
STDIN

Page 1

Plotting and Labelling Data and Images using PGPLOT
A central requirement of any data analysis package is the possibility of
 visualisation of data. PDL
deals with this in a slightly different
 manner than some other packages in that no built-in graphics
library is
 used, instead it uses other freely available external packages. In this
 chapter we will focus
on the main 2D plotting package, PGPLOT.

Here we will cover the use of the PDL::Graphics::PGPLOT package which
 uses the freely
available PGPLOT subroutine package written by Tim
 Pearson. This is a very powerful package and
PDL::Graphics::PGPLOT
 does not provide easy access to everything in the PGPLOT package,

although it hopefully does most of what you will need.

For advanced use you might have to use some PGPLOT commands directly,
 see Using PGPLOT
commands directly for a discussion of this. But
 even if you don't you are recommended to at least
keep a copy of the
 PGPLOT documentation lying around. It is available from
http://www.astro.caltech.edu/~tjp/pgplot/.

The goals of this section is to familiarise the reader with the PDL
 interface to PGPLOT and show how
complicated datasets can be easily
 manipulated and displayed. The focus will be on interactive use to
facilitate learning, but at the end we will turn to an object-oriented
 interface that might be more suited
for scripts.

To use PDL::Graphics::PGPLOT it is necessary to have the PGPLOT
 package installed, and in
addition have the Perl PGPLOT module (written
 by Karl Glazebrook and available through CPAN)
installed and working. In
 the following we will assume that you have this all set up.

Introducing PDL::Graphics::PGPLOT
2-dimensional graphics in PDL is normally performed by the PDL::Graphics::PGPLOT module.
The PDL::Graphics::PGPLOT package
 must be use'ed to give access to the commands. This
introduction
 will be based on interactivity and use of perldl

 pdl> use PDL::Graphics::PGPLOT;

That is what you need to get running. We will now play around with a
 couple of commands before we
turn to a systematic overview in the next
 two sections. We will concentrate on the line and points
commands
 which draws continuous lines and individual plotting symbols
 respectively. The final result
should look similar to Figure 1.

STDIN

Page 2

The first step is to start perldl and use the PDL::Graphics::PGPLOT package (some output is
suppressed)

STDIN

Page 3

 > perldl
 Type 'help' for online help
 Type 'demo' for online demos
 Loaded PDL v2.4.3
 pdl> use PDL::Graphics::PGPLOT

Now we need to open a graphics device - there are quite a few that are
 supported by PGPLOT, here
we will use a normal plot window that can be
 re-used:

 pdl> dev('/xs')

You should now have a large plot window on your screen, if you had some
 problems try to do
dev('?') which will give you a list of available
 devices and allow you to choose one.

We first need to define a variable to have something to plot. The first
 plan is to simply plot a parabola
and a Gaussian (bell) function as in
 the left panel in Figure 1, so we need an x-variable that is both

positive and negative.

 pdl> $x=zeroes(100)->xlinvals(-5, 5)

This creates a 100 element piddle starting at -5 and ending at 5. We can
 then very easily draw a
parabola:

 pdl> line $x, $x*$x/12.5, {LINESTYLE=>'Dashed', Colour=>red}

which should draw a nice parabola with a dashed red line. As
 should be clear the line command
draws a line and takes the x and y
 coordinates of the points on the line as arguments and options to
the
 command are given as an anonymous hash.

We now want to plot a Gaussian on top of this, but if we were just to
 issue another plot command it
would by default erase the screen, so
 instead we call the hold function to stop that from happening:

 pdl> hold

We can then continue plotting, now using symbols instead of a line:

 pdl> points $x, exp(-$x*$x/2), {Symbol => 'Plus'};

Again, note that the function points function plots symbols instead
 of lines. PGPLOT has a large
array of symbols, normally accessed using
 numbers, but the most common have text aliases defined.

The only thing left for us now is to ensure that the next plot will
 start afresh. Since we issued the hold
command all subsequent plots
 will overplot the existing ones and since we do not want that anymore,

we therefore have to release the device to the next set of plot
 commands:

 pdl> release;

As a second example we will show how you can create plots with error
 bars. We will just carry on so
the previous plot will be erased (enjoy
 it while you can). We first have to define some variables for the
plot,
 so we need the x and y variables and the error on y.

 pdl> $x = pdl(0.88, 0.223, 0.815, 0.606, 0.188, 0.360)
 pdl> $y = pdl(24.52, 22.24, 25.43, 23.54, 22.63, 23.59)
 pdl> $dy = pdl(0.57, 0.07, 0.84, 0.27, 0.12, 0.28)

In the previous example we let PGPLOT decide on the plotting ranges we
 were going to use, but now
we want some more control over it. To do so
 we set it up using the env command:

STDIN

Page 4

 pdl> env(0, 1, 22, 26)

which sets the X-axis to go from 0 to 1 and the Y-axis from 22 to 26.

That is really all that is needed before plotting the error bars:

 pdl> errb $x, $v, $dv, {Symbol => 'Square'};

And here we go! It almost looks like science. Of course in real life
 error-bars might not be symmetric
(although you often wish they were),
 and we will explain how to do this later when we discuss errb in
more
 detail below.

An overview of 2D plotting commands
Before we proceed to an overview of all commands in PDL::Graphics::PGPLOT it is necessary to
define a couple of terms:
 The first is the concept of device - this is what the plotting
 commands work
on, often this will be a screen device which shows
 resulting output on the screen in a window, but it
can also be output to
 a file in some sort of format. Then inside each device there is a plotting area
within which plotting commands gives a noticeable
 result.

Another important concept is holding of plots. When a plot is held,
 any subsequent plot commands
will plot on top of the existing plot. To
 explicitly hold a plot you issue the command hold and to
release it
 again you use release.

Finally most commands described in the following take a set of options. These are values that can be
set to modify the default
 behaviour of the plotting routine and are very useful so we will first
 discuss
the standard options and how options are specified.

Options in plot commands
As mentioned above and seen in the brief introduction to the PGPLOT
 interface earlier, we use
options to modify the behaviour of plot
 commands. Below we will often see examples of specific
options, those
 that are only recognised by a particular plot command. However in
 addition there are
general options that are recognised by many or all
 plot commands. These are normally the options
you use most so it is
 important to know these.

But first, how do you specify an option? If you read through the
 walk-through above you have
probably already realised that they are set
 as keys in a hash:

 line x, y {Colour => 3}

However due to the way they are implemented in the code (using the PDL::Options package) the
hash is more flexible than normal Perl
 hashes. Firstly the options are case-insensitive and secondly
some have
 synonyms defined so that for instance Color and Colour are both
 accepted to avoid bad
feelings on one side of the Atlantic. Finally
 most, if not all, options can be shortened so that Lines
will be
 interpreted as LineStyle. This is mostly useful when working on the perldl command line
however as it is error-prone in scripts (imagine
 that someone later implemented a Lines option which
did something
 totally different, like draw 10 parallell lines, yeah, quite likely).

The following listing of standard options is based on the on-line
 documentation which you can access
yourself inside perldl as

 pdl> help PDL::Graphics::PGPLOT::Window

or using the pdldoc command

 bash$ pdldoc PDL::Graphics::PGPLOT::Window

It is not envisaged that the standard option set will be significantly
 expanded from that listed here, but
the on-line documentation should
 reflect any changes if they take place.

STDIN

Page 5

Arrow

This option allows you to set the
 arrow shape, and optionally size for arrows for the vect
routine. The
 arrow shape is specified as a hash with the key FS to set fill style,

Angle

sets the opening angle of the arrow head, Vent to set how
 much of the arrow head is cut out
and Size to set the arrowsize.

The following code:

 pdl> $opt = {Arrow => {FS=>1, Angle=>60, Vent=>0.3, Size=>5}};

will set up an options hash for a broad arrow of five times the normal
 size.

Alternatively the arrow can be specified as a set of numbers
 corresponding to an extention to
the syntax for the PGPLOT command pgsah . The equivalent to the above is

 pdl> $opt = {Arrow => pdl([1, 60, 0.3, 5])};

For the latter the arguments must be in the given order, and if any are
 not given the default
values of 1, 45, 0.3 and 1.0 respectively will be
 used.

Arrowsize

The arrowsize can be specified separately using this option
 to the options hash. It is useful if
an arrowstyle has been set up and
 one wants to plot the same arrow with several sizes.
Please note that it
 is not possible to set arrowsize and character size in the same call
 to a
plotting function. This should not be a problem in most cases.

 pdl> $opt = {ARROWSIZE => 2.5};

Axis

Set the axis type (see the env command below in Setting up the plot area). It can either be
specified as a
 number, or by a name as in the following table

 Name Number Explanation
 ---- ------ -----------

 Empty -2 draw no box, axes or labels
 Box -1 draw box only
 Normal 0 draw box and label it with coordinates
 Axes 1 same as Normal, but also draw X=0, Y=0 axes
 Grid 2 same as Axes, but also draw grid lines
 LogX 10 draw box and label X-axis logarithmically
 LogY 20 draw box and label Y-axis logarithmically
 LogXY 30 draw box and label both axes logarithmically

The reason why this command is accepted by most commands is that when a
 command is
called before a plot area is set up it will implicitly call env which interprets this option.

AxisColour

Set the axis colour using the same syntax as for the Colour option below.

Border

Normally the plot limits are chosen so that the plotted points just fit
 inside the plot area; with
this option you can increase (or decrease)
 the limits by either a relative (ie a fraction of the
original axis
 width) or an absolute amount. Either specify a hash array, where the
 keys are
Type (set to 'Relative ' or 'Absolute ') and Value
 (the amount to change the limits by), or
set to 1, which is equivalent
 to Border => { Type => 'Rel', Value => 0.05}.

Charsize

STDIN

Page 6

Set the character/symbol size as
 a multiple of the standard size. $opt = {Charsize =>
1.5}

Colour

Set the colour to be used for the subsequent plotting - it has Color as a synonym. This can
be specified as a number, and the most
 used colours can also be specified with name,
according to the following
 table:

 0 White 4 Blue 8 Orange
 1 Black 5 Cyan 14 Dark gray
 2 Red 6 Magenta 16 Light Gray
 3 Green 7 Yellow

However there is a much more flexible mechanism to deal with colour. The
 colour can be set
as a 3 or 4 element anonymous array (or piddle) which
 gives the RGB colours. If the array has
four elements the first element
 is taken to be the colour index to change. For normal work you
might
 want to simply use a 3 element array with R, G and B values and let the
 package deal
with the details. The R,G and B values go from 0 to 1.

In addition the package will also try to interpret non-recognised colour
 names using the default
X11 lookup table, normally using the rgb.txt
 that came with PGPLOT.

For more details on the handling of colour it is best that the user
 consults the PGPLOT
documentation. Further details on the handling of
 colour can be found in the documentation
for the internal routine _set_colour.

Filltype

Set the fill type to be used by poly, circle, ellipse and rectangle. The fill can either be
specified using numbers or name,
 according to the following table, where the recognised
name is shown in
 capitals-it is case-insensitive, but the whole name must be specified.

 1 Solid
 2 Outline
 3 Hatched
 4 CrossHatched

$opt = {Filltype => 'Solid'} (see below for an example of hatched
 fill)

Font

Set the character font. This can either be specified as a number
 following the PGPLOT
numbering or name as follows (name in capitals):

 1 Normal
 2 Roman
 3 Italic
 4 Script

Note that in a string, the font can be changed using the escape
 sequences \fn , \fr , \fi
and \fs respectively. See the
 documentation in Text and legends for more information
regarding
 escape sequences.

$opt = {Font => 'Roman'}; gives the same result as $opt = { Font=> 2 };

Hatching

Set the hatching to be used if either filltype 3 or 4 is selected (see
 above). The specification is
similar to the one for specifying arrows.
 The arguments for the hatching is either given using a
hash with the key Angle to set the angle that the hatch lines will make
 with the horizontal,
Separation to set the spacing of the hatch lines
 in units of 1% of min(height,width) of
the view surface, and Phase
 to set the offset the hatching. Alternatively this can be specified
as
 a 1x3 piddle $hatch=pdl[$angle, $sep, $phase].

 $opt = {Filltype => 'Hatched', Hatching => {Angle=>30,

STDIN

Page 7

Separation=>4}};Can also be specified as

 $opt = {Fill=> 'Hatched', Hatch => pdl [30,4,0.0]};

For another example of hatching, see the command poly in Drawing lines and plotting points

below.

Justify

A boolean value which, if true, causes both axes to drawn to the
 same scale. If you want more
information about this option you are
 advised to consule the PGPLOT documenation for the
pgenv command.

Linestyle

Set the line style. This can either be specified as a number following
 the PGPLOT numbering
or as a name as shown in the following table.

 1 Solid
 2 Dashed
 3 Dot-dash
 4 Dotted
 5 Dash-dot-dot

Thus the following two specifications both specify the line to be dotted:

 $opt = {Linestyle => 4};
 $varopt = {Linestyle => 'Dotted'};

The names are not case sensitive, but the full name is required.

Linewidth

Set the line width. It is specified as a integer multiple of 0.13 mm.

 $opt = {Linewidth => 10}; # A rather fat line

PlotPosition

The position of the plot on the page relative to the view surface in
 normalised coordinates as
an anonymous array. The array should contain
 the lower and upper X-limits and then the
lower and upper Y-limits. To
 place two plots above each other with no space between them
you could do

 $win->env(0, 1, 0, 1, {PlotPosition => [0.1, 0.5, 0.1, 0.5]});
 $win->env(5, 9, 0, 8, {PlotPosition => [0.1, 0.5, 0.5, 0.9]});

Symbol

The plot symbol to use, with the default being 17 which gives a small
 filled circle. This is an
option for points and errb at the
 moment, but could be used for others too. It is either given
a piddle
 with the same number of elements as the plot variable, a name (or
 number)
specifying the symbol to use according to the following
 (recognised name in capital letters):

 0 Square 4 Circle 9 Sun
 1 Dot 5 Cross 11 Diamond
 2 Plus 7 Triangle 12 Star
 3 Asterisk 8 Earth 17 Default

PGPLOT has support for a much larger number of symbols. The reader is
 advised to consult
the PGPLOT documentation for further information or
 write a short program that loops through
all symbols. Note however that
 there are a lot. For instance symbol 2830 is a cyrillic character
- the system used is the Hershey system for symbols. In addition you
 can draw regular
polygons with n-sides by setting the symbol to -n,
 so that $opt = {Symbol => -n }; but
be aware that -1 and -2
 draws a dot with the diameter set to the current linewidth.

STDIN

Page 8

Title

The title on top of the plot box.

XTitle

The title for the X-axis of the plot.

YTitle

The title along the Y-axis.

Hard-copies and plot options
The default options for screen display are not ideal for hard-copies
 (typically PostScript). Thus there is
a separate set of options for
 certain properties when the output device is a hard-copy one. Here we

will quickly summarize these

HardLW

The line width used on hard-copy devices. The default is 4.

HardCH

The character size used on hard-copy devices. The default is 1.4.

HardFont

The default font used on hard-copy devices. It defaults to 2.

HardAxisColour

The default colour to draw the axis with on a hard-copy device. This is
 particularly important
since light green (default screen colour) is not
 very visible on paper. The default is 1 (black).
The setting of colours
 work as with Colour

HardColour

The default plot colour on hard-copy devices, it defaults to 1 (black).

These options should be set either in the call to dev (see Setting up the plot area) or redefined
using the
 method outlined in the next section.

Setting default values for options
You might not be happy with the default settings for the various options
 and want to set a different
value permanently instead of specifying it
 with every call to dev , env or some other command. There
is some
 support for this, but it is limited in that it is not case-insens itive
 nor does it have synonyms
(except for colour/color) so the options must be written as above. (You will be notified if you did
something
 wrong).

That said it is fairly easy to use. You would normally set this in your .perldlrc file (see '
help\InsetSpace ~perldl ' in the perldl
 shell or ' pdldoc pdl '). The relevant function is
set_pgplot_options which takes a hash as argument with the options
 and their values, as in the
following example:

 use PDL::Graphics::PGPLOTOptions ('setpgplotoptions');
 setpgplotoptions('Device' => '/xs', 'LineWidth' => 10);

Note that some settings might affect more than you like. In particular
 the LineWidth and
LineStyle options will also affect the axis and
 axis labels drawn. However, character size, device
default plot symbol,
 border and other options can be conveniently be specified in this way.

Setting up the plot area
The first step for the budding plot maker is to set up the drawing area.
 This involves selecting what
device you want to create the plots on and
 then setting the region you want to plot in .

The destination for your plot commands is set with the dev command,
 and with different arguments to

STDIN

Page 9

dev you can send plots to various
 output devices such as:

GIF files - dev('giffile.gif/gif')

Postscript files - dev('filename.ps/ps')

Colour Postscript files - dev('filename.ps/cps')

X-windows plotting windows - dev('/xs')

If you wish to have several plotting panels per page you can specify the
 number in the x and y
directions as further arguments to dev so that
 to get four panels you would write dev('/xs', 2,
2).

For more detailed control over the created device, you can specify
 various options. The main four
options you might use are:

Aspect

The aspect ratio of a newly created output device. If your device is a
 graphics window under a
window system, this might or might not be
 applied when the window is created, but it should
be updated as soon as
 you plot to it. The default value is 0.618, i.e. the
 golden ratio.

WindowWidth

The width of the created output window. The width is specified in units
 of inches, which is
reasonably easy to deal with when printing out, but
 if your device is a graphics window it is all
a bit more unclear since
 different setups might have different ideas of what an inch
corresponds
 to in pixels.

WindowXSize

The X-size of the plot window, specified as WindowWidth and combined
 with Aspect if
WindowYSize is not set.

WindowYSize

As above but for the Y-size.

NX and NY

These two options set the number of panels in the X and Y direction
 respectivel y and are
alternatives to specifying the numbers of panels
 directly in the call to dev as dev(<device>,
 <nx>, <ny>).

The options are specified in an anonymous hash so that:

 pdl> dev('/xs', {NX => 4, NY => 2})

will create a plot window with four panels in the X-direction and 2 in
 the Y-direction, with a
default aspect ration and size. Alternatively
 the same window could have a specified width and
aspect ratio by
 specifying those options as

 pdl> dev('/xs', {NX => 4, NY => 2, Aspect => 1, WindowWidth =>
5})

However dev does not actually draw anything for you, it merely selects
 the output device. To
set up a plot you either call a plot command
 directly, or if you want more control over the axis
ranges you use the
 command env. This useful command takes the upper and lower limits in X
and Y as input:

 env(0, 1, 0, 1);

STDIN

Page 10

sets up a plotting area with both axes going from 0 to 1. If a
 logarithmic axis is desired this can
be achieved by passing an option to
 the env command, we can also use this to set the axis
labels:

 env(1, 1000, 0, 1, {Axis => 'LOGX', Xtitle => 'X-axis', Ytitle =>
 'Y-axis'});

Further information on the Axis option can be found in Options in plot commands.

STDIN

Page 11

It is important to realise that when you call env explicitly it
 automatically holds the plot for you,
so subsequent plot commands will
 plot on top of the plotting area, and if you want to make a
new plot you
 need either to call env again or call release explicitly.

Drawing lines and plotting points
The most important commands in the graphics package are probably the
 line drawing and point
plotting commands line and points . The
 most basic command is points which plots particular
symbols at given
 x and y values:

 pdl> $x = sequence(10)
 pdl> $y = $x*$x + 1
 pdl> points $x, $y

The action of the points command can be modified by adding options.
 The most important is
Symbol which changes the plot symbol and Charsize which changes the size of plot symbols; in
addition the Plotline option is a toggle which if set causes a line to be drawn
 through the plots:

 pdl> points $x, $y, {Symbol => 'Triangle', Plotline => 1, Charsize =>
5}

STDIN

Page 12

The string Triangle is equivalent to symbol number 7 and in general
 symbols will have to be
accessed using the numerical system, but there
 are textual equivalents for many commonly used
symbols (see Options in plot commands). The points command does also accept a
 piddle as the
symbol value, in which case it should have the same length
 as $x and $y and each point will be
plotted with the corresponding
 symbol value.

Plotting error-bars

Closely related to points is the routine for plotting symbols with
 error-bars, errb . This can be called
in a variety of ways to allow
 for various ways of giving errorbars and whether horizontal or vertical

errorbars are required. A typical call is:

 pdl> env(0, 5, -2, 30)
 pdl> $x=sequence(10)/2.0; $y=$x*$x
 pdl> $dy = sqrt($x+1);
 pdl> errb $x, $y, $dy, { Symbol => â€™Squareâ€™}

STDIN

Page 13

which plots
 squares with symmetrical vertical error-bars. To get error bars in the
 horizontal direction
one gives these before the y-errors. Likewise it is
 possible to get asymmetric error-bars by giving the
upper and lower
 limits of the error bars separately for the X and Y variables as in the
 following
example:

 pdl> $x2 = pdl(1.5, 2.3, 4.7)
 pdl> $y2 = pdl(10, 22, 0)
 pdl> $dx = $x2->zeroes(); # No X-errors
 pdl> $yu= pdl(12,29,1)-$y2
 pdl> $yl= $y2 - pdl(7, 20, -2)
 pdl> errb $x2, $y2, $dx, $dx, $yl, $yu, {Symbol => â€™Triangleâ€™}

STDIN

Page 14

Drawing lines

We saw above that we could draw
 lines between points by setting the PlotLine option
 to points,
however there are much better ways to draw lines. The
 basic line-drawing command is line which
draws a straight line
 between each point.

 pdl> $x = zeroes(10)->xlinvals(-3, 3)
 pdl> line $x, sin($x)

STDIN

Page 15

The style, width and colour of the line can be changed with the options Style, LineWidth and
Colour / Color respectively as outlined
 in Options in plot commands.

Plotting histograms

A very similar command is bin which is useful for plotting
 histograms. This command draws
horizontal lines between x(i) and x(i+1) with the value y(i).

 pdl> $x = zeroes(10)->xlinvals(-3, 3)
 pdl> bin $x, sin($x)

STDIN

Page 16

By default the routine assumes that the X-values are the start points of
 the bin, if instead your values
are for the centers of the bins, you
 need to set the option Centre/Center to a true value. In addition

the appearance of the lines can be modified using the same options as
 for the line command.

Drawing polygons

Finally the poly command is like line but fills the polygon
 defined by $x and $y with the chosen
fillstyle (defaults to solid
 fill). If you display this you should consider putting FillStyle =>
'Outline' in your .perldlrc file as explained in Setting default values for options, or you can set
it explicitly as in the following example:

 pdl> $x=zeroes(20)->xlinvals(-2,2);
 pdl> $y=exp(-$x*$x);
 pdl> $xpoly = append($x->where($x <= 0), pdl(0));
 pdl> $ypoly = append($y->where($x <= 0), pdl(0));
 pdl> poly $xpoly, $ypoly, {FillType => â€™Hatchedâ€™};

STDIN

Page 17

In this example
 it is worth noting the added complications to ensure that the polygon is
 closed. In
addition we have used the option FillType
 to change the style of fill used. This can be finely
adjusted if
 necessary, for further examples see PDL::Graphics::PGPLOT
 and the discussion of
FillType in Options in plot commands.

Displaying images
PGPLOT was originally designed for astronomy and as such it has good
 support for the display of
2D-data. In PDL this support has been
 simplified and there is now only one command for image
display, imag
 , which internally chooses between different PGPLOT display commands.
 The simplest
use of imag is to let it act on a 2D piddle so:

 pdl> $a = rvals(50,50, {Center => [25, 25]});
 pdl> imag $a;

STDIN

Page 18

However, most likely you will find that the shape is not
 circularly symmetric because the aspect ratio
of your graphics window is
 different from 1. How then can we correct this? The easiest solution is

probably to make sure that your graphics device has aspect ratio 1 by
 giving the Aspect option to the
dev command
 (see Setting up the plot area).

That isn't always an option though, and an alternative approach is to
 use the option Pix to the imag
command. This lets you adjust the
 aspect ratio of the image pixels. You can in addition specify the
number
 of image pixels per screen unit with the option Pitch so that to
 display the previous image
with square pixels and 2 image pixels per
 screen pixel you use:

 pdl> imag $a, { Pix => 1, Pitch => 2 }

You can also use Unit to specify the unit used for scaling and Scale for the reciprocal of Pitch,
see the PDL::Graphics::PGPLOT
 documentation for details. The Pix option only adjusts the

coordinate ranges and this might not always be what you require. In such
 situations a solution might
be to create a square plot window directly
 as mentioned earlier.

In addition you might want to specify a stretch of the gray-scale of the
 image. This can be obtained
first by specifying the max and min values
 of the displayed image (everything above is set to the max
value and
 everything below to the min value). This is set with the Min and Max options. Additionally it
is possible to adjust the image transfer
 function using the option ITF. Allowed values are Linear,
Log
 and Sqrt.

You can also add a colour bar (colour wedge in PGPLOT parlance) to the
 image display. This is
accomplished either using the draw_wedge (see
 below) command directly or by setting the
DrawWedge option to true in
 your call to imag . If you want to pass options to the draw_wedge

command, you can do that with the Wedge option. See below for
 further details.

Transforms

Finally a very useful feature of PGPLOT that is relevant both to images
 and also the contour plots
(see below) is the concept of a transform
 matrix. This is a 6 element vector, T(i) which maps input

STDIN

Page 19

pixels into display pixels so that pixel i,j is mapped to:

 X(ij) = T0 + T1(i) + T2(j)
 Y(ij) = T3 + T4(i) + T5(j)

It is always simplest to refer to this equation the first few times one
 sets up a transform vector.You
use this whenever your pixel positions in
 the real world were different from that represented by your
input image
 array.

 use PDL;
 use PDL::Graphics::PGPLOT;
 # Create two plot areas in the X-directions dev('/xs', 2, 1);
 # Create a Gaussian around the center of the image
 $a = rvals(101, 101, {Center => [50, 50]});
 $y = exp(-$a*$a/50.);
 # Display with a linear transfer function
 imag $y;
 # This transform vector maps the extreme points to
 my $tr = pdl(-10, 1.0/5.0, 0, -10, 0, 1.0/5.0);
 # Finally display the image with the transform and
 # a logarithmic transfer function.
 imag $y, {Transform => $tr, ITF => 'Log'};

Here we are contrasting two different ways of displaying the same image.
 On the left is the default
display of a Gaussian, whereas on this right
 is the result when mapping the pixels to a range from -10
to 10
 with a logarithmic transfer function. Here we show the use of the ITF
 and and Transform
options. Note that using Transform in
 conjunction with Pix is going to lead to unwanted results!

Colour bar/wedge

It is often desireable to annotate an image with a colour wedge showing
 the range of values in the
image. This is accomplished with the draw_wedge function in PDL::Graphics::PGPLOT (but you can
avoid
 calling this directly by setting the DrawWedge option in your call to imag , see above). This

STDIN

Page 20

function should normally give a decent result
 without the user setting any options except the Label
option which
 sets the annotation, but occasionally it is necessary to change its
 behaviour and that is
done by setting the following options:

Side

What side the wedge will appear on, the default is the right side and it
 is specified as a single
character, ' B ' for bottom, ' L ', ' T ' and ' R ' for left, top and right respectively.

Displacement

The distance away from the axis. Default=2.

Width

The width of the wedge. Default=3

Foreground

The value to set the foreground
 colour to. This can be referred to as Fg as well. The default is
the
 max value used by imag when drawing the image.

Background

The value to set the background
 colour to. This can be referred to as Bg as well. The default is
the
 min value used by imag when drawing the image.

Label

The label used to annotate the wedge.

 dev '/xs', {WindowWidth => 6, Aspect => 1};
 $im = rfits('Frei/n4013lJ.fits');
 $im += abs(min($im)-1);
 $im = log10($im);
 imag($im, {PlotPosition => [0.1, 0.85, 0.175, 0.925], Min => 2.6, Max
=> 2.0 });
 draw_wedge({Wedge => {Width => 4, Label => 'Log Counts', Displacement
=> 1}});

Note that you will sometimes need to directly set the plot size to avoid
 clipping in the display. A full
example that shows the use of draw_wedge can be seen in the Figure above where we display a
galaxy
 and display a look-up table next to it.

STDIN

Page 21

Contour plots and vector fields
Contour plots are very similar to image displays and display lines at
 particular levels of the image. The
function to create contour plots is cont which at the simplest level only takes a 2D array as its

argument.

 $a = sequence(100,100); cont $a;

That might be all you need, but most likely you would like to specify
 contour levels, label contours and
maybe draw them in different colours.

You use the option Contours to give the wanted contour levels as a
 piddle and Labels to give an
anonymous array of strings for labels as
 shown in the example below:

 use PDL; use PDL::Graphics::PGPLOT;
 dev(â€™/xsâ€™);
 $y = ylinvals(zeroes(100,100), -5, 5);
 $x = xlinvals(zeroes(100,100), -5, 5);
 $z = cos($x**2)+sin($y*2);
 cont $z, {Contours => pdl(-1, 0, 1), Labels => [â€™-1â€™, â€™0â€™,
â€™1â€™]};

STDIN

Page 22

In addition it is possible to colour the labels differently from
 the contour lines (LabelColour), to
specify the number of contours
 instead of their values (NContours) and to draw negative contours
 as
dashed lines and positive as solid lines by setting the option Follow to a value >0.

Overlaying a contour plot on top of an image is as easy as displaying
 the image, call hold and
display the contour plot. The reader might
 want to try a colour version of the example above ($z as in
the
 example):

 pdl> ctab('Fire');
 pdl> imag $z; hold;
 pdl> cont $z, {Contours => pdl(-1,0,1)};

The final 2D plot command we will deal with here is the command for
 plotting a vector field, vect.
This command takes two arrays as
 arguments. The first gives the horisontal component and the
second the
 vertical component of the vector field. The length of the vectors can be
 set using the
SCALE option and the position relative to the pixel
 centers with the option POS.

What is important to note with a command like vect is that you can
 use the Transform option to
map a smaller vector array to a larger
 image. This is often useful because a vector field with 256 x
256
 arrows on top of a similarly sized image will quickly be unreadable. The
 result of using this
technique is shown below together with the code
 that produced the plot.

STDIN

Page 23

 pdl> $x = xlinvals(zeroes(100,100), -5, 5)
 pdl> $y = ylinvals(zeroes(100,100), -5, 5)
 pdl> $z = sin($x*$y/2)
 pdl> imag $z;
 pdl> hold;
 # Show the partial derivatives wrt. x & y as vectors
 pdl> $xcomp = $x*cos($x*$y/2)/2
 pdl> $ycomp = $y*cos($x*$y/2)/2
 # We want to show only every tenth vector for clarity
 pdl> $s = '0:-1:10,0:-1:10';
 # Finally we need to map the final 10x10 array to the 100x100 image
 pdl> $tr = pdl(0,10,0,0,0,10)
 pdl> vect $xcomp->slice($s), $ycomp->slice($s), {Transform=>$tr}

Drawing simple shapes
In addition to the simple commands described above, there are a few
 convenient commands for
drawing simple shapes such as circles, ellipses
 and rectangles. These are fairly straightforward
commands with similar
 options and invocations so we will go through them fairly quickly. A
 common
issue with these commands as with the poly command is that
 they draw filled shapes, if you want
outlined shapes to be drawn you
 have to set the Filltype option to Outline.

The circle command is probably the simplest, it draws a circle (which
 may or may not look like a circle
depending on the aspect ratio of your
 display - see Setting up the plot area. The user specifies the

radius and the x and y position of the center:

 pdl> dev â€™/xsâ€™, {Aspect => 1, WindowWidth => 5}
 pdl> env 0, 10, 0, 10
 pdl> $radius=2; ($x, $y) = (4, 4)
 pdl> circle $x, $y, $radius, {LineWidth => 3}

STDIN

Page 24

The ellipse function is like the circle function but it requires
 the user to specify the minor and
major axis and the angle between the
 major axis and the horisontal. For ease of use it is probably
better to
 specify these as options, but if you remember the order you can also
 give them directly as
arguments to the function (x-position, y-position, major axis, minor axis, angle):

 pdl> dev â€™/xsâ€™, {Aspect => 1, WindowWidth => 5}
 pdl> env 0, 10, 0, 10
 pdl> ellipse 4, 4, {MajorAxis => 2, MinorAxis => 1, Theta =>
atan2(1,1)}

STDIN

Page 25

And finally the rectangle command draws
 rectangles where you can give the position of the centre,
the length of
 the sides and the angle with the horisontal. The operation is very
 similar to the ellipse
command with the length of the sides of the
 rectangle taking place of the major and minor axis.

 pdl> dev â€™/xsâ€™, {Aspect => 1, WindowWidth => 5}
 pdl> env 0, 10, 0, 10
 pdl> rectangle 4, 4, {XSide => 2, YSide => 1, Angle => atan2(1,1)}

STDIN

Page 26

Note that Angle and Theta are synonyms.

In addition you can set the sides to be similar by setting the Side
 option to the length you require.
The lengths are all specified in
 data-coordinates (which is why you should do a plot or call env
 before
using any of these commands).

For other shapes or when these are not sufficiently flexible you should
 use the poly command which
is called by both rectangle and ellipse .

Text and legends
The main command for drawing text on the plotting surface is the text
 command which at its basic
level just draws a string from the given x
 and y position:

 pdl> dev â€™/xsâ€™
 pdl> env 0,10,0,10, {Axis => â€™GRIDâ€™}
 pdl> text â€™Left justifiedâ€™, 4, 1
 pdl> text â€™Centeredâ€™, 4, 2, { Justification => 0.5}
 pdl> text â€™Right justfiedâ€™, 4, 3, { Justification => 1.0}

STDIN

Page 27

Here we have included grid-lines to show the effect of the different
 justifications. Note that Justify
is a synonym for Justification,
 and that you need to give numerical values for the position.
Normally
 the text background is transparent as shown here, but you can also set
 an opaque
background by setting the BackgroundColour option to a
 colour name or value (see also the next
section).

In addition to the justification option one can also change the angle of
 the text using the Angle option
and specify the text and/or x and y as options (the best advice is to either do all or none).

 pdl> text {XPos => 1, YPos=> 4, Angle => 25, Text => 'Tilted'}

Non-alphanumeric symbols

PGPLOT has extensive support for non-alphanumeric characters in text
 strings and also offers
reasonable control over the display of
 superscripts, subscripts etc. This is all achieved using escape
sequences.
 In PGPLOT these are all signaled by the character \ .
 Thus \u starts a superscript or
ends a subscript - it signals a shift
 "up". Likewise \d starts a subscript or ends a superscript. Consult

the PGPLOT documentation for a full list.

Labelling your figures in PGPLOT
The only additional text-related function in the PDL::Graphics::PGPLOT
 interface is the legend
command which draws a legend in the plot
 window. This is a more complex routine which can be a
time-saver as soon
 as you have learned how to use it. It takes the same arguments as the text
command with the exception that the text argument is an
 anonymous array of labels for the legend,
and that a fourth argument is
 accepted which specifies the width of the box in which the legend will
 be
drawn. If this is not set or it is set to the string Automatic it
 will be adjusted to contain the legend
with the default font-size (or
 that set by the user via the CharSize option).

STDIN

Page 28

 pdl> $x = sequence(100) / 5; $y1 = sqrt($x); $y2 = $x**2;
 pdl> env(0, 4, 0, 15);
 pdl> line $x, $y1, {LineStyle => 'Dashed', Colour => 'Red'}
 pdl> line $x, $y2, {LineWidth => 3, Colour => 'Blue'}
 pdl> legend ['sqrt(x)', 'x \backslash u2'], 0.5, 10,
 {LineStyle => ['Dashed', undef],
 LineWidth => [undef, 3], Colour => ['Red', 'Blue'] }
 # ,Width => 1.0 } makes x**2 legend disappear, why?

The idea of the legend command is that you give the line-styles,
 line-widths, colours or symbols you
want to illustrate as anonymous
 arrays to the LineStyle, LineWidth, Colour and Symbol

options. Not very clear? Well, maybe an example will help.

The figure above is an example of legend in use. Two lines are drawn, a
 red dashed line and a blue
thick line. To annotate this plot using legend you give the text annotations as an (anonymous) array
of
 strings, the x and y position of the legend box and an anonymous hash
 containing information
about the legends to draw as shown in the
 example. The options used to specify a particular draw
style are the
 same as the ones used in the call to line and will undergo the same
 translations-note
however that you can specify a value of undef
 which requests that the current default for the

linestyle/linewidth/colour etc. is used. The Width option is used to set the width of the legend box and
is given
 in data coordinates. The idea is that you will create the plot, see
 where you want the legends
to go and then set the x and y width to the
 appropriate settings and redoing the plot, possibly using
the replay
 mechanism, see Recording and playing back plot commands.

The legend command has several options, the main of which are
 illustrated above. The remaining
options are useful for tweaking the
 appearance, and a full list is as follows:

Text

The text, this is an alternative to specifying it as the first argument
 to the function.

XPos

STDIN

Page 29

The X-position of the text, again as an alternative to specifying it as
 the second argument.

YPos

The Y-position of the text, again as an alternative to specifying it as
 the third argument.

Width

The width of the (invisible) box the legend is drawn inside. This can
 also be specified as the
fourth argument to the legend command. If
 this is set to the string Automatic the width is
calculated from the
 character size used.

Height

This can be used as an alternative constraint on size, giving the height
 of the legend box. If
both Width and Height are specified the
 smallest size is used (characters are not
compressed or stretched to
 fit).

TextFraction

The fraction of the box set aside for text. The default is 0.5 which
 usually is ok. Note that this
option used to be called Fraction ,
 which still is available as a synonym.

TextShift

This option allows for fine control of the spacing between the text and
 the start of the
line/symbol. It is given in fractions of the total
 width of the legend box. The default value is 0.1.

VertSpace

By default the text lines are separated by one character height (in the
 sense that if the
separation were 0 then they would lie on top of each
 other). The VertSpace option allows
you to increase (or decrease)
 this gap in units of the character height; a value of 0.5 would
add half
 a character height to the gap between lines, and -0.5 would remove the
 same
distance. The default value is 0. This option has VSpace as a
 synonym (more natural for the
TeX-heads out there).

Using colour
PGPLOT has a two disjoint sets of colours. One set determines the colour
 table used when displaying
images and is initialised to a grayscale, and
 the other is a set of 15 colours used to colour all other
plotting
 objects. The latter set is accessible through the Colour option
 described in Options in plot
commands Here we will concentrate on
 accessing the lookup-table for image display.

The command used to change the colour table is ctab, which in its
 generic form takes six arguments
specifying the intensity levels, red,
 green and blue colour components, contrast and brightness levels.
The
 contrast and brightness are optional so that we can say:

 pdl> $int = pdl([0, 0.33, 0.66, 1.0])
 pdl> $r = pdl([0.5, 0, 0.5, 1])
 pdl> $b = pdl([0.0, 0.5, 1.0, 0.5])
 pdl> $g = pdl([1.0, 0.5, 0.0, 0.5])
 pdl> ctab($int, $r, $g, $b);
 pdl> $a = rvals(100, 100)
 pdl> imag $a

STDIN

Page 30

...which should display a circularly symmetric figure
 with green in the centre, going through blue to
red-ish where $a is
 at a maximum.

It is however normally sufficient to use the colour tables made
 available by PDL::Graphics::LUT.
This package makes available a
 large number of standard colour tables which can be accessed using
the
 following commands:

lut_names

This returns a perl list of the available colour tables.

lut_ramps

As above, but returns a list of the names of the available intensity
 ramps.

lut_data

And finally the data in the tables can be accessed with this function
 which takes as arguments
the name of the colour table, and optionally a
 scalar determining if the colour table is to be
reversed and the name of
 an intensity ramp (default is a linear intensity ramp). The function

returns four piddles with intensity and RGB values which can immediately
 be passed to ctab.

Note that these commands do not set the colour table for you, you will
 still need to call ctab to do
that.

Thus to set one of the colour tables in the PDL::Graphics::LUT
 package, you do:

 pdl> use PDL::Graphics::LUT;
 pdl> print "Available tables: ".join(', ', lut_names());
 Available tables: aips0, backgr, bgyrw, blue, blulut, color, green,
 heat, idl11, idl12, idl14, idl15, idl2, idl4, idl5, idl6, isophot,
light,
 manycol, pastel, rainbow, rainbow1, rainbow2, rainbow3,
 rainbow4, ramp, random, random1, random2, random3,
 random4, random5, random6, real, red, smooth, smooth1,
 smooth2, smooth3, staircase, stairs8, stairs9, standard
 pdl> ctab(lut_data \series default ('rainbow1'));

STDIN

Page 31

 pdl> imag rvals(100,100);

which should give you a colour table that goes from black through green,
 blue and yellow to red.

All the colour tables with their names overlaid can be generated with
 this script:

 use PDL::Graphics::PGPLOT;
 use PDL::Graphics::LUT;
 dev("/xs",3,15);
 foreach(lut_names()){
 print"$_\n";
 ctab(lut_data($_));
 imag sequence(250,1);
 text $_,20,-0.2,{CHARSIZE=>20,LINEWIDTH=>20,COLOUR=>0};
 text $_,20,-0.2,{CHARSIZE=>20,LINEWIDTH=>1,COLOUR=>1};
 }

And the resultant figure is shown below:

Threading in PDL::Graphics::PGPLOT
The plot commands do not always lend themselves to easy threading
 because it can sometimes be
difficult to know what the user intends to
 do when (say) an array of images is passed to the imag
command. Are
 they to be displayed in several plot panels, are they to be plotted on
 top of each other,
seamlessly plotted next to each other? But even more
 complex is the question of treatment of options
and how to deal with
 these if there are less options than for instance, lines to draw (a
 common
occurence if you wanted to draw a lot of lines).

That said the PDL::Graphics::PGPLOT interface does have limited
 support for threading in the
line and points functions. These call
 the tline and tpoints internally, and work just like line
and points except that they expect the input y-piddle to be 2D, with
 each line in the array plotted
against the x-piddle.

The way the options are treated is the most interesting. To set options
 for a set of lines, give an
anonymous array as argument to that option
 with a value for each line. If you give more options than
there are
 lines, the surplus is ignored. However if you give less, the options are
 repeated from the
start. Although possibly a bit confusing this is very
 powerful because you can get a large number of

STDIN

Page 32

combinations of colour
 and linestyle. For instance if you give 4 colours and 5 linestyles, you
 get a total
of 20 distinct combinations and should you give 3 linewidths
 as well you will suddenly have 80
different styles to work with with
 very little typing. Note however that you need to make sure that the

numbers you give are relativel y prime - otherwise you will get much
 less possibility, just think of the
situation where you have 4
 linestyles and 4 colours, they will just loop in harmony and result in
 only 4
combinations.

Anyway, let us see how it all works in practice by creating a plot of
 sine curves with different
frequencies. This is a simple example where
 we want to colour all even frequencies with red and all
odd with blue
 and vary the line-styles as well:

 pdl> $pi=4*atan2(1,1);
 pdl> $x=zeroes(50)->xlinvals(0, $pi)
 pdl> $freq = sequence(10)
 pdl> $y = sin($freq*transpose($x))
 pdl> line $x, $y, {Colour => [â€™Redâ€™, â€™Blueâ€™],
Linestyle=>[0,1,2,3,4,5]}

Recording and playing back plot commands
Have you ever created a good-looking plot on the command line of
 an interactive data program, be it
PDL, IDL, Matlab, Octave or any other
 package, and wished that you could make a quick Postscript
copy of it
 only to find that you need to redo all the commands? I certainly
 have. In the newer versions
of PDL this
 is thankfully not the case anymore. These have a recording facility
 built in. However this is
not enabled by default (for reasons described
 later in this section), you need to turn it on yourself. The
way to do
 this is to set the $PDL::Graphics::PGPLOT::RECORDING
 variable to a true value:

 pdl> $PDL::Graphics::PGPLOT::RECORDING = 1

You can turn this on automatically in the perldl shell if you put
 this command in your ~/.perldlrc
file. Alternatively you can turn on
 recording for each plot device independently by setting the

STDIN

Page 33

Recording
 option to true when starting a device:

 pdl> dev '/xs', {Recording => 1}

Note that if you set the variable it must be set after you have use'd the PDL::Graphics::PGPLOT
because this package sets the
 variable when it initialises to its default value of zero.

In the following I will focus my attention on using the recording and
 playback functions in the perldl
shell as I envisage that it will be
 most useful there. There are a couple of potential uses in scripts as

well which I will get back to below, but this is not well thought
 through yet.

Before we continue it should also be added that the recording facility
 is somewhat experimental. In
particular it doesn't deal very well with
 multi-panel plotting where you jump back and forth between
panels. If
 you want to do that, make sure you specify the Panel option for every
 call.

It is very easy to use the recording facilities with a few less obvious
 aspects. An example should go a
long way to get you to understand the
 basics. First we set up a simple plot using the commands we
learned
 above:

 pdl> use PDL::Graphics::PGPLOT
 pdl> $PDL::Graphics::PGPLOT::RECORDING = 1
 pdl> $x = sequence(10)
 pdl> $y = random(10)
 pdl> dev '/xs'
 pdl> env(-1, 11, -0.5, 1.5, {Xtitle => 'Number'})
 pdl> points $x, $y, {Symbol => 'Plus'}

which should give you a scatter plot on screen. Now after constructing
 this fantastic piece of scientific
illumination you decided to make a
 Postscript version of it, but you are loathe to use the up key to

execute the commands again so you decide to use the recording
 facilities.

 pdl> $s = retrieve_state()
 pdl> dev 'replay_ex.ps/ps'
 pdl> replay $s

That is all. These commands should now have created a file called replay_ex.ps in the present
directory.

The retrieve_state commands retrieves the current state of the plot
 device and returns a variable
to hold this in. This state contains
 references to the data plotted and plot commands executed and
can be
 replayed, or re-executed, at a later stage using the replay command.
 You can also turn on
and off recording temporarily with the turn_off_recording and turn_on_recording
commands.

This suffices for most situations and should work for any complexity of
 plot constructed. There are
however a few rules that needs to be
 observed and possible pitfalls:

If you turn on recording globally using $PDL::Graphics::PGPLOT::RECORDING, you must set the
variable before opening a plot device because the value of the variable is
 only checked then. If you
forget, you can of course always turn it on
 with the turn_on_recording function.

The state is cleared whenever the plot window is
 erased, or if the user executes the clear_state
command. In
 particular this occurs when you change plotting device (although if you
 use several
windows they will each have their own state; see also the
 following section), so use the
retrieve_state command before you
 change device!

The state contains references to the data plotted.
 This does not use memory (at least not
appreciably!), but it does mean
 that an extra reference to the data is kept and the memory to the data

might not be freed when you expect it to. This can be problematic if you
 make a lot of image displays.
The best ways to avoid this problem in the perldl shell is to call the clear on the state: perldl>

STDIN

Page 34

$s->clear() or to re-use the variable next time you call retrieve_state. Note that this should
only be a problem if you
 explicitly call retrieve_state.

Finally since only references to the data are
 held, make sure you do not modify them before calling
replay or you
 might end up with a rather different looking plot!

What we covered now is the basic use of the recording facility, which
 hopefully will come in handy
rather often (which is why I recommend
 enabling it permanent ly in the perldl shell as outlined
above).
 However there are slightly less common uses of the facility that might
 come in handy:

Redoing a plot with slightly different data

The fact that the recording state contains references to the data
 enables a somewhat tricky but
potentially very useful trick to be
 executed: Redoing the plot with adjusted data. Sometimes you make
a
 complex plot only to discover that you had made an error with your data
 and you need to redo it.
This is where you can use the recording
 functions: Retrieve the state, make adjustments to the data
making sure
 not to break the link and run replay.

However, although this sounds quite easy it has a few subtleties that
 can give surprising results at
times. It might therefore be a good idea
 to look at a few, very similar and very basic, examples and
compare
 their effects. So let us first of all open a plot device:

 pdl> dev '/xs', {Recording => 1}

NOTE: What I describe here is not well tested and is probably buggy. This needs to be sorted
out before finishing - at least I have had a few weird results when trying this out.

We are going to use our example of plotting a parabola, and
 replaying it with various parameter sets.
Let us therefore define a
 couple of variables and plot this, first letting PDL decide on the plot
 limits:

 pdl> $x = sequence(10); $y = $x*$x
 pdl> line $x, $y;
 pdl> $s = retrieve_state()

The whole point of this problem is to change the variables, so let us
 add 3 to the X-values and replay
the command:

 pdl> $x += 3
 pdl> replay $s

This should give you a part of a parabola from x=3 to x=12, but
 now defined by the equation
y=pow((x-3),2) . Also the limits of the
 plot window should have adjusted themselves to the new x
values. Note
 that the y values are unchanged.

In the previous example the limits in the plot window adjusted to the
 new values for x and y because
the line command sets the plot
 limits if the plot is not held (such as with an explicit call to env). But
what happens if we redo the example with our own chosen
 limits?

 pdl> $x = sequence(10); $y = $x*$x
 pdl> env (0, 9, 0, 81)
 pdl> line $x, $y;
 pdl> $s = retrievestate()
 pdl> $x += 3; replay $s

The result now should be as shown in Figure XXXXXXXX
 which has the same plot limits as before,
but a shifted parabola. This
 is because the state now remembers the explicit env statement that
 you
had made and uses that to set the limits.

Finally you must remember that the reference is not to a variable name,
 but to a piddle which exists
separately from the variable. Thus you
 cannot change your data at a whim, so the following change

STDIN

Page 35

will change
 the data back to where we started

 pdl> $x -= 3; replay $s

But the following will not plot a parabola
 starting at x=5:

 pdl> $x = sequence(10)+5.0; replay $s

The reason for this is that the reference kept in the state object is to
 the actual data in the previous $x
-object and not to the variable
 name.

However sometimes you want to give a entirely new dataset to the plot.
 Say you wanted to plot a sine
curve instead of a parabola. Is there any
 way to do that? The answer is yes, but it looks rather ugly,
so you
 might want to consider whether this is something you want to do

 pdl> $x = sequence(10); $y = $x*$x
 pdl> line $x, $y; $s=retrievestate()
 # Now let us transfer this to a sine plot
 pdl> $y -= $y; $y += sin($x)
 pdl> replay $s

And voila! a sine curve does step forth. Not exactly elegant,
 but this trick allows you to replace any
variable used in a complex plot
 with a totally different content.

Using recording in scripts

In general the recording facility is of rather limited use in scripts
 because you can just as easily
encapsulate your plot commands in a
 subroutine and just call the subroutine when need be. At
present the
 only saving is probably in typing, but if the facility is extended to
 saving and restoring plot
commands the situation would change.

The object oriented approach
Assume that you are developing a simulation. When you are testing the
 code (all written in PDL of
course) you have to keep track of how some
 data changes at every time-step, but at the same time
you want to look
 at time-averages. If you were to use what we discussed above you would
 probably
want to display the time-steps in one panel and the
 time-averages in another panel in a plot window.
The problem with this
 is of course that one panel is updated a lot more often than the other
 so you
have to waste a lot of time re-plotting the time-average.

Clearly there are two possible ways to improve this: a) have a method
 which allows you to plot to a
given panel when you want and b) have to
 plot windows. It is possible to use the first approach by
giving the Panel option to the plot commands:

 dev('/xs');
 for (my $i=0; $i<$n; $i++) {
 $integrand = func($x, $i);
 points $x, $integrand, {Panel => 2};
 $sum += $integrand;
 }
 points $x, $sum/$n, {Panel => 1};

So that this hypothetical code-bit would keep plotting in panel 2,
 updating the plot there until the loop
is over at which point panel 1 is
 updated.

This can be practical, but it is rather limited given the requirement of
 giving the panel number every
time. Instead an alternative approach
 would be to create several plot windows, and for this you really
ought
 to use an object oriented approach. In this approach every plot device
 is a separate object and
you call every plot command via this object. So
 the previous example would be

STDIN

Page 36

 my $opt = {Device => '/xs', WindowWidth => 7, Aspect => 1};
 my $integrandwindow = PDL::Graphics::PGPLOT::Window->new($opt);
 my $integralwindow = PDL::Graphics::PGPLOT::Window->new($opt);
 for (my $i=0; $i<$n; $i++) {
 $integrand = func($x, $i);
 $integrandwindow->points($x, $integrand);
 $sum += $integrand;
 }
 $integralwindow->points($x, $sum/$n);

Why use the OO interface
So, you may say, what is the point with the OO interface except
 appeasing the OO fanatics around? It
seems to require more typing and I
 can see no significant advantage.

In many situations these are valid arguments, if you are just plotting
 data on the command line in
perldl , for instance, or do not need
 multiple plot windows. And at some level the OO interface is
primarily a
 convenience for the programme r, and it is in fact how the
 PDL::Graphics::PGPLOT
package is implemented. That said though there are
 some (possibly strong) arguments for using the
OO interface:

You do not pollute your namespace, which means
 that you are free to define routines that are
called line , points
 and so on. This is the main reason why I use this interface personally

when doing simple plots in programs.

It is a lot easier to deal
 with multiple plot windows when using the OO interface, in fact I would
personally discourage people from having multiple plot windows without
 using the OO
interface.

Eventually an argument in favour of the OO interface will hopefully be
 that it would enable an easier
mix of different plotting packages so
 that they can all be accessed in a similar way, but we are not
there
 yet.

Usage of the OO interface
To use the OO interface one needs to create a new plot object and then
 call the plot routines through
this object. If you want several windows,
 you just create more objects and switching between these
should be
 straightforward as you should be able to see in the following examples.

Note that since the OO interface is less suited to use on the command
 line, I have opted to show the
examples as small code-bits but they
 should all be possible to execute from the perldl command
line. In
 addition this section will merely give several examples of use of the OO
 interface and not
discuss (again) the different commands since they are
 the same as we went through above, it is just a
different way of calling
 them.

Opening a plot object and plotting a simple plot

To create a plot object we first need to use the PDL::Graphics2D
 package - this is merely a shortcut
for the true
 PDL::Graphics::PGPLOT::Window package, but why type more when it doesn't
 gain you
anything? Then we create the object using the standard Perl
 notation PDL::Graphics2D-new()> :

 use PDL;
 # Note that we could also access this as
 # PDL::Graphics::PGPLOT::Window, but since this is
 # shorter I advocate its use.

 use PDL::Graphics2D;
 # Now create a plot window
 my $winopt = {Device => '/xs', WindowWidth => 7, Aspect => 1};
 my $w = PDL::Graphics2D->new($winopt);

STDIN

Page 37

 # Create a simple plot
 $x = sequence(10);
 $w->points($x, $x*$x, {Symbol => 'Triangle'};

Note how we use the window object ($w) when calling the points
 routine - since we didn't use the
PDL::Graphics::PGPLOT package
 there isn't any function called points in our namespace and we
use
 the window object to get hold of it. The structure is of course very
 similar to what we did in
Drawing lines and plotting points
 above and there really is little practical difference between the two

interfaces when plotting to only one window.

Therefore let us up the stakes somewhat and try a more practical
 example. In many situations you
might have one plot where each point in
 the plot has many values associated to it (i.e. your plot is a
slice in
 a multidimensional space). When you examine such data you often would
 like to click on a
point on your plot and bring up associated data for
 that point in a different display - this is an obvious
situation for the
 OO interface.

The logic for this project is easy: We first create two windows

 use PDL;
 use PDL::Graphics2D;
 # Create two identical windows
 my $winopt = {Device => '/xs', WindowWidth => 7, Aspect => 1};
 my $data = PDL::Graphics2D->new($winopt);
 my $associated = PDL::Graphics2D->new($winopt);

Note that it is a good idea to name your variables containing the window
 objects with sensible names
for later use.

The next step is to plot data (well, in this example I will merely
 create them):

 my $x = sequence(10);
 my $y = $x**2;
 # Plot points using standard symbol
 $data->points($x, $y);

which should draw a nice parabola on your screen. Now the user (that is
 you, reader) has to click on
(or near) a point to select it - we will
 then use the X-value of that point to set the period of sine curve:

 print "Dear user, please click on (or close to) a point\n";
 my ($xin, $yin) = $data->cursor();
 # closest will now contain the index of the point closest to
 # where the user clicked.
 my $closest = minimum_ind(abs($x-$xin) + abs($y-$yin));
 my $y_associated = sin($x->at($closest)*$x);
 $associated->line($x, $y_associated);

That should now give you a sine wave in the second window with a
 frequency dependent on where
along the X-axis you clicked. Of course it
 would be a lot easier to use $xin, but that wasn't what we
tried to
 do after all.

This is of course a very simplified example, but it does provide a
 framework for a more
comprehensive data explorer. From astronomy a
 typical example would be to plot scatter-plots for two
variables and
 bringing up images of the objects by clicking at their data in the plot
 window. In other
situations the data might be financial data for a set
 of companies and clicking on the points would
bring up a comprehensive
 summary of that company. You are limited by your imagination!

The bottom line is that whatever your requirements are, the OO approach
 is probably better when you
need more than one plot window, but when you
 only use one window, and particularly on the perldl

STDIN

Page 38

command line.

Using PGPLOT commands directly
The Perl module PGPLOT contains interfaces to all PGPLOT functions. The
 majority of these
functions have alternative interfaces in the PDL
 package, but there might be situations when you
need to use these
 functions directly. And in addition if you are used to using PGPLOT from
 before you
might prefer the interface, although it is rather
 inconvenient when dealing with PDL.

Full documentation for the PGPLOT functions can be found at Tim
 Pearson's WWW page:
http://astro.caltech.edu/~tjp/pgplot/ . This is
 not the place to discuss the details of
PGPLOT, but it is interesting to
 learn how to access these routines from PDL with piddles as
arguments.

Typical PGPLOT drawing functions take as arguments the number of points
 and references to perl
arrays to give x and y coordinates, thus:

 @x = (1,2,3);
 @y = (3,-1,7);
 pgpoint(3, \@x, \@y, 4);

will plot three points with the x and y values indicates and using
 plotting symbol 4 (circle).

The complication for PDL users is that piddles are not perl arrays and
 hence have to be converted to
array references before they can be passed
 to a PGPLOT function. This is achieved with the
get_dataref command
 which returns a reference to the data in a piddle. Thus the example
 above
would be written:

 $x = pdl(1,2,3);
 $y = pdl(3,-1,7);
 pgpoint($x->nelem, $x->getdataref, $y->getdataref, 4);

in PDL.

In general you should use the provided wrapper routines for readability,
 but feel free to combine the
two if you prefer. You should be able to
 pick'n'mix functions from the PDL interface and from PGPLOT
directly,
 although a few subtle bugs might creep in (in particular the handling of
 several plot windows).

There are several situations where direct access to PGPLOT might be
 necessary. Although hopefully
they are not very common, it can be useful
 to look at a few to see what the PDL::Graphics::PGPLOT
module doesn't
 do. Since it is possible to mix PGPLOT commands with the
 PDL::Graphics::PGPLOT
commands this is not a major problem though,
 although it might require you to learn some PGPLOT.
So to turn to some
 examples, I have decided to list a few simple problems:

Drawing several plot boxes on top of each other to
 get differently shaded grids. This is done in
one of the demonstration
 programs that come with PGPLOT and can't be easily done in

PDL::Graphics::PGPLOT without some playing around with the PlotPosition option. It is a
lot easier to call pgbox directly.

Complex contour plots - in particular
 non-rectangular. At present there is no support for
non-rectangular
 contour plots in PDL::Graphics::PGPLOT, and neither is any support
 planned
for the near future. You are advised to read the PGPLOT
 documentation for pgconx and have
a look at demo #3 in the PGPLOT
 distribution for an example.

The bottom line is that as your plots get more and more complex you
 might end up in a situation
where you need the finer control offered by
 the PGPLOT package, but for day-to-day use it is hoped
that
 PDL::Graphics::PGPLOT will address most people's needs. And if doesn't
 then let us know!

Credits
Original text from "PDL - Scientific Programming in Perl" (2001) Chap. 4

STDIN

Page 39

Authors: Karl Glazebrook, Marc Lehmann, John Cerney, Christian SoÌˆller,
 Jarle Brinchmann, Robin
Williams, Christopher Marshall, Tuomas J. Lukka,
 Doug Hunt, Tim Pickering.

Modified to LyX by Chris Marshall for PDL 2.4.3, December 2006.

Converted to POD format by Matthew Kenworthy, May 2010.

