Introduction to Perl

October 2013

Document reference: 3169-2013

#1/usr/local/bin/perl

#

Find all the images that have been downloaded, and how often.
Store in a nested hash: filename -> size -> count

use strict;

use Data: :Dumper;

my %downloads; # Predeclare the hash
while (<>) {
next unless /Download/; # ignore everything thats not a download

H=

next if /imageBar/; ignore downloads for the imageBar
m!/hulton/ (\w+?)/(.+\.jpg)!; # get the directory (size) and filename

If the filename doesn't exist, we need to create it.
Sdownloads{$2} = {} unless defined S$downloads{$2}

Sdownloads {$2}->{S$1}++; # increment filename -> size by one

}

$Data: :Dumper::Indent = 3; # Define the padding for the output
$Data: :Dumper: :Sortkeys = "true"; # Sort keys (default ASCII sort)

print Dumper(\%downloads); # display the gathered data

2013 Slide 1 of 69

Practical Extraction and Report Language

e Language for easy manipulation of
o text
o files
e processes
o Has many similarieties to:
o C
e Java
e unix shell
e Converters available for:
® awk
e sed
e Version 1.000 was released in 1987, version 5 came out in 1994.
e Unicode came in 2000, with Perl 5.6
e Perl now release a major stable version upgrade annually (5.18.0 in 2013)
e Perl 6 (Perl 5 with lots of bells and whistles) started development in Summer 2005.
e Don't hold your breath.

2013 Slide 2 of 69

Overview

e Avoids inbuilt limits - uses full virtual memory
e Many defaults - does what you want

e Easy to do from the command prompt
perl -e 'print "hello world\n"'

e Easy to do simple scripts
#1/usr/local/bin/perl
a hello world script
print “hello world\n”;

e use of #! for specifying processor

e file needs to be executable
chmod +x hello

e Only has three basic types of data

2013 Slide 3 of 69

2013

Versions available for

acorn RISCOS

AS/400

BeOS

MacOS (system 7.5 onwards)
MS Dos

Novell Netware

IBM OS/2

QNX

Windows (1386, Alpha & Win64)

Aix / HP-UX / Irix / Digital Unix / UnixWare / etc

Solaris / SunOS

Linux (all platforms)
MacOS X

Xenix

VMS

BSD (Free, Net & Open)
PDAs

Mobile Phones (Symbian, [Jailbroken] iPhone,

Android, Windows Mobile)

Slide 4 of 69

Scalar Variables

e Simplest kind of Perl variable
e Basis for everything else

e scalar variable names are identified by a leading $ character
Sname

e variable name starts with a-zA-Z then [a-zA-Z0-9]

$A very long variable name_ending in 1

e hold numeric or string data, no separate types.
Sthing = 123;
Sthing2 = “fred”;

e does not need to be predeclared.

e Lexical scope:
while (expression) {
my Svariable; # Svariable is only accessible within this loop
local S$var2; # Svar2 already exists, and can get a new value within
this loop, but reverts when back outside this loop
more stuff;

2013 Slide 5 of 69

Scalar Variables - numeric

o All numeric variables stored as real internally

« floating point literals as in C
~1.25
7.25e45
Snum = -12e24;

« integer literals
12
~2004

« octal (base 8) constants start with leading 0

0377
Sy = 0177; # 0177 octal is 127 decimal

o hex (base 16) constants start with leading 0x (or 0X)
ox7f
Sy = 0x7f; # Ox7f hex is 127 decimal

2013

Slide 6 of 69

Scalar Variables - String

o Literal strings - single-quoted or double-quoted
Sfred ‘hello’;
Sfred “hello”;

o No limit on string length other than memory
o Allow full 8-bit 0-255 character set
e no terminating NULL
« can manipulate raw binary data (eg image files)

2013 Slide 7 of 69

Double quoted strings

o Delimited by double quotes
« Scanned for backslash escapes (full list in ref guide)

\n : newline

\cC : control-C

\x8 : hex 08 = backspace
$string = “hello world\n”;

Scanned for variable interpolation
Sa = “fred”;
Sb = “hello $a”; # Gives “hello fred”

Unassigned variable interpolates as null string

2013 Slide 8 of 69

Single quoted strings

o Delimited by single quotes
o Any character except \ and ‘is legal , including newline

o to get ‘or \ use a backslash to escape: \‘ and \\
‘don\’'t’; #5 characters

‘hello
there’; #11 chars incl newline

Not scanned for variable interpolation
Used less often than double-quoted strings
o Good for fixed text:

$footer = '<div id="credit graphics" ><a href="http://lucas.ucs.ed.ac.uk/" title="Edited
by Kiz"><!--

--><img src="/images/kiz_logo.jpg" alt="Edited by Kiz"

class="noborder"/><!--

--><a href="http://web.archive.org/web/*/http://lucas.ucs.ed.ac.uk"

title="Archived by the WayBack Machine since July 2000" target="_blank"><img
src="/images/wayback logo sm.gif" alt="Archived by the WayBack Machine since July 2000"
class="noborder"/><!--

--><img src="/icons/apache pb2.png" alt="Powered by
Apache" title="Powered by Apache 2.2.x web server. (c) Apache Foundation" class="left"
border="0"/> --></div>"';

2013 Slide 9 of 69

Operators

o Numeric operators generally the same as C/Java
+ -/ * % ** & | >> << (and more)

« precedence as in C
o full list in reference guide

2013 Slide 10 of 69

Operators (contd)

o Numeric or string operands
« context is taken from operator
o string <-> numeric conversion is automatic

o trailing non-number is stripped from strings in conversion
41237 + 1 gives 124
“123zzz” + 1 gives 124
“z22123” + 1 gives 1

« auto increment is smart, and can work in strings
Sa — ”ZZZ";
Sa++; # Sa is “aaaa”

e auto-increment can be too clever:
$foo = "1zzz"; $foo++; print $foo; # gives "2"
$foo = "zzl"; S$foo++; print $foo; # gives "zz2"

o« use WARNINGS (mentioned at the end of the workbook)

2013 Slide 11 of 69

Comparison Operators

o Different sets of operators for numeric and string comparison

2013

Comparison Numeric String
Equal == eq
Not equal I= ne
Less than < 1t
Greater than > ot
Less than or equal to <= le
Greater than or equal to >= ge
Thus...
(12 1t 5) # true since string comparison
(5 < 12) # true in numeric context
Smartmatch operator (since 5.10 — but see peridoc perlsyn)
"Foo" ~~ "Foo" # true "Foo" ~~ "Bar" # false
42 ~~ 42 # true 42 ~~ "42x" # false
42 ~~ 42.0 # true "Moose" ~~ [“Foo”, “Bar”, “Baz”] # false
42 ~~ "42.0" # true "Moose" ~~ [qw(Foo Bar Moose Baz)] # true

Slide 12 of 69

String Operators

« Concatenation operator

$string = “hello “.”world” ; # gives “hello world”
Note '.' not '+' !!

o String repetition operator
$string = “fred” x 3;
#gives “fredfredfred”

(3 +2) x 4 ;
gives “5555”. Type conversion again.
Brackets needed as ‘x’ has precedence over ‘+’

3+ 2 x 4;
gives “2225”. Type conversion again.

o Reverse
$string = “fred”;
Snewstring = reverse($string); # Gives “derf”

2013 Slide 13 of 69

More String Operators

e chop()

« removes the last character from a string variable

$x = “hello world”;
chop($x); #x is now “hello worl”

o chomp()

2013

o Perl 5 replacement for the common use of chop in Perl 4
o removes a newline from the end of a string variable

$x = “hello world”;
chomp($x); # $x is still “hello world”

$x = “hello world\n”;
chomp($x); # $x is “hello world”

default behaviour. Special variable $/ for general case
$x = “hello world”;

$old newline = $/;

$/ = “d”; # We know it’s a bad idea but...

chomp ($x); # $x is “hello worl”

Slide 14 of 69

Simple Input/Output

o <STDIN> represents standard input
$line = <STDIN>;
gets one line from input stream into $line

« newlines exist on the end of the line, can be removed with chomp()
$line = <STDIN>;
chomp ($1line);

o print()
« takes a list of arguments
o defaults to standard output

print “Hello there\n”;

2013 Slide 15 of 69

Arrays

o Second variable type

o Simply an ordered list of scalar values

o List is a generic term for list literal and array.

« List literal is comma separated sequence of scalars, in parentheses — not a

variable
(1,2,3)
(1 , "one"”)
() #Empty list

o Array is list of scalars — a variable number of scalars

« Array variable names are identified by a leading @ character
@poets = (“jonson”, “donne”, “herbert”, “marvell”);

« $#name contains the index of the last element of array @name
$lastIndex = S$#poets; # $lastIndex contains 3

« @fred and $fred can both exist independently, separate “name space” (memory
allocation)

2013 Slide 16 of 69

More about arrays

« Individual scalar values addressed as $namel[n], etc, indexed from 0
@Qfred = (7,8,9);
print S$fred[0]; # prints 7
Sfred[0] = 5; # Now @fred contains (5,8,9)

o Arrays can be included in arrays
o Inserted array elements are subsumed into the literal. The list is not an

element.
@barney = @fred;
@barney = (2, @fred, “zzz”); # @barney contains (2,5,8,9, “zzz”

o Literal lists can be assigned to
« excess values on the right hand side are discarded
« excess values on the left hand side are set to undef.

($a, $b, $c) = (1,2,3); # sa =1, $b =2, $c =3
($a, $b, $c) = (1,2); # Sa =1, $b = 2, Sc = undef
($a, $b) = (1,2,3); # Sa =1, $b = 2, 3 is ignored

2013 Slide 17 of 69

2013

Array slices

A list of elements from the same array is called a slice
« indexes are a list enclosed in square brackets

o @ prefix since a slice is a list
@Qfred[O0,1] ; # Same as ($fred[0], S$fred[1l])
@Qfred[1,2] = (9,10); # Same as S$fred[l]= 9; Sfred[2] = 10;

slices also work on literal lists
@who = (“fred”, “barney”, “betty”, “wilma”)[1,3];
@who contains (“barney”, “wilma”)

@who = (“fred”, “barney”, “betty”, “wilma”)[l1l..3];
@who contains (“barney”, “betty”, “wilma”)

Array slices count as literal lists, not arrays
@who[0] is a one element literal list, not an array!

o It will probably do what you want, but not for the reason you think.

o see 'Scalar and Array Context" (slide 23)

Slide 18 of 69

Array operators

o push() and pop()

o add and remove items from the right hand side of an array/list (the end)

push(@mylist, $newvalue); # like @mylist = (@mylist, $newvalue)
S$oldvalue = pop(@mylist); # Puts last value of @mylist in $oldvalue

o pop() returns undef if given an empty list

« push() also accepts a list of values to be pushed
@mylist = (1,2,3);
push(@mylist,4,5,6); # @mylist = (1,2,3,4,5,6)

2013 Slide 19 of 69

More array operators

o shift() and unshift()

« add and remove items from the left hand side of an array/list (the start)
unshift (@fred,$newValue); # like @fred = ($SnewValue, @fred)
SoldvValue = shift(@fred); # like ($SoldValue, @fred) = @fred

o shift() returns undef if given an empty array

« unshift() also accepts a list of values to be added
@mylist = (1,2,3);
unshift(@mylist,4,5,6); # @mylist = (4,5,6,1,2,3)

2013 Slide 20 of 69

2013

push/pop/shift/unshift Diagram

$x = pop(@myarray);

$x = shift(@myarray);
A
o] | 11 | [21 |[3]1 | [4 | [8]1 | [6]]| [7]
— - -
unshift (@myarray, $a, b, Sc) push (@myarray,

Sa,

$b, $c)

Slide 21 of 69

More array operators

e reverse()

e Reverses the order of the arguments
@Qa = (7,8,9);
@b = reverse(@a); # @b (9,8,7)
@b = reverse(l,@a); # @b (9,8,7,1)

e sort()

2013

e sorts arguments as strings in ascending ASCII order

o default case of general sort facility

@x = sort(“red”, "green”, "blue”); # gives (“blue”,

@y = sort(1,5,10,15); # gives (1, 10,

e Sort can be told how to do the sorting:

"green”,

15,

@z = sort {$a <=> $b} Qy; # Numerical sort (ascending) - (1,5,10,15)
@z = sort {$b <=> S$a} Qy; # Descending numerical sort, gives (15,10,5,1)

@x = sort {$b cmp S$a}(“b”, "r"”, "g"); # gives (“r”,

Ilgll ’

”b”)

@z = sort my sort function @y # Not telling you how to write functionms...

e chomp()

e Applies chomp to each element in an array
chomp (@words_ in LOTR);

Slide 22 of 69

Scalar and Array Context

o Lots of Perl is context driven

2013

« operands are evaluated in a scalar or array context

@fred = @barney; # ordinary array assignment
$fred = @barney;

Returns number of elements in array @barney

Sfred contains 5 (using @barney from slide 17)

o Arrays and Literal Lists do different things

$number = Qarray;

Snumber contains the number of elements in the array

$Snumber = ('aa', 'bb', 'cc', 'dd', 'ee', 'ff');

$number = qw(aa bb cc dd ee ff);

Snumber does not contain the number of elements in the literal list, but
the value of the last element of the list: S$number contains 'ff’

$number = @array[$n..S$m];

an array slice is considered a literal list, therefore $number contains
the value of the last element of the slice

@all = <STDIN> is used to read all of standard input into an array

Each line will be terminated with a newline
@Qall = <STDIN>; # Read until End Of File

from keyboard: use ctrl+d (unix) or ctrl+z(windows)
chomp (@all);

Slide 23 of 69

Control structures

o Statement block enclosed in curly brackets like C/Java
e selection (flow control)

o if/unless statement

e optional elsif and else blocks

e No elsunless

e loops (iterative control)

e while/until

o for

e foreach
e switch (addressed in part 2)

2013 Slide 24 of 69

Control structures (contd)

e curly braces are always required (unlike C/Java).
if (expression) {
statementl;
statement2;
} elsif (expression2) {
statementl;
statement2;

} else if (expression3) {
statementl;
statement2;

} else {
statementl;
statement2;

}

print "Testing for quantum instabilities in sub-etheric singularities\n" if
Strekkie;

2013 Slide 25 of 69

2013

What is true?

"Truth is self-evident"
Control expressions are evaluated as a string (scalar context)

if ($thing)

statement;

}

nn

{

(null string) and 0 (numeric zero) are false

e undefin a numeric context converts to O

e undef in a string context converts to

uQr #
1-1 #
v #
"0eO" #
"OeO" + O #
undef #

scalar keys

"nn

converts to 0 so false

sums to 0 so false

not "" or 0 so true

not "" or 0 so true! (0e0 is a string)

sums to 0, so false

converts to "" or 0 (depending on context) so false

tmy new _hash # there are no elements in the hash, so O0...

e From slide 12 — operators return true/false:
(Scount < $max) # true for S$Scount=5 & Smax=10

($sringl ne

($thingl ~~ @thing2) # true for $thingl="a” & @Qthing2=(”a”, “b",

$string2) # true for $stringl="Ian” & $string2="Alex”

false

llcll)

Slide 26 of 69

More control structures

e lterative control structures

e while iterates while (expression) is true
while ($Stemperature > 32) {
statementl;
statement2;

}
e until iterates until (expression) is true

until ($temperature 1t '3') {
statementl;
statement2;

}

e next stops the current flow and executes the next iteration

e last stops the current flow and exits the loop
my $i = 1;
while ($i > 0) {

next if ($i%2); # % is "modulus": returns the excess after the division
2%2 = 0; 3%2 = 1; 4%2 = 0; 8%3 = 2; 27%14 = 13; etc
last if ($i > 101);
print S$i;
Si++;
} # This code is flawed.... can you spot why?

2013 Slide 27 of 69

for statement

o for statement much like C (and java)

o for (initial_exp; test_exp; increment_exp)

for ($1i = 1; $i <= 10; S$i++) {
print $i;

}

o an infinite loop

for (;;) {
statementl;
statement2;

}

suggest using last to exit

2013 Slide 28 of 69

foreach statement

o Iterates through lists in order assigning to scalar variable

« scalar variable is local to the loop
foreach my $i (@list) {

statementl;
$i += S$random number; # Note: this modifies the actual element in @list

}

o to print an array in reverse
foreach my $b (reverse Qa) {
print S$b;
}

o if scalar variable omitted defaults to $_
foreach (reverse @a) { # assigns to $_
print; # prints §_
}

2013 Slide 29 of 69

2013

Summary

Scalar Variables
e nNumeric
« strings - single v’s double quoted
Operators
e numeric v’s string
« comparison and implications context
Simple I/O
o input from STDIN
e print()
Arrays
« naming and comparing
« slices and sizes
o push(), pop(), shift(), unshift(), reverse() & sort()
Control Structures
o what is true?
o 1f(), unless(), while(), until(), for() & foreach()
o next & last

Slide 30 of 69

Practical Exercises

o All questions are from the Learning Perl book

o Chapters 2,3 &4

o There is no “Correct Answer” - if it works, it’s right:

o Perl motto: "TIMTOWTDI" (¢tim-tow-tiddy: "There Is More Than One Way To Do It")
o Suggested way to write code:

« write code and save to a file

o type perl filename to run the program

For Windows users:
click on the apps-menu, and run “cmd”

In the window that opens, enter
cd m:/users/trxx-yyy/Local Documents/Desktop

reminder: ctrl-z rather than ctri-4 for “end-of-file”

1 Some answers are more aesthetically pleasing than others

2013 Slide 31 of 69

Part 2

2013 Slide 32 of 69

Associative arrays - Hashes

o Third and final variable-type.
o “list” of indexes and associated values
o like a two-column table

o hash variable name is identified by a leading % character
shash

« indexes are scalars - called keys
o values are scalars - called values

« individual scalar values addressed as $name{key}
Ssuperheroes{“superman”} = “DC Comics”;
creates a key “superman” in %$superheroes, with value “DC Comics”

S$superheroes{“Fantastic Four”} = “Marvel Comics”;
creates a key “Fantastic Four” in %superheroes, with value “Marvel Comics”

« %superheroes, @superheroes and $superheroes can all exist independently

2013 Slide 33 of 69

Initialising and copying hashes

o Initialising hashes

o using a list
%identities = (“Superman”, “Clark Kent”, “Spiderman”, “Peter Parker”);

o using key and value pairs (since perl 5.001)
%identities = (“Superman” => “Clark Kent”, “Spiderman” => “Peter Parker”);

e Copying hashes
e as hashes

%identities = %superheroes; # normal way to copy whole hash
e as lists
@ident list = %identities; # results in Q@ident list as

(“Superman”, “Clark Kent”, “Spiderman”, “Peter Parker”)
or (“Spiderman”, “Peter Parker”, “Superman”, “Clark Kent”,)

tident 2 = @ident_list; # creates %ident 2 as a copy of %identities

e order of internal storage undefined

2013 Slide 34 of 69

Hash Operators

o keys() operator

2013

e produces a list of keys

e order is arbitrary
@list = keys(%identities); # @list gets (“superman”, “Spiderman”)
or (“Spiderman”, “superman’”)

e parentheses optional
once for each key of %identities
foreach S$hero (keys %identities) {
print “The secret identity of S$hero is $identities{Shero}\n”;

}

e in scalar context, keys() returns number of elements
$num elems = keys(%identities) # $num elems contains 2

if (keys(%superheroes)) {
if keys() is not zero, the hash is not empty
statementl;

Slide 35 of 69

Hash Operators (contd)

e values() operator
e produces a list of values

e same order as keys()
@list = values(%identities); # @list gets (“Peter Parker”, “Clark kent”)
or (“Clark Kent”, “Peter Parker”)

e parentheses optional
@Qlist = values %identities;

2013 Slide 36 of 69

Hash operators (contd)

e each() operator
e returns each key-value pair as two-element list

o after last element, returns empty list
while (($first,$last) = each(%lastnames)) {
print “The last name of $first is $last\n”;

}

o delete() operator
e removes a hash key-value pair

e returns value of deleted element
$names = (“Clark” => “Kent”, “Peter” => “Parker”); i# %names has two elements
S$lastname = delete $names{“Clark”); # %names has one element

2013 Slide 37 of 69

A hash example

e Counting occurrence of words in a given array
Assume @words_ in LOTR has been defined and contains all the words,

one per cell, from the trilogy "Lord of The Rings" (there are over 12,000
pages, so that's a lot of words!)

predeclare the hash
my %count;

calculate the word-count
foreach $word (@words_ in LOTR) {
Scount{ lc($word) }++; # lc() returns the word in lower case

}

now print out the results
foreach S$word (keys %count) {
print “$word was seen S$count{$word} times\n”;

}

print "There are ".scalar (keys %count)." unique words, from a total of "
. scalar @words_in LOTR." words in the trilogy\n";

e 7 lines of code to count the words

2013 Slide 38 of 69

2013

Basic 1/0 : STDIN

Input from STDIN

read next input line
$line = <STDIN>;

read rest of input until EOF (CTRL+D)

@lines = <STDIN>; # returns undef on EOF
Use of $_
$ = <STDIN>; # read next input line

$_ is the default variable for input
<STDIN>; # equivalent to § = <STDIN>;

used in loops
while ($_ = <STDIN>) { ... };

while (<STDIN>) { ... }; # uses $

Slide 39 of 69

Output to STDOUT

e print() is a list operator

print “hello world\n”;
print(“hello world\n”);

returns O or 1
$a = print (“hello ”, “world”, “\n");

may need to add brackets (parentheses, or round braces)

print (2+3), “ hello\n”; # wrong! prints 5,ignores “hello\n”
print ((2+3), “ hello\n”); # right, prints 5 hello
print 2+3, “ hello\n”; # right, prints 5 hello

o printf() for formatted output

2013

same as C function
first argument - format control

subsequent arguments - data to be printed
printf “%$15s %5d %10.2f\n”, $s, $n, Sr;

parentheses optional

Slide 40 of 69

General Input/Output

e Use of file handles

sample script to copy a file

open (SOURCE, “data.in”) || die “Cannot open data.in for reading\n”;
open (OUTPUT, “>/tmp/data.out”) || die “Cannot open output file
/tmp/data.out\n”;

while ($line = <SOURCE>) {
process in some way
print OUTPUT S$line;

}

close (SOURCE) ;
close (OUTPUT) ;

« File handles are uppercase by convention, not required

« You may also see:
open (my $foo, “data.in”) .. ;

2013 Slide 41 of 69

More 1/0

e Options for open()

2013

equivalent to “file” for reading
open(FH1, “<file”);

can use variable interpolation overwrites the existing file
open(FH2, “>$filename”);

append mode output
open(FH3, “>>file”);

Open for reading and writing pointer at the start of the file
open (LOCAL LOG, “+<$filename”);

open for reading and writing clear the file prior to use
open (LOCAL LOG2, “+>file”);

input from a pipe
open (PIPE, “ps|”);

output to a pipe the sort does not occur until OUT is closed
open (SORTED, “|sort >>/tmp/file”);

ensure the file is encoded correctly
open (UTF8 DATA, "<:encoding(utf8)", $filename);

Slide 42 of 69

Diamond operator

e reads lines from files specified on command line
Sline = <>;

o uses @QARGV (Note: uses shift, so @QARGV empties in use)

while ($line = <>) { ... }; # an understandable form
while (<>) { «.. }; # a more common form (uses $)

e reads from STDIN if @ARGV empty

while ($line = <>) { print $line; }; # “cat” command
while (<>) { print; }; # ditto

e can assign to @ARGV

@ARGV = ("The_ Hobbits", "The Fellowship of the Ring",
"The Two Towers", "The\ Return\ of\ the\ King");

while (<>) { # process the files
push @lines in LOTR, $;
}
° (“ﬁllS&)’”Can't open The Hobbits: No such file or directory at ced)

e 4 lines to read three files on the disk

2013 Slide 43 of 69

Regular expressions

« Pattern to match against a string
Used in grep, sed, awk, ed, vi, emacs
Perl uses a superset

o See the reference guide for a more complete list of options

2013 Slide 44 of 69

Match operator

$string =~ m/pattern/

« matches the first occurrence of pattern
o returns true or false

« to find "Land Rover" in various files:
do “grep 'Land Rover' filel file2 file3”
while ($line = <>) {
if ($line =~ m/Land Rover/) {
print “$line”;

}

2013 Slide 45 of 69

Match operator (contd)

o can use defaults

o use$
m/Land Rover/;

e Omit m
/Land Rover/;

o thus:

while (<>) { # using defaults
print if /Land Rover/;

}

2013 Slide 46 of 69

Substitute operator

$string =~ s/pattern/string2/

to replace "ipod" with "mp3 player”

while ($line = <>) {
$line =~ s/ipod/mp3 player/;
print “$line”;

}

« substitutes only the first occurrence of pattern
o returns true or false
« replaces sub strings in a given string

o Can use defaults
o use $

while (<>) { s/ipod/mp3 player/; print; }

Be careful: "tripod” becomes "trmp3 player"

2013 Slide 47 of 69

Patterns

« Single-character patterns

o the character itself
/a/

o a defined string of characters
/land rover/

« any character (except newline)

/.

« Alternations (as opposed to alterations)
/Fred|Barney|Nate|Weirdly/ # Fred or Barney or Nate or Weirdly
Nate Slate is Fred's boss at the quarry
Weirdly Gruesome is Fred's neighbour

2013 Slide 48 of 69

o character classes

/[abcde]l/;
/[aeiouAEIOU]/;
/[0-91/;
/[0-9\-1/;
/[a-2A-Z0-9 1/;

= FH= H H= H

Patterns (contd)

match a single letter
match a single vowel
use of range

match digit or minus
match letter, digit or
underscore

e 1nverse character classes

/["aeiouAEIOU]/;

/[70-9]1/;
/17717 ;

#
#
#
#

match a single non-vowel
match a single non-digit
match any single character
except caret

e Pre-defined character classes (abbreviations for)

2013

\s
\d
\w

\wW
\D
\S

#
#
#

+=

whitespace [\t\r\n\f]
digits [0-9]

words [a-2A-Z0-9_]
non-words ["a-2zA-Z0-9]

non-digits [70-9]
non-space [“\r\t\n\f]

Slide 49 of 69

Anchoring patterns

o for beginning of string
/" fred/; # matches fred at start of string
/" fr~ed/; # matches fr"ed at start of string

« $ for end of string
/fred$/; # matches fred at end of string
/$fred$/; # matches the contents of the
variable $fred at end of string

/fr\Sed$/; # matches fr$Sed at end of string

2013

Slide 50 of 69

Anchoring patterns (contd)

e \b and \B for word boundaries

/ipod\b/; # matches “tripod” and “ipod” but
not “ipodate”

/\bipod/; # matches “ipod” and “ipodate” but
not “tripod”

/\bipod\B/; # matches “ipodate” but not “ipod”
or “tripod”

Note: A boundary is defined as the bit between a \ wcharacter and a non \ w
character.
As \ wexcludes almost all punctuation, there are boundaries in the middle of
strings like "isn't", "fred@flintstones.com”, "M.L.T", and "key/value"

Note II: ipodate - a compound C ,H N 50 that is administered in the form of its

sodium or calcium salt for use as a radiopaque medium in cholecystography
and cholangiography

2013 Slide 51 of 69

Grouping patterns

o Multipliers

o * zero or more of preceding character (class)

/"\s*\w/; # matches any number of spaces at the start of a string
(copes with tab-indents, blank lines, etc)

« + one or more of preceding character (class)
/\b\w+\b/; # a word, of any length: from 'a' to 'zenzizenzizenzic'

o ? zero or one of preceding character (class)
/\boff?\b/;# matches the words 'of' or 'off'

« Example — the pirate's cry
/aa?r*g+h*1?/
aarrgghhhhh!, arrggggg!, arrrgggg
a, ah, arh
Note that "blag" is valid, as there is no boundary definition
at the start of regexp

2013 Slide 52 of 69

Matching variables

« Read-only variables
e $& - string that matches the regular expression
o $ - part of string before match
o $ - part of string after match

$§ = “this is a sample string”;

/sa.*le/; # match sample

$/ is “this is a “
$& is “sample”
$’' is “ string”

Avoid using them!

Whilst these are fine for simple code & debugging - once they appear in code once, they
are applied to every match, which slows the performance of the program.

If you want to get $&, you would be better “capturing” — it is more efficient within
Perl.

2013 Slide 53 of 69

Capturing & Clustering & Cloistering

What do we do to capture the matched information in a regexp?

$foo = “1: Ian Stuart - 8097”";
$foo =~ /\b((\w+)\s+(\w+))\b/;
$1 = “Ian Stuart”; $2 = “Ian”; $3 = “Stuart”

Sometimes one needs to cluster a group together:
/"“cat|cow|dog$/

needs to be
/" (?:cat|cow|dog)$/

so that the cat doesn't run away with the ~

Sometimes one needs to apply modifiers to just a small bit of the regexp (making a
cloister):

/Harry (?ix: \s* [A-Z] \.? \s+)?Truman/
matches “Harry Truman”, “Harry S. Truman”, “Harry S Truman”,
“Harry s. Truman”, “Harry s Truman” and even “Harry S Truman”

(See slide 57 & 58 for 1' & 'x')

2013 Slide 54 of 69

Matching operator revisited

$string =~ m/pattern/

o Operates on any string
$a = “hello world”;
Sa =~ /"he/; # true

o wWorks on any scalar
if (<STDIN> =~ /"~[yY¥]/) { ... }; # input starting with Y

o Using different delimiter - m/.../

o use any non-alphanumeric character
m/”\/usr\/etc/; # using slash
m#"/usr/etc#; # using # for a delimeter

2013 Slide 55 of 69

Substitution Operator revisited

$string =~ s/pattern/string2/

« works on any scalar value
Change $which to “this is a quiz”
Swhich = “this is a quiz”;
$which =~ s/test/quiz/;

Change an array element
Ssomeplace[$Shere] = 'turn left at the roundabout';
$someplace[$here] =~ s/left/right/;

prepend “x “ to hash element
$d{'t'} = “marks the spot”;
$d{utn} —_— S/A/x /;

o Using different delimiter
$ =~ s#fredi#tbarneyt;
$filename =~ s#\#/#g;

o Global replacement - s/pattern/string/g
$_ = “foot fool buffoon”;
s/foo/bar/g; # $_ becomes “bart barl bufbarn”

2013 Slide 56 of 69

(General modifiers

o Ignoring case
$which =~ s/TEST/quiz/i;

« How to react to newlines (\n)
s modifier means "." can match the newline
/Perl.Programming/s # 'I use Perl
Programming is fun'

m modifier means """ & "$" matches the start
and end of lines, not whole strings
s/"Seditor/Sauthor/m # 'The editors name is

Ian, and...'

o Faster matching
Compile the pattern match once.
Could be a problem as $speaker will not be
changed
$person =~ /$speaker/o

2013 Slide 57 of 69

General modifiers (continued)

o Allow whitespace and comments with /x
o A very complex example - Find duplicate words:

my S$input record separator = $/;

$/ = "" # defines a "newline" as being a blank character, not "\n"
while (<>) {
while (
m! # using '!' as the delimiter
\b # start at a word boundary
(\w\S+) # capture a word-like chunk (2 or more characters)
(
\s+ # separated by some space
\1 # from the thing in the braces above
) + # repeatedly
\b # until another word boundary
!xig # 'x' allows spaces and comments in the regexp (as done here)
'i' to match "Is" with "is"
'g' to look for multiple matches in one paragraph
) {

print "Duplicate word '$1' found in paragraph $.\n" # the $1 matches the thing in
the first set of braces above

}
}

$/ = S$input_record separator; # reset record separator

2013 Slide 58 of 69

2013

split() operator

split(/pattern/, string)

splits string on each occurrence of a regular expression
returns list of values

$line = “merlyn::118:10:Randal:/home/merlyn:/usr/bin/perl”;
@fields = split(/:/,$1line);

split S$line on field delimeters

now @fields becomes (“merlyn”, “~, “118”, “10",

“Randal” “/home/merlyn”, “/usr/bin/perl”)

$_ is the default string

@words = split(/ /); # same as split(/ /, $_)

white space is the default pattern

@words = split; # same as split(/\s+/, $)

Slide 59 of 69

join() operator

join(string,list)

o glues together a list of values with a given string
@fields = (“merlyn”, “”, “118”, “10”, “Randal”, “/home/merlyn”,
“/usr/bin/perl”)
Snewline = join(“:”,@fields);
Snewline now equals “merlyn::118:10:Randal:/home/merlyn:/usr/bin/perl”

« note: join uses string, not regular expression
$Snewline = join(“:”, @fields);

2013 Slide 60 of 69

Switch statement

From Perl 5.10, the 'switch' feature was introduced

Old school:

for (S$var) { # using $_
/~abc/ && do { &some_stuff; last };
/"def/ && do { &other stuff; last };
/"xyz/ && do { &alternative; last };
{ ¬hing; };

}

Preferred form

given is “experimental”

use v5.10.1;

for (Svar) {
when (/”abc/) {
when (/"def/) {
when (/"xyz/) {
default {

&some_stuff; }
&other_ stuff; }
&alternative; }
¬hing; }

use v5.10.1;

given (Svar) {
when (/”abc/) {
when (/"def/) {
when (/"xyz/) {
default {

Perl 5.10.0 has a slightly broken switch implementation
Perl 5.10 to 5.14 have a “hinky” implementation of given

2013

&some_ stuff; }
&other_ stuff; }
&alternative; }
¬hing; }

Slide 61 of 69

A final example
Analyze the words in the trilogy Lord of the Rings

@QARGV = ("The Fellowship of the Ring", "The Two Towers", "The Return of the King");
my %count;
my S$sum;

while (<>) { # each line is in §_
chomp;
@words_in line = split; # defaults to splitting on whitespace
Do the analysis
foreach Sword (@words_in line) {
Scount{ lc($Sword) }++; # lc() returns the word in lower case
Ssum++;

}

display the results
print "There are ".
scalar (keys %count).
" unique words, from a total of $sum words in the trilogy\n";

foreach $word (keys %count) {
print “ $word was seen $count{Sword} times\n”;

}

14 lines to briefly analyze the words in the Lord of the Rings trilogy!

2013 Slide 62 of 69

Summary

o Associative arrays - hashes
e Naming
o initialising
e cCOpying
o keys(), values(), each(), delete() operators

o Basic I/O
o input from STDIN
o diamond operator and @QARGV
output to STDOUT
« use of filehandles
options to open()

2013 Slide 63 of 69

Summary (contd)

o Match and subsitute operations
o the read-only variables
o Regular expressions
« character classes
« anchoring patterns
o mutipliers
o split() and join() operators
o the switch statement

2013 Slide 64 of 69

Diagnostics

o The -w switch gives useful diagnostics
perl -w filename

#!/usr/local/bin/perl -w

o warns of such things as:
« use of variables without pre-declaration
« re declaring localised variables
« silent change of context
« variables declared or set but never used

2013 Slide 65 of 69

the debugger

perl -d filename

#!/usr/local/bin/perl -4

o Debugger commands
1 list
single step (goes into subroutines)
next statement (silently does the subroutine)
nnn set breakpoint at line nnn
nnn continue to line nnn
.. print scalar value
.o prints the contents of the thing (array, hash,etc...)
any perl statement
q quit

X' QoBuwn

2013 Slide 66 of 69

Information Resources

o Electronic

e INan pages
man perlstyle

o perldoc command
perldoc Net::Ping
perldoc perlfaq

o Web sites

http://www.perl.org # The main Perl web site
http://www.perl.com A “uses of Perl” blog
http://www.perlfoundation.org/ for the politically motivated

H= H

http://perlmonks.org/
http://www.pm.org/

help with perl

A loose association of international
Perl User Groups

Perl Mongers at Edinburgh

H= H H= HF

http://edinburgh.pm.org/

H=

http://search.cpan.org/ CPAN (Comprehensive Perl Archive Network),

for modules

H=

2013 Slide 67 of 69

Information Resources (contd)

o Newsgroups
o comp.lang.perl.* (announce, misc, modules, moderated & tk)

o Literature

o O’Reilly books (http://www.oreilly.com/pub/topic/perl)
o Manning Publications (http:/www.manning.com/catalog/perl/)

2013 Slide 68 of 69

Practical Exercises

o All questions are from the Learning Perl book
o Chapters 5,6 & 7
o There is no “Correct Answer” - if it works, it’s right?
o Perl motto: "TIMTOWTDI" (¢tim-tow-tiddy: "There Is More Than One Way To Do It")
o Some solutions are faster or cleaner than others

For Windows users:
click on the apps-menu, and run “cmd”

In the window that opens, enter
cd m:/users/trxx-yyy/Local Documents/Desktop

Use ctril-z rather than ctri-a for “end-of-file”

For Unix users:

To email all files that start my to yourself, run:
for £ in my*; do mail ad@dress < $f; done;

2 Some answers are more aesthetically pleasing than others

2013 Slide 69 of 69

	Introduction to Perl_cover
	Introduction_to_Perl

