
Lee
Perl

Companion
eBook Available

Beginning

James Lee, Author of

Hacking Linux Exposed

this print for content only—size & color not accurate

 CYAN
 MAGENTA

 YELLOW
 BLACK
 PANTONE 123 C

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Beginning Perl
Dear Reader,

Whether you are a complete novice or an experienced programmer, you hold
in your hands the ideal guide to learning Perl. Originally created as a powerful
text processing tool, Perl has since evolved into a multipurpose, multiplatform
programming language capable of implementing a variety of tasks such as
system administration, web and network programming, and XML processing.
In this book I will provide valuable insight into Perl's role regarding several of
these tasks and more.

Starting with a comprehensive overview of the basics of Perl, I'll introduce
important concepts such as Perl's data types and control flow constructs. This
material sets the stage for a discussion of more complex topics, such as writing
custom functions, using regular expressions, and file input and output.

Next, we move on to the advanced topics of object-oriented programming,
modules, CGI programming, and database administration with Perl's powerful
database interface module, DBI. The examples and code provided offer you all
of the information you need to start writing your own powerful scripts to solve
the problems listed above, and many more.

After years of experience programming in this powerful language, I've come
to appreciate Perl's versatility and functionality for solving simple and highly
complex problems alike. Plus, Perl is one of the most enjoyable languages to
use—programming in Perl is fun! I am confident that once you have studied the
material covered in this book, you'll feel the same.

James Lee

US $39.99

Shelve in:
Perl

User level:
Beginning

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-2793-9

9 781430 227939

53999

THE APRESS ROADMAP

The Definitive Guide
to Catalyst

Pro Perl

Linux System
Administration

Recipes

Beginning Perl
3rd Ed

Beginning
Portable Shell Scripting

Covers
Perl 5.10

THIRD
EDITION

7.5 x 9.25 spine = 0.875" 464 page count

THE EXPERT’S VOICE® IN OPEN SOURCE

Perl

THIRD EDITION

James Lee

Perl for those who missed it the first time around:
Learn about the duct tape for the web, the cloud
and system administration

Beginning

Covers
Perl 5.10

Beginning Perl
Third Edition

■ ■ ■

JAMES LEE
with SIMON COZENS

ii

Beginning Perl, Third Edtion

Copyright © 2010 by James Lee

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-2793-9

ISBN-13 (electronic): 978-1-4302-2794-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning
Lead Editor: Frank Pohlmann
Technical Reviewers: Richard Dice, Ed Schaefer, Todd Shandelman
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Laurin Becker
Copy Editors: Katie Stence, Sharon Terdeman
Compositor: Kimberly Burton
Indexer: Brenda Miller
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:ny@springer-sbm.com
mailto:ny@springer-sbm.com
mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

iii

For Polly and Dave Pistole

iv

Contents at a Glance

■About the Author .. xvi

■About the Technical Reviewers ... xvii

■Acknowledgements.. xviii

■Introduction.. xix

■Chapter 1: First Steps in Perl ..1

■Chapter 2: Scalars.. 13

■Chapter 3: Control Flow Constructs.. 53

■Chapter 4: Lists and Arrays.. 81

■Chapter 5: Hashes ...115

■Chapter 6: Subroutines/Functions.. 131

■Chapter 7: Regular Expressions ... 153

■Chapter 8: Files and Data ... 179

■Chapter 9: String Processing ... 207

■Chapter 10: Interfacing to the Operating System... 215

■Chapter 11: References .. 231

■Chapter 12: Modules .. 257

■Chapter 13: Object-Oriented Perl ..287

■Chapter 14: Introduction to CGI.. 317

■Chapter 15: Perl and DBI .. 349

■Appendix: Exercise Solutions ... 387

■Index .. 409

v

Contents

■About the Author .. xvi

■About the Technical Reviewers ... xvii

■Acknowledgements .. xviii

■Introduction .. xix

■Chapter 1: First Steps in Perl...1

Programming Languages...1

Our First Perl Program ...2

Program Structure .. 6

Character Sets ...8

Escape Sequences...8

Whitespace... 9

Number Systems ...9

The Perl Debugger ...11

Summary ...11

Exercises ...12

■Chapter 2: Scalars ...13

Types of Data ...13
Numbers ... 14

Strings .. 17

Here-Documents... 20

Converting Between Numbers and Strings .. 21

■ CONTENTS

 CONTENTS

vi

Operators ...22
Numeric Operators ... 22

String Operators ... 32

Operators to Be Covered Later ... 36

Operator Precedence.. 37

Variables ..38

Scoping... 43

Variable Names .. 46

Variable Interpolation...46
Currency Converter... 48

Two Miscellaneous Functions..50
The exit() Function.. 50

The die() Function... 51

Summary ...52

Exercises ...52

■Chapter 3: Control Flow Constructs...53

The if Statement ..54
Operators Revisited .. 55

Multiple Choice: if . . . else ... 61

The unless Statement... 64

Expression Modifiers .. 65

Using Short-Circuited Evaluation.. 65

Looping Constructs ..66

The while Loop...66
while (<STDIN>) ... 67

Infinite Loops .. 69

Looping Until... 70

The for Loop.. 71

■ CONTENTS

vii

The foreach Loop.. 71

do .. while and do .. until .. 72

Loop Control Constructs...74
Breaking Out... 74

Going On to the Next... 75

Reexecuting the Loop ... 76

Loop Labels .. 77

goto .. 79

Summary ...79

Exercises ...79

■Chapter 4: Lists and Arrays ...81

Lists ...81

Simple Lists .. 82

More Complex Lists .. 83

Creating Lists Easily with qw// ... 84

Accessing List Values ... 87

Arrays ..91
Assigning Arrays... 91

Scalar vs. List Context .. 94

Adding to an Array.. 95

Accessing an Array... 95

Summary ...114

Exercises ...114

■Chapter 5: Hashes..115

Creating a Hash ...115

Working with Hash Values.. 117

Hash in List Context ...119

■ CONTENTS

 CONTENTS

viii

Hash in Scalar Context...120

Hash Functions ..121

The keys() Function .. 121

The values() Function ... 122

The each() Function .. 123

The delete() Function.. 123

The exists() Function .. 124

Hash Examples ..125

Creating Readable Variables .. 125

“Reversing” Information... 125

Counting Things.. 126

Summary ...129

Exercises ...129

■Chapter 6: Subroutines/Functions...131

Understanding Subroutines ...132
Defining a Subroutine... 132

Invoking a Subroutine... 133

Order of Declaration and Invoking Functions ... 134

Passing Arguments into Functions ..137

Return Values...139
The return Statement ... 141

Understanding Scope...142
Global Variables.. 142

Introduction to Packages.. 144

Lexical Variables (aka Local Variables) .. 146

Some Important Notes on Passing Arguments ..147
Function Arguments Passed by Reference... 147

Lists Are One-Dimensional ... 149

■ CONTENTS

ix

Default Argument Values.. 150

Named Parameters... 151

Summary ...152

Exercises ...152

■Chapter 7: Regular Expressions ..153

What Are They?..153

Patterns .. 154

Working with Regexes ...170

Substitution .. 170

Changing Delimiters ... 172

Modifiers... 173

The split() Function... 174

The join() Function.. 175

Common Blunders .. 175

Summary ...176

Exercises ...177

■Chapter 8: Files and Data ..179

Filehandles ..179

The open() Function.. 179

The close() Function ... 180

Three Ways to Open a File.. 181

Read Mode.. 182

Reading in Scalar Context .. 183

Reading with the Diamond ..185
@ARGV: The Command-Line Arguments.. 187

@ARGV and <>... 189

$ARGV... 190

Reading in List Context... 190

■ CONTENTS

 CONTENTS

x

Writing to Files...192
Buffering... 195

Opening Pipes..196
Receiving Piped Data from a Process... 196

Sending Piped Data to Another Process ... 198

Bidirectional Pipes.. 200

File Tests ...200

Summary ...205

Exercises ...205

■Chapter 9: String Processing...207

Character Position ...207
String Functions ... 208

The length() Function.. 208

The index() Function ... 208

The rindex() Function.. 210

The substr() Function.. 210

Transliteration .. 212

Summary ...213

Exercises ...213

■Chapter 10: Interfacing to the Operating System..215

The %ENV Hash ...215

Working with Files and Directories..217
File Globbing with glob()... 217

Reading Directories .. 220

Functions to Work with Files and Directories... 221

Executing External Programs...225
The system() Function .. 225

■ CONTENTS

xi

Backquotes... 227

There’s More..228

Summary ...228

Exercises ...229

■Chapter 11: References ...231

What Is a Reference?...231

Anonymity... 232

The Life Cycle of a Reference ..232

Reference Creation... 232

Reference Modification .. 239

Reference Counting and Destruction.. 243

Using References for Complex Data Structures...244

Matrices.. 245

Autovivification ... 245

Trees... 250

Summary ...255

Exercises ...255

■Chapter 12: Modules..257

Why Do We Need Them?..257

Creating a Module..258

Including Other Files with use ...260

do.. 260

require .. 261

use.. 262

Changing @INC... 262

Package Hierarchies... 263

Exporters..265

■ CONTENTS

 CONTENTS

xii

The Perl Standard Modules..267
Online Documentation .. 268

Data::Dumper.. 268

File::Find ... 270

Getopt::Std.. 271

Getopt::Long ... 272

File::Spec.. 273

Benchmark ... 275

Win32 ... 276

CPAN..278

Installing Modules with PPM .. 280

Installing a Module Manually.. 281

The CPAN Module ... 281

Bundles... 284

Submitting Your Own Module to CPAN... 285

Summary ...286

■Chapter 13: Object-Oriented Perl...287

OO Buzzwords..287

Objects.. 287

Attributes .. 288

Methods.. 288

Classes ... 289

Polymorphism... 290

Encapsulation ... 290

Inheritance.. 290

Constructors ... 291

Destructors ... 292

An Example ..292

■ CONTENTS

xiii

Rolling Your Own Classes ..295
Bless You, My Reference.. 296

Storing Attributes ... 298

The Constructor .. 298

Creating Methods ... 301

Do You Need OO?...313

Are Your Subroutines Tasks? ... 314

Do You Need Persistence? ... 314

Do You Need Sessions?.. 314

Do You Need Speed? .. 314

Do You Want the User to Be Unaware of the Object? ... 314

Are You Still Unsure?.. 314

Summary ...315

Exercises ...315

■Chapter 14: Introduction to CGI ...317

We Need a Web Server ..318

Creating a CGI Directory.. 318

Writing CGI Programs...318

“hello, world!” in CGI.. 319

The CGI Environment .. 321

Generating HTML.. 323

Introducing CGI.pm ..325
Conventional Style of Calling Methods ... 331

CGI.pm Methods...332
Methods That Generate Several Tags... 332

Methods That Generate One Tag .. 333

Processing Form Data..333

The param() Method ... 335

■ CONTENTS

 CONTENTS

xiv

Dynamic CGI ... 336

Let’s Play Chess!..338

Improvements We Can Make.. 346

What We Did Not Talk About..347

Summary ...348

Exercises ...348

■Chapter 15: Perl and DBI ...349

Introduction to Relational Databases...349

We Need an SQL Server—MySQL..353
Testing the MySQL Server .. 353

Creating a Database ... 354

Creating a Non-root User with the GRANT Command... 357

The INSERT Command.. 358

The SELECT Command ... 361

Table Joins ... 367

Introduction to DBI ...368
Installing DBI and the DBD::mysql .. 368

Connecting to the MySQL Database ... 369

Executing an SQL Query with DBI... 370

A More Complex Example... 372

Use Placeholders .. 375

DBI and Table Joins.. 377

Perl, DBI, and CGI...378

What We Didn’t Talk About ..385

Summary ...386

Exercises ...386

■Appendix: Exercise Solutions ..387

■ CONTENTS

xv

Chapter 1 ...387

Chapter 2 ...387

Chapter 3 ...389

Chapter 4 ...390

Chapter 5 ...391

Chapter 6 ...393

Chapter 7 ...395

Chapter 8 ...396

Chapter 9 ...398

Chapter 10 ...399

Chapter 11 ...400

Chapter 13 ...404

Chapter 14 ...405

Chapter 15 ...406

■ Index...409

■ CONTENTS

 CONTENTS

xvi

About the Author

■James Lee is a hacker and open-source advocate based in Illinois. He
has a master’s degree from Northwestern University, where he can often
be seen rooting for the Wildcats during football season. The founder of
Onsight, James has worked as a programmer, trainer, manager, writer,
and open-source advocate. He is the author of Open Source Web
Development with LAMP (Addison-Wesley), and a coauthor of Hacking
Linux Exposed, Second Edition (McGraw-Hill/Osborne). He has also
written a number of articles on Perl for Linux Journal. James enjoys
hacking Perl, developing software for the Web, snowboarding, listening
to music on his iPod, reading, traveling, and most of all, playing with his
kids, who are now old enough to know why Dad’s favorite animals are
penguins and camels. You can reach him at james@onsight.com.

mailto:james@onsight.com

■ CONTENTS

xvii

About the Technical Reviewers

■Richard Dice has more than 15 years of experience in the IT industry in
many different roles: he has been a software developer, manager of
software development groups, and IT director with full responsibility for IT
operations and customer deliverables in various operating companies.
Richard has also been a IT consultant and corporate technology trainer to
internationally recognizable organizations including Intel, Motorola and
Unisys. He is an author and frequent speaker at industry conferences.
Richard is also the past president of The Perl Foundation, the global
organizing body that represented the Perl open-source programming
language. Richard has a B.Sc. in Applied Mathematics from the University
of Western Ontario and an MBA from the University of Toronto.

■Ed Schaefer is an ex-paratrooper, an ex-military intelligence officer, an ex-
oil-field-service engineer, and a past contributing editor and columnist for
Sys Admin, the Journal of Unix System Administrators. He's not a total has-
been. He's earned a BSEE from South Dakota School of Mines & Technology,
and a MBA from USD. Presently, he fixes microstrategy and teradata
problems—with an occasional foray into Linux—for a Fortune 50 company.

■Todd Shandelman, who fondly remembers coding assembly language
programs on punchcards for IBM System/370 mainframes, has been an
ardent Perl devotee since the days of Perl 4. After occupying various other
ecological niches in software technology over the years (C, C++, and Java, to
name but a few), Todd has now settled comfortably into a mostly-Perl milieu.
In his spare time a professional translator of Russian and Hebrew, he also
enjoys studying Mandarin Chinese—as a sort of reminder of just how easy
learning Perl really is! Todd earned a bachelor of science degree in business
administration from the State University of New York and currently lives in
Brookline, Massachusetts.

■ CONTENTS

 CONTENTS

xviii

Acknowledgments

I want to start by saying thanks to Simon Cozens for writing an excellent book that I had the privilege of
revising, again, for this latest edition. You set the bar extremely high—I hope that my work has not
lowered it.

Luckily, I had great tech editors: Richard Dice, Ed Schaefer and Todd Shandelman. Thanks for all your
excellent input. This book is better because of your hard work. Any mistakes that remain are all mine.

You folks at Apress are great, especially Frank Pohlmann, Laurin Becker and Fran Parnell. And thanks to
Katie Stence and Sharon Terdeman for the copy editing. You all were a pleasure to work with.

Deep appreciation to Larry Wall for creating Perl; the language that has brought me great joy for the last
16 years. I don’t think I would like my job as much if I never had Perl to play with. Thanks also to the Perl
community for all the selfless work making Perl what it is, especially Lincoln Stein for CGI.pm and Tim
Bunce for DBI.

Lastly, thanks to those in my life who help make it worth living: my family and all my friends—I’d list you
all by name, but I have no idea who to start with (actually, I do know who to start with). Besides, you
know who you are.

xix

Introduction

Perl was originally written by Larry Wall while he was working at NASA’s Jet Propulsion Labs. Larry is an
Internet legend, known not just for Perl, but as the author of the UNIX utilities rn, one of the original
Usenet newsreaders, and patch, a tremendously useful tool that takes a list of differences between two
files and allows you to turn one into the other. The term patch used for this activity is now widespread.

Perl started life as a “glue” language for Larry and his officemates, allowing one to “stick” different
tools together by converting between their various data formats. It pulled together the best features of
several languages: the powerful regular expressions from sed (the Unix stream editor), the pattern-
scanning language awk, and a few other languages and utilities. The syntax was further made up out of
C, Pascal, Basic, Unix shell languages, English, and maybe a few other elements along the way.

While Perl started its life as glue, it is now more often likened to another handy multiuse tool: duct
tape. A common statement heard in cyberspace is that Perl is the duct tape that holds the Internet
together.

Version 1 of Perl hit the world on December 18, 1987 and the language has been steadily evolving
since then, with contributions from a whole bunch of people (see the file AUTHORS in the latest stable
release tarball). Perl 2 expanded regular expression support, while Perl 3 enabled the language to deal
with binary data. Perl 4 was released so that the “Camel Book” (also known as Programming Perl by
Larry Wall [O'Reilly & Associates, 2000]) could refer to a new version of Perl.

Perl 5 has seen some rather drastic changes in syntax, and some pretty fantastic extensions to the
language. Perl 5 is (more or less) backwardly compatible with previous versions of the language, but at
the same time makes a lot of the old code obsolete. Perl 4 code may still run, but Perl 4 style is definitely
frowned upon these days.

At the time of writing, the current stable release of Perl is 5.10.1, which is what this book will
describe. That said, the maintainers of Perl are very careful to ensure that old code will run, perhaps all
the way back to Perl 1—changes and features that break existing programs are evaluated extremely
seriously. Everything you see here will continue to function in the future.

We say “maintainers” because Larry no longer looks after Perl by himself—a group of “porters”
maintains the language and produces new releases. The perl5-porters mailing list is the main
development list for the language, and you can see the discussions archived at
www.xray.mpe.mpg.de/mailing-lists/perl5-porters. For each release, one of the porters will carry the
“patch pumpkin”—the responsibility for putting together and releasing the next version of Perl.

The Future of Perl—Developers Releases and Perl 6
Perl is a living language, and it continues to be developed and improved. The development happens on
two fronts. Stable releases of Perl, intended for the general public, have a version number x.y.z where z is
less than 50. Currently, we’re at 5.10.1; the next major stable release is going to be 5.12.0 (if there is
another major release before version 6.0.0). Cases where z is more than 0 are maintenance releases
issued to fix any overwhelming bugs. This happens extremely infrequently—for example, the 5.5 series
had three maintenance releases in approximately a year of service.

http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters

■ INTRODUCTION

xx

Between stable releases, the porters work on the development track (where y is odd); when 5.8.0 was
released, work began on 5.9.0 (the development track) to eventually become 5.10.0. Naturally, releases
on the development track happen much more frequently than those on the stable track, but don’t think
you need to use a development version of Perl to get the latest and greatest features, or just because your
stable version from last year seems old in comparison to the bright and shiny Perl released last week—no
guarantees whatsoever are made about a development release of Perl. Releases are coordinated by a
“patch pumpkin holder,” or “pumpking”—a programmer of discernment and taste who, with help from
Larry, decides which contributions make the grade and when, and bears the heavy responsibility of
releasing a new Perl to the world. They maintain the most current and official source to Perl, which they
sometimes make available to the public.

Why a pumpkin? To allow people to work on various areas of Perl at the same time and to avoid two
people changing the same area in different ways, one person has to take responsibility for bits of
development, and all changes must go through that person. Hence, the person who has the patch
pumpkin is the only person who is allowed to make the change. Chip Salzenburg explains: “David Croy
once told me that at a previous job, there was one tape drive and multiple systems that used it for
backups. But instead of some high-tech exclusion software, they used a low-tech method to prevent
multiple simultaneous backups: a stuffed pumpkin. No one was allowed to make backups unless they
had the ‘backup pumpkin.’”

So what development happens? As well as bug fixes, the main focus of development is to allow Perl
to build more easily on a wider range of computers and to make better use of what the operating system
and the hardware provides—support for 64-bit processors, for example. The Perl compiler is steadily
getting more useful but still has a way to go. There’s also a range of optimizations to be done to make
Perl faster and more efficient, and work progresses to provide more helpful and more accurate
documentation. Finally, there are a few enhancements to Perl syntax that are being debated—the Todo
file in the Perl source kit explains what’s currently on the table.

Perl 6
The future of Perl lies in Perl 6, a complete rewrite of the language. The purpose of Perl 6 is to address the
problems with Perl 5 and to create a language that can continue to grow and change in the future. Larry
Wall has this to say about Perl 6:

Perl 5 was my rewrite of Perl. I want Perl 6 to be the community’s rewrite of Perl and of the
community.

There are several changes to the Perl language that are in the works for Perl 6, including enhanced
regular expression syntax, more powerful function definitions, some improvements to the constructs
(including the addition of a switch statement), new object-oriented syntax, and more. Stay tuned for
more information—it is definitely a work in progress.

A big change in Perl 6 will be the introduction of Rakudo (http://www.rakudo.org) which is based on
Parrot (http://www.parrotcode.org). Rakudo is the new runtime environment that is being developed
from scratch for Perl 6, but it will not be limited to Perl 6—any bytecode-compiled language such as Tcl
and Python can use it.

You can read all about the future of Perl at http://dev.perl.org/perl6/ and http://www.perl6.org/.
Stay informed, and get involved!

Why Perl?
The name “Perl” isn’t really an acronym. People like making up acronyms though, and Larry has two
favorite expansions. Perl is, according to its creator, the Practical Extraction and Report Language, or the

http://www.rakudo.org
http://www.parrotcode.org
http://dev.perl.org/perl6
http://www.perl6.org

■ INTRODUCTION

xxi

Pathologically Eclectic Rubbish Lister. Either way, it doesn’t really matter. Perl is a language for doing
what you want to do easily and quickly.

The Perl motto is “There’s More Than One Way To Do It,” emphasizing both the flexibility of Perl
and the fact that Perl is about getting the job done. This motto is so important someone has created an
acronym for it: TMTOWTDI (pronounced “TimToeDee”). This acronym comes up again and again in
this book since we often talk about many ways of doing the same thing. We can say that one Perl
program is faster, or more idiomatic, or more efficient than another, but if both do the same thing, Perl
isn’t going to judge which one is “better.” It also means that you don’t need to know every last little
detail about the language in order to do what you want with it. You’ll probably be able to achieve many
of the tasks you might want to use Perl for after the first four or five chapters of this book.

Perl has some very obvious strengths:

• It’s easy to learn, and learning a little Perl can take you a long way. Perl is a lot like
English in this regard—you don’t need to know a lot of English to get your point
across (as demonstrated by a three-year-old who wants a particular toy for her
birthday), but if you know quite a bit about the English language, you can say a lot
with a little.

• Perl was designed to be easy for humans to write, rather than easy for computers
to understand. The syntax of the language is a lot more like a human language
than the strict, rigid grammars and structures of other languages, and so it doesn’t
impose any particular way of thinking on you.

• Perl is very portable. That means what it sounds like—you can pick up a Perl
program and carry it from one computer to another. Perl is available for a huge
range of operating systems and computers, and properly written programs should
be able to run almost anywhere that Perl does without any change.

• Perl talks text. It can think about words and sentences, where other languages see
a character at a time. It can think about files in terms of lines, not individual bytes.
Its regular expressions allow you to search for and transform text in innumerable
ways with ease and speed.

• Perl is what is termed a “high-level language.” Some languages like C concern you
with unnecessary, low-level details about the computer’s operation: making sure
you have enough free memory, making sure all parts of your program are set up
properly before you try to use them, and leaving you with strange and unfriendly
errors if you don’t do so. Perl cuts you free from all this.

However, since Perl is so easy to learn and to use, especially for quick little administrative tasks,
“real” Perl users in practice tend to write programs to achieve small, specific jobs. In these cases, the
code is meant to have a short lifespan, and be for the programmer’s eyes only. The result is often a
cryptic one-liner that is incomprehensible to everyone but the original programmer (and sometimes
incomprehensible to him a year later). The problem is, these programs may live a little longer than the
programmer expects, and be seen by other eyes as well. Because of the proliferation of these rather
concise and confusing programs, Perl has developed a reputation for being arcane and unintelligible,
one that will hopefully be dispelled during the course of this book.

For starters, this reputation is unfair. It’s possible to write code that is tortuous and difficult to
follow in any programming language, and Perl was never meant to be difficult. In fact, one could say that
Perl is one of the easiest languages to learn, especially given its scope and flexibility.

Throughout this book you’ll find examples showing you how to avoid the stereotypical “spaghetti
code” and how to write programs that are both easy to write and easy to follow.

■ INTRODUCTION

xxii

It’s Open Source
Larry started (and indeed, continued) Perl with the strong belief that software should be free—freely
available, freely modifiable, and freely distributable. It is part of a collection of programs known as open
source (see http://www.opensource.org for details). Perl is developed and maintained by the porters,
who are volunteers from the Perl user community, all of who strive to make Perl as useful as possible.

This has a few nice side effects—the porters are working for love, rather than merely because it’s
their job, so they’re motivated solely by their desire to see a better Perl. It also means Perl will continue
to be free to use and distribute.

This doesn’t mean that Perl is part of the GNU suite of utilities. The GNU project was set up to
produce a freely usable, distributable, and modifiable version of the Unix operating system and its tools,
and now produces a lot of helpful, free utilities. Perl is included in distributions of GNU software, but
Perl itself is not a product of the Free Software Foundation, the body that oversees GNU.

While Perl can be distributed under the terms of the GNU Public License (which you can find at
http://www.gnu.org), it can also be distributed under the Artistic License (found either with the Perl
sources or at http://www.opensource.org/licenses), which purports to give more freedom to users and
more security to developers than the GPL.

Of course, those wanting to use Perl at work might be a little put off by this—managers like to pay
money for things and have pieces of paper saying that they can get irate at someone if it all stops
working. There’s a question in the Perl Frequently Asked Questions (FAQ) about how to get a
commercial version or support for Perl, and we’ll see how you can find out the answer for yourself pretty
soon.

When we say, “anyone can help” with Perl, we don’t mean anyone who can understand the whole of
the Perl source code. Of course, people who can knuckle down and attack the source files are useful, but
equally useful work is done by the army of volunteers who offer their services as testers, documenters,
proofreaders, and so on. Anyone who can take the time to check the spelling or grammar of some of the
core documentation can help, as can anyone who can think of a new way of explaining a concept, or
anyone who can come up with a more helpful example for a function.

Perl development is done in the open, on the perl5-porters mailing list. The perlbug program,
shipped with Perl, can be used to report problems to the list, but it’s a good idea to check with someone
first to make sure that it really is a problem and that it isn’t fixed in a later or development release of Perl.

Perl on the Web and the Network
One of the most popular uses of Perl is CGI programming—that is, dynamically generating web pages.
This is introduced in Chapter 14. Perl is the power behind some of the most popular sites on the Web:
Slashdot (http://www.slashdot.org), Amazon (http://www.amazon.com), and many others are almost
entirely Perl-driven.

Of course, Perl is still widely used for its original purpose: extracting data from one source and
translating it to another format. This covers everything from processing and summarizing system logs,
through manipulating databases, reformatting text files, and simple search-and-replace operations, to
something like alien, a program to port Linux software packages between different distributors’
packaging formats. Perl even manages the data from the Human Genome Project, a task requiring
massive amounts of data manipulation.

For system administrators, Perl is certainly the “Swiss Army chainsaw” that it claims to be. It’s great
for automating administration tasks, sending automatically generated mail, and generally tidying up the
system. It can process logs, report information on disk usage, produce reports on resource use, and
watch for security problems. There are also extensions that allow Perl to deal with the Windows registry

http://www.opensource.org
http://www.gnu.org
http://www.opensource.org/licenses
http://www.slashdot.org
http://www.amazon.com

■ INTRODUCTION

xxiii

and run as a Windows service, not to mention built-in functions that enable it to manipulate UNIX
passwd and group file entries.

However, as you might expect, that’s not all. Perl is becoming the de facto programming language of
the Internet—its networking capabilities have allowed it to be used to create clients, servers, and proxies
for standards such as IRC, WWW, FTP, and practically every other protocol you can think of. It’s used to
filter mail, automatically post news articles, mirror websites, automate downloading and uploading, and
so on. In fact, it’s hard to find an area of the Internet where Perl isn’t used. This is kind of like duct tape,
really. When was the last time you used duct tape to tape a duct?

Windows, Unix, and Other Operating Systems
Perl is one of the most portable, if not the most portable, programming languages around. It can be
compiled on over 70 operating systems, and you can get binary distributions for most common
platforms. Most of the programs in this book can run equally well on almost any operating system.

When we’re setting up Perl and running our examples, we’ll concentrate particularly on Unix and
Windows. The term Unix here refers to any commercial or free Unix-like implementation—Solaris;
Linux; Net-, Free-, and OpenBSD; HP/UX; A/IX; and so on. Perl’s home platform is Unix, and 90% of the
world uses Windows. That said, Perl is the same for everyone. If you need help with your particular
platform, you can probably find a README file for it in the Perl source distribution.

You can also get more information on portable Perl programming from the perlport
documentation. Again, you’ll see how to access this documentation very soon.

Program Names
Perl doesn’t care what we programmers name our scripts, but this book uses the conventional file
extension .pl. For instance, one of our first programs will be named helloworld.pl.

The Prompt
If you’re primarily using your computer in a graphical environment like Windows or X, you may not be
familiar with using the command-line interface, or shell. Before those graphical environments came into
common use, users had to start a new program not by finding its icon and clicking it but by typing its
name. The shell is the program that takes the name from you—the shell prompt (or just prompt) refers
specifically to the text that prompts you to enter a new program name, and also more generally to
working with the shell instead of using a graphical interface. Some people still find working with the
shell much easier, and sophisticated shells have developed to simplify common tasks. In fact, on Unix,
the shell is programmable, and Perl takes some of its inspiration from standard “Bourne Shell”
programming practices.

To get to a prompt in Windows, look for Command Prompt or DOS Prompt in the Start menu. Unix
users should look for a program called something like console, terminal, konsole, xterm, eterm, or kterm.
You’ll then typically be faced with a black screen displaying a small amount of text that looks something
like one of the following:

$
%
C:\>

bash$

■ INTRODUCTION

xxiv

If your shell prompt is #, chances are you’re running the shell as the root user. This is usually a bad
idea—use with caution!

For this book, we’ll use a prompt that looks like this:

$

We’ll show text that you type in using a bold font, and the text the computer generates in normal
typeface, like this:

$ perl helloworld.pl
Hello, world!

More on what this program looks like in just a few pages!
The command line may look scary at first, but you’ll quickly get used to it as we go through the

examples and exercises.
A note to Unix/Linux/OpenBSD/etc. users: a Perl program can be executed from the shell with

$ perl -w helloworld.pl
Hello, world!

Or, if the first line of the file resembles

#! /usr/bin/perl -w

and the file has the proper executable permissions set, it can be executed as

$./helloworld.pl
Hello, world!

Since both methods of invoking the program work in Unix/Linux/OpenBSD/etc., and only the first
will work in Windows, the examples in this book will be executed using the first style.

What Do I Need to Use This Book?
First, you need Perl. As mentioned previously, Perl is available for almost any kind of computer that has
a keyboard and a screen, but we will be concentrating on Perl for Windows and Unix. Perl 5.10.1 will run
on different versions of Windows. It’ll run on more or less any Unix, although you may find compilation
is difficult if you don’t have the latest C libraries. Any 2.x Linux kernel should be fine, likewise Solaris 2.6
or higher. Perl is also available on Apple Macintosh computers—see http://www.macperl.com for Mac OS
9 and below; for Mac OS X, it is found in /usr/bin/perl.

Besides Perl, you’ll need a text editor to write and edit Perl source files. We look at a couple of
options later in this introduction.

To get the most out of some chapters, you’ll also need to have an Internet connection. A helpful
place to start on the Internet is http://www.apress.com, where you can download all the source code for
the examples in the book.

For Chapter 14, you’ll need a web server that supports CGI scripting. Apache is a good bet on Unix
machines (and it’s included in most Linux distributions). Windows users should also use Apache; check
it out at http://www.apache.org.

How Do I Get Perl?
Perl has been ported to many, many platforms. It will almost certainly build and run on anything that
looks like (or pretends to be) Unix, such as Linux, Solaris, A/IX, HP/UX, FreeBSD, or even the Cygwin32

http://www.macperl.com
http://www.apress.com
http://www.apache.org

■ INTRODUCTION

xxv

UNIX environment for Windows. Most other current operating systems are supported: Windows, OS/2,
VMS, DOS, BeOS, the Apple Mac OS, and AmigaOS, to name but a few.

• You can get the source to the latest stable release of Perl from www.perl.com/CPAN-
local/src/stable.tar.gz.

• Binary distributions for some ports will appear in www.perl.com/CPAN-
local/ports/. These ports may differ in implementation from the original sources.

• You can get binary packages of Perl for Linux, Solaris, and Windows from
ActiveState at www.activestate.com/ActivePerl/download.htm.

• Linux users should be able to get binary packages from the contrib section of their
distributor’s FTP site.

Installing Perl is well-documented at the web sites mentioned, so we won’t go through the steps
here. Go and install Perl now—reading this book will be much more fun if you can try the examples.

How to Get Help
Perl comes with excellent documentation. The interface to this system is through the perldoc

command, itself a Perl program. Unix users can also use the man command to get at the same
information, but perldoc allows you to do interesting things, as you’re about to see.

Perldoc
Typing perldoc perl from a command prompt presents the Perl documentation table of contents

and some basic information about Perl.
The pages you’re probably going to use the most are the Perl FAQ and perlfunc, which describes the

built-in functions. Because of this, perldoc has a special interface to these two pages. perldoc -f allows
you to see information about a particular function, like this (the output has been snipped—try it
yourself!):

$ perldoc -f print
print FILEHANDLE LIST
print LIST
print Prints a string or a list of strings. Returns true if success-
 ful. FILEHANDLE may be a scalar variable name, in which case
 [output snipped]...

Similarly, perldoc -q allows you to search the Perl FAQ for any regular expression or keyword.

$ perldoc -q reverse
Found in /usr/lib/perl5/5.10.1/pod/perlfaq4.pod
 How do I reverse a string?
 Use reverse() in scalar context, as documented in the reverse
 entry in the perlfunc manpage

 $reversed = reverse $string;

As well as the documentation pages for the language itself, whose names all start with “perl”, there’s
a whole lot of other documentation out there, too. The reason for this is modules: files containing Perl

http://www.perl.com/CPAN-local/src/stable.tar.gz
http://www.perl.com/CPAN-local/src/stable.tar.gz
http://www.perl.com/CPAN-local/src/stable.tar.gz
http://www.perl.com/CPAN-local/ports
http://www.perl.com/CPAN-local/ports
http://www.perl.com/CPAN-local/ports
http://www.activestate.com/ActivePerl/download.htm

■ INTRODUCTION

xxvi

code that can be used to help with a certain task. We’ll examine what modules are available and what
they can help us do later, but you should know that each Perl module, whether a core module that
comes with the Perl distribution or one you download from the Internet, should contain its own
documentation. We’ll see how that’s constructed later—for now, know that you can use perldoc to get at
this, too. Here’s the beginning of the documentation for the Text::Wrap module, which is used to wrap
lines into paragraphs:

$ perldoc Text::Wrap
5.10.1::Text User Contributed Perl Documentation Text::Wrap(3)

NAME
 Text::Wrap - line wrapping to form simple paragraphs

...

Perl Resources
There is truly a wealth of Perl information available out there, especially on the Internet. Let’s have a

look at some of the more prominent sources.

Web Sites
On the web, the first port of call is www.perl.com, the main Perl community site. This site contains

many good articles of interest to the Perl community and news from Perl’s major developers, as well as a
wealth of links, tips, reviews, and documentation.

The next stop is CPAN, the Comprehensive Perl Archive Network (www.cpan.org), a collection of
ready-made programs, documents (notably, the latest edition of the FAQ), some tutorials, and the Far
More Than Everything You Wanted To Know About1 series of more technical notes. Most useful of all,
this site contains a huge (and they don’t call it comprehensive for nothing!) collection of those Perl
modules mentioned previously.

Other important Perl sites are listed here:

• www.perl.org: A site with tons of information about Perl

• www.pm.org: The Perl Mongers, a worldwide umbrella organization for Perl user
groups

• www.theperlreview.com: The home of the Perl Review, an online Perl magazine

• www.activestate.com: The home of Perl on Windows

• www.perlarchive.com: Another great source of articles, tutorials, and information

1 Yep, there is an acronym for this phrase – FMTEYWTKA.

http://www.perl.com
http://www.cpan.org
http://www.perl.org:
http://www.pm.org:
http://www.theperlreview.com:
http://www.activestate.com:
http://www.perlarchive.com:

■ INTRODUCTION

xxvii

Newsgroups
Perl has its own Usenet hierarchy, comp.lang.perl.*. The groups in it are listed here:

• comp.lang.perl.announce for Perl-related announcements: new modules, new
versions of Perl, conferences, and so on

• comp.lang.perl.misc for general Perl chat and questions

• comp.lang.perl.moderated, which requires prior registration before posting but is
excellent for sensible questions and in-depth discussion of Perl’s niggly bits

• comp.lang.perl.modules, for discussion and queries relating to creating and using
Perl modules

• comp.lang.perl.tk, for discussion and queries relating to the Tk graphical
extensions

IRC
If you’ve got a more urgent mindbender, or just want to hang around like-minded individuals, come join
#perl on Efnet (www.efnet.org). Make sure you read the channel rules (at http://pound.perl.org/RTFM/)
and the Perl documentation thoroughly first. Asking questions about CGI or topics covered in the FAQ or
the perldoc documentation is highly inflammatory behavior.

Books
Of course, reading stuff on the Net is a great way to learn, and it is not difficult to curl up in bed with a
good web site (most of us have a WiFi-enabled laptops these days). In the meantime, there are a few
good treeware resources available too. Check out the book reviews pages housed at the www.perl.com
and www.perl.org sites.

As for the best book for teaching yourself Perl, just keep reading . . .

Downloading This Book’s Example Source Code
As you work through the examples in this book, you might decide you want to type all the code in by
hand. Many readers prefer this because it’s a good way to become familiar with the coding techniques
being used.

Whether you want to type the code in or not, we have made all the source code for this book
available at our web site, www.apress.com.

If you’re one of those readers who likes to type in the code, you can use our files to check the results
you should be getting—they should be your first stop if you think you might have typed in an error. If
you’re someone who doesn’t like typing, downloading the source code from our web site is a must!

Either way, it’ll help you with updates and debugging.

http://www.efnet.org
http://pound.perl.org/RTFM
http://www.perl.com
http://www.perl.org
http://www.apress.com

■ INTRODUCTION

xxviii

Exercises
At the end of most of this book’s chapters, you’ll find a number of exercises that we highly recommend
you work through. This book will give you the knowledge you need—but it is only through practice that
you’ll hone your skills and get a true feel for what Perl can help you achieve. You can find our suggested
solutions to the exercises in the Appendix at the back of the book and also for download from
www.apress.com. But remember TMTOWTDI, so they’re not the only ways to solve the exercises.

Who This Book Is For
This book is written for the novice programmer and the experienced programmer alike. Using extensive
examples, the features of Perl are introduced and discussed in a way that is easy to learn for the
newcomer and useful for the veteran.

If you are looking to learn Perl and get an introduction to its power, this book is for you.

How This Book Is Organized
Chapter 1—First Steps in Perl: The basics of Perl are introduced, including how to execute
Perl code. A simple first program is developed.

Chapter 2—Scalars: The most basic Perl data type, the scalar, is described. Perl’s
arithmetic, logical, and string operators are explained, as are a few of Perl’s simplest
control flow constructs: if and while. Several functions are discussed, including chop(),
chomp(), exit(), and die().

Chapter 3—Control Flow Constructs: The control flow constructs are discussed, including
if, unless, while, until, do .. while, do .. until, for, and foreach. We also talk about
expression modifiers and short-circuited operators as alternative ways of writing
constructs.

Chapter 4—Lists and Arrays: We talk about the array data type—a collection of 0 or more
scalars. Lists and list operators are also discussed. The array functions push(), pop(),
shift(), unshift(), reverse(), and sort() are described, as is the foreach loop.

Chapter 5—Hashes: Hashes, the third major data type, are discussed. We describe what
hashes are, why we need them, and how to operate on them. We talk about the hash
functions keys(), values(), each(), delete(), and exists().

Chapter 6—Subroutines/Functions: This chapter talks about user-defined functions.
Function definitions are discussed, as well as function invocation, return values, and
passing arguments.

Chapter 7—Regular Expressions: This feature that makes Perl a powerful text-processing
language is discussed. The basics of regular expressions are introduced, including creating
character classes and regex quantifiers. Regex memory, a powerful feature allowing the
programmer to extract text, is covered. Several operators, including the match and
substitute operators, are introduced.

http://www.apress.com

■ INTRODUCTION

xxix

Chapter 8—Files and Data: Opening files for reading and writing data is discussed, then
the topic of reading from files that are provided on the command line using the diamond
is covered. Pipes to external processes and pipes from processes are described. File test
operators, which test certain qualities of files such as readability and writability, are
introduced.

Chapter 9—String Processing: String manipulation functions and operators are
introduced, including length(), index(), rindex(), substr(), and tr///.

Chapter 10—Interfacing to the Operating System: Functions such as chdir(), mkdir(),
rename(), and others are discussed. Also, executing external programs with system() and
backquotes are introduced. Reading the contents of a directory using directory streams is
also covered.

Chapter 11—References: A reference is a scalar that refers to another variable in memory.
The topics covered include creating references, dereferencing, creating anonymous
variables, and complex data types.

Chapter 12—Modules: Using existing modules to easily solve complex problems is
described. Several useful modules are discussed and demonstrated. Creating a module
from scratch is illustrated.

Chapter 13—Object-Oriented Perl: The basics of creating a class definition in Perl is
described, including creating objects with attributes and methods. Inheritance is briefly
introduced.

Chapter 14—Introduction to CGI: Perl is a popular language for CGI (that is, web)
programming. This chapter introduces CGI.pm, a popular Perl module that makes writing
CGI programs easy.

Chapter 15—Perl and DBI: The useful DBI module enables a Perl programmer to easily
write powerful scripts that connect to and query an SQL database. This chapter introduces
the idea of relational databases and SQL. Several Perl scripts for administering a database
are described. Then a detailed example is discussed that shows how to use CGI.pm and the
DBI module to web-enable SQL access.

C H A P T E R 1

■ ■ ■

1

First Steps in Perl

Every programming language has a number of things in common. The fundamental concepts of
programming are going to be the same, no matter what language in which you execute them. In this
chapter, you’ll investigate the things you need to know before you start writing any programs. For
instance:

• What is programming? What does it mean to program?

• How do you structure programs and make them easy to understand?

• How do computers see numbers and letters?

• How do you find and eliminate errors in your programs?

Of course, you’ll be looking at these from a Perl perspective, and you’ll look at a couple of basic Perl
programs, see how they’re constructed, and what they do. At the end of this chapter, you will be asked to
write a couple of trivial Perl programs of your own.

Programming Languages
The first question you should ask yourself when you’re learning programming is, “What is
programming?” That may sound particularly philosophical, but the answer is easy. Programming is
telling a computer what you want it to do; and you do this by writing it a program. The only trick, then, is
making sure that the program is written in a way the computer can understand, and to do this, you need
to write it in a language that it can comprehend—a programming language, such as Perl.

There’s nothing magical about writing a program, but it does call for a particular way of thinking.
When you’re telling a human what you want them to do, you take certain things for granted.

• Humans can ask questions if they don’t understand your instructions.

• They can break up tasks into smaller tasks by themselves.

• They can draw parallels between the current task and a task they have completed
in the past.

• Perhaps most importantly, they can learn from demonstrations and from their
own mistakes.

CHAPTER 1 ■ FIRST STEPS IN PERL

2

Computers can’t yet do any of these things very well—it’s still much easier to explain to someone
how to tie their shoelaces than it is to set the clock on the VCR.

The most important thing you need to bear in mind, though, is that you’re never going to be able to
express a task to a computer if you can’t express it to yourself. Computer programming leaves little room
for vague specifications and hand waving. If you want to write a program to, say, remove useless files
from your computer, you need to be able to explain how to determine whether a file is useless or not.
You need to examine and break down your own mental processes when carrying out the task for
yourself—do you mean a file that hasn’t been accessed for a long time? How long, precisely? Then do
you delete it immediately, or do you examine it? If you examine it, how much of it? And what are you
examining it for?

The first step in programming is to stop thinking in terms of “I want a program that removes useless
files,” but instead think “I want a program that looks at each file on the computer in turn and deletes the
file if it is over six months old, and if the first five lines do not contain any of the words ‘Larry’, ‘Perl’, or
‘Camel’”—in other words, you have to specify your task precisely.

When you’re able to do that, you need to translate that into the programming language you’re using.
Unfortunately, like any human language, the programming language may not have a direct equivalent
for what you’re trying to say. So, you have to get your meaning across using the parts of the language that
are available to you, and this may well mean breaking down your task further. For instance, there’s no
way of saying “if the first five lines do not contain any of the following words” in Perl. However, there is a
way of saying “if a line contains this word,” a way of saying “get another line,” and “do this five times.”
Programming is the art of putting those elements together to get them to do what you want.

So much for what you have to do—what does the computer have to do? Once you have specified the
task in our programming language, the computer takes your instructions and performs them. This is
called running or executing the program. Usually, you’ll specify the instructions in a file, which you edit
with an ordinary text editor; sometimes, if you have got a small program, you can get away with typing
the whole thing in at the command line. Either way, the instructions that you give to the computer—in
this case, written in Perl—are collectively called the source code (or sometimes just source) to your
program.

Our First Perl Program
Assuming that you now have a copy of Perl installed on your machine (perhaps having followed the
instructions in the Introduction), you are ready to start using Perl. If not, go back and follow the
instructions. The next step is to set up a directory for all the examples used in the rest of the book, and to
write your first Perl program.

Here’s what it will look like:

#!/usr/bin/perl

use warnings;

print "Hello, world!\n";

I highly suggest that you type this example in and try to make it work, so before you go any further, a
quick note on editors. Perl source code is just plain text, and should be written with a plain text editor,
rather than a word processor. Your operating system, whether Unix, OS X, or Windows, comes with a
selection of text editors. You may have a favorite already, so feel free to use it. If not, may I suggest vi
(www.vim.org), emacs (www.xemacs.org), and nedit (www.nedit.org). Windows provides WordPad and

http://www.vim.org
http://www.xemacs.org
http://www.nedit.org

CHAPTER 1 ■ FIRST STEPS IN PERL

3

Notepad, but they lack many features of modern text editors, so they should be avoided. nedit is the
most WordPad- and Notepad-like, so give it a try.

After an editor is chosen, you need to create a new directory for your work. If you are in Windows, a
simple way to do this is to start up a command shell (Start Run cmd) and enter

c:> mkdir begperl
c:> cd begperl

If you are working in any Unix variant, start a shell and enter

$ mkdir begperl
$ cd begperl

This directory will hold all the examples that you will do as you go through this book.
The next step is to fire up your editor of choice, type in the code shown previously, and save it into a

file named hellowworld.pl in the directory you just made. Then, to execute it, type

$ perl helloworld.pl
Hello, world!
$

Congratulations. You have successfully written and executed your first Perl program!

■ Note From this point on, I’ll not run through these steps again. Instead, the name you’ve given the file will be
shown as a comment on the second line of the program. You may also have noticed that the output for
hellowworld.pl on Windows and Unix differs in that Windows adds a blank line at the end of the output for all its
Perl programs. From now on, you’ll only print the Unix output that is without the additional blank line. Windows
users please be aware of this.

Let’s look at this program in detail by going through it a line at a time. The first line is

#!/usr/bin/perl

Normally, Perl treats a line starting with # as a comment, and ignores it. However, the # and !
characters together at the start of the first line tell Unix how the file should be run—in this case the file
should be executed by the Perl interpreter, which lives in /usr/bin/perl in this example. In the Unix
world, this line is known as the shebang (short for “hash bang”), and it must be located on the first line
starting in the first column.

CHAPTER 1 ■ FIRST STEPS IN PERL

4

■ Note To Unix users: your version of Perl may reside in a different location than /usr/bin/perl. Common
alternative locations are /usr/local/bin/perl and /opt/bin/perl. If your version of Perl resides somewhere
other than /usr/bin/perl, you will have to adjust your shebang line to point to it.

Unix users can use the invocation shown previously to execute Perl programs:

 $ perl helloworld.pl

But they can also execute Perl programs by making the file executable with the chmod command and executing it
by name like the in the following:

 $ chmod +x helloworld.pl
 $./helloworld.pl

Perl also reads the shebang line regardless of whether you are on Unix, Windows, or any other
system. The reason for this is to see if there are any special options, or switches, it should turn on.
Possible options include -w to turn on warnings, -c to check the syntax of a Perl program, and many
others. Enter perldoc perlrun into a shell for more information.

The next line of this program is a blank line. Perl, like C, C++, and many other programming
languages, treats blank lines, extra spaces, and tabs as whitespace. In Perl, whitespace can be added to
the program to make it more readable.

Then you see this line of code

use warnings;

This line turns on warnings, which will be discussed in detail in the following. Another way to turn on
warnings is to use the –w option on the shebang,

#! /usr/bin/perl -w

■ Note The use of the –w on the shebang is required with older versions of Perl (5.5 and below), so the only
reason to use –w is if you have a version pre-5.6 Perl release. But since Perl version 5.6 was released in 2000, if
you are using a pre-5.6 version it is time to upgrade.

The last line of the program is

print "Hello, world!\n";

 The print() function tells Perl to display the given text, without the quotation marks. The text
inside the quotes is not interpreted as code, and is called a string. As you’ll see later, strings start and end
with some sort of quotation mark. The \n at the end of the quote is a type of escape sequence which

CHAPTER 1 ■ FIRST STEPS IN PERL

5

stands for “new line.” This instructs Perl to finish the current line and take the prompt to the start of a
new one. I will talk more about escape sequences later in this chapter.

You may be wondering why use warnings; is so helpful. Suppose I altered the program to
demonstrate this, and made two mistakes by leaving out use warnings; by modifying the code so it
looks like this:

#!/usr/bin/perl

print "Hello, $world!\n";

The string that you are printing now contains the text $world. As you will see in the next chapter,
$world is a variable, and this variable has not been assigned a value. If you attempt to print a variable
that has no value, you simply print nothing.

Save these changes in helloworld2.pl before exiting your editor. Now let’s get back to the
command prompt, and type the following:

$ perl helloworld2.pl

Instead of getting the expected

Hello, world!
$

the output would be

Hello, !
$

If you now correct one of the mistakes by including use warnings; in your program, then
helloworld2.pl looks like this:

#!/usr/bin/perl

use warnings;

print "Hello, $world!\n";

Once you have saved this new change into the program, you can run it again. The output that you
get now contains a warning as well as the text printed, so the screen looks like this:

$ perl helloworld2.pl
Use of uninitialized value in concatenation (.) or string at helloworld2.pl line 5.
Hello, !

On the surface of things, it may seem that you have just given yourself another line of output, but
bear in mind that the first line is now a warning message, and is informing us that Perl has picked
something up that may (or may not) cause problems later on in the program. Don’t worry if you don’t
understand everything in the error message at the moment, just so long as you are beginning to see the
usefulness of having an early warning system in place.

CHAPTER 1 ■ FIRST STEPS IN PERL

6

Program Structure
One of the things you want to develop throughout this book is a sense of good programming practice.
Obviously this will not only benefit you while using Perl, but in almost every other programming
language too. The most fundamental notion is how to structure and lay out the code in your source files.
By keeping this tidy and easy to understand, you’ll make your own life as a programmer easier.

Documenting Your Programs
As mentioned earlier, a line starting with a hash, or pound sign (#), is treated as a comment and
ignored. This allows you to provide comments about what your program is doing, something that will
become extremely useful to you when working on long programs, or when someone else is looking over
your code. For instance, you could make it quite clear what the preceding program was doing by saying
something like this:

#!/usr/bin/perl

turn on warning messages
use warnings;

display a short message to the terminal
print "Hello, world!\n";

A line may contain some Perl code, and be followed by a comment. This means that you can
document your program “inline” like this:

#!/usr/bin/perl

use warnings; # turn on warning messages

print "Hello, world!\n"; # print a short message

When you come to write more advanced programs, you’ll take a look at some good and bad
commenting practices.

Keywords
A keyword is a term in Perl that has a predefined meaning. One example would be the term use as you
saw in the statement

use warnings;

 Other types of keywords include built-in functions such as print() and control flow constructs such
as if and while. I will talk about many built-in functions and control flow constructs in detail as we
progress in our discussion of Perl.

It’s a good idea to respect keywords and not give anything else the same name. For example, a little
later on you’ll learn that you can create and name a variable, and that calling your variable $print is
perfectly allowable. The problem with this is that it leads to confusing and uninformative statements like
print $print. It is always a good idea to give a variable a meaningful name, one that relates to its

CHAPTER 1 ■ FIRST STEPS IN PERL

7

content in a logical manner. For example, $my_name, @telephone_numbers, %account_info, and so on,
rather than $a, @b, and %c.

Statements and Statement Blocks
If functions are the verbs of Perl, then statements are the sentences. Instead of a period, a statement in
Perl usually ends with a semicolon, as you saw earlier:

print "Hello, world!\n";

 To print some more text, you can add another statement:

print "Hello, world!\n";
print "Goodbye, world!\n";

You can also group together a bunch of statements into a block—which is a bit like a paragraph—by
surrounding them with curly braces {...}. You’ll see later how blocks are used to specify a set of
statements that must happen at a given time, and also how they are used to limit the effects of a
statement. Here’s an example of a block:

{
 print "This is ";
 print "a block ";
 print "of statements.\n";
}

Notice how indentation is used to separate the block from its surroundings. This is because, unlike
paragraphs, you can put blocks inside of blocks, which makes it easier to see on what level things are
happening. Using indentation is a great use of whitespace, making the code easier to read and therefore
to maintain later on. The following code serves to illustrate:

print "Top level\n";
{
 print "2nd level\n";
 {
 print "3rd level\n";
 }
 print "Where are we?";
}

is easier to follow than this:

print "Top level\n";
{
print "2nd level\n";
{
print "3rd level\n";
}
print "Where are we?";
}

As well as curly braces to mark out the territory of a block of statements, you can use parentheses to
mark out what you’re giving a function. The set of things given to a function are the arguments; and you

CHAPTER 1 ■ FIRST STEPS IN PERL

8

pass the arguments to the function. For instance, you can pass a number of arguments to the print()
function by separating them with commas:

print "here ", "we ", "print ", "several ", "strings.\n";

The print() function happily takes as many arguments as it is given, and it produces the expected
answer:

here we print several strings.

Surrounding the arguments with parentheses clears things up a bit:

print("here ", "we ", "print ", "several ", "strings.\n");

In the cases where parentheses are optional, the important thing to do is to use your judgment.
Sometimes something will look perfectly understandable without the parentheses, but when you’ve got
a complicated statement and you need to be sure of which arguments belong to which function, putting
in the parentheses is useful. Always aim to help the readers of your code because, remember, these
readers will more than likely include you.

Character Sets
Characters such as “A” and “7” have to be respresented in the computer in some way. A system was

created called character encoding or character sets. The first set many of us learn is the ASCII (American
Standard Code for Information Interchange), a way of prepresenting a group of 256 characters in 1 byte
(8 bits) of information. For instance, in ASCII, the character “A” is represented as the numeric value 65
(0x41 in hexidecimal) and “7” is represented as 55 (0x37).

There are many character sets in use, too many to talk about here. For a good discussion see
http://en.wikipedia.org/wiki/Character_encoding.

An important character set is called Unicode, which represents over 107,000 characters in over 90
scripts, such as Japanese characters and Chinese characters. Perl supports Unicode.You will see an
example of this in the following section.

Escape Sequences
UTF8 gives us 65536 characters, and ASCII gives us 256 characters, but on the average keyboard, there
are only a hundred or so keys. Even using the shift keys, there will still be some characters that you aren’t
going to be able to type. There’ll also be some things that you don’t want to stick in the middle of your
program, because they would make it messy or confusing. However, you’ll want to refer to some of these
characters in strings that you output. Perl provides us with mechanisms called escape sequences as an
alternative way of getting to them. You’ve already seen the use of \n to start a new line. Table 1-1 lists the
more common escape sequences.

http://en.wikipedia.org/wiki/Character_encoding

CHAPTER 1 ■ FIRST STEPS IN PERL

9

Table 1-1. Escape Sequences

Escape Sequence Meaning

\t Tab

\n Start a new line (usually called newline)

\r Carriage return

\b Back up one character (backspace)

\a Alarm (rings the system bell)

In the last example, 1F18 is a hexadecimal number (see the upcoming section “Number Systems”)

referring to a character in the Unicode character set, which runs from 0000-FFFF. As another example,
\x{2620} is the Unicode character for a skull-and-crossbones1!

Whitespace
As mentioned previously, whitespace is the name you give to tabs, spaces, and newlines. Perl is very
flexible about where you put whitespace in your program. You have already seen how you’re free to use
indentation to help show the structure of blocks. You don’t need to use any whitespace at all, if you don’t
want to. If you’d prefer, your programs can all look like this:

print"Top level\n";{print"2nd level\n";{print"3rd level\n";}print"Where are we?";}

This is considered a bad idea. Whitespace is another tool you have to make your programs more
understandable; let’s use it as such.

Number Systems
If you thought the way computers see characters was weird, I have a surprise for you.

The way most humans count is using the decimal system, or what is called base 10; we write 0, 1, 2,
3, 4, 5, 6, 7, 8, 9, and then when we get to 10, we carry 1 in the 10s column and start from 0 again. Then
when the 10s column gets to 9 and the 1s column gets to 9, we carry 1 in the 100s column and start again.
Why 10? We used to think it’s because we have 10 fingers, but then we found out that the Babylonians
counted up to 60, which stopped that.

On the other hand, computers count by registering whether or not electricity flows in a certain part
of the circuit. For simplicity’s sake, you’ll call a flow of electricity a 1, and no flow a 0. So, you start off

1 ☠

CHAPTER 1 ■ FIRST STEPS IN PERL

10

with 0, no flow. Then you get a flow, which represents 1. That’s as much as you can do with that part of
the circuit. 0 or 1, off or on. Instead of base 10, the decimal system, this is base 2, the binary system. In the
binary system, one digit represents one unit of information: one binary digit, or bit.

When you join two parts of the circuit together, things get more interesting. Look at them both in a
row, when they are both off, the counter reads 00. Then one comes on, so you get 01. Then what? Well,
humans get to 9 and have to carry 1 to the next column, but computers only get to 1. The next number,
number 2, is represented as 10. Then 11. And you need some more of your circuit. Number 4 is 100, 5 is
101, and so ad infinitum. If you got used to it, and you used the binary system naturally, you could count
up to 1023 on your fingers.

This may sound like an abnormal way to count, but even stranger counting mechanisms are all
around us. As this is being written, it’s 7:59 p.m. In one minute, it’ll be 8:00 p.m., which seems
unremarkable. But that’s a base 60 system. In fact, it’s worse than that—it doesn’t stay in base 60,
because hours carry at 24 instead of 60. Anyone who’s used the Imperial measurement system, a
Chinese abacus, or pounds, shillings, and pence knows the full horror of mixed base systems, which are
far more complicated than what you’re dealing with here.

As well as binary, there are two more important sequences you need to know about when talking to
computers. You don’t often get to deal with binary directly, but the following two sequences have a
logical relationship to base 2 counting. The first is octal, base 8.

Eight is an important number in computing; bits are organized in groups of eight to form bytes,
giving you the range of 0–255 you saw earlier with ASCII. Each ASCII character can be represented by
one byte. Octal is therefore a good way of counting bits, although it has fallen out of fashion these days.
Octal numbers all start with 0 (that’s a zero, not an oh), so know they’re octal, and proceed as you’d
expect: 00, 01, 02, 03, 04, 05, 06, 07, carry one, 010, 011, 012 . . . 017, carry one, 020, and so on. Perl
recognizes octal numbers if you’re certain to put that zero in front, like this:

print 06301;

which prints out the decimal number

3265

The second is called the hexadecimal system, as mentioned previously. Of course, programmers are
lazy, so they just call it hex. (They like the wizard image.)

Decimal is base 10, and hexagons have six sides, so this system is base 16. As you might have
guessed from the number 1F18 shown previously, digits above 9 are represented by letters, so A is 10, B
is 11, and so on, all the way through to F, which is 15. You then carry one and start with 10 (which, in
decimal, is 16) all the way up through 19, 1A, 1B, 1C, 1D, 1E, 1F, and carry one again to get 20 (which in
decimal is 32). The magic number 255, the maximum number can store in one byte, is FF. Two bytes
next to each other can get you up to FF FF, better known as 65535. You met 65535 as the highest number
in the Unicode character set, and you guessed it, a Unicode character can be stored as a pair of bytes.

To get Perl to recognize hex, place 0x in front of the digits so that

print 0xBEEF;

gives the answer

48879

CHAPTER 1 ■ FIRST STEPS IN PERL

11

The Perl Debugger
One thing you’ll soon notice about programming is that you’ll make mistakes; mistakes in programs are
called bugs. Bugs are almost entirely unavoidable, and creating bugs does not mean you’re a bad
programmer. Windows 2000 allegedly shipped with 65,000 bugs, but then that’s a special case, and even
the greatest programmers in the world have problems with bugs. Donald Knuth’s typesetting software
TeX has been in use for more than 20 years, and Professor Knuth was still finding bugs until a couple of
years ago. Who can tell when all the bugs are out anyway?

While I will be showing you ways to avoid getting bugs in your program, Perl provides you with a
tool to help find and trace the causes of bugs. Naturally, any tool for getting rid of bugs in your program
is called a debugger. Mundanely enough, the corresponding tool for putting bugs into your program is
called a “programmer.”

To use the debugger, start your program with the -d option as in

$ perl -d myprogram.pl

See perldoc perldebug for information about the debugger.

Summary
You’ve started on the road to programming in Perl, and programming in general. You’ve seen your first
piece of Perl code, and hopefully, you were able to get it to run.

Programming is basically telling a computer what to do in a language it comprehends. It’s about
breaking down problems or ideas into byte-sized chunks (as it were), and examining what needs to be
done in order to communicate them clearly to the machine.

Thankfully, Perl is a language that allows us a certain degree of freedom in our expression, and, so
long as we work within the bounds of the language, it won’t enforce any particular method of expression
on us. Of course, it may judge what we’re saying to be wrong, because we’re not speaking the language
correctly, and that’s how the majority of bugs are born. Generally though, if a program does what we
want, that’s enough—TMTOWTDI.

You’ve also seen a few ways of making it easy for ourselves to spot potential problems, and you
know there are tools that can help if you need it. You have examined a little bit of what goes on inside a
computer, how it sees numbers, and how it sees characters, as well as what it does to our programs when
and as it executes them.

CHAPTER 1 ■ FIRST STEPS IN PERL

12

Exercises
1. Create a program newline.pl containing print "Hi Mom.\nThis is my second

program.\n". Run this and then replace \n with a space or a return and
compare the results.

2. Download the code for this book from the publisher’s website at
www.apress.com.

3. Have a look around the Perl homepage at www.perl.com.

4. Visit en.wikipedia.org/wiki/List_of_Unicode_characters and choose your
favorite Unicode character and print it with code that resembles
print "\x{2708}";.

http://www.apress.com
http://www.perl.com

C H A P T E R 2

■ ■ ■

13

Scalars

The essence of programming is computation—we want the computer to do some work with the input
(the data we give it). Very rarely do we write programs to tell us something we already know. Even more
rarely do we write programs to do nothing at all interesting with our data. So, if we’re going to write
programs that do more than say hello to us, we’re going to need to know how to perform
computations—operations on our data.

In this chapter, we will discuss several important items basic to programming in Perl:

• Scalars: Single values, either numbers or strings.

• Variables: Places to store a value.

• Operators: Symbols such as + and – that act on data.

• Reading data from the user: Taking data from standard input, also known as the
keyboard.

Types of Data
A lot of programming jargon is about familiar words in an unfamiliar context. We’ve already looked at a
string, which is a series of characters. We could also describe that string as a scalar literal constant. What
does that mean?

By calling a value a scalar, we’re describing the type of data it contains. If you remember your math
(and even if you don’t), a scalar is a plain, simple, one-dimensional value. In math, the word is used to
distinguish such values from a vector, which is expressed as several numbers. Velocity, for example, has
a pair of coordinates (speed and direction), and so must be a vector. In Perl, a scalar is the fundamental,
basic unit of data, of which there are two main kinds—numbers and strings.

A literal is value that never changes. The value 5 is a scalar literal—and is literally 5; it can never be 4.
Perl has three types of scalar literals: integers (such as 5), floating point numbers (like 3.14159), and
strings (for example “hello, world”). To put it another way, a literal is a constant—it never changes.

A variable, on the other hand, is a piece of memory that can hold a scalar value, and is so named
because the value stored within can vary. For instance, $number can be assigned 5, and then later can be
changed to the value 6. We will talk more about variables later in this chapter.

CHAPTER 2 ■ SCALARS

14

Numbers
As Perl programmers, we are interested in two types of numbers: integers and floating point numbers.
We’ll come to the latter in a minute; let’s work a bit with integers right now. Integers are whole numbers
with no numbers after the decimal point, such as 42, –1, or 10. The following program prints a couple of
integer literals in Perl.

#!/usr/bin/perl
number1.pl

use warnings;

print 25, -4;

$ perl number1.pl
25-4$

Well, that’s not exactly what we want. Fortunately, it’s pretty easy to fix. First, we didn’t tell Perl to
separate the numbers with a space, and second, we didn’t tell it to put a new line at the end. Let’s change
the program so it does that:

#!/usr/bin/perl
number2.pl

use warnings;

print 25, " ", -4, "\n";

This will accomplish what we want:

$ perl number2.pl
25 -4
$

For readability, we often write large integers such as 10000000 by splitting up the number with
commas: 10,000,000. This is sometimes known as chunking. While we would probably write 10 million
with a comma if we wrote a check for that amount1, don’t use the comma to chunk in a Perl program.
Instead, use the underscore: 10_000_000. Change your program to look like the following:

#!/usr/bin/perl
number3.pl

use warnings;

print 25_000_000, " ", -4, "\n";

1 Ah, if only we could write a check for $10M that would actually cash…

CHAPTER 2 ■ SCALARS

15

Notice that those underscores don’t appear in the output:

$ perl number3.pl
25000000 –4
$

We will also be working with floating-point numbers, which include everything that’s not an integer,
like 0.5, –0.01333, and 1.1.

Note that floating-point numbers are accurate to a certain number of digits. For instance, the
number 15.39 may in fact be stored in memory as 15.3899999999999. This is accurate enough for most
scientists, so it will have to be for us programmers as well.

Here is an example of printing the approximate value of pi:

#!/usr/bin/perl
number4.pl

use warnings;

print "pi is approximately: ", 3.14159, "\n";

Executing this program produces the following result:

$ perl number4.pl
pi is approximately: 3.14159
$

Binary, Hexadecimal, and Octal Numbers
As you saw in the previous chapter, we can express numbers as binary, hexadecimal, or octal numbers in
our programs. Let’s look at a program to demonstrate how to use the various number systems. Type in
the following code, and save it as goodnums.pl:

#!/usr/bin/perl
goodnums.pl

use warnings;

print 255, "\n";
print 0377, "\n";
print 0b11111111, "\n";
print 0xFF, "\n";

All of these are representations of the number 255, and accordingly, we get the following output:

$ perl goodnums.pl
255
255
255
255
$

CHAPTER 2 ■ SCALARS

16

When Perl reads your program, it reads and understands numbers in any of the allowed number
systems, 0 for octal, 0b for binary, and 0x for hex.

What happens, you might ask, if you specify a number in the wrong system? Well, let’s try it out. Edit
goodnums.pl to give you a new program, badnums.pl, which looks like this:

#!/usr/bin/perl
badnums.pl

use warnings;

print 255, "\n";
print 0378, "\n";
print 0b11111112, "\n";
print 0xFG, "\n";

Since octal digits only run from 0 to 7, binary digits from 0 to 1, and hex digits from 0 to F, none of
the last three lines make any sense. Let’s see what Perl makes of it:

$ perl badnums.pl
Bareword found where operator expected at badnums.pl line 9, near "0xFG"
 (Missing operator before G?)
Illegal octal digit '8' at badnums.pl line 7, at end of line
Illegal binary digit '2' at badnums.pl line 8, at end of line
syntax error at badnums.pl line 9, near "0xFG"
Execution of badnums.pl aborted due to compilation errors.
$

Now, let’s match those errors up with the relevant lines:

Illegal octal digit '8' at badnums.pl line 7, at end of line

And line 7 is

print 0378, "\n";

As you can see, Perl thought it was dealing with an octal number, but then along came an 8, which is
not a legal octal digit, so Perl quite rightly complained. The same thing happened on the next line:

Illegal binary digit '2' at badnums.pl line 8, at end of line

And line 8 is

print 0b11111112, "\n";

The problem with the next line is even bigger:

Bareword found where operator expected at badnums.pl line 9, near "0xFG"
 (Missing operator before G?)
syntax error at badnums.pl line 9, near "0xFG"

The line starting “Bareword” is a warning (because we included use warnings;). A bareword is a
series of characters outside of a string that Perl doesn’t recognize. Those characters could mean a
number of things, and Perl is usually quite good at understanding what you mean. In this case, the
bareword was G; Perl understood 0xF but couldn’t see how the G fit in. We might have wanted an
operator do something with it, but there was no operator. In the end, Perl gave us a syntax error, which is
the equivalent of it giving up and saying, “How do you expect me to understand this?”

CHAPTER 2 ■ SCALARS

17

Strings
The other type of scalar available to us is the string, and we’ve already seen a few examples. In the last
chapter, we met the string "Hello, world!\n". A string is a series of characters surrounded by some sort
of quotation marks. Strings can contain ASCII (or Unicode) data, as well as escape sequences such as the
\n of our example. Perl imposes no maximum-length restriction on strings. Practically speaking, there is
a limit imposed by the amount of memory in your computer, but since most computers these days have
such a large amount of memory, it’s unlikely you’d create a string that would consume all that memory.

Single- vs. Double-Quoted Strings
The quotation marks you choose for your string are significant. So far we’ve only seen double-quoted
strings, like "Hello, world!\n". But you can also have single-quoted strings. Predictably, these are
surrounded by single quotes: ' '. The important difference is that no processing is done within single-
quoted strings, except on \\ and \' . Moreover, as we’ll see later, variable names inside double-quoted
strings are replaced by their contents, whereas single-quoted strings treat them as ordinary text. We call
both these types of processing interpolation, and say that single-quoted strings are not interpolated.

Consider the following program, bearing in mind that \t is the escape sequence that represents a
tab:

#!/usr/bin/perl
quotes.pl

use warnings;

print '\tThis is a single-quoted string.\n';
print "\tThis is a double-quoted string.\n";

The double-quoted string will have its escape sequences processed, and the single-quoted string
will not. The output is

$ perl quotes.pl
\tThis is a single-quoted string.\n This is a double-quoted string.
$

What do we do if we want to have a backslash in a string? This is a common concern for Windows
users, as a Windows path looks something like this: C:\WINDOWS\Media\. In a double-quoted string, a
backslash will start an escape sequence, which is not what we want it to do.

There is, of course, more than one way to get an actual backslash. You can either use a single-quoted
string, as shown previously, or you can escape the backslash. One principle you’ll see often in Perl, and
especially when we get to regular expressions, is that you can use a backslash to turn off any special
effect a character may have. This operation is called escaping, or more commonly, backwhacking.

In this case, we want to turn off the special effect a backslash has, and so we escape it:

#!/usr/bin/perl
quotes2.pl

use warnings;

CHAPTER 2 ■ SCALARS

18

print "C:\\WINDOWS\\Media\\\n";
print 'C:\WINDOWS\Media\ ', "\n";

This prints the following:

$ perl quotes2.pl
C:\WINDOWS\Media\
C:\WINDOWS\Media\
$

Aha! Some of you may have got this message instead:

Can't find string terminator " ' " anywhere before EOF at quotes2.pl line 7.

If you did, you probably left out the space character in line 7 before the second single quote.
Remember that \' tells Perl to escape the single quote, turning off its normal meaning of a closing single
quote. Perl continues to look for the closing quote, which, of course, is not there. Try this program to see
how Perl treats these special cases:

#!/usr/bin/perl
aside1.pl

use warnings;

print 'ex\\ er\\' , ' ci\' se\'' , "\n";

The output you get this time is

$ perl aside1.pl
ex\ er\ ci' se'
$

You’ll find it easier to sort out what is happening if you look at each argument individually to
determine how the characters are escaped. Remember, there are three arguments to print() in this
example. Don’t let all the quotes confuse you.

Actually, there’s an altogether sneakier way of setting a Windows path. Internally, Windows allows
you to separate paths in the Unix style with a forward slash, instead of a backslash. If you need to refer
to directories in Perl on Windows, you may find it easier to say C:/WINDOWS/Media/ instead. This gives you
the variable interpolation of double-quoted strings without the “Leaning Toothpick Syndrome”2 of
multiple backslashes.

So much for backslashes, what about quotation marks? The trick is making sure Perl knows where
the end of the string is. Naturally, there’s no problem with putting single quotes inside a double-quoted
string, or vice versa:

#!/usr/bin/perl
quotes3.pl

2 Yes, believe it or not the Leaning Toothpick Syndrome (LDS) is real:
http://en.wikipedia.org/wiki/Leaning_toothpick_syndrome

http://en.wikipedia.org/wiki/Leaning_toothpick_syndrome

CHAPTER 2 ■ SCALARS

19

use warnings;

print "It's as easy as that.\n";
print '"Stop," he cried.', "\n";

This will produce the quotation marks in the right places:

$ perl quotes3.pl
It's as easy as that.
"Stop," he cried.
$

The problem comes when you want double quotes inside a double-quoted string or single quotes
inside a single-quoted string. As you might have guessed, though, the solution is to escape the quotes on
the inside. Suppose you want to print out the following quote, including both sets of quotation marks:

'"Hi," said Jack. "Have you read Slashdot today?"'

Here’s a way of doing it with a double-quoted string:

#!/usr/bin/perl
quotes4.pl

use warnings;

print "'\"Hi,\" said Jack. \"Have you read Slashdot today?\"'\n";

Now see if you can modify this to make it a single-quoted string—don’t forget that \n needs to go in
separate double quotes to make it interpolate.

q// and qq//
Wouldn’t it would be nice if you could select a completely different set of quotes so there would be no
ambiguity and no need to escape any quotes inside the text? The first operators we’re going to meet are
the quote-like operators that do this for us. They’re written as q// and qq//, the first acting like single
quotes and the second like double quotes. Now, instead of the code we wrote in quotes4.pl, we can
write

#!/usr/bin/perl
quotes5.pl

use warnings;

print qq/'"Hi," said Jack. "Have you read Slashdot today?"'\n/;

Alternative Delimiters

That’s all very well, of course, until we want a / in the string. Suppose we want to replace “Slashdot” with
“/.”—now we’re back where we started, having to escape things again. Thankfully, Perl lets us choose
our own delimiters so we don’t have to stick with //. Any nonalphanumeric (that is, no letter and no

CHAPTER 2 ■ SCALARS

20

number) character can be used as a delimiter, provided it’s the same on both sides of the text.
Furthermore, you can use {}, [], (), and as left and right delimiters. Here are a few ways of doing the
print qq/.../;, all of which have the same effect:

#!/usr/bin/perl
quotes6.pl

use warnings;

print qq|'"Hi," said Jack. "Have you read /. today?"'\n|;
print qq#'"Hi," said Jack. "Have you read /. today?"'\n#;
print qq('"Hi," said Jack. "Have you read /. today?"'\n);
print qq<'"Hi," said Jack. "Have you read /. today?"'\n>;

We’ll see more of these alternative delimiters when we start working with regular expressions.

Here-Documents
There’s one final way of specifying a string—by means of a here-document. This idea was taken from the
Unix shell and works in Perl on any platform. Effectively, it means you can write a large amount of text
within your program, and it will be treated as a string provided it is identified correctly. Here’s an
example:

#!/usr/bin/perl
heredoc.pl

use warnings;

print <<EOF;

This is a here-document. It starts on the line after the two arrows,
and it ends when the text following the arrows is found at the beginning
of a line, like this:

EOF

A here-document must start with << followed by a label. The label can be anything, but is
traditionally EOF (end of file) or EOT (end of text). The label must immediately follow the arrows with no
spaces between, unless the same number of spaces precedes the end marker. The here-doc ends when
the label is found at the beginning of a line. In our case, the semicolon does not form part of the label
because it marks the end of the print() function call.

By default, a here-document works like a double-quoted string. In order for it to work like a single-
quoted string, surround the label in single quotes. This will become important when variable
interpolation comes into play, as we’ll see later.

Here-documents are typically used to replace multi-line strings (strings that span multiple lines). A
perfect example is a menu that is displayed to the user. Consider this relatively hard-to-read code as a
bunch of print() statements:

print "Enter your selection:\n";
print " 1 - money\n";

CHAPTER 2 ■ SCALARS

21

print " 2 - show\n";
print " 3 - get ready\n";
print " 4 - go cat go\n";

Or as a here–document:

print <<EOMENU;
Enter your selection:
 1 - money
 2 - show
 3 - get ready
 4 - go cat go
EOMENU

Converting Between Numbers and Strings
Perl treats numbers and strings as equals and, where necessary, converts between strings, integers, and
floating-point numbers behind the scenes. There is a special term for this: automatic conversion of
scalars. This means you don’t have to worry about doing the conversions yourself, as you do in other
languages. If you have a string literal, "0.25", and you multiply it by four, Perl treats it as a number and
gives you the expected answer, 1. For example:

#!/usr/bin/perl
autoconvert.pl

use warnings;

print "0.25" * 4, "\n";

The asterisk (*) is the multiplication operator. All of Perl’s operators, including this one, will be
discussed in the next section.

There is, however, one area where this automatic conversion does not take place. Octal, hex, and
binary numbers in string literals or strings stored in variables don’t get converted automatically.

#!/usr/bin/perl
octhex1.pl

use warnings;

print "0x30\n";
print "030\n";

gives you

$ perl octhex1.pl
0x30
030
$

If you ever find yourself with a string containing a hex or octal value that you need to convert into a
number, you can use the hex() or oct() functions accordingly:

CHAPTER 2 ■ SCALARS

22

#!/usr/bin/perl
octhex2.pl

use warnings;

print hex("0x30"), "\n";
print oct("030"), "\n";

This produces the expected answers, 48 and 24. Note that for hex() or oct(), the prefix 0x or 0
respectively is not required. If you know that what you have is definitely supposed to be a hex or octal
number, then hex(30) and oct(30) will produce the preceding results. As you can see from that, the
string "30" and the number 30 are treated as the same.

Furthermore, these functions will stop reading when they get to a digit that doesn’t make sense in
that number system:

#!/usr/bin/perl
octhex3.pl

use warnings;

print hex("FFG"), "\n";
print oct("178"), "\n";

These will stop at FF and 17 respectively, and convert to 255 and 15. Perl will warn you, though, since
those are illegal characters in hex and octal numbers.

What about binary numbers? Well, there’s no corresponding bin() function, but there’s actually a
little trick here. If you have the correct prefix in place for any of the number systems (0, 0b, or 0x), you
can use oct() to convert the number to decimal. For example, oct("0b11010") prints 26.

Operators
Now that we know how to specify strings and numbers, let’s see what we can do with them. Mostly we’ll
be looking here at numeric operators—operators that act on and produce numbers—like plus and
minus, which take two numbers as arguments, called operands, and add or subtract them. There aren’t
as many string operators, but there are a lot of string functions that we’ll talk about later. Perl doesn’t
distinguish very strongly between functions and operators, but the main difference between the two is
that operators tend to go in the middle of their arguments—for example: 2 + 2, while functions go before
their arguments, which are separated by commas. Both operators and functions take arguments, do
something with them, and produce a new value; we generally say they return a value, or evaluate to a
value. Let’s take a look.

Numeric Operators
The numeric operators take at least one number as an argument, and evaluate to another number. Of
course, because Perl automatically converts between strings and numbers, the arguments may appear as
string literals or come from strings in variables. We’ll group these operators into three types: arithmetic
operators, bitwise operators, and logic operators.

CHAPTER 2 ■ SCALARS

23

Arithmetic Operators
The arithmetic operators are those that deal with basic mathematics—adding, subtracting, multiplying,
and dividing, and so on. To add two numbers together, you’d write something like this:

#!/usr/bin/perl
arithop1.pl

use warnings;

print 69 + 118, "\n";

And, of course, you’d see the answer, 187. Subtracting numbers is easy, too, and you can add and

subtract at the same time:

#!/usr/bin/perl
arithop2.pl

use warnings;

print "21 from 25 is: ", 25 - 21, "\n";
print "4 + 13 - 7 is: ", 4 + 13 - 7, "\n";

Executing this code produces:

$ perl arithop2.pl
21 from 25 is: 4
4 + 13 - 7 is: 10
$

The next set of operators, for multiplying and dividing, is where it gets interesting. We use the * and
/ operators respectively to multiply and divide.

#!/usr/bin/perl
arithop3.pl

use warnings;

print "7 times 15 is ", 7 * 15, "\n";
print "249 divided by 3 is ", 249 / 3, "\n";

Executing this code produces:

$ perl arithop3.pl
7 times 15 is 105
249 divided by 3 is 83
$

The fun comes when you want to multiply first and then add, or add then divide. Here’s an example

of the problem:

CHAPTER 2 ■ SCALARS

24

#!/usr/bin/perl
arithop4.pl

use warnings;

print 3 + 7 * 15, "\n";

This could mean two different things: either Perl must add the 3 and the 7, and then multiply by 15,

or multiply 7 and 15 first, and then add. Which does Perl do? Try it and see . . .
Perl should give you 108, meaning it did the multiplication first. The order in which Perl performs

operations is called operator precedence. Multiply and divide have a higher precedence than add and
subtract, and so they get performed first. We can start to draw up a list of precedence as follows:

* /
+ -

To force Perl to perform an operation of lower precedence first, you need to use parentheses, like so:

#!/usr/bin/perl
arithop5.pl

use warnings;

print (3 + 7) * 15, "\n";

Unfortunately, if you run that, you’ll get a warning and 10 will be printed. What happened? The
problem is that print() is a function and the parentheses around 3 + 7 are treated as the only argument
to print().

print() as an operator takes a list of arguments, performs an operation (printing them to the
screen), and returns a 1 if it succeeds, or no value if it does not. Perl calculated 3 plus 7, printed the
result, and then multiplied the result of the returned value (1) by 15, throwing away the final result of 15.

To get what you actually want, you need another set of parentheses:

#!/usr/bin/perl
arithop6.pl

use warnings;

print((3 + 7) * 15, "\n");

Note that the outer set of parenthesis tells print() that what is within are the arguments. The inner
set of parenthesis forces the desired precedence. This now gives us the correct answer, 150, and we can
put another entry in our list of precedence:

List operators
* /
+ -

Now let’s look at the exponentiation operator,• which simply raises one number to the power of
another—squaring, cubing, and so on. Here’s an example:

CHAPTER 2 ■ SCALARS

25

#!/usr/bin/perl
arithop7.pl

use warnings;

print 2**4, " ", 3**5, " ", -2**4, "\n";

That’s 2*2*2*2, 3*3*3*3*3, and –2*–2*–2*–2. Or is it?
The output we get is

$ perl arithop7.pl
16 243 -16
$

Hmm, the first two look OK, but the last one’s not quite correct. –2 to the 4th power should be
positive. Again, it’s a precedence issue. Turning a number into a negative number requires an operator,
the unary minus operator. It’s called unary because unlike the ordinary minus operator, it only takes one
argument. Although unary minus has a higher precedence than multiply and divide, it has a lower
precedence than exponentiation. What’s actually happening, then, is -(2**4) instead of (-2)**4. Let’s
put these two operators in our list of precedence as well:

List operators
**
Unary minus
* /
+ -

The last arithmetic operator is %, the remainder, or modulo operator. This calculates the remainder
when one number divides another. For example, 6 divides into 15 twice, with a remainder of 3, as our
next program will confirm:

#!/usr/bin/perl
arithop8.pl

use warnings;

print "15 divided by 6 is exactly ", 15 / 6, "\n";
print "That's a remainder of ", 15 % 6, "\n";

$ perl arithop8.pl
15 divided by 6 is exactly 2.5
That's a remainder of 3
$

The modulo operator has the same precedence as multiply and divide.

Bitwise Operators
Up to this point, the operators worked on numbers in just the way we’d expect. However, as we already
know, computers don’t see numbers the same as we do; they see them as a string of bits. These next few
operators perform operations on numbers one bit at a time—that’s why they’re called them bitwise

CHAPTER 2 ■ SCALARS

26

operators. They aren’t used quite so much in Perl as in other languages, but we will use them when
dealing with things like low-level file access.

First, let’s have a look at the kind of numbers we’re going to use in this section, just so we get used to
them:

• 0 in binary is 0, but let’s write it as 8 bits: 00000000.

• 51 in binary is 00110011.

• 85 in binary is 01010101.

• 170 in binary is 10101010.

• 204 in binary is 11001100.

• 255 in binary is 11111111.

Does it surprise you that 10101010 (170) is twice as much as 01010101 (85)? It shouldn’t; when we
multiply a number by 10 in base 10, all we do is slap a 0 on the end, so 21 becomes 210. Similarly, to
multiply a number by 2 in base 2, we do exactly the same.

People think of bitwise operators as working from right to left; the rightmost bit is called the least
significant bit and the leftmost is called the most significant bit.

The AND Operator

The easiest bitwise operator to fathom is called the and operator, and is written &. This compares pairs of
bits as follows:

• 1 and 1 gives 1.

• 1 and 0 gives 0.

• 0 and 1 gives 0.

• 0 and 0 gives 0.

For example, 51 & 85 looks like this:

51 00110011
85 01010101

17 00010001

Sure enough, if we give Perl the following:

#!/usr/bin/perl
bitop1.pl

use warnings;

print "51 ANDed with 85 gives us ", 51 & 85, "\n";

it tells us the answer is 17. Notice that since we’re comparing one pair of bits at a time, it doesn’t really
matter which way around the arguments go, 51 & 85 is exactly the same as 85 & 51. Operators with this
property are called commutative operators. Addition (+) and multiplication (*) are also commutative: 5 *

CHAPTER 2 ■ SCALARS

27

12 produces the same result as 12 * 5. Subtraction (–) and division (/) are not commutative: 5 – 12 does
not produce the same result as 12 – 5.

Here’s another example—look at the bits and see what you get:

51 00110011
170 10101010

34 00100010

The OR Operator

As well as checking whether the first and the second bits are 1, we can check whether one or another is 1,
the or operator in Perl is |. This is how we would calculate 204 | 85:

204 11001100
85 01010101

221 11011101

Now we produce 0s only if both bits are 0; if either or both are 1, we produce a 1. As a quick rule of
thumb, X & Y will always be smaller or equal to the smallest value of X and Y, and X | Y will be bigger
than or equal to the largest value of X or Y.

The XOR Operator

What if you really want to know if one or the other, but not both, are one? For this, you need the exclusive
or operator, written as ^:

204 11001100
170 10101010

102 01100110

The NOT Operator

Finally, you can flip the number completely, and replace all the 1s with 0s and vice versa. This is done
with the not, or ~, operator:

85 01010101
170 10101010

Let’s see, however, what happens when we try this in Perl:

#!/usr/bin/perl
bitop2.pl

use warnings;

print "NOT 85 is ", ~85, "\n";

CHAPTER 2 ■ SCALARS

28

Depending on the computer, the answer might be

$ perl bitop2.pl
NOT 85 is 4294967210
$

Your answer might be different, and we’ll explain why in a second.
Why is it so big? Well, let’s look at that number in binary to see if we can find a clue as to what’s

going on:

4294697210 11111111111111111111111110101010

Aha! The last part is right, but it’s a lot wider than we’re used to. That’s because the previous
examples only used 8 bits across, whereas many computers store integers as 32 bits across, so what’s
actually happened is this:

85 00000000000000000000000001010101
4294697210 11111111111111111111111110101010

If you get a much bigger number, it’s because your computer represents numbers internally with 64

bits instead of 32, and Perl has been configured to take advantage of this.

Truth and Falsehood
True and false are important in Perl. In Perl, false is defined as

• the number 0

• “0” (the string containing the single character 0)

• “” (the empty string)

• Undefined

• Empty list (we’ll discuss this in Chapter 4)

Later, we will want to perform actions based on whether something is true or false, like if one
number is bigger than another, or unless a problem has occurred, or while there is data left to examine.
We will use comparison operators to evaluate whether these things are true or false so that we can make
decisions based on them.

Some programming languages represent false as 0 and true as 1, and this allows us to use operators
very similar to bitwise operators to combine our comparisons, and to say “if this or this is true,” “if this is
not true,” and so on. The process of combining values that represent truth and falsehood is called
Boolean logic, after George Boole, who invented the concept in 1847, and we call the operators that do
the combining Boolean operators.

Comparing Numbers for Equality

The first simple comparison operator is ==. Two equal signs tell Perl to “return true if the two numeric
arguments are equal.” If they’re not equal, return false. Boolean values of truth and falsehood aren’t very
exciting to look at, but let’s see them anyway:

CHAPTER 2 ■ SCALARS

29

#!/usr/bin/perl
bool1.pl

use warnings;

print "Is two equal to four? ", 2 == 4, "\n";
print "OK, then, is six equal to six? ", 6 == 6, "\n";

This will produce

$ perl bool1.pl
Is two equal to four?
OK, then, is six equal to six? 1
$

This output shows that in Perl, operators that evaluate to false evaluate to the empty string ("") and
those that evaluate to true evaluate to 1.

The obvious counterpart to testing whether things are equal is testing whether they’re not equal,
and for this we use the != operator. Note that there’s only one equal sign this time; we’ll find out later
why there had to be two before.

#!/usr/bin/perl
bool2.pl

use warnings;

print "So, two isn't equal to four? ", 2 != 4, "\n";

$ perl bool2.pl
So, two isn't equal to four? 1
$

There you have it, irrefutable proof that two is not four. Good.

Comparing Numbers for Inequality

So much for equality; let’s check if one thing is bigger than another. Just as in mathematics, we use the
greater-than and less-than signs to do this: < and >.

#!/usr/bin/perl
bool3.pl

use warnings;

print "Five is more than six? ", 5 > 6, "\n";
print "Seven is less than sixteen? ", 7 < 16, "\n";
print "Two is equal to two? ", 2 == 2, "\n";
print "One is more than one? ", 1 > 1, "\n";
print "Six is not equal to seven? ", 6 != 7, "\n";

The results, hopefully, should not be very new to you:

CHAPTER 2 ■ SCALARS

30

$ perl bool3.pl
Five is more than six?
Seven is less than sixteen? 1
Two is equal to two? 1
One is more than one?
Six is not equal to seven? 1
$

Let’s have a look at one last pair of comparisons: we can check greater-than-or-equal-to and less-
than-or-equal-to with the >= and <= operators, respectively.

#!/usr/bin/perl
bool4.pl
use warnings;

print "Seven is less than or equal to sixteen? ", 7 <= 16, "\n";
print "Two is more than or equal to two? ", 2 >= 2, "\n";

As expected, Perl faithfully prints out

$ perl bool4.pl
Seven is less than or equal to sixteen? 1
Two is more than or equal to two? 1
$

There’s also a special operator that isn’t really a Boolean comparison because it doesn’t give us a
true-or-false value; instead it returns 0 if the two are equal, –1 if the right-hand side is bigger, and 1 if the
left-hand side is bigger—it is denoted by <=>.

#!/usr/bin/perl
bool5.pl

use warnings;

print "Compare six and nine? ", 6 <=> 9, "\n";
print "Compare seven and seven? ", 7 <=> 7, "\n";
print "Compare eight and four? ", 8 <=> 4, "\n";
gives us

$ perl bool5.pl
Compare six and nine? -1
Compare seven and seven? 0
Compare eight and four? 1
$

The <=> operator is also known as the spaceship operator or the shuttle operator due to its shape.
You’ll see this operator used when we look at sorting things, where you have to know whether

something goes before, after, or in the same place as something else.

CHAPTER 2 ■ SCALARS

31

Boolean Operators
As well as being able to evaluate the truth and falsehood of some statements, we can also combine such
statements. For example, we may want to do something if one number is bigger than another and two
other numbers are the same. The combining is done in much the same way as with the bitwise operators
we saw earlier. We can ask if one value and another value are both true, or if one value or another value
are true, and so on.

The operators even resemble the bitwise operators. To ask if both truth values are true, you use &&
instead of &. So, to test whether 6 is more than 3 and 12 is more than 4, you can write

6 > 3 && 12 > 4

To test if 9 is more than 7 or 8 is less than 6, you use the doubled form of the | operator, ||:

9 > 7 || 6 > 8

To negate the sense of a test, however, use the slightly different ! operator; this operator has a
higher precedence than the comparison operators, so use parentheses if necessary. For example, the
following line tests whether 2 is not more than 3:

!(2>3)

while this one tests whether !2 is more than 3:
!2>3

2 is a true value. !2 is therefore a false value, which gets converted to 0 when we do a numeric
comparison. We’re actually testing if 0 is more than 3, which has the opposite effect to what we wanted.

Instead of those forms, &&, ||, and !, we can also use the slightly easier-to-read versions, and, or, and
not. There’s also xor, for exclusive or (one or the other but not both are true), which doesn’t have a
symbolic form. However, you need to be careful about precedence again:

#!/usr/bin/perl
bool6.pl

use warnings;

print "Test one: ", 6 > 3 && 3 > 4, "\n";
print "Test two: ", 6 > 3 and 3 > 4, "\n";

This prints, somewhat surprisingly, the following:

$ perl bool6.pl
Useless use of a constant in void context at bool6.pl line 5.
Test one:
Test two: 1$

We can tell from the presence of the warning about line 5 and from the position of the prompt that
something is amiss (or least Unix users can—Windows users need to be a bit more alert since Windows
automatically adds a newline character at the end of the program so the system prompt will be on the
next line, but the blank line that is expected will not be there). Notice the second newline did not get
printed. The trouble is, and has a lower precedence than &&. What has actually happened is this:

print("Test two: ", 6 > 3) and (3 > 4, "\n");

CHAPTER 2 ■ SCALARS

32

Now, 6 is more than 3, so that returned 1, print() then returned 1, and the rest was irrelevant.

String Operators
Let’s look at a two string operators.

The first one is the concatenation operator, which glues two strings together into one. Instead of
saying

print "Print ", "several ", "strings ", "here", "\n";
you could say

print "Print " . "one ". "string " . "here" . "\n";

As it happens, printing several strings is slightly more efficient, but there will be times you really do

need to combine strings, especially if you’re putting them into variables.
What happens if we try and join a number to a string? The number is evaluated and then converted:

#!/usr/bin/perl
string1.pl

use warnings;

print "Four sevens are ". 4*7 ."\n";

which tells us, reassuringly, that

$ perl string1.pl
Four sevens are 28
$

The other string operator is the repetition operator, marked with an x. This repeats a string a given
number of times:

#!/usr/bin/perl
string2.pl

use warnings;

print "GO! " x 3, "\n";

will print

$ perl string2.pl
GO! GO! GO!
$

You can, of course, use repetition in conjunction with concatenation. The repetition operator’s
precedence is higher than the concatenation operator’s, as you can easily see for yourself:

#!/usr/bin/perl
string3.pl

CHAPTER 2 ■ SCALARS

33

use warnings;

print "Ba" . "na" x 4 ,"\n";

On running this, you get

$ perl string3.pl
Banananana
$

In this case, the repetition is done first (“nananana”) and then it is concatenated with the “Ba”. The
precedence of the repetition operator is the same as the arithmetic operators, so if you’re working out
how many times to repeat something, you’re going to need parentheses:

#!/usr/bin/perl
string4.pl

use warnings;

print "Ba" . "na" x 4*3 ,"\n";
print "Ba" . "na" x (4*3) ,"\n";

Compare:

$ perl string4.pl
Argument "nananana" isn't numeric in multiplication (*) at string4.pl line 6
Ba0
Banananananananananananana
$

Why was the first one Ba0? The repetition happened first, giving us “nananana”. Then the
multiplication—what’s “nananana” times three? When Perl converts a string to a number, it takes any
spaces, an optional minus sign, and then as many digits as it can from the beginning of the string, and
ignores everything else. Since there were no digits here, the numeric value of “nananana” was 0. Note
that if the string that is converted to a number contains any non-numeric characters, Perl will warn you
about it, as shown previously.

That 0 was then multiplied by 3, to give 0. Finally, the 0 was turned back into a string to be
concatenated onto the “Ba”.

Here is an example showing how strings automatically convert to numbers by adding 0 to them:

#!/usr/bin/perl
str2num.pl

use warnings;

print "12 monkeys" + 0, "\n";
print "Eleven to fly" + 0, "\n";
print "UB40" + 0, "\n";
print "-20 10" + 0, "\n";
print "0x30" + 0, "\n";

CHAPTER 2 ■ SCALARS

34

You get a warning for each line saying that the strings aren’t “numeric in addition (+),” but what can
be converted is:

$ perl str2num.pl
Argument "12 monkeys" isn't numeric in addition (+) at str2num.pl line 6.
Argument "Eleven to fly" isn't numeric in addition (+) at str2num.pl line 7.
Argument "UB40" isn't numeric in addition (+) at str2num.pl line 8.
Argument "-20 10" isn't numeric in addition (+) at str2num.pl line 9.
Argument "0x30" isn't numeric in addition (+) at str2num.pl line 10.
12
0
0
-20
0
$

Notice how, when each of these strings is converted to a numeric value, Perl complains that the

string is not numeric. This happens because the string is not a simple numeric value. But note that Perl
does in fact convert the strings to numbers (in the case of three of the strings, the value is 0).

Our first string, "12 monkeys", did pretty well. Perl understood the 12, and stopped after that. The
next line of code starts with the word “Eleven”—English words don’t get converted to numbers. Our
third string was also a nonstarter as Perl looks for a number only at the beginning of the string. If there’s
something there that isn’t a number, it’s evaluated as a 0. Similarly, Perl only looks for the first number
in the string. Any numbers after that are discarded. Finally, Perl doesn’t convert binary, hex, or octal to
decimal when it’s stringifying a number, so you have to use the hex() or oct() functions to do that. On
our last effort, Perl stopped at the x, returning 0. If we had an octal number, such as 030, it would be
treated as the decimal number 30.

Therefore, conversion from strings to numbers can be summed up with these rules:

• A string that is purely a number is automatically converted to the number (“21.42”
is converted to 21.42).

• Leading whitespace is ignored (“ 12” is converted to 12).

• Trailing nonnumerics are discarded (“12perl” is converted to 12).

• Strings that do not start with numeric values are treated as 0 (“perl12” is converted
to 0).

The last three conversions listed will produce a warning message if use warnings; is used.

String Comparison
In addition to comparing the value of numbers, we can compare the value of strings. This does not mean
we convert a string to a number, although if you say something like "12" > "30", Perl will convert to
numbers for you. This means we can compare the strings alphabetically: “Bravo” comes after “Alpha”
but before “Charlie”, for instance.

CHAPTER 2 ■ SCALARS

35

In fact, it’s more than alphabetical order; the computer is using either ASCII or Unicode internally to
represent the string, and so has converted it to a series of numbers in the relevant sequence. This means,
for example, “Fowl” comes before “fish”, because a capital “F” has a smaller ASCII value (70) than a
lowercase “f” (102).3

You can find a character’s ASCII value by using the ord() function, which tells you where in the
(ASCII) order it comes. Let’s see which comes first, a # or a *?

#!/usr/bin/perl
ascii.pl

use warnings;

print "A # has ASCII value ", ord("#"), "\n";
print "A * has ASCII value ", ord("*"), "\n";

This should say

$ perl ascii.pl
A # has ASCII value 35
A * has ASCII value 42
$

If you’re only concerned with one character at a time, you can compare the return values of ord()
using the < and > operators. However, when you’re comparing entire strings, that can get tedious. If the
first character of each string is the same, you move on to the next character in each string, and then the
next, and so on.

Instead, you can use string comparison operators to do it. Whereas the comparison operators for
numbers are mathematical symbols, the operators for strings are abbreviations. To test whether one
string is less than another, use lt. “Greater than” becomes gt, “equal to” becomes eq, and “not equal to”
becomes ne. There’s also ge and le for “greater than or equal to” and “less than and equal to.” The three-
way-comparison becomes cmp.

Here are a few examples:

#!/usr/bin/perl
strcomp1.pl

use warnings;

print "Which came first, the chicken or the egg? ";
print "chicken" cmp "egg", "\n";
print "Are dogs greater than cats? ";
print "dog" gt "cat", "\n";
print "Is ^ less than + ? ";
print "^" lt "+", "\n";

3This is not strictly true, though. Locales can define nonnumeric sorting orders for ASCII or Unicode
characters that Perl will respect.

CHAPTER 2 ■ SCALARS

36

And the results:

$ perl strcomp1.pl
Which came first, the chicken or the egg? -1
Are dogs greater than cats? 1
Is ^ less than + ?
$

The last line prints nothing as a result of "^" lt "+" since this operation returns the empty string,
indicating false.

Be careful when comparing strings using numeric comparison operators (or numeric values using
string comparison operators):

#!/usr/bin/perl
strcomp2.pl

use warnings;

print "Test one: ", "four" eq "six", "\n";
print "Test two: ", "four" == "six", "\n";

This code produces

$ perl strcomp2.pl
Argument "six" isn't numeric in numeric eq (==) at strcmp2.pl line 5.
Argument "four" isn't numeric in numeric eq (==) at strcmp2.pl line 5.
Test one:
Test two: 1
$

Is the second line really claiming that "four" is equal to "six"? Yes, when they are treated as
numbers. If you compare them as numbers, they get converted to numbers: "four" converts to 0, "six"
converts to 0, and the 0s are equal, so the test returns true and we get a couple of warnings telling us that
they were not numbers to begin with. The moral of this story is, compare strings with string comparison
operators and compare numbers with numeric comparison operators. Otherwise, your results may not
be what you anticipate.

Operators to Be Covered Later
There are a few operators left that we are not going to delve into right now. Don’t worry; we will
eventually take a look at the more important ones.

• The conditional operator looks like this: a?b:c. It returns b if a is true, and c if it is
false.

• The range operators, .. and ..., define a range of values. For instance, (0..5) is
shorthand notation for (0,1,2,3,4,5).

• As you’ve seen, the comma is used for separating arguments to functions like
print(). In fact, the comma is an operator that builds a list, and print() works on
a list of arguments. The operator => works like a comma but has some additional
properties.

CHAPTER 2 ■ SCALARS

37

• The =~ and !~ operators are used to “apply” a regular expression to a string. We’ll
look at these operators in Chapter 7.

• As well as providing an escape sequence and backwhacking special characters, \ is
used to take a reference to a variable, to examine the variable itself rather than its
contents. We will discuss this operator in Chapter 11.

• The >> and << operators “shift” a binary number right and left a given number of
bits.

• -> is an operator used when working with references; it will be covered in Chapter
11.

Operator Precedence
Table 2-1 displays the precedence for all the operators we’ve discussed so far, listed in descending order
of precedence.

Table 2-1. Operator Precedence

Operator Description

List operators Functions that take list arguments

-> Infix dereference operator

** Exponentiation

! ~ \ Logical not, bitwise not, reference of

=~ !~ Regex match, negated regex match

* / % x Multiplication, division, modulus, replication

+ - . Addition, subtraction, concatenation

<< >> Left shift, right shift

< > <= >= lt gt le ge Comparison operators

== != <=> eq ne cmp More comparison operators

& Bitwise and

| ^ Bitwise or, bitwise xor

continued

CHAPTER 2 ■ SCALARS

38

Table 2-1. continued

Operator Description

&& Logical and

|| Logical or

.. ... Range

?: Conditional

, => List separator

Not Logical not

And Logical and

or xor Logical or, xor

Remember that if you need to get things done in a particular order, you will need to use parenthesis.

And note that you can use parenthesis even when they’re not strictly necessary, and you should certainly
do so to help keep things readable. While Perl knows full well what order to evaluate 7+3*2/6-3+5/2&3 in,
you’ll probably find it easier on yourself if you make it explicit, because by next week you may not
remember what you wrote or why.

Variables
Now let’s talk about variables. As explained earlier, a variable is storage for your scalars (variables can
also store data of different types, which we’ll talk about in later chapters). Once you’ve calculated 42*7,
it’s gone. If you want to know what it was, you must do the calculation again. Instead of being able to use
the result as a halfway point in more complicated calculations, you’ve got to spell it all out again in full.
Talk about tedious. What you need to be able to do, and what variables allow you to do, is store a scalar
away and refer to it again later.

A scalar variable name starts with a dollar sign, for example: $name. Scalar variables can hold either
numbers or strings, and are limited only by the size of your computer’s memory. To put data into a
scalar, you assign the data to it with the assignment operator =. (Incidentally, this is why numeric
comparison uses two equal signs, ==; the single equal sign = was taken to mean the assignment
operator.)

What we’re going to do here is tell Perl that the scalar contains the string "fred". Then we can get at
that data by simply using the variable’s name:

#!/usr/bin/perl
vars1.pl

CHAPTER 2 ■ SCALARS

39

use warnings;

$name = "fred";
print "My name is ", $name, "\n";

Lo and behold, our computer informs us that

$ perl vars1.pl
My name is fred

$

Now we have somewhere to store our data, and a way to get it back again. The next logical step is to
be able to change it.

Modifying a Variable
Modifying the contents of a variable is easy—just assign something different to it. We can say

#!/usr/bin/perl
vars2.pl

use warnings;

$name = "fred";
print "My name is ", $name, "\n";
print "It's still ", $name, "\n";
$name = "bill";
print "Well, actually, now it's ", $name, "\n";
$name = "fred";
print "No, really, now it's ", $name, "\n";

And watch our computer have an identity crisis:

$ perl vars2.pl
My name is fred
It's still fred
Well, actually, now it's bill
No, really, now it's fred
$

We can also do a calculation in several stages:

#!/usr/bin/perl
vars3.pl

use warnings;

$a = 6 * 9;
print "Six nines are ", $a, "\n";
$b = $a + 3;
print "Plus three is ", $b, "\n";

CHAPTER 2 ■ SCALARS

40

$c = $b / 3;
print "All over three is ", $c, "\n";
$d = $c + 1;
print "Add one is ", $d, "\n";
print "\nThose stages again: ", $a, " ", $b, " ", $c, " ", $d, "\n";

This code prints

$ perl vars3.pl
Six nines are 54
Plus three is 57
All over three is 19
Add one is 20
Those stages again: 54 57 19 20
$

While this works perfectly well, it’s often easier to stick with one variable and modify its value, if you
don’t need to know the stages you went through at the end:

#!/usr/bin/perl
vars4.pl

use warnings;

$a = 6 * 9;
print "Six nines are ", $a, "\n";
$a = $a + 3;
print "Plus three is ", $a, "\n";
$a = $a / 3;
print "All over three is ", $a, "\n";
$a = $a + 1;
print "Add one is ", $a, "\n";

The = assignment operator has very low precedence. This means that Perl will do the calculations on
the right-hand side of it, including fetching the current value, before assigning the new value. To
illustrate, take a look at the eighth line of our example. Perl takes the current value of $a, adds three to it,
and then stores it back in $a.

Operating and Assigning at Once
Operations, like fetching a value, modifying it, and storing it, are very common, so there’s a special
syntax for them. Generally

$a = $a <some operator> $b;

can be written as

$a <some operator>= $b;

For instance, we could rewrite the preceding example as follows:

CHAPTER 2 ■ SCALARS

41

#!/usr/bin/perl
vars5.pl

use warnings;

$a = 6 * 9;
print "Six nines are ", $a, "\n";
$a += 3;
print "Plus three is ", $a, "\n";
$a /= 3;
print "All over three is ", $a, "\n";
$a += 1;
print "Add one is ", $a, "\n";

This works for **=, *=, +=, -=, /=, .=, %=, &=, |=, ^=, <<=, >>=, &&=, and ||=. These all have the same
precedence as the assignment operator =.

Autoincrement and Autodecrement
Here are two more operators, ++ and --, that add and subtract one from the variable, but their
precedence is a little strange. When they precede a variable, they act before everything else. When they
follow a variable, however, they act after everything else. Let’s examine this behavior in the following
example:

#!/usr/bin/perl
auto1.pl

use warnings;

$a = 4;
$b = 10;
print "Our variables are ", $a, " and ", $b, "\n";
$b = $a++;
print "After incrementing, we have ", $a, " and ", $b, "\n";
$b = ++$a * 2;
print "Now, we have ", $a, " and ", $b, "\n";
$a = --$b + 4;
print "Finally, we have ", $a, " and ", $b, "\n";

You should see the following output:

$ perl auto1.pl
Our variables are 4 and 10
After incrementing, we have 5 and 4
Now, we have 6 and 12
Finally, we have 15 and 11
$

Let’s work this through a piece at a time. First we set up our variables, giving the values 4 and 10 to
$a and $b respectively:

CHAPTER 2 ■ SCALARS

42

$a = 4;
$b = 10;
print "Our variables are ", $a, " and ", $b, "\n";

In the following line, the assignment happens before the increment—this is known as a post-
increment. So $b is set to $a’s current value, 4, and then $a is autoincremented, becoming 5.

$b = $a++;
print "After incrementing, we have ", $a, " and ", $b, "\n";

In the next line however, the incrementing takes place first—this is known as a pre-increment. $a is
now 6, and $b is set to twice that, 12.

$b= ++$a * 2;
print "Now, we have ", $a, " and ", $b, "\n";

Finally, $b is decremented first (a pre-decrement), and becomes 11. $a is set to $b plus 4, which is 15.

$a= --$b + 4;
print "Finally, we have ", $a, " and ", $b, "\n";

The autoincrement operator actually does something interesting if the variable contains a string of
only alphabetic characters, followed optionally by numeric characters. Instead of converting to a
number, Perl “advances” the variable along the ranges a–z, A–Z, and 0–9. This is more easily understood
from a few examples:

#!/usr/bin/perl
auto2.pl

use warnings;

$a = "A9"; print ++$a, "\n";
$a = "bz"; print ++$a, "\n";
$a = "Zz"; print ++$a, "\n";
$a = "z9"; print ++$a, "\n";
$a = "9z"; print ++$a, "\n";

should produce

$ perl auto2.pl
B0
ca
AAa
aa0
10
$

This example shows that a 9 turns into a 0 and increments the next digit left. A z turns into an a and
increments the next digit left, and if there are no more digits to the left, either an a or an A is created
depending on the case of the current leftmost alpha character.

CHAPTER 2 ■ SCALARS

43

Multiple Assignments
We’ve said that = is an operator, but does that mean it returns a value? Well, actually it does; it returns
whatever was assigned. This allows us to set several variables up at once. Here’s a simple example; read
it from right to left:

$d = $c = $b = $a = 1;

First we set $a to 1, and the result of this is 1. $b is set with that, the result of which is 1. And so it goes
on.

Scoping
All the variables we’ve seen so far have been global variables. That is, they can be seen and changed from
anywhere in the program. For the moment, that’s fine, since our programs are very small and we can
easily understand where things get assigned and used. However, when we start writing larger programs,
it does become a problem.

Why? Well, suppose one part of your program uses a variable, $counter. If another part of your
program wants a counter, it can’t call it $counter as well for fear of clobbering the old value. This
becomes more of an issue when you begin to use subroutines, which are little sections of code you can
temporarily call upon to accomplish something before returning to what you were previously doing. As
things stand now, we’d have to make sure all the variables in our program had different names, and with
a large program that’s not desirable. It’s much easier to restrict the life of a variable to a certain area of
the program.

To achieve this, Perl provides another type of variable, called a lexical variable. These variables are
constrained to the enclosing block and all blocks inside it. If they’re not currently inside a block, they are
constrained to the current file. To tell Perl that a variable is lexical, we say my $variable;. This creates a
brand-new lexical variable for the current block, and sets it to the undefined value. Here’s an example:

#!/usr/bin/perl
scope1.pl

use warnings;

$record = 4;
print "We're at record ", $record, "\n";

{
 my $record;
 $record = 7;
 print "Inside the block, we're at record ", $record, "\n";
}

print "Outside, we're still at record ", $record, "\n";

And this should tell you

$ perl scope1.pl
We're at record 4
Inside the block, we're at record 7

CHAPTER 2 ■ SCALARS

44

Outside we're still at record 4
$

Let’s look at how this program works. First, we set our global variable $record to 4.

$record = 4;
print "We're at record ", $record, "\n";

Now we enter a new block, and create a new lexical variable. Important! This is completely and

utterly unrelated to the global variable $record, because my() creates a new lexical variable that exists
only for the duration of the block, and has the undefined value until it is assigned.

{
 my $record;

 Next, the lexical variable is set to 7, and printed out. The global $record is unchanged.

 $record = 7;
 print "Inside the block, we're at record ", $record, "\n";

Finally, the block ends, and the lexical copy ends with it. We say that it has gone out of scope. The

global variable remains however, and so $record has the value 4.

}

print "Outside, we're still at record ", $record, "\n";

In order to make us think clearly about our programming, we will ask Perl to be strict about our
variable use. The statement use strict; checks that, among other things, we’ve declared all our
variables. We declare lexicals with the my() function. Here’s what happens if we change our program to
use strict format:

#!/usr/bin/perl
scope2.pl

use warnings;
use strict;

$record = 4;
print "We're at record ", $record, "\n";

{
 my $record;
 $record = 7;
 print "Inside the block, we're at record ", $record, "\n";
}

print "Outside, we're still at record ", $record, "\n";

Now, the global $record is not declared, so sure enough, Perl complains about it, generating this

output:

CHAPTER 2 ■ SCALARS

45

$ perl scope2.pl
Global symbol "$record" requires explicit package name at scope2.pl line 7.
Global symbol "$record" requires explicit package name at scope2.pl line 8.
Global symbol "$record" requires explicit package name at scope2.pl line 16.
Execution of scope2.pl aborted due to compilation errors.
$

We’ll see exactly what this means in later chapters, but for now it suffices to declare $record as a
my() variable:

#!/usr/bin/perl
scope3.pl

use warnings;
use strict;

my $record;
$record = 4;
print "We're at record ", $record, "\n";

{
 # can use my() and assign on the same line
 my $record = 7;
 print "Inside the block, we're at record ", $record, "\n";
}

print "Outside, we're still at record ", $record, "\n";

Now Perl is happy, and we get the same output as before. You should almost always start your
programs with a use strict. Of course, nobody’s going to force you, but it will help you avoid a lot of
mistakes and will certainly give other people who have to look at your code more confidence in it.

One of the big mistakes that use strict; will catch is when you accidentally misspell a variable
name (hey, it happens!). For instance, in one line of code you might refer to the variable by the right
name:

$foo = 4;

And in another line, you misspell it as:

$ofo = 7;

use strict; will catch this mistake because if $ofo has not been declared with a my().

■ Note Because use strict; will catch mistakes like this, and more, we highly recommend that use strict;
always be used.

And notice that we can either use my() and assign in two statements:

CHAPTER 2 ■ SCALARS

46

my $record;
$record = 4;

Or do both in one statement:

my $record = 4;

Variable Names
We’ve not yet really examined the rules regarding what we can call our variables. We know that scalar
variables have to start with a dollar sign, but what else? The next character must be a letter (uppercase or
lowercase) or an underscore, and after that, any combination of numbers, letters, and underscores is
permissible.

Note that Perl’s variable names, like the rest of Perl, are case-sensitive, so $user is different from
$User, and both are different from $USER.

The following are legal variable names: $I_am_a_long_variable_name, $simple, $box56, $__hidden,
$B1.

The following are not legal variable names: $10c (doesn’t start with letter or underscore), $mail-
alias (- is not allowed), $your name (spaces not allowed).

The Special Variable $_
There are certain variables, called special variables, which Perl provides internally that you either are not
allowed to or do not want to overwrite. An example is $_, a very special variable indeed. $_ is the default
variable that a lot of functions and operators read from, write to, and operate upon if no other variable is
given. We’ll see plenty of examples of it throughout the book. For a complete list of all the special
variables that Perl uses and what they do, type perldoc perlvar at the command line.

Variable Interpolation
We said earlier that double-quoted strings interpolate variables. What does this mean? Well, if you
include a variable, say $name, in the middle of a double-quoted string, you get the value of the variable,
rather than the actual characters in the variable name. As an example, see what Perl does to this:

#!/usr/bin/perl
varint1.pl

use warnings;
use strict;

my $name = "fred";
print "My name is $name\n";

This produces

$ perl varint1.pl
My name is fred
$

CHAPTER 2 ■ SCALARS

47

Perl interpolates the value of $name into the string. Note that this doesn’t happen with single-quoted
strings, just like escape sequence interpolation:

#!/usr/bin/perl
varint2.pl

use warnings;
use strict;

my $name = "fred";
print 'My name is $name\n';

Here we get

$ perl varint2.pl
My name is $name\n$

Notice that the system prompt is printed at the end of that line because \n is not a newline character
within the single quotes (unless you are in the Windows shell, because then you’ll only see the
magically-added-by-the-shell blank line). This doesn’t just happen in things you print, it happens every
time you construct a string. So let’s construct a string that includes a variable name:

#!/usr/bin/perl
varint3.pl

use warnings;
use strict;

my $name = "fred";
my $salutation = "Dear $name,";
print $salutation, "\n";

This gives us

$ perl varint3.pl
Dear fred,
$

This has exactly the same effect as

my $salutation = "Dear " . $name . ",";

but is more concise and easier to understand.
If you need to place text immediately after the variable, you can use curly braces to delimit the name

of the variable. Take this example:

#!/usr/bin/perl
varint4.pl

use warnings;
use strict;

CHAPTER 2 ■ SCALARS

48

my $times = 8;
print "This is the $timesth time.\n";

This is syntactically incorrect, because Perl looks for a variable $timesth, which hasn’t been
declared. In this case, we have to change the last line by wrapping the variable name in curly braces to
this:

print "This is the ${times}th time.\n";

Now we get the right result:

$ perl varint4.pl
This is the 8th time.
$

Currency Converter
Let’s begin to wind up this chapter with a real example—a program to convert between currencies. This
is our very first version, so we won’t make it do anything too clever. As we get more and more advanced,
we’ll be able to hone and refine it.

#!/usr/bin/perl
currency1.pl

use warnings;
use strict;

my $yen = 90.45; # as of 13 November 2009
print "49518 Yen is ", (49_518/$yen), " dollars\n";
print "360 Yen is ", (360/$yen), " dollars\n";
print "30510 Yen is ", (30_510/$yen), " dollars\n";

Save this, and run it through Perl. You should see something like this:

$ perl currency1.pl
49518 Yen is 547.462686567164 dollars
360 Yen is 3.98009950248756 dollars
30510 Yen is 337.313432835821 dollars
$

First, we declare the exchange rate to be a lexical variable and set it to 90.45.

my $yen = 90.45;

Notice that we can declare and assign a variable at the same time. Now we do some calculations
based on that exchange rate:

print "49518 Yen is ", (49_518/$yen), " dollars\n";
print "360 Yen is ", (360/$yen), " dollars\n";
print "30510 Yen is ", (30_510/$yen), " dollars\n";

CHAPTER 2 ■ SCALARS

49

Of course, this is currently of limited use, because the exchange rate changes and because we might
want to use some different amounts at times. To account for both of these possibilities, we need to be
able to ask the user for additional data when we run the program.

Introducing <STDIN>
Perl reads from standard input (the keyboard) with <STDIN>. It reads up to and including the newline
character, so the newline is part of the string read in. To read a single line of input from the user, we can
say something like

print "Please enter something interesting\n";
$comment = <STDIN>;

This code will read one line from the user, including the newline character, and assign the string to
the variable $comment. Let’s use this to get the exchange rate from the user when the program is run. This
example will read the exchange rate from the user’s keyboard and store it in $yen:

#!/usr/bin/perl
currency2.pl

use warnings;
use strict;

print "Currency converter\n\nPlease enter the exchange rate: ";
my $yen = <STDIN>;
print "49518 Yen is ", (49_518/$yen), " dollars\n";
print "360 Yen is ", (360/$yen), " dollars\n";
print "30510 Yen is ", (30_510/$yen), " dollars\n";

Now when you run the program, you’ll be asked for the exchange rate. The currency values will be
calculated using the rate you entered:

$ perl currency2.pl
Currency converter

Please enter the exchange rate: 90
49518 Yen is 550.2 dollars
360 Yen is 4 dollars
30510 Yen is 339 dollars
$

Note that this time we read the exchange rate from the user’s keyboard and it was read in as a string.
Perl converts the string to a number in order to perform the calculation.

So far, we haven’t done any checking to make sure that the exchange rate given makes sense; this is
something we’ll need to think about in the future.

The chomp() and chop() Functions
<STDIN> reads up to and including the newline character. Sometimes we don’t want to include the
newline in the text we have read, so we can chomp() the newline off the string.

CHAPTER 2 ■ SCALARS

50

The chomp()function removes the last character of a string if and only if it is the newline character.
For instance:

$string = "testing 1, 2, 3\n";
chomp($string); # $string is now "testing 1, 2, 3"

Since <STDIN> reads up to and including the newline character, this code reads and then removes
the newline:

my $input = <STDIN>;
chomp($input);

Those two statements can be combined into one:

chomp(my $input = <STDIN>);

A related function is chop(), which removes the last character of a string, regardless of what
character it is. Here is an example:

$string = "testing, 1, 2, 3";
chop($string); # $string is now "testing 1, 2, "

Two Miscellaneous Functions
Before we end our discussion of scalars, we should discuss two functions that are often used to
terminate Perl programs: exit() and die().

The exit() Function
The exit() function exits the program. If an argument is provided, it returns that value back to the
calling program (or shell). If no argument is provided, it returns the value 0. In the shell, the value 0
means that the program terminated normally, so we can report that all is well with

exit(0);

or

exit;
If the program exits abnormally due to some error condition, simply return a nonzero value to tell

the calling program that all is not well:

exit(1);

Here is an example of using the exit() function:

#!/usr/bin/perl
exit.pl

use warnings;
use strict;

print "enter value to return back to the calling program: ";

CHAPTER 2 ■ SCALARS

51

chomp(my $value = <STDIN>);

exit($value);

In Unix, you can echo the value $? to see the return value of the most recent command:

$ perl exit.pl
enter value to return back to the calling program: 0
$ echo $?
0
$ perl exit.pl
enter value to return back to the calling program: 255
$ echo $?
255
$

The die() Function
The die() function is how we handle severe errors in Perl. It takes a character string argument and prints
it to standard error output (this normally prints to the screen like standard output does). If the argument
string does not end in a newline, the \n character, die() automatically appends to the output string the
name of the Perl program and the line number of the program where the die() was executed; this is very
helpful—it tells us right where the error took place. Then die() cleans up the program and exits with a
non-0 exit status. Therefore, die() is a permanent solution—the program terminates:

die "there was an error";

Here is an example of using die().

#!/usr/bin/perl
die.pl

use warnings;
use strict;

print "please enter a string to pass to die: ";
chomp(my $string = <STDIN>);

die($string);
print "didn't make it this far...\n";

Executing this code would produce something like:

$ perl die.pl
please enter a string to pass to die: this is the end
this is the end at die.pl line 10, <STDIN> line 1.
$

Notice that the name of the script and the line number are automatically added to the output of
die() because the argument to die() did not end in the newline character (good thing we chomp()ed it
off). Also notice that the last print() is not executed because the program terminated when die()
executed.

CHAPTER 2 ■ SCALARS

52

Summary
Perl’s basic data type is a scalar. A scalar can be an integer, a floating-point number, or a string. Perl
converts between these three automatically when necessary.

Double- and single-quoted strings differ in the way they process the text inside them. Single-quoted
strings do little or no processing, while double-quoted strings interpolate escape sequences and
variables.

We can operate on these scalars in a number of ways—ordinary arithmetic, bitwise arithmetic,
string manipulation, and logical comparison. We can also combine logical comparisons with Boolean
operators. These operators vary in precedence, which is to say that some take effect before others, and as
a result we must use parentheses to enforce the precedence we want.

Scalar variables are a way of storing scalars so that we can get at them and change their values.
Scalar variable names begin with a dollar sign ($) and are followed by one or more alphanumeric
characters or underscores. There are two types of variables—lexical and global. Globals exist throughout
the entire program, and so can be troublesome if we don’t keep very good track of where they are being
used. Lexicals have a life span of only the current block, and so we can use them safely without worrying
about clobbering similarly named variables elsewhere in the program.

<STDIN> reads in from standard input, which is normally the user’s keyboard. We can store this input
in a variable and then operate upon it, making our programs more flexible. <STDIN> reads up to and
including the newline character, and we normally chomp() off the newline.

Two ways to terminate our programs are by using exit() and die(). die() is useful because it prints
its argument, and if that argument does not end in \n, it obligingly adds the script name and line number
to the output, which helps us locate the error.

Exercises
1. Change the currency conversion program so that it asks for an exchange rate

and three prices to convert.

2. Write a program that asks for a hexadecimal number and converts it to
decimal. Then change it to convert an octal number to decimal.

3. Write a program that asks for a decimal number less than 256 and converts it
to binary. (Hint: You may want to use the bitwise and operator 8 times.)

4. Without the aid of the computer, work out the order in which each of the
following expressions would be computed, and their value. Put the
appropriate parentheses in to reflect the normal precedence:

• 2+6/4-3*5+1

• 17+-3**3/2

• 26+3^4*2

• 4+3>=7||2&4*2<4

C H A P T E R 3

■ ■ ■

53

Control Flow Constructs

Most of the programs we’ve seen so far have had a very simple structure—they’ve done one statement
after another in turn. If we use boxes to represent statements, our programs would look like this:

This sort of diagram is called a flow chart, and programmers have used them for a long time to help

design their programs. They’re considered a bit passé these days, but they’re still useful. The path Perl
(or any other language) takes when it follows the arrows is called the flow of execution of the program.
Boxes denote statements (or a single group of statements), and diamonds denote tests. There are also a
whole host of other symbols for magnetic tapes, drum storage, and all sorts of wonderful devices, now
happily lost in the mists of time.

We can choose the path our program takes depending on certain things. For instance, we’ll do
something if two strings are equal:

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

54

We can also iterate, or loop, through a number of items by executing a block of statements again
and again for each element of the list:

We’ll take a look at the other sorts of control structures we have in Perl, such as structures that do

things if or unless something is true. We’ll see structures that do things while something is true, or until
it is true, and structures that loop for a certain number of times, or foreach element in a list. Each of the
words in italic in this paragraph is a Perl keyword, and we’ll examine them in this chapter.

The if Statement
In programming, we often need to test a condition, and if that condition is true, take some action. This
can be performed using an if statement, which has the general syntax:

if (condition) {
 statements
}

Don’t type this in and try to make it run—it is meant to be just the general structure of the construct.
Note that those curly braces—{ … }—around the body (the statements) are required. You must use them,
even if the body is one line of code.

Keep in mind that the condition is tested to be true or false, so the if test ultimately comes down to
a Boolean test. For instance, let’s say you want to divide by a number unless that number is 0. You can
first check to see if the number is not 0, and if it is not, perform the division.

if ($number != 0) {
 $result = 100 / $number;
}

Let’s create a program to use the if statement. It will prompt the user to enter a number. If the
number is not 0, then 100 is divided by that number and the result is stored in $result. If the number is
0, the result will remain the default value of 0:

#!/usr/bin/perl
if.pl

use warnings;
use strict;

print "please enter a number: ";
chomp(my $number = <STDIN>);

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

55

my $result = 0;
if ($number != 0) {
 $result = 100 / $number;
}

print "the result is: $result\n";

Recall that the statement

chomp(my $number = <STDIN>);

is shorthand for the two statements that read from standard input and then remove the newline:

my $number = <STDIN>;
chomp $number;

Now let’s execute the program, once with a nonzero value and once with 0:

$ perl if.pl
please enter a number: 8
the result is: 12.5
$ perl if.pl
please enter a number: 0
the result is: 0
$

Operators Revisited
The if statement, and all the other control structures we’re going to visit in this chapter, test to see
whether a condition is true or false. They do this using the Boolean logic mentioned in Chapter 2,
together with Perl’s ideas of true and false. To remind you of these:

• An empty string, "", is false.

• The number 0 and the string "0" are both false.

• An empty list, (), is false.

• The undefined value is false.

• Everything else is true.

However, you need to be careful of a few traps here. A string containing invisible characters, like
spaces or newlines, is true. A string that isn’t "0" is true, even if its numerical value is 0, so "0.0" for
instance, is true.

Larry Wall has said that programming Perl is an empirical science—you learn things about it by
trying them out. Is (()) a true value? You can look it up in books and the online documentation, or you
can spend a few seconds writing a program like this:

#!/usr/bin/perl
emptylist.pl

use warnings;

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

56

use strict;

if ((())) {
 print "Yes, it is.\n";
}

This way you get the answer straight away, with a minimum of fuss. (If you’re interested, it isn’t a
true value.) We’ve also seen that conditional operators can test things out, returning 1 if the test was
successful and empty string if it was not. Let’s see what else we can test.

Comparing Numbers
We can test whether one number is bigger, smaller, or the same as another. Suppose we have two
numbers stored in the variables $x and $y; Table 3-1 shows the operators we can use for testing.

Table 3-1. Numeric Comparison Operators

Operator Description

$x > $y $x is greater than $y.

$x < $y $x is less than $y.

$x >= $y $x is greater than or equal to $y.

$x <= $y $x is less than or equal to $y.

$x == $y $x has the same numeric value as $y.

$x != $y $x does not have the same numeric value as $y.

Don’t forget that the numeric comparison needs a doubled equal sign (==) so that Perl doesn’t think

you’re trying to set $x to the value of $y.
And remember that Perl converts $x and $y to numbers in the usual way. It reads numbers or

decimal points from the left for as long as possible, ignoring initial spaces, and then drops the rest of the
string. If no numbers are found, the value is set to 0.

■ Note Be careful with the == operator when comparing strings. The expression:
"Pink Floyd" == "Captain and Tennille"
evaluates to true (and we all know there is no way those two are equal). Why? Because both strings, since they
are not numeric, evaluate to 0. So, when comparing strings, don’t use numeric comparison operators. Instead,
use string comparison operators (discussed later in this chapter).

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

57

Let’s see an example—a very simple guessing game. The computer has a number and the user has to
guess what it is. If the user doesn’t guess correctly, the computer gives a hint. As we learn more about
Perl, we’ll add the ability to give more than one try, and to pick a different number each game.

#!/usr/bin/perl
guessnum1.pl

use warnings;
use strict;

my $target = 12;
print "Guess my number!\n";
print "Enter your guess: ";
my $guess = <STDIN>;

if ($target == $guess) {
 print "That's it! You guessed correctly!\n";
 exit;
}
if ($guess > $target) {
 print "Your number is more than my number\n";
 exit;
}
if ($guess < $target){
 print "Your number is less than my number\n";
 exit;

}

Let’s have a few tries:

$ perl guessnum1.pl
Guess my number!
Enter your guess: 3
Your number is less than my number
$ perl guessnum1.pl
Guess my number!
Enter your guess: 15
Your number is more than my number
$ perl guessnum1.pl
Guess my number!
Enter your guess: 12
That's it! You guessed correctly!
$

The first thing we do in this program is set up our secret number. (OK, at the moment it’s not exactly
secret since it’s right there in the source code, but we can improve on this later.) Next, we get a number
from the user:

my $guess = <STDIN>;

Then we do three sorts of comparisons with the numeric operators we’ve just seen. We use the basic
pattern of the if statement again: if (condition) { action }.

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

58

if ($target == $guess) {
 print "That's it! You guessed correctly!\n";
 exit;
}

Since only one of the tests can be true—the user’s number can’t be both smaller than our number
and the same as it—we may as well stop work after a test was successful. The exit() function tells Perl to
stop the program completely.

Comparing Strings
When we’re comparing strings, we use a different set of operators to do the comparisons, as listed in
Table 3-2.

Table 3-2. String Comparison Operators

Operator Description

$x gt $y $x is string greater than $y.

$x lt $y $x is string less than $y.

$x ge $y $x is string greater than or equal to $y.

$x le $y $x is string less than or equal to $y.

$x eq $y $x is the same as $y.

$x ne $y $x is not the same as $y.

Here’s a very simple way of testing if a user knows a password. (Don’t use a good password in this

program since the user can just read the source code to find it!)

#!/usr/bin/perl
password.pl

use warnings;
use strict;

my $password = "foxtrot";
print "Enter the password: ";
my $guess = <STDIN>;
chomp $guess;
if ($password eq $guess) {
 print "Pass, friend.\n";
}

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

59

if ($password ne $guess) {
 die "Go away, imposter!\n";
}

Here’s our security system in action:

$ perl password.pl
Enter the password: abracadabra
Go away, imposter!
$ perl password.pl
Enter the password: foxtrot
Pass, friend.
$

This program starts by asking the user for input:

my $guess = <STDIN>;

Please note: this is a horrendously bad way of asking for a password, since it’s echoed to the screen
and anyone looking at the user’s computer would be able to read it. If you ever do need to get a
password from the user, the Perl FAQ provides a better method in perlfaq8. Type perldoc -q password to
find it.

chomp $guess;

This statement chomps the newline off of $guess. Never forget that a newline exists at the end of the
user’s data. Otherwise, even if the user enters the right password, it will be rejected. Perl would try to
compare "foxtrot" with "foxtrot\n" and, of course, these are not the same. (We didn’t need to chomp
the newline for numeric comparison because Perl would remove it for us anyway during conversion to a
number.)

if ($password ne $guess) {
 die "Go away, imposter!\n";
}

If the password we have isn’t the same as the user’s input, we send out a rude message and

terminate the program.

Other Tests
What other tests can we perform? We can test if a variable is defined (it must contain something other
than the undefined value) using defined().

A variable that has not yet been assigned a value is considered undefined, or undef for short.
Undefined means “lack of value” or “no value”. When used as a string, an undefined variable is
considered the empty string; as a number, it is considered 0. However, when an undefined variable is
evaluated, Perl complains with a warning message. Warning messages are useful—they alert us to
possible problems, after all—but it is usually desirable to resolve all warnings. So, if a program is
warning that you are evaluating an undefined variable, you should check to see if it undefined and if so,
define it. This example checks to see if variables are undefined:

#!/usr/bin/perl
defined.pl

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

60

use warnings;
use strict;

my ($var1, $var2);
$var2 = 10;

if (defined $var1) {
 print "\$var1 has a value.\n";
}
if (defined $var2) {
 print "\$var2 has a value.\n";
}

Not surprisingly, the result we get is this:

$ perl defined.pl
$var2 has a value.
$

You can use this to avoid the warnings engendered when you try to use a variable that doesn’t have
a value. If we had tried to say

 if ($var1 == $var2)

 Perl would have said

Use of uninitialized value in numeric eq (==)

So we have our basic comparisons. Don’t forget that some functions will return a true value if they
were successful and false if they were not. You will often want to check whether the return value of an
operation (particularly one that relates to the operating system) is true or not.

Logical Operators
We also saw in Chapter 2 that we can combine several tests into one using the logical operators.
Table 3-3 summarizes these operators.

Table 3-3. Logical Operators

Operator Description

$x and $y
$x && $y

True if both $x and $y are true

$x or $y
$x || $y

True if either of $x or $y, or both are true

not $x
! $x

True if $x is not true

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

61

The operators and, or, and not are usually used instead of &&, ||, and ! mainly due to their

readability. The operator not means not, after all. Don’t forget there is a difference in precedence
between the two—and, or, and not all have lower precedence than their symbolic representations.

Multiple Choice: if . . . else
Consider these two if statements:

if ($password eq $guess) {
 print "Pass, friend.\n";
}
if ($password ne $guess) {
 die "Go away, imposter!\n";
}

We know that if the first test condition is true, then the second one will not be—we’re asking exactly
opposite questions: Are these the same? Are they not the same?

In which case, it seems wasteful to do two tests. It’d be much nicer to be able to say, “If the strings
are the same, do this. Otherwise, do that.” And in fact we can do exactly that, although the keyword is
not otherwise but else:

if ($password eq $guess) {
 print "Pass, friend.\n";
} else {
 die "Go away, imposter!\n";
}

That’s
if (condition) { action } else { alternative action }

As with the if statement, those curly braces are required in the else part.

Even More Choices: if . . . elsif . . . else
Some things in life aren’t clear-cut. In some cases, we’ll want to test more than one condition. When
looking at several related possibilities, we’ll want to ask questions like “Is this true? If this isn’t true, is
that true? If that’s not true, how about the other?” Note that this is different from asking three
independent questions; whether we ask the second depends on whether or not the first was true. In Perl,
we could very easily write something like this:

if (condition1) {
 action1
} else {
 if (condition2) {
 action2
 } else {
 if (condition3) {
 action3
 } else {

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

62

 action4
 }
 }
}

You might agree that this looks pretty messy. To make it nicer, we can combine the else and the
next if into a single word, elsif. Here’s what the preceding would look like when rephrased in this way:

if (condition1) {
 action1
} elsif (condition2) {
 action2
} elsif (condition3) {
 action3
} else {
 action4
}

Much neater! We don’t have an awful cascade of closing curly braces at the end, and it’s easier to see
what we’re testing and when we’re testing it.

Let’s look at an example. Most of us will not go outside if it’s raining, but we will always go out for a
walk in the snow. We will not go outside if it’s less than 18 degrees Celsius. Otherwise, we’ll probably go
out unless we’ve got too much work to do. Do we want to go for a walk?

#!/usr/bin/perl
walking.pl

use warnings;
use strict;

print "What's the weather like outside? ";
chomp(my $weather = <STDIN>);
print "How hot is it, in degrees? ";
chomp(my $temperature = <STDIN>);
print "And how many emails left to reply to? ";
chomp(my $work = <STDIN>);

if ($weather eq "snowing") {
 print "It's snowing, let's go!\n";
} elsif ($weather eq "raining") {
 print "No way, sorry, it's raining so I'm staying in.\n";
} elsif ($temperature < 18) {
 print "Too cold for me!\n";
} elsif ($work > 30) {
 print "Sorry - just too busy.\n";
} else {
 print "Well, why not?\n";
}

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

63

Let’s say it is 201 degrees, we’ve got 27 e-mails to reply to, and it’s cloudy out there:

$ perl walking.pl
What's the weather like outside? cloudy
How hot is it, in degrees? 20
And how many emails left to reply to? 27
Well, why not?
$

Looks like we can fit a walk in after all.
The point of this rather silly little program is that once it has gathered the information it needs, it

runs through a series of tests, each of which could cause it to finish. First, we check to see if it’s snowing:

if ($weather eq "snowing") {
 print "It's snowing, let's go!\n";

If so, then we print our message and, this is the important part, do no more tests. If not, we move on
to the next test:

} elsif ($weather eq "raining") {
 print "No way, sorry, it's raining so I'm staying in.\n";

Again, if this is true, we stop testing; otherwise, we move on. Finally, if none of the tests are true, we
get to the else:

} else {
 print "Well, why not?\n";
}

Please remember that this is very different from what would happen if we used four separate if
statements. The tests overlap, so it is possible for more than one condition to be true at once. For
example, if it was snowing and we had over 30 emails to reply to, we’d get two conflicting answers. elsif
tests should be read as “Well, how about if . . . ?”

Now let’s update the program we saw earlier, guessnum1.pl, to use if/elsif/else. The decision we
made in the first version was implemented with three if statements:

if ($target == $guess) {
 print "That's it! You guessed correctly!\n";
 exit;
}
if ($guess > $target) {
 print "Your number is more than my number\n";
 exit;
}
if ($guess < $target){
 print "Your number is less than my number\n";

1 Celsius, that is.

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

64

exit;
}

Notice that in each if statement we execute the exit() function since, if the condition is true, there
is no reason to check any of the following conditions. Instead of using the exit() function in each of the
if blocks, this would be better written with an if/elsif/else, as shown in guessnum2.pl:

#!/usr/bin/perl
guessnum2.pl

use warnings;
use strict;

my $target = 12;
print "Guess my number!\n";
print "Enter your guess: ";
my $guess = <STDIN>;

if ($target == $guess) {
 print "That's it! You guessed correctly!\n";
} elsif ($guess > $target) {
 print "Your number is more than my number\n";
} elsif ($guess < $target) {
 print "Your number is less than my number\n";
}

The unless Statement
There’s another way of saying if (not $a). As always in Perl, there’s more than one way to do it.2 Some
people prefer to think “If this is not true, then { ... },” but other people like to think “Unless this is true,
then { ... }.” Perl caters to both thought patterns, and we could just as easily have written:

unless ($a) {
 print "\$a is not true\n";
}

The psychology is different, but the effect is the same. We’ll see later how Perl provides a few
alternatives for these control structures to help them more effectively fit the way you think.

2 TMTOWTDI-our favorite acronym!

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

65

Expression Modifiers
When we talk in English, it’s quite normal to say

• If this is not true, then this happens, or

• Unless this is true, this happens.

And it’s also quite natural to reverse the two phrases

• This happens if this is not true, or

• This happens unless this is true.

In Perl-speak, we can take this if statement:

if ($number == 0) {
 die "can't divide by 0";
}

and rewrite it as follows:

die "can't divide by 0" if $number == 0;

Notice how the syntax here is slightly different, it’s action if condition. There is no need for
parentheses around the condition, and there are no curly braces around the action. Indeed, the
indentation isn’t part of the syntax, so we can even put the whole statement on one line. Only a single
statement will be covered by the condition. This form of the if statement is called an expression
modifier.

We can turn unless into an expression modifier too, so, instead of this:

if (not $name) {
 die "\$name has a false value";
}

you may find it more natural to write this:

die "\$name has a false value" unless $name;

Using Short-Circuited Evaluation
There is yet another way to do something if a condition is true. By using the fact that Perl stops
processing a logical operator when it knows the answer, we can create a sort of unless conditional:

$name or die "\$name has a false value";

How does this work? Well, it relies on the fact that Perl uses short-circuited, or lazy, evaluation to
give a logical operator its value. If we have the statement X or Y, then if X is true, it doesn’t matter what
Y is, so Perl doesn’t look at it. If X isn’t true, Perl has to look at Y to see whether or not that’s true. So if

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

66

$name has a true value, then the die() function will not be executed. Instead, Perl will do nothing and
continue on to execute the next statement.

This form of conditional is most often used when checking that something we did succeeded or
returned a true value. We will see it often when we’re handling files.

To create a positive if conditional this way, use and instead of or. For example, to add one to a
counter if a test is successful, you can say

$success and $counter++;

As you’ll recall, and statements require both substatements to be true. So, if $success is not true, Perl
won’t bother evaluating $counter++ and upping its value by 1. If $success is true, then it would.

Looping Constructs
Now we know how to do everything once. What about if we need to repeat an operation or series of
operations? Of course, there are constructs available in Perl to do this, too.

In programming, there are various types of loops. Some loop forever, and are called infinite loops,
while most, in contrast, are finite loops. We say that a program “gets into” or “enters” a loop, and then
“exits” or “falls out” when finished. Infinite loops may not sound very useful, but they certainly can be—
particularly because most languages, Perl included, provide a way to exit the loop. They are useful when
you want the program to continue running until the user stops it manually, the computer powers down,
or the heat death of the universe occurs, whichever comes first.

There’s also a difference between definite loops and indefinite loops. In a definite loop, you know in
advance how many times the block will be repeated. An indefinite loop will check a condition in each
iteration to determine whether it should loop again.

There’s also a difference between an indefinite loop that checks before the iteration, and one that
checks afterward. The latter will always go through at least one iteration, in order to get to the check,
whereas the former checks first and so may not go through any iterations at all.

Perl supports ways of expressing all of these types of loops. First, let’s examine the while loop.

The while Loop
Let’s start with indefinite loops. These check a condition, then do an action, then go back and check the
condition again. We’ll look first at the while loop. As you might guess from the name, this type of loop
keeps doing something while a condition is true. The syntax of while is much like the syntax of if:

while (condition) { action }

Once again, those curly braces are required. Here’s a very simple while loop:

#!/usr/bin/perl
while1.pl

use warnings;
use strict;

my $countdown = 5;

while ($countdown > 0) {

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

67

 print "Counting down: $countdown\n";
 $countdown--;
}

And here’s what it produces:

$ perl while1.pl
Counting down: 5
Counting down: 4
Counting down: 3
Counting down: 2
Counting down: 1
$

Let’s see a flow chart for this program. While there’s still a value greater than 0 in the $counter
variable, we do these two statements:

 print "Counting down: $countdown\n";
 $countdown--;

Perl goes through the loop a first time when $countdown is 5; the condition is met, so a message is
printed and $countdown gets decreased to 4. Then, as the flow chart illustrates, back we go to the top of
the loop. We test again: $countdown is still more than 0, so off we go again. Eventually, $countdown is 1, we
print our message, $countdown is decreased, and now it’s 0. This time around, the test fails, and we exit
the loop.

while (<STDIN>)
Recall that we talked about using <STDIN> to read from standard input (normally the keyboard). This
statement reads the next line of standard input, up to and including the newline character:

$line_in = <STDIN>;

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

68

We can put this assignment within a while loop that will read from standard input until end of file
(in Unix a ^D, or the Ctrl and D keys pressed at the same time; in Windows a ^Z<enter>). This loop reads a
line at a time into $line_in and then prints that line:

while ($line_in = <STDIN>) {
 print $line_in;
}

This behavior, reading from standard input until end of file, is so common that if <STDIN> is by itself
within the while loop parentheses (and only within the while loop parentheses), then the line of
standard input is magically assigned to the special variable $_. This loop reads each line into $_, and then
the line is printed:

while (<STDIN>) {
 print $_;
}

This is so common that print() defaults to printing $_:

while (<STDIN>) {
 print;
}

Let’s look at an example of using this magic variable $_. This program will loop through standard
input one line at a time until end of file, and for each line it will print a message followed by the line
entered:

#!/usr/bin/perl
while2.pl

use warnings;
use strict;

while (<STDIN>) {
 print "You entered: ";
 print;
}

Here is an example of running this program in Unix:

$ perl while2.pl
Perl
You entered: Perl
is
You entered: is
cool
You entered: cool
^D
$

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

69

■ Note In Unix, end of file is ^D (Control-D). In Windows, end of file is ^Z<ret> (yes, you have to type the return
key). You will have to adjust the example above if you are working in Windows.

The $_ variable is very useful—it is the default argument for many different functions, such as the
chomp() function. The statement

chomp $_;

could have been written as

chomp;

Many Perl programmers find it convenient and readable to write a loop like this one:

while ($line = <STDIN>) {
 chomp $line;
 ...
}

using the default nature of $_:

while (<STDIN>) {
 chomp;
 ...
}

Whether or not you write code to take advantage of the magic nature of $_ is up to you, but we
suggest you practice with it enough to be able to read code that others have written using $_ .

Infinite Loops
The obvious but important point is that what we’re testing gets changed inside the loop. If our condition
is always going to give a true result, we have an infinite loop. Let’s just remove the second of those two
statements:

#!/usr/bin/perl
while3.pl

use warnings;
use strict;

my $countdown = 5;

while ($countdown > 0) {
 print "Counting down: $countdown\n";
}

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

70

$countdown never changes. It’s always going to be 5, and 5 is, we hope, always going to be more than
0. So this program will keep printing its message until you interrupt it by holding down Ctrl and D.
Hopefully, you can see why you need to ensure that what you do in your loop affects the condition.

Should we actually want an infinite loop, there’s a fairly standard way to do it. Just put a true value—
typically 1—as the condition:

while (1) {
 print "Bored yet?\n";
}

The converse, of course, is to say while (0) in the loop’s declaration, but nothing will ever happen
because this condition is tested before any of the commands in the loop are executed. A bit silly really.

Looping Until
In the same sense that the opposite of if is unless, the opposite of while is until. The until loop is
exactly the same as while (not condition) { ... }. Using the condition in the program while1.pl
shown previously:

while ($countdown > 0) {

Its logical negation would be

until ($countdown <= 0) {

Therefore, we can write while1.pl as

#!/usr/bin/perl
until.pl

use warnings;
use strict;

my $countdown = 5;

until ($countdown <= 0) {
 print "Counting down: $countdown\n";
 $countdown--;
}

And here’s what it produces:

$ perl until.pl
Counting down: 5
Counting down: 4
Counting down: 3
Counting down: 2
Counting down: 1
$

www.wowebook.com

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

71

■ Note The negation of > is <=, not <. Yes, we have made the same mistake many times.…

The for Loop
Perl has a for loop, similar to the one found in C, C++, and Java. Its syntax is

for (init_expression; test_expression; step_expression) {
 action
}

The init_expr is done first and once. Then the test_expr is tested to be true or false. If true, the
action is executed, then the step_expr is executed. Then the test_expr is tested to be true or false, and so
on.

The most common use of a for loop is as an alternative way of writing a while loop that might
resemble this one:

$i = 1;
while ($i <= 5) {
 # do something important
 $i++;
}

This can be written in a for loop as

for ($i = 1; $i <= 5; $i++) {
 # do something important
}

The foreach Loop
Perl has another loop called the foreach loop. It is used to loop through lists and arrays. We will talk
about arrays in the next chapter, but since we have seen examples of a list, we can look at the foreach
loop processing a list of numbers:

#!/usr/bin/perl
foreach.pl

use warnings;
use strict;

my $number;

foreach $number (1 .. 10) {
 print "the number is: $number\n";
}

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

72

The foreach loop executes the body of the loop (the print() function in this example) for each
number in the list. $number is called the loop control variable, and it takes on the values in the list, one at
a time. Recall that (1 .. 10) is shorthand for (1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The following code
produces this result:

$ perl foreach.pl
the number is: 1
the number is: 2
the number is: 3
the number is: 4
the number is: 5
the number is: 6
the number is: 7
the number is: 8
the number is: 9
the number is: 10
$

■ Note The control variable in the foreach loop can be declared with my() right in the looping construct like this:

foreach my $number (1 .. 10) {

 print "the number is: $number\n";

}

This accomplishes two things: first, it satisfies use strict; since $number gets declared with my(), and second,
it lexically scopes $number to the body of the foreach (it is not available outside the looping construct).

A note about the keywords for and foreach: they are synonyms for each other. In other words, we
can say

foreach ($i = 1; $i <= 10; $i++)_ { .. }

and

for $number (1..10) { .. }

foreach is rarely used in place of for, but for is often used instead of foreach. In the spirit of
minimal confusion, we will spell out foreach when we have a foreach loop.

We will talk more about foreach in the next chapter when we discuss the array data type.

do .. while and do .. until
When we were categorizing our lists, we divided indefinite loops into those that execute at least once
and those that may execute zero times. The while loop we’ve seen so far tests the condition first and so,

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

73

if the condition isn’t true the first time around, the “body” of the loop never gets executed. There are two
other ways to write our loop to ensure that the body is always executed at least once:

do { action } while (condition);
do { action } until (condition);

Now we do the test after the block. This is equivalent to moving the diamond in our flow chart from
the top to the bottom.

Here is an example:

#!/usr/bin/perl
dowhiledountil.pl

use warnings;
use strict;

my $i = 1;

print "starting do...while:\n";
do {
 print " the value of \$i: $i\n";
 $i++;
} while ($i < 6);

$i = 1;

print "starting do...until\n";
do {
 print " the value of \$i: $i\n";
 $i++;
} until ($i >= 6);

Executing this program produces the following:

$ perl dowhiledountil.pl
starting do...while:
 the value of $i: 1
 the value of $i: 2
 the value of $i: 3
 the value of $i: 4
 the value of $i: 5
starting do...until
 the value of $i: 1
 the value of $i: 2
 the value of $i: 3
 the value of $i: 4
 the value of $i: 5
$

The importance of the do..while and do..until loops is that the body of the loop is always executed
at least once.

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

74

Expression Modifying
As before, you can use while and until as statement modifiers. Following the pattern for if, here’s what
you’d do with while:

while (condition) { statement }

becomes

statement while condition;

Similarly:

until (condition) { statement }

becomes

statement until condition;

Therefore, this loop:

while (<STDIN>) {
 print "You entered: $_";
}

can be written as

print "You entered: $_" while <STDIN>;

Loop Control Constructs
Perl provides constructs that let us control the flow of our loops. They allow us to break out of a loop, go
to the next iteration of the loop, or reexecute the loop. We’ll start with breaking out of a loop.

Breaking Out
The keyword last, in the body of a loop, will make Perl immediately exit, or “break out of” that loop (you
can also last out of a block, but not out of a conditional statement (if or unless)). The remaining
statements in the loop are not executed, and you end up at the executable statement following the loop.
Here is an example of a program that breaks out of the loop when the user enters the text “done”:

#!/usr/bin/perl
last1.pl

use warnings;
use strict;

while (<STDIN>) {
 if ($_ eq "done\n") {
 last;
 }
 print "You entered: $_";

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

75

}

print "All done!\n";

$ perl last1.pl
Songs
You entered: Songs
from
You entered: from
the
You entered: the
Wood
You entered: Wood
done
All done!
$

You can use a last in any looping construct (while, until, for, and foreach). However, last does not
work with do {} while or do {} until loops.

Note that last1.pl could have been written using an expression modifier. It can be argued that this
code is a bit more readable:

#!/usr/bin/perl
last2.pl

use warnings;
use strict;

while (<STDIN>) {
 last if $_ eq "done\n";
 print "You entered: $_";
}

print "All done!\n";

Going On to the Next
If you want to skip the rest of the processing of the body on the current iteration, but don’t want to exit
the loop, you can use next to immediately go execute the next iteration of the loop by testing the
expression. Here is an example of a program that reads input from the user, and if the line of input is not
blank, the line is printed. It the line is blank, the program immediately goes back to read the next line:

#!/usr/bin/perl
next1.pl

use warnings;
use strict;

print "Please enter some text:\n";
while (<STDIN>) {

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

76

 if ($_ eq "\n") {
 next;
 }
 chomp;
 print "You entered: [$_]\n";
}

Here is an example of running this program in Windows:

$ perl next1.pl
Please enter some text:
testing
You entered: [testing]
one
You entered: [one]
two three
You entered: [two three]
^Z<enter>
$

Notice that when the user entered a blank line, the program immediately read the next line of input.
This program could have been written with an expression modifier:

#!/usr/bin/perl
next2.pl

use warnings;
use strict;

print "Please enter some text:\n";
while (<STDIN>) {
 next if $_ eq "\n";
 chomp;
 print "You entered: [$_]\n";
}

Reexecuting the Loop
On rare occasions, you’ll want to go back to the top of the loop, but without testing the condition (in the
case of a for or while loop) or getting the next element in the list (as in a for or while loop). If you feel
you need to do this, the keyword to use is redo, as illustrated in this example:

#!/usr/bin/perl
redo.pl

use warnings;
use strict;

my $number = 10;

while (<STDIN>) {

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

77

 chomp;
 print "You entered: $_\n";
 if ($_ == $number) {
 $_++;
 redo;
 }
 print "Going to read the next number now...\n";
}

If the user enters the value 10, then the input is incremented to 11 and we jump to the beginning of
the block, at which point the value will be chomped (which has no effect on the value since it does not
end in newline) and then the value 11 is reported. Executing this program in Windows would look like
the following:

$ perl redo.pl
5
You entered: 5
Going to read the next number now...
20
You entered: 20
Going to read the next number now...
10
You entered: 10
You entered: 11
Going to read the next number now...
^Z<enter>
$

Loop Labels
By default, last, next, and redo operate on the innermost looping construct only. For instance, in this
code:

#!/usr/bin/perl
looplabel1.pl

use warnings;
use strict;

my $i = 1;

while ($i <= 5) {
 my $j = 1;
 while ($j <= 5) {
 last if $j == 3;
 print "$i ** $j = ", $i ** $j, "\n";
 $j++;
 }
 $i++;
}

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

78

the last statement within the innermost loop construct (while ($j <= 5)) will last out of the innermost
looping construct only. Therefore, each time $j reaches 3 within the inner loop, we last out of the inner
loop and increment $i, then go back up to test the expression for the outer while loop. This generates
the following output:

$ perl looplabel1.pl
1 ** 1 = 1
1 ** 1 = 1
2 ** 1 = 2
2 ** 2 = 4
3 ** 1 = 3
3 ** 2 = 9
4 ** 1 = 4
4 ** 2 = 16
5 ** 1 = 5
5 ** 2 = 25
$

To make the last statement last out of the outer looping construct, we must label the outer looping
construct with a loop label. A loop label is a variable that the programmer creates (it is recommended
that you use all uppercase names) followed by a colon, preceding the looping construct. This is
illustrated in looplabel2.pl:

#!/usr/bin/perl
looplabel2.pl

use warnings;
use strict;

my $i = 1;

OUTER: while ($i <= 5) {
 my $j = 1;
 while ($j <= 5) {
 last OUTER if $j == 3;
 print "$i ** $j = ", $i ** $j, "\n";
 $j++;
 }
 $i++;
}

Now, when the last statement is executed, the code jumps out of the outer loop named OUTER:

$ perl looplabel2.pl
1 ** 1 = 1
1 ** 2 = 2
$

CHAPTER 3 ■ CONTROL FLOW CONSTRUCTS

79

goto
As a matter of fact, you can put a label before any statement whatsoever. If you want to really mess
around with the structure of your programs, you can use goto LABEL to jump anywhere in your program.
It is highly recommended that you don’t use this construct. Really, we mean it. Don’t use it. Caveat
emptor.

We’re telling you about it for the simple reason that if you see it in anyone else’s Perl, you can laugh
heartily at them. goto with a label is to be avoided like the plague.

Why? Because not only does it turn the clock back 30 years (the structured programming movement
started with the publication of a paper called “Go To Statement Considered Harmful”), but it tends to
make your programs incredibly hard to follow. The flow of control can shoot off in any direction at any
time, into any part of the file, maybe into a different file. You can even find yourself jumping into the
middle of loops, which really doesn’t bear thinking about. Don’t use it unless you really, really, really
understand why you shouldn’t. And even then, don’t use it. Larry Wall has never used goto with a label
in Perl, and he created Perl.

Summary
Before this chapter, our programs plodded along in a straight line, one statement followed by another.
We’ve now seen how we can react to different circumstances in our programs, which is the start of
flexible and powerful programming. We can test whether something is true or false using if and unless,
and take appropriate action.

We’ve also examined how to test multiple related conditions using elsif. We can repeat areas of a
program, in several different ways, using while, until, for, and foreach. Finally, we’ve examined some
ways to alter the flow of Perl’s execution through these loops. We can break out of a loop with last, skip
to the next element with next, and start processing the current element again with redo.

Exercises
1. Modify the number-guessing program guessnum2.pl so that it loops until the

correct answer is entered.

2. Write a program that prints the squares of the numbers between 1 and 10.

3. Write a program to print all the numbers between 1 and 50 that are evenly
divisible by 5. Loop by 1, not by 5!

C H A P T E R 4

■ ■ ■

81

Lists and Arrays

In Chapter 2 we introduced the idea of a scalar, which is a single value—a number or string. Having the
ability to work with numbers and strings, and having scalar variables into which we can store numbers
and strings is nice—this allows us to write programs to manipulate data. However, because they can
contain only a single value, scalars are somewhat limited.

There are times we want to group information together or express correspondences between
information. Just like the ingredients in a recipe or the pieces in a jigsaw, some things belong together in
a natural sequence: for example, individual lines in a file, or the names of players in a volleyball
tournament. In Perl, we represent these relationships in lists—series of scalars. Lists can be stored in
another type of variable called an array, and we call each piece of data in the list an element.

In this chapter, we’ll see how to create and work with lists. We’ll also take another look at the
foreach loop, which enables us to step through lists and arrays.

Lists
We’re all familiar with lists from everyday life. Think about a grocery store shopping list: what properties
does it have? First of all, it’s a single entity, one piece of paper. Second, it’s made up of a number of
values. In the case of a shopping list, you might want to say that these values are actually strings—
“potato chips”, “Guinness”, “cheese”, and so on. Finally, it’s also ordered, which means that there’s a
first item and a last item.

Lists in Perl aren’t actually much different; they’re counted as a single unit, though they’re made up
of a number of values. In Perl, these values are scalars, rather than purely strings, and they’re stored in
the order they appear in the list.

We’ll specify lists in our program code as literals, just like we did with strings and numbers. And
we’ll be able to perform certain operations on them. Let’s begin by looking at a few simple lists and how
to create them.

CHAPTER 4 ■ LISTS AND ARRAYS

82

Simple Lists
The simplest shopping list is one that contains nothing at all1. Similarly, the simplest list in Perl has no
elements in it, and it is called the empty list. Here’s what it looks like:

()

A simple pair of parentheses—that’s how we denote a list. However, the empty list is not very
interesting. Let’s try putting in some values:

(42)
("cheese")

As you can see, we have created two lists, one containing a number, and one containing a string—so
far so good. Remember the print() function? It treats its arguments as lists, and the magic about
functions like print() that treat their arguments as lists is that you can omit the parentheses. Saying
print "cheese" is just the same as saying print("cheese"). So now we know that what we give to print()
is really a list, and we’re allowed to leave out the parentheses if we wish.

From this, we should be able to work out how to put multiple values into a list. When we said

print("Hello, ", "world", "\n");

we were actually passing the following list to the print() function:

("Hello ", "world", "\n")

As you can see, this is a three-element list, and the elements are separated with commas. Perl, like
most modern programming languages, starts counting from 0, so here’s your chance to practice. The
zeroth element is "Hello ", the first is "world", and the second is "\n". Now, let’s do that again with
numbers instead of strings:

(123, 456, 789)

This is exactly the same as before, and if we were to print this new list, this is what would happen:

#!/usr/bin/perl
numberlist.pl

use warnings;
use strict;

print(123, 456, 789);

$ perl numberlist.pl
123456789$

1 Ah, the cupboards are full!

CHAPTER 4 ■ LISTS AND ARRAYS

83

As before, Perl doesn’t automatically put spaces between list elements for us when it prints them
out, it just prints them as it sees them. Similarly, it doesn’t put a newline on the end for us2. There’s
nothing special about lists from that point of view; if we want to add spaces and newlines, we need to
put them into the list ourselves.

More Complex Lists
We can also mix strings, numbers, and variables in our lists. Let’s see an example of a list with several
different types of data. Although this isn’t very different from what we were doing with print() in
Chapter 2, this example reinforces the idea that lists can contain any scalar literals and scalar variables.
So, type this in, and save it as mixedlist.pl:

#!/usr/bin/perl
mixedlist.pl

use warnings;
use strict;

my $test = 30;

print
 "Here is a list containing strings, (this one) ",
 "numbers (",
 3.6,
 ") and variables: ",
 $test,
 "\n"
;

When you run that, here’s what you should see:

$ perl mixedlist.pl
Here is a list containing strings, (this one) numbers (3.6) and variables: 30
$

Notice that the print() function prints a list of six elements, including literal strings, literal

numbers, and a scalar variable for good measure.

print
 "Here is a list containing strings, (this one) ",
 "numbers (",
 3.6,
 ") and variables: ",
 $test,

2 Unless, of course, you are using Windows…

CHAPTER 4 ■ LISTS AND ARRAYS

84

 "\n"
;

Since variables interpolate in double-quoted strings inside lists just as well as at any other time, we

could have done this all as one long single-element list:

print ("Here is a list containing strings, (this one) numbers (3.6) and
variables: $test\n");

There is a disadvantage to writing your code this way. Newlines in your string literals will turn into

newlines in your output. So, if you keep the maximum length of the lines in your source code to about 80
columns (it’s a good idea to keep your programs readable), one long string will wrap over and you’ll see
this sort of thing:

$ perl mixedlist.pl
Here is a list containing strings, (this one) numbers (3.6) and
variables: 30
$

So if you’re ever printing long strings, consider splitting them up into a list of smaller strings on

separate lines as we have done previously.
In the same way, single-quoted strings act no differently when they’re list elements: ('A number:',

'$test') will actually give you two strings, and if you print out that list, you will see this:

A number:$test

One last thing to note is that Perl automatically flattens lists. That is, if you try putting a list inside
another list, the internal list loses its identity. In effect, Perl removes all the parentheses apart from the
outermost pair. There’s no difference at all between any of these three lists:

(3, 8, 5, 15)
((3, 8), (5, 15))
(3, (8, 5), 15)

Similarly, Perl sees each of these lists exactly the same as the others:

('one', 'two', 'three', 'four')
(('one', 'two', 'three', 'four'))
('one', ('two', 'three'), 'four')
(('one','two'), ('three', 'four'))

So we can say that in Perl all lists (and all arrays) are one-dimensional.

Creating Lists Easily with qw//
Perl provides a useful operator that lets us easily create lists of one-word strings. The operator is qw//,
which stands for quote words. It is related to the other “q” operators we saw in Chapter 2: q// and qq//.
The qw// operator takes all the items within the slashes that are separated by whitespace characters and
creates a single-quoted list of them. For instance, this code:

CHAPTER 4 ■ LISTS AND ARRAYS

85

qw/hello world good bye/

creates the following list:

('hello', 'world', 'good', 'bye')

The slashes that are part of qw// are called the delimiters—the elements that begin and end the
operator. Any nonalphanumeric character can be used. So the preceding could have been written as
either of these:

qw#hello world good bye#
qw|hello world good bye|

If the opening delimiter is the open angle bracket, square bracket, parenthesis, or curly brace, the

closing delimiter is the matching close character. Therefore, you could write the preceding as

qw<hello world good bye>
qw[hello world good bye]
qw(hello world good bye)
qw{hello world good bye}

Ranges
Sometimes our lists can be a lot simpler than a group of different values. We may want to talk about “the
numbers 1 to 10” or “the letters a–z.” We don’t have to write each one out longhand, though. Instead,
Perl lets us specify a range of numbers or letters. Instead of this:

(1, 2, 3, 4, 5, 6)

we can say

(1 .. 6)

This shorthand can really save time when you’re dealing with a few hundred elements, but note that
it only works for integers. Fractional values in a list are rounded toward 0, so

(1.4 .. 6.9)

would produce (1, 2, 3, 4, 5, 6). There’s no problem with using negative numbers in ranges. For
example,

(-6 .. 3)

produces the list (-6, -5, -4, -3, -2, -1, 0, 1, 2, 3).

The right-hand number must, however, be higher than the left-hand one, so you can’t use this
technique to count down. Instead, you can reverse any list using the reverse() function, as we’ll see very
shortly.

We can do the same for letters as well:

('a'..'k')

CHAPTER 4 ■ LISTS AND ARRAYS

86

This will give us an 11-element list, consisting of each letter from “a” to “k” inclusive. Note that we
can’t mix letters and numbers within a range. If we try, Perl interprets the string as a number and treats it
as 0.

Here’s a demonstration of all the things we can do with ranges:

#!/usr/bin/perl
ranges.pl

use warnings;
use strict;

print "Counting up: ", (1 .. 6), "\n";
print "Counting down: ", (6 .. 1), "\n";
print "Counting down (properly this time) : ", reverse(1 .. 6), "\n";

print "Half the alphabet: ", ('a' .. 'm'), "\n";
print "The other half (backward): ", reverse('n' .. 'z'), "\n";

print "Going from 3 to z: ", (3 .. 'z'), "\n";
print "Going from z to 3: ", ('z' .. 3), "\n";

Which of those will work and which won’t? Let’s find out . . .

$ perl ranges.pl
Argument "z" isn't numeric in range (or flop) at ranges.pl line 14.
Argument "z" isn't numeric in range (or flop) at ranges.pl line 15.
Counting up: 123456
Counting down:
Counting down (properly this time): 654321
Half the alphabet: abcdefghijklm
The other half (backwards): zyxwvutsrqpon
Going from 3 to z:
Going from z to 3: 0123
$

After the usual opening, we first count upward with a range.

print "Counting up: ", (1 .. 6), "\n";

We’ve seen the range in action before, and we know this produces (1, 2, 3, 4, 5, 6). We pass
print() a list containing the string "Counting up: ", the six elements, and a newline. Because a list
inside a list gets flattened, we’re actually just passing an eight-element list. It’s the same as if we’d done
the following:

print "Counting up: ", 1, 2, 3, 4, 5, 6, "\n";

And we get the expected result:

Counting up: 123456

Next, we try and count down:

print "Counting down: ", (6 .. 1), "\n";

CHAPTER 4 ■ LISTS AND ARRAYS

87

This doesn’t work because the right-hand side must be bigger than the left, so all that’s produced is
the empty list, (). To count down properly, we need to make a list using (1 .. 6) as before, and turn it
around. The reverse() function reverses a list. For example:

reverse (qw(The cat sat on the mat))

produces the same as

qw(mat the on sat cat The)

In this case, reverse(1..6) produces (1, 2, 3, 4, 5, 6) and then reverses it to become (6, 5, 4,
3, 2, 1), and we see the list appear in that order:

Counting down (properly this time): 654321

Next we demonstrate a simple alphabetic range:

print "Half the alphabet: ", ('a' .. 'm'), "\n";

This range expands to the values “a”, “b”, “c”, and so on all the way to “m”. Doing that backward is
easy:

print "The other half (backward): ", reverse('n' .. 'z'), "\n";

Now we come to the statements that produce the warnings:

Argument "z" isn't numeric in range (or flop) at ranges.pl line 13.
Argument "z" isn't numeric in range (or flop) at ranges.pl line 14.

The lines in question are

print "Going from 3 to z: ", (3 .. 'z'), "\n";
print "Going from z to 3: ", ('z' .. 3), "\n";

What does the error message mean? Pretty much what it says: we gave an argument of “z” to a range

when it was expecting a number instead. The interpreter converted the “z” to a number as per the rules
in Chapter 2, and got a 0. It’s equivalent to this:

print "Going from 3 to z: ", (3 .. 0), "\n";
print "Going from z to 3: ", (0 .. 3), "\n";

The first one produces an empty list, and the second one counts up from 0 to 3.

Accessing List Values
We’ve now seen most of the ways of building up lists in Perl, and we can pass lists to functions like
print(). But another thing we need to be able to do with lists is access a specific element or set of
elements within them. The way to do this is to place the number of the elements we want in square
brackets after a list, like this:

#!/usr/bin/perl
access.pl

CHAPTER 4 ■ LISTS AND ARRAYS

88

use warnings;
use strict;

print(('salt', 'vinegar', 'mustard', 'pepper')[2]);
print "\n";

Before you run this, though, see if you can work out which word will be printed.

$ perl access.pl
mustard
$

Did you think it was going to be “vinegar”? Don’t forget that Perl starts counting things from 0!

You should also notice that we had to put parentheses around the arguments passed to print(); this

is because the precedence of print() is extremely high. Without the parentheses, Perl groups the
statement in two parts like this:

print('salt', 'vinegar', 'mustard', 'pepper') [2];

This means the whole of the list is passed to print(), after which Perl attempts to retrieve the
second element of print(). The problem is, you can only take an element from a list, and as we already
know, print() isn’t a list.

So, since print() needs to be passed a list, we make a list out of the element we want:

print (
 ('salt', 'vinegar', 'mustard', 'pepper')[2]
);

The element you want doesn’t have to be given as a literal—variables work just as well. Here’s an

example of accessing an element of a list of months:

#!/usr/bin/perl
months.pl

use warnings;
use strict;

my $month = 3;

print qw(
 January February March
 April May June
 July August September
 October November December
)[$month];

When this is run, you should now expect it to give you “April”, and it does:

$ perl months.pl
April$

CHAPTER 4 ■ LISTS AND ARRAYS

89

The key piece of code for this example is the last statement:

print qw(
 January February March
 April May June
 July August September
 October November December
)[$month];

We have set $month to 3, so we are telling Perl to print out the third element of the list, starting from

0. Because we’re using qw//, we can use arbitrary whitespace, tabs, and newlines to separate each list
element, which allows us to present the months in a neat table.

This is exactly the sort of situation for which qw// was created; we have a list composed completely
of single words, and we want to represent that to Perl in a readable way in our source code. It’s far easier
to read than spelling the list out longhand, even though the preceding print() statement is equivalent to

print (('January','February', 'March', 'April', 'May',
 'June', 'July', 'August', 'September', 'October',
 'November', 'December')[$month]);

What do you think would happen if we chose a noninteger value for our element? Let’s use a value
with a fractional part. Change the preceding file so that line 7 reads

my $month = 2.2;

Perl will round the number in this case, and you should get the answer “March”. In fact, Perl always
rounds towards 0, so anything between 2 and 3 will get you March.

What about negative numbers? Actually, something interesting happens here—Perl starts counting
backward from the end of the list. So element –1 is the last one, –2 the second to last one, and so on.

#!/usr/bin/perl
backwards.pl

use warnings;
use strict;

print qw(
 January February March
 April May June
 July August September
 October November December
)[-1];

And, true to form, we’ll get the last element of the array when we run the program.

$ perl backwards.pl
December$

CHAPTER 4 ■ LISTS AND ARRAYS

90

List Slices
So much for getting a single element out of a list. What if we want to get several? Instead of putting a
number or a scalar variable inside those square brackets, you can actually put a list. For example, this:

(19, 68, 47, 60, 53, 51, 58, 55, 47)[(4, 5, 6)]

returns another list consisting of the fourth, fifth, and sixth 0-based elements: (53, 51, 58). Actually,
inside the square brackets we don’t need the additional set of parentheses, so you might as well say

(19, 68, 47, 60, 53, 51, 58, 55, 47)[4, 5, 6]

We call this a list slice, and the same methods work with lists of strings, illustrated in the program
multilist.pl. Just as in the preceding examples, we’re taking several elements from a list.

#!/usr/bin/perl
multilist.pl

use warnings;
use strict;

my $mone;
my $mtwo;
($mone, $mtwo) = (1, 3);

print(("heads ", "shoulders ", "knees ", "toes ")[$mone, $mtwo]);
print "\n";

Try to think what it’s going to produce before you run it. Here’s what happens:

$ perl multilist.pl
shoulders toes
$

As you may have realized, we simply printed out the first and the third elements from the list, if you
start counting from 0.

There are two key tricks in this example. The first is on line 9:

($mone, $mtwo) = (1, 3);

You might be able to see what this line does from how the rest of the program runs. The value of
$mone is set to 1, and $mtwo to 3. But how does this work?

Perl allows lists on the left-hand side of an assignment operator. When we assign one list to another,
the right-hand list is built up first, and then Perl assigns each element in turn from the right-hand side of
the statement to the left. So 1 is assigned to $mone, and then 3 is assigned to $mtwo. This is called an
assignable list.

If you’re okay with that, now is a good time for a quick quiz. Suppose we’ve done the preceding:
$mone is 1 and $mtwo is 3. What do you think would happen if we said this?

($mone, $mtwo) = ($mtwo, $mone);

The right-hand list is built up first, so Perl looks at the values of the variables and constructs the list
(3, 1). Then the 3 is assigned to $mone, and the 1 assigned to $mtwo. In effect, we’ve swapped the values

CHAPTER 4 ■ LISTS AND ARRAYS

91

of the variables around—a handy trick to learn and remember. Chances are it’s something you’ll need to
do from time to time.

Back to our example! Once we’ve set $mone to 1 and $mtwo to 3, we can pick out these elements from
a list. There’s nothing that says that we have to use literals to access the elements we want. This:

print(("heads ", "shoulders ", "knees ", "toes ")[$mone, $mtwo]);

is interpreted by Perl just the same as this:

print(("heads ", "shoulders ", "knees ", "toes ")[1, 3]);

Indeed, both statements equate to the same thing—creating a list that consists of the first and third
elements of our original list and printing them. In effect, we call

print("shoulders ", "toes ");

which is indeed what happens.

Combining Ranges and Slices
We can, of course, use ranges in our list slices. This gets March through September:

(qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)[2..8])

And this gets November through February via December and January (remember that –2 is the
second to last element and –1 the last element):

(qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)[-2..1])

We can also use a mixture of ranges and literals in our slice. This gives us January, April, and August
to December:

(qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)[0,3,7..11])

It may be a bit confusing, but have a go at slicing your own arrays and you’ll get the hang of it in no
time.

Arrays
Just as with scalar literals, there’s only so much you can do with list literals. Literal lists get cumbersome
to repeat, and don’t allow us to manipulate them at all. As with scalars, we need to find a way to store
them in a variable.

The variable storage we use for lists is called an array. Whereas the name of a scalar variable starts
with a dollar sign, arrays start with an at sign (@). The same rules for naming arrays apply as for any
other variables: start with an alphabetic character or underscore, followed by zero or more alphabetic
characters, underscores, or numbers.

Assigning Arrays
We store a list in an array just like we store a scalar literal into a scalar variable, by assigning it with =, as
in:

CHAPTER 4 ■ LISTS AND ARRAYS

92

@array = (1,2,3);

Once we’ve assigned our array, we can use it wherever we would use a list:

#!/usr/bin/perl
dayarray.pl

use warnings;
use strict;

my @days;
@days = qw(Monday Tuesday Wednesday Thursday Friday Saturday Sunday);
print @days, "\n";

This prints

$ perl dayarray.pl
MondayTuesdayWednesdayThursdayFridaySaturdaySunday
$

Like scalars, arrays must be declared with my() if you use strict.
Note that $days is a completely different variable from @days—setting one does nothing to the other.

In fact, if you were to do this:

#!/usr/bin/perl
baddayarray1.pl

use warnings;
use strict;

my @days;
@days = qw(Monday Tuesday Wednesday Thursday Friday Saturday Sunday);
$days = 31;

you would get the following error:

Global symbol "$days" requires explicit package name at dayarray.pl line 9.

This is because you have declared @days to be a lexical variable, but not $days. Even when you
declare them both, setting one has no effect on the other.

#!/usr/bin/perl
baddayarray2.pl

use warnings;
use strict;

my @days;
my $days;
@days = qw(Monday Tuesday Wednesday Thursday Friday Saturday Sunday);
$days = 31;
print @days, "\n";

CHAPTER 4 ■ LISTS AND ARRAYS

93

print $days, "\n";

prints

MondayTuesdayWednesdayThursdayFridaySaturdaySunday
31

What would happen if you assigned an array to a scalar variable? To find out, take a look at the

following example of two arrays assigned to two different scalar variables:

#!/usr/bin/perl
arraylen.pl

use warnings;
use strict;

my @array1;
my $scalar1;
@array1 = qw(Monday Tuesday Wednesday Thursday Friday Saturday Sunday);
$scalar1 = @array1;

print "Array 1 is @array1\nScalar 1 is $scalar1\n";

my @array2;
my $scalar2;
@array2 = qw(Winter Spring Summer Fall);
$scalar2 = @array2;
print "Array 2 is @array2\nScalar 2 is $scalar2\n";

Executing this program gives this result:

$ perl arraylen.pl
Array 1 is Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Scalar 1 is 7
Array 2 is Winter Spring Summer Fall
Scalar 2 is 4
$

Hmm . . . the first array has seven elements, and the scalar value is 7. The second has four elements,

and the scalar value is 4.
There are two things to note in this program. The first is how array variables interpolate in a double-

quoted string. We’ve seen that if you put a scalar variable name inside a string, Perl fills in the value of
the variable. Now we’ve put an array variable in a string and Perl has filled it in, but it has placed spaces
between the elements. Look at the following two print() statements:

@array = (4, 6, 3, 9, 12, 10);
print @array, "\n";
print "@array\n";

The first one does exactly what we’ve seen with lists, printing all the elements next to each other.

The second statement, however, inserts a space between each element:

CHAPTER 4 ■ LISTS AND ARRAYS

94

46391210
4 6 3 9 12 10

This adding of spaces between elements is what happens when an array is interpolated in a double-

quoted string. As with scalars, interpolation is not confined to print(). For example:

$scalar = "@array\n";

is the same as

$scalar = "4 6 3 9 12 10\n";

Forcing variables to make sense in a string is called stringifying them.

Scalar vs. List Context
What happens when we assign an array to a scalar variable? One key point to remember is that Perl
knows exactly what type of value you want, whether a scalar or an array, at any stage in an operation,
and will do its best to make sure you get it.

For example, if we’re looking to assign to a scalar variable, we need to have a scalar value—the
assignment is taking place in scalar context. On the other hand, for example, print() expects to see a list
of arguments. Those arguments are in list context. However, some operations may return different
values depending on which context they are called. That’s what’s happening in this case:

print @array1;
$scalar1 = @array1;

The first line is in list context. In list context, an array evaluates to the list of its elements. In the

second line, however, the assignment wants to see a single result, or scalar value, and therefore we’re in
scalar context. In scalar context, an array evaluates to the number of its elements, in our case, seven for
the days and four for the seasons.

If we were to do this:

@array2 = @array1;

we would be assigning to an array. So we’re looking for a list of values to fill @array2. Here, we’re back in
list context, and so @array2 gets filled with all of the values of @array1.

We can force something to be in scalar context when it expects to be in list context by using the
scalar() function. Compare these two statements:

print @array1;
print scalar @array1;

As we’ve explained before, print() usually wants a list, so Perl evaluates print()’s arguments in list

context. In the preceding example, print() is looking to get a list from each of its arguments. That’s why
the first statement prints the contents of @array1. If we force @array1 into scalar context, then the
number of elements in the array is passed to print(), and not the contents of the array.

CHAPTER 4 ■ LISTS AND ARRAYS

95

■ Note Perl distinguishes between operations that want a list and operations that want a scalar. Those that want
a list, such as print() or assigning to an array, are said to be in list context. Those that want a scalar are said to
be in scalar context. The value of an array in list context is the list of its elements—the value of an array in scalar
context is the number of its elements.

Adding to an Array
How do we add elements to an array? One way to do it is by using the “list flattening” principle and
treating arrays as lists. This isn’t a particularly good way to do it, but it works:

#!/usr/bin/perl
addelem.pl

use warnings;
use strict;

my @array1 = (1, 2, 3);
my @array2;
@array2 = (@array1, 4, 5, 6);
print "@array2\n";

@array2 = (3, 5, 7, 9);
@array2 = (1, @array2, 11);
print "@array2\n";

$ perl addelem.pl
1 2 3 4 5 6
1 3 5 7 9 11
$

It’s far better, however, to use the functions we’re going to see later on— push(), pop(), shift(),

and unshift().

Accessing an Array
Once we’ve got our list of scalars into an array, it would be nice to be able to access individual elements
in them. We do this slightly differently from the way we get values out of lists.

Accessing Single Elements
We can now put elements into an array:

my @array = (10, 20, 30);

If we look at the array in scalar context, we get the number of elements in it. So

CHAPTER 4 ■ LISTS AND ARRAYS

96

print scalar @array;

will print the value 3. But how do we get at one of those elements? We could use the list assignment we
looked at earlier:

#!/usr/bin/perl
assignlist.pl

use warnings;
use strict;

my $scalar0;
my $scalar1;
my $scalar2;
my @array = (10, 20, 30);

($scalar0, $scalar1, $scalar2) = @array;

print "Scalar zero is $scalar0\n";
print "Scalar one is $scalar1\n";
print "Scalar two is $scalar2\n";

This will print out each of the elements:

$ perl assignlist.pl
Scalar zero is 10
Scalar one is 20
Scalar two is 30
$

There is a better way to access a single element of an array using something quite similar to what we

used with a list. To get a single element from a list, if you remember, we put the number we wanted in
square brackets after it.

$a = (10, 20, 30)[0];

This sets $a to the zeroth element, 10. We could do this:

$a = (@array)[0];

in exactly the same way. However, it’s more usual to write that as follows:

$a = $array[0];

Look carefully at this statement. Even though @array and $array are different variables, we use the
$array[] form. Why?

CHAPTER 4 ■ LISTS AND ARRAYS

97

■ Note The rule is this: the prefix represents what you want to get, not what you’ve got. So @ represents a list of
values, and $ represents a single scalar. Hence, when we’re getting a single scalar from an array, we never prefix
the variable with @—that would mean a list. A single scalar is always prefixed with a $.

$array[0] can only refer to an element of the @array array. If you use the wrong prefix, Perl will
complain with a warning.

#!/usr/bin/perl
badprefix.pl

use warnings;
use strict;

my @array = (1, 3, 5, 7, 9);
print @array[1];

will print

$ perl badprefix.pl
Scalar value @array[1] better written as $array[1] at badprefix.pl line 8.
3$

We call the number in the square brackets the array index or array subscript. The array index is the

number of the element that we want to access.
Just like extracting elements from lists, we can use a scalar variable as our subscript:

#!/usr/bin/perl
scalarsub.pl

use warnings;
use strict;

my @array = (1, 3, 5, 7, 9);
my $subscript = 3;
print $array[$subscript], "\n";
$array[$subscript] = 12;

print $array[$subscript], "\n";

This prints the third element from zero, which has the value 7. It then changes that 7 to a 12 and
prints the value of that element. Negative subscripts work from the right-hand side; as before, $array[-
1] will give you the last element in the array. Executing this program produces the following:

$ perl scalarsub.pl
7
12
$

CHAPTER 4 ■ LISTS AND ARRAYS

98

Now let’s look at a program to extract a given element from an array. We’ll use arrays to write a

program to tell us some (really bad) jokes. We actually set up two arrays—one containing the question,
and one containing the answer.

#!/usr/bin/perl
joke1.pl

use strict;
use strict;

my @questions = qw(Java Python Perl C);
my @punchlines = (
 "None. Change it once, and it's the same everywhere.",
 "One. He just stands below the socket and the world revolves around him.",
 "A million. One to change it, the rest to try and do it in one line of code.",
 '"CHANGE?!!"'
);

print "Please enter a number between 1 and 4: ";
my $selection = <STDIN>;
$selection -= 1;
print "How many $questions[$selection] ";
print "programmers does it take to change a lightbulb?\n\n";
sleep 2;
print $punchlines[$selection], "\n";

Here is an example of running this program:

$

.

.perl joke1.pl
Please enter a number between 1 and 4: 3
How many Perl programmers does it take to change a lightbulb?

A million. One to change it, the rest to try and do it in one line of code.
$

In this program, we first set up our arrays; one is a list of words, so we can use qw// to specify it. The

other is a list of strings containing whitespace characters, so we have to quote them using the ordinary
list style.

my @questions = qw(Java Python Perl C);
my @punchlines = (
 "None. Change it once, and it's the same everywhere.",
 "One. He just stands below the socket and the world revolves around him.",
 "A million. One to change it, the rest to try and do it in one line of code.",
 '"CHANGE?!!"'
);

We now ask the user to choose a joke:

print "Please enter a number between 1 and 4: ";

CHAPTER 4 ■ LISTS AND ARRAYS

99

my $selection = <STDIN>;
$selection -= 1;

Why subtract 1 from $selection? We’ve asked for a number between 1 and 4, and our array
subscripts go from 0 to 3.

Next we display the setup line:

print "How many $questions[$selection] ";
print "programmers does it take to change a lightbulb?\n\n";

From the first line we see that array elements stringify just like scalar variables. Next, this new
sleep() function:

sleep 2;

What sleep() does, as you’ll know if you’ve run the program, is pause the program’s operation for a
number of seconds. In this case, we’re telling it to sleep for two seconds.

After the user has had time to think about it, we display the punchline:

print $punchlines[$selection], "\n";

$#array
For any given array, for example @array, there is an easy way to obtain the value of its last index: $#array.
Therefore, for the array @a, its last index is $#a. For @b, its last index is $#b. Note that this syntax gives us
the last index of the array, not its last value. The last value of @a can be accessed by indexing with $#a into
@a with the syntax $a[$#a]. Yes, it looks a little weird, but it does work! This is illustrated in the following
example:

#!/usr/bin/perl
lastindex.pl

use warnings;
use strict;

my @array = (2, 4, 6, 8);

print "the last index is: ", $#array, "\n";
print "the last element is: ", $array[$#array], "\n";

Executing this code produces

$ perl lastindex.pl
the last index is: 3
the last element is: 8
$

The last index will assist us in looping through an array with indexes.

CHAPTER 4 ■ LISTS AND ARRAYS

100

Looping Through an Array with Indexes
Since we can access an individual element of an array with the syntax

$array[$index]

and we know the first index of the array is 0 and the last index is $#array, we can loop through an array
with a loop that resembles

my $i = 0;
while ($i <= $#array) {
 # process array element using the syntax $array[$i]
 $i++;
}

Most Perl programmers would implement this using a for loop:

for (my $i = 0; $i <= $#array; $i++) {
 # process array element using the syntax $array[$i]
}

Here is an example of using both the while loop and the for loop to process an array. The code will

loop left to right through an array named @names, accessing each element with $names[$i].

#!/usr/bin/perl
whilefor.pl

use warnings;
use strict;

my @names = qw(John Joe Mary Sue);

print "processing using a while loop:\n";

my $i = 0;
while ($i <= $#names) {
 print " Hello $names[$i]!\n";
 $i++;
}

print "processing using a for loop:\n";

for (my $i = 0; $i <= $#names; $i++) {
 print " Hello $names[$i]!\n";
}

Executing this code results in the following:

$ perl whilefor.pl
processing using a while loop:
 Hello John!
 Hello Joe!

CHAPTER 4 ■ LISTS AND ARRAYS

101

 Hello Mary!
 Hello Sue!
processing using a for loop:
 Hello John!
 Hello Joe!
 Hello Mary!
 Hello Sue!
$

■ Note Most often, when we process an array variable from left to right, we will use the foreach loop instead of
the for loop. However, the for loop comes in handy sometimes, especially if we want to access all the even
elements of an array:

for ($i = 0; $i <= $#a; $i+=2) {

 # process element
}

or all the odd elements of an array:

for ($i = 1; $i <= $#a; $i+=2) {

 # process element

}

We’ll see the use of the foreach loop later in this chapter.

Hopefully, you’re starting to see alternative ways you can use arrays. Of course, we’ve only been
pulling single values from arrays so far. The next logical step is to start working with multiple array
elements.

Accessing Multiple Elements
If you’ll recall, we created and used a list slice by putting ranges or several numbers in brackets to get
multiple elements from a list. If we want to get multiple elements from an array, we can use the
analogous concept, an array slice.

List slices, if you remember, looked like this:

(qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec))[3,5,7..9]

CHAPTER 4 ■ LISTS AND ARRAYS

102

Can you work out which elements the preceding slice consists of? If not, write a short Perl program
to print them out, and see if you can get it to separate them with spaces. (Hint: only arrays stringify with
spaces, so you’ll need to use one.)

Array slices look very similar. However, now that we are accessing multiple elements and expecting
a list, we no longer want to use $ as the prefix—now we need to use @.

We can get the same list as the preceding one like this:

my @array = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);
print @array[3,5,7..9];

Array slices act like any normal list, and so can be assigned to. Here’s a program that uses a bunch of

slices, aslice.pl, implementing a year’s sales results for a fictitious bathroom tile shop:

#!/usr/bin/perl
aslice.pl

use warnings;
use strict;

my @sales = (69, 118, 97, 110, 103, 101, 108, 105, 76, 111, 118, 101);
my @months = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);

print "Second quarter sales:\n";
print "@months[3..5]\n@sales[3..5]\n";
my @q2 = @sales[3..5];

Incorrect results in May, Aug, Oct, Nov and Dec!
@sales[4, 7, 9..11] = (68, 101, 114, 111, 117);

Swap Apr and May
@months[3,4] = @months[4,3];

Most of the work is behind the scenes, but this is what you’d see if you run the code:

$ perl aslice.pl
Second quarter sales:
Apr May Jun
110 103 101

Let’s take a look at what’s actually going on. We set up our two arrays, one holding the sales figures,

and the other holding the names of the months:

my @sales = (69, 118, 97, 110, 103, 101, 108, 105, 76, 111, 118, 101);
my @months = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);

To extract the information about the second quarter, we use an array slice for the months in

question:

print "Second quarter sales:\n";
print "@months[3..5]\n@sales[3..5]\n";
my @q2 = @sales[3..5];

CHAPTER 4 ■ LISTS AND ARRAYS

103

As well as saving the relevant elements to another array, we can print out the slice and it will be

stringified. We can also assign values to an array slice as well as getting data from it:

@sales[4, 7, 9..11] = (68, 101, 114, 111, 117);

This sets new values for $sales[4], $sales[7], $sales[9], $sales[10], and $sales[11].
Finally, we can use something similar to the ($a, $b) = ($b, $a) list trick to swap two array

elements:

@months[3,4] = @months[4,3];

This is exactly the same as the following statement:

($months[3], $months[4]) = ($months[4], $months[3]);

As you can see, this isn’t all that far from the list assignment to swap two variables:

($mone, $mtwo) = ($mtwo, $mone);

Processing Arrays with the foreach Loop
One thing we’ll want to do quite often is process each of the elements in an array or list in order. If we
want to double every value in an array, then for each element we come across, we multiply by 2. The
keyword to use here is foreach. The foreach loop has the following syntax:

foreach scalar_variable (list_or_array) {
 body
}

The block must start with an opening curly brace and end with a closing curly brace, and the list or
array that we’re processing must be surrounded by parentheses.

This loop executes the body for each item in the list or array. As it passes through the list or array,
the scalar variable (called the control variable, or iterator variable) is the element of the list or array. Here
is a simple example:

#!/usr/bin/perl
foreach1.pl

use warnings;
use strict;

my $element;

foreach $element ('zero', 'one', 'two') {
 print "the element is: $element\n";
}

This program first declares $element. This variable will be used to pass through the list. Then the

body is executed three times—once for each element in the list— producing the following output:

$ perl foreach1.pl
the element is: zero

CHAPTER 4 ■ LISTS AND ARRAYS

104

the element is: one
the element is: two
$

The foreach loop can also process array variables. Here is an example that prints each element of an

array followed by a newline:

#!/usr/bin/perl
foreach2.pl

use warnings;
use strict;

my @array = qw(Australia Asia Europe Africa);
my $element;

foreach $element (@array) {
 print $element, "\n";
}

In this program, we set up an array and we declare a scalar variable, $element. What we then say is
“Set each element of @array to $element in turn, and then do all the statements in the following block.”
So, on our first iteration, $element is set to Australia, and then the print() statement is executed. Next,
$element is set to Asia, and the print() statement runs again. This continues until the end of the array is
reached.

This should print the following:

$ perl foreach2.pl
Australia
Asia
Europe
Africa
$

Choosing an Iterator
We can specify the iterator variable ourselves, as we did in the preceding examples, or we can use the
default one, $_. Furthermore, if we’re being good and using strict, we can make our iterator variable a
lexical my() variable as we go along. That is, we could write a program like this—note how $i is declared:

#!/usr/bin/perl
foreach3.pl

use warnings;
use strict;

my @array = (1, 3, 5, 7, 9);
foreach my $i (@array) {
 print "This element: $i\n";
}

CHAPTER 4 ■ LISTS AND ARRAYS

105

There’s actually a very subtle difference between declaring your iterator inside and outside of the
loop. If you declare your iterator outside the loop, any value it had then will be restored afterwards. We
can check this out by setting the variable and testing it afterwards:

#!/usr/bin/perl
foreach4.pl

use warnings;
use strict;

my @array = (1, 3, 5, 7, 9);
my $i = "Hello there";
foreach $i (@array) {
 print "This element: $i\n";
}
print "All done: $i\n";

This will produce the following output:

$ perl foreach4.pl
This element: 1
This element: 3
This element: 5
This element: 7
This element: 9
All done: Hello there
$

Declaring the iterator within the loop, as in foreach3.pl, creates a new variable $i each time, which

exists only for the duration of the loop.
As a matter of style, it’s usual to keep the names of iterator variables very short; the traditional

iterator is $i as we’ve used here. The length of a variable name should be related to the importance of
the variable—iterators are usually throwaway variables that exist only for one block, so they typically are
not prominently named.

Modifying the Value of an Iterator
When processing a foreach loop, Perl makes the iterator refer to each element of the list or array in turn,
and then executes the block. If the block happens to change the value of the iterator, the corresponding
array element changes as well. We can double each element of an array like this:

#!/usr/bin/perl
foreach5.pl

use warnings;
use strict;

my @array = (10, 20, 30, 40);

print "Before: @array\n";

CHAPTER 4 ■ LISTS AND ARRAYS

106

foreach (@array) {
 $_ *= 2;
}

print "After: @array\n";

This prints as follows:

$ perl foreach5.pl
Before: 10 20 30 40
After: 20 40 60 80
$

Notice that in the foreach loop in foreach5.pl, there is no explicit control variable indicated:

foreach (@array) {
 $_ *= 2;
}

If the control variable is omitted, $_ is used by default.
If you need to know the number of the element you’re currently processing, it’s usually best to have

the iterator as the range of numbers you’re processing—from 0 up to the highest element number in the
array. Let’s rewrite the joke machine so that it tells all the bad jokes, without prompting:

#!/usr/bin/perl
joke2.pl

use warnings;
use strict;

my @questions = qw(Java Python Perl C);
my @punchlines = (
 "None. Change it once, and it's the same everywhere.",
 "One. He just stands below the socket and the world revolves around him.",
 "A million. One to change it, the rest to try and do it in one line of code.",
 '"CHANGE?!!"'
);

foreach (0..$#questions) {
 print "How many $questions[$_] ";
 print "programmers does it take to change a lightbulb?\n";
 sleep 2;
 print $punchlines[$_], "\n\n";
 sleep 1;
}

The changes to our old joke1.pl program produce this result:

$ perl joke2.pl
How many Java programmers does it take to change a lightbulb?

CHAPTER 4 ■ LISTS AND ARRAYS

107

None. Change it once, and it's the same everywhere.

How many Python programmers does it take to change a lightbulb?
One. He just stands below the socket and the world revolves around him.

How many Perl programmers does it take to change a lightbulb?
A million. One to change it, the rest to try and do it in one line of code.

How many C programmers does it take to change a lightbulb?
"CHANGE?!!"

$

In this version of the joke program, the foreach loop is now the main part of our program. Let’s have

a look at it again:

foreach (0..$#questions) {
 print "How many $questions[$_] ";
 print "programmers does it take to change a lightbulb?\n";
 sleep 2;
 print $punchlines[$_], "\n\n";
 sleep 1;
}

The key point about this example is that we need to match the questions to the punchlines. This

means we can’t just go through one or the other of the arrays, but have to go through them both
together. We do this by using a list, which counts up from 0 to the highest element of one of the arrays.
Since the arrays are both the same size, it doesn’t matter which one. The line that does this is

foreach (0..$#questions) {

$#questions is the index of the last element in the @questions array. That’s different from the value
we get when we look at @questions in a scalar context:

#!/usr/bin/perl
elems.pl

use warnings;
use strict;

my @array = qw(alpha bravo charlie delta);

print "Scalar value : ", scalar(@array), "\n";
print "Highest index: ", $#array, "\n";

$ perl elems.pl
Scalar value : 4
Highest index: 3
$

CHAPTER 4 ■ LISTS AND ARRAYS

108

Why? There are four elements in the array—so that’s the scalar value. Their indices are 0, 1, 2, and 3.
Since we’re starting at 0, the highest index ($#array) will always be one less than the number of elements
in the array.

So, we count up from 0 to the last index of @questions, which happens to be 3. We set the iterator to
each number in turn. Where’s the iterator? Since we didn’t give one, Perl will use $_. Now we do the
block four times, once when $_ is 0, once when it is 1, and so on.

print "How many $questions[$_] ";

This line prints the zeroth element of @questions the first time around, then the first, then the
second, third, and fourth.

print $punchlines[$_], "\n\n";

And so it is with the punchlines. If we’d just said

foreach (@questions) {

$_ would have been set to each question in turn, but we would not have advanced our way through the
answers.

A quick note: recall that the keywords for and foreach are synonyms for each other. We will stick to
the style of calling a foreach a foreach, but some Perl programmers call the foreach a for. This also
applies to the expression modifier form of the foreach.

Expression Modifier for the foreach Loop
Just as there was an expression modifier form of if, like this:

die "Something wicked happened" if $error;

there’s also an expression modifier form of foreach. This means you can iterate an array, executing a
single expression every time. Here, however, you don’t get to choose your own iterator variable: it’s
always $_. It has this form:

statement foreach list_or_array;

Here is a quick example:

#!/usr/bin/perl
foreach6.pl

use warnings;
use strict;

my @a = qw(John Paul George Ringo);

print "[$_]\n" foreach @a;

Running this code produces the following:

$ perl foreach6.pl
[John]
[Paul]
[George]

CHAPTER 4 ■ LISTS AND ARRAYS

109

[Ringo]
$

Array Functions
It’s time we met some more of the operations we can perform with arrays. These are called array
functions. We’ve already met one of them: reverse(), which we used to count down ranges instead of
counting up. We can use reverse() on arrays as well as lists:

#!/usr/bin/perl
countdown.pl

use warnings;
use strict;

my @count = (1..5);

foreach (reverse(@count)) {
 print "$_...\n";
 sleep 1;
}

print "BLAST OFF!\n";

Hopefully, at this point, you have a good idea of what this will print out before you run it.

$ perl countdown.pl
5...
4...
3...
2...
1...
BLAST OFF!
$

There are some very useful functions for adding elements to arrays. Here they are now along with a

couple of other useful tips and tricks.

pop() and push()

We’ve already seen a simple way to add elements to an array: @array = (@array, $scalar).
One of the original metaphors that computer programmers like to use to analyze arrays is a stack of

spring-loaded plates in a cafeteria. You push down when you put another plate on the top, and the stack
pops up when a plate is taken away:

CHAPTER 4 ■ LISTS AND ARRAYS

110

Following this metaphor, push() is the function that adds an element, or list of elements, to the end
of an array. Similarly, to remove the top element—the element with the highest index—we use the pop()
function. These are illustrated in the following example.

Stacks are all around us. Many times, they’re stacks of paper. We can manipulate arrays just as we
can manipulate these stacks of paper:

#!/usr/bin/perl
stacks.pl

use warnings;
use strict;

my $hand;
my @pileofpaper = ("letter", "newspaper", "gas bill", "notepad");

print "Here's what's on the desk: @pileofpaper\n";

print "You pick up something off the top of the pile.\n";
$hand = pop @pileofpaper;
print "You have now a $hand in your hand.\n";

print "You put the $hand away, and pick up something else.\n";
$hand = pop @pileofpaper;
print "You picked up a $hand.\n";

print "Left on the desk is: @pileofpaper\n";

print "You pick up the next thing, and throw it away.\n";
pop @pileofpaper;

print "You put the $hand back on the pile.\n";
push @pileofpaper, $hand;

print "You also put a leaflet and a bank statement on the pile.\n";
push @pileofpaper, "leaflet", "bank statement";

print "Left on the desk is: @pileofpaper\n";

Watch what happens:

CHAPTER 4 ■ LISTS AND ARRAYS

111

$ perl stacks.pl
Here's what's on the desk: letter newspaper gas bill notepad
You pick up something off the top of the pile.
You have now a notepad in your hand.
You put the notepad away, and pick up something else.
You picked up a gas bill.
Left on the desk is: letter newspaper
You pick up the next thing, and throw it away.
You put the gas bill back on the pile.
You also put a leaflet and a bank statement on the pile.
Left on the desk is: letter gas bill leaflet bank statement
$

To see how this program works, let’s talk about it line by line. First, we initialize our $hand and our

@pileofpaper. Since the pile of paper is a stack, the zeroth element (the letter) is at the bottom, and the
notepad is at the top.

my $hand;
my @pileofpaper = ("letter", "newspaper", "gas bill", "notepad");

We use pop @pileofpaper to remove the top, or rightmost, element from the array and it returns that

element, which we store in $hand. So, we take the notepad from the stack and put it into our hand.
What’s left? The letter at the bottom of the stack, then the newspaper and gas bill.

print "You pick up something off the top of the pile.\n";
$hand = pop @pileofpaper;
print "You have now a $hand in your hand.\n";

As we pop() again, we take the next element (the gas bill) off the top of the stack, or the right-hand

side of the array, and store it again in $hand. Since we didn’t save the notepad from last time, it’s lost
forever now.

print "You put the $hand away, and pick up something else.\n";
$hand = pop @pileofpaper;
print "You picked up a $hand.\n";

The next item is the newspaper. We pop() this as before, but we never store it anywhere.

print "You pick up the next thing, and throw it away.\n";
pop @pileofpaper;

We’ve still got the gas bill in $hand from previously. push @array, $scalar will add the scalar onto

the top of the stack. In our case, we’re putting the gas bill on top of the letter.

print "You put the $hand back on the pile.\n";
push @pileofpaper, $hand;

push() can also be used to add a list of scalars onto the stack—in this case, we’ve added two more

strings. We could add the contents of an array to the top of the stack with @array1, @array2. So we now
know that we can replace a list with an array.

CHAPTER 4 ■ LISTS AND ARRAYS

112

print "You also put a leaflet and a bank statement on the pile.\n";
push @pileofpaper, "leaflet", "bank statement";

As you might suspect, you can also push lists of lists onto an array—they simply get flattened first

into a single list and then added.

shift() and unshift()

While the functions push() and pop() deal with the “top end,” or right-hand side, of the stack, adding
and taking away elements from the highest index of the array, the functions unshift() and shift() do
the corresponding jobs for the bottom end, or left side, of the array:

#!/usr/bin/perl
shift.pl

use warnings;
use strict;

my @array = ();
unshift @array, "first";
print "Array is now: @array\n";
unshift @array, "second", "third";
print "Array is now: @array\n";
shift @array ;
print "Array is now: @array\n";

$ perl shift.pl
Array is now: first
Array is now: second third first
Array is now: third first
$

First we unshift() an element onto the array, and the element appears at the beginning of the list.

It’s not easy to see this since there are no other elements, but it does. We then unshift() two more
elements. Notice that the entire list is added to the beginning of the array all at once, not one element at
a time. We then use shift() to take off the first element, ignoring what it was.

sort()

One last thing you may want to do while processing data is put it in alphabetical or numeric order. The
sort() function takes a list and returns a sorted version.

#!/usr/bin/perl
sort1.pl

use warnings;
use strict;

my @unsorted = qw(Cohen Clapton Costello Cream Cocteau);
print "Unsorted: @unsorted\n";

CHAPTER 4 ■ LISTS AND ARRAYS

113

my @sorted = sort @unsorted;
print "Sorted: @sorted\n";

$ perl sort1.pl
Unsorted: Cohen Clapton Costello Cream Cocteau
Sorted: Clapton Cocteau Cohen Costello Cream
$

This is only good for strings and alphabetic sorting. If you’re sorting numbers, there is a problem.

Can you guess what it is? This may help:

#!/usr/bin/perl
sort2.pl

use warnings;
use strict;

my @unsorted = (1, 2, 11, 24, 3, 36, 40, 4);
my @sorted = sort @unsorted;
print "Sorted: @sorted\n";

$ perl sort2.pl
Sorted: 1 11 2 24 3 36 4 40
$

What?? 11 doesn’t come between 1 and 2! It does when it is an ASCII sort, which is Perl’s default.

What we need to do is compare the numeric values instead of the string ones. Cast your mind back to
Chapter 2 and recall how to compare two numeric variables, $a and $b. Here, we’re going to use the <=>
operator. sort() allows us to give it a block to describe how two values should be ordered, and we do this
by comparing $a and $b.These two variables are given to us by the sort() function:

#!/usr/bin/perl
sort3.pl

use warnings;
use strict;

my @unsorted = (1, 2, 11, 24, 3, 36, 40, 4);

my @string = sort { $a cmp $b } @unsorted;
print "String sort: @string\n";

my @number = sort { $a <=> $b } @unsorted;
print "Numeric sort: @number\n";

$ perl sort3.pl
String sort: 1 11 2 24 3 36 4 40
Numeric sort: 1 2 3 4 11 24 36 40
$

CHAPTER 4 ■ LISTS AND ARRAYS

114

Another good reason for using string comparison operators for strings and numeric comparison
operators for numbers!

Summary
Lists are a series of scalars in order. Arrays are variable incarnations of lists. Both lists and arrays are
flattened, so we can’t yet have a distinct list inside another list. We get at both lists and arrays with
square-bracket subscripts; these can be single numbers or a list of elements. If we’re looking up a single
scalar in an array, we need to remember to use the syntax $array[$element] because the variable prefix
always refers to what we want, not what we have. We can also use ranges to save time and to specify list
and array slices.

Perl differentiates between scalar and list context, and returns different values depending on what
the statement is expecting to see. For instance, the scalar context value of an array is the number of
elements in it, and the list context value is, of course, the list of the elements themselves.

Exercises
1. Write a program that assigns an array the value (2, 4, 6, 8) and uses two loops to output

• 2 ** 2 = 4

• 4 ** 2 = 16

• 6 ** 2 = 36

• 8 ** 2 = 64

• 8 ** 2 = 64

• 6 ** 2 = 36

• 4 ** 2 = 16

• 2 ** 2 = 4

2. When you assign to a list, the elements are copied over from the right to the left.

($a, $b) = (10, 20);

will make $a become 10 and $b become 20. Investigate what happens when

• There are more elements on the right than on the left.

• There are more elements on the left than on the right.

• There is a list on the left but a single scalar on the right.

• There is a single scalar on the left but a list on the right.

3. What elements make up the range ('aa' .. 'bb')? What about ('a0' .. 'b9')?

C H A P T E R 5

■ ■ ■

115

Hashes

We have talked about two types of data: scalars and arrays. Scalars are single pieces of information, while
arrays are single variables containing many different values.

However, some items are better expressed as a set of one-to-one correspondences. A phone book,
for example, is a set of correspondences between names and phone numbers. In Perl, structures like
phone books are represented as a hash. Some people call them associative arrays because they look a bit
like arrays where each element is associated with another value. Most Perl programmers find that a bit
too long-winded, and end up just calling them hashes.

Comparing a hash to a phone book is helpful, but there is a difference in that a phone book is
normally ordered—the names are sorted alphabetically. In a hash, the data is totally unsorted and has
no intrinsic order. In fact, it’s more like directory inquiries than a phone book, in that you can easily find
out what the number is if you have the name. Someone else keeps the order for you, and you needn’t ask
what the first entry is.

Here’s where a diagram helps:

A scalar is one piece of data. It’s like a single block. An array or a list is like a tower of blocks; it’s kept
in order, and it’s kept together as a single unit. A hash, in contrast, is more like the right-most illustration
above. It contains several pairs of data. The pairs are in no particular order, no pair is first or top, and
they’re all scattered around the hash.

Creating a Hash
Just like scalar variables have a $ prefix and arrays have a @ prefix, hashes have their own prefix—a
percent sign. Again, the same naming rules apply, and the variables %hash, $hash, and @hash are all
different.

CHAPTER 5 ■ HASHES

116

One way of creating a hash variable is to assign it a list that is treated as a collection of key/value
pairs:

%where = (
 "Gary" , "Dallas",
 "Lucy" , "Exeter",
 "Ian" , "Reading",
 "Samantha" , "Portland"
);

In this case, the hash could be saying that “Gary’s location is Dallas,” “Lucy lives in Exeter,” and so
forth. All it really does is pair Gary and Dallas, Lucy and Exeter, and so on. How the pairing is interpreted
is up to you.

If we want to make the relationship, and the fact that we’re dealing with a hash, a little clearer, we
can use the => operator. That’s not >=, which is greater-than-or-equal-to; the => operator acts like a
“quoting comma.” That is, it’s a comma, but whatever appears on the left-hand side of it—and only the
left—is treated as a double-quoted string.

%where = (
 Gary => "Dallas",
 Lucy => "Exeter",
 Ian => "Reading",
 Samantha => "Portland"
);

The scalars on the left of the arrow are called the hash keys, the scalars on the right are the values.
We use the keys to look up the values.

■ Note Hash keys must be unique. You cannot have more than one entry for the same name, and if you try to add
a new entry with the same key as an existing entry, the old one will be overwritten. Hash values, though, need not
be unique.

Key uniqueness is more of an advantage than a limitation. Every time the word “unique” comes into
a problem, like counting the unique elements of an array, your mind should immediately echo “Use a
hash!”

Because hashes and arrays are both built from structures that look like lists, you can convert
between them, from array to hash, like this:

@array = qw(Gary Dallas Lucy Exeter Ian Reading Samantha Portland);
%where = @array;

Assigning an array to a hash works properly only when there is an even number of elements in the
array.

The hash can then be assigned back to an array like so:

@array = %where;

CHAPTER 5 ■ HASHES

117

However, you need to be careful when converting back from a hash to an array. Hashes do not have
a guaranteed order; although values will always follow keys, you can’t tell what order the keys will come
in. Since hash keys are unique, however, you can be sure that %hash1 = %hash2 is guaranteed to copy a
hash accurately.

Working with Hash Values
To look up a value in a hash, we use something similar to the index notation for arrays. However, instead
of locating elements by number, we locate them by name, and instead of using square brackets, we use
curly braces.

Here’s a simple example of looking up details in a hash:

#!/usr/bin/perl
hash.pl

use warnings;
use strict;

my $who = "Ian";

my %where = (
 Gary => "Dallas",
 Lucy => "Exeter",
 Ian => "Reading",
 Samantha => "Portland"
);

print "Gary lives in ", $where{Gary}, "\n";
print "$who lives in $where{$who}\n";

$ perl hash.pl
Gary lives in Dallas
Ian lives in Reading
$

The first thing we do in this program is set up our main hash, which tells us where people live.

my %where = (
 Gary => "Dallas",
 Lucy => "Exeter",
 Ian => "Reading",
 Samantha => "Portland"
);

Like scalars and arrays, hash variables must be declared with my() when using strict.
Now we can look up an entry in our hash—we’ll ask “Where does Gary live?”

print "Gary lives in ", $where{Gary}, "\n";

CHAPTER 5 ■ HASHES

118

This is almost identical to looking up an array element, except for using curly braces instead of
square brackets, and except for the fact that we are now allowed to use strings to index our elements.
Notice that the key Gary is not quoted within the curly braces. If the key contains no whitespace
characters, it is assumed to be quoted within the curly braces. If the key does contain whitespace
characters, then we have to quote it.

The next line is

print "$who lives in $where{$who}\n";

Just as with array elements, we need not use a literal to index the element—we can look up using a
variable as well.

Adding, Changing, and Removing Elements
Hash entries are very much like ordinary scalar variables, except that you need not declare an individual
hash key before assigning to it or using it. You can add a new person to your hash just by assigning to her
hash key:

$where{Eva} = "Uxbridge";
print "Eva lives in $where{Eva}\n";

A new entry springs into existence, without any problems. You can also change the entries in a hash
just by reassigning to them. Let’s move people around a little:

$where{Eva} = "Denver";
$where{Samantha} = "San Francisco";
$where{Lucy} = "Tokyo";
$where{Gary} = "Las Vegas";
$where{Ian} = "Southampton";

print "Gary lives in $where{Gary}\n";

To remove an entry from a hash, you use the delete() function, as in this little variant on hash.pl:

#!/usr/bin/perl
badhash.pl

use warnings;
use strict;

my %where = (
 Gary => "Dallas",
 Lucy => "Exeter",
 Ian => "Reading",
 Samantha => "Portland"
);

delete $where{Lucy};
print "Lucy lives in $where{Lucy}\n";

www.wowebook.com

CHAPTER 5 ■ HASHES

119

You can see that here we delete Lucy’s entry in %where before we access it, so executing this program
should produce a warning. Sure enough, we get

$ perl badhash.pl
Use of uninitialized value in concatenation (.) at badhash.pl line 15
Lucy lives in
$

It’s not that we haven’t initialized poor Lucy, but rather that we’ve decided to get rid of her.

Hash in List Context
When we discussed lists and arrays, we spent a lot of time talking about the difference between list and
scalar context. Let’s look at what happens when we evaluate a hash in list context. This is demonstrated
with the following program:

#!/usr/bin/perl
listcontext.pl

use warnings;
use strict;

my %person = (
 name => 'John Doe',
 age => 39,
 phone => '555-1212',
 city => 'Chicago'
);

my @data = %person;

print "list context: ", join("|", @data), "\n";
print "another way: ", %person, "\n";

This program takes the hash in list context in two ways. First, it assigns the hash to an array:

my @data = %person;

then the array is printed by joining its contents with the string “|” (more on the join() function in
Chapter 7):

print "list context: ", join("|", @data), "\n";

The second way is to simply print it:

print "another way: ", %person, "\n";

Recall that all arguments to the print() function are treated in list context.
When the program is executed, we can see that a hash variable in list context is a list of the key/value

pairs in the order stored in memory (not necessarily in the order in which the hash was created):

CHAPTER 5 ■ HASHES

120

$ perl listcontext.pl
list context: age|39|city|Chicago|phone|555-1212|name|John Doe
another way: phone555-1212age39cityChicagonameJohn Doe
$

We see a key (phone), followed by its value (555-1212), followed by a key (age), followed by its value (39),
etc.

Hash in Scalar Context
A hash in scalar context is shown in this example:

#!/usr/bin/perl
scalarcontext.pl

use warnings;
use strict;

my %person = (
 name => 'John Doe',
 age => 39,
 phone => '555-1212',
 city => 'Chicago'
);

my $scalar = %person;

print "scalar context: $scalar\n";

if (%person) {
 print "%person has at least one key/value pair\n";
} else {
 print "%person is empty!\n";
}

Executing this program produces the following:

$ perl scalarcontext.pl
scalar context: 3/8
%person has at least one key/value pair
$

This code produces an unexpected result. The following code:

my $scalar = %person;

print "scalar context: $scalar\n";

prints the string “scalar context: 3/8”. Therefore, this hash in scalar context is “3/8”, which means we are
using three buckets, or memory locations, out of eight buckets allocated.

CHAPTER 5 ■ HASHES

121

This string is not so interesting unless we notice that the string “3/8” is a true value in Perl. Also, if
our hash was empty, its value in scalar context would be the empty string, "". So a hash in scalar context
is normally treated as a true/false value—true if there is anything in it, false if empty:

if (%person) {
 print "%person has at least one key/value pair\n";
} else {
 print "%person is empty!\n";
}

Hash Functions
Since hashes in list context are apparently random collections of key/value pairs, we can’t really use
foreach loops on them directly. If we did, we would get a list of key/value pairs in no apparent order. To
help us, Perl provides three functions for iterating over hashes: keys(), values(), and each().

In addition, Perl provides functions to remove elements (delete(),seen previously), and to check
whether a key exists in the hash (exists()).

The keys() Function
First, there is keys(%hash), which gives us a list of the keys (all of the scalars on the left-hand side). This
is usually what we want when we visit each hash entry in turn, as in this example:

#!/usr/bin/perl
keys.pl

use warnings;
use strict;

my %where = (
 Gary => "Dallas",
 Lucy => "Exeter",
 Ian => "Reading",
 Samantha => "Portland"
);

foreach (keys %where) {
 print "$_ lives in $where{$_}\n";
}

Currently, this tells us

$ perl keys.pl
Lucy lives in Exeter
Samantha lives in Portland
Gary lives in Dallas
Ian lives in Reading
$

CHAPTER 5 ■ HASHES

122

You may find that the output appears in a different order on your machine.1 Don’t worry. As

mentioned before, hashes are unordered and there’s no guarantee that the keys will appear in the same
order each time. It really depends on the particular version of Perl you are using.

Let’s look at the part of the program that does all the work:

foreach (keys %where) {
 print "$_ lives in $where{$_}\n";
}

keys() is a function that, like sort() and reverse(), returns a list. The list in this case is qw(Lucy

Samantha Gary Ian), and the foreach loop visited each of those values in turn. As $_ was set to each one,
we could print the name and look up that entry in the hash.

The values() Function
The counterpart to keys() is values(), which returns a list of all of the values in the hash. This is
somewhat less useful, since you can always find the value if you have the key, but you can’t easily find
the key if you just have the value. It’s almost always advantageous to use keys() instead.

Here is an example using the values() function:

#!/usr/bin/perl
values.pl

use warnings;
use strict;

my %where = (
 Gary => "Dallas",
 Lucy => "Exeter",
 Ian => "Reading",
 Samantha => "Portland"
);

foreach (values %where) {
 print "someone lives in $_\n";
}

Executing this program produces the following:

$ perl values.pl
someone lives in Exeter
someone lives in Portland

1 Or even different every time that you run it! Some 5.10.x Perl installations have hash order randomization
turned on by default.

CHAPTER 5 ■ HASHES

123

someone lives in Dallas
someone lives in Reading
$

Once again the output appears to be in a random order, but the values, like the keys, are returned by
values() in the order stored in memory.

The each() Function
The next hash function is each(). It returns each hash entry as a key/value pair. Normally, the values
returned are copied into an assignable list like this:

($k, $v) = each %where;

This is illustrated in each.pl:

#!/usr/bin/perl
each.pl

use warnings;
use strict;

my %where = (
 Gary => "Dallas",
 Lucy => "Exeter",
 Ian => "Reading",
 Samantha => "Portland"
);

my($k, $v);
while (($k, $v) = each %where) {
 print "$k lives in $v\n";
}

Here is an example of this program executing:

$ perl each.pl
Lucy lives in Exeter
Samantha lives in Portland
Gary lives in Dallas
Ian lives in Reading
$

The delete() Function
You have already seen the delete() function. It removes a key/value pair from a hash. This statement
from badhash.pl removes the pair Lucy/Exeter from %where:

delete $where{Lucy};

CHAPTER 5 ■ HASHES

124

Since we are on the subject, we should mention that the delete() function also deletes array
elements. The following code would remove element 3 from the array @array. Note that the element
returns to an uninitialized state:

delete $array[3];

The exists() Function
The last hash function we will look at is exists(). This function returns true if the key exists in the hash,
false if not. Here is an example:

#!/usr/bin/perl
exists.pl

use warnings;
use strict;

my %where = (
 Gary => "Dallas",
 Lucy => "Exeter",
 Ian => "Reading",
 Samantha => "Portland"
);

print "Gary exists in the hash!\n" if exists $where{Gary};
print "Larry exists in the hash!\n" if exists $where{Larry};

Running this program results in the following:

$ perl exists.pl
Gary exists in the hash!
$

■ Note exists() returns 1 when true, an empty string when false.

The exists() function also works for array elements. This code checks to see if element 3 exists in
@array:

if (exists $array[3]) {
 print "element 3 exists!\n";
}

CHAPTER 5 ■ HASHES

125

Hash Examples
Hashes are very handy variables and there are many uses for them. Here are a few examples of using
hashes to solve common problems.

Creating Readable Variables
The most basic use of a hash is to be able to index into a variable to obtain information using a readable
string, which is far more user-friendly than using a numeric index as we would with an array. For
instance, this program shows that we can create a record of strings representing RGB colors you might
find in an HTML page:

#!/usr/bin/perl
colors.pl

use warnings;
use strict;

my %colors = (
 red => '#FF0000',
 green => '#00FF00',
 blue => '#0000FF',
 white => '#FFFFFF',
 black => '#000000',
 purple => '#520063'
);

print "Red is: $colors{red}\n";
print "Blue is: $colors{blue}\n";
print "Purple is: $colors{purple}\n";

Notice how the information in the hash is laid out in such a way that it is readable by human beings.
It is easy to see that the RGB string for “red” is “#FF0000”, and indexing into the hash is the human-
friendly $colors{red}.

Executing this code produces the following:

$ perl colors.pl
Red is: #FF0000
Blue is: #0000FF
Purple is: #520063
$

“Reversing” Information
Recall the hash we created earlier in this chapter that was a collection of people and where they lived:

%where = (
 Gary => "Dallas",

CHAPTER 5 ■ HASHES

126

 Lucy => "Exeter",
 Ian => "Reading",
 Samantha => "Portland"
);

If you need to turn this hash around to look up people by where they live, you can use a hash in list
context that produces a list of key/value pairs, reverse the list with the reverse() function, and then
assign it to a new hash.

%who = reverse %where;

Be careful, though—if you have two values that are the same, then converting them to keys means
that one will be lost. Remember that keys must be unique.

Here is a program that illustrates reversing a hash:

#!/usr/bin/perl
reverse.pl

use warnings;
use strict;

my %where = (
 Gary => "Dallas",
 Lucy => "Exeter",
 Ian => "Reading",
 Samantha => "Portland"
);

my %who = reverse %where;

foreach (keys %who) {
 print "in $_ lives $who{$_}\n";
}

Executing this code produces the following:

$ perl reverse.pl
in Portland lives Samantha
in Exeter lives Lucy
in Reading lives Ian
in Dallas lives Gary
$

After we assigned to %who, we created a hash indexed by the location producing the name that is the
direct opposite of %where, which was indexed by name to produce the location.

Counting Things
A very common use of a hash variable is to count things. For instance, we can count the number of
characters in a string or the items in an array. Let’s look at counting items in an array.

CHAPTER 5 ■ HASHES

127

We will create an array of names, then we will count the number of times each name occurs in the
array. For instance, for this array:

my @names = qw(
 John Sue Larry
 Mary John Mary
 Larry John Joe
 Lisa John Mary
);

we see that @names is a collection of 12 names. Upon close inspection, we see that “John” occurs four
times, “Sue” occurs once, and so on.

We can use a hash to keep a count of the number of times a name occurs in @names by creating a
hash that has the names as its keys, and the number of occurrences of the name as the value associated
with the key. For instance, when all the names in @names are processed, we will end up with a hash that
resembles

John => 4,
Sue => 1,
Larry => 2,
Mary => 3,
Joe => 1,
Lisa => 1

Here is a program illustrating this concept:

#!/usr/bin/perl
count1.pl

use warnings;
use strict;

my @names = qw(
 John Sue Larry
 Mary John Mary
 Larry John Joe
 Lisa John Mary
);

my %count;

foreach (@names) {
 if (exists $count{$_}) {
 $count{$_}++;
 } else {
 $count{$_} = 1;
 }
}

foreach (keys %count) {

CHAPTER 5 ■ HASHES

128

 print "$_ \toccurs $count{$_} time(s)\n";
}

Executing this code produces the following result:

$ perl count1.pl
Joe occurs 1 time(s)
Lisa occurs 1 time(s)
John occurs 4 time(s)
Mary occurs 3 time(s)
Sue occurs 1 time(s)
Larry occurs 2 time(s)
$

The most important part of this program is when we loop through the array and keep count:

foreach (@names) {
 if (exists $count{$_}) {
 $count{$_}++;
 } else {
 $count{$_} = 1;
 }
}

This code implements the logic “For each name in the array, if the name already exists in the hash,
then increment the value by 1 (incrementing the count); else if it does not exist in the hash, then add the
name to the hash with the initial value of 1.” After all the names are processed, the hash will contain all
the names and the number of times each name is present in @names.

For minimalists, the if statement can be shortened because this logic:

if (exists $count{$_}) {
 $count{$_}++;
} else {
 $count{$_} = 1;
}

is built into the statement

$count{$_}++;

Therefore, our foreach loop could be changed to

foreach (@names) {
 $count{$_}++;
}

or even more simply

$count{$_}++ foreach @names;

We can also write the foreach loop printing out the data as a one-line expression modifier. So, let’s
look at our more compact code in count2.pl:

CHAPTER 5 ■ HASHES

129

#!/usr/bin/perl
count2.pl

use warnings;
use strict;

my @names = qw(
 John Sue Larry
 Mary John Mary
 Larry John Joe
 Lisa John Mary
);

my %count;

$count{$_}++ foreach @names;

print "$_ \toccurs $count{$_} time(s)\n" foreach keys %count;

Summary
Hashes are unordered structures made up of pairs. Each pair consists of a key and a value, and given the
key, we can look up the value. Generally, $hash{$key} = $value. We can loop over all the elements of a
hash by processing the keys using a foreach loop to go through the keys.

Hashes are very useful variables that allow us to create data that is human-readable, reversible, and
often used for counting things.

Exercises
1. Create this hash variable:

scalar => 'dollar sign',
array => 'at sign',
hash => 'percent sign'

Process it with a foreach loop that prints the key/value pairs so that the keys
are printed in sorted order:

array: at sign
hash: percent sign
scalar: dollar sign

CHAPTER 5 ■ HASHES

130

2. Store your important phone numbers in a hash. Write a program to look up numbers by the

person’s name.

3. Turn the joke machine program in Chapter 4 from two arrays into one hash. While doing so,

write some better lightbulb jokes.

C H A P T E R 6

■ ■ ■

131

Subroutines/Functions

When programming, naturally there are activities we want to do again and again: adding up the values in
an array, stripping extraneous blank spaces from a string, getting information into a hash in a particular
format, and so on. It would be tedious to write out the code for each of these little processes every time
we need to use it, and maintaining each code segment would be horrific: if there’s a bug in the way we’ve
coded the activity, we have to go through and find it each time and fix it. Wouldn’t it be better if we could
define a particular process just once, and then be able to call on it whenever we need to, just like we call
on Perl’s built-in functions?

This is exactly what subroutines allow us to do. Subroutines (or functions, or simply subs) enable us
to give a name to a section of code. Then, when we need to use that code in our program, we just call it
by name.

Functions help our programming in two ways. First, they let us reuse code, as described previously.
This makes it easier to find and fix bugs, and it helps us write programs faster. Second, they allow us to
chunk our code into organizational sections. Each subroutine can, for example, be responsible for a
particular task.

So, when is it appropriate to use subroutines in Perl? There are two cases. You’ll want to put code in
a subroutine when you know it will be used to perform a calculation or action that’s going to happen
more than once, for instance, putting a string into a specific format, printing the header or footer of a
report, turning an incoming data record into a hash, and so on.

You should also use subroutines if you want to break up your program into logical units to make it
easier to understand. There is nothing worse than debugging several thousand lines of code that are not
broken up in any way. Well, maybe one or two things. As an extreme example, sometimes—and only
sometimes—it is desirable to have a “main program” that consists entirely of calls to subroutines, like
this:

#!/usr/bin/perl

use warnings;
use strict;

setup();
get_input();
process_input();
output();

CHAPTER 6 ■ SUBROUTINES/FUNCTIONS

132

This immediately shows the structure of the program. Each of those four subroutines would, of
course, have to be defined, and they’d probably call on other subroutines themselves. This kind of
structure lets us partition our programs to change a single, monolithic piece of code into manageable
chunks for ease of understanding, ease of debugging, and ease of maintaining the program.

One note about the terminology: in Perl, the words subroutine and function are synonyms—they
both mean the same thing. We will use them interchangeably in this book.

Understanding Subroutines
Now that we know what subroutines are, let’s look at how to define and use them. First, let’s see how to
create subroutines.

Defining a Subroutine
We can give Perl some code, and we can give the code a name, and that’s our subroutine. Here’s how we
do this:

sub example_subroutine {
 ...
}

There are three sections to this declaration:

• The keyword sub.

• The name we’re going to give the subroutine. The rules for naming a subroutine
are exactly those for naming variables: names must begin with an alphabetic
character or an underscore and must be followed by zero or more alphanumerics
or underscores. Uppercase letters are allowed, but we tend to reserve all-
uppercase names for special subroutines. And again, as with variables, you can
have a scalar $fred, an array @fred, a hash %fred, and a subroutine fred(), and
they’ll all be distinct.

• A block of code delimited by curly braces, just as we used for constructs like while
and if. Notice that we don’t need a semicolon after the closing curly brace.

After we’ve set up the subroutine, we can use it.
Before we go any further, it’s worth taking a quick time-out to consider the naming of subroutines.

You can convey a lot about a subroutine’s purpose with its name, much like that of a variable. Here are
some guidelines—not hard-and-fast rules—about how you should name subroutines:

• If they’re primarily about doing something, name them with a verb—for example,
summarize() or download().

• If they’re primarily about returning something, name them after what they
return—for example, greeting() or header().

CHAPTER 6 ■ SUBROUTINES/FUNCTIONS

133

• If they’re about testing whether something is true, give them a name that makes
sense in an if statement; starting with is_... or can_... helps, or if that isn’t
appropriate, name them with an adjective: for example, is_available(), valid(),
or readable().

• If you’re converting between one thing and another, try to convey both things—
traditionally this is done with a 2 or _to_ in the middle: text2html(),
meters_to_feet(). That way you can tell easily what’s expected and what’s being
produced.

Invoking a Subroutine
The conventional way to invoke a function is to follow the function name with parentheses. This invokes
the example_subroutine() function:

example_subroutine();

If the function takes arguments (more on passing arguments later in this chapter), then drop them
within the parentheses:

example_subroutine('Perl is', 'my favorite', $language);

Let’s look at a complete example. It’s traditional for programs to tell you their version and name
either when they start up or when you ask them with a special option. It’s also convenient to put the
code that prints this information into a subroutine to get it out of the way. Let’s take a familiar program
and update it for this traditional practice.

Here’s version 1:

#!/usr/bin/perl
hello1.pl

use warnings;

print "Hello, world!\n";

And here it is with strict mode turned on and version information:

#!/usr/bin/perl
hello2.pl

use warnings;
use strict;

sub version {
 print "Beginning Perl's \"Hello, world.\" version 2.0\n";
}

my $option = shift; # defaults to shifting @ARGV

version() if $option eq "-v" or $option eq "--version";

print "Hello, world.\n";

CHAPTER 6 ■ SUBROUTINES/FUNCTIONS

134

Now, we’re starting to look like a real utility:

$ perl hello2.pl -v
Beginning Perl's "Hello, world." version 2.0
Hello, world.
$

The first thing we see in hello2.pl is the definition of the version() function:

sub version {
 print "Beginning Perl's \"Hello, world.\" version 2.0\n";
}

It’s a simple block of code that calls the print() function. It didn’t have to—it could have done

anything. Any code that’s valid in the main program is valid inside a subroutine, including calling other
functions.

We call this block the body of the subroutine, just like the body of a loop; similarly, it stretches from
the open curly brace after the subroutine name to the matching closing curly brace.

Now that we’ve defined it, we can use it. We invoke the function with version(), and Perl runs that
block of code, assuming we’ve added the right flag on the command line.

version() if $option eq "-v" or $option eq "--version";

When Perl finishes executing version(), it comes back and carries on with the next statement:

print "Hello, world.\n";

No doubt version 3 will address the warnings that Perl gives if you call this program without
appending -v or --version to its name.

Order of Declaration and Invoking Functions
Normally, functions are called using parentheses as in the preceding program:

version()

We can also call them without the parentheses if the function is defined before it is invoked:

version

If we just call subroutines by name, without parentheses, we need to declare them before using
them. This may not sound like much of a limitation, but there are times when you want to declare a
subroutine after the main part of the program; in fact, that’s the usual way to structure a program. This is
because when you open up the file in your editor, you can see what’s going on right there at the top of
the file, without having to scroll through a bunch of definitions first. Take the extreme example shown at
the beginning of this chapter:

#!/usr/bin/perl

use warnings;
use strict;

CHAPTER 6 ■ SUBROUTINES/FUNCTIONS

135

setup();
get_input();
process_input();
output();

This would be followed, presumably, by something like this:

sub setup {
 print "This is some program, version 0.1\n";
 print "Opening files...\n";
 open_files();
 print "Opening network connections...\n";
 open_network();
 print "Ready!\n";
}

sub open_files {
 ...
}

■ Tip This structure makes it far easier to understand the program than if we had to trawl through a pile of
subroutines before getting to the four lines that constitute our main program.

In order to get this to work, we need to provide hints to Perl as to what we’re doing: that’s why the
preceding calls to subroutines include parentheses: setup(), open_files(), and so on.

This tells Perl that it should be looking for a subroutine somewhere instead of referring to another
type of variable. What happens if we don’t do this?

#!/usr/bin/perl
subdecl.pl

use warnings;
use strict;

setup;

sub setup {
 print "This is some program, version 0.1\n";
}

$ perl subdec1.pl
Bareword "setup" not allowed while “strict subs” in use at subdecl.pl line 7.
Execution of subdecl.pl aborted due to compilation errors.
$

CHAPTER 6 ■ SUBROUTINES/FUNCTIONS

136

Perl didn’t know what we meant at the time and complained. So, to tell it we want to execute a
subroutine, we use parentheses, just like when we want to disambiguate the parameters to a function
like print().

There’s another way we can tell Perl we’re going to refer to a subroutine, and that’s by providing a
forward definition—also known as predeclaring the subroutine. This means “We’re not going to define
this right now, but look out for it later.”

We do this by just saying sub NAME;, and note that this does require a semicolon at the end. Here’s
another way of writing the preceding example:

#!/usr/bin/perl

use warnings;
use strict;

sub setup;
sub get_input;
sub process_input;
sub output;
sub open_files;
sub open_network;
...

From now on, we can happily use the subroutines without the parentheses:

setup;
get_input;
process_input;
output;

sub setup {
 print "This is some program, version 0.1\n";
 print "Opening files...\n";
 open_files;
 print "Opening network connections...\n";
 open_network;
 print "Ready!\n";
}

sub open_files {
 ...
}

Alternatively, you can ask Perl to provide the forward declarations for you. If you say use subs

(...), you can provide a list of subroutine names to be predeclared:

#!/usr/bin/perl

use warnings;
use strict;

CHAPTER 6 ■ SUBROUTINES/FUNCTIONS

137

use subs qw(setup get_input process_input output pen_files open_network);

...

And here’s yet another way of calling subroutines:

&setup;
&get_input;
&process_input;
&output;

This was popular in the days of Perl 4, and we’ll see later why the ampersand is important. For the

time being, think of the ampersand as being the “type symbol” for subroutines.
In this book we will stick to calling functions with parentheses to clearly indicate that we are

invoking a function. As a rule of thumb, the more clarity, the better.

■ Tip Here is a suggestion about the order of declaration: pick one and stick with it. If you prefer functions
defined before the main code, do that consistently. If you prefer functions defined after the main code, again, be
consistent.

Passing Arguments into Functions

As well as being set pieces of code to be executed whenever we need them, we can also use our user-
defined functions just like Perl’s built-in functions—we can pass arguments (aka parameters) to them

Just as with Perl’s built-ins, we pass parameters by placing them between the parentheses:

my_sub(10,15);

Function arguments are passed in through one of Perl’s special variables, the array @_, and from
there they can be accessed within the function. We’ll illustrate this with a subroutine that takes a list of
values, adds them up, and prints the total. This example, total1.pl, contains a function named total()
that loops through the argument list @_ and sums the arguments passed in:

#!/usr/bin/perl
total1.pl

use warnings;
use strict;

total(111, 107, 105, 114, 69);
total(1...100);

sub total {
 my $total = 0;

CHAPTER 6 ■ SUBROUTINES/FUNCTIONS

138

 $total += $_ foreach @_;
 print "The total is $total\n";
}

And to see it in action:

$ perl total1.pl
The total is 506
The total is 5050
$

This program illustrates that you can pass any list to a subroutine, just as you can to print(). When

you do, the list ends up in @_, where it’s up to you to do something with it. Here, we go through each
element and add them up:

 $total += $_ foreach @_;

This is a little cryptic, but it’s how you’re likely to see it if written by an experienced Perl
programmer. You could write this a little less tersely, like this:

my @args = @_;
foreach my $element (@args) {
 $total = $total + $element;
}

In the first example, @_ would contain (111, 107, 105, 114, 69), and we’d add each value to $total

in turn.
When we pass arguments into functions, we often treat the arguments as individual values instead

of treating @_ as a single variable. To grab each value passed in to the function, there are two common
options: shifting the arguments or using an assignable list.

Let’s look at a simple program that grabs two arguments passed to the function add() and prints
their sum. This example will shift() the arguments out of @_ (recall that shift() removes the left-most
element of an array, and note that within a function, it defaults to shifting @_):
#!/usr/bin/perl
add1.pl

use warnings;
use strict;

add(10, 2);

sub add {
 my $arg1 = shift @_;
 my $arg2 = shift; # defaults to shifting @_

 print "sum is: ", $arg1 + $arg2, "\n";
}

Executing this example:

$ perl add1.pl

CHAPTER 6 ■ SUBROUTINES/FUNCTIONS

139

sum is: 12
$

An alternative approach is to assign @_ to an assignable list as shown in add2.pl:

#!/usr/bin/perl
add2.pl

use warnings;
use strict;

add(10, 2);

sub add {
 my($arg1, $arg2) = @_;

 print "sum is: ", $arg1 + $arg2, "\n";
}

Recall that an assignable list takes the list or array on the right of the assignment operator and
copies it memberwise into the list on the left side of the assignment operator. This line of code copies
the two function operators member-wise into the variables $arg1 and $arg2:

my($arg1, $arg2) = @_;

■ Note Make sure that parentheses are used even if there is only one argument assigned to a variable:
my($arg) = @_;

and not:
my $arg = @_;

Using parentheses creates a list so that the 0th element of @_ is copied. If the parentheses are dropped, then @_ is
taken in scalar context, which is its size, in this case 1.

Return Values
Back to our example of summing the contents of @_. Sometimes we don’t want to perform an action like
printing out the total, but instead we want to return the total. We may also want to return a result to
indicate whether what we were doing succeeded, allowing us to say things like

$sum_of_100 = total(1..100);

There are two ways to do this: implicitly or explicitly. The implicit way is nice and easy—we just
make the value we want to return the last item in our subroutine:

CHAPTER 6 ■ SUBROUTINES/FUNCTIONS

140

#!/usr/bin/perl
total2.pl

use warnings;
use strict;

my $total = total(111, 107, 105, 114, 69);
print "the total is: $total\n";

my $sum_of_100 = total(1..100);
print "the sum of 100 is: $sum_of_100\n";

sub total {
 my $total = 0;
 $total += $_ foreach @_;
 $total;
}

Running this code results in the following:

$ perl total2.pl
the total is: 506
the sum of 100 is: 5050
$

The last expression in the function doesn’t need to be a variable: you could use any expression. You

can also return a list instead of a single scalar.
Here is an example of returning a list from a function. Let’s convert a number of seconds to hours,

minutes, and seconds. We pass the time in seconds into the subroutine, and the subroutine returns a
three-element list with the hours, minutes, and remaining seconds.

#!/usr/bin/perl
seconds1.pl

use warnings;
use strict;

my ($hours, $minutes, $seconds) = secs2hms(3723);
print "3723 seconds is $hours hours, $minutes minutes and $seconds seconds";
print "\n";

sub secs2hms {
 my ($h,$m);
 my $seconds = shift; # defaults to shifting @_
 $h = int($seconds/(60*60));
 $seconds %= 60*60;
 $m = int($seconds/60);
 $seconds %= 60;
 ($h,$m,$seconds);
}

CHAPTER 6 ■ SUBROUTINES/FUNCTIONS

141

This tells us that

$ perl seconds1.pl
3723 seconds is 1 hours, 2 minutes and 3 seconds
$

This program illustrates that just as with a built-in function, when you’re expecting a subroutine to

return a list, you can use an array or list of variables to collect the return values:

my ($hours, $minutes, $seconds) = secs2hms(3723);

When secs2hms() returns, this will be equivalent to

my ($hours, $minutes, $seconds) = (1,2,3);

And now let’s look at how the subroutine works. We start in the usual way: sub, the name of the
function, and a block.

sub secs2hms {

We have two variables to represent hours and minutes, and we read the parameters in from @_. As
we mentioned before, if you don’t tell shift() which array to take data from, it’ll read from @_ if you’re in
a subroutine or (@ARGV if you’re not in a subroutine. Therefore, the first argument to secs2hms(), 3723, is
shifted into $seconds:

 my ($h,$m);
 my $seconds = shift;

Then the actual conversion: there are 3600 (60*60) seconds in an hour, and so the number of hours

is the number of seconds divided by 3600. However, that’ll give us a floating point number—if we
divided 3660 by 3600, we’d get 1.0341666. We’d rather have “one and a bit,” so we use int() to get the
integer value, the “1” part of the division, and use the modulus operator to get the remainder; having
dealt with the first 3600 seconds, we want to carry on looking at the next 123.

 $h = int($seconds/(60*60));
 $seconds %= 60*60;

The second statement sets $seconds to $seconds % (60*60)—if it was 3723 before, it’ll be 123 now.
The same goes for minutes: we divide to get “two and a bit,” and getting the remainder tells us that

there are 3 seconds outstanding. Hence, our values are 1 hour, 2 minutes, and 3 seconds.

 $m = int($seconds/60);
 $seconds %= 60;

We return this just by leaving a list of the values as the last item in the subroutine.

 ($h,$m,$seconds);

The return Statement
The explicit method of returning something from a subroutine is to say return(...). The first return
statement the program comes across will immediately return to the caller. For example:

CHAPTER 6 ■ SUBROUTINES/FUNCTIONS

142

sub secs2hms {

 …

 return ($h,$m,$seconds);
 print “This statement is never reached.”;
}

This means we can have more than one return statement, and it’s often useful to do so. So the

seconds1.pl program is better written as seconds2.pl:

#!/usr/bin/perl
seconds2.pl

use warnings;
use strict;

my ($hours, $minutes, $seconds) = secs2hms(3723);
print "3723 seconds is $hours hours, $minutes minutes and $seconds seconds";
print "\n";

sub secs2hms {
 my ($h,$m);
 my $seconds = shift; # defaults to shifting @_
 $h = int($seconds/(60*60));
 $seconds %= 60*60;
 $m = int($seconds/60);
 $seconds %= 60;
 return($h,$m,$seconds);
}

Understanding Scope
Now it’s time to have a look at what we’re doing when we declare a variable with my(). The truth, as
we’ve briefly glimpsed, is that Perl has two types of variables, the global or package variable, which can
be accessed anywhere in the program, and the lexical or local variable, which we declare with my() and
which can be accessed only within the block where it is declared.

Global Variables
All variables in the program are global by default. Consider this code:

#!/usr/bin/perl

use warnings;

$x = 10;

CHAPTER 6 ■ SUBROUTINES/FUNCTIONS

143

$x is a global variable. It is available in every subroutine in the program. For instance, here is a

program that accesses a global variable:

#!/usr/bin/perl
global1.pl

use warnings;

$x = 10;

access_global();

sub access_global {
 print "value of \$x: $x\n";
}

Executing this code shows that $x is accessible in access_global():

$ perl global1.pl
value of $x: 10
$

Since variables within functions are global by default, functions can modify variables as shown in this
program:

#!/usr/bin/perl
global2.pl

use warnings;

$x = 10;

print "before: $x\n";
change_global();
print "after: $x\n";

sub change_global {
 $x = 20;
 print "in change_global(): $x\n";
}

This program assigns the global variable $x the value 10 and then prints that value. Then,

change_global() is invoked. It assigns $x the value 20—this accesses the global variable $x, then prints
its value. Then in the main part of the code, after the function is called, the global $x is printed with its
new value—20, as we can see:

$ perl global2.pl
before: 10
in change_global(): 20
after: 20
$

CHAPTER 6 ■ SUBROUTINES/FUNCTIONS

144

The fact that Perl function variables are global by default is not a bad thing, unless of course you are

not expecting it. If you are not expecting it, accidentally overwriting global variables can cause hard-to-
find bugs. Once you know that the variables are global by default, you will probably want to make
function arguments local.

Introduction to Packages
When you start programming, you’re in a package called main. A package is a collection of variables that
is separate from other packages. Let’s say you have two packages: A and B. Each package can have its
own variable named $x, and those two $x variables are completely distinct.

If you assign $x, as in the previous global2.pl program, you create a package variable $x in package
main (the main package is the default package). Perl knows it by its full name, $main::x—the variable $x in
the main package—but because you’re in the main package when you make the assignment, you can just
call it by its short name, $x. It’s like the phone system—you don’t have to dial the area code when you
call someone in the same area as you.1

You can create a variable in another package by using a fully qualified name. Suppose instead of the
main package, we have a package called Fred where we store all of Fred’s variables and subroutines. To
get at the $name variable in package Fred, we say $Fred::name, like this:

$x = 10;
$Fred::name = "Fred Flintstone";

The fact that the variable is in a different package doesn’t mean we can’t get at it. Remember that

these are global variables, available from anywhere in our program. All packages do is give us a way of
subdividing the namespace.

What do we mean by “subdividing the namespace”? Well, the namespace is the set of names we can
give our variables. Without packages, you could only have one $name. What packages do is help us make
$name in package Fred different to $name in package Barney and $name in package main.

#!/usr/bin/perl
globals1.pl

use warnings;

$main::name = "Your Name Here";
$Fred::name = "Fred Flintstone";
$Barney::name = "Barney Rubble";

print "\$name in package main is $name\n";
print "\$name in package Fred is $Fred::name\n";
print "\$name in package Barney is $Barney::name\n";

1 Depending on your location, of course. Nowadays, with so many area codes in a metropolitan area, to call
across the street often requires dialing 10 digits . . .

CHAPTER 6 ■ SUBROUTINES/FUNCTIONS

145

$ perl globals1.pl
$name in package main is Your Name Here
$name in package Fred is Fred Flintstone
$name in package Barney is Barney Rubble
$

You can change what package you’re working in with the aptly named package operator. We could

write the preceding like this:

#!/usr/bin/perl
globals2.pl

use warnings;

$main::name = "Your Name Here";
$Fred::name = "Fred Flintstone";
$Barney::name = "Barney Rubble";

print "\$name in package main is $name\n";
package Fred;
print "\$name in package Fred is $name\n";
package Barney;
print "\$name in package Barney is $name\n";
package main;

When use strict is in force, we have to use the full names of our package variables. If we try to say
this:

#!/usr/bin/perl
strict1.pl

use warnings;
use strict;

$x = 10;
print $x;

Perl will give us an error—global symbol $x requires an explicit package name. The package name it’s
looking for is main, and it wants us to say $main::x.

#!/usr/bin/perl
strict2.pl

use warnings;
use strict;

$main::x = 10;
print $main::x, "\n";

CHAPTER 6 ■ SUBROUTINES/FUNCTIONS

146

Global variables can be accessed and altered at any time by any subroutine or assignment you care
to apply to them. Of course, this is handy if you want to store a value—for instance, the user’s name—
and be able to get it anywhere.

It’s also an absolute pain in the neck when it comes to subroutines. Here’s why:

$foo = 25;
$bar = some_sub(10);
print $foo;

Looks innocent, doesn’t it? Looks like we should see the answer 25. But what happens if some_sub()

uses and changes the global $foo? Any variable anywhere in your program can be wiped out by another
part of your program—we call this action at a distance, and it can be difficult to debug. Packages alleviate
the problem, but to make sure we never get into this mess, we have to ensure that every variable in our
program has a different name. In small programs, that’s feasible, but in huge team efforts, it’s a
nightmare. It’s far clearer to be able to restrict the possible effect of a variable to a certain area of code,
and that’s exactly what lexical variables do.

Lexical Variables (aka Local Variables)
The range of effect that a variable has is called its scope, and lexical variables declared with my() are said
to have lexical or local scope. That is, they exist from the point where they’re declared until the end of the
enclosing block. The name “lexical” comes from the fact that they’re confined to a well-defined chunk of
text.

my $x;
$x = 30;
{
 my $x; # new $x
 $x = 50;
 # we can’t see the old $x, even if we want to
}
print $x; # this $x is, and always has been, 30

Great. We can now use variables in our subroutines with the knowledge that we’re not going to

upset any behavior outside of them. Let’s modify global2.pl by adding my() in the function (now called
change_global_not()):

#!/usr/bin/perl
my.pl

use warnings;

$x = 10;

print "before: $x\n";
change_global_not();
print "after: $x\n";

sub change_global_not {
 my $x = 20;

CHAPTER 6 ■ SUBROUTINES/FUNCTIONS

147

 print "in change_global_not(): $x\n";
}

This gives us the output we expect:

$ perl my.pl
before: 10
in change_global_not(): 20
after: 10
$

Some Important Notes on Passing Arguments
Sometimes we want to pass things other than an ordinary list of scalars, so it’s important to understand
how passing arguments works.

Function Arguments Passed by Reference
It’s important to know that in Perl, arguments are passed into functions by reference, not by value. This
is illustrated in the following example:

#!/usr/bin/perl
byref1.pl

use warnings;
use strict;

my $var = 10;
print "before: $var\n";
change_var($var);
print "after: $var\n";

sub change_var {
 print "in change_var() before: $_[0]\n";
 ++$_[0];
 print "in change_var() after: $_[0]\n";
}

First, $var is assigned 10 and then printed. Then, $var is passed into the function change_var(). This
function prints the value of $_[0], increments it, then prints it again. The important line of code in this
function is

++$_[0];

Since the arguments to the function are passed in through the array @_, to access the zeroth
argument of the array we use the syntax $_[0]—this function prints $var, increments it, then prints it
again. The important thing to note about this code is that since $var is passed into the function by
reference, when $_[0] is incremented, Perl actually increments the argument passed in, $var, from 10

CHAPTER 6 ■ SUBROUTINES/FUNCTIONS

148

to 11. After the function call, the program then prints the resulting value of $var, which is now 11.
Executing the code proves this:

$ perl byref1.pl
before: 10
in change_var() before: 10
in change_var() after: 11
after: 11
$

The fact that Perl passes arguments by reference is not in itself a bad thing, but it can be if you are

not expecting it. Having functions modify arguments when you don’t want them to can create hard-to-
find bugs. There is a very simple way to ensure that your functions don’t modify their arguments—
simply copy them into my() variables as shown in this example:

#!/usr/bin/perl
byref2.pl

use warnings;
use strict;

my $var = 10;
print "before: $var\n";
change_var($var);
print "after: $var\n";

sub change_var {
 my($v) = @_;
 # or: my $v = shift;

 print "in change_var() before: $v\n";
 ++$v;
 print "in change_var() after: $v\n";
}

The big change here is the first line of change_var():

my($v) = @_;

This copies the zeroth element of @_, or $_[0], into $v. As mentioned before and as indicated by the
comment, we could have written this as

my $v = shift;

since the shift() function shifts @_ by default if invoked within a function (recall also that if shift() is
invoked outside a function it shifts @ARGV by default). Now, since the argument is copied into $v, when
we increment it with

++$v;

the copy within the function is incremented, not $var. Executing the program proves this:

CHAPTER 6 ■ SUBROUTINES/FUNCTIONS

149

$ perl byref2.pl
before: 10
in change_var() before: 10
in change_var() after: 11
after: 10
$

Lists Are One-Dimensional
Recall that all lists and all arrays are one-dimensional. If we have this list:

(@a, @b)

it becomes a one-dimensional list containing the contents of @a followed by the contents of @b. This is an
important rule when it comes to passing arrays into functions, since they will be passed in as a one-
dimensional list. This is illustrated in the following example:

#!/usr/bin/perl
passarrays.pl

use warnings;
use strict;

my(@nums1, @nums2);

@nums1 = (2, 4, 6);
@nums2 = (8, 10, 12);

process_arrays(@nums1, @nums2);

sub process_arrays {
 my(@a, @b) = @_;

 print "contents of \@a\n";
 print "[$_] " foreach @a;
 print "\n\n";

 print "contents of \@b\n";
 print "[$_] " foreach @b;
 print "\n";
}

This program creates two 3-element arrays, @nums1 and @nums2. These arrays are then passed into

process_arrays() and are immediately copied into two arrays, @a and @b. We might think that @a receives
the contents of @nums1 and @b receives the contents of @nums2, but that is not what happens. Since the
arguments are passed in as

process_arrays(@nums1, @nums2);

the elements are flattened into this one-dimensional list:

(2, 4, 6, 8, 10, 12)

CHAPTER 6 ■ SUBROUTINES/FUNCTIONS

150

and this list is passed in and assigned to the assignable list:

my(@a, @b) = @_;

Since this assignable list contains an array, @a, it will consume all the elements that are assigned to
it. Therefore, @b will be empty because there are no elements remaining to assign to it. So, when we
execute this program, we will see that @a contains all the elements passed in and @b contains no
elements:

$ perl passarrays.pl
contents of @a
[2] [4] [6] [8] [10] [12]

contents of @b

$

Later, when we discuss references in Chapter 11, you will see how to pass two arrays (or hashes) into

a function and treat them as two separate variables.

Default Argument Values
It can be useful at times to give the arguments for your subroutine a default value. That is, supply the
argument with a value to use in the subroutine if one is not specified when the subroutine is called. This
is very easily done with the || operator (the logical or operator).

|| has a very special feature: it returns the last thing it evaluates. So, for instance, if we say $a = 3 ||
5, then $a will be set to 3. Because 3 is a true value, the or operator has no need to examine anything else,
and so 3 is the last value || evaluates. If, however, we say $a = 0 || 5, then $a will be set to 5; 0 is not a
true value, so the operator looks at the next operand, 5, which is the last thing it evaluates. This behavior
is called short circuiting.

Hence, anything we get from @_ that doesn’t have a true value can be given a default with the ||
operator. We can create subroutines with a flexible number of parameters and have Perl fill in the blanks
for us:

#!/usr/bin/perl
defaults.pl

use warnings;
use strict;

log_warning("Klingons on the starboard bow", "Stardate 60030.2");
log_warning("/earth is 99% full, please delete more people");
log_warning();

sub log_warning {
 my $message = shift || "Something's wrong";
 my $time = shift || localtime; # Default to now.
 print "[$time] $message\n";
}

CHAPTER 6 ■ SUBROUTINES/FUNCTIONS

151

$ perl defaults.pl
[Stardate 60030.2] Klingons on the starboard bow
[Wed Nov 18 09:18:50 2009] /earth is 99% full, please delete more people

[Wed Nov 18 09:18:50 2009] Something's wrong
$

One by-product of specifying defaults for parameters is the opportunity to use those parameters as

flags. Your subroutine can then alter its functionality based on the number of arguments passed to it.

Named Parameters
One of the more irritating aspects of calling subroutines is that you have to remember the order of the
parameters. Was it username first and then password, or host first and then username, or . . . ?

Named parameters are a readable way of solving this. What we’d rather say is something like this:

logon(username => $name, password => $pass, host => $hostname);

and then give the parameters in any order. Now, Perl makes this really, really easy because that set of
parameters can be thought of as a hash:

sub logon {
 die "Parameters to logon should be even" if @_ % 2;
 my %args = @_;
 print "Logging on to host $args{hostname}\n";
 ...
}

Whether and how often you use named parameters is a matter of style; for subroutines that take lots

of parameters, some of which may be optional, it’s an excellent idea. For those that take two or three
parameters, it’s probably not worth the hassle.

Named parameters also help when you want to provide default values to your arguments. For
instance, let’s say we write a function named college_degree() and it expects three arguments:
university, degree, year. We could call the function with all three arguments:

college_degree(
 university => 'Illinois',
 degree => 'MSEE',
 year => 2000
);

Since we are using named parameters, the order of those three argument pairs is not important—

they could be in any order. We could also call the function with only two pair, as in

 college_degree(
 degree => 'MSEE',
 year => 2000
);

CHAPTER 6 ■ SUBROUTINES/FUNCTIONS

152

provided our function defaults the arguments. This implementation of college_degree() ensures that
the three arguments have default values:

sub college_degree {
 my %args = @_;

 $args{university} = 'Northwestern' unless exists $args{university};
 $args{degree} = 'BSCS’ unless exists $args{degree};
 $args{year} = 2010 unless exists $args{year};

 ...
}

Summary
Subroutines are a bit of code with a name, and they allow us to do two things: chunk our program into
organizational units, and perform calculations and operations on pieces of data, possibly returning
some more data. The basic format of a subroutine definition is

sub name BLOCK

We can call a subroutine by just saying name if we’ve had the definition beforehand. If the
definition’s lower down in the program, we can say name(), and you may see &name used in older
programs. Otherwise, we can use a forward definition to tell Perl that name should be interpreted as the
name of a subroutine. The conventional notation is name().

When we pass arguments into a subroutine, they end up in the special array @_, which contains
aliases of the data that was passed so data is passed in by reference. We discussed ways of passing
variables in by value (copying the arguments into my() variables) and also how to implement default
argument values and named parameters.

Exercises
1. Write a program that computes the factorial of a number. Just to remind you, the factorial of

a number is that number times that number minus 1 and so on, stopping at 1. For instance,

the factorial of 5 is

5! = 5 * 4 * 3 * 2 * 1

The factorial of 0 is 1.

2. If you know about recursion, implement the factorial() function as a recursive function.

3. Modify the seconds.pl program shown earlier in the chapter so that it contains a second

subroutine that asks the user for a number, puts the number into a global variable, and

converts that into hours, minutes, and seconds.

C H A P T E R 7

■ ■ ■

153

Regular Expressions

11:15 Restate my assumptions:

1. Mathematics is the language of nature.
2. Everything around us can be represented and understood through numbers.
3. If you graph these numbers, patterns emerge. Therefore: There are patterns everywhere

in nature.
—Max Cohen in π (Pi, 1998)

Whether you agree that Max’s assumptions should give rise to his conclusion is up to you, but his case is much easier
to support in the field of computers—there are patterns everywhere in programming.

Regular expressions allow us to look for patterns in our data. So far we’ve been limited to checking a single value
against that of a scalar variable or the contents of an array or hash. With the rules outlined in this chapter, we can use
that one single value (or pattern) to describe what we’re looking for in more general terms: we can check that every
sentence in a file begins with a capital letter and ends with a period, find out how many times James Bond’s name is
mentioned in Goldfinger, or even if there are any repeated sequences of numbers in the decimal representation of
greater than five in length.

Regular expressions, however, are a huge topic. They’re among the most powerful features of Perl, and so our
examination of them will be divided up into six sections:

• Basic patterns

• Special characters to use

• Quantifiers, anchors, and memorizing patterns

• Matching, substituting, and transforming text using patterns

• Backtracking

• A quick look at some simple pitfalls

Generally speaking, if you want to ask Perl something about a piece of text, regular expressions are going to be
your first port of call. First, however, there’s probably one simple question burning in your mind . . .

What Are They?
The term regular expression (now commonly abbreviated to regex or even RE) simply refers to a pattern that follows
particular rules of syntax—for Perl, those outlined in the rest of this chapter. Regular expressions are not limited to
Perl—Unix utilities such as sed and egrep use the same notation for finding patterns in text (well, not exactly the

CHAPTER 7 ■ REGULAR EXPRESSIONS

154

same since Perl regexes are an extension of egrep’s regexes). So why aren’t they just called “search patterns” or
something less obscure?

The actual phrase itself originates from the mid-fifties when a mathematician named Stephen Kleene developed
a notation for manipulating regular sets. Perl’s regular expressions have grown far beyond the original notation and
have significantly extended the original system, but some of Kleene’s notation remains and the name has stuck.

Patterns
History lesson aside, regular expressions are all about identifying patterns in text. So what constitutes a pattern? And
how do you compare it against something?

The simplest pattern is a word—a simple sequence of characters—and we may, for example, want to ask Perl
whether a certain string contains that word. We can split the string into separate words, and then test to see if each
word is the one we’re looking for. Here’s how we might do that:

#!/usr/bin/perl
match1.pl

use warnings;
use strict;

my $found = 0;
$_ = "Nobody wants to hurt you... 'cept, I do hurt people sometimes, Case.";

my $sought = "people";

foreach my $word (split) {
 if ($word eq $sought) {
 $found = 1;
 last;
 }
}

if ($found) {
 print "Hooray! Found the word 'people'\n";
}

Sure enough the program returns success . . .

$ perl match1.pl
Hooray! Found the word 'people'
$

But oh, that’s messy! It’s complicated, and it’s slow to boot! Worse still, the split()function, which breaks up
each line into a list of “words,” actually keeps all the punctuation. (We’ll see more about split()later in the chapter.)
So the string “you” wouldn’t be found in the preceding example, but “you . . .” would. This is looking like a hard
problem, but it should be easy. Perl was designed to make easy things easy and hard things possible, so there should
be a better way to do this. Let’s see how it looks using a regular expression:

#!/usr/bin/perl
match2.pl

use warnings;
use strict;

$_ = "Nobody wants to hurt you... 'cept, I do hurt people sometimes, Case.";

CHAPTER 7 ■ REGULAR EXPRESSIONS

155

if ($_ =~ /people/) {
 print "Hooray! Found the word 'people'\n";
}

Much, much easier, and the same result. We place the text we want to find between forward slashes—that’s the
regular expression part; that’s our pattern, what we’re trying to match. We also need to tell Perl in which particular
string to look for that pattern, and we do so with the =~ operator. This operator returns 1 if the pattern match was
successful (in our case, whether the character sequence “people” was found in the string) and the empty string if it
wasn’t.

Before we move on to more complicated patterns, let’s just have a quick look at that syntax. As we have noted
previously, a lot of Perl’s operations take $_ as a default argument, and regular expressions are among those
operations. Since we have the text we want to test in $_, we don’t need to use the =~ operator to “bind” the pattern to
another string. We could write the code even more simply:

$_ = "Nobody wants to hurt you... 'cept, I do hurt people sometimes, Case.";

if (/people/) {
 print "Hooray! Found the word 'people'\n";
}

Alternatively, we might want to test for the pattern not matching—for the word not being found. Obviously, we
could say unless (/people/), but if the text we’re looking at isn’t in $_, we can also use the negative form of that =~
operator, which is !~. For example:

#!/usr/bin/perl
nomatch.pl

use warnings;
use strict;

my $gibson =
 "Nobody wants to hurt you... 'cept, I do hurt people sometimes, Case.";

if ($gibson !~ /fish/) {
 print "There are no fish in William Gibson.\n";
}

True to form, as cyberpunk books don’t regularly involve fish, we get the result:

$ perl nomatch.pl
There are no fish in William Gibson.
$

Literal text is the simplest regular expression to look for, but we needn’t look for just the one word—we could
look for any particular phrase. However, we have to make sure that we exactly match all the characters—words (with
correct capitalization), numbers, punctuation, and even whitespace.

#!/usr/bin/perl
match3.pl

use warnings;
use strict;

$_ = "Nobody wants to hurt you... 'cept, I do hurt people sometimes, Case.";

if (/I do/) {
 print "'I do' is in that string.\n";
}

CHAPTER 7 ■ REGULAR EXPRESSIONS

156

if (/sometimes Case/) {
 print "'sometimes Case' matched.\n";
}

Let’s run this program and see what happens:

$ perl match3.pl
'I do' is in that string.
$

The other string didn’t match, even though the two words are there. This is because everything in a regular

expression has to match the string, from start to finish: first “sometimes”, then a space, then “Case”. But in $_ there
was a comma before the space, so it didn’t match exactly. Similarly, spaces inside the pattern are significant:

#!/usr/bin/perl
match4.pl

use warnings;
use strict;

my $test1 = "The dog is in the kennel";
my $test2 = "The sheepdog is in the field";

if ($test1 =~ / dog/) {
 print "This dog's at home.\n";
}

if ($test2 =~ / dog/) {
 print "This dog's at work.\n";

}

This will only find the first dog, as Perl is looking for a space followed by the three letters “dog”:

$.perl match4.pl
This dog's at home.
$

So, for the moment, it looks like we have to specify our patterns with absolute precision. As another example,

look at this:

#!/usr/bin/perl
match5.pl

use warnings;
use strict;

$_ = "Nobody wants to hurt you... 'cept, I do hurt people sometimes, Case.";

if (/case/) {
 print "I guess it's just the way I'm made.\n";
} else {
 print "Case? Where are you, Case?\n";
}

$ perl match5.pl
Case? Where are you, Case?

$

CHAPTER 7 ■ REGULAR EXPRESSIONS

157

Hmm, no match. Why not? Because we asked for a lowercase “c” when the string has an uppercase “C”—regexes
are (if you’ll pardon the pun) case-sensitive. We can get around this by asking Perl to compare insensitively, and we
do this by putting an “i” (for “insensitive”) after the closing slash. If we alter the preceding code as follows:

if (/case/i) {
 print "I guess it's just the way I'm made.\n";
} else {
 print "Case? Where are you, Case?\n";

}

Then we find him:

$ perl match5.pl
I guess it's just the way I'm made.
$

This “i” is one of several modifiers we can append to the end of a regular expression to change its behavior
slightly. We’ll see more of them later.

Interpolation
Regular expressions work a little like double-quoted strings—variables and metacharacters are interpolated. This
means we can store patterns or parts of patterns in variables. Exactly what gets matched will be determined when the
program is run—patterns need not be hard-coded.

The following program illustrates this concept. It asks the user for a pattern, then tests to see if the pattern
matches our string. We can use this program throughout the chapter to help test the various styles of pattern we’ll be
looking at.

#!/usr/bin/perl
matchtest.pl

use warnings;
use strict;

$_ = q("I wonder what the Entish is for 'yes' and 'no'," he thought.);
Tolkien, Lord of the Rings

print "Enter some text to find: ";
my $pattern = <STDIN>;
chomp($pattern);

if (/$pattern/) {
 print "The text matches the pattern '$pattern'.\n";
} else {
 print "'$pattern' was not found.\n";

}

Now we can test a few things:

$ perl matchtest.pl
Enter some text to find: wonder
The text matches the pattern 'wonder'.

$ perl matchtest.pl
Enter some text to find: entish

CHAPTER 7 ■ REGULAR EXPRESSIONS

158

'entish' was not found.

$ perl matchtest.pl
Enter some text to find: hough
The text matches the pattern 'hough'.

$ perl matchtest.pl
Enter some text to find: and 'no',
The text matches the pattern 'and 'no''.

matchtest.pl has its basis in these three lines:

my $pattern = <STDIN>;
chomp($pattern);

if (/$pattern/) {

First we take a line of text from the user. Since it will end in a newline and we don’t necessarily want to find a
newline in our pattern, we chomp() it off. Then we do our test.

Since we’re not using the =~ operator, the test will be looking at the variable $_. The regular expression is
/$pattern/; the variable $pattern is interpolated into the regex, just as it would be in the double-quoted string
"$pattern". Hence, the regular expression is purely and simply whatever the user typed in, once we have removed
the newline.

Metacharacters and Escaping
Of course, regular expressions can be more than just words and spaces. The rest of this chapter will discuss the
various ways we can specify more advanced matches—where portions of the match are allowed to be any one of a set
of characters, for instance, or where the match must occur at a certain position in the string. To do this, we’ll describe
the special meanings given to certain characters—called metacharacters—looking at what these meanings are and
what sort of things we can express with them.

At this stage, though, we might not want to use their special meanings; we may want to literally match the
characters themselves. As you’ve already seen with double-quoted strings, we can use a backslash to escape these
characters’ special meanings. So, if you want to match ... in the preceding text, your pattern needs to say \.\.\.. For
example:

$ perl matchtest.pl
Enter some text to find: Ent+
The text matches the pattern 'Ent+'.

$ perl matchtest.pl
Enter some text to find: Ent\+
'Ent\+' was not found.

We’ll see later why the first one matched—due to the special meaning of +.

■ Note The following characters have special meaning within a regular expression. You therefore need to backslash these

characters whenever you want to use them literally.

. * ? + [() { ^ $ | \

All other characters automatically assume their literal meanings.

CHAPTER 7 ■ REGULAR EXPRESSIONS

159

You can also turn off the special meanings using the escape sequence \Q. After Perl sees \Q, the 12 special
characters shown in the preceding note will automatically assume their ordinary, literal meanings. This remains the
case until Perl sees either \E or the end of the pattern.

For instance, if we wanted to adapt our matchtest.pl program to look for just literal strings instead of regular
expressions, we could change it to look like this:

if (/\Q$pattern\E/) {

Now the meaning of + is turned off:

$ perl matchtest.pl
Enter some text to find: Ent+
'Ent+' was not found.
$

Note in particular that all \Q does is turn off the regular expression magic of those 12 characters shown earlier—it
doesn’t stop, for example, variable interpolation.

■ Tip Don’t forget to change this back again: we’ll be using matchtest.pl throughout this chapter to demonstrate the regular

expressions we look at, so we’ll need the normal metacharacter behavior!

Anchors
So far, our patterns have tried to find a match anywhere in the string. The first way we’ll extend our regular
expressions is by telling Perl where the match must occur. We can say “These characters must match the beginning of
the string” or “This text must be at the end of the string.” We do this by anchoring the match to either end.

The two anchors we use are ^, which appears at the beginning of the pattern, anchoring a match to the
beginning of the string; and $, which comes at the end of the pattern, anchoring it to the end of the string. So, to see if
our quotation ends in a period—and remember that the period is a metacharacter—we say something like this:

$ perl matchtest.pl
Enter some text to find: \.$
The text matches the pattern '\.$'.

That’s a period (which we’ve escaped to prevent it from being treated as a metacharacter) and a dollar sign at the
end of our pattern—to show that the pattern must match the end of the string.

■ Note We suggest that you to get into the habit of reading out regular expressions in English—break them into pieces and

say what each piece does. Remember to say that each piece must immediately follow the other in the string in order to match.

For instance, the preceding regex could be read “Match a period immediately followed by the end of the string.” Similarly, the

regex “Ent” is read as “Match an uppercase ‘E’ immediately followed by a lowercase ‘n’ immediately followed by a lowercase

‘t’.”

If you can get into this habit, you’ll find that reading and understanding regular expressions becomes a lot easier, and that

you’ll be able to “translate” back into Perl more naturally as well.

CHAPTER 7 ■ REGULAR EXPRESSIONS

160

Here’s another example: do we have a capital “I” at the beginning of the string?

$ perl matchtest.pl
Enter some text to find: ^I
'^I' was not found.
$

We use ^ to mean “beginning of the string,” followed by an “I”. In our case, though, the character at the
beginning of the string is a ", so our pattern does not match. If you know that what you’re looking for can only occur
at the beginning or the end of the string, it’s far more efficient to use anchors; instead of searching through the entire
string to see whether the match succeeded, Perl needs to look at only a small portion, and can give up immediately if
the match fails on the very first character.

Let’s see if we can match "I at the beginning of the string:

$ perl matchtest.pl
Enter some text to find: ^"I
The text matches the pattern '^"I'.
$

Let’s see one more example of this, where we’ll combine looking for matches with looking through the lines in a
file.

Imagine yourself as a poor poet. In fact, not just poor, but downright bad—so bad you can’t even think of a
rhyme for “pink.” So, what do you do? You do what every sensible poet does in this situation, and you write the
following Perl program:

#!/usr/bin/perl
rhyming.pl

use warnings;
use strict;

my $syllable = "ink";

while (<>) {
 print if /$syllable$/;
}

We can now feed it a file of words, and find those that end in “ink”:

$ perl rhyming.pl wordlist.txt
bethink
blink
bobolink
brink
clink
$

■ Tip For a really thorough result, you would need to use a file containing every word in the dictionary. Be prepared for a bit of

a wait if you do this, though! For this example, however, any text-based file will do (though it will help if it is in English). A

bobolink, in case you’re wondering, is a migratory American songbird, otherwise known as a ricebird or reedbird.

Let’s look at this code in detail. First, we see the following:

CHAPTER 7 ■ REGULAR EXPRESSIONS

161

while (<>) {
 print if /$syllable$/;
}

The first thing to note are the characters within the while loop parentheses. We will talk about the in detail

in the next chapter, but briefly, reads from either of two places: from one or more files specified on the command
line (here wordlist.txt) or from standard input if there are no files on the command line. The data is read into $_ one
line at a time, and this continues by default until all input has been read. We test each line of the file read into $_ to
see if it matches the pattern, which is our syllable, “ink”, anchored to the end of the line (with $). If so, we print it out.
Recall that print() defaults to printing $_.

The important thing to note here is that Perl treats the “ink” as the last thing on the line, even though there is a
newline at the end of $_. Regular expressions typically ignore the last newline in a string—we’ll look at this behavior in
more detail later.

Shortcuts and Options
This is all very well if you know exactly what it is you’re trying to find, but matching patterns means more than just
locating exact strings of text—you may want to find a three-digit number, the first word on the line, four or more
letters all in capitals, and so on.

You can do this using character classes—these aren’t just individual characters, but a pattern that signifies that
any one of a set of characters is acceptable. To specify such a pattern, you put the characters you consider acceptable
inside square brackets. Let’s go back to our matchtest.pl program, using the same test string:

$_ = q("I wonder what the Entish is for 'yes' and 'no'," he thought.);

$ perl matchtest.pl
Enter some text to find: w[aoi]nder
The text matches the pattern 'w[aoi]nder'.
$

What have we done? We’ve tested whether the string contains a “w”, followed by either an “a”, an “o”, or an “i”,
followed by “nder”; in effect, we’re looking for either of “wander”, “wonder”, or “winder”. Since the string contains
“wonder”, the pattern is matched.

Conversely, we can say that all characters are acceptable except a given sequence of characters—we can “negate
the character class.” To do this, the first character inside the square brackets should be a ^, like so:

$ perl matchtest.pl
Enter some text to find: th[^eo]
'th[^eo]' was not found.
$

So, we’re looking for “th” followed by any character that is neither an “e” nor an “o”. But all we have is “the” and
“thought”, so this pattern does not match.

If the characters you wish to match form a sequence in the character set you’re using, you can use a hyphen to
specify a range of characters rather than spelling out the entire range. For instance, the numerals can be represented
by the character class [0-9]. A lowercase letter can be matched with [a-z]. Let’s see if there are any numeric
characters in our quote:

$ perl matchtest.pl
Enter some text to find: [0-9]
'[0-9]' was not found.
$

You can use one or more of these ranges alongside other characters in a character class, so long as they stay
inside the brackets. If you want to match a digit followed immediately by a letter from A through F, you would say [0-
9][A-F]. However, to match a single hexadecimal digit, you’d write [0-9A-F], or [0-9A-Fa-f] if you wished to include
lowercase letters. (You could also accomplish that by using the /i case-insensitive regexp modifier discussed earlier

CHAPTER 7 ■ REGULAR EXPRESSIONS

162

in this chapter.) Finally, if you want a hyphen to itself be one of the matchable characters of the set, you should
specify it as the very first character inside the square brackets (or the first character following an initial ^ negator).
This will prevent Perl from interpreting the hyphen as indicating a character range.

Some character classes are going to come up again and again: digits, word characters, and the various types of
whitespace. Perl provides some neat shortcuts for these. Table 7-1 lists the most common shortcuts and what they
represent, and Table 7-2 lists the corresponding negative forms of the shortcuts.

Table 7-1. Predefined Character Classes

Shortcut Expansion Description

\d [0-9] Digits 0 to 9

\w [0-9A-Za-z_] A “word” character (allowable, for example, in a Perl variable
name)

\s [\t\n\r\f] A whitespace character—that is, a space, tab, newline, carriage
return, or formfeed

Table 7-2. Negative Predefined Character Classes

Shortcut Expansion Description

\D [^0-9] Any nondigit

\W [^0-9A-Za-z_] Any non“word” character

\S [^ \t\n\r\f] Any non-whitespace character

So, if we wanted to see if there was a five-letter word in the sentence, you might think we could do this:

$ perl matchtest.pl
Enter some text to find: \w\w\w\w\w
The text matches the pattern '\w\w\w\w\w'.
$

But that isn’t correct—there are no five-letter words in the sentence! The problem is that we’ve asked for five
letters in a row, and any word with at least five letters in a row will match that pattern. We actually matched “wonde”,
which was the first possible series of five letters in a row. To actually get a five-letter word, we might consider deciding
that the word must appear in the middle of the sentence—that is, in between two spaces:

$ perl matchtest.pl
Enter some text to find: \s\w\w\w\w\w\s
'\s\w\w\w\w\w\s' was not found.
$

CHAPTER 7 ■ REGULAR EXPRESSIONS

163

Word Boundaries

The problem with that is, when we’re looking at text, words aren’t always between two spaces. They can be followed
by or preceded by punctuation, or appear at the beginning or end of a string, or otherwise next to nonword
characters. To help us properly search for words in these cases, Perl provides the special \b metacharacter. The
interesting thing about \b is that it doesn’t match any actual character—rather, it matches the point between
something that isn’t a word character (either \W or one of the ends of the string) and something that is a word
character—hence \b for boundary. So, for example, to look for one-letter words:

$ perl matchtest.pl
Enter some text to find: \s\w\s
'\s\w\s' was not found.

$ perl matchtest.pl
Enter some text to find: \b\w\b
The text matches the pattern '\b\w\b'.

As the “I” was preceded by a quotation mark, a space wouldn’t match it—but a word boundary does the job.
Later, we’ll see how to tell Perl how many repetitions of a character or group of characters we want to match without
spelling it out directly.

What, then, if we wanted to match anything at all? You might consider something like [\w\W] or [\s\S], for
instance. Actually, matching any character is quite a common operation, so Perl provides an easy way to specify it: the
period metacharacter, which by default matches any character except \n. What if we want to match an “r” followed by
two characters—any two characters—followed by an “h”?

$ perl matchtest.pl
Enter some text to find: r..h
The text matches the pattern 'r..h'.
$

Is there anything after the period?

$ perl matchtest.pl
Enter some text to find: \..
'\..' was not found.
$

What’s that? One backslashed period to match an actual period character, followed by an unescaped period to
mean “match any character but \n.”

Alternatives
Instead of specifying a set of acceptable individual characters, you may want to say “Match either this or that multi-
character sequence.” The either-or operator | within a regular expression behaves like Perl's bitwise or operator, |. So,
to match either “yes” or “maybe” in our example, we could say this:

$ perl matchtest.pl
Enter some text to find: yes|maybe
The text matches the pattern 'yes|maybe'.
$

That’s either “yes” or “maybe”—but what if we wanted either “yes” or “yet”? To get alternatives for part of an
expression, we need to group the options. In a regular expression, grouping is always done with parentheses:

$ perl matchtest.pl
Enter some text to find: ye(s|t)
The text matches the pattern 'ye(s|t)'.
$

CHAPTER 7 ■ REGULAR EXPRESSIONS

164

If we had forgotten the parentheses and written yes|t, Perl would have tried to match either “yes” or “t”. In this
case, we’d still get a positive match, but it wouldn’t be what we want—we’d get a match for “yes” and also for any
string with a “t” in it, whether the word “yes” or “yet” was there or not.

You can match either “this” or “that” or “the other” by adding more alternatives:

$ perl matchtest.pl
Enter some text to find: this|that|the other
'this|that|the other' was not found.
$

However, in this case, it’s more efficient to separate out the common elements:

$ perl matchtest.pl
Enter some text to find: th(is|at|e other)
'th(is|at|e other)' was not found.
$

You can also nest alternatives. Suppose you want to match either of the following patterns:

• “the” followed by whitespace or a lowercase letter

• “or”

You might include something like this:

$ perl matchtest.pl
Enter some text to find: (the(\s|[a-z]))|or
The text matches the pattern '(the(\s|[a-z]))|or'.
$

It looks fearsome, but let’s break it down into its components: our two alternatives are

• the(\s|[a-z])

• or

The second part is easy, while the first contains “the” followed by two alternatives: \s and [a-z]. That is, “the”
followed by either a whitespace or a lowercase letter, or “or”. We can, in fact, tidy this up a little by replacing (\s|[a-
z]) with the less cluttered [\sa-z]. We thus eliminate the need for the nested grouping.

$ perl matchtest.pl
Enter some text to find: (the[\sa-z])|or
The text matches the pattern '(the[\sa-z])|or'.
$

Repetition with Quantifiers
We’ve already moved from matching a specific character to matching a more general type of character—when we
don’t know (or don’t care) exactly what the character will be. Now we’re going to see what happens when we want to
match a more general quantity of characters: four or more consecutive digits, for example, or two to four capital
letters, and so on. The metacharacters that we use in a Perl regexp to match zero or more repeating characters (or
other sequences) are called quantifiers.

CHAPTER 7 ■ REGULAR EXPRESSIONS

165

Indefinite Repetition

The simplest of these is the question mark. It should suggest uncertainty—something may be there, or it may not.
And that’s exactly what it does: stating that the immediately preceding character(s)—or metacharacter(s)—may
appear once, or not at all. It’s a good way of saying that a particular character or group is optional. To match the
words “he” or “she”, you can use the following:

$ perl matchtest.pl
Enter some text to find: \bs?he\b
The text matches the pattern '\bs?he\b'.
$

■ Note A quantifier modifies the character or group immediately to its left. Therefore, in the preceding example the ? applies

only to the preceding “s”.

To make not just one character but an entire series of characters (or metacharacters) optional, group them in
parentheses as before. Did he say “what the Entish is” or “what the Entish word is”? Either will do:

$ perl matchtest.pl
Enter some text to find: what the Entish (word)?is
The text matches the pattern 'what the Entish (word)?is'.
$

Notice that we had to put the space inside the group; otherwise we end up trying to match two mandatory
spaces between “Entish” and “is”, and our text only has one:

$ perl matchtest.pl
Enter some text to find: what the Entish (word)? is
'what the Entish (word)? is' was not found.
$

As well as matching something one or zero times, you can also match something one or more times. We do this
with the plus sign. To match an entire word without specifying how long it should be, you can say:

$ perl matchtest.pl
Enter some text to find: \b\w+\b
The text matches the pattern '\b\w+\b'.
$

In this case, we match the first available word—“I”.
If, on the other hand, you have something that may be there any number of times but also might not be there at

all—zero or one or many—you need what’s called Kleene’s star: the * quantifier. So, how would you find a capital
letter after any number of spaces (even no spaces) at the start of the string? Specify your regex as the start of the string,
followed by any number of whitespace characters, followed by an uppercase letter:

$ perl matchtest.pl
Enter some text to find: ^\s*[A-Z]
'^\s*[A-Z]' was not found.
$

Of course, our test string begins with a quotation mark, so the preceding pattern won’t match; but, sure enough,
if you take away that first quote, the pattern will match fine.

Table 7-3 summarizes the three quantifiers just covered.

CHAPTER 7 ■ REGULAR EXPRESSIONS

166

Table 7-3. Quantifier Examples

Quantifier Description

/bea?t/ 0 or 1 times, matches either “beat” or “bet”

/bea+t/ 1 or more times, matches “beat”, “beaat”, “beaaat” . . .

/bea*t/ 0 or more times, matches “bet”, “beat”, “beaat” . . .

Novice Perl programmers tend to go to town on combinations of dot and star and the results often surprise

them, particularly when it comes to search-and-replace operations (to be discussed soon). We’ll explain the rules of
the regular expression engine shortly.

You should also consider the fact that .* and .+ within a regular expression will match as much of your string as
they possibly can. We’ll look more at this “greedy” behavior later on.

Well-Defined Repetition

If you want to be more precise about how many times a character or groups of characters might be repeated, you can
specify the maximum and minimum number of repeats in curly braces. For example, “match 2 or 3 white space
characters” can be written as follows:

$ perl matchtest.pl
Enter some text to find: \s{2,3}
'\s{2,3}' was not found.
$

So there are no doubled or tripled white space characters in our string. Notice how we construct that—the
minimum, a comma, and the maximum, all inside curly braces. Omitting the maximum signifies “or more.” For
example, {2,} denotes “2 or more.” In these cases, the same warnings apply as for the star operator.

Finally, you can specify a precise number of repetitions simply by putting that number inside the curly braces.
Here’s the five-letter-word example tidied up a bit:

$ perl matchtest.pl
Enter some text to find: \b\w{5}\b
'\b\w{5}\b' was not found.
$

Summary Table
To refresh your memory, Table 7-4 lists the various metacharacters we’ve seen so far.

CHAPTER 7 ■ REGULAR EXPRESSIONS

167

Table 7-4. Metacharacter Summary

Metacharacter Meaning

[abc] Any one of the characters a, b, or c

[^abc] Any one character other than a, b, or c

[a-z] Any one ASCII lowercase character between a and z

\d \D A digit; a nondigit

\w \W A “word” character; a non“word” character

\s \S A whitespace character; a non-whitespace character

\b The boundary between a \w character and a \W character

. Any character (except newline)

(abc) The phrase abc as a group

? Preceding character or group may be present 0 or 1 times

+ Preceding character or group is present 1 or more times

* Preceding character or group may be present 0 or more times

{x,y} Preceding character or group is present between x and y times

{x,} Preceding character or group is present at least x times

{x} Preceding character or group is present x times

Memory and Backreferences
What if we want to know what a certain regular expression matched? It was easy when we were matching literal
strings: we knew that “Case” was going to match those four letters and nothing else—but now, what’s matching? If we
have /\w{3}/, which three word characters are getting matched?

Perl has a series of special variables in which it stores anything that’s matched within a group in parentheses.
Each time it sees a set of parentheses, it triggers memory and copies the matched text inside into a numbered
variable—the first matched group is stored in $1, the second group in $2, and so on. By looking at these variables,
which we call the backreference variables, we can see what triggered various parts of our match, and we can also
extract portions of the data for later use.

First, though, let’s rewrite our test program so that we can see what’s in those variables.

CHAPTER 7 ■ REGULAR EXPRESSIONS

168

#!/usr/bin/perl
matchtest2.pl

use warnings;
use strict;

$_ = '1: A silly sentence (495,a) *BUT* one which will be useful. (3)';

print "Enter a regular expression: ";
my $pattern = <STDIN>;
chomp($pattern);

if (/$pattern/) {
 print "The text matches the pattern '$pattern'.\n";
 print "\$1 is '$1'\n" if defined $1;
 print "\$2 is '$2'\n" if defined $2;
 print "\$3 is '$3'\n" if defined $3;
 print "\$4 is '$4'\n" if defined $4;
 print "\$5 is '$5'\n" if defined $5;
} else {
 print "'$pattern' was not found.\n";

}

■ Tip Note that we use a backslash to escape the first “dollar” symbol in each print() statement—thus displaying the actual

$ character—while leaving the second dollar symbol in each line unescaped, to display the contents of the corresponding

variable.

We have our special variables in place, and we have a new sentence on which to do our matching. Let’s see
what’s been happening:

$ perl matchtest2.pl
Enter a regular expression: ([a-z]+)
The text matches the pattern '([a-z]+)'.
$1 is 'silly'

$ perl matchtest2.pl
Enter a regular expression: (\w+)
The text matches the pattern '(\w+)'.
$1 is '1'

$ perl matchtest2.pl
Enter a regular expression: ([a-z]+)(.*)([a-z]+)
The text matches the pattern '([a-z]+)(.*)([a-z]+)'.
$1 is 'silly'
$2 is ' sentence (495,a) *BUT* one which will be usefu'
$3 is 'l'

$ perl matchtest2.pl
Enter a regular expression: e(\w|n\w+)
The text matches the pattern 'e(\w|n\w+)'.

$1 is 'n'

CHAPTER 7 ■ REGULAR EXPRESSIONS

169

By printing out what’s in each of the groups, we can see exactly what caused Perl to start and stop matching, and
when. If you look carefully at these results, you’ll find they can tell you a great deal about how Perl goes about
handling regular expressions.

How the Regular Expression Engine Works
We’ve seen most of the syntax behind regular expression matching, and plenty of examples of it in action. The code
that does all the regex work is called Perl’s regular expression engine. You might be wondering about the exact rules
applied by this engine when determining whether or not a piece of text matches, and how much of it matches. From
what the examples have shown, let’s make some deductions about the engine’s operation.

Our first expression, ([a-z]+), plucked out a set of one or more lowercase letters. The first such set that Perl
came across was “silly”. The next character after “y” was a space, and so no longer matched the expression.

• Rule 1: Once the engine starts matching, it will keep matching a character at a time for as
long as it can. As soon as it sees something that doesn’t match, however, it has to stop. In this
example, it can never get beyond a character that is not a lowercase letter. It musts stop as
soon as it encounters one.

Next, we looked for a series of word characters using (\w+). The engine started looking at the beginning of the
string, and found one, “1”. The next character was not a word character (it was a colon), and so the engine had to
stop.

• Rule 2: The engine is eager. It’s eager to start work and eager to finish, and it starts matching
as soon as possible in the string; if the first character doesn’t match, it tries to start matching
from the second. Then, it takes every opportunity to finish as quickly as possible.

Then we tried this: ([a-z]+)(.*)([a-z]+). The result we got with this was a little strange. Let’s look at it again:

$ perl matchtest2.pl
Enter a regular expression: ([a-z]+)(.*)([a-z]+)
The text matches the pattern '([a-z]+)(.*)([a-z]+)'.
$1 is 'silly'
$2 is ' sentence (495,a) *BUT* one which will be usefu'
$3 is 'l'
$

Our first group was the same as what matched before—nothing new there. When we could no longer match
lowercase letters, we switched to matching anything we could. Now, this could take up the rest of the string, but that
wouldn’t allow a match for the third group—we have to leave at least one lowercase letter.

So, the engine started to backtrack along the string, giving up characters one by one. It gave up the closing
parenthesis, the 3, then the opening parenthesis, and so on, until we got to the first thing that would satisfy all the
groups and let the match go ahead—namely a lowercase letter: the “l” at the end of “useful”.

From this, we can draw up the third rule:

• Rule 3: The engine is greedy. If you use the +, *, or ? operators, they will try and consume as
much of the string as possible. If the rest of the expression does not match, it grudgingly
gives up a character at a time and tries to match again, in order to find the longest possible
match.

We can turn a greedy match into a non-greedy match by putting the ? operator after either the plus, star, or
question mark. For instance, let’s turn this example into a non-greedy version: ([a-z]+)(.*?)([a-z]+). This gives us
an entirely different result:

$ perl matchtest2.pl
Enter a regular expression: ([a-z]+)(.*?)([a-z]+)
The text matches the pattern '([a-z]+)(.*?)([a-z]+)'.
$1 is 'silly'
$2 is ' '

CHAPTER 7 ■ REGULAR EXPRESSIONS

170

$3 is 'sentence'
$

Now that we’ve shut off rule 3, rule 2 takes over: the smallest possible match for the second group was a single
space. First, it tried to match nothing at all, but then the third group would be faced with a space—this wouldn’t
match. So, the regex engine grudgingly accepts the space and again tries to finish—this time the third group has some
lowercase letters, and that can match as well.

Now suppose we turn off greediness in all three groups, and say this: ([a-z]+?)(.*?)([a-z]+?):

$ perl matchtest2.pl
Enter a regular expression: ([a-z]+?)(.*?)([a-z]+?)
The text matches the pattern '([a-z]+?)(.*?)([a-z]+?)'.
$1 is 's'
$2 is ''
$3 is 'i'
$

What about this? The smallest possible match for the first group is the “s” of “silly”—we asked it to find one
character or more, and so the smallest it could find was one. The second group actually matched no characters at all.
This left the third group facing an “i”, which it accepted to complete the match.

Our last example included an alternation:

$ perl matchtest2.pl
Enter a regular expression: e(\w|n\w+)
The text matches the pattern 'e(\w|n\w+)'.
$1 is 'n'
$

The engine took the first branch of the alternation and matched a single character, even though the second
branch would actually satisfy greed. This leads us to the fourth rule:

• Rule 4: The regular expression engine hates decisions. If there are two branches, it will always
choose the first one, even though the second one might allow it to gain a longer match.

To summarize: the regular expression engine starts as soon as it can, grabs as much as it can, then tries to finish
as soon as it can, while always taking the first decision available to it.

Working with Regexes
Now that we’ve matched a string, what do we do with it? Sometimes it’s useful just to know whether or not a string
matches a given pattern. On the other hand, we often want to perform search-and-replace operations on text, and
we’ll explain how to do that here. We’ll also cover some of the more advanced features of regular expression
processing.

Substitution
Now that we know all about matching text, substitution is very easy. Why? Because all of the cleverness is in the
search part, rather than the replace—all the character classes, quantifiers, and so on only make sense when matching.
You can’t substitute, say, a word with any number of digits. So, all we need to do is take the “old” text—our match—
and tell Perl the text that we want to replace it. This we do with the s/// operator.

The s stands for “substitute.” Between the first two slashes, we put our regular expression as before. Before the
final slash, we put our replacement text. Just as with matching, we can perform the substitution on an explicitly
specified string by using the =~ operator . Otherwise, the substitution is performed on the default variable $_.

#!/usr/bin/perl
subst1.pl

CHAPTER 7 ■ REGULAR EXPRESSIONS

171

use warnings;
use strict;
s
$_ = "Awake! Awake! Fear, Fire, Foes! Awake! Fire, Foes! Awake!";
Tolkien, Lord of the Rings

s/Foes/Flee/;
print $_,"\n";

$ perl subst1.pl
Awake! Awake! Fear, Fire, Flee! Awake! Fire, Foes! Awake!
$

Here we have replaced the first occurrence of “Foes” with the word “Flee”. Had we wanted instead to change
every occurrence, we would have needed to use a regex modifier. Just as the /i modifier we saw earlier matches upper
and lower case, the /g modifier on a substitution acts globally:

#!/usr/bin/perl
subst2.pl

use warnings;
use strict;

$_ = "Awake! Awake! Fear, Fire, Foes! Awake! Fire, Foes! Awake!";
Tolkien, Lord of the Rings

s/Foes/Flee/g;
print $_,"\n";

$ perl subst2.pl
Awake! Awake! Fear, Fire, Flee! Awake! Fire, Flee! Awake!

$

Like the left-hand side of the substitution, the right-hand side behaves like a double-quoted string in that it, too,
is subject to variable interpolation. Especially useful is that we can use the backreference variables we collected
during the match on the right-hand side. So, for instance, to swap the first two words in a string, we would say
something like this:

#!/usr/bin/perl
subst3.pl

use warnings;
use strict;

$_ = "there are two major products that come out of Berkeley: LSD and UNIX";
Jeremy Anderson

s/(\w+)\s+(\w+)/$2 $1/;
print $_, "?\n";

$ perl subst3.pl
are there two major products that come out of Berkeley: LSD and UNIX?
$

What would happen if we tried doing that globally? Let’s do it and see:

#!/usr/bin/perl
subst4.pl

www.wowebook.com

CHAPTER 7 ■ REGULAR EXPRESSIONS

172

use warnings;
use strict;

$_ = "there are two major products that come out of Berkeley: LSD and UNIX";
Jeremy Anderson

s/(\w+)\s+(\w+)/$2 $1/g;
print $_, "?\n";

$ perl subst4.pl
are there major two that products out come Berkeley of: and LSD UNIX?
$

Here, every word in a pair is swapped with its neighbor—when processing a global match, Perl always starts
where the previous match left off.

Changing Delimiters
You may have noticed that // and s/// resemble the operators q// and qq//. Just as with q// and qq//, we can change
the delimiters when matching and substituting to increase the readability of our regular expressions. The same rules
apply: any nonword character can be the delimiter, and paired delimiters such as , (), {}, and [] may be used—with
two provisos.

First, if you change the delimiters on //, you must put an m in front of it (“m” for “match”). This is so that Perl can
still recognize it as a regular expression, rather than a block or comment or anything else. Thus,

/^\s*[A-Z]/;

can be written as follows, explicitly including the m operator

m/^\s*[A-Z]/;

and using alternative delimeters, can be written as

m#^\s*[A-Z]#;

Second, if you use paired delimiters with the substitution operator, you must use two pairs.

s/old text/new text/g;

becomes

s{old text}{new text}g;

You may, however, leave spaces or newlines between the pairs for the sake of clarity:

s{old text}
 {new text}g;

Also, they can be different pairs:

s{old text}(new text)g;

CHAPTER 7 ■ REGULAR EXPRESSIONS

173

The prime example of when you would want to do this is when you are dealing with file paths, which
contain a lot of slashes. For instance, if you are moving files on your Unix system from
/usr/local/share/ to /usr/share/, you may want to munge1 the filenames like this:

s/\/usr\/local\/share\//\/usr\/share\//g;

However, the substitution is far easier to read if alternative delimiters are used in this case:

s#/usr/local/share/#/usr/share/#g;

Modifiers
We’ve already seen the /i modifier being used to indicate that the match should be case insensitive. We’ve also seen
the /g modifier applied to a substitution to make it global. What other modifiers are there?

• /m: Treats the string as multiple lines. Normally, ^ and $ will match only the very start and
very end of a string. But if the /m modifier is specified, then ^ and $ will match the start and
end of each individual line in the string (separated by \n). For example, given the string
"one\ntwo", the pattern /^two$/ will not match, but /^two$/m will.

• /s: Treats the string as a single line. Normally, . does not match a newline character. But
when /s is given, it will.

• /g: In addition to making a substitution global, this modifier allows us to match multiple
times. When using this modifier, placing the \G anchor at the beginning of the regex will
anchor it to the end point of the last match.

• /x: Allows the use of whitespace and comments inside a match.

Regular expressions can get quite difficult to read. The /x modifier helps make the regex more readable. For
instance, if you’re matching a string in a log file that contains a time followed by a computer name in square brackets
and then a message, the expression you’ll create to extract the information could easily end up looking like this:

Time in $1, machine name in $2, text in $3
/^([0-2]\d:[0-5]\d:[0-5]\d)\s+\[([^\]]+)\]\s+(.*)$/

However, if you use the /x modifier, you can stretch it out as follows:

/
^ # Match at the beginning of the string
(# First group: time
 [0-2]\d
 :
 [0-5]\d
 :
 [0-5]\d
)
 \s+
 \[# Square bracket
 (# Second group: machine name
 [^\]]+ # Anything that isn't a square bracket

1 Most dictionaries define munge to be a derogatory term for imperfectly transforming data. But in the Perl culture, munge is
not derogatory—being able to transform data, even if imperfectly, is one thing that Perl programmers aspire to.

CHAPTER 7 ■ REGULAR EXPRESSIONS

174

)
 \] # End square bracket

 \s+
 (# Third group: everything else
 .*
)
$ # Finally, match the end of the string
/x

Another way to tidy this up is to put each of the groups into variables and interpolate them:

my $time_re = '([0-2]\d:[0-5]\d:[0-5]\d)';
my $host_re = '\[([^\]]+)\]';
my $mess_re = '(.*)';

/^$time_re\s+$host_re\s+$mess_re$/;

The split() Function
We briefly saw split() earlier in this chapter, where we used it to break up a string into a list of words. In fact, we saw
it only in its simplest form, and strictly speaking, it was a bit of a cheat to use it—we didn’t see it then, but behind the
scenes split() was actually using a regular expression to do its work.

Using split() without arguments is equivalent to saying

split /\s+/, $_

which breaks the default string $_ into a list of substrings using one or more whitespace characters as the delimiter.
However, you can also specify your own regular expression: Perl advances through the string, breaking it at each
point where the regex matches. The text matching the delimiter is thrown away.

For example, configuration files on the Unix operating system often consist of lines of colon-separated text
fields. A sample line from the /etc/passwd file might look like this:

kake:x:10018:10020::/home/kake:/bin/bash

To get at each field, we can split the line on its colons:

#!/usr/bin/perl
split.pl

use warnings;
use strict;

my $passwd = "kake:x:10018:10020::/home/kake:/bin/bash";
my @fields = split /:/, $passwd;
print "Login name : $fields[0]\n";
print "User ID : $fields[2]\n";
print "Home directory : $fields[5]\n";

$ perl split.pl
Login name : kake
User ID : 10018

CHAPTER 7 ■ REGULAR EXPRESSIONS

175

Home directory : /home/kake
$

Note that the fifth field, stored in $fields[4](zero-based indexing), is the empty string, because Perl recognized
that there were two adjacent delimiter characters (colons). The field is empty, and the array element is thus the empty
string. Therefore, $fields[5] contains /home/kake. Be careful though—if the line you are splitting contains trailing
empty fields on the right, they will be dropped; no empty array elements will be created for them by split().

The join() Function
To perform the reverse operation, we can use the join() function, which takes a specified delimiter and “glues” it
between the elements of a list. For example:

#!/usr/bin/perl
join.pl

use warnings;
use strict;

my $passwd = "kake:x:10018:10020::/home/kake:/bin/bash";
my @fields = split /:/, $passwd;
print "Login name : $fields[0]\n";
print "User ID : $fields[2]\n";
print "Home directory : $fields[5]\n";

my $passwd2 = join "#", @fields;
print "Original password : $passwd\n";
print "New password : $passwd2\n";

$ perl join.pl
Login name : kake
User ID : 10018
Home directory : /home/kake
Original password : kake:x:10018:10020::/home/kake:/bin/bash
New password : kake#x#10018#10020##/home/kake#/bin/bash
$

Common Blunders
There are a few common mistakes people tend to make when writing regular expressions—for instance, /a*b*c*/ will
happily match any string at all, since it matches each letter zero times. What else can go wrong?

• Forgetting to group:

/Bam{2}/ will match “Bamm”, while /(Bam){2}/ will match “BamBam”, so be careful when
choosing which one to use. The same goes for alternation: /Simple|on/ will match “Simple”
and “on”, while /Sim(ple|on)/ will match both “Simple” and “Simon”—group each option
separately.

• Getting the anchors wrong:

^ goes at the beginning, $ goes at the end. A dollar sign anywhere else in the string makes
Perl try to interpolate a variable.

CHAPTER 7 ■ REGULAR EXPRESSIONS

176

• Forgetting to escape metacharacters:

 If you want a special character to simply represent itself instead of acting as a
metacharacter, you must escape it with a backslash. Beware the following characters: . * ?
+ [() { ^ $ | and, of course, \ itself.

• Indexing from 1 instead of from 0:

The first element in an array is assigned the index 0, while index 1 refers to the second
element.

• Counting from 0 instead of from 1:

Yes, all along we’ve been telling you that computers start counting from 0. (See the previous
item in this list.) Nevertheless, there’s always the odd exception—the first backreference is
$1, while $0 has another special use—a string containing the way in which the program was
executed.

Backreferences (Again)
Finally, in our tour of regular expressions, let’s look again at backreferences. Suppose you want to find any repeated
words in a string—how would you do it? You might want to try this:

if (/\b(\w+) $1\b/) {
 print "Repeated word: $1\n";
}

But that doesn’t work, because $1 is set only after the match is complete. In fact, if you have Perl warnings turned
on, you’ll be alerted to the fact that $1 is undefined every time. To use a backreference while still inside the regular
expression, you need to use the following syntax:

if (/\b(\w+) \1\b/) {
 print "Repeated word: $1\n";
}

However, when you’re replacing, you’ll get a warning if you try to use the \number syntax on the right side of a
substitution. It will work, but you’ll be told that \1 is better written as $1.

Summary
Regular expressions are quite possibly the most powerful means at your disposal for searching for patterns in text,
extracting subpatterns, and replacing portions of text. They’re at the heart of any text shuffling you do in Perl, and
they should be your first port of call when you need to do string manipulation.

In this chapter, we’ve seen how to match simple text, different classes of text, and different amounts of text.
We’ve also seen how to provide alternative matches, how to refer back to portions of the match, and how to substitute
text.

The key to learning and understanding regular expressions is breaking them down into their component parts
and unraveling the language, translating it piecewise into English. Once you can fluently read out the intention of a
complex regular expression, you’re well on your way to creating powerful matches of your own.

We have only scratched the surface of regular expressions in this chapter. There are so many features and so
much power in regular expressions that an entire book could be written on the subject. As a matter of fact, that has
already happened—Regular Expression Recipes: A Problem-Solution Approach by Nathan Good (Apress, 2004) and
Mastering Regular Expressions, Second Edition by Jeffrey Friedl (O’Reilly & Associates, 2002). We suggest you check
out these books for everything you need to know about regular expressions, and then some.

CHAPTER 7 ■ REGULAR EXPRESSIONS

177

 Exercises
1. Translate each of the following regular expressions into English:

 /hello.*world/

 /^\d+\s\w*$/

 /\b[A-Z][a-z]*\b/

 /(.).*\1/

2. Translate each of the following English statements into a regular expression:

 A digit at the beginning of the string and a digit at the end of the string

 A string that contains only whitespace characters or word characters

 A string containing no whitespace characters

3. Write a program that loops through the lines of a file or standard input (where each line
contains a single word) and prints all words containing two adjacent vowels.

Modify the preceding to instead match all words with exactly two vowels appearing
anywhere within the word.

C H A P T E R 8

■ ■ ■

179

Files and Data

We’re starting to write real programs now, and real programs need to be able to read and write files from
and to your hard drive. At the moment, all we can do is ask the user for input using <STDIN> and print
data on the screen using print(). Pretty simple stuff, yes—but these two ideas actually form the basis of
a great deal of the file handling you’ll do in Perl.

What we want to do in this chapter is extend these techniques into reading from and writing to files
using filehandles, and we’ll also look at the other techniques we have for handling files and data,
including the very useful diamond ().

Filehandles
A filehandle is a variable that you associate with a file, which allows you to then either read from the file
or write to the file, depending on how the file was opened.

We’ve already seen a filehandle: the STDIN of <STDIN>. This is a filehandle for the special input stream
standard input, and whenever we’ve used the idiom <STDIN> to read a line, we’ve been reading from
standard input via the STDIN filehandle. Standard input is the input a user provides either directly by
typing on the keyboard, or indirectly through the use of a “pipe” that, as we’ll see later, pumps input into
a program.

As a counterpart to standard input, there’s also standard output: STDOUT. This is the exact
opposite—it’s the output we provide to a user, which we’ve been doing so far by writing to the screen;
every time we’ve used the print() function so far, we’ve been implicitly using STDOUT. The line

print STDOUT "Hello, world!\n";

is just the same as our original example in Chapter 1. There’s one more “standard” filehandle: standard
error, or STDERR, which is where we write the error messages when we die().

The open() Function
The open() function opens files. The preferred way of executing open() is with three arguments: the
filehandle we choose to associate with the file, the mode in which we are opening the file (read, write, or
append), and the file name:

open(filehandle, mode, filename)

An example would be:

CHAPTER 8 ■ FILES AND DATA

180

open(FH, '<', 'input.txt')

The left angle bracket indicates read mode. (We’ll look at all the modes in more detail later.) It is also
common to call the function with two arguments by combining the mode in the string that contains the
file name:

open(filehandle, filename_with_mode)

Opening input.txt in this form would look like the following:

open(FH, '< input.txt')

This function returns true on success, false on failure. You should always handle a file-opening
failure. Failing to open a file you expect to open is usually considered a severe error. We handle such
errors by die()ing when the open fails. Recall from Chapter 2 that die() sends its argument (typically an
error message explaining what went wrong) to standard error and then exits the program. Here’s an
example:

open(FH, $mode, $filename) or die $!;

What’s $!? This is one of Perl’s special variables, variables that have a special use or meaning within
Perl. In the case of $!, Perl is passing on an error message from the system, and this error message
should tell you why the open() failed: it’s usually something like “No such file or directory” or
“Permission denied.” See perldoc perlvar for a complete list of all the special variables.

Filehandles are slightly different from the other variables we’ve seen, and they do not need to be
declared with my(), even if you’re using strict (as you should). It’s traditional to use all capitals for
filehandles to distinguish them from keywords.

You can provide the second and third arguments as variables or as string literals, like this:

open(FH, $mode, $file) or die $!;
open(FH, '<', 'output.log') or die $!;

You can specify a full path to a file, but don’t forget that if you’re on Windows, a backslash in a

double-quoted string introduces an escape character. So, for instance, you should say this:

open(FH, '<', 'c:\test\news.txt') or die $!;

rather than this:

open(FH, '<', "c:\test\news.txt") or die $!;

as \t in a double-quoted string is a tab, and \n is a newline. You could also say "c:\\test\\news.txt",
but that’s a little hard to read. Recall that Windows allows forward slashes internally, and forward slashes
do not need to be escaped, so "c:/test/news.txt" should work perfectly fine.

We will look at three different ways to open a file in just a couple of pages.

The close() Function
When you finish reading from or writing to a file, the filehandle should be closed. This is done with the
close() function:

close(filehandle)

If you don’t explicitly close a filehandle, it is not the end of the world. Perl will autoclose it for you.
But it is considered good programming style to close files when you are finished with them.

CHAPTER 8 ■ FILES AND DATA

181

Here is an example of opening and closing a file successfully:

#!/usr/bin/perl
goodopen.pl

use warnings;
use strict;

open(FH, '<', 'goodopen.dat') or die $!;

print "goodopen.dat opened successfully\n";

close FH;

This example assumes, of course, that the file goodopen.dat exists in the current directory. If that is

the case, here is the output of this program:

$ perl goodopen.pl
goodopen.dat opened successfully
$

Here is an example of opening a file that does not exist (assuming, of course, that badopen.dat does
in fact not exist). Note the value of $!.

#!/usr/bin/perl
badopen.pl

use warnings;
use strict;

open(FH, '<', 'badopen.dat') or die "We have a problem: $!";

print "Did we make it here? Nope...\n";

close FH;

This is what happens when we attempt to execute this program:

$ perl badopen.pl
We have a problem: No such file or directory at badopen.pl line 7.
$

Recall that if the argument you give to die() does not end with a newline, Perl automatically adds

the name of the program and the line number that had the problem. If you want to avoid this, remember
to put newlines on the end of the string you pass to the die() function.

Three Ways to Open a File
In the sections below, we will discuss three ways of opening a file: read mode, write mode, and append
mode. To start, here is a quick summary:

CHAPTER 8 ■ FILES AND DATA

182

Opening a file in read mode provides read access only. You can read the contents of the file, but you
can’t change those file contents in any way.

Opening a file in write mode creates the file from scratch if it did not previously exist. If it did exist,
the existing file is opened and truncated (emptied out). In either case, the only thing you can do is write
entirely new contents to the file.

Opening a file in append mode also means that the file is opened for writing, but in this case, any
previous file contents are preserved (not truncated), and you can then write new content to the end of
the file. However, you can’t change any of the file contents that were there already.

Read Mode
We often write programs that read input data from an external site, such as a file on disk. This can be any
data that our program needs, such as a list of addresses or information to send out in an e-mail. When
it’s time to read that data in from a file, the file must first be opened in read mode, which means we can
only read in from the file; we can’t modify the contents of the file. In Perl, read mode is the default mode
for opening a file.

If you attempt to open a file in read mode, the open() function will fail if the file does not exist or if
you do not have permission to read it. Because read is the default mode, this example opens as read
only:

open(FH, 'data.txt') or die $!;

You can explicitly open in read mode by using the left angle bracket (<) as the first character in the
string that contains the file name:

open(FH, '<data.txt') or die $!;

Or, better yet, use the preferred three-argument syntax:

open(FH, '<', 'data.txt') or die $!;

If you attempt to open a file in read mode and the file does not exist, or if you don’t have permission to
read the file, the open() will fail. The file will not be opened, and the program will not have any access to
the file whatsoever through the given filehandle.

Write Mode
Up to this point, our programs have printed text to standard output—the user’s terminal. This is fine for
some programs, but the data that is printed out is lost as soon as it is printed. Sometimes we want our
program to generate output that can last beyond the execution of the program. If we want the output
data to be accessible later, we can write the data out to a file that will be saved on disk. To do this, we
open the file in write mode.

An important note: write mode will overwrite the file if it already exists. This means that the entire
contents of the file will be lost and the file will start as empty. If you want to retain the contents of the file
and add to them, the file should be opened in append mode, discussed in the next section.

You can open a file in write mode by using the right angle bracket (>) as the second argument to
open() or as the first character of the string that contains the file name if you are using two-argument
invocation. As noted, if you open a file in write mode and the file exists, the file will be overwritten and
the contents lost. If you open a file in write mode and the file does not exist, it will be created. The open()

CHAPTER 8 ■ FILES AND DATA

183

function will fail if you open in write mode and you don’t have permission to create the file or write to it.
Here is an example:

open(FH, '>', 'data.txt') or die $!;

Here is the same example using the two-argument version:

open(FH, '>data.txt') or die $!;

Append Mode
To write to the file and keep its current contents intact, open it in append mode. In append mode, the file
is opened and not overwritten, and any output written to the file will be added to the bottom of the file.

A file can be opened in append mode by using two right angle brackets (>>) as the second argument
(or in the string that contains the file name if you use the two-argument invocation). If you open a file in
append mode and the file exists, you will add to the bottom of the file. If the file does not exist, it will be
created. The open() function will fail if you do not have permission to create the file or if you do not have
write permission to the file. Here is an example:

open(FH, '>>', 'data.txt') or die $!;

Or, using the two-argument version:

open(FH, '>>data.txt') or die $!;

Reading in Scalar Context
To read from a file opened in read mode, simply wrap the filehandle in angle brackets:

<FH>

We did this before when we read from standard input: <STDIN>. Just as with reading from standard
input, there are two ways to read from any filehandle: scalar context and list context.

Scalar context reads the next line of the file, newline included:

$line = <FH>;

Here is an example of reading line by line through a file until end of file. Notice that <FH> is not
assigned to a variable within the while loop parentheses; like <STDIN>, it is automatically assigned to $_:

while (<FH>) {
 # process the line
}

Now create this program, which reads through a file and prints each line of the file with the line
number prepended:

#!/usr/bin/perl
nl1.pl

use warnings;
use strict;

CHAPTER 8 ■ FILES AND DATA

184

open(FILE, '<', 'nlexample.txt') or die $!;
my $lineno = 1;

while (<FILE>) {
 print $lineno++;
 print ": $_";
}

close FILE;

Next, create the file nlexample.txt with the following contents:

One day you're going to have to face
 A deep dark truthful mirror,
And it's gonna tell you things that I still
 Love you too much to say.
####### Elvis Costello, Spike, 1988 #######

This is what you should see when you run the program:

$ perl nl1.pl
1: One day you're going to have to face
2: A deep dark truthful mirror,
3: And it's gonna tell you things that I still
4: Love you too much to say.
5. ####### Elvis Costello, Spike, 1988 #######
$

Let’s look at this program in detail. We begin by opening our file, making sure it was opened
correctly.

open(FILE, '<', 'nlexample.txt') or die $!;

Since we expect the line numbers to start at 1, we initialize our counter as follows:

my $lineno = 1;

Now we read each line from the file in turn:

while (<FILE>) {

Recall that this syntax is actually equivalent to the following:

while (defined ($_ = <FILE>)) {

That is, we read a line from a file and assign it to $_, and we see whether it is defined. If it is, we do
whatever’s in the loop; if not, we are at the end of the file so we fall out of the loop. This gives us a nice,
easy way of setting $_ to each line in turn.

As we have a new line of text, we print out its line number and advance the counter.

print $lineno++;

Finally, we print out the line in question:

print ": $_";

CHAPTER 8 ■ FILES AND DATA

185

There’s no need to add a newline since we didn’t bother chomp()ing the incoming line. Of course, by
using a statement modifier, we can make this program even more concise:

open(FILE, '<', 'nlexample.txt') or die $!;
my $lineno = 1;

print $lineno++, ": $_" while <FILE>;

close FILE;

But since we’re going to want to expand the capabilities of our program—adding more operations to the
body of the loop—we’re probably better off with the original format.

Reading with the Diamond
Most of us who come from the Unix world have used the sort command (those of us in the Windows
world have probably used its version of sort as well). If invoked with a command-line argument, sort
treats the argument as a file name and reads from that file, sorting the content and printing the sorted
content to standard output:

$ sort nlexample.txt
 A deep dark truthful mirror,
 Love you too much to say.
####### Elvis Costello, Spike, 1988 #######
And it's gonna tell you things that I still
One day you're going to have to face
$

The reason the first two lines are printed first is that they begin with a space character which is a string
less than “#”, which in turn is a string less than “A” and “O”.

Ever wonder what happens if sort is invoked with no command-line arguments? It reads from
standard input until end of file (^D is end-of-file for Unix standard input and ^Z<enter> is end-of-file in
Windows). Here’s an example:

$ sort
the
power
to
believe
^D
believe
power
the
to
$

This important behavior is evident in many different Unix (and Windows) commands:

CHAPTER 8 ■ FILES AND DATA

186

• If the program is invoked with command-line arguments, treat the arguments as
file names and read from them.

• If the program is invoked with no command-line arguments, read from standard
input.

If Perl is to be indeed practical, there should be a way to model this behavior, and it should be easy—and
it is, with the diamond.

The diamond () operator checks to see if the program was invoked with command-line
arguments. If so, it reads from them in scalar context one file at a time, one line at a time; in list context it
reads all content of all files in order. If it is invoked with no command-line arguments, it reads from
standard input just like <STDIN>.

Here is a program called diamond1.pl:

#!/usr/bin/perl
diamond1.pl

use warnings;
use strict;

while (<>) {
 print "text read: $_"
}

Let’s see what happens when we invoke this program with command-line arguments. Given the file
file1.dat:

this is file1.dat
it is not too exciting...

and file2.dat:

this is file2.dat
equally unexciting...

Here is what the program generates when executed with these two file names:

$ perl diamond1.pl file1.dat file2.dat
text read: this is file1.dat
text read: it is not too exciting...
text read: this is file2.dat
text read: equally unexciting...
$

As you can see, file1.dat is opened and read first. The first line is read and processed, then the

second line. When the entire contents of file1.dat are read, the program opens file2.dat and reads
each line until end of file.

Now let’s run the same program with no command-line arguments. Notice it reads from standard
input.

$ perl diamond1.pl
I

CHAPTER 8 ■ FILES AND DATA

187

text read: I
Don't
text read: Don't
Want
text read: Want
to
text read: to
Be
text read: Be
a
text read: a
Star
text read: Star
^D
$

Here we see the practical nature of Perl—being able to mimic this important behavior and able to

do so easily.
Let’s modify nl1.pl to read from the file on the command line. Notice we don’t need to explicitly

open and close the file now.

#!/usr/bin/perl
nl2.pl

use warnings;
use strict;

my $lineno = 1;

while (<>) {
 print $lineno++;
 print ": $_";
}

When we execute the program, we provide the data file on the command line. This invocation
produces the same output as nl1.pl:

$ perl nl2.pl nlexample.txt
1: One day you're going to have to face
2: A deep dark truthful mirror,
3: And it's gonna tell you things that I still
4: Love you too much to say.
5: ####### Elvis Costello, Spike, 1988 #######
$

@ARGV: The Command-Line Arguments
There is some behind-the-scenes work that is going on with the diamond. When a program is invoked,
all the command-line arguments—the text after the program name—are stored in the special array
variable @ARGV Let’s write a program that will display this array’s contents:

CHAPTER 8 ■ FILES AND DATA

188

#!/usr/bin/perl
argv1.pl

use warnings;
use strict;

print "[$_]\n" foreach @ARGV;

This program simply loops through all the elements of @ARGV, printing them to standard output.
Note that since @ARGV is a special array variable, it does not need to be declared with my() even though we
are using strict. As a matter of fact, don’t declare it with my()—if you do, you will break its magic.

If the program is invoked with no arguments after the program name, @ARGV is empty:

$ perl argv1.pl
$

If invoked with arguments, it is a bit more interesting:

$ perl argv1.pl king crimson rocks
[king]
[crimson]
[rocks]
$

Notice that text after the program name is treated as a whitespace-separated list of terms, and each
is its own element of @ARGV. One more invocation shows that the contents of @ARGV are entirely
dependent on the command-line arguments:

$ perl argv1.pl It was the best of times,
[It]
[was]
[the]
[best]
[of]
[times,]
$

The command-line arguments can be stored into variables for later use by simply accessing the

elements of @ARGV.

my $zeroth_arg = $ARGV[0];
my $first_arg = $ARGV[1];

It is common to do this in a different way (TIMTOWTDI) by shifting @ARGV.

my $zeroth_arg = shift @ARGV;
my $first_arg = shift @ARGV;

And because we can, we might want to shorten this code a bit by taking advantage of the fact that

the shift() function, outside the body of a function definition, shifts @ARGV by default. So this code
produces the same result as the preceding code:

my $zeroth_arg = shift;

CHAPTER 8 ■ FILES AND DATA

189

my $first_arg = shift;

@ARGV and <>
The diamond and @ARGV have a functional relationship (as opposed to a dysfunctional one). Here is how

 really works:

• If there are any elements in @ARGV, shift out the first one, treat it as a file, and read
from it; repeat for each element in @ARGV until @ARGV is empty.

• If @ARGV is empty, read from standard input.

Here is a program that illustrates this relationship. In argv2.pl, @ARGV is assigned the value of three
files. Then, when the reads from within the while loop parentheses, it will read from the files that
were assigned to @ARGV.

#!/usr/bin/perl
argv2.pl

use warnings;
use strict;

@ARGV = qw(file1.dat file2.dat file3.dat);

while (<>) {
 print "text read: $_";
}

Executing this program produces the following:

$ perl argv2.pl
text read: this is file1.dat
text read: it is not too exciting...
text read: this is file2.dat
text read: equally unexciting...
text read: this is file3.dat
text read: yep, you guessed it, not too exciting...
$

Note that in this program we assign to @ARGV, which overwrites its value. Thus, if we executed this

program with command-line arguments, they would be immediately overwritten and lost. We could
easily change the code to add the three files to the command-line arguments by using the push()
function:

push @ARGV, qw(file1.dat file2.dat file3.dat);

CHAPTER 8 ■ FILES AND DATA

190

$ARGV
As the reads through the files on the command line, the file that is being read is stored in the special
variable $ARGV. You can use this variable to see the name of the file being read if you want. Here is a
program that prints its value as it is reading:

#!/usr/bin/perl
argv3.pl

use warnings;
use strict;

@ARGV = qw(file1.dat file2.dat file3.dat);

while (<>) {
 print "text read from $ARGV: $_";
}

Executing this code produces the following:

$ perl argv3.pl
text read from file1.dat: this is file1.dat
text read from file1.dat: it is not too exciting...
text read from file2.dat: this is file2.dat
text read from file2.dat: equally unexciting...
text read from file3.dat: this is file3.dat
text read from file3.dat: yep, you guessed it, not too exciting...
$

Like @ARGV, $ARGV does not need to be declared with my(). Moreover, it should not be declared or its

magic will be broken.

Reading in List Context
Sometimes we want to read more than just one line at a time. When you read from a filehandle in scalar
context, as we’ve been doing so far, it gives you the next line. However, in list context, it returns all of the
remaining lines (newlines included). This is known as a file slurp. For instance, you can read in an entire
file like this:

open(INPUT, '<', 'somefile.dat') or die $!;
my @data;
@data = <INPUT>;
close INPUT;

File slurps can be quite memory-intensive, however. Perl has to store every single line of the file into

the array, even if you only want to deal with one or two of them. Usually, you’ll want to step through a
file with a while loop as before. Still, for some things, an array is the easiest way of processing data. For
example, how do you print the last five lines in a file?

CHAPTER 8 ■ FILES AND DATA

191

The problem with reading a line at a time is that you don’t know how much you have left to read.
You can only tell when you run out of data, so you’d have to keep an array of the last five lines read, and
drop an old line when a new one comes in. You’d do it something like this:

#!/usr/bin/perl
tail1.pl

use warnings;
use strict;

open(FILE, '<', 'gettysburg.txt') or die $!;
my @last5;

while (<FILE>) {
 push @last5, $_; # add to the end
 shift @last5 if @last5 > 5; # take from the beginning
}

close FILE;

print "Last five lines:\n", @last5;

And that’s exactly how you’d do it if you were concerned about memory use on big files. Given a

suitably primed gettysburg.txt, this is what you’d get:

$ perl tail1.pl
Last five lines:
last full measure of devotion—that we here highly resolve
that these dead shall not have died in vain—that this
nation, under God, shall have a new birth of freedom—and
that government: of the people, by the people, for the
people, shall not perish from the earth.
$

However, if memory wasn’t a problem or you knew you were going to be primarily dealing with

small to medium-size files, this would be perfectly sufficient:

#!/usr/bin/perl
tail2.pl

use warnings;
use strict;

open(FILE, '<', 'gettysburg.txt') or die $!;
my @speech = <FILE>; # slurp the whole file into memory
close FILE;

print "Last five lines:\n", @speech[-5 .. -1];

CHAPTER 8 ■ FILES AND DATA

192

Writing to Files
We’re now ready to write to a file, which we’ll do by using a form of the print() function. Normally, to
print something to standard output, you say this:

print list;

When we want to write to a file associated with the filehandle FH, though, we use this instead:

print FH list;

That’s print, followed by a space, followed by a filehandle, followed by a space (not a comma),
followed by the stuff to print.

So, for instance, here’s a program that demonstrates one way of copying a file. This program takes
two command-line arguments: the first is the file to read, the second is the file to write.

#!/usr/bin/perl
copy.pl

use warnings;
use strict;

my $source = shift @ARGV;
my $destination = shift @ARGV;

open(IN, '<', $source) or die "Can't read source file $source: $!\n";
open(OUT, '>', $destination) or die "Can't write to file $destination: $!\n";

print "Copying $source to $destination\n";

while (<IN>) {
 print OUT $_;
}

close IN;
close OUT;

Now there isn’t much to see when we run this program, but let’s run it anyway:

$ perl copy.pl gettysburg.txt speech.txt
Copying gettysburg.txt to speech.txt
$

Let’s look at this program in detail. First, we get the name of the file to copy and the name of the

destination file from the command line:

my $source = shift @ARGV;
my $destination = shift @ARGV;

The command-line arguments to our program are in the @ARGV array, and we use shift() (which

removes and returns the left-most element of an array) to get an element out. We could quite easily have
said this:

CHAPTER 8 ■ FILES AND DATA

193

my $source = $ARGV[0];
my $destination = $ARGV[1];

However, shift() is a slightly more common way of grabbing the command-line argument. Next,

we open our two files:

open(IN, '<', $source) or die "Can't read source file $source: $!\n";
open(OUT, '>', $destination) or die "Can't write to file $destination: $!\n";

The first open() opens the source file in read mode and the second open() opens the destination file

in write mode. Notice that we’re taking care to check that the files can be opened for reading and
writing. It is essential to let the user know if, for example, she does not have permission to access a
certain file or the file does not exist. There is rarely a really good reason not to do this.

The copying procedure is simple enough: read a line from the source file, then write it to the
destination.

while (<IN>) {
 print OUT $_;
}

The while loop is reading from <IN> in scalar context—one line at a time—until end of file. In list

context <IN> returns a list of all the remaining lines in the file. So why don’t we just say

print OUT <IN>;

The trouble is, that’s not very memory-conscious; Perl would have to read in the whole file at once
in order to construct the list, and only then pass it out to print(). For small files, this is fine. For large
files, it is usually better to read line by line in scalar context.

Let’s look at another example. This time, instead of immediately writing the file, we’ll first sort the
lines. In this case, we can’t avoid reading every line into memory—we need to have all the lines in an
array or something similar. Let’s see how we’d go about doing this. This program will take two
arguments—the input file to sort and the output file that will contain the sorted content.

If you’ve ever needed to sort the lines in a file, this is for you. The program works in three stages:

• First, open the input file and the output file that the user specifies.

• Then, read in the input file and sort its content.

• Finally, write out the sorted content.

Here’s the full listing:

#!/usr/bin/perl
sort1.pl

use warnings;
use strict;

my $input = shift;
my $output = shift;

open(INPUT, '<', $input) or die "Couldn't open file $input: $!\n";

CHAPTER 8 ■ FILES AND DATA

194

open(OUTPUT, '>', $output) or die "Couldn't open file $output: $!\n";

my @file = <INPUT>;
@file = sort @file;

print OUTPUT @file;

close INPUT;
close OUTPUT;

Suppose we have the following file, sortme.txt:

Well, I finally found someone to turn me upside-down
And nail my feet up where my head should be
If they had a king of fools then I could wear that crown
And you can all die laughing, because I'd wear it proudly

We can run our program like this:

$ perl sort1.pl sortme.txt sorted.txt
$

And we’ll end up with a file, sorted.txt:

And nail my feet up where my head should be
And you can all die laughing, because I'd wear it proudly
If they had a king of fools then I could wear that crown
Well, I finally found someone to turn me upside-down

The first stage of this program—opening the files—is very similar to what we did before, with one

small change:

my $input = shift;
my $output = shift;

open(INPUT, '<', $input) or die "Couldn't open file $input: $!\n";
open(OUTPUT, '>', $output) or die "Couldn't open file $output: $!\n";

We don’t tell Perl which array to shift(), so it assumes we want @ARGV, which is just as well, because

in this case, we do!
Getting the file sorted is a simple matter of reading it into an array and calling sort(), passing in the

array.

my @file = <INPUT>;
@file = sort @file;

In fact, we could just say my @file = sort <INPUT>; and that would be slightly more efficient—Perl

would only have to store the lines of text in memory once.
Finally, we write out the sorted array:

print OUTPUT @file;

CHAPTER 8 ■ FILES AND DATA

195

We could even do all this in one line, without using an array:

print OUTPUT sort <INPUT>;

This is arguably the most efficient solution, and you might think it’s relatively easy to understand.
What are we doing after all? Printing to the output file the sorted input file. But it’s the least extensible
way of writing it. We can’t change any of the stages when it’s written like that.

Buffering
Try this little program:

#!/usr/bin/perl
time1.pl

use warnings;
use strict;

foreach (1..20) {
 print ".";
 sleep 1;
}
print "\n";

You’d probably expect it to print 20 dots, leaving a second’s gap between each one, and on Windows

with ActiveState Perl, that’s exactly what it does. However, this is something of an exception; on most
other operating systems, you’ll have to wait for 20 seconds first, before it prints all 20 dots at once.

So what’s going on? Operating systems often won’t actually write something to (or read something
from) a filehandle until the end-of-line character—this is to save doing a lot of short, repetitious
read/write operations. Instead, they keep everything you’ve written queued up in a buffer and access the
filehandle once only. This is called buffering.

However, you can tell Perl to stop the OS from doing this by modifying the special variable $|. If this
variable is set to 0, which it usually is, Perl will tell the operating system to use standard output buffering
if possible. If it’s set to 1, Perl turns off standard output buffering.

So, to make the program steadily print out dots—as you might to show progress on a long
operation—we just need to set $| to 1 before we do our printing:

#!/usr/bin/perl
time2.pl

use warnings;
use strict;

$| = 1;
foreach (1..20) {
 print ".";
 sleep 1;
}
print "\n";

CHAPTER 8 ■ FILES AND DATA

196

Opening Pipes
The open() function can be used for more than just plain old files—you can read data from and send
data to programs as well. Anything that can read from standard input or write to standard output can
talk directly to Perl via a pipe.

Pipes were invented by Doug McIlroy for the Unix operating system, and were soon carried over to
other operating systems. They’re one of those things that sound amazingly obvious once someone else
has thought of it.

■ Note A pipe is something that connects two filehandles together.

That’s it. Usually you’ll be connecting the standard output of one program to the standard input of
another. Unix users are probably quite familiar with pipes. Here is a command that will list all the
nonhidden files in a directory (ls) and then page through the output (more):

$ ls | more

The vertical bar character (|) connects the standard output of the ls command to the standard
input of the more command. This causes the file listing output to be sent into the more command, whose
job it is to page through it.

The Windows version of this command is

$ dir | more

We can write Perl programs that pipe into programs (our Perl program will write into the pipe) or
pipe from programs (our Perl program will read from the pipe).

Receiving Piped Data from a Process
To read the output of a program, simply use open(), with '-|' as the second argument and the name of
the program (and any command-line arguments you want to give it) as the third argument. For instance,
let’s write a program to sort either the file on the command line or standard input (sort2.pl):

#!/usr/bin/perl
sort2.pl

use warnings;
use strict;

my @text = <>;

print sort @text;

Recall that the reads from either the file or files on the command line, or from standard input if

there are no command-line arguments. Reading from into @text will read in list context, slurping the
contents into the array. We then print the sorted array. Here’s how you would execute this program:

CHAPTER 8 ■ FILES AND DATA

197

$ perl sort2.pl gettysburg.txt

This invocation would produce the contents of gettysburg.txt in sorted order.
Let’s write a program that will execute this program and print every third line of the output. We’ll

call it sortslash3.pl.

#!/usr/bin/perl
sortslash3.pl

use warnings;
use strict;

open(FH, '-|', 'perl sort2.pl gettysburg.txt');

my $i = 1;

while (<FH>) {
 if ($i % 3 == 0) {
 print;
 }
 $i++;
}

close FH;

The important line in this program is

open(FH, '-|', 'perl sort2.pl gettysburg.txt');

This line starts a process that executes the sort2.pl program, passing the argument gettysburg.txt.
The dash-vertical bar as the second argument means “Pipe from this program’s standard output into our
program.” Since this standard output is coming into our program, we can read from the pipe by
wrapping the filehandle variable in angle brackets.

<FH>

In the while loop, we are reading from the filehandle in scalar context, one line of output at a time.
We then keep count of what line we are processing and if that line is divisible by 3 (which we determine
by using the modulus operator %), we print that line to standard output.

Running this program produces the following:

$ perl sortslash3.pl
But, in a larger sense, we can not dedicate...we can not
can long endure. We are met on a great battle-field of that
equal.
increased devotion to that cause for which they gave the
living and dead, who struggled here, have consecrated it,
on this continent a new nation, conceived in Liberty, and
rather for us to be here dedicated to the great task
that government: of the people, by the people, for the
that these dead shall not have died in vain—that this
$

CHAPTER 8 ■ FILES AND DATA

198

Sending Piped Data to Another Process
In addition to reading data in from external programs, we can write out to the standard input of another
program. For instance, we could send mail out by writing to a program like sendmail,1 or we could
generate output that we’d like to have sorted before it gets to the user. We’ll deal with the second
example because, while it’s easy enough to collect the data into an array and sort it ourselves before
writing it out, we just happen to have a sorting program handy—we wrote one just a few pages ago. It is
called sort2.pl.

Here is a program that will count things and then open a pipe into our sort2.pl program, displaying
those things and their counts in sorted order. This program also illustrates a very common use of a hash
variable—counting. (We talked about using a hash to count things at the end of Chapter 5.)

Things hide in the kitchen cabinet. Tins of tomatoes can lurk unseen for weeks and months,
springing forth only after another can has been purchased. Every so often, then, we need to investigate
the cabinets and take inventory to enumerate our baked beans and root out reticent ravioli. The
following program can help us do that:

#!/usr/bin/perl
inventory.pl

use warnings;
use strict;

my %inventory;
print "Enter individual items, followed by a new line.\n";
print "Enter a blank line to finish.\n";
while (<STDIN>) {
 chomp;
 last if $_ eq "";
 $inventory{lc $_}++;
}

open(SORT, '|-', 'perl sort2.pl');

while (my ($item, $quantity) = each %inventory) {
 if ($quantity > 1) {
 $item =~ s/^(\w+)\b/$1s/ unless $item =~ /^\w+s\b/;
 }
 print SORT "$item: $quantity\n";
}

close SORT;

Now let’s take stock:

1 sendmail is arguably the most ubiquitous Mail Transfer Agent (MTA) used on the Internet. See
www.sendmail.org for more information.

http://www.sendmail.org

CHAPTER 8 ■ FILES AND DATA

199

$ perl inventory.pl
Enter individual items, followed by a new line.
Enter a blank line to finish.
jar of jam
loaf of bread
can of tuna
packet of pancake mix
can of tomatoes
can of tuna
packet of pasta
clove of garlic
packet of pasta

can of tomatoes: 1
cans of tuna: 2
clove of garlic: 1
jar of jam: 1
loaf of bread: 1
packet of pancake mix: 1
packets of pasta: 2

As you can see, we get a sorted list of totals back. Let’s look at this code in more detail.
Whenever you’re counting how many of each item you have in a list, you should immediately think

about hashes. Here we use a hash to key each item to the quantity—each time we see another one of
those items, we add to the quantity in the hash:

while (<STDIN>) {
 chomp;
 last unless $_ eq "";
 $inventory{lc $_}++;
}

This loop will end when we reach end of file or if $item contains nothing after having been

chomped—it was nothing more than a newline.
To ensure that the capitalization of our item is not significant, we use the lc() function to return a

lowercase version of the item. Otherwise, “Can of beans”, “CAN OF BEANS”, and “can of beans” would
be treated as three totally separate items, instead of three examples of the same thing. By forcing them
into lowercase, we remove the difference.

■ Tip The lc() function returns the string it was given, but with uppercase characters turned into lowercase, so
print lc("FuNnY StRiNg"); should give you the output “funny string”. There’s also a uc() function that returns
an uppercased version of the string, so print uc("FuNnY StRiNg"); will output “FUNNY STRING”.

Next, we open our pipe. We’re going to pass data from our program to another external program:

CHAPTER 8 ■ FILES AND DATA

200

open(SORT, '|-', 'perl sort2.pl');

Now we can print the data out:

while (my ($item, $quantity) = each %inventory) {

We use each() to get each key/value pair from the hash, as explained in Chapter 5.

if ($quantity > 1) {
 $item =~ s/(\w+)/$1s/ unless $item =~ /\w+s\b/;
 }

This makes the output a little more presentable. If there is more than one of the current item, the

name should be pluralized unless it already ends in an “s”. \w+ gets the first word in the string, the
parentheses will store that word in $1, and we then add an “s” after it.

Last of all, we print this out by printing to the sort2.pl filehandle. That filehandle is in turn
connected to the standard input of the sort2.pl program so the output is in sorted order.

Bidirectional Pipes
It is possible to pipe into the standard input of a process and then pipe the resulting standard

output. The syntax to accomplish this is a bit beyond the scope of this book, but you can quench your
curiosity by checking out perldoc IPC::Open2.

File Tests
So far, we’ve just been reading and writing files, and die()ing if anything bad happens. For small
programs, this is usually adequate; but if we want to use files in the context of a larger application, we
should really check their status before we try to open them and, if necessary, take preventive measures.
For instance, we may want to warn the user if a file we’re going to overwrite already exists, giving them a
chance to specify a different file. We also want to ensure that, for instance, we’re not trying to read a
directory as if it were a file.

■ Tip This sort of programming—anticipating the consequences of future actions—is called defensive
programming. Just like defensive driving, you assume that everything is out to get you. Just because this is
paranoid behavior does not mean they are not out to get you—files will not exist or not be writable when you need
them, users will specify things inaccurately, and so on. Properly anticipating, diagnosing, and working around such
obstacles is the mark of a top-class programmer.

Perl provides us with file tests, which allow us to check various characteristics of files. Most of these
tests act as logical operators and return a true or false value. For instance, to check if a file exists, we
write this:

if (-e "somefile.dat") {...}

CHAPTER 8 ■ FILES AND DATA

201

The test is -e and it takes a file name (or filehandle) as its argument. Just like open(), this file name
can also be specified from a variable. You can just as validly say

if (-e $filename) {...}

where $filename contains the name of the file you want to check.
Table 8-1 shows the most common file tests. For a complete list of file tests, see perldoc perlfunc.

Table 8-1. File Test Operators

Test Meaning

-e True if the file exists

-f True if the file is a plain file—not a directory

-d True if the file is a directory

-z True if the file has zero size

-s True if the file has nonzero size—returns size of file in bytes

-r True if the file is readable by you

-w True if the file is writable by you

-x True if the file is executable by you

-o True if the file is owned by you

The last four tests will only make complete sense on operating systems for which files have

meaningful permissions, such as Unix and Windows. If this isn’t the case, they’ll frequently all return
true (assuming the file or directory exists). So, for instance, if we’re going to write to a file, we should
check to see whether the file already exists, and if so, what we should do about it.

■ Tip Note that on systems that don’t use permissions comprehensively, -w is the most likely of the last four tests
to have any significance, testing for read-only status.

This program does all it can to find a safe place to write a file:

#!/usr/bin/perl
filetest.pl

use warnings;

CHAPTER 8 ■ FILES AND DATA

202

use strict;

my $target;
while (1) {
 print "What file should I write to? ";
 $target = <STDIN>;
 chomp $target;
 if (-d $target) {
 print "No, $target is a directory.\n";
 next;
 }
 if (-e $target) {
 print "File already exists. What should I do?\n";
 print "(Enter 'r' to write to a different name, ";
 print "'o' to overwrite or\n";
 print "'b' to back up to $target.old)\n";
 my $choice = <STDIN>;
 chomp $choice;
 if ($choice eq "r") {
 next;
 } elsif ($choice eq "o") {
 unless (-o $target) {
 print "Can't overwrite $target, it's not yours.\n";
 next;
 }
 unless (-w $target) {
 print "Can't overwrite $target: $!\n";
 next;
 }
 } elsif ($choice eq "b") {
 if (rename($target, $target.".old")) {
 print "OK, moved $target to $target.old\n";
 } else {
 print "Couldn't rename file: $!\n";
 next;
 }
 } else {
 print "I didn't understand that answer.\n";
 next;
 }
 }
 last if open(OUTPUT, '>', $target);
 print "I couldn't write to $target: $!\n";
 # and round we go again.
}
print OUTPUT "Congratulations.\n";
print "Wrote to file $target\n";

close OUTPUT;

CHAPTER 8 ■ FILES AND DATA

203

So, after all that, let’s see how the program handles our input. First of all, what happens with a text
file that doesn’t exist?

$ perl filetest.pl
What file should I write to? test.txt
Wrote to file test.txt
$

Seems OK. What about if we “accidentally” give it the name of a directory? Or give it a file that

already exists? Or give it a response it’s not prepared for?

$ perl filetest.pl
What file should I write to? work
No, work is a directory.
What file should I write to? filetest.pl
File already exists. What should I do?
(Enter 'r' to write to a different name, 'o' to overwrite or
'b' to back up to filetest.pl.old)
r
What file should I write to? test.txt
File already exists. What should I do?
(Enter 'r' to write to a different name, 'o' to overwrite or
'b' to back up to test.txt.old)
g
I didn't understand that answer.
What file should I write to? test.txt
File already exists. What should I do?
(Enter 'r' to write to a different name, 'o' to overwrite or
'b' to back up to test.txt.old)
b
OK, moved test.txt to test.txt.old
Wrote to file test.txt
$

There is a lot going on with this program. Let’s look at it in detail.
The main program takes place inside an infinite loop—the only way we can exit the loop is via the

last statement at the bottom:

last if open(OUTPUT, '>', $target);

That last will happen only if we’re happy with the file name and we can successfully open the file.
In order to be happy with the file name, though, we have a gauntlet of tests to run:

if (-d $target) {

We need to first see whether what has been specified is actually a directory. If it is, we don’t want to
go any further, so we go back and get another file name from the user:

print "No, $target is a directory.\n";
next;

We print a message and then use next to take us back to the top of the loop.

CHAPTER 8 ■ FILES AND DATA

204

Next, we check to see whether the file already exists. If so, we ask the user what we should do about
this.

if (-e $target) {
 print "File already exists. What should I do?\n";
 print "(Enter 'r' to write to a different name, ";
 print "'o' to overwrite or\n";
 print "'b' to back up to $target.old\n";
 my $choice = <STDIN>;
 chomp $choice;

If he wants a different file, we merely go back to the top of the loop:

if ($choice eq "r") {
 next;

If he wants us to overwrite the file, we see if this is possible:

} elsif ($choice eq "o") {

First, we see if the user actually owns the file: it’s unlikely he’ll be allowed to overwrite a file he
doesn’t own.

unless (-o $target) {
 print "Can't overwrite $target, it's not yours.\n";
 next;
 }

Next we check to see if there are any other reasons we can’t write to the file; if there are, we report

them and go around for another file name:

unless (-w $target) {
 print "Can't overwrite $target: $!\n";
 next;
 }

If the user wants to back up the file—that is, rename the existing file to a new name—we see if this is

possible:

} elsif ($choice eq "b") {

The rename() function renames a file; it takes two arguments: the current file name, and the new
name.

if (rename($target, $target.".old")) {
 print "OK, moved $target to $target.old\n";
 } else {

If we couldn’t rename the file, we explain why and start from the beginning again:

 print "Couldn't rename file: $!\n";
 next;

CHAPTER 8 ■ FILES AND DATA

205

 }

Otherwise, if the user said something we weren’t prepared for, we say:

} else {
 print "I didn't understand that answer.\n";
 next;
 }

You may think this program is excessively paranoid—after all, it’s 50 lines just to print a message to

a file. In fact, it isn’t paranoid enough: it doesn’t check to see whether the backup file already exists
before renaming the currently existing file. This just goes to show you can never be too careful when
dealing with the operating system. Later, we’ll see how to turn big blocks of code like this into reusable
elements so we don’t have to reinvent the wheel every time we want to safely write to a file.

Summary
Files give our data permanence by allowing us to store the data on disk. It’s no good having the best
accounting program in the world, say, if it loses all your accounts every time the computer is switched
off. What we’ve seen here are the fundamentals of getting data in and out of Perl.

Files are accessed through filehandles. Perl gives us three filehandles when our program executes:
standard input (STDIN), standard output (STDOUT), and standard error (STDERR). We can open other
filehandles, either for reading or for writing, with the open() function, and we should always remember
to check the return value of the open() function.

Wrapping the filehandle in angle brackets, <FILEHANDLE>, reads from the specified filehandle. We
can read in scalar context (one line at a time) or list context (all remaining lines until end of file).

Writing to a file is done with the print() function. By default, this writes to standard output, so the
filehandle must be specified.

The diamond, , allows us to write programs that read from the files provided on the command
line, or from STDIN if no files are given.

Pipes can be used to talk to programs outside of Perl. We can read in and write out data to them as if
we were looking at the screen or typing on the keyboard. We can also use them as filters to modify our
data on the way in or out of a program.

File test operators can be used to check the status of a file in various ways, and we’ve seen an
example of using file test operators to ensure that there are no surprises when we’re reading or writing a
file.

Exercises
1. Read each line of gettysburg.txt. Ignore all blank lines in the file. For all other lines, break

the line into all the text separated by whitespace (keeping all punctuation) and write each

piece of text to the output file ex1out.txt on its own line.

2. Write a program that, when given files as command-line arguments, displays their contents.

For instance, if the program is invoked as

CHAPTER 8 ■ FILES AND DATA

206

$ perl ex2.pl file1.dat

it displays the contents of file1.dat. If invoked as

$ perl ex2.pl file2.dat file3.dat

it displays the contents of file2.dat followed by file3.dat. However, if invoked
with no arguments like so:

$ perl ex2.pl

it always displays the contents of file1.dat followed by file2.dat
followed by file3.dat.

3. Modify the file backup facility in filetest1.pl so that it checks to see if a backup already

exists before renaming the currently existing file. When a backup does exist, the user should

be asked to confirm that she wants to overwrite it. If not, she should be returned to the

original query.

C H A P T E R 9

■ ■ ■

207

String Processing

Perl was created to be a text processing language, and it is arguably the most powerful text processing
language around. As discussed in Chapter 7, one way that Perl displays its power in processing text is
through its built-in regular expression support. Perl also has many built-in string operators (such as the
string concatenation operator • and the string replication operator x) and string functions. In this
chapter you will explore several string functions and one very helpful string operator.

Character Position
Before getting started with some of Perl’s built-in functions, let’s talk about the ability to access
characters in a string by indexing into the string. The numeric position of a character in a string is known
as its index. Recall that Perl is 0-based—it starts counting things from 0, and this applies to character
indexing as well. So, for this string:

"Wish You Were Here"

here are the characters of the string and their indexes:

character 0: W
character 1: i
character 2: s
character 3: h
character 4: <space>
character 5: Y
...
character 17: e

You can also index characters by beginning at the rightmost character and starting from index –1.

Therefore, the characters in the preceding example string can also be accessed using the following
negative indices:

character -1: e
character -2: r
character -3: e
character -4: H
character -5: <space>

CHAPTER 9 ■ STRING PROCESSING

208

character -6: e
...
character -18: W

String Functions
Perl has many string functions built into the language. This section will discuss several of the most
common built-in functions used to process text.

The length() Function
To determine the length of a string, you can use the length() function.

length(string)

This function returns the number of characters in its argument. If no argument is given, length()
returns the number of characters in Perl’s default variable $_. An example of the code follows:

#!/usr/bin/perl
length.pl

use warnings;
use strict;

my $song = 'The Great Gig in the Sky';
print 'length of $song: ', length($song), "\n";
the *real* length is 4:44

$_ = 'Us and Them';
print 'length of $_: ', length, "\n";
this one is 7:40

Running the code produces this result:

$ perl length.pl
length of $song: 24
length of $_: 11
$

The index() Function
The index()function locates substrings in strings. Its syntax is

index(string, substring)

It returns the starting index (0-based) of where the substring is located in the string. If the substring
is not found, it returns –1. This invocation:

index('Larry Wall', 'Wall')

CHAPTER 9 ■ STRING PROCESSSING

209

would return 6 since the substring “Wall” is contained within the string “Larry Wall” starting at position
6 (0-based, remember?). This invocation:

index('Pink Floyd', 'ink');

would return 1.
The index() function has an optional third argument that indicates the starting position from which

it should start looking. For instance, this invocation:

index('Roger Waters', 'er', 0)

tells index() to try to locate the substring “er” in “Roger Waters” (http://en.wikipedia.org/
wiki/Roger_Waters) and to start looking from position 0. Position 0 is the default, so it is not necessary to
include it, but it is OK if you do. This function returns 3. If you provide another starting position as in

index('Roger Waters', 'er', 5)

it tells index() to search for the substring “er” in “Roger Waters” but to start searching from index 5. This
returns 9 because it finds the “er” in Roger’s last name.

The following is an example illustrating the use of the index() function. It prompts the user for a
string and then a substring and determines if the string contains any instance of the substring. If so,
index() returns something other than –1, so you print that result to the user. Otherwise, you inform the
user that the substring was not found.

#! /usr/bin/perl
index.pl

use warnings;
use strict;

print "Enter a string: ";
chomp(my $string = <STDIN>);

print "Enter a substring: ";
chomp(my $substring = <STDIN>);

my $result = index($string, $substring);

if ($result != -1) {
 print "the substring was found at index: $result\n";
} else {
 print "the substring was not found\n";
}

Here is an example of running this program:

$ perl index.pl
Enter a string: Perl is cool!
Enter a substring: cool
the substring was found at index: 8
$ perl index.pl
Enter a string: hello, world!
Enter a substring: cool

http://en.wikipedia.org/wiki/Roger_Waters
http://en.wikipedia.org/wiki/Roger_Waters

CHAPTER 9 ■ STRING PROCESSING

210

the substring was not found
$

The rindex() Function
The rindex()function is similar to index() except that it searches the string from right to left (instead of
left to right). Except for the name of the function itself, the syntax for calling rindex() is exactly the same
as for index():

rindex(string, substring)

This function searches right-to-left through the string searching for the substring. It returns the 0-
based index of where the substring is in the string or –1 if the substring is not found.

An important note: even though this function searches through the string from right to left, the 0th
character of the string is still the leftmost character.

This invocation:

rindex('David Gilmour', 'i')

searches from the right-hand side of “David Gilmour” looking for the substring “i”. It finds it at position
7 (the “i” in “Gilmour”).

This function also has an optional third argument that is the character position from which it begins
looking for the substring. This invocation:

rindex('David Gilmour', 'i', 6)

starts at position 6 (the “G” in “Gilmour”) and looks right to left for an “i” and finds it at position 3.

The substr() Function
When processing text, you often have the situation where a string follows a specific column layout. For
example, a string that contains a customer’s last name in columns 1–20, the last name in columns 21–40,
and address in columns 40–70. You can use the substr() function to extract these fields out of the string.
Its syntax is

substr(string, starting_index, length)

It returns length number of characters starting from starting_index in string. If the number of
characters extends beyond the length of the string, then it returns all the characters of the string from
starting_index to the end. For example, let’s say you have read a fixed-length record from a file, and you
know that from column 24 (0-based) to column 53 is the job title for that record. Here is an example line
from the file:

'John A. Smith Perl programmer'

If this record was read into the variable $record, this invocation would access John’s job:

$s = substr($record, 24, 30);

Since there is more than one way to do it in Perl (TMTOWTDI), this invocation of substr() can be
performed with a regular expression:

($s) = $record =~ /^.{24}(.{1,30})/;

CHAPTER 9 ■ STRING PROCESSSING

211

This statement matches the string literal $record against a regex that translates to “Match 24 of any
character but ‘\n’ at the beginning of the string followed between 1 and 30 of any character but ‘\n’”.
The parentheses around .{1,30} store those characters in $1. Then an assignment is made to the list ($s)
that copies over $1 and stores it into $s. As a result, $s is the string “Perl programmer”.

An interesting feature of the substr() function is that it can be on the left-hand side of an
assignment. For instance, this code:

substr($record, 24, 30) = 'Technical manager';

would overwrite the substring of $record starting from position 24 length 30 (John’s job, “Perl
programmer”) with the string “Technical manager”. This results in $record being modified to be

'John A. Smith Technical manager'

Is this a promotion or a demotion?
Here is an example of using substr(). It prompts the user for a string, a starting index, and a length

and then prints the substring to the user. It then overwrites the first five characters of the string the user
enters with the string “hello, world!” and prints the result:

#!/usr/bin/perl
substr.pl

use warnings;
use strict;

print "Enter a string: ";
chomp(my $string = <STDIN>);

print "Enter starting index: ";
chomp(my $index = <STDIN>);

print "Enter length: ";
chomp(my $length = <STDIN>);

my $s = substr($string, $index, $length);

print "result: $s\n";

now, overwrite $string
substr($string, 0, 5) = 'hello, world!';

print "string is now: $string\n";

Here is an example of executing this code:

$ perl substr.pl
Enter a string: practical extraction and report language
Enter starting index: 10
Enter length: 8
result: extracti
string is now: hello, world!ical extraction and report language
$

CHAPTER 9 ■ STRING PROCESSING

212

Transliteration
Now let’s look at another text processing operator—the transliteration operator. Its syntax is

tr/old/new/.

This operator resembles the substitute operator, s///, which you saw in Chapter 7 when I discussed
regular expressions. While the tr/// operator resembles s///, the only thing it has in common with the
substitute is that both operators operate on $_ by default. The tr/// operator has nothing to do with
regular expressions.

This operator correlates the characters in its two arguments, one by one, and uses these pairings to
substitute individual characters in the referenced string. The code tr/one/two/ replaces all instances of
“o” in the referenced string with “t”, all instances of “n” with “w”, and all instances of “e” with “o”.

This operator translates the characters in $_ by default. To translate a string other than $_, use the =~
operator as in

$string =~ tr/old/new/;

Let’s say you wanted to replace, for some reason, all the numbers in a string with letters. You might
write something like this:

$string =~ tr/0123456789/abcdefghij/;

This would turn, say, “2011064” into “cabbage”. You can use ranges in transliteration, but not any of
the character classes. You could write the preceding as

$string =~ tr/0-9/a-j/;

The return value of this operator is, by default, the number of characters transliterated. You can
therefore use the transliteration operator to count the number of occurrences of certain characters. For
example, to count the number of vowels in a string, you can use

my $vowels = $string =~ tr/aeiou//;

Note that this will not actually change any of the vowels in the variable $string. As the second
group is blank, it is exactly the same as the first group. However, the transliteration operator can take the
/d modifier, which will delete occurrences on the left that do not have a correlating character on the
right. To get rid of all spaces in a string quickly, you could use this line:

$string =~ tr/ //d;

The following is an example program that loops through the diamond operator, reading line by line
through either the file or files on the command line or standard input. For each line, the tr/// operator
is used to uppercase the lowercase letters in $_:

#!/usr/bin/perl
tr.pl

use warnings;

while (<>) {
 tr/a-z/A-Z/;
 print;
}

CHAPTER 9 ■ STRING PROCESSSING

213

Here is an example of executing this program. You invoke it with no command line arguments so it
reads though your standard input until end of file (^D in Unix, ^Z<enter> in Windows):

$ perl tr.pl
And
AND
she's
SHE'S
buying
BUYING
a
A
stairway
STAIRWAY
^D
$

Summary
In this chapter I have discussed some very useful functions and operators to help you process text files.
You determined the length of a string with length(). You worked with string indices and substrings with
the functions index(), rindex(), and substr(). Finally, you looked at the transliteration operator, tr///,
which translates characters in a string.

Exercises
1. Open ex1.dat in read mode. Each line of the file is a string with customer information. The

information in the line is based on the following character positions:

1–24 Customer name

25–52 Address

53–72 City

73–74 State

76–80 Zip code

Print the information for each line so that it resembles

Record:
name : John Q Public
address : 23 Main St.
city : Des Moines

CHAPTER 9 ■ STRING PROCESSING

214

state : IA
zip : 50309

2. Write a program to perform the rot13 encoding algorithm. Rot13 is a simple encoding

algorithm with the purpose of making text temporarily unreadable. It is called rot13 because

it rotates alpha characters 13 positions in the alphabet. For instance, “a” is the first character

of the alphabet and it is rotated 13 positions to the 14th character, “n”. The second character,

“b”, is rotated to the 15th character “o” and so on through “m”, the 13th character rotated to

“z”, the 26th character. When the 14th character, “n”, is rotated 13 positions, it rotates back

around to “a”, “o” to “b”, and so on through “z” to “m”:

a -> n A -> N
b -> o B -> O
... ...
m -> z M -> Z
n -> a N -> A
o -> b O -> B
... ...
z -> m Z -> M

This program will read with the diamond. Execute the program like this:

$ perl ex2.pl ex2.dat

 To double-check your work, take the standard output from the program and pipe it back into
the standard input of the same program:

$ perl ex2.pl ex2.dat | perl ex2.pl

C H A P T E R 10

■ ■ ■

215

Interfacing to the Operating System

Perl is a popular language for system administrators and programmers who have to work with files and
directories due to the fact that there are many built-in functions to perform sys admin activities. These
activities include creating directories, changing the names of files, creating links, and executing
programs in the operating system.

In this chapter you will look at several functions that make working with files and directories
easy. Also, you will look at two ways of executing operating system commands or other applications
such as system() and backquotes.

The %ENV Hash
When a Perl program starts executing, it inherits from the shell all of the shell’s exported environment
variables. If you are curious about what environment variables are defined in your shell, try this
command in Unix:

$ env

Depending on what shell you are using, you might need to execute

$ printenv

In Windows try

c:\> set

All of the environment variables that the Perl program inherits are stored in the special hash
%ENV. Here are a few possible examples:

$ENV{HOME}
$ENV{PATH}
$ENV{USER}

CHAPTER 10 ■ INTERFACING TO THE OPERATING SYSTEM

216

These environment variables can be assigned. If you want to change the path for the current
execution of the program, simply assign to $ENV{PATH} (note that this will not change the path for the
shell that is invoking this program).

$ENV{PATH} = '/bin:/usr/bin:/usr/local/bin';

The following program whereis.pl is an example of reading from %ENV. It will implement the
whereis command, a useful program found in Unix that reports to the user the location of a program
within the PATH environment variable. Here is the code:

#!/usr/bin/perl
whereis.pl

use warnings;
use strict;

my $prog = shift @ARGV;
die "usage: perl whereis.pl <file>" unless defined $prog;

my $found = 0;

foreach my $dir (split /:/, $ENV{PATH}) {
 if (-x "$dir/$prog") {
 print "$dir/$prog\n";
 $found = 1;
 last;
 }
}

print "$prog not found in PATH\n" unless $found;

First, you grab the command line argument and place it in $prog. This argument is the program

that you are trying to locate. If the argument is not provided, you complain:

my $prog = shift @ARGV;
die "usage: perl whereis.pl <file>" unless defined $prog;

Then you see the following:

my $found = 0;

foreach my $dir (split /:/, $ENV{PATH}) {
 if (-x "$dir/$prog") {
 print "$dir/$prog\n";
 $found = 1;
 last;
 }
}

First, assume you won’t find the program and you assign $found the value 0, or false. You’ll
check this variable at the end of the program and print a message, if necessary. The foreach loop loops
through each directory listed in $ENV{PATH}, a colon—separated list of filenames. For each of these
directories, you test to see if the program you are looking for is an executable file in that directory:

CHAPTER 10 ■ INTERFACING TO THE OPERATING SYSTEM

217

if (-x "$dir/$prog") {

If so, you print the directory/filename, set $found to true since you found the program, and then
last out of the foreach loop.

Finally, if you did not find the program, the program says so:

print "$prog not found in PATH\n" unless $found;

Executing this code produces the following:

$ perl whereis.pl sort
/usr/bin/sort
$ perl whereis.pl noprogram
noprogram not found in PATH
$

Working with Files and Directories
Perl provides various mechanisms to work with files and directories. In this section, you will explore the
concept of file globbing, directory streams, and several built-in functions that allow you to perform
operating system actions. I’ll first cover file globbing.

File Globbing with glob()
Those of us who are Unix users know that this command lists all the files in the current directory that
end with the .pl extension:

$ ls *.pl

A similar command in Windows would be

c:\> dir *.pl

The part of these commands that indicates which files you want to list is *.pl. This is known as
a file glob—it globs, or collects together, all the filenames that end in .pl. Those filenames are then
listed.

The glob() function does this for us in Perl:

glob('*.pl')

■ Note You can perform the same action in Perl by taking the glob pattern and, like reading from a filehandle,
wrap it in angle brackets. Therefore, this glob() invocation:
glob('*.pl')
can be written as:
<*.pl>

CHAPTER 10 ■ INTERFACING TO THE OPERATING SYSTEM

218

There are two ways of reading from a file glob—scalar context or list context. In scalar context, it
returns back the next filename that ends in .pl:

$nextperlfilename = glob('*.pl');

In list context, it returns back all the filenames that end in .pl:

@alltheperlfilenames = glob('*.pl');

Like using the ls or dir commands, you can indicate more than one pattern to glob. These
patterns can be absolute or relative paths. For instance, this example globs all the filenames in the
current directory that end in .pl and all the filenames that end in .dat:

glob('*.pl *.dat')

This example lists all the .c and .h files in specific directories:

glob('/usr/src/*.c /usr/include/*.h')

Like reading from a filehandle, if you read from glob() within a while loop, and the function
return value is not explicitly assigned to a variable, it is assigned to $_ by default:

while (glob('*.dat')) {
 print "found a data file: $_\n";
}

This program lists the contents of the current directory and uses file tests to examine each file:

#!/usr/bin/perl
directory-glob.pl

use warnings;
use strict;

print "Contents of the current directory:\n";
foreach (glob<'*'>) {
 next if $_ eq "." or $_ eq "..";
 print $_, " " x (30 - length($_));
 print "d" if -d $_;
 print "r" if -r _;
 print "w" if -w _;
 print "x" if -x _;
 print "o" if -o _;
 print "\t";
 print -s _ if -r _ and -f _;
 print "\n";
}

After the code does a friendly print() is

foreach (glob('*')) {

CHAPTER 10 ■ INTERFACING TO THE OPERATING SYSTEM

219

This loops foreach filename returned by glob('*'), or all files in the current directory. The
filename is read into $_. Then you check to see if it is either . or .., special directories in DOS and Unix
that refer to the current and parent directories, respectively. You skip these in your program:

next if $_ eq "." or $_ eq "..";

You then print out the name of each file, followed by some spaces. The length of the filename
plus the number of spaces will always add up to 30, so you have nicely arranged columns.

print $_, " " x (30 - length($_));

First you test to see if the file is a directory using the –d file test covered in Chapter 8:

print "d" if -d $_;

Then you test to see if the file is readable, writable, executable, and that you are the owner:

 print "r" if -r _;
 print "w" if -w _;
 print "x" if -x _;
 print "o" if -o _;

No, this isn’t a typo: I do mean _ and not $_ here. Just as $_ is the default value for some

operations, such as print(), _ is the default filehandle for Perl’s file tests. It actually refers to the last file
explicitly tested. Since you tested $_ previously, you can use _ for as long as you’re referring to the same
file.

■ Note When Perl does a file test, it actually looks up all the data at once—ownership, readability, writability, and
so on; this is called a stat of the file. _ tells Perl not to do another stat, but to use the data from the previous one.
As such, it’s more efficient than stating the file each time.

Finally, you print out the file’s size—this is only possible if you can read the file, and only useful
if it is a regular file:

print -s _ if -r _ and –f _;

Executing this code produces the following:

$ perl directory-glob.pl
Contents of the current directory:
a.dat rwo 20
addsizes.pl rwo 242
b.dat rwo 20
backquote.pl rwo 297
dir1 drwxo
directory-dir.pl rwo 460
directory-glob.pl rwo 371
links.pl rwo 316
os.pl rwo 1049

CHAPTER 10 ■ INTERFACING TO THE OPERATING SYSTEM

220

system.pl rwo 132
whereis.pl rwo 334
$

The number at the end of the line is the size of the file in bytes; as for the letters, “d” shows that

this is a directory, “r” stands for readable, “w” for writable, “x” for executable, and “o” shows that the
user that is running the program is the owner.

Reading Directories
Directories can be treated kind of like files—you can open them and read from them. Instead of using
open() and a filehandle, which are used with files, you use opendir() and a directory handle:

opendir DH, "." or die "Couldn't open the current directory: $!";

To read each file in the directory, you use readdir() on the directory handle.
Previously, you saw directory-glob.pl, a program to perform file tests on files that you

obtained from a glob. In the spirit of TMTOWTDI, let’s do the same action using a directory handle
instead of a file glob:

#!/usr/bin/perl
directory-dir.pl

use warnings;
use strict;

print "Contents of the current directory:\n";
opendir DH, "." or die "Couldn't open the current directory: $!";
while ($_ = readdir(DH)) {
 next if $_ eq "." or $_ eq "..";
 print $_, " " x (30 - length($_));
 print "d" if -d $_;
 print "r" if -r _;
 print "w" if -w _;
 print "x" if -x _;
 print "o" if -o _;
 print "\t";
 print -s _ if -r _ and -f _;
 print "\n";
}
closedir DH;

The only changes from the previous program are these two lines:

opendir DH, "." or die "Couldn't open the current directory: $!";
while ($_ = readdir(DH)) {

and this line:

closedir DH;

CHAPTER 10 ■ INTERFACING TO THE OPERATING SYSTEM

221

The current directory, ., is opened. Then you read from the directory with readdir(), and as
long as you have a filename, you perform the same tests as before. After we are all finished with the files,
we close the directory handle. This program produces the same result as directory-glob.pl:

$ perl directory-dir.pl
Contents of the current directory:
a.dat rwo 20
addsizes.pl rwo 242
b.dat rwo 20
backquote.pl rwo 297
dir1 drwxo
directory-dir.pl rwo 460
directory-glob.pl rwo 371
links.pl rwo 316
os.pl rwo 1049
system.pl rwo 132
whereis.pl rwo 334
$

■ Note Well, it produces almost the same results. Reading from the glob pattern '*' returns all non-hidden files
in the current directory, whereas reading from a directory handle will also return hidden files. But, since you don’t
have any hidden files in this directory, none are displayed, so the output is the same as before.

Functions to Work with Files and Directories
Perl provides many built--in functions to perform operating system actions on files and directories. Let’s
look at a few of them.

The chdir() Function

To change directories within a Perl script, use the chdir() function. Its syntax is

chdir(directory)

This function attempts to change directories to the directory passed as its argument (defaulting
to $ENV{HOME}). If it successfully changed directories, it returns true, otherwise false.

■ Note chdir() changes the working directory in the script. This has no effect on the shell in which the script is
invoked—when the script exits the user will be in whatever directory they were in when they executed the
program.

CHAPTER 10 ■ INTERFACING TO THE OPERATING SYSTEM

222

The fact that this function returns true on success or false on failure can be very helpful. You
should always check the return value and respond appropriately if the directory change failed. For
instance, this code attempts to change directory and die()s if you couldn’t make the change:

chdir '/usr/local/src' or die "Can't change directory to /usr/local/src: $!";

Recall that $! is a variable that contains the error string of whatever just went wrong.

The unlink() Function
The unlink() function deletes files from disk. Its syntax is

unlink(list_of_files)

This function removes the files from disk. It returns true if successful, false if not. This function
acts like the Unix rm command and the Windows del command. Here is an example in the following
code:

unlink 'file1.txt', 'file2.txt' or warn "Can't remove files: $!";

The rename() Function
The rename() function renames one file to a new name. Its syntax is

rename(old_file_name, new_file_name)

This function renames the old file to the new name. It returns true if successful, false if not. This
function acts like the Unix mv command and the Windows ren command. Here is an example in the
following code:

rename 'old.txt', 'new.txt' or warn "Can't rename file: $!";

Note that you can also move a file with this function (like the mv command in Unix and move
command in Windows):

rename 'oldir/old.txt', 'newdir/new.txt' or warn "Can't move file: $!";

The link(), symlink(), and readlink() Functions
These functions allow us to work with hard and soft links. These functions are Unix-centric—they don’t
function the same in the Windows world, so it is suggested you avoid using them there.

The link() function creates a hard link. Its syntax is

link(file_to_link_to, link_name)

The symlink() function creates a symbolic link. Its syntax is

symlink(file_to_link_to, sym_link_name)

To find out what file a symbolic link points to, use the readlink() function:

readlink(sym_link_name)

CHAPTER 10 ■ INTERFACING TO THE OPERATING SYSTEM

223

Here is an example of creating a soft link in Perl and finding out the name of the file to which it
links:

#!/usr/bin/perl
links.pl

use warnings;
use strict;

my $filetolink = 'links.pl';
my $linkname = 'linktolinks.pl';

symlink($filetolink, $linkname) or die "link creation failed: $!";

print "link created ok!\n";

my $readlinkresult = readlink($linkname);
print "$linkname is a sym link to $readlinkresult\n";

Here is an example of executing this code. Note that the link doesn’t exist before the code is

executed:

$ ls -l link*
-rw-r--r-- 1 jdoe users 349 22 Apr 14:05 links.pl
$ perl links.pl
link created ok!
linktolinks.pl is a sym link to links.pl
$ ls -l link*
-rw-r--r-- 1 jdoe users 349 22 Apr 14:05 links.pl
lrwxr-xr-x 1 jdoe users 8 22 Apr 14:06 linktolinks.pl -> links.pl
$

The mkdir() and rmdir() Functions

The mkdir() function makes a directory. Its syntax is

mkdir(directory_name, mode)

This function creates directory_name. It returns true on success, false on failure. The mode, or
permissions, is applied to the directory (possibly modified by the umask). Note that the mode should be
represented as an octal number by preceding it with a 0 since Unix interprets the number representation
of the mode as an octal value.

Here is an example of mkdir() that creates the directory newdir in the current directory with the
permissions of 751 (in the Unix world, this looks like rwxr-x--x):

mkdir('newdir', 0751) or die $!;

As usual, you are handling the failure of this function—in this case you are die()ing.
The rmdir() removes an empty directory. It returns true on success, false on failure. Its syntax is

rmdir(directory_name)

CHAPTER 10 ■ INTERFACING TO THE OPERATING SYSTEM

224

The chmod() Function

Speaking of permissions, the chmod() function changes the mode, or permissions, on a file or directory.
Its syntax is

chmod(file_or_directory_name, mode)

Again, the mode should be represented as an octal number since that is how Unix interprets it.
This changes the mode of the file resume.txt to be readable only by the owner of the file, die()ing if the
chmod fails:

chmod('resume.txt', 0600) or die $!;

An Example

Here is an example program using a bunch of these functions. The comments describe what is going on:

#!/usr/bin/perl
os.pl

use warnings;
use strict;

first prompt the user for a directory name and attempt
to create the directory in the current directory
print "please enter a directory name: ";
chomp(my $dir = <STDIN>);

mkdir $dir, 0777 or die "failed to make directory $dir: $!\n";
print "made the directory $dir ok!\n";

so far so good - now, change directory into the
directory
chdir $dir or die "failed to change into $dir: $!\n";
print "changed into $dir ok!\n";

ok, now move the file ../a.dat into this new directory
giving it a new name
print "enter new file name: ";
chomp(my $newname = <STDIN>);
rename "../a.dat", $newname or die "rename failed: $!\n";
print "file moved successfully!\n";

list the contents of the directory
using a directory handle
print "contents of the new directory:\n";
opendir DH, '.' or die "opendir failed: $!";
my $filename;
while ($filename = readdir(DH)) {
 print " $filename\n";
}

CHAPTER 10 ■ INTERFACING TO THE OPERATING SYSTEM

225

close DH;

that's it, say goodbye
print "we are all done... goodbye!\n";

Here is what happens when it is executed on a Unix system:

$ perl os.pl
please enter a directory name: newdir
made the directory newdir ok!
changed into newdir ok!
enter new file name: new.dat
file moved successfully!
contents of the new directory:
 .
 ..
 new.dat
we are all done... goodbye!
$

Executing External Programs
There are times when you want your Perl program to execute external programs such as another Perl
script, shell commands (like ls and dir), or other programs or applications.

There are several ways to execute other programs from within a Perl script. You have already
seen one way: opening pipes with the open() function discussed in Chapter 8. In this chapter I will
discuss two other ways: the system() function and backquotes.

The system() Function
The system() function takes an argument and executes that argument as if it were entered into a shell. If
the command produces any standard output, system() allows it to go to standard output. Its syntax is

system(command)

It returns the error status of command. In Unix and Windows, the error status is a way for a
program to report back to whoever invoked it, informing the calling program or shell whether or not the
program executed correctly. By convention, when all is well, the error status is 0. If there was a problem,
the program will return a non-0 value (such as 1 or 255).

CHAPTER 10 ■ INTERFACING TO THE OPERATING SYSTEM

226

THINK TWICE BEFORE YOU USE SYSTEM()

The system() function can perform all sorts of operating system commands such as making directories,
copying files, moving files, etc. For instance, in Unix you could execute

system("rm a.dat"); # delete the file a.dat in Unix

instead of

unlink('a.dat');

There are two main reasons not to use the system() function instead of the unlink() function to remove a
file. First, passing "rm a.dat" to the system() function as shown previously works fine in Unix, but not in
Windows (in Windows you would use the del command). Therefore, in many cases, the system() function
is not portable between operating systems, while the unlink() function is portable. Second, the unlink()
function is named unlink() because it calls the low-level operating system library function named
unlink(), immediately removing the file. The system() function, on the other hand, creates a shell. The
shell is a big program that must start up, reading various configuration files. The shell is then passed the
argument to the system()function as if a user typed it into the shell. The shell then parses the string,
determines that the user wants to remove a file, and calls the low-level operating system function named
unlink(). So, you can call the unlink() function yourself using the Perl function named unlink(), or
you can start up a big program that does a lot of work before finally calling the low-level operating system
unlink() function.

A shell is also created when using one of these two methods of executing an external program:
backquotes, and opening pipes with open(), so keep this in mind when deciding between built-in
functions such as unlink() and rename() and using another Perl mechanism to perform operating
system actions.

Another important note: the program system.pl displayed the current date using the system() function:

my $error_status = system 'date';

This created a shell, which is an inefficient way of determining the date on the machine. A better way is to
use the localtime() function in scalar context:

print scalar(localtime), "\n";

A rule of thumb follows: Most actions that you want to take in Perl are implemented in the language in a
way that does not require launching a shell. Mentioning every feature of Perl is not the intent of this book,
so I will not discuss all the different ways of doing the same thing.1

 But a little bit of searching on your part
may uncover an efficient, cool way of taking action in Perl without going out to the shell, so get in the habit
of looking deeper into this language when you are trying to do something new.2

1 Remember TMTOWTDI? Divining how many is left as an exercise to the reader.
2 www.perl.com, www.perlmonks.org, www.google.com, and perdoc are our friends.

http://www.perl.com
http://www.perlmonks.org
http://www.google.com

CHAPTER 10 ■ INTERFACING TO THE OPERATING SYSTEM

227

Here is an example program that executes the date command—its job is to print to standard
output the date in a readable format. The return from system() is stored in a variable and then printed to
standard output.

#!/usr/bin/perl
system.pl

use warnings;
use strict;

my $error_status = system 'date';

print "system() returned: $error_status\n";

Executing this program might produce the following:

$ perl system.pl
Mon Dec 14 11:28:47 CST 2009
system() returned: 0
$

Backquotes
The system() function prints the output of its argument to the screen. Sometimes, however, you want to
capture the output and bring it into your program. The backquotes allow us to do just that. Here is the
syntax:

`command`

That is the backquote (aka the grave character), not the single quote character.
The backquotes execute the operating system command, capturing and returning its standard

output, if any. The error status is available in the special variable $?. The backquotes can be read in
either scalar context or in list context:

$output = `$command`;
@output = `$command`;

In scalar context, the entire output including newline characters is returned as a single string
(here stored in $output). In list context, the entire output is returned as a list, newlines included; each
line of output is a single element in the list (here stored in @output).

The following is an example that executes the program directory-dir.pl that I discussed
earlier in this chapter and adds up all the sizes of the files:

#!/usr/bin/perl
addsizes.pl

use warnings;
use strict;

my @result = `perl directory-dir.pl`;

www.wowebook.com

CHAPTER 10 ■ INTERFACING TO THE OPERATING SYSTEM

228

my $size = 0;

foreach (@result) {
 if (/^.{30}[drwox]*\t(\d+)$/) {
 $size += $1;
 }
}

print "The total size of all files: $size\n";

First, you execute the script directory-dir.pl and capture the output of the backquotes in list

context. This means that @result will be an array and each element is an individual line of output from
the script:

my @result = `perl directory-dir.pl`;

Then, the size is initialized to 0:

my $size = 0;

Now it is time to examine the output:

foreach (@result) {
 if (/^.{30}[drwox]*\t(\d+)$/) {
 $size += $1;
 }
}

The foreach is looping though each line of output. If the line matches the pattern that includes

a size (that is, the \d+), then you use the parentheses to extract the size into $1. The size is added to
$size.

Executing this program produces the following:

$ perl addsizes.pl
The total size of all files: 3241
$

There’s More
There are many other ways that Perl interfaces to the operating system—I’ve only covered the basics
here. There are dozens of built-in functions available to do all sorts of system administration stuff (see
perldoc perlfunc for a list). Other operating system things that Perl can do include create child
processes (with fork()), send processes signals (with kill()),low-level file i/o (with sysread() and
syswrite()), read password information (with getpwent() and others), and many more. . .

Summary
In this chapter, I have discussed several ways of performing operating system actions from within a Perl
script. These include file globs, executing built-in functions such as mkdir() and rename(), and executing
operating system commands with system() and backquotes.

CHAPTER 10 ■ INTERFACING TO THE OPERATING SYSTEM

229

Exercises
1. Write a program that takes two arguments: a directory and an integer. Change into the directory

that is the first argument and list all the files that have a size greater than or equal to the second

argument. First use a glob and then use a filehandle.

Code your program twice, using two different methods: 1) File globbing. 2) Directory handles.

 Verify that the two methods yield equivalent results, or account for any valid differences between

your two sets of output.

2. Use Perl to automate a task that you perform on a regular basis.

C H A P T E R 11

■ ■ ■

231

References

When we discussed lists and arrays in Chapter 4, we learned that all lists and all arrays are one-
dimensional collections of scalars. Similarly, when we looked at hashes in Chapter 5, we found that hash
values are scalars as well. As a result, in our exploration of Perl so far, we have not yet been able to create
arrays of arrays (also known as multidimensional arrays) or other, more complex data types.

However, being able to create more complex data types is something we will want to do from time
to time. For instance, we might want to represent a chessboard as eight arrays of eight squares so that we
can address each square by row and column (an array of arrays). We might also want to store a bunch of
information about certain individuals—their addresses, phone numbers, and occupations—and key it to
their name (a hash of hashes).

In this chapter, we will look at another form of scalar data that will allow us to create these and other
more complex data types—references.

What Is a Reference?
Put at its very simplest, a reference is a piece of data that tells us the location of another piece of data—if
we told you to “See the first paragraph on page 130,” we’d effectively be giving you a reference to the text
in that paragraph. The data we gave you wouldn’t be the text itself, but it would tell you where to find the
text. This would also let us talk about (refer to) the text right away, despite the fact that it’s somewhere
else in the book. That’s why references are so useful—we can specify data once, and they let us access it
from wherever we happen to be.

In Perl, a reference is always a scalar, although the data it refers to may not be: our cross-reference
in the previous paragraph wasn’t even a sentence, but it referred to an entire paragraph. Likewise, a
reference, even though it’s only a scalar, can talk about the data stored in an array or hash.

Languages like C and C++ have a feature that’s similar to references, called pointers. They are like
Perl references in that both point to locations in the computer’s memory. However, C’s pointers tend to
leave the interpretation of what’s there for the programmer to disentangle. Perl’s references, on the
other hand, only store memory locations for specific, clearly defined data structures—maybe not
predefined, but defined nevertheless. They allow you to leave the arrangement of computer memory to
the computer itself, which can be a huge relief for us mere mortal programmers, as the machine is far
better at that sort of thing than we are.

The main use for references is the one we previously mentioned—being able to treat arrays and
hashes as single entities. We can now refer unambiguously to the contents of an array or a hash using a
single scalar—so we’re now in a position to do things like putting hashes inside hashes, arrays inside
arrays, even hashes in arrays and vice versa. But that’s not all . . .

CHAPTER 11 ■ REFERENCES

232

Anonymity
We can also use references to create anonymous data. Anonymous data, as you might have guessed, is
data that doesn’t have a variable name attached to it. Instead, it’s placed at a certain memory location,
and we’re given a simple reference to that location. Our array (or hash, or whatever) has no name to
speak of, but we know exactly where to find it, should we need to use it.

For example, instead of creating an array (1,2,3) called @array and then creating a reference to
@array, we can cut out the middleman by referencing (1,2,3) directly.

This allows us to create real scalars, arrays, and hashes containing data we can refer to and modify,
just as if it were a normal variable. This doesn’t mean we leave arrays and hashes floating about
randomly in our program to be plucked out of the air whenever we need them; we know where to find
this anonymous data (we have a reference that’s telling us), and it exists only for as long as part of our
program is using it.

The Life Cycle of a Reference
To understand how to deal with references, let’s look at the three areas of a reference’s life cycle—
creation, use, and destruction. After that, we’ll see how to put references to use to create more
complicated data structures than simple arrays and hashes.

Reference Creation
There are two ways to create a reference, one for each of the following situations:

• You already have the data in an existing variable.

• You want to create anonymous data that is only available using a reference.

The simple rule for the first situation where the variable is already defined is as follows:

You create a reference by putting a backslash in front of the variable.

That’s it. Let’s see some examples:

my @array = (2, 4, 6, 8, 10);
my $array_r = \@array;

You create a perfectly normal array variable and then make a reference to it by putting a backslash

before the variable’s name—that’s literally all there is to it. In the same way, you can create a reference
to a hash:

my %hash = (apple => "pomme", pear => "poire");
my $hash_r = \%hash;

or a scalar:

my $scalar = 42;
my $scalar_r = \$scalar;

CHAPTER 11 ■ REFERENCES

233

We can treat our references just like ordinary scalars—so we can put them in an array:

my $var1 = 10;
my $var2 = 20;
my $var3 = 30;
my @refs = (\$var1, \$var2, \$var3);

Since pictures help when trying to conceptualize this data structure, here’s a diagram that illustrates

what this code produces.

We can also put references in a hash, but only as values—Perl keys are simple strings. You can
certainly do this, though:

my @english = qw(January February March April May June);
my @french = qw(Janvier Fevrier Mars Avril Mai Juin);
my %months = (english => \@english, french => \@french);

So what does this give us? We have a hash with two keys, english and french. The english key

contains a reference to an array of English month names, while the french key contains a reference to an
array of French month names. With these references, we can access and modify the original data, which
means that, in effect, we’ve stored two arrays inside a single hash.

Again, pictures help:

We can use the same trick to store arrays inside arrays:

CHAPTER 11 ■ REFERENCES

234

my @array1 = (10, 20, 30, 40, 50);
my @array2 = (1, 2, \@array1, 3, 4);

Now @array2 is made up of five scalars, and the middle one is a reference to another array. We can

do this over and over again if we want:

my @array3 = (2, 4, \@array2, 6, 8);
my @array4 = (100, 200, \@array3, 300, 400);

This gives us a very versatile way to store complex data structures; what we’ve just done is to store a

structure that looks like this:

Anonymous Arrays and Anonymous Hashes
Our next step is to do all of this without having to go through the interim stages of creating the variables.
Anonymous variables let us go straight from our raw data to a reference, and the rules here are just as
simple:

• To get a reference to an anonymous array, use square brackets ([]) instead of
parentheses.

• To get a reference to an anonymous hash, use curly braces ({}) instead of
parentheses.

So, referring to our previous examples, instead of doing this:

CHAPTER 11 ■ REFERENCES

235

my @array = (1, 2, 3, 4, 5);
my $array_r = \@array;

we can create a reference to an anonymous array like this:

my $array_r = [1, 2, 3, 4, 5];

Likewise, to get a hash reference, instead of doing this:

my %hash = (apple => "pomme", pear => "poire");
my $hash_r = \%hash;

we say

my $hash_r = { apple => "pomme", pear => "poire" };

Now we have two variables—the array with no name referred to only by $array_r and the hash with

no name referred to by $hash_r.1
We can put anonymous variables inside hashes and arrays, just like references created from

variables:

my %months = (
 english => ["January", "February", "March", "April", ",May", ",June"],
 french => ["Janvier", "Fevrier", "Mars", "Avril", "Mai", "Juin"]
);

And we can put anonymous variables inside anonymous variables:

my @array = (100,200,[2,4,[1,2,[10,20,30,40,50],3,4],6,8],300,400);

That’s exactly the same structure shown in the earlier picture. Here it is again, with a lot more
spacing added:

my @array = (100, 200,
 [2, 4,
 [1, 2,

1 Hmmm, variables with no names—now you see why they are called anonymous variables.

CHAPTER 11 ■ REFERENCES

236

 [10, 20, 30, 40, 50],
 3, 4],
 6, 8],
 300, 400);

Using References
Once we’ve created our references (whether to real variables or to anonymous data), we’re going to want
to use them—so how do we access the data? The operation used to get data back from a reference is
called dereferencing and, once again, the rule is very simple.

To dereference data, put the reference in curly braces wherever you would normally
use a variable’s name.

First, we’ll see how to do this with arrays. Say we’ve got an array and a reference:

my @array = (1, 2, 3, 4, 5);
my $array_r = \@array;

We can get at the array like this:

my @array2 = @{$array_r};

We put the reference, $array_r, inside curly braces and use that instead of our original array

variable name array. We can use this dereferenced array, @{$array_r}, anywhere we might otherwise use
an array.

Let’s start with a simple example. We’ll just create a reference to an array and then use it as we’d
normally use an array.

#!/usr/bin/perl
deref1.pl

use warnings;
use strict;

my @array = (2, 4, 6, 8, 10);
my $array_r = \@array;

print "This is our dereferenced array: @{$array_r}\n";
foreach (@{$array_r}) {
 print "An element: $_\n";
}
print "The highest index is $#{$array_r}\n";
print "This is what our reference looks like: $array_r\n";

Let’s run this:

$ perl deref1.pl
This is our dereferenced array: 2 4 6 8 10

CHAPTER 11 ■ REFERENCES

237

An element: 2
An element: 4
An element: 6
An element: 8
An element: 10
The highest index is 4
This is what our reference looks like: ARRAY(0x806eb8)
$

Looking at this program in more detail, we first define an array variable and its contents, and then

backslash it to create a reference to it.

my @array = (2, 4, 6, 8, 10);
my $array_r = \@array;

Now we can use @{$array_r} instead of @array—both refer to exactly the same data, and both do

exactly the same things. For instance, @{$array_r} will interpolate inside double quotes:

print "This is our dereferenced array: @{$array_r}\n";

Just as if we’d used the original @array, our dereferenced array prints out the contents of the array,
separated by spaces:

This is our dereferenced array: 2 4 6 8 10

In the same way, we can use the array in a foreach loop, with no surprises:

foreach (@{$array_r}) {
 print "An element: $_\n";
}

Finally, we can also get the highest element number in the array, just as if we’d said $#array, like this

(remember that Perl indexes 0-based, so the first index is 0):

print "The highest index is $#{$array_r}\n";

Now, we take a look at what the reference itself actually looks like. After all, it’s a scalar, so it must
have a value we can print out and look at. It does, and this is what we get if we print out the reference:

This is what our reference looks like: ARRAY(0x806eb8)

The ARRAY part obviously tells us that we have an array reference, but what about the part in
parentheses? We know that a reference is a memory location, telling us where the data is stored in Perl’s
virtual memory. We generally don’t need to worry about this actual value, as we can’t do that much with
it. Note also that it’s unlikely you’ll get exactly the same value as this example. It depends on what
hardware your system has, what other software you’re running, and what Perl is doing.

■ Tip There is one way you might want to make use of this value directly: to see if two references refer to the
same piece of data, you can compare them as numbers using ==.

CHAPTER 11 ■ REFERENCES

238

If you try to manipulate the reference, it ceases to be a reference and becomes an ordinary
number—the value of the hexadecimal shown earlier. We can see that if we run the following program:

#!/usr/bin/perl
noref.pl

use warnings;
use strict;

my $ref = [1, 2, 3];
print "Before: $ref\n";
print "@{$ref}\n";
$ref++;
print "After: $ref\n";
print "@{$ref}\n";

which will give us something like this:

$ perl noref.pl
Before: ARRAY(0x800368)
1 2 3
After: 8389481
Can't use string ("8389481") as an ARRAY ref while "strict refs" in use at noref.pl
 line 11.
$

When we tried to modify the reference, it degenerated to the ordinary number 8389480, which is the

equivalent of the hexadecimal number 0x800368 shown previously. Adding 1 to that number gave us the
8389481, which is an ordinary string, rather than a reference. Perl then complains if we try and use it as a
reference.

This is why you can’t use references as hash keys—hash keys can only be strings, so your references
will get stringified to something like the preceding form. Once that happens, you can’t use them as
references again.

Array Elements
What about the individual elements in an array—how do you access them? The rule is pretty much the
same as for the array as a whole—just use the reference in curly braces in the same way you would the
array name:

#!/usr/bin/perl
deref2.pl

use warnings;
use strict;

my @band = qw(Crosby Stills Nash Young);
my $ref = \@band;
foreach (0..$#band) {
 print "Array : ", $band[$_] , "\n";

CHAPTER 11 ■ REFERENCES

239

 print "Reference: ", ${$ref}[$_], "\n";
}

As you can see, $band[$_] and ${$ref}[$_] refer to the same thing:

$ perl deref2.pl
Array : Crosby
Reference: Crosby
Array : Stills
Reference: Stills
Array : Nash
Reference: Nash
Array : Young
Reference: Young
$

The key point here is that these are not two different arrays—they are two ways of referring to the

same piece of data—this is very important to remember when we start modifying references.
As we saw earlier, the last index of @band is $#band. We could have used the reference to obtain that

value: $#{$ref}.

Reference Modification
If you want to modify the data pointed to by a reference, the same rule applies as before—replace the
name of the array with the reference in curly braces. However, when you do this, the data in the original
array will change, too.

#!/usr/bin/perl
modify1.pl

use warnings;
use strict;

my @band = qw(Crosby Stills Nash Young);
my $ref = \@band;
print "Band members before: @band\n";
pop @{$ref};
print "Band members after: @band\n";

$ perl modify1.pl
Band members before: Crosby Stills Nash Young
Band members after: Crosby Stills Nash
$

Now CSN&Y has changed forever.2

2 For the worse?

CHAPTER 11 ■ REFERENCES

240

We can still use push(), pop(), shift(), unshift(), and so on to manipulate the array using its
reference. However, in doing so, we’ll also be changing what’s stored in @band.

It’s quite possible to have multiple references to the same data and, just as before, if you use one to
change the data, you change it for the others, too. This will give the same results as before:

my @band = qw(Crosby Stills Nash Young);
my $ref1 = \@band;
my $ref2 = \@band;
print "Band members before: @band\n";
pop @{$ref1};
print "Band members after: @{$ref2}\n";

and the same goes for anonymous arrays:

my $ref1 = [qw(Crosby Stills Nash Young)];
my $ref2 = $ref1;
print "Band members before: @{$ref2}\n";
pop @{$ref1};
print "Band members after: @{$ref2}\n";

Notice here that we’re using [qw(...)], which is the same as saying

[('Crosby', 'Stills', 'Nash', 'Young')]

and the parentheses inside the square brackets get removed, just like when we said ((1,2,3)) back in
Chapter 4.

You can also modify individual elements, using the syntax ${$reference}[$element]:

#!/usr/bin/perl
modelem.pl

use warnings;
use strict;

my @array = (68, 101, 114, 111, 117);
my $ref = \@array;
${$ref}[0] = 100;
print "Array is now : @array\n";

$ perl modelem.pl
Array is now 100 101 114 111 117
$

And, again, you can do the same with anonymous data:

my $ref = [68, 101, 114, 111, 117];
${$ref}[0] = 100;
print "Array is now : @{$ref}\n";

CHAPTER 11 ■ REFERENCES

241

Hash References
For references to hashes, the rule is exactly the same—replace the hash’s name with the reference in
curly braces. So, to access the hash pointed to by a reference, you use %{$hash_r}. If you want to get at a
hash entry $hash{green}, you say ${$hash_r}{green}.

#!/usr/bin/perl
hashref.pl

use warnings;
use strict;

my %hash = (
 1 => "January", 2 => "February", 3 => "March", 4 => "April",
 5 => "May", 6 => "June", 7 => "July", 8 => "August",
 9 => "September", 10 => "October", 11 => "November", 12 => "December"
);

my $href = \%hash;
foreach (keys %{$href}) {
 print "Key: ", $_, "\t";
 print "Hash: ", $hash{$_}, "\t";
 print "Ref: ", ${$href}{$_}, "\n";
}

As expected, we get the same data with the hash as when using the reference:

$ perl hashref.pl
Key: 6 Hash: June Ref: June
Key: 11 Hash: November Ref: November
Key: 3 Hash: March Ref: March
Key: 7 Hash: July Ref: July
Key: 9 Hash: September Ref: September
Key: 12 Hash: December Ref: December
Key: 2 Hash: February Ref: February
Key: 8 Hash: August Ref: August
Key: 1 Hash: January Ref: January
Key: 4 Hash: April Ref: April
Key: 10 Hash: October Ref: October
Key: 5 Hash: May Ref: May
$

This should also help to remind you that Perl’s hashes aren’t ordered as you might expect!

Notation Shorthand Using ->
You can run into problems when you have one reference stored inside another. If you have the following
array reference:

$ref = [1, 2, [10, 20]];

CHAPTER 11 ■ REFERENCES

242

you can get at the internal array reference by saying ${$ref[2]}. But say we want to get at the first
element (0-based) of that array—the one containing the value 20? We could store the reference inside
another scalar and then dereference it, like this:

$inside = ${$ref}[2];
$element = ${$inside}[1];

Or we could get the element directly, by repeatedly substituting references for array names:

$element = ${${ref}[2]}[1];

This gets very ugly very quickly, however, especially if you’re dealing with hash references where it
becomes hard to tell if the curly braces surround a reference or a hash key.

So, to help us clear it up again, we introduce this rule:

• Instead of ${$ref}, we can say $ref->.

Let’s demonstrate this by taking one of our previous examples, modelem.pl, and incorporating this
into the code. Here’s the relevant piece of the original:

my @array = (68, 101, 114, 111, 117);
my $ref = \@array;
${$ref}[0] = 100;
print "Array is now : @array\n";

and here it is rewritten:

my @array = (68, 101, 114, 111, 117);
my $ref = \@array;
$ref->[0] = 100;
print "Array is now : @array\n";

Likewise for hashes, we can use this arrow notation to make things a bit clearer. Recall hashref.pl

from a little while ago:

foreach (keys %{$href}) {
 print "Key: ", $_, "\t";
 print "Hash: ", $hash{$_}, "\t";
 print "Ref: ", ${$href}{$_}, "\n";
}

Instead, we can write the following:

foreach (keys %{$href}) {
 print "Key: ", $_, "\t";
 print "Hash: ", $hash{$_}, "\t";
 print "Ref: ", $href->{$_}, "\n";
}

Now we can get at our array-in-an-array like this:

CHAPTER 11 ■ REFERENCES

243

$ref = [1, 2, [10, 20]];
$element = ${$ref->[2]}[1];

or more simply:

$element = $ref->[2]->[1];

However, we’ve got one more subrule that can simplify this even further:

• Between sets of square brackets, the arrow is optional.

We can therefore rewrite the preceding as

$element = $ref->[2][1];

Reference Counting and Destruction
We’ve seen the ways you can create and use references. Now we’ll look at how you destroy them. Every
piece of data in Perl has something called a reference count attached to it, which keeps track of the
number of references that refer to that exact chunk of data.

When we create a reference to some data, the data’s reference count goes up by 1. When we stop
referring to it—we reassign the reference variable or “break” it (as when we modify its value)—the
reference count goes down. When nobody’s using the data and the reference count gets down to 0, the
data is removed. Consider the following example:

#!/usr/bin/perl
refcount.pl

use warnings;
use strict;

my $ref;
{
 my @array = (1, 2, 3);
 $ref = \@array;
 my $ref2 = \@array;
 $ref2 = "Hello!";
}
undef $ref;

Now, let’s look at the references to the array (1, 2, 3) as we go through the program. To start with:

my $ref;
{
 my @array = (1, 2, 3);

the array is created, and the data (1, 2, 3) has one reference—it’s in use by the array @array. Next we
create another reference to it:

$ref = \@array;

and the reference count increases to 2. Once again we create a reference:

CHAPTER 11 ■ REFERENCES

244

my $ref2 = \@array;

and the count goes up to 3. Next, we change that reference to be an ordinary string:

$ref2 = "Hello!";

$ref2 is not pointing at our array any more, so the reference count on (1, 2, 3) goes back down
to 2. Note that changing $ref2 doesn’t affect the original array—that only happens when we dereference.
Now a block ends, and all the lexical variables—the my() variables—inside that block go out of scope:

}

That means that $ref2 and @array are destroyed. The reference count of the data (1, 2, 3) goes
down again because @array is not referring to it. However, $ref still has a reference to it, so the reference
count is still 1, and the data itself is not removed from memory. $ref still refers to (1, 2, 3) and can
access and change this data as before. That is, of course, until we get rid of it:

undef $ref;

Now the final reference to the data (1, 2, 3) is removed and the memory for the array is finally
freed.

Counting Anonymous References
Anonymous data works in the same way, though it doesn’t get its initial reference count from being
attached to a variable, but rather from when its first explicit reference is created:

my $ref = [1, 2, 3];

This data, therefore, has a reference count of 1, rather than

my @array = (1, 2, 3);
my $ref = \@array;

which has a count of 2.

Using References for Complex Data Structures
Now that we’ve looked at what references are, you might be asking, “Why on earth would we want to use
them?” As noted in the introduction, we often want to create data structures that are more complex than
simple arrays or hashes. We may need to store arrays inside arrays, or hashes inside hashes, and
references help us do this.

So let’s take a look at a few of the complex data structures we can create with references. This won’t
be exhaustive by any means, but it should give you some idea as to how complex data structures look
and work in Perl, and it should help you to understand the most common data structures.

CHAPTER 11 ■ REFERENCES

245

Matrices
What is a matrix? No, not the thing that Neo wants out of3. A matrix is simply an array of arrays. You can
refer to any single element in a matrix with a combination of two subscripts, which you can think of as a
row number and a column number; this harks back to the chessboard example we mentioned in the
introduction.

If you use the arrow syntax, matrices are very easy to use. You get at an element by saying

$array[$row]->[$column]

which can be written as

$array[$row][$column]

$array[$row] is an array reference, and we’re dereferencing the $column’th element in it. With a

chessboard example, it would look like this:

So, $array[0][0] would be the bottom left-hand corner of our chessboard, and $array[7][7] would
be the top right corner.

Autovivification
There’s one last thing you need to know about references before we go on—if we assign values to a
reference, Perl will automatically create all the appropriate references necessary to make it work. So, if
we say this:

my $ref;
$ref->{UK}->{England}->{Oxford}->[1999]->{Population} = 500000;

Perl will automatically know that we need $ref to be a hash reference. So, it’ll make us a nice new
anonymous hash:

$ref = {};

3 http://en.wikipedia.org/wiki/The_Matrix

http://en.wikipedia.org/wiki/The_Matrix

CHAPTER 11 ■ REFERENCES

246

Then we need $ref->{UK} to be a hash reference because we’re looking for the hash key England;
that hash entry needs to be an array reference, and so on. Perl effectively does this:

$ref = {};
$ref->{UK} = {};
$ref->{UK}->{England} = {};
$ref->{UK}->{England}->{Oxford} = [];
$ref->{UK}->{England}->{Oxford}->[1999] = {};
$ref->{UK}->{England}->{Oxford}->[1999]->{Population} = 500000;

What this means is that we don’t have to worry about creating all the entries ourselves. We can just

go ahead and write

my @chessboard;
$chessboard[0]->[0] = "WR";

This is called autovivification—things springing into existence. We can use autovivification to

greatly simplify the way we use references.
Now that we can represent our chessboard, let’s set up a chess game. This will consist of two stages:

setting up the board, and making moves. The computer will have no idea of the rules, but will simply
function as a board, allowing us to move pieces around. Here’s our program:

#!/usr/bin/perl
chess.pl

use warnings;
use strict;

my @chessboard;
my @back = qw(R N B Q K B N R);
foreach (0..7) {
 $chessboard[0][$_] = "W" . $back[$_]; # White Back Row
 $chessboard[1][$_] = "WP"; # White Pawns
 $chessboard[6][$_] = "BP"; # Black Pawns
 $chessboard[7][$_] = "B" . $back[$_]; # Black Back Row
}

while (1) {
 # Print board
 foreach my $i (reverse (0..7)) { # Row
 foreach my $j (0..7) { # Column
 if (defined $chessboard[$i][$j]) {
 print $chessboard[$i][$j];
 } elsif (($i % 2) == ($j % 2)) {
 print "..";
 } else {
 print " ";
 }
 print " "; # End of cell
 }

CHAPTER 11 ■ REFERENCES

247

print "\n"; # End of row
 }

 print "\nStarting square [x,y]: ";
 my $move = <>;
 last unless ($move =~ /^\s*([1-8]),([1-8])/);
 my $startx = $1-1; my $starty = $2-1;

 unless (defined $chessboard[$starty][$startx]) {
 print "There's nothing on that square!\n";
 next;
 }
 print "\nEnding square [x,y]: ";
 $move = <>;
 last unless ($move =~ /([1-8]),([1-8])/);
 my $endx = $1-1; my $endy = $2-1;

 # Put starting square on ending square.
 $chessboard[$endy][$endx] = $chessboard[$starty][$startx];
 # Remove from old square
 undef $chessboard[$starty][$startx];
}

Now let’s see the first part of a game in progress:

$ perl chess.pl
BR BN BB BQ BK BB BN BR
BP BP BP BP BP BP BP BP

..

..
WP WP WP WP WP WP WP WP
WR WN WB WQ WK WB WN WR

Starting square [x,y]: 4,2

Ending square [x,y]: 4,4
BR BN BB BQ BK BB BN BR
BP BP BP BP BP BP BP BP

..
 .. WP
..
WP WP WP .. WP WP WP WP
WR WN WB WQ WK WB WN WR

Starting square [x,y]: 4,7

CHAPTER 11 ■ REFERENCES

248

Ending square [x,y]: 4,5
BR BN BB BQ BK BB BN BR
BP BP BP BP BP BP BP

.. .. BP
 .. WP
..
WP WP WP .. WP WP WP WP
WR WN WB WQ WK WB WN WR

Let’s look at this program in detail. Our first task is to set up the chessboard with the pieces in their
initial positions. Remember that we’re assigning $chessboard[$row][$column] = $thing. First, we set up
an array of pieces on the “back row.” We’ll use this to make it easier to put each piece in its appropriate
column.

my @back = qw(R N B Q K B N R);

Now we’ll go over each column.

foreach (0..7) {

In row 0, the back row for white, we want to place the appropriate piece from the array in each
square.

$chessboard[0][$_] = "W" . $back[$_]; # White Back Row

In row 1 of each column, we want a white pawn, WP.

$chessboard[1][$_] = "WP"; # White Pawns

Now we do the same again for black’s pieces on rows 6 and 7.

 $chessboard[6][$_] = "BP"; # Black Pawns
 $chessboard[7][$_] = "B" . $back[$_]; # Black Back Row
}

What about the rest of the squares on board? Well, they don’t exist right now, but they will spring

into existence when we try and read from them.
Next we go into our main loop, printing out the board and moving the pieces. To print the board, we

obviously want to look at each piece—so we loop through each row and each column:

foreach my $i (reverse (0..7)) { # Row
 foreach my $j (0..7) { # Column

If the element is defined, it’s because we’ve put a piece there, so we print it out.

if (defined $chessboard[$i]->[$j]) {
 print $chessboard[$i]->[$j];

This next piece of prettiness prints out the “checkered” effect. On a checkerboard, dark squares

come in odd rows in odd columns and even rows in even columns. $x % 2 tests whether $x divides
equally by 2—whether it is odd or even. If the “oddness” (or “evenness”) of the row and column is the
same, we print a dark square.

CHAPTER 11 ■ REFERENCES

249

} elsif (($i % 2) == ($j % 2)) {
 print "..";

Otherwise, we print a blank square consisting of two spaces:

} else {
 print " ";
 }

To separate the cells, we use a single space.

 print " "; # End of cell
 }

And at the end of each row, we print a new line.

print "\n"; # End of row
 }

Now we ask for a square to move from:

print "\nStarting square [x,y]: ";
 my $move = <>;

We’re looking for two digits with a comma in the middle:

last unless ($move =~ /([1-8]),([1-8])/);

Now we convert human-style coordinates (1 to 8) into computer-style coordinates (0 to 7):

my $startx = $1-1; my $starty = $2-1;

Next, we check if there’s actually a chess piece there. Note that a y coordinate is a row, so it goes
first—look back at the diagram if you’re not sure how this works.

 unless (defined $chessboard[$starty][$startx]) {
 print "There's nothing on that square!\n";
 next;
 }

We do the same for the ending square, and then move the piece. We copy the piece to the new

square:

$chessboard[$endy][$endx] = $chessboard[$starty]->[$startx];

And then we delete the old square:

undef $chessboard[$starty][$startx];

We’ve now used a matrix, a two-dimensional array. The nice thing about Perl’s autovivification
feature is that we didn’t need to say explicitly that we were dealing with references—Perl takes care of all
that behind the scenes, and we just assigned the relevant values to the right places. However, if we were
to look at the contents of the @chessboard array, we’d see eight array references.

CHAPTER 11 ■ REFERENCES

250

Trees
We’re now going to build on the principle of matrices by introducing tree-like data structures, in which
we use hashes as well as arrays. The classic example of one of these structures is an address book.
Suppose we want to keep someone’s address and phone number in a hash. We could say this:

%paddy = (
 address => "23 Blue Jay Way",
 phone => "404-6599"
);

That’s all very well, and it makes sense—the only problem is, you have to create a separate hash for

each person in your address book, and put each one in a separate variable. This isn’t easy at all at run
time, and is very messy to write. Instead, you use references.

What you do is create a main “address book” hash, referenced as $addressbook, with everyone else’s
hashes as values off that:

$addressbook{"Paddy Malone"} = {
 address => "23 Blue Jay Way",
 phone => "404-6599"
};

This creates a data structure that looks like:

■ Note Bear in mind that if you’ve included the use strict; pragma, you’ll have to declare this hash explicitly as
my %addressbook; before using it.

It’s now very easy to take new entries from the user and add them to the address book:

print "Give me a name:"; chomp($name = <>);
print "Address:"; chomp($address= <>);
print "Phone number:"; chomp($phone = <>);
$addressbook{$name} = {
 address => $address,
 phone => $phone
};

To print out a single person, we’d use this:

if (exists $addressbook{$who}) {
 print "$who\n";

CHAPTER 11 ■ REFERENCES

251

 print "Address: ", $addressbook{$who}{address}, "\n";
 print "Phone no: ", $addressbook{$who}{phone}, "\n";
}

And to print every address:

foreach $who (keys %addressbook) {
 print "$who\n";
 print "Address: ", $addressbook{$who}{address}, "\n";
 print "Phone no: ", $addressbook{$who}{phone}, "\n";
}

Deleting an address is very simple:

delete $addressbook{$who};

How about adding another level to our tree? Can we have an array of “friends” for each person? No
problem—we just use an anonymous array:

$addressbook{"Paddy Malone"} = {
 address => "23 Blue Jay Way",
 phone => "404-6599",
 friends => ["Baba O'Reilly", "Mick Flaherty"]
};

This creates the structure:

We can get at each person’s friends by saying $addressbook{$who}{friends}, and that’ll give us an
anonymous array. We can then dereference that to a real array and print it out:

foreach $who (keys %addressbook) {
 print "$who\n";
 print "Address: ", $addressbook{$who}{address}, "\n";
 print "Phone no: ", $addressbook{$who}{phone}, "\n";
 my @friends = @{$addressbook{$who}{friends}};
 print "Friends:";
 foreach (@friends) {
 print "\t$_";
 }

CHAPTER 11 ■ REFERENCES

252

print "\n\n";
}

This would now give us something like the following:

Paddy Malone
Address: 23 Blue Jay Way
Phone no: 404-6599
Friends:
 Baba O’Reilly
 Mick Flaherty

What we now have is one hash (address book), containing another hash (peoples’ details), in turn
containing an array (each person’s friends).

We can quite easily traverse the tree structure—that is, move from person to person—by following
links. We do this by visiting a link, and then adding all of that person’s friends onto a “to do” array. We
must be very careful here not to get stuck in a loop—if one person links to another, and the other links
back again, we need to avoid bouncing about between them indefinitely. One simple way to keep track
of the links we’ve already processed is to use a hash. Here’s how:

$, = "\t"; # Set output field separator for tabulated display
my %added_to_todo = ();
my @todo = ("Paddy Malone"); # Start point
$added_to_todo{"Paddy Malone"}++;
while (@todo) {
 my $who = shift @todo; # Get person from the end
 my @friends = @{$addressbook{$who}{friends}};
 print "$who has friends: ", @friends, "\n";
 foreach (@friends) {
 # Visit unless they're already visited
 unless (exists $added_to_todo{$_}) {
 push @todo, $_;
 $added_to_todo{$_}++; # Mark them as seen.
 }
 }
}

The hash %added_to_todo is used to build up a table of everyone whose name has been added to the
array @todo. The foreach loop at the bottom only adds names to the @todo list if they’re not defined in
that hash—that is, if they’ve not been added already.

Let’s put all these ideas together into a program. Notice in this example how all the data is assigned
to %addressbook in one assignment:

#!/usr/bin/perl

use warnings;
use strict;

my %addressbook = (
 "Paddy Malone" => {
 address => "23 Blue Jay Way",

CHAPTER 11 ■ REFERENCES

253

 phone => "404-6599",
 friends => ["Baba O'Reilly", "Mick Flaherty"]
 },
 "Baba O'Reilly" => {
 address => "123 Main St.",
 phone => "984-5912",
 friends => ["Bob McDowell", "Mick Flaherty", "Andy Donahue"]
 },
 "Mick Flaherty" => {
 address => "5983 2nd Ave.",
 phone => "377-5885",
 friends => ["Paddy Malone", "Timothy O'Leary"]
 },
 "Bob McDowell" => {
 address => "6149 Oak St.",
 phone => "299-3885",
 friends => ["Andy Donahue", "Baba O'Reilly"]
 },
 "Andy Donahue" => {
 address => "8712 Central St.",
 phone => "598-2813",
 friends => ["Jimmy Callahan", "Mick Flaherty"]
 },
 "Timothy O'Leary" => {
 address => "3983 Green Bay Rd.",
 phone => "944-3487",
 friends => ["Bob McDowell", "Mick Flaherty", "Paddy Malone"]
 },
 "Jimmy Callahan" => {
 address => "533 Ridge Rd.",
 phone => "869-1298",
 friends => ["Andy Donahue", "Baba O'Reilly", "Mick Flaherty"]
 }
);

foreach my $who (keys %addressbook) {
 print "$who\n";
 print "Address: ", $addressbook{$who}{address}, "\n";
 print "Phone no: ", $addressbook{$who}{phone}, "\n";
 my @friends = @{$addressbook{$who}{friends}};
 print "Friends:";
 foreach (@friends) {
 print "\t$_";
 }
 print "\n\n";
}

$, = "\t"; # Set output field separator for tabulated display
my %added_to_todo = ();
my @todo = ("Paddy Malone"); # Start point
$added_to_todo{"Paddy Malone"}++;

CHAPTER 11 ■ REFERENCES

254

while (@todo) {
 my $who = shift @todo; # Get person from the end
 my @friends = @{$addressbook{$who}{friends}};
 print "$who has friends: ", @friends, "\n";
 foreach (@friends) {
 # Visit unless they're already visited
 unless (exists $added_to_todo{$_}) {
 push @todo, $_;
 $added_to_todo{$_}++; # Mark them as seen.
 }
 }
}

Executing this code produces all of this output (it is a lot—whew!):

$ perl addressbook.pl
Andy Donahue
Address: 8712 Central St.
Phone no: 598-2813
Friends: Jimmy Callahan Mick Flaherty

Mick Flaherty
Address: 5983 2nd Ave.
Phone no: 377-5885
Friends: Paddy Malone Timothy O'Leary

Baba O'Reilly
Address: 123 Main St.
Phone no: 984-5912
Friends: Bob McDowell Mick Flaherty Andy Donahue

Timothy O'Leary
Address: 3983 Green Bay Rd.
Phone no: 944-3487
Friends: Bob McDowell Mick Flaherty Paddy Malone

Paddy Malone
Address: 23 Blue Jay Way
Phone no: 404-6599
Friends: Baba O'Reilly Mick Flaherty

Jimmy Callahan
Address: 533 Ridge Rd.
Phone no: 869-1298
Friends: Andy Donahue Baba O'Reilly Mick Flaherty

Bob McDowell
Address: 6149 Oak St.
Phone no: 299-3885
Friends: Andy Donahue Baba O'Reilly

CHAPTER 11 ■ REFERENCES

255

Paddy Malone has friends: Baba O'Reilly Mick Flaherty
Baba O'Reilly has friends: Bob McDowell Mick Flaherty Andy Donahue
Mick Flaherty has friends: Paddy Malone Timothy O'Leary
Bob McDowell has friends: Andy Donahue Baba O'Reilly
Andy Donahue has friends: Jimmy Callahan Mick Flaherty
Timothy O'Leary has friends: Bob McDowell Mick Flaherty Paddy Malone
Jimmy Callahan has friends: Andy Donahue Baba O'Reilly Mick Flaherty

Summary
We’ve looked at references, a way to put one type of data structure inside another. References work
because they allow us to use a scalar to refer to another piece of data. They tell us where Perl stores the
data, and give us a way to get at it with a scalar.

We can create a reference explicitly by putting a backslash in front of a variable’s name: \%hash or
\@array, for example. Alternatively, we can create an anonymous reference by using {} instead of () for a
hash, and [] instead of () for an array. Finally, we can create a reference by creating a need for one—if a
reference needs to exist for what we’re doing, Perl will bring one into existence by autovivification.

We can use a reference by placing it in curly braces where a variable name should go. @{$array_r}
can replace @array everywhere. We can then access elements of array or hash references using the arrow
notation: $array_ref->[$element] for an array, and $hash_ref->{$key} for a hash.

We’ve also seen a few complex data structures: matrices, which are arrays of arrays; and trees, which
may contain hashes or arrays. For more information on these kinds of data structures, consult the Perl
“Data Structures Cookbook” documentation (perldoc perldsc) or the Perl “List of Lists” documentation
(perldoc perllol).

If you’re really interested in data structures from a computer science point of view, Mastering
Algorithms in Perl by Orwant et al. (O’Reilly Media, 1999) has some chapters on these kinds of structures,
primarily trees and tree traversal. The ultimate guide to data structures is still The Art of Computer
Programming, Volume 1, by Donald Knuth (Addison-Wesley, 1997)—affectionately known as “The
Bible.”

Exercises
1. Modify the chessboard example to detect when a piece is taken. This occurs when a piece is

sitting in a square that another piece moves into. The piece that was originally in the square

is taken by the new piece and removed from the board.

2. Without being concerned with checks, checkmates, and castling, check to ensure that a move

is valid. If you don’t know the rules of chess, just check the following: no player may take

either king (K), and no player may take their own pieces.

3. Turn the snippets of address book code into an address book management program. Allow

the user to add, search for, and delete entries. See if you can think of a way to save the hash to

disk and load it again.

C H A P T E R 12

■ ■ ■

257

Modules

Now that we can write Perl functions to solve our problems, we can collect together functions into a
module. A module is a collection of (hopefully) related functions and variables that can be used by any
program.

Very simply, a module is a package within a file—a collection of subroutines and variables that all
work together to perform some set of tasks that we can use to solve our programming problems.

There exists a large collection of prewritten Perl modules—we programmers can use these modules,
free of charge, to solve our problems. The modules are available at CPAN, the Comprehensive Perl
Archive Network (www.cpan.org and mirrors all over the world). There are modules available at CPAN
that are easy-to-use solutions to many different problems—for example, modules to simplify network
programming, process XML files, create web programs (CGI and others), connect to SQL databases, and
do complex mathematics. This list could go on and on, but we suggest you visit http://search.cpan.org/,
which offers both browsing and searching of the CPAN.

In this chapter you will start by creating your own module that can be used by your programs. Then
you will look at several very useful prewritten modules that are released with the Perl distribution. This
discussion is only meant to be a sample of what is available at CPAN; we suggest that you point your
browser at CPAN and start installing and using modules—they will almost certainly make your
programming life easier.

Why Do We Need Them?
Why should you use modules? The simple answer is that it saves time. If you need that program written
yesterday, it’s exceptionally handy to be able to download a bunch of modules that you know will do the
job, and then simply glue them together.

The second answer is because most of us programmers are lazy—that’s just a fact of life.
Programmers are, on the whole, naturally lazy people and don’t like reinventing the wheel. Now, don’t
get us wrong—there’s good laziness and there’s bad laziness. Bad laziness says “I should get someone
else to do this for me,” whereas good laziness says “Maybe someone’s already done this.” The good kind
pays off. Most of the programming you’ll be doing will, at some level, have been done before.

Modules that have been around on CPAN for a while will have been used by thousands of
individuals, many of whom will have spent time fixing bugs and returning the results to the maintainer.
Most of the borderline cases will have been worked out by now, and you can be pretty confident that the
modules will do things right. When it comes to things like parsing HTML or processing CGI form data,
we’re perfectly willing to admit that the people who wrote HTML::Parser and the CGI modules have done
more work on the subject than we have—so we use their code, instead of trying to work out our own.

http://www.cpan.organdmirrorsallovertheworld
http://search.cpan.org

CHAPTER 12 ■ MODULES

258

In short: don’t reinvent the wheel—use modules.

Creating a Module
Let’s say you are working on a team that is developing software for the Acme webserver.1 You have

been assigned the role of developing an easy-to-use logging interface. It will utilize the idea of log levels,
or logging at varying degrees of detail. Level 1 is the least detail, and higher values indicate more details.

You want to make your module easy to use and functional. What you need the module to do is to
open and close the log file, write into the log file, and set the log level (which has the default value of 1, or
the least level of detail).

To create your module, you will follow these five steps:

• Think of a good name for the module. Since you are creating a module to log
information, you will call your module Logger.

• Put the source code into a file named modulename.pm (pm stands for “Perl
module”), in this example, Logger.pm.

• Make the module a package, or namespace (more on packages later), by placing
the line of code package Logger; at the top of the file.

• Define variables and function in the file.

• Have the file return a true value by ending in 1;.

Implementing step 4, let’s define some functions. You want to provide the user a function to open
the file. A good name for the function is open_log(), since it is opening the log file, and it might look like
the following:

sub open_log {
 my $filename = shift;
 open(LOGFILE, '>>', $filename) or die "can't open $filename: $!";
 print LOGFILE "Log started: ", scalar(localtime), "\n";
}

This function grabs the first argument, which is the filename to open. Then, the log file is opened in
append mode and a message is printed to the log file stating that the logging has begun. You also need a
function to close the log file:

1 This is probably not a good idea, since there is already a really good webserver available for free—
httpd.apache.org.

CHAPTER 12 ■ MODULES

259

sub close_log {
 close LOGFILE;
}

Next, you need a function to write into the log file:

sub write_log {
 my($level, $message) = @_;
 print LOGFILE "$message\n" if $level <= $LEVEL;
}

This function is expecting two arguments: the log message level and the message. The message is
then printed if the level of the message is less than or equal to the level that is set for this logger.

Finally, you need a way to set the log level in case you want more (or less) detail. Here it is:

sub log_level {
 my $level = shift;
 $LEVEL = $level if $level =~ /^\d+$/;
}

The argument is assigned to $LEVEL if the argument is a positive integer.

■ Note You should probably add a lot more error checking to these functions to make them a bit harder to break.
For instance, what if write_log() was called with no log level and message? The function would work (printing
an empty string to the log file since it would treat the level as 0, less than your minimum level, and the message
would be undef), but it would be polite to instead report to the user that they are using the function incorrectly.
Also, any real logging module would lock the file with flock(). But if error checking and file locking were added to
this example, it would be way too long and complicated for our purpose here.

Here is the whole module, including the initial value assigned to $LEVEL:

package Logger;
Logger.pm

use strict;
use warnings;

my $LEVEL = 1; # default level is 1

sub open_log {
 my $filename = shift;
 open(LOGFILE, '>>', $filename) or die "can't open $filename: $!";
 print LOGFILE "Log started: ", scalar(localtime), "\n";
}

sub close_log {

CHAPTER 12 ■ MODULES

260

 close LOGFILE;
}

sub write_log {
 my($level, $message) = @_;
 print LOGFILE "$message\n" if $level <= $LEVEL;
}

sub log_level {
 my $level = shift;
 $LEVEL = $level if $level =~ /^\d+$/;
}

1;

■ Note A note about 1; at the end of the file. Earlier versions of Perl required that the module return a true value
when it is used by a program. Since the module will return the last line of code in the file, most programmers
simply put 1;, a true value, at the end of the module. Newer versions of Perl do not require the 1; at the end of the
file, but for backward compatibility and historical reasons, programmers still put in that true value.

Including Other Files with use
Now that you have created a module, you will want to put it to use in your programs. Let’s talk about

several different ways for a Perl program to import a module and call that module’s functions. You have
three ways of doing this: do, require, and use.

do
This is the most difficult of the three to understand—the others are just slightly varied forms of do.

do will look for a file by searching the @INC path. If the file can’t be found, it will silently move on. If it
is found, it will run the file just as if it was placed in a block within your main program—but with one
slight difference: you won’t be able to see lexical variables from the main program once you’re inside the
additional code. So if you have a file dothis.pl:

#!/usr/bin/perl
dothis.pl

use warnings;
use strict;

our $var = "Been there, done that, got the T–shirt";
do "printit.pl";

and a file printit.pl:

CHAPTER 12 ■ MODULES

261

printit.pl

use warnings;

print $a;
print "this should go to standard output...\n";

dothis.pl will do, or execute, the file printit.pl. This means that the contents of printit.pl are
compiled and executed. Executing this code produces the following:

$ perl dothis.pl
Use of uninitialized value in print at printit.pl line 5.
this should go to standard output...
$

The first line of output is a warning that $var is undefined. The second line of output is a result of
executing the second print() function.

This program shows that do can execute arbitrary code in another file. On the other hand, you can
have subroutines in your included file and call them from the main file.

require
require is like do, but it’ll only do it once. It’ll record the fact that a file has been loaded, and will
henceforth ignore further requests to require it again. It also fails with an error if it can’t find the file
you’re loading.

#!/usr/bin/perl
cantload.pl

use warnings;
use strict;

require "not_there.pl";

will die() with an error like this:

$ perl cantload.pl
Can't locate not_there.pl in @INC (@INC contains: /etc/perl /usr/local/lib/perl/5.10.0
/usr/local/share/perl/5.10.0 /usr/lib/perl5 /usr/share/perl5 /usr/lib/perl/5.10
/usr/share/perl/5.10 /usr/local/lib/site_perl .) at ./cantload.pl line 7.
$

This displays the contents @INC array, which contains a list of paths in which Perl looks for modules
and other additional files. These paths include directories where the standard library are stored, “site”
modules (third-party modules that are typically installed from CPAN) and the current directory.

Therefore, when Perl was looking for the file not_there.pl, it first looked in /etc/perl, then in
/usr/local/lib/perl/5.10.0 and so on until it finally looked in ., the current directory. Of course, Perl
didn’t find not_there.pl because it was, well, not there.

You can also invoke require like this:

CHAPTER 12 ■ MODULES

262

require Wibble;

Using a bareword tells Perl to look for a file called Wibble.pm in the @INC path. It also converts any
instance of :: into a directory separator. For instance:

require Monty::Python;

will send Perl looking for Python.pm in a directory called Monty, which is itself in one of the directories
given in @INC.

use
The way you normally use modules is, logically enough, with the use statement. This is like require,
except that Perl applies it before anything else in the program starts—if Perl sees a use statement
anywhere in your program, it’ll include that module. So, for instance, you can’t say this:

if ($graphical) {
 use MyProgram::Graphical;
} else {
 use MyProgram::Text;
}

because when Perl’s reading your program, it will include both modules—the use takes place way before
the value of $graphical is decided. You say that use takes place at compile time and not at run time.

Changing @INC
The default contents of the search path @INC are decided when Perl is compiled—if you move those
directories elsewhere, you’ll have to recompile Perl to get it working again. However, you can tell it to
search in directories other than these. @INC is an ordinary array, so you might expect to be able to say

unshift @INC, "my/module/directory";
use Wibble;

However, this isn’t going to work. Why not? Remember that the preceding statement will execute at

run time. Unfortunately the use statement takes place at compile time, well before that. No problem!
There’s a special subroutine called BEGIN that is guaranteed execution at compile time, so you can put it
there:

sub BEGIN {
 unshift @INC, "my/module/directory";
}
use Wibble;

Now that’ll work just fine—however, it’s a little messy, and what’s more, there’s an easier way to do

it. You can use the lib pragma to add your directory to @INC before anything else gets a chance to look at
it:

use lib "my/module/directory";
use Wibble;

CHAPTER 12 ■ MODULES

263

The directory that is indicated is inserted into the front of @INC so that it is the first directory

searched when Perl is looking for the module.
Ok, it is time to use your Logger module. Here is a program that uses Logger.pm. Notice how the

functions are invoked with the package name preceding the function names.

#!/usr/bin/perl
logtest1.pl

use warnings;
use strict;
use Logger;

Logger::open_log("webserver.log");

this will go to the log file
Logger::write_log(1, "A basic message");

this won't to the log file - the level is too high
Logger::write_log(10, "A debugging message");

set the level so the debugging message will end up
in the log file
Logger::log_level(10);
Logger::write_log(10, "Another debugging message");

Logger::close_log();

When executed, this program creates and adds text to the log file webserver.log.

$ perl logtest1.pl

Here is the content of the log file:

Log started: Fri Jul 2 11:42:12 2009
A basic message
Another debugging message

Now you can use this module in all of your Acme webserver programs to log information to a log

file.

Package Hierarchies
Let’s say the Acme Corporation is going to develop several different servers in addition to the

webserver such as a DNS server, a DHCP server, and an FTP server. Each of these servers needs a way to
log information to a log file, each in its own way. You would then need several modules:

• WebserverLogger

• DNSserverLogger

CHAPTER 12 ■ MODULES

264

• DHCPserverLogger

• FTPserverLogger

These modules are, for now, all stored in the same directory (for us, the current directory). Storing
them all in the same directory can become a problem if the number of modules continues to grow—
imagine if the directory contains hundreds of modules. To combat the problem with having unique
names for all the modules and the problem of having a lot of modules in the same directory, you can
create package hierarchies.

Instead of naming your webserver logging module WebserverLogger, you can name it
Acme::Webserver::Logger. This longer name shows the hierarchy of the module: under the overall name
of Acme, you see the Webserver product, and under that the module named Logger. Therefore, instead of
the module names shown previously, you would have:

• Acme::Webserver::Logger

• Acme::DNSserver::Logger

• Acme::DHCPserver::Logger

• Acme::FTPserver::Logger

A package name indicates the location of the module. For instance, the Acme::Webserver::Logger
module will be stored in this file:
Acme/Webserver/Logger.pm

This file will be stored in the directory Webserver under the directory Acme in some location in the
filesystem. For now, that location is the current directory (but we will soon show how to change that).
Here is the content of Acme/Webserver/Logger.pm, a slight modification from the previous example. We
just changed the name of the package in the first line and the comment showing the name of the file in
the second line (and of course moved the file to the Acme/Webserver directory):

package Acme::Webserver::Logger;
Acme::Webserver/Logger.pm

use warnings;
use strict;

my $LEVEL = 1; # default level is 1

sub open_log {
 my $filename = shift;
 open(LOGFILE, '>>', $filename) or die "can't open $filename: $!";
 print LOGFILE "Log started: ", scalar(localtime), "\n";
}

sub close_log {
 close LOGFILE;
}

sub write_log {
 my($level, $message) = @_;
 print LOGFILE "$message\n" if $level <= $LEVEL;

CHAPTER 12 ■ MODULES

265

}

sub log_level {
 my $level = shift;
 $LEVEL = $level if $level =~ /^\d+$/;
}

1;

To use this new module, you modify the use statement, and then adjust the function calls to use the
full package name as showing in logtest2.pl:

#!/usr/bin/perl
logtest2.pl

use warnings;
use strict;
use Acme::Webserver::Logger;

Acme::Webserver::Logger::open_log("webserver.log");

this will go to the log file
Acme::Webserver::Logger::write_log(1, "A basic message");

this won't - the level is too high
Acme::Webserver::Logger::write_log(10, "A debugging message");

set the level so the debugging message will end up
in the log file
Acme::Webserver::Logger::log_level(10);
Acme::Webserver::Logger::write_log(10, "Another debugging message");

Acme::Webserver::Logger::close_log();

The syntax for calling the functions in the module is way too long! We can shorten these lines by
exporting the function names in the module.

Exporters
Let’s say you try to call the open_log() function without the fully qualified name as in:

open_log("webserver.log");

When you run this code, Perl will be looking for a function named open_log() in the main package

and since you have defined one, it will produce the following error message:

Undefined subroutine &main::open_log called at line 8.

If you want to call the open_log() function with the fully qualified package name, you need to make

the Logger package an exporter. The module can then export to the calling package all the symbols

CHAPTER 12 ■ MODULES

266

function names the calling package will invoke. To make the module and exporter and to export the
desired function names, you add these three lines of code:

use Exporter;
use base 'Exporter';
our @EXPORT = qw(open_log close_log write_log log_level);

The first line of new code uses the Exporter module which does some magic and allows you to use a

variable in that package: @EXPORT.
The second line implements object-oriented inheritance (we will talk more about inheritance in

Chapter 13).
The last line assigns to the array @EXPORT. Any symbol that you want to export to the calling package

is assigned to this array, and you are exporting your four functions defined in the package. Since the
function name open_log() is included in the assignment, you can call the function directly with no fully
qualified package name. Nice!

Here is the new package converted to an exporter:

package Acme::Webserver::LoggerExporter;
Acme/Webserver/LoggerExporter.pm

use strict;
use warnings;

become an exporter and export the functions
use Exporter;
use base 'Exporter';
our @EXPORT = qw(open_log close_log write_log log_level);

my $LEVEL = 1; # default level is 1

sub open_log {
 my $filename = shift;
 open(LOGFILE, '>>', $filename) or die "can't open $filename: $!";
 print LOGFILE "Log started: ", scalar(localtime), "\n";
}

sub close_log {
 close LOGFILE;
}

sub write_log {
 my($level, $message) = @_;
 print LOGFILE "$message\n" if $level <= $LEVEL;
}

sub log_level {
 my $level = shift;
 $LEVEL = $level if $level =~ /^\d+$/;
}

1;

CHAPTER 12 ■ MODULES

267

The code to all these exported functions is much cleaner than the previous example:

#!/usr/bin/perl
logtest3.pl

use warnings;
use strict;
use Acme::Webserver::LoggerExporter;

open_log("webserver.log");

this will go to the log file
write_log(1, "A basic message");

this won't - the level is too high
write_log(10, "A debugging message");

set the level so the debugging message will end up
in the log file
log_level(10);
write_log(10, "Another debugging message");

close_log();

Ah, much better! Executing this program will add to the log file:

$ perl logtest3.pl

so that its content is

Log started: Fri Jul 2 11:42:12 2004
A basic message
Another debugging message
Log started: Fri Jul 2 11:50:41 2004
A basic message
Another debugging message

The Perl Standard Modules
Not only can you create your own modules, you can also use modules that others have created and have
made available at CPAN. When Perl is installed, there are many modules automatically installed. These
are called the standard modules. You will look at a few of the more interesting ones here. For a complete
list of all the modules in the Perl distribution, execute perldoc perlmodlib at a shell prompt.

CHAPTER 12 ■ MODULES

268

Online Documentation
The perldoc program is a simple way to view the online documentation for a module. Simply provide the
module name as its argument:

$ perldoc Data::Dumper

You can also check out www.perldoc.com and www.cpan.org for module documentation.

Data::Dumper
Data::Dumper stringifies data types in Perl syntax so a programmer can see a visual representation of the
data structure. Here is a simple example:

#!/usr/bin/perl
data1.pl

use warnings;
use strict;
use Data::Dumper qw(Dumper); # import the Dumper() function

create a complex data type

my @a = (
 'hello, world',
 1234.56,
 [2, 4, 6],
 { one => 'first', two => 'second' }
);

create a reference to it

my $r = \@a;

dump it out

print Dumper($r);

This program first uses Data::Dumper, importing the Dumper() function. It then creates a complex
data type: an array that contains a string, a float, an anonymous array, and an anonymous hash. Then, a
reference to the array is created. Finally, that reference is dumped out. This code produces

$ perl data1.pl
$VAR1 = [
 'hello, world',
 '1234.56',
 [
 2,
 4,
 6
],

http://www.perldoc.com
http://www.cpan.org

CHAPTER 12 ■ MODULES

269

 {
 'one' => 'first',
 'two' => 'second'
 }
];

This displays the complex data type so we programmers can read it and understand it. It appears
that $VAR1 (a name chosen for us by Data::Dumper) is a reference to an array that contains a string, a float,
an anonymous array, and an anonymous hash. Being able to view this output can assist in debugging
your program.2

Data::Dumper chooses the variable name $VAR1 for you. Perhaps you want to name the variable
yourself. A small change to data1.pl will do the trick:

#!/usr/bin/perl
data2.pl

use warnings;
use strict;
use Data::Dumper;

create a complex data type

my @a = (
 'hello, world',
 1234.56,
 [2, 4, 6],
 { one => 'first', two => 'second' }
);

create a reference to it

my $r = \@a;

dump it out
print Data::Dumper->Dump([$r], ['myvarname']);

This code produces the following:

$ perl data2.pl
$myvarname = [
 'hello, world',
 '1234.56',

2 This output can also be stored for later use. If you store this output into a scalar variable, you can eval() that
variable, which will reconstruct the data structure (for information on eval(), check out perldoc -f eval).

CHAPTER 12 ■ MODULES

270

 [
 2,
 4,
 6
],
 {
 'one' => 'first',
 'two' => 'second'

 }
];

File::Find
File::Find is a module for traversing directory trees, visiting each file in turn and running a subroutine
(the callback) on them. This module has a very useful method: find(). It does a depth-first search,
visiting directories only after their files have been processed. This is useful if, for example, you want to
delete entire directory trees, since you’re not usually permitted to delete a directory until you’ve deleted
all the files in it.

You call the subroutine with two parameters: the callback subroutine reference, and the directory
(or a list of directories) from which to start:

find(\&wanted, "/home/simon/");

The subroutine wanted() is executed for every file that it finds in the directory. For each of the files,
the following is true:

• You are moved into the same directory as the file under consideration.

• The current directory, relative to the top of the tree, is held in $File::Find::dir.

• $_ contains the name of the current file.

• $File::Find::name is the name including the directory.

With that, you can do anything you want to do. Here is a program to delete useless files. The
program is caller hoover.pl, but take care when you are executing it: it runs from the root directory; if
used carelessly, it might delete a lot more than a few text files.

#!/usr/bin/perl
hoover.pl

use warnings;
use strict;
use File::Find;

find(\&cleanup, "/");

sub cleanup {
 # Not been accessed in six months?
 if (-A > 180) {
 print "Deleting old file $_\n";

CHAPTER 12 ■ MODULES

271

 unlink $_ or print "oops, couldn't delete $_: $!\n";
 return;
 }
 open FH, '<', $_ or warn "Couldn't open $_: $!\n";
 foreach (1..5) { # You've got five chances.
 my $line = <FH>;
 next unless defined $line;
 if ($line =~ /Perl|Camel|important/i) {
 # Spare it.
 return;
 }
 }
 print "Deleting unimportant file $_\n";
 unlink $_ or print "oops, couldn't delete $_: $!\n";
}

This code assumes, of course, that any file that contains “Perl,” “Camel,” or “important” in the first five
lines is, well, important. You can alter this so it doesn’t look for the words “Perl,” “Camel,” or
“important” in the first five lines and indeed so it doesn’t look through and delete files from your entire
directory structure.

Getopt::Std
The Getopt::Long and Getopt::Std modules provide a flexible way to use command line arguments in
your programs. Getopt::Std is the simpler of the two, providing you with a way to get single-letter
switches with values and support for clustered flags (-a -l written as -al). You can also arrange to have
the flags placed in a hash. For instance, to provide your wonderful “Hello World” program (from Chapter
1) with help, a version identifier, and internationalization, you could do this:

#!/usr/bin/perl
hello3.pl
Hello World (Deluxe)

use warnings;
use strict;
use Getopt::Std;

my %options;
getopts("vhl:", \%options);

if ($options{v}) {
 print "Hello World, version 3.\n";
 exit;
} elsif ($options{h}) {
 print <<EOF;

$0: Typical Hello World program

Syntax: $0 [-h|-v|-l <language>]

CHAPTER 12 ■ MODULES

272

 -h : This help message
 -v : Print version on standard output and exit
 -l : Turn on international language support.
EOF
 exit;
} elsif ($options{l}) {
 if ($options{l} eq "french") {
 print "Bonjour, tout le monde.\n";
 } else {
 die "$0: unsupported language\n";
 }
} else {
 print "Hello, world.\n";
}

getopts() takes the following as its arguments: a specification (the letters for which you provide
options) and a hash reference. If you follow a letter with a colon, you expect that a value will be stored in
the hash. If you don’t use a colon, then the hash value stored is just true or false depending on whether
or not the option was given. You can now get output like this:

$ perl hello3.pl -l french
Bonjour, tout le monde.
$

Getopt::Std also produces a warning if it sees options it’s not prepared for:

$ perl hello3.pl -f
Unknown option: f
Hello, world.
$

Getopt::Long
The Free Software Foundation, when they were developing the GNU project, decided that single-letter
flags weren’t friendly enough, so they invented “long” flags. These use a double minus sign followed by a
word. To give a value for the option, you’d say something like --language=french. The equal sign is
optional—a space character can be used instead.

The module Getopt::Long handles this style of option. Its documentation is extremely informative
(perldoc Getopt::Long), but it’s still useful to see an example. Let’s convert the preceding program to
GNU options:

#!/usr/bin/perl
hellolong.pl
Hello World (Deluxe) - with long flags

use warnings;
use strict;
use Getopt::Long;

my %options;
GetOptions(\%options, "language:s", "help", "version");

CHAPTER 12 ■ MODULES

273

if ($options{version}) {
 print "Hello World, version 3.\n";
 exit;
} elsif ($options{help}) {
 print <<EOF;

$0: Typical Hello World program

Syntax: $0 [--help|--version|--language=<language>]

 --help : This help message
 --version : Print version on standard output and exit
 --language : Turn on international language support.
EOF
 exit;
} elsif ($options{language}) {
 if ($options{language} eq "french") {
 print "Bonjour, tout le monde.\n";
 } else {
 die "$0: unsupported language\n";
 }
} else {
 print "Hello, world.\n";
}

We can still use the previous syntax, but now we can also say

$ perl hellolong.pl --language=french
Bonjour, tout le monde.
$

File::Spec
If you want to write really portable programs in Perl, you have to be careful when doing things like
dealing with filenames. File::Spec is a module for handling, constructing, and breaking apart filenames.

Normally it has an object-oriented interface, but it’s much easier to use the subroutine interface,
File::Spec::Functions. The following are some of the subroutines it provides.

Function and Syntax Description

canonpath($path) Cleans up $path to its simplest form

catdir($directory1,
$directory2)

Concatenates the two directories together to form a new path to a
directory, ensuring an appropriate separator in the middle, and
removing the separator from the end

catfile($directory,
$file)

Like catdir(), but the path will end with a filename

continued

CHAPTER 12 ■ MODULES

274

continued

Function and Syntax Description

tmpdir() Finds a writable directory for temporary files (See the File::Temp
module before working with temporary files!)

splitpath($path) Splits up a path into volume (drive on Windows, nothing on Unix),
directories, and filename

splitdir($path) Splits a path into its constituent directories: the opposite of catdir()

path() Returns the search path for executable files

Here is an example of locating a copy of the sort program:

#!/usr/bin/perl
whereisit.pl

use warnings;
use strict;
use File::Spec::Functions;

foreach my $path (path()) {
 my $test = catfile($path, "sort");
 if (-e $test) {
 print "Yes, sort is in the $path directory.\n";
 exit;
 }
}
print "sort was not found here.\n";

Executing this code might produce the following:

$ perl whereisit.pl
Yes, sort is in the /usr/bin directory.
$

■ Note To read all the documentation for File::Spec, be sure to check out File::Spec::Unix or
File::Spec:Win32, depending on your operating system.

CHAPTER 12 ■ MODULES

275

Benchmark
There’s More Than One Way To Do It—that’s our motto (TMTOWTDI). However, some ways are always
going to be faster than others. How can you tell? You could analyze each of the statements for efficiency,
or you could simply roll up your sleeves and try it out.

The next module, Benchmark, provides many functions used for testing and timing code. Two of
these functions are timethis() and timethese(). The first of these, timethis(), is quite easy to use:

#!/usr/bin/perl
benchtest1.pl

use warnings;
use strict;
use Benchmark;

my $howmany = 200000;
my $what = q/my $j=1; foreach (1..100) {$j *= $_}/;

timethis($howmany, $what);

This program provides timethis() some code and a number of times to run it. Make sure the code is
in single quotes so that Perl doesn’t attempt to interpolate it. You should, after a little while, see some
output. This will, of course, vary depending on the speed of your CPU and how busy your computer is,
but here is an example in the following code:

$ perl benchtest1.pl
timethis 200000: 3 wallclock secs (2.90 usr + 0.02 sys = 2.92 CPU) @ 68493.15/s (n=200000)

$

The results share that you ran something 200,000 times, and it took 3 seconds of real time. These
seconds were 2.90spent in calculating (“usr” time) and 0 seconds interacting with the disk (or other
noncalculating time). It also tells you that you ran through 68493.15iterations of the test code each
second.

To test several things and compare them, you can use timethese(). This method takes as its second
argument an anonymous hash. The values of the hash are strings (single quoted again) that will be
executed $howmany number of times.

To check the fastest way to read a file from the disk, you could do the following:

#!/usr/bin/perl
benchtest2.pl

use warnings;
use strict;
use Benchmark;

my $howmany = 1000;

timethese($howmany, {
 line => q{
 my $file;
 open TEST, "/usr/share/dict/words" or die $!;

CHAPTER 12 ■ MODULES

276

 while (<TEST>) { $file .= $_ }
 close TEST;
 },
 slurp => q{
 my $file;
 local undef $/;
 open TEST, "/usr/share/dict/words" or die $!;
 $file = <TEST>;
 close TEST;
 },
 join => q{
 my $file;
 open TEST, "/usr/share/dict/words" or die $!;
 $file = join "", <TEST>;
 close TEST;
 }
});

One way reads the file in a line at a time, one slurps the whole file in at once, and one joins the lines
together. As you might expect, the slurp method is considerably faster:

$ perl benchtest2.pl
Benchmark: timing 1000 iterations of join, line, slurp...
 join: 130 wallclock secs (121.24 usr + 5.10 sys = 126.34 CPU) @ 7.92/s (n=1000)
 line: 69 wallclock secs (63.75 usr + 4.12 sys = 67.87 CPU) @ 14.73/s (n=1000)
 slurp: 6 wallclock secs (1.58 usr + 3.34 sys = 4.92 CPU) @ 203.25/s (n=1000)
$

Also, bear in mind that each benchmark will not only time differently between each machine and
the next, but often between times you run the test—so don’t base your life around benchmark tests. If a
pretty way to do it is a thousandth of a second slower than an ugly way to do it, choose the pretty one.

Win32
Those familiar with Windows’ labyrinthine Win32 APIs will probably want to examine the libwin32
modules. These all live in the Win32:: hierarchy and come as standard with Active-State Perl. If you’ve
compiled another Perl yourself on Windows, you can get a copy of the modules from CPAN—you’ll see
how later in this chapter.

These modules, which give you access to such things as Semaphores, Services, OLE, the Clipboard,
and a whole bunch of other things besides, will probably be of most interest to existing Windows
programmers. For the rest of us though, there are two modules that will be of particular use.

Win32::Sound
The first, Win32::Sound, lets you play with the sound subsystem—you can play .wav files, set the speaker
volume, and so on. You can also use it to play the standard system sounds.

The following program will play all the .wav files in the current directory:

#!/usr/bin/perl
wavplay.pl

CHAPTER 12 ■ MODULES

277

use strict;
use Win32::Sound;

Win32::Sound::Volume(65535);
while (<*.wav>) {
 Win32::Sound::Play($_);
}

You won’t see any output, but if you’re in a directory containing .wav files, you should certainly be
able to hear some!

The Win32::Sound module provides us with a number of subroutines.

Function Description

Win32::Sound::Volume($left, $right) Sets the left and right speaker volumes to the requested
amount. If only $left is given, both speakers are set to
that volume. If neither is given, the current volume is
returned. You can give the volume either as a percentage
or a number from 0 to 65535.

Win32::Sound::Play($name) Plays the named sound file, or the named system sound
(for example, SystemStart).

Win32::Sound::Format($filename) Returns information about the format of the given sound
file.

Win32::Sound::Devices() Lists all the available sound-related devices on the
system.

Win32::Sound::DeviceInfo($device) Provides information on the given sound device.

You can get a full list of the subroutines from the Win32::Sound documentation page if you have the

module installed (perldoc Win32::Sound).

Win32::TieRegistry
Windows uses a centralized system database to store information about applications, users, and its own
state. This is called the registry, and you can get at it by using Perl’s Win32::TieRegistry module. This
just provides a convenient layer around the Win32::Registry module, which is more technical in nature.
Win32::TieRegistry transforms the Windows registry into a Perl hash.

The registry is a complicated beast, and revolves around a hierarchical tree structure—like a hash of
hashes or a directory. For instance, information about users’ software is stored under
HKEY_CURRENT_USER\Microsoft\Windows\CurrentVersion\. Now you can get to this particular part of the
hash by saying the following:

#!/usr/bin/perl
registry.pl

CHAPTER 12 ■ MODULES

278

use warnings;
use strict;
use Win32::TieRegistry (Delimiter => "/") ;

You load the module, and change the delimiter from a backslash to a forward slash so you don’t end
up drowning in a sea of backslashes.

my $users = $Registry->
 {HKEY_CURRENT_USER/Software/Microsoft/Windows/CurrentVersion/};

Now that you’ve got that key, you can dig further into the depths of the registry. This is where the
Windows Explorer tips are stored:

my $tips = $users->{Explorer/Tips};

and from there you can add your own tips:

$tips->{/186} = "It's easy to use Perl as a Registry editor with the " .
 "Win32::TieRegistry module.";

You can always delete them again, using ordinary hash techniques.

delete $tips->{/186};

Again, if you’re after more information, it’s available in the Win32::TieRegistry documentation.

CPAN
So far you’ve been looking at standard modules provided with most Perl distributions. However, as was
mentioned in the introduction, there’s also a central repository for Perl modules—collections of code
that will do virtually any kind of job: the Comprehensive Perl Archive Network, or CPAN, which you can
find on the web at http://www.cpan.org. You can also find the standard Perl modules on CPAN and can
read their documentation in web browser–friendly HTML by surfing http://search.cpan.org/.

So before you ask “How do I do . . . ?” or start plugging away at any long task, it’s always worth taking
a quick look here to see if it’s already been done. CPAN is searchable in plenty of different ways—the
most common are by keyword, by topic, or by module name. There are also a few CPAN search engines,
but the easiest for browsing is probably the web-based CPAN search engine at http://search.cpan.org/.

http://www.cpan.org
http://search.cpan.org
http://search.cpan.org

CHAPTER 12 ■ MODULES

279

This lets us look up modules by category, as well as searching for words in the modules’
documentation. Once you’ve found a module that might do what you want, you follow a link to get
further information on it and get yourself a download. For example, this is what you get for the
Archive::Tar module:

CHAPTER 12 ■ MODULES

280

Now that you’ve seen how to find the modules you want, you’re ready to look at the various ways in
which you can install them.

Installing Modules with PPM
If you’re using ActivePerl, module installation is made very simple by the Perl Package Manager (PPM).
This is a useful little tool that’s provided along with installations of ActivePerl, which allows you to install
modules from the command line with the minimum of effort.

■ Note It is important to mention that PPM is not an interface to CPAN; it is a convenient program that allows you
to install copies from CPAN, many of which are in some stage of being out-of-date. There is no guarantee that
what is available on CPAN will be available with PPM. The rule of thumb is for the latest and greatest, visit CPAN.

CHAPTER 12 ■ MODULES

281

So without further ado, let’s install Net::Telnet—a module that allows you to automate a telnet
session.

1. Type ppm at the command line; this will give you the PPM prompt: PPM>.

2. Now type install Net::Telnet—you may be asked to confirm your request,
if so type y.

3. Exit the PPM prompt by typing quit, and now you have Net::Telnet
installed.

Installing a Module Manually
You’ll now take a look at what’s involved in installing a module using CPAN. If you search CPAN for the
module Net::Telnet, you should find yourself looking at the file Net-Telnet-3.03.tar.gz (unless there’s
a newer version out by the time you read this . . .) Download and unpack this file. On Unix systems, gzip
-dc Net-Telnet-3.03.tar.gz | tar -xvf (or tar xzvf Net-Telnet-3.03.tar.gz if your version of tar
also unzips) should do the trick, while you can use WinZip to extract these files on Windows.

Every module should contain a Makefile.PL, which can be used to generate the instructions to
install the module. Let’s run that file first:

$ perl Makefile.PL

If you can’t install in Perl’s site directories because you don’t have the appropriate permissions, run

$ perl Makefile.PL PREFIX=/my/module/path

Makefile.PL first checks that you have all the modules it requires, and then that you’ve got

everything you should have in the module archive itself—a file called MANIFEST contains a list of what
should be in the archive.

Now you’re ready to type make—assuming, of course, you have make on your system:

$ make

Once that’s done, you check to see if your module’s working:

$ make test

Finally, you actually install it, moving the files to the correct location:

$ make install

Hooray! The module’s now installed. However, there’s a much, much easier way of doing it.

The CPAN Module
Another easy way to navigate and install modules from CPAN is to use the standard module called CPAN.
The “CPAN Shell” is an extremely powerful tool for finding, downloading, building, and installing
modules.

To get into the CPAN shell, type

CHAPTER 12 ■ MODULES

282

$ perl –MCPAN –e shell

This is actually just the same as saying

#!/usr/bin/perl
use CPAN;
shell();

The whole shell is actually a function in the (massively complex) CPAN module. The first time you run
it, you’ll see something like this:

CPAN is the world-wide archive of perl resources. It consists of about
300 sites that all replicate the same contents around the globe. Many
countries have at least one CPAN site already. The resources found on
CPAN are easily accessible with the CPAN.pm module. If you want to use
CPAN.pm, lots of things have to be configured. Fortunately, most of
them can be determined automatically. If you prefer the automatic
configuration, answer 'yes' below.

If you prefer to enter a dialog instead, you can answer 'no' to this
question and I'll let you configure in small steps one thing after the
other. (Note: you can revisit this dialog anytime later by typing 'o
conf init' at the cpan prompt.)
Would you like me to configure as much as possible automatically? [yes]

Press the Enter key and the CPAN module will configure itself. After a short amount of time,
you’ll end up at a prompt like this:

cpan shell -- CPAN exploration and modules installation (v1.9205)
ReadLine support available (maybe install Bundle::CPAN or Bundle::CPANxxl?)

cpan[1]>

Now we’re ready to issue commands. The install command, as shown in the prompt, will download
and install a module. For example, we could install the DBD::mysql module by simply saying

cpan[1]>install DBD::mysql

Alternatively, you could get information on a module with the i command. Let’s get some
information on the MLDBM module:

cpan[2]> i MLDBM
Strange distribution name [MLDBM]
Module id = MLDBM
 DESCRIPTION Transparently store multi-level data in DBM
 CPAN_USERID GSAR (Gurusamy Sarathy <gsar@cpan.org>)
 CPAN_VERSION 2.01
 CPAN_FILE C/CH/CHAMAS/MLDBM-2.01.tar.gz
 DSLIP_STATUS RdpOp (released,developer,perl,object-oriented,Standard-Perl)
 MANPAGE MLDBM - store multi-level hash structure in single level tied hash
 INST_FILE /usr/share/perl5/MLDBM.pm
 INST_VERSION 2.01

mailto:gsar@cpan.org

CHAPTER 12 ■ MODULES

283

This sares that the module is called MLDBM, and there’s a description of it. It was written by the
CPAN author GSAR, which translates to Gurusamy Sarathy in the real world. It’s at version 2.01, and it’s
stored on CPAN in the directory C/CH/CHAMAS/MLDBM-2.01.tar.gz.

The funny little code thing is the CPAN classification. It tells you this module has been released (the
implication being that it’s been released for a while); that you should contact the developer if you need
any support on it; that it’s written purely in Perl without any extensions in C; that it’s object oriented;
and, finally, that you don’t have it installed. So let’s install it:

cpan[3]> install MLDBM

■ Note In fact, you don’t even have to go into the shell to install a module. As well as exporting the shell
subroutine, CPAN provides us with install, with which you can simply say perl -MCPAN -e 'install "MLDBM"'
to produce the same results.

You’ll then see a few lines that will be specific to your computer—different systems have different
ways of downloading files, and depend on whether or not you have the external programs lynx, ftp, or
ncftp, or the Perl Net::FTP module installed.

The CPAN module will download the file, and then, if you’ve got the Digest::MD5 module installed,
download a special file called a checksum—it’s like a summary of that file so you can make sure that
what you’ve downloaded is what’s on the server.

Checksum for /home/simon/.cpan/sources/authors/id/ C/CH/CHAMAS/MLDBM-2.01.tar.gz ok

You should then see tons of output: the tar file is unpacked, a Makefile is generated and executed,
the module is tested, and then installed. Once all this takes place, you will see the CPAN prompt again:

cpan[4]>

Successfully installed, and with the minimum of effort!
How about if you don’t actually know the name of the module you’re looking for? CPAN lets you use a

regular expression match to locate modules. For instance, if you’re about to do some work involving
MIDI electronic music files, you could search for “MIDI.” Here is a portion of what you might see:

cpan[4]>i /MIDI/
Distribution BMAMES/MIDI-XML-0.02.tar.gz
Distribution BMAMES/MIDI-XML-0.03.tar.gz
Distribution CBOURNE/MIDI-Praxis-Variation-0.05.tar.gz
Distribution CHURCH/MIDI-Trans-0.15.zip
…

 "Distributions" are archive files: zips or tar.gz files containing one or more Perl
modules. We see that MIDI-Realtime contains just the MIDI::Realtime module.

CHAPTER 12 ■ MODULES

284

Bundles
Some modules depend on other modules being installed. For instance, the Win32::TieRegistry module
needs Win32::Registry to do the hard work of getting at the registry. If you’re downloading packages
from CPAN manually, you’ll have to try each package, find out what’s missing, and download another
repeatedly until you’ve got everything you need. The CPAN module does a lot of this work for you—it can
detect dependencies in packages and download and install everything that’s missing.

This is fine for making sure that things work, but as well as needing other modules, some merely
suggest other modules. For instance, the CPAN module itself works fine with nothing other than what’s in
the core, but if you have Term::Readline installed, it gives you a much more flexible prompt, with tab
completion, a command history (meaning you can use the up and down arrows to scroll through
previous commands), and other niceties.

Enter bundles—collections of packages that go well together. The CPAN bundle, Bundle::CPAN, for
instance, contains various modules that make the CPAN shell easier to use: Term::ReadLine as
mentioned previously, Digest::MD5 for security checking the files downloaded, some Net:: modules to
make network communication with the CPAN servers nicer, and so on.

You’ll now look at two particularly useful bundles, which contain modules that we personally
wouldn’t go anywhere without.

Bundle::LWP
Bundle::LWP contains modules for everything to do with the Web. It has modules for dealing with HTML,
HTTP, MIME types, handling URLs, downloading and mirroring remote web sites, creating web spiders
and robots, and so on.

The main chunk of the bundle is the LWP (libwww-perl) distribution, containing the modules for
visiting remote web sites. Let’s have a look at what it gives us.

This module will export five methods to your current package.

• The get() method fetches a web site and returns the underlying HTML. This
subroutine knows all about proxies, error codes, and other things:

$file = get("http://www.perl.com/");

• The head() method fetches the header of the site and returns a few headers: what
type of document the page is (such as text/html), how big it is in bytes, when it
was last modified, when it should be regarded as old (these are both Unix times
suitable for feeding to localtime()), and what the server has to say about itself.
Some servers may not return all these headers.

($content_type, $document_length, $modified_time, $expires, $server) =
 head("http://www.perl.com/");

The next three methods are all quite similar in that they all involve retrieving an HTML page.

• The first, getprint(), retrieves the HTML file and then prints it out to standard
output—useful if you’re redirecting to a file or using a filter as some sort of HTML
formatter. You can copy a web page to a local file like this:

getprint("http://www.perl.com/");

http://www.perl.com
http://www.perl.com
http://www.perl.com

CHAPTER 12 ■ MODULES

285

• Alternatively, you can use the getstore() subroutine to store it to a file.

perl –MLWP::Simple –e
 'getstore("http://www.perl.com/", "perlpage.html")'

• Finally, mirror()is like getstore(), except it checks to see if the remote site’s
page is newer than the one you’ve already got.

perl –MLWP::Simple –e
 'mirror("http://www.perl.com/","perlpage.html")'

Be sure to read the main LWP documentation and the lwpcook page, which contains a few ideas for
things to do with LWP.

Bundle::libnet
Similarly, Bundle::libnet contains a bunch of stuff for dealing with the network, although it’s not nearly
as big as LWP. The modules in Bundle::libnet and its dependencies allow you to use FTP, telnet, SMTP
mail, and other network protocols.

Submitting Your Own Module to CPAN
CPAN contains almost everything you’ll ever need. Almost. There’ll surely come a day when you’re faced
with a problem where no known module can help you. If you think it’s a sufficiently general problem
that other people are going to come across, why not consider making your solution into a module and
submitting it to CPAN? Think of it as a way of giving something back to the community that gave you all
this . . .

Seriously, if you do have something you think would be useful to others, there are a few things you
need to do to get it to CPAN:

• Check to make sure it has not already been written. Search CPAN at
http://search.cpan.org/.

• Read the perlmod and perlmodlib documentation pages until you really
understand them.

• Learn about the Carp module, and use carp() and croak() instead of warn() and
die().

• Learn about the Test module and how to produce test suites for modules.

• Learn about documenting your modules in POD, Plain Old Documentation.

• Look at the source to a few simple modules like Text::Wrap and Text::Tabs to get a
feel of how modules are written.

• Take a deep breath, and issue the following command:

$ h2xs -AXn Your::Module::Name

http://www.perl.com
http://www.perl.com
http://search.cpan.org

CHAPTER 12 ■ MODULES

286

• Edit the files produced, remembering to create a test suite and provide really good
documentation.

• Run perl Makefile.PL and then make.

Your module’s now ready to ship!
For more information, check out the excellent book Writing Perl Modules for CPAN by Sam Tregar

(Apress, 2002). Also, be sure to read perldoc perlnewmod,.

Summary
Modules save you time. In essence, a module is just a package stored in a file, which you load with the
use statement.

Perl provides a number of standard modules. You can get documentation on each and every one by
running perldoc. You looked briefly at Data::Dumper (to print out data structures), File::Find (for
examining files in directory trees), the Getopt modules (for reading options from the command line), the
File::Spec::Functions module (for portable filename handling), the Benchmark module (for timing and
testing code), and the Win32 modules (for access to the Windows system and registry).

CPAN is the Comprehensive Perl Archive Network. It’s a repository of free Perl code. You can search
it from http://search.cpan.org/, or use the Perl module CPAN for easy searching and installation. The CPAN
module has the advantage of knowing about file dependencies and can therefore download and install
files in the correct order.

Bundles provide sets of related modules. You looked at LWP::Simple (from the libwww bundle) and
the libnet bundle. Finally, you looked at some of what’s involved in abstracting your code and putting it
into a module.

http://search.cpan.org

C H A P T E R 13

■ ■ ■

287

Object-Oriented Perl

There are two main schools of thought when approaching a solution to a problem in the programming
world. The first school of thought is one that we have used in this book up to this point: procedural
programming. This approach is based on what actions to take—procedures—and developing
subroutines that carry out those actions. In procedural programming, you take the overall system and
break it up into smaller and smaller pieces, code the steps for the individual pieces into functions, and
then put the functions together to form the entire system.

The other school of thought is an approach that has been quite popular for a while: object-oriented
programming (OOP, or simply OO for short). In the OO approach, you take a step back from what the
program needs to do and instead look at the nature of the things with which you are working.

In this chapter, you’ll learn how to start thinking in OO terms. OO involves a lot of jargon, so the first
thing you’ll do is look in some detail at all the new terms associated with OO and what they mean to a
Perl programmer. After that, you’ll see how to go about approaching a problem using this style of
programming. You’ll use a Perl module that involves creating an object, and you’ll also construct some
object–oriented modules of your own.

This chapter is meant only as a beginning in OO in Perl. For more details, I recommend the excellent
book Object Oriented Perl by Damian Conway (Manning Publications, 2000).

OO Buzzwords
Object-oriented programming wouldn’t be a good buzz phrase if it didn’t use a lot of familiar words in
unfamiliar contexts. Before going any further, let’s investigate the jargon that you’ll need in order to
understand object–oriented Perl programming.

The first thing to note is that object–oriented programming is a concept, rather than a standard.
There are a few things that object–oriented languages should do, a lot they can do, but nothing that they
absolutely have to do. Other languages may implement more or less of these ideas than Perl does, and
may well do so in a completely different way. We’ll explain here the terms that are most commonly used
by object–oriented programmers.

Objects
What is an object, anyway? An object is a chunk of data that has behaviors, but that’s not all. To be
honest, an object can be anything—it really depends on what your application is. For instance, if you’re

CHAPTER 13 ■ OBJECT-ORIENTED PERL

288

writing a contact management database, a single contact might be an object. If you’re communicating
with a remote computer via FTP, you could make each connection to the remote server an object.

An object can always be described in terms of two things:

• What it can do (actions or methods)

• What you know about it (information or attributes)

With a “contact record” object, you’d probably know the contact’s name, date of birth, address, and
so on. These are the object’s attributes. You might also be able to ask it to do certain things: print an
address label for this contact; work out how old they are; or send them an email—these are the object’s
methods.

In Perl, what you see as an object is simply a reference—in fact, you can convert any ordinary
reference into an object simply by using the bless() function. You’ll see later on how that happens.
Typically, however, objects are represented as references to a hash, and that’s the model we’ll use in this
chapter.

Attributes
An attribute is something you know about an object, its information. A contact database object will
possess attributes such as date of birth, address, and name. An FTP session will possess attributes such
as the name of the remote server you’re connected to, the current directory, and so on. Two contacts will
have different values for their name attribute, unless you have duplicates in the database, but they will
both have the name attribute.

If you’re using a reference to a hash, it’s natural to have the attributes as hash entries. The person
object then becomes a blessed version of the following:

my $person = {
 lastname => "Galilei",
 firstname => "Galileo",
 address => "9.81 Pisa Apts.",
 occupation => "bombadier"
};

You can get to (and change) your attributes simply by accessing these hash values directly (that is,

by saying something like $person->{address}—remember that you use this syntax because you’re
dealing with a reference), but this is generally regarded as a bad idea. For starters, it requires you to
know the internal structure of the object and where and how the attributes are stored, which, as end
users, we should have no need or desire to fiddle with. Secondly, it doesn’t give the object a chance to
examine the data you’re giving it to make sure it makes sense. Instead, access to an attribute usually goes
through a method.

Methods
A method is anything you can tell the object to do. It could be something complicated, such as printing
out address labels and reports, or something simple such as accessing an attribute. Those methods
directly related to attributes are called get-set methods, as they’ll typically either get the current value of
the attribute or set a new one.

CHAPTER 13 ■ OBJECT-ORIENTED PERL

289

The fact that methods are all about instructions for doing things may give you a clue as to how we
represent them in Perl—methods in Perl are just subroutines. However, there is a special syntax called
the arrow operator (->), which you use to call methods. So instead of getting the address attribute
directly, as in the preceding example, you’re more likely to say something like this:

print "Address: ", $person->get_address(), "\n";

You’re also able to set an attribute (change its value) like this:

$person->set_address("Campus Mirabilis, Pisa, Italy");

Alternatively, you can call a method to produce an envelope for this object:

$person->print_envelope();

This syntax $object->method(@arguments) “invokes” the method, which just means that it calls the
given subroutine. In our examples this is either get_address(), set_address() or print_envelope().
You’ll see how it’s done shortly.

Classes
Normally, objects of different types are very different things—they have different methods and
attributes. For instance, your contact object is very different from an object created to perform
FTP connections. While $person->date_of_birth() may make sense, you wouldn’t expect
$ftp_session->date_of_birth() to do anything sensible.

A class is the formal term for a type of object—it is a general description of a group of things. Classes
define the methods an object can have and how those methods work. All objects in the Person class will
have the same set of methods and possess the same attributes (although the values of these attributes
will likely be different), and these will be different from the FTP class. An object is sometimes referred to
as an instance of a class; this just means that it’s a specific thing created from a general category.

In Perl’s object–oriented philosophy, a class is an ordinary package. Let’s start piecing this together:

• A method is a subroutine in a package. For instance, the date_of_birth() method
in the Person class is merely the subroutine date_of_birth() in the Person
package.

• Blessing a scalar just means telling it from what package to take its methods. At
that point, it’s more than just a complex data structure, or scalar reference. It has
attributes—the data you’ve stored in the hash reference or elsewhere; and it has
methods—the subroutines in its package; therefore it can be considered a full–
fledged object.

Classes can also have what are known as class methods (some programming languages call these
static methods). These are methods that do things relevant to the whole class rather than individual
objects. Instead of acting on an object, as you would by saying $object->method(), you act on the class:
Person->method(). An important thing to note is that Perl doesn’t necessarily know whether a given
subroutine is a class method, an object method, or just an ordinary subroutine. Therefore, programmers
have to do the checking themselves.

Similarly, classes can have attributes that refer to the whole class—in Perl these are just package
variables (some programming languages call these static data). For instance, you might have a
population attribute in your Person class, which tells how many Person objects are currently in existence.

One final note: you’ll probably have noticed that we capitalized Person. The Perl convention is to
capitalize all class names, so as to help distinguish them from object names.

CHAPTER 13 ■ OBJECT-ORIENTED PERL

290

Polymorphism
The word polymorphism comes from the Greek πολυ μορφου, meaning “many forms.” What it means in
object–oriented programming is that a single method can do different things depending on the class of
the object that calls it. For instance, $person->address() would return the person’s address, but
$ftp_session->address() might return the IP address of the remote server. On the other hand,
$object->address() would have to do the right thing according to which class $object was in.

When you invoke $person->address(), you are calling the subroutine Person::address(), and when
you invoke $ftp_session->address(), you are calling the subroutine FTP::address(). They’re defined
completely separately, in different packages, probably even in different files. Since Perl already knows
what class each object belongs to, neither you nor Perl need to do anything special to make the
distinction. Perl looks at the object, finds the class it is in, and calls the subroutine in the appropriate
package. This brings us to . . .

Encapsulation
One of the nice things about object–oriented programming is that it hides complexity from the user. This
is known as encapsulation (or abstraction). This means that users of the object need not care how the
class is structured or how the attributes are represented in the object. Nor do users have to care how the
methods work or where they come from—they can just use them.

This also means that the author of the class has complete freedom to change its internal workings at
any time. As long as the methods have the same names and take the same arguments, all programs using
the class should continue to work and produce the same results. That is as long as they use the method
interface, or way of invoking the method, as they should, rather than trying to access or modify the data
directly.

In this sense, working with objects is a little like driving a car. The object, the car, has a set of
attributes, such as the model, current speed, and amount of fuel in the tank. You can’t get at these
directly, but some read–only methods like the speedometer and the fuel gauge expose them to us. It also
provides us with some more methods and a well–defined interface to get it to do things.

You have a pedal to make it accelerate and one to make it brake, a stick to change gear, a hole to put
fuel into the tank, and so on. You don’t actually need to know how the engine works if you’re prepared to
stick to using these methods; of course, you do need to know what each of them does. You don’t even
need to know the whereabouts of the fuel tank, you just put fuel in the appropriate place. If you really
want to, you can lift the hood, look inside it, and fiddle with it—but then you only have yourself to blame
if it breaks!

Inheritance
Another property that makes object–oriented programming easy to use is its support for inheritance.
Classes can be built quickly by specifying how they differ from other classes. For example, humans
inherit attributes from their parents, such as hair color and height, while Perl’s classes inherit methods.
If a class inherits from another class, it receives the ability to call every method defined by the class from
which it inherits. If the new class wants to implement a method differently, it defines the method in its
own class. If it doesn’t want its own version of the method, it will automatically get the method from the
parent class. The parent class, which provides the new class with the methods, is called the superclass or
base class, and the class which inherits from the superclass is known as a subclass or derived class.

The relationship between the classes can be described as an IS-A relationship. If you have a
superclass Animal, you may create a subclass Vertebrate. You could then say that a Vertebrate IS-A

CHAPTER 13 ■ OBJECT-ORIENTED PERL

291

Animal. In fact, the classification system for animals can be thought of as a series of IS–A relationships,
with more specific subclasses inheriting properties of their superclasses.

Here you see that vertebrates and invertebrates are both subclasses of a general animal class. They

both inherit the fact that they are alive, and so you need not specify this in the subclass. Next, you could
create an Animal::Vertebrate::Mammal class, which would be a subclass of Animal::Vertebrate. You
wouldn’t need to specify that the mammal had a backbone or was alive, because these characteristics
would be inherited from the superclass.

We won’t talk much about inheritance in this book. This topic is perhaps the most difficult topic in
OO and deserves a chapter, if not several chapters, of its own. Once you grasp the basic concepts of OO,
we recommend that you check out the book Object Oriented Perl for an excellent discussion of
inheritance.

Constructors
Objects have to come from somewhere, and in keeping with the principles of encapsulation, users of a
class shouldn’t be expected to put together an object themselves. This would require knowledge of how
the object is represented and what initialization is required. To take this responsibility away from the
user, there’s a class method that all classes should possess—it’s called the constructor.

As the name implies, this constructs and returns a new object. For this reason, it’s usually called
new().1 You may pass arguments to the constructor, which it can then use to do the initial setup of the
object. Sometimes these arguments are in the form of a hash, allowing you to create an object like this:

1 This is also called new() so that your C++ brethren will feel a sense of familiarity when they create objects in
Perl.

CHAPTER 13 ■ OBJECT-ORIENTED PERL

292

my $galileo = Person->new(
 lastname => "Galilei",
 firstname => "Galileo",
 address => "9.81 Pisa Apts.",
 occupation => "bombadier",
);

There’s also another syntax for calling methods, which you’ll particularly see used with the
constructor:

my $galileo = new Person (...);

The constructor will now check that the arguments are acceptable, do any conversion it requires,
and create a hash reference, bless() it, and return it to us. More on this later in this chapter.

Destructors
When the object is no longer in use—when it’s a lexical variable that goes out of scope—Perl
automatically destroys it. However, before doing so, Perl will attempt to call a method named DESTROY().
If the class provides this method, it should be responsible for any tasks that need to be performed before
the object is disposed of. For instance, your FTP session object will want to ensure that it has closed the
connection to the remote server.

An Example
It is now time for an example. Let’s start off by using a class that is already created for us: Net::FTP.2 This
class (also known as a module) allows you to create objects that transfer files to and from an FTP server.
The following example will connect to the CPAN—and download the README.html file. This example will
illustrate some of the buzz words mentioned previously.

#!/usr/bin/perl
ftp.pl

use strict;
use Net::FTP;

my $ftp = Net::FTP->new("ftp.cpan.org")
 or die "Couldn't connect: $@\n";

$ftp->login("anonymous");
$ftp->cwd("/pub/CPAN");
$ftp->get("README.html");
$ftp->close();

2 This code was written by Graham Barr. Thanks, Graham!

CHAPTER 13 ■ OBJECT-ORIENTED PERL

293

Network and firewalls permitting, this should retrieve the file—although it may take some time.
Here is the proof on a Windows machine:

$ perl ftp.pl
$ dir README.html
README~1 HTM 2,902 README.html
$

The first line of interest in this program is

use Net::FTP;

This line finds the file that contains the definition of the Net::FTP class (as you learned in Chapter
12, its name happens to be FTP.pm and it is located in a directory named Net) and compiles it for use with
this program.

After loading the Net::FTP module, you create an object:

my $ftp = Net::FTP->new("ftp.cpan.org")
 or die "Couldn't connect: $@\n";

The class is called Net::FTP, the same as the module. This is because, as mentioned previously, a class is
just an ordinary package.

You create the object by calling the constructor, which is the class method new(). This takes a
number of arguments: a remote machine to which you want to connect and a hash specifying things like
whether you have a firewall, which port to connect to, whether you want debugging information, and so
on. These arguments will become the attributes of the object. If you don’t specify them, the constructor
comes up with some sensible defaults for you. In your case, the defaults are fine, so you just need to
supply a remote machine—you’ll use the CPAN server, ftp.cpan.org.

When you call the constructor, it takes your argument (the remote host), and stashes it away
internally in the object—encapsulation means you don’t need to know how or where. Then it takes a
reference to that hash, blesses the reference, and returns it to you. That blessed reference is your new
object (your FTP session), and you’re now ready to do things with it..

Next, you see a call to the login() method:

$ftp->login("anonymous");

First of all, you have to log in to the server. The usual way of getting things from an FTP server is by
logging in with a username of “anonymous” and your email address as the password. The login()
method tells the object to issue the appropriate login commands.

How did Perl know that it should use Net::FTP::login() rather than any other login()? When your
constructor blessed the reference, it gave the reference knowledge of where to find the methods. To
quote from the perlobj documentation, “an object is just a reference that happens to know which class
it belongs to.”

Since Perl takes care of passing the object to the subroutine as the first parameter, the method
automatically receives all the data it needs. This means you can easily have multiple objects doing
different things.

my $ftp1 = Net::FTP->new("ftp.cpan.org");
my $ftp2 = Net::FTP->new("ftp.apress.com");
$ftp1->login("anonymous");

The object $ftp1 is just a blessed reference to a hash, and that hash contains all the data about the

connection to CPAN, like the settings, the filehandles, and anything else that Net::FTP needs to store.

CHAPTER 13 ■ OBJECT-ORIENTED PERL

294

These are the object’s attributes. Everything you know about the connection is bundled into that object.
The important thing to note is that it’s completely independent from $ftp2, which is another object
containing another set of data about a different connection. Hence, the method call $ftp1->login() has
no impact on the other connection at all.

After logging in, you change the working directory on the target machine and get the file.

$ftp->cwd("/pub/CPAN");
$ftp->get("README.html");

cwd() and get() are two more methods your object supplies. The object has a huge number of
methods, due to the fact that it has a long chain of inheritance. However, there are some methods
Net::FTP defines directly that you should know about. They mainly relate directly to FTP commands—
Table 13-1 presents an incomplete list of them.

Table 13-1. Net::FTP Methods

Method Name Behavior

$ftp->login($login,$passwd) Log into the server with the given username and password.

$ftp->type($type) $ftp->ascii()
$ftp->binary()

Set the transfer type to ASCII or binary; this is quite similar to
Perl’s binmode operator.

$ftp->rename($old,$new) Rename a file.

$ftp->delete($file) Delete a file.

$ftp->cwd($directory) Change directory on the FTP server.

$ftp->pwd() Give the name of the current directory.

$ftp->ls() List the current directory on the FTP server.

$ftp->get($remote, $local,
$offset)

Get a file from the remote server.

$ftp->put($local, $remote) Put a file to the remote server.

There are also some get–set methods that will affect the object’s attributes. For instance, the

$ftp->hash() method controls an attribute that determines whether or not to print a # character after
every 1024 bytes transferred.

After you’ve called the get() method to get your file, you’ll call the close() method to shut down the
connection to the server.

$ftp->close();

So, you’ve used your first class. Hopefully, you can see that using objects and classes in Perl is just as
easy as calling functions. In fact, it’s easier—Perl not only takes care of finding out where to find the

CHAPTER 13 ■ OBJECT-ORIENTED PERL

295

subroutine you’re trying to call, but it also takes care of passing a whole bunch of data to the subroutine
for you.

Because this all goes on behind the scenes, you can happily pretend that an object contains a bunch
of methods that act on it, and it alone. In fact, it doesn’t—it only contains information regarding where
to find methods that can act on any object in that class.

Rolling Your Own Classes
You’ve seen how to use a class and an object. Let’s now see how to make your own classes. As an
example, you’ll implement the Person class we used in our definitions.

As mentioned previously, a class is just a package—nothing more, nothing less. So the simplest class
looks like this:

package Person;

That’s it. However, this class has nothing—no methods, no attributes, no constructor, nothing. It’s a
totally empty class. You will eventually want to add more stuff (attributes and methods) to this class.

Usually, you’ll want to put your class into its own file. It’s not necessary by any means, but it gets the
implementation out of the way. So, let’s create a module by putting the following in the file Person1.pm.
The file must end in the .pm file extension because when you use this class you will say

use Person1;

and this looks for the file named Person1.pm. Here is its content:

package Person1;
Person1.pm

Class for storing data about a person

use strict;

1;

Normally, the name of the package is the same as the name of file (minus the .pm extension). So if
the package name is Person1, the filename is Person1.pm. Likewise, if the filename is Person1.pm, the
package name is Person1.

As we discuss the various features of OO in this chapter, you will develop a class that represents a
person. You will start with package Person1, then enhance that package to be Person2, and so on. Keep in
mind that these packages are representing an evolution of a definition.

As was mentioned in Chapter 12, that 1; at the end of the file looks weird, but it is necessary because
Perl expects to see a true value as the last thing in the package; this tells Perl that everything went OK
when loading the file. Now in a separate program, you can say use Person1; and start using the class,
like this:

#!/usr/bin/perl
person1.pl

use warnings;
use strict;
use Person1;

CHAPTER 13 ■ OBJECT-ORIENTED PERL

296

This program doesn’t do anything except read in and compile the class you created, because you

can’t yet create any objects as you do not yet have a constructor. Therefore, the next step is to write a
constructor.

What does your constructor create? It creates an object, which is a blessed reference. Before going
any further, then, let’s have a look at what bless() is and what it does.

Bless You, My Reference
The bless()function takes a reference and turns it into an object. The way it does that is simple: it
changes the type of the reference. Instead of being an array reference or a hash reference, Perl now
thinks of it as a Person1 reference (or whatever other class you bless() the reference into).

You can use the ref() function to tell what type of reference you have:

#!/usr/bin/perl
reftypes.pl

use warnings;
use strict;

my $a = [];
my $b = {};
my $c = \1;
my $d = \$c;
print '$a is a ', ref($a), " reference\n";
print '$b is a ', ref($b), " reference\n";
print '$c is a ', ref($c), " reference\n";
print '$d is a ', ref($d), " reference\n";

$ perl reftypes.pl
$a is a ARRAY reference
$b is a HASH reference
$c is a SCALAR reference
$d is a REF reference
$

The syntax of bless() is

bless(reference, package);

If the package isn’t given, the reference is blessed into the current package. Let’s bless() a
reference into the Person1 package.

#!/usr/bin/perl
bless1.pl

use warnings;
use strict;

my $a = {};

CHAPTER 13 ■ OBJECT-ORIENTED PERL

297

print '$a is a ', ref($a), " reference\n";

bless($a, "Person1");

print '$a is a ', ref($a), " reference\n";

$ perl bless1.pl
$a is a HASH reference
$a is a Person1 reference
$

OK, so you’ve changed $a into a Person1 reference. What just happened?
Actually, nothing changed in the structure of $a at all. It’s still a hash reference, and you can still

dereference it—or add, access, and delete entries in the hash, and so on. It still has the same keys and
values. Nothing magical has happened.

But $a is now a reference with knowledge of which package it belongs to, and if you try and call a
method with it, Perl now knows that it should look in the Person1 package for a definition of that
method. It has become an object.

What if you bless() it again? What happens then? Let’s try it.

#!/usr/bin/perl
bless2.pl

use warnings;
use strict;

my $a = {};

print '$a is a ', ref($a), " reference\n";

bless($a, "Person1");
print '$a is a ', ref($a), " reference\n";

bless($a, "Animal::Vertebrate::Mammal");
print '$a is a ', ref($a), " reference\n";

$ perl bless2.pl
$a is a HASH reference
$a is a Person1 reference
$a is a Animal::Vertebrate::Mammal reference
$

All that’s happened is you’ve once again changed what type of reference it is. You’ve changed where

Perl should look if any methods are called by the reference. Note that at this stage you haven’t even
defined an Animal::Vertebrate::Mammal package, but that’s OK because you’re not going to call any
methods yet—if you did, they would surely fail.

Again, the internal structure of that reference hasn’t changed. It’s still a hash reference with the
same keys and values. You usually don’t want to bless() an object that’s already been blessed. This is
because something that was originally a Person1 may have different attributes to what the new class
expects it to have when methods are called. Worse still, the program using the object could well try and

CHAPTER 13 ■ OBJECT-ORIENTED PERL

298

call a method that was fine in the old class but doesn’t exist in the new one—attempting to magically
turn a person into an FTP session can only have undesirable (and pretty weird) results.

Storing Attributes
Before looking at methods, let’s examine attributes. An attribute is, as defined at the start of this chapter,
something you know about the object. In other words, it’s a piece of data that belongs to this particular
object. How do you store this data, then?

This is what the reference is for; if you store your data in the reference, your object carries around
both a set of data unique to it and knowledge of where to find methods to act on that data. If you know
that your object is only going to contain one attribute, one piece of data, you could conceivably use a
scalar reference, like this:

my $attribute = "green";
my $object = \$attribute;
bless $object, "Simple";

Now you have a nice simple object that stores a single attribute contained in the Simple class. You
can access and change the attribute just as we’d work with an ordinary scalar reference:

$var = ${$object};
${$object} = "red";

This is nice and simple, but it’s not very flexible. Similarly, you could have an array reference and
bless() that to turn it into an object, which is slightly more flexible. You can access attributes as
elements in the array, and you can add and delete attributes by using array operations. If you are storing
a set of unnamed data, this is perfectly adequate.

However, for maximum flexibility, you can use a hash to give names to your attributes. Here is an
example of creating a reference to an anonymous hash and then blessing it as an object of your class:

my $object = {
 lastname => "Galilei",
 firstname => "Galileo",
 address => "9.81 Pisa Apts.",
 occupation => "bombadier",
};
bless $object, "Person1";

This allows easy access to the individual attributes, as if you were carrying a bunch of variables
around with you. Therefore, you generally use an anonymous hash reference for any nontrivial class.

The Constructor
You’re now ready to create objects. Let’s put this knowledge into a constructor, and put a constructor
into your currently empty Person1 class. As mentioned previously, your definition of a person is a work
in progress, so you will call the next version Person2 and store it in Person2.pm.

To construct an object, you make a hash reference, and bless() it as an object of the class.

www.wowebook.com

CHAPTER 13 ■ OBJECT-ORIENTED PERL

299

package Person2;
Person2.pm

Class for storing data about a person

use strict;

sub new {
 my $self = {};
 bless $self, "Person2";
 return $self;
}

1;

Now you can use your Person2 class to create an object:

#!/usr/bin/perl
person2.pl

use warnings;
use strict;
use Person2;

my $person = Person2->new();

which should execute without any errors.
Your constructor does a simple job, and does it well. First, you create your hash reference:

my $self = {};

$self is the traditional name for an object when it’s being manipulated by methods inside the class.
Now you’ll turn it into an object by telling it which class it belongs to:

bless $self, "Person2";

Finally, you return the object:

return $self;

Excellent. Now let’s see how you can improve this.

Considering Inheritance
It’s possible that someone someday will want to inherit from this class, and you won’t necessarily be told
about it. If they don’t provide their own constructor, they’ll get yours, and as things stand, that’ll
produce an object blessed into your class—not theirs.

You really need to remove the hard–wired "Person2" in your constructor and replace it with the
called class. How do you know what the called class is though? Perl translates Class->new() into
new("Class"). In other words, the class name is magically passed into the constructor as its first
argument. Therefore, you know what class the user wants because it’s the first argument to the
constructor. All you need to do is take that argument and use that as the class to bless() into (the second

CHAPTER 13 ■ OBJECT-ORIENTED PERL

300

argument to the bless() function). So here’s a more general constructor that takes inheritance into
account:

sub new {
 my $class = shift;
 my $self = {};
 bless $self, $class;
 return $self;
}

As usual, shift() without any arguments means shift @_—it takes the first element of the

argument array. This gives us the first thing you were passed, the class name. You can therefore use this
to bless our reference without needing to hard–code the name.

Providing Attributes
Now let’s make one more enhancement. At the moment, you can create a completely anonymous
Person2 with no attributes at all. You want to be able to give the end user of the class the opportunity to
specify some attributes when the object is created. So let’s take the next step in your evolution and
define class Person3.

As before, you’re going to store the data in a hash reference. The object’s data will be provided to the
constructor through its argument list. Ideally, you’ll want the constructor to be called something along
these lines:

my $object = Person3->new(
 lastname => "Galii",
 firstname => "Galileo",
 address => "9.81 Pisa Apts.",
 occupation => "bombardier"
);

This is the easiest syntax for the user, because it allows them to specify the attributes in any order,

and give as many or as few as they want. It’s also a lot easier to use and remember than if you make them
use a list like this:

my $object = Person3->new ("Galilei","Galileo","9.81 Pisa Apts.","bombardier");

In fact, it’s the easiest syntax for us too. Since you want your attributes stored in a hash, and the key–

value syntax you proposed previously is a hash, all you’ve got to do is place the arguments straight into
your hash reference:

my $self = {@_};

Let’s plug this into your package:

package Person3;

Person3.pm

Class for storing data about a person

CHAPTER 13 ■ OBJECT-ORIENTED PERL

301

use strict;

sub new {
 my $class = shift;
 my $self = {@_};
 bless $self, $class;
 return $self;
}

1;

What have you done? Since Perl magically passes in the class name as the first argument to the

function, Perl sees something like this when you call the constructor:

@_ = (
 "Person3",
 "lastname", "Galilei",
 "firstname", "Galileo",
 "address", "9.81 Pisa Apts.",
 "occupation", "bombardier"
);

The first line of the constructor grabs the class name as before.

my $class = shift;

Now what’s left in the argument array @_ is

@_= (
 "lastname", "Galilei",
 "firstname", "Galileo",
 "address", "9.81 Pisa Apts.",
 "occupation", "bombardier"
);

This is what you put verbatim into your hash reference:

my $self = {@_};

Your hash now contains all the attributes you provided. As usual, it’s blessed and returned to the
caller.

You now have a full–featured constructor. You’ve taken some initial data and constructed an object
out of it, storing the data as attributes in the object. Now it’s time to add some methods so you can
actually do something with it!

Creating Methods
Your constructor was a class method; creating an object method will be very similar. In the same way
that a class method magically gets passed the name of the class as the first argument, an object method
is just a subroutine that magically gets passed the object as the first argument.

CHAPTER 13 ■ OBJECT-ORIENTED PERL

302

Let’s create a method to return the last name of the person. This directly accesses an attribute—
sometimes called an accessor method. Remember that the lastname attribute is just an entry in the hash,
referenced by the object. So what does this involve? You’ll need to:

• Receive the object being passed to us.

• Extract the lastname entry from the hash.

• Pass it back to the caller.

Using the techniques you learned in Chapter 11 for directly accessing values in a hash reference,

you can code the accessor and add it into your class creating the next iteration, Person4.

package Person4;

Person4.pm

Class for storing data about a person

use strict;

sub new {
 my $class = shift;
 my $self = {@_};
 bless $self, $class;
 return $self;
}

sub lastname {
 my $self = shift;
 return $self->{lastname};
}

1;

Now you can create an object with some attributes, and retrieve the attributes again.

#!/usr/bin/perl
accessor1.pl

use warnings;
use strict;
use Person4;

my $object = Person4->new(
 lastname => "Galilei",
 firstname => "Galileo",
 address => "9.81 Pisa Apts.",
 occupation => "bombadier"

CHAPTER 13 ■ OBJECT-ORIENTED PERL

303

);

print "This person's last name: ", $object->lastname(), "\n";

If all is well, you should be told the last name.

$ perl accessor1.pl
This person's last name: Galilei
$

Your accessor method is a very simple one—it takes an object, and extracts an attribute from it.

First, you use shift() to get the object passed to you.

my $self = shift;

Then, you take out the relevant hash entry and pass it back.

return $self->{lastname};

Don’t confuse the arrow used here for accessing parts of a reference with the arrow used as a
method call. When accessing a reference, there will be either a curly brace or a square bracket at the end
of the arrow.

$reference->{lastname}; # Accesses a hash reference
$reference->[3]; # Accesses an array reference

When calling a method, there will be a name following the arrow.

$reference->lastname();

So while your method is called with $object->lastname(), the last name entry in the hash is
accessed with $self->{lastname}.

Get-Set Methods
As well as getting the value of an attribute, you may well want to set or change it. The syntax you’ll use is
as follows:

print "Old address: ", $object->address(), "\n";
$object->address("Campus Mirabilis, Pisa, Italy");
print "New address: ", $object->address(), "\n";

This kind of accessor is called a get-set method because you can use it to both get and set the

attribute. Turning your current read–only accessors into accessors that can also set the value is simple.
Let’s create a get–set method for address():

sub address {
 my $self = shift;

 # Receive more data
 my $data = shift;

CHAPTER 13 ■ OBJECT-ORIENTED PERL

304

 # Set the address if there's any data there.
 $self->{address} = $data if defined $data;

 return $self->{address};
}

If you don’t particularly want to trap calling the method as a class method (since it’ll generate an

error when we try to access the hash entry anyway), you can write really miniature get–set methods like
the following:

sub address { $_[0]->{address } = $_[1] if defined $_[1]; $_[0]->{address } }
sub lastname { $_[0]->{lastname } = $_[1] if defined $_[1]; $_[0]->{lastname } }
sub firstname { $_[0]->{firstname} = $_[1] if defined $_[1]; $_[0]->{firstname} }

While that’s fine for getting classes up and running quickly, writing out the get–set method in full as

shown previously allows you to easily extend it in various ways, like testing the validity of the data, doing
any notification you need to when the data changes, and so on.

Class Attributes
Classes can have attributes, too—instead of being entries in a hash, they’re variables in a package. Just
like object attributes, it’s a really good idea to access them through get–set methods, but since they’re
ordinary variables, your methods are a lot simpler. Let’s use a class attribute to keep score of how many
times you’ve created a Person5 object (Person5 is your next step in creating your definition of a person).
You’ll call your attribute $Person5::Population, and you’ll get the current value of it via the method
headcount().

A class attribute is a package variable, and an accessor method just returns or sets the value of that
variable. Here, you make your accessor method read–only to stop the end user changing it and
confusing their own code:

package Person5;
Person5.pm

Class for storing data about a person

use strict;

my $Population = 0;

sub new {
 my $class = shift;
 my $self = {@_};
 bless $self, $class;
 $Population++;
 return $self;
}

Object accessor methods
sub address { $_[0]->{address } = $_[1] if defined $_[1]; $_[0]->{address } }
sub lastname { $_[0]->{lastname } = $_[1] if defined $_[1]; $_[0]->{lastname } }

CHAPTER 13 ■ OBJECT-ORIENTED PERL

305

sub firstname { $_[0]->{firstname} = $_[1] if defined $_[1]; $_[0]->{firstname} }
sub phone_no { $_[0]->{phone_no } = $_[1] if defined $_[1]; $_[0]->{phone_no } }
sub occupation {
 $_[0]->{occupation}=$_[1] if defined $_[1]; $_[0]->{occupation}
}

Class accessor methods
sub headcount { return $Population; }

1;

Now as you create new objects, the population increases:

#!/usr/bin/perl
classattr1.pl

use warnings;
use strict;
use Person5;

print "In the beginning: ", Person5->headcount(), "\n";
my $object = Person5->new(
 lastname => "Galilei",
 firstname => "Galileo",
 address => "9.81 Pisa Apts.",
 occupation => "bombadier"
);
print "Population now: ", Person5->headcount(), "\n";

my $object2 = Person5->new(
 lastname => "Einstein",
 firstname => "Albert",
 address => "9E16, Relativity Drive",
 occupation => "Plumber"
);
print "Population now: ", Person5->headcount(), "\n";

$ perl classattr1.pl
In the beginning: 0
Population now: 1
Population now: 2
$

There’s actually nothing object–oriented-specific about this example. All you’re doing is taking
advantage of the way Perl’s scoping works. A lexical variable can be seen and used by anything in the
current scope and inside any curly braces. So, naturally enough, with

Package Person5;

my $Population;

sub headcount { return $Population; }

CHAPTER 13 ■ OBJECT-ORIENTED PERL

306

the package variable $Population is declared at the top of the package, and is therefore visible
everywhere in the package. Even though you call headcount() from another package, it accesses a
variable in its own package.

Similarly, when you increment its value as part of new(), you’re accessing a variable in the same
package. Since it’s a package variable, it stays around for as long as the package does, which is why it
doesn’t lose its value when you do things in your main program.

Let’s make one more addition and create the Person6 class: you’ll allow your main program to
process all of the names of people in your contacts database, and you’ll have a class method to return to
us an array of the objects created. Instead of keeping a separate variable for the population, you’ll
reimplement $Population in terms of the scalar value of that array.

package Person6;
Person6.pm

Class for storing data about a person

use strict;

my @Everyone;

sub new {
 my $class = shift;
 my $self = {@_};
 bless $self, $class ;
 push @Everyone, $self;
 return $self;
}

Object accessor methods
sub address { $_[0]->{address } = $_[1] if defined $_[1]; $_[0]->{address } }
sub lastname { $_[0]->{lastname } = $_[1] if defined $_[1]; $_[0]->{lastname } }
sub firstname { $_[0]->{firstname} = $_[1] if defined $_[1]; $_[0]->{firstname} }
sub phone_no { $_[0]->{phone_no } = $_[1] if defined $_[1]; $_[0]->{phone_no } }
sub occupation {
 $_[0]->{occupation}=$_[1] if defined $_[1]; $_[0]->{occupation}
}

Class accessor methods
sub headcount { return scalar @Everyone; }
sub everyone { return @Everyone; }

1;

Note that you’re pushing one reference to the data onto the array, and you return another reference.

There are now two references to the same data, rather than two copies of the data. This becomes
important when it comes to destruction. Anyway, this time you can construct your objects and loop
through them.

#!/usr/bin/perl
classattr2.pl

CHAPTER 13 ■ OBJECT-ORIENTED PERL

307

use warnings;
use strict;
use Person6;

print "In the beginning: ", Person6->headcount(), "\n";
my $object = Person6->new(
 lastname => "Galilei",
 firstname => "Galileo",
 address => "9.81 Pisa Apts.",
 occupation => "bombadier"
);
print "Population now: ", Person6->headcount(), "\n";

my $object2 = Person6->new(
 lastname => "Einstein",
 firstname => "Albert",
 address => "9E16, Relativity Drive",
 occupation => "Plumber"
);
print "Population now: ", Person6->headcount(), "\n";

print "\nPeople we know:\n";
foreach my $person(Person6->everyone()) {
 print $person->firstname(), " ", $person->lastname(), "\n";
}

$ perl classattr2.pl
In the beginning: 0
Population now: 1
Population now: 2

People we know:
Galileo Galilei
Albert Einstein
$

Normally, you won’t want to do something like this. It’s not the class’s business to know what’s

being done with the objects it creates. Since you know that in these examples you’ll be putting all the
Person6 objects into a database, it’s reasonable to get the whole database with a single method.
However, this isn’t a general solution—people may not use the objects they create, or may use them in
multiple databases, or in other ways you haven’t thought of. Let the user keep copies of the object
themselves.

Privatizing Your Methods
The things you did with your class attributes in new() in the two preceding examples were a bit against
the OO philosophy: you directly accessed the class variables, instead of going through an accessor
method. If another class wants to inherit from this class, it has to make sure it too carries a package
variable of the same name in the same way.

CHAPTER 13 ■ OBJECT-ORIENTED PERL

308

What you usually do in these situations is to put all the class–specific parts into a separate method,
and use that method internally in the class. Inheriting classes can then replace these private methods
with their own implementations. To mark a method as private, for use only inside the class, it’s
customary to begin the method’s name with an underscore. Perl doesn’t treat these methods any
differently—the underscore means nothing significant to Perl but is purely for human consumption.
Think of it as a “keep out” sign to mark the method as for use by authorized personnel only!

Typically, the constructor is one place where you’ll want to do a private setup, so let’s convert the
code for adding to the @Everyone array into a private method in the class Person7:

package Person7;
Person7.pm

Class for storing data about a person

use strict;

my @Everyone;

Constructor and initialization
sub new {
 my $class = shift;
 my $self = {@_};
 bless $self, $class;
 $self->_init();
 return $self;
}

sub _init {
 my $self = shift;
 push @Everyone, $self;
}

Object accessor methods
sub address { $_[0]->{address } = $_[1] if defined $_[1]; $_[0]->{address } }
sub lastname { $_[0]->{lastname } = $_[1] if defined $_[1]; $_[0]->{lastname } }
sub firstname { $_[0]->{firstname} = $_[1] if defined $_[1]; $_[0]->{firstname} }
sub phone_no { $_[0]->{phone_no } = $_[1] if defined $_[1]; $_[0]->{phone_no } }
sub occupation {
 $_[0]->{occupation}=$_[1] if defined $_[1]; $_[0]->{occupation}
}

Class accessor methods
sub headcount { return scalar @Everyone; }
sub everyone { return @Everyone; }

1;

What you have now is pretty much the standard constructor. Let’s go over it again:

sub new {

CHAPTER 13 ■ OBJECT-ORIENTED PERL

309

First, you retrieve your class name, which will be passed to you automatically when you do Class-
>new(), by using shift as a shorthand for shift @_.

my $class = shift;

Then you put the rest of the arguments, which should be a hash with which to initialize the
attributes, into a new hash reference.

my $self = {@_};

Now you bless() the reference to tell it which class it belongs to, making it an object.

bless $self, $class;

Do any further initialization you need by calling the object’s private _init() method. Note that due
to inheritance, this private method may be provided by a subclass.

$self->_init();

Finally, return the constructed object.

 return $self;
}

Utility Methods
Your methods have mainly been accessors so far, but that’s by no means all you can do with objects.
Since methods are essentially subroutines, you can do almost anything you want inside them. Let’s now
add some methods that do things—utility methods:

package Person8;
Person8.pm

Class for storing data about a person

use strict;

my @Everyone;

Constructor and initialization
#...

Object accessor methods
#...

Class accessor methods
#...

Utility methods
sub fullname {
 my $self = shift;
 return $self->firstname() . " " . $self->lastname();
}

CHAPTER 13 ■ OBJECT-ORIENTED PERL

310

sub printletter {
 my $self = shift;
 my $name = $self->fullname();
 my $address = $self->address();
 my $firstname = $self->firstname();
 my $body = shift;
 my @date = (localtime)[3,4,5];
 $date[1]++; # Months start at 0! Add one to humanize!
 $date[2]+=1900; # Add 1900 to get current year.
 my $date = join "/", @date;

 print <<EOF;
$name
$address

$date

Dear $firstname,

$body

Yours faithfully,
EOF
 return $self;
}

1;

This adds two methods, fullname() and printletter(). fullname() returns the full name of the

person the object describes. printletter() prints out a letter with a body supplied by the user. Notice
that to print the name in the text of the letter, printletter() itself calls fullname(). It’s good practice for
utility methods to return the object if they have nothing else to return. This allows you to string together
calls by using the returned object as the object for the next method call, like this:
$object->one()->two()->three();.

Here’s an example of those utility methods in use:

#!/usr/bin/perl
utility1.pl

use warnings;
use strict;
use Person8;

my $object = Person8->new(
 lastname => "Galilei",
 firstname => "Galileo",
 address => "9.81 Pisa Apts.",
 occupation => "bombadier"
);
$object->printletter("You owe me money. Please pay it.");

CHAPTER 13 ■ OBJECT-ORIENTED PERL

311

This produces our friendly demand:

$ perl utility1.pl
Galileo Galilei
9.81 Pisa Apts.

4/5/2004

Dear Galileo,

You owe me money. Please pay it.

Yours faithfully,
$

Death of an Object
You’ve seen how you construct an object, and we’ve made ourselves a constructor method that returns a
blessed reference. What happens at the end of the story, when an object needs to be destructed? Object
destruction happens in two possible cases, either implicitly or explicitly:

• Explicit destruction happens when no reference to the object remains. Just like
when dealing with ordinary references, you may have more than one reference to
the data in existence. As you saw in Chapter 11, some of these references may be
lexical variables, which go out of scope. As they do, the reference count of the data
is decreased. Once it falls to zero, the data is removed from the system.

• Implicit destruction happens at the end of your program. At that point, all the data
in your program is released.

When Perl needs to release data and destroy an object, whether implicitly or explicitly, it calls the
method DESTROY() on the object. Unlike other utility methods, this doesn’t mean Perl is telling you what
to do. Perl will destroy the data for you, but this is your chance to clean up anything else you have used,
close any files you opened, shut down any network sockets, and so on.

If Perl doesn’t find a method called DESTROY(), it won’t complain but will silently release the object’s
data.

The Finished Class
Let’s put all the pieces of the class together and examine the class all the way through:

package Person8;

First of all, let’s reiterate that a class is nothing more than a package. You start off the class by
starting a new package. As usual, you want to make sure this package is at least as pedantic as the one
that called it, so you turn on strictness:

CHAPTER 13 ■ OBJECT-ORIENTED PERL

312

Class for storing data about a person

use strict;

Next, you declare your class attributes. These are ordinary package variables.

Class attributes
my @Everyone;

You provide a nice and general constructor, which calls a private method to do its private

initialization. You take the class name, create a reference, and bless() it:

Constructor and initialization
sub new {
 my $class = shift;
 my $self = {@_};
 bless $self, $class;
 $self->_init();
 return $self;
}

Your private method just adds a copy of the current object to a general pool. In more elaborate

classes, you’d want to check that the user’s input makes sense and get it into the format you want, open
any external files you need, and so on.

sub _init {
 my $self = shift;
 push @Everyone, $self;
}

Next, you provide very simple object accessor methods to allow you to get at the keys of the hash

reference where your data is stored. These are the only interfaces you provide to the data inside the
object, and everything goes through them:

Object accessor methods
sub address { $_[0]->{address } = $_[1] if defined $_[1]; $_[0]->{address } }
sub lastname { $_[0]->{lastname } = $_[1] if defined $_[1]; $_[0]->{lastname } }
sub firstname { $_[0]->{firstname} = $_[1] if defined $_[1]; $_[0]->{firstname} }
sub phone_no { $_[0]->{phone_no } = $_[1] if defined $_[1]; $_[0]->{phone_no } }
sub occupation {
 $_[0]->{occupation}=$_[1] if defined $_[1]; $_[0]->{occupation}
}

Accessing class attributes is even easier, since these are simple variables.

Class accessor methods
sub headcount { return scalar @Everyone; }
sub everyone { return @Everyone; }

CHAPTER 13 ■ OBJECT-ORIENTED PERL

313

Finally, you have a couple of utility methods, which perform actions on the data in the object. The
fullname() method uses accessors to get at the first name and last name stored in the object, and returns
a string with them separated by a space.

Utility methods
sub fullname {
 my $self = shift;
 return $self->firstname() . " " . $self->lastname();
}

Second, printletter() is a slightly more elaborate method that prints out a letter to the referenced

person. It uses the address and first name accessors plus the fullname() method to get the object’s
details. Notice that in both methods you’re using my $self = shift to grab the object as it was passed to
you.

sub printletter {
 my $self = shift;
 my $name = $self->fullname();
 my $address = $self->address();
 my $firstname = $self->firstname();
 my $body = shift;
 my @date = (localtime)[3,4,5];
 $date[1]++; # Months start at 0! Add one to humanize!
 $date[2]+=1900; # Add 1900 to get current year.
 my $date = join "/", @date;

 print <<EOF;
$name
$address

$date

Dear $firstname,

$body

Yours faithfully,
EOF
}

1;

Do You Need OO?
Now that you have discussed the basics of OO in Perl, how do you decide whether or not you should be
using a procedural or an OO style in your programs? Here are five guidelines to help you decide.

CHAPTER 13 ■ OBJECT-ORIENTED PERL

314

Are Your Subroutines Tasks?
If your program naturally involves a series of unconnected tasks, you probably want to be using a
procedural style. If your application is data-driven, then you’re dealing primarily with data structures
rather than tasks, so consider using an OO style instead.

Do You Need Persistence?
After your task is completed, do you need somewhere to store data that you want to receive next time
you process that data? If so, you may find it easier to use an OO interface. If each call to a subroutine is
completely independent of the others, you can use a procedural interface.

For instance, if you’re producing a cross–reference table, your cross–reference subroutine will need
to know whether or not the thing it’s processing has turned up before or not. Since an object packages
up everything you know about a piece of data, it’s easy to deal with that directly.

Do You Need Sessions?
Do you want to process several different chunks of data with the same subroutines? For instance, if you
have two different “sessions” that signify database connections or network connections, you may find it
easier to package up each session into an object.

Do You Need Speed?
Object-oriented programs generally run slower than equally well–written procedural programs that do
the same job, because packaging things into objects and passing objects around is expensive both in
terms of time spent and resources used. If you can get away with not using object orientation, you
probably should.

Do You Want the User to Be Unaware of the Object?
If you want to hide the details of how a thing behaves, OO is a good approach. You can design the object
to store the data in any way that you choose, then provide the user with an easy–to-use interface. The
user can then use the object without having to know how the information about the object is
implemented.

Are You Still Unsure?
Unless you know you need an OO model, it’s probably better to use a procedural model to help
maintenance and readability. If you’re still unsure, go with an ordinary procedural model.

CHAPTER 13 ■ OBJECT-ORIENTED PERL

315

Summary
Object-oriented programming is another way of thinking about programming. You approach it in terms
of data and the relationships between pieces of data, which we call objects. These objects belong to
divisions called classes—these have properties (attributes) and can perform actions (methods).

Perl makes object–oriented programming neat and simple:

• An object is a reference that has been blessed into a class.

• A class is an ordinary Perl package.

• A method is an ordinary Perl subroutine that has the class name or object
reference magically passed in.

From these three basic principles, you can start to build data–driven applications.

Exercises
1. Using Person8.pm, write a program to do the following:

 Create three different Person8 objects.

 Print the number of Person8 objects.

 Loop through the Person8 objects and print a letter to each one.

C H A P T E R 14

■ ■ ■

317

Introduction to CGI

The Common Gateway Interface (CGI) is a method used by web servers to run external programs
(known as CGI scripts or CGI programs), typically to generate web content dynamically. Whenever a web
page queries a database, or a user submits a form, a CGI script is usually called upon to do the work.

CGI is simply a specification that defines a standard way for web servers to run such scripts and for
those programs to send their results back to the server. The job of the CGI script is to read information
that the browser has sent (via the server), and to generate some form of valid response, usually (but not
always) visible content. Once the script has completed its task, it finishes and exits.

Perl is a very popular language for this purpose, thanks to its unrivalled text-handling abilities, easy
scripting, and relative speed. It is probably true to say that a large part of Perl’s current popularity is due
to its success in dynamic web-page generation. Moreover, there is an excellent module available for Perl
that makes writing CGI scripts easy—CGI.pm.

■ Note Usually, when we refer to Perl modules we do not include the .pm. For instance, when we talk about the
DBI module, we never call it “the DBI.pm module.” However, with the CGI module, we call it “the CGI.pm module.”
We are not sure why this is, perhaps it is historical—once upon a time we CGI programmers used a set of
functions in a file called cgi.pl. Since that file was named cgi.pl, we suppose everyone called the new object-
oriented version CGI.pm. Or it could be an effort to distinguish the CGI.pm module from the CGI protocol. Whatever
the reason, we will continue the tradition of calling it CGI.pm.

In this chapter we will discuss the basics of CGI, how data is sent to CGI scripts, how the server
responds to the client, and how to make all of this simple using CGI.pm.

This chapter is not meant to be an exhaustive study of writing CGI scripts with Perl, but rather an
introduction with enough information to get you started, and to suggest where to look for more
information. The best place to find out all you need to know is by picking up a copy of the Official Guide
to Programming with CGI.pm by Lincoln Stein (Wiley & Sons, 1998). Of course, the online
documentation for CGI.pm is available by executing perldoc CGI. The most important thing to remember
about CGI with Perl—it’s fun! So let’s get started.

CHAPTER 14■ INTRODUCTION TO CGI

318

We Need a Web Server
The first step in writing CGI programs is to obtain access to a web server. While there are several options,
such as obtaining an account with an ISP that provides a web server, a common solution is to install a
web server on your machine and work locally.

The web server we suggest is the most popular server used on the Internet: Apache. As this chapter
is being written (January 2010), Apache has about 47% of the web server market (you can see a
comparison of all the different servers at http://news.netcraft.com/archives/web_server_survey.html).
Apache is popular because it is a solid program, extensible, highly securable, and open source (meaning
free!).

To download Apache, visit http://httpd.apache.org/ and click the download link. As of January
2010, the latest version is 2.2.14. Follow the installation directions at
http://httpd.apache.org/docs/2.2/install.html to install it on your machine. Or, better yet, get a copy
of Pro Apache, Third Edition by Peter Wainwright (Apress, 2004) for an excellent guide that will help you
get Apache up and running in no time.

A note to Unix users: chances are, Apache is installed and running on your machine—yet another
reason to like Unix! To verify that your machine is ready to serve a web client, point your browser to
http://127.0.0.1/, a special address that points to the machine you’re sitting in front of. This address is
also known as localhost. If you see a response page that tells you Apache is up and running, you are
ready to go! You can replace 127.0.0.1 with localhost, as you’ll see in the examples in this chapter,
which all use http://localhost/. But beware—if your machine does not have a web server running, you
are likely to end up at http://www.localhost.com/.

■ Note If you install Apache on Windows, it is possible that the path to Perl used in the examples:
#! /usr/bin/perl
will have to be changed to the location of Perl on the Windows installation, such as:
#!c:/Perl/bin/perl.exe

Creating a CGI Directory
Once Apache is installed, you need to create and configure a CGI directory. To learn how to do this, see
http://httpd.apache.org/docs/2.2/howto/cgi.html. The location of this directory will vary from
machine to machine, but common Unix locations are /usr/local/apache/cgi-bin/ and
/home/httpd/cgi-bin/.

Writing CGI Programs
Now that Apache is installed and the CGI directory is configured, let’s write some CGI scripts. We often
say that writing CGI in Perl is so easy—if you can print “hello, world!” you are halfway there! We will
illustrate this with our first example.

All the examples in this chapter should be placed in the directory that /cgi-bin/ points to. So, for
instance, if you write a program named foo.pl and place it in your CGI bin directory, you can execute
the program by loading this URL in your browser:

http://news.netcraft.com/archives/web_server_survey.html
http://httpd.apache.org
http://httpd.apache.org/docs/2.2/install.html
http://127.0.0.1
http://localhost
http://www.localhost.com
http://httpd.apache.org/docs/2.2/howto/cgi.html

CHAPTER 14■ INTRODUCTION TO CGI

319

http://localhost/cgi-bin/foo.pl

 “hello, world!” in CGI
Here’s our first example—a program that sends “hello, world!”, our Zen-like greeting, to the browser:

#!/usr/bin/perl
hello.pl

use warnings;
use strict;

print "Content-Type: text/plain\n";
print "\n";
print "hello, world!\n";

If this program is located in the CGI directory and has the proper executable permissions (755 in the

Unix world), we can view the result by loading http://localhost/cgi-bin/hello.pl in our browser, as
shown here:

After the first familiar lines in this program, we see the statement

print "Content-Type: text/plain\n";

This print statement is very important—it contains the content type of the information that follows.
This is sent to the client in what is known as the HTTP header—the mechanism the server uses to tell the
client what kind of information it is sending. In this case, we are telling the client that what follows is to
be treated as plain text, and to deal with it appropriately, which is normally by displaying it in fixed-
width font.

http://localhost/cgi-bin/foo.pl
http://localhost/cgi-bin/hello.pl

CHAPTER 14■ INTRODUCTION TO CGI

320

The next line is:

print "\n";

prints a blank line. Printing a blank line is very important. The header must be followed by a blank line
so the client knows that the header is complete and that the following information is the body, the main
part of the information. If you forget to print the blank line, you will generally get a “Server Error”
message on the browser.

Then we print the message we want the world to see:

print "hello, world!\n";

What to Do If Things Go Wrong
What if you don’t see the warm, friendly greeting in your browser? There are many things that can go
wrong with CGI scripts; here are some things you can do to troubleshoot the problem:

• The file must be located in the directory in which Apache is looking. Double-check
that it is, and if not, move it to the appropriate place and try again.

• Make sure the permissions on the file are set so that the server can execute the
program. In Unix, the permissions are usually set to 755, so chmod the file and test
it again.

• The script might have a syntax error (hey, it happens!). An easy way to check this is
to execute the program on the command line using the -c option:

$ perl -c hello.pl
hello.pl syntax OK

This should tell you that the syntax is OK. If not, fix the problem and try again.

That blank line is really important—if you forgot to print it, a server error is the normal
result. A simple way to make sure the all-important-gotta-have-it blank line is there: simply
execute the program from the command line:

$ perl hello.pl
Content-Type: text/plain

hello, world!

Do you see the blank line? If not, print that extra \n.

• Make sure that content type is something expected. For this program, it should be
text/plain.

• It is possible that Apache is not configured properly. This is harder to fix—you will
have to read through the Apache configuration documents to troubleshoot this
problem.

• When all else fails, have a look in Apache’s error log file (normally found in a
directory named logs in the file named error_log). Apache reports errors to this
file—it might tell you why the script failed.

CHAPTER 14■ INTRODUCTION TO CGI

321

If you still can’t figure out the problem, head over to www.perlmonks.org. This is a great site where
Perl programmers can ask other Perl programmers questions and expect polite, useful answers.
Emphasis on polite. There are many places on the web where a question can result in a fiery response—
Perl Monks is not one of them.

The CGI Environment
When the web server executes a CGI program, it makes available to that program a considerable amount
of information through exported environment variables. To grab the environment variables in a Perl
program, we look in %ENV. Here is a program that uses %ENV to show several important facts the server
knows about the client requesting the CGI program:

#!/usr/bin/perl
env1.pl

use warnings;
use strict;

print "Content-Type: text/plain\n";
print "\n";

print "your hostname is: $ENV{REMOTE_ADDR}\n";
print "your outbound port is: $ENV{REMOTE_PORT}\n";
print "your browser is: $ENV{HTTP_USER_AGENT}\n";

If you point your browser to http://localhost/cgi-bin/env1.pl, you’d see

As this program shows, the server knows the Internet address of the client, the port number of the

machine the client is coming from, and the web browser it is using.

http://www.perlmonks.org
http://localhost/cgi-bin/env1.pl

CHAPTER 14■ INTRODUCTION TO CGI

322

You may be wondering what other environment variables the server has available. This program will
show you:

#!/usr/bin/perl
env2.pl

use warnings;
use strict;

print "Content-Type: text/plain\n";
print "\n";

foreach (sort keys %ENV) {
 print "$_ = $ENV{$_}\n";
}

Loading http://localhost/cgi-bin/env2.pl will display all of our environment variables as shown

in this example:

http://localhost/cgi-bin/env2.pl

CHAPTER 14■ INTRODUCTION TO CGI

323

Generating HTML
Our CGI programs will not normally print plain text. Instead, they will print HTML to the client and the
browser will render that text appropriately. To tell the client that our CGI program is generating HTML is
as simple as changing the Content-Type:

#!/usr/bin/perl
env3.pl

use warnings;
use strict;

print "Content-Type: text/html\n";
print "\n";

foreach (sort keys %ENV) {
 print "$_ = $ENV{$_}";
 print "
";
}

Changing the content type to text/html tells the browser that what follows is HTML and to handle the
text as it would any other HTML. Note that when printing the environment variables and their values, we
don’t use newline characters since the browser treats them in HTML as simple whitespace characters.
To get the line break we want, we must print the break tag
.

If we look at http://localhost/cgi-bin/env3.pl, we’ll see something like

http://localhost/cgi-bin/env3.pl

CHAPTER 14■ INTRODUCTION TO CGI

324

Since we can generate arbitrary HTML, let’s make this output a bit more readable by putting it in a

table:

#!/usr/bin/perl
env4.pl

use warnings;
use strict;

print "Content-Type: text/html\n";
print "\n";

print "<table border=\"1\">";
foreach (sort keys %ENV) {
 print "<tr><th>$_</th><td>$ENV{$_}</td>";
}
print "</table>";

Ah, that’s better (look at http://localhost/cgi-bin/env4.pl):

http://localhost/cgi-bin/env4.pl):

CHAPTER 14■ INTRODUCTION TO CGI

325

Take a moment to view the output from the program that the browser sees and renders by viewing

the source: select the View menu in the browser and then pull down to Source (it might be Page->
Source or View-> Source, depending on your browser). This pops up a window that contains the HTML
source code, which is the output from the CGI script. Handy tool, this View -> Source—the web is what it
is in large part due to the fact that you can see the HTML that others create. This is an excellent way to
learn what it takes to code good web pages.

Introducing CGI.pm
As you can see from these examples, writing CGI programs is straightforward: generate standard output
with print() function calls, remembering to start the output with the Content-Type line followed by a
blank line (don’t forget the blank line!), followed by whatever you want to display in the browser: text,
HTML, etc.

We will now introduce one of the most popular Perl modules (perhaps the most popular module):
CGI.pm. This module, written by Lincoln Stein, makes it easy to generate HTML and process form data by
providing some helpful methods. (We’ll talk about form data a little later in this chapter.)

Let’s jump right into this module by looking at an example. First, we’ll present a program to
generate a web page by printing plain HTML without the use of CGI.pm, then we’ll see exactly the same
web page generated by a program using CGI.pm.

Here is the non-CGI.pm version:

CHAPTER 14■ INTRODUCTION TO CGI

326

#!/usr/bin/perl
html1.pl

this program generates HTML without the use
of CGI.pm

use warnings;
use strict;

print "Content-Type: text/html\n";
print "\n";
print "<html>\n";
print "<head>\n";
print "<title>Generating HTML</title>\n";
print "</head>\n";
print "<body>\n";
print "<h1>Now Is:</h1>\n";
print "<p>\n";
print "The current date and time is: ";

print scalar(localtime);

print "</p>\n";
print "<hr />\n";
print "<h1>Our CGI Scripts</h1>\n";
print "<p>\n";
print "By the time this chapter is over, you will write all of \n";
print "these scripts:\n";

print "
$_\n" foreach <*.pl>;

print "</p>\n";
print "<h1>Go Here For Excellent Books!</h1>\n";
print "<p>\n";
print "Check out the \n";
print "Apress Home Page.\n";
print "</p>\n";
print "</body>\n";
print "</html>\n";

Most of this code simply prints HTML. Let’s look at two lines in detail. First:

print scalar(localtime);

http://www.apress.com/\

CHAPTER 14■ INTRODUCTION TO CGI

327

The localtime() function called in scalar context returns a nice, readable string showing the current
date/time stamp on the computer.1 This program prints that string to standard output, which will be
displayed in the body of the browser. The next line of interest is

print "
$_\n" foreach <*.pl>;

This code uses the expression modifier form of the foreach command, looping through all files that
match the glob pattern *.pl. Each of the files is printed with a preceding
 tag.

Loading this page (http://localhost/cgi-bin/html1.pl) into your browser should display
something like the following:

As you can see, all those print() functions with the double quotes, newlines, and semicolons make
the code a bit hard to read. This program might be better written with a here-document as shown in this
example (html2.pl):

#!/usr/bin/perl
html2.pl

1 In list context, localtime() returns something similar but different. See perldoc -f localtime for all the
useful information that localtime() returns.

http://localhost/cgi-bin/html1.pl

CHAPTER 14■ INTRODUCTION TO CGI

328

this program generates HTML without the use
of CGI.pm - this time with a here document

use warnings;
use strict;

print "Content-Type: text/html\n";
print "\n";

print <<EOHTML;
<html>
<head>
<title>Generating HTML</title>
</head>
<body>
<h1>Now Is:</h1>
<p>
The current date and time is:
EOHTML

print scalar(localtime);

print <<EOHTML;
</p>
<hr />
<h1>Our CGI Scripts</h1>
<p>
By the time this chapter is over, you will write all of
these scripts:
EOHTML

print "
$_\n" foreach <*.pl>;

print <<EOHTML;
</p>
<h1>Go Here For Excellent Books!</h1>
<p>
Check out the
Apress Home Page.
</p>
</body>
</html>
EOHTML

Notice that here-documents are useful when printing static text. However, when we print

scalar(localtime) and loop through all the .pl files, we need to make sure those executable statements
are outside of a here-document.

This content can be generated by using CGI.pm and its methods. First, let’s look at the program
(cgi1.pl) and then we’ll step through the code line by line:

http://www.apress.com

CHAPTER 14■ INTRODUCTION TO CGI

329

#!/usr/bin/perl
cgi1.pl

this program generates HTML with the use
of CGI.pm

use warnings;
use strict;
use CGI ':standard';

print header();
print start_html('Generating HTML');
print h1('Now Is:');
print p('The current date and time is:', scalar(localtime));
print hr();
print h1('Our CGI Scripts');

my $file_listing = '';
$file_listing .= "
$_" foreach <*.pl>;

print p('By the time this chapter is over, you will write all of',
 'these scripts:', $file_listing);
print h1('Go Here For Excellent Books!');
print p('Check out the',
 a({ href => 'http://www.apress.com/' }, 'Apress Home Page'));
print end_html();

The first part of this program is like any other Perl program: the shebang followed by optional
comments followed by use warnings; and use strict;. Then comes the line that makes the use of
CGI.pm possible:

use CGI ':standard';

This statement looks slightly different from other use statements we have seen since it adds
':standard'. This string tells CGI.pm that we want to use the methods in the module without having to
call them using an object. In other words, if we use the :standard mode, we can call the header() method
like this:

print header();

instead of like this:

my $q = new CGI;
print $q->header();

The header() method is very convenient—it prints the header (clever name, eh?). In other words, it
generates the text

Content-Type: text/html

Yep, there is a blank line after the Content-Type line; the header() generates that all-important,
gotta-have-it blank line, so we don’t have to remember to do it. Next comes a method that generates the
start of the HTML:

http://www.apress.com

CHAPTER 14■ INTRODUCTION TO CGI

330

print start_html('Generating HTML');

which generates this HTML:

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head><title>Generating HTML</title>
</head><body>

Notice that the argument to start_html() is placed between the <title>...</title> tags.

Next up is

print h1('Now Is:');

This method generates the <h1>...</h1> tags with the argument to the method placed between the
open and close tags.

<h1>Now Is:</h1>

Then we see

print p('The current date and time is:', scalar(localtime));

Like h1(),p() generates <p>...</p> with the argument(s) between the tags. This method has two
arguments—a string and a function call separated by a comma. CGI.pm is smart enough to take these two
arguments and concatenate the string and the function return value, automatically adding a space to
separate them. This method, therefore, generates something that resembles

<p>The current date and time is: Fri Jan 18 19:02:48 2010</p>

The next method:

print hr();

generates <hr />. This is similar to h1() and p().

A couple of lines later we see this code:

my $file_listing = '';
$file_listing .= "
$_" foreach <*.pl>;

print p('By the time this chapter is over, you will write all of',
 'these scripts:', $file_listing);

The code creates a variable $file_listing that will include all the Perl scripts in the current
directory. For each Perl file, we append a
 tag along with the file’s name to $file_listing. That
variable is then included as an argument to p(). This generates the text:

<p>By the time this chapter is over, you will write all of these scripts:

cgi1.pl
env1.pl
env2.pl
env3.pl
env4.pl
hello1.pl
html1.pl
html2.pl</p>

Next is a call to p() that includes a call to a():

print p('Check out the',
 a({ href => 'http://www.apress.com/' }, 'Apress Home Page'));

http://www.w3.org/1999/xhtml
http://www.apress.com

CHAPTER 14■ INTRODUCTION TO CGI

331

This method generates

<p>Check out the Apress Home Page</p>

We will discuss the first argument to the a() method in detail a little later in this chapter. Finally, we
see

print end_html();

This method generates the ending HTML tags:

</body></html>

Conventional Style of Calling Methods
The cgi1.pl program has several different print() function calls—one for each method that produces
HTML. That’s way too many. The conventional way of using CGI.pm is to combine all the prints into one
as shown in cgi2.pl:

#!/usr/bin/perl
cgi2.pl

this program generates HTML with the use
of CGI.pm using the conventional style

use warnings;
use strict;
use CGI ':standard';

print
 header(),
 start_html('Generating HTML'),
 h1('Now Is:'),
 p('The current date and time is:', scalar(localtime)),
 hr(),
 h1('Our CGI Scripts');

my $file_listing = '';
$file_listing .= "
$_" foreach <*.pl>;

print
 p('By the time this chapter is over, you will write all of',
 'these scripts:', $file_listing),
 h1('Go Here For Excellent Books!'),
 p('Check out the',
 a({ href => 'http://www.apress.com/' }, 'Apress Home Page')),
 end_html();

This generates exactly the same output as the other examples we’ve seen. Note how all the methods
are arguments to a single print() function call. Many programmers consider this to be more readable
than having a separate print() for each method call.

http://www.apress.com
http://www.apress.com

CHAPTER 14■ INTRODUCTION TO CGI

332

■ Note A word of caution: if the h1() method, for instance, is followed by a semicolon instead of a comma (a very
common mistake!):

 h1('Here Is An Example Web Page');

 that semicolon would terminate the print(), so the following methods (p(), hr(), and so forth) would not be
printed. It is our experience that when only a portion of the web page is displayed, it is often the result of a
misplaced semicolon.

CGI.pm Methods
Many CGI.pm methods generate a number of tags, while others generate only one.

Methods That Generate Several Tags
We have seen methods that generate more than one tag, such as start_html(), which generates
<html><head><title>...</title></head><body>. This method is used to generate all the HTML that is at
the top of the HTML content. We invoked the method with one argument, and that argument was
understood by the method to be the title of the web page and was placed between the
<title>...</title> tags.

Named Parameters
There is another way to invoke the method—using named parameters. Since start_html() generates the
<body> tag, we would like to be able to easily set certain attributes of that tag when we invoke the
method. Here is an example that gives our web page a title, background color, and text color:

 start_html(
 -title => 'Generating HTML',
 -bgcolor => '#cccccc',
 -text => '#520063'
),

This sets the title to “Generating HTML”, the background color to a nice gray, “#cccccc”, and the
text color to an excellent shade of purple, “#520063.”2

2 How excellent? Go to www.northwestern.edu to see.

http://www.northwestern.edu

CHAPTER 14■ INTRODUCTION TO CGI

333

There are many different named parameters available to start_html(); check out perldoc CGI for a
complete list.

Methods That Generate One Tag
We saw several methods that generate just one tag, including h1(), p(), and hr(). These methods
generate the tags that use their name: h1() produces <h1>...</h1>, p() produces <p>...</p>, and hr()
generates <hr />.

There are many other such methods—more or less one for each tag available in HTML. Examples
include i() (<i>...</i>), b() (...), li() (...), and many others.

Providing Attributes
Many of the tags have optional attributes. You can provide these attributes to the methods by passing an
anonymous hash containing the attributes and their values as the first argument to the method. For
instance, let’s say we want the <h1> tag to be aligned in the center of the page; to do this, we would call
the h1() method like this

h1({ align => 'center'}, 'Here Is An Example Web Page'),

which generates

<h1 align="center">Here Is An Example Web Page</h1>

Providing more than one attribute is simply a matter of specifying more than one key/value pair to
the anonymous hash. This method invocation generates an <hr /> tag with a pixel size of 10 and no
shading set:

hr({ size => 10, noshade => 1 }),

which generates

<hr size="10" noshade="1" />

Now we can see the magic involved in the a() method we saw earlier.

a({ href => 'http://www.apress.com/' }, 'Apress Home Page'),

generates

Apress Home Page

Processing Form Data
CGI scripts don’t merely generate HTML—they usually do some back-end, server-side processing. One
major type of processing is gathering information from users by grabbing the data posted to a form. A
form is a collection of widgets that allow the user to input data, select options, click buttons, and so forth.
Most of us have filled out forms on the web when we’ve purchased books from an online store, filled out
a survey, or created an account at www.slashdot.org.

http://www.apress.com
http://www.apress.com
http://www.slashdot.org

CHAPTER 14■ INTRODUCTION TO CGI

334

Forms are created by surrounding one or more widgets with the <form> and </form> tags. The most
important attribute to the <form> tag is the action, or CGI script, that is to be invoked when the user
clicks the submit button.

Here is a simple form (form.html) that lets a user to enter her name and age:

<html>
 <head>
 <title>A Simple Form</title>
 </head>
 <body>
 <h1>Please Enter Your Name</h1>
 <form action="http://localhost/cgi-bin/form.pl">
 First name: <input type="text" name="firstname">

 Last name: <input type="text" name="lastname">

 <input type="submit">
 </form>
 </body>
</html>

This generates the form shown here after a user enters some text:

http://localhost/cgi-bin/form.pl

CHAPTER 14■ INTRODUCTION TO CGI

335

The CGI program associated with this form, as indicated by the action= attribute, is
http://localhost/cgi-bin/form.pl. This program obtains the information the user entered into the
form and processes it. The key to this program is the important param() method.

The param() Method
You can invoke the param() method with one argument, or with none. When invoked with no argument,
param()returns a list of all the parameters in the form. A parameter is simply the name of the widget
indicated by the name= attribute. In our form.html, there are two named widgets: firstname and lastname.
The param() method invoked with no arguments would produce the list

('firstname', 'lastname')

When invoked with one argument, the param() method returns the value of that parameter. So, if
the user enters his first name as Frodo, then param('firstname') returns Frodo. If he enters his first
name as Bilbo, the method returns Bilbo. Likewise, param('lastname') returns the last name entered by
the user into the form.

And now the code to process the form (form.pl):

#!/usr/bin/perl
form.pl

use warnings;
use strict;
use CGI ':standard';

my @params = param();
my $firstname = param('firstname') || 'you have no first name!';
my $lastname = param('lastname') || 'you have no last name!';

print
 header(),
 start_html(
 -title => 'Welcome!',
 -text => '#520063'
),
 h1("Hello, $firstname $lastname!"),
 end_html();

This program produces this result, assuming the user enters “Frodo” for the first name and
“Baggins” for the last name:

http://localhost/cgi-bin/form.pl

CHAPTER 14■ INTRODUCTION TO CGI

336

The important lines in this program are

my @params = param();
my $firstname = param('firstname') || 'you have no first name!';
my $lastname = param('lastname') || 'you have no last name!';

The first statement assigns to @params a list of all the parameters, or widget names, in the form that
was posted. In our example, they are 'firstname' and 'lastname'. This line is followed by two
assignments that are very similar. The first assigns $firstname the value that was entered into the
firstname field in the form. The || operator ensures that the variable $firstname has a meaningful
value—if the user does not enter a name, param('firstname') will be the empty string, which is false, so
the || will evaluate the operand on the right and assign 'you have no first name!' to $firstname. A
similar assignment is made to $lastname, and the print() function prints the two variables.

Dynamic CGI
The example we just looked at had an HTML file that was separate from the CGI program. The HTML
was stored in form.html and the CGI program was stored in form.pl. This is known as a static CGI
program—where the CGI program is loaded as a result of the action= in a static HTML file.

Sometimes keeping the HTML and CGI program in separate files creates a situation that is difficult
to manage. It may be better to have the HTML generated by the same program that processes the posted
data, that is, a dynamic CGI program.

A dynamic CGI program does one of two things:

• If there is posted data, process the data.

• If there is no posted data, build the form.

CHAPTER 14■ INTRODUCTION TO CGI

337

Recall that the param() method returns a list of all the parameters posted by the form. If this list is

empty, the CGI program was invoked with no parameters. Thus, a dynamic CGI program has this
general form:

if (param()) {
 # the program was invoked with parameters,
 # process the posted data
} else {
 # the program was invoked with no parameters,
 # build the form
}

Here is an example of a dynamic CGI program that implements the scenario we saw previously: it
either builds a form that accepts a user’s name and age, or it processes the form data (dynamic.pl):

#!/usr/bin/perl
dynamic.pl

use warnings;
use strict;
use CGI ':standard';

if (param()) {
 # we have parameters, so process the form data

 my @params = param();
 my $firstname = param('firstname') || 'you have no first name!';
 my $lastname = param('lastname') || 'you have no last name!';

 print
 header(),
 start_html(
 -title => 'Welcome!',
 -text => '#520063'
),
 h1("Hello, $firstname $lastname!"),
 end_html();

} else {
 # no parameters, so build the form

 print
 header(),
 start_html('A Simple Form'),
 h1('Please Enter Your Name'),
 start_form(),
 'First name: ',
 textfield(-name => 'firstname'),
 br(),
 'Last name: ',

CHAPTER 14■ INTRODUCTION TO CGI

338

 textfield(-name => 'lastname'),
 br(),
 submit(),
 end_form(),
 end_html();
}

This program generates the same form as form.html and it processes the form the same as form.pl.
Note that it builds the form using CGI.pm methods. There are a few methods worth noting. First, the
start_form() method builds the beginning <form> tag. The action can be specified with { -action =>
'/cgi-bin/whatever.pl' }, but we’re using the default action, which is the same CGI program that built
the form. The form is eventually closed with end_form().

The text form widget is created with textfield(-name => 'lastname'). The textfield() method is
one of many methods used to create form widgets. Basically, there’s a method for each different type of
widget available. For a complete list, see perldoc CGI.

Let’s Play Chess!
It’s time to roll all the topics we have discussed into a single example. This CGI script will be a web
implementation of the chess program, chess.pl, we discussed in Chapter 11. Since we are playing chess
on the Web, we’ll call this CGI script webchess.pl. This program will illustrate that with just a little bit of
additional code, we can web-enable a program we wrote for the shell.

Before we look at the program, it is important to note that a CGI script is stateless. That means the
CGI script itself can’t remember anything about the most recent execution, or state, of the script. As a
result, we somehow have to remember the recent state of the chessboard so we can pick up the game
from the last move the user made. This is different from the chess.pl program—each move was made
within the same execution of the program, so chess.pl always knew the state from move to move.

We will keep track of the state of the chessboard in a file named webchess.dat. This file will be an
eight-line file, with each line being one row on the board. Each row will have its eight pieces, colon
separated. Here is the initial state of the chessboard:

WR:WN:WB:WQ:WK:WB:WN:WR
WP:WP:WP:WP:WP:WP:WP:WP
:::::::
:::::::
:::::::
:::::::
BP:BP:BP:BP:BP:BP:BP:BP
BR:BN:BB:BQ:BK:BB:BN:BR

We can see that the first, second, seventh, and eighth rows have pieces. The middle four rows are
empty—if two colons are right next to one another, that square does not have a piece on it.

If webchess.pl is going to keep its state in webchess.dat, we need some code to read from the data
file and to write to the data file. These operations are placed within two functions:
read_in_chessboard(), which will, you guessed it, read in the chessboard. The equally well-named
function write_out_chessboard() will write it out. Let’s jump into the code:

#!/usr/bin/perl
webchess.pl

CHAPTER 14■ INTRODUCTION TO CGI

339

use warnings;
use strict;
use CGI ':standard';

my @chessboard = read_in_chessboard();

grab the posted data, if any:
my $start = param('start') || '';
my $end = param('end') || '';

my $startx = '';
my $starty = '';
my $endx = '';
my $endy = '';

time to make our move!
if ($start and $end) {
 if ($start =~ /^\s*([1-8]),([1-8])/) {
 $startx = $1 - 1;
 $starty = $2 - 1;
 }
 if ($end =~ /^\s*([1-8]),([1-8])/) {
 $endx = $1 - 1;
 $endy = $2 - 1;
 }
 if ($startx ne '' and $starty ne '' and
 $endx ne '' and $endy ne '') {
 # put starting square on ending square
 $chessboard[$endy][$endx] = $chessboard[$starty][$startx];
 # remove from old square
 undef $chessboard[$starty][$startx];

 # we have changed the chessboard, so write
 # back out
 write_out_chessboard(@chessboard);
 }
}

time to print to the browser
print
 header(),
 start_html('Web Chess'),
 h1('Web Chess');

start the table that will contain the board
print '<table>';

loop, printing each piece
foreach my $i (reverse (0..7)) { # row
 print '<tr>';
 foreach my $j (0..7) { # column

CHAPTER 14■ INTRODUCTION TO CGI

340

 print '<td>';
 if (defined $chessboard[$i][$j]) {
 print $chessboard[$i][$j];
 } elsif (($i % 2) == ($j % 2)) {
 print "..";
 }
 print '</td>';
 }
 print "</tr>"; # end of row
}

we are done with our table
print '</table>';

print a form for the next move
and end the html
print
 hr(),
 start_form(),
 'Starting square [x,y]:',
 textfield(-name => 'start'),
 br(),
 'Ending square [x,y]:',
 textfield(-name => 'end'),
 br(),
 submit(),
 end_form(),
 end_html();

function definitions ###

sub read_in_chessboard {
 # this function opens webchess.dat and builds
 # the chessboard
 # an example line from webchess.dat is:
 # BR:BN:BB:BQ:BK:BB:BN:BR

 # this is our local copy of the chessboard,
 # we'll return this later
 my @cb;
 open FH, '<', 'webchess.dat';

 foreach my $i (0..7) {
 my $line = <FH>;
 # split the line on a : or any whitespace
 # which will take care of the \n at the
 # end of the line
 my @linearray = split /[:\s]/, $line;
 # $#linearray should be 7!
 foreach my $j (0..$#linearray) {
 # if the text between the colons is

CHAPTER 14■ INTRODUCTION TO CGI

341

 # not the empty string, we have a piece,
 # so assign it to our chessboard
 if ($linearray[$j]) {
 $cb[$i][$j] = $linearray[$j];
 }
 }
 }
 close FH;

 # time to return back the chessboard
 return @cb;
}

sub write_out_chessboard {
 # the chessboard is passed in as our
 # argument
 my @cb = @_;

 # write the chessboard to webchess.dat
 # so that each piece on a row is colon separated
 open FH, '>', 'webchess.dat';
 foreach my $i (0..7) {
 foreach my $j (0..7) {
 if (defined $chessboard[$i][$j]) {
 print FH $chessboard[$i][$j];
 }
 if ($j < 7) {
 print FH ':';
 }
 }
 print FH "\n";
 }
}

Wow, that’s a lot of code. Let’s look at it a chunk at a time. We’ll start at the bottom of the program
with the functions to read from and write to the input data file. First, the relevant code in
read_in_chessboard():

this is our local copy of the chessboard,
 # we'll return this later
 my @cb;
 open FH, '<', 'webchess.dat';

 foreach my $i (0..7) {
 my $line = <FH>;
 # split the line on a : or any whitespace
 # which will take care of the \n at the
 # end of the line
 my @linearray = split /[:\s]/, $line;
 # $#linearray should be 7!
 foreach my $j (0..$#linearray) {

CHAPTER 14■ INTRODUCTION TO CGI

342

 # if the text between the colons is
 # not the empty string, we have a piece,
 # so assign it to our chessboard
 if ($linearray[$j]) {
 $cb[$i][$j] = $linearray[$j];
 }
 }
 }
 close FH;

 # time to return back the chessboard
return @cb;

This function creates a my() variable @cb that will hold a local copy of the chessboard. The input data

file is opened in read mode. Then, for the eight rows on the board, a line of text is read from the input file
and split on either the colon or whitespace character. split()breaks the line into eight parts—the pieces
for that row. Then we loop for each square in the row. If there is a piece in the square, the square on the
chessboard is assigned the piece. (No piece in the square is represented by the empty string, which is
false, so any true value indicates a piece is present.) After each square in each row is assigned, the input
file is closed and the chessboard is returned to whoever called it.

Now let’s look at the function that writes the chessboard back out to the file:

sub write_out_chessboard {
 # the chessboard is passed in as our
 # argument
 my @cb = @_;

 # write the chessboard to webchess.dat
 # so that each piece on a row is colon separated
 open FH, '>', 'webchess.dat';
 foreach my $i (0..7) {
 foreach my $j (0..7) {
 if (defined $chessboard[$i][$j]) {
 print FH $chessboard[$i][$j];
 }
 if ($j < 7) {
 print FH ':';
 }
 }
 print FH "\n";
 }
}

This function opens the data file in write mode. It then loops eight times, once for each row. For
each row, it loops eight times, once for each square in the row. If there is a defined value, it is printed
(the value will be either the piece, such as “WB”, or the empty string). A colon is printed after all but the
last square on the row. After the row is printed, we end the line with \n. When all rows are printed, the
output file is closed.

Now, let’s look at the main code in the program. First, we create a variable to hold the chessboard by
calling the function that reads from the data file:

CHAPTER 14■ INTRODUCTION TO CGI

343

my @chessboard = read_in_chessboard();

Then, we read in the posted data, if there is any. This data will be the starting and ending
coordinates (such as 4,2). Note that if there is no posted data for either the start or end square, the
variable will be assigned the empty string:

grab the posted data, if any:
my $start = param('start') || '';
my $end = param('end') || '';

Now that $start and $end have the starting and ending square if they were entered, let’s break those
up into the X and Y coordinates. First we check to make sure we have both a starting and ending pair,
otherwise there’s no reason to do this work:

my $startx = '';
my $starty = '';
my $endx = '';
my $endy = '';

time to make our move!
if ($start and $end) {
 if ($start =~ /^\s*([1-8]),([1-8])/) {
 $startx = $1 - 1;
 $starty = $2 - 1;
 }
 if ($end =~ /^\s*([1-8]),([1-8])/) {
 $endx = $1 - 1;
 $endy = $2 - 1;
 }
 if ($startx ne '' and $starty ne '' and
 $endx ne '' and $endy ne '') {
 # put starting square on ending square
 $chessboard[$endy][$endx] = $chessboard[$starty][$startx];
 # remove from old square
 undef $chessboard[$starty][$startx];

 # we have changed the chessboard, so write
 # back out
 write_out_chessboard(@chessboard);
 }
}

Note that we are doing several checks here. First, we check to see if the user entered any
coordinates. Then, we make sure we have good values for X and Y for both the starting and ending
square. Only when we determine that we have to make a move do we modify the chessboard. And only
when the chessboard has been modified do we write the chessboard back out to the data file.

Next, we start printing to the browser, starting with the initial HTML stuff:

time to print to the browser
print
 header(),

CHAPTER 14■ INTRODUCTION TO CGI

344

 start_html('Web Chess'),
h1('Web Chess');

Then we print the chessboard. It is almost identical to the code that prints the chessboard in
chess.pl except that we are going to put the board into an HTML table, so we have to print the necessary
table tags:

start the table that will contain the board
print '<table>';

loop, printing each piece
foreach my $i (reverse (0..7)) { # row
 print '<tr>';
 foreach my $j (0..7) { # column
 print '<td>';
 if (defined $chessboard[$i][$j]) {
 print $chessboard[$i][$j];
 } elsif (($i % 2) == ($j % 2)) {
 print "..";
 }
 print '</td>';
 }
 print "</tr>"; # end of row
}

we are done with out table
print '</table>';

First, we start the table. For each row, we print <tr> to start the row. For each column in the row, we
wrap either the chessboard piece, "..", or nothing at all, inside <td>..</td>. We end the row with </tr>
then finalize the table with </table>.

Next we see the code to print the form to read in the user’s move:

print a form for the next move
and end the html
print
 hr(),
 start_form(),
 'Starting square [x,y]:',
 textfield(-name => 'start'),
 br(),
 'Ending square [x,y]:',
 textfield(-name => 'end'),
 br(),
 submit(),
 end_form(),
 end_html();

Whew! That was a long program. Enough talk—now it is time to play chess. Load
http://localhost/cgi-bin/webchess.pl into your browser and you will see

http://localhost/cgi-bin/webchess.pl

CHAPTER 14■ INTRODUCTION TO CGI

345

Let’s make an opening move: the white pawn from 4,2 to 4,4:

CHAPTER 14■ INTRODUCTION TO CGI

346

Improvements We Can Make
There are many enhancements we can make to this script—beyond the fact that we haven’t built in any
chess rules. This program is a good start for a chess game, but we should consider the following:

• More error checking: Error checking is good, especially for web programs—the last
thing we want is a user to come to our web site, run a program, and have that
program fail. One thing we should do is handle any failure to open the file when
we read or write. This requires more than simply using the die() function because
the output from die() goes to standard error, which does not end up in the
browser. There are several ways to address this including a helpful module called
CGI::Carp.

• The design of the web page: This page is OK, for geeks. But for consumption by the
general public, we would want a slick, professional-looking site that is easy to
navigate and pleasant to look at. This requires the help of a graphic artist and web
designer—more art than HTML. To illustrate the difference, check out
www.bware.org—that is a web page designed by a geek. Compare that to
www.onsight.com, which was developed by a graphic artist.

http://www.bware.org%E2%80%94that
http://www.onsight.com

CHAPTER 14■ INTRODUCTION TO CGI

347

• An even more appealing design: Speaking of an appealing web page, it would be
nice to replace those letters with pictures. Wouldn’t it be cool if instead of seeing
BP we saw a picture of a black pawn? Again, we need an artist.

• Every user gets his own game: As this program is written, there is only one game. If
you are playing, and you make a move, your friend can run the program and see
the result. He can then make a move, which you will see the next time you run the
program. Then another friend can come along, run the program, and you and
your initial friend would see this new move. Not such a great thing. To resolve this
we could add authentication with a username/password and store a unique copy
of the game state for each user.

Hopefully this example has shown how easy it is to write CGI scripts in Perl. By adding a little bit of

code, we were able to transform a program that ran in a shell to a program that has a web interface. Not
only was it easy, it was fun! Speaking of fun, it’s time to play some chess . . .

What We Did Not Talk About
Since this chapter can’t possibly cover everything there is to know about CGI programming, there are
many things we did not talk about. Some of these are very important topics you should take time to learn
about, eventually:

• Web security: Running a web server that is connected to the Internet allows
anyone who can reach your site to run your program. If the program is insecure,
anyone who wants to can execute it, possibly doing nasty things. There are
individuals in the world who like to try to break CGI scripts and crack into
machines—that is the reality of the world we live in.3 The good news is that it is
possible to write secure CGI programs applying just a few techniques.

• HTML: This chapter is not a primer on HTML, so we did not discuss all the
available tags and form widgets. There are many books and web sites devoted to
HTML—read one and learn all about it. Then check out Official Guide to
Programming with CGI.pm written by Lincoln Stein, the author of CGI.pm, to see
how to use CGI.pm to build any HTML you want.

• Other features: There are many other aspects of CGI and HTTP we didn’t cover,
including JavaScript, SSL, authentication, and mod_perl.

3 These individuals are often called hackers, but that is a misuse of the term. A hacker is one who creates a
useful program, usually quickly, in an artistic way; it’s what many of us programmers aspire to be. A person
who breaks into other people’s computers is called a cracker.

CHAPTER 14■ INTRODUCTION TO CGI

348

• Database access: Most modern web sites contain content that is generated
dynamically by reading the data out of a database. In order to achieve any level of
sophistication with Perl and databases, we need the excellent Perl module DBI.
And that is the topic of the next chapter.

• Templating: Most modern web sites have a consistent look and feel. In other
words, every page in the site has the same general layout—perhaps the same logo
and links along the top, the same navigation links on the left side of the page, and
the same information on the bottom of the page. If this were hard-coded for each
page, then changing the look and feel of the web site would require a change to
every single CGI script on the site. The solution is to create a template—a general
layout for every page. Each CGI script uses the template for the basic look of the
page, then adds the specific content for its purpose. Then, when the look and feel
changes (as it probably will, eventually), the changes are made in one place—the
template—and they are immediately applied to every CGI program. Perl offers
many ways to template your web site including HTML::Template, the Template
Toolkit, Mason, and Embperl.

Summary
CGI is the cornerstone of programming for the web, and Perl is the language to use to write CGI
programs. In this chapter we discussed the CGI protocol, CGI.pm, forms, and form data. We saw that CGI
programs are essentially a bunch of print() functions that generate standard output. We learned that
CGI.pm can help make our lives easier by providing helpful methods to generate this output.

Form data can be processed using the param() function. Dynamic CGI scripts generate the form
and/or process the form, depending on whether they were invoked with or without form data.

You now know enough about CGI programming to get started. So get going! And happy hacking.

Exercises
1. Write a CGI script that asks users to enter their names, addresses, and phone numbers.

Respond to the users with a nice message thanking them for filling out the form, and

append their information to a file.

2. Make the changes to webchess.pl that were made to chess.pl in the exercises at the end of

Chapter 11.

C H A P T E R 15

■ ■ ■

349

Perl and DBI

Now it’s time to talk about the Database Independent (DBI) module, one of Perl’s best. The module
provides an easy-to-use API that’s portable across operating systems and databases. It allows you to
connect to a wide variety of databases—Oracle, Sybase, Informix, MySQL, mSQL, Postgress, ODBC, and
many others—and even to files with comma-separated values. Using this module you can access and
administer databases from your Perl programs, combining the power of the language with the
usefulness of databases.

This chapter introduces Structured Query Language (SQL) and discusses the most common ways to
use it. Following that, we’ll look at DBI and the related DBD (Database Driver) modules, then write some
Perl code to access and update a MySQL database. Finally, we’ll take our newfound knowledge, connect
it with what we learned in the previous chapter, and create a simple web interface to a database by
combining Perl, DBI, and CGI. It should be fun, so let’s get to it.

SQL, (pronounced ess-que-el by some and sequel by others, but we’ll use the first) is a language that
allows programmers to access relational databases—collections of information tables whose contents
are interconnected. It’s relatively easy to use—compared with Perl, SQL is a snap. We’ll talk about some
of the most common SQL queries—statements that interrogate a database—and in doing so we’ll
describe the language to the point that learning the remaining details requires nothing more than
referring to an SQL book or web site. But we’re getting ahead of ourselves. Before we can talk about SQL
we need to discuss relational databases.

Introduction to Relational Databases
There are two important facts about relational databases. First, the content is persistent—it continues to
exist after the execution of the program that accesses or modifies it. Second, relational databases, unlike
files on a disk, allow concurrent access and updates from multiple users and processes. The database
server makes sure changes are made to the data in a safe way.

As noted earlier, a relational database consists of tables. These hold data in rows, each of which is
composed of fields. A field contains one basic piece of information, and from row to row, fields in the
same position hold the same type of data. There are a lot of buzzwords here, so let’s describe each of
these with an example.

CHAPTER 15 ■ PERL AND DBI

350

Let’s say we want to keep some information about our favorite musicians: their names, phone
numbers, and the instruments that they play. We might start by creating a list of the musicians like this:1

Name phone

Roger Waters 555-1212

Geddy Lee 555-2323

Marshall Mathers III 555-3434

Thom Yorke 555-4545

Lenny Kravitz 555-5656

Mike Diamond 555-6767

This list shows six lines of data—the rows in relational-database-speak. When we take these and

place them together into one collection of data, we have a table. Normally, for each row we want to
create a unique identifier—the primary key, or simply the key (just in case we have two different
Marshall Mathers III in our table). We can access the MMIII we’re interested in using this unique value.
We’ll name the field column containing the key player_id and name the other fields, as well:

player_id name phone

1 Roger Waters 555-1212

2 Geddy Lee 555-2323

3 Marshall Mathers III 555-3434

4 Thom Yorke 555-4545

5 Lenny Kravitz 555-5656

6 Mike Diamond 555-6767

So now we’ve created a table (let’s name it musicians) with three fields—player_id, name, and phone—
and six rows of information.

1 These aren’t their real phone numbers. Sorry about that.

CHAPTER 15 ■ PERL AND DBI

351

Normally when we build a database, we spread the information among several tables that connect
to one another in some way, usually by the key, but you can use another field. To illustrate, let’s expand
our information about musicians to describe what each plays and some important facts about those
instruments.

We could add each instrument to the row in the musicians table, but we’d duplicate a lot of
information. For instance, three of our performers play guitar, so any guitar data we provide we’d have
to be repeat for each musician. Also, several of our musicians have multiple talents—for instance, Thom
Yorke plays guitar and keyboards and sings. If we enter data for each instrument Thom plays, our table
will become big and difficult to work with. Instead, let’s create another table, named instruments, to
hold this information:

inst_id instrument type difficulty

1 Bagpipes reed 9

2 Oboe reed 9

3 Violin string 7

4 Harp string 8

5 Trumpet brass 5

6 Bugle brass 6

7 keyboards keys 1

8 Timpani percussion 4

9 Drums percussion 0

10 Piccolo flute 5

11 Guitar string 4

12 Bass string 3

13 conductor for-show-only 0

14 Vocals vocal 5

Now that we’ve defined some instruments along with our opinion of their associated degrees of
difficulty, we somehow need to map the instrument information to the information stored in the
musicians table. In other words, we need to indicate how the instruments and the musicians tables
relate. We could simply add the inst_id value to the musicians table like this:

CHAPTER 15 ■ PERL AND DBI

352

player_id Name phone inst_id

1 Roger Waters 555-1212 12

and so on, but remember that many of our musicians play more than one instrument. We would then
need two rows for Roger Waters (he sings, too) and three rows for Thom Yorke. Repeating their
information is a waste of memory and makes the database too complex. Instead, let’s create another
table that will connect these two tables. We will call it what_they_play and it will have two fields:
player_id and inst_id.

player_id inst_id

1 11

1 14

2 12

2 14

3 14

4 7

4 11

4 14

5 11

5 14

6 9

To read all this information and make sense of how it relates, we would first look in the musicians table
and find the musician we want—for instance Geddy Lee. We find his player_id, 2, and use that value to
look in the what_they_play table. In that table, two entries for his player_id map to two instr_ids: 12
and 14. Taking those two values, we use them as the keys in the instruments table and find that Geddy
Lee plays the bass and sings for his band.2

2 www.rush.com

http://www.rush.com

CHAPTER 15 ■ PERL AND DBI

353

This example illustrates that the musicians relates to instruments through the what_they_play table.
Breaking the data into separate tables allow us to list the information that we need only once and is often
more logical than keeping all the information in a single table—this is called normalization.

We Need an SQL Server—MySQL
Before we can show examples of SQL, we need an SQL server. There are many available—some cost
money, some cost a lot of money, and some are free. One of the best, most powerful SQL servers, MySQL
(www.mysql.com), is free. Given that we like free, we’ll choose it. MySQL is open source, available for many
different operating systems, and relatively easy to install and administer. It’s also well documented
(http://dev.mysql.com/doc/refman/5.1/en/) and there are many good books available including the
excellent The Definitive Guide to MySQL 5, Third Edition by Michael Kofler (Apress, 2005). MySQL is an
excellent choice for small, medium, and large databases. And did we mention it’s free?

If you’re a Linux user, chances are MySQL is already installed on your system. Do a quick check to
see. If not, you’ll find installation instructions at the MySQL web site
(http://dev.mysql.com/doc/refman/5.1/en/installing.html). Since it’s so well documented there, we
won’t repeat that information here.

Testing the MySQL Server
Just to be sure all is well, let’s enter a few MySQL commands at the shell prompt to see if everything is
working. The following examples assume that the MySQL root user (not to be confused with the Unix
root user) has been given a password. This is a very good idea if your server will be available over the
network—you don’t want a pesky cracker logging in and carrying out destructive actions such as
modifying or deleting data. Let’s say root’s password is “RootDown” .3

First, let’s show all the tables set up on the server:

$ mysqlshow -u root -p
Enter password: RootDown
+------------------+
| Databases |
+------------------+
| mysql |
| test |
+------------------+

3 This is a very bad password for many reasons, the least of which is that it is published in this book. For
information on creating good passwords, see Hacking Linux Exposed, Second Edition, Brian Hatch, Osborne
Press (2002).

http://www.mysql.com
http://dev.mysql.com/doc/refman/5.1/en
http://dev.mysql.com/doc/refman/5.1/en/installing.html

CHAPTER 15 ■ PERL AND DBI

354

Next, we’ll list all the tables in the database named mysql:

$ mysqlshow -u root -p mysql
Enter password: RootDown
Database: mysql
+--------------+
| Tables |
+--------------+
| columns_priv |
| db |
| func |
| host |
| tables_priv |
| user |
+--------------+

If these commands work (as they have in our example), then all’s well with the MySQL server. Now we
can create a database to store our musician information.

Creating a Database
After starting the MySQL server, we need to issue a MySQL command to create the database, which we’ll
call musicians_db. First, let’s log into the MySQL command line interface (CLI):

$ mysql -u root -p
Enter password: RootDown

A few lines of information about the server will print, then we’ll see the MySQL prompt:

mysql>

CHAPTER 15 ■ PERL AND DBI

355

SQL CASE SENSITIVITY

Before we start working with the MySQL database, we should take a moment to talk about the case-
sensitivity rules for SQL commands. Unlike Perl commands, those in SQL are not normally case sensitive.
But in parts of the command that refer to what the programmer has created, case counts. Though this may
sound confusing, it’s quite simple. For example, later in this chapter we’ll be working with the table we
named musicians, which has a field we called name. To show the names in the table we could write an
SQL command that would look like this:

SELECT name FROM musicians;

The two uppercase terms are the SQL parts. We created the lowercase words. Since the SQL parts of the
command aren’t case sensitive, we could have written:

select name from musicians;

But name and musicians, which we created, are case sensitive. So this command would not work:

SELECT NAME FROM MUSICIANS;

For clarity, in this chapter we’ll use all uppercase for SQL terms in a command and all lowercase for terms
we’ve defined.

CHAPTER 15 ■ PERL AND DBI

356

The CREATE DATABASE Command
Creating a database is as simple as executing the CREATE DATABASE command:

mysql> CREATE DATABASE musicians_db;
Query OK, 1 row affected (0.01 sec)

The USE Command
Next we need to tell MySQL that we want to work with the newly created database. We do so with the USE
command.

mysql> USE musicians_db;
Database changed

The CREATE TABLE Command
Now we have to create some tables. The first is musicians. Recall that it has three fields: player_id, an
integer that serves as the key; name, a character string; and phone, a character string. The command to
create a table is, not surprisingly, CREATE TABLE.4 The syntax is:

CREATE TABLE table_name (field_definition, field_definition...)

The value of table_name is up to us—in our example we’re using musicians. The field definitions
comprising the comma-separated list within the parentheses follows this basic form:

field_name type

We make up the field names and choose the value for type from one of many different that MySQL
supports, including INT. We specifiy strings in the form CHAR(n) where n is the number of characters in
the string. Here’s the command to create our table of musicians:

mysql> CREATE TABLE musicians (
 -> player_id INT PRIMARY KEY,
 -> name CHAR(50),
 -> phone CHAR(12));

The player_id field will hold an integer that will serve as the key into the table. Both name and phone are
strings.

4 This MySQL stuff is easy!

CHAPTER 15 ■ PERL AND DBI

357

■ Note There are many different SQL data types and ways in which we can create keys. For all the information on
this subject, see the online documentation or the recommended textbook.

The DESCRIBE Command
The DESCRIBE command displays all the fields in the table and their types. This will show us if the
musicians table was created correctly:

mysql> DESCRIBE musicians;
+-----------+----------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+----------+------+-----+---------+-------+
player_id	int(11)		PRI	0	
name	char(50)	YES		NULL	
phone	char(12)	YES		NULL	
+-----------+----------+------+-----+---------+-------+
3 rows in set (0.00 sec)

From the output of the DESCRIBE command, everything looks okay, so let’s create the other two tables—
what_they_play and instruments:

mysql> CREATE TABLE what_they_play (
 -> player_id INT,
 -> inst_id INT);
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE instruments (
 -> inst_id INT PRIMARY KEY,
 -> instrument CHAR(40),
 -> type CHAR(20),
 -> difficulty INT);
Query OK, 0 rows affected (0.00 sec)

Creating a Non-root User with the GRANT Command
It’s important to create a non-root user to access the database—performing normal non-admin MySQL
activities as the root user is a bad idea for security reasons, so let’s create a user that will be allowed to
perform basic queries on the musicians_db database:

CHAPTER 15 ■ PERL AND DBI

358

mysql> GRANT SELECT, INSERT, UPDATE, DELETE
 -> ON musicians_db.*
 -> TO musicfan@localhost
 -> IDENTIFIED BY "CrimsonKing";
Query OK, 0 rows affected (0.03 sec)

You can trust us that this creates a user who’s named musicfan, has the password CrimsonKing5, and can
select, insert, update, and delete records from the database. Or you can check out the documentation
and read all about the GRANT command.
We’re going to start inserting data into our musicians_db database, so we need to log out as the root user
and log back in as the newly created musicfan user:

mysql> quit
Bye
$ mysql -u musicfan -p
Enter password: CrimsonKing

mysql>

The INSERT Command
Now we’re ready to put data into the table. We’ll use the SQL command INSERT. The basic syntax is

INSERT INTO table_name (field1, field2, ...) VALUES (value1, value2, ...);

First the command line identifies the table into which MySQL should insert a row of data. The comma-
separated list in the first set of parentheses indicates the fields that will get values. The parenthetical list
after the term VALUES specifies the fields’ values in their respective order. Roger Waters is deserving of a
row of data in our table, so let’s insert him, as key 1, along with his phone number:

mysql> INSERT INTO musicians (player_id, name, phone)
 -> VALUES (1, "Roger Waters", "555-1212");
Query OK, 1 row affected (0.01 sec)

The SELECT command can tell us if the row was inserted correctly (more on SELECT later).

mysql> SELECT * FROM musicians;
+-----------+--------------+----------+
| player_id | name | phone |
+-----------+--------------+----------+
| 1 | Roger Waters | 555-1212 |
+-----------+--------------+----------+
1 row in set (0.00 sec)

5 Another bad password, but a snippet of lyrics from a great song.

CHAPTER 15 ■ PERL AND DBI

359

Let’s enter the other musicians:

mysql> INSERT INTO musicians (player_id, name, phone)
-> VALUES (2, "Geddy Lee", "555-2323");
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO musicians (player_id, name, phone)
-> VALUES (3, "Marshall Mathers III", "555-3434");
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO musicians (player_id, name, phone)
-> VALUES (4, "Thom Yorke", "555-4545");
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO musicians (player_id, name, phone)
-> VALUES (5, "Lenny Kravitz", "555-5656");
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO musicians (player_id, name, phone)
-> VALUES (6, "Mike Diamond", "555-6767");
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM musicians;
+-----------+----------------------+----------+
| player_id | name | phone |
+-----------+----------------------+----------+
1	Roger Waters	555-1212
2	Geddy Lee	555-2323
3	Marshall Mathers III	555-3434
4	Thom Yorke	555-4545
5	Lenny Kravitz	555-5656
6	Mike Diamond	555-6767
+-----------+----------------------+----------+
6 rows in set (0.00 sec)

Excellent! Our musicians are entered. Now for the commands to enter data into the other two tables.
Read along and follow the bouncing ball.

mysql> INSERT INTO what_they_play (player_id, inst_id)
 -> VALUES (1, 11), (1, 14), (2, 12), (2, 14), (3, 14),
 -> (4, 7), (4, 11), (4, 14), (5, 11), (5, 14), (6, 9);
Query OK, 11 rows affected (0.00 sec)
Records: 11 Duplicates: 0 Warnings: 0

CHAPTER 15 ■ PERL AND DBI

360

mysql> SELECT * FROM what_they_play;
+-----------+---------+
| player_id | inst_id |
+-----------+---------+
1	11
1	14
2	12
2	14
3	14
4	7
4	11
4	14
5	11
5	14
6	9
+-----------+---------+

11 rows in set (0.00 sec)

Notice that we used an alternative form of INSERT to add multiple rows, in this case all of them, at the
same time.

mysql> INSERT INTO instruments
 -> (inst_id, instrument, type, difficulty)
 -> VALUES
 -> (1, "bagpipes", "reed", 9),
 -> (2, "oboe", "reed", 9),
 -> (3, "violin", "string", 7),
 -> (4, "harp", "string", 8),
 -> (5, "trumpet", "brass", 5),
 -> (6, "bugle", "brass", 6),
 -> (7, "keyboards", "keys", 1),
 -> (8, "timpani", "percussion", 4),
 -> (9, "drums", "percussion", 0),
 -> (10, "piccolo", "flute", 5),
 -> (11, "guitar", "string", 4),
 -> (12, "bass", "string", 3),
 -> (13, "conductor", "for-show-only", 0),
 -> (14, "vocals", "vocal", 5);
Query OK, 14 rows affected (0.00 sec)
Records: 14 Duplicates: 0 Warnings: 0

CHAPTER 15 ■ PERL AND DBI

361

mysql> SELECT * FROM instruments;
+---------+------------+---------------+------------+
| inst_id | instrument | type | difficulty |
+---------+------------+---------------+------------+
1	bagpipes	reed	9
2	oboe	reed	9
3	violin	string	7
4	harp	string	8
5	trumpet	brass	5
6	bugle	brass	6
7	keyboards	keys	1
8	timpani	percussion	4
9	drums	percussion	0
10	piccolo	flute	5
11	guitar	string	4
12	bass	string	3
13	conductor	for-show-only	0
14	vocals	vocal	5
+---------+------------+---------------+------------+

14 rows in set (0.00 sec)

Now that we’ve created the three tables and populated them, let’s talk about how we pull information
out of the database.

The SELECT Command
SELECT allows us to query the database. The command examines the table we indicate and returns the
information that matches the criteria we specify. We’ve seen several SELECT commands in this form:

mysql> SELECT * FROM musicians;
+-----------+----------------------+----------+
| player_id | name | phone |
+-----------+----------------------+----------+
1	Roger Waters	555-1212
2	Geddy Lee	555-2323
3	Marshall Mathers III	555-3434
4	Thom Yorke	555-4545
5	Lenny Kravitz	555-5656
6	Mike Diamond	555-6767
+-----------+----------------------+----------+

6 rows in set (0.00 sec)

By using the * (star) character, we’ve had SELECT ask for all fields and their contents ordered as they
appear in the table. To ask for specific fields, we list their names in comma-separated format instead of
using the star.

CHAPTER 15 ■ PERL AND DBI

362

mysql> SELECT player_id, name, phone FROM musicians;
+-----------+----------------------+----------+
| player_id | name | phone |
+-----------+----------------------+----------+
1	Roger Waters	555-1212
2	Geddy Lee	555-2323
3	Marshall Mathers III	555-3434
4	Thom Yorke	555-4545
5	Lenny Kravitz	555-5656
6	Mike Diamond	555-6767
+-----------+----------------------+----------+
6 rows in set (0.01 sec)

We can select the fields in any order.

mysql> SELECT name, phone, player_id FROM musicians;
+----------------------+----------+-----------+
| name | phone | player_id |
+----------------------+----------+-----------+
Roger Waters	555-1212	1
Geddy Lee	555-2323	2
Marshall Mathers III	555-3434	3
Thom Yorke	555-4545	4
Lenny Kravitz	555-5656	5
Mike Diamond	555-6767	6
+----------------------+----------+-----------+
6 rows in set (0.00 sec)

We can also request specific fields—we don’t need to show all of them.

mysql> SELECT name, phone FROM musicians;
+----------------------+----------+
| name | phone |
+----------------------+----------+
Roger Waters	555-1212
Geddy Lee	555-2323
Marshall Mathers III	555-3434
Thom Yorke	555-4545
Lenny Kravitz	555-5656
Mike Diamond	555-6767
+----------------------+----------+
6 rows in set (0.00 sec)

The WHERE Clause
So far, all of our SELECT queries have shown every row in the table, but often we want only specific rows.
The WHERE clause tells SELECT to show only those that match our criteria. For instance, to see all the
information in the musicians table for the musician with player_id 1 we could enter the command as:

CHAPTER 15 ■ PERL AND DBI

363

mysql> SELECT * FROM musicians WHERE player_id = 1;
+-----------+--------------+----------+
| player_id | name | phone |
+-----------+--------------+----------+
| 1 | Roger Waters | 555-1212 |
+-----------+--------------+----------+
1 row in set (0.00 sec)

Or how about selecting only the name of player_id 1:

mysql> SELECT name FROM musicians WHERE player_id = 1;
+--------------+
| name |
+--------------+
| Roger Waters |
+--------------+
1 row in set (0.00 sec)

And here’s how to grab Thom Yorke’s phone number:

mysql> SELECT phone FROM musicians WHERE name = "Thom Yorke";
+----------+
| phone |
+----------+
| 555-4545 |
+----------+

1 row in set (0.00 sec)

Maybe we’re interested in all instruments with difficulties of 8 or higher:

mysql> SELECT instrument FROM instruments WHERE difficulty >= 8;
+------------+
| instrument |
+------------+
| bagpipes |
| oboe |
| harp |
+------------+

3 rows in set (0.00 sec)

or the easiest instruments:

CHAPTER 15 ■ PERL AND DBI

364

mysql> SELECT instrument FROM instruments WHERE difficulty <= 2;
+------------+
| instrument |
+------------+
| keyboards |
| drums |
| conductor |
+------------+

3 rows in set (0.00 sec)

We can also combine conditions. Here’s a SELECT query that returns all the percussion instruments with
a difficulty less than or equal to 3:

mysql> SELECT instrument FROM instruments
 -> WHERE type = "percussion" AND difficulty <= 3;
+------------+
| instrument |
+------------+
| drums |
+------------+

1 row in set (0.00 sec)

■ Note There are many different ways to use the WHERE clause in SELECT. See the docs for all the details.

We could go on forever describing all the different uses of WHERE, but let’s move on to sorting the output.

The ORDER BY Clause
The ORDER BY clause allows us to specify which field to sort the output by. Let’s say we want to show all
the musician information, but with the output in name order:

mysql> SELECT * FROM musicians ORDER BY name;
+-----------+----------------------+----------+
| player_id | name | phone |
+-----------+----------------------+----------+
2	Geddy Lee	555-2323
5	Lenny Kravitz	555-5656
3	Marshall Mathers III	555-3434
6	Mike Diamond	555-6767
1	Roger Waters	555-1212
4	Thom Yorke	555-4545
+-----------+----------------------+----------+

6 rows in set (0.00 sec)

CHAPTER 15 ■ PERL AND DBI

365

How about showing all the instruments and their difficulty from easiest to hardest:

mysql> SELECT instrument, difficulty FROM instruments ORDER BY difficulty;
+------------+------------+
| instrument | difficulty |
+------------+------------+
drums	0
conductor	0
keyboards	1
bass	3
timpani	4
guitar	4
trumpet	5
piccolo	5
vocals	5
bugle	6
violin	7
harp	8
bagpipes	9
oboe	9
+------------+------------+

14 rows in set (0.00 sec)

Let’s list all the percussion instruments sorted by their names:

mysql> SELECT instrument FROM instruments
 -> WHERE type = "percussion"
 -> ORDER BY instrument;
+------------+
| instrument |
+------------+
| drums |
| timpani |
+------------+

2 rows in set (0.00 sec)

Can we reverse that order? Yup. Use the qualifier DESC:

mysql> SELECT instrument FROM instruments
 -> WHERE type = "percussion"
 -> ORDER BY instrument DESC;
+------------+
| instrument |
+------------+
| timpani |
| drums |
+------------+

2 rows in set (0.00 sec)

CHAPTER 15 ■ PERL AND DBI

366

More Complicated SELECTs
Sometimes selecting information from our database requires criteria that are a bit more complicated
than what we’ve seen so far. Here’s one example: Satisfying the purpose for which we really created our
database—finding out what instrument a particular musician plays.

If, for instance, we want to know what Lenny Kravitz plays, we’d first have to find out his player_id
by querying the musicians table. Next, using that player_id, we’d select the inst_ids from
what_they_play. Then, for each of those inst_ids, we’d get the instrument name from the instruments
table.

First, let’s get Lenny Kravitz’s player_id:

mysql> SELECT player_id FROM musicians WHERE name = "Lenny Kravitz";
+-----------+
| player_id |
+-----------+
| 5 |
+-----------+

1 row in set (0.00 sec)

Now, using his player_id of 5, we’ll grab the inst_ids from what_they_play:

mysql> SELECT inst_id FROM what_they_play WHERE player_id = 5;
+---------+
| inst_id |
+---------+
| 11 |
| 14 |
+---------+

2 rows in set (0.00 sec)

Finally, for each of the inst_ids, 11 and 14, we query the instruments table for the instrument:

mysql> SELECT instrument FROM instruments WHERE inst_id = 11;
+------------+
| instrument |
+------------+
| guitar |
+------------+
1 row in set (0.02 sec)

mysql> SELECT instrument FROM instruments WHERE inst_id = 14;
+------------+
| instrument |
+------------+
| vocals |
+------------+

1 row in set (0.00 sec)

CHAPTER 15 ■ PERL AND DBI

367

Whew, that seems like a lot of work just to find the instruments Lenny plays, especially since we created
this database to do just that kind of query. There must be a better way, right? There is.6 We can do all four
in one query using a table join.

Table Joins
MySQL is a relational database, so we must be able to query information from more than one table. By
joining the tables, we can use more than one in a single SELECT. The best way to illustrate table joins is
with an example. Take the complex SELECT, in the previous section, that let us discover the instruments
Lenny Kravitz plays. We could have stated the request like this: “Give me all the instrument names in the
instruments table that match the inst_ids in the what_they_play table for the player_id in the musicians
table associated with the musician with the name Lenny Kravitz.”

In SQL, we can indicate the instrument field in the instruments table using the table and field names
in the format instruments.instrument. Likewise, inst_id in what_they_play is what_they_play.inst_id.
With these fully qualified names we can use player_id in both the musicians table and the
what_they_play table—SQL can keep them separate because we’ll call them musicians.player_id and
what_they_play.player_id.

Given that bit of good news, let’s translate the query we just stated in English into SQL:

mysql> SELECT instrument
 -> FROM instruments
 -> JOIN what_they_play ON instruments.inst_id = what_they_play.inst_id
 -> JOIN musicians ON what_they_play.player_id = musicians.player_id
 -> WHERE musicians.name = "Lenny Kravitz";
+------------+
| instrument |
+------------+
| guitar |
| vocals |
+------------+

2 rows in set (0.00 sec)

The big difference between this query and those in our previous method, where we used multiple
separate queries, is that we’ve listed more than one table in the FROM part: instruments, what_they_play,
and musicians. Also, our WHERE clause has several conditions ANDed together. We’re using more than one
table and comparing values in one table with those in another, so we’re joining the data together. Hence
the term table join.

Let’s do one more table join. Here’s a query that will show all the musicians that play percussion
instruments:

6 TMTOWTDI in SQL too!

CHAPTER 15 ■ PERL AND DBI

368

mysql> SELECT player_id
 -> FROM what_they_play
 -> JOIN instruments on what_they_play.inst_id = instruments.inst_id
 -> WHERE instruments.type = "percussion";

+-----------+
| player_id |
+-----------+
| 6 |
+-----------+

1 row in set (0.00 sec)

As you can see, the SELECT combinations are endless! SQL is quite flexible—we can pull out exactly the
information we need in exactly the order we want from the specific tables we’re interested in. We’ve
explored only a few SQL commands—there are so many more to learn. Check out the documentation
and Kofler’s book for more information.

But while using the MySQL command line interface is enjoyable, it’s much more fun to query our
database using Perl and DBI.

Introduction to DBI
DBI is the Database Independent module, which was written by Tim Bunce. It’s a collection of APIs that
allow programmers to connect to and access databases. As the name implies, the module allows you to
write programs that access databases regardless of their type. You can write a program to query
databases based on Oracle, Sybase, MySQL, Postgres, ODBC—the list goes on and on. All you need is the
DBI module and the appropriate Database Driver (DBD).

■ Note Each of the mentioned databases has its own SQL dialect. Most implement the basic commands such as
INSERT and SELECT in similar ways, but they sometimes implement the details of specific commands slightly
differently. Keep this in mind if you’re creating a Perl script that you want to port from one type of database to
another—use the common form of each command even if a database has a nifty feature—but one that’s not
supported elsewhere.

We’re using MySQL server in this chapter, so we need to install DBI and the MySQL DBD modules.

Installing DBI and the DBD::mysql
To use DBI you must install the appropriate modules. The first is DBI. As this is being written, the latest
version of DBI on CPAN is 1.609, but as usual, that may have changed by the time you read this. You can
easily check to see if DBI is installed on a system by executing the following at the command line:

$ perl –e "use DBI"

www.wowebook.com

CHAPTER 15 ■ PERL AND DBI

369

If there’s no output, DBI is installed. If this command produces errors, follow the instructions, in Chapter
12, on installing the modules needed to install DBI. When that’s done, you can install the MySQL driver.
The name of module is DBD::mysql.

Connecting to the MySQL Database
Our first Perl program will simply connect to the MySQL database. If that works, we know that DBI and
DBD::mysql are installed correctly and the real fun can begin. Let’s look at an example we’ll call
connect.pl:

#!/usr/bin/perl
connect.pl

use warnings;
use strict;
use DBI;

my $dbh = DBI->connect("DBI:mysql:musicians_db", "musicfan", "CrimsonKing");

die "connect failed: " . DBI->errstr() unless $dbh;

print "connect successful!\n";

$dbh->disconnect();

After the first four lines (the one with the shebang followed by the comment and then use warnings;

and use strict;) we use the DBI module. Next we see a call to the DBI->connect() method. When we
talked about object-oriented programming in Chapter 13, we mentioned that most modules use the
method new() as their constructor. DBI, however, employs connect(). This is fine—any method name we
choose can be the constructor, and since constructing a DBI object requires that we connect to a
database, connect() seems a logical choice.

There are three arguments to connect(): the DSN, also known as the data source name, the
username of the user, and the person’s password. In this invocation, the data source name is

"DBI:mysql:musicians_db"

All data sources will start with DBI followed by a colon, the term mysql (since we’re using MySQL server
and DBD::mysql), a colon, and the database to which we’re connecting—in this case, musicians_db.

■ Note Let’s say that one day we want to port our database from MySQL to some other database server such as
Oracle. In this script, all we need to do is change the text mysql in the data source to oracle. Provided that
DBD::oracle is installed on our machine and we don’t use any MySQL-specific queries, the script will work
perfectly. Talk about portable!

CHAPTER 15 ■ PERL AND DBI

370

The return value of DBI->connect() is an object that we can use to do things with the database. We
call this the database handler, so we name it $dbh (but of course we can name it whatever we want). After
the call to DBI->connect(), we check the value of $dbh.

die "connect failed: " . DBI->errstr() unless $dbh;

This makes sure $dbh has a true value. If DBI->connect() fails, it returns a false value to $dbh, so we
die(), complaining that something went wrong with the database connection. The function DBI-
>errstr() reports the error, so to help the user we include this information in the string that die()
prints. If all is well, we print a cheerful message and disconnect from the database.

print "connect successful!\n";

$dbh->disconnect();

We use the disconnect() method to disconnect from the database. Though not really necessary,
since Perl will disconnect us when the script terminates, it’s polite.

Here’s what happens when we execute this program:

$ perl connect.pl
connect successful!
$

Now that we can connect, let’s execute an SQL query.

Executing an SQL Query with DBI
From the previous example, connect.pl, we know how to connect to the database. Now we need to learn
how to perform SQL queries.7 Let’s look at showmusicians.pl, a program that connects to the database
musicians_db and displays all the rows in the musicians table. This program connects as before, prepares
and executes an SQL query, and then loops through the result of the query.

#!/usr/bin/perl
showmusicians.pl

use warnings;
use strict;
use DBI;

my $dbh = DBI->connect("DBI:mysql:musicians_db", "musicfan", "CrimsonKing");

die "connect failed: " . DBI->errstr() unless $dbh;

7 As usual, there are a lot of ways to execute an SQL query and retrieve its results using Perl and DBI.We’ll
look at the easiest and most common way, but you can read about all the various ways by typing perldoc DBI
at the shell prompt.

CHAPTER 15 ■ PERL AND DBI

371

prepare the query to get the data out
of the musicians table
my $sth = $dbh->prepare("SELECT player_id,name,phone FROM musicians")
 or die "prepare failed: " . $dbh->errstr();

$sth->execute() or die "execute failed: " . $sth->errstr();

my($player_id, $name, $phone);

loop through each row of data, printing it
while (($player_id, $name, $phone) = $sth->fetchrow()) {
 print "$player_id : $name : $phone\n";
}

$sth->finish();

$dbh->disconnect();

The database handler, $dbh, executes the prepare() method, which we show by itself here:

prepare the query to get the data out
of the musicians table
my $sth = $dbh->prepare("SELECT player_id,name,phone FROM musicians")
 or die "prepare failed: " . $dbh->errstr();

The method takes its argument, an SQL query, compiles it, and prepares it for execution. The query,
SELECT player_id,name,phone FROM musicians, chooses three fields from the musicians table. If the
prepare() method succeeds, it returns an object, known as the state handler, that’s assigned to $sth. If
the prepare() method fails, it returns false, and in that case, we die() printing $dbh->errstr(), the
reason for the failure. If all is well, though, we execute the query.

$sth->execute() or die "execute failed: " . $sth->errstr();

The execute() method performs the query, storing the result into the $sth object. If the method
fails, we die() and issue an explanation by executing $sth->errstr(). The $sth object has the result of
the query stored within it, so we have to retrieve that information, which fetchrow() does.

loop through each row of data, printing it
while (($player_id, $name, $phone) = $sth->fetchrow()) {
 print "$player_id : $name : $phone\n";
}

The fetchrow() method returns the next row of information supplied by the query. We then take
that row and copy it memberwise into three variables. Since the query asked for the player_id, name,
and phone from the musicians table, we take those pieces of information and store them in $player_id,
$name, and $phone, respectively, then print the variables. After we’re done with the state handler, we want
to adhere to good practices, so we finish with:

$sth->finish();

CHAPTER 15 ■ PERL AND DBI

372

Executing the query we’ve just described produces the following:

$ perl showmusicians.pl
1 : Roger Waters : 555-1212
2 : Geddy Lee : 555-2323
3 : Marshall Mathers III : 555-3434
4 : Thom Yorke : 555-4545
5 : Lenny Kravitz : 555-5656
6 : Mike Diamond : 555-6767
$

A More Complex Example
Earlier in this chapter we created a complex query that determined the instruments Lenny Kravitz
played. The process required several steps. First we found his player_id from the musicians table. Next
we used the player_id to read the inst_ids from the what_they_play table. Then, for each of those
inst_ids, we read the instrument name from the instruments table. Here’s how we might do the same
with Perl and DBI:

#!/usr/bin/perl
showinstruments1.pl

use warnings;
use strict;
use DBI;

my($who, $player_id, $inst_id);

print "Enter name of musician and I will show you his/her instruments: ";
chomp($who = <STDIN>);

my $dbh = DBI->connect("DBI:mysql:musicians_db", "musicfan", "CrimsonKing");

die "connect failed: " . DBI->errstr() unless $dbh;

first, grab the musicians player_id
my $sth = $dbh->prepare("SELECT player_id FROM musicians WHERE name = '$who'")
 or die "prepare failed: " . $dbh->errstr();

$sth->execute() or die "execute failed: " . $sth->errstr();

($player_id) = $sth->fetchrow();

die "player_id not found" unless defined $player_id;

given the player_id, grab their inst_ids from what_they_play
$sth = $dbh->prepare("SELECT inst_id FROM what_they_play
 WHERE player_id = $player_id")
 or die "prepare failed: " . $dbh->errstr();

CHAPTER 15 ■ PERL AND DBI

373

$sth->execute() or die "execute failed: " . $sth->errstr();

foreach inst_id, grab the instrument name from the
instruments table and print it
while (($inst_id) = $sth->fetchrow()) {
 my $sth = $dbh->prepare("SELECT instrument FROM instruments
 WHERE inst_id = $inst_id")
 or die "prepare failed: " . $dbh->errstr();

 $sth->execute() or die "execute failed: " . $sth->errstr();

 my($instrument) = $sth->fetchrow();
 print " $instrument\n";

 $sth->finish();
}

$sth->finish();

$dbh->disconnect();

Let’s look at each step of this process. After connecting to the database, as we’ve been doing in the
previous examples, and asking for the user to enter the name of a musician, we construct and execute a
query to obtain that musician’s player_id.

first, grab the musicians player_id
my $sth = $dbh->prepare("SELECT player_id FROM musicians WHERE name = '$who'")
 or die "prepare failed: " . $dbh->errstr();

$sth->execute() or die "execute failed: " . $sth->errstr();

($player_id) = $sth->fetchrow();

die "player_id not found" unless defined $player_id;

Let’s look at the pertinent code, starting with the query to get the player_id of the artist:

first, grab the musicians player_id
my $sth = $dbh->prepare("SELECT player_id FROM musicians WHERE name = '$who'")
 or die "prepare failed: " . $dbh->errstr();

Notice that we’ve constructed the SQL query using the variable $who. We need the outer double quotes of
the query string to take the value of $who. And since the name is a string, the SQL query must wrap single
quotes around $who.

The next lines of code

$sth->execute() or die "execute failed: " . $sth->errstr();

($player_id) = $sth->fetchrow();

CHAPTER 15 ■ PERL AND DBI

374

execute the query. This should return only one row (it could return none if the musician isn’t found in
the table) so we only have to call fetchrow() once. We take the return value of that method, which is a
list of one value, and assign it to the assignable list ($player_id). As a result, $player_id will contain
either the player_id of the musician the user entered at standard input or undef if the musician wasn’t
found. The program die()s if $player_id is undefined.

Now we use $player_id to construct a query asking for the inst_ids:

given the player_id, grab the inst_ids from what_they_play
$sth = $dbh->prepare("SELECT inst_id FROM what_they_play
 WHERE player_id = $player_id")
 or die "prepare failed: " . $dbh->errstr();

$sth->execute() or die "execute failed: " . $sth->errstr();

Notice how the query string contains $player_id, the value we just read out of the database. Since
player_id is an integer, it doesn’t need to appear in quotes within the SQL query. When executed, this
should return all the inst_ids for that player_id. We then loop through the result a row at a time:

foreach inst_id, grab the instrument name from the
instruments table and print it
while (($inst_id) = $sth->fetchrow()) {
 my $sth = $dbh->prepare("SELECT instrument FROM instruments
 WHERE inst_id = $inst_id")
 or die "prepare failed: " . $dbh->errstr();

 $sth->execute() or die "execute failed: " . $sth->errstr();

 my($instrument) = $sth->fetchrow();
 print " $instrument\n";

 $sth->finish();
}

As we loop through each row of output from the previous query, we prepare() another query to read the
name of the instrument from the instruments table. Notice that in the while loop, $sth will receive the
return value from prepare() and that we’ve declared this variable with a my(). The my() here is
important—it creates a new copy of $sth within the while loop, preventing us from clobbering the
previous value of $sth (the result of the query of the what_they_play table) outside the while loop.

If we’d failed to declare $sth with a my(), that previous query would’ve been overwritten and we
would have processed just one row of output from the what_they_play query. As an alternative to
declaring $sth with my(), we could have selected a different variable name, but while that’s fine,
convention calls for sticking with $sth as the state-handler (besides, that new variable would have to
have needed the my()as well). Now lets execute the code we’ve just discussed to see what happens.

$ perl showinstruments1.pl
Enter name of musician and I will show you his/her instruments: Roger Waters
 guitar
 vocals
$

CHAPTER 15 ■ PERL AND DBI

375

Looks excellent—but not so fast. There’s a problem with this program, as this example demonstrates:

$ perl showinstruments1.pl
Enter name of musician and I will show you his/her instruments: Chris O'Rourke
DBD::mysql::st execute failed: You have an error in your SQL syntax near
'Rourke'' at line 1 at showinstruments1.pl line 20, <STDIN> line 1.
execute failed: You have an error in your SQL syntax near 'Rourke'' at line 1 at
showinstruments1.pl line 20, <STDIN> line 1.
$

Can you see what the problem is? The query that uses $who, the name entered, looks like this:

$dbh->prepare("select player_id from musicians where name = '$who'")

Since $who is single-quoted in the SQL query string, the single quote in the name "Chris O’Rourke"
makes SQL think that the string it’s comparing to name is "Chris O". SQL then sees "Rourke", which is
totally out of place, causing a syntax error. You could escape the single quote and turn $who into "Chris
O\’Rourke", but while that would work, there’s a better way.

Use Placeholders
To see how we deal with the problem just discovered, notice how we’ve changed the showinstrument1.pl
SQL query strings in this new version, showinstrument2.pl:

#!/usr/bin/perl
showinstruments2.pl

use warnings;
use strict;
use DBI;

my($who, $player_id, $inst_id);

print "Enter name of musician and I will show you his/her instruments: ";
chomp($who = <STDIN>);

my $dbh = DBI->connect("DBI:mysql:musicians_db", "musicfan", "CrimsonKing");

die "connect failed: " . DBI->errstr() unless $dbh;

first, grab the musicians player_id
my $sth = $dbh->prepare("SELECT player_id FROM musicians WHERE name = ?")
 or die "prepare failed: " . $dbh->errstr();

$sth->execute($who) or die "execute failed: " . $sth->errstr();

($player_id) = $sth->fetchrow();

die "player_id not found" unless defined $player_id;

given the player_id, grab their inst_ids from what_they_play

CHAPTER 15 ■ PERL AND DBI

376

$sth = $dbh->prepare("SELECT inst_id FROM what_they_play
 WHERE player_id = ?")
 or die "prepare failed: " . $dbh->errstr();

$sth->execute($player_id) or die "execute failed: " . $sth->errstr();

foreach inst_id, grab the instrument name from the
instruments table and print it
while (($inst_id) = $sth->fetchrow()) {
 my $sth = $dbh->prepare("SELECT instrument FROM instruments
 WHERE inst_id = ?")
 or die "prepare failed: " . $dbh->errstr();

 $sth->execute($inst_id) or die "execute failed: " . $sth->errstr();

 my($instrument) = $sth->fetchrow();
 print " $instrument\n";

 $sth->finish();
}

$sth->finish();

$dbh->disconnect();

We’ve modified the first call to prepare() and execute() so that it now reads:

my $sth = $dbh->prepare("SELECT player_id FROM musicians WHERE name = ?")
 or die "prepare failed: " . $dbh->errstr();

$sth->execute($who) or die "execute failed: " . $sth->errstr();

Instead of using the variable $who in the query string, we use a question mark. This acts as a placeholder
for a variable or value we’ll provide later. And what we provide later ends up being an argument to the
execute() method: $sth->execute($who). DBI will take the $who argument and plug it into the question
mark in the query string. The nice thing about using this feature is that we don’t have to worry about
escaping the single quote. Much better!

What happens, though, if there’s more than one variable in the query string? In that case, all their
values are provided in the execute() method and plugged into the placeholders memberwise, as shown
in this snippet:

$sth = $dbh->prepare("SELECT * FROM data WHERE name = ? AND age = ?");
$sth->execute($name, $age);

Wait a minute, though! Both showinstruments1.pl and showinstruments2.pl use three SQL queries. But
we learned earlier in this chapter that with a table join we could obtain the same information using one
query.

CHAPTER 15 ■ PERL AND DBI

377

DBI and Table Joins
You can perform any SQL query using DBI, and this includes table joins. Let’s modify the previous
example showinstruments2.pl to do a table join as shown here in showinstrument3.pl:

#!/usr/bin/perl
showinstruments3.pl

use warnings;
use strict;
use DBI;

my($who, $instrument);

print "Enter name of musician and I will show you his/her instruments: ";
chomp($who = <STDIN>);

my $dbh = DBI->connect("DBI:mysql:musicians_db", "musicfan", "CrimsonKing");

die "connect failed: " . DBI->errstr() unless $dbh;

use a table join to query the instrument names
my $sth = $dbh->prepare("SELECT instrument
 FROM instruments
 JOIN what_they_play ON instruments.inst_id = what_they_play.inst_id
 JOIN musicians ON what_they_play.player_id = musicians.player_id
 WHERE musicians.name = ?")
 or die "prepare failed: " . $dbh->errstr();

$sth->execute($who) or die "execute failed: " . $sth->errstr();

loop through them, printing them
while (($instrument) = $sth->fetchrow()) {
 print " $instrument\n";
}

$sth->finish();

$dbh->disconnect();

The big change is the preparation and execution of the query:

use a table join to query the instrument names
my $sth = $dbh->prepare("SELECT instrument
 FROM instruments
 JOIN what_they_play ON instruments.inst_id = what_they_play.inst_id
 JOIN musicians ON what_they_play.player_id = musicians.player_id
 WHERE musicians.name = ?")
 or die "prepare failed: " . $dbh->errstr();

$sth->execute($who) or die "execute failed: " . $sth->errstr();

CHAPTER 15 ■ PERL AND DBI

378

Here we’ve constructed one large query, as we did previously in this chapter, that joins the musicians,
what_they_play, and instruments tables. Notice how we use a placeholder when we compare
musicians.name and how the variable $who is provided within the execute() method.
Does this table join work? Yep. Take a look:

$ perl showinstruments3.pl
Enter name of musician and I will show you his/her instruments: Thom Yorke
 keyboards
 guitar
 vocals
$

Perl and DBI give us an easy way to create programs that query our database. We can do anything with
Perl that we can with SQL, and that includes execution of many SQL commands we haven’t talked about
in this chapter.

Perl, DBI, and CGI
Perl and DBI are enjoyable, but now let’s take our exploration to another level of fun by combining our
new skills with what we learned in the previous chapter: CGI. We’ll develop a CGI script that will
interface with the musicians_db database. We’ll make it a dynamic CGI program that will present the
user with a form, and when the person submits data (by clicking a button), the program will provide a
response. We’ll let the user choose to see one of two responses—a musician’s phone number or the
instruments the artist plays.
The program will follow this general flow:

if (param()) {
 if (param('Show phone number')) {
 # query database and show the musicians phone number
 } elsif (param('Show instruments')) {
 # query the database and show the instruments played by the musician
 }
} else {
 # query the database and build the initial form with all the musicians names
}

We’ll look at the full code in all its glory, first, then examine the specific pieces in detail:

#!/usr/bin/perl
musicians.pl

use warnings;
use strict;
use CGI ':standard';
use DBI;

if (param()) {

CHAPTER 15 ■ PERL AND DBI

379

 # we have parameters, go grab the musicians
 # name
 my $musician = param('musician') || '';

 if (param('Show phone number')) {
 # the user wants to see the musician's phone number
 # print first part of HTML
 print
 header(),
 start_html("Phone Number for $musician"),
 h1("Phone Number for $musician");

 # query the database and get the phone number
 my $dbh = DBI->connect("DBI:mysql:musicians_db", "musicfan",
 "CrimsonKing");
 my $sth = $dbh->prepare("SELECT phone FROM musicians
 WHERE name = ?")
 or die "prepare failed: " . $dbh->errstr();

 $sth->execute($musician) or die "execute failed: " . $sth->errstr();

 my($phone);

 ($phone) = $sth->fetchrow();

 # print number and end HTML
 print
 "Call $musician at $phone.",
 end_html;
} elsif (param('Show instruments')) {
 # the user wants to see the instruments the musician
 # plays, start the HTML
 print
 header(),
 start_html("Instruments played by $musician"),
 h1("Instruments played by $musician"),
 "$musician plays:",
 '';

 # query the database with a table join and retrieve the
 # instruments played by musician
 my $dbh = DBI->connect("DBI:mysql:musicians_db", "musicfan",
 "CrimsonKing");
my $sth = $dbh->prepare("SELECT instrument
 FROM instruments
 JOIN what_they_play ON instruments.inst_id = what_they_play.inst_id
 JOIN musicians ON what_they_play.player_id = musicians.player_id
 WHERE musicians.name = ?")
 or die "prepare failed: " . $dbh->errstr();

 $sth->execute($musician) or die "execute failed: " . $sth->errstr();

CHAPTER 15 ■ PERL AND DBI

380

 my($instrument);

 # print all the instruments in a bullet list
 while (($instrument) = $sth->fetchrow()) {
 print "$instrument";
 }

 # finish the HTML
 print
 '',
 end_html;
 }

} else {
 # no data was posted, so print the initial form to the user
 # allowing to select the musician and whether they want
 # to see the phone number or the instruments
 print
 header(),
 start_html('My Favorite Musicians'),
 h1('Select a Musician'),
 start_form(),
 '<select name="musician">';

 # grab all the musician's names out of the database
 my $dbh = DBI->connect("DBI:mysql:musicians_db", "musicfan", "CrimsonKing");
 my $sth = $dbh->prepare("SELECT name FROM musicians")
 or die "prepare failed: " . $dbh->errstr();

 $sth->execute() or die "execute failed: " . $sth->errstr();

 my($name);

 # loop through each row of data, printing it as an option
 # in the select widget
 while (($name) = $sth->fetchrow()) {
 print qq{<option value="$name">$name</option>};
 }

 # finish the select widget, print the submit buttons
 # and end the HTML
 print
 '</select>',
 br(),
 submit('Show phone number'),
 submit('Show instruments'),
 end_form(),
 end_html();
}

CHAPTER 15 ■ PERL AND DBI

381

When we run the program (http://localhost/cgi-bin/musicians.pl) the first time, we see this initial
page:

This form allows users to select a musician from a drop-down list. When you execute the program, you’ll
see that the menu contains all the musicians we’ve inserted into our table—in fact, the menu is built by
reading from the database. You’ll also see two buttons—one indicates clicking on it will produce the
selected musician’s phone number. The other shows that, when clicked, it will display the instruments
the selected musician plays. The else part of the program, which builds this page, starts with:

} else {
 # no data was posted, so print the initial form to the user
 # allowing them to select the musician and whether they want
 # to see the phone number or the instruments
 print
 header(),
 start_html('My Favorite Musicians'),
 h1('Select a Musician'),
 start_form(),
 '<select name="musician">';

The code prints the header first, followed by the start of the HTML for the page. Within the code for the
form we see the creation of a <select> widget—this is a drop-down menu that allows us to choose one of
the provided options. After that, the code says:

http://localhost/cgi-bin/musicians.pl

CHAPTER 15 ■ PERL AND DBI

382

grab all the musicians names out of the database
 my $dbh = DBI->connect("DBI:mysql:musicians_db", "musicfan", "CrimsonKing");
 my $sth = $dbh->prepare("SELECT name FROM musicians")
 or die "prepare failed: " . $dbh->errstr();

 $sth->execute() or die "execute failed: " . $sth->errstr();

which connects to the database, then prepares and executes the query that retrieves all the musician
names. Next comes the code that displays the names:

 my($name);

 # loop through each row of data, printing it as an option
 # in the select widget
 while (($name) = $sth->fetchrow()) {
 print qq{<option value="$name">$name</option>};
 }

This loops through all the rows of output (the musician names) and prints them in an <option> widget,
adding them to the drop-down menu so they can be selected. Finally, the code finishes the page by
closing the <select> widget, then printing two submit buttons:

 # finish the select widget, print the submit buttons

 # and end the HTML
 print
 '</select>',
 br(),
 submit('Show phone number'),
 submit('Show instruments'),
 end_form(),
 end_html();
}

Now let’s say someone selects a name from the drop-down menu and clicks the button “Show phone
number”. Our user hasn’t talked to Geddy Lee for a while, so he’s the choice, which produces the
following screen:

CHAPTER 15 ■ PERL AND DBI

383

Let’s look at the part of the program that built this page. It starts with:

if (param('Show phone number')) {
 # the user wants to see the musician's phone number
 # print first part of HTML
 print
 header(),
 start_html("Phone Number for $musician"),
 h1("Phone Number for $musician");

When the if determines the user wants to see the musician’s phone number, the program starts the
HTML for the page and then accesses the database:

 # query the database and get the phone number
 my $dbh = DBI->connect("DBI:mysql:musicians_db", "musicfan",
 "CrimsonKing");
 my $sth = $dbh->prepare("SELECT phone FROM musicians
 WHERE name = ?")
 or die "prepare failed: " . $dbh->errstr();

 $sth->execute($musician) or die "execute failed: " . $sth->errstr();

This looks familiar by now—the code connects to and queries the database using the placeholder for the
musician’s name, a process that returns the phone number for the musician. Now we need to fetch the
row, read the data into $phone, print to the browser, and end the HTML:

CHAPTER 15 ■ PERL AND DBI

384

 my($phone);

 ($phone) = $sth->fetchrow();

 # print number and end HTML
 print
 "Call $musician at $phone.",
 end_html;

After calling Geddy Lee, our music fan might want to see the instruments Thom Yorke plays, so our
curious person goes back to the initial page, select Thom from the drop-down menu, and clicks Show
instruments. That produces this page:

And here’s the code that builds the page:

} elsif (param('Show instruments')) {
 # the user wants to see the instruments the musician
 # plays, start the HTML
 print
 header(),
 start_html("Instruments played by $musician"),
 h1("Instruments played by $musician"),
 "$musician plays:",
 '';

CHAPTER 15 ■ PERL AND DBI

385

We see that the user wants to show the musician’s instruments, so we start the HTML, print some text,
and then start an unordered list (a bullet list). Then we go to the code that queries the database:

 # query the database with a table join and retrieve the
 # instruments played by musician
 my $dbh = DBI->connect("DBI:mysql:musicians_db", "musicfan",
 "CrimsonKing");
my $sth = $dbh->prepare("SELECT instrument
 FROM instruments
 JOIN what_they_play ON instruments.inst_id = what_they_play.inst_id
 JOIN musicians ON what_they_play.player_id = musicians.player_id
 WHERE musicians.name = ?")
 or die "prepare failed: " . $dbh->errstr();

 $sth->execute($musician) or die "execute failed: " . $sth->errstr();

Using the table join we’ve seen a few times in this chapter, we find all the instruments that the musician
plays, bringing us to the code that prints the instruments:

 my($instrument);

 # print all the instruments in a bullet list
 while (($instrument) = $sth->fetchrow()) {
 print "$instrument";
 }

Notice that each instrument is printed within an tag, which makes it into a bullet item in the list.
Finally we get to the end of the unordered list and the end of the HTML:

 # finish the HTML
 print
 '',
 end_html;
 }

That was fun! And using Perl, CGI, and DBI it was easy as well. Such is the power and practicality of Perl
revealed.

What We Didn’t Talk About
This chapter isn’t meant to be an exhaustive discussion of SQL and DBI. There are many topics we didn’t
talk about that you should learn if you want to harness the maximum power of SQL. First, there are
several essential commands, including the following:

• UPDATE: Allows data in a table to be modified. An example might be

UPDATE musicians SET phone = "555-9999" WHERE player_id = 3;

CHAPTER 15 ■ PERL AND DBI

386

• DELETE: Deletes a row from a table. An example might be

DELETE FROM instruments WHERE inst_id = 13;

Be careful! If you don’t use the WHERE clause, you’ll delete all rows in the table.

• REPLACE: If the key provided does not exist, the data is inserted; otherwise the row
with that key is first deleted, then the new row is inserted. An example might be

REPLACE INTO musicians (player_id, name, phone)
 VALUES (1, "Neil Peart", "555-8888");

Just as knowing these SQL commands is important, so is understanding table indexing. Indexing can
significantly increase the speed of SELECT statements with large tables. See the docs for more
information. Also, be sure to check out Michael Kofler’s excellent book, and remember to look at the
online documentation for MySQL at http://dev.mysql.com/doc/refman/5.1/en/.

Summary
In this chapter we described how to access a database using Perl and the DBI module. We started with a
description of a relational database and followed with a brief introduction to SQL. We then installed
MySQL, created a database with three tables, and talked about several SQL commands. INSERT and
SELECT were the most important ones. We also discussed using table joins as a way to implement the
relations in relational databases. After that, we introduced DBI and DBD::mysql and wrote several Perl
scripts to access and query the database. We ended with an example that showed how easily you can
create dynamic web content by connecting Perl, DBI, and CGI.pm. And in the middle of that discussion,
we took time out of our busy day to call one of our favorite musicians.

Exercises
1. Write a Perl script that prompts the user for an instrument and then prints all the

musicians that play that instrument.

2. Write a CGI program similar to musicians.pl that serves as a web interface to the script you

created for exercise 1.

http://dev.mysql.com/doc/refman/5.1/en

 A P P E N D I X

■ ■ ■

387

Exercise Solutions

This appendix contains the answers to the chapter exercises. An important note: each solution is an
answer, not the answer. Remember that in Perl, there is more than one way to do it, and that applies to
these solutions as well.

Chapter 1

1.
#!/usr/bin/perl
chap01ex1.pl

use warnings;

print "Hi Mom.\nThis is my second program.\n";

Chapter 2

1.
#!/usr/bin/perl
chap02ex1.pl

use warnings;
use strict;

print "Currency converter\n\n";

print "Please enter the exchange rate: ";
chomp(my $yen = <STDIN>);

APPENDIX ■

388

print "Enter first price to convert: ";
chomp(my $price1 = <STDIN>);

print "Enter second price to convert: ";
chomp(my $price2 = <STDIN>);

print "Enter third price to convert: ";
chomp(my $price3 = <STDIN>);

print "$price1 Yen is ", ($price1/$yen), " dollars\n";
print "$price2 Yen is ", ($price2/$yen), " dollars\n";
print "$price3 Yen is ", ($price3/$yen), " dollars\n";

2.
#!/usr/bin/perl
chap02ex2.pl

use warnings;
use strict;

print "enter a hex number: ";
chomp(my $hexnum = <STDIN>);
print "converted to an int: ", hex($hexnum), "\n";

print "enter an octal number: ";
chomp(my $octal = <STDIN>);
print "converted to an int: ", oct($octal), "\n";

3.
#!/usr/bin/perl
chap02ex3.pl

use warnings;
use strict;

print "enter a value less than 256: ";
chomp(my $bin = <STDIN>);

print((128 & $bin) / 128);
print((64 & $bin) / 64);
print((32 & $bin) / 32);
print((16 & $bin) / 16);
print((8 & $bin) / 8);
print((4 & $bin) / 4);
print((2 & $bin) / 2);

www.wowebook.com

 APPENDIX ■

389

print((1 & $bin) / 1);

print "\n";

4.
(2 + (6 / 4) - (3 * 5) + 1) = -10.5
(17+((-(3**3))/2)) = 3.5
((26+3)^(4*2)) = 21
(((4 + 3) >= 7) || (2 & ((4 * 2) < 4))) = 1

Chapter 3

1.
#!/usr/bin/perl
chap03ex1.pl

use warnings;
use strict;

my $target = 12;
print "Guess my number!\n";
print "Enter your guess: ";

my $guess;
while ($guess = <STDIN>) {
 if ($target == $guess) {
 print "That's it! You guessed correctly!\n";
 last;
 } elsif ($guess > $target) {
 print "Your number is more than my number\n";
 } elsif ($guess < $target) {
 print "Your number is less than my number\n";
 }
 print "Enter your guess: ";
}

2.
#!/usr/bin/perl
chap03ex2.pl

APPENDIX ■

390

use warnings;
use strict;

for (my $i = 1; $i <= 10; $i++) {
 print "$i square is: ", $i*$i, "\n";
}

3.
#!/usr/bin/perl
chap03ex3.pl

use warnings;
use strict;

for (my $i = 1; $i <= 50; $i++) {
 if ($i % 5 == 0) {
 print "$i is evenly divisible by 5\n";
 }
}

Chapter 4

1.
#!/usr/bin/perl
chap04ex1.pl

use warnings;
use strict;

my @a = (2, 4, 6, 8);

foreach (@a) {
 print "$_ ** 2 = ", $_ ** 2, "\n";
}

foreach (reverse @a) {
 print "$_ ** 2 = ", $_ ** 2, "\n";
}

 APPENDIX ■

391

3.
Here is a program that illustrates the answer to this question.

#!/usr/bin/perl
chap04ex3.pl

use warnings;
use strict;

my @a = ('aa' .. 'bb');
print "first array:\n";
print "@a\n";

@a = ('a0' .. 'b9');
print "------------\n";
print "second array:\n";
print "@a\n";

Chapter 5

1.
#!/usr/bin/perl
chap05ex1.pl

use warnings;
use strict;

my %hash = (
 scalar => 'dollar sign',
 array => 'at sign',
 hash => 'percent sign'
);

foreach (sort keys %hash) {
 print "$_: $hash{$_}\n";
}

2.
#!/usr/bin/perl
chap05ex2.pl

APPENDIX ■

392

use warnings;
use strict;

my %phonenumbers = (
 John => '555-1212',
 Sue => '555-2222',
 Larry => '555-3232',
 Moe => '555-4242'
);

print "enter name: ";
while (<STDIN>) {
 chomp;
 if (exists $phonenumbers{$_}) {
 print "$_ has the phone number: $phonenumbers{$_}\n";
 } else {
 print "$_ is not in the phone book\n";
 }
 print "enter name: ";
}

3.
#!/usr/bin/perl
chap05ex3.pl

use warnings;
use strict;

my %jokes = (
 Java => "None. Change it once, and it's the same everywhere.",
 Python => "One. He just stands below the socket and the world " .
 "revolves around him.",
 Perl => "A million. One to change it, the rest to try and do it in " .
 "fewer lines.",
 C => '"CHANGE?!!"'
);

print "enter programming language: ";
while (<STDIN>) {
 chomp;
 if (exists $jokes{$_}) {
 print "How many $_ programmers does it take to change a lightbulb?\n";
 sleep 2;
 print $jokes{$_}, "\n";
 } else {
 print "That language is not funny...\n";
 }

 APPENDIX ■

393

 print "enter programming language: ";
}

Chapter 6

1.
#!/usr/bin/perl
chap06ex1.pl

use warnings;
use strict;

print "enter a number: ";
chomp(my $input_num = <STDIN>);
if ($input_num < 0) {
 print "please enter a positive number!\n";
} else {
 my $result = factorial($input_num);
 print "$input_num! = $result\n";
}

sub factorial {
 my $num = shift;

 if ($num == 0) {
 return 1;
 } else {
 my $answer = 1;
 foreach (2 .. $num) {
 $answer = $answer * $_;
 }
 return $answer;
 }
}

2.
#!/usr/bin/perl
chap06ex2.pl

use warnings;
use strict;

print "enter a number: ";

APPENDIX ■

394

chomp(my $input_num = <STDIN>);
if ($input_num < 0) {
 print "please enter a positive number!\n";
} else {
 my $result = factorial_recursive($input_num);
 print "$input_num! = $result\n";
}

here is the solution using recursion -
a recursive function is a function that calls
itself
sub factorial_recursive {
 my $num = shift;

 if ($num == 0) {
 return 1;
 } else {
 return $num * factorial_recursive($num - 1);
 }
}

3.
#!/usr/bin/perl
chap06ex3.pl

use warnings;
use strict;

my $number_of_seconds;

prompt_user();
my ($hours, $minutes, $seconds) = secs2hms($number_of_seconds);
print "$number_of_seconds seconds is $hours hours, $minutes ",
 "minutes and $seconds seconds";
print "\n";

sub prompt_user {
 print "please enter the number of seconds: ";
 chomp($number_of_seconds = <STDIN>);
}

sub secs2hms {
 my ($h,$m);
 my $seconds = shift;; # defaults to shifting @_
 $h = int($seconds/(60*60));
 $seconds %= 60*60;
 $m = int($seconds/60);
 $seconds %= 60;

 APPENDIX ■

395

 ($h,$m,$seconds);
}

Chapter 7

1.
Match “hello” followed by zero or more and any character but \n followed by “world”; or, in other words,
any string that contains “hello” followed later by “world”.

Match one or more digits at the beginning of the string followed by one whitespace character
followed by zero or more word characters followed by the end of the string.

Match an uppercase letter at the beginning of a word followed by zero or more lowercase letters to
the end of a word; or, in other words, match a word that begins with an uppercase letter followed by any
number of lowercase letters.

Match a character, remember it in \1, followed by any number of any characters but \n, followed by
the character remembered. In other words, match any string with two occurrences of the same
character.

2.
/^\d.*\d$/

/^[\s\w]+$/

/^\S*$/

3.
#!/usr/bin/perl
chap07ex3.pl

use warnings;
use strict;

while (<>) {
 print if /[aeiouy][aeiouy]/i;
}

4.
#!/usr/bin/perl
chap07ex4.pl

APPENDIX ■

396

use warnings;
use strict;

while (<>) {
 print if /^[^aeiouy]*[aeiouy][^aeiouy]*[aeiouy][^aeiouy]*$/i;
}

Chapter 8

1.
#!/usr/bin/perl
chap08ex1.pl

use warnings;
use strict;

open(INFH, '<', 'gettysburg.txt') or die $!;
open(OUTFH, '>', 'ex1out.txt') or die $!;

while (<INFH>) {
next if /^\s*$/;
 my @words = split;
 print OUTFH "$_\n" foreach @words;
}

close INFH;
close OUTFH;

2.
#!/usr/bin/perl
chap08ex2.pl

use warnings;
use strict;

unless (@ARGV) {
 @ARGV = qw(file1.dat file2.dat file3.dat);
}

print <>;

 APPENDIX ■

397

3.
#!/usr/bin/perl
chap08ex3.pl

use warnings;
use strict;

my $target;
while (1) {
 print "What file should I write to? ";
 $target = <STDIN>;
 chomp $target;
 if (-d $target) {
 print "No, $target is a directory.\n";
 next;
 }
 if (-e $target) {
 print "File already exists. What should I do?\n";
 print "(Enter 'r' to write to a different name, ";
 print "'o' to overwrite or\n";
 print "'b' to back up to $target.old)\n";
 my $choice = <STDIN>;
 chomp $choice;
 if ($choice eq "r") {
 next;
 } elsif ($choice eq "o") {
 unless (-o $target) {
 print "Can't overwrite $target, it's not yours.\n";
 next;
 }
 unless (-w $target) {
 print "Can't overwrite $target: $!\n";
 next;
 }
 } elsif ($choice eq "b") {
 if (-e "$target.old") {
 print "Backup $target.old exists. Overwrite it? [y|n] ";
 my $choice = <STDIN>;
 chomp $choice;
 if ($choice ne 'y') {
 next;
 }
 }
 if (rename($target, $target.".old")) {
 print "OK, moved $target to $target.old\n";
 } else {
 print "Couldn't rename file: $!\n";
 next;
 }
 } else {

APPENDIX ■

398

 print "I didn't understand that answer.\n";
 next;
 }
 }
 last if open(OUTPUT, '>', $target);
 print "I couldn't write to $target: $!\n";
 # and round we go again.
}

print OUTPUT "Congratulations.\n";
print "Wrote to file $target\n";

close OUTPUT;

Chapter 9

1.
#!/usr/bin/perl
chap09ex1.pl

use warnings;
use strict;

open(FH, '<', 'ex1.dat') or die $!;

while (<FH>) {
 my $name = substr $_, 0, 24;
 my $address = substr $_, 25, 18;
 my $city = substr $_, 52, 20;
 my $state = substr $_, 72, 2;
 my $zip = substr $_, 75, 5;

 print <<EOT;

Record:
name : $name
address : $address
city : $city
state : $state
zip : $zip
EOT

}

close FH;

 APPENDIX ■

399

2.
#!/usr/bin/perl
chap09ex2.pl

use warnings;
use strict;

while (<>) {
 tr/a-zA-Z/n-za-mN-ZA-M/;
 print;
}

Chapter 10

1.
#!/usr/bin/perl
chap10ex1.pl

use warnings;
use strict;

my $dir = shift || '';
my $size = shift || '';

die "usage: chap10ex1.pl <dir> <size>\n" unless $dir and $size;

chdir $dir or die "can't chdir: $!";

first, a file glob
this gets hidden files too
print "using glob:\n";
foreach (glob('.* *')) {
 if (-f $_ and -s _ >= $size) {
 print ' ', $_, ' ' x (30 - length($_)), -s _, "\n";
 }
}

now using a directory handle
print "\n\nusing directory handle:\n";
opendir DH, '.' or die "opendir failed: $!";
while ($_ = readdir(DH)) {
 if (-f $_ and -s _ >= $size) {
 print ' ', $_, ' ' x (30 - length($_)), -s _, "\n";

APPENDIX ■

400

 }
}
closedir DH;

Chapter 11

1.
#!/usr/bin/perl
chap11ex1.pl

use warnings;
use strict;

my @chessboard;
my @back = qw(R N B Q K B N R);
foreach (0..7) {
 $chessboard[0][$_] = "W" . $back[$_]; # White Back Row
 $chessboard[1][$_] = "WP"; # White Pawns
 $chessboard[6][$_] = "BP"; # Black Pawns
 $chessboard[7][$_] = "B" . $back[$_]; # Black Back Row
}

while (1) {
 # Print board
 foreach my $i (reverse (0..7)) { # Row
 foreach my $j (0..7) { # Column
 if (defined $chessboard[$i][$j]) {
 print $chessboard[$i][$j];
 } elsif (($i % 2) == ($j % 2)) {
 print "..";
 } else {
 print " ";
 }
 print " "; # End of cell
 }
 print "\n"; # End of row
 }

 print "\nStarting square [x,y]: ";
 my $move = <>;
 last unless ($move =~ /^\s*([1-8]),([1-8])/);
 my $startx = $1-1; my $starty = $2-1;

 unless (defined $chessboard[$starty][$startx]) {
 print "There's nothing on that square!\n";
 next;

 APPENDIX ■

401

 }
 print "\nEnding square [x,y]: ";
 $move = <>;
 last unless ($move =~ /([1-8]),([1-8])/);
 my $endx = $1-1; my $endy = $2-1;

 # detect if a piece is about to be taken
 if (defined $chessboard[$endy][$endx]) {
 print "\n$chessboard[$endy][$endx] at (", $endx + 1, ",",
 $endy+1, ") is being taken!\n\n";
 }

 # Put starting square on ending square.
 $chessboard[$endy][$endx] = $chessboard[$starty][$startx];
 # Remove from old square
 undef $chessboard[$starty][$startx];
}

2.
#!/usr/bin/perl
chap11ex2.pl

use warnings;
use strict;

my @chessboard;
my @back = qw(R N B Q K B N R);
foreach (0..7) {
 $chessboard[0]->[$_] = "W" . $back[$_]; # White Back Row
 $chessboard[1]->[$_] = "WP"; # White Pawns
 $chessboard[6]->[$_] = "BP"; # Black Pawns
 $chessboard[7]->[$_] = "B" . $back[$_]; # Black Back Row
}

while (1) {
 # Print board
 foreach my $i (reverse (0..7)) { # Row
 foreach my $j (0..7) { # Column
 if (defined $chessboard[$i][$j]) {
 print $chessboard[$i][$j];
 } elsif (($i % 2) == ($j % 2)) {
 print "..";
 } else {
 print " ";
 }
 print " "; # End of cell
 }
 print "\n"; # End of row

APPENDIX ■

402

 }

 print "\nStarting square [x,y]: ";
 my $move = <>;
 last unless ($move =~ /^\s*([1-8]),([1-8])/);
 my $startx = $1-1; my $starty = $2-1;

 unless (defined $chessboard[$starty][$startx]) {
 print "There's nothing on that square!\n";
 next;
 }
 print "\nEnding square [x,y]: ";
 $move = <>;
 last unless ($move =~ /([1-8]),([1-8])/);
 my $endx = $1-1; my $endy = $2-1;

 if (defined $chessboard[$endy][$endx]) {
 # can't take your own piece
 if (substr($chessboard[$endy][$endx], 0, 1) eq
 substr($chessboard[$starty][$startx], 0, 1)) {
 print "\nyou can't take your own piece!\n\n";
 next;
 }
 # can't take a king
 if ($chessboard[$endy][$endx] =~ /K/) {
 print "\nyou can't take a king!\n\n";
 next;
 }
 }

 # Put starting square on ending square.
 $chessboard[$endy][$endx] = $chessboard[$starty][$startx];
 # Remove from old square
 undef $chessboard[$starty][$startx];
}

3.
#!/usr/bin/perl
chap11ex3.pl

use warnings;
use strict;

my %addressbook;

sub menu {
 print <<EOT;

 APPENDIX ■

403

Please make a choice:
 1 add an entry
 2 view an entry
 3 view all entries
 4 delete an entry
 5 exit

Your choice:
EOT
}

sub add_entry {
 print "Enter name: ";
 chomp(my $name = <STDIN>);
 if (exists $addressbook{$name}) {
 print "Name alread exists in the address book!\n";
 }
 print "Address: ";
 chomp(my $address = <STDIN>);
 print "Phone: ";
 chomp(my $phone = <STDIN>);
 $addressbook{$name} = {
 address => $address,
 phone => $phone
 };
}

sub view_entry {
 print "Enter name to view: ";
 chomp(my $name = <STDIN>);
 if (exists $addressbook{$name}) {
 print "Address: $addressbook{$name}{address}\n";
 print "Phone: $addressbook{$name}{phone}\n\n";
 } else {
 print "$name is not in address book!\n\n";
 }
}

sub view_all {
 foreach my $name (sort keys %addressbook) {
 print "Name: $name\n";
 print "Address: $addressbook{$name}{address}\n";
 print "Phone: $addressbook{$name}{phone}\n\n";
 }
}

sub delete_entry {
 print "Enter name to delete: ";
 chomp(my $name = <STDIN>);
 if (exists $addressbook{$name}) {
 delete $addressbook{$name};

APPENDIX ■

404

 } else {
 print "$name is not in address book!\n\n";
 }
}

while (1) {
 menu();
 chomp(my $answer = <STDIN>);
 SWITCH: {
 $answer == 1 and add_entry(), last SWITCH;
 $answer == 2 and view_entry(), last SWITCH;
 $answer == 3 and view_all(), last SWITCH;
 $answer == 4 and delete_entry(), last SWITCH;
 $answer == 5 and exit(0);
 }
}

Chapter 13

1.
#!/usr/bin/perl
chap13ex1.pl

use warnings;
use strict;
use Person8;

my $object1 = Person8->new(
 lastname => "Galilei",
 firstname => "Galileo",
 address => "9.81 Pisa Apts.",
 occupation => "bombadier",
 phone_no => "312.555.1212"
);

my $object2 = Person8->new(
 lastname => "Wall",
 firstname => "Larry",
 address => "123 Perl Ave.",
 occupation => "Programmer",
 phone_no => "312.555.2323"
);

my $object3 = Person8->new(
 lastname => "Torvalds",
 firstname => "Linus",

 APPENDIX ■

405

 address => "593 Linux Ave.",
 occupation => "Programmer",
 phone_no => "312.555.3434"
);

print "There are ", Person8->headcount(), " Person8 objects\n";

foreach my $person (Person8->everyone()) {
 print "\n", '-' x 80, "\n";
 $person->printletter("You owe me money. Please pay it.");
}

Chapter 14

1.
#!/usr/bin/perl
chap14ex1.pl

use warnings;
use strict;

use CGI ':standard';

print
 header(),
 start_html('Exercise 1');

if (param) {
 my $name = param('name') || '';
 my $address = param('address') || '';
 my $phone = param('phone') || '';

 print
 h1('Thanks for your information!'),
 'Thanks for entering the following information:',
 br(),
 $name,
 br(),
 $address,
 br(),
 $phone;

 open FH, '>>', '/tmp/ex1.dat';
 print FH '-' x 80, "\n$name\n$address\n$phone\n";
 close FH;
} else {

APPENDIX ■

406

 print
 h1('Please enter some information'),
 start_form(),
 'Name: ',
 textfield(-name => 'name'),
 br(),
 'Address: ',
 textarea(-name => 'address', rows => 3),
 br(),
 'Phone number: ',
 textfield(-name => 'phone'),
 br(),
 submit(),
 end_form();
}

print
 end_html();

2.
The solution to this problem is to include the changes shown previously in the section for Chapter 11,
exercises 1 and 2.

Chapter 15

1.
#!/usr/bin/perl
chap15ex1.pl

use warnings;
use strict;
use DBI;

my($instrument, $musician);

print "Enter instrument: ";
chomp($instrument = <STDIN>);

my $dbh = DBI->connect("DBI:mysql:musicians_db", "musicfan", "CrimsonKing");

die "connect failed: " . DBI->errstr() unless $dbh;

use a table join to query the instrument names

 APPENDIX ■

407

my $sth = $dbh->prepare("SELECT musicians.name
 FROM musicians,what_they_play,instruments
 WHERE instruments.instrument = ? AND
 musicians.player_id = what_they_play.player_id AND
 what_they_play.inst_id = instruments.inst_id")
 or die "prepare failed: " . $dbh->errstr();

$sth->execute($instrument) or die "execute failed: " . $sth->errstr();

loop through them, printing them
while (($musician) = $sth->fetchrow()) {
 print " $musician\n";
}

$sth->finish();

$dbh->disconnect();

2.
#!/usr/bin/perl
chap15ex2.pl

use warnings;
use strict;
use CGI ':standard';
use DBI;

if (param()) {
 my $instrument = param('instrument') || '';

 print
 header(),
 start_html("Musicians who play $instrument");
 h1("Musicians who play $instrument");

 my $dbh = DBI->connect("DBI:mysql:musicians_db", "musicfan",
 "CrimsonKing");
 my $sth = $dbh->prepare("SELECT name
 FROM musicians, what_they_play, instruments
 WHERE instruments.instrument = ? AND
 instruments.inst_id = what_they_play.inst_id AND
 what_they_play.player_id = musicians.player_id")
 or die "prepare failed: " . $dbh->errstr();

 $sth->execute($instrument) or die "execute failed: " . $sth->errstr();

 my($name);

 while (($name) = $sth->fetchrow()) {

APPENDIX ■

408

 print "$name plays the $instrument.
";
 }
 print
 end_html;
} else {
 print
 header(),
 start_html('My Favorite Instrument'),
 h1('Select an Instrument'),
 start_form(),
 '<select name="instrument">';

 my $dbh = DBI->connect("DBI:mysql:musicians_db", "musicfan",
 "CrimsonKing");
 my $sth = $dbh->prepare("SELECT instrument FROM instruments")
 or die "prepare failed: " . $dbh->errstr();

 $sth->execute() or die "execute failed: " . $sth->errstr();

 my($instrument);

 while (($instrument) = $sth->fetchrow()) {
 print qq{<option value="$instrument">$instrument</option>};
 }

 print
 '</select>',
 br(),
 submit('Show musician(s)'),
 end_form(),
 end_html();
}

409

Index

■ Symbols
\ backslash, 17, 37, 232

 ‘ ’ single quotes, for strings, 17

-- auto-decrement operator, 41

- hyphen metacharacter, 161, 167

- subtraction operator, 23

- unary minus operator, 25

! (not) operator, 31, 61

!~ operator, 37, 155

!= comparison operator, 29

indicating comments, 3, 6

$ dollar sign

as metacharacter, 159

prefixing scalar variables, 38

$! variable, 180

$#array, 99

$_ variable, 46

regular expressions and, 155, 158

substitution and, 170

while loop and, 68

$| variable, 195

$ARGV variable, 190

% modulo operator, 25

% percent sign, prefixing hashes, 115

< left angle bracket, indicating read mode, 180,
182

< less-than operator

comparing numbers and, 29

comparing strings and, 35

<< operator, 20, 37

<> angle brackets, enclosing filehandles, 183

<> diamond. See diamond

<= less-than-or-equal-to operator, 30, 71

<STDIN> (standard input), 49, 55, 67

> greater-than operator

comparing numbers and, 29

comparing strings and, 35

> right angle bracket, indicating write mode,
182

>> operator, 37

>> two right angle brackets, indicating append
mode, 183

>= greater-than-or-equal-to operator, 30

%ENV hash, 215

& ampersand, 137

& AND operator, 26

&& (and) operator, 31, 61

() parentheses. See parentheses

* asterisk metacharacter, 165, 166, 167

■ INDEX

410

* multiplication operator, 21, 23

* star, SELECT command and, 361

** exponentiation operator, 24

. concatenation operator, 32

. period metacharacter, 163, 167

/ division operator, 23

/ forward slash, 18

/ forward slash metacharacter, 155

; semicolon

statements and, 7

subroutine declaration and, 136

? question mark metacharacter, 165, 166, 167

: colon, data sources and, 369

“ ” double quotes, for strings, 17

@ at sign, prefixing arrays, 91

@_, passing arguments to subroutines and,
137–142, 147–152

@ARGV array variable

command-line arguments and, 187

diamond (<>) and, 189

@INC path, 260, 262

 [] square brackets. See entries at square
brackets

^ carat metacharacter, as anchor, 159, 160, 167

^| XOR operator, 27

_ underscore. See underscore

`` backquotes, 227

{} curly braces. See curly braces

| either-or operator, 163

| OR operator, 27

| pipe. See pipe

|| (or) operator, 31, 61, 336

default values and, 150

~ NOT operator, 27

+ addition operator, 23

+ plus sign metacharacter, 165, 166, 167

++ auto-increment operator, 41

<=> spaceship operator, 30, 113

= assignment operator

array assignments and, 91

multiple assignments and, 43

operator precedence and, 40

scalar assignments and, 38

=> operator, 36, 116

=~ operator, 37, 155, 158, 170

== comparison operator, 28, 56, 237

-> arrow notation, 241, 245, 289

■ Numbers
0 prefix, 22

0x prefix, 22

■ A
\a escape sequence (alarm), 8

a() method, 331, 333

abstraction (encapsulation), 290, 293

accessing

arrays, 95–109

list values, 87–91

accessor methods, 302, 312

action at a distance, variables and, 146

action attribute, CGI programs and, 334, 338

ActivePerl

module installation and, 280

Win32 modules and, 276

addition operator (+), 23

■ INDEX

411

address book (sample program), 250–255

alphabetic range, 87

alternatives, 163

ampersand (&), 137

anchors, 159, 175

and (&&) operator, 31, 61

AND operator (&), 26

angle brackets <>, enclosing filehandles, 183

anonymous data, 232, 234

anonymous references, reference counts and,
244

Apache web server, 318

append mode, 179, 182, 183

applications. See programs

arguments, 7, 137

default values for, 150

how they are passed, 147–152

named parameters and, 151

arithmetic operators, 23–25

array elements, references and, 238

array indexes (array subscripts), 97

array slices, 101

arrays, 81, 91–114, 231–235

accessing, 95–109

adding elements to, 95, 109

anonymous, 234, 251

attributes and, 298

converting to hashes, 116

exists() function and, 124

for loop and, 100

foreach loop and, 101, 103

functions for, 109

looping through with indexes, 100

matrices and, 245

naming conventions for, 91

scalar context vs. list context and, 94

subroutines and, 149

tree-like data structures and, 250

variable interpolation and, 93

while loop and, 100

arrow notation (->), 241

matrices and, 245

methods and, 289

ASCII character set, 8

ASCII values, 34

assignable lists, 90

assignment operator (=)

array assignments and, 91

multiple assignments and, 43

operator precedence and, 40

scalar assignments and, 38

associative arrays. See hashes

asterisk (*) metacharacter, 165, 166, 167

at sign (@), prefixing arrays, 91

attributes, 288

classes and, 304–307, 312

providing, 300

storing, 298

audio, Win32::Sound and, 276

autoclosing files, 180

auto-decrement operator (--), 41

auto-increment operator (++), 41

automatic conversion of scalars, 21, 34

autovivification, 245–249

■ INDEX

412

■ B
\b escape sequence (backspace), 8

b metacharacter, 163, 167

backquotes (``), 227

backreference variables, 167, 171, 176

backslash (\), 17, 37, 232

backwhacking characters, 17–20

barewords, 16

base 10 (decimal system), 10

base 16 (hexadecimal system), 10

base 2 (binary system), 10

base 8 (octal system), 10

BEGIN subroutine, 262

Benchmark, 275

best practices, 6

bidirectional pipes, 200

binary numbers, 10, 15, 21

bits, 10

bitwise operators, 25–28

blank line, header and, 320, 325, 329

bless() function, 288, 293, 296

Boole, George, 28

Boolean logic, 28, 55

Boolean operators, 28, 31

breaking out of loops/blocks, 74

browsers, CGI and, 317–348

buffering, 195

bugs, 11

built-in functions, 221–225, 228

Bunce, Tim, 368

Bundle::libnet, 285

Bundle::LWP, 284

bundles, 284

BY ORDER clause (SELECT command), 364

■ C
-c option, for checking Perl syntax, 4

canonpath() function, 273

carat (^) metacharacter, as anchor, 159, 160,
167

Carp module, 285

carp() function, 285

case sensitivity

classes and, 289

lc() function and, 199

loop labels and, 78

regular expressions and, 157

SQL commands and, 355

subroutines and, 132

uc() function and, 199

variable names and, 46

catdir() function, 273

catfile() function, 273

CGI (Gateway Interface), 317–348

CGI directory and, 318

CGI.pm methods and, 332, 338

CGI.pm module and, 317, 325–333

CGI programs, 317, 318–332

DBI module and, 378–385

static vs. dynamic, 336

troubleshooting, 320

writing, 318–325

character classes, 161–163

character sets (character encoding), 8

chdir() function, 221

■ INDEX

413

checksum, modules and, 283

chess game (sample program), 231

basic representation of, 245–249

making enhancements to, 346

web implementation of, 338–347

chmod command, 4

chmod() function, 224

chomp() function, 50, 69

chop() function, 50

chunking large integers, 14

class methods, 289, 291

classes, 289, 292

attributes for, 304–307, 312

case sensitivity and, 289

constructors and, 291

inheritance and, 290

making your own, 295–313

polymorphism and, 290

CLI (command line interface), 354

close() function, 180

code for this book, downloading, 12

colon (:), data sources and, 369

columns, extracting fields from strings and, 210

command line interface (CLI), 354

command-line arguments

@ARGV variable and, 187

Getopt::Std/, 271

reading files and, 186

comments, 3, 6

comparing

numbers, 28, 56

strings, 34, 58

comparison operator (==), 28, 56, 237

comparison operators, 28

Comprehensive Perl Archive Network. See
CPAN

computer program name and version (sample
program), 133

concatenation operator (.), 32

concurrency, relational databases and, 349

conditional operator, 36

conditions

if statement for, 54–66

short-circuited evaluation and, 66

connect() function, 369

constants, 13

constructors, 291, 293, 298–301, 312

control flow constructs, 53–79

if statement and, 54–66

loop control constructs and, 74–79

looping constructs and, 66–74

control variables, 72, 103

conversion utility (sample program), 140–142

counting items

via hashes, 126–129, 198

pitfalls to avoid with, 176

pluralizing items and, 200

CPAN (Comprehensive Perl Archive Network),
modules and, 257, 267, 278–286

installing modules, 281–283

submitting your own module, 285

CPAN module, 281–283

CPAN shell, 281

crackers, 347

CREATE DATABASE command, 356

■ INDEX

414

CREATE TABLE command, 356

croak() function, 285

curly braces ({})

anonymous hashes and, 234

array elements and, 238

arrays and, 239

dereferencing data and, 236

foreach loop and, 103

hashes and, 117, 241

if statements and, 54, 61

as metacharacter, repetition and, 166, 167

statements and, 7

subroutines and, 132

variables and, 47

currency converter (sample program), 48

cwd() method, Net::FTP and, 294

■ D
-d metacharacter, 162, 167

D metacharacter, 162, 167

d option, for debugger, 11

data

anonymous, 232

files and, 179–206

human-readable, via hashes, 125

types of, 13–22

data source name (DSN), 369

data structures

complex, 244–255

references and, 231

trees and, 250–255

Data::Dumper, 268

Database Driver modules (DBD modules), 349,
368

database handler, 370

Database Independent module. See DBI
module

databases. See relational databases

data-driven applications, 314

date, displaying current, 226

DBD modules, 349, 368

DBI module, 349–386

CGI programs and, 378–385

installing, 368

SQL queries and, 370–375

table joins and, 377

DBD::mysql module, 282, 368

debugger, 11

decimal system, 10

decisions, regular expression engine and, 170

default values, for arguments, 150

defensive programming, 200

defined() function, 59

definite loops, 66

DELETE command, 386

delete() function, 118, 123

delete() method, Net::FTP and, 294

deleting

directories, 223

files, 222

delimiters, 19, 85, 172

dereferencing data, 236, 242, 251

DESCRIBE command, 357

DESTROY() method, 292, 311

destructors, 292, 311

■ INDEX

415

DeviceInfo() function, 277

Devices() function, 277

diamond (<>), 161, 196, 185–191

die() function, 51, 285

file-opening errors and, 180

newlines and, 181

Digest::MD5, 283, 284

directories, 217–225

File::Find and, 270

functions used with, 221–225

reading, 220

for sample programs, setting up, 2, 3

directory handles, 220

disconnect() function, 370

division operator (/), 23

do statement, 260

do..until loop, 72

do..while loop, 72

documentation, perldoc and, 268

documenting your programs, 6

dollar sign ($)

as metacharacter, 159

prefixing variables, 38

double quotes (“ ”), for strings, 17

double-quoted strings, 17, 46

=> operator and, 116

array variable interpolation and, 93

here-documents and, 20

within lists, 84

downloads

Apache web server, 318

code for this book, 12

DSN (data source name), 369

dynamic CGI, 336

■ E
each() function, 123, 200

eagerness, regular expression engine and, 169

either-or operator (|), 163

elements, 81

arrays, adding to, 95, 109

hashes and, adding/reassigning/removing,
118

within lists, accessing, 87–91

else keyword, 61

elsif keyword, 62

emacs text editor, 2

empty lists, 82

encapsulation (abstraction), 290, 293

end of file (EOF), 20

end of text (EOT), 20

end_form() function, 338

environment variables

%ENV hash and, 215

CGI and, 321

EOF (end of file), 20

EOT (end of text), 20

eq (equal to) string comparison operator, 35

equality, comparing numbers for, 28

error checking, 259

error messages, 5, 59, 87

error status, program execution and, 225

errors

die() function and, 51

file-opening, 180

■ INDEX

416

errstr() function, 370, 371

escape sequences, 4, 8

\a, 8

\b, 8

\E, 159

\n, 8

\Q, 159

\r, 8

\t, 8, 17

\x, 8

escaping characters, 17–20, 158, 168

examples. See sample programs

exclusive OR operator (^), 27

execute() function, 371, 376

executing programs, 2, 225–228

exercises

answers to, 387–408

arrays, 114

CGI programs, 348

control flow constructs, 79

DBI module, 386

files, 205

first steps in Perl, 12

hashes, 129

object-oriented programming, 315

references, 255

regular expressions, 177

scalars, 52

string processing, 213

subroutines, 152

exists() function, 124

exit() function, 50, 58, 64

explicit destruction, 311

exponentiation operator (**), 24

exporters, 265

expression modifiers

foreach loop and, 108, 327

if statement and, 65

while loop and, 74

external programs, executing, 225–228

■ F
false, 28, 54–60

fetchrow() function, 371

fields, 349

extracting from strings, 210

field names and, 356

ORDER BY clause and, 364

SELECT command and, 361

File::Find, 270

file paths, 173, 180

file slurps, 190, 196, 276

File::Spec, 273

file tests, 200–205, 219

filehandles, 179–185

angle brackets <> enclosing, 183

buffering and, 195

closing files and, 180

opening files and, 179, 181

pipe (|) connecting, 196–200

writing to files and, 192

filenames, File::Spec and, 273

files, 179–206, 217–225

autoclosing and, 180

■ INDEX

417

closing, 180

deleting, Hoover program and, 270

do statement and, 260

file gobbing and, 217

File::Find and, 270

file size and, 219

file slurps and, 190, 196, 276

File::Spec and,

file tests and, 219, 200–205

filehandles for accessing, 179–185

functions used with, 221–225

opening, 179, 181, 193

package hierarchies for modules and, 264

require statement and, 261

sorting content and, 193, 198

use statement and, 262

writing to, 192–195

find() function, 270

finish() function, 371

finite loops, 66

flags, 271, 272

flattened lists, 84, 86, 95

floating-point numbers, 14, 15, 21

flock() function, 259

flow charts, 53

flow of execution, of programs, 53

for keyword, 72, 108

for loop, 71

arrays and, 100

breaking out of, 75

foreach keyword, 72, 103, 108

foreach loop, 71

arrays and, 101, 103

breaking out of, 75

counting items, hashes and, 128

expression modifiers and, 108

syntax for, 103

fork() function, 228

Format() function, 277

forms, 333–338, 378–385

forward definitions, subroutines and, 136

forward slash (/), 18

forward slash (/) metacharacter, 155

functions, files/directories and, 221–225

■ G
/g global match regexp modifier, 171, 173

Gateway Interface. See CGI

ge (greater than or equal to) string comparison
operator, 35

get() function, 284

get() method, Net::FTP and, 294

Getopt::Long, 271, 272

Getopt::Std, 271

getopts() function, 272

getprint() function, 284

getpwent() function, 228

get-set methods, 288, 303

getstore() function, 285

glob() function, 217

global variables, 43, 142

goto statement, caution for, 79

GRANT command, 357

greater-than operator (>)

number comparisons and, 29

■ INDEX

418

string comparisons and, 35

greater-than-or-equal-to operator (>=), 30

greediness, regular expression engine and, 169

grouping

parentheses for, 163, 165

pitfalls to avoid with, 175

gt (greater than) string comparison operator, 35

guessing game (sample program), 57

■ H
h1() method, 330, 333

hackers, 347

hard links, 222

hash keys, 116, 118

hash() method, Net::FTP and, 294

hashes, 115–130, 231–246

%ENV hash and, 215

anonymous, 234

converting to arrays, 116

counting items and, 126–129

creating, 115–119

elements and,
adding/reassigning/removing, 118

examples of using, 125–129

functions for, 121–124

human-readable data and, 125

list context and, 119

objects and, 288

references and, 241, 242

reversing, 126

scalar context and, 120

tree-like data structures and, 250

head() function, 284

header() method, 329

“Hello, world!”, 319

here-documents, 20, 328

hex() function, 21

hexadecimal numbers, 15, 21

hexadecimal system (hex system), 10

hr() method, 333

HTML

attributes and, 333

CGI.pm module and, 325–332, 338

form processing, CGI and, 333–338

generating, CGI and, 323

resources for further reading, 347

HTTP header, 319

human-readable data, hashes and, 125

hyphen (-) metacharacter, 161, 167

■ I
/i case-insensitive regexp modifier, 157, 161,

173

if . . . else statement, 61

if . . . elsif . . . else statement, 61–64

if statement, 54–66

expression modifiers and, 65

multiple choice statements and, 61–64

unless statement and, 64

implicit destruction, 311

indefinite loops, 66

indentation, 7, 9

index() function, 208

indexes (indices), 207

looping through arrays with, 100

pitfalls to avoid with, 176

■ INDEX

419

indexing into strings, 207

inequality, comparing numbers for, 29

infinite loops, 66–70

inheritance, 290, 299

init_expression, 71

INSERT command, 358–361

integers, 14

interpolation, 17, 46, 157

iterator variables, 103–108

■ J
join() function, 175

joke machine (sample program), 98, 106

■ K
keys() function, 121

keys, databases and, 350

keywords, 6

kill() function, 228

Kleene, Stephen, 154

Kleene’s star (* asterisk metacharacter), 165

Knuth, Donald, 11

■ L
last index, of an array, 99

last keyword, 74, 77

lc() function, 199

LDS (Leaning Toothpick Syndrome), 18

le (less than or equal to) string comparison
operator, 35

Leaning Toothpick Syndrome (LDS), 18

least significant bit, 26

left angle bracket (<), indicating read mode,
180, 182

length() function, 208

less-than operator (<)

number comparisons and, 29

string comparisons and, 35

less-than-or-equal-to operator (<=), 30, 71

letters, ranges of, 85

lexical scope, 146

lexical variables, 43, 142, 146

libwin32 modules, 276

link() function, 222

links, 222

list context

backquotes and, 227

file gobbing and, 218

hashes and, 119

reading in, 183, 186, 190

vs. scalar context, 94

list slices, 90, 91

lists, 81–91

arrays and, 91–114

elements within, accessing, 87–91

flattened, 84, 86, 95

qw// (quote words operator) for creating,
84–87, 89

return values and, 140

subroutines and, 149

literals, 13

local scope, 146

local variables, 142, 146

localtime() function, 226, 284, 327

log levels, 258

logical operators, 31, 60, 65

■ INDEX

420

login() method, Net::FTP and, 293, 294

long flags, 272

loop control constructs, 74–79

loop labels, 77, 78

looping constructs, 54, 66–79

loop control constructs and, 74–79

reexecuting the loops, 76

while loop and, 66–74

ls() method, Net::FTP and, 294

lt (less than) string comparison operator, 35

LWP, Bundle::LWP and, 284

■ M
/m multiple lines regexp modifier, 173

Makefile.PL, modules and, 281

matrices, 245, 249

McIlroy, Doug, 196

memory

backreference variables and, 167

file size and, 191

message printing (sample program), 68

metacharacters, 158–167

list of, 166

pitfalls to avoid with, 176

methods, 288

accessor, 302, 312

CGI.pm, 332, 338

creating, 301–313

polymorphism and, 290

private, 307, 312

utility, 309, 313

mirror() function, 285

misspellings, strict pragma and, 45

mkdir() function, 223

modules, 257–286

bundles and, 284

classes, adding to, 295

creating, 258

distributions of, 283

installing, 280

package hierarchies for, 263

reasons for using, 257

resources for further reading and, 286

searching CPAN for, 257, 278, 283

standard, 267–278

true value and, 260

using, 260–265

modulo operator (%), 25

most significant bit, 26

moving files, 222

multiple choice statements, 61–64

multiplication operator (*), 21, 23

munging, 173

musicians database (sample program), 378–385

my() function, 44, 45, 142, 374

arrays and, 92

foreach loop and, 72

hashes and, 117

MySQL database

connecting to, 369

DBD::mysql module for, 368

resources for further reading and, 386

SQL queries and, 370–375

MySQL server, 353–368

■ INDEX

421

creating databases and, 354–361

installing, 353

testing, 353

■ N
\n escape sequence (new line), 8

named parameters, 151, 332

namespaces, 144

naming conventions

for arrays, 91

for filehandles, 180

for subroutines, 132

for variables, 6, 46, 146

ne (not equal to) string comparison operator,
35

nedit text editor, 2

negative indexes (indices), 207

Net::FTP, 292

Net::Telnet, 281

networks, Bundle::libnet and, 285

new() function, 291, 369

next keyword, 75, 77

non-root users, relational databases and, 357

nonword characters, 163

normalization, 353

not (!) operator, 31, 61

NOT operator (~), 27

Notepad text editor, 3

number systems, 9

numbers, 14–16

automatic conversion of, 21, 34

comparing, 28, 56

list slices and, 90

ranges of, 85

types of, 14

numeric operators, 22–32, 36, 114

■ O
object methods, 289, 301–313

object-oriented programming (OO), 287–315

classes and, 295–313

reasons for using, 313–314

resources for further reading and, 291

terminology and, 287–292

objects, 287, 292, 314

constructors and, 291

creating, 298–301

destructors and, 292, 311

encapsulation and, 290

polymorphism and, 290

oct() function, 21

octal numbers, 15, 21

octal system, 10

one-dimensional feature of lists/arrays, 84

OO. See object-oriented programming

open() function

executing external programs and, 225

for files, 179, 181, 193

for pipes, 196

opendir() function, 220

operating system (OS), interfacing with, 215–
229

built-in functions and, 221–225

files/directories and, 217–225

operator precedence, 24

■ INDEX

422

auto-increment/auto-decrement operators
and, 41

list of operators and, 37

logical operators and, 61

operators, 22–38, 55–61

file test, 201

list of, 37

numeric comparisons and, 56

numeric, 22–32

operator precedence and, 24

string comparisons and, 58

string, 32–36

syntax for, 40

or (||) operator, 31, 61, 150

OR operator (|), 27

OS (operating system), interfacing with, 215–
229

built-in functions and, 221–225

files/directories and, 217–225

out of scope, 44

■ P
p() method, 330, 333

package hierarchies, 263

package operator, 145

packages, 144, 258, 289, 295, 311

param() function, 335, 337

parameters, forms/widgets and, 335

parentheses (())

arguments and, 7

foreach loop and, 103

lists and, 82

as metacharacters, for grouping, 163, 167

operator precedence and, 24, 38

in subroutines, 133–137, 139

passing arguments, 8

password tester (sample program), 58

path() function, 274

patterns, 154–170

percent sign (%), prefixing hashes, 115

performance, object-oriented programming
and, 314

period (.) metacharacter, 163, 167

Perl

homepage for, 12

object-oriented programming and, 287–315

Perl Monks and, 321

your first program in, 2, 12

Perl Monks, 321

Perl Package Manager (PPM), module
installation and, 280

perldoc, 268

permissions

chmod() function and, 224

file tests and, 201

persistence

object-oriented programming and, 314

relational databases and, 349

pipe (|), 196–200, 225

piped data, receiving and sending, 196

placeholders, 375, 378

Play() function, 277

pluralizing items, 200

plus sign (+) metacharacter, 165, 166, 167

.pm file extension, 295

pointers (C/C++), 231

■ INDEX

423

polymorphism, 290

pop() function, 109, 240

post-increments, 42

PPM (Perl Package Manager), module
installation and, 280

predeclaring subroutines, 136

pre-decrements, 42

pre-increments, 42

prepare() function, 371, 374

primary keys, databases and, 350

print() function, 4, 327, 331

private methods, 307, 312

procedural programming, vs. object-oriented
programming, 287, 313

program name and version (sample program),
133

programming, procedural vs. object-oriented,
287, 313

programming languages, 1

programs. See also sample programs

data-driven applications and, 314

documenting, 6

external, executing, 225–228

flow of execution and, 53

running/executing, 2

terminating, 50

push() function, 109, 240

put() method, Net::FTP and, 294

pwd() method, Net::FTP and, 294

■ Q
q// and qq// (quote-like operators), 19

quantifiers, 164

question mark (?) metacharacter, 165, 167

quote-like operators (q// and qq//), 19

quote words operator (qw//), 84–87, 89

quotes, for strings, 17–20

qw// (quote words operator), 84–87, 89

■ R
\r escape sequence (carriage return), 8

range operators, 36

ranges, 85

alphabetic range and, 87

combining with list slices, 91

read mode, 179, 182, 193

readdir() function, 220

readlink() function, 222

records, extracting fields from strings and, 210

redo keyword, 76, 77

ref() function, 296

reference counts, 243

references, 231–255

attributes and, 298

bless() function and, 288, 293, 296

creating, 232–239

defined, 231

destroying, 243

hashes and, 241, 242

life cycle of, 232–244

reference counts and, 243

using, 236, 244–255

regexp modifiers, 157, 173

the registry, Win32::TieRegistry and, 277

regular expression engine, how it works, 169

regular expressions (regexes), 153–177

■ INDEX

424

defined, 153

learning to read, 159

modules and, 283

patterns and, 154–170

substr() function and, 210

working with, 170–176

relational databases, 349–353

creating, 354–361

example illustrating, 378–385

SQL dialects and, 368

table joins and, 367

remainder operator (%), 25

rename() function, 204, 222, 226

rename() method, Net::FTP and, 294

repetition, 164

repetition operator (x), 32

REPLACE command, 386

require statement, 261

resources for further reading, 226

Apache web server, 318

bidirectional pipes, 200

built-in functions, 228

CGI, 317

character sets, 8

data structures, 255

file tests, 201

form widgets, methods for, 338

HTML, 347

modules, 286

MySQL, 353, 386

named parameters, 333

object-oriented programming, Perl and,
287, 291

passwords, creating, 353

regular expressions, 176

SQL data types, 357

standard modules, 267

return statement, 141

return values, 139–142

reverse() function, 126

arrays and, 109

lists and, 87

right angle bracket (>), indicating write mode,
182

right angle brackets, two (>>), indicating
append mode, 183

rindex() function, 210

rmdir () function, 223

root user, relational databases and, 357

rows, databases and, 349, 362

running programs, 2

■ S
s metacharacter, 162, 167

S metacharacter, 162, 167

/s single line regexp modifier, 173

s/// (substitute) operator, 170

sales results for tile shop (sample program), 102

sample programs

address book, 250–255

chess game, 231, 245–249, 338–347

computer program name and version, 133

conversion utility, 140–142

currency converter, 48

■ INDEX

425

directory for, setting up, 2, 3

file download, illustrating object-oriented
programming, 292

guessing game, 57

HTML generation and, 325–332

joke machine, 98, 106

message printing, 68

musicians database, 378–385

password tester, 58

Person class, illustrating object-oriented
programming, 295–313

summing utility, 137–140

tile shop sales results, 102

weather querying, 62

scalar context

backquotes and, 227

file gobbing and, 218

hashes and, 120

vs. list context, 94

reading in, 183, 186, 193

scalars, 13–52

automatic conversion of, 21, 34

defined, 13

lists and, 81

operators and, 22–38

return values and, 139

types of data and, 13–22

variable interpolation and, 46

variables and, 38–46

scoping, 43, 142–147, 305

script pragma, foreach loop and, 72

search-and-replace operations, 170

security

root user, relational databases and, 357

web security and, 347

SELECT command, 361–367

INSERT command and, 358

table joins and, 367

semicolon (;)

statements and, 7

subroutine declaration and, 136

sendmail, 198

sessions, object-oriented programming and,
314

set methods, 288, 303

shebang, 3, 329

shift, 300

shift() function, 112, 188, 192, 240

short circuiting, 150

short-circuited evaluation, 65

shuttle operator (<=>) , 30, 113

single-quoted strings, 17, 47

here-documents and, 20

within lists, 84

single quotes (‘ ’), for strings, 17

slicing, 90, 91

soft links, 222

sort() function, 112

sorting content, 193, 198

sound, Win32::Sound and, 276

source code, 2, 275

spaceship operator (<=>), 30, 113

special variables, 46

split() function, 154, 174

splitdir() function, 274

■ INDEX

426

splitpath() function, 274

SQL (Structured Query Language), 349

SQL commands, 354–367

case sensitivity and, 355

SQL dialects and, 368

SQL data types, 357

SQL queries, 349, 370–375

SQL servers, 353

square brackets ([])

anonymous arrays and, 234

arrow notation and, 243

for elements, 87, 96

square bracket ([]) metacharacters, 161, 167

standard input (<STDIN>), 49, 55, 67

star (*), SELECT command and, 361

start_form() function, 338

start_html() method, 330, 332

starting index, 208, 210

state handler, 371

statelessness, CGI programs and, 338

statements, 7, 31

static CGI, 333–336

static data, 289

static methods, 289

STDERR (standard error) filehandle, 179

STDIN (standard input) filehandle, 179

STDOUT (standard output) filehandle, 179

Stein, Lincoln, 317, 325, 347

step_expression, 71

strict pragma, 44

arrays and, 92

hashes and, 117

string functions, 208–213

string operators, 32–36, 114

stringifying, 268

array elements, 99

arrays, 102

variables, 94

strings, 4, 13, 17–22

automatic conversion of, 21, 34

comparing, 34, 58

comparison operator (==), caution for, 56

defined, 17

list slices and, 90

processing, 207–214

quotes for, 17–20

ranges and, 86

string functions and, 208–213

string operators and, 32–36

Structured Query Language (SQL), 349

sub keyword, 132

subroutines (subs), 43, 131–152

body of, 134

defining, 132

invoking, 133–137

naming conventions for, 132

object-oriented programming and, 314

order of declaration for, 134–137

passing arguments and, 147–152

passing arguments to, 137

return statement and, 141

when to use them, 131

substitution, 170

substr() function, 210

■ INDEX

427

substrings, 208

subtraction operator (-), 23

summing utility (sample program), 137–140

symbolic links, 222

symlink() function, 222

syntax errors, 16

sysread() function, 228

system() function, 225

syswrite() function, 228

■ T
\t escape sequence (tab), 8, 17

table indexing, 386

table joins, 367, 377

tables, databases and, 349–353

table joins and, 367

table names and, 356

telnet, Net::Telnet and, 281

templates, CGI programs and, 348

Term::Readline, 284

test_expression, 71

testing

Benchmark and, 275

Test module and, 285

text editors, 2

text processing, 207–214

textfield() function, 338

timethese() function, 275

timethis() function, 275

timing code, Benchmark and, 275

tmpdir() function, 274

tr/// operator (transliteration operator), 212

trees, data structures and, 250–255

true, 28

true value, modules and, 260

true, 54–60

type() method, Net::FTP and, 294

■ U
uc() function, 199

unary minus operator (-), 25

undef variables (undefined variables), 59

underscore (_)

in array names, 91

for chunking large integers, 14

private methods and, 308

subroutines and, 132

in variable names, 46

Unicode character set, 8, 12

Unicode values, 34

unless statement, 64, 65

unlink() function, 222, 226

unshift() function, 112, 240

until loop, 70, 75

UPDATE command, 385

USE command, 356

use statements, 262, 329

use strict;, 44, 250, 329

use warnings;, 5, 329

utility methods, 309, 313

■ V
values() function, 122

variable interpolation, 17, 46

variables, 38–46

■ INDEX

428

anonymous data and, 232, 234

backreference, 167, 171, 176

defined, 13

global, 43, 142

lexical, 43, 142, 146

modifying, 39

naming conventions for, 6, 46, 146

special, 46

undefined (undef variables), 59

vi text editor, 2

Volume() function, 277

■ W
w metacharacter, 162, 167

W metacharacter, 162, 167

-w option, for warnings, 4

Wall, Larry, 55, 79

wanted() function, 270

warn() function, 285

warning messages, 5, 59, 87

.wav files, Win32::Sound and, 276

weather query (sample program), 62

Web, Bundle::LWP and, 284

web forms, 333–338, 378–385

web security, 347

web servers, CGI and, 317–348

WHERE clause (SELECT command), 362, 367

whereis command (Unix), 216

while loop, 66–74

arrays and, 100

breaking out of, 75

expression modifiers and, 74

for loop and, 71

whitespace, 4, 7, 9

widgets, 333, 338

Win32 modules, 276

Win32::Registry, 277

Win32::Sound, 276

Win32::TieRegistry, 277

Windows, Win32 modules and, 276

Windows paths, 17

word boundaries, 163

WordPad text editor, 2

write mode, 179, 182

writing to files, 192–195

■ X
\x escape sequence (Unicode character), 8

/x readability regexp modifier, for
comments/whitespace, 173

x repetition operator, 32

XOR operator (^), 27

	Prelim
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	The Future of Perl—Developers Releases and Perl 6
	Perl 6
	Why Perl?
	It’s Open Source
	Perl on the Web and the Network
	Windows, Unix, and Other Operating Systems
	Program Names
	The Prompt
	What Do I Need to Use This Book?
	How Do I Get Perl?
	How to Get Help
	Perldoc
	Perl Resources
	Web Sites
	Newsgroups
	IRC
	Books
	Downloading This Book’s Example Source Code
	Exercises
	Who This Book Is For
	How This Book Is Organized

	First Steps in Perl
	Programming Languages
	Our First Perl Program
	Program Structure
	Documenting Your Programs
	Keywords
	Statements and Statement Blocks

	Character Sets
	Escape Sequences
	Whitespace

	Number Systems
	The Perl Debugger
	Summary
	Exercises

	Scalars
	Types of Data
	Numbers
	Binary, Hexadecimal, and Octal Numbers
	Strings
	Singlevs. Double-Quoted Strings
	q// and qq//
	Here-Documents
	Converting Between Numbers and Strings

	Operators
	Numeric Operators
	Arithmetic Operators
	Bitwise Operators
	Truth and Falsehood
	Boolean Operators
	String Operators
	String Comparison
	Operators to Be Covered Later
	Operator Precedence

	Variables
	Modifying a Variable
	Operating and Assigning at Once
	Autoincrement and Autodecrement
	Multiple Assignments
	Scoping
	Variable Names
	The Special Variable $_

	Variable Interpolation
	Currency Converter
	Introducing <STDIN>
	The chomp() and chop() Functions

	Two Miscellaneous Functions
	The exit() Function
	The die() Function

	Summary
	Exercises

	Control Flow Constructs
	The if Statement
	Operators Revisited
	Comparing Numbers
	Comparing Strings
	Other Tests
	Logical Operators
	Multiple Choice: if . . . else
	Even More Choices: if . . . elsif . . . else
	The unless Statement
	Expression Modifiers
	Using Short-Circuited Evaluation

	Looping Constructs
	The while Loop
	while (<STDIN>)
	Infinite Loops
	Looping Until
	The for Loop
	The foreach Loop
	do .. while and do .. until
	Expression Modifying

	Loop Control Constructs
	Breaking Out
	Going On to the Next
	Reexecuting the Loop
	Loop Labels
	goto

	Summary
	Exercises

	Lists and Arrays
	Lists
	Simple Lists
	More Complex Lists
	Creating Lists Easily with qw//
	Ranges
	Accessing List Values
	List Slices
	Combining Ranges and Slices

	Arrays
	Assigning Arrays
	Scalar vs. List Context
	Adding to an Array
	Accessing an Array
	Accessing Single Elements
	$#array
	Looping Through an Array with Indexes
	Accessing Multiple Elements
	Processing Arrays with the foreach Loop
	Choosing an Iterator
	Modifying the Value of an Iterator
	Expression Modifier for the foreach Loop
	Array Functions

	Summary
	Exercises

	Hashes
	Creating a Hash
	Working with Hash Values
	Adding, Changing, and Removing Elements

	Hash in List Context
	Hash in Scalar Context
	Hash Functions
	The keys() Function
	The values() Function
	The each() Function
	The delete() Function
	The exists() Function

	Hash Examples
	Creating Readable Variables
	“Reversing” Information
	Counting Things

	Summary
	Exercises

	Subroutines/Functions
	Understanding Subroutines
	Defining a Subroutine
	Invoking a Subroutine
	Order of Declaration and Invoking Functions

	Passing Arguments into Functions
	Return Values
	The return Statement

	Understanding Scope
	Global Variables
	Introduction to Packages
	Lexical Variables (aka Local Variables)

	Some Important Notes on Passing Arguments
	Function Arguments Passed by Reference
	Lists Are One-Dimensional
	Default Argument Values
	Named Parameters

	Summary
	Exercises

	Files and Data
	Filehandles
	The open() Function
	The close() Function
	Three Ways to Open a File
	Read Mode
	Write Mode
	Append Mode
	Reading in Scalar Context

	Reading with the Diamond
	@ARGV: The Command-Line Arguments
	@ARGV and <>
	$ARGV
	Reading in List Context

	Writing to Files
	Buffering

	Opening Pipes
	Receiving Piped Data from a Process
	Sending Piped Data to Another Process
	Bidirectional Pipes

	File Tests
	Summary
	Exercises

	String Processing
	Character Position
	String Functions
	The length() Function
	The index() Function
	The rindex() Function
	The substr() Function
	Transliteration

	Summary
	Exercises

	Interfacing to the Operating System
	The %ENV Hash
	Working with Files and Directories
	File Globbing with glob()
	Reading Directories
	Functions to Work with Files and Directories
	The chdir() Function
	The unlink() Function
	The rename() Function
	The link(), symlink(), and readlink() Functions
	The mkdir() and rmdir() Functions
	The chmod() Function
	An Example

	Executing External Programs
	The system() Function
	Backquotes

	There’s More
	Summary
	Exercises

	References
	What Is a Reference?
	Anonymity

	The Life Cycle of a Reference
	Reference Creation
	Anonymous Arrays and Anonymous Hashes
	Using References
	Array Elements
	Reference Modification
	Hash References
	Notation Shorthand Using ->
	Reference Counting and Destruction
	Counting Anonymous References

	Using References for Complex Data Structures
	Matrices
	Autovivification
	Trees

	Summary
	Exercises

	Modules
	Why Do We Need Them?
	Creating a Module
	Including Other Files with use
	do
	require
	use
	Changing @INC
	Package Hierarchies

	Exporters
	The Perl Standard Modules
	Online Documentation
	Data::Dumper
	File::Find
	Getopt::Std
	Getopt::Long
	File::Spec
	Benchmark
	Win32
	Win32::Sound
	Win32::TieRegistry

	CPAN
	Installing Modules with PPM
	Installing a
	Module Manually
	The CPAN Module
	Bundles
	Bundle::LWP
	Bundle::libnet
	Submitting Your Own Module to CPAN

	Summary

	Object-Oriented Perl
	OO Buzzwords
	Objects
	Attributes
	Methods
	Classes
	Polymorphism
	Encapsulation
	Inheritance
	Constructors
	Destructors

	An Example
	Rolling Your Own Classes
	Bless You, My Reference
	Storing Attributes
	The Constructor
	Considering Inheritance
	Providing Attributes
	Creating Methods
	Get-Set Methods
	Class Attributes
	Privatizing Your Methods
	Utility Methods
	Death of an Object
	The Finished Class

	Do You Need OO?
	Are Your Subroutines Tasks?
	Do You Need Persistence?
	Do You Need Sessions?
	Do You Need Speed?
	Do You Want the User to Be Unaware of the Object?
	Are You Still Unsure?

	Summary
	Exercises

	Introduction to CGI
	We Need a Web Server
	Creating
	a
	CGI Directory

	Writing CGI Programs
	“hello, world!” in CGI
	What to Do If Things Go Wrong
	The CGI Environment
	Generating HTML

	Introducing CGI.pm
	Conventional Style of Calling Methods

	CGI.pm Methods
	Methods That Generate Several Tags
	Named Parameters
	Methods That Generate One Tag
	Providing Attributes

	Processing Form Data
	The param() Method
	Dynamic CGI

	Let’s Play Chess!
	Improvements We Can Make

	What We Did Not Talk About
	Summary
	Exercises

	Perl and DBI
	Introduction to Relational Databases
	We Need an SQL Server—MySQL
	Testing the MySQL Server
	Creating a Database
	The CREATE DATABASE Command
	The USE Command
	The CREATE TABLE Command
	The DESCRIBE Command
	Non-root User with the GRANT Command
	The INSERT Command
	The SELECT Command
	The WHERE Clause
	The ORDER BY Clause
	More Complicated SELECTs
	Table Joins

	Introduction to DBI
	Installing DBI and the DBD::mysql
	Connecting to the MySQL Database
	Executing an SQL Query with DBI
	A More Complex Example
	Use Placeholders
	DBI and Table Joins

	Perl, DBI, and CGI
	What We Didn’t Talk About
	Summary
	Exercises

	Exercise Solutions
	Chapter 1
	1.

	Chapter 2
	1.
	2.
	3.
	4.

	Chapter 3
	1.
	2.
	3.

	Chapter 4
	1.
	3.

	Chapter 5
	1.
	2.
	3.

	Chapter 6
	1.
	2.
	3.

	Chapter 7
	1.
	2.
	3.
	4.

	Chapter 8
	1.
	2.
	3.

	Chapter 9
	1.
	2.

	Chapter 10
	1.

	Chapter 11
	1.
	2.
	3.

	Chapter 13
	1.

	Chapter 14
	1.
	2.

	Chapter 15
	1.
	2.

	Index

