® BioPerl Tutorid
® |. Introduction
[.1 Overview
.2 Software requirements
[.2.1 Minimal bioperl installation
|.2.2 Complete installation
[.3 Installation
[.4 Additional comments for non-unix users
rief introduction to bioperl’s objects
I1.2 Sequence objects: (Seq, PrimarySeq, LocatableSeq, LiveSeq, LargeSeq, Seql)
[1.3 Alignment objects (SimpleAlign, UnivAln)
[1.4 Interface objects and implementation objects
® [II. Using bioperl
[11.1 Accessing sequence data from local and remote databases
[11.1.1 Accessing remote databases (Bio::DB::GenBank, etc)
[11.1.2 Indexing and accessing local databases (Bio::Index::*,
[11.2 Transforming formats of database/ file records
[11.2.1 Transforming sequence files (SeqlO)
[11.2.2 Transforming alignment files (Alignl O)
[11.3 Manipulating sequences
[11.3.1 Manipulating sequence data with Seq methods
[11.3.2 Obtaining basic sequence statistics- MW, residue & codon
[11.3.3 Identifying restriction enzyme sites (RestrictionEnzyme)
[11.3.4 Identifying amino acid cleavage sites (Sigcleave)
[11.3.5 Miscellaneous sequence utilities: OddCodes, SegPattern
[11.4 Searching for "similar" sequences
[11.4.1 Running BLAST localy (StandAloneBlast)
[11.4.2 Running BLAST remotely (using Blast.pm)
[11.4.3 Parsing BLAST reports with Blast.pm
[11.4.4 Parsing BLAST reports with BPlite, BPpsilite and BPbl2seq
[11.4.5 Parsing HMM reports (HMMER::Results)
[11.5 Creating and manipulating sequence alignments
[11.5.1 Aligning 2 sequences with Smith-Waterman (pSW)
[11.5.2 Aligning 2 sequences with Blast using bl2seq and AlignlO
[11.5.3 Aligning multiple sequences (Clustalw.pm, TCoffee.pm)
[11.5.4 Manipulating / displaying alignments (SimpleAlign, UnivAln)
[11.6 Searching for genes and other structures on genomic DNA
[11.7 Devel oping machine readabl e sequence annotations
[11.7.1 Representing sequence annotations (Annotation,
[11.7.2 Representing and large and/or changing sequences
[11.7.3 Representing related sequences - mutations,
[11.7.4 Sequence XML representations - generation and parsing
® |V. Related projects - biocorba, biopython, biojava, Ensembl,
O 1V.1 Biocorba
O 1V.2 Biopython and biojava
O 1V.3 Ensembl
O 1V.4 The Annotation Workbench and bioperl-gui
O V.1 Appendix: Public Methods of Bioperl Objects

O0OO0OWOOOOOO

(oNONONONONONG)

O V.2 Appendix: Tutorial demo scripts

BioPer| Tutorial

Cared for by Peter Schattner <schattner@lummt.edu>
Copyri ght Peter Schattner

This tutorial includes "snippets"” of code and text from various
Bi operl docunents includi ng nodul e docunentati on, exanple scripts
and "t" test scripts. You may distribute this tutorial under the
sane ternms as perl itself.

This docunent is witten in Perl POD (plain old docurmentation) fornat.
You can run this file through your favorite pod translator (pod2htm, pod2nan
pod2text, etc.) if you would Iike a nore convenient formatting.

Tabl e of Contents

. Introduction

I.1 Overvi ew
.2 Software requirenents
I.2.1 For minimal bioperl installation
|.2.2 For conplete installation
.31
4

nstal | ati on procedures
Addi tional conments for non-unix users
Il1. Brief overviewto bioperl’s objects
1.1 Sequence objects: (Seq, PrinmarySeq, Locatabl eSeq, LiveSeq, LargeSeq, Seql)
1.2 Alignment objects (SinpleAign, UnivAln)
1.3 Interface objects and inplenmentation objects
I1l. Using bioperl
I11.1 Accessing sequence data fromlocal and renote databases
[11.1.1 Accessing renote dat abases (Bio::DB::GnBank, etc)
[11.1.2 Indexing and accessing | ocal dat abases (Bio::lIndex::*, bpindex.pl, bp
I11.2 Transform ng formats of database/ file records
I11.2.1 Transforni ng sequence files (Seql O
[11.2.2 Transform ng alignnent files (Aignl O
[11.3 Mani pul ati ng sequences
I11.3.1 Mani pul ati ng sequence data with Seq nethods (Seq)
I11.3.2 Cbtaining basi ¢ sequence statistics- MN residue &odon frequencies (Seq
I11.3.3 Identifying restriction enzyne sites (Restricti onEnzyne)
I11.3.4 Identifying am no acid cl eavage sites (Sigcleave)
I11.3.5 M scell aneous sequence utilities: OddCodes, SeqgPattern
I11.4 Searching for "simlar" sequences
[11.4.1 Running BLAST locally (StandAl oneBl ast)
[11.4.2 Running BLAST renotely (using Bl ast.pn
I11.4.3 Parsing BLAST reports with Bl ast.pm
[11.4.4 Parsing BLAST reports with BPlite, BPpsilite and BPbl 2seq
I11.4.5 Parsing HM reports (HWER : Resul ts)
1.5 Creating and mani pul ati ng sequence alignments
I11.5.1 Aligning 2 sequences with Smth-Wternman (pSW
[11.5.2 Aligning 2 sequences with Blast using bl2seq and AlignlO
[11.5.3 Aligning nultiple sequences (C ustalw pm TCoffee.pm

[11.5.4 Manipulating / displaying alignments (SinpleAlign, UnivAl n)
e

I11.6 Searching for genes and other structures on genomic DNA (Genscan, Sinmd, ESTS
.7

Devel opi ng machi ne readabl e sequence annotati ons
I11.7.1 Representing sequence annotations (Annotation, SeqFeature)
I11.7.2 Representing and | arge and/or changi ng sequences (LiveSeq, LargeSeq)
I11.7.3 Representing related sequences - mutations, polynorphisns etc (Allele,
I11.7.4 Sequence XM. representations - generation and parsing (Seql O :gane)
IV. Related projects - biocorba, biopython, biojava, Ensenbl, Annotati onWrkbench
I'V.1 Biocorba
V.2 Bi opython and bi oj ava
V.3 Ensenbl
I V.4 The Annotation Wrkbench and bi operl -gu
Appendi ces
V.1 Public Methods of Principal Bioperl Objects
V.2 Tutorial Denmp Scripts

|. Introduction

.1 Overview

Bioperl isa collection of perl modules that facilitate the development of perl scripts for bio-informatics
applications. As such, it does not include ready to use programs in the sense that may commercial
packages and free web-based interfaces (eg Entrez, SRS) do. On the other hand, bioperl does provide
reusable perl modules that facilitate writing perl scripts for sequence manipulation, accessing of
databases using a range of data formats and execution and parsing of the results of various molecular
biology programsincluding Blast, clustalw, TCoffee, genscan, ESTscan and HMMER. Consequently,
bioperl enables devel oping scripts that can analyze large quantities of sequence datain waysthat are
typically difficult or impossible with web based systems.

In order to take advantage of bioperl, the user needs a basic understanding of the perl programming
language including an understanding of how to use perl references, modules, objects and methods. If
these concepts are unfamiliar the user isreferred to any of the various introductory / intermediate books
on perl. (I'veliked S. Holzmer’s Perl Core Language, Coriolis Technology Press, for example). This
tutorial is not intended to teach the fundamental s of perl to those with little or no experience in the perl
language. On the other hand, advanced knowledge of perl - such as how to write a perl object - is not
required for successfully using bioperl.

Bioper! is open source software that is still under active development. The advantages of open source
software are well known. They include the ability to freely examine and modify source code and
exemption from software licensing fees. However, since open source software is typically developed by
alarge number of volunteer programmers, the resulting code is often not as clearly organized and its
user interface not as standardized as in a mature commercial product. In addition, in any project under
active devel opment, documentation may not keep up with the development of new features.
Consequently the learning curve for actively developed, open source source software is sometimes

Steep.

Thistutorial isintended to ease the learning curve for new users of bioperl. To that end the tutorial
includes:

® Descriptions of what bio-informatics tasks can be handled with bioper|

® Directions on where to find the methods to accomplish these tasks within the bioperl package

® Recommendations on whereto go for additional information.

® A separate tutorial script (tutorial.pl - located in the top bioper! directory) with examples of many
of methods described in the tutorial.

Running the tutorial.pl script while going through this tutorial - or better yet, stepping through it with an
interactive debugger - is agood way of learning bioperl. The tutorial script is also agood place from
which to cut-and-paste code for your scri pt s(r at her than using the code snippetsin thistutorial). The
tutorial script should work on your machine - and if it doesn’t it would probably be a good ideato find
out why, before getting too involved with bioperl!

This tutorial does not intend to be a comprehensive description of al the objects and methods available
in bioperl. For that the reader is directed to the documentation included with each of the modules as well
asthe additional documentation referred to below.

| .2 Softwar e requirements

|.2.1 Minimal bioperl installation

For a‘‘minimal’’ installation of bioperl, you will need to have perl itself installed as well as the bioperl
‘“*core modules’’ . Bioperl has been tested primarily using perl 5.005 and more recently perl 5.6. The
minimal bioperl installation should still work under perl 5.004. However, as increasing numbers of
bioperl objects are using modules from CPAN (see below), problems have been observed for bioperl
running under perl 5.004. So if you are having trouble running bioperl under perl 5.004, you should
probably upgrade your version of perl.

In addition to a current version of perl, the new user of bioperl is encouraged to have accessto, and
familiarity with, an interactive perl debugger. Bioperl isalarge collection of complex interacting
software objects. Stepping through a script with an interactive debugger is avery helpful way of seeing
what is happening in such a complex software system - especially when the software is not behaving in
the way that you expect. The free graphical debugger ptkdb (available as Devel::ptkdb from CPAN) is
highly recommended. Active State offers acommercial graphical debugger for windows systems. The
standard perl distribution also contains a powerful interactive debugger - though with amore
cumbersome (command line) interface.

|.2.2 Completeinstallation

Taking full advantage of bioperl requires software beyond that for the minimal installation. This
additional software includes perl modules from CPAN, bioperl perl extensions, a bioperl xs-extension,
and several standard compiled bioinformatics programs.

Perl - extensions

The following perl modules are available from bioperl (http://bioperl.org/Core/external .shtml)or from
CPAN (http://mwww.perl.com/CPANY/) are used by bioperl. The listing aso indicates what bioperl
features will not be available if the corresponding CPAN module is not downloaded. If these modules
are not available (eg non-unix operating systems), the remainder of bioperl should still function
correctly.

For accessing remote databases you will need:

® File-Temp-0.09
® |O-String-1.01

For accessing Ace databases you will need:
® AcePerl-1.68.
For remote blast searches you will need:

] I'i bww\ perl-5.48
] Di gest - MD5- 2. 12.

o HTM.- Par ser-3. 13
=item*

® |ibnet-1.0703

® M ME-Base64-2.11
] URI -1. 09

(] I O-stringy-1.216

For xml parsing you will need:

® |ibxml-perl-0.07
® XML-Node-0.10
® XML-Parser.2.30
® XML-Writer-0.4
® expat-1.95.1 from http://sourceforge.net/projects/expat/

For more current and additional information on external modules required by bioperl, check
http://bioperl.org/Core/external .shtml

Bi operl c \extensions & external bio-informatics prograns

Bioperl also uses several c-programs for sequence alignment and local blast searching. To use these
features of bioperl you will need an ANSI C or Gnu C compiler as well as the actual program available
from sources such as:

for smith-waterman alignments- bioperl-ext-0.6 from http://bioperl.org/Core/external .shtml

for clustalw alignments- http://corba.ebi.ac.uk/Biocatal og/Alignment_Search_software.html

for tcoffee aignments-
http://igs-server.cnrs-mrs.fr/~cnotred/Projects_home page/t coffee_home_page.html

for local blast searching- ftp://nchi.nim.nih.gov/blast

|.3 Installation
The actual installation of the various system components is accomplished in the standard manner:

® | ocate the package on the network

® Download

® Decompress (with gunzip or asimliar utility)

® Remove the file archive (eg with tar -xvf)

® Createa’‘makefile’” (with ‘*perl Makefile.PL’" for perl modules or asupplied “‘install’’ or
“*configure’’ program for non-perl program

® Run‘‘make’, ‘‘maketest’”” and‘‘makeinstall’’ This procedure must be repeated for every CPAN
module, bioperl-extension and external module to be installed. A helper module CPAN.pm is
available from CPAN which automates the process for installing the perl modules.

For the external programs (clustal, Tcoffee, nchi-blast), there is an extra step:

® Set the relevant environmental variable (CLUSTALDIR, TCOFFEEDIR or BLASTDIR) to the
directory holding the executable in your startup file - eg in .bashrc. (For running local blasts, it is
also necessary that the name of |ocal-blast database directory is known to bioperl. Thiswill
typically happen automatically, but in case of difficulty, refer to the documentation for
StandAloneBlast.pm)

The only likely complication (at least on unix systems) that may occur isif you are unable to obtain
system level writing privileges. For instructions on modifying the installation in this case and for more
details on the overall installation procedure, see the README file in the bioper] distribution aswell as
the README filesin the external programs you want to use (eg bioperl-ext, clustalw, TCoffee,
NCBI-blast).

| .4 Additional comments for non-unix users

Bioperl has mainly been developed and tested under various unix environments (including Linux) and
thistutorial isintended primarily for unix users. The minimal installation of bioperl * should* work
under other OS's (NT, windows, perl). However, bioperl has not been widely tested under these OS's
and problems have been noted in the bioperl mailing lists. In addition, many bioper| features require the
use of CPAN modules, compiled extensions or external programs. These features will probably will not
work under some or all of these other operating systems. If a script attempts to access these features
from a non-unix OS, bioper! is designed to ssmply report that the desired capability is not available.
However, since the testing of bioperl in these environments has been limited, the script may well crash
inaless‘‘graceful”’ manner.

Todd Richmond has written of his experiences with BioPerl on MacOs at
http://bioperl.org/Core/mac-bioperl.html

|1. Brief introduction to bioper!’s objects

The purpose of thistutorial isto get you using bioperl to solve real-life bioinformatics problems as
quickly as possible. The aim is not to explain the structure of bioperl objects or perl object-oriented
programming in general. Indeed, the relationships among the bioperl objects is not simple; however,
understanding them in detail is fortunately not necessary for successfully using the package.

Nevertheless, alittle familiarity with the bioperl object ‘*bestiary’’ can be very helpful even to the
casual user of bioperl. For example there are (at least) six different *‘ sequence objects’ - Seq,
PrimarySeq, LocatableSeq, LiveSeq, LargeSeq, Seql. Understanding the relationships among these
objects - and why there are so many of them - will help you select the appropriate one to use in your
script.

11.2 Sequence objects: (Seq, PrimarySeq, L ocatableSeq, LiveSeq,
L argeSeq, Seql)

Seq isthe central sequence object in bioperl. When in doubt thisis probably the object that you want to
use to describe adna, rna or protein sequence in bioperl. Most common sequence manipulations can be
performed with Seq. These capabilities are described in sections 111.3.1 and 111.7.1.

Seq objects can be created explicitly (see section 111.2.1 for an example). However usually Seq objects
will be created for you automatically when you read in afile containing sequence data using the SeglO
object. This procedureis described in section 111.2.1. In addition to storing its identification labels and
the sequence itself, a Seq object can store multiple annotations and associated *‘ sequence features’”.
This capability can be very useful - especially in development of automated genome annotation systems,
see section 111.7.1.

On the other hand, if you need a script capable of simultaneously handling many (hundreds or
thousands) sequences at atime, then the overhead of adding annotations to each sequence can be
significant. For such applications, you will want to use the PrimarySeq object. PrimarySeq is basically a
“*stripped down’’ version of Seqg. It contains just the sequence dataitself and afew identifying labels (id,
accession number, molecule type = dna, rna, or protein). For applications with hundreds or thousands or
sequences, using PrimarySeq objects can significantly speed up program execution and decrease the
amount of RAM the program requires.

The LocatableSeq object isjust a Seq object which has ‘*start’”” and *‘end’’ positions associated with it.
It is used by the alignment object SimpleAlign and other modules that use SimpleAlign objects (eg
AlignlO, pSW). In general you don’t have to worry about creating L ocatableSeq objects because they
will be made for you automatically when you create an alignment (using pSW, Clustalw, Tcoffee or
bl2seq) or when input an alignment data file using AlignlO. However if you need to input a sequence
alignment by hand (ieg to build a SimpleAlign object), you will need to input the sequences as

L ocatableSegs.

A LargeSeq object is a special type of Seq object used for handling very long (eg gt 100 MB)
sequences. If you need to manipulate such long sequences see section I11.7.2 which describes LargeSeq
objects.

A LiveSeq object is another specialized object for storing sequence data. LiveSeq addresses the problem
of features whose location on a sequence changes over time. This can happen, for example, when
sequence feature objects are used to store gene locations on newly sequenced genomes - |ocations which
can change as higher quality sequencing data becomes available. Although a LiveSeq object is not
implemented in the same way as a Seq object, LargeSeq does implement the Segl interface (see below).
Conseguently, most methods available for Seq objects will work fine with LiveSeq objects. Section
[11.7.2 contains further discussion of LiveSeq objects.

Seql objects are Seq *‘interface objects’’ (see section 11.4) They are used to ensure bioperl’s
compatibility with other software packages. Seql and other interface objects are not likely to be relevant
to the casual bioperl user.

*** Having described these other types of sequence objects, the ‘*bottom line’” still isthat if you store
your sequence data in Seq objects (which iswhere they’ll be if you read them in with SeglO), you will
usually do just fine. ***

1.3 Alignment objects (SimpleAlign, UnivAln)

There are two **alignment objects’’ in bioperl: SimpleAlign and UnivAln. Both store an array of
sequences as an alignment. However their internal data structures are quite different and converting
between them - though certainly possible - is rather awkward. In contrast to the sequence objects - where
there are good reasons for having 6 different classes of objects, the presence of two alignment objectsis
just an unfortunate relic of the two systems having been designed independently at different times.

Since each object has some capabilities that the other lacks it has not yet been feasible to unify bioperl’s
sequence alignment methods into a single object (see section 111.5.4 for a description of SimpleAlign’'s

and UnivAln'sfeatures) . However, recent development in bioperl involving alignments has been
focused on using SimpleAlign and the new user should generally use SimpleAlign where possible.

|1.4 I nterface objects and implementation objects

Since release 0.6, bioperl has been moving to separate interface and implementation objects. An
interface is solely the definition of what methods one can call on an object, without any knowledge of
how it isimplemented. An implementation is an actual, working implementation of an object. In
languages like Java, interface definition is part of the language. In Perl, you have to roll your own.

In bioperl, the interface objects usually have names like Bio::MyObjectl, with the trailing | indicating it
isan interface object. The interface objects mainly provide documentation on what the interface is, and
how to use it, without any implementations (though there are some exceptions). Although interface
objects are not of much direct utility to the casual bioperl user, being aware of their existence is useful
since they are the basis to understanding how bioperl programs can communicate with other
bioinformatics projects such as Ensembl and the Annotation Workbench (see section V)

|11. Using bioper|

Bioper! provides software modules for many of the typical tasks of bioinformatics programming. These
include:

Accessing sequence data from local and remote databases
Transforming formats of database/ file records
Manipulating individual sequences

Sear ching for " similar" sequences

Creating and manipulating sequence alignments

Sear ching for genes and other structureson genomic DNA
Developing machine readable sequence annotations

The following sections describe how bioperl can help perform all of these tasks.

I11.1 Accessing sequence data from local and remote databases

Much of bioperl isfocused on sequence manipulation. However, before bioperl can manipulate
sequences, it needs to have access to sequence data. Now one can directly enter data sequence datainto
abioperl Seq object, eg:

$seq = Bi0::Seq->new(’ -seq’ =>' act gt ggcgt caact’,
'-desc’ =>" Sanpl e Bi o::Seq object’,

"-display_id => 'sonething
'-accessi on_nunber’ => 'accnumi,
"-moltype’ => 'dna’);

However, in most cases, it is preferable to access sequence data from some online datafile or database
(Note that in common with conventional bioinformatics usage we will call a‘‘database’” what might be
more appropriately referred to asan *‘indexed flat file'’.) Bioperl supports accessing remote databases
aswell as developing indices for setting up local databases.

111.1.1 Accessing remote databases (Bio::DB::GenBank, etc)

Accessing sequence data from the principal molecular biology databases is straightforward in bioper!.
Data can be accessed by means of the sequence’ s accession number or id. Batch mode accessis aso
supported to facilitate the efficient retrieval of multiple sequences. For retrieving data from genbank, for
example, the code could be as follows:

$gb = new Bi 0:: DB:: GenBank();

$seql = $gb->get _Seq_ by _id(’ MUSI GHBAL') ;

$seq2 = $gb->get _Seq_by_acc(’ AF303112’))

$seqi 0 = $gb->get _Stream by batch([gw(J00522 AF303112 2981014)]));

Bioper! currently supports sequence data retrieval from the genbank, genpept, swissprot and gdb
databases. Bioperl also supports retrieval from aremote Ace database. This capability requires the
presence of the external AcePerl module. Y ou need to download and install the aceperl module from
http://stein.cshl.org/AcePerl/.

I11.1.2 Indexing and accessing local databases (Bio::Index::*,
bpindex.pl, bpfetch.pl)

Alternately, bioperl permitsindexing local sequence data files by means of the Bio::Index objects. The
following sequence data formats are supported: genbank, swissprot, pfam, embl and fasta. Once the set
of sequences have been indexed using Bio::Index, individual sequences can be accessed using syntax
very similar to that described above for accessing remote databases. For example, if one wantsto set up
an indexed (flat-file) database of fastafiles, and later wants then to retrieve one file, one could write a
scripts like:

script 1: create the index
use Bio::lndex::Fasta; # using fasta file format
$l ndex_Fil e_Nanme = shift;
$i nx = Bi 0:: | ndex: : Fast a- >new(
-filenane => $I ndex_Fil e_Nane,
-wite flag => 1);
$i nx- >make_i ndex(@G\RGV) ;

script 2: retrieve sonme files
use Bi o::1ndex:: Fasta;
$l ndex_Fil e_Nane = shift;

$inx = Bio::Index:: Fasta->new $l ndex_Fi | e_Nane);
foreach $id (@RGV) {
$seq = $inx->fetch($id); # Returns Bio::Seq object
do something with the sequence

}

To facilitate the creation and use of more complex or flexible indexing systems, the bioperl distribution
includes two sample scripts bpindex.pl and bpfetch.pl. These scripts can be used as templates to develop
customized local data-file indexing systems.

I11.2 Transforming formats of database/ file records

[11.2.1 Transforming sequence files (Seql O)

A common - and tedious - bioinformatics task is that of converting sequence data among the many
widely used data formats. Bioperl’s Seql O object, however, makes this chore a breeze. SeqlO can read a
stream of sequences - located in asingle or in multiple files - in any of six formats: Fasta, EMBL.
GenBank, Swissprot, PIR and GCG. Once the sequence data has been read in with Segl O, it is available
to bioperl in the form of Seq objects. Moreover, the Seq objects can then be written to another file (again
using SeglO) in any of the supported data formats making data converters simple to implement, for
example:

use Bio::Seql G

$in = Bio::SeqlO>new(’'-file => "inputfil enane",
"-format’ => 'Fasta');

$out = Bio::Seql O>new('-file’ => ">outputfil enane",
"-format’ => 'EMBL');

while (my $seq = $in->next_seq()) {$out->wite_seq($seq); }

In addition, perl ‘‘tied filehandle’’ syntax is available to Seql O, allowing you to use the standard <> and
print operations to read and write sequence objects, eg:

$in = Bio::Seql O>newrh(’-file’ => "inputfilename" ,
"-fornmat’ => 'Fasta');

$out = Bio::Seql O >newrh(’ -format’ => 'EMBL');

print $out $_ while <$in>;

[11.2.2 Transforming alignment files (Alignl O)

Data files storing multiple sequence alignments also appear in varied formats. Alignl O is the bioperl
object for data conversion of alignment files. Alignl O is patterned on the Seql O object and shares most
of SeqlO’sfeatures. AlignlO currently supports input in the following formats: fasta, mase, stockholm,
prodom, selex, bl2seq, msf/gcg and output in these formats: : fasta, mase, selex, clustalw, msf/gcg. One
significant difference between AlignlO and Segl O isthat AlignlO handles 1O for only asingle

alignment at atime (Segl O.pm handles IO for multiple sequencesin asingle stream.) Syntax for
AlignlO isamost identical to that of SeqlO: use Bio::AlignlO;

$in = Bio::AlignlO>new’-file’ => "inputfil enanme”
"-format’ => 'fasta');
Bio::AlignlO>new(’-file => ">outputfilenanme",
"-format’ =>'pfam);
while (my $aln = $in->next_aln()) { $out->wite_aln(saln); }

$out

The only difference isthat here, the returned object reference, $aln, isto a SimpleAlign object rather
than a Seq object.

Alignl O also supports the tied filehandle syntax described above for SeglO. (Note that currently
AlignlO is usable only with SimpleAlign alignment objects. 10 for UnivAln objects can only be done
for filesin fasta dataformat.)

[11.3 Manipulating sequences

111.3.1 Manipulating sequence data with Seq methods

OK, so we know how to retrieve sequences and access them as Seq objects. Let’s see how we can use
the Seq obj ects to manipulate our sequence data and retrieve information. Seq provides multiple
methods for performing many common (and some not-so-common) tasks of sequence manipulation and
dataretrieval. Here are some of the most useful:

The following methods return strings

$seqobj - >di splay_id(); # the human read-able id of the sequence

$seqobj - >seq() ; # string of sequence

$seqobj - >subseq(5, 10); # part of the sequence as a string

$seqobj - >accessi on_nunber (); # when there, the accession nunber

$seqobj - >nol type(); # one of "dna’,’'rna’,’ ' protein’

$seqobj ->primary_id(); # a unique id for this sequence irregardl ess
of its display_id or accession number

The following methods return an array of Bio::SeqFeature objects

$seqobj - >t op_SeqFeatures # The 'top level’' sequence features
$seqobj - >al | _SeqFeatures # All sequence features, including sub
seq features

Sequence features will be discussed further in section 111.7 on machine-readable sequence annotation.

The following methods returns new sequence objects, but do not transfer features across

$seqobj - >trunc(5,10) # truncation from5 to 10 as new obj ect
$seqobj - >revcom # reverse conpl enents sequence
$seqobj - >transl ate # translation of the sequence

Note that some methods return strings, some return arrays and some return references to objects. Here
(as elsewherein perl and bioperl) it is the user’ s responsibility to check the relevant documentation so
they know the format of the data being returned.

Many of these methods are self-explanatory. However, bioperl’ s flexible trand ation methods warrant
further comment. Translation in bioinformatics can mean two slightly different things:

1 .

Trandlating a nucleotide sequence from start to end.
2. .

Taking into account the constraints of real coding regionsin mRNAS,

For historical reasons the bioperl implementation of translation does the first of these tasks easily. Any
sequence object which is not of moltype’protein’ can be translated by simply calling the method which
returns a protein sequence object:

$transl ationl = $ny_seq_obj ect->transl ate;

However, the translate method can also be passed several optiona parameters to modify its behavior.
For example, the first two argumentsto ‘‘trandlate’’ can be used to modify the characters used to
represent stop (default '*’) and unknown amino acid (' X’). (These are normally best |eft untouched.)
The third argument determines the frame of the trandation. The default frameis*‘0’’. To get
trandations in the other two forward frames, we would write:

$ny_seq_obj ect - >t ransl at e(undef, undef, 1);
$ny_seq_obj ect - >transl at e(undef, undef, 2);

$transl ati on2
$transl ati on3

The fourth argument to *‘tranglate’’ makes it possible to use alternative genetic codes. There are
currently 16 codon tables defined, including tables for ' Verterbate Mitochondrial’, ' Bacterial’,
'Alternative Y east Nuclear’ and’ Ciliate, Dasycladacean and Hexamita Nuclear’ translation. These
tables are located in the object Bio::Tools::CodonTable which is used by the translate method. For
example, for mitochondrial trand ation:

$human_nmi t ochondri al _transl ation =
$ny_seq_obj ect - >transl at e(undef, undef , undef, 2);

If we want to trandate full coding regions (CDS) the way major nucleotide databanks EMBL, GenBank
and DDBJdo it, the trandate method has to perform more tricks. Specifically, ’translate’ needs to
confirm that the sequence has appropriate start and terminator codons at the beginning and the end of the
sequence and that there are no terminator codons present within the sequence. In addition, if the genetic
code being used has an atypical (non-ATG) start codon, the translate method needs to convert the initial
amino acid to methionine. These checks and conversions are triggered by setting the fifth argument of
the translate method to evaluate to *‘true’”.

If argument 5 is set to true and the criteriafor a proper CDS are not met, the method, by default, issues a
warning. By setting the sixth argument to evaluate to *‘true’’, one can instead instruct the program to die
if animproper CDSisfound, e.g.

$protei n_object =
$cds- >t ransl at e(undef, undef, undef, undef, 1, die_if _errors’);

111.3.2 Obtaining basic sequence statistics- MW, residue & codon
frequencies(SegStats, SeqwWord)

In addition to the methods directly available in the Seq object, bioperl provides various *‘helper’’ objects
to determine additional information about a sequence. For example, the SeqStats object provides
methods for obtaining the molecular weight of the sequence as well the number of occurrences of each
of the component residues (bases for anucleic acid or amino acids for a protein.) For nucleic acids,
SeqStats also returns counts of the number of codons used. For example:

use SeqgStats

$seq_stats = Bio::Tools::SeqStats->new $seqobj);

$wei ght = $seq_stats->get_nmol _wt();

$mononer _ref = $seq_stats->count _nmononers();

$codon_ref = $seq_stats->count_codons(); # for nucleic acid sequence

Note: sometimes sequences will contain **ambiguous’’ codes. For this reason, get _nol _wt () returns (a
reference to) atwo element array containing a greatest lower bound and a least upper bound of the
molecular weight.

The SeqWords object is similar to SeqStats and provides methods for cal cul ating frequencies of
“‘words’’ (eg tetramers or hexamers) within the sequence.

111.3.3 [dentifying restriction enzyme sites (RestrictionEnzyme)

Another common segquence manipulation task for nucleic acid sequences is locating restriction enzyme
cutting sites. Bioperl provides the RestrictionEnzyme object for this purpose. Bioper!’ s standard
RestrictionEnzyme object comes with data for XXX different restriction enzymes. A list of the available
enzymes can be accessed using the avai | abl e_l i st () method. For exampleto select all available
enzymes that with cutting patterns that are six bases long one would write:

$re = new Bio::Tools::RestrictionEnzyne('-nane’ => EcoRl’);
@i xcutters = $re->available_list(6);

Once an appropriate enzyme has been selected, the sites for that enzyme on a given nucleic acid
sequence can be obtained using the cut _seq() method. The syntax for performing thistask is:

$rel = new Bio::Tool s::RestrictionEnzyne(-nanme=>" EcoRl');
$seqobj is the Seq object for the dna to be cut
@ragments = $rel->cut_seq($seqobj);

Adding an enzyme not in the default list is easily accomplished:

$re2 = new Bi0::Tool s::RestrictionEnzynme(’'-NAVE =>" ECORV-- GATM"ATC ,

"-MAKE =>'custom);

Once the custom enzyme object has been created, cut _seq() can be called in the usua manner.

111.3.4 Identifying amino acid cleavage sites (Sigcleave)

For amino acid sequences we may be interested to know whether the amino acid sequence contains a
cleavable ‘*signal sequence’’ for directing the transport of the protein within the cell. SigCleaveisa
program (originally part of the EGCG molecular biology package) to predict signal sequences, and to
identify the cleavage site.

The *‘threshold’’ setting controls the score reporting. If no value for threshold is passed in by the user,
the code defaults to areporting value of 3.5. SigCleave will only return score/position pairs which meet
the threshold limit.

There are 2 accessor methods for this object. ‘‘signals’” will return a perl hash containing the sigcleave
scores keyed by amino acid position. ‘“pretty _print’’ returns aformatted string similar to the output of
the original sigcleave utility.

Syntax for using the modulesis as follows:

use Bio::Tool s:: Sigcl eave;

$si gcl eave_obj ect = new Bi o:: Tool s:: Si gcl eave
("-file =>"sigtest.aa’
"-threshold =>" 3.5
'-desc’ =>"test sigcleave protein seq’
"-type’ => AM NO

% aw results
$f or mat t ed_out put

$si gcl eave_obj ect - >si gnal s;
$si gcl eave_obj ect->pretty_print;

Note that Sigcleave is passed araw sequence (or file containing a sequence) rather than a sequence
object when it is created. Also note that the **type’’ in the Sigcleave object is**amino’’ whereasin a Seq
objectitis*‘protein’’.

111.3.5 Miscellaneous sequence utilities: OddCodes, SegPattern
OddCodes:

For some purposes it’s useful to have alisting of an amino acid sequence showing where the
hydrophobic amino acids are located or where the positively charged ones are. Bioperl providesthis

capability viathe module OddCodes.pm.

For example, to quickly see where the charged amino acids are located along the sequence we perform:

use Bio:: Tool s:: GddCodes;

$oddcode_obj = Bio:: Tool s: : OddCodes- >new($am no_obj) ;
$out put = $oddcode_obj - >charge();

The sequence will be transformed into a three-letter sequence (A,C,N) for negative (acidic), positive
(basic), and neutral amino acids. For example the ACDEFGH would become NNAANNC.

For amore complete chemical description of the sequence one can call the chemi cal () method which
turns sequence into one with an 8-letter chemical alphabet { A (acidic), L (aliphatic), M (amide), R
(aromatic), C (basic), H (hydroxyl), I (imino), S (sulfur) }:

$out put = $oddcode_obj - >cheni cal ();

In this case the sample sequence ACDEFGH would become LSAARAC.

OddCodes also offers tranglation into al phabets showing alternate characteristics of the amino acid
sequence such as hydrophabicity, *‘functionality’’ or grouping using Dayhoff’ s definitions. See the
documentation for OddCodes.pm for further details.

SegPattern:

The SegPattern object is used to manipulate sequences that include perl ‘‘regular expressions’. A key
motivation for SegPattern isto have away of generating a reverse complement of anucleic acid
sequence pattern that includes ambiguous bases and/or regular expressions. This capability leads to
significant performance gains when pattern matching on both the sense and anti-sense strands of a query
sequence are required. Typical syntax for using SeqPattern is shown below. For more information, there
are several interesting examplesin the script SeqPattern.pl in the examples directory.

Use Bio::Tool s:: SeqPattern;

$pattern ' (CCCCT) (1, 200} (agggg) N{ 1, 200} (agggg) ' ;

$pat t er n_obj new Bi o:: Tool s:: SeqPattern(’-SEQ =>$pattern,
"-TYPE =>"dna’');

$pattern_obj2 = $pattern_obj->revcom);
$pattern_obj->revcon(l); ## returns expanded rev conpl ement pattern.

I11.4 Searching for " similar" sequences

One of the basic tasksin molecular biology is identifying sequences that are, in some way, similar to a
sequence of interest. The Blast programs, originally developed at the NCBI, are widely used for
identifying such sequences. Bioperl offers a number of modules to facilitate running Blast aswell asto
parse the often voluminous reports produced by Blast.

I11.4.1 Running BLAST locally (StandAloneBlast)

There are several reasons why one might want to run the Blast programs locally - speed, data security,
immunity to network problems, being able to run large batch runs etc. The NCBI provides a
downloadable version of blast in a stand-alone format, and running blast locally without any use of perl

or bioperl - iscompletely straightforward. However, there are situations where having a perl interface
for running the blast programs locally is convenient.

The module StandAloneBlast.pm offers the ability to wrap local calls to blast from within perl. All of
the currently available options of NCBI Blast (eg PSIBLAST, PHIBLAST, bl2seq) are available from
within the bioperl StandAloneBlast interface. Of course, to use StandAloneBlast, one needs to have
installed locally nchi-blast as well as one or more blast-readabl e databases.

Basic usage of the StandAloneBlast.pom moduleissimple. Initialy, alocal blast *‘factory object’” is
created.

@arans = ('prograni => 'blastn’
' dat abase’ => "ecoli.nt’);
$factory = Bio::Tool s:: St andAl oneBl ast - >new(@ar ans) ;

Any parameters not explicitly set will remain asthe BLAST defaults. Once the factory has been created
and the appropriate parameters set, one can call one of the supported blast executables. The input
sequence(s) tothese executables may befastafil e(s), aBio::Seq object or an array of Bio::Seq
objects, eg

$i nput = Bio::Seq->new(’-id =>"test query",
'-seq’ =>" ACTAAGTGGGEEG') ;
$bl ast _report = $factory->blastall ($input);

The returned blast report will be in the form of a bioperl parsed-blast object. The report object may be
either aBPlite, BPpsilite, BPbl2seq or Blast object depending on the type of blast search. The *‘raw’’
blast report is also available.

The syntax for running PHIBLAST, PSIBLAST and bl2seq searches via StandAloneBlast is aso
straightforward. See the StandAloneBlast.pm documentation for details. In addition, the script
standaloneblast.pl in the examples directory contains descriptions of various possible applications of the
StandAloneBlast object.

[11.4.2 Running BLAST remotely (using Blast.pm)

Bioperl supports remote execution of blasts at NCBI by means of the Blast.pm object. (Note: the bioperl
Blast object isreferred to here as Blast.pm to distinguish it from the actual Blast program). Blast.pm is
capable of both running Blasts and parsing the report results. Blast.pm supports awide array of modes,
options and parameters. As aresult, using Blast.pm directly can be somewhat complicated.
Consequently, it is recommended to use, and if necessary modify, the supplied scripts -
run_blast_remote.pl and retrieve_blast.pl in the examples/blast/ subdirectory - rather than to use
Blast.pm directly. Sample syntax looks like this:

run_bl ast_renmote. pl seq/yel 009c.fasta -prog blastp -db swi ssprot
retrieve_blast.pl < YELOO9C. bl astp2. swi ssprot.tenp. htmn

The NCBI blast server will respond with an ID number indicating the file in which the blast results are
stored (with aline like ** Obtained request ID: 940912366-18156-27559'"). That result file will then be

stored locally with a name like 940905064-15626-17267.txt, and can subsequently be read with
Blast.pm or BPlite as described below.

Run the scriptsrun_blast_remote.pl, retrieve_blast.pl and blast_config.pl with the options**-h’" or
‘*-eg’’ for more examples on how to use Blast.pm to perform remote blasts.

111.4.3 Parsing BLAST reportswith Blast.pm

No matter how Blast searches are run (locally or remotely, with or without a perl interface), they return
large quantities of datathat are tedious to sift through. Bioperl offers two different objects - Blast.pm
and BPFlite.pm (along with its minor modifications, BPpsilite and BPbl2seq) for parsing Blast reports.

The parser contained within the Blast.pm module is the original Blast parser developed for Bioperl. It is
very full featured and has alarge array of options and output formats. Typical syntax for parsing a blast
report with Blast.pmis:

use Bi o::Tool s:: Bl ast;
$bl ast = Bio::Tool s::Blast->new(-file =>"t/blast.report’,
-signif => 1le-5,
-parse => 1,
-stats => 1,
-check_all _hits => 1,);
$bl ast - >di spl ay();
$num hits = $blast->numhits;
@its = $blast->hits;
$fracl = $hits[1l]->frac_identical
@nds = $hits[1]->hsp->seq_inds(’' query’, 'iden , 1);

Here the method ‘“ hits'’ returns an object containing the names of the sequences which produced a
match and the ‘*hsp’’ method returns a‘‘high scoring pair’’ object containing the actual sequence
alignments that each of the hits produced.

One very nice feature of the Blast.pm parser is being able to define an arbitrary ‘*filter function’” for use
while parsing the Blast hits. With this feature, you can filter your results to just save hits with specific
pattern in their id fields (eg ‘*homo sapiens'’) or specific sequence patternsin areturned
high-scoring-pair or just about anything else that can be found in the blast report record.

While the Blast object is parsing the report, each hit is checked by calling & filter($hit). All hits that
generate false return valuesfrom &f i | t er are screened out of the Blast object.. Note that the Blast
object will normally stop parsing after the first non-significant hit or the first hit that does not pass the
filter function. To force the Blast object to check all hits, includea‘‘ -check_all_hits=>1"" parameter.
For example, to eliminate all hits with gaps or with less than 50% conserved residues one could use the
following filter function:

sub filter { $hit=shift;
return ($hit->gaps == 0 and $hit->frac_conserved > 0.5); }

and useit likethis;

$bl ast Obj = Bio::Tools::Blast->new '-file’ => ' /tnp/ bl ast.out’,
' - parse’ = 1,
'-check_all _hits’ => 1,
"-filt_func' =>\&filter);

Unfortunately the flexibility of the Blast.pm parser comes at a cost of complexity. Asaresult of this
complexity and the fact that Blast.pm’s original developer is no longer actively supporting the module,
the Blast.pm parser has been difficult to maintain and has not been upgraded to handle the output of the
newer blast options such as PSIBLAST and BL2SEQ. Consequently, the BPlite parser (described in the
following section) is recommended for most blast parsing within bioper!.

I11.4.4 Parsing BLAST reportswith BPlite, BPpsilite and
BPbl2seq

Because of the issues with Blast.pm discussed above, lan Korf’s BPlite parser has been recently ported
to Bioperl. BPliteisless complex and easier to maintain than Blast.pm. Although it has fewer options
and display modes than Blast.pm, you will probably find that it contains the functionality that you need.
(One exception might be if you want to set up an arbitrary filter function - as described above - in which
case you may want to use the Blast.pm parser.)

BPlite

The syntax for using BPlite is as follows where the method for retrieving hitsis now called *‘ nextShjct’’
(for “*subject’”), while the method for retrieving high-scoring-pairsiscalled * nextHSP' '

use Bio::Tools::BPlite;
$report = new BPlite(-fh=>*STDIN);
$report->query;
whi l e(my $sbjct = $report->nextShjct) {
$sbj ct - >nane;
while (my $hsp = $sbjct->next HSP) { $hsp->score; }
}

BPpsilite

BPpsilite and BPbl2seq are objects for parsing (multiple iteration) PSIBLAST reports and Blast bl2seq
reports, respectively. They are both minor variations on the BPlite object.

The syntax for parsing amultiple iteration PSIBLAST report is as shown below. The only significant
additions to BPlite are methods to determine the number of iterated blasts and to access the results from
each iteration. The results from each iteration are parsed in the same manner as a (complete) BPlite
object.

use Bio::Tools::BPpsilite;

$report = new BPpsilite(-fh=>*STDIN);

$total _iterations = $report->nunber_of _iterations;

$last _iteration = $report->round($total _iterations)

while(my $sbjct = $last_iteration ->nextShjct) {
$sbj ct - >nane;

while (my $hsp = $sbjct->next HSP) {$hsp->score; }

BPbl2seq

BLAST bl2seq isaprogram for comparing and aligning two sequences using BLAST. Although the
report format is similar to that of a conventional BLAST, there are afew differences. Consequently, the
standard bioperl parsers Blast.pm and BPlite are unable to read bl2seq reports directly. From the user’s
perspective, the main difference between bl2seq and other blast reportsis that the bl2seq report does not
print out the name of the first of the two aligned sequences. Consequently, BPbl2seq has no way of
identifying the name of one of the initial sequence unlessit is explicitly passed to constructor as a
second argument as in:

use Bio:: Tool s:: BPbl 2seq;
$report = Bio::Tool s::BPbl 2seq->new(-file => "t/bl 2seq.out", -querynane => "ALEU H
$mat ches = $report->match;

[11.4.5Parsng HMM reports (HMMER::Results)

Blast is not the only sequence-similarity-searching program supported by bioperl. HMMER is a Hidden
Markov-chain Model (HMM) program that (among other capabilities) enables sequence similarity
searching. Bioperl does not currently provide a perl interface for running HMMER. However, bioperl
does provide aHMMER report parser with the (perhaps not too descriptive) name of Results.

Results can parse reports generated both by the HMMER program hmmsearch - which searches a
sequence database for sequences similar to those generated by a given HMM - and the program
hmmpfam - which searchesa HMM database for HMMs which match domains of a given sequence. For
hmmsearch, a series of HMMER::Set objects are made, one for each sequence. For hmmpfam searches,
only one Set object is made. Sample usage for parsing a hmmsearch report might be:

use Bio::Tools:: HWER: : Resul ts;

$res = new Bio::Tools:: HWER : Results(’'-file => ’output.hnmn
"-type’ => 'hmmsearch’);

foreach $seq ($res->each_Set) {

print "Sequence bit score is ", $seqg->bits, "\n";
foreach $domain ($seq->each_Domain) {
print " Domain start ", $dommin->start, " end "

$dommi n->end, " score ", $dommi n->hits, "\ n";

[11.5 Creating and manipulating sequence alignments

Once one has identified a set of similar sequences, one often needs to create an alignment of those
sequences. Bioperl offers several perl objects to facilitate sequence alignment: pSW, Clustalw.pm,
TCoffee.pm and the bl2seq option of StandAloneBlast. All of these objects take as arguments a
reference to an array of (unaligned) Seq objects. All (except bl2seq) return areference to a SimpleAlign

object. bl2seq can also produce a SimpleAlign object when it is combined with Alignl O (see below
section 111.5.2).

111.5.1 Aligning 2 sequences with Smith-Waterman (pSW)

The Smith-Waterman (SW) algorithm is the standard method for producing an optimal alignment of two
sequences. Bioperl supports the computation of SW alignments via the pSW object. The SW algorithm
itself isimplemented in C and incorporated into bioperl using an XS extension. This has significant
efficiency advantages but means that pSW will **not** work unless you have compiled the bioperl-ext
package. If you have compiled the bioperl-ext package, usage is simple, where the method
align_and_show displays the alignment while pairwise_alignment produces a (reference to) a
SimpleAlign object.

use Bio::Tool s::pSW

$factory = new Bio::Tools::pSW ’'-matrix’ => Dbl osunb2. bl a’
"-gap’ => 12,
Teext’ => 2,);

$f act ory->al i gn_and_show $seql, $seq2, STDOUT);

$al n = $factory->pairw se_alignnent ($seql, $seq2);

SW matrix, gap and extension parameters can be adjusted as shown. Bioperl comes standard with
blosum62 and gonnet250 matrices. Others can be added by the user. For additional information on
accessing the SW agorithm via pSW see the example script pSW.pl and the documentation in pSW.pm.

111.5.2 Aligning 2 sequences with Blast using bl2seq and Alignl O

As an aternative to Smith-Waterman, two sequences can also be aligned in Bioperl using the bl2seq
option of Blast within the StandAloneBlast object. To get an alignment - in the form of a SimpleAlign
object - using bl2seq, you need to parse the bl2seq report with the Alignl O file format reader as follows:

$factory = Bio::Tool s:: StandAl oneBl ast->new(’ outfile’ => 'bl2seq.out’);
$bl 2seq_report = $factory->bl 2seq($seql, $seq2);
Use AlignlOpmto create a SinpleAlign object fromthe bl 2seq report
$str = Bio::Alignl O >new’ -file '=> bl 2seq.out’,

"-format’ => 'bl 2seq’);
$aln = $str->next_aln();

111.5.3 Aligning multiple sequences (Clustalw.pm, T Coffee.pm)

For aligning multiple sequences (ie two or more), bioperl offers a perl interface to the
bioinformatics-standard clustalw and tcoffee programs. Clustalw has been a leading program in global
multiple sequence alignment (MSA) for several years. TCoffee isarelatively recent program - derived
from clustalw - which has been shown to produce better results for local MSA.

To use these capabilities, the clustalw and/or tcoffee programs themselves need to be installed on the
host system. In addition, the environmental variables CLUSTALDIR and TCOFFEEDIR need to be set
to the directories containg the executables. See section 1.3 and the Clustalw.pm and T Coffee.pm module
documentation for information on downloading and installing these programs.

From the user’ s perspective, the bioperl syntax for calling Clustalw.pm or TCoffee.pm is almost
identical. The only differences are the names of the modules themselves appearing in the initial **use’’
and constructor statements and the names of the some of the individual program options and parameters.

In either case, initiadly, a‘‘factory object’”” must be created. The factory may be passed most of the
parameters or switches of the relevant program. In addition, alignment parameters can be changed
and/or examined after the factory has been created. Any parameters not explicitly set will remain as the
underlying program’ s defaults. Clustalw.pm/T Coffee.pm output is returned in the form of a SimpleAlign
object. It should be noted that some Clustalw and TCoffee parameters and features (such as those
corresponding to tree production) have not been implemented yet in the Perl interface.

Once the factory has been created and the appropriate parameters set, one can call the method al i gn()
to align a set of unaligned sequences, or profi | e_al i gn() to add one or more sequences or a second
alignment to aninitial alignment. Input to al i gn() consists of a set of unaligned sequencesin the form
of the name of file containing the sequences or areference to an array of Bio::Seq objects. Typical
syntax is shown below. (We illustrate with Clustalw.pm, but the same syntax - except for the module
name - would work for TCoffee.pm)

use Bio::Tools::Run::Alignnent::d ustalw
@aranms = ("ktuple’ => 2, "matrix’ => ' BLOSUM);
$factory = Bio::Tool s::Run:: Alignnent::d ustal w>new @ar ans);
$ktuple = 3;
$fact ory- >kt upl e($ktupl e); # change the paraneter before executing
$seq_array_ref = \@eq_array;
where @eq_array is an array of Bio::Seq objects
$aln = $factory->align($seq_array_ref);

Clustalw.pm/T Coffee.pm can also align two (sub)alignments to each other or add a sequenceto a
previously created alignment by using the profile_align method. For further details on the required
syntax and options for the profile_align method, the user is referred to the Clustalw.pm/TCoffee.pm
documentation. The user is also encouraged to run the script clustalw.pl in the examples directory.

111.5.4 Manipulating / displaying alignments (SimpleAlign,
UnivAln)

Asdescribed in section 11.2, bioperl currently includes two alignment objects, SimpleAlign and
UnivAln. SimpleAlign objects are usually more useful, since they are directly produced by bioperl
alignment creation objects (eg Clustalw.pm and pSW) and can be used to read and write multiple
alignment formats via Alignl O.

However, SimpleAlign currently only offers limited functionality for alignment manipulation. One
useful method offered by SimpleAlignisconsensus_string(). Thismethod returns a string with the

most common residue in the alignment at each string position. An optional threshold ranging from O to
100 can be passed to consensus_string. If the consensus residue appears in fewer than the threshold % of
the sequences, consensus_string will returna“‘?’ at that location. Typical usageis:

use Bio::SinpleAign;

$aln = Bio::SinpleAlign->new('t/alnfile.fasta');
$t hreshol d_percent = 60;

$str = $al n->consensus_string($t hreshol d_percent)

UnivAln, on the other hand, offers avariety of methods for ‘*slicing and dicing’* an alignment including
methods for removing gaps, reverse complementing specified rows and/or columns of an alignment, and
extracting consensus sequences with specified thresholds for the entire alignment or a sub-alignment.
Typica usageis:

use Bio:: Uni vAl n;
$aln = Bio::UnivAln->new't/alnfile.fasta');

$resSlicel = $al n->renpve_gaps(); # original sequences w thout gaps
$resSlice2 = $aln->revcom([1,3]); # reverse conplenment, rows 1+3 only
$resSlice3 = $al n->consensus(0.6, [1,3]);

60% majority, colums 1+3 only

Many additional - and more intricate - methods exist. See the UnivAIn documentation. Note that if you
do want to use UnivAln's methods on an alignment, you will first need to convert the alignment into
fasta format (which can be done viathe SimpleAlign and Alignl O objects discussed above.)

I11.6 Searching for genes and other structureson genomic DNA
(Genscan, Sim4, EST Scan, M ZEF)

Automated searching for putative genes, coding sequences and other functional unitsin genomic and
expressed sequence tag (EST) data has become very important as the available quantity of sequence data
has rapidly increased. Many gene searching programs currently exist. Each produces reports containing
predictions that must be read manually or parsed by automated report readers.

Parsers for four widely used gene prediction programs- Genscan, Sim4, EST Scan and MZEF - are
currently available or under active development in bioperl. The interfaces for the four parsers are
similar. Weillustrate the usage for Genscan and Sim4 here. The syntax is relatively self-explanatory;
further details are available in the module documentation in the Bio::Tools directory.

use Bi o::Tool s:: Genscan
$genscan = Bi 0:: Tool s:: Genscan->new(-file => "result.genscan’);
$gene is an instance of Bio::Tools::Prediction:: Gene
$gene->exons() returns an array of Bio::Tools::Prediction::Exon objects
whi | e($gene = $genscan->next _prediction())
{ @xon_arr = $gene->exons(); }
$genscan- >cl ose();

use Bio::Tools::Sind::Results;

$simd = new Bio::Tools::Sinmd::Results(-file=>"t/siml.rev’, -estisfirst=>0);
$exonset is-a Bio::SegFeature::Generic with Bio::Tools::Si mi: : Exons
as sub features

$exonset = $si ni- >next _exonset;
@xons = $exonset - >sub_SeqFeat ure();
$exon is-a Bio::SeqFeature:: FeaturePair
$exon = 1,
$exonstart = $exons[$exon]->start();
$est nane = $exons[$exon] - >est _hit () - >segnane();
$si mid- >cl ose();

|11.7 Developing machine readable sequence annotations

Historically, annotations for sequence data have been entered and read manually in flat-file or relational
databases with relatively little concern for machine readability. More recent projects - such as EBI’s
Ensembl project and the efforts to develop an XML molecular biology data specification - have begun to
address this limitation. Because of its strengths in text processing and regular-expression handling, perl
isanatural choice for the computer language to be used for this task. And bioperl offers numerous tools
to facilitate this process - several of which are described in the following sub-sections.

[11.7.1 Representing sequence annotations (Annotation,
SeqFeature)

As of the 0.7 release of bioperl, the fundamental sequence object, Seq, can have multiple sequence
feature (SeqFeature) objects - eg Gene, Exon, Promoter objects - associated with it. A Seq object can
also have an Annotation object (used to store database links, literature references and comments)
associated with it. Creating a new SegFeature and Annotation and associating it with a Seq is
accomplished with syntax like:

$feat = new Bio::SeqFeature:: CGeneric(’'-start’ => 40
"-end’ => 80,
"-strand’ => 1,
"-primary’ =>'exon’
"-source’ =>'internal’)
$seqobj - >add_SeqFeature($feat); # Add the SegFeature to the parent
$seqobj - >annot ati on(new Bi o: : Annot ati on
(' -description” => 'desc-here'));

Once the features and annotations have been associated with the Seq, they can be with retrieved, eg:

@ opf eat ures $seqobj - >t op_SeqFeatures(); # just top |level, or
@l | features = $seqobj->al |l _SeqFeatures(); # descend into sub features
$ann = $seqobj - >annotation(); # annotation object

The individual components of a SeqFeature can also be set or retrieved with methods including:

attributes which return nunbers
$f eat - >start # start position
$f eat - >end # end position

$f eat - >strand # 1 means forward, -1 reverse, 0 not relevant

attributes which return strings

$feat->prinmary_tag # the main "name’ of the sequence feature,
eg, 'exon’

$f eat - >source_t ag # where the feature comes from eg’ BLAST

attributes which return Bio::PrinmarySeq objects

$f eat - >seq # the sequence between start, end

$f eat->entire_seq # the entire sequence

ot her useful methods include

$f eat - >over|l ap($other) # do SegFeature $feat and SegFeature $ot her overlap?
$f eat - >contai ns($other) # is $other conpletely within $feat?

$f eat - >equal s($ot her) # do $feat and %ot her conpletely $agree?

$f eat - >sub_SeqFeatures # create/access an array of subsequence features

111.7.2 Representing and large and/or changing sequences
(LiveSeq,L argeSeq)

Very large sequences and/or data files with sequences that are frequently being updated present special
problems to automated sequence-annotation storage and retrieval projects. Bioperl’s LargeSeq and
LiveSeq objects are designed to address these two situations.

LargeSeq

A LargeSeq object isa Seql compliant object that stores a sequence as a series of filesin atemporary
directory (see sect 11.1 for adefinition of Segl objects). The aim isto enable storing very large sequences
(eg, > 100M Bases) without running out of memory and, at the same time, preserving the familiar bioperl
Seq object interface. As aresult, from the users perspective, using a LargeSeq object is almost identical
to using a Seq object. The principal differenceisin the format used in the Segl O calls. Another
difference isthat the user must remember to only read in small chunks of the sequence at one time.
These differences are illustrated in the following code:

$seqi o = new Bio::Seql (' -format’ =>'| argef asta’
"-file’ =>"t/genonic-seq.fasta’);

$pseq = Pseqi o- >next _seq();

$pl ength = $pseq- >l engt h();

$l ast _4 = $pseq- >subseq($pl engt h-3, $plength); # this is K

#0n the other hand, the next statement woul d
#probably cause the machine to run out of menory
#$l ots_of data = $pseqg->seq(); #NOT OK for a |large LargeSeq object

LiveSeq

The LiveSeq object addresses the need for a sequence object capable of handling sequence data that may
be changing over time. In such a sequence, the precise locations of features along the sequence may
change. LiveSeq deals with this issue by re-implementing the sequence object internally asa‘‘double
linked chain.”” Each element of the chain is connected to other two elements (the PREVious and the
NEXT one). There is no absolute position (like in an array), hence if positions are important, they need
to be computed (methods are provided). Otherwise it’s easy to keep track of the elements with their

““LABELS"’. Thereisone LABEL (think of it asa pointer) to each ELEMENT. The labels won’t change
after insertions or deletions of the chain. So it's always possible to retrieve an element even if the chain
has been modified by successive insertions or deletions.

Although the implementation of the LiveSeq object is novel, its bioperl user interface is unchanged since
LiveSeq implements a PrimarySeq|l interface (recall PrimarySeq is the subset of Seq without annotations
or SeqFeatures - see sec I1.1). Consequently syntax for using LiveSeq objectsis familiar athough a
modified version of SeqlO called LiveSeq::10::Bioperl needs to be used to actually load the data, eg:

$l oader =Bi o: : Li veSeq: : 1 O : Bi oPer| - >l oad(’ -db’ =>"EMBL",
"-file' =>"t/factor7.enbl");
$gene=$| oader - >gene?2l i veseq(’ -gene_nane’ => "factor7");
$id = $gene->get DNA->di splay_id ;
$maxstart = $gene- >maxtranscript->start;

Creating, maintaining and querying of LiveSeq genesis quite memory and processor intensive.
Conseguently, any additional information relating to mutational changes in a gene need to be stored
separately from the sequence data itself. The next section describes the mutation and polymorphism
objects used to accomplish this.

111.7.3 Representing related sequences - mutations,
polymor phismsetc (Allele, SeqDiff,)

Bio::LiveSeq::Mutation object allows for a basic description of a sequence changein DNA or cDNA
sequence of agene. Bio::LiveSeq::Mutator takes in mutations, applies them to a LiveSeq gene and
returns a set of Bio::Variation objects describing the net effect of the mutation on the gene at the DNA,
RNA and protein stages.

The objectsin Bio::Variation and Bio::LiveSeq directory were originally designed for the

‘* Computational Mutation Expression Toolkit"’ project at European Bioinformatics Institute (EBI). The
result of using them to mutate agene is aholder object, ' SeqDiff’, that can be printed out or queried for
specific information. For example, to find out if restriction enzyme changes caused by a mutation are
exactly the same in DNA and RNA sequences, we can write:

use Bio::LiveSeq::10Q :BioPerl;
use Bi o::LiveSeq:: Mt at or
use Bio::LiveSeq::Mitation

$l oader=Bi 0: : LiveSeq: : 1O : Bi oPerl ->l oad(’-file => "$fil enanme");
$gene=$I oader - >gene2l i veseq(’ - gene_nane’ => $gene_nane);
$nmutation = new Bio::LiveSeq::Mitation ('-seq’ =>'G,

'-pos’ => 100,

$nmutate = Bio::LiveSeq:: Mutator->new’'-gene’ => $gene,
"-nunbering’ => "coding"
)
$nut at e- >add_Mut ati on($nut ati on);
$seqdi ff = $nut at e- >change_gene();
$DNA re_changes = $seqdi ff->DNAMut ati on->restricti on_changes;
$RNA re_changes $seqdi f f - >RNAChange- >restri cti on_changes;

$DNA re_changes eq $RNA re_changes or print "Different!\n";

For a complete working script, see the change_gene.pl script in the examples directory. For more details
on the use of these objects see the documentation in the modules as well as the original documentation
for the ** Computational Mutation Expression Toolkit”’ project at

http://www.ebi.ac.uk/mutations/tool kit/.

111.7.4 Sequence XML representations - generation and parsing
(Seql O::game)

The previous subsections have described tools for automated sequence annotation by the creation of an
‘“‘object layer’’ on top of atraditional database structure. XML takes a somewhat different approach. In
XML, the data structure is unmodified, but machine readability is facilitated by using a data-record
syntax with special flags and controlled vocabulary.

Bioperl supports a set of XML flags and vocabulary words for molecular biology - called bioxml -
detailed at http://www.bioxml.org/dtds/current/ The ideais that any bioxml features can be turned into
bioperl Bio::Seq annotations. Conversely Seq object features and annotations can be converted to XML
so that they become available to any other systems that are XML (and bioxml) compliant. Typical usage
is shown below. No specia syntax isrequired by the user. Note that some Seq annotation will be lost
when using bioxml in this manner - since in its current implementation, bioxml does not support all the
annotation information available in Seq objects.

$str = Bio::Seql O>new(’'-file => "t/test.ganme’,
"-format’ => 'gane');
$seq = $str->next_prinmary_seq();

$id = $seq->id;
@eats = $seq->al | _SeqgFeatures();
$first_primary_tag = $feats[0]->prinary_tag;

V. Related projects - biocor ba, biopython,
biojava, Ensembl, AnnotationWorkbench /
bioper|-gui

There are several *‘sister projects’’ to bioperl currently under development. These include biocorba,
biopython, biojava, Ensembl, and the Annotation Workbench (which includes Bioperl-gui). These are all
large complex projects and describing them in detail here will not be attempted. However a brief
introduction seems appropriate since, in the future, they may each provide significant added utility to the
bioperl user.

V.1 Biocorba

Interface objects have facilitated interoperability between bioperl and other perl packages such as
Ensembl and the Annotation Workbench. However, interoperability between bioperl and packages
written in other languages requires additional support software. CORBA is one such framework for
interlanguage support, and the biocorba project is currently implementing a CORBA interface for
bioperl. With biocorba, objects written within bioperl will be able to communicate with objects written
in biopython and biojava (see the next subsection). For more information, se the biocorba project
website at http://biocorba.org/.

V.2 Biopython and biojava

Biopython and biojava are open source projects with very similar goals to bioperl. However their codeis
implemented in python and java, respectively. With the development of interface objects and biocorba,

it is possible to write java or python objects which can be accessed by a bioperl script. Or to call bioper!
objects from java or python code. Since biopython and biojava are more recent projects than bioperl,
most effort to date has been to port bioperl functionality to biopython and biojava rather than the other
way around. However, in the future, some bioinformatics tasks may prove to be more effectively
implemented in java or python in which case being able to call them from within bioperl will become
more important. For more information, go to the biojava http://biojava.org/ and biopython
http://biopython.org/ websites.

V.3 Ensembl

Ensembl is an ambitious automated-genome-annotation project at EBI. Much of Ensembl’scodeis
based on bioperl and Ensembl developers, in turn, have contributed significant pieces of code to bioperl.
In particular, the bioperl code for automated sequence annotation has been largely contributed by
Ensembl developers. (The close association between bioperl and Ensembl is not surprising, since the
same individual - Ewan Birney - has been coordinating both projects). Describing Ensembl and its
capabilitiesisfar beyond the scope of thistutorial The interested reader is referred to the Ensembl
website at http://www.ensembl.org/ .

V.4 The Annotation Wor kbench and bioper|-gui

The Annotation Workbench (AW) being developed at the Plant Biotechnology Institute of the National
Research Council of Canadais designed to be an integrated suite of tools for examining a sequence,
predicting gene structure, and creating annotations. The workbench features a graphical user interface
and isimplemented completely in perl. Information about the AW is available at
http://bicinfo.pbi.nrc.ca/dblock/wiki/html/Bioinfo/ AnnotationWorkbench.htm A goal of the AW team is
to port much of the functionality of the AW to bioperl. The porting process has begun and displaying a

Seq object graphically is now possible. Y ou can download the current version of the gui software from
the bioper! bioperl-gui CV S directory at
http://cvs.bioperl.org/cgi-bin/viewcvs/viewcvs.cgi/bioperl-gui/?cvsroot=bioperl

V.1 Appendix: Public M ethods of Bioper| Objects

Appendix V.1 lists the public methods for the principal bioperl objects. The methods are grouped
together under the name of the **ancestor’’ object from which the object inherits the method. Knowing
the name of the ancestor object is useful since the ancestor module will contain the documentation
describing the method.

Since nearly all bioperl objects inherit from Bio::Root::Rootl, the methods inherited from
Bio::Root::Rootl are listed separately - and only once.

If alisting of public methods for a bioperl object not listed in this appendix is required, the listing can be
obtained by running the bptutorial.pl script using with command number 100 asin: perl -w bptutorial.pl
100 Bio::Tools::SegStats (where Bio::Tools:: SeqStats would be replaced with the name of the bioperl
object for which the methods list is needed - see Appendix V.2 for details)

*** Mot hods f or (}JJ ect Bio::Root::RoOt| *****xxxx*

Methods taken from package Bio::Root::Rootl DESTROY gensym new qualify qualify to_ref
stack_trace stack trace dump tempdir tempfile throw ungensym verbose warn

NMet hods for ohject Bio::Alignl O **x*x*

Met hods taken from package Bio::AlignlO

PRINT READLINE TIEHANDLE <close fh newFrh
next _aln wite aln

Met hods for Object Bio::DB::GenBank ****x*

Met hods taken from package Bi o:: DB: : NCBI Hel per
get _Stream by batch get _par ans

Met hods taken from package Bi o:: DB:: RandomAccessl
get _Seq_by_acc get _Seq_by id

Met hods taken from package Bio:: DB:: WebDBSeq|

GET HEAD POST PUT default format get _Stream by acc

get _Streamby id get _request get _seq_stream postprocess_data pr oxy reques
retrieval _type ua url _base_address url _parans

*** Mot hods f or (}JJ ect Bio::lndex::Fasta ***xx***

Met hods taken from package Bi o:: DB:: RandomAccessl
get _Seq_by_ acc get _Seq_ by id

Met hods taken from package Bio:: DB:: Seql
get _PrimarySeq_stream get_Seq_by primary_id get _all _primary_ids

Met hods taken from package Bio:: I ndex:: Abstract

O CREAT O RDWR add record db dbm package fil enane
get _stream nmmke_i ndex open_dbm pack_record unpack_record wite flag

Met hods taken from package Bi o::1ndex:: Abstract Seq
fetch

Met hods taken from package Bio::Index:: Fasta
default _id_parser i d_parser

NMet hods for Object Bio::Locatabl eSeq *****

Met hods taken from package Bio:: Locat abl eSeq
get _nse

Met hods taken from package Bio:: PrimarySeql

GCG checksum accessi on_numnber ary can_call _new desc di splay_id
get seq id nol t ype out fasta primary_id revcom

seq seqg_l en set seq str subseq transl ate

translate_old trunc type

Met hods taken from package Bi o:: Rangel

carp conf ess cont ai ns croak end equal s

i ntersection l ength new overl ap_extent overl aps start
strand uni on

Met hods taken from package Bi o:: Seq

accessi on add_SeqFeat ure add_date add_secondary_accessi on annot ati on di vi
each_date each_secondary_accessi on feature_count keywor ds nmol ecul e pri mar
speci es sV

Met hods taken from package Bio:: Seql
al | _SeqFeat ures t op_SeqFeat ur es wite GFF

Met hods for Object Bio::Seq ****x*

Met hods taken from package Bio:: Pri marySeql

GCG checksum accessi on_nunber ary can_call _new carp conf ess
croak desc di splay_id get seq id | ength

nol type out fasta primary_id revcom seq seqg_l en

set seq str subseq transl ate translate_old trunc

type

Met hods taken from package Bio:: Seq

accessi on add_SeqFeat ure add_date add_secondary_accessi on annot ati on di vi
each_date each_secondary_accessi on feature_count keywor ds nol ecul e pri mar
speci es sV

Met hods taken from package Bi o:: Seql
al | _SeqFeat ures t op_SeqFeat ur es wite GFF

Met hods for Object Bio::SeqlQ *¥x**x*

Met hods taken from package Bi o:: Seql O

PRINT READLINE TIEHANDLE cl ose fh nol type
newrh next _primary_seq next _seq wite seq
***Net hods for Cbject Bio::SinpleAlign ***x*xxx

Met hods taken from package Bio::SinpleAlign

addSeq al pha_startend colum_from resi due_nunber consensus_aa consensus_str
eachSeqWthld each_al phabetically get _di spl aynane id is_flush I ength_aln

map_chars maxdi spl aynane_| ength maxnane_| engt h maxnse_| ength no_resi dues
percentage_identity pur ge read_ISF read Pfam read Pfamfile read_Prodom
read_fasta read_nmse read_sel ex read_stockholm renoveSeq set_displaynane
set _di spl ayname_count set _di spl ayname_f | at set _di spl ayname_nor nal sort _al phab
wite Pfam wite clustalw wite fasta wite_selex

NMet hods for bject Bio::Tools::BPbl 2seq *****

Met hods taken from package Bi o:: Rangel

carp conf ess cont ai ns croak end equal s

i ntersection l ength new overl ap_extent overl aps start
strand uni on

Met hods taken from package Bi o:: SeqFeat ure: : FeaturePair
featurel feature2 hend hf r ame hpri mary_tag hscore
hsegnamne hsource_t ag hst art hstrand i nvert

Met hods taken from package Bio:: SeqFeature:: Generic
add_sub_SeqFeat ure add_t ag_val ue annot ati on attach_seq entire_seq flush_s
franme renove_t ag score seq segnarme slurp_gff _file

Met hods taken from package Bio::SeqFeature::SimlarityPair
bits from searchResul t query signi ficance subj ect

Met hods taken from package Bi o:: SeqFeat ur el
all _tags each_tag val ue gff2_string gff_string has_tag primary_tag
source_tag sub_SeqFeature

Met hods taken from package Bi o:: Tool s:: BPbl 2seq
P honol ogySeq hs mat ch per cent positive
gs guer ySeq sbj ct Seq Ss

Met hods for Object Bio::Tools::BPlite ****x*

Met hods taken from package Bio::Tools::BPlite
dat abase fh next Shj ct pattern gl ength query
gquery_ pattern_| ocation

NMet hods for Qbject Bio::Tools::BPpsilite *x*xx

Met hods taken from package Bio::Tools::BPpsilite
dat abase fh nunber of iterations pattern gl ength query
guery_pattern_| ocation round

Met hods for Object Bio::Tools::Blast ****x*

Met hods taken from package Bio:: Root: : Obj ect

clear_err cl one conpress_file cont ai nnent debug delete file
destroy di spl ay dont _warn err err_state err_string

fatal _on_warn fh file file date find_object has_nane

has_war ni ng i ndex nmake noni t or name par ent
print_err r ead record_err set _di spl ay set _err_data set _log err
set read set _stats show src_obj strict strictness

terse testing to_string unconpress _file verbosity warn_on_fata
xr ef

Met hods taken from package Bio:: Tool s:: Bl ast

anmbi guous_al n carp conf ess croak db_| ocal db_renote

expect filter gap_creation gap_ext ensi on gapped hi ghest _expect

hi ghest _p hi ghest _signi f hi t hits honol _dat a is_signif

karlin_al tschul | owest _expect | owest _p | owest _signif mat ri x mn_length

numhits overl ap S signif signif_fm tabl e
tabl e | abel s table | abels tiled table tiled to _htm word_si ze

Met hods taken from package Bio:: Tool s:: SeqAnal

best dat abase dat abase |l etters dat abase_rel ease dat abase_seqs dat e

| ength par se program programyversion query guery_desc
roman2i nt run set _date

Met hods taken from package Exporter

export export _fail export_ok_tags export _tags export _to_|evel i mport

require_version

Net hods for (bject Bio::Tools::CodonTahl @ **xx*x*

Met hods taken from package Bio:: Root: : Root |

DESTROY gensym new qualify qualify to_ref stack_trace
stack _trace_dunp tenpdir tempfile throw ungensym verbose
war n

Met hods taken from package Bi o:: Tool s:: CodonTabl e

id is_start_codon is_ter_codon i s_unknown_codon nane revtransl ate

transl ate translate_strict
Met hods for Object Bio::Tools::Genscan ****x*

Met hods taken from package Bi o:: SeqAnal ysi sPar ser |
carp conf ess croak next feature par se

Met hods taken from package Bio:: Tool s:: Anal ysi sResul t

anal ysis_date anal ysi s_net hod anal ysi s_net hod_version anal ysi s_query anal ys
Met hods taken from package Bio:: Tool s:: Genscan

next prediction

NMet hods for bject Bio::Tools::HWER : Results *x*xx

Met hods taken from package Bio::Tools:: HWER: : Resul ts

add_Domai n add_Set carp conf ess croak di ctate_hnmm acc

domai n_bits_cutoff _from eval ue each_Donai n each_Set filter_on_cutoff get _Se
hi ghest _noi se | onest _true nunber write FT_out put wite GOF wite GDF bits

wite ascii_out wite scores bits

NMet hods for bject Bio::Tools::OddCodes ****x*

Met hods taken from package Bi o:: Tool s:: GddCodes

Dayhof f Sneat h St anf el char ge chemi cal functiona
hydr ophobi ¢ structura

Net hods for (bject Bio::Tools::RestrictionEnzyne ***xx

Met hods taken from package Bio::Tools::RestrictionEnzyne

annot at e_seq avai l abl e avail able_|i st cut | ocations cut _seq cuts_after

is_avail abl e nane pal i ndrom c revcom seq site
string

Met hods t aken from package Exporter

export export _fail export_ok_tags export _tags export _to_|evel i mport

require_version

NMet hods for bject Bio::Tools::Run::Alignment:: Custalw *x**xx

Met hods taken from package Bio::Tools::Run::Alignnent::Custalw
AUTOLOAD align exi sts_cl ustal profile_align

NMet hods for bject Bio::Tools::Run::Alignment:: TCof fee **x*x*

Met hods taken from package Bio::Tool s::Run:: Alignnent:: TCoffee
AUTCLOAD align exi sts_tcof fee profile_align

***Net hods for (bject Bio::Tools::Run::StandAl oneBl ast ***x**xx*

Met hods taken from package Bio:: Tool s:: Run:: St andAl oneBl ast
AUTOLOAD bl 2seq bl ast al | bl ast pgp exi sts_bl ast

Met hods for Object Bio::Tools::SeqgPattern ****x*

Met hods taken from package Bio:: Root: : Obj ect

clear _err cl one conpress _file cont ai nnent debug delete file
destroy di spl ay dont _warn err err_state err_string

fatal _on_warn fh file file date find_obj ect has_nane

has_war ni ng i ndex make noni t or nane par ent
print_err read record err set _di spl ay set _err_data set _log err
set _read set _stats show src_obj strict strictness

terse testing to_string unconpress_file verbosity warn_on_fata
xr ef

Met hods taken from package Bi o:: Tool s:: SeqPattern
al phabet ok expand revcom str type

Met hods for Object Bio::Tools::SeqStats ****x*

Met hods taken from package Bio::Tool s:: SeqStats
count _codons count _nmononers get _nol _wt

Met hods for Object Bio::Tools::SeqWrds ****x*

Met hods taken from package Bio:: Root: : Obj ect

clear _err cl one conpress _file cont ai nnent debug delete file
destroy di spl ay dont _warn err err_state err_string

fatal _on_warn fh file file date find_obj ect has_nane

has_war ni ng i ndex make noni t or nane par ent
print_err read record err set _di spl ay set _err_data set _log err
set _read set _stats show src_obj strict strictness

terse testing to_string unconmpress_file verbosity warn_on_fata
xr ef

Met hods taken from package Bi o:: Tool s:: SeqWr ds
count _words

Met hods for Object Bio::Tools::Sigcleave ****x*

Met hods taken from package Bio:: PrimarySeql

GCG checksum accessi on_numnber ary can_call _new carp conf ess
croak desc di splay_id get seq id | ength

nol type out fasta primary_id revcom seq seqg_l en

set seq str subseq transl ate translate_old trunc

type

Met hods taken from package Bi o:: Seq

accessi on add_SeqFeat ure add_date add_secondary_accessi on annot ati on
each_date each_secondary_accessi on feature_count keywor ds nmol ecul e
speci es sV

di vi
pri mar

Met hods taken from package Bio:: Seql
al | _SeqFeat ures t op_SeqFeat ur es wite GFF

Met hods taken from package Bio:: Tool s:: Si gcl eave

debug dont _warn fatal _on_warn noni t or pretty_print signal s
strictness testing t hreshol d verbosity war n_on_f at al

NMet hods for bject Bio::Tools::Simd::Results **x*x

Met hods taken from package Bi o:: SeqgAnal ysi sPar ser |
carp conf ess croak next feature par se

Met hods taken from package Bio:: Tool s:: Anal ysi sResul t

anal ysis_date anal ysi s_net hod anal ysi s_net hod_versi on anal ysi s_query anal ys

Met hods taken from package Bio::Tools::Sim: :Results

basenane di r name fil eparse fileparse_set fstype next exonset parse_next_a

NMet hods for Object Bio::Tools::pSW***xx*

Met hods taken from package Bio:: Tool s:: Ali gnFactory
kbyt e report set _nmenory_and_report

Met hods taken from package Bio:: Tool s::pSW
align_and_show ext gap matri x pai rwi se_al i gnment

***Met hods for Object Bio::Uni VAl **x**xxx

Met hods taken from package Bio:: Uni VAl n

abort access acos aln al phabet _check asctime

asin at an basenane carp catch cei

cl ock col descs col _ids conpl ermrent conf ess consensus

copy cosh croak ctermd ctinme cuserid

desc descffm difftinme di r name dup dup?2

equal _nogaps equal i ze_| engt hs ffm fil eparse fil eparse_set fstype floor
f nod f pat hconf frexp gap_free_cols gap_free_inds gap_free_sites

hei ght id i npl ace i nvar _i nds i nvar_sites i sal num
i sal pha iscntrl i sdigit i sgraph i sl ower i sprint

i spunct i sspace i supper i sxdigit | ayout | dexp

| ocal econv l ogl0 | seek nmap_c nmap_r nbl en

nbst owcs nbt owc nkfifo mkti ne nodf nanes

new no_all gap_inds no_al |l gap_sites nunberi ng out bad out fasta

out fasta2 out _raw out_raw2 out readseq par se par se_bad

parse_fasta parse_raw parse_unknown pat hconf pause renove_gaps
revcom reverse row descs row_ids samel engt h seqs

setl ocal e setpgid setsid si gaction si gpendi ng si gpr ocmask

si gsuspend si nh speci al _free_inds special _free_ sites strcoll strftine
strtod strtol st rtoul strxfrm sysconf tan

tanh tcdrain tcflow tcflush tcgetpgrp tcsendbreak

tcsetpgrp tnpnam ttynane type tznane @ tzset

unane unknown_free_inds unknown_free sites var _inds var_sites wecst onbs
wet onb wi dt h

Met hods t aken from package Exporter

export export _fail export_ok_tags export _tags export _to_|evel i mport
require_version

Met hods for Qbhject Bio::Variation::Allele **x*x*

Met hods taken from package Bi o:: DBLi nkCont ai ner |
carp conf ess cr oak each_DBLi nk

Met hods taken from package Bio:: Pri marySeql

GCG checksum accessi on_nunber ary can_call _new desc di splay_id
get seq id l ength nol type out fasta primary_id

revcom seq seq_len setseq str subseq

transl ate translate old trunc type

Met hods taken from package Bio::Variation::Allele
add_DBLi nk is_reference repeat _count repeat _unit

NMet hods for Qbject Bio::Variation::DNAMut ati on ***xx

Met hods taken from package Bi o:: DBLi nkCont ai ner |
carp conf ess croak each_DBLi nk

Met hods taken from package Bi o:: Rangel
cont ai ns end equal s i ntersection | ength new
over | ap_ext ent over | aps start strand uni on

Met hods taken from package Bio:: SeqFeature:: Generic
add_sub_SeqFeat ure add_t ag_val ue annot ati on attach_seq entire_seq flush_s
franme renove_t ag score seq segnane slurp gff file

Met hods taken from package Bi o:: SeqFeat ur el
all _tags each_tag val ue gf f2_string gf f_string has_t ag primary_tag
source_tag sub_SeqFeat ure

Met hods taken from package Bio::Variation:: DNAMit ati on
CpG RNAChange sysnarme

Met hods taken from package Bio::Variation::Variantl

SeqDi f f add_Allele add_DBLi nk al I el e_nut allele_ ori dnSt r eanSeq
each Allele id i sMut ati on | abel mut _nunber nunberi ng

pr oof regi on regi on_val ue restriction_changes st at us upSt r eantseq
Met hods for Object Bio::Variation::SeqDiff *x**x*

Met hods taken from package Bio::Variation::Seqbhiff

aa_rmut aa_ori add_Gene add_Vari ant al i gnnment cds_end
cds_start chr onosone description dna_nut dna_ori each_Gene
each_Vari ant gene_synbol id nol t ype nunberi ng of f set
rna_id rna_nmut rna_of f set rna_ori seqobj sysnane

trivnane

V.2 Appendix: Tutorial demo scripts

The following scripts demonstrate many of the features of bioperl. To run al the demos run:
> perl -w bptutorial.pl 0

To run asubset of the scripts do
> perl -w bptutorial.pl

and use the displayed help screen.

