX_RECV_LEN – the maximum number of bytes to receive at any one time from
the network. This is set to 1500, which is a reasonable value, since it is the
maximum frame size on Ethernet networks.

LOCAL_INETNAME – the name of the network device on which the server will run.

The $trans_serv scalar is then initialized to the internal protocol identifier for
UDP. The hostname and protocol port-number are then used to create a socket
address, called $local_addr in this code. The $trans_serv value is used by the
next line of code, which creates a sockethandle for the server to use:

socket(UDP_SOCK, PF_INET, SOCK_DGRAM, $trans_serv);

The socket subroutine creates a sockethandle, or returns undef if it fails. The
code really should check for this, but let us keep things simple for now (later
versions of the client and the server will include error-handling code). The socket
subroutine takes four parameters as follows.

Sockethandle name – the user-defined name of the sockethandle to create, typ-
ically specified in uppercase. This is similar to the handles given to disk-
files as shown in Chapter 1. Each disk-file within Perl has an associated
user-defined filehandle, typically specified in uppercase. In this server, the
UDP_SOCK sockethandle is created.

Protocol family name – this specifies the networking protocol family being used
by the application, and a series of constants are defined in the Socket mod-
ule. The PF_INET constant states that the Internet Protocol Family will be
used by this code (as the network is built on TCP/IP). This parameter is often
referred to as the domain.

Transport type name – this will be set to the constant SOCK_STREAM for reliable
transport, or SOCK_DGRAM for unreliable transport. Other types exist, but, as
they are rarely used, further discussion of them is not considered here.

110 Sockets

Transport service identifier – the internal numeric constant used to identify the
transport service protocol to use. This value should always be the result of
a successful call to getprotobyname.

From the description of the parameters to socket, it should now be clear that
the UDP server will use a sockethandle called UDP_SOCK, will operate on a TCP/IP
network, will be of an unreliable type, and will communicate using the UDP pro-
tocol.

However, creating a sockethandle is not enough to enable communication. The
socket address and the sockethandle need to be associated with each other, so
that the operating system can arrange to deliver data sent to an IP address and
protocol port-number combination to a waiting sockethandle. This is the function
of the bind subroutine, which takes as parameters the sockethandle and socket
address:

bind(UDP_SOCK, $local_addr);

Communication can now occur. Here is the rest of the code for the first UDP server:

my $data;

while(1)
{

my $from_who = recv(UDP_SOCK, $data, MAX_RECV_LEN, 0);

if ($from_who)
{

my ($the_port, $the_ip) = sockaddr_in($from_who);

warn ’Received from ’, inet_ntoa($the_ip), ": $data\n";
}
else
{

warn "Problem with recv: $!\n";
}

}

After creating a scalar to hold any data received ($data), the server enters an
infinite loop. Within the loop, the code calls recv to receive any data arriving on
the UDP_SOCK sockethandle. If the receive is successful, recv returns the socket
address of the network device that sent the data, or undef if things go wrong. The
result is stored in the $from_who scalar. This is then used to print an appropriate
message to the screen.

The call to recv requires further explanation. Here is the line of code again:

my $from_who = recv(UDP_SOCK, $data, MAX_RECV_LEN, 0);

Given the explanation above, it should be possible to work out what the first three
parameters to recv are, but what about that zero at the end of the parameter list?

Simple UDP Clients and Servers 111

The fourth parameter is reserved for a set of flags, which can impact the behaviour
of recv. In reality, the flags are rarely used, and specifying zero indicates that the
default behaviour should be assumed. Consequently, no further explanation of
the use of the flags field will appear in Programming the Network with Perl.

Obviously, the UDP_SOCK parameter tells receive to look for data on the
UDP_SOCK sockethandle, and put any data received into the $data scalar, up to
and including MAX_RECV_LEN bytes. The actual number of bytes received (if less
than MAX_RECV_LEN) can be determined by taking the length of $data with the
inbuilt length subroutine.

If the first UDP server code is placed in a file called udp_s1, it can be made
executable and executed as follows:

chmod +x udp_s1
./udp_s1

And, of course, nothing will happen. The first UDP server is sitting, waiting pas-
sively for a client to contact it. Let us look at some client code which, when exe-
cuted, will put the server out of its misery.

3.5.3 The first UDP client

Surprisingly, the code for the client is quite simple:

#! /usr/bin/perl -w

use strict;
use Socket;

use constant SIMPLE_UDP_PORT => 4001;
use constant REMOTE_HOST => ’localhost’;

my $trans_serv = getprotobyname(’udp’);
my $remote_host = gethostbyname(REMOTE_HOST);
my $remote_port = SIMPLE_UDP_PORT;
my $destination = sockaddr_in($remote_port, $remote_host);

socket(UDP_SOCK, PF_INET, SOCK_DGRAM, $trans_serv);

my $data = "This is a simple UDP message";

send(UDP_SOCK, $data, 0, $destination);

close UDP_SOCK;

In essence, the code is similar to that used by the server. The sockethandle is
created as it was in the server to be one shot, best effort and unreliable. The
$data scalar is set to an appropriate message, then it is sent to the server. The
sockethandle is then closed and the client exits.

112 Sockets

The call to send takes four parameters: the name of the sockethandle, the data
to send, a value for flags (similar to that seen with recv), and the socket address
where data are to be sent. This is stored in a scalar called $destination.

Place the first UDP client code in a file called udp_c1, make it executable and
execute it, as follows:

chmod +x udp_c1
./udp_c1

Again, nothing will happen, other than the operating system command-line
prompt reappearing. However, something should have happened at the server.
The server, if running, should have displayed this message on screen:

Received from 127.0.0.1: This is a simple UDP message

The client successfully sent a small message to the server.

3.6 Genericity and Robustness

Now that the code has been tested on localhost, the client and server can be
moved to the deployment hosts and tested on a live network. The client (udp_c1)
will run on glasnost.itcarlow.ie, and the server (udp_s1) will run on the
pblinux.itcarlow.ie network device, both of which are on the same LAN seg-
ment (refer to the network diagram on p. 316).

As they are written, the client and server both expect to run on localhost. They
can be adapted to be more generic by providing for command-line parameters.
For the client, the parameters will identify the IP name of the server, as well as the
protocol port-number. For the server, the command-line parameter will identify
the protocol port-number to use.

The line which sets the value of $local_port on the server can be changed to
this:

my $local_port = shift || SIMPLE_UDP_PORT;

which has the effect of setting the port to the command-line supplied protocol
port-number, or to the value of SIMPLE_UDP_PORT (the default value) if no param-
eters are supplied. The second version of the server (called udp_s2) can now be
invoked in one of two ways:

./udp_s2

./udp_s2 20000

The first invocation uses the default value of 4001 for the protocol port-number,
whereas the second uses 20000. Note that the server can bind to a well-known
UDP protocol port-number only if executed with superuser privilege (as root).

In addition to providing for a command-line parameter for the protocol port-
number, it is necessary to deal with the use of localhost on the server. Ideally,

Genericity and Robustness 113

the server should bind to the IP address currently in use on the network device
executing the server code.

Rather than have the IP address hard-coded in the server code (which would be
inflexible), the Socket API defines a constant (INADDR_ANY) that, when specified,
arranges for any IP address currently in use on the network device to be used.
Here is how to use the constant:

my $local_addr = sockaddr_in($local_port, INADDR_ANY);

Note that this use of INADDR_ANY removes the requirement to call gethostbyname
as was necessary in the first version of the UDP server.

The client code will process up to two command-line parameters, as follows:

my $remote = shift || REMOTE_HOST;
my $remote_port = shift || SIMPLE_UDP_PORT;

.

.

.
my $remote_host = gethostbyname($remote)

If the name of the remote server to contact is provided, it is used to initialize
the $remote scalar, otherwise the value of the REMOTE_HOST constant is used.
Additionally, the protocol port-number of the remote server can be provided
and will be used to initialize the $remote_port scalar. Again, a default value
of SIMPLE_UDP_PORT is assumed if no protocol port-number is provided. The
second version of the client (called udp_c2) can now be invoked in one of three
ways:

./udp_c2

./udp_c2 pblinux.itcarlow.ie

./udp_c2 pblinux.itcarlow.ie 20000

The first invocation uses localhost and 4001 as the location and protocol port-
number for the server. The second uses pblinux.itcarlow.ie as the server
name, and 4001 as the protocol port-number. The third invocation uses pblinux
as the name of the remote server, and 20000 as the protocol port-number.

In addition to genericity, the client and server can be made more robust by
including error-handling code for the calls to the Socket API subroutines. The
standard strategy is to check the value returned from each call, and if an error is
detected, warn the user and exit. Here are error-checked invocations of socket
and bind on the server (the code already checks the return status of the call to
recv):

socket(UDP_SOCK, PF_INET, SOCK_DGRAM, $trans_serv)
or die "udp_s2: socket creation failed: $!\n";

bind(UDP_SOCK, $local_addr)
or die "udp_s2: bind to address failed: $!\n";

114 Sockets

On the client, each of the Socket API calls are error checked, as follows:

my $remote_host = gethostbyname($remote)
or die "udp_c2: name lookup failed: $remote\n";

socket(UDP_SOCK, PF_INET, SOCK_DGRAM, $trans_serv)
or die "udp_c2: socket creation failed: $!\n";

send(UDP_SOCK, $data, 0, $destination)
or warn "udp_c2: send to socket failed.\n";

close UDP_SOCK
or die "udp_c2: close socket failed: $!\n";

The call to send does not die on failure, but rather sends a warning message to
standard output, and soldiers on regardless.

The only other improvement (on the server) is to replace the call to inet_ntoa
with a call to gethostbyaddr. This allows the server to report the IP name as
opposed to the IP address when connections are made from clients:

if ($from_who)
{

my ($the_port, $the_ip) = sockaddr_in($from_who);

my $remote_name = gethostbyaddr($the_ip, AF_INET);

warn "Received from $remote_name: $data\n";
}

The server now produces more meaningful output, such as:

Received from localhost: This is a simple UDP message
Received from glasnost.itcarlow.ie: This is a simple UDP message
Received from localhost: This is a simple UDP message
Received from glasnost.itcarlow.ie: This is a simple UDP message
Received from localhost: This is a simple UDP message
Received from localhost: This is a simple UDP message
Received from localhost: This is a simple UDP message
Received from glasnost.itcarlow.ie: This is a simple UDP message
Received from localhost: This is a simple UDP message
Received from glasnost.itcarlow.ie: This is a simple UDP message
Received from localhost: This is a simple UDP message
Received from localhost: This is a simple UDP message
Received from glasnost.itcarlow.ie: This is a simple UDP message
Received from localhost: This is a simple UDP message

.

.

.

Genericity and Robustness 115

Note how a client on localhost and another on glasnost.itcarlow.ie are com-
municating with the server. The client and server have been made more generic
and they can now operate as expected on the deployment hosts.

Here is an extract from the log file created by an invocation of NetDebug which
was snooping UDP traffic to and from the pblinux.itcarlow.ie computer:

Thu Mar 1 12:40:42 2001 - netdebug BEGIN run.

- -
149.153.100.67 -> 149.153.100.66 (id: 50788, ttl: 64)

UDP Source: 2064 -> UDP Destination: 4001
UDP Data:

This is a simple UDP message
- -
149.153.100.66 -> 149.153.1.5 (id: 3086, ttl: 64)

UDP Source: 1027 -> UDP Destination: 53
UDP Data:

.

.

.

- -
149.153.1.5 -> 149.153.100.66 (id: 3591, ttl: 63)

UDP Source: 53 -> UDP Destination: 1027
UDP Data:

.

.

.

The 149.153.100.67 address corresponds to glasnost.itcarlow.ie, and 149.
153.100.66 corresponds to pblinux.itcarlow.ie.

The log file clearly shows glasnost sending the UDP message to pblinux, with
a destination protocol port-number of 4001. The source protocol port-number is
2064, which was automatically allocated by the operating system executing the
client.

Immediately upon receiving the UDP data, pblinux sends a different UDP mes-
sage to 149.153.1.5, which corresponds to the IP address of the DNS server
on the local subnet. The message is being sent to protocol port-number 53, the
well-known UDP port-number for the DNS service. This message is created by the
server as a direct result of the call within the server code to gethostbyaddr.

116 Sockets

The next datagram snooped by NetDebug shows the DNS response generated as
a consequence of the DNS query3.

This short interaction highlights an interesting characteristic of some network
applications. The UDP server is very much a server when interacting with the UDP
client. However, when necessary, the UDP server can temporarily become a client
to some other server (in this case, the DNS server), before returning to its role as
server, passively waiting for its next client.

3.7 UDP Is Unreliable

Let us extend the UDP client to send five numbered messages to the UDP server
in quick succession. Replace the last three lines of code in udp_c2 with these:

my $msg_count = 1;

while ($msg_count < 6)
{

my $data = "This is a simple UDP message, number $msg_count";

send(UDP_SOCK, $data, 0, $destination)
or warn "udp_c3: send to socket failed: $msg_count\n";

$msg_count++;
}

close UDP_SOCK
or die "udp_c3: close socket failed: $!\n";

This new version of the UDP client is called udp_c3. When the client is executed,
the server displays the following:

Received from localhost: This is a simple UDP message, number 1
Received from localhost: This is a simple UDP message, number 2
Received from localhost: This is a simple UDP message, number 3
Received from localhost: This is a simple UDP message, number 4
Received from localhost: This is a simple UDP message, number 5

Remember, the UDP client and the UDP server are running on the same LAN4, so
it appears as if the communication is occurring in a reliable manner. Shutdown
the server, then execute udp_c3 again. With no server to send to, the UDP client
displays the following messages:

udp_c3: send to socket failed: 2
udp_c3: send to socket failed: 4

3The details of these DNS messages are not shown, as the captured data contained a number of
‘binary unprintables’.

4The same machine, in this case.

UDP Is Unreliable 117

The client code has indicated that messages 2 and 4 could not be sent, but,
strangely, it did not complain about messages 1, 3 and 5! As far as the UDP client is
concerned, the odd-numbered messages appear to have been sent without error.
However, sending data is not the same as receiving it, and the client is still unsure
as to the server’s operational status. UDP is, after all, unreliable.

3.7.1 No flow control

Rather than attempting to find a fast sender and a slow receiver, let us simulate
the required behaviour by creating another version of the UDP client and the UDP
server.

The new version of the server (udp_s3) needs to be slowed down, so after every
recv, the server will sleep for three seconds:

warn "Received from $remote_name: $data\n";

sleep(3);

The changes to the client (udp_c4) involve creating a large UDP datagram, which
is then sent to the server ten times, pausing for one second between each send.
This makes the client three times faster than the server:

my $big_chunk = ’x’ x 65000;

while ($msg_count < 11)
{

my $data = $msg_count . ’ -> ’ . $big_chunk;

send(UDP_SOCK, $data, 0, $destination)
or warn "udp_c4: send to socket failed: $msg_count\n";

sleep(1);

$msg_count++;
}

The $big_chunk of data is required because the operating system running the
server may employ some type of UDP buffering, which could result in ten small
UDP datagrams being queued prior to their ultimate delivery to a slow server.
However, when ten large UDP datagrams arrive, the impact of buffering has no
impact, because the UDP receive buffer is unlikely to buffer more than 64 kb5. On
some systems, the UDP implementation may restrict the size of UDP datagrams
further. For example, glasnost, which is running a BSD-UNIX derived system,
failed to create UDP datagrams larger than 8 kb.

5No single UDP datagram can be greater than 65 536 bytes.

118 Sockets

When executed, the client sends the ten large UDP datagrams onto the network
successfully (which can be verified by running NetDebug). Here is an edited copy
of the output generated by the UDP server:

Received from localhost: 1448 -> 1 -> xxxxxxxxxxxxxxxxxxxxxxxxxx
Received from localhost: 1448 -> 2 -> xxxxxxxxxxxxxxxxxxxxxxxxxx
Received from localhost: 1448 -> 4 -> xxxxxxxxxxxxxxxxxxxxxxxxxx
Received from localhost: 1448 -> 7 -> xxxxxxxxxxxxxxxxxxxxxxxxxx
Received from localhost: 1448 -> 10 -> xxxxxxxxxxxxxxxxxxxxxxxxx

Not all the large UDP datagrams arrived, only five out of ten made it to the server
(datagrams 1, 2, 4, 7 and 10). Worse still is the fact that only a portion of each
datagram was received, the first 1500 bytes. This is due to the fact that the value
of MAX_RECV_LEN is currently set to 1500, so the server cannot possibly receive
anything larger than this value in a single recv. This deficiency can be easily over-
come by setting MAX_RECV_LEN to 65536 within the server code. A new version of
the UDP server (udp_s4) implements this fix. Change the value of MAX_RECV_LEN
as follows:

use constant MAX_RECV_LEN => 65536;

The code which displays the received data is also changed to print out the number
of bytes received on the socket, together with the first 40 bytes received. This is
preferable to waiting for the large datagram to be displayed on screen:

warn "Received from $remote_name: ", length($data),
’ -> ’, substr($data, 0, 39), "\n";

Now that the server can receive large datagrams, the datagrams that do arrive are
complete. As regards datagrams 3, 5, 6, 8 and 9, it is still unclear what has become
of them, except that they are gone, and gone for good.

Now, let us all say it out loud: UDP is unreliable.

3.8 Sending and Receiving with UDP

The UDP client has only concerned itself with sending a message to the UDP server.
The client and server will be extended one last time to provide for messages to
flow in both directions, to and from the server. The changes to the code are not
extensive. To keep things interesting, the code that slows the server will remain
active.

On the server (udp_s5), this code can be placed after the invocation of sleep:

send(UDP_SOCK, $data, 0, $from_who)
or warn "udp_s5: send to socket failed.\n";

Once a ‘big chunk’ of data arrives at the server, it is immediately sent back to
the client. The client borrows a few lines of code from the server to receive the

Sending and Receiving with UDP 119

UDP datagram being sent back, and this code is also placed after the call to sleep
within the client code:

my $from_who = recv(UDP_SOCK, $data, MAX_RECV_LEN, 0);

my ($the_port, $the_ip) = sockaddr_in($from_who);

my $remote_name = gethostbyaddr($the_ip, AF_INET);

warn "Received from $remote_name: ", length($data),
’ -> ’, substr($data, 0, 39), "\n";

This produces some interesting results. Here is a copy of the messages received
on both the server and on the client when executed on localhost:

Received from localhost: 65005 -> 1 -> xxxxxxxxxxxxxxxxxxxxxxxxxx
Received from localhost: 65005 -> 2 -> xxxxxxxxxxxxxxxxxxxxxxxxxx
Received from localhost: 65005 -> 3 -> xxxxxxxxxxxxxxxxxxxxxxxxxx
Received from localhost: 65005 -> 4 -> xxxxxxxxxxxxxxxxxxxxxxxxxx
Received from localhost: 65005 -> 5 -> xxxxxxxxxxxxxxxxxxxxxxxxxx
Received from localhost: 65005 -> 6 -> xxxxxxxxxxxxxxxxxxxxxxxxxx
Received from localhost: 65005 -> 7 -> xxxxxxxxxxxxxxxxxxxxxxxxxx
Received from localhost: 65005 -> 8 -> xxxxxxxxxxxxxxxxxxxxxxxxxx
Received from localhost: 65005 -> 9 -> xxxxxxxxxxxxxxxxxxxxxxxxxx
Received from localhost: 65006 -> 10 -> xxxxxxxxxxxxxxxxxxxxxxxxx

What is interesting6 is that all ten datagrams were received by the server, sent
back to the client and received there. Although being essentially identical to both
the previous versions of the client and server, the ‘missing datagram problem’
has not affected these programs. What is going on?

The answer has to do with localhost. The use of the loopback address in this
code is affecting the behaviour of these programs, and lulling the network pro-
grammer into a false sense of security. To demonstrate what can actually happen,
the udp_c5 client and the udp_s5 server will be moved to their deployment hosts:
linux303.itcarlow.ie and pblinux.itcarlow.ie. These network devices are
on separate LAN segments, and are connected via a campus router (see the dia-
gram on p. 316).

To further illustrate the behaviour of these programs, the following ‘debugging’
line needs to be added to the server just before its call to send:

warn "Sending back to client ... \n";

and the following line is added to the client before its call to send:

warn "Sending $msg_count to server ...\n";

The server is started on pblinux.itcarlow.ie with this command:

./udp_s5

6Strange, alarming, confusing and just plain weird.

120 Sockets

and the client is started on linux303.itcarlow.ie with this command:

./udp_c5 pblinux.itcarlow.ie

Once the client starts to send large datagrams to the server, the ‘conversation’
begins, and the server displays the following messages:

Server starting up on port: 4001.
Received from linux303.itcarlow.ie: 65005 -> 1 -> xxxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 65005 -> 2 -> xxxxxxxxxxxxxxx
Sending back to client ...

On the linux303 network device, the client displays this:

Sending 1 to server ...
Received from pblinux.itcarlow.ie: 65005 -> 1 -> xxxxxxxxxxxxxxxx
Sending 2 to server ...

At this point, both the client and the server have stopped displaying messages.
The client has not yet received datagram 2, even though it has been received and
sent back by the server. The client is blocking on its call to recv, and it will not
continue until some data arrive on the socket. Unfortunately, the datagram that
was successfully sent by the server has (somehow) become lost. What is worse
is that the server – thinking all is well – has called recv and is waiting for the
next datagram to arrive from the client. The server is also blocking on its call to
recv. The two sides of the conversation are waiting to receive data, but neither
side is sending. They will now wait forever (or until some friendly individual kills
them with Ctrl-C). This is a rather classic and catastrophic example of network
deadlock7.

3.9 Dealing with Deadlock

To avoid deadlock, it is necessary to somehow prevent the call to recv within
the UDP client from blocking forever. The blocking behaviour of the call to recv
within the UDP server code will remain, as the server is designed to wait forever.
To avoid deadlock, a number of strategies can be followed, and three which are
regularly employed, in order of increasing complexity, are as follows.

Specify a time-out – the technique employed by the Network Debugger in Chap-
ter 2 to specify an alarm can be used to abort the call to recv after a set
amount of time.

7Also known by the more imaginative name of Deadly Embrace.

Dealing with Deadlock 121

Checking for data – the inbuilt select subroutine can be used to check if there
are data to receive on the sockethandle prior to invoking recv.

Spawning a subprocess – a subprocess can be created on the client to process
the recv. This allows the UDP client, the main process, to continue sending
independently of the requirement to receive. Of course, if no data arrive, the
subprocess’s call to recv will block forever, and a strategy for dealing with
this eventuality is also required.

As a reminder, here is the current version of the code (from udp_c5) that has
to be ‘fixed’:

my $from_who = recv(UDP_SOCK, $data, MAX_RECV_LEN, 0);

if ($from_who)
{

my ($the_port, $the_ip) = sockaddr_in($from_who);

my $remote_name = gethostbyaddr($the_ip, AF_INET);

warn "Received from $remote_name: ", length($data),
’ -> ’, substr($data, 0, 39), "\n";

}
else
{

warn "Problem with recv: $!\n";
}

Let us take a detailed look at the code required to implement each of the three
deadlock-avoidance strategies.

3.9.1 Specifying a time-out

The technique used here, which has already been used at the end of the last
chapter, is to set an alarm, then eval the block of code which will contain the
blocking call to recv. If the timer expires before any data are received on the
sockethandle, this version of the UDP client (called udp_c6) effectively cancels the
recv and allows the client to send another large datagram to the server, before
trying to recv again:

$SIG{ALRM} = sub { die "recv timeout\n"; };

alarm(5);

eval {
my $from_who = recv(UDP_SOCK, $data, MAX_RECV_LEN, 0);

if ($from_who)

122 Sockets

{
my ($the_port, $the_ip) = sockaddr_in($from_who);

my $remote_name = gethostbyaddr($the_ip, AF_INET);

warn "Received from $remote_name: ", length($data),
’ -> ’, substr($data, 0, 39), "\n";

}
else
{

warn "Problem with recv: $!\n";
}
alarm(0);

};

if ($@)
{

die "udp_c6: $@\n" unless $@ =˜ /recv timeout/;

warn "udp_c6: recv timed out, canceling ...\n";
}

This code is similar to that from Chapter 2, except that we explicitly check to see
if the alarm was signalled due to the five second timer expiring on the call to recv.

Here is the output generated on the server now that udp_c6 is running as the
client:

Server starting up on port: 4001.
Received from linux303.itcarlow.ie: 65005 -> 1 -> xxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 65005 -> 2 -> xxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 65005 -> 3 -> xxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 65005 -> 4 -> xxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 65005 -> 5 -> xxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 65005 -> 6 -> xxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 65005 -> 7 -> xxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 65005 -> 8 -> xxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 65005 -> 9 -> xxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 65006 -> 10 -> xxxxxxxxxxxxx
Sending back to client ...

Dealing with Deadlock 123

Look at this! All ten messages have been successfully received by the server and
sent back to the client8. On the client, the following output was generated:

Sending 1 to server ...
Received from pblinux.itcarlow.ie: 65005 -> 1 -> xxxxxxxxxxxxxx
Sending 2 to server ...
Received from pblinux.itcarlow.ie: 65005 -> 2 -> xxxxxxxxxxxxxx
Sending 3 to server ...
udp_c6: recv timed out, canceling ...
Sending 4 to server ...
Received from pblinux.itcarlow.ie: 65005 -> 4 -> xxxxxxxxxxxxxx
Sending 5 to server ...
Received from pblinux.itcarlow.ie: 65005 -> 5 -> xxxxxxxxxxxxxx
Sending 6 to server ...
udp_c6: recv timed out, canceling ...
Sending 7 to server ...
Received from pblinux.itcarlow.ie: 65005 -> 7 -> xxxxxxxxxxxxxx
Sending 8 to server ...
Received from pblinux.itcarlow.ie: 65005 -> 8 -> xxxxxxxxxxxxxx
Sending 9 to server ...
Received from pblinux.itcarlow.ie: 65005 -> 9 -> xxxxxxxxxxxxxx
Sending 10 to server ...
Received from pblinux.itcarlow.ie: 65006 -> 10 -> xxxxxxxxxxxxx

Datagrams 3 and 6 did not arrive at the client, even though they were received
and sent back by the server. Note how this version of the client has timed out
the receipt of these missing messages. Critically, the client and server no longer
deadlock. However, the entire conversation is slowed down by all those 5 second
delays.

3.9.2 Checking for data

The four-argument version of the inbuilt select subroutine can be used to check
the sockethandle for any waiting data. If data are waiting to be read, this version
of the UDP client (called udp_c7) will call recv to get the data, otherwise the call
to recv is skipped and the UDP client proceeds to send another large datagram
to the remote server:

my $read_bits = ’’;

vec($read_bits, fileno(UDP_SOCK), 1) = 1;

my $recv_ok = select($read_bits, undef, undef, 0);

if ($recv_ok)

8This has more to do with luck than with this version of the UDP client including timeout code.
When I executed the client about 30 seconds later, no messages arrived at the server!

124 Sockets

{
my $from_who = recv(UDP_SOCK, $data, MAX_RECV_LEN, 0);

if ($from_who)
{

my ($the_port, $the_ip) = sockaddr_in($from_who);

my $remote_name = gethostbyaddr($the_ip, AF_INET);

warn "Received from $remote_name: ", length($data),
’ -> ’, substr($data, 0, 39), "\n";

}
else
{

warn "Problem with recv: $!\n";
}

}
else
{

warn "udp_c7: recv skipped, no data waiting.\n";
}

The inbuilt vec subroutine creates a packed integer which represents the input
and output handle(s) to check for data. The inbuilt fileno subroutine returns the
internal numeric value of the input/output handle of interest, which is passed to
vec. The packed integer (stored in $read_bits) is then passed to select which,
when invoked, checks the indicated input/output handle for data. In this version
of the UDP client, the UDP_SOCK sockethandle is checked, and if data are waiting
to be read from the socket, the $recv_ok scalar will be set to true. Obviously, a
true value results in an invocation of recv, safe in the knowledge that data are
waiting to be read.

The server produced this output as a result of interacting with udp_c7:

Server starting up on port: 4001.
Received from linux303.itcarlow.ie: 65005 -> 1 -> xxxxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 65005 -> 2 -> xxxxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 65005 -> 5 -> xxxxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 65005 -> 8 -> xxxxxxxxxxxxxxxx
Sending back to client ...

Datagrams 3, 4, 6, 7, 9 and 10 did not arrive at the server and, obviously, will not
be making their way back to the client ever. The output generated by the client
was:

Dealing with Deadlock 125

Sending 1 to server ...
udp_c7: recv skipped, no data waiting.
Sending 2 to server ...
udp_c7: recv skipped, no data waiting.
Sending 3 to server ...
udp_c7: recv skipped, no data waiting.
Sending 4 to server ...
udp_c7: recv skipped, no data waiting.
Sending 5 to server ...
udp_c7: recv skipped, no data waiting.
Sending 6 to server ...
udp_c7: recv skipped, no data waiting.
Sending 7 to server ...
Received from pblinux.itcarlow.ie: 65005 -> 2 -> xxxxxxxxxxxxxxx
Sending 8 to server ...
udp_c7: recv skipped, no data waiting.
Sending 9 to server ...
udp_c7: recv skipped, no data waiting.
Sending 10 to server ...
udp_c7: recv skipped, no data waiting.

Only datagram 2 was successfully received by the client. More importantly, the
client and server no longer deadlock. The use of vec, fileno and select is quite
complex, and increases in complexity as more input/output handles need to be
checked.

3.9.3 Spawning a subprocess

The inbuilt fork subroutine can be used on Linux (and UNIX-like) systems to
spawn a subprocess. When fork is successfully invoked, it clones an exact copy
of the current program, which then proceeds to execute independently of the
program that called fork.

The call to fork, which is parameterless, returns a scalar value. If the scalar
value is undef, the call to fork failed and the subprocess was not created. If the
scalar is zero, the fork was successful, and the clone is executing. The clone is
referred to as the child process. If the scalar is a positive integer, the fork was
also successful, and the original program is continuing to execute. The original
program is referred to as the parent process, and the positive integer is the process
identifier of the child process which was successfully spawned.

Here is some code which demonstrates the standard forking technique:

my $child_pid = fork;

if ($child_pid)
{

continue_as_parent($child_pid);
}

126 Sockets

elsif (defined($child_pid))
{

continue_as_child;
exit;

}
else
{

warn "fork failed: $!\n";
}

Two subroutines (which are not shown) contain the code that the parent process
executes (in continue_as_parent) and the code that the child process executes
(in continue_as_child). The continue_as_parent subroutine takes a single
parameter, the process identifier of the child process, which will be used later.
Immediately after the call to continue_as_child, the code invokes the inbuilt
exit subroutine which ensures the child process terminates properly.

What can be confusing – when fork is used – is that the parent and child code
are in the same file. Once fork is called, two separate copies of the source code
file come into existence, each with their own copy of Perl to continue processing
the remaining code.

The other important side effect of calling exit when the child process com-
pletes is that the child sends the parent process a signal, specifically the CHLD
signal. When the parent process acknowledges receipt of the signal, all evidence
of the child process is destroyed by the host operating system. Until then, the
child is referred to as being in a zombied state – it has stopped executing, but
it is still registered as existing in the operating system’s process table. Typically,
only the parent process can remove the non-executing process table entry (or
zombie), which is why the parent is sent the CHLD signal. The removal process, as
performed by the parent process, is known as reaping. Here is the standard idiom
for reaping child processes9:

use POSIX ":sys_wait_h";

sub zombie_reaper {
while (waitpid(-1, WNOHANG) > 0)
{ }
$SIG{CHLD} = \&zombie_reaper;

}

$SIG{CHLD} = \&zombie_reaper;

This code imports a set of constants from the standard POSIX module, after
which the reaping subroutine is defined. Within zombie_reaper, an empty loop
is defined that calls the inbuilt waitpid subroutine, which does the reaping. As

9Apologies if you find this use of language distasteful, but this is the standard nomenclature
used when discussing this facility.

Dealing with Deadlock 127

there may be more than one child waiting to be reaped, the code repeatedly calls
waitpid until it returns -1, which indicates that there are no more zombies for
this parent. The two parameters tell waitpid to look for any zombied child pro-
cess to reap (-1) and not to block if there are no zombies (WNOHANG). If the second
parameter was not specified, zombie_reaperwould block and wait for some child
process to exit, which is rarely the required functionality, especially if the creation
of the child process occurs as a direct result of trying to avoid blocking.

The final piece of the puzzle is the line of code which sets the CHLD signal han-
dler to refer to the zombie_reaper subroutine. When the parent process receives
a CHLD signal from any child process, the zombie_reaper subroutine will now
execute.

Of course, there is no absolute requirement to reap child processes. However,
if this is not done, the process table may well become clogged with zombies, and
if the process table is full, no more processes can be created and the system
administrator will come looking for the culprit, and she/he will not be happy. Of
course, if you are your own system administrator, be prepared to slap yourself
on the wrist!

When working with child processes, it can be useful (within the parent process)
to check to see if a child is still executing. In the final version of the UDP client
(udp_c8), only one child process need exist at any one time, so a mechanism is
needed to check for this situation before creating another child. This is accom-
plished by signalling the most recently created child process with the inbuilt kill
subroutine. Here is the code:

if (kill 0 => $child_pid)
{

warn "udp_c8: some child is already executing.\n";
}
else
{

warn "udp_c8: the child is dead, zombied or " .
"now belongs to some other user.\n";

}

Remember that the => symbol in Perl is an alias for comma. We kill the process
identified by $child_pid with the value of zero. This has the effect of not killing
the child process at all, but instead returns true if it is still running.

And now, after all that, here is the code to add to the child-spawning version of
the UDP client (udp_c8):

no strict ’vars’;
if (defined($child_pid))
{

if (kill 0 => $child_pid)
{

next;

128 Sockets

}
}

$child_pid = fork;

if ($child_pid)
{

next;
}
elsif (defined($child_pid))
{

my $from_who = recv(UDP_SOCK, $data, MAX_RECV_LEN, 0);

if ($from_who)
{

my ($the_port, $the_ip) = sockaddr_in($from_who);

my $remote_name = gethostbyaddr($the_ip, AF_INET);

warn "Received from $remote_name: ", length($data),
’ -> ’, substr($data, 0, 39), "\n";

}
else
{

warn "Problem with recv: $!\n";
}

exit;
}
else
{

warn "udp_c8: fork failed: $!\n";
}
use strict ’vars’;

Note that the continue_as_parent and continue_as_child subroutines are
not defined in this code as the amount of code executed by the (continuing) parent
and child processes is no more than a few lines. The parent simply calls next to
signal its intention to start another loop iteration. The child executes the standard
blocking recv call, before calling exit. If the child process could not be forked,
the code simply moves onto another iteration, after displaying an appropriate
warning message.

The code begins by checking to see if the child process is executing, first by
checking the $child_pid for a defined value, then by sending zero to the child
process (with kill). If the child is deemed to be alive, the code calls next to
avoid creating another blocking child process. Note that the $child_pid scalar
is checked for ‘definedness’ prior to its first use. This type of thing is generally
OK with Perl, but not when the use strict compiler directive is in effect. To

Dealing with Deadlock 129

get around this problem, the code temporarily switches off strict checking for
variables with the no strict ’vars’ directive, before switching it back on with
use strict ’vars’ at the bottom of the code snippet.

At the end of the while loop, add a continue block to increment the
$msg_count scalar:

continue {
$msg_count++;

}

The udp_c8 version of the UDP client also needs to include the child reaping code
from earlier, which is typically placed at the top of the source code file. Also,
the code needs to deal with the situation that can result from a child process
continuing to block on a call to recv after the ten iterations within the parent
process have completed. This code waits a reasonable amount of time (5 seconds),
then kills any waiting child process:

sleep(5);

if (kill 0 => $child_pid)
{

kill 9 => $child_pid;
}

After starting the server, udp_s5 produced:

Server starting up on port: 4001.
Received from linux303.itcarlow.ie: 65005 -> 1 -> xxxxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 65005 -> 2 -> xxxxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 65005 -> 5 -> xxxxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 65005 -> 8 -> xxxxxxxxxxxxxxxx
Sending back to client ...
Problem with recv: Connection refused.

As with udp_c7, a number of datagrams did not arrive at the server. The server
also reported a strange error with the last recv. The output generated by the
child-spawning, zombie-exhuming client (udp_c8) was:

Sending 1 to server ...
Sending 2 to server ...
Sending 3 to server ...
Sending 4 to server ...
Sending 5 to server ...
Sending 6 to server ...
Sending 7 to server ...
Received from pblinux.itcarlow.ie: 65005 -> 2 -> xxxxxxxxxxxxxx

130 Sockets

Sending 8 to server ...
Sending 9 to server ...
Sending 10 to server ...
Received from pblinux.itcarlow.ie: 65005 -> 5 -> xxxxxxxxxxxxxx

As this code does not need to wait for recv (or for any timeout to expire), the
datagrams are sent in quick succession. Even though a child process is waiting
for data, only two of the four received datagrams complete the round-trip from
the client to the server, then back to the client.

Once again, this version of the UDP client avoids deadlock. But at what cost? The
code is bloated and complex. It is also the least portable, as the use of signals and
fork as illustrated above is tied closely to the Linux/UNIX Perl implementation.
With the 5.6.0 release of Perl, the Windows version emulates the functionality of
fork; however, the most recent version of MacPerl does not10.

Despite all this extra code, the three most recent versions of the UDP client have
only managed to avoid deadlock. The remaining shortcomings resulting from the
use of UDP can still impact the communications between the client and the server.
Yet more code would be required to deal with all of those. And when it comes to
improving the reliability of UDP, more code leads to increased complexity.

Of course, another strategy exists for dealing with the problems encountered
with the UDP client and server, and it is to use an alternative transport service.
Specifically, a reliable one. The UDP client has increased in complexity as a direct
result of our attempts to counteract one of the inherent shortcomings of the unre-
liable UDP. However, when TCP is used, the requirement to add this additional,
complex code is nullified.

In the section which follows, the UDP client and the UDP server will be redevel-
oped to use TCP.

3.10 TCP Clients and Servers

The fifth version of the UDP client (udp_c5) and server (udp_s5) will form the basis
of the first TCP client and server. The TCP server will wait at a known IP address
and protocol port-number to be contacted by a client, receive any amount of data,
then send all data received back to the client. The TCP client will contact the server
ten times, each time sending a large TCP segment. The client will wait to receive
each segment sent to the server before sending another. As was the case with the
UDP code, the TCP client and server both include calls to sleep to keeps things
interesting from a flow-control point of view.

10Note that Mac OS X, which includes and supports Perl 5.6.0, is a modern derivative of BSD-UNIX,
not a modern derivative of Mac OS 9.

TCP Clients and Servers 131

3.10.1 The first TCP server

Here is the code for the TCP server (tcp_s1), which is discussed in detail below:

#! /usr/bin/perl -w

use strict;
use Socket;

use constant SIMPLE_TCP_PORT => 4001;
use constant MAX_RECV_LEN => 65536;

my $local_port = shift || SIMPLE_TCP_PORT;

my $trans_serv = getprotobyname(’tcp’);

my $local_addr = sockaddr_in($local_port, INADDR_ANY);

socket(TCP_SOCK, PF_INET, SOCK_STREAM, $trans_serv)
or die "tcp_s1: socket creation failed: $!\n";

setsockopt(TCP_SOCK, SOL_SOCKET, SO_REUSEADDR, 1)
or warn "tcp_s1: could not set socket option: $!\n";

bind(TCP_SOCK, $local_addr)
or die "tcp_s1: bind to address failed: $!\n";

listen(TCP_SOCK, SOMAXCONN)
or die "tcp_s1: listen couldn’t: $!\n";

warn "Server starting up on port: $local_port.\n";

my $from_who;

while ($from_who = accept(CLIENT_SOCK, TCP_SOCK))
{

my $data;

$from_who = recv(CLIENT_SOCK, $data, MAX_RECV_LEN, 0);

if ($from_who)
{

my ($the_port, $the_ip) = sockaddr_in($from_who);

my $remote_name = gethostbyaddr($the_ip, AF_INET);

warn "Received from $remote_name: ", length($data),
’ -> ’, substr($data, 0, 39), "\n";

}

132 Sockets

else
{

warn "tcp_s1: problem with recv: $!\n";
next;

}

sleep(3);

warn "Sending back to client ... \n";

send(CLIENT_SOCK, $data, 0)
or warn "tcp_s1: problem with send: $!\n";

}
continue {

close CLIENT_SOCK
or warn "tcp_s1: close failed: $!\n";

}

close TCP_SOCK;

The TCP server code starts out looking quite similar to the ‘equivalent’ UDP code.
The first few lines are as expected. A default protocol port-number is then defined
to be 4001, the same value used by the UDP server. Note that, despite the fact
that the protocol port-number is the same for both the UDP server and the TCP
server, no conflict will arise, as the port-number in each case is being used with a
different transport service protocol, so uniqueness is maintained. The transport
service protocol is identified by a call to getprotobyname with the value of tcp
as the only parameter, and the result is placed in $trans_serv.

In this code, the sockethandle is referred to as TCP_SOCK and is created with
the following call to socket:

socket(TCP_SOCK, PF_INET, SOCK_STREAM, $trans_serv)
or die "tcp_s1: socket creation failed: $!\n";

The type of socket is set to SOCK_STREAM, which asks that a reliable, connection-
oriented service be provided to this custom network application, and the protocol
to use is identified by the value stored in the $trans_serv scalar. The TCP server
will now inherit all of the reliability mechanisms built into TCP. Once a connection
has been established with the server, any communication which occurs will be
reliable: no data will be lost, no data will become corrupt, ordering in the data
stream will be maintained and a fast sender will be prohibited from swamping
a slow receiver with data. Most importantly, the details of all this reliability are
taken care of by TCP, not the network programmer.

The setsockopt support subroutine is then called to set a socket-level option
(SOL_SOCKET) on the TCP_SOCK sockethandle. A number of options can be set, but
the most useful (and used) is the SO_REUSEADDR, which when switched on, tells the
operating system to re-allow binding to the server socket address immediately,

TCP Clients and Servers 133

as opposed to waiting a number of minutes for the operating system to timeout.
Although the wait may not seem very long, it is when the server is being stopped
and restarted continuously during testing:

setsockopt(TCP_SOCK, SOL_SOCKET, SO_REUSEADDR, 1)
or warn "tcp_s1: could not set socket option: $!\n";

After bind hooks up the sockethandle to the socket address, the code calls the
listen subroutine. This tells the operating system that the TCP_SOCK socket-
handle will be used to listen for connections. If the TCP server is busy servicing a
client, the operating system will queue pending connections, up to and including
SOMAXCONN connections, an implementation-specific value for the maximum num-
ber of allowed pending connections. Any value can be specified, but it is typical
for servers to support SOMAXCONN pending connections:

listen(TCP_SOCK, SOMAXCONN)
or die "tcp_s1: listen couldn’t: $!\n";

When it comes to listen, a common misunderstanding is that programmers often
think listen actually listens for connections (that is, it waits passively for some
client to contact the server). It does not. It merely informs the operating system
that the sockethandle will be of the ‘listening type’.

The sockethandle is now ready for use. From this point on, the code starts
to differ from that found in the UDP server. The first major difference is in the
condition part of the while loop:

while ($from_who = accept(CLIENT_SOCK, TCP_SOCK))

Within the condition-part, the code calls the accept subroutine, which is part of
the Socket API. The call to accept blocks, waiting passively for a client to contact
the server on the listening sockethandle (TCP_SOCK).

Three things happen when the client establishes communication with the server
as follows.

The code unblocks – the call to accept stops waiting and returns control to the
server.

The $from_who scalar is set – accept sets the value of $from_who to be the
socket address of the client contacting the server.

A new sockethandle is created – the CLIENT_SOCK sockethandle is created, and
the remote client is connected to it. Any and all communication from the
server to the client will use this new sockethandle, not the listening socket-
handle referred to by TCP_SOCK.

If accept returns successfully, the code enters the body of the loop. First up is
the code to receive any amount of data from the client:

134 Sockets

my $data;

$from_who = recv(CLIENT_SOCK, $data, MAX_RECV_LEN, 0);

This is very similar to the call to recv from the UDP server.
After using the value of $from_who to determine the IP name of the connected

client, the TCP server displays the usual message, sleeps for 3 seconds, then sends
the data received back to the client with this code:

send(CLIENT_SOCK, $data, 0)
or warn "tcp_s1: problem with send: $!\n";

close CLIENT_SOCK
or warn "tcp_s1: close failed: $!\n";

The code calls send as was the case with the UDP server, except that the last argu-
ment to send is not required. The server is connected to the client, and as such,
does not need to tell send where to send the data. When done, the code closes
the client sockethandle with a call to close, which means that the sockethandle
is closed both for reading and writing. The code then returns to the top of the
loop and blocks on another call to accept.

At the bottom of the code, the TCP server ends with a call to close to shutdown
the TCP_SOCK sockethandle, before ending. Note that this close is only invoked
if the call to accept fails. Otherwise, the TCP server runs forever (or until killed
by the operating system or by Ctrl-C).

The TCP server accepts the same command-line parameter as the UDP server,
and can be made executable and started, as follows:

chmod +x tcp_s1
./tcp_s1

As with the UDP server, nothing happens. The TCP server is waiting, passively, for
some TCP client to contact it.

3.10.2 The first TCP client

With the TCP server up and running, and waiting for clients, it is time to look
at the code for the first TCP client (tcp_c1), which will contact the server and
communicate reliably. Here is the client source code:

#! /usr/bin/perl -w

use strict;
use Socket;

use constant SIMPLE_TCP_PORT => 4001;
use constant REMOTE_HOST => ’localhost’;

TCP Clients and Servers 135

use constant MAX_RECV_LEN => 65536;

my $remote = shift || REMOTE_HOST;
my $remote_port = shift || SIMPLE_TCP_PORT;

my $trans_serv = getprotobyname(’tcp’);

my $remote_host = gethostbyname($remote)
or die "tcp_c1: name lookup failed: $remote\n";

my $destination = sockaddr_in($remote_port, $remote_host);

my $msg_count = 1;

my $big_chunk = ’x’ x 65000;

while ($msg_count < 11)
{

socket(TCP_SOCK, PF_INET, SOCK_STREAM, $trans_serv)
or die "tcp_c1: socket creation failed: $!\n";

my $con_ok = connect(TCP_SOCK, $destination)
or warn "tcp_c1: connect to remote system failed: $!\n";

next unless $con_ok;

my $data = $msg_count . ’ -> ’ . $big_chunk;

warn "Sending $msg_count to server ...\n";

send(TCP_SOCK, $data, 0)
or warn "tcp_c1: problem with send: $!\n";

sleep(1);

my $from_who = recv(TCP_SOCK, $data, MAX_RECV_LEN, 0);

if ($from_who)
{

my ($the_port, $the_ip) = sockaddr_in($destination);

my $remote_name = gethostbyaddr($the_ip, AF_INET);

warn "Received from $remote_name: ", length($data),
’ -> ’, substr($data, 0, 39), "\n";

}
else
{

warn "tcp_c1: problem with recv: $!\n";

136 Sockets

}

close TCP_SOCK
or warn "tcp_c1: close failed: $!\n";

}
continue {

$msg_count++;
}

The explanation of how the TCP server operates helps to explain the vast majority
of the code found in the TCP client. The call to getprotobyname returns the
internal protocol identifier for TCP, and this is used to create a sockethandle
called TCP_SOCK. The call to socket is exactly the same in the client as it was in
the server – the created sockethandle is one which is reliably built on TCP.

Inside the while loop, the code calls the connect subroutine, as follows:

my $con_ok = connect(TCP_SOCK, $destination)
or warn "tcp_c1: connect to remote system failed: $!\n";

next unless $con_ok;

This is the only piece of code that has not been seen already. The call to the
connect subroutine takes the TCP_SOCK sockethandle and establishes commu-
nication with the remote network device identified by the $destination socket
address (which in this case is the TCP server). Think of this as the client equivalent
of the call to bind in the server code, except that the socket address identifies
some remote network device, not the device the code is running on, as was the
case with the TCP server.

If connect is successful, a reliable connection will have been established with
the TCP server. On the server, the call to accept will have returned successfully
as a result of the TCP client successfully calling connect.

The connect subroutine returns a true value if all is well, false otherwise. The
code checks for this (twice). A warning message is displayed if the connection
cannot be established11, then the code calls next to start the next loop iteration,
after executing any code within the loop’s continue block. Note that the TCP
client does not call bind, listen, setsockopt or accept, as the functionality
provided by these Socket API subroutines is primarily of interest to servers.

With a successful connection established, the TCP client executes code similar
to that executed by the TCP server. The server reads from then writes to the
sockethandle, whereas the client writes to then reads from it. The code is exactly
the same as that already used by the TCP server, the ordering is simply reversed
on the TCP client. Appropriate messages provide a mechanism to watch what is
going on.

As with the UDP code, the TCP server will execute on pblinux.itcarlow.ie,
and the TCP client will operate on the network device linux303.itcarlow.ie.

11Most likely due to the fact that the TCP server is not executing.

TCP Clients and Servers 137

These commands can be used to make the client executable, then execute it, on
linux303:

chmod +x tcp_c1
./tcp_c1 pblinux.itcarlow.ie

Here are the messages generated by the TCP server:

Server starting up on port: 4001.
Received from linux303.itcarlow.ie: 1448 -> 1 -> xxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 1448 -> 2 -> xxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 1448 -> 3 -> xxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 1448 -> 4 -> xxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 1448 -> 5 -> xxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 1448 -> 6 -> xxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 1448 -> 7 -> xxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 1448 -> 8 -> xxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 1448 -> 9 -> xxxxxxxxxxxxxx
Sending back to client ...
Received from linux303.itcarlow.ie: 1448 -> 10 -> xxxxxxxxxxxxx
Sending back to client ...

And here are the messages generated by the TCP client:

Sending 1 to server ...
Received from pblinux.itcarlow.ie: 1448 -> 1 -> xxxxxxxxxxxxxxx
Sending 2 to server ...
Received from pblinux.itcarlow.ie: 1448 -> 2 -> xxxxxxxxxxxxxxx
Sending 3 to server ...
Received from pblinux.itcarlow.ie: 1448 -> 3 -> xxxxxxxxxxxxxxx
Sending 4 to server ...
Received from pblinux.itcarlow.ie: 1448 -> 4 -> xxxxxxxxxxxxxxx
Sending 5 to server ...
Received from pblinux.itcarlow.ie: 1448 -> 5 -> xxxxxxxxxxxxxxx
Sending 6 to server ...
Received from pblinux.itcarlow.ie: 1448 -> 6 -> xxxxxxxxxxxxxxx
Sending 7 to server ...
Received from pblinux.itcarlow.ie: 1448 -> 7 -> xxxxxxxxxxxxxxx
Sending 8 to server ...
Received from pblinux.itcarlow.ie: 1448 -> 8 -> xxxxxxxxxxxxxxx
Sending 9 to server ...
Received from pblinux.itcarlow.ie: 1448 -> 9 -> xxxxxxxxxxxxxxx

138 Sockets

Sending 10 to server ...
Received from pblinux.itcarlow.ie: 1448 -> 10 -> xxxxxxxxxxxxxx

If the connection was successfully established, the ten large messages are trans-
ferred from the client to the server, then back again.

But are they? Look at the size of the datagrams being reported. It appears not
all the data are arriving at each end of the connection. Surely this cannot be? The
code asked for TCP, so why does there appear to be loss of data?

The problem here is that TCP (as a transport service technology) is arranging
to deliver all data entrusted to it. However, the custom network applications (the
TCP client and server) are not interacting with TCP in an appropriate manner. The
code needs to be amended to keep reading from the network (i.e. from TCP) until
there are no more data to receive, as the internal buffering mechanisms employed
by TCP may be adjusting the size of the ‘chunks’ of data being transferred from
one end-system to another. In the above case, the chunk is the maximum amount
of TCP data that fits inside an Ethernet frame that is carrying IP traffic.

On the server, change the single call to recv to:

my ($chunk, $data);

recv(CLIENT_SOCK, $chunk, MAX_RECV_LEN, 0);

while ($chunk)
{

$data = $data . $chunk;
recv(CLIENT_SOCK, $chunk, MAX_RECV_LEN, 0);

}

After the initial recv, this code keeps receiving chunks of data from the socket-
handle until the value of $chunk contains nothing, which allows the loop to ter-
minate. With each iteration, the chunk is added to $data.

On the client, similar code to that on the server replaces the single invocation
of recv, with one major exception, a call to the inbuilt shutdown subroutine:

shutdown(TCP_SOCK, 1);

$data = ’’;

my $chunk;

recv(TCP_SOCK, $chunk, MAX_RECV_LEN, 0);

while ($chunk)
{

$data = $data . $chunk;
recv(TCP_SOCK, $chunk, MAX_RECV_LEN, 0);

}

TCP Clients and Servers 139

As sockethandles are just like any other input/output handles, they can be closed
with a call to the inbuilt close subroutine when they are no longer needed. This
has the effect of closing the handle for reading and writing. When it comes to
network connections, finer control is often required, and the inbuilt shutdown
subroutine provides for this. By identifying the sockethandle to close, together
with an integer value as the second parameter, shutdown can be used to close
the sockethandle for reading (value 0), for writing (value 1) or for both reading
and writing (value 2). When there is nothing more to send to the server, the TCP
client closes the sockethandle for writing. In the above code, the client indicates
to the server that it has finished writing data by closing the connection for further
writes.

Here are the messages generated by the amended TCP server (tcp_s1b), running
on the pblinux network device:

Server starting up on port: 4001.
Received from linux303.itcarlow.ie: 65005 -> 1 -> xxxxxxxxxxxxx
Sending 65005 back to client ...
Received from linux303.itcarlow.ie: 65005 -> 2 -> xxxxxxxxxxxxx
Sending 65005 back to client ...
Received from linux303.itcarlow.ie: 65005 -> 3 -> xxxxxxxxxxxxx
Sending 65005 back to client ...
Received from linux303.itcarlow.ie: 65005 -> 4 -> xxxxxxxxxxxxx
Sending 65005 back to client ...
Received from linux303.itcarlow.ie: 65005 -> 5 -> xxxxxxxxxxxxx
Sending 65005 back to client ...
Received from linux303.itcarlow.ie: 65005 -> 6 -> xxxxxxxxxxxxx
Sending 65005 back to client ...
Received from linux303.itcarlow.ie: 65005 -> 7 -> xxxxxxxxxxxxx
Sending 65005 back to client ...
Received from linux303.itcarlow.ie: 65005 -> 8 -> xxxxxxxxxxxxx
Sending 65005 back to client ...
Received from linux303.itcarlow.ie: 65005 -> 9 -> xxxxxxxxxxxxx
Sending 65005 back to client ...
Received from linux303.itcarlow.ie: 65006 -> 10 -> xxxxxxxxxxxx
Sending 65006 back to client ...

And the following messages are those generated by the amended TCP client
(tcp_c1b), running on the linux303 network device:

Sending 1 65005 to server ...
Received from pblinux.itcarlow.ie: 65005 -> 1 -> xxxxxxxxxxxxxx
Sending 2 65005 to server ...
Received from pblinux.itcarlow.ie: 65005 -> 2 -> xxxxxxxxxxxxxx
Sending 3 65005 to server ...
Received from pblinux.itcarlow.ie: 65005 -> 3 -> xxxxxxxxxxxxxx
Sending 4 65005 to server ...
Received from pblinux.itcarlow.ie: 65005 -> 4 -> xxxxxxxxxxxxxx
Sending 5 65005 to server ...

140 Sockets

Received from pblinux.itcarlow.ie: 65005 -> 5 -> xxxxxxxxxxxxxx
Sending 6 65005 to server ...
Received from pblinux.itcarlow.ie: 65005 -> 6 -> xxxxxxxxxxxxxx
Sending 7 65005 to server ...
Received from pblinux.itcarlow.ie: 65005 -> 7 -> xxxxxxxxxxxxxx
Sending 8 65005 to server ...
Received from pblinux.itcarlow.ie: 65005 -> 8 -> xxxxxxxxxxxxxx
Sending 9 65005 to server ...
Received from pblinux.itcarlow.ie: 65005 -> 9 -> xxxxxxxxxxxxxx
Sending 10 65006 to server ...
Received from pblinux.itcarlow.ie: 65006 -> 10 -> xxxxxxxxxxxxx

With the amendments ensuring that all data are received from TCP, the complete
messages are being sent/received. The ten messages arrive with no errors, data
loss, corruption or flow-control difficulties. TCP has compensated for the fact that
the TCP server is three times slower than the TCP client, and deadlock has not
occurred.

3.11 A Common TCP Gotcha

Here is another TCP server (tcp_s2) that, when contacted by another TCP client
(tcp_c2), sends a message to the client, waits for 10 seconds, sends another mes-
sage, then closes the connection. The client contacts the server, receives the mes-
sages, then exits. Here is the code which executes on the server:

#! /usr/bin/perl -w

use strict;
use Socket;

use constant SIMPLE_TCP_PORT => 4001;

my $local_port = shift || SIMPLE_TCP_PORT;
my $trans_serv = getprotobyname(’tcp’);
my $local_addr = sockaddr_in($local_port, INADDR_ANY);

socket(TCP_SOCK, PF_INET, SOCK_STREAM, $trans_serv)
or die "tcp_s2: socket creation failed: $!\n";

setsockopt(TCP_SOCK, SOL_SOCKET, SO_REUSEADDR, 1)
or warn "tcp_s2: could not set socket option: $!\n";

bind(TCP_SOCK, $local_addr)
or die "tcp_s2: bind to address failed: $!\n";

listen(TCP_SOCK, SOMAXCONN)
or die "tcp_s2: listen couldn’t: $!\n";

warn "Server starting up on port: $local_port.\n";

while (accept(CLIENT_SOCK, TCP_SOCK))
{

my $secs = 10;

A Common TCP Gotcha 141

print CLIENT_SOCK "Sleeping for $secs seconds ... \n";
sleep($secs);
print CLIENT_SOCK "I awake, only to die ... \n";

close(CLIENT_SOCK)
or warn "tcp_c1: close failed: $!\n";

}
close TCP_SOCK;

What is different in this code is the fact that this server does not use the Socket
API send subroutine to communicate with the client. Instead, the sockethandle
is treated like any other input/output handle, and the standard inbuilt print
subroutine is used to send data.

On the client, the familiar <> operator is used to receive data from the server,
as opposed to using recv. Here is the client code:

#! /usr/bin/perl -w

use strict;
use Socket;

use constant SIMPLE_TCP_PORT => 4001;
use constant REMOTE_HOST => ’localhost’;

my $remote = shift || REMOTE_HOST;
my $remote_port = shift || SIMPLE_TCP_PORT;
my $trans_serv = getprotobyname(’tcp’);
my $remote_host = gethostbyname($remote)

or die "tcp_c2: name lookup failed: $remote\n";
my $destination = sockaddr_in($remote_port, $remote_host);

socket(TCP_SOCK, PF_INET, SOCK_STREAM, $trans_serv)
or die "tcp_c2: socket creation failed: $!\n";

connect(TCP_SOCK, $destination)
or die "tcp_c2: connect to remote system failed: $!\n";

while (<TCP_SOCK>)
{

print $_;
}
close(TCP_SOCK);

This is all very straightforward. When the server is started and the client is then
executed, the client pauses for 10 seconds, then the following messages appear
on the screen:

Sleeping for 10 seconds ...
I awake, only to die ...

But wait, the 10 second wait should have occurred before the I awake only to
die ... message was printed. What is going on?

The Network Debugger can help to solve the mystery. Here is an extract from
the log file created after the above communication was snooped:

142 Sockets

- -
149.153.103.5 -> 149.153.100.65 (id: 28377, ttl: 63)

TCP Source: 4001 -> TCP Destination: 1269
TCP Header Length: 8, TCP Checksum: 65123
TCP Data:

Sleeping for 10 seconds ...
I awake, only to die ...
- -

The log file shows that both messages were received as part of a single TCP seg-
ment. Two individual segments were expected, so why is this happening?

The answer lies in the fact that sockethandles behave like all other input/output
handles, and as such flushing is off by default. This means that output will not
appear until the buffer is flushed. Usually, flushing occurs when a newline is sent
to an input/output handle, but this does not work with sockethandles as the above
code includes the newline.

In addition to input/output handle buffering, socket-based applications can
also fall foul of the internal buffering mechanism of TCP, which is what is hap-
pening here. The first message, the ‘Sleeping for 10 seconds ... ’ part, gets
buffered on the outgoing sockethandle, then this version of the TCP server sleeps
for 10 seconds. The second message is then printed to the sockethandle and, as
the connection is then closed by the server, the buffer is flushed and this causes
the two messages to be sent to the client (as one), where they then get displayed.
After making the initial connection, the client waited for 10 seconds for data to
arrive due to the fact that the server was having a 10 second nap.

When it comes to enabling auto-flushing on sockethandles, the same technique
as used with any other input/output handle can be used, and TCP will honour the
request. The following lines of code can be added to the server to turn flushing
on, and this allows the amended TCP server (tcp_s3) to behave in the way that it
is expected to:

my $previous = select CLIENT_SOCK;
$| = 1;
select $previous;

Be well warned: this is a different select to the select used in udp_c7. The
single-argument version of select returns and sets the currently selected output
filehandle. The code above remembers the $previous output filehandle, while
setting the output filehandle to be the client sockethandle (CLIENT_SOCK). Flush-
ing is then switched on for CLIENT_SOCK by setting the built-in $| variable to a
true value, then the previously selected output filehandle (which we conveniently
remembered in $previous) is made current again.

Now, when the client contacts the server, the first message arrives immediately,
the client then pauses for 10 seconds while the server sleeps for 10 seconds, then

More TCP Socket Communication 143

the second message arrives at the client. The client terminates, and the server goes
back to waiting for another client to contact it. All is now well with the second
TCP server and client.

Another extract from a Network Debugger log file proves that the required
behaviour is occurring:

- -
149.153.103.5 -> 149.153.100.65 (id: 28389, ttl: 63)

TCP Source: 4001 -> TCP Destination: 1270
TCP Header Length: 8, TCP Checksum: 55511
TCP Data:

Sleeping for 10 seconds ...
- -
149.153.100.65 -> 149.153.103.5 (id: 14187, ttl: 64)

TCP Source: 1270 -> TCP Destination: 4001
TCP Header Length: 8, TCP Checksum: 28529
TCP Data:

.

.

.
- -
149.153.103.5 -> 149.153.100.65 (id: 28390, ttl: 63)

TCP Source: 4001 -> TCP Destination: 1270
TCP Header Length: 8, TCP Checksum: 34174
TCP Data:

I awake, only to die ...
- -

The log file confirms that the two messages are being carried in two individual
TCP segments. The log file also shows that some other communication is occurring
in the reverse direction, and that this traffic separates the two TCP segments of
interest. The details of this traffic are not important to this discussion. However,
the segments’ existence proves that there is some time delay between the receipt
of the first and second message.

3.12 More TCP Socket Communication

Let us build a TCP server that does a little more work than those developed thus
far. Typically, servers do more than echo large chunks of data sent to them from
clients.

The next TCP server accepts a filename from a client, followed immediately by
the contents of the same file (from the client’s local storage). The server writes

144 Sockets

the file to its local storage then runs the file through the Perl interpreter, checking
the file for syntax errors. Any and all messages generated by the Perl interpreter
are captured by this TCP server and returned to the client, then the connection is
closed.

3.12.1 The remote syntax checker server

The code for this server (tcp_s4) begins like any other TCP server:

#! /usr/bin/perl -w

use strict;
use Socket;

use constant SIMPLE_TCP_PORT => 4001;

my $local_port = shift || SIMPLE_TCP_PORT;
my $trans_serv = getprotobyname(’tcp’);
my $local_addr = sockaddr_in($local_port, INADDR_ANY);

socket(TCP_SOCK, PF_INET, SOCK_STREAM, $trans_serv)
or die "tcp_s4: socket creation failed: $!\n";

setsockopt(TCP_SOCK, SOL_SOCKET, SO_REUSEADDR, 1)
or warn "tcp_s4: could not set socket option: $!\n";

bind(TCP_SOCK, $local_addr)
or die "tcp_s4: bind to address failed: $!\n";

listen(TCP_SOCK, SOMAXCONN)
or die "tcp_s4: listen couldn’t: $!\n";

warn "Server starting up on port: $local_port.\n";

The sockethandle is created, the SO_REUSEADDR option is set, then the socket
address and port are bound together. The call to listen tells the operating sys-
tem that this custom network application will listen for and, if needs be, queue
connections. The TCP server then loops on a call to accept, waiting for connec-
tions:

my $from_who;

while ($from_who = accept(CLIENT_SOCK, TCP_SOCK))
{

As soon as a client contacts the server, the CLIENT_SOCK sockethandle comes
into existence, and the TCP server immediately switches on auto-flushing, prior
to receiving the filename from the client with the usual <> operator. Note that the
code calls the inbuilt chomp subroutine to remove any trailing newline from the
filename (which is stored in the $tmp_fn scalar):

More TCP Socket Communication 145

my $data = ’’;

my $previous = select CLIENT_SOCK;
$| = 1;
select $previous;

my $tmp_fn = <CLIENT_SOCK>;

chomp($tmp_fn);

The next line of code is a little bit of Perl magic:

$tmp_fn = (split /\//, $tmp_fn)[-1];

Although this is a single line of code, there is a lot going on here. The first thing
to happen is that the inbuilt split subroutine splits the $tmp_fn scalar based
on a provided delimiter. In this case, the delimiter is the / character, which is
referred to as \/ in the above code, as split expects the delimiter to be sur-
rounded by leading and trailing / characters, so escaping is necessary. When
used in list context, split returns a list of items resulting from the splitting
operation. The parentheses around the call to split force list context to be in
effect. Although the array is anonymous, it is there, and the [-1] accesses the
last element of the array returned by the call to split. The result of the array
access is then assigned to $tmp_fn. Using the same scalar on both sides of an
assignment (as happens here) is perfectly OK, as Perl evaluates the right-hand
side of the assignment before performing the assignment operation.

Now that it is known what this line of code does, why is it used here? The answer
has to do with the fact that the client can send any file it wishes to the server. The
server will create the file (with the same name) on its local storage to temporarily
hold the file before it is fed to the Perl interpreter for syntax checking. It would
be foolish to simply accept the filename from the client verbatim. Why? Consider
if the client sent this file: /etc/passwd. If the TCP server proceeded to use this
filename as is, it would try and create the file on its own local storage, overwriting
the file if it already exists. Yikes! It would be a case of Double Yikes and Groans if
the TCP server happened to be executing with superuser privilege (which it should
never be). The magic line guards against this eventuality, by stripping away the
directory-part of the filename passed by the client and setting $tmp_fn to contain
the filename-part.

A few examples will further illustrate how this line of code works. On the left
of the arrow is the original filename as sent by the client, and on the right, the
sanitized filename as produced by the server’s call to split is shown:

/etc/passwd -> passwd
testing.pl -> testing.pl
/etc/sysconfig/network -> network
/book/chapter2/netdb -> netdb

146 Sockets

After this magic line, the server continues, and loops on the CLIENT_SOCK socket-
handle, receiving the contents of the file as sent by the client. The contents are
placed in the $data scalar, then the local disk-file is opened for writing, and the
contents of the received file are written to it. The server then closes the local
disk-file (which is referred to by the FILETOCHECK filehandle):

while (my $chunk = <CLIENT_SOCK>)
{

$data = $data . $chunk;
}

open FILETOCHECK, ">$tmp_fn";

print FILETOCHECK $data;

close FILETOCHECK;

The TCP server then builds a command-line to execute and assigns the command-
line to the $cmd scalar:

my $cmd = "perl -c $tmp_fn 2>&1 1>/dev/null";

Like the call to split earlier, this line looks a little strange. In actual fact, the stuff
between the double quotes is not really Perl code, it is a command that will be
executed by the operating system shell. The command will execute Perl and pass
the syntax check switch and the filename to the interpreter, together with some
output redirections. The Perl interpreters standard error output (2>) is redirected
to standard output (&1), and standard output (1>) is sent to the /dev/null file,
which causes it to be discarded. This has the effect of having any STDERR output
from the Perl interpreter being sent to STDOUT, which then provides a mechanism
for the TCP server to capture the messages generated by the interpreter.

If $tmp_fn contains testing.pl, the command-line produced will be:

perl -c testing.pl 2>&1 1>/dev/null

The code then determines the IP name (or the IP address) of the client, and assigns
the result to $remote_name:

my ($the_port, $the_ip) = sockaddr_in($from_who);

my $remote_name = gethostbyaddr($the_ip, AF_INET)
|| inet_ntoa($the_ip);

Note the call to inet_ntoa if the call to gethostbyaddr fails. Not all IP addresses
have associated IP names, and the above code takes this into consideration. The
server then displays a message to standard error which shows the command-line
it is about to execute, then the command-line is executed by the operating system
shell using Perl’s back-tick operator qx:

More TCP Socket Communication 147

warn "tcp_s4: executing: [$cmd] for $remote_name\n";

my $stderr_output = qx/$cmd/;

Any standard error messages generated as a result of the command-line executing
are returned to the server and assigned to the $stderr_output scalar. This is then
sent to the client sockethandle using a simple call to print:

print CLIENT_SOCK $stderr_output;

close CLIENT_SOCK
or warn "tcp_s4: close failed: $!\n";

unlink $tmp_fn;
}

close TCP_SOCK;

The CLIENT_SOCK is closed by the TCP server, and the file is then removed from
the server’s local storage by calling the inbuilt unlink subroutine. The loop iter-
ation then ends, and the server waits for the next client to contact it by calling
accept.

3.12.2 The remote syntax checker client

The code for the client (tcp_c3) is presented below. The standard collection of
lines gets things going:

#! /usr/bin/perl -w

use strict;
use Socket;

use constant SIMPLE_TCP_PORT => 4001;
use constant REMOTE_HOST => ’localhost’;

The client expects at least one but not more than three command-line parameters
to be provided by the user. The first parameter is the name of the file to send to
the server. The client does not continue if this parameter is not supplied, nor if
the file specified cannot be opened. If it can, the contents of the entire file is read
into the client and assigned to the @entire_file array:

my $filetosend = shift;

die "tcp_c3: you must provide a filename: $!\n"
unless defined $filetosend;

open TOSEND, "$filetosend"
or die "tcp_c3: could not open $filetosend: $!\n";

148 Sockets

my @entire_file = <TOSEND>;

close TOSEND;

The client then executes code to create the sockethandle and connect it to the
remote server. The client switches on auto-flushing for the successfully created
sockethandle (TCP_SOCK):

my $remote = shift || REMOTE_HOST;
my $remote_port = shift || SIMPLE_TCP_PORT;

my $trans_serv = getprotobyname(’tcp’);
my $remote_host = gethostbyname($remote)

or die "tcp_c3: name lookup failed: $remote\n";
my $destination = sockaddr_in($remote_port, $remote_host);

socket(TCP_SOCK, PF_INET, SOCK_STREAM, $trans_serv)
or die "tcp_c3: socket creation failed: $!\n";

connect(TCP_SOCK, $destination)
or die "tcp_c3: connect to remote system failed: $!\n";

my $previous = select TCP_SOCK;
$| = 1;
select $previous;

The remaining client code is, perhaps surprisingly, straightforward. The filename
is sent to the server using a simple print statement. Note the concatenation of the
newline character. The call to print is immediately followed by another, and this
time the contents of the file are sent to the server, by printing the @entire_file
array to the sockethandle. The sockethandle is then closed for further writing
with a call to shutdown:

print TCP_SOCK $filetosend . "\n";

print TCP_SOCK @entire_file;

shutdown(TCP_SOCK, 1);

The client then receives all data (the response) from the server, using a simple
loop on the <> operator. The client closes the sockethandle before printing the
received response to the screen. The client then terminates:

my $data = ’’;

while (my $chunk = <TCP_SOCK>)
{

$data = $data . $chunk;
}

close TCP_SOCK

More TCP Socket Communication 149

or warn "tcp_c3: close failed: $!\n";

print "$data";

To test this client/server combination, the server (tcp_s4) was deployed on the
linux303.itcarlow.ie network device, and the client (tcp_c3) was deployed
on pblinux.itcarlow.ie and 149.153.103.15. A campus router separates
pblinux from the other deployment hosts.

After being contacted four times, the server’s output looked like this:

Server starting up on port: 4001.
tcp_s4: executing: [perl -c hosts 2>&1 1>/dev/null]

for 149.153.103.15
tcp_s4: executing: [perl -c udp_c8 2>&1 1>/dev/null]

for 149.153.103.15
tcp_s4: executing: [perl -c udp_c1 2>&1 1>/dev/null]

for pblinux.itcarlow.ie
tcp_s4: executing: [perl -c tcp_s5 2>&1 1>/dev/null]

for pblinux.itcarlow.ie

Here we see the command-line that was executed together with the IP name or
IP address of the network device that requested the remote syntax check. Note
that the 149.153.103.15 network device does not have an associated IP name
within the local DNS, and that this TCP server calls inet_ntoa to determine the
dotted-decimal notation to report.

The first invocation of the client was performed on the 149.153.103.15 net-
work device as follows, and it generated the response shown:

./tcp_c3 /etc/hosts linux303

Bareword found where operator expected at hosts line 1,
near "0.1localhost" (Missing operator before localhost?)
syntax error at hosts line 1, near "0.1 localhostlocalhost"
Number found where operator expected at hosts line 2,
near "149.153" (Missing semicolon on previous line?)
Bareword found where operator expected at hosts line 2,
near "103.15 linux303_15" (Missing operator before linux303_15?)
hosts had compilation errors.

This looks like a bit of a mess, and so it should. The /etc/hosts disk-file does not
(usually) contain Perl code, so asking the server to syntax check the file produces
a barrage of error messages from the Perl interpreter.

When the server is sent a file containing well-formed Perl code, the response is
more predictable, as shown here:

./tcp_c3 udp_c8 linux303

udp_c8 syntax OK

150 Sockets

As the server can accept connections from any networked device running the
client code, the next invocation occurs on pblinux. Again, well-formed Perl code
is sent to the server:

./tcp_c3 udp_c1 linux303

udp_c1 syntax OK

As a final example, an early version of the next TCP server (tcp_s5) was sent to the
server. This file contained Perl code, but the code is not well formed and contains
an error. The server reports the error to the client as follows:

./tcp_c3 tcp_s5 linux303

Bareword "CLIENT_SOCK" not allowed while "strict subs" in
use at tcp_s5 line 86.
tcp_s5 had compilation errors.

This is all well and good, but imagine that this version of the server was deployed
on an Internet-accessible network device, and that its remote syntax checking was
widely advertised. Now imagine that the server receives ten thousand hits per day.

At certain times of the day, the server may be swamped with requests from
clients and the SOMAXCONN queued connection limit may be reached and exceeded.
When this happens, connections are refused by the server. Connections may also
be refused by the server if a particularly large file is being checked, resulting in the
server waiting for the syntax check to complete. While the server waits, it is not
calling accept, which may result in an excessive queueing delay for a client, or – in
some cases – connection refusals. A number of strategies for dealing with these
eventualities exist, and by far the most widely used is to create a concurrent TCP
server , which creates a subprocess to handle each successful client connection.

3.13 The Concurrent Syntax Checker

In this section, code will be added to the Remote Syntax Checker Server to support
concurrent operation. The technique used is not very different from that employed
by the udp_c8 client from earlier in this chapter.

The code begins by using the appropriate modules, then defining the child reap-
ing subroutine that responds to CHLD signals:

#! /usr/bin/perl -w

use strict;
use Socket;

use POSIX ":sys_wait_h";

The Concurrent Syntax Checker 151

sub zombie_reaper {
while (waitpid(-1, WNOHANG) > 0)
{ }
$SIG{CHLD} = \&zombie_reaper;

}

$SIG{CHLD} = \&zombie_reaper;

An additional subroutine, continue_as_child, is then defined. This subroutine
is called by the child process after a successful fork. The subroutine takes two
parameters: the sockethandle to communicate on and the socket address of the
connected client. The actual code is an exact copy of the client sockethandle
processing code from tcp_s4. With auto-flushing switched on, the child process
receives the filename and its contents, a command-line is then constructed, then
the server calls the Perl interpreter to syntax check the received file (using the
just-built command-line). Any and all messages from the Perl interpreter are then
returned to the connected client. When processing is complete, the sockethandle
is closed and the local file is removed from the server’s disk storage:

sub continue_as_child {
my $handle = shift;
my $from_who_client = shift;

my $data = ’’;

my $previous = select $handle;
$| = 1;
select $previous;

my $tmp_fn = <$handle>;

chomp($tmp_fn);

$tmp_fn = (split /\//, $tmp_fn)[-1];

while (my $chunk = <$handle>)
{

$data = $data . $chunk;
}

open FILETOCHECK, ">$tmp_fn";

print FILETOCHECK $data;

close FILETOCHECK;

my $cmd = "perl -c $tmp_fn 2>&1 1>/dev/null";

my ($the_port, $the_ip) = sockaddr_in($from_who_client);

my $remote_name = gethostbyaddr($the_ip, AF_INET)
|| inet_ntoa($the_ip);

152 Sockets

warn "tcp_s5: executing: [$cmd] for $remote_name\n";

my $stderr_output = qx($cmd);

print $handle $stderr_output;

close $handle
or warn "tcp_s5: close failed: $!\n";

unlink $tmp_fn;
}

With the subroutines defined, the code for creating the listening socket is the
same as in the non-concurrent Remote Syntax Checker Server (tcp_s4):

use constant SIMPLE_TCP_PORT => 4001;

my $local_port = shift || SIMPLE_TCP_PORT;
my $trans_serv = getprotobyname(’tcp’);
my $local_addr = sockaddr_in($local_port, INADDR_ANY);

socket(TCP_SOCK, PF_INET, SOCK_STREAM, $trans_serv)
or die "tcp_s5: socket creation failed: $!\n";

setsockopt(TCP_SOCK, SOL_SOCKET, SO_REUSEADDR, 1)
or warn "tcp_s5: could not set socket option: $!\n";

bind(TCP_SOCK, $local_addr)
or die "tcp_s5: bind to address failed: $!\n";

listen(TCP_SOCK, SOMAXCONN)
or die "tcp_s5: listen couldn’t: $!\n";

warn "Server starting up on port: $local_port.\n";

The main loop starts as expected with a blocking call to accept:

my $from_who;

while ($from_who = accept(CLIENT_SOCK, TCP_SOCK))
{

The server then invokes fork to spawn a subprocess. If this is successful, the
server code moves directly to the next loop iteration after executing any code in
the continue block, which in this code simply closes the CLIENT_SOCK socket-
handle. In the child process, the subprocess first closes the TCP_SOCK socket-
handle before calling the continue_as_child subroutine, passing as parameters
the CLIENT_SOCK sockethandle and the socket address of the connected client (in
$from_who). When the subroutine returns, the child calls the inbuilt exit subrou-
tine, which terminates the child subprocess and sends a CHLD signal to the parent.
If the fork is unsuccessful, a warning is displayed, then the continue block is
executed prior to starting another loop iteration:

Object-Oriented Sockets 153

my $child_pid = fork;

if ($child_pid)
{

next;
}
elsif (defined($child_pid))
{

close(TCP_SOCK);
continue_as_child(*CLIENT_SOCK, $from_who);
exit;

}
else
{

warn "tcp_s5: fork failed: $!\n";
}

}
continue {

close(CLIENT_SOCK);
}

close TCP_SOCK;

The extra close statements in the above code are interesting, and require further
explanation. When fork was introduced earlier in this chapter, it was stated that
when the call to fork succeeded, the created child process was an exact copy of
the parent. If the parent has open input/output handles, they will exist in the
child process and in the parent process. It is necessary, therefore, to close those
input/output handles that are not required in each process. Specifically, the listen-
ing TCP_SOCK sockethandle is not required in the child process, and the connected
clients CLIENT_SOCK sockethandle is not required in the parent process. As they
are not needed, these sockethandles are closed.

This version of the Remote Syntax Checker Server (tcp_s5) now supports con-
currency, which allows it to better support a greater number of clients. The parent
process concentrates on accepting connections, while the child process concen-
trates on servicing them. This model can be easily extended to build any number
and type of network servers.

3.14 Object-Oriented Sockets

In addition to the functional interface to the Socket API, Perl provides an object-
oriented (OO) interface. Part of the standard Perl distribution, the IO::Socket
module provides a mechanism to simplify the creation and use of sockethandles,
or socket objects to use the correct OO terminology. Once a socket object is cre-
ated, a set of methods can be called on the object to effect network communi-

154 Sockets

cation. The method names correspond to the Socket API subroutines introduced
earlier in this chapter.

The decision as to which interface to use, whether functional or OO, is primarily
a personal one. The functional interface does not incur as high an overhead as the
OO interface, and it does provide finer control over what is going on. However,
the OO interface can be very convenient.

3.14.1 IO::Socket

The IO::Socketmodule (or class to use OO speak) is a subclass of Perl’s standard
IO::Handle class, which provides an OO interface to input/output handles. As
was seen with sockethandles, all input/output handles share characteristics: for
instance, it is possible to use print to send data to any input/output handle.
It is these shared characteristics that are implemented in IO::Handle, creating
input/output objects, and expanded upon within its derived classes, of which
IO::Socket is one.

However, when it comes to creating network socket objects, IO::Socket is not
enough, as only those methods common to any socket type are implemented in the
IO::Socket module. Two types of socket subclasses can be created, those that
work over a network (type INET) and those that work within a single computing
device (type UNIX), which may or may not be networked. The UNIX type will not
be discussed here, as it is of lesser interest to the network programmer.

3.14.2 IO::Socket::INET

To create a socket object, invoke the new method12 from the IO::Socket::INET
class. This method takes a variable number of named parameters, as follows.

PeerAddr – the address and (optionally) the protocol port-number of the remote
host. The address can be specified as an IP name or a dotted-decimal
address. The port can be specified as a decimal port-number, or as a
service-name/port-number combination. Examples would be ‘pblinux.
itcarlow.ie’, ‘linux303.itcarlow.ie:80’ and the rather strange look-
ing ‘149.153.103.15:mobileip-agent(434)’. Another name for this
parameter is PeerHost.

PeerPort – the decimal protocol port-number, or a service-name/port-number
combination. Examples are ‘110’ and ‘pop3(110)’.

LocalAddr – specifies the address on the local network device to bind with.
The format is as with PeerAddr above. Another name for this parameter
is LocalHost.

12In OO speak, ‘method’ is the name given to ‘subroutine’.

Object-Oriented Sockets 155

LocalPort – specifies the protocol port-number on the local network device to
bind with. The format is as with PeerPort above.

Proto – the transport service protocol to use. Typical values would be ‘tcp’ and
‘udp’.

Type – the transport type name for the socket object, typically either SOCK_
STREAM or SOCK_DGRAM.

Listen – the size of the connection queue.

Reuse – set to 1 to enable SO_REUSEADDR.

Timeout – sets a timeout value for operations that require it. It is used most often
with connect on clients and accept on servers.

MultiHomed – a Boolean, that when true, arranges for a client to try to contact a
server on any of its IP addresses (assuming it has more than one, that is, it is
multihomed). This is especially useful when the client does not know which
of the server’s addresses to connect with.

The following call to new will set up a socket object that runs on a server, uses
any locally available address, and operates on port 4001. Reliable communication
will be used (that is, TCP):

my $sock_obj = IO::Socket::INET->new(LocalPort => 4001,
Proto => ’tcp’,
Listen => SOMAXCONN)

or die "Could not create socket object: $!\n";

The call to new returns a socket object, which is then assigned to the $sock_obj
scalar. Note that, as the parameters are named, the ordering within the parameter
list is not important. As one of the parameters is Listen, a server-side, listening
socket object is created. No value for LocalAddr is provided, and IO::Socket
uses INADDR_ANY by default.

It is now possible to call other methods, inherited from IO::Socket, to interact
with and communicate on the socket object. After calling the accept method, the
most useful of these are send and recv:

my $connected_client_obj = $sock_obj->accept
or die "Unable to accept a connection: $!\n";

my $data;

$connected_client_obj->recv($data, MAX_RECV_LEN, 0);
$connected_client_obj->send($data, 0);

Here, the calls to send and recv do not need to reference a sockethandle as their
first parameter, as is the case with the functional interface. As send and recv are
called on a socket object, the use of sockethandles is not required as with the

156 Sockets

functional interface. Note, too, that the call to accept takes no parameters as it
returns a connected socket object on success.

It is also possible to use the familiar print and <> mechanism:

my $data;

$data = <$connected_client_obj>;
print $connected_client_obj $data;

As was stated at the start of this section, the OO interface is very convenient.

3.14.3 An object-oriented client and server

As a complete example, the functional versions of tcp_c2 and tcp_s3 from earlier
will be rewritten to use the OO interface.

Here is server code (oo_tcp_s3):

#! /usr/bin/perl -w

use strict;
use IO::Socket;

use constant SIMPLE_TCP_PORT => 4001;

my $port = shift || SIMPLE_TCP_PORT;

my $sock_obj = IO::Socket::INET->new(LocalPort => $port,
Proto => ’tcp’,
Reuse => 1,
Listen => SOMAXCONN)

or die "oo_tcp_s3: could not create socket object: $!\n";

warn "OO Server starting up on port: ", $sock_obj->sockport, ".\n";

while (my $client_obj = $sock_obj->accept)
{

my $secs = 10;

print $client_obj "Sleeping for $secs seconds ... \n";
sleep($secs);
print $client_obj "I awake, only to die ... \n";

$client_obj->close
or warn "oo_tcp_s3: close failed: $!\n";

}
$sock_obj->close;

Compared with the functional code from earlier, this code is much shorter. Gone
are the individual invocations of socket, setsockopt, bind and listen. These

Object-Oriented Sockets 157

have been replaced by a single call to the IO::Socket::INET->new method. Note
how the Type of the socket object has not been specified, as this can be determined
by the use of ‘tcp’ as the value for Proto. The code calls the sockportmethod to
return the protocol port-number being used by the server socket object, and this
value is used during the display of the start-up message. The rest of the code is
not too different from the functional version, except that socket objects are used
where sockethandles were used before. Of note is the absence of the auto-flushing
code from the functional version. With the most recent versions of Perl (release
5.004_4 and later), socket objects are automatically flushed, and auto-flushing is
on by default. The autoflush method, inherited from the IO::Handle class, can
be used to change this behaviour.

The changes to the code are straightforward. Here is the code (oo_tcp_c2):

#! /usr/bin/perl -w

use strict;
use IO::Socket;

use constant SIMPLE_TCP_PORT => 4001;
use constant REMOTE_HOST => ’localhost’;

my $remote = shift || REMOTE_HOST;
my $remote_port = shift || SIMPLE_TCP_PORT;

my $sock_obj = IO::Socket::INET->new(PeerAddr => $remote,
PeerPort => $remote_port,
Proto => ’tcp’)

or die "oo_tcp_c3: could not create socket object: $!\n";

while (<$sock_obj>)
{

print $_;
}
$sock_obj->close;

Again, a single call to IO::Socket::INET->new replaces the calls to socket and
connect from the functional version of this code. The new method knows to
establish a connection to a server due to the fact that ‘tcp’ is specified as the
value for Proto, and that the values of PeerAddr and PeerPort are defined. This
default behaviour, that pervades the IO::Socket class, enhances the usefulness
and convenience of using this socket interface.

Additional information on the methods available to IO::Socket and IO::
Handle derived objects can be found in the Perl online documentation. Issue
either of the following commands at the command-line to view the manual page
of interest:

man IO::Handle
man IO::Socket

An excellent treatment of Perl’s OO socket technology is Chapter 5 of Lincoln
Stein’s book (see the Print Resource section at the end of this chapter).

158 Sockets

3.15 Where To From Here?

In this chapter, the main features of the Perl Socket API were described. Much can
be learned from the experience of building some custom network applications.
Start with the Exercises at the end of this chapter, then explore the documen-
tation included with Perl, in particular the perlipc manual page. A number of
excellent books (by respected authors) cover the Socket API in great depth – see
the Print Resources section, below. The Web has an extensive collection of sites
which offer primers and tutorials on programming sockets (mostly geared toward
the C programmer, although Java is popular too).

CPAN has a small collection of add-on modules to Perl that implement common
network server behaviour. These include Jochen Wiedmann’s Net::Daemon mod-
ule, Charlie Stross’s NetServer::Generic, and the Net::Server module by Paul
Seamons. Each comes with extensive online documentation. Before creating a net-
work server from scratch, take the time to become familiar with the functionality
provided by each of these modules. In addition, there is much to be gleaned from
reviewing each module’s source code.

The techniques described in this chapter can be used to interact with any Inter-
net server, as the vast majority of Internet servers (be they offering Web, email,
news or file-transfer services) are typically built on top of the Socket API. How-
ever, to do this effectively can involve quite a bit of work (not to mention source
code). Thankfully, some great and generous Perl programmers have built add-on
modules that allow the Perl network programmer to interact with these standard
servers at a higher level of abstraction. The use of a collection of add-on Internet
modules forms the basis of the next chapter.

3.16 Print Resources

For a gentle introduction to the Socket API, and computer networking in general,
refer to Computer Networks and Internets, with Internet Applications, 3rd edn,
by Douglas E. Comer (Prentice-Hall, 2001). Dr Comer’s work in this area is well
known, and this book includes a brief description of RPC and CORBA, as well as
sufficient details on the various mechanisms used by TCP to achieve reliability.
The client and server characteristics described at the start of this chapter are
based on material from Dr Comer’s book.

The ultimate reference to the Socket and XTI APIs (for C programmers) is UNIX
Network Programming, Volume 1: Networking APIs: Sockets and XTI, 2nd edn, by
W. Richard Stevens (Prentice-Hall, 1999). Although written for the C programmer,
this book is still a very useful reference, as Perl’s functional interface to the Socket
API is very close to C’s.

For Perl programmers, the definitive reference to the Socket API is the excellent
and very thorough Network Programming with Perl, by Lincoln D. Stein (Addison-

Web Resources 159

Wesley, 2001). If the treatment of the Perl Socket API in this chapter only served
to whet your appetite, then Stein’s book will more than satisfy. His book includes
additional material on multithreading, broadcasting and multicasting network
programming with Perl, and much more besides. The description of the OO tech-
nology is especially good. The examples are quite involved, and significantly
longer than those found in this chapter. Highly recommended reading.

Chapter 17 of The Perl Cookbook contains a good collection of networking clients
and servers. Refer to the Print Resources section from Chapter 1.

3.17 Web Resources

The http://www.perl.com website maintains a short list of links of interest to
network programmers.

An excellent resource is maintained at http://www.sockets.com for Windows
programmers.

160 Sockets

Exercises

1. Revisit the NetDebug code from the last chapter and amend it to take an IP address
or an IP name as the value for the -s command-line parameter.

2. Research the threading technology available with Perl 5.6.0 (and higher), then rede-
velop the child-spawning, zombie-exhuming UDP client to use threads as opposed
to fork when creating and managing subprocesses.

3. The connect subroutine is typically used with TCP, but can also be used with UDP.
What are the advantages/disadvantages (if any) of using connect with UDP?

4. The tcp_s4 and tcp_s5 servers work well, but they are not very robust. For example,
if they are sent a single / as the filename, the server gets into difficulty. Additionally,
the servers should not accept a file that already exists on the server, as doing so
would overwrite the file (rarely the required behaviour). This is a particularly serious
problem on network devices executing the concurrent version of this server. Amend
both servers to guard against these situations. (Hint: does the flock function from
the standard Fcntl module help?) Can you think of any other amendments that
would improve the robustness of these servers?

5. Some authors suggest that production servers should be executed with tainting
switched on, that is, the -T command-line switch should be specified on the strange
first line of Perl servers. It is also suggested that the use sigtrap compiler directive
be enabled. Research the impact that each of these features has on the execution
status of servers. Do you agree that they should be used on all servers? Should either
feature be used on clients?

6. Create a reliable server that receives any amount of text from a client, spell checks
the text received using the spell program (included with most versions of Linux
and UNIX), then returns the list of suspect words to the connected client. Develop
the server to support concurrency using the OO socket interface. The client (which
also needs to be developed) should use the functional interface.

4

Protocols

In this chapter, Perl is used to interact with some of the Internet’s most popular
application-level protocols. Over the last three decades, the Internet has spawned
a large and growing collection of these protocols and Perl has a series of add-on
modules (some of which come as standard) for interacting with them. These can
be used to great effect when working with the standard services of the Internet.
Of course, it is also possible to program to the Internet protocol standards using
the Socket API. Although effective, using the Socket API in this way can often be
a chore.

After dispensing with a common gotcha, this chapter begins with a discussion of
the most popular application-level protocol, HTTP, the HyperText Transfer Proto-
col. HTTP powers the World Wide Web, and a simple program is written in Perl’s
Socket API to illustrate interactions with this protocol. This simple program is
then replaced, and expanded-upon, by an ‘add-on alternative’, which takes advan-
tage of one of the most popular third-party add-on modules, libwww-perl. HTTP
server technology is then explored. The remainder of the chapter is given over to
working with some other Internet protocols, and included is a brief description
of the most popular add-on module library for non-HTTP protocol programming,
namely libnet. A brief survey of some additional add-on modules rounds off this
chapter.

4.1 Gotcha!

Prior to interacting with some standard Internet protocols, it is necessary to con-
sider one of the biggest network programming gotchas of them all: an inadequate
understanding of newline.

162 Protocols

4.1.1 What’s the deal with newline?

Most programming languages have a good understanding of what newline is.
Within Perl, the \n escape sequence is used to represent newline. Operating sys-
tems also have a good understanding of what newline is. Unfortunately, no two
operating systems agree on exactly how the newline should be represented. Per-
sonal computers running technology from Microsoft use a different represen-
tation for newline than those that run Apple’s Mac OS. Yet another value for
newline is used on UNIX and Linux systems. Strangely (and this strangeness
has nothing to do with Perl), under certain circumstances, what some oper-
ating systems think of as newline actually changes based on what is going
on.

Regardless of the operating system (OS) running, Perl will try to do the right
thing, so when \n is used, Perl uses the ASCII value for newline expected by the
underlying OS. This can be very convenient for the programmer, as it is possi-
ble to use \n without worrying about how the underlying OS might interpret it.
Unfortunately, this convenience can lead to problems when data are transmitted
over a network. This is especially true when the data include embedded newline
characters and the data are being sent from a network device running a different
OS to that running on the receiving device. What was newline on a device running
Mac OS (ASCII value 13) will not be treated as such on a device running Linux,
which uses ASCII value 10 to represent newline. On a Microsoft-infected network
device, the sequence of ASCII value 13 followed by ASCII value 10 is used to rep-
resent the single newline character. Simply using \n within a custom network
application and hoping for the best is foolhardy, as the meaning associated with
the OS-specific value of newline will be lost when communicating with a network
device running a different OS.

The solution to this problem is simple: as a rule, do not use \n to represent
newline when sending data over a network connection1. This rule leads to a rather
obvious question: if \n is not used, what is? Well, it depends. The correct value
should always be specified and explicitly used. If ASCII value 13 is used, then ASCII
value 13 should be specified in the code. Instead of writing this line of code:

print CLIENT_SOCK "This is a line.\n";

use:

print CLIENT_SOCK "This is a line.\015";

where \015 is the octal representation of ASCII value 13. If ASCII value 10 is used
to represent newline, octal \012 can be used. Microsoft’s idea of newline can be
specified as \015\012. Do not fret if all this octal brings on a migraine. The Socket

1Eagle-eyed readers will note that this rule was broken (actually, ignored) in the previous chapter.
We only got away with this due to the fact that all communication was occurring between Linux and
UNIX-derived network devices, which use the same representation for newline.

Gotcha! 163

module provides a small collection of constants that can be used instead, and they
are imported into a custom network application with the following statement:

use Socket qw(:DEFAULT :crlf);

It is now possible to use $CR (or CR) for ASCII value 13, $LF (or LF) for ASCII
value 10, and $CRLF (or CRLF) for the ASCII value 13 followed by ASCII value 10
sequence. The line of code from earlier can be written in a more readable way, as
follows:

print CLIENT_SOCK "This is a line.$CR";

So, if the value used to specify newline on one end of a connection is known, it
can be used on the other end. And if the newline value has to be converted to the
newline value expected by the receiving devices OS, then this becomes an added
responsibility of the custom network application. However, what happens when
the value of newline is not known? It is not possible to provide a generic mech-
anism for determining the value of newline used by the other end of a network
connection. Consequently, a convention exists on the Internet. The de facto stan-
dard representation for newline within the vast majority of Internet protocols is
the ASCII value 13 followed by ASCII value 10 sequence2. Within custom network
applications, the $CRLF constant should be used to represent newline. In order to
conform with this standard, the readable line of code from above should now be:

print CLIENT_SOCK "This is a line.$CRLF";

However, for an application to be classed as robust, it is also recommended that
it recognize a single ASCII value 10 ($LF) as newline. Aren’t de facto standards
wonderful? It is relatively easy within Perl to reliably deal with this particular pro-
tocol quirk. When data arrive from a connected socket, the receiving application
need only convert the protocol’s idea of newline into a form that is acceptable to
the underlying operating system, as follows:

my $line = <TCP_SOCK>;

$line =˜ s/$CR?$LF/\n/;

print $line;

This code receives a newline-terminated chunk from the TCP_SOCK sockethandle.
If the line uses $CRLF or $LF as newline, it is replaced by the \n escape sequence.
The second line is an example of the substitution mechanism built into Perl’s
regular-expression technology. The use of ? between the $CR and $LF constants
tells Perl to treat the $CR part as optional, which is exactly what is required to
support the recommended robustness. Once the substitution is complete, the
substituted line is reassigned to $line before it is printed by the inbuilt print
subroutine.

2It is not just Microsoft that is infected!

164 Protocols

4.2 Working with the Web

For most users, the Web is the Internet and the Internet is the Web. In recent years,
the Web browser – in addition to providing its ‘bread and butter’ service of hyper-
text browsing – has become the tool used for accessing other standard Internet
services, such as electronic mail, network news and file transfer. As multime-
dia Internet services are becoming increasingly popular, the Web browser (with
optional extensions) now provides access to video, television, music, telephony
and radio services. The humble Web browser is well on its way to becoming the
universal client platform.

The protocol used by the Web browser (the client) when communicating with a
website (the server) is the HyperText Transfer Protocol (HTTP), and three versions
of the standard are in use: 0.9, 1.0 and 1.1. Most new technology is built to support
the 1.1 standard which, by and large, provides backward compatibility with the
earlier versions.

HTTP is built on top of TCP, which means all Web communication is reliable.
This also means that prior to any communication occurring, the HTTP client and
HTTP server must establish a TCP connection.

4.2.1 HTTP requests and responses

Once a connection has been established, requests arriving from an HTTP client to
an HTTP server begin by specifying a method which governs how the server is to
respond to the client. As of HTTP 1.1, the standard set of methods are as follows.

OPTIONS – allows a client to request details about a specific server resource, or
about the server itself.

GET – allows a client to instruct the server to locate a specified resource, retrieve it,
and deliver it to the client. The resource has two parts: a header and a body.
The header-part contains data about the contents of the body-part, which
contains the something of interest, for example, a Web page or graphic. Data
about data are often referred to as metadata. This is one of the most used
HTTP methods.

HEAD – this is identical to the GET method, except that the body-part of the
resource is not sent to the client, just the header-part.

POST – allows the client to send data to the server for processing. As an example,
consider the data sent from a Web browser displaying an HTML fill-out form.
When a user clicks on the Submit button, the client sends (or posts) the data
to the server. Like GET, this is a heavily used method.

PUT – allows a client to send a resource to the server, updating or creating the
resource on the server as needs be. This assumes, of course, that the client
is authorized to write to the server.

The World’s Worst Web Browser 165

DELETE – allows a client to request that the server remove a specified resource
from the server.

TRACE – allows a client to request loopback information for a particular server
resource, typically used during testing.

CONNECT – is reserved for use with proxy servers.

In addition to the method, the HTTP request identifies the resource it is inter-
ested in. This is typically the path and name of an HTML document, as HTTP was
initially designed to support the retrieval and delivery of HTML Web pages. The
request concludes with an indication of the version of HTTP being used on the
client, together with any required terminating newlines. For example, to retrieve
the index.html page from any website, an HTTP client written in Perl would send
the following request string to a Web server:

"GET /index.html HTTP/1.0$CRLF$CRLF"

Note that this code identifies itself as a speaker of version 1.0 of HTTP. Note,
too, the double newline at the end of the request, as well as the space character
separating each part of the request. Within the official HTTP standard document
(refer to the Web Resources section at the end of this chapter), this request string
is referred to as a Request-Line.

The response generated by the Web server contains two parts: a header and a
body. The header-part is composed of a series of newline-delimited lines of text.
The body-part, which comes after the header (and from which it is separated by
a blank line), contains the requested resource. Within the HTTP world, resources
can be anything, although they are typically an HTML page or graphic file.

Without knowing much more about HTTP, let us write a simple HTTP client
using the facilities of Perl’s Socket API to interact with any standard Web server.

4.3 The World’s Worst Web Browser

The code for the simple HTTP client begins as expected. For convenience, the OO
version of Perl’s Socket API is used. The code also imports the newline constants
from the standard Socket module:

#! /usr/bin/perl -w

use strict;
use Socket qw(:DEFAULT :crlf);
use IO::Socket;

This client is command-line driven and can take up to three optional param-
eters: the HTTP request method, the name of the network device running the
HTTP server, and the name of the resource. Three lines of code implement this
behaviour, with appropriate defaults defined for each parameter:

166 Protocols

my $http_method = shift || ’GET’;
my $http_server = shift || ’localhost’;
my $html_page = shift || ’/index.html’;

Next, the code creates a connected socket object, using TCP and protocol port-
number 80 (the well-known TCP port for Web services):

my $http_obj = IO::Socket::INET->new(PeerAddr => $http_server,
PeerPort => 80,
Proto => ’tcp’)

or die "wwwb: could not create socket object: $!\n";

If all is well, the client sends the request to the server using a simple call to the
inbuilt print subroutine:

print $http_obj "$http_method $html_page HTTP/1.0$CRLF$CRLF";

A loop is then entered and, with each iteration, a line is received from the server.
Each line’s idea of newline is converted to \n prior to the line being written to the
client’s standard output (most likely the screen). When there are no more lines to
be received from the server, the loop terminates, and the socket object is closed.
The client then terminates:

while (my $line = <$http_obj>)
{

$line =˜ s/$CR?$LF/\n/;
print $line;

}
$http_obj->close;

And there it is: the world’s worst Web browser (wwwb) in just 20 lines of Perl code.
Why ‘worst’? Well, as Web browsers go, wwwb is pretty poor. It does not work

graphically, so any resource received is displayed as is on the screen – no HTML
is rendered, and any embedded graphics are not displayed. It does not allow for
the traversal of hypertext links3. And it is not exactly user-friendly, requiring the
user to specify the HTTP method to use. So wwwb is not going to replace any of
the brand-name Web browsers any time soon.

However, what wwwb does allow its users to do is interact with an HTTP server at
a lower level than is typically available from within a full-featured Web browser.
To get an idea of its capabilities, make wwwb executable and invoke it with the
following commands:

chmod +x wwwb
./wwwb

Note that the parameterless invocation of wwwb is equivalent to this (be warned:
the / in front of index.html is required):

./wwwb GET localhost /index.html

3So we are stretching things somewhat by calling it a browser.

The World’s Worst Web Browser 167

With wwwb installed on pblinux.itcarlow.ie, which also has a default instal-
lation of the Apache Web Server running, the parameterless invocation of wwwb
sends the following (double-newline terminated) request to the server:

GET /index.html HTTP/1.0

The server responds with the following HTTP response:

HTTP/1.1 200 OK
Date: Thu, 19 Apr 2001 16:43:34 GMT
Server: Apache/1.3.19 (Unix)
Content-Location: index.html.en
Vary: negotiate,accept-language,accept-charset
TCN: choice
Last-Modified: Fri, 19 Jan 2001 19:39:47 GMT
ETag: "9e6-51e-3a689803;3adc205d"
Accept-Ranges: bytes
Content-Length: 1310
Connection: close
Content-Type: text/html
Content-Language: en
Expires: Thu, 19 Apr 2001 16:43:34 GMT

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>
<HEAD>
<TITLE>Test Page for Apache Installation</TITLE>

</HEAD>
<!-- Background white, links blue (unvisited), navy
(visited), red (active) -->
<BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#0000FF"
VLINK="#000080" ALINK="#FF0000" >

<p>If you can see this, it means that the installation of
the Apache Web server software on this system was

.

.

.
Web server. Thanks for using Apache!</p>

<DIV ALIGN="CENTER"></DIV>

</BODY>
</HTML>

Note that (for brevity’s sake) not all of the body-part of the HTTP response is
shown here. The body-part is in fact the default HTML test page as supplied with
Apache. The header-part of the response precedes the HTML page. The first line
of the header (response) is the HTTP Status-Line:

HTTP/1.1 200 OK

168 Protocols

The Apache server is stating that it understands version 1.1 of HTTP, and that the
request it is responding to was properly formatted, understood and processed.

After the status line, a collection of name/value pairings appear. The mean-
ing of most of these pairings should be self-explanatory. Among other things,
the Apache server informs wwwb what time it thinks it is, the version of Apache
running, the date/time index.html was last modified, the length of the body-
part (1310 bytes) and the body-part’s type (it is textual, and it is HTML). For an
explanation of the other pairings, refer to the HTTP and Apache documentation
as referenced in the Web Resources section at the end of this chapter.

4.3.1 Embedded graphics

The header-part of the response as sent by Apache is separated from the body-
part by a blank line. Near the bottom of the HTML page, an tag includes
the ‘Powered by Apache’ graphic logo, called apache_pb.gif. Note how the ini-
tial response from the HTTP server has not sent this embedded graphic, even
though it is reasonable to think of the graphic as being part of the page. It is the
responsibility of the HTTP client to parse the HTML for such graphics tags and
send a separate request to the server for each graphic tag found. The client is
then required to render the graphic and the HTML page on screen.

As wwwb is the world’s worst Web browser, it does not do this for its users, so
use the following command-line to tell wwwb to request the delivery of the graphic
from the HTTP server:

./wwwb GET localhost /apache_pb.gif

Apache responds as follows:

HTTP/1.1 200 OK
Date: Thu, 19 Apr 2001 16:45:41 GMT
Server: Apache/1.3.19 (Unix)
Last-Modified: Wed, 03 Jul 1996 06:18:15 GMT
ETag: "9df-916-31da10a7"
Accept-Ranges: bytes
Content-Length: 2326
Connection: close
Content-Type: image/gif

GIF89aˆCˆA ˆ@%ˆ@
.
.
.

ZV Cˆ˜A@5ˆ]+ˆPIVo ˜CˆM-5ˆKKUO˜Zo "=ˆH@ˆBˆDˆDˆ@;

Again, only a small portion of the body-part is shown here. What is shown looks
like garbage, but is, in actual fact, the contents of the GIF file as sent by Apache.

The World’s Worst Web Browser 169

Note that the header-part has a different collection of name/value pairings than
those associated with the previous HTML page. With this resource, the type of the
body-part is identified as an image file conforming to the popular GIF standard.

So, to retrieve a single HTML page containing a single embedded graphic
requires two HTTP request/response interactions. Note that each interaction
requires the establishment of its own TCP connection from the client network
device to the server network device. Even though the HTML page and the graphic
are considered to be part of the same page, as far as HTTP is concerned, they are
separate resources that must be retrieved separately using separate connections.
If the HTML page contains 100 embedded graphics, the HTTP client is required
to establish 101 connections with the HTTP server in order to retrieve the entire
page. And all those connection establishments and teardowns take time.

That is, of course, if the HTTP client is using version 1.0 of HTTP. If version 1.1 is
used instead, the client can take advantage of persistence, which allows for a single
established connection to retrieve many resources. This, as can be imagined, can
have a very positive impact on performance.

4.3.2 A persistent wwwb

In order to use persistence, the client needs to tell the server that it is speaking
version 1.1 of HTTP. This is easily accomplished by sending:

GET /index.html HTTP/1.1

instead of:

GET /index.html HTTP/1.0

to the server. However, this alone is not enough. Version 1.1 of HTTP is more strict
in what it will accept as a valid resource request. To illustrate what happens, a
small change to wwwb can be made, so that the request sent to the server now
looks like this:

print $http_obj "$http_method $html_page HTTP/1.1$CRLF$CRLF";

When sent to Apache, the following response is returned:

HTTP/1.1 400 Bad Request
Date: Tue, 24 Apr 2001 15:11:59 GMT
Server: Apache/1.3.19 (Unix)
Connection: close
Transfer-Encoding: chunked
Content-Type: text/html; charset=iso-8859-1

172
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>

170 Protocols

<TITLE>400 Bad Request</TITLE>
</HEAD><BODY>
<H1>Bad Request</H1>
Your browser sent a request that this server could
not understand.<P>
client sent HTTP/1.1 request without hostname (see
RFC2616 section 14.23): /index.html<P>
<HR>
<ADDRESS>Apache/1.3.19 Server at pblinux. Port 80</ADDRESS>
</BODY></HTML>

0

The Status-Line informs the client that the request was bad. The body-part of
the response contains an HTML page detailing additional information. Note that
the name/value pairings in the header-part of the response do not include a
Content-Length value. Instead, the header-part identifies the body-part as con-
forming to the chunked transfer-encoding. Here each ‘chunk’ of information sent
from the server is bracketed by two size indicators (in this case 172 and 0). Any
number of chunks can be sent, and the last chunk always ends with a size indica-
tor of zero. Obviously, with this response, only one chunk is sent.

The important information is included in the HTML page. Apache states that the
client sent HTTP/1.1 request without hostname, then refers to the relevant section
within the standards document. With HTTP (regardless of version), it is possible
to send multiple newline separated lines as part of the request. Various pieces of
information can be sent, and with HTTP/1.1, it became a requirement to send the
Host value. To ensure the client is 1.1 compatible, change the single line request
from above to:

my $http_request;

$http_request = "$http_method $html_page HTTP/1.1$CRLF" .
"Host: $http_server$CRLF" .
"$CRLF";

print $http_obj $http_request;

The Host value specifies the name of the HTTP server, which is available to the
code in the $http_server scalar. As the request now spans more than one line4,
the code introduces the $http_request scalar to keep things nice and orderly.
With this small change, this version of wwwb works as expected.

By default, persistence is on when an HTTP/1.1 client and server communicate.
To switch off persistence, the Connection: Close line can be included with the
request. Otherwise, Connection: Keep-Alive is assumed. These two lines (or
directives) are the key to using a single connection to request multiple resources.

4Remember: the ‘.’ in Perl is the concatenation operator.

The World’s Worst Web Browser 171

As long as the Connection: Close line is not specified, multiple requests can be
sent.

Let us assume that a subroutine exists which can take one required parameter
and up to four named parameters (which are all optional). This subroutine, called
get_resource, must specify the HTTP object to send the request to (the required
parameter) as well as the following four optional parameters.

METHOD – the HTTP method to use. The default is GET.

RESOURCE – the name of the HTTP resource to request. The default is /index.
html.

CTYPE – the connection type, either Close or Keep-Alive. The default is Close.

SERVER – the server to specify on the Host line. The default is localhost.

With such a subroutine available to the code, it is possible to call the subrou-
tine twice, as follows, to request index.html and apache_pb.gif from the Web
server:

get_resource($http_obj, CTYPE => ’Keep-Alive’);
get_resource($http_obj, RESOURCE => ’/apache_pb.gif’);

Note how the code explicitly asks for persistence with the first invocation, even
though this is HTTP/1.1’s default. However, it is not the default for get_resource.

Here is a first attempt at the get_resource subroutine:

sub get_resource {
my $http_obj = shift;
my %params = @_;

my $http_method = $params{METHOD} || ’GET’;
my $html_page = $params{RESOURCE} || ’/index.html’;
my $connect_type = $params{CTYPE} || ’Close’;
my $http_server = $params{SERVER} || ’localhost’;

my $http_request = "$http_method $html_page HTTP/1.1$CRLF" .
"Host: $http_server$CRLF" .
"Connection: $connect_type$CRLF" .
"$CRLF";

print $http_obj $http_request;

while ($line = <$http_obj>)
{

$line =˜ s/$CR?$LF/\n/;
print $line;

}
}

172 Protocols

This code begins by assigning the required parameter to the $http_obj scalar.
Any other parameters are then assigned to the %params hash. Looking at the above
invocations of the get_resource subroutine, and recalling that the => symbol is
‘syntactic sugar’ for comma in Perl, these invocations send a list of items to the
subroutine. The list (@_) is then used to initialize the hash. If the hash values
are defined, they are used to initialize four scalars, $http_method, $html_page,
$connect_type and $http_server. Note the use of default values for each of
these scalars. The HTTP request is then built from the values, and sent to the
HTTP server (using a call to print). The rest of the code is as it was from the first
version of wwwb.

Unfortunately, this version of get_resource does not work properly. When
it is executed, the program successfully receives and displays the file called
index.html, then it appears to pause for a number of seconds, before return-
ing to the command-line. The request for the apache_pb.gif resource seems to
have somehow disappeared.

What is going on? The problem is that the client code is getting stuck inside
the while loop within the get_resource subroutine. The connection type is set
to Keep-Alive, so the server is keeping the connection open. However, the client
does not know when to stop reading, so it is waiting for something to happen.
Eventually, the server times out (after about 15 seconds), closes the connection
and then the loop ends. When the client tries to send the next request, it is ignored
as the connection is closed.

4.3.3 A better get_resource

What the code needs to do within get_resource is stop reading once the first
resource has been received. But how is this done? One technique is to use the
Content-Length value from the resource’s header-part. The strategy is to deter-
mine the Content-Length value while reading the header-part, determine when
the header-part ends and the body-part starts, then read the number of bytes indi-
cated by the Content-Length value. Once the body-part is received, the loop can
end, and the next request can be processed. Here is a version of get_resource
that does this:

sub get_resource {
my $http_obj = shift;
my %params = @_;

my $http_method = $params{METHOD} || ’GET’;
my $html_page = $params{RESOURCE} || ’/index.html’;
my $connect_type = $params{CTYPE} || ’Close’;
my $http_server = $params{SERVER} || ’localhost’;

my $http_request = "$http_method $html_page HTTP/1.1$CRLF" .
"Host: $http_server$CRLF" .

The World’s Worst Web Browser 173

"Connection: $connect_type$CRLF" .
"$CRLF";

print $http_obj $http_request;

my $body_length = 0;
my $body_part = "";
my $line;
my $in_header = 1;

while ($line = <$http_obj>)
{

if ($line =˜ /Content-Length: (\d+)/)
{

$body_length = $1;
}
if ($line =˜ /ˆ$CRLF$/)
{

$in_header = 0;
}
$body_part = $body_part . $line if !$in_header;

$line =˜ s/$CR?$LF/\n/;
print $line;

if (!$in_header)
{

last if length($body_part) >= $body_length;
}

}
}

There is a lot of code here, and it relies heavily on Perl’s regular-expression tech-
nology. After the call to print, which sends the request to the server, four scalars
are declared:

my $body_length = 0;
my $body_part = "";
my $line;
my $in_header = 1;

The $body_length scalar will hold the determined Content-Length value. The
$body_part will hold the body-part of the resource, which is made up of a collec-
tion of $lines. The $in_header scalar is a Boolean, and is true when the $line
is part of the header, false otherwise. The code to check for the Content-Length
value comes next:

if ($line =˜ /Content-Length: (\d+)/)
{

$body_length = $1;
}

174 Protocols

This code checks to see if the $line contains the string ‘Content-Length:’ fol-
lowed by a number (\d+). If it does, it remembers the number in $body_length.
When the regular-expression engine matches the Content-Length value it places
it in the built-in $1 variable.

The code then checks to see if the $line contains only a newline, which is
specified by the ˆ $CRLF$ regular expression. This states that the pattern begins
at the start of a line (ˆ), has a single newline character ($CRLF) which is at the end
of a line ($). If this pattern matches, a blank line has been received, which means
that the header-part has been received and the body-part is about to arrive. When
this happens, the $in_header scalar is set to false, as the header-part has been
received.

The next line adds the contents of $line to $body_part if the value of the
scalar $in_header is false:

$body_part = $body_part . $line if !$in_header;

The next two lines convert the protocols idea of newline into the underlying oper-
ating systems, then $line is printed out. The subroutine ends by checking to see
if the body-part is being processed, and if it is, a check is performed to see if the
current length of the $body_part is greater than or equal to the Content-Length
value, which is stored in the $body_length scalar. If it is, the inbuilt last sub-
routine is invoked and the loop ends, allowing the subroutine to end and the next
request to be processed, which is the required behaviour:

if (!$in_header)
{

last if length($body_part) >= $body_length;
}

This version of the world’s worst Web browser (wwwb1.1) now behaves as required,
and supports persistence. To keep things simple, the code only works with
the index.html and apache_pb.gif files as served by Apache running on
localhost, which means that this ‘improved’ version of the world’s worst Web
browser is not all that flexible.

The cost of producing this improved wwwb has been high. The code is beginning
to bloat and will get more complex as additional functionality is added. Note too
that the code has no mechanism for dealing with chunked transfer-encoding.

4.4 HTTP Status Codes

Before exploring Perl’s HTTP add-on technology, the HTTP Status-Line requires
further explanation. The lines seen so far have looked like this5:

HTTP/1.1 200 OK

5The exception was a malformed HTTP/1.1 request sent to the server earlier in this chapter.

HTTP Status Codes 175

The Status-Line is made up of three parts as follows.

Version – the HTTP-Version understood by the responding server.

Code – the HTTP Status-Code returned as a result of the server servicing (or
attempting to service) the client’s request.

Text – the HTTP Reason-Phrase associated with the response code (and designed
to be read by a human being, not a machine).

The codes, which are all three digits in length, are categorized by the following
number ranges.

100–199 – are informational messages. The server is informing the client that the
request has been received and some further action is progressing.

200–299 – indicates success. The request has been received, the required service
has been performed, and the server is sending any results to the client.

300–399 – are redirection messages. Further activity on the part of the client is
required to complete the request.

400–499 – indicates a client error. The server is stating that the client did some-
thing wrong and that the request cannot be processed until the client cor-
rects the problem.

500–599 – indicates a server error. What would otherwise be considered to be a
valid request from a client has resulted in a server error.

Only a handful of codes from each number-range are officially allocated in the
HTTP standard. As HTTP/1.1 is designed to be easily extendible, the number-
ranges are much larger than they need to be in order to support the addition of
codes by extension technologies. Some further invocations of the original wwwb
illustrate the use of a selection of these codes.

Here is a request to retrieve the homepage from Linux Journal magazine’s web-
site:

./wwwb GET www.linuxjournal.com

which results in this response from the server:

HTTP/1.1 302 Found
Date: Thu, 19 Apr 2001 14:58:23 GMT
Server: Apache/1.3.14 (Unix) PHP/4.0.4pl1

mod_ssl/2.7.1 OpenSSL/0.9.6 AuthMySQL/2.20
Location: http://www3.linuxjournal.com/index.html
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

176 Protocols

<HTML><HEAD>
<TITLE>302 Found</TITLE>
</HEAD><BODY>
<H1>Found</H1>
The document has moved
here.<P>
<HR>
<ADDRESS>Apache/1.3.14 Server at linuxjournal.com Port 80</ADDRESS>
</BODY></HTML>

A 302 code is sent from the server, informing the client that the requested
resource (index.html) is temporarily available at some other location. The ‘other
location’ is identified by the value associated with the Location header-line. The
client should react to this Status-Line by retrieving the resource from the identified
temporary location.

For those clients that are incapable of doing this6, the Linux Journal Web server
(in this case, a relatively recent version of Apache) sends a small page of HTML as
part of the response.

This next request will attempt to delete the index.html resource from the
website maintained by University College Dublin in Ireland:

./wwwb DELETE www.ucd.ie

The network administrator at UCD will be pleased to see that wwwb, as an ordinary
Web browser with no special privileges, is unable to succeed with this request.
Here is the response:

HTTP/1.1 405 Method Not Allowed
Date: Mon, 16 Apr 2001 16:12:45 GMT
Server: Apache/1.2.4
Allow: GET, HEAD, OPTIONS, TRACE
Connection: close
Content-Type: text/html

<HTML><HEAD>
<TITLE>405 Method Not Allowed</TITLE>
</HEAD><BODY>
<H1>Method Not Allowed</H1>
The requested method DELETE is not allowed for
the URL /index.html.<P>
</BODY></HTML>

Note how the server at UCD (running an old version of Apache) indicates with the
Allow header-line which HTTP methods are allowed.

Even though wwwb is the world’s worst Web browser, it can still request the exe-
cution of server-side programs, such as Common Gateway Interface (CGI) scripts.

6The wwwb client falls squarely into this category.

HTTP Status Codes 177

Here is an example invocation of wwwb that requests that the server execute the
printenv script (which is usually shipped with Apache):

./wwwb GET pblinux.itcarlow.ie /cgi-bin/printenv

The code to printenv is very straightforward. It iterates through the environment
variables available to the script and prints them to standard output. Conveniently,
these variables are stored (within Perl) inside the built-in %ENV hash:

print "Content-type: text/plain\n\n";

foreach $var (sort(keys(%ENV)))
{

$val = $ENV{$var};
$val =˜ s|\n|\\n|g;
$val =˜ s|"|\\"|g;

print "${var}=\"${val}\"\n";
}

The above request was sent to pblinux.itcarlow.ie, which has Apache in-
stalled and operational. Here are the results returned by the above request:

HTTP/1.1 200 OK
Date: Sat, 19 May 2001 17:14:22 GMT
Server: Apache/1.3.19 (Unix)
Connection: close
Content-Type: text/plain

DOCUMENT_ROOT="/usr/local/apache/htdocs"
GATEWAY_INTERFACE="CGI/1.1"
PATH="/usr/local/sbin:/usr/sbin:/sbin:/usr/local/sbin:

/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:
/usr/X11R6/bin:/root/bin"

QUERY_STRING=""
REMOTE_ADDR="149.153.100.66"
REMOTE_PORT="1031"
REQUEST_METHOD="GET"
REQUEST_URI="/cgi-bin/printenv"
SCRIPT_FILENAME="/usr/local/apache/cgi-bin/printenv"
SCRIPT_NAME="/cgi-bin/printenv"
SERVER_ADDR="149.153.100.66"
SERVER_ADMIN="paul.barryp@itcarlow.ie"
SERVER_NAME="pblinux.itcarlow.ie"
SERVER_PORT="80"
SERVER_PROTOCOL="HTTP/1.0"
SERVER_SIGNATURE="<ADDRESS>Apache/1.3.19 Server at

pblinux.itcarlow.ie Port 80</ADDRESS>\n"
SERVER_SOFTWARE="Apache/1.3.19 (Unix)"

The Status-Line reports code 200, so the servicing of this request was a success.

178 Protocols

In order to force the server into generating an error, the first line of code from
printenv is removed from the file, and printenv is renamed broken. Here is the
call to broken:

./wwwb GET pblinux.itcarlow.ie /cgi-bin/broken

This CGI script will cause the server problems due to the missing line of code.
Here is the response from the server:

HTTP/1.1 500 Internal Server Error
Date: Sat, 19 May 2001 17:17:55 GMT
Server: Apache/1.3.19 (Unix)
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>500 Internal Server Error</TITLE>
</HEAD><BODY>
<H1>Internal Server Error</H1>
The server encountered an internal error or
misconfiguration and was unable to complete
your request.<P>
Please contact the server administrator,
paul.barryp@itcarlow.ie and inform them of the time
the error occurred, and anything you might have done
that may have caused the error.<P>
More information about this error may be available
in the server error log.<P>
<HR>
<ADDRESS>Apache/1.3.19 Server at pblinux.itcarlow.ie
Port 80</ADDRESS>
</BODY></HTML>

The server did not know what to do with the results returned from the broken
CGI script, and this caused an internal error. The client is told this in no uncertain
terms by the 500 code on the Status-Line.

It would be nice if wwwb handled these status codes in a more meaningful way.
Adding the code to do so is not difficult, but it is a chore. And it has definitely
been done before. It is time to turn to the Perl programming community for help.

4.5 It’s the Gisle and Graham Show!

Of all the networking add-on modules available for Perl, two stand out when it
comes to programming standard Internet protocols. They are libwww-perl (also
known as LWP) and libnet. The libwww-perl module primarily supports the
programming of clients using HTTP and related protocols. The libnet module

It’s the Gisle and Graham Show! 179

supports client programming of the popular non-HTTP protocols. Both modules
operate at a higher-level of abstraction than the code seen so far in this chap-
ter, building on the standard IO::Socket::INET module included with the Perl
distribution.

Of all the programmers active within the Perl community, two stand out when
it comes to programming standard Internet protocols. They are Gisle Aas, the
principal author of libwww-perl7, and Graham Barr, the author of libnet8.
In fact, both Gisle and Graham are highly active contributors to Perl as a
whole.

In the sections which follow, these libraries are introduced. To begin, the facil-
ities of libwww-perl are used to rewrite the world’s worst Web browser.

Of course, before working with these modules, it is necessary to install each of
them into Perl.

4.5.1 Getting libwww-perl and libnet

The libwww-perl and libnet libraries are available on CPAN (see the Web
Resources section at the end of this chapter), from where they can be downloaded.
The libwww-perl library has a number of prerequisites, one of which is (rather
conveniently) libnet. A list of files to download from CPAN to satisfy all of the
dependencies follows9.

MIME-Base64-2.12.tar.gz – provides support for encoding and decoding
‘base64 strings’, used on the Internet when transmitting arbitrary data for-
mats.

URI-1.12.tar.gz – supports manipulating Uniform Resource Identifiers, used
on the Internet to name arbitrary resources.

Digest-MD5-2.13.tar.gz – provides support for using the MD5 Message Digest
as defined by RSA Data Security, Inc.

HTML-Parser-3.23.tar.gz – supports working with documents which have
been marked-up with HTML formatting tags.

These modules can be installed using the standard installation process that was
first seen in Chapter 2. Assuming a fictitious module called PJB-3.01.tar.gz,
use these commands at a Linux prompt to unpack, install and test release 3.01 of
the PJB module:

gunzip PJB-3.01.tar.gz
tar xvf PJB-3.01.tar

7Many fine programmers also contribute to this effort.
8And the author of the IO::Socket::* modules which are now a standard part of Perl.
9Note that by the time of publication some of these modules will have been updated, so the

version numbers may not match exactly with those of the modules you download. However, they
should be at least the versions shown here.

180 Protocols

cd PJB-3.01
perl Makefile.PL
make
make test
su
make install
<ctrl-D>
man PJB
perl -e ’use PJB’

Recall the requirement to issue the make install command with superuser priv-
ilege.

To install the set of modules required for this chapter, work through the list
of prerequisites in the order shown and replace PJB-3.01 with the name and
version number of each of the modules. Some of the modules will require some
user input during the installation phase. Remember to refer to any README and
INSTALL files within each module’s distribution directory if necessary.

In order to complete the installation, you will need to download and install
libnet-1.09.tar.gz and libwww-perl-5.53_94.tar.gz.

4.6 The Library for WWW Access in Perl

Although primarily known for its Web technology, the libwww-perl add-on tech-
nology to Perl is a collection of related modules that provides support for pro-
gramming Internet protocols. The protocols supported are as follows.

HTTP – version 1.0 of the HTTP standard. The supplied functionality is imple-
mented in the LWP::Protocol::http module. A new version of libwww-
perl called LWPng is under development and will (when released) provide
full support for the HTTP/1.1 protocol.

HTTPS – the secure version of HTTP as developed by Netscape Communications
and incorporating the Secure Sockets Layer (SSL) protocol. Implemented in
the LWP::Protocol::https module.

GOPHER – a precursor to the web, Gopher provides retrieval of information from
‘Gopher Servers’ by navigating simple menu systems. This functionality is
implemented in the LWP::Protocol::gopher module.

FTP – the venerable File Transfer Protocol, used to relocate files from one net-
work-connected device to another, and implemented in the LWP::Protocol::
ftp module.

NNTP – the Network News Transfer Protocol, which powers the Internet-wide,
distributed discussion forum known as Usenet. Implemented in the LWP::
Protocol::nntp module.

The LWPwwwbLWPwwwbLWPwwwb Program 181

In addition, libwww-perl provides two other services as follows.

FILE – provides a means to work with files on a local file system within a libwww-
perl context, and implemented in the LWP::Protocol::file module.

MAILTO – provides a simple method of sending Internet email. Implemented in
the LWP::Protocol::mailto module.

4.6.1 The libwww-perl classes

The libwww-perl library is entirely object oriented, and the application program-
mer interface (API) reflects this10. A hierarchy of classes (or modules) exist within
libwww-perl, and these provide support for working with the library’s Internet
protocols.

There is a lot to libwww-perl, and each library component includes excellent
online documentation (installed as Linux manual pages). In addition, two addi-
tional manual pages are included to help programmers get started with the library.
They are as follows.

LWP – the main libwww-perl manual page, which contains an overview of the
library and the functionality provided.

lwpcook – a selection of ‘cookbook recipes’ which provide common solutions to
common requirements.

Of all the classes (or submodules) provided, those that deal with HTTP requests
and responses are of most interest. As expected, libwww-perl provides a class
to work with requests, and another to work with responses:

HTTP::Request – is used to construct a request object which is then sent to a
server running any of the above libwww-perl-supported protocols;

HTTP::Response – is created as a result of a request object being processed by
a server.

To enable interaction with these classes, libwww-perl supplies another class,
LWP::UserAgent, which provides a layer between the application and the network
service being programmed. To see how this works, let us rebuild wwwb to use
libwww-perl.

4.7 The LWPwwwb Program

Here is the entire code to the world’s worst Web browser (LWPwwwb), rewritten to
use libwww-perl:

10That was a tiny white lie. Included with the library is a module called LWP::Simple which pro-
vides a procedural interface to common libwww-perl functionality. Although useful, LWP::Simple
is not discussed in Programming the Network with Perl.

182 Protocols

#! /usr/bin/perl -w

use strict;
use LWP::UserAgent;

my $http_method = shift || ’GET’;
my $http_server = shift || ’localhost’;
my $html_page = shift || ’/index.html’;
my $http_port = shift || 80;

my $wwwb_useragent = new LWP::UserAgent;

my $wwwb_url = ’http://’ . $http_server . ’:’
. $http_port . $html_page;

my $wwwb_request = new HTTP::Request $http_method => $wwwb_url;

my $wwwb_response = $wwwb_useragent->request($wwwb_request);

print $wwwb_response->as_string;

Let us go through the code in detail. It starts with the usual first line, fol-
lowed by the inclusion of two modules, strict and LWP::UserAgent. Although
this program works with the HTTP::Request and HTTP::Response modules,
there is no requirement to specify their use. The fact that LWP::UserAgent is
explicitly specified brings in the other classes. Remember: the LWP::UserAgent
acts as a layer between the application and the network service being pro-
grammed.

The LWPwwwb program can take up to four parameters at the command-line,
and these are assigned to four scalars if supplied, or set to default values if not.
Note that unlike wwwb, this version of the world’s worst Web browser provides a
mechanism to specify the protocol port to establish a connection with. The default
value for this scalar is 80, the well-known port for Web services. As will be seen in
a later section, Web services often operate on a protocol port-number other than
80, and LWPwwwb supports this behaviour.

The next line of code creates a user-agent object, and assigns it to a scalar called
$wwwb_useragent:

my $wwwb_useragent = new LWP::UserAgent;

Note the use of the object-oriented syntax for constructing an object of type
LWP::UserAgent. Although this looks a little strange, it is nothing more than
a call to the subroutine called new included with the LWP::UserAgent class. The
invocation of new results in the production of a LWP::UserAgent object, which
is then assigned to the $wwwb_useragent scalar. In Perl, objects are stored in
scalars and are a special type of reference.

The LWPwwwbLWPwwwbLWPwwwb Program 183

The URL for the resource is constructed from three of the four scalar values
initialized at the start of the program:

my $wwwb_url = ’http://’ . $http_server . ’:’
. $http_port . $html_page;

With the URL created, an HTTP::Request object is then created:

my $wwwb_request = new HTTP::Request $http_method => $wwwb_url;

Again, a call to a subroutine called new results in the production of another object,
this time of type HTTP::Request. The call to this new takes a named parameter,
which is identified by the $http_method scalar (which has a default value of ‘GET’)
and is set to the previously constructed URL, stored in the $wwwb_url scalar. The
created object is assigned to the $wwwb_request scalar.

Now that an HTTP::Request object exists, it can be used with an LWP::
UserAgent object to do something useful:

my $wwwb_response = $wwwb_useragent->request($wwwb_request);

The request method associated with the $wwwb_useragent object is invoked.
This subroutine sends the request contained in the $wwwb_request object to the
server. A response from the server is returned to the program and libwww-perl
uses the response to construct an HTTP::Response object, which is assigned
to the $wwwb_response scalar. The final line of code prints the contents of the
response to the screen in a format that mimics the original wwwb program:

print $wwwb_response->as_string;

The as_string subroutine (from the HTTP::Response class) prints both the
header-part and body-part of the response, which is what the world’s worst Web
browser does. Use this line of code when the header-part is all that is required:

print $wwwb_response->headers_as_string;

If only the body-part is of interest, use this line:

print $wwwb_response->content;

Here is the abridged output generated by LWPwwwb when invoked with no param-
eters from the Linux command-line:

HTTP/1.1 200 OK
Connection: close
Date: Tue, 22 May 2001 16:16:05 GMT
Accept-Ranges: bytes
Server: Apache/1.3.19 (Unix)
Vary: negotiate,accept-language,accept-charset
Content-Language: en
Content-Length: 1310

184 Protocols

Content-Location: index.html.en
Content-Type: text/html
ETag: "848e6-51e-3a689803;3b03acc7"
Expires: Tue, 22 May 2001 16:16:05 GMT
Last-Modified: Fri, 19 Jan 2001 19:39:47 GMT
Client-Date: Tue, 22 May 2001 16:16:05 GMT
Client-Peer: 127.0.0.1:80
TCN: choice
Title: Test Page for Apache Installation

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>
<HEAD>
<TITLE>Test Page for Apache Installation</TITLE>

.

.

.

<p>You are free to use the image below on an
Apache-powered Web server. Thanks for using Apache!</p>

<DIV ALIGN="CENTER"></DIV>

</BODY>
</HTML>

Referring back to the output generated by the original wwwb, LWPwwwb’s header-
part differs slightly.

This has to do with the fact that programs based on libwww-perl provide
more information to servers by default, and this results in the server providing
a slightly different header-part response. The HTTP::Response class also post-
processes the received response and adds some metadata to the header-part. As
the header-part is typically only of interest to programmers debugging web-based
applications, this particular strangeness is not something to worry about.

4.8 Doing More with LWPwwwb

The world’s worst Web browser remains the worst due to its inability to intelli-
gently process the response returned from the server (other than printing it to
the screen). To spice things up a little, let us extend LWPwwwb to post-process
the response received from the server. Specifically, code will be added to parse
any HTML received and extract hyperlinks and any associated textual descrip-
tion. To do this, LWPwwwb will take advantage of the facilities provided by the
HTML::Parser module, which was one of the modules installed as a result of
satisfying libwww-perl’s dependencies.

Doing More with LWPwwwbLWPwwwbLWPwwwb 185

4.8.1 Parsing HTML

The HTML::Parser module provides a framework within which documents writ-
ten in HTML can be parsed by a Perl program. Although complex, the module
is very powerful, and its authors11 have gone to great pains to ensure it can
work with the vast majority of HTML documents. The module itself is event
driven. By associating certain actions with certain occurrences (or events), a pro-
gram can arrange for specific processing to occur at specific points within an
HTML document. For example, a requirement might exist to print a message to
the screen when an anchor tag (<A>) is encountered. These event processors are
known as handlers and are nothing more than programmer-defined subroutines.
The HTML::Parser module provides a mechanism to associate subroutines with
events, then arranges to call the correct subroutine when the event occurs.

Rather than describe the HTML::Parser module in detail, let us look at a new
version of LWPwwwb which incorporates code to identify hyperlinks and any asso-
ciated textual description within a received HTML resource. This version of the
world’s worst Web browser is called parsewwwb.

The code starts as with LWPwwwb, but for the fact that the use of HTML::Parser
is specified:

#! /usr/bin/perl -w

use strict;
use LWP::UserAgent;
use HTML::Parser;

Next comes the definition of three subroutines (or event handlers, to use the lan-
guage of HTML::Parser). The first, print_dtext, is invoked whenever the parser
encounters some descriptive text associated with an HTML hyperlink. The subrou-
tine receives two parameters: a reference to a parser object and any descriptive
text. The text is simply printed to the screen with a short descriptive tag. Just how
the handler is set up will become clear in just a moment:

sub print_dtext {
my ($parser, $text) = @_;

print "text -> ", $text, "\n\n";
}

The next event handler, called end, is invoked whenever an end-tag is encoun-
tered (for example, the end-tag). The parsewwwb program is not interested
in what the end-tag actually is, only that the default text and end handlers are
undefined when an end-tag is encountered. This code stops the text and end
event handlers from over firing. To see what is meant by this, comment out the

11Gisle Aas and Michael A. Chase.

186 Protocols

two $parser->handler lines from this subroutine and compare the resulting
output with that generated by this correct version of the subroutine:

sub end {
my ($parser) = @_;

$parser->handler(text => undef);
$parser->handler(end => undef);

}

The code to set up print_dtext and end occurs within the next event handler,
called print_link.

Here is the code:

sub print_link {
my ($parser, $tag, $attr) = @_;

if ($tag eq ’a’)
{

print "link -> ", $attr->{href}, "\n";

$parser->handler(text => \&print_dtext, ’self,dtext’);
$parser->handler(end => \&end, ’self’);

}
}

This subroutine is called for every hyperlink embedded in the retrieved HTML
resource. It is invoked with three parameters: a reference to a parser object, an
HTML tag and a hash reference to any attributes associated with the HTML tag. If
the HTML tag is an anchor tag (i.e. <A>), the code prints the hyperlink stored in the
$attr->{href} hash entry. The code then calls the handler method associated
with the $parser object to ensure the print_dtext subroutine is invoked for any
associated descriptive text, and the end subroutine for the encountered end-tag.
In other words, this code tells the parser to react to these events when they occur
by calling the named subroutines.

With the event handlers defined, the program begins with eight lines of code that
are identical to those used in the LWPwwwb program. The facilities of libwww-perl
are used to send a request to a remote HTTP server and receive a response:

my $http_method = shift || ’GET’;
my $http_server = shift || ’localhost’;
my $html_page = shift || ’/index.html’;
my $http_port = shift || 80;

my $wwwb_useragent = new LWP::UserAgent;
my $wwwb_url = ’http://’ . $http_server . ’:’

. $http_port . $html_page;
my $wwwb_request = new HTTP::Request $http_method => $wwwb_url;
my $wwwb_response = $wwwb_useragent->request($wwwb_request);

Doing More with LWPwwwbLWPwwwbLWPwwwb 187

An HTML::Parser object is created, and a reference to the object is stored in the
$parser scalar:

my $parser = HTML::Parser->new(api_version => 3);

Note that the code requests version 3 of the HTML::ParserAPI. This is significant.
Version 3 of the HTML::Parser API works as described in this section: event
handlers are registered with the parser to react to events as they occur. The other
version of the API, version 2, works differently12. With version 2, the programmer
inherits from HTML::Parser and extends its functionality to do the parsing. This
tends to be a bit more involved than the version 3 API, and, as such, is somewhat
deprecated at this stage.

After displaying a brief message on screen, the code to parsewwwb contin-
ues with a call to the handler method associated with the $parser object to
invoke the print_link subroutine whenever the parser encounters the start of
an HTML tag. Note that a reference to the parser object (self), the tag encoun-
tered (tagname) and a hash reference containing the tag attributes (attr) are sent
as parameters to the print_link subroutine whenever it is called by the parser:

print "Parsing $http_server$html_page on port: $http_port:\n\n";

$parser->handler(start => \&print_link, ’self,tagname,attr’);

With the event handlers set up, the code starts the parser on its way by calling its
parsemethod. Passed as a single parameter is the HTTP response object retrieved
earlier, and stored in the $wwwb_response scalar. The HTTP response is sent to
the parser as a string, which is the entire HTTP response in textual form. The
parser takes the content of the response (HTML) and works its way through it,
calling print_link for each start tag encountered. When the parser is done, the
code calls the parser’s eof method to shut down the parser in an orderly manner,
and the program ends:

$parser->parse($wwwb_response->content);
$parser->eof;

print "\nDone.\n";

4.8.2 Some parsewwwb examples

To see parsewwwb in action, let us use it against a small selection of Web servers.
First up, the Linux Journal magazine homepage. This Linux command-line:

./parsewwwb GET www.linuxjournal.com

produces the following output:

12It is not clear from the HTML::Parser documentation what happened to version 1 of the API.

188 Protocols

Parsing www.linuxjournal.com/index.html on port: 80:

link -> http://noframes.linuxjournal.com
text -> http://noframes.linuxjournal.com

Done.

With all due respect to the good folk at Linux Journal, there is nothing too exciting
here, other than a single link to a ‘no frames’ version of their website. Both the
link and the descriptive text are identical.

Another ‘not too exciting’ website13 belongs to The Institute of Technology, Car-
low (IT Carlow). Here is the command-line to use:

./parsewwwb GET www.itcarlow.ie

which results in the following output:

Parsing www.itcarlow.ie/index.html on port: 80:

link -> indexRoll.html
link -> index2.html
link -> http://u.extreme-dm.com/?login=itcarlow
text ->

Done.

Note the absence of any associated textual description with this Web page’s hyper-
links. This is due to the fact that these links are in fact graphic links which have
no text associated with them. The third link is of some interest, as no graphic
link appears on screen when IT Carlow’s homepage is viewed within a standard
Web browser. A quick visit to the http://u.extreme-dm.com website confirms
that this website is used to track visits to sites on the Internet. It is reasonable to
assume that IT Carlow is interested in tracking visitors to its website and is using
the services of the http://u.extreme-dm.com website to do this.

The default Apache welcome page (when running on localhost) can be parsed
with this command-line:

./parsewwwb

which produces this list of links and descriptive text:

Parsing localhost/index.html on port: 80:

link -> manual/
text -> documentation

Done.

13From the perspective of the parsewwwb program, that is.

Doing More with LWPwwwbLWPwwwbLWPwwwb 189

As a follow-on, the Apache manual can be parsed with this command-line:

./parsewwwb GET pblinux.itcarlow.ie /manual/index.html

which produces a long list of links and descriptive text. Here is a small sample of
the output:

Parsing pblinux.itcarlow.ie/manual/index.html on port: 80:

link -> misc/FAQ.html
text -> FAQ

link -> mod/directives.html
text -> Directives

link -> mod/
text -> Modules

link -> http://www.apache.org/search.html
text -> Search

link -> new_features_1_3.html
text -> New Features in Version 1.3

.

.

.

link -> misc/FAQ.html
text -> Frequently Asked Questions

link -> misc/tutorials.html
text -> Tutorials

link -> misc/
text -> Other Notes

link -> http://httpd.apache.org/docs-project/
text -> Apache HTTP Server Documentation Project

Done.

4.8.3 The HTML::Parser examples

The HTML::Parser distribution includes a small set of example programs which
are worth studying. These can be found in the eg directory. A brief description of
each example program follows.

190 Protocols

hanchors – another implementation to the parsing code from the parsewwwb
program. Given a file containing HTML, this program displays any hyperlinks
and associated textual description.

hrefsub – provides a means of changing every hyperlink within a supplied HTML
document. This small program makes good use of Perl’s regular-expression
technology.

hstrip – provides a mechanism to remove any unwanted tags and attributes
from an HTML document.

htext – takes an HTML document and extracts all of the plain text contained
therein.

htextsub – provides a means of changing plain text within a supplied HTML
document.

htitle – a small program that prints out the title of any supplied HTML docu-
ment.

4.9 Building a Custom Web Server

The libwww-perl technology is primarily known as a client-side programming
library. Despite this, the distribution includes a fully functioning HTTP server
module, called HTTP::Daemon, which conforms to RFC 2068, the penultimate offi-
cial release of the HTTP/1.1 standard document. The HTTP::Daemon module can
be put to a number of uses, such as creating a simple, stand-alone HTTP server
or embedding an HTTP server in another application14.

The simplehttpd program is a simple, stand-alone HTTP server written to take
advantage of the functionality provided by HTTP::Daemon. This server – the code
to which is loosely based on the sample code from the HTTP::Daemon manual
page – only supports the GET method.

4.9.1 The custom Web server source code

Before working through the code in detail, here is the entire source:

#! /usr/bin/perl -w

use strict;

use POSIX ":sys_wait_h";

14An excellent example of a commercial product that uses this technique is the InterMapper net-
work management software. See the Web Resources section at the end of this chapter for more
information on InterMapper.

Building a Custom Web Server 191

use HTTP::Daemon;
use HTTP::Status;

use constant HTML_DEFAULT_PAGE => "index.html";

sub zombie_reaper {
while (waitpid(-1, WNOHANG) > 0)
{ }
$SIG{CHLD} = \&zombie_reaper;

}
$SIG{CHLD} = \&zombie_reaper;

sub continue_as_child {
my $http_client = shift;

while (my $service = $http_client->get_request)
{

my $request = $service->uri->path;

print $service->method, ": ", $request, " -> ";

if ($service->method eq ’GET’)
{

my $resource;

if ($request eq "/")
{

$resource = HTML_DEFAULT_PAGE;
}
else
{

$request =˜ m{ˆ[./]*(.*)};
$resource = $1;

}
print $resource, " -> ";
if (-e $resource)
{

$http_client->send_file_response($resource);
print "OK.";

}
else
{

$http_client->send_error(RC_NOT_FOUND);
print "NOT FOUND.";

}
}
else
{

$http_client->send_error(RC_METHOD_NOT_ALLOWED);
print "NOT OK.";

}

192 Protocols

print " Remote addr: ", $http_client->peerhost, "\n";
}

}

my $tcp_port = shift || 8080;

my $httpd = HTTP::Daemon->new(LocalPort => $tcp_port,
Reuse => 1)

|| die "simplehttpd: could not create HTTP daemon.\n";

print "\nListening for clients at: ", $httpd->url, "\n\n";

while (my $http_client = $httpd->accept)
{

my $child_pid = fork;

if ($child_pid)
{

next;
}
elsif (defined($child_pid))
{

continue_as_child($http_client);
exit;

}
else
{

print "simplehttpd: fork failed: $!\n";
}

}
continue
{

$http_client->close;
undef($http_client);

}

This program begins with the usual collection of statements. After specifying
strictness, the code specifies its intention to use the services of a collection of
modules: POSIX (required as this server is of the forking kind), HTTP::Daemon
and HTTP::Status. The latter module provides for the processing of HTTP status
codes:

#! /usr/bin/perl -w

use strict;

use POSIX ":sys_wait_h";

use HTTP::Daemon;
use HTTP::Status;

Building a Custom Web Server 193

This server retrieves and returns a file called index.html if none is specified by
the HTTP request. A simple constant definition supports this behaviour:

use constant HTML_DEFAULT_PAGE => "index.html";

As simplehttpd will support concurrency by forking clones of itself to deal with
each client connection, the usual zombie-reaping code is required to ensure the
parent process cleans up after itself:

sub zombie_reaper {
while (waitpid(-1, WNOHANG) > 0)
{ }
$SIG{CHLD} = \&zombie_reaper;

}
$SIG{CHLD} = \&zombie_reaper;

Next comes the code executed by the child process after a successful call to fork.
The continue_as_child subroutine starts by placing its single parameter, a ref-
erence to an object of type HTTP::Daemon::ClientConn, into the $http_client
scalar. The code then loops on a call to this object’s get_request method, which
creates an HTTP::Request object on the server with each iteration. A reference
to the request is stored in the $service scalar, which is then used to initialize
the $request scalar. A check is then performed to see if the HTTP request uses
the GET method:

sub continue_as_child {
my $http_client = shift;

while (my $service = $http_client->get_request)
{

my $request = $service->uri->path;

print $service->method, ": ", $request, " -> ";

if ($service->method eq ’GET’)
{

Prior to servicing the request, simplehttpd pre-processes it. If the HTTP request
attempts to access root, the server sets the value of the $resource scalar to
index.html. Otherwise, the HTTP request is stripped of any leading dots and
slashes and is assigned to $resource prior to processing:

my $resource;

if ($request eq "/")
{

$resource = HTML_DEFAULT_PAGE;
}
else

194 Protocols

{
$request =˜ m{ˆ[./]*(.*)};
$resource = $1;

}
print $resource, " -> ";

The code to strip leading dots and slashes from the request URL requires further
explanation.

The stripping is accomplished by the strange looking regular-expression pat-
tern-matching code in the else part of the conditional statement. The pattern to
match is delimited by the m{ and } tokens. The pattern starts matching at the
beginning of the line (ˆ), and matches zero or more leading dots and slashes
([./]*). If a match is made, the rest of the line ((.*)) is remembered by the
regular expression engine and placed (by Perl) into the $1 scalar, which then gets
assigned to $resource.

The reason for this code becomes clear when it is considered that the HTTP
server retrieves a resource (most likely a disk-file) from its local storage and
returns it to the connected Web client. If a client was to send /etc/passwd as
the requested URL, it is inappropriate for the HTTP server to locate the password
file from its local storage and send it to the client. So, simplehttpd attempts
to sanitize the request by removing leading dots and slashes from the request.
If the request is for /etc/passwd, ../../../etc/passwd, ////etc/passwd or
../etc/passwd, the pattern matching code sanitizes the request to etc/passwd,
which forces the server to look for the file relative to the directory the program
is running from. Although not foolproof, this should thwart most crackers.

The code then checks to see if the sanitized resource actually exists as a disk-file
on its local storage. If it does, the send_file_response method associated with
the $http_client object is sent the value of $resource and this has the effect
of retrieving the disk-file and sending it to the Web client as an HTTP response.
If the disk-file does not exist, the code uses the send_error method to send the
appropriate HTTP status code to the client:

if (-e $resource)
{

$http_client->send_file_response($resource);
print "OK.";

}
else
{

$http_client->send_error(RC_NOT_FOUND);
print "NOT FOUND.";

}

The continue_as_child subroutine concludes with code that executes if the
HTTP request method is something other than GET:

Building a Custom Web Server 195

}
else
{

$http_client->send_error(RC_METHOD_NOT_ALLOWED);
print "NOT OK.";

}
print " Remote addr: ", $http_client->peerhost, "\n";

}
}

Throughout this subroutine, the inbuilt print subroutine is used to incrementally
display a descriptive message to the server’s screen as a result of simplehttpd
servicing HTTP requests.

The code to simplehttpd proper then starts by assigning a protocol port-
number to the $tcp_port scalar. If the simplehttpd program was invoked with
a numeric command-line argument, the value is used to initialize the scalar. Oth-
erwise the protocol port-number if set to 8080, a common alternative (but not
well-known) protocol port-number for Web services. Note that a program that
attempts to bind to a well-known port-number can only do so if operating with
superuser privilege15:

my $tcp_port = shift || 8080;

The HTTP::Daemon class is a subclass of the standard IO::Socket::INET class,
and is constructed in the familiar way, assigning the resulting socket object to a
scalar called $httpd:

my $httpd = HTTP::Daemon->new(LocalPort => $tcp_port,
Reuse => 1)

|| die "simplehttpd: could not create HTTP daemon.\n";

print "\nListening for clients at: ", $httpd->url, "\n\n";

There is nothing exceptional about the rest of the code, as simplehttpd con-
forms to the standard forking server model from the previous chapter. A call is
made to the accept method associated with the HTTP::Daemon object, result-
ing in the creation of an object of type HTTP::Daemon::ClientConn. The code
then forks, with the child process invoking continue_as_child and the parent
process starting another loop iteration by calling next. The code runs forever, or
until killed by the operating system:

while (my $http_client = $httpd->accept)
{

my $child_pid = fork;

15On Linux and UNIX-like systems, that is. The same restriction does not apply to other popular
PC-based operating systems.

196 Protocols

if ($child_pid)
{

next;
}
elsif (defined($child_pid))
{

continue_as_child($http_client);
exit;

}
else
{

print "simplehttpd: fork failed: $!\n";
}

}
continue
{

$http_client->close;
undef($http_client);

}

4.9.2 The custom Web server in action

The simplehttpd Web server can be started from the command-line as follows:

./simplehttpd

An optional numeric argument can be provided on the command-line when a
requirement exists to operate at a protocol port-number other than the default of
8080. A message will appear on screen similar to the following:

Listening for clients at: http://pblinux.itcarlow.ie:8080/

For each connection on protocol port-number 8080, the server displays a status
line. Here is some sample output:

GET: /index.html -> index.html -> OK. Remote addr: 149.153.100.104
GET: /simplehttpd -> simplehttpd -> OK. Remote addr: 149.153.100.65
GET: /etc/passwd -> etc/passwd -> NOT FOUND. Remote addr: 149.153.1.5
POST: /test.html -> NOT OK. Remote addr: 149.153.100.23
GET: /test.html -> test.html -> OK. Remote addr: 149.153.100.23

The status line identifies the HTTP method requested, the request URL together
with its sanitized equivalent, the request result (OK, NOT OK, etc.) and the IP
address of the remote Web client. With the simplehttpd server running, any
browser (even the world’s worst) can be used to interact with it. Here is how to
request the server’s index.html file using the LWPwwwb program:

./LWPwwwb GET pblinux.itcarlow.ie /index.html 8080

The libnetlibnetlibnet Library 197

And here is the output displayed by LWPwwwb:

HTTP/1.1 200 OK
Date: Tue, 29 May 2001 19:41:37 GMT
Server: libwww-perl-daemon/1.24
Content-Length: 590
Content-Type: text/html
Last-Modified: Tue, 29 May 2001 05:34:04 GMT
Client-Date: Tue, 29 May 2001 19:41:37 GMT
Client-Peer: 149.153.100.66:8080
Title: This is the simplehttpd server

<HTML>
<HEAD>
<TITLE>This is the simplehttpd server</TITLE>

</HEAD>

<BODY>
<H1>Welcome</H1>
This is the simplehttpd test page.
Not too exciting, but it does the job.
<H2>More Information</H2>
To find out more about simplehttpd,
check out a great book

at this location.
You can email the author at this
email address.
<P>There’s nothing quite like a little bit
of self-promotion. :-) </P>

</BODY>
</HTML>

The header-part of the response identifies the server as libwww-perl-daemon/
1.24, and not simplehttpd. Credit where credit’s due.

The simplehttpd server can interact with any of the brand-name commer-
cial Web browsers. When operating at protocol port-number 8080 on network
device pbmac.itcarlow.ie, a user of a brand-name Web browser would type
‘http://pbmac.itcarlow.ie:8080/’ into their browser’s location or address
box. Refer to the exercises at the end of this chapter for suggestions as to how
simplehttpd can be extended with additional features.

4.10 The libnet Library

Graham Barr’s libnet library provides solid support for a collection of the most
popular pre-Web Internet protocols. The protocols supported in individual mod-
ules, and bundled in the library, are as follows.

198 Protocols

FTP – the File Transfer Protocol as defined in RFC 959 and implemented in the
Net::FTP module.

SMTP – the Simple Mail Transfer Protocol as defined in RFC 821 and implemented
in the Net::SMTP module.

Daytime/Time – as defined in RFC 867 and RFC 868 and implemented in the
Net::Time module.

NNTP – the Network News Transfer Protocol as defined in RFC 977 and imple-
mented in the Net::NNTP module.

POP3 – the Post Office Protocol, Version 3 as defined in RFC 1939 and implemented
in the Net::POP3 module.

SNPP – the Simple Network Pager Protocol as defined in RFC 1861 and imple-
mented in the Net::SNPP module.

All of these modules inherit from the Net::Cmd module, which is also part of the
libnet library. Net::Cmd is an abstract base class. This means that the module
cannot be used directly by application programmers, but it can form the basis of
another module that turns its abstract functionality into something concrete. As
all of the other libnet modules inherit from Net::Cmd (which itself inherits from
the standard IO::Handle module), they all exhibit a shared set of characteristics
and a common API.

To provide a feel for how the libnet modules work, a small Usenet news
reading program will be developed to take advantage of the API provided by the
Net::NNTP module.

4.10.1 Working with Usenet

The nws program provides a simple and quick method for reading Usenet news
articles. From the command-line, the user provides the Internet name of the server
to contact (and optionally, if required, a valid user-id and password). Once an
NNTP connection is established with the remote server, nws asks the user to
specify a newsgroup to ‘read’. If the newsgroup exists, nws queries the server
to provide the first and last article numbers currently available on the server for
the specified newsgroup. The user then has the option of changing these values
if desired, before nws starts retrieving and displaying the articles, newest first.
With each article, the user has the option of reading the article, skipping to the
next article or quitting nws and returning to the operating system’s command-line
prompt.

The libnetlibnetlibnet Library 199

4.10.2 The news reading source code

As with the discussion of simplehttpd, the entire source code to nws is shown
here prior to providing a detailed description of its functionality. Here is the
code:

#! /usr/bin/perl -w

use strict;
use Net::NNTP;

$| = 1;

my $the_server = shift;
my $userid = shift;
my $passwd = shift;

my $server = Net::NNTP->new($the_server)
or die "nws: Can’t connect to server: $@\n";

$server->authinfo($userid, $passwd) if defined($userid);

my ($group_to_check, $n, $f, $l, $g);

while (do {
print "\nGroup: ";
$group_to_check = <STDIN>;
chomp($group_to_check);
eval
{

($n, $f, $l, $g) =
$server->group($group_to_check)

or die "No group: $group_to_check\n";
};
if ($@) { 1; };

})
{

print "\nGroup not found: $group_to_check: try another.";
}

print "\nNumber of articles:\t$n\n";
print "Value of first:\t\t$f\n";
print "Value of last:\t\t$l\n";

print "\nEnter start of range: ";
my $start = <STDIN>;
print "\nEnter end of range: ";
my $end = <STDIN>;

200 Protocols

chomp($start);
chomp($end);

if ($start eq ’’) { $start = $f; }
if ($end eq ’’) { $end = $l; }

print "\nProcessing this range: $end to $start ... \n";

for (my $i = $end; $i >= $start; --$i)
{

my $filename = ’art’ . $i;

my ($header, $bodytext);

eval
{

$header = $server->head($i)
or die "Can’t get header from article $i in $g\n";

};
if ($@) { next; }

print "\n";
foreach my $line (@{$header})
{

print $line if $line =˜ /ˆFrom/;
print $line if $line =˜ /ˆDate/;
print $line if $line =˜ /ˆLines/;
print $line if $line =˜ /ˆSubject/;

}
print "Get article $i? (y/n/q): ";
my $yorn = <STDIN>;
chomp($yorn);

if ($yorn eq ’q’)
{

last;
}

if ($yorn eq ’y’)
{

eval
{

$bodytext = $server->body($i)
or die "Can’t get body from $i in $g\n";

};
if ($@) { next; }

open OUTARTFILE, ">$filename" or
die "Could not open $filename: $@\n";

The libnetlibnetlibnet Library 201

print OUTARTFILE @{$bodytext};
close OUTARTFILE;

my $cmd = ’less ’ . $filename;

system($cmd);
}

}

$server->quit;

print "\nDone.\n";

After switching on strictness, the nws program uses the Net::NNTP module,
enables autoflushing on standard output by setting $|, then initializes three scalar
variables. The name of the NNTP server to establish communication with is stored
in the $the_server scalar, and any supplied username and password are stored
in $userid and $passwd:

#! /usr/bin/perl -w

use strict;
use Net::NNTP;

$| = 1;

my $the_server = shift;
my $userid = shift;
my $passwd = shift;

The value of $the_server is passed to the Net::NNTP module’s new method.
This method will attempt to establish an NNTP connection with the named server
and, if successful, return a Net::NNTP server object to the program. The server
object is assigned to the $server scalar. If a value for $userid was provided on
the command-line, the authinfo method associated with the $server object is
invoked, ensuring that authentication is performed as necessary:

my $server = Net::NNTP->new($the_server)
or die "nws: Can’t connect to server: $@\n";

$server->authinfo($userid, $passwd) if defined($userid);

Five scalars are then declared to be lexically scoped:

my ($group_to_check, $n, $f, $l, $g);

The scalars are as follows.

$group_to_check – the name of the Usenet newsgroup to work with. The user
is asked to interactively provide this value.

202 Protocols

$n – the number of articles associated with the newsgroup on the server.

$f – the number of the first article associated with the newsgroup available for
retrieval from the server.

$l – the number of the last article associated with the newsgroup available for
retrieval from the server.

$g – the name of the newsgroup (as reported by the remote server).

With the scalars declared, a while loop ensures that nws does not continue
until the user enters the name of a valid Usenet newsgroup currently available on
the remote server:

while (do {
print "\nGroup: ";
$group_to_check = <STDIN>;
chomp($group_to_check);
eval
{

($n, $f, $l, $s) =
$server->group($group_to_check)

or die "No group: $group_to_check\n";
};
if ($@) { 1; };

})
{

print "\nGroup not found: $group_to_check: try another.";
}

If this code looks strange, don’t worry, it is. For starters, the condition-part of
the while loop is in fact a collection of statements contained within a single do.
The do subroutine in Perl allows a group of statements to be treated as one, and
arranges for the value of do to be the result of the last executed statement within
the block. The last statement in this do block is:

if ($@) { 1; };

which will return a true value if the $@ built-in variable is defined. The $@ scalar
is defined if the most recent invocation of eval failed. This only happens if the
call to the $server object’s group method fails. Note that the single parameter
to the group method, a scalar called $group_to_check, gets its value as a result
of asking the user to enter the name of a newsgroup to check. The call to chomp
removes any trailing newline from the $group_to_check scalar. If the call to do
returns false, the body of the while loop executes and the user is asked to try
another newsgroup name. If do returns true, the while loop ends, and nws con-
tinues safe in the knowledge that the requested newsgroup exists on the remote
NNTP server.

The next collection of lines displays the statistics about the newsgroup to the
user and provides a means of adjusting the first and last article numbers. If

The libnetlibnetlibnet Library 203

the user decides not to enter values for the start and end of the range of arti-
cle numbers, two if statements set the $start and $end scalars to $f and $l,
respectively. A short message then informs the user that nws is processing the
articles in the newsgroup starting with the most recent article and working back-
wards:

print "\nNumber of articles:\t$n\n";
print "Value of first:\t\t$f\n";
print "Value of last:\t\t$l\n";

print "\nEnter start of range: ";
my $start = <STDIN>;
print "\nEnter end of range: ";
my $end = <STDIN>;

chomp($start);
chomp($end);

if ($start eq ’’) { $start = $f; }
if ($end eq ’’) { $end = $l; }

print "\nProcessing this range: $end to $start ... \n";

Another loop is entered, this time a for statement, which starts at the article
numbered $end and works down to the article numbered $start, decrementing
the value of the loop index ($i) with each iteration:

for (my $i = $end; $i >= $start; --$i)
{

A $filename is created as a concatenation of the string ‘art’ and the number
of the current article being processed (which is stored in the $i loop index).
After declaring scalars to hold the article’s header-part ($header) and body-part
($bodytext), a call to the head method associated with the $server object is
made within an eval block. Note that head has the current article number passed
as a single parameter. If the call to head succeeds, the $header scalar contain a
reference to an array of header-lines. If the call to head fails, the code dies16, eval
sets the $@ built-in variable and the code starts the next loop iteration:

my $filename = ’art’ . $i;

my ($header, $bodytext);

eval
{

$header = $server->head($i)

16Remember: within an eval block, when die is invoked, only the evaluated block of codes dies,
not the entire program.

204 Protocols

or die "Can’t get header from article $i in $g\n";
};
if ($@) { next; }

After a successful call to the head method, the code loops through the array
referred to by the $header scalar. The current header-line is printed to the screen
if it contains the word ‘From’, ‘Date’, ‘Lines’ or ‘Subject’ at the start of the header-
line. When the entire array has been processed, a short message asks the user if
the current article is to be retrieved, and the user’s input is read from the keyboard
(<STDIN>) and used to initialize the $yorn scalar (which is then chomped):

print "\n";
foreach my $line (@{$header})
{

print $line if $line =˜ /ˆFrom/;
print $line if $line =˜ /ˆDate/;
print $line if $line =˜ /ˆLines/;
print $line if $line =˜ /ˆSubject/;

}
print "Get article $i? (y/n/q): ";
my $yorn = <STDIN>;
chomp($yorn);

If the user entered ‘q’, the program exits from the loop by calling last:

if ($yorn eq ’q’)
{

last;
}

If the user entered ‘y’, a call to the body method associated with the $server
object is made (with the current article number, still stored in $i, as the sole
parameter). As with the call to head, the call to body occurs within an eval block.
If the call to body succeeds, the $bodytext scalar contain a reference to an array
of body-lines. If the call to body fails, the code dies, eval sets the $@ built-in
variable and the code starts the next loop iteration:

if ($yorn eq ’y’)
{

eval
{

$bodytext = $server->body($i)
or die "Can’t get body from $i in $g\n";

};
if ($@) { next; }

The text of the current article, stored in the array referenced by $bodytext is
then written to a disk-file. Standard input/output code opens a disk-file called
$filename and writes the body-lines to it:

Email Enabling simplehttpdsimplehttpdsimplehttpd 205

open OUTARTFILE, ">$filename" or
die "Could not open $filename: $@\n";

print OUTARTFILE @{$bodytext};
close OUTARTFILE;

The loops ends with the construction of a Linux command-line, concatenating
the string ‘less’ with the value of $filename. The nws program then asks the
underlying operating system to execute the command-line by sending it to the
inbuilt system subroutine:

my $cmd = ’less ’ . $filename;
system($cmd);

}

This causes the standard Linux less program to display the contents of the arti-
cle’s body-lines one screen at a time17.

Once the for loop terminates (as a result of the user either pressing ‘q’ when
prompted or the program running out of articles), a call is made to the quit
method associated with the $server object, which ensures the connection to the
remote NNTP server is shutdown in an orderly way:

}
$server->quit;

print "\nDone.\n";

4.11 Email Enabling simplehttpd

Let us extend the simplehttpd Web server to send an email message whenever an
invalid HTTP request is received from a browser. As logging methods go, gener-
ating an individual email message for every malformed HTTP request received by
the server is somewhat excessive behaviour. Typically, such information would be
logged to a disk-file for later perusal by the Web server administrator. However,
this technique serves your author’s purpose in demonstrating how to automati-
cally generate email messages with Perl.

4.11.1 The simple mail transfer protocol

On the Internet, the Simple Mail Transfer Protocol (SMTP) is used to transfer text
messages from mail system to mail system. SMTP is defined in RFC 821 and sup-
port for programming the protocol with Perl is provided by the Net::SMTPmodule
(which is part of the libnet library).

17If less is not installed on your Linux system, use the more command instead. If more is not
installed on your Linux system, use cat. If cat is not installed on your Linux system, you are not
using Linux!

206 Protocols

As networking protocols go, SMTP is remarkably straightforward. A sender
establishes a reliable connection with a recipient mail system (or an intermediate
relay), then converses with the mail system using a small set of SMTP commands.
Critically, these commands enable the sender to identify the recipient(s) of the
message, as well as transfer the email message as plain 7 bit ASCII text. When the
message is transferred to the server, the reliable connection is closed.

Rather than describe the SMTP commands in detail, let us look at extracts from a
NetDebug packet capture of the traffic generated as a result of an email user-agent
and SMTP server communicating.

The user-agent is running on pbmac.itcarlow.ie, with an IP address of
149.153.100.65. The SMTP server is hosted by pat.itcarlow.ie, which has
an IP address of 149.153.100.8.

The conversation begins with the user-agent establishing a reliable TCP connec-
tion with the SMTP server, to which the server replies:

- -
149.153.100.8 -> 149.153.100.65 (id: 57624, ttl: 128)

TCP Source: 25 -> TCP Destination: 1128
TCP Header Length: 5, TCP Checksum: 55369
TCP Data:

220 PAT Mercury 1.48 ESMTP server ready.ˆM
- -

This extract shows the server using the well-known TCP protocol port-number of
25 for SMTP. The response includes a three-digit reply-code (220) together with a
human-readable message (‘PAT Mercury 1.48 ESMTP server ready.’)18. With
this reply, the server is indicating that it understands the extended services of
SMTP, as defined in RFC 1869.

The user-agent introduces itself to the server by sending its Internet domain
name as a parameter to the EHLO command:

- -
149.153.100.65 -> 149.153.100.8 (id: 1871, ttl: 64)

TCP Source: 1128 -> TCP Destination: 25
TCP Header Length: 5, TCP Checksum: 15266
TCP Data:

EHLO itcarlow.ieˆM
- -

The server responds with a 250 reply-code and message, indicating it supports a
small number of extended SMTP commands (TIME and HELP):

18Note that ˆM corresponds to the ASCII representation of the captured new-line character.

Email Enabling simplehttpdsimplehttpdsimplehttpd 207

- -
149.153.100.8 -> 149.153.100.65 (id: 57880, ttl: 128)

TCP Source: 25 -> TCP Destination: 1128
TCP Header Length: 5, TCP Checksum: 62996
TCP Data:

250-PAT Hello itcarlow.ie; ESMTPs are:ˆM
250-TIMEˆM
250 HELPˆM
- -

The user-agent sends the sender’s address (paul.barry@itcarlow.ie) using the
MAIL command, and the server responds by accepting the sender (reply-code 250),
then asking for a list of recipients:

- -
149.153.100.65 -> 149.153.100.8 (id: 1873, ttl: 64)

TCP Source: 1128 -> TCP Destination: 25
TCP Header Length: 5, TCP Checksum: 7989
TCP Data:

MAIL FROM:<paul.barry@itcarlow.ie>ˆM
- -
149.153.100.8 -> 149.153.100.65 (id: 58392, ttl: 128)

TCP Source: 25 -> TCP Destination: 1128
TCP Header Length: 5, TCP Checksum: 36521
TCP Data:

250 Sender OK - send RCPTs.ˆM
- -

There is only one recipient for this email (test.user@itcarlow.ie), and the
user-agent sends this address to the server with the RCPT command. The SMTP
server indicates its acceptance of the recipient’s email address, again with the 250
reply-code. After accepting the recipient, the server indicates that it is willing to
either accept more recipients (if there are any) or the data that make up the email
message:

- -
149.153.100.65 -> 149.153.100.8 (id: 1874, ttl: 64)

TCP Source: 1128 -> TCP Destination: 25
TCP Header Length: 5, TCP Checksum: 25389
TCP Data:

RCPT TO:<test.user@itcarlow.ie>ˆM

208 Protocols

- -
149.153.100.8 -> 149.153.100.65 (id: 58648, ttl: 128)

TCP Source: 25 -> TCP Destination: 1128
TCP Header Length: 5, TCP Checksum: 49474
TCP Data:

250 Recipient OK - send RCPT or DATA.ˆM
+
- -

To this query, the user-agent responds with a DATA command, indicating that
the list of recipients is complete and that it is now ready to send the text of the
message:

- -
149.153.100.65 -> 149.153.100.8 (id: 1875, ttl: 64)

TCP Source: 1128 -> TCP Destination: 25
TCP Header Length: 5, TCP Checksum: 30509
TCP Data:

DATAˆM
- -

The SMTP server responds positively with a 354 reply-code, which indicates to
the user-agent that the data can now be sent. Note the server’s insistence that the
text message end with a single dot character on a line of its own (the CRLF.CRLF
sequence):

- -
149.153.100.8 -> 149.153.100.65 (id: 58904, ttl: 128)

TCP Source: 25 -> TCP Destination: 1128
TCP Header Length: 5, TCP Checksum: 63950
TCP Data:

354 OK, send data, end with CRLF.CRLFˆM
- -

Upon receipt of the 354 reply-code, the user-agent promptly sends the message
(which is formatted to comply with RFC 822, the standard format for Internet text
messages). Note the inclusion of the dot character on a line of its own at the end
of the message:

- -
149.153.100.65 -> 149.153.100.8 (id: 1877, ttl: 64)

TCP Source: 1128 -> TCP Destination: 25
TCP Header Length: 5, TCP Checksum: 53249
TCP Data:

Email Enabling simplehttpdsimplehttpdsimplehttpd 209

Message-ID: <3BE7B5A0.AC5DE93B@itcarlow.ie>ˆM
Date: Tue, 06 Nov 2001 10:04:16 +0000ˆM
From: Paul Barry <paul.barry@itcarlow.ie>ˆM
Reply-To: paul.barry@itcarlow.ieˆM
Organization: IT CarlowˆM
X-Mailer: Mozilla 4.73 [en] (X11; I; Linux 2.2.18-4hpmac ppc)ˆM
X-Accept-Language: enˆM
MIME-Version: 1.0ˆM
To: test.user@itcarlow.ieˆM
Subject: Capturing SMTP Traffic with NetDebugˆM
Content-Type: text/plain; charset=us-asciiˆM
Content-Transfer-Encoding: 7bitˆM
ˆM
Hi!ˆM
ˆM
Here it is. A simple test message for NetDebug to capture.ˆM
This will be used when explaining SMTP in Chapter 4 ofˆM
Programming the Network with Perl.ˆM
ˆM
Paul.ˆM
--ˆM
Paul Barry, Lecturer, IT Carlow, Ireland.ˆM
email: paul.barry@itcarlow.ieˆM
.ˆM
- -

Upon receipt of the CRLF.CRLF sequence, the server indicates that the data were
properly received (with another 250 reply-code):

- -
149.153.100.8 -> 149.153.100.65 (id: 59672, ttl: 128)

TCP Source: 25 -> TCP Destination: 1128
TCP Header Length: 5, TCP Checksum: 4410
TCP Data:

250 Data received OK.ˆM
- -

Satisfied the text message is now sent, the user-agent requests the termination of
the reliable connection with the QUIT command. The server responds with a 221
reply-code, and the connection is closed:

- -
149.153.100.65 -> 149.153.100.8 (id: 1878, ttl: 64)

TCP Source: 1128 -> TCP Destination: 25
TCP Header Length: 5, TCP Checksum: 29169
TCP Data:

QUITˆM

210 Protocols

- -
149.153.100.8 -> 149.153.100.65 (id: 60184, ttl: 128)

TCP Source: 25 -> TCP Destination: 1128
TCP Header Length: 5, TCP Checksum: 36182
TCP Data:

221 PAT Service closing channel.ˆM
- -

Although by no means complete, this description of SMTP provides enough details
for any competent Sockets programmer to develop a simple Internet mailer. How-
ever, for the Perl programmer, the requirement to resort to directly programming
the Socket API can be avoided by the use of the Net::SMTP module.

4.11.2 The Net::SMTP module

The Net::SMTP module provides an object-oriented client interface to the SMTP
and ESMTP protocols. Once an object of type Net::SMTP is created (by calling its
new constructor), a collection of methods (whose names closely match those of
the SMTP commands) are invoked to interact with the SMTP server.

Those methods which match the SMTP commands identified as a result of the
NetDebug packet capture are as follows.

hello – uses EHLO to announce the sender’s domain name to the SMTP server.
This method is rarely called directly, as Net::SMTP invokes hello automat-
ically upon creation of the object.

mail – uses the MAIL command to send the email address of the sender to the
SMTP server.

recipient – uses RCPT to identify the intended recipient(s) of the text message.
Other versions of this method (providing similar functionality) are: to, cc
and bcc.

data – uses the DATA command to initiate the start of the send of the text mes-
sage. This method is also used to send the text message to the server. How-
ever, it is more common to use the datasend and dataend methods (inher-
ited from the Net::Cmd module) to do this.

quit – sends the QUIT command to the server, effectively closing the connection.

Other Net::SMTP methods include banner, domain, etrn, expand, help, send,
send_or_mail, send_and_mail, reset and verify. Refer to the Net::SMTP doc-
umentation for more details.

Email Enabling simplehttpdsimplehttpdsimplehttpd 211

4.11.3 Creating simplehttp2d

To add email logging facilities to simplehttpd, a subroutine called email_log is
defined. This subroutine takes three parameters:

$method – the value of the HTTP request method (e.g. GET or POST);

$resource – the name of the resource requested (e.g. a valid URL);

$peerhost – the IP address of the browser making the request (in dotted-decimal
format).

This new version of simplehttpd (which is called simplehttp2d) has code
changes in a number of places. Specifically, the code within the continue_as_
child subroutine that displays the diagnostic messages to the server’s screen
now needs to call the email_log subroutine, as follows:

else
{

$http_client->send_error(RC_NOT_FOUND);
print "NOT FOUND.";
eval {

email_log($service->method,
$resource,

$http_client->peerhost);
};

}
}
else
{

$http_client->send_error(RC_METHOD_NOT_ALLOWED);
print "NOT OK.";
eval {

email_log($service->method,
$request,

$http_client->peerhost);
};

}
print " Remote addr: ", $http_client->peerhost, "\n";

The two calls to the email_log subroutine include the three required parameters,
and are enclosed within eval blocks. This is due to the fact that the email_log
subroutine can result in a call to the inbuilt die subroutine, and it is inappropriate
for the simplehttp2d Web server to die whenever there is a problem with its
email subsystem. Using eval in this way provides a mechanism for simplehttp2d
to recover from an otherwise fatal error in the email_log subroutine.

At the top of the simplehttp2d code, the Net::SMTP module is used, and three
(self-explanatory) constants are defined:

212 Protocols

use Net::SMTP;

use constant SMTP_SERVER => ’pat.itcarlow.ie’;

use constant SMTP_TO => ’web.admin@itcarlow.ie’;
use constant SMTP_FROM => ’simplehttp2d@itcarlow.ie’;

The email_log subroutine is then defined, and it begins by assigning the three
required parameters to lexical scalars. An object of type Net::SMTP is then cre-
ated. At this point, the SMTP server has been contacted and the sender has been
announced to it (with an EHLO command):

sub email_log {
my ($method, $resource, $peerhost) = @_;

my $email = Net::SMTP->new(SMTP_SERVER)
or die "Could not create SMTP object.\n";

If all is well, a reliable connection now exists between simplehttp2d and the
SMTP server. If this is not the case, the call to die aborts the production of the
text message. It is this call to die that the eval blocks protect against in the
simplehttp2d code.

Two method invocations follow (mail and to), resulting in the SMTP server
being told the email address of the sender and the recipient. A single call to the
data method then indicates to the server that the text of the message is about to
be sent:

$email->mail(SMTP_FROM);
$email->to(SMTP_TO);
$email->data;

It is possible to pass a reference to an array containing the text message to be
sent to the server (as a parameter to the data method). However, it is often more
convenient to send smaller chunks of data, and this is possible using the datasend
method, as follows:

$email->datasend("To: ", SMTP_TO, "\n");
$email->datasend("From: ", SMTP_FROM, "\n");
$email->datasend("Subject: Message from simplehttp2d\n");
$email->datasend("\n");
$email->datasend("The following request could not be ");
$email->datasend("satisfied:\n\n");
$email->datasend(" Remote user: $peerhost\n");
$email->datasend(" Method: $method\n");
$email->datasend(" Resource: $resource\n");

Each individual line of this RFC 822-formatted text message is sent to the server
by the datasend method. Note how the text message has two parts: a header-
part, consisting of a collection of name/value pairings (the : character separates

Other Networking Add-On Modules 213

the name from its associated value), and a body-part, consisting of the actual text
of the email message. The header-part and body-part are separated by a single
blank line. The body-part includes the values of the three scalars passed to the
email_log subroutine.

To complete the transfer of the message, simplehttp2d sends the CRLF.CRLF
sequence to the server by invoking the dataendmethod. A call to the quitmethod
informs the server that simplehttp2d is done, and requests that the reliable
connection be closed:

$email->dataend;
$email->quit;

}

And that is it. The simplehttp2d Web server now sends an email message to the
web.admin@itcarlow.ie email address every time a malformed HTTP request is
processed.

The simplehttpd Web server can be further extended in any number of inter-
esting ways. Refer to the Exercises at the end of this chapter for some suggestions.

4.12 Other Networking Add-On Modules

The Perl community has its fair share of talented programmers, and some of them
have been hard at work writing networking add-on modules for the language. In
addition to the add-on modules already discussed in Programming the Network
with Perl, CPAN contains a large and growing collection of interesting modules.
One final example presents a small program written to take advantage of the
Net::Telnet module developed by Jay Rogers.

As the name suggests, Net::Telnet provides a mechanism to communicate
with remote systems using the standard TELNET protocol, as defined in RFC 854.
Rather than require the user to interactively operate some terminal emulation
software, Net::Telnet allows the programmer to program (or script) the inter-
active session.

4.12.1 Installing Net::Telnet

Download the module from CPAN then issue the following commands at the Linux
command-line to install and test Net::Telnet:

gunzip Net-Telnet-3.02.tar.gz
tar xvf Net-Telnet-3.02.tar
cd Net-Telnet-3.02
perl Makefile.PL
make
make test

214 Protocols

su
make install
<ctrl-D>
man Net::Telnet
perl -e ’use Net::Telnet’

4.12.2 A Net::Telnet example

A requirement exists to quickly and easily determine the names of users currently
logged into a collection of computers running the Linux operating system. Rather
than require an overworked system administrator to manually connect to each
system and issue the who command from the command-line (thus generating a
list of users), a small program based on Net::Telnet automates the process.
Here is the source code to the program, called multiwho:

#! /usr/bin/perl -w

use strict;
use Net::Telnet ();

sub do_who {
my ($telnet_host, $userid, $passwd) = @_;

my $telnet_obj = new Net::Telnet ();

$telnet_obj->open($telnet_host);
$telnet_obj->login($userid, $passwd);

my @who_list = $telnet_obj->cmd("/usr/bin/who");

$telnet_obj->close;

$#who_list = $#who_list - 1;

return @who_list;
}

my @list;

@list = do_who(’linux303’, ’barryp’, ’passwordhere’);
@list = (@list, do_who(’149.153.103.15’,

’barryp’, ’passwordhere’));
@list = (@list, do_who(’glasnost’, ’barryp’, ’passwordhere’));

print "@list\n";

The program begins in the usual manner: strictness is specified and the required
modules are used (in this case, only the Net::Telnet module is needed). Next
comes a subroutine, called do_who, which does all the work. Here is the first half
of this subroutine:

Other Networking Add-On Modules 215

sub do_who {
my ($telnet_host, $userid, $passwd) = @_;

my $telnet_obj = new Net::Telnet ();

$telnet_obj->open($telnet_host);
$telnet_obj->login($userid, $passwd);

The subroutine takes three parameters:

$telnet_host – the IP name or IP address of the remote computer to establish
a TELNET session with;

$userid – the user-id to log in as;

$passwd – the password to use.

An object of type Net::Telnet is then constructed as a result of calling the
module’s new method, and a reference to the created object is stored in the
$telnet_obj scalar variable. A TELNET session is then established with the
remote computer by calling two methods associated with the object: open estab-
lishes a reliable TCP connection to the TELNET port19 on the remote computer,
and login authenticates using the supplied user-id and password.

With the TELNET connection established and authenticated, the subroutine con-
tinues. Here is the second half:

my @who_list = $telnet_obj->cmd("/usr/bin/who");

$telnet_obj->close;

$#who_list = $#who_list - 1;

return @who_list;
}

An array called @who_list is assigned the result of an invocation of the cmd
method associated with the $telnet_obj object. The single parameter to the
cmd method is a Linux command-line, which issues the who command as located
in the /usr/bin directory. The cmd method captures all of the output generated
by the invoked program including the Linux command prompt, the significance
of which will become clearer in just a moment.

The Net::Telnet object is then closed, as the program is finished with the
TELNET session. The length of the captured array is then shortened by one. This
ensures that the Linux command prompt returned by the cmdmethod is discarded
and not included as part of the output from the who command, which is stored
as an array of lines in the @who_list variable. The subroutine ends by returning
the array of lines to its caller.

19Typically, port 23.

216 Protocols

The rest of the code for multiwho is very straightforward. Here it is:

my @list;

@list = do_who(’linux303’, ’barryp’, ’passwordhere’);
@list = (@list, do_who(’149.153.103.15’,

’barryp’, ’passwordhere’));
@list = (@list, do_who(’glasnost’, ’barryp’, ’passwordhere’));

print "@list\n";

An array called @list is declared, then assigned to by three calls to the do_who
subroutine. Note how the list is added to with the second and third invocations of
do_who: the list becomes equal to itself plus the result of the next call to do_who.
When the three calls to do_who complete, the multiwho program finishes by dis-
playing the contents of the @list array to standard output.

Here are the results produced by multiwho when executed:

root tty1 Apr 19 16:31
cno2031 pts/0 May 31 16:30 (pc310-10.itcarlow.ie)
cno2020 pts/1 May 31 16:14 (pc3-16.itcarlow.ie)
cno2020 pts/2 May 31 16:27 (pc3-16.itcarlow.ie)
cno2026 pts/3 May 31 16:18 (149.153.131.117)
cno2018 pts/4 May 31 16:30 (pc3-20.itcarlow.ie)
cno2019 pts/5 May 31 16:26 (pc3-21.itcarlow.ie)
COM2059 pts/8 May 31 15:20 (pc3-14.itcarlow.ie)
cno2006 pts/7 May 31 13:30 (pc3-13.itcarlow.ie)
barryp pts/6 May 31 16:32 (PBMac.itcarlow.ie)
com3027 pts/0 May 9 09:52 (pc2-2.itcarlow.ie)
barryp pts/1 May 31 16:23 (PBMac.itcarlow.ie)
meudecc pts/0 May 31 16:30 (staff102.itcarlow.ie)
hickeypm pts/1 May 31 16:14 (staff23.itcarlow.ie)
kinsella pts/2 May 31 16:27 (akmac.itcarlow.ie)
whyte pts/3 May 31 16:18 (149.153.100.117)
barryp pts/4 May 31 16:31 (PBMac.itcarlow.ie)

Note that user barryp appears three times. This corresponds with the fact that
three TELNET sessions were established by the multiwho program with each of
the remote computers, and that the user-id used by multiwho on each of the
computers was barryp. As the who program details the time at which each user
logged in, we can confirm that on each of the three remote computers, user barryp
is the most recent addition. Note that the clocks on the three computers are not
synchronized: barryp is reported to have logged in at 16:32, 16:23 and 16:31
by each of the remote computers, even though multiwho is establishing TELNET
sessions with the computers sequentially and within a very short period of time
(seconds). Of more interest is the fact that the user root is logged into linux303
at the console (device tty1). The system administrator should be concerned that
root has been active on the system in this way for close to six weeks! It would
appear that someone logged in as root on April 19th, but forgot to logout.

Where To From Here? 217

4.13 Where To From Here?

This chapter concentrated on programming to Internet standard protocols. In
addition to using the Perl Socket API, two large add-on module libraries to Perl,
libwww-perl and libnet, were described. A number of simple, yet useful, client
and server programs were written in Perl to demonstrate interactions with a num-
ber of standard Internet protocols.

Using Net::SMTP is not the only way of automatically generating email mes-
sages with Perl. Visit your local CPAN and browse the Mail and Usenet News cate-
gory. There you will find a large and growing collection of email add-on modules
for Perl.

Those readers interested in building a Web server from scratch should start
with the code from Chapter 15 of Lincoln Stein’s book (refer to the Print Resources
section from the last chapter). If writing a Web browser is more your thing, take
a look at the fully functioning Web browsing demo application (called tkweb)
written in the Tk GUI extension module and libwww-perl. Download Tk from a
nearby CPAN.

4.14 Print Resources

A great little book (if somewhat out of date) on programming the Web is Web
Client Programming with Perl by Clinton Wong (O’Reilly, 1997). This book pro-
vides excellent coverage of programming HTTP using the Perl Socket API and
libwww-perl technologies. Unfortunately, the book is out of print. Fortunately,
O’Reilly has included the book in its ‘Open Books Project’, which means that the
text is online at the http://www.oreilly.com/openbook/ website. It is some-
what of a shame that neither the author nor O’Reilly plan a second edition.

Chapter 9 of Lincoln Stein’s Network Programming with Perl is devoted to cover-
age of libnet and libwww-perl. The examples which combine libnet’s email
modules with HTML browsing and NNTP newsfeeds are especially instructive.

Chapters 18 and 20 from the Perl Cookbook (see the Print Resources section at
the end of Chapter 1) provide many examples of programming to Internet stan-
dard protocols and Web technologies, respectively. Like Stein’s book, libnet and
libwww-perl feature heavily.

4.15 Web Resources

The latest version of the HTTP standard document is the Internet Engineering
Task Force’s RFC 2616, and it is widely available on the Internet. Go to the home
of Web standards, http://www.w3.org, for more information. The text of any
RFC can be located by following the link from http://www.ietf.org.

218 Protocols

The http://www.apache.org website has all the information anyone could pos-
sibly need on the Apache Web Server.

The add-on modules discussed in this chapter are all available on CPAN, and can
be found at the http://search.cpan.org website.

Gisle Aas maintains a website at http://www.linpro.no/lwp containing infor-
mation on the current state of the libwww-perl project. A list of links to
software built on top of libwww-perl is included. Gisle’s CPAN directory is
http://www.cpan.org/authors/id/GAAS/.

Graham Barr’s CPAN directory is http://www.cpan.org/authors/id/GBARR/.
Graham has also written a number of articles for The Perl Journal which cover
programming FTP, Mail and Usenet applications with the libnet technologies.
These articles are available online at the http://www.tpj.comwebsite. Follow the
link for the ‘Archives’ section to access these (as well as many other) interesting
articles.

Additional information on InterMapper can be found at the Dartware’s web-
site: http://www.dartware.com. Originally developed at Dartmouth College to
assist in the management of a large AppleTalk and IP network, ownership of this
network management technology was ‘spun-out’ and transferred to Dartware in
April 2000.

Jay Rogers’s CPAN directory is http://www.cpan.org/authors/id/JROGERS/.

Exercises 219

Exercises

1. What changes are required to wwwb to support the POST method? Choose a popular
search engine that uses POST and update wwwb to send a search term to your chosen
engine.

2. Rewrite LWPwwwb to use the facilities provided by the LWP::Simple module.

3. Create a new parser, based on the parsewwwb code, which retrieves any HTML
Web page from a remote Web server, parsing the retrieved page for any embed-
ded graphic links, creating a list of names. When the parsing is complete, contact
the Web server again and request the list of graphic files from the server, storing the
files in the current working directory. When using libwww-perl, can the program
take advantage of a persistent connection to the Web server?

4. Use the perldoc -f command to learn about chroot, and then change the
simplehttpd Web server to use chroot as a means of limiting the visibility of
the server’s file system to a remote Web browser. What is the downside of using
chroot?

5. Search the Internet for a description of the Common Gateway Interface (CGI) stan-
dard, then add support for CGI scripts (written in any programming language, not
just Perl) to the simplehttpd Web server.

6. Add the ability to handle the POST method to the simplehttpd Web server. You are
to ensure both the GET and POST methods work with the CGI mechanism from the
previous question.

7. Extend the simplehttpd Web server to support FTP client requests from FTP-
enabled Web browsers. [Hint: search CPAN for any third-party add-on modules to
incorporate into simplehttpd.] Once simplehttpd can support both HTTP and FTP
requests from clients, use the FTP client technology found in either libwww-perl or
libnet to extend wwwb to enable the issuing of FTP requests and the processing of
FTP responses. Test this new version of wwwb against simplehttpd and the Apache
Web server.

8. Identify the modifications required to the HTTP::Daemon module to enable it to
conform to RFC 2616.

9. Research the facilities provided by the Net::POP3 module included in the libnet
library. Develop a small utility in Perl that checks your Internet mailbox for new
mail (without actually downloading the messages from the server).

10. The Net::NNTP module supports RFC 977. Identify an RFC which updates the NNTP
protocol standard, then create a new version of Net::NNTP to support the newer
RFC.

11. Rewrite nws to use the NNTP support provided by libwww-perl as opposed to
libnet. Which API do you prefer? Why?

12. The multiwho program only communicates with remote computers running the
TELNET daemon, which is an inherently insecure service20. Create a new version of

20Among other things, passwords are transmitted as ‘clear text’ and are visible to any unscrupu-
lous individual running tools like The Network Debugger from Chapter 2.

220 Protocols

the multiwho program which is capable of communication with a remote server
running the secure shell environment (SSH). [Hint: are there any CPAN modules that
might help?] It is also a good idea to add error-checking code to the Net::Telnet
method calls in this program.

5

Management

The last two chapters were concerned with programming the network. This chap-
ter is concerned with another important topic: network management.

Programming the Network with Perl has already included an entire chapter on
some aspects of network management. Chapter 2, Snooping, described how to
build a network debugger in Perl. The ability to capture and analyse traffic on a
network is of critical importance to the network manager when all other tech-
niques have failed, and such tools can provide the vital clue which often results
in the successful resolution of a problem. Recall from Chapter 2 how the snooper
identified a broadcast storm occurring as a result of a large collection of miscon-
figured workstations. As this chapter will show, there is a lot more to network
management than using snoopers.

The management of computer networks is a complex and difficult activity. One
need only consider the vast array of diverse equipment connected to modern net-
works to develop an appreciation of what is involved. Typically, there is a large
collection of devices connected: personal computers, workstations, repeaters,
hubs, switches, routers, printers, scanners, wireless base-stations, uninterrupt-
able power supplies, and so on. It is very rarely the case that every single piece of
equipment on a network is built and supplied by one equipment manufacturer1,
so relying on a single vendor’s network management technology is rarely a viable
solution, especially when the network is a heterogeneous mix. Centrally managing
a diverse network is difficult. Centrally managing the Internet is all but impossible.

Dealing with the diversity and complexity of computer networks is accom-
plished in general by the widespread adoption and adherence to standards. This
is especially important when it comes to network management. On TCP/IP net-
works, two protocols provide support for managing networks: the Internet Control
Message Protocol (ICMP) and the Simple Network Management Protocol (SNMP).

1If you know of such a network, email the author.

222 Management

After a brief description of ICMP and two ICMP-based applications, this chapter
examines SNMP from the perspective of the Perl programmer building programs
to assist in the process of network management.

5.1 Simple Management with ICMP

Every implementation of the Internet Protocol, including the current IPv4 stan-
dard, must include support for ICMP, the Internet Control Message Protocol , as
defined in the Internet standards document RFC 792. This simple technology pro-
vides IP with a means of indicating when certain problems have occurred on an
IP network. These problems include, but are not limited to, the following.

A discarded datagram – an IP datagram was discarded and was not delivered to
its destination network device.

A routing inconsistency – a router has noticed a routing inconsistency, which
may mean that IP datagrams are being incorrectly routed within the network
(resulting in their eventual discarding).

Destination not found – an IP datagram could not be delivered because the des-
tination network device could not be found. Alternatively, the network to
which the destination network device is attached could not be found.

A busy network device – a network device, typically a router, is busy and cannot
accept any more datagrams (at this time).

To keep things simple (and easily implementable), ICMP does not concern itself
with the cause of any problem, only its occurrence.

In addition to identifying problems (or errors), ICMP also provides an informa-
tional service. These informational messages include the following.

Timer messages – provide a mechanism to determine the round-trip time lag
between the local and a remote network device.

Echo messages – provide a mechanism to determine whether or not a specified
network device is operating and potentially willing to accept IP datagrams.

RFC 792 documents the ICMP informational and error messages in detail.

5.2 Doing the Ping Thing

The ping program2 uses the Echo Request and Echo Response messages from
ICMP to help network managers determine the operational status of a network
device. When a device is pinged with ICMP’s Echo Request message, it is generally

2Which takes its name from the sound submarines make when determining the closeness of
objects underwater.

Doing the Ping Thing 223

required to respond with ICMP’s Echo Response message. Note that the device is
not obliged to respond to the request, and many Internet sites configure devices
to block ping traffic (due to security concerns).

5.2.1 Some ping examples

The ping program is installed on most Linux systems. The following command-
line can be used to check the operational status of the network device running
the HTTP server at Linux Journal magazine. Note the -c4 argument which tells
ping to send four Echo Request messages to the named network device:

ping -c4 www.linuxjournal.com

When executed on pbmac.itcarlow.ie, the following results were reported by
ping:

PING www.linuxjournal.com (64.39.18.136)
from 149.153.100.65 : 56(84) bytes of data.

64 bytes from 64.39.18.136: icmp_seq=0 ttl=235 time=137.581 msec
64 bytes from 64.39.18.136: icmp_seq=1 ttl=235 time=139.957 msec
64 bytes from 64.39.18.136: icmp_seq=2 ttl=235 time=139.975 msec
64 bytes from 64.39.18.136: icmp_seq=3 ttl=235 time=139.977 msec

--- www.linuxjournal.com ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/mdev = 137.581/139.372/139.977/1.099 ms

The output (ping statistics) shows the receipt of four ICMP datagrams, which are
encapsulated within their own IP datagram. Each ICMP datagram is 64 bytes in
length. The TTL value associated with each IP datagram is shown, as is an ICMP
sequence number and round-trip timings in milliseconds.

The ping program can be used to quickly determine a list of devices attached
to a particular network. This is accomplished by sending a directed broadcast to
the network under examination. When this happens, any network devices that are
configured to respond to the Echo Request message will do so. To determine the
list of devices operating on the 149.153.100.0 network, an ICMP message is sent
to this network’s directed broadcast address, which is 149.153.100.255. Use this
Linux command-line:

ping -c2 -b 149.153.100.255

The -b argument instructs ping to broadcast to the address given. On first glance,
the -c2 argument seems strange. Why are two broadcast messages being sent
to all the devices on the network? Surely only a single ICMP message need be
broadcast?

The reason for the use of two broadcasts has more to do with how the ping
program in implemented than with how ICMP is implemented. When the first

224 Management

broadcast message is sent, ping waits for exactly one reply before proceeding
with any other business that it may have. If this ‘any other business’ is to termi-
nate, the ping program receives a reply from the first network device to respond
to the broadcast, displays the ping statistics and then exits. The other ICMP Echo
Response messages generated by the ‘slower’ network devices are discarded due
to the fact that there is no application waiting to receive them (as ping has now
terminated). By instructing ping to send two broadcast messages, it will not ter-
minate until two Echo Response messages (with unique sequence numbers) have
been received. When the ‘slower’ network devices now respond to the first broad-
cast, the ping program has not terminated, receives the Echo Response messages
and reports them as duplicates.

Here is the output generated by the above directed broadcast:

PING 149.153.100.255 (149.153.100.255)
from 149.153.100.65 : 56(84) bytes of data.

64 bytes from 149.153.100.65: icmp_seq=0 ttl=255 time=367 usec
64 bytes from 149.153.100.67: icmp_seq=0 ttl=255 time=678 usec (DUP!)
64 bytes from 149.153.100.18: icmp_seq=0 ttl=128 time=723 usec (DUP!)
64 bytes from 149.153.100.106: icmp_seq=0 ttl=255 time=817 usec (DUP!)
64 bytes from 149.153.100.15: icmp_seq=0 ttl=128 time=914 usec (DUP!)
64 bytes from 149.153.100.4: icmp_seq=0 ttl=255 time=1.012 msec (DUP!)
64 bytes from 149.153.100.253: icmp_seq=0 ttl=255 time=1.156 msec (DUP!)
64 bytes from 149.153.100.243: icmp_seq=0 ttl=60 time=2.070 msec (DUP!)
64 bytes from 149.153.100.65: icmp_seq=1 ttl=255 time=89 usec

--- 149.153.100.255 ping statistics ---
2 packets transmitted, 2 packets received, +7 duplicates, 0% packet loss
round-trip min/avg/max/mdev = 0.089/0.869/2.070/0.524 ms

Note that the fastest device, 149.153.100.65, is reported as responding twice
(with unique sequence numbers). All the other network devices are reported as
duplicates (with common sequence numbers). The list of devices operating3 on
the network has now been determined. Note that all of the network devices listed
have an IP address starting with the 149.153.100 prefix.

The above broadcast was issued on pbmac.itcarlow.ie, which has an IP
address of 149.153.100.65. So, it is not too surprising to see this network device
respond first (after all, the broadcast goes to the local device too). On pbmac, the
ping program waits for one second between creations of each request message.
To ask ping to wait for longer, use the -iX command-line argument, where X is
a positive integer representing the number of seconds to wait. This may have the
effect of allowing ping to receive more duplicates from ‘slow’ network devices
that do not respond within the number of seconds it takes ping to send and
receive the two Echo Request messages (that is, within two seconds).

Another useful ping example pertains to the discovery of any routers on a
network. RFC 1256 describes enhancements to ICMP that can assist in determining
the IP address of any routers operating on a network. By sending an Echo Request

3Where ‘operating’ is defined as ‘responding to ICMP Echo Request messages’.

Doing the Net::PingNet::PingNet::Ping Thing 225

message to the Router Solicitation address, a program can process any responses
to determine the IP addresses of any routers. An IP address is reserved for this
exact purpose and it is 224.0.0.2. The following command-line was used from
pbmac.itcarlow.ie to generate a list of routers visible from pbmac’s network
segment:

ping -c2 224.0.0.2

Here is the output generated by this command:

PING 224.0.0.2 (224.0.0.2) from 149.153.100.65 : 56(84) bytes of data.
64 bytes from 149.153.100.18: icmp_seq=0 ttl=128 time=1.620 msec
64 bytes from 149.153.100.253: icmp_seq=0 ttl=255 time=1.620 msec (DUP!)
64 bytes from 149.153.2.30: icmp_seq=0 ttl=254 time=1.620 msec (DUP!)
64 bytes from 149.153.2.31: icmp_seq=0 ttl=254 time=21.620 msec (DUP!)
64 bytes from 149.153.2.32: icmp_seq=0 ttl=254 time=21.620 msec (DUP!)
64 bytes from 149.153.100.18: icmp_seq=1 ttl=128 time=9.963 msec

--- 224.0.0.2 ping statistics ---
2 packets transmitted, 2 packets received, +4 duplicates, 0% packet loss
round-trip min/avg/max/mdev = 1.620/9.677/21.620/8.945 ms

Again, within two seconds, five devices responded to the Router Solicitation mes-
sage and declared themselves to be routers. Unlike the earlier broadcast, this Echo
Request has been responded to by devices on the 149.153.2.0 network in addi-
tion to those on the 149.153.100.0 network.

5.3 Doing the Net::Ping Thing

Support for programming ping with Perl is provided by the Net::Ping module,
as written by Russell Mosemann (and now included as a standard part of Perl).
This is a simple module that provides an object-oriented interface to the ICMP
Echo Request and Echo Response messages.

Three methods are associated with a Net::Ping object as follows.

new – creates a Net::Ping object. Three optional parameters can be specified:
protocol (either icmp, udp or tcp, with udp as the default); timeout (the num-
ber of seconds to wait for an Echo Response to arrive, with a default value
of 5 seconds); and bytes (the number of bytes to send to the remote system,
with defaults of 0 for tcp and icmp and 1 for udp).

ping – sends an Echo Request and waits for an Echo Response. Two parameters
can be specified. The first, which is required, identifies the remote network
device to send the request to. The second, which is optional, specifies a
number of seconds to wait for a response to arrive. When specified, this
overrides the timeout value associated with the Net::Ping object.

close – destroys the Net::Ping object created by the call to new.

226 Management

Of interest is the fact that Net::Ping can use one of three protocols when
performing the Echo Request . Here is a small program, called multiping, that
demonstrates the standard usage of the Net::Ping module:

#! /usr/bin/perl -w

use strict;
use Net::Ping;

my $host = shift || ’localhost’;

my @protos = qw(icmp tcp udp);

foreach my $proto (@protos)
{

if (($proto eq ’icmp’) and ($>))
{

print "multiping: ’icmp’ only available to root.\n";
next;

}

my $pinger = Net::Ping->new($proto);

if ($pinger->ping($host))
{

print "$host is alive to ’$proto’ pinging.\n";
}
else
{

print "$host did not respond to ’$proto’ pinging.\n";
}

$pinger->close;
}

After the usual start and the use of the Net::Ping module, the $host scalar is
set to either localhost or the value passed from the Linux command-line. The
list of Net::Ping supported protocols is assigned to the @protos array. The code
then iterates over the @protos array.

Within the foreach loop, a check is performed on the protocol to see if it is
equal to icmp. If it is, a further check is made to see if the program is being
executed under root privilege by examining the value of the built-in $> variable.
If the value of this variable is true, then the program is not running as root, and
the iteration ends (as Net::Ping cannot use ICMP if it is not running as root).

When the protocol can be used, a Net::Ping object is created based on the pro-
tocol value and assigned to the $pinger scalar. The ping method associated with
$pinger is then invoked. An appropriate message is displayed if the call to ping
succeeds, that is, an Echo Response was received as a result of an Echo Request

Tracing Routes 227

being sent. Otherwise, another message declares that the ping was not success-
ful. The iteration ends by destroying the $pinger object, invoking its associated
close method.

In addition to the restriction that ICMP can only be used by Net::Ping when
running as root (with superuser privilege), most Internet sites block TCP and
UDP Echo Request messages for security reasons. Increasingly, sites also block
ping traffic. This has the unfortunate effect of reducing the usefulness of the
Net::Ping module. For instance, when using Linux with standard user privilege,
multiping can be invoked to ‘contact’ the Linux Journal website as follows:

./multiping www.linuxjournal.com

which generates the following results:

multiping: ’icmp’ only available to root.
www.linuxjournal.com did not respond to ’tcp’ pinging.
www.linuxjournal.com did not respond to ’udp’ pinging.

As can be seen from the above, the use of Net::Ping has turned out to be of
little benefit here. It is unclear whether the Linux Journal site is operational or
not. Executing multiping when logged in as root, produces these results:

www.linuxjournal.com is alive to ’icmp’ pinging.
www.linuxjournal.com did not respond to ’tcp’ pinging.
www.linuxjournal.com did not respond to ’udp’ pinging.

This is somewhat more useful, but the requirement to be logged in as root limits
multiping’s usability. Refer to the exercises at the end of this chapter for some
suggested improvements to Net::Ping.

5.4 Tracing Routes

Another important use of ICMP occurs during the execution of the traceroute
program. In addition to using the Echo Request and Echo Response messages,
traceroute uses two additional ICMP messages to accomplish its goal, which is
to list (or trace) the routers between the network device traceroute is executing
on and some other network device. Before discussing the two ICMP messages, let
us take a look at an example of traceroute in action. This next command-line
requests the list of routers between pbmac.itcarlow.ie and the network device
hosting the Linux Journal website:

traceroute www.linuxjournal.com

This command produces these results:
traceroute to www.linuxjournal.com (64.39.18.136), 30 hops max, 38 byte packets
1 149.153.100.253 (149.153.100.253) 0.617 ms 0.515 ms 0.493 ms
2 gw.itcarlow.ie (149.153.1.2) 0.979 ms 0.951 ms 0.944 ms
3 Carlow-7206.itnet.ie (193.1.206.34) 5.349 ms 5.151 ms 5.172 ms

228 Management

4 schiphol-atm3-0-3-itnet.hea.net (193.1.195.217) 6.779 ms 6.600 ms 6.664 ms
5 miranda-f2-2.dublin.core.hea.net (193.1.195.169) 6.672 ms 6.603 ms 6.720 ms
6 Uther-g1-0-0.dublin.core.hea.net (193.1.195.242) 6.896 ms 6.891 ms 6.785 ms
7 158.43.111.41 (158.43.111.41) 34.965 ms 26.386 ms 26.734 ms
8 ge3-0.cr1.dub2.gbb.uk.uu.net (158.43.152.33) 27.534 ms 27.686 ms 27.064 ms
9 so3-1-0.tr2.lnd2.alter.net (158.43.253.5) 27.083 ms 27.488 ms 27.984 ms

10 SO-6-0-0.IR1.DCA4.Alter.Net (146.188.8.169) 100.694 ms 100.536 ms 100.212 ms
11 SO-1-0-0.IR1.DCA6.Alter.Net (146.188.13.37) 100.465 ms 100.994 ms 99.924 ms
12 118.at-4-1-0.TR1.DCA6.ALTER.NET (152.63.10.122) 100.342 ms 100.060 ms 99.837 ms
13 287.at-7-2-0.XR1.DCA8.ALTER.NET (152.63.33.249) 102.591 ms 102.765 ms 102.926 ms
14 POS6-0.BR1.DCA8.ALTER.NET (146.188.162.209) 102.968 ms 102.673 ms 102.603 ms
15 wdc-brdr-03.inet.qwest.net (205.171.4.69) 104.287 ms 103.475 ms 101.703 ms
16 wdc-core-03.inet.qwest.net (205.171.24.69) 102.285 ms 101.830 ms 101.909 ms
17 iah-core-01.inet.qwest.net (205.171.5.187) 136.107 ms 137.366 ms 136.327 ms
18 iah-edge-02.inet.qwest.net (205.171.31.14) 136.105 ms 136.530 ms 140.655 ms
19 63-145-96-242.cust.qwest.net (63.145.96.242) 141.461 ms 141.659 ms 141.474 ms
20 vl131.aggr2.sat.rackspace.com (64.39.2.50) 148.885 ms 146.822 ms 146.682 ms
21 64.39.18.136 (64.39.18.136) 141.371 ms 141.704 ms 141.706 ms

A total of 20 routers exist between the two network devices. This version of
traceroute lists the IP name and IP address of each device, together with some
timing information. Three time values are shown, and they provide for the calcu-
lation of a round-trip delay average.

5.4.1 How traceroute works

The traceroute program starts by sending some data (usually UDP data) to an
unused protocol port-number on the remote network device. Prior to sending any
data, traceroute sets the Time-To-Live value in the IP datagram header to 1.
When the IP datagram is sent on its way, the first router4 to receive it decre-
ments the Time-To-Live value, realizes that it is now zero and discards the IP
datagram (which is what the IP standard dictates should happen when the Time-
To-Live value included with an IP datagram reaches zero). Immediately prior to
the discardation, the router sends an ICMP message back to the network device
that initially created the IP datagram. The message, the Time Exceeded message,
informs the receiver that an IP datagram was discarded due to the Time-To-Live
value reaching zero. To send the ICMP message, the router encapsulates the ICMP
Time Exceeded message within an IP datagram prior to delivery. When this data-
gram arrives at the originating network device, it is passed to the application it is
destined for, which, in this case, is the traceroute program. Noting the arrival
of a Time Exceeded message, traceroute examines the IP datagram’s header and
extracts the contents of the Source IP Address field. This IP address identifies the
router that sent the Time Exceeded message.

Next, traceroute sends the original datagram again, this time setting the Time-
To-Live value to 2. The datagram gets past the first router (which decrements the
Time-To-Live field giving it the value 1) but, at the second router, the Time-To-Live
value again reaches zero and another ICMP Time Exceeded message is generated,
which allows traceroute to determine the IP address of the second router. This

4Often referred to as the first hop.

Not So Simple Management with SNMP 229

process iterates (identifying all the routers between the source and destination
network devices) until the datagram arrives at its ultimate destination. As this
device is unlikely to be a router, the Time-To-Live field will never again reach
zero. So how does traceroute know when to stop?

The answer has to do with the fact that traceroute started out sending data
to an unused protocol port-number on the remote network device (a fact that the
routers ignore, as they operate at the network layer and have no requirement to
understand what higher layer protocols are doing). When the datagram arrives at
the destination device, it has nowhere to go. The device discards the datagram
and sends an ICMP Destination Unreachable: Port Unreachable message to the
source network device. When traceroute receives this ICMP message (which can
only have been sent from the remote network device) it knows that the process
of listing the routes through the network is complete.

A Net::Traceroute module, written by Daniel Hagerty at MIT, is available for
download from CPAN. Although useful, Net::Traceroute implements its func-
tionality by invoking the operating system’s traceroute command and parsing
any returned results.

5.5 Not So Simple Management with SNMP

The process of using ICMP to learn about a network is simple, and the data gleaned
from the results produced by programs such as ping and traceroute can be
very useful. But, what if more data are required? How does the network manager
determine how long a network device has been operating? Can a router be asked
to specify the contents of its internal routing table? Can a network device indicate
when certain things have happened? Perhaps the network manager would like to
know when a network device is processing an inordinate amount of IP datagrams
containing errors? ICMP cannot help here, as its purpose is solely to report on
errors and data pertaining to individual IP datagrams. Some other technology is
required and, on the Internet and TCP/IP networks, this technology is SNMP, the
Simple Network Management Protocol .

5.5.1 A little SNMP history

The process of producing a standardized framework for network management is
one of the Internet’s greatest technical (and political) sagas. Initially perceived as
an interim solution to a problem that would be solved by an all-seeing, all-knowing,
all-powerful technical standards committee, the ‘stop-gap technology’ developed
in the short term proved so successful that the ‘ultimate solution’ struggled in
the marketplace. The short-term solution was, of course, the first version of the
Simple Network Management Protocol (SNMP) and the ultimate solution was the
Common Management Information Protocol (CMIP), as proposed by the Interna-
tional Standards Organization’s Open Systems Interconnect (OSI) model.

230 Management

As there was a pressing need for some sort of standard network management
technology, and as no one was willing to wait for the release of the first version
of CMIP, the first version of SNMP (SNMPv1) was quickly deployed. Due to its
widespread adoption, SNMPv1 became the de facto standard for network man-
agement. Later, a very protracted process produced SNMPv2, which added much
needed functionality to the protocol. This included a more efficient bulk transfer
mechanism as well as additional SNMP operations5. With the release of SNMPv2
and its widespread adoption, all hopes of ‘migrating’ SNMPv1 users to the now-
ready CMIP standard were lost. CMIP as an all-encompassing network manage-
ment technology had lost the battle, although in some market segments (most
notably, telecommunications) it is experiencing something of a revival. However,
on computer networks and the Internet, SNMP rules.

SNMPv3 (the most recent standard) added security features to the technology,
which were missing or incomplete in the previous versions of the technology pri-
marily – it seems – because no one on the standards working group could agree on
how security should be handled. The various SNMP authors6 fought about secu-
rity for ages, all got rather huffy, then decided not to include security mechanisms
in SNMPv2 at all!

5.6 The SNMP Management Framework

SNMP is only one component of the four-part SNMP Management Framework. The
four components are as follows.

Managed device – a network device capable of being managed (referred to as a
Managed Agent within the standards documents), and which can respond
to requests for management information from another network device.

Management station – a network device capable of sending requests for manage-
ment information to a Managed Device and interpreting any responses. The
Management Station is often referred to as a Network Management System
(NMS).

Managed data – a collection of management data items associated with a partic-
ular Managed Device, referred to as a Management Information Base (MIB)
within the standards documents.

Communication protocol – a standard mechanism for sending requests and
responses to and from the Management Station and any number of Man-
aged Devices. This is the role of SNMP.

On closer inspection, Managed Device conforms to the description of a Server
from Chapter 3, and that is what it is: a server capable of responding to requests

5To be discussed shortly.
6Warring factions, if truth be told.

Managed Data 231

from any number of clients. The Management Station conforms to the description
of Client from Chapter 3. Requests are made to any number of remote servers for
service, and an interpretation is performed on the results. In their wisdom, the
creators of the framework decided to retain the client/server model, but change
the word ‘server’ to ‘agent’ and the word ‘client’ to ‘station’. If this all seems rather
confusing, do not worry: most think it is.

5.7 Managed Data

The data that allow a device to be managed are stored on a Managed Device. How
these data are stored is not specified in the standards documents. For instance,
the data may be held in a database, a flat-file or in memory. The standards allow
the implementer of the Managed Device to choose whichever storage mechanism
suits. What is specified in the documents is the constitution of the Managed Data,
that is, what the data items are and what they mean. These metadata7 are defined
in a Management Information Base (MIB).

An MIB is a standardized description of the data items maintained by the Man-
aged Device. A large collection of MIBs exist, and it is possible for a single Managed
Device to maintain data items drawn from more than one MIB. For instance, one
MIB describes a collection of data relating to maintaining a network device run-
ning TCP/IP, and another describes data relating to Ethernet interface cards. It is
not uncommon for a Managed Device to maintain the data items described within
the TCP/IP MIB and the Ethernet MIB, and to make the values of any data item
(regardless of MIB) available to a Management Station.

5.7.1 The TCP/IP MIB

When a device that is running SNMP is connected to a TCP/IP network, the Man-
aged Data must conform to at least the TCP/IP MIB. A number of versions of this
MIB exist, with the most recent known as MIB-II (reflecting a reorganization due
to the release of SNMPv2). MIB-II is defined in RFC 1213.

Within MIB-II, the Managed Data is organized by category (or group), and there
are 11 categories in all, as follows.

system – data about the network device, including its administrator-assigned
name and the length of time it has been operational.

interfaces – data about the number and type of network interfaces attached to
the network device.

at – data about the device’s address translation table (which is now deprecated,
but is included in MIB-II to maintain backward compatibility).

7Metadata: data about data.

232 Management

ip – data about the current state of the IP software running on the network device.
This includes details of the internal routing table.

icmp – data about any ICMP messages processed by the network device.

tcp – data about the current state of the TCP software running on the network
device.

udp – data about the current state of the UDP software running on the network
device.

egp – data about the current state of the EGP (Exterior Gateway Protocol) software
running on the network device.

cmot – a category reserved for future use by CMIP, but not presently used.

transmission – data about the underlying transmission media employed by the
network device.

snmp – data about the current state of the SNMP software running on the device.

Within each category, specific data items are defined. As an example, let us look
at the data items associated with UDP. Within the standards document, each data
item (within each category) has a unique name. Here is the unique name and a
brief description of the UDP data items.

udpInDatagrams – a count of the total number of UDP datagrams delivered to
waiting UDP applications on the network device.

udpNoPorts – a count of the total number of UDP datagrams received but which
could not be delivered due to the fact that an application was not waiting
for data at the specified protocol port-number.

udpInErrors – a count of the total number of UDP datagrams that could not be
delivered (excluding any udpNoPorts).

udpOutDatagrams – a count of the total number of UDP datagrams sent to the
network by the network device.

udpTable – data items describing the network device’s UDP Listener Table, which
may have a number of entries (see udpEntry, below).

udpEntry – data relating to a current listening UDP client, which consists of two
additional data items for each udpEntry : the IP address of the local network
device (referred to as udpLocalAddress) and the protocol port-number asso-
ciated with the listening UDP application (referred to as udpLocalPort).

In addition to employing unique names (known as descriptors within the stan-
dards), it was decided to assign each MIB data item a unique numeric identifier
(known as an object identifier within the standards, or OID for short). Rather than
define a new unique numbering system, the authors of SNMP applied for and were
granted exclusive use of a subtree of the ISO’s OSI Management Information Tree.
The subtree is referred to mnemonically as iso.org.dod.internet (which is

Managed Data 233

human friendly) or numerically as 1.3.6.1 (which is computer friendly). Below
the internet branch, an mgmt subtree contains MIB-II (mnemonically referred to
as mib-2). Below this branch are declared the 11 MIB-II categories.

It is therefore possible to refer to each of the categories uniquely and unam-
biguously using either the mnemonic or numeric identifier, as follows.

system
iso.org.dod.internet.mgmt.mib-2.system

1.3.6.1.2.1.1

interfaces
iso.org.dod.internet.mgmt.mib-2.interfaces

1.3.6.1.2.1.2

at
iso.org.dod.internet.mgmt.mib-2.at

1.3.6.1.2.1.3

ip
iso.org.dod.internet.mgmt.mib-2.ip

1.3.6.1.2.1.4

icmp
iso.org.dod.internet.mgmt.mib-2.icmp

1.3.6.1.2.1.5

tcp
iso.org.dod.internet.mgmt.mib-2.tcp

1.3.6.1.2.1.6

udp
iso.org.dod.internet.mgmt.mib-2.udp

1.3.6.1.2.1.7

egp
iso.org.dod.internet.mgmt.mib-2.egp

1.3.6.1.2.1.8

cmot
iso.org.dod.internet.mgmt.mib-2.cmot

1.3.6.1.2.1.9

transmission
iso.org.dod.internet.mgmt.mib-2.transmission

1.3.6.1.2.1.10

snmp
iso.org.dod.internet.mgmt.mib-2.snmp

1.3.6.1.2.1.11

234 Management

This scheme is carried further into each of the categories. Continuing with UDP
as an example, here are the unique descriptors and object identifiers for the UDP
group.

udpInDatagrams
iso.org.dod.internet.mgmt.mib-2.udp.udpInDatagrams

1.3.6.1.2.1.7.1

udpNoPorts
iso.org.dod.internet.mgmt.mib-2.udp.udpNoPorts

1.3.6.1.2.1.7.2

udpInErrors
iso.org.dod.internet.mgmt.mib-2.udp.udpInErrors

1.3.6.1.2.1.7.3

udpOutDatagrams
iso.org.dod.internet.mgmt.mib-2.udp.udpOutDatagrams

1.3.6.1.2.1.7.4

udpTable
iso.org.dod.internet.mgmt.mib-2.udp.udpTable

1.3.6.1.2.1.7.5

udpEntry
iso.org.dod.internet.mgmt.mib-2.udp.udpTable.udpEntry

1.3.6.1.2.1.7.5.1

udpLocalAddress
iso.org.dod.internet.mgmt.mib-2.udp.udpTable.udpEntry.udpLocalAddress

1.3.6.1.2.1.7.5.1.1

udpLocalPort
iso.org.dod.internet.mgmt.mib-2.udp.udpTable.udpEntry.udpLocalPort

1.3.6.1.2.1.7.5.1.2

If this all looks over elaborate, bear in mind that the purpose of the scheme is to
ensure that MIB data items can be referred to uniquely and unambiguously.

Referring to the actual data item when performing an SNMP request adds a kink
to this naming scheme. If the data item requested is not part of a table, a 0 needs to
be appended to the descriptor or object identifier. So, to request the current value
of udpInErrors it is necessary to refer to it as udpInErrors.0 within a request.
This, in effect, requests the first instance of the udpInErrors data item, with the
first (and, in this case, only) value being found at instance location zero. As is the
case with most other computing technologies, the MIB-II definitions start counting
at zero, not one. When working with data items from tables, a slightly different
instance-specifying mechanism is used. This mechanism will be discussed by way
of example later in this chapter.

The SNMP Protocol 235

5.8 The SNMP Protocol

When the framework is considered in its entirety, one can easily become over-
whelmed by the details. And this is before any discussion of SNMP’s operations
has taken place. What then makes SNMP simple?

The answer has to do in part with the fact that SNMP views data within any
MIB as containing a collection of scalar data items8. The refusal of the SNMP
standards authors to allow for more complex data structures is one of the main
differences between SNMP and CMIP (as the latter allows for very complex data
structures). As scalars are easy to implement, implementations of the framework
are kept simple. Additionally, SNMP supports a very small set of operations which
are, again, designed to be easy to implement. By keeping the framework easy
to implement, the authors of SNMP hoped to make its adoption an automatic
decision, which is precisely what it is. SNMP is, by far, the most widely deployed
network management technology in use today.

5.8.1 SNMP’s operational model

SNMP supports two broad types of operation: get and set . In essence, this means
that a Management Station can get an instance value from a Managed Device, or
set the value of an instance on a Managed Device, assuming permission to do so
has been granted. Every other operation is defined to be a side effect of either get
or set.

This keeps things simple. Rather than have an operation for every conceivable
thing a Management Station might want to do, all operations are defined in terms
of getting a value from, or setting a value on, the Managed Device. As an example,
this means that rather than having to define a ‘shutdown’ operation on each Man-
aged Device, all that is required is a ‘time to next shutdown’ instance value in the
MIB, which can then be set to an appropriate value to signal when the shutdown
should occur. The shutdown occurs as a side effect of setting an instance value.

5.8.2 A brief tour of SNMPv1, SNMPv2 and SNMPv3

Within this operational model, SNMPv1 defines five protocol messages, three gen-
erated on the Management Station and two generated on the Managed Device. The
Management Station messages are as follows.

get-request – in its simplest form, this message requests the value of an OID
from a Managed Device. This is typically the value of the first instance of the
OID. Additionally, a list of OIDs can be requested by a single get-request
message. If a single OID is requested, or a list of OIDs is requested, each
OID/value pairing is referred to as a variable binding.

8The fact that Perl has a fundamental data type scalar is purely coincidental, albeit pleasantly so.

236 Management

get-next-request – when requesting a collection of data items (which may be
stored within a table), the value of the first instance of the OID is requested
with get-request. Subsequent values (that is, all other instances) can be
requested by iteration and the use of get-next-request.

set-request – sends a request to a Managed Device to set the value associated
with a specified OID.

The Managed Device messages are as follows.

get-response – is sent in response to a get-request, get-next-request and
set-request message. For get operations, the response will contain the
value requested (or an error code if things went wrong). For set operations,
the response will indicate success or failure.

trap – is an unsolicited message from the Managed Device to the Management Sta-
tion. This is generated due to the occurrence of some activity that the Man-
agement Station expressed an interest in. For instance, a Management Sta-
tion may want to know when the amount of discarded IP datagrams reaches
a certain threshold. Rather than poll the Managed Device by iterating with
a get-request message, a trap could be set to tell the Managed Device
to monitor the threshold and generate the trap message appropriately. Of
course, to receive the trap, the Management Station needs to be listening.

The advent of SNMPv29 introduced two additional protocol messages and re-
placed another as follows.

get-bulk-request – provides a mechanism for requesting a large amount of
instance values within a single request. This mechanism is much improved
over the get-request/get-next-request mechanism from SNMPv1.

inform-request – allows one Management Station to communicate with another
Management Station by way of requests and responses.

snmpV2-trap – replaces the trap message from SNMPv1, and improves the trap-
ping mechanism by making the format of the Protocol Data Unit (PDU) con-
form with those employed by the other messages.

Unfortunately, the development and release of SNMPv2 introduced a number
of problems, not least of which was that the new technology standards were no
longer compatible with SNMPv1. This has been addressed somewhat with the
release of SNMPv3 which attempts to coexist with both SNMPv1 and SNMPv2,
as well as provide for the easier integration of future functionality. As a technol-
ogy, SNMPv3 is best known for finally providing the SNMP framework with a real
security mechanism.

9Often referred to as SNMPv2C .

The Net::SNMPNet::SNMPNet::SNMP Module 237

5.8.3 SNMP communities

Each of the SNMP versions share the notion of community. It can be useful to
think of SNMP communities as domains. Managed Devices within organizations
belong to a specific, named community. When requests are made to a Managed
Device from a Management Station, the community string must be specified. In this
way, SNMP supports a simple, community-based access policy. Typically, devices
that are globally visible belong to a community called public. If access is to be
restricted, the network administrator can assign whichever community string is
deemed appropriate.

For instance, on the network used during the writing of Programming the Net-
work with Perl, a small number of devices use public as their community string.
The private string is also used. Devices managed by the campus’s Computing
Services Department have a different, closely guarded community string. The cam-
pus is connected to the Internet via ITnet , one of the large, third-level academic
networks in Ireland. Devices on ITnet have another community string. It is some-
times necessary for a Management Station to try a number of community strings
in an attempt to communicate with a collection of Managed Devices.

5.9 The Net::SNMP Module

As with most areas of computer networking, Perl programmers have been busy
developing add-on modules to make the life of protocol programmers easier. Hap-
pily, there is no shortage of modules to ease the programming of SNMP-based
applications. In the sections which follow, Net::SNMP, by David M. Town, is used
to develop a collection of Management Station utility programs.
Net::SNMP is available on CPAN, and is installed and tested with the usual set

of commands, as follows:

gunzip Net-SNMP-3.60.tar.gz
tar xvf Net-SNMP-3.60.tar
cd Net-SNMP-3.6
perl Makefile.PL
make
make test
su
make install
<ctrl-D>
man Net::SNMP
perl -e ’use Net::SNMP’

One of the great things about Net::SNMP is that it removes the need to understand
all of the nitty-gritty details of programming SNMP. SNMP is the most involved
and detailed Internet protocol. The devil is most definitely in the details. And this

238 Management

is before discussing Abstract Syntax Notation One (ASN.1) and the Basic Encod-
ing Rules (BERs), two technologies that SNMP relies on internally, and which are
(rather conveniently) ignored in Programming the Network with Perl. All this com-
plexity can be off-putting to many. But do not worry. When Net::SNMP is used,
programming SNMP is, well, simple.
Net::SNMP supports SNMPv1 and SNMPv2C. The API is object oriented in

nature: an object of type Net::SNMP is created, then methods associated with
the object are called as required. Two distinct object-oriented interfaces are pro-
vided: blocking and non-blocking. When the blocking interface is used, an invoca-
tion of a method halts (or ‘blocks’) further program execution until the method
returns. When the non-blocking interface is used, an invocation of a method
returns immediately, allowing program execution to continue. The code in the
method is queued, and a callback subroutine is associated with it. Later, when
a program requests that the methods in the queue be processed, the callback
subroutines are executed in response to the queued methods being invoked. Typ-
ically, the arguments provided to a method differ as to whether it is called using
the blocking or non-blocking interface.

The programs developed during the remainder of this chapter use the blocking
interface. This keeps things as simple and understandable as possible. That said,
the non-blocking interface is very useful, and readers are encouraged to explore
the mechanism, starting with the example code included as part of the Net::SNMP
documentation10.

5.9.1 The Net::SNMP methods

The methods associated with a Net::SNMP object are as follows.

session – creates a new Net::SNMP object.

close – destroys a previously created Net::SNMP object.

snmp_event_loop – processes any queued methods (when the non-blocking
interface is used).

get_request – sends the SNMP get-request message to a Managed Device, and
waits for a response.

get_next_request – sends the SNMP get-next-requestmessage to a Managed
Device, and waits for a response.

set_request – sends the SNMP set_request message to a Managed Device, and
waits for a response.

trap – sends the SNMPv1 trap message to a Managed Device.

10Another great thing about Net::SNMP is that David M. Town provides excellent documentation,
both in POD and manpage format.

The Net::SNMPNet::SNMPNet::SNMP Module 239

get_bulk_request – sends the SNMPv2 get_bulk_request message to a Man-
aged Device and waits for a response.

inform_request – sends the SNMPv2 inform_request to a Management Station.

snmpV2_trap – sends the SNMPv2 snmpV2-trap message to a Managed Device.

get_table – uses a collection of get_next_request messages (SNMPv1) or a
get_bulk_request message (SNMPv2) to request the retrieval of a table of
data from a Managed Device.

version – provides a mechanism to get or set the SNMP version associated with
the Net::SNMP object.

error – returns the current error message associated with the Net::SNMP object.

hostname – returns the IP name or address of the Managed Device associated
with the Net::SNMP object.

error_status – returns the current numeric error status associated with the
Net::SNMP object.

error_index – returns the current numeric error index associated with the
Net::SNMP object.

var_bind_list – returns a hash reference to the variable binding associated
with the Net::SNMP object, and created as a result of the last successfully
received SNMP response.

timeout – gets or sets the number of seconds to wait for a response to a request.
The default is 5 seconds.

retries – gets or sets the number of times Net::SNMP tries to send a message
to a Managed Device. The default is one time.

mtu – gets or sets the Maximum Transmission Unit associated with the Net::SNMP
object. The default is 1500 octets11.

translate – gets or sets the Net::SNMP objects translation modes.

debug – switches on or off the Net::SNMP internal debugging messages. By
default, debugging messages are off. It can be quite instructive to switch
them on (occasionally).

In addition to the methods associated with a Net::SNMP object, the module
provides three (non-OO) subroutines:

oid_context_match – provides a mechanism to check if one OID is equal to, or
a subtree of, another;

oid_lex_sort – sorts a list of OIDs into lexicographical order;

ticks_to_time – takes a raw ‘timeticks’ value and converts it to a human-
readable time string.

11An octet is an 8 bit byte.

240 Management

When communicating with a Managed Device, session is called to prepare for
the SNMP interaction. Note that SNMP uses UDP as its transport protocol, so do
not assume that a connection is established by the call to session. A facility is
prepared and the Net::SNMP object is created, providing a means to call any of
the above methods. When the SNMP interaction is over, the closemethod is called
to destroy the facility.

It may seem strange that SNMP uses the unreliable, connectionless UDP to carry
its data. Surely network management data are important, requiring the use of a
reliable transport protocol to get the data through? Yes, network management
data are important, but networks do not exist to carry network management traf-
fic, do they? The SNMP architects decided that the impact of carrying network
management data on a network should be kept to a minimum, so UDP was cho-
sen as the transport technology. Additionally, it was felt that a Management Sta-
tion would, typically, be pressed into service when a network was experiencing
problems. If the problems were severe, the network may be unable to establish
any reliable connections using TCP. However, low-overhead UDP data may get
through, allowing some sort of diagnosis to be determined from the received net-
work management responses.

5.10 Working With Net::SNMP

For now, let us stick with UDP as the protocol of interest to the network manager.
A program (called udpstats) contacts a Managed Device and requests the current
values for the MIB-II udp group. As was shown in the discussion of the udp group
earlier, four instance values and a table of UDP listeners are maintained.

Assuming the existence of the udpstats program, here is the Linux command-
line to use to request the MIB-II udp group from one of the routers identified
earlier in this chapter:

./udpstats 149.153.100.253 xxxxxx

In this example, xxxxxx is the SNMP community string required by this router
(which operates on the network running at The Institute of Technology, Carlow)12.

This invocation of udpstats produces the following results:

Requesting ’udp’ group data for: 149.153.100.253, xxxxxx, SNMPv2

UDP instance values:

1.3.6.1.2.1.7.1.0 => 18821809
1.3.6.1.2.1.7.2.0 => 5303516
1.3.6.1.2.1.7.3.0 => 1
1.3.6.1.2.1.7.4.0 => 10495825

12The actual community string is not shown in an attempt to protect your author from the wrath
of the on-campus Computing Services Department.

Working With Net::SNMPNet::SNMPNet::SNMP 241

UDP table values:

1.3.6.1.2.1.7.5.1.1.149.153.1.253.496 => 149.153.1.253
1.3.6.1.2.1.7.5.1.1.149.153.1.253.520 => 149.153.1.253
1.3.6.1.2.1.7.5.1.1.149.153.1.253.1985 => 149.153.1.253
1.3.6.1.2.1.7.5.1.1.149.153.2.253.49 => 149.153.2.253
1.3.6.1.2.1.7.5.1.1.149.153.2.253.51505 => 149.153.2.253
1.3.6.1.2.1.7.5.1.1.149.153.2.253.56134 => 149.153.2.253
1.3.6.1.2.1.7.5.1.1.149.153.100.253.67 => 149.153.100.253
1.3.6.1.2.1.7.5.1.1.149.153.100.253.161 => 149.153.100.253
1.3.6.1.2.1.7.5.1.2.149.153.1.253.496 => 496
1.3.6.1.2.1.7.5.1.2.149.153.1.253.520 => 520
1.3.6.1.2.1.7.5.1.2.149.153.1.253.1985 => 1985
1.3.6.1.2.1.7.5.1.2.149.153.2.253.49 => 49
1.3.6.1.2.1.7.5.1.2.149.153.2.253.51505 => 51505
1.3.6.1.2.1.7.5.1.2.149.153.2.253.56134 => 56134
1.3.6.1.2.1.7.5.1.2.149.153.100.253.67 => 67
1.3.6.1.2.1.7.5.1.2.149.153.100.253.161 => 161

Which, admittedly, looks a little complicated. However, it is relatively easy to deci-
pher. The first thing to bear in mind is that the Net::SNMP module works with
numeric OIDs (1.3.6.1.2.1.7.1.0), as opposed to human-friendly mnemon-
ics (udpInDatagrams). So, all of the values to the left of the => symbol are
numeric OIDs. This means that the ‘UDP instance values’ lines of output cor-
respond to the current counts for udpInDatagrams, udpNoPorts, udpInErrors
and udpOutDatagrams. The numbers reported (except for udpInErrors) are very
large. It is reasonable to assume that the device in question has been operating
for quite some time. As will be seen later in this chapter, it is possible to ask the
device how long it has been running in its current state.

The ‘UDP table values’ come next. The OIDs look strange, as they appear
to contain embedded IP addresses, specifically 149.153.1.253, 149.153.2.253
and 149.153.100.253. The trailing positive integers add to the confusion.

Recall from earlier that the instance specifying mechanism used with tables dif-
fers from that used by single instance OIDs. Rather than appending a trailing ‘.0’
to the OID to retrieve the value, with tables some other value is appended. Typi-
cally, this is some data that uniquely identify the row in the multi-columnar table.
For the MIB-II udp group, the combination of an IP address and a protocol port-
number is used, and this combination is appended to the base numeric OID. With
UDP, the base numeric OIDs are 1.3.6.1.2.1.7.5.1.1 for udpLocalAddress
and 1.3.6.1.2.1.7.5.1.2 for udpLocalPort. It is now possible to work out
that this device currently has eight UDP listeners active, as follows:

149.153.1.253 using port 496;

149.153.1.253 using port 520;

149.153.1.253 using port 1985;

242 Management

149.153.2.253 using port 49;

149.153.2.253 using port 51505;

149.153.2.253 using port 56134;

149.153.100.253 using port 67;

149.153.100.253 using port 161.

Eight listeners seems like a lot for an on-campus router. However, a review of
the IANA protocol port-number assignments (first used in Chapter 2, Snooping),
uncovers the purpose of most of these UDP listeners, as follows:

496 is used by the Protocol Independent Multicasting technology;

520 is used by the on-site local routing process, which is a variation on the estab-
lished Routing Information Protocol (RIP);

1985 is used by the Hot Standby Router Protocol ;

49 is used by the TACACS Login Host Protocol ;

67 is used by the Bootstrap Protocol Server ;

161 is used by SNMP .

Any self-respecting network manager should be able to say why these UDP lis-
teners exist on this router. As for the other two listeners, at ports 51505 and
56134, they fall within the range of the dynamically assigned or private protocol
port-numbers. What they are listening for is a mystery. However, that self-same
network manager should find their existence very interesting (if not alarming).

It is also somewhat strange that the Managed Device queried appears to
have more than one IP address, namely 149.153.1.253, 149.153.2.253 and
(as expected) 149.153.100.253. When one considers that routers exist to con-
nect two or more separate networks together, this strangeness is explainable.
As routers have two or more connections, and as each connection on an IP net-
work must have its own unique IP address, it follows that routers have more than
one assigned IP address. It is therefore reasonable to assume that this router
(149.153.100.253) has three connections to three individual networks, each with
their own unique IP address.

5.10.1 Working with mnemonic object identifiers

The Net::SNMP module also uses numeric OIDs when specifying the MIB data to
access when getting or setting data. This is great for the computer, but quickly
becomes tedious for the programmer. To provide for increased convenience, a
Perl module called OIDs.pm allows OIDs to be specified using their mnemonic,
programmer-friendly descriptor. The entire source code for this module can be
found in Appendix E.

Working With Net::SNMPNet::SNMPNet::SNMP 243

The OIDs.pmmodule is a large collection of Perl constant definitions. By default,
nothing is exported to a program using the module. Any single OID descriptor can
be imported by name, as can collections of descriptors by group. Here are some
examples:

use OIDs qw(sysUpTime ipForwarding udpInDatagrams);

use OIDs qw(:interfaces);

use OIDs qw(:tcp :udp ifNumber);

The first example imports three individual OID descriptors, one from the MIB-II
system group, another from the ip group, and the last from the udp group.

The second example imports the entire collection of OIDs included in the MIB-II
interfaces group.

The last example imports the ifNumber OID from the MIB-II interfaces group,
together with the entire collection of OIDs included in the tcp and udp groups.
Note that the order is important here, as the individually imported items must
come after the group tags.

5.10.2 The udpstats source code

And now, after all that, here is the entire source code to the udpstats program,
followed by a detailed description of its function:

#! /usr/bin/perl -w

use strict;
use Socket;
use Net::SNMP qw(oid_lex_sort);
use OIDs qw(:udp);

sub udp_get_table {
my ($sess, $requestOID) = @_;

my $responsePDU = $sess->get_table($requestOID);

if (!defined($responsePDU))
{

print "udpstats: OID: ", $requestOID, " : ",
$sess->error, "\n";

}

foreach my $resp (oid_lex_sort (keys %{ $responsePDU }))
{

print "$resp => ", $responsePDU->{ $resp }, "\n";
}
print "\n";

}

244 Management

my $snmp_host = shift || ’localhost’;
my $snmp_community = shift || ’public’;
my $snmp_version = shift || ’2’;
my $snmp_port = shift || 161;

$snmp_host = inet_ntoa(scalar gethostbyname($snmp_host));

print "Requesting ’udp’ group data for: $snmp_host, ";
print "$snmp_community, SNMPv$snmp_version\n\n";

my ($snmp_session, $snmp_error) = Net::SNMP->session(
-hostname => $snmp_host,
-community => $snmp_community,
-version => $snmp_version,
-port => $snmp_port,
-debug => 0);

if (!defined($snmp_session))
{

die "udpstats: an error occurred: ", $snmp_error, "\n";
}

my @udpOIDs = (udpInDatagrams, udpNoPorts,
udpInErrors, udpOutDatagrams);

my $responsePDU = $snmp_session->get_request(@udpOIDs);

if (!defined($responsePDU))
{

warn "udpstats: ", $snmp_session->error, "\n";
}

print "UDP instance values:\n\n";

foreach my $resp (oid_lex_sort (keys %{ $responsePDU }))
{

print "$resp => ", $responsePDU->{ $resp }, "\n";
}

print "\nUDP table values:\n\n";

udp_get_table($snmp_session, udpTable);

$snmp_session->close;

The program starts with the usual first line, followed by the importation of
four modules. Strictness is switched on and the Socket module is included.
The Net::SNMP module is included and the code explicitly asks to include the
oid_lex_sort subroutine, which is not imported by default. The OIDs module is
included and the entire MIB-II udp group comes with it:

Working With Net::SNMPNet::SNMPNet::SNMP 245

#! /usr/bin/perl -w

use strict;
use Socket;
use Net::SNMP qw(oid_lex_sort);
use OIDs qw(:udp);

A subroutine called udp_get_table is then defined. This subroutine will be exam-
ined after the rest of the udpstats program has been described.

Four lexically scoped scalars are then defined, taking their values from com-
mand-line arguments (if they are available) or from default values specified in the
code. Note that the default SNMP version is SNMPv2 and the protocol port-number
is 161:

my $snmp_host = shift || ’localhost’;
my $snmp_community = shift || ’public’;
my $snmp_version = shift || ’2’;
my $snmp_port = shift || 161;

The SNMP Managed Device is identified by the $snmp_host scalar variable. This
value is passed through gethostbyname and inet_ntoa to convert it to dotted-
decimal. A brief message is then displayed on screen which describes what the
program is about to try and do:

$snmp_host = inet_ntoa(scalar gethostbyname($snmp_host));

print "Requesting ’udp’ group data for: $snmp_host, ";
print "$snmp_community, SNMPv$snmp_version\n\n";

The session constructor from Net::SNMP is then invoked. Upon success, this
method creates the Net::SNMP object and assigns it to the $snmp_session scalar.
Upon failure, $snmp_session is set to undef and an appropriate error message
is assigned to the $snmp_error scalar. Note how this call to session takes five
named parameters: the values of the four lexically scoped scalars, together with a
value for the -debug parameter. Set this to 1 to switch on the Net::SNMP debug-
ging messages but be warned, the output can be very verbose:

my ($snmp_session, $snmp_error) = Net::SNMP->session(
-hostname => $snmp_host,
-community => $snmp_community,
-version => $snmp_version,
-port => $snmp_port,
-debug => 0);

if (!defined($snmp_session))
{

die "udpstats: an error occurred: ", $snmp_error, "\n";
}

246 Management

A check is performed on the value of $snmp_session to see whether or not the
call to session was successful. If it was not, the udpstats program dies with an
appropriate error message. Otherwise, the program proceeds.

A list of mnemonic OIDs is assigned to the @udpOIDs array. This array is then
passed to the get_request method associated with the newly created Net::SNMP
object. As this code is running in ‘blocking mode’ by default, udpstats waits for
a response to arrive for this request. If no response arrives within 5 seconds (the
default) or if an error occurred, the $responsePDU scalar is set to undef. If a
response does arrive, a reference to a hash is assigned to $responsePDU. This
hash is keyed by OID, allowing easy access to the values contained in the variable
binding list included with the response PDU. Again, this code checks the value
returned from the method call. If the value is undefined, a warning message is
displayed:

my @udpOIDs = (udpInDatagrams, udpNoPorts,
udpInErrors, udpOutDatagrams);

my $responsePDU = $snmp_session->get_request(@udpOIDs);

if (!defined($responsePDU))
{

warn "udpstats: ", $snmp_session->error, "\n";
}

The now-familiar hash traversal mechanism is used to print the contents of the
hash referred to by $responsePDU. The oid_lex_sort subroutine is used to sort
the OIDs in lexicographical order:

print "UDP instance values:\n\n";

foreach my $resp (oid_lex_sort (keys %{ $responsePDU }))
{

print "$resp => ", $responsePDU->{ $resp }, "\n";
}

A single call to the udp_get_table subroutine is then made, then the Net::SNMP
object is destroyed by a call to close. The udpstats program then terminates:

print "\nUDP table values:\n\n";

udp_get_table($snmp_session, udpTable);

$snmp_session->close;

Let us look at the source code to the udp_get_table subroutine, which expects
to receive two parameters: a valid Net::SNMP object and a numeric OID. These
values are placed into the $sess and $requestOID scalar variables, respectively:

sub udp_get_table {
my ($sess, $requestOID) = @_;

Working With Net::SNMPNet::SNMPNet::SNMP 247

The get_table method associated with the Net::SNMP object is then invoked
and, as with the call to the get_request method, a hash reference is returned
upon success, whereas undef is returned if an error or a timeout occurred. The
code checks for this and prints an error message, if required:

my $responsePDU = $sess->get_table($requestOID);

if (!defined($responsePDU))
{

print "udpstats: OID: ", $requestOID, " : ",
$sess->error, "\n";

}

If all is well (that is, the hash reference does exist and is populated with the
contents of the response’s variable bindings), standard hash traversal code prints
out the contents, which are keyed by OID:

foreach my $resp (oid_lex_sort (keys %{ $responsePDU }))
{

print "$resp => ", $responsePDU->{ $resp }, "\n";
}
print "\n";

}

Which, when invoked, displays the entire table of UDP listeners.
In order to fully analyse the data returned from udpstats and consider the

data in context, a requirement exists to determine the length of time the device
has been operational. A small program called howlongup does just that.

5.10.3 The howlongup program

The MIB-II system group contains the data item needed to determine how long a
device has been operating13, and it is called sysUpTime. Here is the source code to
the howlongup program, which, in addition to retrieving the value of sysUpTime,
also requests the value of the system description (sysDescr) and name (sysName):

#! /usr/bin/perl -w

use strict;
use Socket;
use Net::SNMP;
use OIDs qw(sysDescr sysName sysUpTime);

my $snmp_host = shift || ’localhost’;
my $snmp_community = shift || ’public’;
my $snmp_version = shift || ’2’;
my $snmp_port = shift || 161;

13Actually, it contains a value that indicates how long the SNMP agent has been running on the
Managed Device.

248 Management

$snmp_host = inet_ntoa(scalar gethostbyname($snmp_host));

print "Requesting system data items for: $snmp_host, ";
print "$snmp_community, SNMPv$snmp_version\n\n";

my ($snmp_session, $snmp_error) = Net::SNMP->session(
-hostname => $snmp_host,
-community => $snmp_community,
-version => $snmp_version,
-port => $snmp_port,
-debug => 0);

if (!defined($snmp_session))
{

die "howlongup: an error occurred: ", $snmp_error, "\n";
}

my @sysOIDs = (sysDescr, sysUpTime, sysName);

my $responsePDU = $snmp_session->get_request(@sysOIDs);

if (!defined($responsePDU))
{

warn "howlongup: ", $snmp_session->error, "\n";
}

print "Descr. => ", $responsePDU->{ OIDs::sysDescr }, "\n";
print "Name => ", $responsePDU->{ OIDs::sysName }, "\n";
print "UpTime => ", $responsePDU->{ OIDs::sysUpTime }, "\n\n";

$snmp_session->close;

Having worked through the source code to udpstats, understanding this program
is easy. A single get_request method call requests the value of the three MIB-II
system group data items. The results of the request are (on success) entered into
the hash referenced by $responsePDU and then displayed on screen using three
print statements.

The howlongup program can be executed from the Linux command-line as fol-
lows:

./howlongup 149.153.100.253 xxxxxx

This produces the following results:

Requesting system data items for: 149.153.100.253, xxxxxx, SNMPv2

Descr. => Cisco Internetwork Operating System Software
IOS (tm) MSFC Software (C6MSFC-JSV-M), Version 12.1(6)E,
EARLY DEPLOYMENT RELEASE SOFTWARE (fc3)
TAC Support: http://www.cisco.com/cgi-bin/

ibld/view.pl?i=support
Copyright (c) 1986-2001 by cisco Systems, In

Name => CAT6000_MSFC
UpTime => 82 days, 18:34:42.41

What’s Up? 249

The system description clearly shows that this device is one of the many avail-
able from cisco Systems. The system name is locally assigned by the network
manager, although the value of sysName for this device looks like it is set to
some factory-set default. The system ‘uptime’ value gives some clue as to the
large numbers reported by the udpstats program. Eighty-two days is a long
time for any device to operate continually, but does this explain over five mil-
lion udpNoPorts? That is an awful lot of traffic, averaging approximately 64 000
datagrams per day! It is time for the network manager to snoop the traffic arriv-
ing at the 149.153.100.253 router (perhaps over a 48 hour period) in an attempt
to determine why so many UDP datagrams are arriving, yet have no destination
application waiting to receive them.

It is a simple exercise to create udpstats2, which combines sysUpTime with
data from the MIB-II udp group, producing output as follows:

Requesting ’udp’ group data for: 149.153.100.253, xxxxxx, SNMPv2

UpTime => 82 days, 18:35:04.64

UDP instance values:

1.3.6.1.2.1.7.1.0 => 19079331
1.3.6.1.2.1.7.2.0 => 5356687
1.3.6.1.2.1.7.3.0 => 1
1.3.6.1.2.1.7.4.0 => 10707080

UDP table values:

1.3.6.1.2.1.7.5.1.1.149.153.1.253.496 => 149.153.1.253
1.3.6.1.2.1.7.5.1.1.149.153.1.253.520 => 149.153.1.253
1.3.6.1.2.1.7.5.1.1.149.153.1.253.1985 => 149.153.1.253
1.3.6.1.2.1.7.5.1.1.149.153.2.253.49 => 149.153.2.253
1.3.6.1.2.1.7.5.1.1.149.153.2.253.51505 => 149.153.2.253
1.3.6.1.2.1.7.5.1.1.149.153.2.253.56134 => 149.153.2.253
1.3.6.1.2.1.7.5.1.1.149.153.100.253.67 => 149.153.100.253
1.3.6.1.2.1.7.5.1.1.149.153.100.253.161 => 149.153.100.253
1.3.6.1.2.1.7.5.1.2.149.153.1.253.496 => 496
1.3.6.1.2.1.7.5.1.2.149.153.1.253.520 => 520
1.3.6.1.2.1.7.5.1.2.149.153.1.253.1985 => 1985
1.3.6.1.2.1.7.5.1.2.149.153.2.253.49 => 49
1.3.6.1.2.1.7.5.1.2.149.153.2.253.51505 => 51505
1.3.6.1.2.1.7.5.1.2.149.153.2.253.56134 => 56134
1.3.6.1.2.1.7.5.1.2.149.153.100.253.67 => 67
1.3.6.1.2.1.7.5.1.2.149.153.100.253.161 => 161

5.11 What’s Up?

The udpstats2 program demonstrates an important technique, which is that it is
often necessary to draw on data items from more than one MIB-II group to deduce

250 Management

meaning from network management raw data. However, it is possible to monitor
a single data item and still perform a useful function.

Consider a network manager who wishes to keep track of a collection of net-
work devices. In addition to determining the ‘uptime’ for each device, the network
manager also wants to know which device (if any) has restarted recently.

One strategy is to set a trap on each and every device to signal a Management
Station whenever a restart occurs. However, this assumes a Management Station
is operating continuously.

Another strategy is to use the value of sysUpTime from the MIB-II system group,
and note when the value returned from a Managed Device is less than some pre-
viously retrieved value.

This is what the whatsup program does. Prior to issuing any SNMP requests,
the whatsup program pre-processes a small text file called whatsup.txt. This
file contains the IP name or address of the device to keep track of, the commu-
nity string to use when querying the device, and the most recent value of the
sysUpTime in timeticks14. Within whatsup.txt, each of these values are delim-
ited by the : character.

Here is the contents of whatsup.txt as it exists on pbmac.itcarlow.ie:

149.153.100.10:public:0
gw.itcarlow.ie:wwwwww:0
149.153.100.253:xxxxxx:0
glasnost.itcarlow.ie:public:0
193.1.206.34:zzzzzz:0

As before, the actual community strings have been changed to protect the net-
works used during the production of Programming the Network with Perl.

When the whatsup program is executed, each Managed Device in the file is
contacted, and the value of the sysUpTime OID is requested. The retrieved value
is compared with the value in the whatsup.txt file. If the retrieved value is a larger
timeticks value than that stored in the file, the Managed Device is assumed to still
be operating. Otherwise, the Managed Device is assumed to have been restarted.
At the end of each execution, the whatsup program updates the whatsup.txt
file with the most recently available data. As long as the whatsup program is
executed with some reasonable frequency (perhaps once a day15), this strategy
should produce usable results.

Let us work through the source code to the whatsup program. The first five
lines are as expected. Of note is the fact that the ticks_to_time subroutine is
imported from Net::SNMP and the sysUpTime OID is imported from the OIDs.pm
module:

14The number of hundredths of a second since the SNMP agent on the Managed Device started
executing.

15On Linux and UNIX-like systems, the cron program can automate program execution.

What’s Up? 251

#! /usr/bin/perl -w

use strict;
use Socket;
use Net::SNMP qw(ticks_to_time);
use OIDs qw(sysUpTime);

Two lexically scoped variables are then defined. The $whatsupfile scalar is set
to the supplied command-line value, or to whatsup.txt by default. A hash called
%managed_agents is also defined, and is initially empty:

my $whatsupfile = shift || ’whatsup.txt’;
my %managed_agents = ();

The file referred to by $whatsupfile is then opened for reading, and the con-
tent of the file is brought into the program one line at a time. For each line, the
%managed_agents hash is updated. Referring to the three colon-delimited fields
from the whatsup.txt file above, the IP name or address of the Managed Device is
used as the hash key. The hash value is a reference to an anonymous, two-element
array, and the array takes its values from the community string and timeticks
value as read in from the file. When the entire file has been processed and the
hash populated, the file is closed:

open WHATSUPFILE_IN, $whatsupfile
or die "whatsup: could not open file: $whatsupfile.\n";

while (<WHATSUPFILE_IN>)
{

my ($host, $comm, $ticks) = split /:/;
chomp($ticks);
$managed_agents{ $host } = [$comm, $ticks];

}

close WHATSUPFILE_IN;

The code then iterates. Each Managed Device stored in the %managed_agents hash
is processed sequentially. The first order of business is to create a Net::SNMP
object to enable SNMP communication with the Managed Device:

print "\nThe whatsup results:\n\n";

foreach my $h (keys %managed_agents)
{

my $snmp_host = inet_ntoa(scalar gethostbyname($h));
my $snmp_community = $managed_agents{ $h }->[0];

my ($snmp_session, $snmp_error) = Net::SNMP->session(
-hostname => $snmp_host,
-community => $snmp_community,
-translate => [-timeticks => 0x0]);

252 Management

if (!defined($snmp_session))
{

warn "whatsup: an error occurred: ", $snmp_error, "\n";
next;

}

Note the inclusion of the -translate parameter to the session method. By set-
ting the -timeticks mode to false (0x0), the object has been instructed not
to convert the raw timeticks values received from the Managed Device into a
human-readable form. This allows for simple numeric comparisons later in the
code.

Note too the use of next if the object cannot be created. A get_request for
the sysUpTime OID is then sent to the Managed Device and, if the request is
successful, a scalar called $sysTm is assigned the ‘uptime’ value:

my $responsePDU = $snmp_session->get_request(sysUpTime);

if (!defined($responsePDU))
{

warn "whatsup: ", $snmp_session->error, "\n";
}

my $sysTm = $responsePDU->{ OIDs::sysUpTime };

If the current value of the sysUpTime OID is greater than the value stored in the
whatsup.txt file, a message is displayed indicating that the Managed Device is
still operating. The timeticks value (as stored in the $sysTm scalar) is converted
into a human-readable form prior to display, by passing it to the ticks_to_time
subroutine:

if ($sysTm > $managed_agents{ $h }->[1])
{

print "\’$h\’ is still up, with uptime reported as ",
ticks_to_time($sysTm), "\n\n";

}

If the current value of the sysUpTime OID is not greater than the value stored in
the whatsup.txt file, a message is displayed indicating that the Managed Device
may have restarted. The previously reported value of sysUpTime is displayed
together with the current one:

else
{

print "WARNING: \’$h\’ may have restarted:\n";
print "\tit has a reported uptime of ",

ticks_to_time($sysTm), "\n";
print "\tbut previously reported uptime of ",

ticks_to_time($managed_agents{ $h }->[1]),
"\n\n";

}

What’s Up? 253

The value of sysUpTime contained in the %managed_agents hash is then updated
with the most recently retrieved value (contained in $sysTm). The Net::SNMP
object is then destroyed by calling its associated close method, and the itera-
tion ends:

$managed_agents{ $h }->[1] = $sysTm;

$snmp_session->close;
}

With the entire collection of Managed Devices processed, the contents of the
whatsup.txt file is updated. The file is opened for writing (destroying any exist-
ing contents), then the %managed_agents hash is iterated over once again to out-
put its contents to the file. The whatsup program then terminates:

open WHATSUPFILE_OUT, ">$whatsupfile"
or die "whatsup: could not open file: $whatsupfile to write.\n";

foreach my $h (keys %managed_agents)
{

my $c = $managed_agents{ $h }->[0];
my $t = $managed_agents{ $h }->[1];

print WHATSUPFILE_OUT "$h:$c:$t\n";
}

close WHATSUPFILE_OUT;

Invoking the program could not be easier. Assuming the existence of a file called
whatsup.txt in the same directory as the whatsup program, use this command-
line:

./whatsup

On pbmac.itcarlow.ie, the following results were produced:

The whatsup results:

’149.153.100.10’ is still up, with uptime reported as 83 days, 19:48:25.84

’gw.itcarlow.ie’ is still up, with uptime reported as 35 days, 18:24:41.76

’149.153.100.253’ is still up, with uptime reported as 83 days, 19:48:25.86

’glasnost.itcarlow.ie’ is still up, with uptime reported as 23 days, 01:31:33.36

’193.1.206.34’ is still up, with uptime reported as 56 days, 18:14:13.88

All of the managed devices are up and running. Note that data on glasnost.
itcarlow.ie are included. This device is not a router (it is a Web server). However,
this does not stop it running an SNMP agent and responding to SNMP requests.
The whatsup.txt file now looks like this:

254 Management

149.153.100.10:public:724250584
gw.itcarlow.ie:wwwwww:309028176
149.153.100.253:xxxxxx:724250586
glasnost.itcarlow.ie:public:199269336
193.1.206.34:zzzzzz:490405388

The timeticks field has been updated for each Managed Device. A short time
later, glasnost.itcarlow.ie is restarted. When the whatsup program is exe-
cuted again, the results reflect this:

The whatsup results:

’149.153.100.10’ is still up, with uptime reported as 83 days, 19:52:09.95

’gw.itcarlow.ie’ is still up, with uptime reported as 35 days, 18:28:25.87

WARNING: ’glasnost.itcarlow.ie’ may have restarted:
it has a reported uptime of 1 minute, 29.07
but previously reported uptime of 23 days, 01:31:33.36

’149.153.100.253’ is still up, with uptime reported as 83 days, 19:52:09.97

’193.1.206.34’ is still up, with uptime reported as 56 days, 18:17:57.98

And the whatsup.txt file is updated again, thus:

149.153.100.10:public:724272995
gw.itcarlow.ie:wwwwww:309050587
glasnost.itcarlow.ie:public:8907
149.153.100.253:xxxxxx:724272997
193.1.206.34:zzzzzz:490427798

Note that the ordering in the file has changed. This has to do with the fact that
the details of each Managed Device are stored in a hash. Consequently, the order-
ing of the hash does not necessarily remain constant between invocations of the
whatsup program. If order is important, change the first line of the last foreach
iteration to:

foreach my $h (sort (keys %managed_agents))

5.11.1 Being more careful

All of the Net::SNMP programs developed to date have assumed the presence
of a functioning SNMP agent on the Managed Device. This is too optimistic an
assumption to make. When the session constructor is invoked, a new Net::SNMP
object comes into existence. However, no attempt is made to contact the Managed
Device and interact. So, when session returns normally (that is, it does not return
undef), this only means that the object has been successfully created, not that
the Managed Device is up and running and waiting to service SNMP requests.

What’s Up? 255

To improve upon this, a small subroutine (called snmp_connect) creates the
Net::SNMP object and then attempts to retrieve one data item from the MIB-II
system group. If the request is successful, the subroutine returns the Net::SNMP
object, otherwise undef is returned. Here is the snmp_connect source code:

use OIDs.pm qw(sysDescr);
.
.
.

sub snmp_connect {
return undef unless $#_ == 3;

my $try = Net::SNMP->session(
-hostname => shift,
-community => shift,
-version => shift,
-port => shift

);

my $responsePDU = $try->get_request(sysDescr);

return (!defined($responsePDU) ? undef : $try);
}

Note that this subroutine expects to receive four parameters: the IP address or
name of the Managed Device; the community string; the SNMP version; and the
SNMP protocol port-number. If anything other than four parameters are received,
the code exits early and returns undef. After creating the Net::SNMP object, the
subroutine attempts to retrieve the value of the sysDescr OID. Note the inclusion
of this OID in the import-list for the OIDs.pm module at the top of the program.
The last line of code in the subroutine checks the response from the Managed
Device and returns either undef or the Net::SNMP object, based upon whether or
not the response was defined.

As the use of this subroutine provides an added layer of robustness to programs
that use it, it will be used throughout the remainder of this chapter. Rather than
invoking the session method directly, the snmp_connect subroutine is invoked
instead.

Assuming the existence of scalars for the four required parameters, the stan-
dard idiom is:

my $snmp_session = snmp_connect($snmp_host, $snmp_community,
$snmp_version, $snmp_port);

if (!defined($snmp_session))
{

die "Whoops: an error occurred: cannot establish session.\n";
}

256 Management

5.12 Setting MIB-II Data

The Net::SNMP module supports the setting of data on a Managed Device. That
is, assuming the following two conditions hold.

The MIB-II data item is read/write – only a small percentage of all MIB-II data
items are classified as ‘read-write’ within the standards document. It is
impossible to set a data item that is designated ‘read-only’ and any attempt
to do so will not succeed.

The managed device allows setting – the SNMP agent software executing on a
Managed Device must be configured by a Systems Administrator to support
the setting of data items. Even if the standards document indicates that an
MIB-II data item is ‘read-write’, any attempt to set the data item on a Man-
aged Device that has been explicitly configured to disallow the set_request
operation will fail.

Most SNMP agent implementations provide a mechanism to configure the com-
munity string to associate with ‘read-only’ and ‘read-write’ operations.

To configure the desired values, a file called /usr/local/share/snmp/snmpd.
conf on pblinux.itcarlow.ie can be edited. Here is the contents of this file:

##
snmpd.conf
##

syslocation "Paul Barry’s Laptop"
sysservices 12
syscontact paul.barry@itcarlow.ie

rwcommunity private
rocommunity public

Lines that start with # are comments and can be ignored. The rest of the lines are
SNMP agent software configuration directives.

The first three directives set the value of three data items from the MIB-II system
group, and are relatively self-explanatory16. When it comes to configuring access,
the two remaining directives are of more interest.

The rwcommunity directive configures the community string to use for ‘read-
write’ access, which is the string private. ‘Read-only’ access is configured with
the rocommunity directive, which uses the string public. Note that the use of
‘private’ and ‘public’ as community strings is regarded by many to be merely
default values that should never be used within a production environment (as
they are too common and too easy to guess). They are fine to use during testing
and for illustrative purposes, but real community strings should be chosen with
the same care as would any systems administration password.

16The reader is referred to RFC 1213 for more details.

Setting MIB-II Data 257

The Net::SNMP module supports setting MIB-II data items through the use of
the set_request method. This method takes three parameters as follows.

Object identifier – a numeric object identifier.

Object type – the ASN.1 object type of the value to be set.

Object value – the actual value to set.

Of the three, the middle parameter requires further explanation. It is only rea-
sonable to expect that each MIB-II data item has a type associated with it. For
example, the data item might be a positive integer or a zero-terminated string.
Within the SNMP Framework, the allowed data types are rigidly defined in a docu-
ment known as The Structure of Management Information (SMI). The Net::SNMP
module defines a set of constants corresponding to the allowed data types. This
is a list of the most commonly used (note that the names of the types are taken
from the Net::SNMP module’s constant definitions):

INTEGER and INTEGER32 – machine independent integer types;

OCTET_STRING – binary and textual data in 8 bit byte format;

OBJECT_IDENTIFIER – type for defining the position of the OID in the MIB;

IPADDRESS – an IP address in dotted-decimal notation;

COUNTER, COUNTER32 and COUNTER64 – non-negative integers which wrap around
when they reach their maximum value;

GAUGE and GAUGE32 – non-negative integers that do not wrap around, but instead
‘cap’ at their maximum value (until such time as their value decreases);

TIMETICKS – non-negative integer in hundredths of a second since some start
time.

The following code snippet demonstrates the standard usage of the set_
request method:

my $newLocation = "Paul Barry’s Desktop";

my $respPDU = $snmp_session->set_request(sysLocation,
OCTET_STRING,

$newLocation);

if (!defined($responsePDU))
{

warn "set_request did not work: ", $snmp_session->error, "\n";
}

258 Management

The sysLocation data item from the MIB-II system group is set to ‘Paul Barry’s
Desktop’ by this code, assuming, of course, that the SNMP agent software on the
Managed Device has been configured to allow such operations. If the set_request
fails, an appropriate error message is displayed.

5.13 IP Router Mapping

Earlier in this chapter, the traceroute program was used to determine the list
of routers between two network devices on the Internet. Another, related require-
ment often exists, and it is to determine all of the routes through an internet. The
ultimate outcome of this requirement is to draw a map of the maze of routers
that are currently operating.

The MIB-II ip group contains 23 data items relating to the current state of the IP
software running on a Managed Device. Item number 21, ipRouteTable, contains
a collection of ipRouteEntry data items, each relating to a route to a particular
destination. Each ipRouteEntry contains a further 13 data items. Of these, the
following are of most interest to the network manager attempting to map the
routers on a network:

ipRouteDest – the IP address of a destination network;

ipRouteNextHop – the IP address of the next hop for a route;

ipRouteType – the type of the route.

The ipRouteType data item can have one of four values:

4 – the route is to a device on a non-local network;

3 – the route is to a device on a local network;

2 – the route is (temporarily) invalid;

1 – the route is not of type 2, 3 or 4.

The contents of a table from any Managed Device can be retrieved by an invo-
cation of the Net::SNMP module’s get_table method (as was demonstrated in
the udpstats program). So, the contents of a routing table can be requested by
passing the ipRouteTable OID to get_table. Once the routing table is retrieved,
its contents can be processed to extract the ipRouteDest, ipRouteNextHop and
ipRouteType values.

This is the function of the subroutine which follows (which is part of the
iproutedata program).

Taking two parameters, a Net::SNMP object and an OID, the subroutine begins
by requesting the table associated with the OID from the Managed Device associ-
ated with the Net::SNMP object:

sub iptables_get_table {
my ($sess, $requestOID) = @_;

IP Router Mapping 259

my $responsePDU = $sess->get_table($requestOID);

if (!defined($responsePDU))
{

print "iproutedata: OID: ", $requestOID, " : ",
$sess->error, "\n";

}

If the retrieval is successful, the $responsePDU scalar references a hash populated
with the name/value pairings of the data from the table (which are themselves
generated from the variable bindings). The referenced hash is then iterated over:

foreach my $resp (oid_lex_sort (keys %{ $responsePDU }))
{

As the routing table can be quite large, only the entries associated with the
ipRouteDest, ipRouteNextHop and ipRouteType data items are displayed. So,
for each hash entry, three checks are performed against each of the OID patterns.
The pattern to look for is assigned to the $oid_pat scalar, then it is checked
against the current hash key (which is in the $resp scalar). If a match is made,
the value associated with the hash key is displayed.

The first check is performed against the ipRouteDest OID:

my $oid_pat = OIDs::ipRouteDest;
if ($resp =˜ /ˆ$oid_pat\./)
{

print "Dest: $resp => ",
$responsePDU->{ $resp }, "\n";

}

The second check is performed against the ipRouteNextHop OID:

$oid_pat = OIDs::ipRouteNextHop;
if ($resp =˜ /ˆ$oid_pat\./)
{

print "NextHop: $resp => ",
$responsePDU->{ $resp }, "\n";

}

The third and final check is performed against the ipRouteType OID:

$oid_pat = OIDs::ipRouteType;
if ($resp =˜ /ˆ$oid_pat\./)
{

print "Type: $resp => ",
$responsePDU->{ $resp }, "\n";

}
}
print "\n";

}

260 Management

Assuming the existence of a Net::SNMP object called $snmp_session, the sub-
routine would be invoked as follows:

iptables_get_table($snmp_session, ipRouteTable);

The iproutedata program can be executed against the 149.153.100.10 router
with the following Linux command-line:

./iproutedata 149.153.100.10 public

The following output is displayed:

Requesting ’ip’ tables for: 149.153.100.10, public, SNMPv2

Dest: 1.3.6.1.2.1.4.21.1.1.0.0.0.0 => 0.0.0.0
Dest: 1.3.6.1.2.1.4.21.1.1.127.0.0.0 => 127.0.0.0
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.1.0 => 149.153.1.0
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.2.0 => 149.153.2.0
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.3.0 => 149.153.3.0
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.6.0 => 149.153.6.0
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.9.0 => 149.153.9.0
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.16.0 => 149.153.16.0
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.50.0 => 149.153.50.0
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.97.0 => 149.153.97.0
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.98.0 => 149.153.98.0
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.100.0 => 149.153.100.0
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.103.0 => 149.153.103.0
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.128.0 => 149.153.128.0
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.198.0 => 149.153.198.0
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.200.0 => 149.153.200.0
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.201.0 => 149.153.201.0
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.201.2 => 149.153.201.2
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.204.0 => 149.153.204.0
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.205.0 => 149.153.205.0
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.205.2 => 149.153.205.2
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.212.0 => 149.153.212.0
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.216.0 => 149.153.216.0
Dest: 1.3.6.1.2.1.4.21.1.1.149.153.253.0 => 149.153.253.0
NextHop: 1.3.6.1.2.1.4.21.1.7.0.0.0.0 => 149.153.1.2
NextHop: 1.3.6.1.2.1.4.21.1.7.127.0.0.0 => 127.0.0.12
NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.1.0 => 149.153.1.253
NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.2.0 => 149.153.2.253
NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.3.0 => 149.153.3.253
NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.6.0 => 149.153.6.253
NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.9.0 => 149.153.9.253
NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.16.0 => 149.153.31.253
NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.50.0 => 149.153.50.253
NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.97.0 => 149.153.100.253
NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.98.0 => 149.153.100.12
NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.100.0 => 149.153.100.253

IP Router Mapping 261

NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.103.0 => 149.153.103.253
NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.128.0 => 149.153.100.253
NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.198.0 => 149.153.2.100
NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.200.0 => 149.153.2.100
NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.201.0 => 149.153.2.100
NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.201.2 => 149.153.2.100
NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.204.0 => 149.153.2.100
NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.205.0 => 149.153.2.100
NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.205.2 => 149.153.2.100
NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.212.0 => 149.153.2.22
NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.216.0 => 149.153.216.253
NextHop: 1.3.6.1.2.1.4.21.1.7.149.153.253.0 => 149.153.253.253
Type: 1.3.6.1.2.1.4.21.1.8.0.0.0.0 => 4
Type: 1.3.6.1.2.1.4.21.1.8.127.0.0.0 => 3
Type: 1.3.6.1.2.1.4.21.1.8.149.153.1.0 => 3
Type: 1.3.6.1.2.1.4.21.1.8.149.153.2.0 => 3
Type: 1.3.6.1.2.1.4.21.1.8.149.153.3.0 => 3
Type: 1.3.6.1.2.1.4.21.1.8.149.153.6.0 => 3
Type: 1.3.6.1.2.1.4.21.1.8.149.153.9.0 => 3
Type: 1.3.6.1.2.1.4.21.1.8.149.153.16.0 => 3
Type: 1.3.6.1.2.1.4.21.1.8.149.153.50.0 => 3
Type: 1.3.6.1.2.1.4.21.1.8.149.153.97.0 => 3
Type: 1.3.6.1.2.1.4.21.1.8.149.153.98.0 => 4
Type: 1.3.6.1.2.1.4.21.1.8.149.153.100.0 => 3
Type: 1.3.6.1.2.1.4.21.1.8.149.153.103.0 => 3
Type: 1.3.6.1.2.1.4.21.1.8.149.153.128.0 => 3
Type: 1.3.6.1.2.1.4.21.1.8.149.153.198.0 => 4
Type: 1.3.6.1.2.1.4.21.1.8.149.153.200.0 => 4
Type: 1.3.6.1.2.1.4.21.1.8.149.153.201.0 => 4
Type: 1.3.6.1.2.1.4.21.1.8.149.153.201.2 => 4
Type: 1.3.6.1.2.1.4.21.1.8.149.153.204.0 => 4
Type: 1.3.6.1.2.1.4.21.1.8.149.153.205.0 => 4
Type: 1.3.6.1.2.1.4.21.1.8.149.153.205.2 => 4
Type: 1.3.6.1.2.1.4.21.1.8.149.153.212.0 => 4
Type: 1.3.6.1.2.1.4.21.1.8.149.153.216.0 => 3
Type: 1.3.6.1.2.1.4.21.1.8.149.153.253.0 => 3

This is all well and good, but what does it mean? Taken individually, the
long list of destinations (ipRouteDest), next hops (ipRouteNextHop) and types
(ipRouteType) have little meaning. When mapping routers on an IP-based net-
work, it is not enough to display the list of destination values, as they are the IP
addresses of destination networks, not routers. The list of next hop values (after
the duplicates have been removed) does indeed identify a list of routers. However,
the resulting list does not identify a collection of individual routers, only a col-
lection of individual connections to networks. Recall that an IP address identifies
a connection, not a network device.

The significance of this statement becomes clear when the function of a router
is considered. That is, a router connects two or more physical networks together.

262 Management

Consequently, routers have connections to at least two networks, which results
in routers having more than one IP address (as was discussed when describing
the output from the udpstats program earlier in this chapter). The existence
of these multiple connections within a single routing device manifests itself as
an individual entry in the next hop list. So, using the next hop list as the list of
routers to map causes problems as some of the IP addresses on the list refer to
connections on the router itself.

Determining which of the IP addresses refer to the router itself and which refer
to some other router is accomplished by examining the list of types associated
with each destination. If the type value is 4, the connection type is indirect and
the destination refers to a non-local network. The next hop value associated with
the destination refers to another router somewhere on the network. Note that
the ipRouteType OID value reported above (to the left of the => symbol) is a
concatenation of the OID for ipRouteType and the IP address of a destination.

The ipdetermine program implements the functionality described above for
a single router. Given the IP name or address of a router, ipdetermine retrieves
the routing table from the Managed Device then, following the above technique,
produces a list of routers that the Managed Device has connections to. The source
code to ipdetermine is shown in its entirety prior to describing it in detail:

#! /usr/bin/perl -w

use strict;
use Socket;
use Net::SNMP;
use OIDs qw(sysDescr

ipRouteTable ipRouteDest
ipRouteType ipRouteNextHop);

sub snmp_connect {
return undef unless $#_ == 3;

my $try = Net::SNMP->session(
-hostname => shift,
-community => shift,
-version => shift,
-port => shift

);

my $responsePDU = $try->get_request(sysDescr);

return (!defined($responsePDU) ? undef : $try);
}

my $snmp_host = shift || ’localhost’;
my $snmp_community = shift || ’public’;
my $snmp_version = ’2’;

IP Router Mapping 263

my $snmp_port = 161;

$snmp_host = inet_ntoa(scalar gethostbyname($snmp_host));

print "Determining ’ip’ next hop data for: $snmp_host, ";
print "$snmp_community, SNMPv$snmp_version\n\n";

my $snmp_session = snmp_connect($snmp_host, $snmp_community,
$snmp_version, $snmp_port);

if (!defined($snmp_session))
{

die "ipdetermine: an error occurred: cannot " .
"establish session.\n";

}

my $responsePDU = $snmp_session->get_table(ipRouteTable);

if (!defined($responsePDU))
{

print "ipdetermine: OID: ", ipRouteTable, " : ";
print $snmp_session->error, "\n";

}

my @dests = ();

foreach my $resp (keys %{ $responsePDU })
{

my $oid_pat = ipRouteDest;
if ($resp =˜ /ˆ$oid_pat\./)
{

@dests = (@dests, $responsePDU->{ $resp });
}

}

my %unique_next_hops = ();

foreach my $dest (@dests)
{

my $oid_type = ipRouteType . ".$dest";

if ($responsePDU->{ $oid_type } eq ’4’)
{

my $oid_nexthop = ipRouteNextHop . ".$dest";
$unique_next_hops{ $responsePDU->{ $oid_nexthop } }++;

}
}

foreach my $unique (keys %unique_next_hops)

264 Management

{
print "Next hop: $unique\n";

}

$snmp_session->close;

The program begins as expected. After using the required collection of mod-
ules, the snmp_connect subroutine is defined. The program then initializes four
lexically scoped scalars ($snmp_host, $snmp_community, $snmp_version and
$snmp_port). The values for the first two scalars are initialized with values
from the command-line if provided, otherwise defaults are used. The value of
$snmp_host is converted to its dotted-decimal equivalent, then snmp_connect is
invoked to create a Net::SNMP object. The result returned by $snmp_connect is
assigned to the $snmp_session scalar, and a check is performed on the scalar to
ensure SNMP is operating on the Managed Device referred to by $snmp_host.

The program then requests the contents of the routing table from the Managed
Device with a call to the Net::SNMP object’s get_table method. If something
goes wrong, the ipdetermine program promptly dies:

my $responsePDU = $snmp_session->get_table(ipRouteTable);

if (!defined($responsePDU))
{

die "ipdetermine: OID: ", ipRouteTable, " : ",
$snmp_session->error, "\n";

}

The response received from the Managed Device is then processed in order
to determine the list of destinations contained in the routing table’s variable
bindings. An array called @dests is defined to be initially empty, prior to a
foreach statement processing the response. Using the technique employed by
iproutedata, the code looks for a match to the ipRouteDest OID value and, if
one is found, adds the value of the destination to the @dests array:

my @dests = ();

foreach my $resp (keys %{ $responsePDU })
{

my $oid_pat = ipRouteDest;
if ($resp =˜ /ˆ$oid_pat\./)
{

@dests = (@dests, $responsePDU->{ $resp });
}

}

A hash called %unique_next_hops is defined to be initially empty. Another
foreach statement then processes the @dests array. By concatenating each des-
tination with the ipRouteType OID value, a check is made to see if the type of

IP Router Mapping 265

connection is 4. If it is, another concatenation combines the current destination
($dest) with the OID value for ipRouteNextHop, and assigns the value to the
$oid_nexthop scalar. This scalar is then used to refer to the next hop value
associated with the destination, and the resultant IP address is added into the
%unique_next_hops hash. Note how the now familiar idiom of using a hash to
store a unique list of items is once again employed to good effect in this code:

my %unique_next_hops = ();

foreach my $dest (@dests)
{

my $oid_type = ipRouteType . ".$dest";

if ($responsePDU->{ $oid_type } eq ’4’)
{

my $oid_nexthop = ipRouteNextHop . ".$dest";
$unique_next_hops{ $responsePDU->{ $oid_nexthop } }++;

}
}

With the entire list of destinations processed, all that remains is to print the
results contained in the %unique_next_hops hash. One final foreach statement
does just that. The Net::SNMP object is destroyed and the ipdetermine program
terminates:

foreach my $unique (keys %unique_next_hops)
{

print "Next hop: $unique\n";
}

$snmp_session->close;

The ipdetermine program is invoked from the Linux command-line as follows:

./ipdetermine 149.153.100.10 public

The following output is generated:

Determining ’ip’ next hop data for: 149.153.100.10, public, SNMPv2

Next hop: 149.153.100.12
Next hop: 149.153.1.2
Next hop: 149.153.2.22
Next hop: 149.153.2.100

This is much less verbose and much more manageable than the output gener-
ated by the iproutedata program. This output also has more meaning. The
149.153.100.10 router has identified the routers that it has connections to (and
the map of routers on the network can begin to be drawn).

266 Management

The next step would be to contact these four routers, and determine their list of
routers, expand the map, and iterate over the list of routers determined from each
of the four (being careful, of course, not to return to a router already processed
by an earlier iteration). Implementing this strategy is left as an exercise for the
reader (refer to the Exercises at the end of this chapter).

5.14 Where To From Here?

This chapter concentrated on network management, with the majority of the dis-
cussion given over to SNMP. The Net::SNMP add-on module provides a Perl API
to SNMP, and formed the basis of a collection of Management Station utilities.

An alternative Perl API to SNMP is provided by the net-snmp project (pre-
viously known as ucd-snmp and before that as cmu-snmp). An open-source,
SourceForge project, this technology provides an API to SNMP for C and Perl
programmers, and can be downloaded from the net-snmp website located at
http://www.net-snmp.org. The Perl API is written and maintained by Gio-
vanni S. Marzot. In addition to the programming APIs, this technology pro-
vides a fully functioning SNMP agent that can be built, installed and queried
on most systems (including those using Linux). The Perl API is not unlike that
provided by Net::SNMP, in that there is support for performing get-request,
get-next-request, and so on. However, the API is somewhat more involved than
that provided by Net::SNMP and can take some getting used to. In the technology’s
favour, net-snmp provides support for all three versions of SNMP. The Net::SNMP
module supports only SNMPv1 and SNMPv217.

Another CPAN module, SNMP::Util by Wayne Marquette, provides a set of
SNMP utilities that work in conjunction with Marzot’s Perl API to net-snmp. Jochen
Wiedmann has created SNMP::Monitor, which provides for the creation of auto-
mated SNMP monitoring mechanisms. Available on CPAN, the SNMP::Monitor
module also builds on net-snmp.

5.15 Print Resources

Chapter 5 of Eric A. Hall’s Internet Core Protocols: The Definitive Guide (see the
Print Resources section from Chapter 2) contains an excellent description of ICMP,
together with a discussion of its relationship to the ping and traceroute pro-
grams.

A thorough treatment of the field of network management is Network Man-
agement: Principles and Practice by Mani Subramanian (Addison Wesley, 2000).
Referred to extensively during the writing of this chapter, this book shows that
there is more to an understanding of network management than SNMP. ASN.1 and

17However, this situation may have changed by the time this book is published.

Web Resources 267

BER are described, and an appendix presents the CMIP technology as promoted
by the ISO.

The classic SNMP introduction is The Simple Book: An Introduction to Network
Management by Marshall T. Rose (Prentice Hall, 1996). Rose is one of the principal
architects of the SNMP framework and supporting technologies.

To learn most of what there is to know about routing, refer to Routing in the
Internet, 2nd edn, by Christian Huitema (Prentice Hall, 2000). There simply is no
more comprehensive routing resource.

5.16 Web Resources

Find the RFCs referenced in this chapter at the http://www.ietf.org website.

The Internet Control Message Protocol is documented in the following RFCs.

RFC 792 – the official standard for ICMP.

RFC 1256 – a description of the ICMP Router Discovery Messages.

There is a vast array of RFC documents relating to network management. What
follows is an abbreviated list.

RFC 1155 – the Structure and Identification of Management Information for
TCP/IP-based Internets (commonly referred to as SMIv1) details the types
that can be used with MIB data items.

RFC 1157 – the official standard for SNMPv1.

RFC 1213 – a description of the MIB-II data items.

RFC 1902, 1903 and 1904 – Multiple updates to RFC 1155, referred to collec-
tively as SMIv2 and tailored to SNMPv2.

RFC 1905 and 1906 – the official standard for SNMPv2.

RFC 1907 – the update to RFC 1213 which tailors MIB-II to SNMPv2.

Daniel Hagerty’s Net::Traceroute add-on module can be downloaded from the
following CPAN directory: http://www.cpan.org/authors/id/H/HA/HAG/.

David M. Town’s Net::SNMP add-on module can be downloaded from this CPAN
directory: http://www.cpan.org/authors/id/D/DT/DTOWN/.

The ISO maintains an online presence at http://www.iso.ch.

268 Management

Exercises

1. The standard Net::Ping module is useful. However, support for directed broad-
cast is not provided. Investigate what would be required to enhance the Net::Ping
source code to support such a broadcast, thus allowing the module to be used in
the creation of a network discovery application.

2. Another limitation with Net::Ping is the restriction that the ICMP protocol is only
available to a user operating under superuser privilege. Why do you think this is?
What would be the impact of removing this restriction from the Net::Pingmodule?

3. Would Net::Ping be more useful if a protocol port-number (other than the Echo
port) were used when pinging with TCP and UDP?

4. Referring to the Net::Ping source code as appropriate, implement a version of the
traceroute program in Perl. What value will you use for your unused port?

5. Review the data items included in the MIB-II icmp group. Would the retrieval of
any of the ICMP data items help in determining the source of the large number of
udpNoPorts reported by the udpstats2 program?

6. Create a program called tcpstats, based on the udpstats2 program, which
requests and displays the MIB-II tcp group data.

7. Develop an IP Router Mapping program which is based on and expands upon the
ipdetermine source code. How will you ensure that the program does not iterate
forever? Is there a benefit to be gained from using a recursive algorithm?

8. Download the net-snmp technology from the http://www.net-snmp.org website.
Install this technology on your Linux computer and configure the supplied SNMP
agent software to process traps. Develop a Management Station utility using the
Net::SNMP module to set a trap and then react to trap messages arriving from the
net-snmp SNMP agent software.

6

Mobile Agents

And now for something completely different.
The last three chapters concerned themselves with a discussion of program-

ming the network with what can be termed traditional techniques. Specifically,
the use of the client/server model is so common that one could be forgiven for
assuming it is the only usable network application development model. Today, the
vast majority of Internet-based applications conform to the client/server model.
And for good reason: it works well, is well understood and is easy to work with.
However, there are other models, some of which were briefly discussed at the start
of Chapter 3, Sockets. Of them all, one of the most interesting is the mobile-agent
model , and its study forms the basis of this, the final chapter of Programming the
Network with Perl.

6.1 What is a Mobile Agent?

The cute answer is: it depends on who is asked. Due to the relative immaturity
of this field, the study of mobile-agent technologies has produced a number of
often conflicting definitions. Rather than discuss the various definitions and risk
confusing the reader, a simple ‘working definition’ is presented here (with the
keywords emphasized).

A mobile agent is a network-aware software application that can, under
certain circumstances, suspend its execution on one network device,
transport to another network device and resume execution there.

The mobile designation is due to the software application’s ability to relocate
from one network device to another. The agent designation is due to the software
application doing something on behalf of a user, that is, it acts as an agent for
the user.

270 Mobile Agents

This model is very different to the client/server model. Instead of a standard,
formatted message being sent from one software application to another over a
network, the entire software application is sent. In the course of its execution, a
mobile agent may relocate to multiple network devices, that is, it can roam.

6.1.1 Mobile agent = code + state

A mobile agent has two main components: code and state.
Obviously, in order for a software application to relocate from one network

device to another, its code has to travel. It will depend on the mobile-agent envi-
ronment whether or not the code is in source code form, compiled form or in
some intermediate form (such as bytecode).

The software application’s state also has to travel. This refers to the resources
the software application is currently using. Do any variables exist, and what are
their values? Are any disk-files open? Does the software application hold any other
resources? Again, depending on the mobile-agent environment, none, some or all
of the software application’s resources may travel. The entire set of resources are
referred to as the software application’s state.

6.1.2 What is a mobile-agent environment?

A mobile-agent environment (MAE) is a set of technologies that provides a working
space for mobile agents. The MAE has to exist on each network device that the
mobile agent can execute on (and relocate to), and this includes the device that
starts the mobile agent. Throughout this chapter, the device that starts the mobile
agent is referred to as the initiating network device.

The technologies used to provide an MAE vary widely. Some are network servers
that operate on any compatible network device, while others are entire operating
systems built from scratch to support mobile agents.

Within the literature, MAEs are referred to by a number of names, with site,
location and place the most popular monikers.

6.2 Mobile-Agent Examples

In light of an understanding of what a mobile agent is, let us revisit two appli-
cations from earlier in this book and consider their re-implementation as mobile
agents.

6.2.1 Revisiting multiwho

Chapter 4, Protocols, includes the multiwho program, which uses the TELNET
protocol to automate the production of the list of logged-in users on a collection

Mobile-Agent Examples 271

of network devices. The TELNET protocol is classically client/server, whereby the
server on a remote network device provides a terminal emulation service to a
local client program. The multiwho program, built to exploit TELNET, contacts a
list of network devices (each of which runs a TELNET server) and interacts with
them in order to determine the list of logged-in users. It is the responsibility of the
multiwho program to monitor the entire execution process, as well as process the
results of each interaction and produce the concatenated list of logged-in users
(the master list).

The multiwho program exhibits two identifiable characteristics as follows.

It is client-centric – the client-side of the interaction does all the real work. In
comparison, the server-side of the interaction provides a fixed set of services
which cannot be easily changed or expanded. If additional processing of the
results generated by the service request is required, then this processing
must occur on the client (as is the case with multiwho).

It is bandwidth-intensive – the network traffic generated by multiwho in rela-
tion to the results produced is disproportionate. A small amount of output
results from a large amount of network traffic. This is worsened by the fact
that TELNET is a very ‘chatty’ protocol.

A mobile-agent implementation of multiwho would begin by relocating to the
first network device on the list. Once there1, multiwho would determine the list
of logged-in users and concatenate them with the master list (which would have
started out empty). The multiwhomobile agent then relocates to the next network
device on the list and iterates. This procedure repeats until each network device on
the list is visited and the master list of logged-in users is complete. The multiwho
mobile agent then returns to the initiating network device and displays the entire
list of logged-in users.

The mobile-agent-based multiwho is no longer client-centric, nor is it band-
width-intensive. Network traffic is generated when a relocation from one network
device to another occurs. Thankfully, the ‘chatty’ TELNET protocol is nowhere to
be seen.

6.2.2 Revisiting ipdetermine

Chapter 5, Management, includes the ipdetermine program, which uses SNMP
to determine a list of routers contactable from a specified routing device. The
technique employed requests the contents of the routing table from a Managed
Device, then processes the table to extract the required information. Typically, the
routing table has tens (and sometimes hundreds) of entries, which are transferred

1Note that the mobile agent is no longer executing on the initiating network device.

272 Mobile Agents

from the SNMP server (the Managed Device) to the SNMP client (the Management
Station) for processing.

Like TELNET, the SNMP technologies are client/server. The ipdetermine pro-
gram is both client-centric and bandwidth-intensive. Returning to the example
invocation of ipdetermine from the end of the last chapter, when executed
against the 149.153.100.10 router, it produced a list of just four contactable
routers from the entire routing table (which had considerably more entries, 312
in all).

Now, imagine a mobile-agent-capable router exists. An ipdetermine mobile
agent transfers itself to the router, processes the routing table to determine the
list of contactable routers, then returns to the initiating network device with the
list. The entire contents of the routing table are no longer transferred across the
network, and the reliance on SNMP is greatly reduced.

An improved implementation of the ipdetermine mobile agent would involve
ipdetermine cloning itself prior to its transfer to the router. The original
ipdetermine mobile agent would then wait (on the initiating network device)
to receive the results produced by its clone and sent to it from the router. The
clone never returns to the initiating host, only the results of its execution on the
router are transmitted. In this way, the network traffic generated by the clone is
kept to a minimum.

6.3 Mobile-Agent Advantages/Disadvantages

Before discussing the advantages of the mobile-agent model over others (notable
the client/server model), it is important to point out that it is possible to use
any development model to solve a problem. The client/server and mobile-agent
versions of both multiwho and ipdetermine solve the problems they set out to.
The methods used are very different, but the results are the same. The trick is
to identify when it is appropriate and advantageous to use one model over the
other.

It might seem obvious, but the fact that mobile agents have the ability to relocate
is a huge advantage. For example, if a mobile agent cannot find what it needs on
one network device, it relocates to another and continues looking. As such, the
mobility advantage removes some of the limitations of traditional techniques. The
mobile agent can, therefore, make the most of its autonomy.

Related to the mobility advantage is the ability of a mobile agent to adapt to
the job at hand, providing a potentially powerful problem-solving technology.
Granted, this typically involves combining mobile-agent techniques with those
of the Artificial Intelligence community2. The adaptability advantage provides a
level of customization which is superior to other models. When mobile agents

2A topic very much beyond the scope of Programming the Network with Perl.

Mobile-Agent Advantages/Disadvantages 273

collaborate at locations, this advantage can enable unique and elegant solutions
to problems.

Efficiency is another advantage, especially as it relates to network bandwidth
utilization. As the complexity of the mobile agent increases, the bandwidth
requirements do not necessarily.

As an example of the efficiency advantage, consider a website indexing pro-
gram. When developed using traditional client/server techniques, one possible
strategy employed by the client would be to request every document accessi-
ble on the website. Each document is retrieved from the HTTP server (with its
own individual HTTP Request) and then stored on the client’s local storage. Only
then can indexing occur. Even when HTTP/1.1 (with its persistent connections) is
employed, the network traffic produced by this strategy is large, and gets larger
as more documents are added to the website. The resulting index might be small,
but, as this is produced on the client, its size has no bearing on the network
bandwidth used.

When a mobile-agent strategy is employed, the mobile agent relocates from the
initiating network device to the website and performs the indexing in situ. When
the index is created, it is transferred back to the initiating network device. The
index is small and the bandwidth that it consumes pales in comparison with that
generated by the client/server approach. Granted, the processing burden (that
is, the creation of the index) has been shifted from the initiating network device
to the website. But, bear in mind that the website no longer has to process all
those HTTP Request messages, as it is assumed the mobile agent has access to
the website’s documents in a manner which is independent of the HTTP access
mechanisms.

The web-indexing example also serves to highlight the major disadvantage of
using mobile agents: security concerns. For the mobile-agent model to work well,
all of the participating network devices must trust each other to a high degree, or
to a level of trust that is deemed acceptable by some local administrative policy.
For instance, it would be foolish to widely advertise the existence of an MAE on any
network device, as not all users of the network are trustworthy. The problem wors-
ens when one considers that an MAE provides a facility to execute arbitrary blocks
of code as received from another remote network device. A malicious mobile agent
could wreak havoc on the network device hosting the MAE if given free rein to exe-
cute any code on the MAE. Another concern is the existence of malicious MAEs
which await the arrival of non-malicious mobile agents. When they arrive, these
mobile agents find themselves operating in a hostile environment.

Any further discussion of the solutions to the security disadvantage are beyond
the scope of Programming the Network with Perl, as the intent here is to introduce
the mobile-agent model and demonstrate examples of its use. Security in mobile
agents is generating considerable ongoing research among academics and com-
mercial interests. Refer to the Web Resources section at the end of this chapter
for further details.

274 Mobile Agents

6.4 Perl Agents

The application of Perl to the development of mobile-agent technologies has,
unfortunately, not produced a great wealth of activity (as compared with the other
networking technologies discussed in the rest of Programming the Network with
Perl). Despite this fact, the area does have its pioneers. One such pioneer is Steve
Purkis, who, as an undergraduate at Carleton University in Canada, developed
the Agent.pmmodule. An unfinished, proof-of-concept technology, Agent.pm can
nevertheless be used to develop working mobile agents in Perl.

6.4.1 Preparing Perl for mobile agents

To use Agent.pm, the Class::Tom module (written by James Duncan) needs to be
installed. Class::Tom, which can be used to transfer an object from one network
device to another, expects to find Crypt::MD5, Data::Dumper, UNIVERSAL and
MIME::Base64 installed. For readers working through this book, these modules
should already be installed, as they either come as standard with Perl 5.6 or were
needed in an earlier chapter. If this is not the case (that is, one or more of them
is not installed), visit the nearest CPAN, then download and install whichever
modules are missing.

Note that there are multiple versions of Class::Tom on CPAN. To work with
Agent.pm, version 2.04 should be installed, not the more recent version of the
module (which is version 3.02).

After downloading version 2.04 of Class::Tom, use these commands to install
the module into Perl and test that the installation was successful:

gunzip Class-Tom-2.04.tar.gz
tar xvf Class-Tom-2.04.tar
cd Class-Tom-2.04
perl Makefile.PL
make
make test
su
make install
<ctrl-D>
man Class::Tom
perl -e ’use Class::Tom’

In addition to Class::Tom and any prerequisites it may have, Agent.pm requires
the IO::Socket module, which is standard with the Perl 5.6 distribution.

To install and test the most recent version of Agent.pm, download the module
from CPAN and use these commands:

gunzip Agent-3.20.tar.gz
tar xvf Agent-3.20.tar
cd Agent-3.20

The Agent.pmAgent.pmAgent.pm Module 275

perl Makefile.PL
make
make test
su
make install
<ctrl-D>
man Agent
perl -e ’use Agent’

6.5 The Agent.pm Module

The 3.20 release of Agent.pm includes four object-oriented classes that can be
used to build mobile agents and mobile-agent environments.

The four classes are

Agent – used to instantiate and run a mobile agent;

Agent::Message – used to send code from one MAE to another;

Agent::Transport – used to receive code from an MAE;

Agent::Transport::TCP – provides a transport mechanism for mobile-agent
developers to use. At the time of writing, Agent.pm supports only TCP, which
means that when relocation occurs, it occurs reliably.

To build a functioning mobile agent, the programmer needs to create the fol-
lowing three programs using the Agent.pm technologies.

A launching MAE – this program provides a mechanism to start (or launch) a
mobile agent on the initiating network device. Although it is useful to think
of this program as an MAE, it primarily exists to kick-start the execution
of a mobile agent, not to receive a mobile agent from another MAE. Note,
too, that this program does not send a mobile agent to another MAE. The
decision as to whether or not to relocate is taken by the mobile agent, not
the MAE. However, the Launching MAE does provide a relocation service to
the mobile agent.

A receiving MAE – using the facilities provided by Agent::Transport, this pro-
gram receives a mobile agent from an MAE and executes it. Like the Launch-
ing MAE, the Receiving MAE provides a relocation service to a mobile agent.

A loadable mobile agent – inheriting its functionality from the Agent class, this
program can use the facilities of Agent::Message to relocate from one MAE
to another. This program cannot start its execution cycle without the assis-
tance of a Launching MAE3. Once relocated, this program cannot execute
nor relocate without the assistance of a Receiving MAE.

Later in this chapter, examples of each of these programs are developed.

3So it is probably inappropriate to call it a ‘program’.

276 Mobile Agents

6.6 Ooooh, Objects!

As if all this talk of ‘classes’ and ‘inheriting’ was not a big enough clue, it should
now be clear that Agent.pm is a purely object-oriented (OO) add-on module to
Perl. Throughout Programming the Network with Perl, object-oriented technolo-
gies created by other Perl programmers have been used to great effect. To use
Agent.pm, a greater understanding of Perl’s OO mechanisms is required.

Developing classes in Perl is straightforward and follows a simple recipe.

Declare a package – the package subroutine declares a namespace, and in OO
Perl, each class has a unique namespace (usually stored within its own mod-
ule file).

Add functionality with methods – behaviour is added to an OO Perl class by writ-
ing methods that reside within the namespace. As was the case in earlier
chapters, method is the OO name for subroutine.

To create an object, bless it – the inbuilt bless subroutine takes a reference to
something and turns it into an object of some named class. In Perl, the ‘some-
thing’ can be anything at all (although hashes are very popular with OO Perl
programmers). Blessing typically occurs when the object (of a certain class)
is being instantiated by its constructor. Constructor is another fancy OO
name for a special object instantiation subroutine, which is – again, typi-
cally – called new in Perl4. When the word ‘instantiate’ is used, think ‘create’.

In addition to satisfying this OO Perl recipe, classes based on the Agent.pm
technologies must contain two specific methods:

new – a constructor that instantiates a mobile-agent object which is inherited
from the Agent class;

agent_main – a method that belongs to the mobile agent’s class, but is invoked
by the MAE.

It is also recommended that the mobile agent be contained in a disk-file named
with a ‘.pa’ extension.

Looking at some code should help to make sense of all this OO speak, and in the
sections which follow, a number of code samples illustrate Perl’s OO technology.

6.7 The Default Mobile Agent

Here is the source code to a simple mobile agent called onedefault.pa:

#! /usr/bin/perl -w

use strict;
use 5.6.0;

4Although it does not have to be called new. Recall from the last chapter that objects of type
Net::SNMP were constructed with a call to the session method.

The Default Mobile Agent 277

package Agent::OneDefault;

our @ISA = qw(Agent);

sub new {
my ($class, %args) = @_;

my $self = {};

foreach (keys(%args))
{

$self->{ "$_" } = $args{ "$_" };
}

bless $self, $class;
}

sub agent_main {
my ($self, @args) = @_;

my $to = delete($self->{ ’Host’ });

unless ($to)
{

print "Hello from the onedefault.pa mobile agent.\n";

return 1;
}

my $msg = new Agent::Message(
’Body’ => ["OneDefault.\n", $self->store()],
’Transport’ => ’TCP’,
’Address’ => $to);

if (!$msg->send)
{

print "onedefault: could not send agent!\n";
}

}

1;

This may look like a functioning Perl program, but is, in fact, a mobile agent
(contained in a Perl module). If the Perl interpreter executes this code as is, nothing
happens. To make this code do something useful, a Launching MAE is required.
But more on that later.

The mobile agent’s source code starts with the strange first line, two familiar
use statements, and these two statements:

package Agent::OneDefault;

our @ISA = qw(Agent);

278 Mobile Agents

The first line sets the namespace to Agent::OneDefault, which can be thought
of as the mobile agent’s class name. It is a convention to prefix the class name of
mobile agents based on Agent.pm with the ‘Agent::’ string, but this could just as
easily be any string. The second line tells Perl that this class inherits functionality
from the Agent class by setting the @ISA array to the name of the class from
which to inherit.

Next comes the code for the new method:

sub new {
my ($class, %args) = @_;

my $self = {};

foreach (keys(%args))
{

$self->{ "$_" } = $args{ "$_" };
}

bless $self, $class;
}

When used to instantiate an object, the Perl interpreter always ensures that new
receives the name of the class to construct as its first parameter, followed by any
other parameters. The first line of the new method assigns the class name to the
$class scalar, and then uses any parameters to initialize a hash called %args.
A scalar called $self is then set to reference an empty (anonymous) hash. This
reference to a hash is used to refer to the state of the object, and is called $self
by convention5. A foreach statement then processes any parameters passed to
new and copies them into the hash referenced by $self. Note the use of the ->
symbol to refer to the referenced hash entries. Once the hash referred to by $self
is populated, a call to the inbuilt bless subroutine turns $self (which is, after all,
just a reference) into an object of type $class. As the invocation of bless occurs
as the last statement of the new method, an implicit return statement returns
the result of bless to the method’s caller.

When the Agent class relocates a mobile agent from one MAE to another, it does
so by transferring the object. The object is made up of the data items stored in
the $self referenced hash (state), together with the methods that act upon the
data items (code).

A single method, the agent_main subroutine, resides in the class Agent::
OneDefault. As Perl arranges to include a reference to the object as the
first parameter to each called method, the code begins by placing the refer-
ence into a scalar called $self and any other parameters into an array called
@args:

5Again, it could have been called anything. Perl is not fussy, but standard naming conventions
are generally a good idea.

The Default Mobile Agent 279

sub agent_main {
my ($self, @args) = @_;

The hash referenced by $self is then accessed to determine the value associated
with the Host key, which is then assigned to the $to scalar. As a result of the
assignment, the inbuilt delete subroutine removes the Host key/value pairing
from the hash. Note that the value associated with the Host key is not set in the
onedefault.pa source code. The value was passed to the new constructor when
it was invoked, and the invocation and assignment occur elsewhere. A check is
performed on the value of $to, and a message is displayed on screen if its value
is undefined. Assuming the initial existence of a value associated with the Host
key, the $to scalar is defined and, consequently, the message will not display the
first time this method is executed:

my $to = delete($self->{ ’Host’ });

unless ($to)
{

print "Hello from the onedefault.pa mobile agent.\n";

return 1;
}

The agent_main subroutine then instantiates an Agent::Message object by call-
ing its new constructor:

my $msg = new Agent::Message(
’Body’ => ["OneDefault.\n", $self->store()],
’Transport’ => ’TCP’,
’Address’ => $to);

The Agent::Message class supports the sending of code from one MAE to
another. The parameters to new identify the code to send (Body), the protocol
to use (Transport) and the location of the MAE (Address). The code is the sec-
ond element in an anonymous array associated with the Body parameter. A call is
made to the store method associated with the mobile agent’s object. The store
method belongs to the Agent class (from which Agent::OneDefault inherits its
functionality), and it returns the object (code and state) in a stringified form. To
do this, Agent.pm uses the facilities provided by Class::Tom.

Once the Agent::Message object has been instantiated and stored in the $msg
scalar, the mobile agent asks the MAE to relocate. A call to the send method
associated with the Agent::Message object is performed, together with a simple
check to see that all went well. If an error occurs, a message is displayed on screen
and the relocation does not occur. Either way, the agent_mainmethod terminates,
and the module code ends with a true value (the 1; line), which is a requirement
that Perl places on modules:

280 Mobile Agents

if (!$msg->send)
{

print "onedefault: could not send agent!\n";
}

}

1;

The first time this method is executed (by a Launching MAE) the value of $to
will be set to the value of the Host hash entry referenced by $self. The unless
code is not executed, as $to has a value. The mobile agent then relocates to a
Receiving MAE. Once relocated, the code executes for a second time. This time
the value of $to is undefined due to the fact that the first execution of the code
used the inbuilt delete subroutine to remove the Host entry from the refer-
enced hash. With an undefined $to, the unless code now executes, the mobile
agent displays the message ‘Hello from the onedefault.pa mobile agent.’
on screen, then invokes return with a value of 1. No further relocation occurs,
and the mobile agent terminates. This, therefore, is a default mobile agent that
does something (displays a message) on a single Receiving MAE, then terminates.
Hence its name: onedefault.pa.

6.8 A Launching Mobile-Agent Environment

In the last section it was stated that the onedefault.pa mobile agent, if executed
as is, does nothing. To make it do something, a Launching MAE is required. The
onelaunchma program serves as the first example of such a program:

#! /usr/bin/perl -w

use strict;
use Socket;
use Agent;

my $ma_name = shift || ’onedefault.pa’;
my $ma_host = shift || ’localhost’;
my $ma_port = shift || 40000;

$ma_host = inet_ntoa(scalar gethostbyname($ma_host));

my $ma_hostport = $ma_host . ’:’ . $ma_port;

my %args = (’Name’ => $ma_name,
’Host’ => $ma_hostport);

my $perlagent = new Agent (%args);

my $agentresults = eval { $perlagent->run; };

A Launching Mobile-Agent Environment 281

if ($@)
{

print "onelaunchma: something went wrong: $@\n";
}
if ($agentresults)
{

print "onelaunchma: results: ", $agentresults, "\n";
}

Compared with the complexity of the mobile agent’s source code, there is not
much to onelaunchma. After the usual first line and a collection of use statements,
three scalars are set to either default values, or to values entered at the Linux
command-line:

my $ma_name = shift || ’onedefault.pa’;
my $ma_host = shift || ’localhost’;
my $ma_port = shift || 40000;

The $ma_name scalar identifies the mobile-agent disk-file to use, and it defaults
to the onedefault.pa mobile agent. The $ma_host and $ma_port scalars iden-
tify the IP name (or IP address) and protocol port-number of the network device
hosting the Receiving MAE, respectively.

When one relocates a mobile agent from one MAE to another using Agent.pm,
MAEs are identified by a combination of their dotted-decimal IP address and pro-
tocol port-number. The two values are concatenated together and separated by
a colon. The next two lines of code convert the IP name (or IP address) into its
dotted-decimal equivalent, and then assign the address and protocol port-number
(in the required format) to a scalar called $ma_hostport:

$ma_host = inet_ntoa(scalar gethostbyname($ma_host));

my $ma_hostport = $ma_host . ’:’ . $ma_port;

The value of $ma_hostport is immediately used in the initialization of a hash
called %args:

my %args = (’Name’ => $ma_name,
’Host’ => $ma_hostport);

Note that the value of $ma_hostport is assigned to the hash entry called Host.
One other hash entry is assigned: the Name entry is assigned the value of the
$ma_name scalar (i.e. the name of the disk-file which contains the mobile agent’s
source code).

With the %args hash populated, the next line of code instantiates an object of
type Agent and passes the %args hash as the new constructor’s sole parameter.
The object is assigned to the $perlagent scalar:

my $perlagent = new Agent (%args);

282 Mobile Agents

With the object in existence, its run method is invoked. This has the effect of
calling the agent_main method contained within the mobile agent’s source code:

my $agentresults = eval { $perlagent->run; };

The invocation of run occurs within an eval block. This lets the mobile agent
terminate abnormally (perhaps by calling die) without impacting the execution
of onelaunchma. If the run method returns results, they are assigned to the
$agentresults scalar. If the eval block terminates abnormally, the built-in $@
variable is assigned the reason. The onelaunchma program concludes with two
if statements that check these scalars and display messages on screen, if appro-
priate:

if ($@)
{

print "onelaunchma: something went wrong: $@\n";
}
if ($agentresults)
{

print "onelaunchma: results: ", $agentresults, "\n";
}

6.9 A One-Shot Location

With the mobile agent written (onedefault.pa) and the Launching MAE in place
(onelaunchma), all that remains is an MAE to which the mobile agent can relocate.
The oneshotloc program is a Receiving MAE, and here it is:

#! /usr/bin/perl -w

use strict;
use Socket;
use Sys::Hostname;

use Agent;
use Agent::Transport;

my $mae_name = inet_ntoa(scalar gethostbyname(hostname));
my $mae_port = shift || 40000;
my $mae_address = $mae_name . ’:’ . $mae_port;

my $mae = new Agent::Transport(’Medium’ => ’TCP’,
’Address’ => $mae_address);

my ($from, @recv_code) = $mae->recv(’Timeout’ => 120)
or die "oneshotloc: timed out waiting: no code.\n";

my $stored_agent = join(’’, @recv_code);

A One-Shot Location 283

my $ma = new Agent(’Stored’ => $stored_agent)
or die "oneshotloc: could not create agent.\n";

my $res = eval { $ma->run; };

if ($@)
{

warn "oneshotloc: could not run agent: $@\n";
}

In addition to the modules included at the start of onelaunchma, this pro-
gram also includes the standard Sys::Hostname module, in addition to the
Agent::Transport class. Code similar to that used to produce the $ma_hostport
scalar (in onelaunchma) is used to assign the IP address/protocol port-number
combination to a scalar called $mae_address. Note that this program takes a sin-
gle command-line argument, the value for the protocol port-number to use (which
defaults to 40000). Rather than require the user of the program to enter the IP
name of the network device hosting this Receiving MAE, the hostname subrou-
tine (as provided by the Sys::Hostname module) is used to determine the correct
value to use:

my $mae_name = inet_ntoa(scalar gethostbyname(hostname));
my $mae_port = shift || 40000;
my $mae_address = $mae_name . ’:’ . $mae_port;

The value of $mae_address is used in the instantiation of an object of type
Agent::Transport:

my $mae = new Agent::Transport(’Medium’ => ’TCP’,
’Address’ => $mae_address);

With the $mae scalar referring to the just created object, the oneshotloc program
now has the ability to receive a mobile agent from another MAE, as this is what the
Agent::Transport class provides. A receipt is requested by invoking the recv
method:

my ($from, @recv_code) = $mae->recv(’Timeout’ => 120)
or die "oneshotloc: timed out waiting (2 minutes).\n";

The recv method now waits (i.e. blocks) for 120 seconds for a mobile agent to
arrive. In actual fact, the recv method is waiting for some mobile agent some-
where to invoke its send method. Referring back to the onedefault.pa source
code, note how the two parameters to sendmatch up with the two values returned
from a successful invocation of recv.

The mobile agent’s code now resides in the @recv_code array6. To get to a point
where the code can be executed by the Agent class, the contents of the array are
converted to a scalar, as follows:

my $stored_agent = join(’’, @recv_code);

6Stored in an internal format used by the Class::Tom module

284 Mobile Agents

The mobile agent now exists in the $stored_agent scalar, and is then passed
to the new constructor and assigned to the Stored hash entry. This ensures the
correct code is invoked when the mobile agent is executed by the Receiving MAE :

my $ma = new Agent(’Stored’ => $stored_agent)
or die "oneshotloc: could not create agent.\n";

As in the Launching MAE, an invocation of the run method associated with the
Agent object occurs, again within an eval block, prior to the program terminating:

my $res = eval { $ma->run; };

if ($@)
{

warn "oneshotloc: could not run agent: $@\n";
}

To run the oneshotloc program and use protocol port-number 35000, use the
following command-line:

./oneshotloc 35000

And nothing happens. The Receiving MAE is waiting for some other MAE some-
where to send a mobile agent to it.

Assuming oneshotloc is executing on pbmac.itcarlow.ie, the following
command-line is used to send the onedefault.pa mobile agent to it:

./onelaunchma onedefault.pa pbmac.itcarlow.ie 35000

If all goes well, the ‘Hello from the onedefault.pa mobile agent.’ message
appears on pbmac’s screen, then oneshotloc terminates. Which helps explain its
name, as it is a one-shot Receiving MAE. A single mobile agent is received, executed
and that is all. In the section which follows, these programs will be updated to
support the receipt and delivery of multiple mobile agents.

6.10 Relocating To Multiple Locations

The oneshotloc Receiving MAE terminates after the receipt of a single mobile
agent. The addition of a simple loop to the source code adapts oneshotloc to
support the receipt of more than one mobile agent. In effect, the program is now
a network server that waits forever at some specified IP address/protocol port-
number to service clients (received from other MAEs, be they of the Receiving or
Launching kind).

Relocating To Multiple Locations 285

6.10.1 Processing multiple mobile agents

The multishotloc program includes the modified oneshotloc source code.
This code, up to and including the instantiation of the $mae object of type
Agent::Transport, is exactly as it was in oneshotloc. Here is the rest of the
source code from multishotloc:

while (1)
{

my ($from, @recv_code) = $mae->recv(’Timeout’ => 120);

unless (@recv_code)
{

warn "multishotloc: timed out waiting: no code.\n";
next;

}

my $stored_agent = join(’’, @recv_code);

my $ma = new Agent(’Stored’ => $stored_agent);

my $res = eval { $ma->run; };

if ($@)
{

warn "multishotloc: could not run agent: $@\n";
}

}

The body of the while loop is similar to that used by oneshotloc. If the invocation
of the recv method times out, this program does not call die as oneshotloc did.
Instead, a warning message is displayed, and the code calls next to jump to the
start of the next iteration. Other than that, only the additional looping code is
new, and it could not be easier. The multishotloc program loops forever (or
until killed by a signal from the underlying operating system).

6.10.2 Identifying multiple locations

Changing the onelaunchma program to identify a list of mobile agents is also
straightforward. Rather than having a single IP address/protocol port-number
combination to relocate to, the multilaunchma program supports any number of
locations. Requiring the user to enter the list of locations at the command-line (as
is the case with the single location used by onelaunchma) is unwieldy at best. So
multilaunchma provides for the list of locations to exist in a disk-file.

The name of this disk-file is multilaunchma.rc. Here is the content of the file
as it exists on pbmac.itcarlow.ie:

286 Mobile Agents

glasnost.itcarlow.ie:35000
149.153.103.5:40000
149.153.103.15:40000
pbmac.itcarlow.ie:35000

On each line, the file identifies the IP name (or address) of the MAE, together with
the protocol port-number that the MAE is using. Note how this file has, as the last
location on the list, a Receiving MAE executing at protocol port-number 35000
on the self same pbmac.itcarlow.ie. This allows the roaming mobile agent to
return to pbmacwhen it has finished doing what it set out to do. The list can be any
length, and users are free to mix IP names with IP addresses when identifying the
network device. Any protocol port-number can be specified, unless a well-known
protocol port-number is specified, which requires the Receiving MAE to execute
with superuser privilege7.

Rather than a single Host entry in the %args hash, the multilaunchma program
places an anonymous array into the hash, keyed on Hosts. In order to populate the
array referred to by Hosts, the contents of the multilaunchma.rc disk-file are
read into the program and processed. Here is the first half of the multilaunchma
program which includes the code which processes the disk-file:

#! /usr/bin/perl -w

use strict;
use Socket;

use Agent;

my $mae_name = shift || ’multidefault.pa’;

my %args = (’Name’ => $mae_name);

open RCFILE, ’multilaunchma.rc’
or die "multilaunchma: could not open RC file.\n";

while (<RCFILE>)
{

my ($mae_host, $mae_port) = split /:/;

chomp($mae_port);

$mae_host = inet_ntoa(scalar gethostbyname($mae_host));

push(@{$args{ ’Hosts’ }}, ($mae_host . ’:’ . $mae_port));
}

close RCFILE;

7Which is a really, really, really bad idea! When executing as root, a mobile agent can perform
any operation on the network device hosting the Receiving MAE. Oh dear.

Relocating To Multiple Locations 287

The multilaunchma.rc disk-file is opened and processed one line at a time. With
each iteration, the IP name (or IP address) and protocol port-number are extracted.
The dotted-decimal IP address is determined, then the location in the required
Agent.pm format is appended onto the anonymous array referred to by Hosts
within the %args hash. The disk-file is then closed.

The rest of the code to the multilaunchma mobile agent is as it was in the
onelaunchma program. An object of type Agent is instantiated with the values
contained in %args, then the mobile agent is executed by invoking its runmethod:

my $perlagent = new Agent (%args);

my $agentresults = eval { $perlagent->run; };

if ($@)
{

print "multilaunchma: something went wrong: $@\n";
}
if ($agentresults)
{

print "multilaunchma: results: ", $agentresults, "\n";
}

Note that the mobile agent carries with it (as part of its state) the current value
of the %args hash, which contains the list of Receiving MAE network devices to
visit. In addition, multilaunchma specifies the default name of the mobile agent
to execute as multidefault.pa.

6.10.3 A multi-location mobile agent

The code to the multidefault.pa mobile agent needs to be aware of and process
the multiple locations. The source code to multidefault.pa starts by declaring
its own namespace, inheriting from the Agent class and defining the new con-
structor:

#! /usr/bin/perl -w

use strict;
use 5.6.0;

package Agent::MultiDefault;

our @ISA = qw(Agent);

sub new {
my ($class, %args) = @_;
my $self = {};

288 Mobile Agents

foreach (keys(%args))
{

$self->{ "$_" } = $args{ "$_" };
}

bless $self, $class;
}

Other than the different value for the namespace, this code is identical to the code
from onedefault.pa. In fact, it will rarely be the case that the new constructor
differs to that shown above for any developed mobile agent.

The other required method is agent_main. Its code starts as expected, assigning
the reference to the object to $self, and any supplied arguments to the @args
array:

sub agent_main {
my ($self, @args) = @_;

As $self refers to the object (which is a blessed reference to a hash), the $to
scalar is assigned the first value of the anonymous array referred to by the Hosts
entry, which is the first IP address/protocol port-number combination from the
multilaunchma.rc disk-file. Note how the inbuilt shift subroutine removes the
element from the array. This use of shift ensures the mobile agent eventually
exhausts the list of locations:

my $to = shift @{ $self->{ ’Hosts’ }};

If the $to scalar is defined, the mobile agent executes a method called do_it,
which is associated with the mobile agent’s object:

if ($to)
{

$self->do_it;
}

If the $to scalar is undefined, the mobile agent executes a method called at_end
which, again, is associated with the mobile agent’s object. The $to scalar is unde-
fined as soon as the anonymous array of locations is exhausted. Consequently,
the at_end method executes when the mobile agent reaches the final Receiving
MAE :

unless ($to)
{

return $self->at_end;
}

The agent_main method concludes with code similar to that seen in the source
code to onedefault.pa. An object of type Agent::Message is instantiated and
sent to a Receiving MAE :

Relocating To Multiple Locations 289

my $msg = new Agent::Message(
’Body’ => ["MultiDefault.\n", $self->store()],
’Transport’ => ’TCP’,
’Address’ => $to);

if (!$msg->send)
{

print "multidefault: could not send agent!\n";
}

}

The code to the multidefault.pa mobile agent concludes with the definition of
the do_it and at_endmethods. As this is the default multi-location mobile agent,
these methods simply display a message on the screen of the Receiving MAE. As
both methods belong to the Agent::MultiDefault class, they are always invoked
with a reference to the object as their first parameter. As a result, the $self scalar
is assigned the value of this first parameter (a reference to a blessed hash) and
the @args array is assigned any other parameters passed to the method:

sub do_it {
my ($self, @args) = @_;

print "This is do_it.\n";
}

sub at_end {
my ($self, @args) = @_;

print "This is at_end.\n";
}

1;

To execute the multi-location mobile agent, edit the multilaunchma.rc disk-file
as required, then invoke the multilaunchma Launching MAE to send the mobile
agent on its way, as follows:

./multilaunchma

Assuming Receiving MAE programs are executing on the network devices referred
to in the multilaunchma.rc disk-file, the mobile agent relocates to each MAE
and displays ‘This is do_it.’ on the MAE’s screen, except for the final MAE,
where the message ‘This is at_end.’ appears. The mobile agent has success-
fully roamed to a list of MAEs and executed specific methods at each.

Or has it? The ‘This is do_it.’ message also appears on the screen of the
Launching MAE, which (being an MAE just like any other) executes the agent_main
method, removes a location from the anonymous array, finds the $to scalar to
be defined and invokes the do_it method. If the programmer wishes the code in

290 Mobile Agents

do_it to execute on the Launching MAE as well as all the Receiving MAEs (bar
the last), this behaviour is fine. However, what if this is not the case? What if the
do_it method needs to be invoked after the first relocation, not before it?

The problem is that the $to scalar is assigned a location from the anonymous
array too early. Consequently, as $to is defined, the do_it method is invoked by
the Launching MAE.

One solution to this problem employs a variation on a strategy developed by
Steve Purkis. Rather than assign a location from the list to the $to scalar before
the call to do_it, it is assigned after. A trick which exploits the behaviour of
arrays, hashes and references is used to ensure that the definedness of $to can
be checked before a value has been assigned to it.

A slightly modified multi-location mobile agent (multidefault2.pa) imple-
ments this strategy. Changes are only required to the agent_main method. Here
is the source code:

sub agent_main {
my ($self, @args) = @_;

my $to = \$self->{ ’ToValue’ };

$self->do_it if ($$to && ($#{$self->{ ’Hosts’ }} > -1));

$self->{ ’ToValue’ } = shift @{ $self->{ ’Hosts’ }};

return $self->at_end unless ($$to);

my $msg = new Agent::Message(
’Body’ => ["MultiDefault.\n", $self->store()],
’Transport’ => ’TCP’,
’Address’ => $$to);

if (!$msg->send)
{

print "multidefault2: could not send agent!\n";
}

}

The method begins by processing any parameters. The $to scalar is then assigned
a reference to the value of the ToValue hash entry (which is part of the $self
object):

sub agent_main {
my ($self, @args) = @_;

my $to = \$self->{ ’ToValue’ };

When agent_main is executed for the first time (by the Launching MAE), the
ToValue hash entry does not exist in the hash referred to by $self. Referring to
ToValue in this way dynamically adds the hash entry to $self and sets its initial

Relocating To Multiple Locations 291

value to undef8. A reference to ToValue is then assigned to the $to scalar. So,
unlike the code from multidefault.pa, $to contains a reference to some value,
not an actual value.

It is then possible to check the value referred to by $to to see if it is undefined,
as in the next line:

$self->do_it if ($$to && ($#{$self->{ ’Hosts’ }} > -1));

This line also checks to ensure that the anonymous array has at least one element
by testing against the array index value (the array’s $# value). If the Launching
MAE determines that the value referred to by $to is undef or the anonymous
array is empty, it skips the invocation of the do_it method.

A location is then assigned to the ToValue hash entry, as follows:

$self->{ ’ToValue’ } = shift @{ $self->{ ’Hosts’ }};

A location is removed from the anonymous array referred to by Hosts and
assigned to ToValue. The critical side effect of this assignment is that the value
that $to references is also assigned the location. Remember, the $to scalar refers
to the ToValue hash entry. If one value changes, so does the other.

The rest of the agent_main code is similar to that from the mobile agent
multidefault.pa, except that the value referred to by $to is used:

return $self->at_end unless ($$to);

my $msg = new Agent::Message(
’Body’ => ["MultiDefault.\n", $self->store()],
’Transport’ => ’TCP’,
’Address’ => $$to);

if (!$msg->send)
{

print "multidefault2: could not send agent!\n";
}

}

The multi-location mobile agent now behaves as required. The do_it method is
invoked by each MAE, except for the Launching MAE and the final Receiving MAE.
The final Receiving MAE invokes the at_end method instead.

By combining this improved version of the multi-location mobile agent with the
multilaunchma and multishotloc programs, there now exists a platform upon
which useful mobile agents can be developed. Other than changing the contents
of the multilaunchma.rc disk-file, the multilaunchma and multishotloc pro-
grams should never change. Starting with the multidefault2.pa source code,
follow this recipe to develop a custom mobile agent.

8Which is, after all, standard hash behaviour.

292 Mobile Agents

Make a copy – copy the multidefault2.pa source code to a new disk-file (ensur-
ing, for the sake of consistency, that the name of the disk-file ends in the
‘.pa’ extension).

Change do_it – change the code that is executed by each Receiving MAE to per-
form the desired operation.

Change at_end – change the code that is executed by the final Receiving MAE to
perform any post-relocation processing (such as displaying results).

Add hash entries – add hash entries to the mobile agent’s object whenever
additional state information needs to be manipulated and relocated. When
objects based on the Agent class travel, the Agent.pm technologies ensure
that all data associated with the object relocate from one MAE to another.

And that is all there is to it. The three ‘multi’ programs provide the mobile-agent
machinery. The do_it and at_end methods provide standard points within the
mobile-agent source code to allow for customization of the default behaviour.

With the mobile-agent machinery in place, it is time to develop a mobile-agent
version of the client/server multiwho and ipdetermine programs.

6.11 The Mobile-Agent multiwho

Producing the mobile-agent version of multiwho is easy, as all that is required is
the definition of the do_it and at_end methods. Here is the code to the do_it
method from the multiwhoma.pa program:

sub do_it {
my ($self, @args) = @_;

@{$self->{ ’WhoList’ }} = (@{$self->{ ’WhoList’ }}, ‘who‘);
}

Another anonymous array is stored within the object’s hash and is referred to by
the WhoList key. Each time the do_it method is invoked, the anonymous array’s
contents are reassigned to a copy of its current contents together with the results
of the underlying operating system executing the who command. Perl’s back-tick
operator is used to execute who and return any results to the mobile agent. Once
again, the dynamic addition of entries to an existing hash is exploited by this code.

Eventually, the mobile agent arrives at the final Receiving MAE, and the at_end
method is invoked. This method simply displays the contents of the anonymous
array referred to by WhoList:

sub at_end {
my ($self, @args) = @_;

print @{$self->{ ’WhoList’ }}, "\n";
}

The Mobile-Agent ipdetermineipdetermineipdetermine 293

And that is it. The mobile-agent version of the client/server multiwho program
is ready. After adjusting the contents of the multilaunchma.rc disk-file, and
assuming MAEs are executing at each of the locations referred to in the disk-file,
execute multiwhoma.pa as follows:

./multilaunchma multiwhoma.pa

This mobile agent relocates to each of the locations identified in the disk-file and
interacts with the Receiving MAE operating there. Unlike the multidefault.pa
mobile agent, multiwhoma.pa executes silently at each of the locations until it
arrives at the final Receiving MAE, where the concatenated results of each of
the who commands are displayed on screen. Here is a copy of the results gen-
erated when multiwhoma.pa relocated to the same set of servers contacted by
the multiwho program from Chapter 4:

root tty1 Apr 19 16:31
cno2031 pts/0 May 31 16:30 (pc310-10.itcarlow.ie)
cno2020 pts/1 May 31 16:14 (pc3-16.itcarlow.ie)
cno2020 pts/2 May 31 16:27 (pc3-16.itcarlow.ie)
cno2026 pts/3 May 31 16:18 (149.153.131.117)
cno2018 pts/4 May 31 16:30 (pc3-20.itcarlow.ie)
cno2019 pts/5 May 31 16:26 (pc3-21.itcarlow.ie)
COM2059 pts/8 May 31 15:20 (pc3-14.itcarlow.ie)
cno2006 pts/7 May 31 13:30 (pc3-13.itcarlow.ie)
com3027 pts/0 May 9 09:52 (pc2-2.itcarlow.ie)
meudecc pts/0 May 31 16:30 (staff102.itcarlow.ie)
hickeypm pts/1 May 31 16:14 (staff23.itcarlow.ie)
kinsella pts/2 May 31 16:27 (akmac.itcarlow.ie)
whyte pts/3 May 31 16:18 (149.153.100.117)

The multiwhoma.pa mobile agent was dispatched just after the client/server
multiwho was executed. Comparing these results with those from Chapter 4 (on
p. 216) confirms that the mobile agent has produced the same results, with one
notable exception: the details of user-id barryp are missing from the results pro-
duced by multiwhoma.pa. This has to do with the fact that the client/server
multiwho is required to establish a connection with each TELNET server and
log into the network device using an identified user-id. This logged-in user then
appears as an active user on the output generated by the who command. As no
such logged-in user is associated with each of the Receiving MAE programs, no
additional user-ids are reported by who9.

6.12 The Mobile-Agent ipdetermine

The mobile-agent version of the ipdetermine program from Chapter 5, Man-
agement, is somewhat more involved than multiwhoma.pa. The source code

9For argument’s sake, it is assumed that any MAEs are configured to operate as non-superuser,
background processes at each location.

294 Mobile Agents

needs to incorporate the SNMP code from the client/server ipdetermine, as
well as the code from multidefault2.pa. This version of the program is called
ipdeterminema.pa.

After the usual first few lines of code, an appropriate namespace is declared,
then the code includes a collection of use statements. These come after the
package statement as the facilities they provide are needed by the mobile agent
itself, so they need to be declared inside the namespace:

package Agent::IpDetermineMA;

use Net::SNMP;
use OIDs qw(sysDescr

ipRouteTable ipRouteDest
ipRouteType ipRouteNextHop);

The new and agent_main methods are exactly the same as they are in the
multidefault2.pa program. Only the do_it and at_end methods need to be
changed. Here is the source code to do_it:

sub do_it {
my ($self, @args) = @_;

my $snmp_session = Net::SNMP->session(
-hostname => ’localhost’,
-community => ’public’,
-version => ’2’,
-port => 161

);

if (!defined($snmp_session))
{

print "ipdeterminema: error: cannot establish session.\n";

return;
}

my $responsePDU = $snmp_session->get_table(ipRouteTable);

if (!defined($responsePDU))
{

print "ipdeterminema: OID: ", ipRouteTable, " : ",
$snmp_session->error, "\n";

return;
}

$snmp_session->close;

my @dests = ();

The Mobile-Agent ipdetermineipdetermineipdetermine 295

foreach my $resp (keys %{ $responsePDU })
{

my $oid_pat = ipRouteDest;
if ($resp =˜ /ˆ$oid_pat\./)
{

@dests = (@dests, $responsePDU->{ $resp });
}

}

my %unique_next_hops = ();

foreach my $dest (@dests)
{

my $oid_type = ipRouteType . ".$dest";

if ($responsePDU->{ $oid_type } eq ’4’)
{

my $oid_nexthop = ipRouteNextHop . ".$dest";
$unique_next_hops{ $responsePDU->{ $oid_nexthop } }++;

}
}

foreach my $unique (keys %unique_next_hops)
{

push @{$self->{ ’Routers’ }}, $unique;
}

}

This code does two things.
Firstly, drawing on the code from the client/server ipdetermine, the collec-

tion of unique routing network devices contactable from the router executing
the mobile agent is determined, and placed into the %unique_next_hops hash.
Note that this SNMP code communicates with the Managed Device identified as
localhost. That is, the mobile agent sends its requests to the SNMP software exe-
cuting on the same network device executing the mobile agent. Although SNMP is
still employed, the high-bandwidth network transfer has been avoided10.

Secondly, the hash is processed (at the bottom of the do_it method), and the
list of routers is assigned to the anonymous array referenced by the Routers
hash entry of the $self object. Note the use of the inbuilt push subroutine which
assigns the list of routers (one at a time) to the array.

After the do_it method executes, the mobile agent relocates to the final Receiv-
ing MAE and the at_end method executes. This method simply processes the
anonymous array associated with the Routers hash entry and prints the list of
contactable routers to the screen:

10As is always the case when localhost is used.

296 Mobile Agents

sub at_end {
my ($self, @args) = @_;

print "Determined ’ip’ next hop data:\n\n";

foreach my $router (@{$self->{ ’Routers’ }})
{

print "$router\n";
}

}

Finding a commercial router that can be configured to run an MAE is diffi-
cult. To demonstrate the mobile agent in action, the network device glasnost.
itcarlow.ie will act as a surrogate router. Although configured primarily as a
Web server, glasnost.itcarlow.ie runs both IP and SNMP. Despite not operat-
ing on a router, the SNMP software executing on glasnost.itcarlow.ie can be
asked to provide its routing table11.

When the client/server ipdetermine is executed with the following command-
line:

./ipdetermine glasnost.itcarlow.ie public

it produces the following results:

Requesting ’ip’ next hop data for: 149.153.100.67, public, SNMPv2

Next hop: 149.153.100.10

With the multishotloc MAE executing at protocol port-number 40000 on
glasnost.itcarlow.ie and at protocol port-number 44444 on the initiating net-
work device (which is pbmac.itcarlow.ie), the mobile agent ipdeterminema.pa
can be sent on its way (from pbmac.itcarlow.ie) with this command-line:

./multilaunchma ipdeterminema.pa

Assuming, of course, that the multilaunchma.rc disk-file contains these two
lines:

glasnost.itcarlow.ie:40000
pbmac.itcarlow.ie:44444

When the mobile agent returns to pbmac.itcarlow.ie it displays the following
results on screen:

Determined ’ip’ next hop data:

149.153.100.10

11Which, admittedly, is quite small.

The Cloning Mobile-Agent ipdetermineipdetermineipdetermine 297

These results, thankfully, exactly match those produced by the client/server
ipdetermine. An exercise at the end of the current chapter uses The Network
Debugger to establish that the network traffic generated by the mobile agent
ipdeterminema.pa is less than that produced by the client/server ipdetermine.

6.13 The Cloning Mobile-Agent ipdetermine

The bandwidth utilized by the ipdeterminema.pa mobile agent can be further
reduced by arranging for just the results produced by the mobile agent to travel
back to the initiating network device, as opposed to the entire mobile agent.

To accomplish this, ipdeterminema.pa needs to include some standard Socket
API sending and receiving code, in addition to the SNMP processing code. The
strategy employed borrows code from the UDP client and server examples from
Chapter 3, Sockets. UDP is chosen as the transport service for the same reasons it
is used by SNMP: it is lightweight, incurs little overhead and is easy to implement.
The mobile-agent machinery available (multilaunchma and multishotloc) are
designed to allow a mobile agent to roam to a collection of MAEs, performing
processing at each intermediate MAE before processing any results at the final
Receiving MAE. This design worked well with the ipdeterminema.pa program.
However, with the cloned version of the program, the mobile agent travels to
only one MAE (on the routing device), interacts with the SNMP software executing
there, then sends back the results to the initiating network device. With only one
MAE identified in the multilaunchma.rc disk-file, the current design would never
execute the do_it method (as the design arranges never to execute the method
on the final Receiving MAE). Consequently, any code that needs to execute on the
routing device needs to reside in the at_end method, not in do_it.

A new version of the mobile agent called ipdetermineclonema.pa implements
the strategy outlined above, and here is the entire source code:

#! /usr/bin/perl -w

use strict;
use 5.6.0;

package Agent::IpDetermineCloneMA;

use Socket;
use Net::SNMP;
use OIDs qw(sysDescr

ipRouteTable ipRouteDest
ipRouteType ipRouteNextHop);

use constant SENDTO_UDP_PORT => 40001;
use constant REMOTE_HOST => ’localhost’;
use constant RESULTS_RECV_PORT => 40001;
use constant MAX_RECV_LEN => 65536;

298 Mobile Agents

our @ISA = qw(Agent);

sub new {
my ($class, %args) = @_;
my $self = {};

foreach (keys(%args))
{

$self->{ "$_" } = $args{ "$_" };
}

bless $self, $class;
}

sub agent_main {
my ($self, @args) = @_;

my $to = \$self->{ ’ToValue’ };

$self->do_it if ($$to && ($#{$self->{ ’Hosts’ }} > -1));

$self->{ ’ToValue’ } = shift @{ $self->{ ’Hosts’ }};

return $self->at_end unless $$to;

my $msg = new Agent::Message(
’Body’ => ["IpDetermineCloneMA.\n",

$self->store()],
’Transport’ => ’TCP’,
’Address’ => $$to);

if (!$msg->send)
{

print "ipclonema: could not send agent!\n";
}
else
{

my $local_port = RESULTS_RECV_PORT;
my $trans_serv = getprotobyname(’udp’);
my $local_addr = sockaddr_in($local_port, INADDR_ANY);

socket(MARECV_UDP_SOCK, PF_INET, SOCK_DGRAM, $trans_serv)
or die "ipclonema: socket creation failed: $!\n";

bind(MARECV_UDP_SOCK, $local_addr)
or die "ipclonema: bind to address failed: $!\n";

my $data;

my $from_who = recv(MARECV_UDP_SOCK, $data,
MAX_RECV_LEN, 0);

close MARECV_UDP_SOCK;

if ($from_who)
{

print "Determined ’ip’ next hop data:\n\n";
print "$data\n";

The Cloning Mobile-Agent ipdetermineipdetermineipdetermine 299

}
else
{

warn "ipclonema: Problem with recv: $!\n";
}

}

return undef;
}

sub do_it {
my ($self, @args) = @_;

}

sub at_end {
my ($self, @args) = @_;

my $snmp_session = Net::SNMP->session(
-hostname => ’localhost’,
-community => ’public’,
-version => ’2’,
-port => 161

);

if (!defined($snmp_session))
{

print "ipclonema: error: cannot establish session.\n";

return;
}

my $responsePDU = $snmp_session->get_table(OIDs::ipRouteTable);

if (!defined($responsePDU))
{

print "ipclonema: OID: ", OIDs::ipRouteTable, " : ",
$snmp_session->error, "\n";

return;
}

$snmp_session->close;

my @dests = ();

foreach my $resp (keys %{ $responsePDU })
{

my $oid_pat = OIDs::ipRouteDest;
if ($resp =˜ /ˆ$oid_pat\./)
{

@dests = (@dests, $responsePDU->{ $resp });
}

}

my %unique_next_hops = ();

foreach my $dest (@dests)

300 Mobile Agents

{
my $oid_type = OIDs::ipRouteType . ".$dest";

if ($responsePDU->{ $oid_type } eq ’4’)
{

my $oid_nexthop = OIDs::ipRouteNextHop . ".$dest";
$unique_next_hops{ $responsePDU->{ $oid_nexthop } }++;

}
}

foreach my $unique (keys %unique_next_hops)
{

push @{$self->{ ’Routers’ }}, $unique;
}

my $remote = REMOTE_HOST;
my $remote_port = SENDTO_UDP_PORT;
my $trans_serv = getprotobyname(’udp’);
my $remote_host = gethostbyname($remote)

or die "ipclonema: name lookup failed: $remote\n";
my $destination = sockaddr_in($remote_port, $remote_host);

sleep(1);

socket(MASEND_UDP_SOCK, PF_INET, SOCK_DGRAM, $trans_serv)
or die "ipclonema: socket creation failed: $!\n";

my $data = join(’’, @{$self->{ ’Routers’ }});

send(MASEND_UDP_SOCK, $data, 0, $destination)
or warn "ipclonema: send to socket failed.\n";

close MASEND_UDP_SOCK
or die "ipclonema: close socket failed: $!\n";

}

1;

The program begins very much like the code to ipdeterminema.pa. Note the
additional use of the standard Socket module within the namespace. Three con-
stant definitions appear near the top of the source code, and are used by the UDP
sending and receiving parts of the program:

use constant SENDTO_UDP_PORT => 40001;
use constant RESULTS_RECV_PORT => 40001;
use constant MAX_RECV_LEN => 65536;

The new method is unchanged. The agent_main method does differ from the
other mobile agents based on multidefault2.pa. The first half of the method
(up to and including the invocation of $msg->send) is as expected. The addi-
tion of an else part to the if statement provides a mechanism to perform addi-
tional processing after the mobile agent has successfully been sent on its way.
Here, the ipdetermineclonema.pa mobile agent becomes a UDP server and waits
at the protocol port-number identified by RESULTS_RECV_PORT, declared earlier

The Cloning Mobile-Agent ipdetermineipdetermineipdetermine 301

to be 40001. When data arrive at the socket associated with the protocol port-
number, it is displayed on screen in a similar fashion to the previous versions of
ipdetermine12:

if (!$msg->send)
{

print "ipclonema: could not send agent!\n";
}
else
{

my $local_port = RESULTS_RECV_PORT;
my $trans_serv = getprotobyname(’udp’);
my $local_addr = sockaddr_in($local_port, INADDR_ANY);

socket(MARECV_UDP_SOCK, PF_INET, SOCK_DGRAM, $trans_serv)
or die "ipclonema: socket creation failed: $!\n";

bind(MARECV_UDP_SOCK, $local_addr)
or die "ipclonema: bind to address failed: $!\n";

my $data;

my $from_who = recv(MARECV_UDP_SOCK, $data,
MAX_RECV_LEN, 0);

close MARECV_UDP_SOCK;

if ($from_who)
{

print "Determined ’ip’ next hop data:\n\n";
print "$data\n";

}
else
{

warn "ipclonema: Problem with recv: $!\n";
}

}

return undef;
}

The do_it method is relegated to doing nothing in this mobile agent as, with only
a single Receiving MAE relocated to, do_it is never invoked. Consequently, this
method is empty:

sub do_it {
my ($self, @args) = @_;

}

12Refer to Chapter 3, Sockets, for an explanation of the Socket API code used here.

302 Mobile Agents

The remaining changes (i.e. additions of code) occur within the at_end method.
The SNMP processing code from the ipdeterminema.pa program is copied ver-
batim into this mobile agent’s at_end method. Rather than display any results on
screen, the at_end method now sends them to the waiting UDP server that was
established by the agent_main method on the initiating network device. Again,
this code is borrowed from the UDP client examples from Chapter 3, Sockets:

my $remote = $self->{ ’Home’ };
my $remote_port = SENDTO_UDP_PORT;
my $trans_serv = getprotobyname(’udp’);
my $remote_host = gethostbyname($remote)

or die "ipclonema: name lookup failed: $remote\n";
my $destination = sockaddr_in($remote_port, $remote_host);

sleep(1);

socket(MASEND_UDP_SOCK, PF_INET, SOCK_DGRAM, $trans_serv)
or die "ipclonema: socket creation failed: $!\n";

my $data = join("\n", @{$self->{ ’Routers’ }});

send(MASEND_UDP_SOCK, $data, 0, $destination)
or warn "ipclonema: send to socket failed.\n";

close MASEND_UDP_SOCK
or die "ipclonema: close socket failed: $!\n";

}

Three lines are worth noting. The first sets the remote UDP server’s network
address to the value associated with the object’s Home hash entry. This will neces-
sitate a small change to the multilaunchma program, which will be discussed
shortly:

my $remote = $self->{ ’Home’ };

Prior to creating the socket and sending the determined list of routers to the
waiting UDP server, the at_end method pauses for one second:

sleep(1);

This may seem like a strange thing to do. Unfortunately, under certain circum-
stances (most notably when testing with localhost), a situation can arise where
the code to establish the UDP server (as executed by agent_main) has not exe-
cuted in the time it takes the mobile agent to relocate, perform some processing
and send any data back to the waiting UDP server. If the send occurs with no server
in existence, the UDP data simply disappear. The UDP server code then executes,
and the server waits, and waits, and waits.

The addition of a small, artificial delay guards against this happening. The final
line of code worth highlighting takes the results from the SNMP processing and

The Cloning Mobile-Agent ipdetermineipdetermineipdetermine 303

assigns the array of determined routing devices to a scalar called $data. The
scalar is then sent via the created client socket to the waiting UDP server on the
initiating network device:

my $data = join("\n", @{$self->{ ’Routers’ }});

To support the use of the $self->{ ’Home ’} value, a small change is needed
to the multilaunchma program. Replace the single-line assignment to the %args
hash (near the top of the program) with these lines, creating multilaunchma2:

my $initiating = inet_ntoa(scalar gethostbyname(hostname));

my %args = (’Name’ => $mae_name,
’Home’ => $initiating);

These lines ensure that the value of Home is set to the IP address of the initiating
network device whenever the mobile agent is launched. This then allows the UDP
client code within ipdetemineclonema.pa to identify the correct network device
to which to send results.

The multilaunchma.rc disk-file now has a single entry, as follows:

glasnost.itcarlow.ie:40000

With the multishotloc MAE executing on glasnost.itcarlow.ie at protocol
port-number 40000, the cloning mobile agent can now be sent on its way with the
following command:

./multilaunchma2 ipdetermineclonema.pa

After a short pause, the following results are displayed on the initiating network
device’s screen:

Determined ’ip’ next hop data:

149.153.100.10

Once again, these results match those of the previous implementations of this
program. Of interest is the fact that the ipdetermineclonema.pa combines the
strengths of the mobile-agent model (mobility, low bandwidth) with those of the
client/server model (simplicity, short messages). When it comes to choosing a
model to work with, it is not an either–or decision. It is perfectly acceptable to
mix’n’match.

Of course, despite the fact that this most recent version of ipdetermine uses
the least amount of network bandwidth, one needs to ask whether or not the
increased complexity in the code was worth the effort? There is no simple answer
to this question, as specific application requirements always dictate the design
decisions made. In some cases, this level of complexity is tolerable, in others, it
is not. Choose wisely.

304 Mobile Agents

6.14 Other Perl Agent Examples

The release distribution of Agent.pm includes a collection of instructive example
programs. What follows is a brief description of each.

dcalc.pl – a distributed mobile-agent calculator, capable for relocating to a list
of MAEs.

Eval.pa – a mobile-agent code evaluator, which relocates to an MAE, executes
specified code with eval, then returns any results to a specified network
location.

ex.pl – a Launching MAE designed to execute the mobile agents distributed with
Agent.pm. It can also be used to launch any other mobile agent developed
using the Agent.pm technologies.

FreeSpace.pa – a mobile agent capable of relocating to a list of MAEs in order
to determine the amount of free hard-disk storage available on each MAE.
Unlike the multidefault2.pa mobile agent, FreeSpace.pa executes its
equivalent of the do_it method on the final Receiving MAE, as well as all
others.

HelloWorld.pa – a simple mobile agent that relocates to a specified MAE and
displays a ‘Hello World!’ message on the MAE’s screen.

keepalive.pl – a small program that uses the inbuilt fork subroutine to demon-
strate sustained (or persistent) connections using the Agent.pm technolo-
gies and the TCP transport service.

Loop.pa – this mobile agent can be started as a sender or a receiver. When operat-
ing as either, it communicates with another Loop.pa mobile agent, sending
a small message repeatedly (back and forth).

MyAgent.pl – written by James Duncan, this small program combines the code
for a mobile agent with that of a Launching MAE. When executed, it relocates
to a specified Receiving MAE and displays the string ‘**** A Test from
James ****’ on screen.

Static.pa – the distribution’s MAE, which can be executed by the ex.pl pro-
gram. Described by Steve Purkis as an ‘agent server’, this program provides
functionality similar to the multishotloc program, yet uses a very different
implementation strategy. It does more, but is more complex as a result.

Template.pa – an empty mobile agent that can form the basis of any custom
mobile agent. An empty shell, the Template.pa code is, nevertheless, not
unlike the onedefault.pa and multidefault2.pa programs.

Where To From Here? 305

6.15 Where To From Here?

Another interesting Perl mobile code technology is Penguin by Felix Gallo.
Penguin provides functionality not unlike that provided by Agent.pm, but in
a very different manner. A related module is Penguin-Easy, by James Duncan,
which provides a simpler API to the Penguin facilities. Note that the development
of these modules, which are both available on CPAN, has not seen any activity for
a number of years.

There is a lot of ongoing research within the mobile-agent community. Refer to
the Web Resources section at the end of this chapter for more details.

As stated at the start of this chapter, Agent.pm is an unfinished, proof-of-
concept technology. Readers are encouraged to extend and expand upon the capa-
bilities of Agent.pm, and share their code with the Perl programming community.

6.16 Print Resources

A good introduction to mobile-agent technology is the book Mobile Agents by
William T. Cockayne and Michael Zyda (Manning, 1998). This includes a descrip-
tion of four (non-Perl) mobile-agent implementations: Telescript, Agent TCL (now
called D’Agents), ARA and IBM’s Aglets.

Understanding Code Mobility by Alfonso Fuggetta, Gian Pietro Picco and Giovanni
Vigna (IEEE Transactions on Software Engineering, 1998) is an excellent article
describing a collection of mobile code technologies, design paradigms and pro-
posed application areas. The inclusion of a network management case-study is
highly relevant in light of this book’s last chapter.

6.17 Web Resources

Steve Purkis’s CPAN directory is http://www.cpan.org/authors/id/SPURKIS.
An old and somewhat out-of-date Agent.pm website can be found at http://
tiamat.epn.nu/˜spurkis/Agent.

The CPAN directory devoted to the work of James Duncan can be found at:
http://www.cpan.org/authors/id/JDUNCAN.

An excellent and very well maintained website devoted to listing online mobile-
agent resources can be found at http://www.cetus-links.org/oo_mobile_
agents.html. Refer to the Bibliography section of this page for a link to a large
collection of mobile-agent security references.

306 Mobile Agents

Exercises

1. The multishotloc program has the potential to miss the receipt of a mobile agent if
it is currently servicing another (that is, the $mae->recv call cannot execute because
$ma->run is executing). Adapt the multishotloc program to support the creation
of a forked child process to execute each received mobile agent.

2. Explore the support Agent.pm has for exploiting Perl’s threading technology. Revisit
the program developed from the last exercise and adapt it to use threads as opposed
to the forking mechanism. What advantages does the threading implementation
have over the forking one, if any?

3. Use The Network Debugger from Chapter 2 to capture the network traffic generated
by the client/server version of the multiwho program. Note the amount of traffic
generated by the computer running multiwho. Next, configure the Network Debug-
ger to capture the network traffic generated by the multiwhoma.pa mobile agent on
the network device executing the Launching MAE. Compare the results with those
of the client/server version.

4. Repeat the last exercise for the client/server and mobile-agent version of the
ipdetermine program.

5. The multidefault2.pa mobile agent halts when it cannot relocate to an MAE (per-
haps due to the MAE’s inability to accept connections). For example, when roaming
to a list of five MAEs, if the third MAE is unavailable, the multidefault2.pa will
terminate at the second MAE (never returning to the final MAE to process any results
from the mobile agent’s computations). Develop a more robust implementation of
this mobile agent which is capable of withstanding any number of unavailable MAEs.
When this new version of multidefault2.pa arrives at the final MAE, in addition
to processing the at_end results, it should report the list of MAEs visited.

6. Research the Safe module which comes as standard with the Perl distribution. Once
you understand the facilities provided by this module, investigate its use within the
Agent.pm classes. Can the use of Safe improve upon the security vulnerabilities
of the oneshotloc and multishotloc MAEs? Change these programs to switch on
the use of Safe. What effect does this have?

Appendix A

Essential Linux
Commands

To learn more about a particular command, view the manual page associated
with it – simply type man followed by the name of the command you want to
learn about. To exit from a manual page, press the q key (where ‘q’ stands for
‘quit’). Most commands have options associated with them – do not try to guess
the options. Read the manual page!

Working with Files and Directories

cat type a file to the screen
cd change directory (or return to %HOME directory)
chmod change the mode of a file (e.g. to make it executable)
chown change the owner of a file or directory
cp copy a file/directory to a new location
find search for a file on the system (see ‘locate’)
ftp transfer files from one system to another
grep search for a text string in a group of files
gzip/gunzip compress/uncompress a file or group of files
head display the first few lines of a file on the screen
ispell spell-check a file using the system dictionary
less type a file to the screen one screenfull at a time
locate locate a specific file on the system (see ‘find’)
ln create a symbolic link (alias/shortcut) to a file
ls list the contents of a directory to the screen
mkdir create a new directory
mv move or rename a currently existing file/directory

308 Appendix A

pwd display the name of current working directory
rm delete one or more files
rmdir delete a directory
sort sort a file (using various techniques)
tac type a file to the screen in reverse order (see ‘cat’)
tail display the last few lines of a file on the screen
wc display the character, word, or line count of a file
zcat type the contents of a compressed file to the screen
zmore like ‘zcat’, only display the file one screenful at a time

Printing Commands

lpq check the status of your entries on the print queue
lpr add an entry to the print queue
lprm remove an entry from the print queue

Networking Commands

netstat show the network status for this system
ping is there anybody out there? Check a host for existence
traceroute show me how to get from here to there

Working with Processes

kill stop a process (program) from running
ps report on the active processes
top who is doing what, and how much CPU are they using?
w display a summary of system usage on the screen

Working with Disks

df how much free disk space is there?
du how is the disk space being used?

Miscellaneous Commands

cal display a calendar on the screen
clear clear the screen
date display the current date and time on the screen
echo display a message on the screen

Appendix A 309

man read a manual page (type ‘man man’ to learn more)
passwd change your password
perl run Perl (a great programming language …)
su create a shell under the ID of some other user
telnet log into a remote computer
uname display the machine and operating system name
users list the current login sessions on the system
vi run vi (a great text editor …)
whereis locate a binary (executable), source, or manual page file
which list the path to a particular binary file (executable)
who who is currently logged in
whoami ’cause I’ve forgotten …
Ctrl-D signal end-of-file to running process (key combination)

Essential Systems Administrator Commands

Note that you will need to be logged in as root to use these commands effectively.
Remember, as root you have complete power over Linux (so be careful).

cron execute commands at scheduled times
dmesg display the system control messages
e2fsck check the health of a disk
fdisk fiddle with disk partitions (be very, very careful)
fdisk you are being careful with fdisk, aren’t you?
ifconfig configure your network interface card
kill see kill above (much more fun as root)
lilo install the Linux Loader (read the ‘man’ page)
lpc control a print queue
mke2fs create a file system (i.e. format a disk)
mount add a disk into the active file system (read the ‘man’ page)
reboot reboot now!
rpm the RedHat Package Manager
shutdown perform a nice safe, graceful, shutdown of the system
tar work with ‘tarred’ files (read the ‘man’ page)
umount remove a disk from the active file system

Appendix B

vi Quick
Reference

This quick reference will get you started. To learn more, from the Linux command-
line, type: man vi.

Invoking the vi Text Editor

vi – start the vi editor with an empty edit buffer.

vi file – edit a file called file.

vi +n file – edit a file called file and go to line n.

vi +/pattern file – edit a file called file and go to the first line that matches the
string pattern.

vi’s modes

vi can be in one of three modes:

edit mode – keys typed are added to the edit buffer;

non-edit mode – keys typed adjust or move around the edit buffer;

ex mode – commands are executed within vi, and the commands affect the edit
buffer.

To enter edit mode, press the Esc key then type i.
To enter non-edit mode, simply press Esc.
To enter ex mode, press Esc then type :.

312 Appendix B

Non-edit mode keystrokes

ˆ go to start of current line (first non-blank character)
0 go to start of current line
$ go to end of current line
w go to next word
b go to previous word (back)

o insert blank line below current one, enter edit mode
O insert blank line above current one, enter edit mode

i enter edit mode by inserting text at current location
a enter edit mode by appending text after current location
A enter edit mode by appending to the end of the current line
J join the current line with the line immediately below it

Ctrl-G show current line number
nG go to line n within the edit buffer
G go to bottom of edit buffer

Deleting text (in non-edit mode)

dd delete current line
dw delete next word
dˆ delete to start of line
d$ delete to end of line
x delete a single character

Changing text (in non-edit mode)

cc change the current line, and enter edit mode
cw change the current word, and enter edit mode
r replace a single character
R replace characters until Esc is pressed

Cutting and Pasting (in non-edit mode)

yy copy current line (the line is now yanked)
nyy copy n current lines (multi-yank)
ye copy to the end of next word (little-yank)

p paste yanked text after or below cursor
P paste yanked text before or above cursor

Appendix B 313

Some ex mode commands

:w write the edit buffer (i.e. save the file)
:w file write a copy of the edit buffer as file
:wq write the edit buffer then quit
:q! quit without writing any changes (called ‘force quit’)
:w! file overwrite file with current edit buffer

:sh temporarily exit vi to access a Linux shell

:help access the vi online help
:help cmd access the online help for subject cmd

:set used to set and unset vi settings
:set all display the entire list of vi’s current settings

Searching

/pattern search forward in edit buffer for a match to pattern
/ repeat last forward search
?pattern search backward in edit buffer for a match to pattern
? repeat last backward search
n repeat previous search (regardless of direction)

Appendix C

Network
Employed

The network employed during the development of Programming the Network with
Perl resides at The Institute of Technology, Carlow in Ireland. Although the entire
network consists of hundreds of interconnected network devices on a number
of LAN segments, only a handful were used to test the example programs in this
book. These devices are identified on the network diagram over the page, together
with the LAN segments they are attached to.

Those network devices sporting an ‘R’ identify routers running proprietary ‘net-
work’ operating systems. All of the other network devices are running some ver-
sion of the Linux Operating System, except for elmo (Mac OS) and mossy (Win-
dows). A square denotes a client (or workstation) network device, whereas a rect-
angle denotes a server-class network device.

316 Appendix C

149.153.103.0 LAN

�
�

�149.153.100.0 LAN

R149.153.100.10

�
�
�
��	

R 149.153.1.2 (gw)

R
149.153.103.10

To The Internet
(via ITnet)

149.153.100.66 (pblinux) 149.153.100.65 (pbmac)

149.153.100.108 (pat)

149.153.100.104 (mossy)

149.153.103.5 (linux303) 149.153.103.15

149.153.100.67 (glasnost) 149.153.100.23 (elmo)

�

�149.153.1.0 LAN

149.153.1.5 (tyndall)

Appendix D

Sample
NetDebug

Results

In this appendix, the results generated by a number of NetDebug invocations are
presented. A brief commentary accompanies each example. Although some of
the captured traffic is quite voluminous, it is illustrative of the amount of data
typically transferred for all but the simplest of network interactions. Note that
for each capture, any datagrams larger than 1500 bytes are split over a number
of Ethernet frames, as the underlying network is one built from this popular LAN
technology.

NetDebugging Web Traffic

The following invocation of NetDebug captures HTTP traffic, which uses the well-
known TCP protocol port-number 80:

./netdb -s 149.153.100.67 -p 80

The glasnost.itcarlow.ie (149.153.100.67) Web server services a number
of requests from mossy.itcarlow.ie (which is identified as 149.153.100.104).
The vast majority of the traffic captured is textual (as the Web uses the text-
based HTML extensively). The transfer of a number of binary graphic files is also
captured, and these are identified by the ‘GIF89a’ character sequence. To conserve
space, only a small portion of each graphic file’s capture is shown.

318 Appendix D

The user on mossy.itcarlow.ie uses a Web browser to request (using the
GET method) the index.html homepage from glasnost.itcarlow.ie. Once the
entire page (HTML and any embedded graphics) is received, the user then clicks
on the link to Paul Barry’s homepage. Once this page is transferred, the user clicks
on a link (at the bottom of Paul Barry’s homepage) which redirects the browser to
the Programming the Network with Perl website. Here is the traffic captured by
NetDebug:

Fri Aug 3 15:11:32 2001 - netdebug BEGIN run.

- -
149.153.100.104 -> 149.153.100.67 (id: 13062, ttl: 128)

TCP Source: 1115 -> TCP Destination: 80
TCP Header Length: 7, TCP Checksum: 43539
TCP Data:

ˆE´ˆAˆAˆDˆB
- -
149.153.100.67 -> 149.153.100.104 (id: 36536, ttl: 64)

TCP Source: 80 -> TCP Destination: 1115
TCP Header Length: 7, TCP Checksum: 54195
TCP Data:

ˆE´ˆAˆAˆDˆB
- -
149.153.100.104 -> 149.153.100.67 (id: 13318, ttl: 128)

TCP Source: 1115 -> TCP Destination: 80
TCP Header Length: 5, TCP Checksum: 22020
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.104 -> 149.153.100.67 (id: 13574, ttl: 128)

TCP Source: 1115 -> TCP Destination: 80
TCP Header Length: 5, TCP Checksum: 48444
TCP Data:

GET / HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.75 [en] (Win98; U)
Host: glasnost.itcarlow.ie
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8

- -
149.153.100.67 -> 149.153.100.104 (id: 36537, ttl: 64)
TCP Source: 80 -> TCP Destination: 1115
TCP Header Length: 5, TCP Checksum: 65386
TCP Data:

UUUUUU
- -
149.153.100.67 -> 149.153.100.104 (id: 36538, ttl: 64)

TCP Source: 80 -> TCP Destination: 1115
TCP Header Length: 5, TCP Checksum: 6689
TCP Data:

Appendix D 319

HTTP/1.1 200 OK
Date: Fri, 03 Aug 2001 15:12:28 GMT
Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_perl/1.23
Last-Modified: Tue, 05 Jun 2001 10:24:17 GMT
ETag: "17942-687-3b1cb351"
Accept-Ranges: bytes
Content-Length: 1671
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>
<HEAD> <TITLE>Welcome to glasnost.itcarlow.ie</TITLE> </HEAD>
<BODY>

<CENTER>
<H1>Welcome to Glasnost!</H1>

This is the staff Web server at the
Institute of Technology, Carlow in Ireland.<P> <HR>
Note: this service is in ’beta’ and, as such, is limited to a small
number of (Computing) staff.

The plan is to make the service available to all staff at the start of
the next academic session (2001/2002). <HR><P>
The following staff members maintain Web pages on (or accessible from)
this server:<P>
Paul Barry, Computing

Eamon Cass, Computing

Philip Hickey, Computing

Austin Kinsella, Computing

Peter Lowe, Computing

Dr. Christophe Meudec, Computing

Gerry Moloney, Computing

<!--
<a href="˜palmerr/ind
- -
149.153.100.67 -> 149.153.100.104 (id: 36539, ttl: 64)

TCP Source: 80 -> TCP Destination: 1115
TCP Header Length: 5, TCP Checksum: 60617
TCP Data:

Palmer, Computing

-->
<!--
Bernadette Power, Computing

-->
Ken Power, Computing

Nigel Whyte, Computing
 <P>
Usage Guidelines for staff can be found here.
<P><HR>
Report any problems to the
server administrator.

If you take issue with any of the content, please direct your comments
to the author of the material.
</CENTER> </BODY> <HTML>

- -
149.153.100.104 -> 149.153.100.67 (id: 13830, ttl: 128)

TCP Source: 1115 -> TCP Destination: 80
TCP Header Length: 5, TCP Checksum: 19763
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.104 -> 149.153.100.67 (id: 14086, ttl: 128)

320 Appendix D

TCP Source: 1115 -> TCP Destination: 80
TCP Header Length: 5, TCP Checksum: 62950
TCP Data:

GET /˜barryp/index.html HTTP/1.0
Referer: http://glasnost.itcarlow.ie/
Connection: Keep-Alive
User-Agent: Mozilla/4.75 [en] (Win98; U)
Host: glasnost.itcarlow.ie
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8

- -
149.153.100.67 -> 149.153.100.104 (id: 36540, ttl: 64)

TCP Source: 80 -> TCP Destination: 1115
TCP Header Length: 5, TCP Checksum: 61612
TCP Data:

UUUUUU
- -
149.153.100.67 -> 149.153.100.104 (id: 36541, ttl: 64)

TCP Source: 80 -> TCP Destination: 1115
TCP Header Length: 5, TCP Checksum: 28822
TCP Data:

HTTP/1.1 200 OK
Date: Fri, 03 Aug 2001 15:12:33 GMT
Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_perl/1.23
Last-Modified: Tue, 17 Jul 2001 18:16:47 GMT
ETag: "13b52-a0e-3b54810f"
Accept-Ranges: bytes
Content-Length: 2574
Keep-Alive: timeout=15, max=99
Connection: Keep-Alive
Content-Type: text/html

<!doctype html public "-//W3C//DTD HTML 3.2 Final//EN">
<html>
<head> <title>Welcome to Paul Barry’s Web-Site</title> </head>

<body>
<center>
 <p>
<h2>Welcome to Paul Barry’s Web-Site</h2> <p>
If you are one of my students, and you are looking for the Course
Support Materials Web site, then click
here.<p>
 <p>
<h2>Courses</h2>
I am teaching two courses this academic year (2000/2001):
BSc Software Engineering (4th Year Class): Networking and
Operating Systems<p>
BSc Computer Networking (2nd Year Class): Networking and
Internetworking
 <p>
<h2>Articles and Book Reviews</h2>
<p><p>
Recently written for Linux
Journal magazine:
August 2001: Article: <A HREF="http://www.linuxjournal.com/
lj-issues/issue88/index.html"><i>The Trials and Tribulations of
Installing LinuxPPC 2000 Q4</i>.
Note: this article is

Appendix D 321

available in print form only.<p>
March 2001: Book Review
- -
149.153.100.67 -> 149.153.100.104 (id: 36542, ttl: 64)

TCP Source: 80 -> TCP Destination: 1115
TCP Header Length: 5, TCP Checksum: 64553
TCP Data:

p://www.linuxjournal.com/articles/linux_review/0032.html"><i>Perl:
The Programmer’s Companion</i><p>
February 2001: Book Review: <A HREF="http://www.linuxjournal.com
/articles/linux_review/0031.html"><i>Debugging Perl: Troubleshooting
for Programmers</i><p>
February 2001: Article: <A HREF="http://www.linuxjournal.com/
articles/linux_review/0027.html"><i>Which Programming Language?</i>
<p>
December 2000: Article: <A HREF="http://www.linuxjournal.com/
articles/misc/0035.html"><i>Mac OS X: First Impressions</i><p>
December 2000: Book Review: <A HREF="http://www.linuxjournal.com
/lj-issues/issue80/index.html"><i>Programming Perl, 3rd Edition</i>
.
Note: this review is available in print form only.
Copies of a selection of
Linux Journal back-issues can be found in the Institute’s Learning
Resource Centre.<p> <p>

<P>E-mail me by clicking on this email address: <A HREF="mailto:
paul.barry@itcarlow.ie">paul.barry@itcarlow.ie</P> <p>
Information on "Programming the Network with Perl" is available
here.
Note that I’m at an advanced stage of writing this book (as of July
2001).<p> <p>
Return to the main page.
</center> </body> </html>

- -
149.153.100.104 -> 149.153.100.67 (id: 14342, ttl: 128)

TCP Source: 1115 -> TCP Destination: 80
TCP Header Length: 5, TCP Checksum: 16547
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.104 -> 149.153.100.67 (id: 14598, ttl: 128)

TCP Source: 1116 -> TCP Destination: 80
TCP Header Length: 7, TCP Checksum: 38438
TCP Data:

ˆE´ˆAˆAˆDˆB
- -
149.153.100.67 -> 149.153.100.104 (id: 36543, ttl: 64)

TCP Source: 80 -> TCP Destination: 1116
TCP Header Length: 7, TCP Checksum: 48548
TCP Data:

ˆE´ˆAˆAˆDˆB
- -
149.153.100.104 -> 149.153.100.67 (id: 14854, ttl: 128)

TCP Source: 1116 -> TCP Destination: 80
TCP Header Length: 5, TCP Checksum: 16373
TCP Data:

322 Appendix D

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.104 -> 149.153.100.67 (id: 15110, ttl: 128)

TCP Source: 1117 -> TCP Destination: 80
TCP Header Length: 7, TCP Checksum: 38434
TCP Data:

ˆE´ˆAˆAˆDˆB
- -
149.153.100.67 -> 149.153.100.104 (id: 36544, ttl: 64)

TCP Source: 80 -> TCP Destination: 1117
TCP Header Length: 7, TCP Checksum: 59307
TCP Data:

ˆE´ˆAˆAˆDˆB
- -
149.153.100.104 -> 149.153.100.67 (id: 15366, ttl: 128)

TCP Source: 1117 -> TCP Destination: 80
TCP Header Length: 5, TCP Checksum: 27132
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.104 -> 149.153.100.67 (id: 15622, ttl: 128)

TCP Source: 1116 -> TCP Destination: 80
TCP Header Length: 5, TCP Checksum: 17686
TCP Data:

GET /˜barryp/star_bar.gif HTTP/1.0
Referer: http://glasnost.itcarlow.ie/˜barryp/index.html
Connection: Keep-Alive
User-Agent: Mozilla/4.75 [en] (Win98; U)
Host: glasnost.itcarlow.ie
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8

- -
149.153.100.67 -> 149.153.100.104 (id: 36545, ttl: 64)

TCP Source: 80 -> TCP Destination: 1116
TCP Header Length: 5, TCP Checksum: 59667
TCP Data:

UUUUUU
- -
149.153.100.104 -> 149.153.100.67 (id: 15878, ttl: 128)

TCP Source: 1117 -> TCP Destination: 80
TCP Header Length: 5, TCP Checksum: 49228
TCP Data:

GET /˜barryp/lj.gif HTTP/1.0
Referer: http://glasnost.itcarlow.ie/˜barryp/index.html
Connection: Keep-Alive
User-Agent: Mozilla/4.75 [en] (Win98; U)
Host: glasnost.itcarlow.ie
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8

Appendix D 323

- -
149.153.100.67 -> 149.153.100.104 (id: 36546, ttl: 64)

TCP Source: 80 -> TCP Destination: 1117
TCP Header Length: 5, TCP Checksum: 4897
TCP Data:

UUUUUU
- -
149.153.100.67 -> 149.153.100.104 (id: 36547, ttl: 64)

TCP Source: 80 -> TCP Destination: 1116
TCP Header Length: 5, TCP Checksum: 25171
TCP Data:

HTTP/1.1 200 OK
Date: Fri, 03 Aug 2001 15:12:33 GMT
Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_perl/1.23
Last-Modified: Tue, 22 May 2001 11:33:18 GMT
ETag: "13b58-530-3b0a4e7e"
Accept-Ranges: bytes
Content-Length: 1328
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: image/gif

GIF89aûˆAˆRˆ@÷ˆ@ ...
- -
149.153.100.67 -> 149.153.100.104 (id: 36548, ttl: 64)

TCP Source: 80 -> TCP Destination: 1116
TCP Header Length: 5, TCP Checksum: 10340
TCP Data:

... Q@ˆ@;
- -
149.153.100.67 -> 149.153.100.104 (id: 36549, ttl: 64)

TCP Source: 80 -> TCP Destination: 1117
TCP Header Length: 5, TCP Checksum: 305
TCP Data:

HTTP/1.1 200 OK
Date: Fri, 03 Aug 2001 15:12:33 GMT
Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_perl/1.23
Last-Modified: Tue, 22 May 2001 11:33:18 GMT
ETag: "13b53-20a1-3b0a4e7e"
Accept-Ranges: bytes
Content-Length: 8353
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: image/gif

GIF89aˆ@ˆA<ˆ@÷ˆ@ˆ@ï ...
- -
149.153.100.104 -> 149.153.100.67 (id: 16134, ttl: 128)

TCP Source: 1116 -> TCP Destination: 80
TCP Header Length: 5, TCP Checksum: 14387
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.67 -> 149.153.100.104 (id: 16582, ttl: 64)

TCP Source: 80 -> TCP Destination: 1117
TCP Header Length: 5, TCP Checksum: 38910
TCP Data:

324 Appendix D

... ãêo=>o×ÄˆHˆ@ˆ[ðØßˆEˆP«Éˆ@¦@ˆFC±Â2o#oWsoÁÅEGuˆZþoˆ@Õ\oˆ[oØ
- -
149.153.100.67 -> 149.153.100.104 (id: 36551, ttl: 64)

TCP Source: 80 -> TCP Destination: 1117
TCP Header Length: 5, TCP Checksum: 305
TCP Data:

HTTP/1.1 200 OK
Date: Fri, 03 Aug 2001 15:12:33 GMT
Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_perl/1.23
Last-Modified: Tue, 22 May 2001 11:33:18 GMT
ETag: "13b53-20a1-3b0a4e7e"
Accept-Ranges: bytes
Content-Length: 8353
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: image/gif

GIF89aˆ@ˆA<ˆ@÷ˆ@ˆ@ ...
- -
149.153.100.104 -> 149.153.100.67 (id: 16390, ttl: 128)

TCP Source: 1117 -> TCP Destination: 80
TCP Header Length: 5, TCP Checksum: 25337
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.67 -> 149.153.100.104 (id: 36552, ttl: 64)

TCP Source: 80 -> TCP Destination: 1117
TCP Header Length: 5, TCP Checksum: 38910
TCP Data:

... >ê×=ˆHoˆ[ÄØˆ@ˆEð«ßˆ@ˆP@ÉC¦ÂˆFo±o2s#ÁWEouÅþGˆ@ˆZ\oˆ[ÕØ ...
- -
149.153.100.104 -> 149.153.100.67 (id: 16646, ttl: 128)

TCP Source: 1117 -> TCP Destination: 80
TCP Header Length: 5, TCP Checksum: 23877
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.67 -> 149.153.100.104 (id: 36553, ttl: 64)

TCP Source: 80 -> TCP Destination: 1117
TCP Header Length: 5, TCP Checksum: 22433
TCP Data:

... o¡dYo)0ˆAo%W¦ˆV|@ÊˆD®ooJy|ˆEAy0ˆTˆF| ...
- -
149.153.100.67 -> 149.153.100.104 (id: 36554, ttl: 64)

TCP Source: 80 -> TCP Destination: 1117
TCP Header Length: 5, TCP Checksum: 45879
TCP Data:

... ˆ_àˆOopˆBboÅ ...
- -
149.153.100.67 -> 149.153.100.104 (id: 36555, ttl: 64)

TCP Source: 80 -> TCP Destination: 1117
TCP Header Length: 5, TCP Checksum: 14645
TCP Data:

Appendix D 325

... TˆEˆURØÀoˆE¨nw°E ...
- -
149.153.100.104 -> 149.153.100.67 (id: 16902, ttl: 128)

TCP Source: 1117 -> TCP Destination: 80
TCP Header Length: 5, TCP Checksum: 20957
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.67 -> 149.153.100.104 (id: 36556, ttl: 64)

TCP Source: 80 -> TCP Destination: 1117
TCP Header Length: 5, TCP Checksum: 30368
TCP Data:

... I×9Ô˜u¬gÝhR§úÒµþu°oÝçˆAˆAˆ@; ...
- -
149.153.100.104 -> 149.153.100.67 (id: 17158, ttl: 128)

TCP Source: 1117 -> TCP Destination: 80
TCP Header Length: 5, TCP Checksum: 18126
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.104 -> 149.153.100.67 (id: 17414, ttl: 128)

TCP Source: 1115 -> TCP Destination: 80
TCP Header Length: 5, TCP Checksum: 60757
TCP Data:

GET /˜pnb/index.html HTTP/1.0
Referer: http://glasnost.itcarlow.ie/˜barryp/index.html
Connection: Keep-Alive
User-Agent: Mozilla/4.75 [en] (Win98; U)
Host: glasnost.itcarlow.ie
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8

- -
149.153.100.67 -> 149.153.100.104 (id: 36557, ttl: 64)

TCP Source: 80 -> TCP Destination: 1115
TCP Header Length: 5, TCP Checksum: 58381
TCP Data:

UUUUUU
- -
149.153.100.67 -> 149.153.100.104 (id: 36558, ttl: 64)

TCP Source: 80 -> TCP Destination: 1115
TCP Header Length: 5, TCP Checksum: 29732
TCP Data:

HTTP/1.1 200 OK
Date: Fri, 03 Aug 2001 15:12:41 GMT
Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_perl/1.23
Last-Modified: Wed, 18 Jul 2001 10:36:56 GMT
ETag: "bf30-1d28-3b5566c8"
Accept-Ranges: bytes
Content-Length: 7464
Keep-Alive: timeout=15, max=98
Connection: Keep-Alive
Content-Type: text/html

326 Appendix D

<HTML>
<HEAD>

<TITLE>Welcome to the "Programming the Network with Perl"
Web site</TITLE> </HEAD>
<BODY>
<CENTER><IMG SRC="pnb.gif" WIDTH=500 HEIGHT=50 X-CLARIS-USEIMAGEWIDTH
X-CLARIS-USEIMAGEHEIGHT ALIGN=bottom></CENTER>

<H2><CENTER>Hello and Welcome!</CENTER></H2>
<CENTER>This site supports the activities of reviewers and readers of
<P><I>Programming the Network with Perl

</I>by
 Paul Barry.</P>
<P>To be published by John
Wiley & Sons</P>
<P> </P>
<P>This book is currently at an advanced stage of development (as
of July 2001)</P>
<P> </P></CENTER>
<H2><CENTER>Contents</CENTER></H2>
<CENTER>Diagrams

Source Code

Links

Mailing List<BR
- -
149.153.100.67 -> 149.153.100.104 (id: 36559, ttl: 64)

TCP Source: 80 -> TCP Destination: 1115
TCP Header Length: 5, TCP Checksum: 54498
TCP Data:

ontactDetails">Contact Details

<P> </P></CENTER>
<H2><CENTER>Diagrams</CENTER></H2>

<CENTER>My apologies, in advance, for the poor quality of these
diagrams.
<P>Chapter 2, Snooping, has a number of diagrams (missing from the
review text).</P>
<P>Here they are (in hand-drawn form - sorry):</P></CENTER>

<CENTER>Figure 1: How EtherSnooper
Works.</CENTER>
<CENTER>Figure 2: UDP/IP
Fragmentation.</CENTER>
<CENTER>Figure 3: TCP/IP
Fragmentation.</CENTER>

<CENTER>The final appendix (Network Employed) is also missing the
diagram.

Here is a hand-drawn copy (again - sorry
for the poor quality).

<P> </P></CENTER>
<H2><CENTER>Source Code</CENTER></H2>
<CENTER>Each "tarball" archive contains the code for a chapter from
the book.

Read the file called MANIFEST to see what’s included in each archive.

<P> There is no source code for Chapter 1: Meet Perl

This is deliberate, as it will do you good to type in the sample
code and get it working on your computer.</P>

<P>Chapter 2: Snooping

(pay particular attention to the "fix-Ethernet.pm" file in
this archive)</P> <P>Chapter
- -
149.153.100.67 -> 149.153.100.104 (id: 36560, ttl: 64)

Appendix D 327

TCP Source: 80 -> TCP Destination: 1115
TCP Header Length: 5, TCP Checksum: 49315
TCP Data:

></P> <P>Chapter 4: Protocols</P>
<P>Chapter 5: Management</P>
<P>Chapter 6: Mobile Agents - source code will be available soon.</P>
<P> </P></CENTER> <H2><CENTER>Links</CENTER></H2>

<H4><CENTER> Chapter 1: Meet Perl</CENTER></H4>

<CENTER>The home of the Perl community, the <A HREF="http://www.perl.
com">Perl Web site

The Perl gossip-site

The Perl advocacy-site (This is
also the home of <I>The Perl Mongers</I>)

The official location of the CPAN
(Search the archive here)

The Perl 5.6 online
documentation as a searchable Web site

<P> </P></CENTER> <H4><CENTER>Chapter 2: Snooping</CENTER></H4>

<CENTER><I>libpcap</I> can be downloaded from the <A HREF="http://
www.tcpdump.org">tcpdump Web site

Tim
Potter’s CPAN directory (NetPacket, etc.)

Shomiti Systems’ Surveyor Lite
is available for the Windows platform

Macintosh users can download a demo of <I>EtherPeek</I> from
WildPackets (formerly: <I>The AG
Group</I>)
 Search for analysers for the
- -
149.153.100.104 -> 149.153.100.67 (id: 17670, ttl: 128)

TCP Source: 1115 -> TCP Destination: 80
TCP Header Length: 5, TCP Checksum: 13286
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.67 -> 149.153.100.104 (id: 36561, ttl: 64)

TCP Source: 80 -> TCP Destination: 1115
TCP Header Length: 5, TCP Checksum: 28546
TCP Data:

at the FreshMeat
Web site

The list of Ethernet Frame Types can be accessed <A HREF="http://
www.iana.org/assignments/ethernet-numbers">here

The Transport Protocol Number Assignments can be accessed <A HREF="
http://www.iana.org/assignments/port-numbers">here

<P> </P></CENTER> <H4><CENTER>Chapter 3: Sockets</CENTER></H4>

<CENTER>The Perl Web site maintains
a short list of networking links

A excellent resource for Windows
programmers

<P> </P></CENTER> <H4><CENTER>Chapter 4: Protocols</CENTER></H4>

<CENTER>The HTTP standard document is available from the home of
web standards

The text to any RFC can be found on the
IETF Web site

328 Appendix D

All about the Apache Web Server

The Gisle Aas Web site (for
the <I>libwww-perl</I> project)

Gisle’s CPAN
directory

Graham Barr’s CPAN
directory (libnet)

Find out about InterMapper for
the Macintosh

Jay Rogers’ CPAN
directory (Net::Telnet) <P> </P></CENT
- -

...

- -
413 datagrams/segments processed.

Fri Aug 3 15:12:33 2001 - netdebug END run.

NetDebugging NetNews Traffic

The following invocation of NetDebug captures NNTP traffic generated by the
mossy.itcarlow.ie (149.153.100.104) network device, and destined for a
remote NNTP server located at 193.10.250.164:

./netdb -s 149.153.100.104 -p 119

The NNTP client operating on 149.153.100.104 requests two articles, numbered
1639 and 1642.

These articles are currently contained in the newsgroup comp.lang.perl.
announce. Like the vast majority of Internet standard protocols, NNTP is pri-
marily textual, and the captured results reflect this. Only a small number of
the datagrams involved in the communication contain binary data (such as
ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@):

Fri Aug 3 15:08:25 2001 - netdebug BEGIN run.
- -
149.153.100.104 -> 193.10.250.164 (id: 8710, ttl: 128)

TCP Source: 1112 -> TCP Destination: 119
TCP Header Length: 5, TCP Checksum: 4373
TCP Data:

ARTICLE 1639

- -
193.10.250.164 -> 149.153.100.104 (id: 34287, ttl: 46)

TCP Source: 119 -> TCP Destination: 1112
TCP Header Length: 5, TCP Checksum: 16704
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
193.10.250.164 -> 149.153.100.104 (id: 34288, ttl: 46)

TCP Source: 119 -> TCP Destination: 1112
TCP Header Length: 5, TCP Checksum: 5052
TCP Data:

Appendix D 329

220 1639 <tlk18a6164iab6@corp.supernews.com> article
From: ebohlman@omsdev.com (Eric Bohlman)
Newsgroups: comp.lang.perl.announce,comp.lang.perl.modules
Subject: ANNOUNCE: XML::Records 0.10
Approved: merlyn@stonehenge.com (comp.lang.perl.announce)
Date: 21 Jul 2001 21:55:08 GMT
Organization: OMS Development
Message-ID: <tlk18a6164iab6@corp.supernews.com>
X-Disclaimer: The "Approved" header verifies header information
for article transmission and does not imply approval of content.
X-Complaints-To: newsabuse@supernews.com
Lines: 11
Path: news.ind.mh.se!grendel.df.lth.se!snopp!newsfeed.sunet.se!
news01.sunet.se!uninett.no!asap-asp.net!Norway.EU.net!uio.no!
news.tele.dk!171.64.14.106!newsfeed.stanford.edu!sn-xit-01!sn-post-02!
sn-post-01!supernews.com!corp.supernews.com!not-for-mail
Xref: news.ind.mh.se comp.lang.perl.announce:1639
comp.lang.perl.modules:42175

Version 0.10 of XML::Records is now available on CPAN. It allows
you to pull "records" out of XML documents and turn them into
Perl data st
- -
149.153.100.104 -> 193.10.250.164 (id: 8966, ttl: 128)

TCP Source: 1112 -> TCP Destination: 119
TCP Header Length: 5, TCP Checksum: 39656
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
193.10.250.164 -> 149.153.100.104 (id: 34289, ttl: 46)

TCP Source: 119 -> TCP Destination: 1112
TCP Header Length: 5, TCP Checksum: 6767
TCP Data:

ructures (similar to Grant McLean’s XML::Simple, but without having to
read the entire document into memory), create simple tree structures (same
as XML::Parser::EasyTree) from them, or generate PerlSAX events from them,
allowing you to build DOM, XPath or similar structures from selected parts
of a document. Since it’s now a subclass of XML::TokeParser, it allows
you to read token-by-token as well as record-by-record.
.

- -
149.153.100.104 -> 193.10.250.164 (id: 9222, ttl: 128)

TCP Source: 1112 -> TCP Destination: 119
TCP Header Length: 5, TCP Checksum: 39656
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.104 -> 193.10.250.164 (id: 9478, ttl: 128)

TCP Source: 1112 -> TCP Destination: 119
TCP Header Length: 5, TCP Checksum: 2648
TCP Data:

ARTICLE 1642

- -
193.10.250.164 -> 149.153.100.104 (id: 34290, ttl: 46)

TCP Source: 119 -> TCP Destination: 1112
TCP Header Length: 5, TCP Checksum: 15226
TCP Data:

330 Appendix D

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
193.10.250.164 -> 149.153.100.104 (id: 34291, ttl: 46)

TCP Source: 119 -> TCP Destination: 1112
TCP Header Length: 5, TCP Checksum: 15482
TCP Data:

220 1642 <tmboo378u0ab4c@corp.supernews.com> article
From: jmcnamara@cpan.org (John McNamara)
Newsgroups: comp.lang.perl.announce,comp.lang.perl.modules
Subject: ANNOUNCE: Spreadsheet::WriteExcel 0.33
Approved: merlyn@stonehenge.com (comp.lang.perl.announce)
Date: Mon, 30 Jul 2001 22:31:14 GMT
Organization: Eircom.Net http://www.eircom.net
Message-ID: <tmboo378u0ab4c@corp.supernews.com>
X-Disclaimer: The "Approved" header verifies header information for
article transmission and does not imply approval of content.
X-Complaints-To: newsabuse@supernews.com
Lines: 140
Path: news.ind.mh.se!newsrelay.mitt.mh.se!newsfeed.sunet.se!
news01.sunet.se!uninett.no!howland.erols.net!news.maxwell.syr.edu!
newsfeed.stanford.edu!sn-xit-01!sn-post-01!supernews.com!
corp.supernews.com!not-for-mail
Xref: news.ind.mh.se comp.lang.perl.announce:1642
comp.lang.perl.modules:42426

==
ANNOUNCE

Spreadsheet::WriteExcel version 0.33 has been uploaded t
- -
193.10.250.164 -> 149.153.100.104 (id: 34292, ttl: 46)

TCP Source: 119 -> TCP Destination: 1112
TCP Header Length: 5, TCP Checksum: 60014
TCP Data:

o CPAN.

==
NAME

Spreadsheet::WriteExcel - Write formatted text and numbers to a
cross-platform Excel binary file.

==
CHANGES

Added (hopefully) easier mechanism to add format properties.

Added more page setup options: repeat rows and columns, hide
gridlines, print area, fit to pages and page breaks.

Added more examples.

==
DESCRIPTION

The Spreadsheet::WriteExcel module can be used create a cross-
platform Excel binary file. Multiple worksheets can be added to a
workbook and formatting can be applied to cells. Text, numbers,
formulas and hyperlinks can be written to the cells.

The Excel file produced by this module is compatible with Excel 5,
95, 97 and 2000.

Appendix D 331

The module will work on the majority of Windows, UNIX and
Macintosh platforms. Generated files are also compatible with the
Linux/UNIX spreadsheet applications OpenOffice, Gnumeric and XESS.
The generated files are not compatible with MS Access.

This module cannot be used to read an Excel file. See
Spreadsheet::ParseExcel or look at the main documentation for some
suggestions. This module cannot be uses to write to an existing
Excel file.

==
- -
149.153.100.104 -> 193.10.250.164 (id: 9734, ttl: 128)

TCP Source: 1112 -> TCP Destination: 119
TCP Header Length: 5, TCP Checksum: 36718
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
193.10.250.164 -> 149.153.100.104 (id: 34293, ttl: 46)

TCP Source: 119 -> TCP Destination: 1112
TCP Header Length: 5, TCP Checksum: 7329
TCP Data:

==
SYNOPSIS

To write a string, a formatted string, a number and a formula to
the first worksheet in an Excel workbook called perl.xls:

use Spreadsheet::WriteExcel;

Create a new Excel workbook
my $workbook = Spreadsheet::WriteExcel->new("perl.xls");

Add a worksheet
$worksheet = $workbook->addworksheet();

Add and define a format
$format = $workbook->addformat(); # Add a format
$format->set_bold();
$format->set_color(’red’);
$format->set_align(’center’);

Write a formatted and unformatted string
$col = $row = 0;
$worksheet->write($row, $col, "Hi Excel!", $format);
$worksheet->write(1, $col, "Hi Excel!");

Write a number and a formula using A1 notation
$worksheet->write(’A3’, 1.2345);
$worksheet->write(’A4’, ’=SIN(PI()/4)’);

==
REQUIREMENTS

This module requires Perl 5.005 (or later) and Parse::RecDescent:
http://search.cpan.org/search?dist=Parse-RecDescent

==
INSTALLATION

332 Appendix D

Method 1
Download the zipped tar file from one of the following:

http://search.cpan.org/search?dist=Spreadsheet-WriteExcel
http://th

- -
193.10.250.164 -> 149.153.100.104 (id: 34296, ttl: 46)

TCP Source: 119 -> TCP Destination: 1112
TCP Header Length: 5, TCP Checksum: 18128
TCP Data:

eg.ca/mod_perl/cpan-search?idinfo=154

ftp://ftp.funet.fi/pub/languages/perl/CPAN/authors/id/J/JM/JMCNAMARA/

Unzip the module as follows or use winzip:
tar -zxvf Spreadsheet-WriteExcel-0.xx.tar.gz

The module can be installed using the standard Perl procedure:

perl Makefile.PL
make
make test
make install # You may need to be root
make clean # or make realclean

Windows users without a working "make" can get nmake from:
ftp://ftp.microsoft.com/Softlib/MSLFILES/nmake15.exe

Method 2
If you have CPAN.pm configured you can install the module as
follows:

perl -MCPAN -e "install ’Spreadsheet::WriteExcel’"

Method 3
ActivePerl users can use PPM as follows:

C:\> ppm
PPM> set repository tmp
http://homepage.eircom.net/˜jmcnamara/perl
PPM> install Spreadsheet-WriteExcel
PPM> quit
C:\>

If this fails try the following:

PPM>install

http://homepage.eircom.net/˜jmcnamara/perl/Spreadsheet-WriteExcel.ppd

If you wish to perform a local PPM install you can get the files
from:

http://homepage.eircom.net/˜jmcnamara/perl/Spreadsheet-WriteExcel.ppd

http://homepage.eircom.net/˜jmcnamara/perl/Spreadsheet-WriteExcel-0.xx-PPM.tar.gz

==
AUTHOR

- -
149.153.100.104 -> 193.10.250.164 (id: 9990, ttl: 128)

TCP Source: 1112 -> TCP Destination: 119
TCP Header Length: 5, TCP Checksum: 33798
TCP Data:

Appendix D 333

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
193.10.250.164 -> 149.153.100.104 (id: 34303, ttl: 46)

TCP Source: 119 -> TCP Destination: 1112
TCP Header Length: 5, TCP Checksum: 22766
TCP Data:

a (jmcnamara@cpan.org)

--

.

- -
149.153.100.104 -> 193.10.250.164 (id: 10246, ttl: 128)

TCP Source: 1112 -> TCP Destination: 119
TCP Header Length: 5, TCP Checksum: 33798
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
18 datagrams/segments processed.

Fri Aug 3 15:09:25 2001 - netdebug END run.

NetDebugging TELNET Traffic

The following invocation of NetDebug:

./netdb -s 149.153.100.65 -p 23

captures traffic aimed at protocol port-number 23 (used by TELNET) on the
149.153.100.65 network device (which is pbmac.itcarlow.ie). A user called
barryp connects to the TELNET server from the network device 149.153.
100.104 (mossy), supplying a login-id and password when prompted. The ls com-
mand is issued, then the user disconnects from the TELNET server.

This interaction produced the following results:

Mon Sep 3 14:22:46 2001 - netdebug BEGIN run.

- -
149.153.100.104 -> 149.153.100.65 (id: 41479, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 7, TCP Checksum: 14431
TCP Data:

- -
149.153.100.65 -> 149.153.100.104 (id: 136, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 7, TCP Checksum: 47017
TCP Data:

- -
149.153.100.104 -> 149.153.100.65 (id: 41735, ttl: 128)

334 Appendix D

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14842
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 137, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 42850
TCP Data:

ÿýˆXÿý ÿý#ÿý’
- -
149.153.100.104 -> 149.153.100.65 (id: 41991, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 8691
TCP Data:

ÿûˆXˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 138, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 57005
TCP Data:

UUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 42247, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 62920
TCP Data:

ÿü ÿü#ÿü’
- -
149.153.100.65 -> 149.153.100.104 (id: 139, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 50854
TCP Data:

ÿúˆXˆAÿð
- -
149.153.100.104 -> 149.153.100.65 (id: 42503, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 36184
TCP Data:

ÿúˆXˆ@ANSIÿð
- -
149.153.100.65 -> 149.153.100.104 (id: 140, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 41340
TCP Data:

ÿûˆCÿýˆAÿýˆ_ÿûˆEÿý!
- -
149.153.100.104 -> 149.153.100.65 (id: 42759, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14043
TCP Data:

Appendix D 335

ÿýˆCˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 141, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 56962
TCP Data:

UUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 43015, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14738
TCP Data:

ÿûˆAÿüˆ_ÿþˆEÿü!
- -
149.153.100.65 -> 149.153.100.104 (id: 142, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 56962
TCP Data:

UUUUUU
- -
149.153.100.65 -> 149.153.100.104 (id: 143, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 39768
TCP Data:

ÿþˆAÿûˆA
Linux/PPC 2000 Q4
Packages current to December 25 2000
Kernel 2.2.18-4hpmac on a ppc

- -
149.153.100.104 -> 149.153.100.65 (id: 43271, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14541
TCP Data:

ÿüˆAˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 144, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 31729
TCP Data:

login:
- -
149.153.100.104 -> 149.153.100.65 (id: 43527, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14537
TCP Data:

ÿýˆAˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 145, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 56838
TCP Data:

336 Appendix D

UUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 43783, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 55237
TCP Data:

bˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 146, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 31740
TCP Data:

bUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 44039, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 55492
TCP Data:

aˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 147, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 31994
TCP Data:

aUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 44295, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14797
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.104 -> 149.153.100.65 (id: 44551, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 51139
TCP Data:

rˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 148, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 27640
TCP Data:

rUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 44807, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 51138
TCP Data:

rˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 149, ttl: 64)

Appendix D 337

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 27638
TCP Data:

rUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 45063, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14795
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.104 -> 149.153.100.65 (id: 45319, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 49345
TCP Data:

yˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 150, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 25844
TCP Data:

yUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 45575, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 51648
TCP Data:

pˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 151, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 28146
TCP Data:

pUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 45831, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14793
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.104 -> 149.153.100.65 (id: 46087, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 11445
TCP Data:

ÚÚÚÚ
- -
149.153.100.65 -> 149.153.100.104 (id: 152, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 53476
TCP Data:

338 Appendix D

UUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 46343, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14791
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 153, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 63003
TCP Data:

Password:
- -
149.153.100.104 -> 149.153.100.65 (id: 46599, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14791
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.104 -> 149.153.100.65 (id: 46855, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 51645
TCP Data:

pˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 154, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 56811
TCP Data:

UUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 47111, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 55484
TCP Data:

aˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 155, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 56810
TCP Data:

UUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 47367, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 50875
TCP Data:

sˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 156, ttl: 64)

Appendix D 339

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 56809
TCP Data:

UUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 47623, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 50874
TCP Data:

sˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 157, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 56808
TCP Data:

UUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 47879, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 49849
TCP Data:

wˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 158, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 56807
TCP Data:

UUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 48135, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 51896
TCP Data:

oˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 159, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 56806
TCP Data:

UUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 48391, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 51127
TCP Data:

rˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 160, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 56805
TCP Data:

340 Appendix D

UUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 48647, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 54710
TCP Data:

dˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 161, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 56804
TCP Data:

UUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 48903, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 53685
TCP Data:

hˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 162, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 56803
TCP Data:

UUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 49159, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 54452
TCP Data:

eˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 163, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 56802
TCP Data:

UUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 49415, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 51123
TCP Data:

rˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 164, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 56801
TCP Data:

UUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 49671, ttl: 128)

Appendix D 341

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 54450
TCP Data:

eˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 165, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 56800
TCP Data:

UUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 49927, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 11431
TCP Data:

ˆXˆXˆXˆX
- -
149.153.100.65 -> 149.153.100.104 (id: 166, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 53450
TCP Data:

UUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 50183, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14777
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 167, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 431
TCP Data:

Last login: Mon Sep 3 14:23:11 from 149.153.100.104

- -
149.153.100.104 -> 149.153.100.65 (id: 50439, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14777
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 168, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 12716
TCP Data:

[barryp@pbmac barryp]$
- -
149.153.100.104 -> 149.153.100.65 (id: 50695, ttl: 128)

342 Appendix D

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14777
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.104 -> 149.153.100.65 (id: 50951, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 52655
TCP Data:

lˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 169, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 29061
TCP Data:

lUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 51207, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 50862
TCP Data:

sˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 170, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 27267
TCP Data:

sUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 51463, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14775
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.104 -> 149.153.100.65 (id: 51719, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 11427
TCP Data:

7777
- -
149.153.100.65 -> 149.153.100.104 (id: 171, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 53365
TCP Data:

UUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 51975, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14773
TCP Data:

Appendix D 343

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 172, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 24666
TCP Data:

ˆ[[0mˆ[[01;34mDesktopˆ[[0m
ˆ[[m[barryp@pbmac barryp]$
- -
149.153.100.104 -> 149.153.100.65 (id: 52231, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14773
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.104 -> 149.153.100.65 (id: 52487, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 49835
TCP Data:

wˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 173, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 26186
TCP Data:

wUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 52743, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14772
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.104 -> 149.153.100.65 (id: 52999, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 53674
TCP Data:

hˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 174, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 30024
TCP Data:

hUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 53255, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 51881
TCP Data:

oˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 175, ttl: 64)

344 Appendix D

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 28230
TCP Data:

oUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 53511, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14770
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.104 -> 149.153.100.65 (id: 53767, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 55464
TCP Data:

aˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 176, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 31812
TCP Data:

aUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 54023, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 52391
TCP Data:

mˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 177, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 28738
TCP Data:

mUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 54279, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14768
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.104 -> 149.153.100.65 (id: 54535, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 53414
TCP Data:

iˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 178, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 29760
TCP Data:

Appendix D 345

iUUUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 54791, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14767
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.104 -> 149.153.100.65 (id: 55047, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 11419
TCP Data:

7777
- -
149.153.100.65 -> 149.153.100.104 (id: 179, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 53298
TCP Data:

UUUU
- -
149.153.100.104 -> 149.153.100.65 (id: 55303, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14765
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 180, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 54771
TCP Data:

barryp
[barryp@pbmac barryp]$
- -
149.153.100.104 -> 149.153.100.65 (id: 55559, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14765
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.104 -> 149.153.100.65 (id: 55815, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 13732
TCP Data:

ˆDˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 181, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 34487
TCP Data:

logout

346 Appendix D

- -
149.153.100.65 -> 149.153.100.104 (id: 182, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 7757
TCP Data:

ˆ[[Hˆ[[J
- -
149.153.100.104 -> 149.153.100.65 (id: 56071, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14763
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.104 -> 149.153.100.65 (id: 56327, ttl: 128)

TCP Source: 1070 -> TCP Destination: 23
TCP Header Length: 5, TCP Checksum: 14762
TCP Data:

ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.104 (id: 183, ttl: 64)

TCP Source: 23 -> TCP Destination: 1070
TCP Header Length: 5, TCP Checksum: 56597
TCP Data:

UUUUUU
- -
107 datagrams/segments processed.

Mon Sep 3 14:23:46 2001 - netdebug END run.

The TELNET protocol is very chatty, and the captured results confirm this: a large
number of small datagrams are travelling to/from the TELNET server. As TELNET
transfers data as clear text, it is possible to determine where in the stream of data-
grams the server prompts the user for a login-id and password, as the Password:
prompts are clearly visible. After each prompt, a collection of datagrams carry the
login-id (which is barryp in this case) and password (which is passwordhere),
again in clear-text. Note that the TELNET server echoes each character typed
by the user, resulting in the following datagram sequences: bbaarryypp and
ppaasswwoorrddhheerree. Each character typed is sent and echoed in its own
TELNET datagram, which only adds to the chatty nature of this protocol.

NetDebugging Secure Shell Traffic

The following invocation of NetDebug captures network traffic to and from the
pbmac.itcarlow.ie (149.153.100.65) network device. The well-known proto-
col port-number of the Secure Shell Protocol is 22, and any captured traffic is
filtered on this value:

./netdb -s 149.153.100.65 -p 22

Appendix D 347

Unlike the traffic captured during the TELNET example, this captured traffic
reveals little, as the communication session between the two network devices
is encrypted and, consequently, secure. The general advice is clear: do not use
TELNET when privacy is important1. As the bulk of the traffic captured is unintel-
ligible, what follows is a small extract of the NetDebug results:

Fri Aug 3 16:20:32 2001 - netdebug BEGIN run.

- -
149.153.100.66 -> 149.153.100.65 (id: 3515, ttl: 64)

TCP Source: 1030 -> TCP Destination: 22
TCP Header Length: 10, TCP Checksum: 23666
TCP Data:

ˆBˆH
ˆ@ˆG#óˆ@ˆ@ˆ@ˆ@ˆAˆCˆCˆ@
- -
149.153.100.65 -> 149.153.100.66 (id: 48, ttl: 64)

TCP Source: 22 -> TCP Destination: 1030
TCP Header Length: 10, TCP Checksum: 64392
TCP Data:

ˆBˆH
ˆ@ˆ@Q8ˆ@ˆG#óˆAˆCˆCˆ@
- -
149.153.100.66 -> 149.153.100.65 (id: 3516, ttl: 64)

TCP Source: 1030 -> TCP Destination: 22
TCP Header Length: 8, TCP Checksum: 35650
TCP Data:

ˆ@ˆG#óˆ@ˆ@Q8
- -
149.153.100.65 -> 149.153.100.66 (id: 49, ttl: 64)

TCP Source: 22 -> TCP Destination: 1030
TCP Header Length: 8, TCP Checksum: 35458
TCP Data:

ˆ@ˆ@Q8ˆ@ˆG#óSSH-1.99-OpenSSH_2.2.0p1

- -
149.153.100.66 -> 149.153.100.65 (id: 3517, ttl: 64)

TCP Source: 1030 -> TCP Destination: 22
TCP Header Length: 8, TCP Checksum: 35625
TCP Data:

ˆ@ˆG#óˆ@ˆ@Q8
- -
149.153.100.66 -> 149.153.100.65 (id: 3518, ttl: 64)

TCP Source: 1030 -> TCP Destination: 22
TCP Header Length: 8, TCP Checksum: 28869
TCP Data:

ˆ@ˆG#óˆ@ˆ@Q8SSH-2.0-OpenSSH_2.5.2p2

1Many network administrators take this further and advise never to use TELNET.

348 Appendix D

- -
149.153.100.65 -> 149.153.100.66 (id: 50, ttl: 64)

TCP Source: 22 -> TCP Destination: 1030
TCP Header Length: 8, TCP Checksum: 9585
TCP Data:

ˆ@ˆ@Q8ˆ@ˆG#ó
- -
149.153.100.66 -> 149.153.100.65 (id: 3519, ttl: 64)

TCP Source: 1030 -> TCP Destination: 22
TCP Header Length: 8, TCP Checksum: 16624
TCP Data:

ˆ@ˆG#óˆ@ˆ@Q8ˆ@ˆ@ˆBtˆKˆTÀ’ooˆZ(¢×¼+Y»ˆVoˆ_¸ˆ@ˆ@ˆ@=diffie-hellman-
group-exchange-sha1,diffie-hellman-group1-sha1ˆ@ˆ@ˆ@ˆOssh-rsa,ss
h-dssˆ@ˆ@ˆ@oaes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,arcfour
,aes192-cbc,aes256-cbc,rijndael128-cbc,rijndael192-cbc,rijndael2
56-cbc,rijndael-cbc@lysator.liu.seˆ@ˆ@ˆ@oaes128-cbc,3des-cbc,blo
wfish-cbc,cast128-cbc,arcfour,aes192-cbc,aes256-cbc,rijndael128-
cbc,rijndael192-cbc,rijndael256-cbc,rijndael-cbc@lysator.liu.seˆ
@ˆ@ˆ@Uhmac-md5,hmac-sha1,hmac-ripemd160,hmac-ripemd160@openssh.c
om,hmac-sha1-96,hmac-md5-96ˆ@ˆ@ˆ@Uhmac-md5,hmac-sha1,hmac-ripemd
160,hmac-ripemd160@openssh.com,hmac-sha1-96,hmac-md5-96ˆ@ˆ@ˆ@ˆDn
oneˆ@ˆ@ˆ@ˆDnoneˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.66 (id: 51, ttl: 64)

TCP Source: 22 -> TCP Destination: 1030
TCP Header Length: 8, TCP Checksum: 56660
TCP Data:

ˆ@ˆ@Q8ˆ@ˆG#óˆ@ˆ@ˆA$ˆFˆTˆE½SY¡íˆC¯ÑqoˆH%u×oˆ@ˆ@ˆ@ˆZdiffie-hellman-
group1-sha1ˆ@ˆ@ˆ@ˆGssh-dssˆ@ˆ@ˆ@)3des-cbc,blowfish-cbc,arcfour,ca
st128-cbcˆ@ˆ@ˆ@)3des-cbc,blowfish-cbc,arcfour,cast128-cbcˆ@ˆ@ˆ@-h
mac-sha1,hmac-md5,hmac-ripemd160@openssh.comˆ@ˆ@ˆ@-hmac-sha1,hmac
-md5,hmac-ripemd160@openssh.comˆ@ˆ@ˆ@ˆIzlib,noneˆ@ˆ@ˆ@ˆIzlib,none
ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.66 (id: 52, ttl: 64)

TCP Source: 22 -> TCP Destination: 1030
TCP Header Length: 8, TCP Checksum: 8656
TCP Data:

ˆ@ˆ@Q9ˆ@ˆG#ó
- -
149.153.100.66 -> 149.153.100.65 (id: 3520, ttl: 64)

TCP Source: 1030 -> TCP Destination: 22
TCP Header Length: 8, TCP Checksum: 34077
TCP Data:

ˆ@ˆG#÷ˆ@ˆ@Q8
- -
149.153.100.66 -> 149.153.100.65 (id: 3521, ttl: 64)

TCP Source: 1030 -> TCP Destination: 22
TCP Header Length: 8, TCP Checksum: 9769
TCP Data:

Appendix D 349

ˆ@ˆG#÷ˆ@ˆ@Q8ˆ@ˆ@ˆ@oˆFˆˆˆ@ˆ@ˆ@oBoÐ¸VˆˆˆUo¸ÈTooÃËO,ØÈˆA³Nh/wÕ+ˆD4J]ˆY
e¾oäçïf¾ÄïˆO²ˆTïö36[ÎˆCˆKÍÅVktÇ,SoW˜&ooË=ˆVˆV=ˆG[ˆO°¾ÉDvo½ˆ\"Ïôo[b½
.4eˆEˆGèåçoÿ5Îæ$nÿ·§¿IoÃÆ¤u"-ˆP£½ÜˆGˆOÌˆXÜ2ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@
- -
149.153.100.65 -> 149.153.100.66 (id: 53, ttl: 64)

TCP Source: 22 -> TCP Destination: 1030
TCP Header Length: 8, TCP Checksum: 8503
TCP Data:

ˆ@ˆ@Q>ˆ@ˆG#÷
- -

.

.

.

- -
149.153.100.65 -> 149.153.100.66 (id: 100, ttl: 64)

TCP Source: 22 -> TCP Destination: 1030
TCP Header Length: 8, TCP Checksum: 63926
TCP Data:

ˆ@ˆ@X‘ˆ@ˆG+ˆ[
- -
149.153.100.66 -> 149.153.100.65 (id: 0, ttl: 255)

TCP Source: 1030 -> TCP Destination: 22
TCP Header Length: 8, TCP Checksum: 17527
TCP Data:

ˆ@ˆG+ˆ[ˆ@ˆ@X‘
- -
123 datagrams/segments processed.

Fri Aug 3 16:21:32 2001 - netdebug END run.

NetDebugging Network Management Traffic

The following invocation of NetDebug captures SNMP traffic generated by the
pbmac.itcarlow.ie (149.153.100.65) network device, resulting from the exe-
cution of the ipdetermine program from Chapter 5, Management, against the
149.153.100.10 router. As SNMP uses UDP and the well-known protocol port-
number 161, this needs to be specified on the command-line, as follows:

./netdb -s 149.153.100.65 -p 161 -u

The results produced are all but unintelligible due to the fact that SNMP uses
the Basic Encoding Rules to encode its data prior to transfer. However, the entire
capture is included here to support the examples in Chapter 5, Management, and
Chapter 6, Mobile Agents. Specifically, the volume of data captured is most inter-
esting (enlightening):

350 Appendix D

Fri Aug 3 15:56:31 2001 - netdebug BEGIN run.

- -
149.153.100.65 -> 149.153.100.10 (id: 44735, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 48, UDP Checksum: 53718
UDP Data:

0&ˆBˆAˆAˆDˆFpublic|ˆYˆBˆANˆBˆAˆ@ˆBˆAˆ@0ˆN0ˆLˆFˆH+ˆFˆAˆBˆAˆAˆAˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61004, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 312, UDP Checksum: 48913
UDP Data:

0oˆA,ˆBˆAˆAˆDˆFpublic¢oˆAˆ]ˆBˆANˆBˆAˆ@ˆBˆAˆ@0oˆAˆP0oˆAˆLˆFˆH+ˆFˆA
ˆBˆAˆAˆAˆ@ˆDoÿCisco Internetwork Operating System Software
IOS (tm) MSFC Software (C6MSFC-JSV-M), Version 12.1(6)E, EARLY
DEPLOYMENT RELEASE SOFTWARE (fc3)
TAC Support: http://www.cisco.com/cgi-bin/ibld/view.pl?i=support
Copyright (c) 1986-2001 by cisco Systems, In
- -
149.153.100.65 -> 149.153.100.10 (id: 44736, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 47, UDP Checksum: 50116
UDP Data:

0%ˆBˆAˆAˆDˆFpublic¥ˆXˆBˆAOˆBˆAˆ@ˆBˆA
00ˆKˆFˆG+ˆFˆAˆBˆAˆDˆUˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61005, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 285, UDP Checksum: 9234
UDP Data:

0oˆAˆQˆBˆAˆAˆDˆFpublic¢oˆAˆBˆBˆAOˆBˆAˆ@ˆBˆAˆ@0oö0ˆUˆF+ˆFˆAˆBˆAˆDˆU
ˆAˆAˆ@ˆ@ˆ@ˆ@@ˆDˆ@ˆ@ˆ@ˆ@0ˆUˆF+ˆFˆAˆBˆAˆDˆUˆAˆAˆ¿ˆ@ˆ@ˆ@@ˆDˆ¿ˆ@ˆ@ˆ@0ˆ
WˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆAoˆUoˆYˆAˆ@@ˆDooˆAˆ@0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆAo
ˆUoˆYˆBˆ@@ˆDooˆBˆ@0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆAoˆUoˆYˆCˆ@@ˆDooˆCˆ@0ˆWˆF
ˆO+ˆFˆAˆBˆAˆDˆUˆAˆAoˆUoˆYˆFˆ@@ˆDooˆFˆ@0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆAoˆUo
ˆYˆIˆ@@ˆDooˆIˆ@0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆAoˆUoˆYˆPˆ@@ˆDooˆPˆ@0ˆWˆFˆO+
ˆFˆAˆBˆAˆDˆUˆAˆAoˆUoˆY2ˆ@@ˆDoo2ˆ@0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆAoˆUoˆYaˆ@
@ˆDooaˆ@
- -
149.153.100.65 -> 149.153.100.10 (id: 44737, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 55, UDP Checksum: 35631
UDP Data:

0-ˆBˆAˆAˆDˆFpublic¥ ˆBˆAPˆBˆAˆ@ˆBˆA
0ˆU0ˆSˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆAoˆUoˆYaˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61006, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 297, UDP Checksum: 62904
UDP Data:

0oˆAˆ]ˆBˆAˆAˆDˆFpublic¢oˆAˆNˆBˆAPˆBˆAˆ@ˆBˆAˆ@0oˆAˆA0ˆWˆFˆO+ˆFˆAˆBˆ
AˆDˆUˆAˆAoˆUoˆYbˆ@@ˆDoobˆ@0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆAoˆUoˆYdˆ@@ˆDoodˆ
@0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆAoˆUoˆYgˆ@@ˆDoogˆ@0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆA
oˆUoˆYoˆ@ˆ@@ˆDoooˆ@0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆAoˆUoˆYoFˆ@@ˆDooÆˆ@0ˆXˆF

Appendix D 351

ˆP+ˆFˆAˆBˆAˆDˆUˆAˆAoˆUoˆYoHˆ@@ˆDooÈˆ@0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆAoˆUoˆ
YoIˆ@@ˆDooÉˆ@0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆAoˆUoˆYoIˆB@ˆDooÉˆB0ˆXˆFˆP+ˆFˆ
AˆBˆAˆDˆUˆAˆAoˆUoˆYoLˆ@@ˆDooÌˆ@0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆAoˆUoˆYoMˆ@@
ˆDooÍˆ@
- -
149.153.100.65 -> 149.153.100.10 (id: 44738, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 56, UDP Checksum: 14349
UDP Data:

0.ˆBˆAˆAˆDˆFpublic¥!ˆBˆAQˆBˆAˆ@ˆBˆA
0ˆV0ˆTˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆAoˆUoˆYoMˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61007, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 270, UDP Checksum: 42465
UDP Data:

0oˆAˆBˆBˆAˆAˆDˆFpublic¢oôˆBˆAQˆBˆAˆ@ˆBˆAˆ@0oè0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆi
AˆAoˆUoˆYoMˆB@ˆDooÍˆB0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆAoˆUoˆYoTˆ@@ˆDooÔˆ@0ˆXˆ
FˆP+ˆFˆAˆBˆAˆDˆUˆAˆAoˆUoˆYoXˆ@@ˆDooØˆ@0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆAoˆUoˆ
Yo)ˆ@@ˆDooýˆ@0ˆRˆF+ˆFˆAˆBˆAˆDˆUˆAˆBˆ@ˆ@ˆ@ˆ@ˆBˆAˆ@0ˆRˆF+ˆFˆAˆBˆAˆDˆU
ˆAˆBˆ¿ˆ@ˆ@ˆ@ˆBˆAˆA0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆBoˆUoˆYˆAˆ@ˆBˆAˆX0ˆTˆFˆO+ˆ
FˆAˆBˆAˆDˆUˆAˆBoˆUoˆYˆBˆ@ˆBˆAˆC0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆBoˆUoˆYˆCˆ@ˆB
ˆAˆE0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆBoˆUoˆYˆFˆ@ˆBˆAˆH
- -
149.153.100.65 -> 149.153.100.10 (id: 44739, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 55, UDP Checksum: 35464
UDP Data:

0-ˆBˆAˆAˆDˆFpublic¥ ˆBˆARˆBˆAˆ@ˆBˆA
0ˆU0ˆSˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆBoˆUoˆYˆFˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61008, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 260, UDP Checksum: 2434
UDP Data:

0oùˆBˆAˆAˆDˆFpublic¢oëˆBˆARˆBˆAˆ@ˆBˆAˆ@0oß0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆBoi
ˆUoˆYˆIˆ@ˆBˆAˆP0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆBoˆUoˆYˆPˆ@ˆBˆAˆR0ˆTˆFˆO+ˆFˆAˆ
BˆAˆDˆUˆAˆBoˆUoˆY2ˆ@ˆBˆAˆS0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆBoˆUoˆYaˆ@ˆBˆAˆD0ˆT
ˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆBoˆUoˆYbˆ@ˆBˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆBoˆUoˆYdˆ
@ˆBˆAˆD0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆBoˆUoˆYgˆ@ˆBˆAˆG0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆA
ˆBoˆUoˆYoˆ@ˆ@ˆBˆAˆD0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆBoˆUoˆYoFˆ@ˆBˆAˆC0ˆUˆFˆP+ˆ
FˆAˆBˆAˆDˆUˆAˆBoˆUoˆYoHˆ@ˆBˆAˆC
- -
149.153.100.65 -> 149.153.100.10 (id: 44740, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 56, UDP Checksum: 15371
UDP Data:

0.ˆBˆAˆAˆDˆFpublic¥!ˆBˆASˆBˆAˆ@ˆBˆA
0ˆV0ˆTˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆBoˆUoˆYoHˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61009, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 261, UDP Checksum: 1703
UDP Data:

352 Appendix D

0oúˆBˆAˆAˆDˆFpublic¢oìˆBˆASˆBˆAˆ@ˆBˆAˆ@0oà0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆBo
ˆUoˆYoIˆ@ˆBˆAˆC0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆBoˆUoˆYoIˆBˆBˆAˆC0ˆUˆFˆP+ˆFˆA
ˆBˆAˆDˆUˆAˆBoˆUoˆYoLˆ@ˆBˆAˆC0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆBoˆUoˆYoMˆ@ˆBˆAˆ
C0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆBoˆUoˆYoMˆBˆBˆAˆC0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆBoˆ
UoˆYoTˆ@ˆBˆAˆC0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆBoˆUoˆYoXˆ@ˆBˆAˆV0ˆUˆFˆP+ˆFˆAˆ
BˆAˆDˆUˆAˆBoˆUoˆYo)ˆ@ˆBˆAˆW0ˆRˆF+ˆFˆAˆBˆAˆDˆUˆAˆCˆ@ˆ@ˆ@ˆ@ˆBˆAˆ@0ˆRˆ
F+ˆFˆAˆBˆAˆDˆUˆAˆCˆ¿ˆ@ˆ@ˆ@ˆBˆAˆ@
- -
149.153.100.65 -> 149.153.100.10 (id: 44741, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 53, UDP Checksum: 47643
UDP Data:

0.ˆBˆAˆAˆDˆFpublic¥!ˆBˆASˆBˆAˆ@ˆBˆA
0ˆV0ˆTˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆBoˆUoˆYoHˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61010, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 257, UDP Checksum: 30171
UDP Data:

0oöˆBˆAˆAˆDˆFpublic¢oèˆBˆATˆBˆAˆ@ˆBˆAˆ@0oÜ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆCo
ˆUoˆYˆAˆ@ˆBˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆCoˆUoˆYˆBˆ@ˆBˆAˆ@0ˆTˆFˆO+ˆFˆA
ˆBˆAˆDˆUˆAˆCoˆUoˆYˆCˆ@ˆBˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆCoˆUoˆYˆFˆ@ˆBˆAˆ
@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆCoˆUoˆYˆIˆ@ˆBˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆCoˆ
UoˆYˆPˆ@ˆBˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆCoˆUoˆY2ˆ@ˆBˆAˆ@0ˆTˆFˆO+ˆFˆAˆB
ˆAˆDˆUˆAˆCoˆUoˆYaˆ@ˆBˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆCoˆUoˆYbˆ@ˆBˆAˆ@0ˆT
ˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆCoˆUoˆYdˆ@ˆBˆAˆ@
- -
149.153.100.65 -> 149.153.100.10 (id: 44742, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 55, UDP Checksum: 35111
UDP Data:

0-ˆBˆAˆAˆDˆFpublic¥ ˆBˆAUˆBˆAˆ@ˆBˆA
0ˆU0ˆSˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆCoˆUoˆYdˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61011, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 266, UDP Checksum: 55129
UDP Data:

0oÿˆBˆAˆAˆDˆFpublic¢oñˆBˆAUˆBˆAˆ@ˆBˆAˆ@0oå0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆCo
ˆUoˆYgˆ@ˆBˆAˆ@0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆCoˆUoˆYoˆ@ˆ@ˆBˆAˆ@0ˆUˆFˆP+ˆFˆA
ˆBˆAˆDˆUˆAˆCoˆUoˆYoFˆ@ˆBˆAˆA0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆCoˆUoˆYoHˆ@ˆBˆAˆ
B0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆCoˆUoˆYoIˆ@ˆBˆAˆA0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆCoˆ
UoˆYoIˆBˆBˆAˆA0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆCoˆUoˆYoLˆ@ˆBˆAˆB0ˆUˆFˆP+ˆFˆAˆ
BˆAˆDˆUˆAˆCoˆUoˆYoMˆ@ˆBˆAˆA0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆCoˆUoˆYoMˆBˆBˆAˆA
0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆCoˆUoˆYoTˆ@ˆBˆAˆA
- -
149.153.100.65 -> 149.153.100.10 (id: 44743, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 56, UDP Checksum: 12040
UDP Data:

0.ˆBˆAˆAˆDˆFpublic¥!ˆBˆAVˆBˆAˆ@ˆBˆA
0ˆV0ˆTˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆCoˆUoˆYoTˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61012, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 255, UDP Checksum: 62150
UDP Data:

Appendix D 353

0oÿˆBˆAˆAˆDˆFpublic¢oñˆBˆAUˆBˆAˆ@ˆBˆAˆ@0oå0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆCo
ˆUoˆYoXˆ@ˆBˆAˆ@0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆCoˆUoˆYo)ˆ@ˆBˆAˆ@0ˆRˆF+ˆFˆAˆB
ˆAˆDˆUˆAˆDˆ@ˆ@ˆ@ˆ@ˆBˆAÿ0ˆRˆF+ˆFˆAˆBˆAˆDˆUˆAˆDˆ¿ˆ@ˆ@ˆ@ˆBˆAÿ0ˆTˆFˆO+ˆ
FˆAˆBˆAˆDˆUˆAˆDoˆUoˆYˆAˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆDoˆUoˆYˆBˆ@ˆBˆ
Aÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆDoˆUoˆYˆCˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆDoˆ
UoˆYˆFˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆDoˆUoˆYˆIˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆ
AˆDˆUˆAˆDoˆUoˆYˆPˆ@ˆBˆAÿ
- -
149.153.100.65 -> 149.153.100.10 (id: 44744, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 55, UDP Checksum: 34937
UDP Data:

0-ˆBˆAˆAˆDˆFpublic¥ ˆBˆAWˆBˆAˆ@ˆBˆA
0ˆU0ˆSˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆDoˆUoˆYˆPˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61013, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 262, UDP Checksum: 7957
UDP Data:

0oûˆBˆAˆAˆDˆFpublic¢oíˆBˆAWˆBˆAˆ@ˆBˆAˆ@0oá0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆDo
ˆUoˆY2ˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆDoˆUoˆYaˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆA
ˆDˆUˆAˆDoˆUoˆYbˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆDoˆUoˆYdˆ@ˆBˆAÿ0ˆTˆFˆO
+ˆFˆAˆBˆAˆDˆUˆAˆDoˆUoˆYgˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆDoˆUoˆYoˆ@ˆ@ˆ
BˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆDoˆUoˆYoFˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆD
oˆUoˆYoHˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆDoˆUoˆYoIˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆ
BˆAˆDˆUˆAˆDoˆUoˆYoIˆBˆBˆAÿ
- -
149.153.100.65 -> 149.153.100.10 (id: 44745, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 56, UDP Checksum: 14596
UDP Data:

0.ˆBˆAˆAˆDˆFpublic¥!ˆBˆAXˆBˆAˆ@ˆBˆA
0ˆV0ˆTˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆDoˆUoˆYoIˆBˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61014, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 259, UDP Checksum: 27146
UDP Data:

0oøˆBˆAˆAˆDˆFpublic¢oêˆBˆAXˆBˆAˆ@ˆBˆAˆ@0oÞ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆDo
ˆUoˆYoLˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆDoˆUoˆYoMˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆB
ˆAˆDˆUˆAˆDoˆUoˆYoMˆBˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆDoˆUoˆYoTˆ@ˆBˆAÿ0ˆU
ˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆDoˆUoˆYoXˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆDoˆUoˆYo
)ˆ@ˆBˆAÿ0ˆRˆF+ˆFˆAˆBˆAˆDˆUˆAˆEˆ@ˆ@ˆ@ˆ@ˆBˆAÿ0ˆRˆF+ˆFˆAˆBˆAˆDˆUˆAˆEˆ¿
ˆ@ˆ@ˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆEoˆUoˆYˆAˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆ
DˆUˆAˆEoˆUoˆYˆBˆ@ˆBˆAÿ
- -
149.153.100.65 -> 149.153.100.10 (id: 44746, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 55, UDP Checksum: 34693
UDP Data:

0-ˆBˆAˆAˆDˆFpublic¥ ˆBˆAYˆBˆAˆ@ˆBˆA
0ˆU0ˆSˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆEoˆUoˆYˆBˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61015, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 258, UDP Checksum: 38070
UDP Data:

354 Appendix D

0o÷ˆBˆAˆAˆDˆFpublic¢oéˆBˆAYˆBˆAˆ@ˆBˆAˆ@0oÝ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆEo
ˆUoˆYˆCˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆEoˆUoˆYˆFˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆB
ˆAˆDˆUˆAˆEoˆUoˆYˆIˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆEoˆUoˆYˆPˆ@ˆBˆAÿ0ˆT
ˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆEoˆUoˆY2ˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆEoˆUoˆYaˆ
@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆEoˆUoˆYbˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆ
EoˆUoˆYdˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆEoˆUoˆYgˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆB
ˆAˆDˆUˆAˆEoˆUoˆYoˆ@ˆ@ˆBˆAÿ
- -
149.153.100.65 -> 149.153.100.10 (id: 44747, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 56, UDP Checksum: 33028
UDP Data:

0.ˆBˆAˆAˆDˆFpublic¥!ˆBˆAZˆBˆAˆ@ˆBˆA
0ˆV0ˆTˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆEoˆUoˆYoˆ@ˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61016, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 268, UDP Checksum: 41860
UDP Data:

0oˆAˆ@ˆBˆAˆAˆDˆFpublic¢oòˆBˆAZˆBˆAˆ@ˆBˆAˆ@0oæ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆA
ˆEoˆUoˆYoFˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆEoˆUoˆYoHˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆ
AˆBˆAˆDˆUˆAˆEoˆUoˆYoIˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆEoˆUoˆYoIˆBˆBˆAÿ
0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆEoˆUoˆYoLˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆEoˆUo
ˆYoMˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆEoˆUoˆYoMˆBˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆ
DˆUˆAˆEoˆUoˆYoTˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆEoˆUoˆYoXˆ@ˆBˆAÿ0ˆUˆFˆ
P+ˆFˆAˆBˆAˆDˆUˆAˆEoˆUoˆYo)ˆ@ˆBˆAÿ
- -
149.153.100.65 -> 149.153.100.10 (id: 44748, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 56, UDP Checksum: 1027
UDP Data:

0.ˆBˆAˆAˆDˆFpublic¥!ˆBˆA[ˆBˆAˆ@ˆBˆA
0ˆV0ˆTˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆEoˆUoˆYo)ˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61017, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 253, UDP Checksum: 57106
UDP Data:

0oòˆBˆAˆAˆDˆFpublic¢oäˆBˆA[ˆBˆAˆ@ˆBˆAˆ@0oØ0ˆRˆF+ˆFˆAˆBˆAˆDˆUˆAˆFˆ@ˆ@
ˆ@ˆ@ˆBˆAÿ0ˆRˆF+ˆFˆAˆBˆAˆDˆUˆAˆFˆ¿ˆ@ˆ@ˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆF
oˆUoˆYˆAˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆFoˆUoˆYˆBˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆB
ˆAˆDˆUˆAˆFoˆUoˆYˆCˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆFoˆUoˆYˆFˆ@ˆBˆAÿ0ˆTˆ
FˆO+ˆFˆAˆBˆAˆDˆUˆAˆFoˆUoˆYˆIˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆFoˆUoˆYˆPˆ
@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆFoˆUoˆY2ˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆF
oˆUoˆYaˆ@ˆBˆAÿ
- -
149.153.100.65 -> 149.153.100.10 (id: 44749, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 55, UDP Checksum: 34339
UDP Data:

0-ˆBˆAˆAˆDˆFpublic¥ ˆBˆA\ˆBˆAˆ@ˆBˆA
0ˆU0ˆSˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆFoˆUoˆYaˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61018, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 264, UDP Checksum: 23719
UDP Data:

Appendix D 355

0oýˆBˆAˆAˆDˆFpublic¢oïˆBˆA\ˆBˆAˆ@ˆBˆAˆ@0oã0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆFo
ˆUoˆYbˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆFoˆUoˆYdˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆA
ˆDˆUˆAˆFoˆUoˆYgˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆFoˆUoˆYoˆ@ˆ@ˆBˆAÿ0ˆUˆF
ˆP+ˆFˆAˆBˆAˆDˆUˆAˆFoˆUoˆYoFˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆFoˆUoˆYoHˆ
@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆFoˆUoˆYoIˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆA
ˆFoˆUoˆYoIˆBˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆFoˆUoˆYoLˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆ
AˆBˆAˆDˆUˆAˆFoˆUoˆYoMˆ@ˆBˆAÿ
- -
149.153.100.65 -> 149.153.100.10 (id: 44750, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 56, UDP Checksum: 13057
UDP Data:

0.ˆBˆAˆAˆDˆFpublic¥!ˆBˆA]ˆBˆAˆ@ˆBˆA
0ˆV0ˆTˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆFoˆUoˆYoMˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61019, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 276, UDP Checksum: 25888
UDP Data:

0oˆAˆHˆBˆAˆAˆDˆFpublic¢oúˆBˆA]ˆBˆAˆ@ˆBˆAˆ@0oî0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆA
ˆFoˆUoˆYoMˆBˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆFoˆUoˆYoTˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆ
AˆBˆAˆDˆUˆAˆFoˆUoˆYoXˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆFoˆUoˆYo)ˆ@ˆBˆAÿ
0ˆUˆF+ˆFˆAˆBˆAˆDˆUˆAˆGˆ@ˆ@ˆ@ˆ@@ˆDooˆAˆB0ˆUˆF+ˆFˆAˆBˆAˆDˆUˆAˆGˆ¿ˆ@ˆ@
ˆ@@ˆDˆ¿ˆ@ˆ@ˆL0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆGoˆUoˆYˆAˆ@@ˆDooˆAý0ˆWˆFˆO+ˆFˆA
ˆBˆAˆDˆUˆAˆGoˆUoˆYˆBˆ@@ˆDooˆBý0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆGoˆUoˆYˆCˆ@@ˆD
ooˆCý0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆGoˆUoˆYˆFˆ@@ˆDooˆFý
- -
149.153.100.65 -> 149.153.100.10 (id: 44751, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 55, UDP Checksum: 34172
UDP Data:

0.ˆBˆAˆAˆDˆFpublic¥!ˆBˆA]ˆBˆAˆ@ˆBˆA
0ˆU0ˆSˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆGoˆUoˆYˆFˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61020, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 292, UDP Checksum: 11313
UDP Data:

ˆAˆGoˆUoˆYˆIˆ@@ˆDooˆIý0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆGoˆUoˆYˆPˆ@@ˆDooˆ_ý0ˆWˆ
FˆO+ˆFˆAˆBˆAˆDˆUˆAˆGoˆUoˆY2ˆ@@ˆDoo2ý0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆGoˆUoˆYaˆ
@@ˆDoodý0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆGoˆUoˆYbˆ@@ˆDoodˆL0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆ
UˆAˆGoˆUoˆYdˆ@@ˆDoodý0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆGoˆUoˆYgˆ@@ˆDoogý0ˆXˆFˆP
+ˆFˆAˆBˆAˆDˆUˆAˆGoˆUoˆYoˆ@ˆ@@ˆDoodý0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆGoˆUoˆYoFˆ
@@ˆDooˆBd0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆGoˆUoˆYoHˆ@@ˆDooˆBd
- -
149.153.100.65 -> 149.153.100.10 (id: 44752, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 56, UDP Checksum: 14079
UDP Data:

0.ˆBˆAˆAˆDˆFpublic¥!ˆBˆA_ˆBˆAˆ@ˆBˆA
0ˆV0ˆTˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆGoˆUoˆYoHˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61021, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 287, UDP Checksum: 11891
UDP Data:

356 Appendix D

0oˆAˆSˆBˆAˆAˆDˆFpublic¢oˆAˆDˆBˆA_ˆBˆAˆ@ˆBˆAˆ@0oø0ˆXˆFˆP+ˆFˆAˆBˆAˆD
ˆUˆAˆGoˆUoˆYoIˆ@@ˆDooˆBd0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆGoˆUoˆYoIˆB@ˆDooˆBd
0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆGoˆUoˆYoLˆ@@ˆDooˆBd0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆG
oˆUoˆYoMˆ@@ˆDooˆBd0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆGoˆUoˆYoMˆB@ˆDooˆBd0ˆXˆFˆ
P+ˆFˆAˆBˆAˆDˆUˆAˆGoˆUoˆYoTˆ@@ˆDooˆBˆV0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆGoˆUoˆ
YoXˆ@@ˆDooØý0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆGoˆUoˆYo)ˆ@@ˆDooýý0ˆRˆF+ˆFˆAˆBˆ
AˆDˆUˆAˆHˆ@ˆ@ˆ@ˆ@ˆBˆAˆD0ˆRˆF+ˆFˆAˆBˆAˆDˆUˆAˆHˆ¿ˆ@ˆ@ˆ@ˆBˆAˆC
- -
149.153.100.65 -> 149.153.100.10 (id: 44753, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 53, UDP Checksum: 46351
UDP Data:

0.ˆBˆAˆAˆDˆFpublic¥!ˆBˆA_ˆBˆAˆ@ˆBˆA
0ˆS0ˆQˆF+ˆFˆAˆBˆAˆDˆUˆAˆHˆ¿ˆ@ˆ@ˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61022, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 257, UDP Checksum: 22173
UDP Data:

0oöˆBˆAˆAˆDˆFpublic¢oèˆBˆA‘ˆBˆAˆ@ˆBˆAˆ@0oÜ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆHo
ˆUoˆYˆAˆ@ˆBˆAˆC0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆHoˆUoˆYˆBˆ@ˆBˆAˆC0ˆTˆFˆO+ˆFˆA
ˆBˆAˆDˆUˆAˆHoˆUoˆYˆCˆ@ˆBˆAˆC0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆHoˆUoˆYˆFˆ@ˆBˆAˆ
C0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆHoˆUoˆYˆIˆ@ˆBˆAˆC0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆHoˆ
UoˆYˆPˆ@ˆBˆAˆC0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆHoˆUoˆY2ˆ@ˆBˆAˆC0ˆTˆFˆO+ˆFˆAˆB
ˆAˆDˆUˆAˆHoˆUoˆYaˆ@ˆBˆAˆC0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆHoˆUoˆYbˆ@ˆBˆAˆD0ˆT
ˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆHoˆUoˆYdˆ@ˆBˆAˆC
- -
149.153.100.65 -> 149.153.100.10 (id: 44754, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 55, UDP Checksum: 33819
UDP Data:

0-ˆBˆAˆAˆDˆFpublic¥ ˆBˆAaˆBˆAˆ@ˆBˆA
0ˆU0ˆSˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆHoˆUoˆYdˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61023, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 266, UDP Checksum: 46369
UDP Data:

0oÿˆBˆAˆAˆDˆFpublic¢oñˆBˆAaˆBˆAˆ@ˆBˆAˆ@0oå0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆHo
ˆUoˆYgˆ@ˆBˆAˆC0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆHoˆUoˆYoˆ@ˆ@ˆBˆAˆC0ˆUˆFˆP+ˆFˆA
ˆBˆAˆDˆUˆAˆHoˆUoˆYoFˆ@ˆBˆAˆD0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆHoˆUoˆYoHˆ@ˆBˆAˆ
D0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆHoˆUoˆYoIˆ@ˆBˆAˆD0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆHoˆ
UoˆYoIˆBˆBˆAˆD0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆHoˆUoˆYoLˆ@ˆBˆAˆD0ˆUˆFˆP+ˆFˆAˆ
BˆAˆDˆUˆAˆHoˆUoˆYoMˆ@ˆBˆAˆD0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆHoˆUoˆYoMˆBˆBˆAˆD
0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆHoˆUoˆYoTˆ@ˆBˆAˆD
- -
149.153.100.65 -> 149.153.100.10 (id: 44755, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 56, UDP Checksum: 10748
UDP Data:

0.ˆBˆAˆAˆDˆFpublic¥!ˆBˆAbˆBˆAˆ@ˆBˆA
0ˆV0ˆTˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆHoˆUoˆYoTˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61024, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 255, UDP Checksum: 53906
UDP Data:

Appendix D 357

0oôˆBˆAˆAˆDˆFpublic¢oæˆBˆAbˆBˆAˆ@ˆBˆAˆ@0oÚ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆHo
ˆUoˆYoXˆ@ˆBˆAˆC0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆHoˆUoˆYo)ˆ@ˆBˆAˆC0ˆRˆF+ˆFˆAˆB
ˆAˆDˆUˆAˆIˆ@ˆ@ˆ@ˆ@ˆBˆAˆB0ˆRˆF+ˆFˆAˆBˆAˆDˆUˆAˆIˆ¿ˆ@ˆ@ˆ@ˆBˆAˆB0ˆTˆFˆO
+ˆFˆAˆBˆAˆDˆUˆAˆIoˆUoˆYˆAˆ@ˆBˆAˆB0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆIoˆUoˆYˆBˆ@
ˆBˆAˆB0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆIoˆUoˆYˆCˆ@ˆBˆAˆB0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆ
AˆIoˆUoˆYˆFˆ@ˆBˆAˆB0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆIoˆUoˆYˆIˆ@ˆBˆAˆB0ˆTˆFˆO+
ˆFˆAˆBˆAˆDˆUˆAˆIoˆUoˆYˆPˆ@ˆBˆAˆB
- -
149.153.100.65 -> 149.153.100.10 (id: 44756, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 55, UDP Checksum: 33645
UDP Data:

0-ˆBˆAˆAˆDˆFpublic¥ ˆBˆAcˆBˆAˆ@ˆBˆA
0ˆU0ˆSˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆIoˆUoˆYˆPˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61025, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 262, UDP Checksum: 63186
UDP Data:

0oûˆBˆAˆAˆDˆFpublic¢oíˆBˆAcˆBˆAˆ@ˆBˆAˆ@0oá0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆIo
ˆUoˆY2ˆ@ˆBˆAˆB0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆIoˆUoˆYaˆ@ˆBˆAˆB0ˆTˆFˆO+ˆFˆAˆB
ˆAˆDˆUˆAˆIoˆUoˆYbˆ@ˆBˆAˆB0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆIoˆUoˆYdˆ@ˆBˆAˆB0ˆT
ˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆIoˆUoˆYgˆ@ˆBˆAˆB0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆIoˆUoˆYo
ˆ@ˆ@ˆBˆAˆB0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆIoˆUoˆYoFˆ@ˆBˆAˆH0ˆUˆFˆP+ˆFˆAˆBˆAˆ
DˆUˆAˆIoˆUoˆYoHˆ@ˆBˆAˆH0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆIoˆUoˆYoIˆ@ˆBˆAˆH0ˆUˆ
FˆP+ˆFˆAˆBˆAˆDˆUˆAˆIoˆUoˆYoIˆBˆBˆAˆH
- -
149.153.100.65 -> 149.153.100.10 (id: 44757, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 56, UDP Checksum: 13304
UDP Data:

0.ˆBˆAˆAˆDˆFpublic¥!ˆBˆAdˆBˆAˆ@ˆBˆA
0ˆV0ˆTˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆIoˆUoˆYoIˆBˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61026, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 259, UDP Checksum: 16845
UDP Data:

0oøˆBˆAˆAˆDˆFpublic¢oêˆBˆAdˆBˆAˆ@ˆBˆAˆ@0oÞ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆIo
ˆUoˆYoLˆ@ˆBˆAˆH0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆIoˆUoˆYoMˆ@ˆBˆAˆH0ˆUˆFˆP+ˆFˆA
ˆBˆAˆDˆUˆAˆIoˆUoˆYoMˆBˆBˆAˆH0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆIoˆUoˆYoTˆ@ˆBˆAˆ
H0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆIoˆUoˆYoXˆ@ˆBˆAˆB0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆIoˆ
UoˆYo)ˆ@ˆBˆAˆB0ˆRˆF+ˆFˆAˆBˆAˆDˆUˆA
ˆ@ˆ@ˆ@ˆ@ˆBˆAˆC0ˆRˆF+ˆFˆAˆBˆAˆDˆUˆA
ˆ¿ˆ@ˆ@ˆ@ˆBˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYˆAˆ@ˆBˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYˆBˆ@ˆBˆAˆ@
- -
149.153.100.65 -> 149.153.100.10 (id: 44758, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 55, UDP Checksum: 33401
UDP Data:

0-ˆBˆAˆAˆDˆFpublic¥ ˆBˆAeˆBˆAˆ@ˆBˆA
0ˆU0ˆSˆFˆO+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYˆBˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61027, ttl: 255)

358 Appendix D

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 258, UDP Checksum: 35200
UDP Data:

0o÷ˆBˆAˆAˆDˆFpublic¢oéˆBˆAeˆBˆAˆ@ˆBˆAˆ@0oÝ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYˆCˆ@ˆBˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYˆFˆ@ˆBˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYˆIˆ@ˆBˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYˆPˆ@ˆBˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆY2ˆ@ˆBˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYaˆ@ˆBˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYbˆ@ˆBˆAˆC0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYdˆ@ˆBˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYgˆ@ˆBˆAˆ@0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYoˆ@ˆ@ˆBˆAˆ@
- -
149.153.100.65 -> 149.153.100.10 (id: 44759, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 56, UDP Checksum: 31736
UDP Data:

0.ˆBˆAˆAˆDˆFpublic¥!ˆBˆAfˆBˆAˆ@ˆBˆA
0ˆV0ˆTˆFˆP+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYoˆ@ˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61028, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 268, UDP Checksum: 28244
UDP Data:

0oˆAˆ@ˆBˆAˆAˆDˆFpublic¢oòˆBˆAfˆBˆAˆ@ˆBˆAˆ@0oæ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYoFˆ@ˆBˆAˆD0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYoHˆ@ˆBˆAˆD0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYoIˆ@ˆBˆAˆD0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYoIˆBˆBˆAˆD0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYoLˆ@ˆBˆAˆD0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYoMˆ@ˆBˆAˆD0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYoMˆBˆBˆAˆD0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYoTˆ@ˆBˆAˆK0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYoXˆ@ˆBˆAˆ@0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYo)ˆ@ˆBˆAˆ@
- -
149.153.100.65 -> 149.153.100.10 (id: 44760, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 56, UDP Checksum: 65270
UDP Data:

0.ˆBˆAˆAˆDˆFpublic¥!ˆBˆAgˆBˆAˆ@ˆBˆA
0ˆV0ˆTˆFˆP+ˆFˆAˆBˆAˆDˆUˆA
oˆUoˆYo)ˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61029, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 285, UDP Checksum: 60812
UDP Data:

0oˆAˆQˆBˆAˆAˆDˆFpublic¢oˆAˆBˆBˆAgˆBˆAˆ@ˆBˆAˆ@0oö0ˆUˆF+ˆFˆAˆBˆAˆDˆUˆ
AˆKˆ@ˆ@ˆ@ˆ@@ˆDˆ@ˆ@ˆ@ˆ@0ˆUˆF+ˆFˆAˆBˆAˆDˆUˆAˆKˆ¿ˆ@ˆ@ˆ@@ˆDÿˆ@ˆ@ˆ@0ˆWˆF
ˆO+ˆFˆAˆBˆAˆDˆUˆAˆKoˆUoˆYˆAˆ@@ˆDÿÿÿˆ@0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆKoˆUoˆY
ˆBˆ@@ˆDÿÿÿˆ@0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆKoˆUoˆYˆCˆ@@ˆDÿÿÿˆ@0ˆWˆFˆO+ˆFˆAˆ
BˆAˆDˆUˆAˆKoˆUoˆYˆFˆ@@ˆDÿÿÿˆ@0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆKoˆUoˆYˆIˆ@@ˆDÿ
ÿÿˆ@0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆKoˆUoˆYˆPˆ@@ˆDÿÿðˆ@0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆ
AˆKoˆUoˆY2ˆ@@ˆDÿÿÿˆ@0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆKoˆUoˆYaˆ@@ˆDÿÿÿˆ@
- -
149.153.100.65 -> 149.153.100.10 (id: 44761, ttl: 64)

Appendix D 359

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 55, UDP Checksum: 33047
UDP Data:

0-ˆBˆAˆAˆDˆFpublic¥ ˆBˆAhˆBˆAˆ@ˆBˆA
0ˆU0ˆSˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆKoˆUoˆYaˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61030, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 297, UDP Checksum: 16981
UDP Data:

0oˆAˆ]ˆBˆAˆAˆDˆFpublic¢oˆAˆNˆBˆAhˆBˆAˆ@ˆBˆAˆ@0oˆAˆA0ˆWˆFˆO+ˆFˆAˆBˆA
ˆDˆUˆAˆKoˆUoˆYbˆ@@ˆDÿÿÿˆ@0ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆKoˆUoˆYdˆ@@ˆDÿÿÿˆ@0
ˆWˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆKoˆUoˆYgˆ@@ˆDÿÿÿˆ@0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆKoˆU
oˆYoˆ@ˆ@@ˆDÿÿàˆ@0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆKoˆUoˆYoFˆ@@ˆDÿÿÿˆ@0ˆXˆFˆP+ˆ
FˆAˆBˆAˆDˆUˆAˆKoˆUoˆYoHˆ@@ˆDÿÿÿˆ@0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆKoˆUoˆYoIˆ@
@ˆDÿÿÿˆ@0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆKoˆUoˆYoIˆB@ˆDÿÿÿÿ0ˆXˆFˆP+ˆFˆAˆBˆAˆD
ˆUˆAˆKoˆUoˆYoLˆ@@ˆDÿÿÿˆ@0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆKoˆUoˆYoMˆ@@ˆDÿÿÿˆ@
- -
149.153.100.65 -> 149.153.100.10 (id: 44762, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 56, UDP Checksum: 11765
UDP Data:

0.ˆBˆAˆAˆDˆFpublic¥!ˆBˆAiˆBˆAˆ@ˆBˆA
0ˆV0ˆTˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆKoˆUoˆYoMˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61031, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 270, UDP Checksum: 62328
UDP Data:

0oˆAˆBˆBˆAˆAˆDˆFpublic¢oôˆBˆAiˆBˆAˆ@ˆBˆAˆ@0oè0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆA
ˆKoˆUoˆYoMˆB@ˆDÿÿÿÿ0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆKoˆUoˆYoTˆ@@ˆDÿÿÿˆ@0ˆXˆFˆ
P+ˆFˆAˆBˆAˆDˆUˆAˆKoˆUoˆYoXˆ@@ˆDÿÿÿˆ@0ˆXˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆKoˆUoˆYo
)ˆ@@ˆDÿÿÿˆ@0ˆRˆF+ˆFˆAˆBˆAˆDˆUˆAˆLˆ@ˆ@ˆ@ˆ@ˆBˆAÿ0ˆRˆF+ˆFˆAˆBˆAˆDˆUˆAˆ
Lˆ¿ˆ@ˆ@ˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆLoˆUoˆYˆAˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆB
ˆAˆDˆUˆAˆLoˆUoˆYˆBˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆLoˆUoˆYˆCˆ@ˆBˆAÿ0ˆT
ˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆLoˆUoˆYˆFˆ@ˆBˆAÿ
- -
149.153.100.65 -> 149.153.100.10 (id: 44763, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 55, UDP Checksum: 32880
UDP Data:

0-ˆBˆAˆAˆDˆFpublic¥ ˆBˆAjˆBˆAˆ@ˆBˆA
0ˆU0ˆSˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆLoˆUoˆYˆFˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61032, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 260, UDP Checksum: 19473
UDP Data:

0oùˆBˆAˆAˆDˆFpublic¢oëˆBˆAjˆBˆAˆ@ˆBˆAˆ@0oß0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆLo
ˆUoˆYˆIˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆLoˆUoˆYˆPˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆB
ˆAˆDˆUˆAˆLoˆUoˆY2ˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆLoˆUoˆYaˆ@ˆBˆAÿ0ˆTˆF
ˆO+ˆFˆAˆBˆAˆDˆUˆAˆLoˆUoˆYbˆ@ˆBˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆLoˆUoˆYdˆ@ˆ
BˆAÿ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAˆLoˆUoˆYgˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆLo
ˆUoˆYoˆ@ˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆLoˆUoˆYoFˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆ
BˆAˆDˆUˆAˆLoˆUoˆYoHˆ@ˆBˆAÿ
- -
149.153.100.65 -> 149.153.100.10 (id: 44764, ttl: 64)

360 Appendix D

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 56, UDP Checksum: 12787
UDP Data:

0.ˆBˆAˆAˆDˆFpublic¥!ˆBˆAkˆBˆAˆ@ˆBˆA
0ˆV0ˆTˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆLoˆUoˆYoHˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61033, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 261, UDP Checksum: 63089
UDP Data:

0oúˆBˆAˆAˆDˆFpublic¢oìˆBˆAkˆBˆAˆ@ˆBˆAˆ@0oà0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆLoi
ˆUoˆYoIˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆLoˆUoˆYoIˆBˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆ
AˆDˆUˆAˆLoˆUoˆYoLˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆLoˆUoˆYoMˆ@ˆBˆAÿ0ˆUˆF
ˆP+ˆFˆAˆBˆAˆDˆUˆAˆLoˆUoˆYoMˆBˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆLoˆUoˆYoTˆ@
ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆLoˆUoˆYoXˆ@ˆBˆAÿ0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAˆL
oˆUoˆYo)ˆ@ˆBˆAÿ0ˆRˆF+ˆFˆAˆBˆAˆDˆUˆAˆ@ˆ@ˆ@ˆ@ˆFˆAˆ@0ˆRˆF+ˆFˆAˆBˆAˆDˆUˆ
Aˆ¿ˆ@ˆ@ˆ@ˆFˆAˆ@
- -
149.153.100.65 -> 149.153.100.10 (id: 44765, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 53, UDP Checksum: 45059
UDP Data:

0.ˆBˆAˆAˆDˆFpublic¥!ˆBˆAkˆBˆAˆ@ˆBˆA
0ˆS0ˆQˆF+ˆFˆAˆBˆAˆDˆUˆAˆ¿ˆ@ˆ@ˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61034, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 257, UDP Checksum: 19807
UDP Data:

0oöˆBˆAˆAˆDˆFpublic¢oèˆBˆAlˆBˆAˆ@ˆBˆAˆ@0oÜ0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAoˆU
oˆYˆAˆ@ˆFˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAoˆUoˆYˆBˆ@ˆFˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆA
ˆDˆUˆAoˆUoˆYˆCˆ@ˆFˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAoˆUoˆYˆFˆ@ˆFˆAˆ@0ˆTˆFˆO
+ˆFˆAˆBˆAˆDˆUˆAoˆUoˆYˆIˆ@ˆFˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAoˆUoˆYˆPˆ@ˆFˆA
ˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAoˆUoˆY2ˆ@ˆFˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAoˆUoˆY
aˆ@ˆFˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAoˆUoˆYbˆ@ˆFˆAˆ@0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆ
AoˆUoˆYdˆ@ˆFˆAˆ@
- -
149.153.100.65 -> 149.153.100.10 (id: 44766, ttl: 64)

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 55, UDP Checksum: 32527
UDP Data:

0-ˆBˆAˆAˆDˆFpublic¥ ˆBˆAmˆBˆAˆ@ˆBˆA
0ˆU0ˆSˆFˆO+ˆFˆAˆBˆAˆDˆUˆAoˆUoˆYdˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61035, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 266, UDP Checksum: 40950
UDP Data:

0oÿˆBˆAˆAˆDˆFpublic¢oñˆBˆAmˆBˆAˆ@ˆBˆAˆ@0oå0ˆTˆFˆO+ˆFˆAˆBˆAˆDˆUˆAoˆUo
ˆYgˆ@ˆFˆAˆ@0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAoˆUoˆYoˆ@ˆ@ˆFˆAˆ@0ˆUˆFˆP+ˆFˆAˆBˆAˆD
ˆUˆAoˆUoˆYoFˆ@ˆFˆAˆ@0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAoˆUoˆYoHˆ@ˆFˆAˆ@0ˆUˆFˆP+ˆF
ˆAˆBˆAˆDˆUˆAoˆUoˆYoIˆ@ˆFˆAˆ@0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAoˆUoˆYoIˆBˆFˆAˆ@0ˆ
UˆFˆP+ˆFˆAˆBˆAˆDˆUˆAoˆUoˆYoLˆ@ˆFˆAˆ@0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAoˆUoˆYoMˆ@
ˆFˆAˆ@0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAoˆUoˆYoMˆBˆFˆAˆ@0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAoˆ
UoˆYoTˆ@ˆFˆAˆ@
- -
149.153.100.65 -> 149.153.100.10 (id: 44767, ttl: 64)

Appendix D 361

UDP Source: 1042 -> UDP Destination: 161
UDP Length: 56, UDP Checksum: 9456
UDP Data:

0.ˆBˆAˆAˆDˆFpublic¥!ˆBˆAnˆBˆAˆ@ˆBˆA
0ˆV0ˆTˆFˆP+ˆFˆAˆBˆAˆDˆUˆAoˆUoˆYoTˆ@ˆEˆ@
- -
149.153.100.10 -> 149.153.100.65 (id: 61036, ttl: 255)

UDP Source: 161 -> UDP Destination: 1042
UDP Length: 261, UDP Checksum: 7176
UDP Data:

0oúˆBˆAˆAˆDˆFpublic¢oìˆBˆAnˆBˆAˆ@ˆBˆAˆ@0oà0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAoˆUo
ˆYoXˆ@ˆFˆAˆ@0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆUˆAoˆUoˆYo)ˆ@ˆFˆAˆ@0ˆSˆFˆN+ˆFˆAˆBˆAˆD
ˆVˆAˆAˆAˆ¿ˆ@ˆ@ˆKˆBˆAˆA0ˆSˆFˆN+ˆFˆAˆBˆAˆDˆVˆAˆAˆAˆ¿ˆ@ˆ@ˆLˆBˆAˆA0ˆSˆFˆ
N+ˆFˆAˆBˆAˆDˆVˆAˆAˆAˆ¿ˆ@ˆ@ˆUˆBˆAˆA0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆVˆAˆAˆCoˆUoˆYˆB
ˆBˆAˆC0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆVˆAˆAˆCoˆUoˆYˆBˆKˆBˆAˆC0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆV
ˆAˆAˆCoˆUoˆYˆBˆLˆBˆAˆC0ˆUˆFˆP+ˆFˆAˆBˆAˆDˆVˆAˆAˆCoˆUoˆYˆBˆBˆAˆC0ˆUˆFˆ
P+ˆFˆAˆBˆAˆDˆVˆAˆAˆCoˆUoˆYˆBˆVˆBˆAˆC
- -
149.153.100.65 -> 149.153.1.5 (id: 44769, ttl: 64)

- -
149.153.1.5 -> 149.153.100.65 (id: 0, ttl: 63)

- -
68 datagrams/segments processed.

Fri Aug 3 15:57:31 2001 - netdebug END run.

Appendix E

The OIDs.pm
Module

The code which follows is the contents of the OIDs.pm module created in support
of the SNMP programs developed during Chapter 5, Management :

package OIDs;

Module for a large (but not complete) collection of MIB-II OID
constants as defined in RFC 1156 (MIB-I), RFC 1213, RFC 1354
and RFC 1907.

use 5.6.0;

require Exporter;

our @ISA = qw(Exporter);

Nothing exported by default.
our @EXPORT = qw();

Individual OID’s exported by request.
our @EXPORT_OK =

qw(

sysDescr sysObjectID sysUpTime sysContact sysName
sysLocation sysServices

sysORLastChange sysORTable

ifNumber ifTable ifEntry ifIndex ifDescr ifType
ifMtu ifSpeed ifPhysAddress ifAdminStatus ifOperStatus
ifLastChange ifInOctets ifInUcastPkts ifInNUcastPkts
ifInDiscards ifInErrors ifInUnknownProtos ifOutOctets
ifOutUcastPkts ifOutNUcastPkts ifOutDiscards ifOutErrors
ifOutQLen ifSpecific

364 Appendix E

atTable atEntry atIfIndex atPhysAddress atNetAddress

ipForwarding ipDefaultTTL ipInReceives ipInHdrErrors
ipInAddrErrors ipForwDatagrams ipInUnknownProtos
ipInDiscards ipInDelivers ipOutRequests ipOutOutDiscards
ipOutNoRoutes ipReasmTimeOut ipReasmReqds ipReasmOKs
ipReasmFails ipFragOKs ipFragFails ipFragCreates
ipAddrTable ipRouteTable ipNetToMediaTable
ipRoutingDiscards ipForward

ipForward ipForwardNumber ipForwardTable ipForwardEntry

ipRouteEntry ipRouteDest ipRouteIfIndex ipRouteMetric1
ipRouteMetric2 ipRouteMetric3 ipRouteMetric4 ipRouteNextHop
ipRouteType ipRouteProto ipRouteAge ipRouteMask
ipRouteMetric5 ipRouteInfo

icmpInMsgs icmpInErrors icmpInDestUnreachs icmpInTimeExcds
icmpInParmProbs icmpInSrcQuenches icmpInRedirects
icmpInEchos icmpInEchoReps icmpInTimestamps
icmpInTimestampsReps icmpInAddrMasks icmpInAddrMaskReps
icmpOutMsgs icmpOutErrors icmpOutDestUnreachs
icmpOutTimeExcds icmpOutParmProbs icmpOutSrcQuenches
icmpOutRedirects icmpOutEchos icmpOutEchoReps
icmpOutTimestamps icmpOutTimestampReps
icmpOutAddrMasks icmpOutAddrMaskReps

tcpRtoAlgorithm tcpRtoMin tcpRtoMax tcpMaxConn
tcpActiveOpens tcpPassiveOpens tcpAttemptFails
tcpEstabResets tcpCurrEstab tcpInSegs tcpOutSegs
tcpRetransSegs tcpConnTable tcpInErrs tcpOutRsts

udpInDatagrams udpNoPorts udpInErrors udpOutDatagrams
udpTable udpEntry udpLocalAddress udpLocalPort

);

Groups of OID’s exported by request.
our %EXPORT_TAGS =

(
system => [qw(sysDescr sysObjectID sysUpTime sysContact

sysName sysLocation sysServices)],

system2 => [qw(sysDescr sysObjectID sysUpTime sysContact
sysName sysLocation sysServices sysORLastChange
sysORTable)],

interfaces => [qw(ifNumber ifTable ifEntry ifIndex ifDescr
ifType ifMtu ifSpeed ifPhysAddress ifAdminStatus
ifOperStatus ifLastChange ifInOctets ifInUcastPkts
ifInNUcastPkts ifInDiscards ifInErrors ifInUnknownProtos
ifOutOctets ifOutUcastPkts ifOutNUcastPkts
ifOutDiscards ifOutErrors ifOutQLen ifSpecific)],

at => [qw (atTable atEntry atIfIndex atPhysAddress
atNetAddress)],

Appendix E 365

ip => [qw (ipForwarding ipDefaultTTL ipInReceives
ipInHdrErrors ipInAddrErrors ipForwDatagrams
ipInUnknownProtos ipInDiscards ipInDelivers
ipOutRequests ipOutOutDiscards ipOutNoRoutes
ipReasmTimeOut ipReasmReqds ipReasmOKs ipReasmFails
ipFragOKs ipFragFails ipFragCreates ipAddrTable
ipRouteTable ipNetToMediaTable ipRoutingDiscards)],

ipFwd => [qw (ipForward ipForwardNumber ipForwardTable
ipForwardEntry)],

iproutetable => [qw (ipRouteEntry ipRouteDest
ipRouteIfIndex ipRouteMetric1 ipRouteMetric2
ipRouteMetric3 ipRouteMetric4 ipRouteNextHop
ipRouteType ipRouteProto ipRouteAge ipRouteMask
ipRouteMetric5 ipRouteInfo)],

icmp => [qw (icmpInMsgs icmpInErrors icmpInDestUnreachs
icmpInTimeExcds icmpInParmProbs icmpInSrcQuenches
icmpInRedirects icmpInEchos icmpInEchoReps
icmpInTimestamps icmpInTimestampsReps icmpInAddrMasks
icmpInAddrMaskReps icmpOutMsgs icmpOutErrors
icmpOutDestUnreachs icmpOutTimeExcds icmpOutParmProbs
icmpOutSrcQuenches icmpOutRedirects icmpOutEchos
icmpOutEchoReps icmpOutTimestamps icmpOutTimestampReps
icmpOutAddrMasks icmpOutAddrMaskReps)],

tcp => [qw (tcpRtoAlgorithm tcpRtoMin tcpRtoMax tcpMaxConn
tcpActiveOpens tcpPassiveOpens tcpAttemptFails
tcpEstabResets tcpCurrEstab tcpInSegs tcpOutSegs
tcpRetransSegs tcpConnTable tcpInErrs tcpOutRsts)],

udp => [qw (udpInDatagrams udpNoPorts udpInErrors
udpOutDatagrams udpTable
udpEntry udpLocalAddress udpLocalPort)],

);

our $VERSION = 0.01;

All TCP/IP OID’s start with this string.
use constant MIB_II => ’1.3.6.1.2.1.’;

The ’system’ group re: SNMPv1 and RFC 1213.
use constant sysDescr => MIB_II . ’1.1.0’;
use constant sysObjectID => MIB_II . ’1.2.0’;
use constant sysUpTime => MIB_II . ’1.3.0’;
use constant sysContact => MIB_II . ’1.4.0’;
use constant sysName => MIB_II . ’1.5.0’;
use constant sysLocation => MIB_II . ’1.6.0’;
use constant sysServices => MIB_II . ’1.7.0’;
Additions to ’system’ group re: SNMPv2 and RFC 1907.
use constant sysORLastChange => MIB_II . ’1.8.0’;
use constant sysORTable => MIB_II . ’1.9’;

The ’interfaces’ group re: SNMPv1 and RFC 1213.
use constant ifNumber => MIB_II . ’2.1.0’;
use constant ifTable => MIB_II . ’2.2’;

366 Appendix E

use constant ifEntry => MIB_II . ’2.2.1’;
use constant ifIndex => MIB_II . ’2.2.1.1’;
use constant ifDescr => MIB_II . ’2.2.1.2’;
use constant ifType => MIB_II . ’2.2.1.3’;
use constant ifMtu => MIB_II . ’2.2.1.4’;
use constant ifSpeed => MIB_II . ’2.2.1.5’;
use constant ifPhysAddress => MIB_II . ’2.2.1.6’;
use constant ifAdminStatus => MIB_II . ’2.2.1.7’;
use constant ifOperStatus => MIB_II . ’2.2.1.8’;
use constant ifLastChange => MIB_II . ’2.2.1.9’;
use constant ifInOctets => MIB_II . ’2.2.1.10’;
use constant ifInUcastPkts => MIB_II . ’2.2.1.11’;
use constant ifInNUcastPkts => MIB_II . ’2.2.1.12’;
use constant ifInDiscards => MIB_II . ’2.2.1.13’;
use constant ifInErrors => MIB_II . ’2.2.1.14’;
use constant ifInUnknownProtos => MIB_II . ’2.2.1.15’;
use constant ifOutOctets => MIB_II . ’2.2.1.16’;
use constant ifOutUcastPkts => MIB_II . ’2.2.1.17’;
use constant ifOutNUcastPkts => MIB_II . ’2.2.1.18’;
use constant ifOutDiscards => MIB_II . ’2.2.1.19’;
use constant ifOutErrors => MIB_II . ’2.2.1.20’;
use constant ifOutQLen => MIB_II . ’2.2.1.21’;
use constant ifSpecific => MIB_II . ’2.2.1.22’;

The ’at’ group re: RFC 1156. Use of this group is deprecated.
use constant atTable => MIB_II . ’3.1’;
use constant atEntry => MIB_II . ’3.1.1’;
use constant atIfIndex => ’.1’;
use constant atPhysAddress => ’.2’;
use constant atNetAddress => ’.3’;

The ’ip’ group re: RFC 1213.
use constant ipForwarding => MIB_II . ’4.1.0’;
use constant ipDefaultTTL => MIB_II . ’4.2.0’;
use constant ipInReceives => MIB_II . ’4.3.0’;
use constant ipInHdrErrors => MIB_II . ’4.4.0’;
use constant ipInAddrErrors => MIB_II . ’4.5.0’;
use constant ipForwDatagrams => MIB_II . ’4.6.0’;
use constant ipInUnknownProtos => MIB_II . ’4.7.0’;
use constant ipInDiscards => MIB_II . ’4.8.0’;
use constant ipInDelivers => MIB_II . ’4.9.0’;
use constant ipOutRequests => MIB_II . ’4.10.0’;
use constant ipOutOutDiscards => MIB_II . ’4.11.0’;
use constant ipOutNoRoutes => MIB_II . ’4.12.0’;
use constant ipReasmTimeOut => MIB_II . ’4.13.0’;
use constant ipReasmReqds => MIB_II . ’4.14.0’;
use constant ipReasmOKs => MIB_II . ’4.15.0’;
use constant ipReasmFails => MIB_II . ’4.16.0’;
use constant ipFragOKs => MIB_II . ’4.17.0’;
use constant ipFragFails => MIB_II . ’4.18.0’;
use constant ipFragCreates => MIB_II . ’4.19.0’;
use constant ipAddrTable => MIB_II . ’4.20’;
use constant ipRouteTable => MIB_II . ’4.21’;
use constant ipRouteEntry => MIB_II . ’4.21.1’;
use constant ipRouteDest => MIB_II . ’4.21.1.1’;
use constant ipRouteIfIndex => MIB_II . ’4.21.1.2’;
use constant ipRouteMetric1 => MIB_II . ’4.21.1.3’;

Appendix E 367

use constant ipRouteMetric2 => MIB_II . ’4.21.1.4’;
use constant ipRouteMetric3 => MIB_II . ’4.21.1.5’;
use constant ipRouteMetric4 => MIB_II . ’4.21.1.6’;
use constant ipRouteNextHop => MIB_II . ’4.21.1.7’;
use constant ipRouteType => MIB_II . ’4.21.1.8’;
use constant ipRouteProto => MIB_II . ’4.21.1.9’;
use constant ipRouteAge => MIB_II . ’4.21.1.10’;
use constant ipRouteMask => MIB_II . ’4.21.1.11’;
use constant ipRouteMetric5 => MIB_II . ’4.21.1.12’;
use constant ipRouteInfo => MIB_II . ’4.21.1.13’;
use constant ipNetToMediaTable => MIB_II . ’4.22’;
use constant ipRoutingDiscards => MIB_II . ’4.23.0’;
An addition to the ’ip’ group from RFC 1354.
use constant ipForward => MIB_II . ’4.24’;
use constant ipForwardNumber => MIB_II . ’4.24.1.0’;
use constant ipForwardTable => MIB_II . ’4.24.2.0’;
use constant ipForwardEntry => MIB_II . ’4.24.2.1’;

The ’icmp’ group re: SNMPv1 and RFC 1213.
use constant icmpInMsgs => MIB_II . ’5.1.0’;
use constant icmpInErrors => MIB_II . ’5.2.0’;
use constant icmpInDestUnreachs => MIB_II . ’5.3.0’;
use constant icmpInTimeExcds => MIB_II . ’5.4.0’;
use constant icmpInParmProbs => MIB_II . ’5.5.0’;
use constant icmpInSrcQuenches => MIB_II . ’5.6.0’;
use constant icmpInRedirects => MIB_II . ’5.7.0’;
use constant icmpInEchos => MIB_II . ’5.8.0’;
use constant icmpInEchoReps => MIB_II . ’5.9.0’;
use constant icmpInTimestamps => MIB_II . ’5.10.0’;
use constant icmpInTimestampsReps => MIB_II . ’5.11.0’;
use constant icmpInAddrMasks => MIB_II . ’5.12.0’;
use constant icmpInAddrMaskReps => MIB_II . ’5.13.0’;
use constant icmpOutMsgs => MIB_II . ’5.14.0’;
use constant icmpOutErrors => MIB_II . ’5.15.0’;
use constant icmpOutDestUnreachs => MIB_II . ’5.16.0’;
use constant icmpOutTimeExcds => MIB_II . ’5.17.0’;
use constant icmpOutParmProbs => MIB_II . ’5.18.0’;
use constant icmpOutSrcQuenches => MIB_II . ’5.19.0’;
use constant icmpOutRedirects => MIB_II . ’5.20.0’;
use constant icmpOutEchos => MIB_II . ’5.21.0’;
use constant icmpOutEchoReps => MIB_II . ’5.22.0’;
use constant icmpOutTimestamps => MIB_II . ’5.23.0’;
use constant icmpOutTimestampReps => MIB_II . ’5.24.0’;
use constant icmpOutAddrMasks => MIB_II . ’5.25.0’;
use constant icmpOutAddrMaskReps => MIB_II . ’5.26.0’;

The ’tcp’ group from RFC 1213.
use constant tcpRtoAlgorithm => MIB_II . ’6.1.0’;
use constant tcpRtoMin => MIB_II . ’6.2.0’;
use constant tcpRtoMax => MIB_II . ’6.3.0’;
use constant tcpMaxConn => MIB_II . ’6.4.0’;
use constant tcpActiveOpens => MIB_II . ’6.5.0’;
use constant tcpPassiveOpens => MIB_II . ’6.6.0’;
use constant tcpAttemptFails => MIB_II . ’6.7.0’;
use constant tcpEstabResets => MIB_II . ’6.8.0’;
use constant tcpCurrEstab => MIB_II . ’6.9.0’;
use constant tcpInSegs => MIB_II . ’6.10.0’;

368 Appendix E

use constant tcpOutSegs => MIB_II . ’6.11.0’;
use constant tcpRetransSegs => MIB_II . ’6.12.0’;
use constant tcpConnTable => MIB_II . ’6.13’;
use constant tcpInErrs => MIB_II . ’6.14.0’;
use constant tcpOutRsts => MIB_II . ’6.15.0’;

The ’udp’ group from RFC 1213.
use constant udpInDatagrams => MIB_II . ’7.1.0’;
use constant udpNoPorts => MIB_II . ’7.2.0’;
use constant udpInErrors => MIB_II . ’7.3.0’;
use constant udpOutDatagrams => MIB_II . ’7.4.0’;
use constant udpTable => MIB_II . ’7.5’;
use constant udpEntry => MIB_II . ’7.5.1’;
use constant udpLocalAddress => MIB_II . ’7.5.1.1’;
use constant udpLocalPort => MIB_II . ’7.5.1.2’;

Not included: the ’egp’, ’cmot’, ’transmission’, and ’snmp’ group.

1;

Index

A

Aas, Gisle, 179, 185, 218
Abstract Syntax Notation, see ASN.1
accept subroutine, 133–136, 144, 147,

150–152, 155–156, 195
Agent module, 274–276, 278–281, 287,

292
call to arms, 305
example programs, 304
getting and installing, 274

Agent::Message class, 275, 279, 288
Agent::Transport class, 275, 283, 285
Agent::Transport::TCP class, 275
alarm subroutine, 93, 122
ALRM signal, 93, 121
Apache, 167–170, 174–177, 188–189, 218
AppleTalk, 46, 63, 218
Application Layer, 36, 69
arrays, 6

scalar context, 7
size of with $#, 6
slicing, 7

ASN.1, 237, 257, 266
associative array, see hashes
AT&T Bell Laboratories, 99
at_end method, 288–289, 291–295, 297,

302, 306
ATM, xv

B

back-tick operator, qx, 146, 292
bareword, 9
Barr, Graham, 179, 197, 218
Basic Encoding Rules, see BER
BER, 238, 267, 349

bind subroutine, 110, 113, 133, 136, 156
bless subroutine, 30, 276, 278
Boolean type, lack of in Perl, 19
Bootstrap Protocol, 242
broadcast storm, 95, 221
BSD-UNIX, xiv, 117, 130
built-in variables in Perl, 12

@ARGV, 12
@INC, 12
@_, 12, 21
$!, 12
$1, 12, 80
$2, 12
$@, 12, 18, 202–204, 282
$a, 12
$b, 12
$|, 12, 142, 201
%ENV, 12
%SIG, 12

C

C programming language, xiii, 1, 5, 13, 14,
35, 96, 158, 266

C++ programming language, xiii, 5
CGI, 176, 178, 219
Chapman, Nigel, 32
child process, 24–25, 125–130, 151–152,

193, 195, 306
CHLD signal, 126–127, 150–152
chomp subroutine, 144, 202
Christiansen, Tom, 33
cisco Systems, xv, 249
Class::Tom module, 274, 279, 283

getting and installing, 274
client/server model, 100–101, 231,

269–272, 303
client becomes server, 101

370 Index

client characteristics, 100
server characteristics, 101

close subroutine, 27
CMIP, 229–230, 232, 235, 267
Cockayne, William T., 305
Comer, Douglas E., 158
command-line switch to perl

-c, 2
-w, 4, 42

Common Gateway Interface, see CGI
Common Management Information

Protocol, see CMIP
compiler directives

use integer, 66
use sigtrap, 160
use strict, 13, 42, 48, 104

rules changing, 86
’vars’, 129

computer networking
study of, xiii

concurrent syntax checker, 150–153
concurrent TCP server, 150
connect subroutine, 136, 155, 157
continue block, 15
Conway, Damian, 33
CORBA, 100, 158
CPAN

networking modules, 31
third-party add-on modules, 31

$CR, 163
$CRLF, 163, 174
custom Web server, 190–197

D

DATA filehandle, 26
use with __END__, 26

deadlock, 120, 123–125, 140
avoidance strategies, 120–121, 130

debugging networks, 35
default array, 12, 21
default behaviour, 1–2, 111, 157
default variable

$_, 3–4, 12, 79
rule-of-thumb, 3

Deparse module, 34
Devel::Coverage module, 34
die subroutine, 18
Digest-MD5 module, 179

directed broadcast, 223–224, 268
distributed model, 100
do subroutine, 17, 202

with a while statement, 19
with an until statement, 19

do_it method, 288–292, 294–297, 301,
304

Duncan, James, 274, 304–305

E

each subroutine, 15
else statement, 13
elsif statement, 13
escape code, 29
Ethernet, xv, 35–37, 44, 72, 109

address, 40
analysis, 45
broadcast address, 57
carrying IP, 58
DIX standard, 51
frame format, 45, 49, 138
frame types, 46, 48

in HEX format, 51
IANA assigned types, 51, 96
IEEE 802.3 standard, 51
interface cards, 231
IP address mappings, 58
length values, 51
maximum frame size, 70
MIB group, 231
packet data, 45
relationship to layered architecture, 59

EtherSnooper, 92
build strategy, 63
built usingopen and next, 53
how it works, 60
non-categorizing of packets, 50
processing raw frame, 59
snooping transport protocols, 69
TCP traffic, 81
version 0.01, 48–52
version 0.02, 52–55
version 0.03, 55–58

Index 371

version 0.04, 58–64
version 0.05, 64–67
version 0.06, 67–80
version 0.07, 81–83

eval subroutine, 17, 121, 202–204, 282,
284, 304
exception-handling mechanism, 18

event-driven programming, 185
exit subroutine, 126, 128, 152

F

FDDI
maximum transmission unit, 75

fileno subroutine, 124–125
first program, 2–4, 6, 15

one-line implementation, 19
setting executable, 4
strange first line, 3
using $_ with, 3

flow control, 102, 130, 140
flushing, 12, 142, 148, 151, 157, 201
for statement, 15
foreach statement, 16

iterating over hash, 16
fork subroutine, 125, 130, 151–153, 160,

193
forking server model, 195
fragmented IP datagrams

dealing with, 71, 75
TCP traffic, 75
UDP traffic, 71

Fuggetta, Alfonso, 305
fully qualified names, 29, 42

G

Gallo, Felix, 305
gethostbyaddr subroutine, 107, 114–115,

146
gethostbyname subroutine, 107, 113, 245
Getopt::Std module, 85
getopts subroutine, 85, 91
getprotobyname subroutine, 106–107,

110, 132, 136
getprotobynumber subroutine, 107
getservbyname subroutine, 106
getservbyport subroutine, 106

GIF files, 168
global variables, 12

H

Hagerty, Daniel, 229, 267
Hall, Eric A., 95, 266
hashes, 8

name/value pairs, 8
using => to alias comma, 8

Host-To-Network Layer, 37, 64
Hot Standby Router Protocol, 242
howlongup program, 247–249
HTML, 164–170, 176, 184–187, 190, 217
HTML::Parser module, 179, 184, 189

using event handlers, 185–187
which API version?, 187

HTTP, 36, 84, 161
‘chunked’ transfer-encoding, 170
Content-Length, 170, 172–174
directives, 170
embedded graphics, 168
embedding a server, 190
name/value pairings, 168–170
persistence, 169–171, 174
Request-Line, 165
standard methods, 164
Status-Line, 167, 170, 174, 176–178
version 1.1, 164
well-known port-number, 106

HTTP::Daemon module, 190, 192, 195, 219
HTTP::Daemon::ClientConn module,

193, 195
HTTP::Request module, 181–183, 193
HTTP::Response module, 181–184
HTTP::Status module, 192
Huitema, Christian, 267
HyperText Transfer Protocol, see HTTP

I

IANA, 76, 95, 242
ICMP, 36, 97, 221–229, 232, 266–268

Destination Unreachable: Port
Unreachable message, 229
Echo Request message, 222–227
Echo Response message, 222–227
Time Exceeded message, 228

372 Index

if statement, 13
ifconfig command on Linux, 40
inet_aton subroutine, 105
inet_ntoa subroutine, 105–106, 114, 146,

149, 245
input/output with Perl, 26

file clobbering, 28
filehandles, 26

Institute of Technology, Carlow, see IT
Carlow

InterMapper, 218
Internet Control Message Protocol, see

ICMP
Internet Protocol, see IP
IO::Handle module, 154, 157, 198
IO::Socket module, 153–155, 157, 274
IO::Socket::INET module, 154, 179, 195
IP, 36, 102, 109, 222

IPv4, 46, 66, 222
IPv6, 46

IP address, 58, 59, 105
associated IP name, 107
binding to, 113
dotted-decimal notation, 84, 105, 149,
257
embedded in MIB entries, 241
filtering on, 83, 89
multihomed devices, 155
network portion of, 224
of routers on network, 224
routers with more than one, 242
using 127.0.0.1, 106
with TELNET, 215
with traceroute, 228

IP fragmentation, 72
IP name

canonical name, 107
IP re-assembly, 72
IP router mapping, 258

interpreting results, 261
ipdetermine program, 262–265, 268,

271–272, 292, 295–297, 301, 306
mobile-agent version, 293

ipdetermineclonema.pa program, 297,
300, 303

ipdeterminema.pa program, 294–297,
300–302
cloning version, 297

@ISA array, 278

IT Carlow, xv, 188, 240, 315
ITnet, 237, 316

J

Java programming language, xiii, 5, 14, 158
Joy, Bill, xv

K

keys subroutine, 16
in list context, 23
in scalar context, 23

kill subroutine, 127–128
Kolychev, Sergey, 95

L

Lamport, Leslie, xv
last subroutine, 15
less program on Linux, 205
$LF, 163
libnet library, 161, 178, 197–198, 205,

217
getting and installing, 179

libpcap library, 35–37, 39
alternative interface, 95
installing, 96
RPM for, 96

libwww-perl library, 161, 178–181,
183–184, 190, 217–218
getting and installing, 179

Linux command-lines, 4, 12, 38–39, 179,
183, 187, 213, 223, 240, 248, 260, 265,
281

Linux essential commands, 307
Linux Journal, 175–176, 187, 223, 227
listen subroutine, 133, 136, 144, 156
lists, 6
localhost, 40, 108, 112–113, 115, 171,

174, 188, 226, 295, 302
problems with, 119

loopback address, 40, 108, 119
LWPwwwb program, 181–186, 197

M

Mac OS, xiv, 4, 99, 130, 162, 315
MAE, 270, 275–276, 278–279, 281–283,

286, 289–292, 296–297, 303

Index 373

launching kind, 275
monikers for, 270
receiving kind, 275

Managed Agent, see Managed Device
Managed Data, 230–231
Managed Device, 230–231, 235–240, 242,

245, 247, 250–256, 258, 262, 264, 271,
295

Management Information Base, see MIB
Management Station, 230–231, 235–237,

239–240, 250, 266, 268, 272
Marquette, Wayne, 266
Marzot, Giovanni S., 266
MAX_RECV_LEN, 109, 111, 118
Maximum Transmission Unit, 72
MIB, 230–232, 234–235, 242, 267

for use with TCP/IP, 231
mnemonic equivalents, 242
object identifiers, 232, 234, 257

MIB-II, 231, 234, 240, 243, 247–249,
255–258, 267–268
standard groups, 233

MIME-Base64 module, 179
misconfigured workstations, 57, 63, 69,

94–95, 221
mobile agent

a working definition, 269
advantages, 272
Agent TCL (D’Agents), 305
Aglets, 305
ARA, 305
code + state, 270
custom development recipe, 291
default behaviour, 292
default implementation, 276
disadvantages, 273
initiating network device, 270
multi-location, 290
Telescript, 305

mobile-agent environment, see MAE
mobile-agent model, 100, 269, 272–273,

303
Mosemann, Russell, 225
multidefault.pa program, 287–293
multidefault2.pa program, 291
multilaunchma program, 285–289, 291,

297, 302–303
multilaunchma.rc file, 285–289,

291–293, 296–297, 303

multiping program, 226–227
multishotloc program, 285, 291,

296–297, 303–304, 306
multiwho program, 214, 216, 219

identifiable characteristics, 271
mobile-agent version, 271–272, 292–293
revisiting, 270

N

namespaces, 29
net-snmp project, 266
Net::Cmd module, 198
Net::NNTP module, 198, 201, 219
Net::Pcap module, 36

documentation, 39
installing, 38
relationship to libpcap, 39

Net::PcapUtils module, 36–37, 95
callback function, 42, 44, 55
documentation, 40
installing, 39
loop subroutine, 42, 44
next subroutine, 43
open subroutine, 43, 55
packet descriptor, 43
subroutines provided, 41
using optional parameters, 43

Net::Ping module, 225–227, 268
Net::RawIP module, 95
Net::SMTP module, 205, 210
Net::SNMP module, 237–242, 244–246,

250–251, 254–258, 264–268
blocking versus non-blocking, 238
facility prepared, 240
methods supplied by, 238
setting MIB data items with, 256

Net::Telnet module, 213–215, 220
installing, 213

Net::Traceroute module, 229, 267
NetDebug, 84, 115–118, 120, 141–143,

219, 297, 306
command-line parameters, 84
log file, 85
setting the packet handler, 90
storing results from, 85

NetDebug sample results, 317
HTTP traffic, 317
NNTP traffic, 328

374 Index

SNMP traffic, 349
SSH traffic, 346
TELNET traffic, 333

NetPacket module, 36, 63
building and testing, 38
documentation for, 39
installing, 37
services provided, 45
strip subroutine, 37

NetPacket::Ethernet module, 38, 45, 49
eth_strip subroutine, 59
frame format, 46
instance data, 46
predefined types, 60

NetPacket::IP module, 58
datagram format, 64
decode method, 59
ip_strip subroutine, 70

NetPacket::TCP module, 69
decode subroutine, 71
segment format, 72

NetPacket::UDP
datagram format, 72
decode subroutine, 70

Network Debugger, see NetDebug
network diagram, 316
network employed, 315
network interface card, see NIC
Network Layer, 36, 69
network management, 221–222, 230, 235,

266, 305
next subroutine, 15
NIC, 40–42, 53, 63, 70, 82, 85

normal mode, 40–41, 44, 84
promiscuous mode, 40–41, 44, 71, 84

Novell NetWare, 51, 57
nws program, 198–199, 201–205, 219

O

object-oriented client, 157
object-oriented programming, 30

in Perl, 276
indirect object syntax, 31

object-oriented server, 156
OIDs.pm module, 242, 250, 255, 363
onedefault.pa program, 276, 279–284,

288, 304
onelaunchma program, 280–285, 287

oneshotloc program, 282–285, 306
online documentation for Perl, 23

using perldoc, 24
Open Systems Interconnect, see OSI
operators in Perl

=, assignment, 6
<>, 2–6, 104, 141, 144, 148, 156
list of, 20
qr, quoting operator, 7
scalar and list context, 27

Orwant, Jon, 33
OSI, 36, 229
OSI Management Information Tree, 232
OSI-RM, 36
output redirections on Linux, 146

P

package subroutine, 29
parent process, 125–127, 129, 193–195
parsewwwb program, 185–188, 190
Pascal programming language, 5, 14
Penguin module, 305
Perl

how the interpreter works, 4
useful websites, 33

Perl debugger, 34
Perl Journal, 33, 218
Perl programming idiom

hash trick, 49, 56, 265
reaping child processes, 126

perlipc manual page, 158
Picco, Gian Pietro, 305
ping program, 222–229, 266
Potter, Tim, 36–37, 95–96
process_ports program, 78
Protocol Independent Multicasting, 242
protocol port-number

default value, 112
dynamic/private ports, 77
meaning of, 76
open on a router, 242
referring to, 76
registered ports, 77
well-known ports, 77
with Agent.pm, 283
with HTTP, 166
with mobile agents, 281
with simplehttpd, 195

Index 375

with SNMP, 245
with sockets, 105
with traceroute, 228–229
with UDP, 102

Purkis, Steve, 274, 304–305
strategy developed by, 290

R

reading Usenet news, 198
recv subroutine, 110, 112–118, 120–124,

128–130, 134, 138–141, 155, 283, 285
redo subroutine, 15
ref subroutine, 11
references

creating, 9
dereferencing, 10
to anonymous arrays, 10
to subroutines, 26

regular expressions, 12, 20, 32–33, 78, 163,
173–174, 190, 194

reliable transport service, 103
remote syntax checker

client, 147–150
server, 144–147

return subroutine, 22
reverse subroutine, 17
RFC 792, 222, 267
RFC 821, 198, 205
RFC 822, 208, 212
RFC 854, 213
RFC 867, 198
RFC 868, 198
RFC 959, 198
RFC 977, 198, 219
RFC 1155, 267
RFC 1157, 267
RFC 1213, 231, 256, 267
RFC 1256, 224, 267
RFC 1861, 198
RFC 1869, 206
RFC 1902, 267
RFC 1903, 267
RFC 1904, 267
RFC 1905, 267
RFC 1906, 267
RFC 1907, 267
RFC 1939, 198
RFC 2616, 217–219

RFC 2068, 190
Rogers, Jay, 213, 218
Rose, Marshall T., 267
router solicitation, 225
Routing Information Protocol, 242
RPC mechanism, 100, 158

S

scalar subroutine, 7
scalars, 5
Seamons, Paul, 158
select subroutine, 121, 123–125
select subroutine, the other one, 142
setsockopt subroutine, 132, 136, 156
shift subroutine, 22
shutdown subroutine, 138–139, 148
Simple Network Management Protocol, see

SNMP
simplehttp2d program, 211–213
simplehttpd program, 190, 193–199, 219
sleep subroutine, 118, 130
SMI, 257, 267
SMTP, 205
SNMP, 46, 221–222, 229–258, 264–267,

271–272, 294–297, 302
community string, 237, 240, 250–251,
255–256
configuration directives, 256
get operation, 235
management framework, 230
operational model, 235
set operation, 235
timeticks, 239, 250–252, 254
why is SNMP ‘simple’?, 235

SNMP::Monitor module, 266
SNMP::Util module, 266
snmp_connect subroutine, 254
SNMPv1, 230, 238, 266–267

get-next-request message, 236
get-request message, 235
get-response message, 236
set-request message, 236
trap message, 236

SNMPv2, 230–231, 238, 245, 266–267
get-bulk-request message, 236
inform-request message, 236
snmpV2-trap message, 236

SNMPv2C, 236, 238

376 Index

SNMPv3, 230, 236
sockaddr_in subroutine, 105–106
Socket module, 104, 109, 162, 165, 244,

300
socket subroutine, 109–110, 113, 132,

136, 156–157
socket address, 105–106, 109–112,

132–133, 136, 144, 151
Socket API, 99, 101, 210, 297

address family identifier, 107
definitive reference, 158
further study of, 158
Gusi, 99
handling errors, 114
in Perl, 104, 161
IP address format, 105
numeric identifiers, 106, 107, 113
object-oriented interface, 153
programming HTTP, 165, 217
support subroutines, 105
using standard filehandles, 141
WinSock, 99

socket objects, 153–154, 157
sockethandle, 104, 109–112, 121–124,

132–139, 141–148, 151–157, 163
of the listening type, 133

software design model
choosing wisely, 303

sort subroutine, 17
split subroutine, 145–146
standard distribution of Perl, 31
statement modifiers, 18
STDERR filehandle, 26–27, 146
STDIN filehandle, 26, 204
STDOUT filehandle, 26, 146
Stein, Lincoln, 157–158, 217
Stevens, W. Richard, 158
Stross, Charlie, 158
Structure of Management Information, see

SMI
sub subroutine, 21
Subramanian, Mani, 266
subroutines

creating, 21
invoking, 21
list of inbuilt in Perl, 24–26
parameter list flattening, 22
pass by value, 22
passing parameters, 21

switch statement, lack of in Perl, 14
Sys::Hostname module, 283

T

TACACS Login Host Protocol, 242
Tanenbaum, Andrew S., 96
TCP, 36, 69, 102

appropriate application behaviour, 138
as opposed to UDP, 103
auto-flushing, 144
buffering mechanism, 142
client and server (first), 130–131, 134
common flushing gotcha, 140
cost of reliability, 103
echo requests, 227
flow control, 103
fragmentation, 75
gotcha when snooping, 71
header information, 82
object, 71
reliable service provided, 103
segments, 70
with Agent.pm, 275
with HTTP, 164
with sockets, 104
with TELNET, 215

TCP/IP, xv, 36, 58, 69, 84, 102–110, 221,
229, 231
devices running SNMP, 231
IANA assigned ports, 96
MIB groups, 231
network layer, 102
reference model, 37, 42
relationship to Ethernet II, 51

tcpdump, 96, 97
TELNET, 213, 215–216, 219, 270–272, 293
ternary conditional operator, 14
thwarting crackers, 194
time subroutine, 53
Time-To-Live, see TTL
Tk module, 217
Token-Ring

maximum transmission unit, 75
Torkington, Nathan, 33
Torvalds, Linus, xv
Town, David M., 237, 238, 267

Index 377

traceroute program, 227–229, 258,
266–268

Transmission Control Protocol, see TCP
Transport Layer, 36, 69
transport service

identifying, 107, 110, 155
protocols for, 102
selecting, 101

TTL, 64, 66–67, 223
use with traceroute, 228

U

UDP, 36, 69, 349
appropriate use, 102
buffering, 117
echo requests, 227
fragmentation, 73
gotcha when snooping, 71
lack of flow control, 117
listener table (on routers), 232
MIB data items, 232
numeric identifier, 106
object, 70
object identifiers, 234
sending and receiving, 118
simple client and server, 108
snooping, 70
unreliable nature, 116
use by SNMP, 240
use on LANs, 102
with mobile agents, 297
with NetDebug, 84
with traceroute, 228

udpstats program, 240, 243–249, 258,
262

udpstats2 program, 249, 268
undef value, 9
understanding newline, 161

different OS representations, 162
universal client platform, 164
University College Dublin, 176
University of California, Berkeley, 99
unless statement, 16
unreliable transport service, 102
until statement, 16

URI module, 179
User Datagram Protocol, see UDP

V

variable interpolation, 6
usage rule, 28

variable naming characters, 4
variable scoping rules

with local, 12
with my, 13
with our, 13

vec subroutine, 124, 125
vi text editor, xiv, xv, 2, 311
video-feed application

with TCP, 104
with UDP, 102

Vigna, Giovanni, 305

W

waitpid subroutine, 126
Wall, Larry, xv, 33
wantarray subroutine, 23
whatsup program, 250–254
while statement

iterating over hash, 15
Wiedmann, Jochen, 158, 266
Windows, xiv, 4, 96, 99, 130, 159, 315
Wong, Clinton, 217
world’s worst Web browser, 165–178

persistent version, 169
rewritten with libwww-perl, 181
the wwwb program, 176

X

X Window System, 108
XTI API, 99
XtraType.pm module, 47

Z

zombies, 126–127
zombie reaping, 126, 193
Zyda, Michael, 305

About The Author

Since 1997, Paul Barry has lectured in Computer Networking at the Institute of
Technology, Carlow, in Ireland. Prior to that he held Information Technology Man-
agement positions in Ireland and in Canada. Paul has been programming profes-
sionally and working with computer networks, in one form or another, since 1988.
In that year, he graduated in Computing Science from the University of Ulster, Jor-
danstown, in Northern Ireland. A contributor to Linux Journal magazine and web-
site, Paul is married, and he and his wife have three young children. His website
is located at http://glasnost.itcarlow.ie/˜barryp/index.html.

	Programming the Network with Perl
	Contents
	Preface
	1 Meet Perl
	1.1 Perl’s Default Behaviour
	1.1.1 Our first Perl program
	1.1.2 Perl’s default variable
	1.1.3 The strange first line explained

	1.2 Using Variables in Perl
	1.2.1 One of something: scalars
	1.2.2 A collection of somethings: arrays and lists
	1.2.3 Hashes
	1.2.4 References
	1.2.5 Built-in variables
	1.2.6 Scoping with local, my and our

	1.3 Controlling Flow
	1.3.1 if
	1.3.2 The ternary conditional operator
	1.3.3 while
	1.3.4 for
	1.3.5 unless
	1.3.6 until
	1.3.7 foreach
	1.3.8 do
	1.3.9 eval
	1.3.10 Statement modifiers

	1.4 Boolean in Perl
	1.5 Perl Operators
	1.6 Subroutines
	1.6.1 Processing parameters
	1.6.2 Returning results
	1.6.3 I want an array
	1.6.4 In-built subroutines
	1.6.5 References to subroutines

	1.7 Perl I/O
	1.7.1 Variable interpolation

	1.8 Packages, Modules and Objects
	1.8.1 Modules
	1.8.2 Objects
	1.8.3 The joy of CPAN

	1.9 More Perl
	1.10 Where To From Here?
	1.11 Print Resources
	1.12 Web Resources

	2 Snooping
	2.1 Thank You, Tim Potter
	2.2 Preparing To Snoop
	2.2.1 Installing NetPacket::*
	2.2.2 Installing Net::Pcap
	2.2.3 Installing Net::PcapUtils
	2.2.4 Online documentation
	2.2.5 Configuring your network interface

	2.3 Building Low-Level Snooping Tools
	2.3.1 loop = open + next
	2.3.2 Optional parameters: loop and open
	2.3.3 Optional parameters: the callback function
	2.3.4 Ethernet Analysis
	2.3.5 EtherSnooper (v0.01)
	2.3.6 EtherSnooper (v0.02)
	2.3.7 EtherSnooper (v0.03)
	2.3.8 Displaying IP addresses

	2.4 Snooping IP Datagrams
	2.4.1 EtherSnooper (v0.05)
	2.4.2 EtherSnooper (v0.06)

	2.5 Transport Snoopers
	2.5.1 Preparing to snoop UDP
	2.5.2 Preparing to snoop TCP
	2.5.3 The TCP and UDP gotcha!
	2.5.4 Application traffic monitoring
	2.5.5 EtherSnooper (v0.07)

	2.6 The Network Debugger
	2.6.1 Processing command-line parameters
	2.6.2 Storing captured results
	2.6.3 The NetDebug source code

	2.7 Where To From Here?
	2.8 Print Resources
	2.9 Web Resources

	3 Sockets
	3.1 Clients and Servers
	3.1.1 Client characteristics
	3.1.2 Server characteristics

	3.2 Transport Services
	3.2.1 Unreliable transport
	3.2.2 Reliable transport

	3.3 Introducing the Perl Socket API
	3.4 Socket Support Subroutines
	3.4.1 inet_aton and inet_ntoa
	3.4.2 Socket addresses
	3.4.3 getservbyname and getservbyport
	3.4.4 getprotobyname and getprotobynumber
	3.4.5 gethostbyname and gethostbyaddr

	3.5 Simple UDP Clients and Servers
	3.5.1 Testing with localhost
	3.5.2 The first UDP server
	3.5.3 The first UDP client

	3.6 Genericity and Robustness
	3.7 UDP Is Unreliable
	3.7.1 No flow control

	3.8 Sending and Receiving with UDP
	3.9 Dealing with Deadlock
	3.9.1 Specifying a time-out
	3.9.2 Checking for data
	3.9.3 Spawning a subprocess

	3.10 TCP Clients and Servers
	3.10.1 The first TCP server
	3.10.2 The first TCP client

	3.11 A Common TCP Gotcha
	3.12 More TCP Socket Communication
	3.12.1 The remote syntax checker server
	3.12.2 The remote syntax checker client

	3.13 The Concurrent Syntax Checker
	3.14 Object-Oriented Sockets
	3.14.1 IO::Socket
	3.14.2 IO::Socket::INET
	3.14.3 An object-oriented client and server

	3.15 Where To From Here?
	3.16 Print Resources
	3.17 Web Resources

	4 Protocols
	4.1 Gotcha!
	4.1.1 What’s the deal with newline?

	4.2 Working with the Web
	4.2.1 HTTP requests and responses

	4.3 The World’s Worst Web Browser
	4.3.1 Embedded graphics
	4.3.2 A persistent wwwb
	4.3.3 A better get_resource

	4.4 HTTP Status Codes
	4.5 It’s the Gisle and Graham Show!
	4.5.1 Getting libwww-perl and libnet

	4.6 The Library for WWW Access in Perl
	4.6.1 The libwww-perl classes

	4.7 The LWPwwwb Program
	4.8 Doing More with LWPwwwb
	4.8.1 Parsing HTML
	4.8.2 Some parsewwwb examples
	4.8.3 The HTML::Parser examples

	4.9 Building a Custom Web Server
	4.9.1 The custom Web server source code
	4.9.2 The custom Web server in action

	4.10 The libnet Library
	4.10.1 Working with Usenet
	4.10.2 The news reading source code

	4.11 Email Enabling simplehttpd
	4.11.1 The simple mail transfer protocol
	4.11.2 The Net::SMTP module
	4.11.3 Creating simplehttp2d

	4.12 Other Networking Add-On Modules
	4.12.1 Installing Net::Telnet
	4.12.2 A Net::Telnet example

	4.13 Where To From Here?
	4.14 Print Resources
	4.15 Web Resources

	5 Management
	5.1 Simple Management with ICMP
	5.2 Doing the Ping Thing
	5.2.1 Some ping examples

	5.3 Doing the Net::Ping Thing
	5.4 Tracing Routes
	5.4.1 How traceroute works

	5.5 Not So Simple Management with SNMP
	5.5.1 A little SNMP history

	5.6 The SNMP Management Framework
	5.7 Managed Data
	5.7.1 The TCP/IP MIB

	5.8 The SNMP Protocol
	5.8.1 SNMP’s operational model
	5.8.2 A brief tour of SNMPv1, SNMPv2 and SNMPv3
	5.8.3 SNMP communities

	5.9 The Net::SNMP Module
	5.9.1 The Net::SNMP methods

	5.10 Working With Net::SNMP
	5.10.1 Working with mnemonic object identifiers
	5.10.2 The udpstats source code
	5.10.3 The howlongup program

	5.11 What’s Up?
	5.11.1 Being more careful

	5.12 Setting MIB-II Data
	5.13 IP Router Mapping
	5.14 Where To From Here?
	5.15 Print Resources
	5.16 Web Resources

	6 Mobile Agents
	6.1 What is a Mobile Agent?
	6.1.1 Mobile agent = code + state
	6.1.2 What is a mobile-agent environment?

	6.2 Mobile-Agent Examples
	6.2.1 Revisiting multiwho
	6.2.2 Revisiting ipdetermine

	6.3 Mobile-Agent Advantages/Disadvantages
	6.4 Perl Agents
	6.4.1 Preparing Perl for mobile agents

	6.5 The Agent.pm Module
	6.6 Ooooh,Objects!
	6.7 The Default Mobile Agent
	6.8 A Launching Mobile-Agent Environment
	6.9 A One-Shot Location
	6.10 Relocating To Multiple Locations
	6.10.1 Processing multiple mobile agents
	6.10.2 Identifying multiple locations
	6.10.3 A multi-location mobile agent

	6.11 The Mobile-Agent multiwho
	6.12 The Mobile-Agent ipdetermine
	6.13 The Cloning Mobile-Agent ipdetermine
	6.14 Other Perl Agent Examples
	6.15 Where To From Here?
	6.16 Print Resources
	6.17 Web Resources

	Appendix A. Essential Linux Commands
	Appendix B. vi Quick Reference
	Appendix C. Network Employed
	Appendix D. Sample NetDebug Results
	Appendix E. The OIDs.pm Module
	Index

