Tools & Techniques for Perl Developers

Advanced
Perl
Pro gramming

C)’REILI_Y® Simon Cozens

Perl

O’REILLY*

Advanced Perl Programming

Every programmer must keep up with the latest tools and techniques. This updated version
of Advanced Perl Programming from O'Reilly gives you the essential knowledge of the
modern Perl programmer. Whatever vour current level of Perl expertise, this book will

help you push your skills to the next level and become a more accomplished programmer.

O'Reilly’s most high-level Perl tutorial to date, Advanced Perl Programming, Second Edition teaches

you all the complex techniques for production-ready Perl programs. This completely updated guide
clearly explains concepts such as introspection, overriding built-ins, extending Perl’s object-oriented

model, and testing your code for greater stability.

Other topics include:

e Parsing

e Templating tools

e Unicode

s Interaction with C and other languages
e Working with natural language data

In addition, this guide demystifies once complex topics such as object-relational mapping and event-
based development—arming you with everything you need to completely upgrade your skills.

“It bas been said that sufficiently advanced Perl code is indistinguishable from magic. This book
of spells goes a long way to unlocking those secrets. It has the power to transform the most humble
programmer into a Perl wizard.”
—Andy Wardley
“The information bere isn’t theoretical. It presents tools and techniques for solving real prob-
lems cleanly and elegantly.”
—Curtis “Ovid” Poe

“Advanced Perl Programming collects bard-earned knowledge from some of the best programmers
in the Perl community, and explains it in a way thal even novices can apply immediately.”

—chromatic, Editor of Perl.com

www.oreilly.com

US $39.95 CAN $55.95
ISBN-10: 0-596-00456-7

ISBN-13: 978-0-596-00456-9 _
il saia" Includes
9 L sdaiarl

sooxs onuine FREE 45-Da
AL o FREE 4502y

Advanced Perl Programming

Other Perl resources from 0’Reilly

Related titles

Perl Books
Resource Center

O'REILLY"

perl.com

THE SOURCE FOR PERL

Conferences

O’REILLY NETWORK
Safari
Bookshelf.

Learning Perl Perl in a Nutshell
Perl 6 and Parrot Essentials Perl Testing: A Developer’s
Perl Best Practices Notebook™
Perl Cookbook™ Practical mod_perl
Perl Debugger Pocket Programming Perl
Reference
perl.oreilly.com is a complete catalog of O’Reilly’s books on Perl

and related technologies, including sample chapters and code
examples.

Perl.com is the central web site for the Perl community. It is the
perfect starting place for finding out everything there is to know
about Perl.

O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today.

SECOND EDITION

Advanced Perl Programming

Simon Cozens

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

Advanced Perl Programming, Second Edition
by Simon Cozens

Copyright © 2005, 1997 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/insti-
tutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Allison Randal
Production Editor: Darren Kelly
Cover Designer: Edie Freedman
Interior Designer: David Futato

Production Services: nSight, Inc.

Printing History:
August 1997: First Edition.
June 2005: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Advanced Perl Programming, the image of a black leopard, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

RepKover,
‘Eﬂphé This book uses RepKover', a durable and flexible lay-flat binding.

ISBN: 0-596-00456-7
[M]

Preface

1.

Advanced Techniques

Introspection

Messing with the Class Model
Unexpected Code
Conclusion

Parsing Techniques

Parse::RecDescent Grammars
Parse::Yapp

Other Parsing Techniques
Conclusion

TemplatingTools

Formats and Text::Autoformat
Text::Template

HTML:: Template
HTML::Mason

Template Toolkit

AxKit

Conclusion

Objects, Databases, and Applications

Beyond Flat Files
Object Serialization
Object Databases

Table of Contents

107
114
116

118
119
129

Database Abstraction
Practical Uses in Web Applications
Conclusion

Natural LanguageTools

Perl and Natural Languages
Handling English Text
Modules for Parsing English
Categorization and Extraction
Conclusion

Perland Unicode

Terminology

What Is Unicode?

Unicode Transformation Formats
Handling UTF-8 Data

Encode

Unicode for XS Authors
Conclusion

Programming in an Event-Driven Environment
Top-Level Pieces: Components
Conclusion

Testing

Test::Simple

Test::More

Test::Harness

Test::Builder
Test::Builder::Tester

Keeping Tests and Code Together
Unit Tests

Conclusion

InlineExtensions

Simple Inline::C

More Complex Tasks with Inline::C
Inline:: Everything Else

Conclusion

134
142
148

149
150
154
159
171

172
174
176
179
184
190
193

195
207
213

215
217
220
222
224
225
226
232

233
237
250
255

Vi

Table of Contents

10.

Funwith Perl

Obfuscation

Just Another Perl Hacker
Perl Golf

Perl Poetry

Acme::"

Conclusion

256
261
263
264
266
270

Table of Contents

vii

Preface

It was all Nathan Torkington’s fault. Our Antipodean programmer, editor, and
O’Reilly conference supremo friend asked me to update the original Advanced Perl
Programming way back in 2002.

The Perl world had changed drastically in the five years since the publication of the
first edition, and it continues to change. Particularly, we’ve seen a shift away from
techniques and toward resources—from doing things yourself with Perl to using
what other people have done with Perl. In essence, advanced Perl programming has
become more a matter of knowing where to find what you need on the CPAN;
rather than a matter of knowing what to do.

Perl changed in other ways, too: the announcement of Perl 6 in 2000 ironically
caused a renewed interest in Perl 5, with people stretching Perl in new and interest-
ing directions to implement some of the ideas and blue-skies thinking about Perl 6.
Contrary to what we all thought back then, far from killing off Perl 5, Perl 6’s devel-
opment has made it stronger and ensured it will be around longer.

So it was in this context that it made sense to update Advanced Perl Programming to
reflect the changes in Perl and in the CPAN. We also wanted the new edition to be
more in the spirit of Perl—to focus on how to achieve practical tasks with a mini-
mum of fuss. This is why we put together chapters on parsing techniques, on deal-
ing with natural language documents, on testing your code, and so on.

But this book is just a beginning; however tempting it was to try to get down every-
thing I ever wanted to say about Perl, it just wasn’t possible. First, because Perl usage
covers such a wide spread—on the CPAN, there are ready-made modules for folding
DNA sequences, paying bills online, checking the weather, and playing poker. And
more are being added every day, faster than any author can keep up. Second, as
we’ve mentioned, because Perl is changing. I don’t know what the next big advance

* The Comprehensive Perl Archive Network (http://www.cpan.org) is the primary resource for user-contributed
Perl code.

in Perl will be; I can only take you through some of the more important techniques
and resources available at the moment.

Hopefully, though, at the end of this book you’ll have a good idea of how to use
what’s available, how you can save yourself time and effort by using Perl and the Perl
resources available to get your job done, and how you can be ready to use and inte-
grate whatever developments come down the line.

In the words of Larry Wall, may you do good magic with Perl!

Audience

If you’ve read Learning Perl and Programming Perl and wonder where to go from
there, this book is for you. It’ll help you climb to the next level of Perl wisdom. If
you’ve been programming in Perl for years, you’ll still find numerous practical tools
and techniques to help you solve your everyday problems.

Contents

Chapter 1, Advanced Techniques, introduces a few common tricks advanced Perl pro-
grammers use with examples from popular Perl modules.

Chapter 2, Parsing Techniques, covers parsing irregular or unstructured data with
Parse::RecDescent and Parse::Yapp, plus parsing HTML and XML.

Chapter 3, Templating Tools, details some of the most common tools for templating and
when to use them, including formats, Text::Template, HTML: : Template, HTML: :Mason,
and the Template Toolkit.

Chapter 4, Objects, Databases, and Applications, explains various ways to efficiently
store and retrieve complex data using objects—a concept commonly called object-
relational mapping.

Chapter 5, Natural Language Tools, shows some of the ways Perl can manipulate
natural language data: inflections, conversions, parsing, extraction, and Bayesian
analysis.

Chapter 6, Perl and Unicode, reviews some of the problems and solutions to make
the most of Perl’s Unicode support.

Chap ter 7, POE, looks at the popular Perl event-based environment for task sched-
uling, multitasking, and non-blocking I/O code.

Chapter 8, Testing, covers the essentials of testing your code.

Chapter 9, Inline Extensions, talks about how to extend Perl by writing code in other
languages, using the Inline::* modules.

x | Preface

Chapter 10, Fun with Perl, closes on a lighter note with a few recreational (and edu-
cational) uses of Perl.

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.
Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
classes, namespaces, methods, modules, parameters, values, XML tags, HTML
tags, the contents of files, or the output from commands.
Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic
Shows text that should be replaced with user-supplied values.

R
s

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

Preface | xi

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Advanced Perl Programming, Second Edi-
tion by Simon Cozens. Copyright 2005 O’Reilly Media, Inc. 0-596-00456-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

We'd Like to Hear from You

Please address comments and questions concerning this book to the publisher:
O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/advperl2/
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Safari® Enabled

= When you see a Safari Enabled icon on the cover of your favorite tech-
B§°?!g!~l nology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.
Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

xi | Preface

Acknowledgments

I've already blamed Nat Torkington for commissioning this book; I should thank him
as well. As much as writing a book can be fun, this one has been. It has certainly been
helped by my editors, beginning with Nat and Tatiana Apandi, and ending with the
hugely talented Allison Randal, who has almost single-handedly corrected code, col-
lated comments, and converted my rambling thoughts into something publishable.
The production team at O’Reilly deserves a special mention, if only because of the tor-
ture I put them through in having a chapter on Unicode.

Allison also rounded up a great crew of highly knowledgeable reviewers: my thanks to
Tony Bowden, Philippe Bruhat, Sean Burke, Piers Cawley, Nicholas Clark, James Dun-
can, Rafael Garcia-Suarez, Thomas Klausner, Tom McTighe, Curtis Poe, chromatic,
and Andy Wardley.

And finally, there are a few people I'd like to thank personally: thanks to Heather
Lang, Graeme Everist, and Juliet Humphrey for putting up with me last year, and to
Jill Ford and the rest of her group at All Nations Christian College who have to put
up with me now. Tony Bowden taught me more about good Perl programming than
either of us would probably admit, and Simon Ponsonby taught me more about
everything else than he realises. Thanks to Al and Jamie for being there, and to Mal-
colm and Caroline Macdonald and Noriko and Akio Kawamura for launching me on
the current exciting stage of my life.

Preface | xiii

CHAPTER 1
Advanced Techniques

Once you have read the Camel Book (Programming Perl), or any other good Perl
tutorial, you know almost all of the language. There are no secret keywords, no other
magic sigils that turn on Perl’s advanced mode and reveal hidden features. In one
sense, this book is not going to tell you anything new about the Perl language.

What can I tell you, then? T used to be a student of music. Music is very simple.
There are 12 possible notes in the scale of Western music, although some of the most
wonderful melodies in the world only use, at most, eight of them. There are around
four different durations of a note used in common melodies. There isn’t a massive
musical vocabulary to choose from. And music has been around a good deal longer
than Perl. T used to wonder whether or not all the possible decent melodies would
soon be figured out. Sometimes I listen to the Top 10 and think I was probably right
back then.

But of course it’s a bit more complicated than that. New music is still being pro-
duced. Knowing all the notes does not tell you the best way to put them together.
I've said that there are no secret switches to turn on advanced features in Perl, and
this means that everyone starts on a level playing field, in just the same way that
Johann Sebastian Bach and a little kid playing with a xylophone have precisely the
same raw materials to work with. The key to producing advanced Perl—or advanced
music—depends on two things: knowledge of techniques and experience of what
works and what doesn’t.

The aim of this book is to give you some of each of these things. Of course, no book
can impart experience. Experience is something that must be, well, experienced.
However, a book like this can show you some existing solutions from experienced
Perl programmers and how to use them to solve the problems you may be facing.

On the other hand, a book can certainly teach techniques, and in this chapter we’re
going to look at the three major classes of advanced programming techniques in Perl.
First, we’ll look at introspection: programs looking at programs, figuring out how
they work, and changing them. For Perl this involves manipulating the symbol

table—especially at runtime, playing with the behavior of built-in functions and using
AUTOLOAD to introduce new subroutines and control behavior of subroutine dispatch
dynamically. We’ll also briefly look at bytecode introspection, which is the ability to
inspect some of the properties of the Perl bytecode tree to determine properties of the
program.

The second idea we’ll look at is the class model. Writing object-oriented programs
and modules is sometimes regarded as advanced Perl, but I would categorize it as
intermediate. As this is an advanced book, we’re going to learn how to subvert Perl’s
object-oriented model to suit our goals.

Finally, there’s the technique of what I call unexpected code—code that runs in places
you might not expect it to. This means running code in place of operators in the case
of overloading, some advanced uses of tying, and controlling when code runs using
named blocks and eval.

These three areas, together with the special case of Perl XS programming—which
we’ll look at in Chapter 9 on Inline—delineate the fundamental techniques from
which all advanced uses of Perl are made up.

Introspection

First, though, introspection. These introspection techniques appear time and time
again in advanced modules throughout the book. As such, they can be regarded as
the most fundamental of the advanced techniques—everything else will build on
these ideas.

Preparatory Work: Fun with Globs

Globs are one of the most misunderstood parts of the Perl language, but at the same
time, one of the most fundamental. This is a shame, because a glob is a relatively
simple concept.

When you access any global variable in Perl—that is, any variable that has not been
declared with my—the perl interpreter looks up the variable name in the symbol table.
For now, we’ll consider the symbol table to be a mapping between a variable’s name
and some storage for its value, as in Figure 1-1.

Note that we say that the symbol table maps to storage for the value. Introductory
programming texts should tell you that a variable is essentially a box in which you
can get and set a value. Once we’ve looked up $a, we know where the box is, and we
can get and set the values directly. In Perl terms, the symbol table maps to a refer-
ence to $a.

2 | Chapter1: Advanced Techniques

Symbol table

Figure 1-1. Consulting the symbol table, take 1

You may have noticed that a symbol table is something that maps names to storage,
which sounds a lot like a Perl hash. In fact, you’d be ahead of the game, since the
Perl symbol table is indeed implemented using an ordinary Perl hash. You may also
have noticed, however, that there are several things called a in Perl, including $a, @a,
%a, &a, the filehandle a, and the directory handle a.

This is where the glob comes in. The symbol table maps a name like a to a glob,
which is a structure holding references to all the variables called a, as in Figure 1-2.

=
5

As you can see, variable look-up is done in two stages: first, finding the appropriate
glob in the symbol table; second, finding the appropriate part of the glob. This gives
us a reference, and assigning it to a variable or getting its value is done through this
reference.

Symbol table

Figure 1-2. Consulting the symbol table, take 2

Introspection | 3

Aliasing

This disconnect between the name look-up and the reference look-up enables us to
alias two names together. First, we get hold of their globs using the *name syntax,
and then simply assign one glob to another, as in Figure 1-3.

*h =*a;

Symbol table

a

Figure 1-3. Aliasing via glob assignment

We’ve assigned b’s symbol table entry to point to a’s glob. Now any time we look up
a variable like %b, the first stage look-up takes us from the symbol table to a’s glob,
and returns us a reference to %a.

The most common application of this general idea is in the Exporter module. If T
have a module like so:
package Some::Module;

use base 'Exporter';
our @EXPORT = qw(useful);

sub useful { 42 }

then Exporter is responsible for getting the useful subroutine from the Some: :Module
package to the caller’s package. We could mock our own exporter using glob assign-
ments, like this:

package Some::Module;
sub useful { 42 }

4 | Chapter1: Advanced Techniques

sub import {
no strict 'refs';
*{caller()."::useful"} = *useful;
}
Remember that import is called when a module is used. We get the name of the call-
ing package using caller and construct the name of the glob we’re going to
replace—for instance, main: :useful. We use a symbolic reference to turn the glob’s
name, which is a string, into the glob itself. This is just the same as the symbolic ref-
erence in this familiar but unpleasant piece of code:

$answer = 42;
$variable = "answer";
)

print ${$variable};

If we were using the recommended strict pragma, our program would die immedi-
ately—and with good reason, since symbolic references should only be used by peo-
ple who know what they’re doing. We use no strict 'refs'; to tell Perl that we're
planning on doing good magic with symbolic references.

R

Many advanced uses of Perl need to do some of the things that strict
prevents the uninitiated from doing. As an initiated Perl user, you will

4* occasionally have to turn strictures off. This isn’t something to take
lightly, but don’t be afraid of it; strict is a useful servant, but a bad
master, and should be treated as such.

Now that we have the *main::useful glob, we can assign it to point to the *useful
glob in the current Some: :Module package. Now all references to useful() in the main
package will resolve to 8Some: :Module: :useful.

That is a good first approximation of an exporter, but we need to know more.

Accessing parts of a glob

With our naive import routine above, we aliased main: :useful by assigning one glob
to another. However, this has some unfortunate side effects:

use Some::Module;
our $useful = "Some handy string";

print $Some::Module::useful;

Since we’ve aliased two entire globs together, any changes to any of the variables in
the useful glob will be reflected in the other package. If Some::Module has a more
substantial routine that uses its own $useful, then all hell will break loose.

All we want to do is to put a subroutine into the 8useful element of the *main: :useful
glob. If we were exporting a scalar or an array, we could assign a copy of its value to the
glob by saying:

Introspection | 5

${caller()."::useful"} = $useful;
@{caller()."::useful"} = @useful;

However, if we try to say:
&{caller()."::useful"} = 8useful;

then everything goes wrong. The &useful on the right calls the useful subroutine and
returns the value 42, and the rest of the line wants to call a currently non-existant
subroutine and assign its return value the number 42. This isn’t going to work.

Thankfully, Perl provides us with a way around this. We don’t have to assign the
entire glob at once. We just assign a reference to the glob, and Perl works out what
type of reference it is and stores it in the appropriate part, as in Figure 1-4.

*a =\@b; 2

*a

Symbol table

a

@b

nls|lw|m] =

Figure 1-4. Assigning to a glob’s array part

Notice that this is not the same as @a=@b; it is real aliasing. Any changes to @ will be
seen in @a, and vice versa:

@b
*a

(1,2,3,4);
\@b;

6 | Chapter1: Advanced Techniques

push @b, 5;
print @a; # 12345

However:

$a - "Bye"

$b = "Hello there!";

print $a; # Bye
Although the @a array is aliased by having its reference connected to the reference
used to locate the @b array, the rest of the *a glob is untouched; changes in $b do not
affect $a.

You can write to all parts of a glob, just by providing the appropriate references:

*a = \"Hello";
*a:[lJzJ?)];
*a = { red => "rouge", blue => "bleu" };

print $a; # Hello

print $a[1]; #2

print $a{"red"}; # rouge
The three assignments may look like they are replacing each other, but each writes to
a different part of the glob depending on the appropriate reference type. If the
assigned value is a reference to a constant, then the variable’s value is unchangeable.

*a = \1234;

$a = 10; # Modification of a read-only value attempted
Now we come to a solution to our exporter problem; we want to alias &main: :useful
and &Some: :Module: :useful, but no other parts of the useful glob. We do this by
assigning a reference to &Some: :Module: :useful to *main: :useful:

sub useful { 42 }
sub import {
no strict 'refs';
*{caller()."::useful"} = \&useful;
}

This is similar to how the Exporter module works; the heart of Exporter is this seg-
ment of code in Exporter: :Heavy: :heavy export:

foreach $sym (@imports) {
shortcut for the common case of no type character
(*{"${callpkg}::$sym"} = \&{"${pkg}::$sym"}, next)
unless $sym =~ s/*(\W)//;

$type = $1;
*{"${callpkg}::$sym"} =
$type eq '&" ? \&{"${pkg}::$sym"} :

$type eq '$' ? \${"${pkg}::$sym"} :
$type eq '@ ? \@{"${pkg}::$sym"} :
$type eq '%' ? \%{"${pkg}::$sym"} :
$type eq '*' 2 *{"${pkg}::$sym"} :

do { require Carp; Carp::croak("Can't export symbol:$type$sym") };

Introspection | 7

This has a list of imports, which have either come from the use Some::Module '...';
declaration or from Some: :Module’s default @EXPORT list. These imports may have type
sigils in front of them, or they may not; if they do not, such as when you say use Carp
'croak';, then they refer to subroutines.

In our original case, we had set @EXPORT to ("useful"). First, Exporter checks for a
type sigil and removes it:
(*{"${callpkg}: :$sym"} = \&{"${pkg}::$sym"}, next)
unless $sym =~ s/*(\W)//;
Because $sym is "useful"—with no type sigil—the rest of the statement executes with
a result similar to:

*{"${callpkg}::$sym"} = \&{"${pkg}::$sym"};
next;

Plugging in the appropriate values, this is very much like our mock exporter:
*{$callpkg."::useful"} = \&{"Some::Module: :useful"};

On the other hand, where there is a type sigil the exporter constructs the reference
and assigns the relevant part of the glob:

*{"${callpkg}::$sym"} =
$type eq '&" ? \&{"${pkg}::$sym"} :
$type eq '$" ? \${"${pkg}::$sym"} :
$type eq '@" ? \@{"${pkg}::$sym"} :
$type eq '%' ? \%{"${pkg}::$sym"} :
$type eq '*' 2 *{"${pkg}::$sym"} :
do { require Carp; Carp::croak("Can't export symbol: $type$sym") };

Accessing Glob Elements

The *glob = ... syntax obviously only works for assigning references to the appropri-
ate part of the glob. If you want to access the individual references, you can treat the
glob itself as a very restricted hash: *a{ARRAY} is the same as \@a, and *a{SCALAR} is the
same as \$a. The other magic names you can use are HASH, I0, CODE, FORMAT, and GLOB,
for the reference to the glob itself. There are also the really tricky PACKAGE and NAME ele-
ments, which tell you where the glob came from.

These days, accessing globs by hash keys is really only useful for retrieving the I0 ele-
ment. However, we’ll see an example later of how it can be used to work with glob ref-
erences rather than globs directly.

Creating subroutines with glob assignment

One common use of the aliasing technique in advanced Perl is the assignment of
anonymous subroutine references, and especially closures, to a glob. For instance,
there’s a module called Data::BT::PhoneBill that retrieves data from British Tele-
com’s online phone bill service. The module takes comma-separated lines of infor-

8 | Chapter1: Advanced Techniques

mation about a call and turns them into objects. An older version of the module split
the line into an array and blessed the array as an object, providing a bunch of read-
only accessors for data about a call:

package Data::BT::PhoneBill:: Call;

sub new {

my ($class, @data) = @_;
bless \@data, $class;

}
sub installation { shift->[0] }
sub line { shift->[1] }

Closures

A closure is a code block that captures the environment where it’s defined—specifi-
cally, any lexical variables the block uses that were defined in an outer scope. The fol-
lowing example delimits a lexical scope, defines a lexical variable $seq within the
scope, then defines a subroutine sequence that uses the lexical variable.
{
my $seq = 3;
sub sequence { $seq += 3 }

}

print $seq; # out of scope
print sequence; # prints 6
print sequence; # prints 9

Printing $seq after the block doesn’t work, because the lexical variable is out of scope
(it'll give you an error under use strict. However, the sequence subroutine can still
access the variable to increment and return its value, because the closure { $seq += 3 }
captured the lexical variable $seq.

See perlfaq7 and perlref for more details on closures.

Of course, the inevitable happened: BT added a new column at the beginning, and
all of the accessors had to shift down:

sub type { shift->[0] }
sub installation { shift->[1] }
sub line { shift->[2] }

Clearly this wasn’t as easy to maintain as it should be. The first step was to rewrite
the constructor to use a hash instead of an array as the basis for the object:

our @fields = qw(type installation line chargecard date time
destination number duration rebate cost);

Introspection | 9

sub new {

my ($class, @data) = @_;

bless { map { $fields[$_] => $data[$] } 0..$#fields } => $class;
}

This code maps type to the first element of @data, installation to the second, and so
on. Now we have to rewrite all the accessors:

sub type { shift->{type} }
sub installation { shift->{installation} }
sub line { shift->{line} }

This is an improvement, but if BT adds another column called friends_and family
discount, then I have to type friends and family discount three times: once in the
@fields array, once in the name of the subroutine, and once in the name of the hash
element.

It’s a cardinal law of programming that you should never have to write the same
thing more than once. It doesn’t take much to automatically construct all the acces-
sors from the @fields array:
for my $f (@fields) {
no strict 'refs’;
*$f = sub { shift->{$f} };
}
This creates a new subroutine in the glob for each of the fields in the array—equiva-
lent to *type = sub { shift->{type} }. Because we’re using a closure on $f, each
accessor “remembers” which field it’s the accessor for, even though the $f variable is
out of scope once the loop is complete.

Creating a new subroutine by assigning a closure to a glob is a particularly common
trick in advanced Perl usage.

AUTOLOAD

There is, of course, a simpler way to achieve the accessor trick. Instead of defining
each accessor individually, we can define a single routine that executes on any call to
an undefined subroutine. In Perl, this takes the form of the AUTOLOAD subroutine—an
ordinary subroutine with the magic name AUTOLOAD:
sub AUTOLOAD {
print "I don't know what you want me to do!\n";

}

yow();

Instead of dying with Undefined subroutine 8yow called, Perl tries the AUTOLOAD sub-
routine and calls that instead.

10 | Chapter1: Advanced Techniques

To make this useful in the Data::BT::PhoneBill case, we need to know which sub-
routine was actually called. Thankfully, Perl makes this information available to us
through the $AUTOLOAD variable:
sub AUTOLOAD {

my $self = shift;

if ($AUTOLOAD =~ /.*::(.*)/) { $self->{$1} }
The middle line here is a common trick for turning a fully qualified variable name into a
locally qualified name. A call to $call->type will set $AUTOLOAD to Data: :BT::PhoneBill:
:_Call::type. Since we want everything after the last ::, we use a regular expression to
extract the relevant part. This can then be used as the name of a hash element.

We may want to help Perl out a little and create the subroutine on the fly so it
doesn’t need to use AUTOLOAD the next time type is called. We can do this by assign-
ing a closure to a glob as before:
sub AUTOLOAD {
if ($AUTOLOAD =~ /.*::(.*)/) {
my $element = $1;
*$AUTOLOAD = sub { shift->{$element} };
goto &$AUTOLOAD;
}

This time, we write into the symbol table, constructing a new subroutine where Perl
expected to find our accessor in the first place. By using a closure on $element, we
ensure that each accessor points to the right hash element. Finally, once the new sub-
routine is set up, we can use goto 8&subname to try again, calling the newly created
Data::BT::PhoneBill:: Call::type method with the same parameters as before. The
next time the same subroutine is called, it will be found in the symbol table—since
we’ve just created it—and we won’t go through AUTOLOAD again.

R
s

goto LABEL and goto 8&subname are two completely different operations,
unfortunately with the same name. The first is generally discouraged, but
the second has no such stigma attached to it. It is identical to subname(@)
but with one important difference: the current stack frame is obliterated
and replaced with the new subroutine. If we had used $AUTOLOAD->(@_) in
our example, and someone had told a debugger to set a breakpoint inside
Data::BT::PhoneBill:: Call::type, they would see this backtrace:

. = Data::BT::PhoneBill:: Call::type ...
. = Data::BT::PhoneBill:: Call::AUTOLOAD ...

. = main::process call

In other words, we’ve exposed the plumbing, if only for the first call to
type. If we use goto &$AUTOLOAD, however, the AUTOLOAD stack frame is
obliterated and replaced directly by the type frame:

. = Data::BT::PhoneBill:: Call::type ...

. = main::process_call
It’s also concievable that, because there is no third stack frame or call-
return linkage to handle, the goto technique is marginally more efficient.

Introspection | 11

There are two things that every user of AUTOLOAD needs to know. The first is DESTROY.
If your AUTOLOAD subroutine does anything magical, you need to make sure that it
checks to see if it’s being called in place of an object’s DESTROY clean-up method. One
common idiom to do this is return if $1 eq "DESTROY". Another is to define an
empty DESTROY method in the class: sub DESTROY { }.

The second important thing about AUTOLOAD is that you can neither decline nor chain
AUTOLOADs. If an AUTOLOAD subroutine has been called, then the missing subroutine has
been deemed to be dealt with. If you want to rethrow the undefined-subroutine
error, you must do so manually. For instance, let’s limit our Data::BT::PhoneBill:: _
Call::AUTOLOAD method to only deal with real elements of the hash, and not any ran-
dom rubbish or typo that comes our way:

use Carp qw(croak);

sub AUTOLOAD {
my $self = shift;
if ($AUTOLOAD =~ /.*::(.*)/ and exists $self->{$1}) {
return $self->{$1}

croak "Undefined subroutine &$AUTOLOAD called"; }

CORE and CORE::GLOBAL

Two of the most misunderstood pieces of Perl arcana are the CORE and CORE: :GLOBAL
packages. These two packages have to do with the replacement of built-in functions.
You can override a built-in by importing the new function into the caller’s
namespace, but it is not as simple as defining a new function.

For instance, to override the glob function in the current package with one using reg-
ular expression syntax, we either have to write a module or use the subs pragma to
declare that we will be using our own version of the glob typeglob:

use subs qw(glob);

sub glob {
my $pattern = shift;
local *DIR;
opendir DIR, or die $§!;
return grep /$pattern/, readdir DIR;

}
This replaces Perl’s built-in glob function for the duration of the package:
print "$ \n" for glob("~c.*\\.xml");

cho1.xml
ch02.xml

12 | (Chapter1: Advanced Techniques

However, since the <*.*> syntax for the glob operator is internally resolved to a call
to glob, we could just as well say:

print "$ \n" for <"c.*\\.xml>;

Neither of these would work without the use subs line, which prepares the Perl parser
for seeing a private version of the glob function.

If you’re writing a module that provides this functionality, all is well and good. Just
put the name of the built-in function in @EXPORT, and the Exporter will do the rest.

Where do CORE:: and CORE: :GLOBAL:: come in, then? First, if we’re in a package that
has an overriden glob and we need to get at Perl’s core glob, we can use CORE: :glob()
to do so:

@files = <ch.*xml>; # New regexp glob

@files = CORE::glob("ch*xml"); # Old shell-style glob
CORE:: always refers to the built-in functions. I say “refers to” as a useful fiction—
CORE: : merely qualifies to the Perl parser which glob you mean. Perl’s built-in func-
tions don’t really live in the symbol table; they’re not subroutines, and you can’t take
references to them. There can be a package called CORE, and you can happily say
things like $CORE::a = 1. But CORE: : followed by a function name is special.

Because of this, we can rewrite our regexp-glob function like so:

package Regexp::Glob;
use base 'Exporter';
our @EXPORT = qw(glob);

sub glob {

my $pattern = shift;

return grep /$pattern/, CORE::glob("*");
}

1;
There’s a slight problem with this. Importing a subroutine into a package only affects
the package in question. Any other packages in the program will still call the built-in
glob:

use Regexp::Glob;
@files = glob("ch.*xml"); # New regexp glob

package Elsewhere;

@files = glob("ch.*xml"); # 01d shell-style glob
Our other magic package, CORE: :GLOBAL: :, takes care of this problem. By writing a
subroutine reference into CORE::GLOBAL::glob, we can replace the glob function
throughout the whole program:

package Regexp::Glob;
*CORE: :GLOBAL: :glob = sub {

my $pattern = shift;
local *DIR;

Introspection | 13

opendir DIR, or die $!;
return grep /$pattern/, readdir DIR;
b

1;

Now it doesn’t matter if we change packages—the glob operator and its <> alias will
be our modified version.

So there you have it: CORE: : is a pseudo-package used only to unambiguously refer to
the built-in version of a function. CORE: :GLOBAL: : is a real package in which you can
put replacements for the built-in version of a function across all namespaces.

Case Study: Hook::LexWrap

Hook: : LexWrap is a module that allows you to add wrappers around subroutines—
that is, to add code to execute before or after a wrapped routine. For instance, here’s
a very simple use of LexWrap for debugging purposes:
wrap 'my routine',
pre => sub { print "About to run my routine with arguments @ " },
post => sub { print "Done with my routine"; }

The main selling point of Hook: : LexWrap is summarized in the module’s documentation:

Unlike other modules that provide this capacity (e.g. Hook::PreAndPost and Hook::
WrapSub), Hook::LexWrap implements wrappers in such a way that the standard
“caller” function works correctly within the wrapped subroutine.

It’s easy enough to fool caller if you only have pre-hooks; you replace the subrou-
tine in question with an intermediate routine that does the moral equivalent of:
sub my_routine {
call _pre_hook();
goto 8Real::my routine;
}
As we saw above, the goto &subname form obliterates my routine’s stack frame, so it
looks to the outside world as though my_routine has been controlled directly.

But with post-hooks it’s a bit more difficult; you can’t use the goto & trick. After the
subroutine is called, you want to go on to do something else, but you’ve obliterated
the subroutine that was going to call the post-hook.

So how does Hook: : Lexirap ensure that the standard caller function works? Well, it
doesn’t; it actually provides its own, making sure you don’t use the standard caller
function at all.

Hook: : LexWWrap does its work in two parts. The first part assigns a closure to the sub-
routine’s glob, replacing it with an imposter that arranges for the hooks to be called,
and the second provides a custom CORE: :GLOBAL: :caller. Let’s first look at the cus-
tom caller:

14 | Chapter1: Advanced Techniques

*CORE: :GLOBAL::caller = sub {
my ($height) = ($_[0]]]0);
my $i=1;
my $name_cache;
while (1) {
my @caller = CORE::caller($i++) or return;
$caller[3] = $name_cache if $name_cache;
$name_cache = $caller[0] eq 'Hook::LexWrap' ? $caller[3] : '';
next if $name_cache || $height-- != 0;
return wantarray ? @ ? @caller : @caller[0..2] : $caller[o];
}
b
The basic idea of this is that we want to emulate caller, but if we see a call in the
Hook: : LexiWrap namespace, then we ignore it and move on to the next stack frame. So
we first work out the number of frames to back up the stack, defaulting to zero.
However, since CORE: :GLOBAL: : caller itself counts as a stack frame, we need to start
the counting internally from one.

Next, we do a slight bit of trickery. Our imposter subroutine is compiled in the
Hook: : Lexirap namespace, but it has the name of the original subroutine it’s emulat-
ing. So if we see something in Hook: : LexWrap, we store its subroutine name away in
$name_cache and then skip over it, without decrementing $height. If the thing we see
is not in Hook: : LexWrap, but comes directly after something that is, we replace its
subroutine name with the one from the cache. Finally, once $height gets down to
zero, we can return the appropriate bits of the @caller array.

By doing this, we’ve created our own replacement caller function, which hides the
existence of stack frames in the Hook::LexWrap package, but in all other ways
behaves the same as the original caller. Now let’s see how our imposter subrou-
tine is built up.

Most of the wrap routine is actually just about argument checking, context propa-
gation, and return value handling; we can slim it down to the following for our
purposes:

sub wrap (*@) {
my ($typeglob, %wrapper) = @_;
$typeglob = (ref $typeglob || $typeglob =~ /::/)
? $typeglob
: caller()."::$typeglob”;
my $original = ref $typeglob eq 'CODE'
? $typeglob
: *$typeglob{CODE};
$imposter = sub {
$wrapper{pre}->(@_) if $wrapper{pre};
my @return = &$original;
$wrapper{post}->(@) if $wrapper{post};
return @return;
3
*{$typeglob} = $imposter;

Introspection | 15

To make our imposter work, we need to know two things: the code we’re going to
run and where it’s going to live in the symbol table. We might have been either
handed a typeglob (the tricky case) or the name of a subroutine as a string. If we
have a string, the code looks like this:

$typeglob = $typeglob =~ /::/ ? $typeglob : caller()."::$typeglob”;

my $original = *$typeglob{CODE};
The first line ensures that the now badly named $typeglob is fully qualified; if not,
it’s prefixed with the calling package. The second line turns the string into a subrou-
tine reference using the glob reference syntax.

In the case where we’re handed a glob like *to_wrap, we have to use some magic. The
wrap subroutine has the prototype (*$); here is what the perlsub documentation has
to say about * prototypes:

A “*” allows the subroutine to accept a bareword, constant, scalar expression, type-
glob, or reference to a typeglob in that slot. The value will be available to the subrou-
tine either as a simple scalar or (in the latter two cases) as a reference to the typeglob.

So if $typeglob turns out to be a typeglob, it’s converted into a glob reference, which
allows us to use the same syntax to write into the code part of the glob.

The $imposter closure is simple enough—it calls the pre-hook, then the original sub-
routine, then the post-hook. We know where it should go in the symbol table, and so
we redefine the original subroutine with our new one.

So this relatively complex module relies purely on two tricks that we have already
examined: first, globally overriding a built-in function using CORE: :GLOBAL: :, and sec-
ond, saving away a subroutine reference and then glob assigning a new subroutine
that wraps around the original.

Introspection with B

There’s one final category of introspection as applied to Perl programs: inspecting
the underlying bytecode of the program itself.

When the perl interpreter is handed some code, it translates it into an internal code,
similar to other bytecode-compiled languages such as Java. However, in the case of
Perl, each operation is represented as the node on a tree, and the arguments to each
operation are that node’s children.

For instance, from the very short subroutine:

sub sum_input {
my $a = <>;
print $a + 1;

}

Perl produces the tree in Figure 1-5.

16 | Chapter1: Advanced Techniques

leavesub

=

nextstate I null nextstate I print

padsv I redline pushmarkI add
qv I padsv I const I

Figure 1-5. Bytecode tree

The B module provides functions that expose the nodes of this tree as objects in Perl
itself. You can examine—and in some cases modify—the parsed representation of a
running program.

There are several obvious applications for this. For instance, if you can serialize the
data in the tree to disk, and find a way to load it up again, you can store a Perl pro-
gram as bytecode. The B: :Bytecode and BytelLoader modules do just this.

Those thinking that they can use this to distribute Perl code in an obfuscated binary
format need to read on to our second application: you can use the tree to recon-
struct the original Perl code (or something quite like it) from the bytecode, by essen-
tially performing the compilation stage in reverse. The B: :Deparse module does this,
and it can tell us a lot about how Perl understands different code:

% perl -MO=Deparse -n -e '/™/ || print'

LINE: while (defined($_ = <ARGV>)) {
print $_ unless /™#/;
}
This shows us what’s really going on when the -n flag is used, the inferred $_ in
print, and the logical equivalence of X || Y and Y unless X.” (Incidentally, the 0
module is a driver that allows specified B::* modules to do what they want to the
parsed source code.)

* The -M0=Deparse flag is equivalent to use 0 qw(Deparse);.

Introspection | 17

To understand how these modules do their work, you need to know a little about the
Perl virtual machine. Like almost all VM technologies, Perl 5 is a software CPU that
executes a stream of instructions. Many of these operations will involve putting val-
ues on or taking them off a stack; unlike a real CPU, which uses registers to store
intermediate results, most software CPUs use a stack model.

Perl code enters the perl interpreter, gets translated into the syntax tree structure we
saw before, and is optimized. Part of the optimization process involves determining a
route through the tree by joining the ops together in a linked list. In Figure 1-6, the
route is shown as a dotted line.

leavesub

| J }

nextstate I null -~ > nextstate I
-

<> padsv I redline I ce--p
‘ i

———————— >

Figure 1-6. Optimized bytecode tree

Each node on the tree represents an operation to be done: we need to enter a new
lexical scope (the file); set up internal data structures for a new statement, such as
setting the line number for error reporting; find where $a lives and put that on the
stack; find what filehandle <> refers to; read a line from that filehandle and put that
on the stack; assign the top value on the stack (the result) to the next value down
(the variable storage); and so on.

There are several different kinds of operators, classified by how they manipulate the
stack. For instance, there are the binary operators—such as add—which take two
values off the stack and return a new value. readline is a unary operator; it takes a
filehandle from the stack and puts a value back on. List operators like print take a
number of values off the stack, and the nullary pushmark operator is responsible for
putting a special mark value on the stack to tell print where to stop.

18 | Chapter1: Advanced Techniques

The B module represents all these different kinds of operators as subclasses of the B: :0P
class, and these classes contain methods allowing us to get the next module in the exe-
cution order, the children of an operator, and so on.

Similar classes exist to represent Perl scalar, array, hash, filehandle, and other val-
ues. We can convert any reference to a B: : object using the svref 2object function:

use B;

my $subref = sub {
my $a = <>;
print $a + 1;

1
my $b = B::svref 2object($subref); # B::CV object

This B: :CV object represents the subroutine reference that Perl can, for instance, store
in the symbol table. To look at the op tree inside this object, we call the START
method to get the first node in the linked list of the tree’s execution order, or the
ROOT method to find the root of the tree.

Depending on which op we have, there are two ways to navigate the op tree. To walk
the tree in execution order, you can just follow the chain of next pointers:

my $op = $b->START;

do {

print B::class($op). " : ". $op->name." (".$op->desc.")\n";
} while $op = $op->next and not $op->isa("B::NULL");

The class subroutine just converts between a Perl class name like B::COP and the
underlying C equivalent, COP; the name method returns the human-readable name of
the operation, and desc gives its description as it would appear in an error message.
We need to check that the op isn’t a B: :NULL, because the next pointer of the final op
will be a C null pointer, which B handily converts to a Perl object with no methods.
This gives us a dump of the subroutine’s operations like so:

COP : nextstate (next statement)
OP : padsv (private variable)
PADOP : gv (glob value)

UNOP : readline (<HANDLE>)

COP : nextstate (next statement)
OP : pushmark (pushmark)

OP : padsv (private variable)
SVOP : const (constant item)
BINOP : add (addition (+))
LISTOP : print (print)

UNOP : leavesub (subroutine exit)

As you can see, this is the natural order for the operations in the subroutine. If you
want to examine the tree in top-down order, something that is useful for creating
things like B: :Deparse or altering the generated bytecode tree with tricks like opti-

Introspection | 19

mizer and B: :CGenerate, then the easiest way is to use the B::Utils module. This pro-
vides a number of handy functions, including walkoptree simple. This allows you to
set a callback and visit every op in a tree:

use B::Utils gw(walkoptree simple);
my $op = $b->R0O0T;

walkoptree simple($op, sub{
$cop = shift;
print B::class($cop). " : ". $cop->name." (".$cop->desc.")\n";
1);
Note that this time we start from the ROOT of the tree instead of the START; traversing
the op tree in this order gives us the following list of operations:
UNOP : leavesub (subroutine exit)
LISTOP : lineseq (line sequence)
COP : nextstate (next statement)
UNOP : null (null operation)
OP : padsv (private variable)
UNOP : readline (<HANDLE>)
PADOP : gv (glob value)
COP : nextstate (next statement)
LISTOP : print (print)

Working with Perl at the op level requires a great deal of practice and knowledge of
the Perl internals, but can lead to extremely useful tools like Devel::Cover, an op-
level profiler and coverage analysis tool.

Messing with the Class Model

Perl’s style of object orientation is often maligned, but its sheer simplicity allows the
advanced Perl programmer to extend Perl’s behavior in interesting—and sometimes
startling—ways. Because all the details of Perl’s OO model happen at runtime and in
the open—using an ordinary package variable (@INC) to handle inheritance, for
instance, or using the symbol tables for method dispatch—we can fiddle with almost
every aspect of it.

In this section we’ll see some techniques specific to playing with the class model, but

we will also examine how to apply the techniques we already know to distort Perl’s
sense of OO.

UNIVERSAL

In almost all class-based OO languages, all objects derive from a common class,
sometimes called Object. Perl doesn’t quite have the same concept, but there is a
single hard-wired class called UNIVERSAL, which acts as a last-resort class for method
lookups. By default, UNIVERSAL provides three methods: isa, can, and VERSION.

20 | Chapter1: Advanced Techniques

We saw isa briefly in the last section; it consults a class or object’s @ISA array and
determines whether or not it derives from a given class:

package Coffee;
our @ISA = gw(Beverage::Hot);

sub new { return bless { temp => 80 }, shift }

package Tea;
use base 'Beverage::Hot';

package Latte;
use base 'Coffee';

package main;
my $mug = Latte->new;

Tea->isa("Beverage::Hot"); # 1
Tea->isa("Coffee"); # 0

if ($mug->isa("Beverage::Hot")) {
warn 'Contents May Be Hot';

isa is a handy method you can use in modules to check that you've
as been handed the right sort of object. However, since not everything in
% Perl is an object, you may find that just testing a scalar with isa is not
" enough to ensure that your code doesn’t blow up: if you say $thing->
isa(...) on an unblessed reference, Perl will die.

The preferred “safety first” approach is to write the test this way:

my ($self, $thing) = @ ;
croak "You need to give me a Beverage::Hot instance"
unless eval { $thing->isa("Beverage::Hot"); };

This will work even if $thing is undef or a non-reference.

Checking isa relationships is one way to ensure that an object will respond correctly
to the methods that you want to call on it, but it is not necessarily the best one.
Another idea, that of duck typing, states that you should determine whether or not to
deal with an object based on the methods it claims to respond to, rather than its
inheritance. If our Tea class did not derive from Beverage::Hot, but still had
temperature, milk, and sugar accessors and brew and drink methods, we could treat it
as if it were a Beverage: :Hot. In short, if it walks like a duck and it quacks like a
duck, we can treat it like a duck.”

* Of course, one of the problems with duck typing is that checking that something can respond to an action
does not tell us how it will respond. We might expect a Tree object and a Dog to both have a bark method,
but that wouldn’t mean that we could use them in the same way.

Messing with the Class Model | 21

The universal can method allows us to check Perl objects duck-style. It’s particularly
useful if you have a bunch of related classes that don’t all respond to the same meth-
ods. For instance, looking back at our B::0P classes, binary operators, list operators,
and pattern match operators have a last accessor to retrieve the youngest child, but
nullary, unary, and logical operators don’t. Instead of checking whether or not we
have an instance of the appropriate classes, we can write generically applicable code
by checking whether the object responds to the last method:

$h{firstaddr} = sprintf("%#x", $ {$op->first}) if $op->can("first");

$h{lastaddr} = sprintf("%tx", $ {$op->last}) if $op->can("last");
Another advantage of can is that it returns the subroutine reference for the method
once it has been looked up. We’'ll see later how to use this to implement our own
method dispatch in the same way that Perl would.

Finally, VERSION returns the value of the class’s $VERSION. This is used internally by
Perl when you say:

use Some::Module 1.2;

While I'm sure there’s something clever you can do by providing your own VERSION
method and having it do magic when Perl calls it, T can’t think what it might be.

However, there is one trick you can play with UNIVERSAL: you can put your own
methods in it. Suddenly, every object and every class name (and remember that in
Perl a class name is just a string) responds to your new method.

One particularly creative use of this is the UNIVERSAL : :require module. Perl’s require
keyword allows you to load up modules at runtime; however, one of its more annoy-
ing features is that it acts differently based on whether you give it a bare class name
or a quoted string or scalar. That is:

require Some::Module;
will happily look up Some/Module.pm in the @INC path. However, if you say:

my $module = "Some::Module";
require $module;

Perl will look for a file called Some: :Module in the current directory and probably fail.
This makes it awkward to require modules by name programatically. You have to
end up doing something like:

eval "require $module”;

which has problems of its own. UNIVERSAL: :require is a neat solution to this—it pro-
vides a require method, which does the loading for you. Now you can say:

$module->require;

Perl will treat $module as a class name and call the class method, which will fall
through to UNIVERSAL: : require, which loads up the module.

22 | Chapter1: Advanced Techniques

Similarly, the UNIVERSAL: :moniker module provides a human-friendly name for an
object’s class, by lowercasing the text after the final : ::

package UNIVERSAL;

sub moniker {
my ($self) = @ ;
my @parts = split /::/, (ref($self) || $self);
return lc pop @parts;

}
This allows you to say things like:

for my $class (@classes) {
print "Listing of all ".$class->plural_moniker.":\n";
print $_->name."\n" for $class->retrieve all;
print "\n";
}
Some people disagree with putting methods into UNIVERSAL, but the worst that can
happen is that an object now unexpectedly responds to a method it would not have
before. And if it would not respond to a method before, then any call to it would
have been a fatal error. At worst, you’ve prevented the program from breaking imme-
diately by making it do something strange. Balancing this against the kind of hacks
you can perpetrate with it, I’d say that adding things to UNIVERSAL is a useful tech-
nique for the armory of any advanced Perl hacker.

Dynamic Method Resolution

If you’re still convinced that Perl’s OO system is not the sort of thing that you want,
then the time has come to write your own. Damian Conway’s Object Oriented Perl is
full of ways to construct new forms of objects and object dispatch.

We've seen the fundamental techniques for doing this; it’s now just a matter of com-
bining them. For instance, we can combine AUTOLOAD and UNIVERSAL to respond to
any method in any class at all. We could use this to turn all unknown methods into
accessors and mutators:
sub UNIVERSAL::AUTOLOAD {

my $self = shift;

$UNIVERSAL: :AUTOLOAD =~ /.*::(.*)/;

return if $1 eq "DESTROY";

if (@) {

$self->{$1} = shift;

}
$self->{$1};

}
Or we could use it to mess about with inheritance, like Class::Dynamic; or make
methods part of an object’s payload, like Class::Classless or Class::0Object. We’'ll
see later how to implement Java-style final attributes to prevent methods from being
overriden by derived classes.

Messing with the Class Model | 23

Case Study: Singleton Methods

On the infrequent occasions when I'm not programming in Perl, I program in an
interesting language called Ruby. Ruby is the creation of Japanese programmer
Yukihiro Matsumoto, based on Perl and several other dynamic languages. It has a
great number of ideas that have influenced the design of Perl 6, and some of them
have even been implemented in Perl 5, as we’ll see here and later in the chapter.

One of these ideas is the singleton method, a method that only applies to one particu-
lar object and not to the entire class. In Perl, the concept would look something like
this:

my $a = Some::Class->new;
my $b = Some::Class->new;

$a->singleton_method(dump => sub {

my $self = shift;

require Data::Dumper; print STDERR Date::Dumper::Dumper($self)
;s

$a->dump; # Prints a representation of the object.

$b->dump; # Can't locate method "dump"
$a receives a new method, but $b does not. Now that we have an idea of what we
want to achieve, half the battle is over. It’s obvious that in order to make this work,
we’re going to put a singleton method method into UNIVERSAL. And now somehow
we’ve got to make $a have all the methods that it currently has, but also have an
additional one.

If this makes you think of subclassing, you’re on the right track. We need to sub-
class $a (and $a only) into a new class and put the singleton method into the new
class. Let’s take a look at some code to do this:

package UNIVERSAL;

sub singleton method {
my ($object, $method, $subref) = @_;

my $parent_class = ref $object;
my $new_class = " Singletons::".(0+$object);
*{$new class."::".$method} = $subref;

if ($new_class ne $parent class) {
@{$new_class."::ISA"} = ($parent class);
bless $object, $new class;

}

First, we find what $a’s original class is. This is easy, since ref tells us directly. Next
we have to make up a new class—a new package name for our singleton methods to
live in. This has to be specific to the object, so we use the closest thing to a unique
identifier for objects that Perl has: the numeric representation of its memory address.

24 | Chapter1: Advanced Techniques

0+Sobject

We don’t talk a lot about memory locations in Perl, so using something like 0+$object
to find a memory location may surprise you. However, it should be a familiar concept.
If you’ve ever accidentally printed out an object when you expected a normal scalar,
you should have seen something like Some: : Class=HASH(0x801180). This is Perl’s way of
telling you that the object is a Some: :Class object, it’s based on a hash, and it lives at
that particular location in memory.

However, just like the special variable $!, objects have a string/integer duality. If you
treat an object as an ordinary string, you get the output we have just described. How-
ever, if you treat it as a number, you just get the 0x8801180. By saying 0+$object, we’re
forcing the object to return its memory location, and since no two objects can be at the
same location, we have a piece of data unique to the object.

We inject the method into the new class with glob assignment, and now we need to
set up its inheritance relationship on $a’s own class. Since Per!’s inheritance is han-
dled by package variables, these are open for us to fiddle with dynamically. Finally,
we change $a’s class by re-blessing it into the new class.

The final twist is that if this is the second time the object has had a singleton method
added to it, then its class will already be in the form Singleton::8393088. In this
case, the new class name would be the same as the old, and we really don’t want to
alter @ISA, since that would set up a recursive relationship. Perl doesn’t like that.

In only 11 lines of code we’ve extended the way Perl’s OO system works with a new
concept borrowed from another language. Perl’s model may not be terribly
advanced, but it’s astonishingly flexible.

Unexpected Code

The final set of advanced techniques in this chapter covers anything where Perl code
runs at a time that might not be obvious: tying, for instance, runs code when a vari-
able is accessed or assigned to; overloading runs code when various operations are
called on a value; and time shifting allows us to run code out of order or delayed
until the end of scope.

Some of the most striking effects in Perl can be obtained by arranging for code to be
run at unexpected moments, but this must be tempered with care. The whole point
of unexpected code is that it’s unexpected, and that breaks the well-known Principle
of Least Surprise: programming Perl should not be surprising.

On the other hand, these are powerful techniques. Let’s take a look at how to make
the best use of them.

Unexpected Code | 25

Overloading

Overloading, in a Perl context, is a way of making an object look like it isn’t an
object. More specifically, it’s a way of making an object respond to methods when
used in an operation or other context that doesn’t look like a method call.

The problem with such overloading is that it can quickly get wildly out of hand. C++
overloads the left bit-shift operator, <<, on filehandles to mean print:

cout << "Hello world";
since it looks like the string is heading into the stream. Ruby, on the other hand,
overloads the same operator on arrays to mean push. If we make flagrant use of over-
loading in Perl, we end up having to look at least twice at code like:

$object *= $value;

We look once to see it as a multiplication, once to realize it’s actually a method call,
and once more to work out what class $object is in at this point and hence what
method has been called.

That said, for classes that more or less represent the sort of things you’re overload-
ing—numbers, strings, and so on—then overloading works fine. Now, how do we
do it?

Simple operator overloading

The classic example of operator overloading is a module that represents time.
Indeed, Time::Seconds, from the Time::Piece distribution does just this. Let’s make
some new Time: :Seconds objects:

my $min = Time::Seconds->new(60);

my $hour = Time::Seconds->new(3600);
The point of Time::Seconds is that, as well as merely representing a number of sec-
onds, you can convert between different units of duration:

my $longtime = Time::Seconds->new(123456);

print $longtime->hours; # 34.2933..

print $longtime->days; # 1.42888..
These objects definitely represent a number—a number of seconds. Normally, we’d
have to add them together with some ugly hack like this:

my $new = $min->add($hour);

And even then it’s not clear whether or not that alters the original $min. So one natu-
ral use of operator overloading would be to enable us to say $min + $hour, and get
back an object representing 3,660 seconds. And that is precisely what happens:

my $new = $min + $hour;
print $new->seconds; # 3660

This is done by the following bit of code in the Time: : Seconds module:

26 | Chapter1: Advanced Techniques

use overload '+' => \&add;

...
sub add {
my ($lhs, $rhs) = get ovlvals(@);
return Time::Seconds->new($lhs + $rhs);
}

sub _get ovlvals {
my ($lhs, $rhs, $reverse) = @ ;
$lhs = $lhs->seconds;

if (UNIVERSAL::isa($rhs, 'Time::Seconds')) {
$rhs = $rhs->seconds;
} elsif (ref($rhs)) {
die "Can't use non Seconds object in operator overload";

}

if ($reverse) { return $rhs, $lhs; }
return $lhs, $rhs;

}
The overload pragma is the key to it all. It tells Perl to look more carefully at opera-
tions involving objects of that class, and it registers methods for the given operators
in a look-up table. When an object is involved in an overloaded operation, the opera-

tion is looked up in the table and the resulting method called. In this case, $obj +
$other will call $obj->add($other, 0).

The reason Perl passes three parameters to the method is that in the case of $other +
$obj, where $other is not an object that overloads +, we still expect the add method to
be called on $obj. In this case, however, Perl will call $obj->add($other, 1), to sig-
nify that the arguments have been reversed.

The _get_ovlvals subroutine looks at the two arguments to an operator and tries to
coerce them into numbers—other Time: :Seconds objects are turned into numbers by
having the seconds method called on them, ordinary numbers are passed through,
and any other kind of object causes a fatal error. Then the arguments are reordered
to the original order.

Once we have two ordinary numbers, we can add them together and return a new
Time: :Seconds object based on the sum.

The other operators are based on this principle, such as <=>, which implements all of
the comparison operators:

1

use overload

sub compare {
my ($lhs, $rhs) = get ovlvals(@);
return $lhs <=> $rhs;

<=>' => \&compare;

}

Time: :Seconds also overloads assignment operators += and -=:

1

use overload '-=' => \&subtract_from;
sub subtract from {

Unexpected Code | 27

my $lhs = shift;

my $rhs = shift;

$rhs = $rhs->seconds if UNIVERSAL::isa($rhs, 'Time::Seconds');
$$1hs -= $rhs;

return $lhs;

}

This allows you to say $new += 60 to add another minute to the new duration.

Finally, to avoid having to write such subroutines for every kind of operator, Time: :
Seconds uses a feature of overload called fallback. This instructs Perl to attempt to
automatically generate reasonable methods from the ones specified: for instance, the
$x++ operator will be implemented in terms of $x += 1, and so on. Time::Seconds
sets fallback to undef, which means that Perl will try to use an autogenerated
method but will die if it cannot find one.

use overload 'fallback' => 'undef';

Alternate values for fallback include some true value, which is the most general fall-
back: if it cannot find an autogenerated method, it will do what it can, assuming if
necessary that overloading does not exist. In other words, it will always produce
some value, somehow.

If you’re using overloading just to add a shortcut operator or two onto an otherwise
object-based class—for example, if you wanted to emulate C++’s (rather dodgy) use
of the << operator to write to a filehandle:

$file << "This is ugly\n";

then you should use the default value of fallback, which is false. This means that no
automatic method generation will be tried, and any attempts to use the object with
one of the operations you have not overloaded will cause a fatal error.

However, as well as performing arithmetic operations on Time::Seconds objects,
there’s something else you can do with them:

print $new; # 3660

If we use the object as an ordinary string or a number, we don’t get object-like
behavior (the dreaded Time: :Seconds=SCALAR(0xf00)) but instead it acts just like we
should expect from something representing a number: it looks like a number. How
does it do that?

Other operator overloading

As well as being able to overload the basic arithmetic and string operators, Perl
allows you to overload the sorts of things that you wouldn’t normally think of as
operators. The two most useful of these we have just seen with Time: :Seconds—the
ability to dictate how an object is converted to a string or integer when used as such.

This is done by assigning methods to two special operator names—the
for stringification and the 0+ operator for numification:

operator

28 | Chapter1: Advanced Techniques

use overload '0+' => \&seconds,
"M =y \&seconds;

Now anytime the Time::Seconds object is used as a string or a number, the seconds
method gets called, returning the number of seconds that the object contains:

print "One hour plus one minute is $new seconds\n";

One hour plus one minute is 3660 seconds.
These are the most common methods to make an overloaded object look and behave
like the thing it’s meant to represent. There are a few other methods you can play
with for more obscure effects.

For instance, you can overload the way that an object is dereferenced in various
ways, allowing a scalar reference to pretend that it’s a list reference or vice versa.
There are few sensible reasons to do this—the curious Object: :MultiType overloads
the @{ }, %{}, &{ }, and *{} operators to allow a single object to pretend to be an
array, hash, subroutine, or glob, depending on how it’s used.

Non-operator overloading

One little-known extension of the overload mechanism is hidden away in the docu-
mentation for overload:
For some application Perl parser [sic] mangles constants too much. It is possible to

hook into this process via overload::constant() and overload::remove constant()
functions.

These functions take a hash as an argument. The recognized keys of this hash are

integer to overload integer constants,

float to overload floating point constants,

binary to overload octal and hexadecimal constants,

q to overload “q”-quoted strings, constant pieces of “qq”- and “gqx”-quoted

strings and here-documents,

qr to overload constant pieces of regular expressions.

That is to say, you can cause the Perl parser to run a subroutine of your choice every
time it comes across some kind of constant. Naturally, this is again something that
should be used with care but can be used to surprising effect.

The subroutines supplied to overload::constant pass three parameters: the first is
the raw form as the parser saw it, the second is the default interpretation, and the
third is a mnemonic for the context in which the constant occurs. For instance, given
"camel\nalpaca\npanther”, the first parameter would be camel\nalpaca\npanther,
whereas the second would be:

camel

alpaca
panther

As this is a double-quoted (qq) string, the third parameter would be qq.

Unexpected Code | 29

For instance, the high-precision math libraries Math: :BigInt and Math: :BigFloat pro-
vide the ability to automatically create high-precision numbers, by overloading the
constant operation.
% perl -MMath::BigFloat=:constant -le 'print ref (123456789012345678901234567890\
>1234567890) '
Math::BigFloat
This allows the libraries to get at all the numbers in a program, providing high-preci-
sion math without the explicit creation of overloaded Math::BigFloat objects. The
code that does it is stunningly simple:
sub import {
my $self = shift;
...
overload::constant float => sub { $self->new(shift); };
}
When the parser sees a floating point number (one too large to be stored as an inte-
ger) it passes the raw string as the first parameter of the subroutine reference. This is
equivalent to calling:

Math::BigFloat->new("1234567890123456789012345678901234567890")
at compile time.

The Math::Big* libraries can get away with this because they are relatively well
behaved; that is, a Perl program should not notice any difference if all the numbers
are suddenly overloaded Math: :BigInt objects.

On the other hand, here’s a slightly more crazy use of overloading...

I’ve already mentioned Ruby as being another favorite language of mine. One of the
draws about Ruby is that absolutely everything is an object:

% irb

irb(main):001:0> 2

=> 2

irb(main):002:0> 2.class

=> Fixnum

irb(main):003:0> 2.class.class

=> (lass

irb(main):004:0> 2.class.class.class

=> (Class

irb(main):005:0> 2.methods

=> ["<=", "to_f", "abs", "-", "upto", "succ", "|", "/", "type",
"times", "%", "-@", "&", "~", "<", "K' Uzero?", "', "<=>", "to s",

"step", "[  ]", ">", "=  =", "modulo", "next", "id2name",
"size", "«<",

"*", "downto", ">»", ">=", "divmod", "+", "floor", "to int", "to i",

"chr", "truncate", "round", "ceil", "integer?", "prec f", "prec i",

"prec", "coerce", "nonzero?", "+@", "remainder", "eqgl?",
"=  =  =",

"clone", "between?", "is a?", "equal?", "singleton_methods", "freeze",

30 | Chapter1: Advanced Techniques

"instance_of?", "send", "methods", "tainted?", "id",
"instance variables", "extend", "dup", "protected methods",
"frozen?", "kind of?", "respond to?", "class", "nil?",
"instance_eval", "public_methods", "   send   ", "untaint", "  
id   ",

"inspect", "display", "taint", "method", "private methods", "hash",

"to_a"]

I like that you can call methods on a 2. I like that you can define your own methods
to call on a 2. Of course, you can’t do that in Perl; 2 is not an object.

But we can fake it. Ruby.pm was a proof-of-concept module I started work on to
demonstrate that you can do this sort of thing in Perl. Here’s what it looks like:

use Ruby;

print 2->class; # "FixInt"

print "Hello World"->class->class # "Class"

print 2->class->to _s->class # "String"

print 2->class->to_s->length # "6"

print ((2+2)->class) # "FixInt"

Or even:

print 2.class.to_s.class # "String"
How can this possibly work? Obviously, the only thing that we can call methods on
are objects, so constants like 2 and Hello World need to return objects. This tells us
we need to be overloading these constants to return objects. We can do that easily
enough:

package Ruby;

sub import {

overload::constant(integer => sub { return Fixnum->new(shift) },

q => sub { return String->new(shift) },

qq => sub { return String->new(shift) });
}

We can make these objects blessed scalar references:

package Fixnum;
sub new { return bless \$ [1], $_[0] }

package String;

sub new { return bless \$ [1], $_[0] }
This allows us to fill the classes up with methods that can be called on the constants.
That’s a good start. The problem is that our constants now behave like objects,
instead of like the strings and numbers they represent. We want "Hello World" to
look like and act like "Hello World" instead of like "String=SCALAR(0x80ba0c)".

To get around this, we need to overload again—we’ve overloaded the constants to
become objects, and now we need to overload those objects to look like constants
again. Let’s look at the string class first. The first thing we need to overload is obvi-

Unexpected Code | 31

ously stringification; when the object is used as a string, it needs to display its string
value to Perl, which we do by dereferencing the reference.

use overload '""' => sub { ${$_[0]} };

This will get us most of the way there; we can now print out our Strings and use
them anywhere that a normal Perl string would be expected. Next, we take note of
the fact that in Ruby, Strings can’t be coerced into numbers. You can’t simply say 2
+"10", because this is an operation between two disparate types.

To make this happen in our String class, we have to overload numification, too:

use Carp;

use overload "0+" => sub { croak "String can't be coerced into Fixnum"};
You might like the fact that Perl converts between types magically, but the reason
why Ruby can’t do it is because it uses the + operator for both numeric addition and
string concatenation, just like Java and Python. Let’s overload + to give us string
concatenation:

use overload "+" => sub { String->new(${$_[0]} . "$ [1]") };

There are two things to note about this. The first is that we have to be sure that any
operations that manipulate strings will themselves return String objects, or other-
wise we will end up with ordinary strings that we can no longer call methods on.
This is necessary in the Fixnum analogue to ensure that (2+2)->class still works. The
other thing is that we must explicitly force stringification on the right-hand operand,
for reasons soon to become apparent.

Turning temporarily to the numeric class, we can fill in two of the overload methods
in the same sort of way:
use overload '""' => sub { croak "failed to convert Fixnum into String" },
"0+" => sub { ${ $ [0] } },
However, methods like + have to be treated carefully. We might first try doing some-
thing like this:

use overload '+' => sub { ${ $_[0] } + $ [1] };

However, if we then try 2 + "12" then we get the bizarre result 122, and further prod-
ding finds that this is a String. Why?

What happens is that Perl first sees Fixnum + String and calls the overloaded method
we've just created. Inside this method, it converts the Fixnum object to its integer
value and now has integer + String.

The integer is not overloaded, but the String object is. If Perl can see an overloaded
operation, it will try and call it, reordering the operation as String + integer. Since
String has an overloaded + method, too, that gets called, creating a new string,
which catenates the String and the integer. Oops.

32 | Chapter1: Advanced Techniques

Ideally, we would find a way of converting the right-hand side of the + operation on a
Fixnum to an honest-to-goodness number. Unfortunately, while Perl has an explicit
stringification operator, "", which we used to avoid this problem in the String case,
there isn’t an explicit numification operator; overload uses 0+ as a convenient mne-
monic for numification, but this is merely describing the operation in terms of the +
operator, which can be overloaded. So to fix up our + method, we have to get a little
technical:

use overload '+' => \∑

sub sum {

my ($left, $right) = @_;

my $rval;

if (my $numify = overload::Method($right, "0+")) {
$rval = $right->$numify;

} else {
$rval = $right;

}

Fixnum->new($$left + $rval);
}
To explicitly numify the right-hand side, we ask overload if that value has an over-
loaded numification. If it does, Method will return the method, and we can call it and
explicitly numify the value into $rval. Once we’ve got two plain old numbers, we
add them together and return a new number out of the two.

Next, we add overload fallback => 1; to each class, to provide do-what-I-mean
(DWIM) methods for the operators that we don’t define. This is what you want to
do for any case where you want an object to completely emulate a standard built-in
type, rather than just add one or two overloaded methods onto something that’s
essentially an object.

Finally, as a little flourish, we want to make the last line of our example work:
print 2.class.to s.class # "String"

One of the reasons Ruby’s concatenation operator is + is to free up . for the pre-
ferred use in most OO languages: method calls. This isn’t very easy to do in Perl, but
we can fake it enough for a rigged demo. Obviously we’re going to need to overload
the concatenation operator. The key to working out how to make it work is to real-
ize what those things like class are in a Perl context: they’re bare words, or just ordi-
nary strings. Hence if we see a concatenation between one of our Ruby objects and
an ordinary string, we should call the method whose name is in the string:

use overload "." => sub { my ($obj,$meth)=@ ; $obj->$meth };

And presto, we have Ruby-like objects and Ruby-like method calls. The method call
magic isn’t perfect—we’ll see later how it can be improved—but the Ruby-like
objects can now respond to any methods we want to put into their classes. It’s not
hard to build up a full class hierarchy just like Ruby’s own.

Unexpected Code | 33

Limitations

Of course, our overloading shenanigans do not manage to deal with, for instance, turn-
ing arrays into objects. Although Perl is pretty flexible, that really can’t be done with-
out changing the way the method call operator works.

That doesn’t necessarily stop people; the hacker known only as “chocolateboy” has
created a module called autobox, which requires a patch to the Perl core, but which
allows you to treat any built-in Perl data type as an object.

Time Shifting

The final fundamental advanced technique we want to look at is that of postponing
or reordering the execution of Perl code. For instance, we might want to wait until all
modules have been loaded before manipulating the symbol table, we might want to
construct some code and run it immediately with eval, or we might want to run code
at the end of a scope.

There are Perl keywords for all of these concepts, and judicious use of them can be
effective in achieving a wide variety of effects.

Doing things now with eval/BEGIN

The basic interface to time-shifting is through a series of named blocks. These are
like special subroutines that Perl stores in a queue and runs at strategic points dur-
ing the lifetime of a program.

A BEGIN block is executed as soon as Perl compiles the code:

print "I come second!\n";

BEGIN { print "I come first!\n"; }
The second line appears first because Perl does not ordinarily run code as it sees it; it
waits until it has compiled a program and all of its dependencies into the sort of op tree
we saw in our section on B, and then runs it all. However, BEGIN forces Perl to run the
code as soon as the individual block has been compiled—Dbefore the official runtime.

In fact, the use directive to load a module can be thought of as:
BEGIN { require Module::Name; Module::Name->import(@stuff); }

because it causes the module’s code to be loaded up and its import method to be run
immediately.

One use of the immediate execution nature of the BEGIN block is in the AnyDBM File
module. This module tries to find an appropriate DBM module to inherit from, mean-
ing that so long as one of the five supported DBM modules is available, any code using
DBMs ought to work.

34 | Chapter1: Advanced Techniques

Unfortunately, some DBM implementations are more reliable than others, or opti-
mized for different types of application, so you might want to specify a preferred
search order that is different from the default. But when? As AnyDBM File loads, it sets
up its @ISA array and requires the DBM modules.

The trick is to use BEGIN; if AnyDBM File sees that someone else has put an @ISA array
into its namespace, it won’t overwrite it with its default one. So we say:

BEGIN { @AnyDBM File::ISA = qw(DB File GDBM_File NDBM File); }

use AnyDBM::File;
This wouldn’t work without the BEGIN, since the statement would then only be exe-
cuted at runtime; way after the use had set up AnyDBM_File.

As well as a BEGIN, there’s also an END block, which stores up code to run right at the
end of the program, and, in fact, there are a series of other special blocks as well, as
shown in Figure 1-7.

BEGIN

Gl

CHECK

Compile time

)

Runtime

END

Figure 1-7. Named blocks

The CHECK blocks and the INIT blocks are pretty much indistinguishable, running just
before and just after execution begins. The only difference is that executing perl with
the -c switch (compilation checks) will run CHECK blocks but not INIT blocks. (This also
means that if you load a module at runtime, its CHECK and INIT blocks won’t be run,
because the transition between the global compilation phase and the global runtime
execution has already passed.) Let’s take a look at what we can do with a CHECK block.

Doing things later with CHECK

Earlier, we talked about messing with inheritance relationships and stealing ideas from
other languages. Let’s now implement a new module, which gives us the Java concept
of final methods. A final method is one that cannot be overriden by inheritance:

package Beverage::Hot;

sub serve :final { # I have exclusive rights to defining this method!
my ($self, $who) = @ ;

Unexpected Code | 35

if ($who->waitress) { $who->waitress->serve($self, $who); }
else { $who->take($self); }
}

package Tea;
use base 'Beverage::Hot';

sub serve { # Compile-time error.

}
We'll do this by allowing a user to specify a :final attribute on a method. This
attribute will mark a method for later checking. Once compile time has finished,
we’ll check out all the classes that derive from the marked class, and die with an
error if the derived class implements the final method.

Attributes

The idea of attributes came in Perl 5.005, with the attrs module. This was part of
threading support and allowed you to mark a subroutine as being a method or being
locked for threading—that is, it only allows one thread to access the subroutine or the
method’s invocant at once. In 5.6.0, the syntax was changed to the now-familiar sub
name :attr, and it also allowed user-defined attributes.

Perhaps the easiest way to get into attribute programming for anything tricky is to use
Damian Conway’s Attribute: :Handlers module: this allows you to define subroutines
to be called when an attribute is seen.

The first thing we want to do is take a note of those classes and methods marked
final. We need to switch to the UNIVERSAL class, so that our attribute is visible every-
where. We'll also use a hash, %marked, to group the marked methods by package:
package UNIVERSAL;
use Attribute::Handlers;
sub final :ATTR {
my ($pack, $ref) = @_;
push @{$marked{$pack}}, *{$ref}{NAME};
}
The Attribute::Handlers package arranges for our handler to be called with various
parameters, of which we are only interested in the first two—the package that has
the marked subroutine in it and the glob reference for the subroutine itselt—because
we can get the subroutine’s name from that. (NAME is one of the magic names we can
use to access a glob’s slot—it returns the name of the symbol table entry. *{Tea::
serve }{NAME} would return serve.)

Now we’ve got our list of marked methods. We need to find a way to interrupt Perl
just before it runs the script but after all the modules that we plan to use have been

36 | Chapter1: Advanced Techniques

compiled and all the inheritence relationships set up, so that we can check nobody
has been naughty and overriden a finalized method.

The CHECK keyword gives us a way to do this. It registers a block of code to be called
after compilation has been finished but before execution begins.”

To enable us to test the module, it turns out we want to have our CHECK block call
another function. This is because we can then run the checker twice, once without
an offending method and once with:

CHECK { Attribute::Final->check }

What will our checking method do, though? It needs to visit all the classes that
derive from those classes we have in our %marked hash, and to do that, it has to know
all the packages in the system. So first we’ll write a little function to recursively walk
over the symbol table, collecting names of packages it sees.

The symbol table is just a hash, and we can find glob names by looking at the keys of
the hash. To make matters even easier, package names are just hash keys that end in
::. So our collector function looks like this:
sub fill packages {
no strict 'refs';
my $root = shift;
my @subs = grep s/::$//, keys %{$root."::"};
push @all packages, $root;
for (@subs) {
next if $root eq "main" and $_eq "main"; # Loop
fill packages($root."::".$);

}

The next line avoids the potential trap of looping forever, because the main:: pack-
age contains an entry to itself. Now we can start looking at the check function. It
only has to deal with those packages that have some kind of inheritance relation-
ship, so if a package does not have an @ISA, then we can discard it:
sub check {
no strict 'refs’;
fill packages("main") unless @all_packages;

for my $derived pack (@all packages) {
next unless @{$derived pack."::ISA"};

}

Next, we have a list of marked packages that contain final methods. We want to look
specifically at circumstances where a derived package derives from a marked package:

* Incidentally, the 0 compiler module we mentioned earlier works by means of CHECK blocks—after all the code
has been compiled, 0 has the selected compiler backend visit the opcode tree and spit out whatever it wants
to do, then exits before the code is run.

Unexpected Code | 37

for my $derived pack (®all_packages) {
next unless @{$derived pack."::ISA"};
for my $marked pack (keys %marked) {
next unless $derived pack->isa($marked pack);

At this point, we know we have a suspect package. It has the right kind of inherit-
ance relationship, but does it override the finalized method?
for my $meth (@{$marked{$marked pack}}) {
my $glob_ref = *{$derived pack."::".$meth};
if (*{$glob_ref}{CODE}) {
If the code slot is populated, then we have indeed found a naughty method. At this
point, all that’s left to do is report where it came from. We can do that with the B tech-
nique: by turning the glob into a B: :GV object, we gain access to the otherwise unreach-
able FILE and LINE methods, which tell us where the glob entry was constructed.
my $name = $marked pack."::".$meth;
my $b = B::svref 2object($glob ref);
die "Cannot override final method $name at ".
$b->FILE. ", line ".$b->LINE."\n";
And that is the essence of working with CHECK blocks: they allow us to do things with
the symbol table once everything is in place, once all the modules have been loaded,
and once the inheritance relationships and other factors have been set up. If you ever
feel you need to do something in a module but you don’t want to do it quite yet, put-
ting it in a CHECK block might just be the right technique.

Doing things at the end with DESTROY

We've referred to the special DESTROY method, which is called when an object goes
out of scope. Generally this is used for writing out state to disk, breaking circular ref-
erences, and other finalization tasks. However, you can use DESTROY to arrange for
things to be done at the end of a scope:

sub do_later (&) { bless shift, "Do::lLater" }
sub Do::later::DESTROY { $ [0]->() };

{
my $later = do_later { print "End of block!\n"; };

}

So long as $later sticks around, the code doesn’t get called. When it goes out of
scope, gets undefined, or the final reference to it goes away, then the code block is
called. Hook: :LexWrap, one of the modules we looked at earlier in the chapter, actu-
ally uses a similar trick to turn off the wrapping of a subroutine at the end of a lexi-
cal scope:

my $unwrap;

$imposter = sub {
if ($unwrap) { goto 8$original }

38 | Chapter1: Advanced Techniques

}

return bless sub { $unwrap=1 }, 'Hook::LexWrap::Cleanup';

While you keep hold of the return value from wrap, the imposter calls the wrapping
code. However, once that value goes out of scope, the closure sets $unwrap to a true
value, and from then on the imposter simply jumps to the original routine.

Case study: Acme::Dot

One example that puts it all together—messing about with the symbol table, shift-
ing the timing of code execution, and overloading—is my own Acme: :Dot module.

If you’re not familiar with CPAN’s Acme: : * hierarchy, we’ll cover it in more detail in
Chapter 10, but for now you should know it’s for modules that are not entirely seri-
ous. Acme::Dot is far from serious, but it demonstrates a lot of serious advanced
techniques.

The idea of Acme: :Dot was to abstract the $variable.method overloaded . operator
from Ruby.pm and allow third-party modules to use it. It also goes a little further,
allowing $variable.method(@arguments) to work. And, of course, it does so without
using source filters or any other non-Perl hackery; that would be cheating—or at
least inelegant.

So, how do we make this work? We know the main trick, from Ruby.pm, of over-
loading concatentation on an object. However, there are two niggles. The first is that
previously, where $foo.class was a variable “concatenated” with a literal string,
$foo.method(@args) is going to be parsed as a subroutine call. That’s fine, for the
time being; we’ll assume that there isn’t going to be a subroutine called method kick-
ing around anywhere for now, and later we’ll fix up the case where there is one. We
want Perl to call the undefined subroutine method, because if an undefined subrou-
tine gets called, we can catch it with AUTOLOAD and subvert it.

In what way do we need to subvert it? In the Ruby.pm case, we simply turned the
right-hand side of the concatenation (class in $var.class) and used that as a method
name. In this case, we need to not only know the method name, but the method’s
parameters, as well. So, our AUTOLOAD routine has to return a data structure that holds
the method name and the parameter. A hash is a natural way of doing this, although
an array would do just as well:
sub AUTOLOAD {
$AUTOLOAD =~ /.*::(.*)/;
return if $1 eq "DESTROY";
return { data => \@_, name => $1 }
}
As usual, we take care to avoid clobbering DESTROY. Now that we have the arguments
and the name, we can write our overload subroutine to fire the correct method call

Unexpected Code | 39

on concatenation. On the left will be the object, and on the right will be the result of
our AUTOLOAD routine—the data structure that tells us which method to fire and with
what parameters.
use overload "." => sub {
my ($obj, $stuff) = @ ;
@ = ($obj, @{$stuff->{data}});
goto &{$obj->can($stuff->{name})};
}, fallback => 1;
Just as in Ruby, we use the goto trick to avoid upsetting anything that relies on
caller.” Now we have the easy part done.

[say this is the easy part because we know how to do this for one package. So far
we've glossed over the fact that the methods and the overload routine are going to live
in one class, and the AUTOLOAD subroutine has to be present wherever the $var.method
method calls are going to be made. To make matters worse, our Acme: :Dot module is
going to be neither of these packages. We’re going to see something like this:

package My::Class;

use Acme: :Dot;

use base 'Class::Accessor';
__PACKAGE__->mk_accessors(qw/name age/);

package End::User;
use My::Class;

my $x = new My::Class;

$x.name("Winnie-the-Pooh");
It’s the OO class that needs to use Acme: :Dot directly, and it will have the overload
routine. We can take care of this easily by making Acme: :Dot’s import method set up
the overloading in its caller:

my ($call pack);
sub import {

no strict 'refs';
$call pack = (caller())[o];

eval <<EOT
package $call_pack;
use overload "." => sub {

my (\$obj, \$stuff) = \@_;

\@_ = (\$obj, \@{\$stuff->{data}});

goto \8{\$obj->can(\$stuff->{name})};
}, fallback => 1;

EOT

}

* Although, to be honest, I don’t believe there really is (or ought to be) anything that relies on the behavior of
caller—at least, nothing that isn’t doing advanced things itself.

40 | Chapter1: Advanced Techniques

However, there’s the third package, the End: :User package, which actually never sees
Acme: :Dot at all. It just uses My: :Class and expects to get the dot-operator functional-
ity as part of that class. Meanwhile, our poor Acme: :Dot class has to somehow find
out which class is the end user and install an AUTOLOAD routine into it.

Thankfully, we know that the end-user class will call My::Class->import, so we can
use glob assignment to make My::Class::import convey some information back to
Acme: :Dot. We can modify Acme: :Dot’s import routine a little:

my ($call pack, $end user);

sub import {
no strict 'refs’;
$call pack = (caller()
*{$call pack."::import
eval <<EOT

package $call pack;

use overload "." => sub {
my (\$obj, \$stuff) = \@_;
\@_ = (\$obj, \@{\$stuff->{data}});
goto \&{\$obj->can(\$stuff->{name})};

}, fallback => 1;

0];

)
'} = sub { $end user = (caller())[o0]; };

EOT

}

As you can see, we’ve now glob assigned My: :Class’s import routine and made it save
away the name of the package that used if: the end-user class.

And now, since everything is set up, we are at the point where we can inject the
AUTOLOAD into the end user’s class. We use a CHECK block to time-shift this to the end
of compilation:

CHECK {
At this point, everything is ready, and $end_user contains
the calling package's calling package.
no strict;
if ($end_user) {
*{$end user."::AUTOLOAD"} = sub {
$AUTOLOAD =~ /.*::(.*)/;
return if $1 eq "DESTROY";
return { data => \@_, name => $1 }

}
}
And that is essentially how Acme: :Dot operates. It isn’t perfect; if there’s a subroutine
in the end-user package with the same name as a method on the object, AUTOLOAD
won'’t be called, and we will run into problems. It’s possible to work around that, by
moving all the subroutines to another package, dispatching everything via AUTOLOAD

Unexpected Code | 41

and using B to work out whether we’re in the context of a concatenation operator,
but...hey, it’s only an Acme: : * module. And I hope it’s made its point already.

Conclusion

We've now looked at many of the advanced techniques used in pure Perl modules,
most of them involving how to manipulate the way Perl operates. We've divided
those roughly into sections on messing with the symbol table, messing with the class
model, and making code run where code might not be expected.

In a sense, everything else in this book will be built on the techniques that we’ve seen
here. However, Perl is a pragmatic language, and instead of looking in the abstract at
techniques that might be useful, we’re going to see how these tricks are already being
used in real-life code—in CPAN modules—and how they can make your program-
ming life easier.

42 | Chapter1: Advanced Techniques

CHAPTER 2
Parsing Techniques

One thing Perl is particularly good at is throwing data around. There are two types of
data in the world: regular, structured data and everything else. The good news is that
regular data—colon delimited, tab delimited, and fixed-width files—is really easy to
parse with Perl. We won’t deal with that here. The bad news is that regular, struc-
tured data is the minority.

If the data isn’t regular, then we need more advanced techniques to parse it. There are
two major types of parser for this kind of less predictable data. The first is a bottom-up
parser. Let’s say we have an HTML page. We can split the data up into meaningful
chunks or fokens—tags and the data between tags, for instance—and then recon-
struct what each token means. See Figure 2-1. This approach is called bottom-up
parsing because it starts with the data and works toward a parse.

Coranen)
D =)

S

<HTML> 'l <HEAD> 'l v </HEAD> 'l <BODY> 'l .. </BODY> '| </HTML> '|

Figure 2-1. Bottom-up parsing of HTML

The other major type of parser is a top-down parser. This starts with some ideas of what
an HTML file ought to look like: it has an <html> tag at the start and an </html> at the
end, with some stuff in the middle. The parser can find that pattern in the document
and then look to see what the stuff in the middle is likely to be. See Figure 2-2. This is
called a top-down parse because it starts with all the possible parses and works down
until it matches the actual contents of the document.

43

{ Document b
G St

Tltle e
<HEAD> I:|‘ </HEAD> I , l__:O:_—l
Meta tag

Figure 2-2. Top-down parsing of HTML

Parse::RecDescent Grammars

Damian Conway’s Parse: :RecDescent module is the most widely used parser genera-
tor for Perl. While most traditional parser generators, such as yacc, produce bottom-
up parsers, Parse: :RecDescent creates top-down parsers. Indeed, as its name implies,
it produces a recursive descent parser. One of the benefits of top-down parsing is
that you don’t usually have to split the data into tokens before parsing, which makes
it easier and more intuitive to use.

Simple Parsing with Parse::RecDescent

I’'m a compulsive player of the Japanese game of Go.” We generally use a file format
called Smart Game Format (http://www.red-bean.com/sgf/) for exchanging informa-
tion about Go games. Here’s an example of an SGF file:
(;GM[1]FF[4]CA[UTF-8]AP[CGoban:2]ST[2]
RU[Japanese]SZ[19]HA[5]KM[5.50]TM[]
PW[Simon Cozens]PB[Keiko Aihara]AB[dd][pd][jjl[dp]lpp]
sW[df];B[fd];W[cn]
(;8[d1])
(;B[fp]CR[fpIC[This is the usual response.])
(;B[co]CR[co]C[This way is stronger still.]
) sW[dn];B[fp])

This little game consists of three moves, followed by three different variations for
what happens next, as shown in Figure 2-3. The file describes a tree structure of vari-
ations, with parenthesised sections being variations and subvariations.

* The American Go Association provides an introduction to Go by Karl Baker called The Way to Go (http://
www.usgo.org/usa/waytogo/W2Go8x11.pdf).

44 | Chapter2: Parsing Techniques

Figure 2-3. Tree of moves

Each variation contains several nodes separated by semicolons, and each node has
several parameters. This sort of description of the format is ideal for constructing a
top-down parser.

The first thing we’ll do is create something that merely works out whether some text is
a valid SGF file by checking whether it parses. Let’s look at the structure carefully again
from the top and, as we go, translate it into a grammar suitable for Parse: :RecDescent.

Let’s call the whole thing a game tree, since as we’ve seen, it turns out to be a tree-
like structure. A game tree consists of an open parenthesis, and a sequence of nodes.
We can then have zero, one, or many variations—these are also stored as game
trees—and finally there’s a close parenthesis:

GameTree : "(" Sequence GameTree(s?) ")"

Read this as “You can make a GameTree if you see (, a Sequence, ...”. We've defined
the top level of our grammar. Now we need to define the next layer down, a
sequence of nodes. This isn’t difficult; a sequence contains one or more nodes:

Sequence: Node(s)

A node starts with a semicolon and continues with a list of properties. A property is a
property identifier followed by a list of values. For example, the RU[Japanese] prop-
erty—with the property identifier RU—specifies that we’re using Japanese rules in
this game.

Node: ";" Property(s)

Property: PropIdent PropValue(s)
We've covered most of the high-level structure of the file; we have to start really
defining things now. For instance, we need to be able to say that a property identi-
fier is a bunch of capitalized letters. If we were trying to do the parsing by hand, now
would be the time to start thinking about using regular expressions. Thankfully,
Parse: :RecDescent allows us to do just that:

PropIdent : /[A-Z]+/

Next come our property values: these are surrounded by square brackets and con-
tain any amount of text; however, the text itself may contain square brackets. We
can mess about with the grammar to make this work, or we can just use the Text::
Balanced module.

Parse:RecDescent Grammars | 45

Text::Balanced

Text::Balanced is another module that should be in your toolbox if you have to deal
with any kind of structured data. It’s a companion module to Parse::RecDescent,
which takes care of extracting “balanced” text sequences. For instance, given a
string:
(lambda (x) (append x '(hacker))) ((lambda (x) (append '(just another) x))
"(LISP))
the expression ($first, $rest) = extract bracketed($jalh, "()") will return (lambda
(x) (append x '(hacker))) in $first, and the rest of the string in $rest.

Text::Balanced also contains routines for extracting quoted strings while allowing
backslash escapes, Perl quotelike strings (qq|xyz| and the like), XML-tagged text, and
much more.

The Text: :Balanced way of extracting a square-bracketed expression is:
extract_bracketed($text, '[]');

and Parse: :RecDescent allows us to plug that directly into the grammar:
PropValue : { extract bracketed($text, '[]') }

Parse::RecDescent automatically fills the magic variable $text with the input to the
parser.

We’ve now reached the bottom of the structure, which completes our grammar.
Let’s look again at the rules we’ve defined:

my $grammar = q{

GameTree : "(" Sequence GameTree(s?) ")"
Sequence : Node(s)
Node : ";" Property(s)

Property : PropIdent PropValue(s)

PropIdent : /[A-Z]+/

PropValue: { extract bracketed($text, '[]") }
}

Now that we have the grammar wrapped up in a Perl string, we can feed it to
Parse::RecDescent:

my $sgf parser = Parse::RecDescent->new($grammar);

This returns an object with methods for each of our rules: we can call $sgf_
parser->GameTree to begin parsing a whole file, and this method will in turn call
$sgf_parser->Sequence, which will call $sgf _parser->Node and so on. So let’s give it
a valid SGF file—encoding the famous Shusaku opening—and see what it makes
of it:

use strict;
use Parse::RecDescent;

46 | Chapter2: Parsing Techniques

my $grammar = qgf{

GameTree : "(" Sequence GameTree(s?) ")"
Sequence : Node(s)
Node : ";" Property(s)

Property : PropIdent PropValue(s)

PropIdent : /[A-Z]+/

PropValue: { extract bracketed($text, '[]') }
1

my $sgf parser = Parse::RecDescent->new($grammar);

undef $/; my $sgf = <DATA>;
print $sgf parser->GameTree($sgf);

_ DATA
(;CM[1]FF[4]AP[CGoban:2]ST[2]RU[Japanese]
PW[Honinbo Shuwa]PB[Yasuda Shusaku]
WR[7d]BR[5d]
;Blqd];W[dc];B[pgl;W[oc];Blcp];W[qe]
B[pe]C[This is the famous "Shusaku opening".])

When we run this, we may be surprised to find out that it prints nothing but a single
parenthesis:

)

because we haven’t defined what we want to do with the parsed data yet. This is only
fair enough; Parse: :RecDescent is offering us the last token it saw, which was a close
parenthesis. If, on the other hand, we give it a broken SGF file:

(;GM[1]FF[4]AP[CGoban:2]ST[2]RU[Japanese]
PW[Honinbo Shuwa]PB[Yasuda Shusaku]
WR[7d]BR[5d]
;Blqd];W[dc];B[pgl;W[oc];Blcp];W[qo]
B[pe]C[This)

then we get no output at all—it could not be parsed.

Let’s briefly run over how we constructed that grammar, then we’ll see how we can
turn the parser into something more useful.

Types of match

So far we’ve seen several different ways to match portions of a data stream:
* Plain quoted text, such as the semicolon at the start of a node
* Regular expressions, as used to get the property name
* Subrules, to reference other parts of the grammar

* Code blocks, to use ordinary Perl expressions to extract text

We also used several types of repetition directive, as shown in Table 2-1.

Parse::RecDescent Grammars | 47

Table 2-1. Types of repetition directive

Directive Meaning

(s) Tells Parse: :RecDescent that we want to find
one or more of the given subrules

(s?) To mean O or more

(?) Tomean 1 or0

(5) To match precisely 5 times

(5..) To match 5 or more

(..5) To match O to 5

(5..10) To match between 5 and 10 times

These repetition specifiers can only be applied to subrule-type matches.

Actions

What we’ve constructed so far is strictly called a recognizer. We can tell whether or not
some input conforms to the given structure. Now we need to tell Parse: :RecDescent
what to do with the data once it’s been recognized, and we do this with actions.

At its simplest, an action is a block of Perl code that sits at the end of a grammar rule.
For instance, we could say:

Node : ";" Property(s) { print "I saw a node!\n" }

When this runs with the input from the previous section “Simple Parsing with Parse::
RecDescent,” we see the output:

I saw a node!
I saw a node!
I saw a node!
I saw a node!
I saw a node!
I saw a node!
I saw a node!
I saw a node!
)

This is quite reassuring, as there are actually eight nodes in our example SGF file.

We can also get at the results of each match, using the @item array:

Property : PropIdent PropValue(s)
{ print "I saw a property of type $item[1]!\n" }
Notice that this array is essentially one-based: the data matched by PropIdent is ele-
ment one, not element zero. Anyway, this now gives:
I saw a property of type CGM!

I saw a property of type FF!
I saw a property of type AP!

48 | Chapter2: Parsing Techniques

I saw a property of type ST!
I saw a property of type RU!
I saw a property of type PW!
I saw a property of type PB!
I saw a property of type WR!
I saw a property of type BR!
I saw a node!

I saw a property of type B!

As we saw with the curious case of the) returned by our recognizer, by default
Parse::RecDescent sets the value of a match equal to the last token matched. This
works just fine for simple rules like PropIdent, but for complex rules such as
GameTree, it falls down pretty flat. Not to worry! There’s one final piece of the puz-
zle: you can set the magic variable $return to be the output that you want each rule
to return.

For instance, let’s concentrate on the Property rule. We’d like this to return some
kind of data structure that represents the property: its type and its value. So, we say
something like this:

Property : PropIdent PropValue(s)

{ $return = { type => $item[1], value => $item[2] } }

Now, there’s nothing forcing us to start by parsing an entire GameTree. Remember
that Parse: :RecDescent’s new method returns an object with a method for each rule?
We can just parse a single Property:

my $prop = $sgf parser->Property("RU[Japanese]");

print "I am a property of type $prop->{type}, ";
print "with values $prop->{value}";

And Perl tells us:
I am a property of type RU, with values ARRAY(0x2209d4)

Because we specified that the PropValue may be repeated, Parse::RecDescent has
helpfully put all its values into an array reference for us. Well, that’s great, but to be
honest, the majority of properties in real SGF files only have one value each, so we
can make the output a bit friendlier by replacing the array reference $items[2] by its
first element if it only has the one element.

Property : PropIdent PropValue(s)

{ $return = { type => $item[1], value => @{$item[2]}==1 ?
$item[2][0] : $item[2] } }

This time we have something a little easier to deal with:

I am a property of type RU, with values [Japanese]

Parse::RecDescent Grammars | 49

Oops! We forgot that extract bracketed keeps the square brackets around the
extracted text. So let’s look again at the PropValue rule:

PropValue : { extract bracketed($text, '[]") }

This is a code block match—a block of Perl code that determines whether or not
something matches—but it looks just like the actions that we’ve been adding. So
how does Parse: :RecDescent know whether something’s a code block match or an
action?

Well, there’s a dirty little secret here—code block matches and actions are precisely
the same thing. When Parse: :RecDescent sees a block of Perl code as it’s working its
way though a rule, it immediately executes it. If it returns true, then we consider that
to be a successful match. So, as a general principle, it’s important that your actions
return a true value, or otherwise they’ll make the match fail.

So, we can strip off the brackets inside the PropValue rule, only when the call to
extract_bracketed was successful:

PropValue : { my $value = extract bracketed($text, '[]');
($return) = $value =~ /A\[(.*)\]/ if $value; }

And this will now do what we expected. One final change to the GameTree rule:

GameTree : "(" Sequence GameTree(s?) ")"
{ $return = { mainline => $item[2], variations => $item[3] } }

so that Parse: :RecDescent returns a handy data structure representing any valid SGF

file:”

$VARL = {
'variations' => [],
'mainline' => [
[
{
'value' => '1',
"type' => 'GM'
)

{
'value' => '4',
"type' => 'FF'
)

{
'value' => 'CGoban:2',
"type' => 'AP’
)

{
'value' => '2',
"type' => 'ST'

1

* In fact, my module Games: :Go: : SGF does something similar to this.

50 | Chapter2: Parsing Techniques

For reference, the final program looks like this:

use strict;
use Parse::RecDescent;
my $grammar = q{

GameTree : "(" Sequence GameTree(s?) ")"

{ $return = { mainline => $item[2], variations => $item[3] } }
Sequence : Node(s)
Node ¢ ";" Property(s)

Property : PropIdent PropValue(s)
{ $return = { type => $item[1], value => @{$item[2]}==1 ?
$item[2][0] : $item[2] } }
PropIdent : /[A-Z]+/
Propvalue : { my $value = extract bracketed($text, '[]1');
($return) = ($value =~ /™\[(.*)\]/) if $value; }
b

my $sgf parser = Parse::RecDescent->new($grammar);

undef $/; my $sgf = <DATA>;
use Data: :Dumper;

my $tree = $sgf parser->GameTree($sgf);
print Dumper($tree);

Debugging

It’s all very well to be presented with a completed grammar like that, but what about
debugging? Well, TI'll be honest and admit that I did make a few mistakes when 1
wrote the preceding example. First time through, I got too clever with extract_
bracketed in PropValue, so it looked like this:

PropValue : { my ($value) = extract bracketed($text, '[]");

($return) = ($value =~ /"\[(.*)\]/) }

You see, extract bracketed is context sensitive. In scalar context it modifies its
input, stripping out the bracketed section that it found, but in list context it leaves
the original input alone returning two values: what matched and what remained. In
my list-context version, $text wasn’t being changed, and the output looked some-
thing like this:

$VAR1 = undef;

Oops. How do you debug something like that? Thankfully, Parse: :RecDescent has a
very capable built-in tracing system, which spits out masses of debugging output.
You can turn this on with the global variable $RD_TRACE, or from the command line
using the -s flag to Perl, like this:

% perl -s test.pl -RD_TRACE

Parse::RecDescent Grammars | 51

The output is in two parts. The first is how Parse::RecDescent understood the
grammar:

Parse::RecDescent: Treating "GameTree :" as a rule declaration
Parse::RecDescent: Treating ""("" as an interpolated literal terminal
Parse::RecDescent: Treating "Sequence" as a subrule match

This is nearly always correct, so we don’t need to worry about that. The next part
comes when Parse: :RecDescent is attempting to process some text. It tells us which
rule it’s processing, what it’s doing, and what input it has:

| GameTree |Trying rule: [GameTree]
| GameTree | |"(;GM[1]FF[4]AP[CGoban:2]ST[2
\ | | JRU[Japanese]\nPW[Honinbo
| | Shuwa]PB[Yasuda
| | Shusaku]\nWR[7d]BR[5d]\n;B[qd
| [1;Wldc];Bpg];Wloc];Blcp];Wlg
| |o]\n;B[pe]C[This is the
| | famous "Shusaku
| |Opening".])\n"
GameTree |Trying production: ['(' Sequence |
|GameTree ')'] |
GameTree |Trying terminal: ['(']
GameTree |>>Matched terminal<< (return value: |
|

1e)

This tells us that it’s in the middle of trying to match a GameTree, and that in doing
so, it has to try to match '(' Sequence GameTree ')'. So, it looks for the first thing, a
terminal symbol, (, and it finds one.

When you’re trying to work out why something didn’t match, it’s sometimes easier
to work from the bottom up, because Parse: :RecDescent will give up soon after fail-
ing the test that’s broken. About three-quarters of the way through the trace, we find
the following;:

| Node |>>Matched repeated subrule:

| | [Property]<< (1 times) |
This is a problem, because we know the first node has more than one property. So
we look up a bit more, and we see:

Property |Trying action
Property |>>Matched action<< (return value:

\ |
\ |
\ | [HASH(0x20b324) 1) |
Property	>>Matched production: [PropIdent
	PropValue]<<
Property	>>Matched rule<< (return value:
\	[HASH(0x20b324) 1)

Property |(consumed: [GM])

52 | Chapter2: Parsing Techniques

Aha! Tt thinks that it’s matched a valid property, but all that it’s consumed is “CM”—
it hasn’t sucked up the “[1]” at all.

This should tell us that there’s something wrong with the way the grammar is pars-
ing the property value and, moreover, that it’s matching without sucking up any text.
That’s precisely what the bug was.

More Difficult Parsing

Of course, this isn’t all you can do with Parse: :RecDescent; the module has a sophis-
ticated system of directives, options, and magic variables to help you get around any
parsing problem.

Commit, reject, and error

One of the problems with recursive descent grammars is that they can be terribly
slow; there are a huge number of possible matches in any decent-sized grammar, and
Parse: :RecDescent has to try absolutely all of them. It certainly ends up trying a lot of
parses that can’t possibly make sense.

To ameliorate this problem, Parse: :RecDescent has a series of directives that can help
us prune the tree of possibilities. All directives have the same format: a keyword in
angle brackets. For instance, the directive <commit> specifies that there’s no turning
back from what we’ve just seen. Suppose we have the following rules for method
calling in an OO programming language:
Method:
Variable Methodname '(' Arguments ')’
| Variable '.' Property

| ClassIdentifier '.' Methodname '(' Arguments ')’
| ClassIdentifier '.' Property

Now, if we have some text $obj.frob(gargle gargle howl) we know that it’s supposed
to be a method call of the first type. If something goes wrong parsing the arguments,
then there’s no point coming back and seeing if it’s a property call on an object, or
whether it’s some kind of class method.

In fact, as soon as we’ve seen Variable . Methodname (then there’s no turning back;
we can be sure that this is supposed to be a method call on an object, with argu-
ments. At this point, we can commit to this parse. The same goes for class methods,
and we can optimize our grammar like so:

Method:
Variable '.' Methodname '(' <commit> Arguments ')’
| Variable '.' Property
| ClassIdentifier '.' Methodname '(' <commit> Arguments ')’

| ClassIdentifier '.' Property

Parse:RecDescent Grammars | 53

The effect of a commit is to cause the whole production to fail if the current subrule
fails; if Arguments doesn’t parse or we don’t see a closing bracket, then the Method rule
fails, without checking the other options. This massively cuts down the number of
possibilities that Parse: :RecDescent has to try.

N
One oft-encountered gotcha is that directives take a place in the @item

.“,“ array; to refer to Arguments in the first rule, you need to specify
T 9k $item[6], not $item[s].

Unfortunately, there are times when we want this pruning behavior, but we also
want to try the other options. The typical example of this is an if-then-else-end
sequence. Let’s try and write a grammar for this sort of sequence:

Conditional:

"if" Cond "then" Block "end"
| "if" Cond "then" Block "else" Block "end"

As soon as we see the if, we know we’re parsing a conditional. So, we can say:

Conditional:
"if" <commit> Cond "then" Block "end"
| "if" <commit> Cond "then" Block "else" Block "end"

Unfortunately, this will never parse an else block properly. We’ll commit to the first

option and parse the conditional, the then, and the block, but instead of seeing end as
we expect, we see else. This fails, and since we’re committed, the whole rule fails.

So, while we want to commit to an if statement, we want the ability to change our
minds later, reversing the commitment when there’s a valid option. The directive to
do this is called uncommit, and so our final grammar looks like this:

Conditional:

"if" <commit> Cond "then" Block <uncommit> "end"
| "if" <commit> Cond "then" Block "else" Block "end"

The opposite of commit, however, is called reject, and that states that we can’t even
go down this road at all. One usage of this would be to restrict a rule to a subset of
its possibilities. Suppose we’ve got the rule control modifier, which matches if,
unless, while, and until statement modifiers. If there’s a time when we want to
match just the conditionals, you could say:
conditional modifier:
"while" <reject>

| "until" <reject>
| control modifier

54 | Chapter2: Parsing Techniques

Of course, this is horribly lazy—we should just have defined control_modifier as a
superset of conditional modifier, not the other way around. Worse, it’s inefficient,
since when we get to control modifier, we have to check for while and until again.

So what is <reject> actually useful for, then? The most useful application of it is
using a rule purely for its side effects without being interested in whether it matches.
For instance, you might want to use a rule to set up some global variable that will
affect the parsing later:

conditional modifier: { $::in modifier = 1 } <reject>

| "if" expr

{ ... $::in_modifier = 0; }
| "unless" expr

{ ... $::in_modifier = 0; }

Now expr can take note of the $::in_modifier variable and alter its parsing behavior
accordingly.

Similarly, if you get overwhelmed by debugging the grammar with RD_TRACE, you can
insert simple debugging statements followed by a reject directive:

conditional modifier:
{ warn "I'm trying to parse a conditional modifier!" } <reject>
| "if" expr
| "unless" expr

Another way of trimming the grammar, similar to <commit>, is to report an error
when something impossible happens. Just like <commit>, the idea is to fail as quickly
as possible, hence saving on backtracking. The predictably named <error> directive
helps us to do this:

subroutine: "sub" sub_declaration
block: <perl codeblock>
sub_name: /[a-zA-Z_]\w+/

sub_declaration : block
| sub_name block
| <errors>

<perl codeblock> is a directive that extracts one block in curly braces.
Now if we say sub 01234 { }, we get:

ERROR (line 1): Invalid sub declaration: Was expecting block, or sub
name

The <error> directive automatically derives a sensible and useful error message from
the grammar. If you don’t want that, write your own error message:

subroutine: "sub" sub_declaration

Parse::RecDescent Grammars | 55

block: <perl codeblock>
sub_name: /[a-zA-Z_]\w+/

sub_declaration : block
| sub_name block
| <error: Bad subroutine definition>
If you’re using <commit> and <error> together, you can use the variant <error?> form
to provide a useful error message for failed committed matches:

Method:
Variable '.' Methodname '(' <commit> Arguments ')’
| Variable '.' Property
| ClassIdentifier '.' Methodname '(' <commit> Arguments ')’
| ClassIdentifier '.' Property
| <error?>

This won’t produce an error message unless we’re in a committed state, but it will
wail if something goes wrong with argument processing:

ERROR (line 1): Invalid Method: Was expecting Arguments but found "foo
bar)" instead

Creative use of <commit> and <error> can greatly speed up a highly complex grammar.

Syntactic whitespace

In the examples we’ve seen so far, whitespace hasn’t been significant: Parse: :RecDescent
happily skipped over spaces, tabs, and newlines alike. Unfortunately, whitespace is sig-
nificant for some data formats. In particular, there are some data formats in which, for
instance, newlines mark the end of a particular rule.

Headers in a mail message are one such format: a newline marks the end of a header,
unless there’s a continuation line following. A continuation line is marked by yet
more significant whitespace: a space at the beginning of the line. There’s also a sig-
nificant newline between the header and the body.

What we need to do is to tell Parse::RecDescent what whitespace it can skip over
and what is significant. The variable used to tell Parse: :RecDescent of this is $Parse::
RecDescent: :skip.

The normal setting is to skip over any whitespace: /\s*/. However, in this case, it
can’t skip over anything!

$Parse::RecDescent::skip = '';

If we say this, we now have to specify newlines and possible spaces explicitly in our
grammar.

message : header "\n" body
header : header_ line(s)

56 | Chapter2: Parsing Techniques

header line : field ":" value "\n" continuation
| field ":" value "\n"

field: /\w+/

value: /.*/;

continuation : " " /.*/ "\n" continuation(?)

body : body line(s?)

body line : /.*/ "\n"

We'll see more applications of significant whitespace in our example grammars.

Automating the process

What we’ve seen so far is great, but we’re still doing a lot of work ourselves. This
isn’t particularly lazy, and laziness, as you know, is a key virtue of a Perl program-
mer. So let’s let the module do some of the work.

The first thing we can do is set a default action; the magic variable $::RD_AUTOACTION
can be set to a string that will be evaled and used as the action for any rule that doesn’t
have one. If we set a sufficiently general autoaction, we can let Parse: :RecDescent get
on with parsing the input while we massage the data structure when it’s done.

In fact, the sufficiently general autoaction turns out to be this:
$::RD_AUTOACTION = '[@item]';

This sticks everything that gets parsed into an array reference and builds up a list-of-
lists representing the parse tree. Of course, this will give us every single item in the
input whether we want it or not, but the point is that we’re going to post-process it.
If we use autoactions in our Shusaku example, we get something a little like this:

$VAR1L = [
'GameTree',
(',
[
'Sequence’,
[
[
"Node',
5

[
[
'Property’,
[
'PropIdent’,
oM

Parse::RecDescent Grammars | 57

Another interesting autoaction idea is to bless what got parsed into a class represent-
ing the rule. The autoaction looks like this:

$::RD_AUTOACTION = 'bless [@item[1..$#item]], "SGFParser::$item[0]";";

You’ll then end up with an SGFParser::GameTree object. It’s then a trivial matter to
add the appropriate methods to get a bunch of SGFParser: : Sequence objects, explore
the SGFParser: :Nodes, and so on.

Of course, we could be lazier still. The <autotree> directive, placed at the top of a
grammar, will generate a parse tree and bless nodes into appropriately named
classes. Here’s our grammar now:

my $grammar = qgf{

<autotree>

GameTree : "(" Sequence GameTree(s?) ")"
Sequence : Node(s)

Node : ";" Property(s)

Property : PropIdent PropValue(s)
PropIdent : /[A-Z]+/
PropValue : { my $value = extract bracketed($text, '[]1');
($return) = ($value =~ /™\[(.*)\]/) if $value; }
};

Each object is a hash looking something like this:

$tree= {
__RULE__ => "GameTree",
_STRINGL__ => "(",
Sequence => Sequence=HASH(0x23feb8),
GameTree => ARRAY(0x24fcd4),
_ STRING2__ => ")"
1
There’s obviously a trade-off here between laziness in specifying actions and control
over the data structure you get back, so autoactions and autotrees need to be used
carefully.

On the other hand, the final piece of laziness is extremely useful when developing a
grammar. Let’s suppose we’re still working out how to specify an SGF property for
our grammar, but we want to make sure everything else works first. So, we write a
test grammar like this:

my $grammar = q{

GameTree : "(" Sequence GameTree(s?) ")"
Sequence : Node(s)

Node : ";" Property(s)

Property : "foo"

1
And now we can test our parser with dummy pseudo-SGF files:

(;foo;foo;foo(foo;foo;foo foo))

58 | Chapter2: Parsing Techniques

and so on. When we’re happy that this does what we want, we can work on develop-
ing the property specification properly. If you’re constructing a very complex gram-
mar, you might want to do this sort of thing for quite a few rules. This is where
autostubbing comes in.

All we need do is set $::RD_AUTOSTUB, and Parse: :RecDescent will allow us to replace
undefined rules by their names. That’s to say:

$::RD_AUTOSTUB = 1;
my $grammar = qgf{

GameTree : "(" Sequence GameTree(s?) ")"
Sequence : Node(s)
Node : ";" Property(s)

1
will enable us to match:
(;Property;Property;Property(Property;Property;Property Property))

When we’re done, simply remove the $::RD_AUTOSTUB line, and Parse: :RecDescent
will go back to warning us about undefined rules!

And much more...

There are many more obscure features of Parse::RecDescent that you’ll probably
never use but may be useful in some particularly troublesome situation.

For instance, Parse::RecDescent populates not just the @item array but also a wide
variety of local variables to help with the parsing. Perhaps the most useful of these is
the %item hash. Suppose we’ve got a rule:

non
>

structure: type "{" definition(s) "}" name modifier(s?)

That’s not so bad—if we want to get at the value of the modifiers, we just say
$item[6]. But suppose we add a rule in the future; are we going to remember to
update all the offsets and turn it into $item[7]? What if we add a directive? Are we
going to remember that this also changes the offsets?

%item stops us worrying about this; we can just refer to $item{modifier} and we’ll get
the right thing. Of course, if we have a rule with two modifiers in it, this method
won’t work so well—Parse::RecDescent only records the value of the second
modifier in the hash.

We've already met the $return variable, which stores the return code; there’s also
$text, which stores the remaining text being parsed. This allows us to modify the
incoming text stream. The standard example of this is an #include-style facility:

include: "#include" filespec { $text = main::include file($item[2]) . $text; }

Notice that, since Parse: :RecDescent’s runtime is in its own little package, we must
explicitly state where to find include file.

Parse::RecDescent Grammars | 59

Another useful feature is the ability to have rules that are called when the parser
starts up—these start-up rules are placed outside any rule, like so:

{ my ($fish, $fowl) = (0, 0); print "Checking for fishes and fowls\n"; }

list: item(s)
{

}

print "Found $fish fish and $fowl fowl\n";

item: "fish"
{ $fish++; }
| "fowl"
{ $fowl++; }
| <error: "Neither fish nor fowl">

There are a wealth of other features: scoring of ambiguous rules, parsing of blocks and
Perl-like structures, explicit specification of operator precedence, passing parameters
between rules, and so on. However, the basic features of Parse: :RecDescent as we’ve
described them will be able to help you solve a huge number of parsing challenges.

Some Examples

To finish off our survey of Parse: :RecDescent, here are a few full examples of parsing
real-life data. We’ve seen a bunch of techniques for creating parsers with Parse::
RecDescent, but how do we actually go about creating real-life parsers? The follow-
ing two examples show data formats that I recently needed to parse, and how I went
about it.

Parsing iCalendar data

Apple’s iCal application for calendaring and scheduling events speaks a standard
data format called iCalendar (RFC 2445), www.ietf.org/rfc/rfc2445.txt. This is a fairly
simple line-based protocol that looks a little like this:

BEGIN:VCALENDAR

CALSCALE :GREGORIAN

X-WR-TIMEZONE; VALUE=TEXT:Europe/London
METHOD : PUBLISH

PRODID:-//Apple Computer\, Inc//iCal 1.0//EN
X-WR-CALNAME ; VALUE=TEXT : Home

VERSION:2.0

BEGIN:VEVENT

SEQUENCE:5

DTSTART; TZID=Europe/London:20020923T193000
DTSTAMP:20020913T204302Z

SUMMARY:Bert Jansch at the Camden Jazz Cafe
UID:543A3F74-D09B-11D6-8A6E-000393D74DB6
STATUS : CONFIRMED

DTEND; TZID=Europe/London:20020923T223000

60 | Chapter2: Parsing Techniques

END:VEVENT

END:VCALENDAR

I needed to get some simple information out of these calendar files. Net::ICal is an
extensive set of modules to read and write iCalendar data—and generally the tool of
choice for such tasks—but for my limited needs it made sense to extract the informa-
tion with a quick grammar.

As you can see, the format is essentially colon-separated key-value lines, with options
denoted by ;NAME=OPTION before the value. Normally we’d parse it with the tech-
niques in the first section of this chapter, but because there’s a bit more structure—
the calendar is split up into events, and each event has a set of data associated with
it—a more structured approach is needed.

We'll start off with a simple approximation:

calendarfile: calendar(s)

calendar: "BEGIN:VCALENDAR\n" line(s) "END:VCALENDAR\n"

line: /\w+/ option(s?) ":" /.*/ "\n"

option: ";" /\w+/ "=" /[*;:]+/
Because newlines are significant, we need to remember to set the $Parse::
RecDescent: :skip variable to '[\t]+'.

Now, this simple approximation looks good, but it has a bit of a problem. Given a
simple calendar:

BEGIN:VCALENDAR
NAME: Test
END:VCALENDAR

the parser will fail. Why? Because the 1ine(s) subrule consumes both the NAME line
and the END line. Parse::RecDescent grammars don’t backtrack in the same way as
regular expressions and won’t give up the END line for another reparse. This is where
we need to use <reject>. This is one way to do it:

line: "END" <reject>
| /\w+/ option(s?) ":" /.%/ "\n"

but we can be a bit neater; <reject> allows us to specify a conditional, like so:
line: /\w+/ <reject: $item[1] eq "END"> option(s?) ":" /.*/ "\n"
Now our simple test works. Let’s add some event handling to it:

calendarfile: calendar(s)
calendar: "BEGIN:VCALENDAR\n" line(s) "END:VCALENDAR\n"

line: event | dataline
event: "BEGIN:VEVENT\n" dataline(s) "END:VEVENT\n"

dataline: /\w+/ <reject: $item[1] eq "END"> option(s?) ":" /.*/
option: ";" /\wt/ "=" /[~ 14/

Parse::RecDescent Grammars | 61

There are other types of iCalendar events—VIOURNAL, VALARM, and so on; they all have
more or less the same format, but inspecting the data that I needed to parse, I found
that iCal didn’t use these in my case. It’s easy enough to make the parser completist,
but I wasn’t really interested in doing that at the time. Similarly, the RFC defines
which individual data lines are allowed, but for this example, let’s be pragmatic and
accept whatever items iCal wants to throw at us.

Now it’s time to try it on some real calendar data—and we find quickly that it fails.
So, we bring out RD_TRACE, and we find that the last thing that matched was:

| dataline |Trying rule: [dataline]

| dataline |Trying production: [/[\w]+/

| |<reject:<reject: $item[1] eq "END">> |

| |option ":' /.*/] |

| dataline |Trying terminal: [/[\w]+/] |

| dataline |>>Matched terminal<< (return value: |
|
|

\ |[X])

| dataline "-WR-

The line in question was:
X-WR-TIMEZONE; VALUE=TEXT:Europe/London
Oops! \w+ wasn’t quite right for the key names. Let’s try [\w-]+.

use Parse::RecDescent;

my $grammar = q{

calendarfile: calendar(s)

calendar: "BEGIN:VCALENDAR\n" line(s) "END:VCALENDAR\n"

line: event | dataline

event: "BEGIN:VEVENT\n" dataline(s) "END:VEVENT\n"

dataline: /[\w-]+/ <reject: $item[1] eq "END"> option(s?) ":" /.*/
option: ";" /\wt/ "=" /[*;i]+/

};

my $p = Parse::RecDescent->new($grammar);
use Data::Dumper;

open IN, "test.ics" or die $!;

undef $/;

print Dumper($p->calendarfile(<IN>));

And now this works. .. partially:

$VARL = [
"END:VCALENDAR
I

We now need some actions to sort out the output data structure.

Let’s start at the bottom. We want to turn the options (the name=option pairs) into a
hash, so we’ll put each option into its own hash ref for the time being:

option: ";" /\w+/ "=" /[

si]+/
{ $return = { $item[2] =

> $item{4] }; }
b

62 | Chapter2: Parsing Techniques

And when we aggegrate the options into a data line, we can turn the array of hash
references into a single hashref:

dataline: /[\w-]+/ <reject: $item[1] eq "END"> option(s?) ":" /.*/
{ my %options = map { %$_} @{$item{3} };
$return = {
key => $item[1],
value => $item[5],
options => \%options
b}
An event is an array of data lines, but we want to turn that into one big hash refer-
ence. So we look at each one, turn the “key” element into the key, and file it into a
hashref:

event: "BEGIN:VEVENT\n" dataline(s) "END:VEVENT\n"
{ $return = {};
for (@{sitem[2]}) {
$return->{delete $ ->{key}} = $_;
}
}

Now things get a little tricky; each line in a calendar can be a data line of informa-
tion about the whole calendar, or it can be part of an event. So we need to propagate
up information about what we’ve just parsed so we can assemble it appropriately
later. event and dataline both return hash references, so we can just add another ele-
ment into that hash stating what we’ve got:
line: event { $return = { type => "event", %{$item[1]} }; } |
dataline { $return = { type => "data", %{$item[1]} }; }
Finally, we’ll end up with an array full of events or calendar-wide data, and we need
to put that together into one big data structure, using the same sort of tricks we used
for event. This time, however, we push events onto an array. And, just for a touch of
class, we’ll sort the events array by date:
calendarfile: calendar(s)
calendar: "BEGIN:VCALENDAR\n" line(s) "END:VCALENDAR\n"
{ $return = {};
my @events;
for (@{$item[2]}) {
my $type = delete $ ->{type};
if ($type eq "event") {
push @events, $;

} else {
$return->{delete $ ->{key}} = $;
}
}

$return->{events} = [sort {$a->{DTSTART}->{value} cmp
$b->{DTSTART}->{value}} @events];

Parse:RecDescent Grammars | 63

And now we have an iCalendar parser that will handle what I got out of iCal:

my $p = Parse::RecDescent->new($grammar);

use Data::Dumper;

open IN, "test.ics" or die $!;

undef $/;

my $cal = $p->calendarfile(<IN>);

for (@{$cal->[0]{events}}) {
my $when = $ ->{DTSTART}->{value};
my $what = $ ->{SUMMARY}->{value};
$when =~ s/T.*//; # Don't care about time of day
$when =~ s/(\d{4})(\d{2})(\d{2})/$1-$2-$3/;
$what =~ s/\\//g;
print "$when: $what\n";

2002-09-14: Leaving Drinks at the Porterhouse
2002-09-21: Star Wars

2002-09-23: Bert Jansch at the Camden Jazz Cafe
2002-09-28: .pad Party?

2002-10-03: Go Home

.procmailrc

When I wrote the Mail::Audit mail filtering library, I wanted to build in the ability
for those using procmail to convert their configuration files over automatically. This
time, instead of using Parse: :RecDescent to produce a data structure, we’re going to
use it to create a Mail: :Audit filter—more generically known as a Perl program.

As usual, we’ll start with a top-down description of a procmail configuration file.
Thankfully, the procmailrc(5) manual page is extremely clear in detailing the syntax
of the file, including some sections we can basically steal almost verbatim:

A word beginning with # and all the following characters up to a NEWLINE are
ignored. This does not apply to condition lines, which cannot be commented.

A line starting with ‘:* marks the beginning of a recipe. It has the following format:

:0 [flags] [: [locallockfile]]
<zero or more conditions (one per line)>
<exactly one action line>

Conditions start with a leading “*’, everything after that character is passed on to the
internal egrep literally, except for leading and trailing whitespace.

From this and a little more digging in the main page, we can derive the following
rules:

program: thing(s)

thing: recipe | assignment | blank
blank : /"\s+/

assignment: /~(.*¥)=(.*)/

64 | Chapter2: Parsing Techniques

recipe : ':0' flags(?) locallock(?) "\n" condition(s) action "\n"
| ':0' flags(?) locallock(?) "\n" action "\n"
locallock : ':' filename(?)
filename: /[\w/-+\.]+/
flags : /[HBDAaEehbfcwWir]+/
(We'll strip comments when we preprocess the data.) We also need to set $Parse::
RecDescent: : skip, because procmailrcs are line-oriented.

Next, we’ll look at the range of actions that are permissible:

! Forwards to all the specified mail addresses

| Starts the specified program, possibly in $SHELL if any of the characters
$SHELLMETAS are spotted

{ Followed by at least one space, tab, or newline will mark the start of a
nesting block

Anything else will be taken as a mailbox name (either a filename or a directory, abso-
lute or relative to the current directory (see MAILDIR)). If it is a (possibly yet nonexist-
ent) filename, the mail will be appended to it.

Hence, our action rule can be specified as:

action : '|' /.*/
IRAY
| "{" /\s+/ program '}'
| filename
Notice that we have a recursive use of program here to reflect the recursive nature of
nested rules.

All that’s left is the rule that determines a condition:

Conditions start with a leading *’, everything after that character is passed on to the
internal egrep literally, except for leading and trailing whitespace.

There are some special conditions you can use that are not straight regular expres-
sions. To select them, the condition must start with:

! Invert the condition.

$ Evaluate the remainder of this condition according to sh(1) substitution
rules inside double quotes, skip leading whitespace, then reparse it.

? Use the exitcode of the specified program.

< Check if the total length of the mail is shorter than the specified (in deci-

mal) number of bytes.
> Analogous to ‘<’.

variablename?? Match the remainder of this condition against the value of this environ-
ment variable...

\ To quote any of the above at the start of the line.
So, we have a definition of a condition, and it looks like this:

condition : "*' /[*12<>\\$]?2/ /. %/ "\n"

Parse:RecDescent Grammars | 65

Now, once again, we have a recognizer; we need to add some rules to it. As before,
we're not interested in providing absolutely everything that procmail does, just a rea-
sonable sample—most of the time, the 80% solution is just fine.

The easiest to start with is the assignment; this sets an environment variable, interpo-
lating any variables in the right-hand side of the expression:
assignment: /~(.¥)=(.*)/
{ my $from=$1;
my $what;
($what = $2) =~ s/\$(\w+)/\$ENV{$1}/g;
$return = "\$ENV{$from}=qq($what)"; }
For each recipe, we’re going to set up a set of conditions, and then perform a method
ona Mail::Audit object if the condition tests true. So, let’s have a look at the actions
again. If we have a pipe, we want to emit code that pipes the mail to the specified
program,; if we have a forward, we want to emit code that calls the resend method to
forward the mail, and if we have a filename, we call the accept method.
action : '|' /.*/
{ $return = qg{\$item->pipe("$item[2]");} ; }
[AR
{ $return = qq{\$item->resend('$item[2]");} ; }
The only slight trick is the nesting action, but this turns out to be pretty simple. Since
we've parsed the action recursively, and turned it into a set of Perl statements, we
can just return them in place:

| "{' program '}’
{ $return = $item[2] }
| filename

{ $return = qq{\$item->accept("$item[1]");} }

Conditions are tricky, so we’ll hand them off to subroutines to deal with and turn
into Perl code. We're not interested in all of the flags: the most important at this
stage is whether or not this is an if or an elsif condition.

flag: /[HBDAaEehbfcwhir]+/

{ %::flags =map { $ => 1 } split //, $item[1];
$return = $::flags{E} ? " elsif " : "if"; }

condition : "*' /[*12<>\\$]?/ /.*¥/ "\n"
{ $return = main::parse condition($item[2], $item[3])}
We’re going to use the flags in the parse_condition subroutine, and hence we need
to store them in a global variable so that that subroutine can see them. However,
flags aren’t global—they’re specific to each recipe. So, at the beginning of each rec-
ipe, we need to reset the flags variable. This can be done with an action and a
<reject> directive:

recipe : { %main::flags = (); } <reject>

66 | Chapter2: Parsing Techniques

Now, what is a recipe? As the manual page says, it’s a set of conditions that are
ANDed together. In Perl terms, that’s an if (or elsif if the E flag is set) followed by
the conditions we parsed using parse condition:

recipe : ':0' flags(?) locallock(?) "\n" condition(s) action "\n"
{
$return = "if " unless @{$item[2]}; # If there are no flags
$return .= "@{$item[2]} ("; # "if" or "elsif" if there are flags
$return .= join(" and\n\t", @{$item[5]});

Next we perform the action; we’ll call upon a subroutine to indent the Perl code
returned from the action subrule for readability. Also, if the c flag is set, we con-
tinue; otherwise, we exit here.

$return .= ")\n{".
main::indent($item[6] . ($main::flags{c} ? "" :"\n exit 1;\n"))
. l|}\n|I;

}

The same goes for recipes with no conditions, so we end up with a recipe rule look-
ing like this:

recipe : ':0' flags(?) locallock(?) "\n" condition(s) action "\n"
{
$return = "if " unless @{$item[2]}; # If there are no flags
$return .= "@{$item[2]} ("; # "if" or "elsif" if there are flags
$return .= join(" and\n\t", @{$item[5]});
$return .= ")\n{".

main::indent($item[6] . ($main::flags{c} ? "" :"\n exit 1;\n"))
R VIl
}
| ":0" flags(?) locallock(?) "\n" action "\n"
{
if ("e{$item[2]}" eq "else") { $return = "else " }
$return . = "{ " .
main::indent($item[5] . ($main::flags{c} ? "" :"\n exit 1;\n"))
R AV
}

And that’s essentially it! All we need is a driver that sets up the input, calls the
parser, and spits out some housekeeping code around the generated program, like
so:

my $parser = Parse::RecDescent->new($grammar) or die;

undef $/;

my $data = <ARGV>;

$data =~ s/#.*//g;

my $program = $parser->program($data);

print 'use Mail::Audit; my $item = Mail::Audit->new();', "\n";
print $program;

print "\n\$item->accept()";

Parse::RecDescent Grammars | 67

The full program can be found in the Mail::Audit distribution and can be used to
turn this (from the procmailex(5) manual page):

0 ¢

* “From.*peter

* ASubject:.*compilers

I william@somewhere.edu

:0

* AFrom.*peter

* ~Subject:.*compilers
petcompil

into this:

use Mail::Audit; my $item = Mail::Audit->new();

if ($item->header() =~ /"“From.*peter/i and
$item->$item->header() =~ /~Subject:.*compilers/i)

{ $item->resend('william@somewhere.edu');}

if ($item->header() =~ /"From.*peter/i and
$item->header() =~ /~Subject:.*compilers/i)
{ $item->accept("petcompil™);
exit 1;
}

$item->accept()

Parse::Yapp

If you’re more familiar with tools like yacc, you may prefer to use Frangois

Désarménien’s Parse::Yapp module. This is more or less a straight port of yacc to
Perl.

yacc

yacc, Yet Another Compiler Compiler, is a tool for C programmers to generate a parser
from a grammar specification. The grammar specification is much the same as we’ve
seen in our investigation of Parse: :RecDescent, but yacc produces bottom-up parsers.

For instance, let’s use Parse: :Yapp to implement the calculator in Chapter 3 of lex &
yacc (O’Reilly). This is a very simple calculator with a symbol table, so you can say
things like this:

a =25
b =30
a+bh
55

68 | Chapter2: Parsing Techniques

Here’s their grammar:

%
double vbltable[26];
%}

%union {
double dval;
int vblno;

}

%token <vblno> NAME
%token <dval> NUMBER
%left '-' 4!

%left '*' '/’
%nonassoc UMINUS

%type <dval> expression
%%
statement list: statement '\n'
| statement_list statement '\n'

>

statement: NAME '=" expression { vbltable[$1] = $3; }

| expression { printf("= %g\n", $1); }
expression: expression '+' expression { $$ = $1 + $3; }
| expression '-' expression { $$ = $1-$3; }

| expression '*' expression { $$ = $1 * $3; }
| expression '/' expression
{ if($3 == 0.0)
yyerror("divide by zero");
else
$$ = $1 / $3;
}
'-' expression %prec UMINUS {$%=-92; }
"(' expression ')’ {$$=29%2; }
NUMBER
NAME { $% = vbltable[$1]; }

. — —

%%
Converting the grammar is very straightforward; the only serious change we need to
consider is how to implement the symbol table. We know that Perl’s internal sym-
bol tables are just hashes, so that’s good enough for us. The other changes are just
cosmetic, and we end up with a Parse: :Yapp grammar like this:

%{ my %symtab; %}

%token NAME

%token NUMBER

Kleft '-' '+’

Zleft "*' '/!

%nonassoc UMINUS

Parse:xYapp | 69

%%

statement list: statement '\n'
| statement list statement '\n'

>

statement: NAME '=' expression { $symtab{$ [1]} = $ [3]; }

| expression { print "= ", $ [1], "\n"; }
expression:

expression '+' expression { $ _[1] + $ [3] }

| expression '-' expression { $_[1] - $_[3] }

| expression '*' expression { $ [1] * $ [3] }

| expression '/' expression

{ if ($_[3] == 0)

{ $ _[0]->YYError("divide by zero") }
else

} {$_[1] 7 8$_[3]11%
| '-' expression %prec UMINUS { -$ [2] }
| "(" expression ")' { $_[2] }
| NUMBER
| NAME { $symtab{$ [1]} }

%%
As you can see, we’ve declared a hash %symtab to hold the values of the names. Also,

notice that that Yacc variables $1, $2, etc. become real subroutine parameters in the
@ array:$_[1],$ [2], and so on.

Next we need to produce a lexer that feeds tokens to the parser. Parse: :Yapp expects
a subroutine to take input from the data store of the parser object. The Parse: :Yapp
object is passed in as the first parameter to the lexer, and so the data store ends up
looking like $ [0]->YYData->{DATA}.” The lexing subroutine should modify this data
store to remove the current token, and then return a two-element list.

The list should consist of the token type followed by the token data. For instance, in
our calculator example, we need to tokenize 12345 as ("NUMBER", 12345). Operators,
brackets, equals, and return should be returned as themselves, and names of variables
need to be returned as ("NAME", ‘"whatever"). At the end of the input, we need to
return an empty string and undef: (', undef).

Here’s a reasonably simple Perl routine that does all of that:

sub lex {
print " Lexer called to handle (".$ _[0]->YYData->{DATA}.")\n";

* There’s nothing in Parse: :Yapp that says the data has to live in {DATA}, but it’s a good practice. If you have
extremely complex data as input, you may want to use several different parts of $_[0]->YYData.

70 | Chapter2: Parsing Techniques

$_[0]->YYData->{DATA} =~ s/* +//;
return ("', undef) unless length $_[0]->YYData->{DATA};

0]->YYData->{DATA} =~ s/~(\d+)// and return ("NUMBER", $1);
0]->YYData->{DATA} =~ s/*([\n=+\(\)\-\/*])// and return ($1, $1);
0]->YYData->{DATA} =~ s/~(\w+)// and return ("NAME", $1);

$ [
$.[
$ 1
die "Unknown token (".$ [0]->YYData->{DATA}."\n";

}

Now that we have our grammar and our lexer, we need to run the grammar through
the command-line utility yapp to turn it into a usable Perl module. If all is well, this
should be a silent process:

% yapp Calc.yapp
%

and we should have a new file Calc.pm ready for use.

Parse::Lex

Our lexer in this case is pretty simple, so we could code it up in a fairly straightforward
subroutine. However, for more difficult lexing operations, it might make sense to use
a dedicated lexing language; Parse: :Lex is to lex what Parse::Yapp is to yacc. Here’s
our lexer (crudely) rewritten for Parse: :Lex.

my @lex = qw(
NUMBER \d+
NAME \w+
won
wn g
nyow
l|(ll |l(l|
l|)ll |I)l|

)

my $lexer = Parse::Lex->new(@lex);
$lexer->from(*STDIN);

sub lex {
my $token = $lexer->next;
return ("', undef) if $lexer->eoi;
return ($token->name, $token->getstring);

We can now put it all together: our parser, the lexer, and some code to drive them.

sub lex {
$ _[0]->YYData->{DATA} =~ s/* +//;
return ("', undef) unless length $ [0]->YYData->{DATA};

ParsexYapp | 71

$_[0]->YYData->{DATA} =~ s/~(\d+)// and return ("NUMBER", $1);
$_[0]->YYData->{DATA} =~ s/~([\n=t\(\)\-\/*])// and return ($1, $1);
$_[0]->YYData->{DATA} =~ s/~(\w+)// and return ("NAME", $1);
die "Unknown token (".$ [0]->YYData->{DATA}.")\n";

}

use Calc;

my $p = Calc->new();

undef $/;

$p->YYData->{DATA} = <STDIN>;
$p->YYParse(YYlex => \&lex);

This will take a stream of commands on standard input, run the calculations, and
print them out, like this:

% perl calc

a
b

"D

=135

2+4
a*20
15

For most parsing applications, this is all we need. However, in the case of a calcula-
tor, you hardly want to put all the calculations in first and get all the answers out at
the end. It needs to be more interactive.

What we need to do is modify the lexer so that it can take data from standard input,
using the YYData area as a buffer.

sub lex {

}

$_[0]->YYData->{DATA} =~ s/* +//;

unless (length $_[0]->YYData->{DATA}) {
return ('', undef) if eof STDIN;
$_[0]->YYData->{DATA} = <STDIN>;
$_[0]->YYData->{DATA} =~ s/* +//;

}

$_[0]->YYData->{DATA} =~ s/~(\d+)// and return ("NUMBER", $1);
$_[0]->YYData->{DATA} =~ s/~([\n=t\(\)\-\/*])// and return ($1, $1);
$_[0]->YYData->{DATA} =~ s/~(\w+)// and return ("NAME", $1);

die "Unknown token (".$ _[0]->YYData->{DATA}.")\n";

This time, we check to see if the buffer’s empty, and instead of giving up, we get
another line from standard input. If we can’t read from that, then we give up. Now
we can intersperse results with commands, giving a much more calculator-like feel to
the application.

72 |

Chapter2: Parsing Techniques

Other Parsing Techniques

Of course, we don’t want to always be writing our own parsers for most of the data
we come across, as there’s a good chance someone else has come across that sort of
data before. The best examples are HTML and XML.: there’s a vast amount of code
out there that deals with these file formats, and most of the hard work has been put
into CPAN modules. We’ll look at a few of these modules in this section.

HTML::Parser

I'll start by saying something that is anathema to a lot of advanced Perl program-
mers: in certain circumstances, it is acceptable to use regular expressions to extract
the data you want from HTML. I’'ve written a bunch of screen-scraping programs to
automate access to various web sites and applications, and because I knew the pages
were machine-generated and unlikely to change, I had no qualms about using regu-
lar expressions to get what I wanted.

In general, though, you should do things properly. The way to parse HTML prop-
erly is to use the HTML: :Parser module.

HTML: :Parser is incredibly flexible. It supports several methods of operation: you can
use OO inheritance, you can use callbacks, you can determine what data gets sent to
callbacks and when the callbacks are called, and so on. We’ll only look here at the
simplest way of using it: by subclassing the module.

Let’s begin by examining a way to dump out the URL and link text for every hyper-
link in a document. Because we’re inheriting from HTML::Parser, we need to say
something like this:

package DumplLinks;

use strict;
use base 'HTML::Parser';

Next, we specify what happens when we see a start tag: if it’s not an <a> tag, then we
ignore it. If it is, we make a note of its href attribute and remember that we’re cur-
rently in an <a> tag.

sub start {
my ($self, $tag, $attr) = @ ;
return unless $tag eq "a";
$self->{ this url} = $attr->{href};
$self->{ in link} = 1;

}
Notice that our method is called with the literal name of the current tag, plus a hash
of the attributes given in the tag. It’s actually called with a few more parameters, but
these two are by far the most important; take a look at the HTML: : Parser documenta-
tion for the rest.

Other Parsing Techniques | 73

Now let’s add a text handler: this is called for any ordinary text that isn’t a tag. This
needs to store away any text it finds while we’re inside a link and do nothing other-
wise.

sub text {

my ($self, $text) = @ ;

return unless $self->{ in link};

$self->{ urls}->{$self->{ this url}} .= $text;
}

Note that we have to use concatenation so that the following comes out correctly:
The <code>Perl</code> home page

The text handler will be called three times for this chunk: once for The, once for Perl,
and once for home page. We want all three of these pieces of text, so we concatenate
them together.

Finally, we need an end tag handler to take us out of _in_link mode, like so:

sub end {
my ($self, $tag) = @ ;
$self->{_in_link} = 0 if $tag eq "a";
}

Let’s look at our complete parser package again before we use it:

package Dumplinks;
use strict;
use base 'HTML::Parser';

sub start {
my ($self, $tag, $attr) = @ ;
return unless $tag eq "a";
$self->{ this url} = $attr->{href};

$self->{ _in link} = 1;

}
sub text {
my ($self, $text) = @ ;
return unless $self->{ in link};
$self->{ urls}->{$self->{ this url}} .= $text;
}
sub end {
my ($self, $tag) = @ ;
$self->{_in link} = 0 if $tag eq "a";
}

Using it couldn’t be more simple: we instantiate a DumpLinks object, call its parse_
file method on the HTML file of our choice, and we’ll have a handy hash reference
in $parser->{ urls} we can inspect.

Use Dumplinks;

my $parser = DumpLinks->new();
$parser->parse file("index.html");

74 | Chapter2: Parsing Techniques

for (keys %{$parser->{ urls}}) {
print qq{Link to $_ (Link text: "}. $parser->{ urls}->{$_}. qq{")\n};

Running this on the front page of this week’s www.perl.com edition produces some-
thing like this:

Link to /cs/user/query/q/6?id topic=42 (Link text: "Files")

Link to /pub/a/universal/pcb/solution.html (Link text: "Do it now.")

Link to http://www.oreillynet.com/python/ (Link text: "Python")

Link to http://training.perl.com/ (Link text: "Training")

Link to /cs/user/query/q/6?id_topic=68 (Link text: "Sound and Audio")

Link to /cs/user/query/q/62id_topic=62 (Link text: "User Groups")

Link to http://search.cpan.org/author/DARNOLD/DBD-Chart-0.74 (Link text: "DBD-Chart-

0.74")

Link to http://www.oreilly.com/catalog/perlxml/ (Link text: "Perl & XML")

Link to http://www.oreilly.com/catalog/regex2/ (Link text: "Mastering Regular

Expressions, 2nd Edition")

Link to http://www.openp2p.com/ (Link text: "openp2p.com")

As if that wasn’t easy enough, there are a few other modules you might consider
when dealing with HTML text. For doing something like the above, if you don’t care
about the link text, HTML: : LinkExtor can do the job in seconds:
use HTML::LinkExtor;
my $parser = HTML::LinkExtor->new();
$parser->parse_file("index.html");
for ($parser->links) {
my ($tag, %attrs) = @$_;
print $attrs{href},"\n";
}

If you’re not interested in writing callbacks, another module worth looking into is
HTML: : TokeParser, which parses an HTML file one token at a time. Another favorite
is HTML: :TreeBuilder, which allows you to navigate the document’s structure as a
tree of Perl objects.

For more on HTML parsing with Perl modules, you should check out Sean Burke’s
Perl and LWP (O’Reilly).

XML Parsing

Of course, nowadays HTML is old hat, and everything is being written in the much
more right-on XML. The principles are the same, only the module name changes:
instead of using HTML: :Parser, there’s an XML: :Parser module.

This works in the same way as HTML: :Parser—you set callbacks for start tags, end
tags, and the stuff in between. Of course, for 99% of the things you need to do with

Other Parsing Techniques | 75

XML, this method is complete overkill. Just like with so many other things in Perl, if
you want the flexibility, you can have it, but if you want things to be simple, you can
have that, too. Simple is good—and a good module for handling XML simply is
called, simply, XML: :Simple.

The job of XML: :Simple is to turn some XML into a Perl data structure or vice versa. It
exports two subroutines: XMLin and XMLout. Let’s see how it copes with a real-life
XML file. This is a description of the opcodes in Microsoft’s Common Interpreted
Language, as implemented by the Mono project (http://www.mono-project.com’):

<opdesc>

<opcode name="nop" input="Pop0" output="Pusho" args="InlineNone" o01="OxFF" 02="0x00"
flow="next"/>

<opcode name="break" input="Pop0" output="Push0" args="InlineNone" o1="OxFF"
02="0x01" flow="break"/>

<opcode name="ldarg.0" input="Pop0" output="Push1" args="InlineNone" o1="OxFF"
02="0x02" flow="next"/>

<opcode name="ldarg.1" input="Pop0" output="Push1" args="InlineNone" o1="OxFF"
02="0x03" flow="next"/>

</opdesc>
For instance, this tells us that the ldarg.o operator takes no arguments from the

stack, returns one value to the stack, has no arguments inline, is represented by the
assembly code FF 02, and passes control flow to the next operation.

We'll use XML: :Simple to read the file and Data: :Dumper to take a look at the result-
ing data structure:

% perl -MData::Dumper -MXML::Simple -e
'print Dumper XMLin("/usr/local/share/mono/cil/cil-opcodes.xml")’

$VAR1L = {
‘opcode’ => {

"stloc.2' => {
'args' => 'InlineNone',
"input' => 'Pop1’,
'o1' => "OxFF',
'02"' => 'oxoC',
"output' => 'Pusho’,
"flow' => 'next'

1

"stloc.3"' => {
"args' => 'InlineNone',
"input' => 'Pop1’,
'o1' => 'OxFF',
‘02" => 'oxoD',
"output' => 'Pusho’,

* If you’ve got Mono installed, you can probably find this file as /usr/local/share/mono/cil/cil-opcodes.xml.

76 | Chapter2: Parsing Techniques

"flow' => 'next'

1

};
As you can see, this is pretty much exactly what we could have hoped for. So if we
want to see how the shl operator took its arguments, we can ask:
use XML::Simple;
my $opcodes = XMLin("/usr/local/share/mono/cil/cil-opcodes.xml");
my $shl = $opcodes->{opcode}->{shl};
print "shl takes its input by doing a ".$shl->{input}."\n";
print "And it returns the result by doing a ".$shl->{output}."\n";
The other function that XML: : Simple exports is XMLout, which, as you might be able to
guess, turns a Perl data structure into XML. For instance, we could introduce a new
opcode:
$opcodes->{opcode}->{hcf} = {
'‘args' => 'InlineNone',
"input' => 'Pop0’,
'o1l' => 'OxFF',
'02" => 'OxFF',
‘output' => 'Pusho’,
'flow' => "explode'

¥
print XMLout($opcodes);

And now we’d find another item in that list of XML:

<opcode args="InlineNone" input="Pop0" o01="OxFF" 02="OxFF" output="Pusho"
flow="explode" name="hcf" />
XML::Simple is particularly handy for dealing with configuration files—simply state
that the config should be given in XML, and use XML::Simple to read and write it.
The XMLin and XMLout functions do all the rest.

If you need to do anything more sophisticated with XML parsing, take a look at Perl
and XML.

And Everything Else...

While we’re on the subject of configuration files, there are plenty of other file for-
mats out there that the Perl programmer will need to throw around during her pro-
gramming life, and config files make up a good number of them. The rest of this
chapter suggests a few other techniques for dealing with standard file formats.

Other Parsing Techniques | 77

First of all, I have a personal favorite, but that’s only because I wrote it. Config: :Auto
parses a variety of file formats, if necessary sniffing out what the file format is likely to
be. Here’s the Samba configuration from a default install of Mac OS X 10.2:

% perl -MData::Dumper -MConfig::Auto -e 'print Dumper Config::Auto::parse("/etc/smb.
conf")'

$VARL = {
'global" => {
'guest account' => "unknown',
"client code page' => 437,
"encrypt passwords' => 'yes',
'coding system' => 'utf8’
b
"homes' => {
'‘read only' => 'no',
'browseable’ => 'no’,
‘comment' => 'User Home Directories’,
'create mode' => '0750'
}
1

Other modules worth looking out for are AppConfig, Parse::Syslog (which provides
access to Unix system logs), SQL: : Statement, and Mac: :Propertylist.

Conclusion

In this chapter, we’ve seen many of the techniques used for parsing structured data
with Perl. Whether it’s a case of creating your own parsers with Parse: :RecDescent or
Parse::Yapp, or choosing a ready-made parsing module, Perl is perfect for throwing
around data and converting it into a different format.

78 | Chapter2: Parsing Techniques

CHAPTER 3
Templating Tools

A recent thread on comp.lang.perl.moderated enumerated the Perl rites of passage—
the perfectly good wheels that every journeyman Perl programmer reinvents. These
were found to be a templating system, a database abstraction layer, an HTML parser,
a processor for command-line arguments, and a time/date handling module.

See if you recognize yourself in the following story: you need to produce a form let-
ter of some description. You've got a certain amount of fixed content, and a certain
amount that changes. So you set up a template a little like this:

my $template = q{
Dear $name,

We have received your request for a quote for $product, and have
calculated that it can be delivered to you by $date at a cost of
approximately $cost.

Thank you for your interest,

Acme Integrated Foocorp.
1
Then you struggle with some disgusting regular expression along the lines of s/(\$\
w+)/$1/eeg, and eventually you get something that more or less does the job.

As with all projects, the specifications change two days after it goes live, so you sud-
denly need to extend your simple template to handle looping over arrays, condition-
als, and eventually executing Perl code in the middle of the template itself. Before
you realize what’s happened, you’ve created your own templating language.

Don’t worry if that’s you. Nearly everyone’s done it at least once. That’s why there’s
a wide selection of modules on CPAN for templating text and HTML output, rang-
ing from being only slightly more complex than s/(\$\w+)/$1/eeg to complete inde-
pendent templating languages.

Before we start looking at these modules, though, let’s consider the built-in solu-
tion—the humble Perl format.

79

Formats and Text::Autoformat

Formats have been in Perl since version 1.0. They’re not used very much these days,
but for a lot of what people want from text formatting, they’re precisely the right
thing.

Perl formats allow you to draw up a picture of the data you want to output, and then
paint the data into the format. For instance, in a recent application, I needed to dis-
play a set of IDs, dates, email addresses, and email subjects with one line per mail. If
we assume that the line is fixed at 80 columns, we may need to truncate some of
those fields and pad others to wider than their natural width. In pure Perl, there are
basically three ways to get this sort of formatted output. There’s sprintf (or printf)
and substr:
for (@mails) {
printf "%5i %10s %40s %21s\n",
§ ->id,
substr($_->received,0,10),
substr($_->from_address,-40,40),
substr($_->subject,0,21);
}
Then there’s pack, which everyone forgets about (and which doesn’t give as much
control over truncation):
for (@mails) {
print pack("A5 A10 A40 A21\n",
$ ->id, $ ->received, $_->from address, $ ->subject);

}
And then there’s the format:

format STDOUT =
@< BLLLLLLLLL BLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL BLLLLLCdCddCCeCdl
$_->id $_->received $_->from_address $_->subject

for (@mails) {
write;
}
Personally, I think this is much neater and more intuitive than the other two solu-
tions—and has the bonus that it takes the formatting away from the main loop, mak-
ing the code less cluttered.”

Formats are associated with a particular filehandle; as you can see from the example,
we've determined that this format should apply to anything we write on standard
output. The picture language of formats is pretty simple: fields begin with @ or # and

* As it happens, I didn’t actually use formats in my code, because I wanted to have a variable-width instead of
a fixed-width display. But for cases where a fixed-width output is acceptable, this solution is perfect.

80 | Chapter3: Templating Tools

are followed by <, |, or > characters specifying left, center, and right justified respec-
tively. After each line of fields comes a line of expressions that fill those fields, one
expression for each field. If we like, we could change the format to multiple lines of
fields and expressions:

format STDOUT =

Id HE 2 EXA

$ ->id

Date 222 LLLY

$ ->received

From I BCLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLKKK

$ ->from address
Subject @ @<CCCCLLLLLLLLLLlLLK
$ ->subject

We've seen examples of the @-type field. If you're dealing with multi-line formats,
you might find that you want to break up a value and show it across several lines of
the format. For instance, to display the start of an email alongside metadata about it:

Id T 1 Hi Simon, Thank you for the

Date 1 10/12/02 supply of widgets that you sent
From : fred@funglyfoobar.com me last week. I can assure you
Subject : Widgets that they have all been put ...

This is where the other type of field, the * field, comes in: you can achieve the pre-
ceding output by using a format like this:

format STDOUT =

Id H2EELA NLLLLLLLLLLLLLLLLLLLLLLLLLLLLKK
$ ->id $message
Date TR MLLLLLLLLLLLLLLLLLLLLLLLLLLLKLK
$ ->received $message
From T @<CLLLLLLLLLLLLLLLKKLK MLLLLLLLLLLLLLLLLLLLLLLLLLLLLKK
$_->from address $message
Subject : @<<<KLLLLLLLLLLLLLLLK s NLLLLLLLLLLLLLLLLLLLLLLLLKKKww s
$ ->subject $message

Unlike the values supplied to an @ field, which can be any Perl expression, these
values must take an ordinary scalar. What happens is that each time the format pro-
cessor sees a * field, it outputs as much as it can from the supplied value and then
chops that much off the beginning of the value for the next iteration. The ... sign at
the end of the field indicates that if the supplied value is too long, the format should
truncate the value and show three dots instead. If you use * fields with values found
in lexical variables, such as $message in the previous example, you need to declare the
lexical variable before the format, or else it won’t be able to see the variable.

Another boon of using formats is that you can set a header to be sent out at the top
of each page—Perl keeps track of how many lines have been printed by a format so it

Formats and Text::Autoformat | 81

knows when to send out the next page. The header for a particular filehandle is a for-
mat named with TOP appended to the filehandle’s name. The simple use of this is to
give column headers to your one-line records:

format STDOUT_TOP =
1D Received From Subject

format STDOUT =
@< DLLLLLLLL @LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL BLLLLLLLLLLLLLLLLKlK
$ ->id $ ->received $ ->from address $ ->subject

Formats are quite handy, especially as you can associate different formats with differ-
ent filehandles and send data out to multiple locations in different ways. On the
other hand, they have some serious shortcomings that you should bear in mind if
you’re thinking of using them in a bigger application.

First, they’re a camping ground for obscure special variables: $% is the current for-
mat page number, $= is the number of printable lines per page, $- is the number of
lines currently left on the page, $~ is the name of the current output format, $* is the
name of the current header format, and so on. I could not remember a single one of
these variables and had to look them up in perlvar.

Formats also deal pretty badly with lexical variables, changing filehandles, variable-
length lines, changing formats on the fly, and so on. But they’re handy for neat little
hacks.

R

A For complete details on Perl’s built-in formats, read perlform.
Text::Autoformat

There’s a more 21st century way to deal with formatting, however, and that’s the
Text: :Autoformat module. This has two main purposes—it wraps text more sensi-
tively than the usual Text: :Wrap module or the Unix fmt command, and it provides a
syntactically simpler but more featureful replacement for the built-in format language.

Text::Autoformat’s text wrapping capabilities are only tangentially related to tem-
plating, but they’re still worth mentioning here.

The idea behind autoformat is to solve the problem of wrapping structured text; it
was created specifically for email messages (with special consideration for quoted
text, signatures, etc.), but it’s applicable to any structured textual data. For instance,
given the text:

82 | Chapter3: Templating Tools

You have:

* a splitting headache

* no tea

* your gown (being worn)

It looks like your gown contains:

. a thing your aunt gave you which you don't know what it is
. a buffered analgesic
. pocket fluff

fmt fails rather spectacularly:

You have:
* a splitting headache * no tea * your gown
(being worn)
It looks like your gown contains:
. a thing your aunt gave you which
you don't know what it is . a buffered
analgesic . pocket fluff

In this case, the autoformat subroutine does things a lot better, as it looks ahead at
the structure of the text it’s formatting:

You have:

* a splitting headache

* no tea

* your gown (being worn) It looks like your

gown contains:
. a thing your aunt gave you which you
don't know what it is

. a buffered analgesic
. pocket fluff

Text::Autoformat’s format language is quite similar to Perl’s native one, but with
some simplifications. First, the distinction between filling @ fields and continuing *
fields is made by the choice of picture character, not the prefix to the field. Hence,
what was:

BLLC BLLLLLLLLL BCLLLLLLLLLLLLLLLLLLLLLLLL LKL LLLLLLLE BELLL LKL CLLLKC
now simply becomes:

A EEEERE $E S TR EEEEEE €4 ST EE S £ EE ST E S R S S S S E T E E$ $ S € 4 ¢

For continuation formats, you now use [and], which repeat as necessary on subse-
quent lines:

Id R3S
Message :

CCCCCCCCCeeeeirreccereeeeerreccerreeccrrreeccereeecreeeeeceereee
This will produce output like the following:

Id : 1

Message :
Hi Simon, Thank you for the supply of widgets that you sent me
last week. I can assure you that they have all been put to good...

Formats and Text::Autoformat | 83

Unlike Perl’s built-in continuation formats, however, be aware that the [and] lines
repeat the entire format time and time again until the variable is completely printed
out. So this, for instance, won’t do what you expect:

Id ¢ << [LOOOTCCCLTTereerrererrreeeeertrerreeeeeerrrerrreeeerrreeee
Instead, it’ll produce output something like this:

Id : 1 Hi Simon, Thank you for the supply of widgets that you sent
Id : me last week. I can assure you that they have all been put
Id : to good use, and have been found, as usual to be the very...

with even more spectacularly bad results for formats longer than one line.

One big advantage, though, is that with Text::Autoformat, formats are just plain
strings instead of cleverly compiled patterns interleaved with code. These strings are
processed with the form function, which needs to be exported specifically:

use Text::Autoformat qw(form);

my $format = <<EOF;

Id HIRLLLLS

Date HIECSLLLLLY

From I CCLLLLLLLLLLLLLLLLKK
Subject @ <<<<<LLLLLLLLLLLLLLLK e
EOF

my $id = 10;

my $date = "20/12/02";

my $from = "Fred Foonly";

my $subject = "Autoformatted message";

print form($format, $id, $date, $from, $subject);
Text::Autoformat also provides extremely flexible control over the hyphenation of
form fields in a multi-line block, including the ability to plug in other hyphenation
routines such as Jan Pazdziora’s TeX::Hyphen, the hyphenation algorithm used in
Donald Knuth’s TeX package. The main disadvantage, however, is that you don’t get
the same control over headers and footers as you would with write.

Both Perl formats and Text: :Autoformat are great for producing formatted output in
the style of 1980s form-based programs, but when people think of forms these days,
they’re more likely to think of things like form letters. Let’s move on to look at mod-
ules that are more suited to this style of templating.

Text::Template

Mark-Jason Dominus’ Text::Template has established itself as the de facto standard
templating system for plain text. Its templating language is very simple indeed—any-
thing between { and } is evaluated by Perl; everything else is left alone.

It is an object-oriented module—you create a template object from a file, filehandle,
or string, and then you fill it in:

84 | Chapter3: Templating Tools

use Text::Template;
my $template = Text::Template->new(TYPE => "FILE",
SOURCE => "email.tmpl");

my $output = $template->fill in();
So, let’s say we’ve got the following template:

Dear {$who},

Thank you for the {$modulename} Perl module, which has saved me
{$hours} hours of work this year. This would have left me free to play
{ int($hours*2.4) } games of go, which I would have greatly appreciated
had I not spent the time goofing off on IRC instead.

Love,
Simon

We set up our template object and our variables, and then we process the template:

use Text::Template;
my $template = Text::Template->new(TYPE => "FILE",
SOURCE => "email.tmpl");

$who = "Mark";

$modulename = "Text::Template";
$hours = 15;

print $template->fill in();

And the output would look like:

Dear Mark,
Thank you for the Text::Template Perl module, which has saved me
15 hours of work this year. This would have left me free to play
36 games of go, which I would have greatly appreciated
had I not spent the time goofing off on IRC instead.

Love,

Simon
Notice that the fill-in variables—3$who, $modulename, and so on—are not my vari-
ables. When you think about it, this ought to be obvious—the my variables are not
in Text::Template’s scope, and therefore it wouldn’t be able to see them. This is a
bit unpleasant: Text::Template has access to your package variables, and you have
to do a bit more work if you want to avoid giving use strict a fit.

Text::Template has two solutions to this. The first is pretty simple—just move the
fill-in variables into a completely different package:

use Text::Template;
my $template = Text::Template->new(TYPE => "FILE",
SOURCE => "email.tmpl");

$Temp: :who = "Mark";

$Temp: :modulename = "Text::Template";

$Temp: thours = 15;

print $template->fill in(PACKAGE => "Temp");

Text:Template | 85

That’s slightly better, but it still doesn’t please people for whom global variables are
pure evil. If that’s you, you can get around the problem by passing in a portable sym-

bol table—that is, a hash:

use Text::Template;
my $template = Text::Template->new(TYPE => "FILE",
SOURCE => "email.tmpl");

print $template->fill in(HASH => {
who => "Mark",
modulename => "Text::Template",
hours => 15

b

Loops, Arrays, and Hashes

So much for simple templates. Because Text::Template evaluates the code in braces
as honest-to-goodness Perl code, we can do a whole lot more with templates. Let’s
suppose we’re invoicing for some design work:

$client = "Acme Motorhomes and Eugenics Ltd.";
%jobs =
("Designing the new logo" => 450.00,
"Letterheads" => 300.00,
"Web site redesign” => 900.00,
"Miscellaneous Expenses" => 33.75
)5
We can create a template to do the work for us—the invoicing work, that is, not the
design work:

{my $total=0; ''}
To {$client}:

Thank you for consulting the services of Fungly Foobar Design
Associates. Here is our invoice in accordance with the work we have
carried out for you:

{
while (my ($work, $price) = each %jobs) {
$OUT .= $work . (" " x (50 - length $work)). sprintf("£%6.2f", $price)."\n";
$total += $price;
}
}
Total {sprintf "£%6.2f",$total}

Payment terms 30 days.

Many thanks,
Fungly Foobar

86 | Chapter3: Templating Tools

What’s going on here? First, we set up a private variable, $total, in the template and
set it to zero. However, since we don’t want a 0 appearing at the top of our template,
we make sure our code snippet returns ' so it adds nothing to the output. This is a
handy trick.

Next we want to loop over the jobs hash. Adding each price to the total is simple
enough, but we also want to add a line to the template for each job. What we’d like
to say is something like this:

{
while (my ($work, $price) = each %jobs) {

}
{$work} £{$price}
{

}
}
However, Text::Template doesn’t work like that: each snippet of code must be an
independent, syntactically correct piece of Perl. So how do we write multiple lines to
the template? This is where the magical $0UT variable comes in. If you use $0UT in
your template, that’s taken as the output from the code snippet. We can append to
this variable each time we go through the loop, and it’ll all be filled into the template
at the end.

$total += $price;

Security and Error Checking

One of the advantages of templating is that you can delegate the non-programming
bits of your application—design of HTML pages, wording of form letters, and so
on—to people who aren’t necessarily programmers. One of the disadvantages with
powerful templating systems like Text: :Template is that it only takes one joker to dis-
cover { system("rm -rf /") } and one or both of you is out of a job. Clearly there
needs to be a way to secure your templates against this sort of abuse.

Text::Template offers two ways to protect yourself from this kind of coworker, um, I
mean abuse. The first is through Perl’s ordinary tainting mechanism. In taint mode,
Perl will refuse to run templates from external files. This protects you from people
meddling with the template files, but only because you can’t use template files at all
any more; you must specify templates as strings instead.

If you can actually trust the files in the filesystem, then you’ll need to tell Text: : Template
to untaint the file data; this is done with the UNTAINT option:
my $template = new Text::Template (TYPE => "FILE",

UNTAINT => 1,
SOURCE => $filename);

Text:Template | 87

Now you will be able to use the template in $filename, if $filename itself has passed
taint checks.

The second mechanism is much more fine-grained; the SAFE option allows you to
specify a Safe compartment in which to run the code snippets:

my $compartment = new Safe; # Default set of operations is pretty safe

$text = $template->fill in(SAFE => $compartment);
If you’re really concerned about security, you’ll want to do more tweaking than just
using the default set of restricted operations.

What if things go wrong in other ways? You don’t want your application to die if the
code snippets contain invalid Perl, or throw a divide-by-zero error. While Text::
Template traps eval errors by default, you may find yourself wanting more control of
error handling. This is where the BROKEN option comes in.

The BROKEN option allows you to supply a subroutine reference to execute when a
code snippet produces a syntax error or fails in any other way. Without BROKEN, you
get a default error message inserted into your output:

Dear Program fragment delivered error "“syntax error at template line 1'',

By specifying a BROKEN subroutine, you get more control over what is inserted into the
output. In many cases, the only sensible thing to do if your template is broken would
be to abort processing of the template altogether. You can do this by returning undef
from your BROKEN routine, and Text::Template will return as much output as it was
able to build up.

Of course, you now need to be able to tell whether the template completed success-
fully or whether it was aborted by a BROKEN routine. The way to do this is to use the
callback argument BROKEN_ARG. If you pass a BROKEN_ARG to your template constructor,
it will be passed into your BROKEN callback.” This allows us to do something like this:

my $succeeded = 1;
$template->fill in(BROKEN => \&broken_ sub, BROKEN_ARG => \$succeeded);

if (!$suceeded) {
die "Template failed to fill in...";
}

sub broken sub {
my %params = @ ;
${$params{arg}} = 0;
undef;

* Allowing a user-defined argument is a great way to make a callback extremely extensible.

88 | Chapter3: Templating Tools

As you can see, the callback is called with a hash; the argument specified by BROKEN_
ARG is the arg element of the hash. In this case, that’s a reference to the $succeeded
flag; we dereference the reference and set the flag to zero, indicating an error, before
returning undef to abort processing.

In case you feel you can make use of the broken template, Text::Template supplies
the code snippet as the text element of the hash; I haven’t been able to think of any-
thing sensible to do with this yet. To assist with error reporting, the other entries in
the hash are line, the line number in the template where the error occurred, and
error, the value of $@ indicating the error.

Text::Template Tricks

Using { and } to delimit code is fine for most uses of Text::Template—when you’re
generating form letters or emails, for instance. But what if you’re generating text that
makes heavy use of { and }—HTML pages including JavaScript, for example, or TEX
code for typesetting?

One solution is to escape the braces that you don’t want to be processed as Perl snip-
pets with backslashes:

if (browser == "Opera") \{

\}

However, as one user pointed out, if you're generating TeX, which attaches meaning
to backslashes and braces, you’re entering a world of pain:

\Wtextit\{ {$title} \} \\dotfill \\textbf\{ \\${$cost} \}

A much nicer solution would be to specify alternate delimiters, and get rid of the
backslash escaping:

\textit{ [[[$title]]] } \dotfill \textbf{ [[[$cost]]] }
Much clearer!
To do this with Text::Template, use the DELIMITERS option on either the constructor
or the fill_in method:
print $template->fill in(DELIMITERS => ['[[[", '111" 1);
This actually runs faster than the default because it doesn’t do any special backslash

processing, but needless to say, you have to ensure that your delimiters do not
appear in the literal text of your template.

Mark suggests a different trick if this isn’t appropriate: use Perl’s built-in quoting
operators to escape the braces. If we have a program fragment { q{ Hello } 1}, this
returns the string “Hello” and inserts it into the template output. So another way to
get literal text without escaping the braces is simply to add more braces!

Text:Template | 89

{ af

if (browser == "Opera") { ... }

b}
Another problem is that your fingers fall off from typing:

my $template = new Text::Template(...);

$template->fill in();
all the time. The object-oriented style is perfect when you have a template that you
need to fill in hundreds of times—a form letter, for instance—but not so great if
you’re just filling it in once. For these cases, Text: :Template can export a subroutine,
fill in_file. This does the preparation and filling in all in one go:

use Text::Template gw(fill in file);

print fill in file("email.tmpl", PACKAGE => "Q", ...);

Note that you do have to import this function specifically.

HTML::Template

HTML formatting is slightly different from plaintext formatting—there are essentially
two main schools of thought. The first, used by HTML::Template, is similar to the
method we saw in Text: :Template; the template is stored somewhere, and a Perl pro-
gram grabs it and fills it in. The other school of thought is represented by HTML: :Mason,
which we’ll look at next; this is inside-out—instead of running a Perl program that
prints out a load of HTML, you create an HTML file that contains embedded snip-
pets of Perl and run that.

To compare these two approaches, we’re going to build the same application in
HTML: :Template, HTML: :Mason, and Template Toolkit, an aggregator of RSS (Remote
Site Summary) feeds to grab headlines from various web sites and push them onto a
single page. (Similar to Amphetadesk, http://www.disobey.com/amphetadesk/, and
O’Reilly’s Meerkat, http://www.oreillynet.com/meerkat/.) RSS is an XML-based for-
mat for providing details of individual items on a site; it’s generally used for provid-
ing a feed of stories from news sites.

Variables and Conditions

First, though, we’ll take a brief look at how HTML: : Template does its stuff, how to get
values into it, and how to get HTML out.

As with Text::Template, templates are specified in separate files. HTML: : Template’s
templates are ordinary HTML files, but with a few special tags. The most important
of these is <TMPL_VAR>, which is replaced by the contents of a Perl variable. For
instance, here’s a very simple page:

90 | Chapter3: Templating Tools

<html>
<head><title>Product details for <TMPL_VAR NAME=PRODUCT></title></head>
<body>
<h1> <TMPL_VAR NAME=PRODUCT> </h1>
<div class="desc">
<TMPL_VAR NAME=DESCRIPTION>
</div>
<p class="price">Price: $<TMPL_VAR NAME=PRICE></p>
<hr />
<p>Price correct as at <TMP_VAR NAME=DATE></p>
</body>
</html>

When filled in with the appropriate details, this should output something like:

<html>
<head><title>Product details for World's Biggest Enchilada</title></head>
<body>
<h1> World's Biggest Enchilada </h1>
<div class="desc">
Recently discovered in the Mexican rain forests....
</div>
<p class="price">Price: $1504.39</p>
<hr />
<p>Price correct as at 15:18 PST, 7 Mar 2005</p>
</body>
</html>

In order to fill in those values, we write a little CGI program similar to the following one:

use strict;
use HTML::Template;

my $template = HTML::Template->new(filename => "catalogue.tmpl");

$template->param(PRODUCT => "World's Biggest Enchilada");
$template->param(DESCRIPTION => $description);
$template->param(PRICE => 1504.39);

$template->param(DATE => format_date(localtime));

print "Content-Type: text/html\n\n", $template->output;

Again, as with Text::Template, our driver program is very simple—load up the tem-
plate, fill in the values, produce it. However, there are a few other things we can do
with our templating language, and hence there are a few other tags that allow us a lit-
tle more flexibility.

For instance, suppose we happen to have a picture of the world’s biggest enchilada—
that would be something worth putting on our web page. However, we don’t have
pictures for everything in the database; we want to output a pictures section only if
we actually do have an image file kicking about. So, we could add something like this
to our template:

<TMPL_IF NAME=PICTURE_URL>
<div class="photo">

HTML:Template | 91

<img src="<TMP_VALUE NAME=PICTURE_URL>" />
</div>
</TMPL_IF>

This means that if PICTURE_URL happens to have a true value—that is, if we’ve given it
something like a real URL—then we include the photo <DIV>. As these <TMPL ...>
tags are not real HTML tags, only things processed by HTML::Template, it’s not a
problem to stick one in the middle of another HTML tag, as we have here with .

Of course, if we don’t have a picture, we might want to stick another one in its place,
which we can do with the <TMPL_ELSE> pseudotag:

<div class="photo">
<TMPL_IF NAME=PICTURE_URL>
<img src="<TMP_VALUE NAME=PICTURE_URL>" />
<TMPL_ELSE>

</TMPL_IF>
</div>

Notice that although our <TMPL_IF> must be matched by a </TMPL_IF>, <TMPL_ELSE> is
not matched.

But perhaps we’re being unduly complex; all we need in this example is a default
value for our PICTURE_URL, and we can do this directly with a DEFAULT attribute to
<TMPL_VALUE>

<div class="photo">
<img src="
<TMPL_VALUE NAME=PICTURE_URL
DEFAULT="http://www.mysite.com/images/noimage.gif">
“/>
</div>

Validation

Some people worry, quite rightly, about the effect that this sort of indiscriminate
SGML abuse has on checking templates for validity. (Although, sadly many more peo-
ple don’t worry about HTML validity.) Further, those who use DTD-aware validating
editors might wonder how to get these pseudotags into their documents in a nice way.

HTML: : Template has a way around this; instead of writing the tags as though they were
ordinary HTML tags, you can also write them as though they were comments, like so:
<!-- TMPL_IF NAME=PICTURE_URL -->
<div class="photo">
<img src="<!-- TMP_VALUE NAME=PICTURE_URL -->" />
</div>
<lo- JTMPL_IF -->

92 | Chapter3: Templating Tools

Loops

If we’re going to get anywhere with our RSS example, we’ll need to loop over a series
of items—the stories in our newsreel. Thankfully, HTML::Template provides the
<TMPL_LOOP> pseudotag for treating a variable as an array. For instance, the following
code:

<TMPL_LOOP NAME=STORIES>

 From <TMPL_VAR NAME=FEED NAME>: <TMPL_VAR NAME=STORY_NAME>

</TMPL_LOOP>

when provided the appropriate data structure, loops over the items in the STORIES
array reference and produces output like so:

<1i> From Slashdot: NASA Finds Monkeys on Mars
<1i> From use.perl: Perl 6 Release Predicted for 2013 </1i>

The trick is that the array reference needs to contain an array of hashes, and each
hash provides the appropriate variable names:
$template->param(STORIES => [

{ FEED_NAME => "Slashdot", STORY_NAME => "NASA Finds Monkeys on Mars" },
{ FEED_NAME => "use.perl", STORY_NAME => "Perl 6 Release Predicted for 2013" }

1;

RSS Aggregation

With this knowledge, putting together our RSS aggregator is pretty trivial; first, we
grab all the feeds we’re interested in, then sort out their stories and put them into a
data structure suitable for feeding to a <TMPL_LOOP>.

We'll use LWP and XML: :RSS to obtain and parse the RSS feeds. In our example, we're
going to pretend that we’re behind a pretty impressive web cache, so we have no
problems fetching the RSS feeds repeatedly; in real life, you may want to save the
XML to files with fixed names and check how old the files on disk are before fetch-
ing them from the web again.

We'll start our RSS aggregator by writing a little Per] program to grab and organize
the feeds:

#!/usr/bin/perl
use LWP::Simple;

use XML::RSS;
my @stories;

HTML:Template | 93

while (<DATA>) {

chomp;

my $xml = get($) or next;

my $rss = XML::RSS->new;

eval { $rss->parse($xml) }; next if $@;

for my $item (@{$rss->{'items'}}) {

push @stories, {

FEED NAME => $rss->channel->{'title'},
FEED_URL => $rss->channel->{'link'},

STORY NAME => $item->{'title'},
STORY URL => $item->{'link'},
STORY_DESC => $item->{'description'},
STORY DATE => $item->{'dc'}->{"date'}

}

@stories = sort { $b->{STORY DATE} cmp $a->{STORY DATE} } @stories;

__DATA _

http://slashdot.org/slashdot.rss
http://use.perl.org/perl-news-short.rdf
http://www.theregister.co.uk/tonys/slashdot.rdf
http://blog.simon-cozens.org/blosxom.cgi/xml
http://www.oreillynet.com/~rael/index.rss

Next we need to design a template to receive this list of feeds. Now, I'm an abysmal
HTML designer, which is why I like templates so much. I can create something
rough that does the job and hand it to someone with imagination to do the presenta-
tion bits. So here’s a rough-and-ready template:

<html>
<head> <title> Today's News </title> </head>
<body>
<h1> News Stories Collected at <TMPL VAR TIME> </h1>

<TMPL_LOOP STORIES>
<table border="1">
<tr>
<td>
<h2>
<a href="<TMPL_VAR STORY_URL>"> <TMPL_VAR STORY_NAME>
</h2>
<p> <TMPL_VAR STORY DESC> </p>
<hr>
<p> <i> From
<a href="<TMPL_VAR FEED URL>"> <TMPL VAR FEED NAME>
/1> </p>
</td>
</tr>
</table>
</TMPL_LOOP>
</body>
</html>

94

| Chapter3: Templating Tools

(Notice that we’re using short forms of the pseudotags: it’s OK to say SOME_VARIABLE
instead of NAME=SOME_VARIABLE where it’s unambiguous.)

Finally, we put the finishing touches on our driver program, which merely takes the
array we generated and feeds it to HTML: : Template:

#!/usr/bin/perl

use LWP::Simple;
use XML::RSS;
use HTML::Template;

my @stories;

while (<DATA>) {

chomp;

my $xml = get($_) or next;

my $rss = XML::RSS->new;

eval { $rss->parse($xml) }; next if $@;

for my $item (@{$rss->{'items'}}) {

push @stories, {

FEED NAME => $rss->channel->{'title'},
FEED URL => $rss->channel->{'link'},

STORY_NAME => $item->{'title'},
STORY URL => $item->{'link'},
STORY DESC => $item->{'description'},
STORY_DATE => $item->{'dc'}->{"date'}

}

my $template = HTML::Template->new(filename => "aggregator.tmpl");

$template->param(STORIES => [
sort {$b->{STORY DATE} cmp $a->{STORY DATE} } @stories

1);
$template->param(TIME => scalar localtime);

delete $ ->{STORY DATE} for @stories;
print "Content-Type: text/html\n\n", $template->output;

_ _DATA__
http://blog.simon-cozens.org/blosxom.cgi/xml
http://slashdot.org/slashdot.rss
http://use.perl.org/perl-news-short.rdf
http://www.theregister.co.uk/tonys/slashdot.rdf
http://www.oreillynet.com/~rael/index.rss

We need to delete the STORY_DATE once we've used it for ordering, as HTML: : Template
gets irate if we have loop variables that we don’t use in our template.

HTML:Template | 95

Plug this into a CGl-enabled web server, and, lo and behold, we have a cheap and
cheerful Amphetadesk clone.

HTML::Mason

One of the big drawbacks of HTML: : Template is that it forces us, to some degree, to
mix program logic and presentation, something that we sought to avoid by using
templates. For instance, that last template got a little difficult to follow, with vari-
able and HTML tags crowding up the template and obscuring what was actually
going on. What we would prefer, then, is a system that allows us to further abstract
out the individual elements of what we expect our templates to do, and this is where
HTML: :Mason comes in.

As we’ve mentioned, HTML: :Mason is an inside-out templating system. As well as tem-
plating, it could also be described as a component abstraction system for building
HTML web pages out of smaller, reusable pieces of logic. Here’s a brief overview of
how to use it, before we go on to implement the same RSS aggregator application.

Basic Components

In Mason, everything is a component. Here’s a simple example of using compo-
nents. Suppose we have three files: test.html in Example 3-1, Header in Example 3-2,
and Footer in Example 3-3.

Example 3-1. test.html

<& /Header &>
<p>

Hello World
</p>
<& /Footer &>

Example 3-2. Header

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Some Web Application</title>
<link rel=stylesheet type="text/css" href="nt.css">
</head>

<body>

Example 3-3. Footer

<hr>
<div class="footer">
<address>
webmaster@yourcompany.com

96 | Chapter3: Templating Tools

Example 3-3. Footer (continued)

</address>
</div>
</body>
</html>

HTML: :Mason builds up the page by including the components specified inside <& and
8> tags. When creating test.html, Mason first includes the Headercomponent found
at the document root, then the rest of the HTML, then the Footer component.

Components may call other components. So far, we’ve done nothing outside the
scope of server-side includes.

Basic Dynamism

So where does the templating come in? There are three basic ways of adding templates
to Mason pages. Here’s the first, a simple modification to our Footer component.

<hr>
<div class="footer">
<address>
webmaster@yourcompany.com
</address>
Generated: <% scalar localtime %>
</div>
</body>
</html>

If you wrap some Perl code in <% ... %> tags, the result of the Perl expression is
inserted into the resulting HTML.

That’s all very well for simple expressions, but what about actual Perl logic? For this,
Mason has an ugly hack: a single % at the beginning of a line is interpreted as Perl
code. This lets you do things like Example 3-4, to dump out the contents of a hash.

Example 3-4. Hashdump

<table>

<tr>
<th> key </th>
<th>value</th>

</tr>

% for (keys %hash) {
<tr>
<td> <% $_ % </td>
<td> <% $hash{$_} %> </td>
</tr>
%}
</table>

HTML:Mason | 97

Example 3-4. Hashdump (continued)

<HARGS>
%hash => undef
</%ARGS>

There’s a few things to notice in this example. First, see how we intersperse ordinary
HTML with logic, using % ..., and evaluated Perl expressions, using <% ... %>.
The only places % is special are at the start of a line and as part of the <% ... %> tag;
the % of %hash is plain Perl.

The second thing to notice in the example is how we get the hash into the compo-
nent in the first place. That’s the purpose of the <%ARGS> section—it declares argu-
ments to pass to the component. And how do we pass in those arguments? Here’s
something that might call Hashdump:

% my %foo = (one => 1, two => 2);

<& /Hashdump, hash => %foo &>

So altogether, we have an example of declaring my variables inside a component,
passing a named parameter to another component, and having that component
receive the parameter and make use of it. Mason will try to do something sensible if
you pass parameters of different types than the types you’ve declared in the <%ARGS>
section of the receiving component (here we passed a hash to fill in the %hash param-
eter, for instance), but life is easier if you stick to the same types.

Perl Blocks

There’s a final way of adding Perl logic to your components, but it’s not used much
in the form we’re about to describe. If you’ve got long Perl sections, you won’t want
to put a % at the beginning of every line. Instead, you can wrap the whole thing up in
a <%PERL>...</%PERL> block.

However, something you will see quite often in real-life components is the
<BINIT>...</%INIT> block. This can be placed anywhere in the component, although
typically it’s placed at the end to keep it away from all the HTML. No matter where
it’s placed, it always runs first, before anything else in the component. It’s a good
place to declare and initialize any variables you’re going to use (by the way—Mason
forces use strict...) and do any heavy computation that needs to happen before you
do the displaying.

Another vaguely useful thing to know about is the <%ONCE>...</%ONCE> block, which is
executed only at startup—think of it as the Mason equivalent of a Perl BEGIN block.

Our RSS Aggregator

We’re now in a position where we can start putting together our RSS aggregator. The
example in this section is taken from some code I wrote for a portal site. It’s worth

98 | Chapter3: Templating Tools

noting that I threw it together in a matter of around two or three hours. The inten-
tion was to support logins, personalized lists of feeds, personalized ordering, and so
on. Although T didn’t get that far, what I had after those two or three hours is worth
looking at.”

Let’s start by thinking of what we want on the front page. I opted for a two-column
design, shown in Figure 3-1, with the left column containing an invitation to log in to
the portal and a list of the feeds available. As an additional flourish, the list of feeds
are categorized into folders, represented by directories in the filesystem. The right
column contains the logged-in user’s favorite feeds, the feeds from a given folder if a
folder has been clicked, or a default set of feeds in all other cases.

My Portal

Welcome to your portal! From here you can subscribe to
a wide range of news and alerting services; if you log in,
you can customize this home page.

Log in to Your Portal:

+ Barcode:

[1

+ Password:

+ Yahoo Fights Back in Battle With Google

+ Linux: Gentoo 2005.0 Released

+ Science: History Flow Shows How Wiki Articles
Evolve

+ Linux: Gnome Removed From Slackware

+ Games: PlayStation Sales Halted?

Technology

Figure 3-1. The RSS aggregator

Let’s begin to build the site. First, we’ll want a header and a footer to take away most
of the boring parts of the HTML generation, as in Examples 3-5 and 3-6.

Example 3-5. Header

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html lang="en">

<head>

<title> My Portal </title>

<link rel="stylesheet" type="text/css" href="/stylesheets/portal.css">
</head>

<body class="pagetable">

* Feel free, of course, to implement all these things as an exercise in HTML: :Mason programming.

HTML:Mason | 99

Example 3-5. Header (continued)

<h1>My Portal</h1>

Example 3-6. Footer

</body>
</html>

Now we’re going to use a slight Mason trick: instead of wrapping every page in the
header and footer manually, we use an autohandler, a component that is applied to
all pages, as in Example 3-7.

Example 3-7. Autohandler

<& /header &>
<% $m->call next %>
<& /footer &>

Behind the scenes, Mason pages are processed by one or more handlers, reminiscent
of Apache mod_perl handlers. Indeed, $m in our code is the Mason request object,
which is similar to the Apache request object.”

In the lineup of Mason handlers, first come the autohandlers, which handle every
request; then come dhandlers, which handle particular URIs; and finally comes the
ordinary Mason handler for the page you’re trying to process. Our example shows
the simplest but most common autohandler: call a header component, then pass this
request on to the next handler in the Mason handler chain, and finally call a footer
component. This ensures that every page has its header and footer.

Next, we’ll think about what the index has to be. As we’ve said, we’re going for a
two-column design, something like Example 3-8.

Example 3-8. index.html
<table>

<tr>

<td valign="top">
<& /LoginBox &>

<& /Directories &>

<HINIT>
$open = ($open =~ /(\w+)/) 2 $1 : '";
</BINIT>

</td>
<td width=4> </td>

* If you need the actual Apache request object in Mason, it’s available as $r.

100 | Chapter3: Templating Tools

Example 3-8. index.html (continued)

<td width="100%">

%# Am I logged in ?

% if (0) {

<& /LoggedInPane &>

%} elsif ($open) {

<& /DirectoryPane, open => $open &>
%} else {

<& /StandardPane &>

%}

</td>

</table>

<%ARGS>
$open => undef
</%ARGS>

As promised, the column on the left contains a login box and the directory of feeds.
The right-hand side has three states: one pane for those who are logged in (which is
ifdef’ed out since user control is left for future expansion), one if a particular direc-
tory has been opened, and one if the user has just come to the site’s front page.”

What about the value of $open? Mason allows components to take arguments, either
via CGI or by being passed in from other components. In this case, index.html is a
top-level component and will receive its arguments via CGl—that is, if we request
the URL http://www.oursite.com/rss/index.html?’open=News, then $open will be set to
News. The directory pane component receives its arguments from index.html, and so
we pass it the value of $open we received.

Because $open later names a directory on the web server, we sanitize its value to
avoid directory-perusal attacks such as passing in a query of open=../../... We do
this in the <%INIT%> phase by replacing the parameter passed in with the first word in
the string. If the parameter has no word characters, we set it to an empty string so
the remainder of the code acts as if no directory was selected.

Now, our site is going to be made up of a load of boxes of various titles and different
colors, so let’s have a couple of helper components to draw boxes for us. We're
going to allow the box to have a user-defined color, title, and optional title link.
Experience has shown that the best way to do this is to create components for the
start of the box and the end of the box. The start of the box, shown in Example 3-9,
creates a table inside a table.

* Therefore, as it happens, all requests will go through index.html, and we could have put our header and
footer code in there, but using an autohandler is cleaner and actually more conventional.

HTML:Mason | 101

Example 3-9. BoxTop

<table bgcolor="#777777" cellspacing=0 border=0 cellpadding=0>
<tr><td rowspan=2></td>

<td valign=middle align=left bgcolor="<%$color%>">

<% $title href 8& ""|n %>

<K$title |n %>

<% $title href 88 "" |n %>

</td>

<td rowspan=2>8nbsp;</td></tr>

<tr><td colspan=2 bgcolor="#eeeeee" valign=top align=left width=100%>
<table cellpadding=2 width=100%><tr><td>

<%ARGS>
$title_href => undef
$title => undef

$color => "#000099"
</%ARGS>

One thing to notice from this is the |n directive that appears at the end of some of
the interpolated Perl sections. The reason for these is to turn off Mason’s default
HTML entity escaping code. For instance, if we had passed in a value for $title_
href, then this line:

<% $title href 8& "" %>
would want to output . However, as Mason tries to escape HTML entities for

you, this would become 81t;/a8gt;—so we need to turn that off.

The box ending code, shown in Example 3-10, is much simpler and merely ends the
two tables we opened.

Example 3-10. BoxEnd
</td></tr></table>

</td></tr>
<tr><td colspan=4> </td></tr>
</table>

As an example of these box drawing components, let’s first dispatch the dummy
login box for completeness, as in Example 3-11.

Example 3-11. LoginBox

<& BoxTop, title=>"Login" &>

<small>Log in to Your Portal:</small>

<form>

<1i> Barcode: <input name="barcode">

102 | Chapter3: Templating Tools

Example 3-11. LoginBox (continued)

<1i> Password: <input name="password">

</form>
<& BoxEnd &>

When Mason processes that component, it produces HTML that looks like this:

<table bgcolor="#777777" cellspacing=0 border=0 cellpadding=0>
<tr><td rowspan=2></td>

<td valign=middle align=left bgcolor="#000099">

 Login </td>

<td rowspan=2> </td></tr>

<tr><td colspan=2 bgcolor="#eeeeee" valign=top align=left width=100%>
<table cellpadding=2 width=100%><tr><td>

<small>Log in to Your Portal:</small>

<form>

<1i> Barcode: <input name="barcode">

 Password: <input name="password">

</form>
</td></tr></table>

</td></tr>
<tr><td colspan=4> </td></tr>
</table>

Now we need to make some decisions about our site’s layout. As we’ve mentioned,
we're going to put our feeds in the filesystem, categorized by directory. We'll actu-
ally have each individual feed be a Mason component, drawing on a library compo-
nent we’ll call RSSBox. Our Directories component is a box containing a list of
categories; clicking on a category displays all the feeds in that category. As each cate-
gory is a directory, we can create the list, as in Example 3-12.

Example 3-12. Directories

<& /BoxTop, title=> "Resources" &>

<%$Portal::dirsk>

<& /BoxEnd &>

<HONCE>
my $root = "/var/portal/";
for my $top (grep { -d $_ } glob("$root*")) {

HTML:Mason | 103

Example 3-12. Directories (continued)

$top =~ s/$root//;
$Portal::dirs .= qq{

$top
} unless $top =~ /\W/;

}
</%0ONCE>

What’s happening here is that when the server starts up, it looks at all the subdirecto-
ries of our portal directory and strips them of their root (in this instance, /var/portal/) to
turn them into a link for the purposes of our application. For instance, a directory
called fvar/portal/News would turn into a link /2open=News with the heading News.
This link redirects back to our home page, where the open parameter causes the
DirectoryPane to be presented and opens the feeds in the selected directory. The code
skips any directories with non-word characters in the name, so it only generates links
that will pass the parameter check on open.

Let’s think about how that pane is implemented. We know that we open a directory
and find it full of Mason component files. We want to then dynamically include each
of those component files in turn, to build up our directory of feeds.

The trick to dynamically calling a component is the comp method on the Mason
request object $m; this is the Perl-side version of the <& comp &> component include
tag. Hence, our directory pane ends up looking like Example 3-13.

Example 3-13 . DirectoryPane

<%ARGS>
$open
</%ARGS>

% for (grep {-f $_} glob("/var/portal/$open/*")) {
% s|/var/portal/||;

<% $m->comp($_) %>
%}

We first receive the name of the directory we’re trying to open. Next we look at each
file in that directory, strip off the name of the root directory (ideally this would all be
provided by a configuration file), and then call the component with that name. This
means that if we have a directory called Technology containing the following files:

01-Register

02-Slashdot

03-MacNews

04-LinuxToday

05-Per1DotCom
then calling <& /DirectoryPane, open => "Technology" &> would have the effect of
saying:

104 | Chapter3: Templating Tools

<& /Technology/01-Register &>
<& /Technology/02-Slashdot &>
<& /Technology/03-MacNews &>
<& /Technology/04-LinuxToday &>
<& /Technology/05-Per1DotCom &>

The standard pane, shown in Example 3-14, appears when no directory is open. It
consists of whatever feeds we choose to make default.

Example 3-14. StandardPane

<& /BoxTop, title=> "Hello!", color => "dd2222"&>
Welcome to your portal! From here you can subscribe to a wide range of
news and alerting services; if you log in, you can customize this home

page.
<& /BoxEnd &>

<& /Weather/01-Oxford &>

<& /Technology/02-Slashdot &>
<& /News/01-BBC &>

<& /People/03-Rael &>

So what’s in the individual files? As we’ve mentioned, they make use of an RSSBox
component, and they simply pass in the URL for the feed and optionally a color, a
maximum number of items, and a name for the feed. They also pass in a parameter
to say whether we want to display just the titles and links for each RSS item, or the
description as well. For instance, /News/01-BBC looks like this:

<& /RSSBox, URL =>"http://www.newsisfree.com/HPE/xml/feeds/60/60.xml",
Color =>"#ddoooo" &>

whereas Rael Dornfest’s blog looks like this:

<& /RSSBox, URL => "http://www.oreillynet.com/~rael/index.rss",
Color=> "#ccccoo", Title => "Rael Dornfest", Full => 0 &

As we’ll see in a moment, the beauty of this modular system is that we can have com-
ponents that do things other than fire off RSS feeds if we want.

But first, let’s complete our portal by writing the RSSBox library that all these sources
use. First, we want a ONCE block to load up the modules we need:

<JONCE>

use XML::RSS;
use LWP::Simple;
</JONCE>

Next we take our arguments, setting appropriate defaults:

<HARGS>

$URL

$Color => "#0000aa"
$Max => 5

$Full => 1

HTML:Mason | 105

$Title => undef
</%ARGS>

Before we start outputting any content, we load up the feed in question and parse it
with the XML: :RSS module. We call Mason’s cache_self method to have this compo-
nent handle caching its output; if the same URL is accessed within 10 minutes, the
cached copy will be presented instead:

<HINIT>

return if $m->cache_self(key => $URL, expires in => '10 minutes');
my $rss = new XML::RSS;

eval { $rss->parse(get($URL));};

my $title = $Title || $rss->channel('title');

</BINIT>

And now we are ready to go. So let’s look at this altogether in Example 3-15.

Example 3-15. RSSBox

<J%0N
use
use
</%0l

<%AR
$URL
$Col
$Max
$Ful
$Tit
</ %A

<%IN
my $
eval
my $
my $
</%1

<& B

3R

o My
% fo

3R

CE>

XML: :RSS;

LWP: :Simple;
NCE>

GS>

or => "#0000aa"
=> 5

1=>1

le => undef
RGS>

IT>

1rss = new XML::RSS;

{ $rss->parse(get($URL));};
title = $Title || $rss->channel('title');
site = $rss->channel('link");

NIT>

oxTop, color => $Color, title => $title, title href => $site &>

<dl class="rss">

$count = 0;

1 (@{$rss->{items}}) {

<dt class="rss">

<a href="<% $ _->{link} %>"> <% $_->{title} %>
</dt>

% if ($Full) {

<dd> <% $_->{description} %> </dd>

%}
% last if ++$count >= $Max;
%}
106 | Chapter3: Templating Tools

Example 3-15. RSSBox (continued)

</dl>
<& /BoxEnd &>

There isn’t much to it; for each item in the feed, we want to provide a link, the item’s
title, and, optionally, the description. We stop if we have more items than we want.

This demonstrates how powerful Mason can be; as I said, the total development time
for this site was a couple of hours at most. The entire site takes considerably fewer
than 200 lines of code. And, as we mentioned, we have the flexibility to include com-
ponents that are not RSS. For instance, we don’t actually have an RSS feed of the
Oxford weather. However, there is a web page that spits out a weather report in a
well-known format. This means that Weather/01-Oxford does not call RSSBox at all,
but is in fact the following:

<KINIT>

use LWP::Simple;

my @lines = grep /Temperature|Pressure|humidity|~Sun|Rain/,

split /\n/,

get('http://www-atm.physics.ox.ac.uk/user/cfinlay/now.htm");
</BINIT>

<& /BoxTop, title => "Oxford Weather", color => "#ddoodd" &>

% for (@lines) {
 <% $_ % </1i>

%}

<& /BoxEnd &>

And that sums up Mason—simple, extensible, and highly powerful.

v
NN

Of course, there are many other Mason tricks for you to learn—too
many to cover here. Dave Rolsky and Ken Williams’s fantastic book
s Embedding Perl in HTML with Mason (http://'www.masonbook.com/)
" covers many of them, including more details about getting Mason up
and running in your web server. Also check out the Mason home page
(http:/f'www.masonhg.com).

Template Toolkit

While the solutions we’ve seen so far have been primarily for Perl programmers—
embedding Perl code in some other medium—Andy Wardley’s Template Toolkit
(http:/fwww.template-toolkit.org/) is slightly different. It uses its own templating lan-
guage to express components, loops, method calls, data structure elements, and
more; it’s therefore useful for teaching to designers who have no knowledge of the

Template Toolkit | 107

Perl side of your application” but who need to work on the presentation. As the doc-
umentation puts it, you should think of the Template Toolkit language as a set of
layout directives for displaying data, not calculating it.

Like Mason, it seamlessly handles compiling, caching, and delivering your tem-
plates. However, unlike Mason, it’s designed to provide general-purpose display and
formatting capabilities in a very extensible way. As an example, you can use Tem-
plate Toolkit to dynamically serve up PDF documents containing graphs based on
data from a database—and all this using nothing other than the standard plugins and
filters and all within the Template Toolkit mini language.

But before we look at the clever stuff, let’s look at the very simple uses of Template
Toolkit. In the simplest cases, it behaves a lot like Text::Template. We take a tem-
plate object, feed it some values, and give it a template to process:

use Template;

my $template = Template->new();
my $variables = {

who => "Andy Wardley",
modulename => "Template Toolkit",
hours => 30,

games => int(30*2.4)

b

$template->process("thankyou.txt", $variables);
This time, our template looks like the following:

Dear [% who %],
Thank you for the [% modulename %] Perl module, which has saved me
[% hours %] hours of work this year. This would have left me free to play
[% games %] games of go, which I would have greatly appreciated
had I not spent the time goofing off on IRC instead.

Love,
Simon
Lo and behold, the templated text appears on standard output. Notice, however,
that our variables inside the [% and %] delimiters aren’t Perl variables with the usual
type sign in front of them; instead, they’re now Template Toolkit variables. Tem-
plate Toolkit variables can be more than just simple scalars, though; complex data
structures and even Perl objects are available to Template Toolkit through a simple,
consistent syntax. Let’s go back to our design work invoices, but with a slightly dif-
ferent data structure:
my $invoice = {
client => "Acme Motorhomes and Eugenics Ltd.",
jobs => [
{ cost => 450.00, description => "Designing the new logo" },
{ cost => 300.00, description => "Letterheads and complements slips" },

* And probably no desire to find out!

108 | Chapter3: Templating Tools

{ cost => 900.00, description => "Web site redesign" },
{ cost => 33.75, description => "Miscellaneous Expenses" }

1
total => 0

I8
$invoice->{total} += $ ->{cost} for @{$invoice->{jobs}};

How would we design a template to fit that data? Obviously, we’re going to need to
loop over the jobs in the anonymous array and extract various hash values. Here’s
how it’s done:

To [% client %]:

Thank you for consulting the services of Fungly Foobar Design
Associates. Here is our invoice in accordance with the work we have
carried out for you:

[% FOREACH job = jobs %]
[% job.description %] : [% job.cost %]
[% END %]

Total $[% total %]
Payment terms 30 days.

Many thanks,
Fungly Foobar

As you can see, the syntax is inspired by Perl—we can foreach over a list and use a
local variable job to represent each element of the iterator. The dot operator is equiv-

alent to Perl’s ->—it dereferences array and hash reference elements and can also call
methods on objects.

However, there’s something slightly wrong with this example; since we can expect
our descriptions to be of variable width, our costs aren’t going to line up nicely at the
end.” What can we do about this? This is where a nice, extensible feature of the Tem-
plate Toolkit called filters comes in.

Filters

Template Toolkit filters are a little like Unix filters—they’re little routines that take
an input, transform it, and spit it back out again. And just like Unix filters, they’re
connected to our template output with a pipe symbol (]).

In this case, the filter we want is the oddly named format filter, which performs
printf-like formatting on its input:

[% job.description | format("%60s") %] : [% job.cost %]

* We completely glossed over this in the Text: : Template example; did you notice?

Template Toolkit | 109

This fixes the case where the data is being produced by our template processor—
job.description is turned into a real description, and then filtered. But we can also
filter whole blocks of template content. For example, if we wanted to format the out-
put as HTML, we could apply the html_entity filter to replace entities with their
HTML encoding;:

[% FILTER html entity %]
Payment terms: < 30 days.
[% END %]

This turns into: Payment terms: 8lt; 30 days.

This is another example of a Template Toolkit block; we’ve seen FOREACH blocks and
FILTER blocks. There’s also the IF/ELSIF/ELSE block:
[% IF delinquent %]
Our records indicate that this is the second issuing of this
invoice. Please pay IMMEDIATELY.
[% ELSE %]
Payment terms: <30 days.
[% END %]
Other interesting filters include the upper, lower, ucfirst, and lcfirst filters to
change the casing of the text; uri to URI-escape any special characters; eval to treat
the text to another level of template processing, and perl eval to treat the output as
Perl, eval it, and then add the output to the template. For a more complete list of fil-
ters with examples, see the Template: :Manual::Filters documentation.

Plugins

While filters are an interface to simple Perl functionality—built-in functions like
eval, uc, and sprintf, or simple text substitutions—plugins are used to interface to
more complex functions. Typically, they’re used to expose the functionality of a Perl
module to the format language.

For instance, the Template::Plugin::Autoformat plugin allows one to use Text::
Autoformat’s autoformatting functionality. Just as with the Perl module, use the USE
directive to tell the format processor to load the plugin. This then exports the
autoformat subroutine and a corresponding autoformat filter:

[% USE autoformat(right=78) %]
[% address | autoformat %]

This assures that the address is printed in a nice block on the right-hand side of the
page.
A particularly neat plugin is the Template::Plugin::XML::Simple module, which

allows you to parse an XML data file using XML: :Simple and manipulate the resulting
data structure from inside a template. Here we use USE to return a value:

[% USE document = XML.Simple("app2ed.xml") %]

110 | Chapter3: Templating Tools

And now we have a data structure created from the structure and text of an XML
document. We can explore this data structure by entering the elements, just as we
did in “XML Parsing” in Chapter 2:

The author of this book is

[% document.bookinfo.authorgroup.author.firstname # 'Simon' %]

[% document.bookinfo.authorgroup.author.surname # 'Cozens' %]
Actually writing a plugin module like this is surprisingly easy—and, in fact, some-
thing we’re going to need to do for our RSS example. First, we create a new module
called Template::Plugin::Whatever, where Whatever is what we want our plugin to be
known as inside the template language. This module will load up whatever module
we want to interface to. We'll also need it to inherit from Template::Plugin. Let’s go
ahead and write an interface to Tony Bowden’s Data: :BT::PhoneBill, a module for
querying UK telephone bills.

package Template::Plugin::PhoneBill;

use base 'Template::Plugin';

use Data::BT::PhoneBill;
Now we want to receive a filename when the plugin is USEd and turn that into the
appropriate object. Therefore we write a new method to do just that:

sub new {

my ($class, $context, $filename) = @ ;
return Data::BT::PhoneBill->new($filename);

}
$context is an object passed by Template Toolkit to represent the context we’re
being evaluated in. And that’s basically it—you can add error checking to make sure
the filename exists and that the module can parse the phone bill properly, but the
guts of a plugin are as we’ve shown.

Now that we’ve created the plugin, we can access the phone bill just like we did with
the XML: : Simple data structure:

[% USE bill = PhoneBill("mybill.txt") %]

[% WHILE call = bill.next call %]

Call made on [% call.date %] to [% call.number %]...

[% END %]
An interesting thing to notice is that when we were using the XML.Simple plugin, we
accessed elements of the data structure with the dot operator: document.bookinfo and
so on. In that case, we were navigating hash references; the Perl code would have
looked like $document->{bookinfo}->{authorgroup}->{author}.... In this example,
we're using precisely the same dot operator syntax, but, instead of navigating hash
references, we're calling methods: call.date would translate to $call->date. How-
ever, it all looks the same to the template writer. This abstraction of the underlying
data structure is one of the big strengths of Template Toolkit.

Template Toolkit | 111

Components and Macros

When we looked at HTML: :Mason, one of the things we praised was the ability to split
template functionality up into multiple components, then include those components
with particular parameters. It shouldn’t be a surprise that we can do precisely the
same in Template Toolkit.

The mechanism through which we pull in components is the INCLUDE directive. For
instance, we can specify our box drawing library in a way very similar to the HTML: :Mason
method, as in Example 3-16.

Example 3-16. BoxTop

<table bgcolor="#777777" cellspacing=0 border=0 cellpadding=0>
<tr>
<td rowspan=2></td>
<td valign=middle align=left bgcolor="[% color %]">

[% IF title href %]
 [% title %]
[% ELSE %]
[% title %]
[% END %]

</td>
<td rowspan=2> </td>
</tr>
<tr>
<td colspan=2 bgcolor="#eeeeee" valign=top align=left width=100%>
<table cellpadding=2 width=100%>
<tr><td>

And in the same way as HTML: :Mason, we can use local parameters when we include
these components:

[% INCLUDE boxtop
title = "Login"
%]
However, Template Toolkit provides another method of abstracting out common

components, the MACRO directive. We can define a MACRO to expand to any Template
Toolkit code; let’s start by defining it to simply INCLUDE the drawing component:

[% MACRO boxtop INCLUDE boxtop %]
[% MACRO boxend INCLUDE boxend %]

With this, we can draw boxes with a little less syntax:

[% boxtop(title="My Box") %]

112 | Chapter3: Templating Tools

<P> Hello, people! </P>
[% boxend %]
Instead of using a component file and INCLUDE, we can also associate a block of Tem-
plate Toolkit directives with a macro name.
[% MACRO boxtop BLOCK %]

<table bgcolor="#777777" cellspacing=0 border=0 cellpadding=0>
<tr>

[% END %]

[% MACRO boxend BLOCK %]
</td></tr></table>

</td></tr>

<tr><td colspan=4>8nbsp;</td></tr>

</table>

[% END %]
Eventually, we can build up a library of useful macros and then INCLUDE that, instead
of having a bunch of component files hanging around.

Let’s assume we’ve created such a library and it contains these two box-drawing
macros, and now we’ll move on to putting together our RSS aggregator.

The RSS Aggregator

When it comes to writing the aggregator, we first look at the list of Template Toolkit
plugins and notice with some delight that there’s already a Template::Plugin::XML::
RSS, which talks to XML: :RSS. Unfortunately, our delight is short-lived, as we soon dis-
cover that this expects to get a filename rather than a URL or a string of XML data. We
don’t really want to be writing out files and then parsing them in again.

So let’s create our own subclass of Template::Plugin::XML::RSS that fetches URLs
and parses those instead:

package Template::Plugin::XML::RSS::URL;
use base 'Template::Plugin::XML::RSS';
use LWP::Simple;

sub new {
my ($class, $context, $url) = @ ;

return $class->fail('No URL specified') unless $url;

my $url data = get($url)
or return $class->fail("Couldn't fetch $url");

my $rss = XML::RSS->new
or return $class->fail('failed to create XML::RSS');

eval { $rss->parse($url data) } and not $@

Template Toolkit | 113

or return $class->fail("failed to parse $url: $@");

return $rss;

}
1;
Now we can build up the equivalent of the RSSBox component we made in Mason:

[% MACRO RSSBox(url) USE rss = XML.RSS.URL(url) %]
[% box_top(title = rss.channel.title, title href = rss.channel.link) %]

<dl class="rss">
[% FOREACH item = news.items %]
<dt class="rss">
 [% item.title %]
[% TF full %]
<dd> [% item.description %] </dd>
[% END]
</dt>
[% END %]
</dl>
[% box_end %]
[% END %]
The important difference between this and the Mason example is that this piece of
code handles everything itself—the whole process of obtaining and parsing the RSS
feed is available to the template designer. There’s no Perl code here to be seen at all. It’s
also considerably more concise and easier to read and understand. Now that we have
this macro, we can produce an HTML box full of RSS stories with a simple call to it:

[% RSSBox("http://slashdot.org/slashdot.rss") %]

From here on, constructing an RSS aggregator is a simple matter of templating; all of
the Perl work has been abstracted away.

AxKit

Although we include it in our list of templating systems, AxKit (http://www.axkit.org) is a
slightly different kettle of fish from the modules we’ve seen so far; this is no mere tem-
plating system, it’s a fully fledged XML application server for Apache. The most com-
mon use of AxKit is to transform XML to HTML on-the-fly for delivery over the web.

However, thanks to XSP (Extensible Server Pages), developed by the Apache Cocoon
project, AxKit can be used as an extraordinarily extensible templating system. The
basic idea behind XSP is that certain XML tags trigger the execution of given Perl
routines. At a very basic level, you can use tags to delimit raw Perl code:

<p>

Good

<xsp:logic>

if ((localtime)[2] >= 12) {

114 | Chapter3: Templating Tools

<i>Afternoon</i>

}

else {
<i>Morning</i>

}

</xsp:logic>
</p>

Notice that AxKit is quite happy for you to intersperse XML marked-up data with
your Perl code. Because AxKit parses the XML, it knows that <i>Afternoon</i> is
data, not Perl code, and treats it appropriately. This also means that if you have an
XML guru handy, he can find a way of validating your HTML-with-embedded-XSP.
In fact, since AxKit parses everything as XML, your HTML must be well-formed and
valid or you won’t get anything out of AxKit at all.

However, AxKit does not stop at this basic level; XSP allows you to create tag librar-
ies with frontend Perl code. For instance, the AxKit::XSP::ESQL taglib provides a
wrapper around the DBI libraries. These tag libraries define their own XML
namespaces and place tags inside them. So your XML would use a namespace decla-
ration to import the tag library:

<xsp:page

>

language="perl"
xmlns:xsp="http://apache.org/xsp/core/v1"
xmlns:esql="http://apache.org/xsp/SQL/v2"

and this would allow you to use <esql:...> tags in your page:

<esql:connection>
<esql:driver>Pg</esql:driver>
<esqgl:dburl>dbname=rss</esql:dburl>
<esql:username>www</esql:username>
<esql:password></esql:password>
<esgl:execute-query>
<esql:query>
select description, url, title from feeds
</esql:query>
<esql:results>

<esql:row-results>
<1i>
<a>
<xsp:attribute name="href">
<esql:get-string column="url"/>
</xsp:attribute>
<esql:get-string column="name"/>
 - <esql-get-string column="description"/>
</1i>
</esql:row-results>

</esql:results>

AxKit

115

<esql:no-results> <p> Couldn't get any results! </p> </esql:no-results>

</esql:execute-query>

</esql:connection>
This executes the SQL query near the top of the XML and turns it into an HTML list.
The only potentially non-obvious part is where we use <xsp:attribute>. The key to
understanding this is that a document processed by AxKit has to be 100% valid, well-
formed XML. On the other hand, with HTML: : Template and HTML: :Mason we could get
away with things like <a href="<TMPL_VAR URL>"> or <a href="<% $url |n%>">—in a
sense, putting tags inside tags.

But with AxKit, the whole document is parsed as XML, and then transformations are
applied. With the above examples, AxKit would parse the tag as having the perfectly
valid (but nonsensical) attribute values <TMPL_VAR URL> and <% $url|n> and do no
more processing on them. Worse still, we can’t get away with anything like <a
href=<esql:get-string column="url"/>> as that’s not even well-formed XML.

So we play a slight trick. We ask the XSP layer to rewrite the <a> tag, after everything
has been parsed, with the appropriate href attribute. This keeps everything well-
formed and parsable.

There are many other tag libraries that perform the same function as Template Tool-
kit’s plugins and give the XML author access to high-level Perl functionality; my own
AxKit::XSP::0bjectTaglib allows the programmer to easily wrap any object-oriented
module into a tag library.

We’re not going to implement our RSS aggregator in AxKit, as it turns out, because
AxKit is a fully featured XML processor. All of the heavy lifting can be done in XSLT
stylesheets, and there’s almost no Perl content involved.

Instead, for more on AxKit, we’ll refer you to Perl and XML (O’Reilly) and http:/
www.axkit.org, the AxKit home page.

Conclusion

In this chapter, we’ve looked at a few of the available templating tools that are com-
monly used in Perl; from simple formats—sprintf, and the like—on through Text::
Template and HTML::Template, and then up to the more sophisticated solutions of
HTML: :Mason and Template Toolkit.

But we’ve missed out on one quite important question: which one should you use?
As usual, the answer depends partly on what you need and partly on your tastes.

First, consider the distinction between Perl-based systems like Text::Template and
Text::Autoformat, and inside-out modules like HTML: :Mason. If the main purpose of
your program is to provide some templated output, as in the case of a web-based
application, then you probably want to gravitate toward the HTML: :Mason and Tem-
plate Toolkit end of the spectrum.

116 | Chapter3: Templating Tools

You also need to consider who’s going to be writing the templates and whether you
want to expose them to Perl code. Template Toolkit, AxKit, and HTML: : Template all
tend to keep the templater away from Perl, whereas HTML: :Mason forces the templater
to get down and dirty with it.

Second, there’s the element of personal taste. 'm not a great fan of HTML: : Template,
preferring the way Mason does things; 1 find AxKit very powerful but at times very
frustrating because of its insistence on clean XML; and I'm beginning to like Template
Toolkit the more I use it, but prefer Mason basically because I'm more used to it.

Your tastes may differ. It’s just as well, that as with so many things in Perl, there’s
more than one way to do it.

Condusion | M7

CHAPTER 4
Objects, Databases, and Applications

Perl programming is all about getting some data into our program, munging it around
in various ways, and then spitting it back out again. So far we’ve looked at some inter-
esting ways to do the munging and some great ways to represent the data, but our
understanding of storing and loading data hasn’t reached the same kind of level.

In this chapter, we’re going to look at four major techniques for storing and retriev-
ing complex data, and finally at application frameworks—technologies that pull
together the whole process of retrieving, modifying, and acting on data, particularly
for web applications, so that all the programmer needs to deal with is the business
logic specific to the application.

For each technique, there are many CPAN modules that implement it in many differ-
ent ways. We only have the space to examine one module in each section to demon-
strate its approach; this is not necessarily an endorsement of the module in question
as the best available. After all, there’s more than one way to do it.

Beyond Flat Files

The word database might conjure up thoughts of the DBI and big expensive servers
running expensive software packages,” but a database is really just anything you can
get data in to and back out of.

Just a step up from the comma-separated text file is the humble DBM database. This
exists as a C library in several incarnations—the most well known being the Sleepy-
cat Berkeley DB, available from http://www.sleepycat.com/download.html, and the
GNU 1libgdbm, from http://www.gnu.org/order/ftp.html. When Perl is compiled and
installed, it supplies Perl libraries to interface with the C libraries that it finds and to
the SDBM library, which is shipped along with Perl. T prefer to use the Berkeley DB,
with its Perl interface DB_File.

* Or more likely, these days, commodity PCs running free software packages.

118

DBMs store scalar data in key-value pairs. You can think of them as the on-disk repre-
sentation of a hash, and, indeed, the Perl interfaces to them are through a tied hash:
use DB_File;

tie %persistent, "DB_File", "languages.db" or die $!;
$persistent{"Thank you"} = "arigatou";

... sometime later ...

use DB_File;

tie %persistent, "DB_File", "languages.db" or die $!;

print $persistent{"Thank you"} # "arigatou"
DBMs, however, have a serious limitation—since they only store key-value pairs of
scalar data, they cannot store more complex Perl data structures, such as references,
objects, and the like. The other problem with key-value structures like DBMs is that
they’re very bad at expressing relationships between data. For this, we need a rela-
tional database such as Oracle or MySQL. We'll return to this subject later in the
chapter to see a way of dealing with the limitations.

Object Serialization

Now we want to move on from the relatively simple key-value mechanism of DBMs
to the matter of saving and restoring more complex Perl data structures, chiefly
objects. These data structures are interesting and more difficult than scalars, because
they come in many shapes and sizes: an object may be a blessed hash—or it might be
a blessed array—which could itself contain any number and any depth of nesting of
hashes, including other objects, arrays, scalars, or even code references.

While we could reassemble all our data structures from their original sources every
time a program is run, the more complex our structures become, the more efficient it
is to be able to store and restore them wholesale. Serialization is the process of repre-
senting complex data structures in a binary or text format that can faithfully recon-
struct the data structure later. In this section we’re going to look at the various
techniques that have been developed to do this, again with reference to their imple-
mentation in CPAN modules.

Our Schema and Classes

To compare the different techniques here and in the rest of the chapter, we’re going
to use the same set of examples: some Perl classes whose objects we want to be
somehow persistent. The schema and classes are taken from the example applica-
tion used by Class::DBI: a database of CDs in a collection, with information about
the tracks, artists, bands, singers, and so on.

We'll create our classes using the Class: :Accessor: :Assert module, which not only
creates constructors and accessors for the data slots we want, but also ensures that

Object Serialization | 119

relationships are handled by constraining the type of data that goes in the slots. So,
for instance, the D class would look like this:

package (D;

use base "Class::Accessor::Assert”;
__PACKAGE__->mk_accessors(qw(

artist=CD::Artist title publishdate=Time::Piece songs=ARRAY

));

This checks that artist is a CD::Artist object, that publishdate is a Time::Piece
object, and that tracks is an array reference. (Sadly, we can’t check that it’s an array
of CD::Song objects, but this will do for now.) Notice that things are going to be
slightly different between the schema and the Perl code—for instance, we don’t need
a separate class for CD::Track, which specifies the order of songs on a CD, because
we can just do that with an array of songs.

With that in mind, the rest of the classes look like this:

package CD::Song;
use base 'Class::Accessor';
__PACKAGE__->mk_accessors("name");

package CD::Person;
use base 'Class::Accessor::Assert';
__PACKAGE__->mk_accessors(qw(gender haircolor birthdate=Time::Piece));

package CD::Band;

use base 'Class::Accessor::Assert';

__PACKAGE__->mk_accessors(qw(members=ARRAY
creationdate=Time::Piece
breakupdate=Time: :Piece));

package CD::Artist;
use base 'Class::Accessor::Assert';
__PACKAGE__->mk_accessors(qw(name popularity person band));

Dispatch "band" accessors if it's a band
for my $accessor (qw(members creationdate breakupdate)) {
*$accessor = sub {
my $self = shift;
return $self->band->$accessor(@) if $self->band
};
}

And dispatch "person" accessors if it's a person
for my $accessor (qw(gender haircolor birthdate)) {
*$accessor = sub {
my $self = shift;
return $self->person->$accessor(@) if $self->person
1
}

Now we can create artists, tracks, and CDs, like so:

my $tom = CD::Artist->new({ name => "Tom Waits",
person => CD::Person->new() });

120 | Chapter4: Objects, Databases, and Applications

$tom->popularity(2);
$tom->haircolor("black");

my $cd = CD->new({
artist => $tom,
title => "Rain Dogs",
songs => [map { CD::Song->new({title => $ }) }
("Singapore", "Clap Hands", "Cemetary Polka",
..

)]
1;
The rest of the chapter addresses how we can store these objects in a database and
how we can use the classes as the frontend to an existing database.

Dumping Data

One basic approach would be to write out the data structure in full: that is, to write
the Perl code that could generate the data structure, then read it in, and revive it
later. That is, we would produce a file containing:

bless({
"title' => 'Rain Dogs'
‘artist' => bless({
'popularity’ => 2,
"person’ => bless({ 'haircolor' => 'black' }, 'CD::Person'),
'name' => 'Tom Waits'
}, 'CD::Artist'),

'songs' => [
bless({ 'title' => 'Singapore' }, 'CD::Song'),
bless({ 'title' => 'Clap Hands' }, 'CD::Song'),
bless({ 'title' => 'Cemetary Polka' }, 'CD::Song'),
...
L
b ')

and later use do to reconstruct this data structure. This process is known as serializa-
tion, since it turns the complex, multidimensional data structure into a flat piece of
text. The most common module used to do the kind of serialization shown above is
the core module Data: :Dumper.

This process of serialization is also incredibly important during the debugging pro-
cess; by dumping out a representation of a data structure, it’s very easy to check
whether it contains what you think it should. In fact, pretty much my only debug-
ging tool these days is a carefully placed:

use Data::Dumper; die Dumper($whatever);

If you’re using the Data: :Dumper module for serializing objects, however, there’s a lit-
tle more you need to know about it than simply the Dumper subroutine. First, by
default, Dumper’s output will not just be the raw data structure but will be an assign-
ment statement setting the variable $VAR1 to the contents of the data structure.

Object Serialization | 121

You may not want your data to go into a variable called $VAR1, so there are two ways
to get rid of this: first, you can set $Data: :Dumper: :Terse = 1, which will return the
raw data structure without the assignment, which you can then assign to whatever
you like; second, you can provide a variable name for Data: :Dumper to use instead of
$VAR1. This second method is advisable since having an assignment statement rather
than a simple data structure dump allows Data: :Dumper to resolve circular data struc-
tures. Here’s an example that sets up a circular data structure:

my $dum = { name => "Tweedle-Dum" };

my $dee = { name => "Tweedle-Dee" };

$dee->{brother} = $dum;
$dum->{brother} = $dee;

If we dump $dum using the Data: :Dumper defaults, we get:

$VARL = {
'brother' => {
‘brother' => $VAR1,
"name' => 'Tweedle-Dee'
b
‘name’ => 'Tweedle-Dum'
b

This is fine for debugging but cannot reconstruct the variable later, since $VAR1 is
probably undef while the hash is being put together. Instead, you can set $Data::
Dumper: :Purity = 1 to output additional statements to fix up the references:

$VAR1L = {
'brother' => {
'brother' => {},
"name’ => 'Tweedle-Dee’
|5
"name' => 'Tweedle-Dum'
b

$VARL->{'brother'}{'brother'} = $VAR1;

Naturally, this is something that we’re going to need when we’re using Data: :Dumper
to record real data structures, but it cannot be done without the additional assign-
ments and, hence, a variable name. You have two choices when using Data: :Dumper
for serialization: either you can specify the variable name you want, like so:

open my $out, "> dum.pl" or die $!;

use Data::Dumper;

$Data::Dumper::Purity = 1;

print $out Dumper([$dee], ["dee"]);

or you can just make do with $VAR1 and use local when you re-eval the code.

Data: :Dumper has spawned a host of imitators, but none more successful than YAML
(YAML Ain’t Markup Language). This is another text-based data serialization format

122 | Chapter4: Objects, Databases, and Applications

that is not Perl-specific and is also optimized for human readability. Using YAML’s
Dump or DumpFile on the Tom Waits CD gives us:

--- #YAML:1.0 !perl/CD
artist: !perl/CD::Artist
name: Tom Waits
person: !perl/CD::Person
haircolor: black
popularity: 2
songs:
- Iperl/CD: :Song
title: Singapore
- lIperl/CD::Song
title: Clap Hands
- lperl/CD::Song
title: Cemetary Polka

title: Rain Dogs
This is more terse and, hence, easier to follow than the equivalent Data: :Dumper out-
put; although with Data: :Dumper, at least you’re reading Perl. Once you know that
YAML uses key: value to specify a hash pair, element for an array element, indenta-

tion for nesting data structures, and ! for language-specific processing instructions,
it’s not hard.

YAML uses a system of references and links to notate circular structures; Tweedle-
Dum looks like this:

--- #YAML:1.0 &1
brother:
brother: *1

name: Tweedle-Dee
name: Tweedle-Dum
The *1 is a reference to the target 81 at the top, stating that Tweedle-Dee’s brother
slot is the variable. This is much neater, as it means you can save and restore objects
without messing about with what the variable name ought to be. To restore an
object with YAML, use Load or LoadFile:

my $dum = YAML::Load(<<EOF);

--- #YAML:1.0 &1
brother:
brother: *1

name: Tweedle-Dee
name: Tweedle-Dum
EOF

print $dum->{brother}{brother}{name}; # Tweedle-Dum

Storing and Retrieving Data

As well as the text-based serialization methods, such as Data::Dumper and YAML,
there are also binary serialization formats; the core module Storable is the most well

Object Serialization | 123

known and widely used of these, but the CPAN module FreezeThaw deserves an hon-
orable mention.

Storable can store and retrieve data structures directly to a file, like so:

use Storable;
store $dum, "dum.storable";

... later ...

my $dum = retrieve("dum.storable");

This technique is used by the CPANPLUS module to store a parsed representation of the
CPAN module tree. This is perhaps the ideal use of serialization—when you have a
very large data structure that was created by parsing a big chunk of data that would
be costly to reparse. For our examples, where we have many relatively small chunks
of interrelated data, the process has a problem.

The Pruning Problem

The problem is that we serialize every reference or object that we store, but the seri-
alizations don’t refer to each other. It’s as if each object is the root of a tree, and
everything else is subordinate to it; unfortunately, that’s not always the case. As a
simple example, let’s take our two variables in circular reference. When we serialize
and store them, our serializer sees the two variables like this:

$dum = {
'brother' => {
'brother' => $dum,
"name’ => 'Tweedle-Dee’
|5
"name' => 'Tweedle-Dum'
b
$dee = {
'brother' => {
'brother' => $dee,
‘name’ => 'Tweedle-Dum'
b
"name’ => 'Tweedle-Dee’
b

We’ve been serializing them one at a time, so the serializer is forced to serialize every-
thing it needs to fully retrieve either one of these two variables; this means it has to
repeat information. In the worst case, where all the data structures we store are inter-
connected, each and every piece of data we store will have to contain the data for the
whole set. If there was some way to prune the data, so that the serializer saw:

$dum = {

"brother' => (PLEASE RETRIEVE $dee FOR THIS DATA),
‘name’ => 'Tweedle-Dum'
b
$dee = {
'brother' => (PLEASE RETRIEVE $dum FOR THIS DATA)J

124 | Chapter4: Objects, Databases, and Applications

‘name’' => 'Tweedle-Dee’
1
then all would be well. But that requires a lot more organization. We’'ll see tech-
niques to handle that later in the chapter.

Multilevel DBMs

Besides the pruning problem, there’s another problem with the file-based serializa-
tion we’ve been using so far. If we’re dealing with more than one data structure—
which programs tend to do—we need to either put everything we want to deal with
into one big array or hash and store and retrieve that, which is very inefficient, or we
have a huge number of files around and we have to work out how we’re going to
manage them.

DBM files are one solution, as they relate one thing (an ID or variable name for the
data structure) to another (the data structure itself) and hence organize individual
data structures in a single file in a random-access way. However, when we last left
DBMs, we were lamenting the fact that they cannot store and retrieve complex data
structures, only scalars. But now that we’ve seen a way of turning a complex data
structure into a scalar and back again, we can use these serialization techniques to
get around the limitations of DBMs.

There are two ways of doing this: the new and reckless way, or the old and compli-
cated way. We'll start with the new and reckless way since it demonstrates the idea
very well.

In recent versions of Perl, there’s a facility for adding filter hooks onto DBM access.
That is, when you store a value into the database, a user-defined subroutine gets
called to transform the data and, likewise, when you retrieve a value from the data-
base. Your subroutine gets handed $_, you do what you need to it, and the trans-
formed value gets used in the DBM. This filter facility has many uses. For instance,
you can compress the data that you’re storing to save space:

use Compress::Zlib;

$db = tie %hash, "DB File", "music.db" or die $!;
$db->filter store value(sub { $ = compress($) 1});
$db->filter fetch value(sub { $_ = uncompress($) });

Or you can null-terminate your strings, for both keys and values, to ensure that C

programs can use the same database file:
$db->filter fetch_key (sub { s/\0$// }
$db->filter store key (sub { $.= "\0"

}
$db->filter fetch value(sub { s/\0$// }
$db->filter store value(sub { $_ .= "\0o" }) ;

) s
).
)

1)
>

Or you can do what we want to do, which is to use Storable’s freeze and thaw func-
tions to serialize any references we get passed:

use Storable qgw(freeze thaw);

Object Serialization | 125

$db->filter store value(sub { $ = freeze($) });

$db->filter fetch value(sub { $_ = thaw($_) })
That’s the easy way, but it has some disadvantages. First, it ties you down, as it were,
to using Storable for your storage. It also requires the DBM filter facility, which
came into Perl in version 5.6.0—this shouldn’t be much of a problem these days, but
you never know. The most serious disadvantage, however, is that it’s unfamiliar to
other programmers, which means maintainance coders may not appreciate the signif-
icance of these two lines in your program.

)

The way to scream to the world that you’re using a multilevel DBM is to use the
MLDBM module. Eventually, this ought to be rewritten to use the DBM filter hooks, but
you don’t need to care about that. MLDBM abstracts both the underlying DBM module
and the seralization module, like so:

use MLDBM qw(DB_File Storable); # Use a Sleepycat DB and Storable
tie %hash, "MLDBM", "music.db" or die $!;

my $tom = CD::Artist->new({ name => "Tom Waits",
person => (D::Person->new() });
$martyn->popularity(1);

$hash{"albumi"} = CD->new({
artist => $tom,
title => "Rain Dogs",
tracks => [map { CD::Song->new({title => $ }) }
("Singapore", "Clap Hands", "Cemetary Polka", ...)
]
D;

We could also choose FreezeThaw or Data: :Dumper to do the serialization, or any of
the other DBM drivers for the storage.

One thing people expect to be able to do with MLDBM, but can’t, is write
to intermediate references. Let’s say we have a simple hash of hashes:
use MLDBM gw(DB_File Storable); # Use a Sleepycat DB and
Storable
tie %hash, "MLDBM", "hash.db" or die $!;
$hash{test} = { "Hello" => "World" };

This works fine. But when we do:
$hash{test}->{Hello} = "Mother";

the assignment seems to have no effect. In short, you can’t store to
intermediate references using MLDBM. If you think how MLDBM works,
this is quite obvious. Our assignment has done a fetch, which has pro-
duced a new data structure by thawing the scalar in the database.
Then we’ve modified that data structure. However, modifying the data
structure doesn’t cause a STORE call to write the new data to the data-
base; STORE is only called when we write directly to the tied hash. So to
get the same effect, we need the rather more ugly:

$hash{test} = { %{$hash{test}}, Hello => "Mother" };

126 | Chapter4: Objects, Databases, and Applications

Since MLDBM uses a deep serializer, our example not only stores the CD object, but also
the CD::Song objects and the CD::Artist object. When we retrieve albumi again,
everything is available.

Pixie
The Pixie module from CPAN is an automated, ready-made implementation of all
that we’ve been talking about in this section. It uses Storable to serialize objects, and

then stores them in a data store—a relational database using DBI by default, but you
can also define your own stores.

Pixie has two advantages over the hand-knit method we’ve used. First, and most
important, it solves the pruning problem: it retrieves each new object in the data
structure as it’s referenced, rather than pulling everything in as a lump. If, for
instance, we have a tree data structure where every object can see every other object,
something based on MLDBM would have to read the entire tree structure into memory
when we fetched any object in it. That’s bad. Pixie doesn’t do that.

The other advantage, and the way Pixie gets around this first problem, is that it
stores each new object in the data structure separately. So when we stored our Tom
Waits CD with MLDBM, we serialized the whole thing, including all the (D::Song and
CD::Artist objects, into a scalar and stored that. If we stored a different CD by the
same artist, we’d serialize all of its data, including the CD::Artist object, into a sca-
lar and store that as well. We now have two copies of the same artist data stored in
two different albums. This can only get worse. In the worst case of a tree structure,
every object we serialize and store will have to contain the entire contents of the tree.
That’s bad. Pixie doesn’t do that, either.

To demonstrate using Pixie, we’ll use the default DBI data store. Before we can start
storing objects, we first have to deploy the data store—that is, set up the tables that
Pixie wants to deal with. We do this as a separate setup process before we use Pixie
the first time:
use Pixie::Store::DBI;
Pixie::Store::DBI->deploy("dbi:mysql:dbname=pixie");
The deploy method creates new tables, so it will fail if the tables already exist. Now if
we have pure-Perl, pure-data objects, Pixie just works. Let’s take our Rain Dogs CD
again, since that’s what I was listening to when I wrote this chapter:
my $cd = CD->new({
artist => $tom,
title => "Rain Dogs"
songs => [map { CD::Song->new({title => $ }) }
("Singapore", "Clap Hands", "Cemetary Polka",
...

)]

Object Serialization | 127

my $pixie = Pixie->new->connect("dbi:mysqgl:dbname=pixie");

my $cookie = $pixie->insert($cd);
This will store the data and return a GUID (globally unique identifier)—mine was
EAAC3A08-F6AA-11D8-96D6-8C22451C8AE2, and yours hopefully will not be. Now I can
use this GUID in a completely different program, and I get the data back:

use Pixie;

use CD;

my $pixie = Pixie->new->connect("dbi:mysql:dbname=pixie");

my $cd = $pixie->get("EAAC3AO8-F6AA-11D8-96D6-8C22451C8AE2");

print $cd->artist->name; # "Tom Waits"

Notice that Pixie has not only stored the CD object that we asked it about, but it has
also stored the CD::Artist, CD::Person and all the CD::Song objects that related to it.
It only retrieves them, however, when we make the call to the relevant accessor. It’s
very clever.

For our purposes, that’s all there is to Pixie, but that’s because our purposes are
rather modest. Pixie works extremely well when all the data belonging to an object is
accessible from Perl space—a blessed hash or blessed array reference. However,
objects implemented by XS modules often have data that’s not available from Perl—
C data structures referred to by pointers, for instance. In that case, Pixie doesn’t
know what to do and requires help from the programmer to explain how to store
and reconstruct the objects.

We'll use a pure Perl example, however, to demonstrate what’s going on. In our
example, we have a bunch of Time: :Piece objects in our storage. If these were instead
DateTime objects, we’d have to store all this every time we store a date:

$VARL = bless({
"tz' => bless({
"name’ => 'UTC'
}, 'DateTime::TimeZone::UTC'),
'local c¢' => {
'quarter' => 3,
'minute' => 13,
'day _of week' => 7,
"day' => 19,
'day_of quarter' => 81,
'month' => 9,
'year' => 2004,
"hour' => 13,
'second' => 3,
'day_of year' => 263
)

“ey

}, 'DateTime');

128 | Chapter4: Objects, Databases, and Applications

This is not amazingly efficient, just to store what can be represented by an epoch
time. Even though this is all pure Perl data, we can make it a bit tidier by making
DateTime complicit with Pixie.

To do this, we implement a few additional methods in the DateTime namespace. First
we use a proxy object to store the essential information about the DateTime object:
sub DateTime::px_freeze {
my $datetime = shift;
bless [$datetime->epoch], "Proxy::DateTime";
}
Now when Pixie comes to store a DateTime object, all it does instead is convert it to a
Proxy: :DateTime object that knows the epoch time and stores that instead.” Next, we
need to be able to go from the proxy to the real DateTime object, when it is retrieved
from the database. Remember that this needs to be a method on the proxy object, so
it lives in the Proxy: :DateTime namespace:
sub Proxy::DateTime::px_thaw {
my $proxy = shift;
DateTime->from epoch(epoch => $proxy->[0]);
}
Some objects—Ilike blessed scalars or code refs—are a bit more tricky to serialize.
Because of this, Pixie won’t serialize anything other than hash- or array-based
classes, unless we explicitly tell it that we’ve handled the serialization ourselves:

sub MyModule::px is storable { 1 }

And that, really, is all there is to it.

Object Databases

While the methods we’ve seen in the previous section work very well for storing and
retrieving individual objects, there are times when we want to deal with a massive
collection of data with the same degree of efficiency. For instance, our CD collection
may run to thousands of objects, while a simple query application—for example, to
determine which artist recorded a particular track—would only use one or two of
them. In this case, we don’t want to load up the whole object store into memory
before we run the query.

In fact, what we could really deal with is the kind of fast, efficient indexing and que-
rying that is the hallmark of traditional relational databases such as Oracle or
MySQL, but which dealt with objects in the same way as Pixie. We want an object
database.

* Design pattern devotees call this the “memento” pattern.

Object Databases | 129

Object Database Pitfalls

There are not many object databases on CPAN, and with good reason: writing object
databases is incredibly difficult.

First, you need to worry about how to pick apart individual objects and store them
separately, so that you don’t end up with the pruning problem.

Second, you have to work out a decent way to index and query objects. Indexing and
querying database rows in general is pretty easy, but objects? This is currently one of
the areas that holds Pixie back from being an object database.

Allied with that, you need to work out how you’re going to map the properties of
your object to storage in a sensible way to allow such indexing; serialization-based
solutions don’t care about what’s inside an object, they just write the whole thing
into a string.

Fortunately, you don’t really have to worry about these things; you can just use some
of the existing solutions.

Tangram

Jean-Louis Leroy’s Tangram is a mature and flexible but complex solution to map-
ping Perl objects onto database rows. Tangram is very explicit in terms of what the
user must do to make it work. Except when it comes to filters, which we’ll look at in
a moment, Tangram is very short on DWIM.

For instance, Tangram relies on the user to provide a lot of class information, which
it uses to decide how to map the objects onto the database. This gives you much
more flexibility about how the database is laid out, but if you don’t particularly care
about that, it requires you to do a lot of tedious scaffolding work.

To get Tangram up and running on our CD database, we must first define the
schema as a Perl data structure. This tells Tangram the classes we’re interested in
persisting, as well as which attributes to save and what data types they’re going to
be. Here’s the schema for our classes:

use Tangram;
use Tangram::TimePiece;
use DBI;
use CD;
our $schema = Tangram::Relational->schema({
classes => [
M => {
fields => {
string => [qu(title)],
timepiece => [qw(publishdate)],
iarray => {
songs => {
class => 'CD::Song’,

130 | Chapter4: Objects, Databases, and Applications

aggreg => 1,
back => 'cd',

b
s
b
s
'CD::Song" => {
fields => {
string => [qw(name)],
}
e
'CD::Artist' => {
abstract => 1,
fields => {
string => [qw(name popularity)],
iset => {
cds => {
class => '(D',
aggreg => 1,
back => 'artist'
e
b
b
s
'CD::Person’ => {
bases => ["CD::Artist"],
fields => {
string => [qw(gender haircolor)],
timepiece => [qw(birthdate)],
b
}s
'CD::Band' => {
bases => ["CD::Artist"],
fields => {
timepiece => [qw(creationdate enddate)],
set => {
members => {
class => 'CD::Person’,
table => "artistgroup”,
s
b
b
s
I8

%dbh = DBI->connect($data_source,$user, $password);

Tangram: :Relational->deploy($schema, $dbh);

$dbh->disconnect();

With the schema built and deployed, we can store, retrieve, and search for objects
via Tangram: : Storage objects, and for so-called remote objects, which represent a class
of objects of a particular type in storage.

Object Databases | 131

Tangram CRUD: create, read, update, delete
We can create and insert objects, like so:

my ($cd, @songs, $band, @people);
my $tom = CD::Band->new
({ name => "Tom Waits",
popularity => "1",
cds => Set::0Object->new

(
$cd =
CD->new({title => "Rain Dogs",
songs => [
@songs = map {CD::Song->new({ name => $_})}
"Singapore"”, "Clap Hands", "Cemetary Polka", ...
I
b,
)5
Ds

stick it in

my $storage = Tangram::Storage->connect($schema, $data_source, $username, $password);
my $oid = $storage->insert($tom);

my $id = $storage->export object($tom);

Later, we can retrieve objects either by their object ID, or by class and ID:

Object ID
$band = $storage->load($oid);

Class and ID - polymorphic select

$band = $storage->import object("CD::Artist", $id);
The import_object method is polymorphic, meaning that it can load the CD::Artist
object with ID $id, even though that object is actually a CD: :Band object.

However, selecting by storage ID is not enough to get us by. We also need to be able
to query objects based on some specification of which objects we want.

With Tangram, you first fetch a remote object, representing a database-side object. In
its blank state, this remote object could represent any object in the database of that
type. You then write expressions that refer to a subset of those objects with regular
Perl operators:

my $r_artist = $storage->remote("CD::Artist");

my @artists = $storage->select
($r_artist,
$r_artist->{name} eq "Tom Waits");

my $r_cd = $storage->remote("CD");
It may look like that second parameter to select is going to return a single (false)
value and the select isn’t going to work; however, Tangram is more magical than
that. First, the remote object doesn’t represent a single artist—it represents all the
possible artists. Second, $r_artist->{name} returns an overloaded object, and just as

132 | Chapter4: Objects, Databases, and Applications

we saw in the first chapter, we can use overloading to determine how objects behave
in the presence of operators like eq. Here, the Tangram: :Storage class overloads all
the comparison operators to return Tangram::Filter objects; these objects store up
all the comparisons and use them to represent a WHERE statement in the SQL select.

Tangram’s query filters are extremely expressive:

my $join = ($r_cd->{artist} eq $r_artist);
my $query =
($r_artist->{name}->upper()->1like(uc("%beat%"))
| $r_cd->{title}->upper()->like(uc("%beat%")));

my $filter = $join & $query;
my $cursor = $storage->cursor ($r cd, $filter);

my @cds=();
while (my $cd = $cursor->current) {
print("found cd = " ,$cd->title,
", artist = ", $cd->artist->name, "\n");
$cursor->next;

}
Note that in the above example, we built the query keeping join conditions and
query fragments seperate, combining them to pass to the Tangram: : Storage function.
Tangram uses a single & for AND and a single | for OR (see Tangram: :Expr). We also
used a Tangram: : Cursor to iterate over the returned results, rather than slurping them
all in at once. Finally, the (D::Artist object corresponding to each CD object is
fetched via a back-reference.

A back-reference is an example of a third method of traversing a Tangram stored
object structure: through the relationships of the object. Tangram ships with seven
types of object relationship classes: many-to-one relationships (references), one-to-
many relationships (intrusive or foreign key relationships, with three variants: Sets,
Arrays, and Hashes), as well as many-to-many relationships (relationships con-
nected via a link table—again with three variants of Set, Array, and Hash).

So, once we have the @artists, we can retrieve the associated information just by fol-
lowing the Perl object structure. This is implemented via on-demand storage references.
@cds = $artists[0]->cds->members; # Set::0Object
my @tracks = @{ $cds->[0]->songs }; # Array
So, we’ve covered create and read—what about updates? Updates are performed by
$storage->update:
my ($pfloyd) = $storage->select

($r_artist,
$r_artist->{name} eq "Pink Floyd");

$cd;
$pfloyd->cds->insert
($cd=

Object Databases | 133

(D->new({ title => "The Dark Side of The Moon",
publishdate => Time::Piece->strptime("2000-04-06", "%y-%m-%d"),
songs => [map { CD::Song->new({ name => $ }) }
"Speak To Me/Breathe", "On The Run",
"Time", "The Great Gig in the Sky",
"Money", "Us And Them",
"Any Colour You Like", "Brain Damage",
"Eclipse",
1
h

)
$pfloyd->popularity("legendary”);
$storage->update($pfloyd);
$storage->id($cd);
So far we’ve demonstrated three points about Tangram’s update facilities. The final
aspect of Tangram’s CRUD—deleting objects—is done with $storage->erase():
my (@gonners) = $storage->select
($r_artist,
$r_artist->{popularity} eq "one hit wonder");

$storage->erase(@gonners);

Tangram has excellent transaction support, mature object caching abilities, functions
to deal with short-term dirty read problems, and the orthogonal ability to perform
schema migration using two database handles. Its debugging output, selected with the
environment variable TANGRAM_TRACE or by setting the Perl variable $Tangram: : TRACE to
a filehandle, provides a clear picture of what queries are being run by your program.

Its major downsides are that it does not support partially reading objects (only com-
plete rows), it cannot easily be queried with raw SQL expressions, and it does not
deal with indexing (the assumption being that the database administrator can set up
appropriate indexes, or that creating such indexes happens independently of the nor-
mal schema deployment).

Database Abstraction

Tangram has given us a way to store and retrieve objects in a database. The other side
of the coin is the situation of having an existing database and wanting to get a view of it
in terms of Perl objects. This is a very subtle distinction, but an important one. In the
case of Tangram (and indeed, Pixie), we didn’t really care what the database schema
was, because the database was just an incidental way for Tangram to store its stuff. It
could create whatever tables and columns it wanted; what we really care about is what
the objects look like. In the current case, though, we already have the database; we
have a defined schema, and we want the database abstraction tool to work around that
and tell us what the objects should look like.

134 | Chapter4: Objects, Databases, and Applications

There are several good reasons why you might want to do this. For many people,
database abstraction is attractive purely because it avoids having to deal with SQL or
the relatively tedious process of interacting with the DBI; but there’s a more funda-
mental reason.

When we fetch some data from the database, in the ordinary DBI model, it then
becomes divorced from its original database context. It is no longer live data. We
have a hash reference or array reference of data—when we change elements in that
reference, nothing changes in the database at all. We need a separate step to put our
changes back. This isn’t the paradigm we’re used to programming in. We want our
data to do something, and data that do something are usually called objects—we
want to treat our database rows as objects, with data accessors, instantiation and
deletion methods, and so on. We want to map between relational databases and
objects, and this is called, naturally, object relational mapping.

SQLite

SQLite (http://www.hwaci.com/sw/sqlite/) is a self-contained relational database that
works on a simple file in the filesystem, and it’s getting ever more sophisticated. It’s
also incredibly fast. Instead of having a separate database daemon that listens for and
responds to queries, SQLite takes the DBM approach of providing a C library that acts
on the data directly. If you install the DBD::SQLite module from CPAN, you’ll have
everything you need to use relational databases without the hassle of installing one of
the bigger database engines:
use DBI;

my $dbh = DBI->connect("dbi:SQLite:dbname=music.db");
$dbh->do("CREATE TABLE cds (...)");

Trivial Mapping

We’ll demonstrate some of the principles of an object-relational mapper by creating
a very, very simple object-relational mapper that is read-only—it doesn’t allow us to
make changes to the database. Then we’ll show how to add this functionality, and
look at Class: :DBI, a very similar mapper that does it all for us.

Before I heard of Class::DBI, I actually implemented something like this in produc-
tion code. The basic idea looks like this:

package CD::DBI;
our $dbh = DBI->connect("dbd:mysql:music");

sub select {
my ($class, $sql, @params) = @ ;
my $sth = $dbh->prepare($sql);
$sth->execute(@params);

Database Abstraction | 135

my @objects;
while (my $obj = $sth->fetchrow_hashref()) {
push @objects, (bless $obj, $class);
}
}

package (D;
use base 'CD::DBI';

package CD::Artist;
use base 'CD::DBI';
#...

package main;

my @cds = CD->select("SELECT * FROM cd");

fetchrow_hashref is a very useful DBI method that returns each row as a hash:

{
id => 180,
title => "Inside Out",
artist => 105,
publishdate => "1983-03-14"
}

This looks rather like our CD objects, so we simply bless this into the right class, and
all the accessors work as normal. This is actually very close to what we want. There
are two things we can improve: artist now returns an ID instead of a (D::Artist
object and any changes we make don’t get written back to the database.

So, to deal with the first problem, we can modify the artist accessor like so:

package CD;
sub artist {
my $self = shift;
my ($artist) = CD::Artist->select(
"SELECT * FROM artist WHERE id = ?",
shift->{artist}
)5
return $artist;

}
This time, we retrieve an individual record from the artist table and bless it into the
CD::Artist class. We can write similar accessors for other relationships. For instance,
to get all the tracks belonging to a specific CD:

sub tracks {

my $self = shift;
(D: :Track->select("SELECT * FROM track WHERE cd = ?",
$self->{id}
)s

136 | Chapter4: Objects, Databases, and Applications

To make this whole system read-write instead of read-only, we need to update our
accessors again, something like this:
package (D;
sub title {
my ($self, $title) = @ ;
if (stitle) {
$CD: :DBI::dbh->do("UPDATE cd SET title = ? WHERE id = ?",
undef, $title, $self->{id});

}
$self->SUPER: :title($title);

}
But here we’re writing a lot of code; the purpose of using automated accessor genera-
tors was to avoid going through all this rigmarole. Perhaps there should be a module
that generates database-aware accessors. ...

Class::DBI

By far my favorite of the object-relational mapping modules is Michael Schwern and
Tony Bowden’s Class: :DBI. It is very easy to learn and to set up, highly extensible,
and supported by a wide range of auxilliary modules. It is also, not entirely coinci-
dentally, rather like the simple mapper we just created. To set it up, we subclass
Class::DBI to create a driver class specific to our database:

package CD::DBI;

use base 'Class::DBI';

__PACKAGE__->connection("dbi:mysql:musicdb");
We do this so that when we implement the table classes, they all know where they’re
connecting to. Now let’s take the first table, the artist table:

package CD::Artist;

use base 'CD::DBI';

_PACKAGE__->table("artist");

__PACKAGE__->columns(All => gw/artistid name popularity/);
Here we’re using our own (D::Artist class and the other classes we will generate,
instead of the classes we wrote in the earlier chapter. The interface will be just the
same as our original CD::Artist, because Class::DBI uses the same Class: :Accessor
way of creating accessors.

It also adds a few more methods to the CD::Artist class to help us search for and
retrieve database rows:

my $waits = CD::Artist->search(name => "Tom Waits")->first;
print $waits->artistid; # 859
print $waits->popularity; # 634

my $previous = CD::Artist->retrieve(858);
print $previous->name; # Tom Petty and the Heartbreakers

So how many Toms are there?

Database Abstraction | 137

my $toms = CD::Artist->search like(name => "Tom %")->count;
print $toms; # 6

for my $artist (CD::Artist->retrieve all) {
print $artist->name, ": ", $artist->popularity, "\n";
}

We can also create a new artist by passing in a hash reference of attributes:

$buff = (D::Artist->create({
name => "Buffalo Springfield",
popularity => 10
1);
Class::DBI automatically creates data accessors for each of the columns of the table;
we can update columns in the database by passing arguments to the accessors.
Here’s a program that uses Mac: :AppleScript to ask iTunes for the currently playing
artist, and then increments the artist’s popularity:
use Mac::AppleScript qw(RunAppleScript;
my $current = RunAppleScript(<<AS);
tell application "iTunes"
artist of current track

end tell
AS

my $artist = CD::Artist->find or create({ name => $current });

$artist->popularity($artist->popularity() + 1);

$artist->update;
This uses find_or create to first search for the name, then retrieve the existing row if
there is one, or create a new one otherwise. Then we increment the popularity—nor-
mally we’d think about race conditions when updating a database like this, but in
this case, we know that nothing else is going to be updating the library when the
script is run. We explicitly update the row in the table with a call to update. I dislike
doing this, so I often tell Class: :DBI to do it automatically with autoupdate:

package CD::Artist

use base 'MusicDB::DBI';

__PACKAGE__->table("artist");

_ PACKAGE__->columns(All => qw/artistid name popularity/);
__PACKAGE__-»>autoupdate(1);

Now we can dispense with the update calls—updates to accessors are instantly
reflected in the database.

Class::DBI often wants me to set up things by hand that the computer should be able
to do for me. For instance, I feel I shouldn’t have to specify the columns in the table.
Thankfully, there are numerous database-specific extensions for Class::DBI on
CPAN that know how to interrograte the database for this information:

package CD::DBI;

use base 'Class::DBI::mysql’;

__PACKAGE__->connection("dbi:mysql:musicdb");

138 | Chapter4: Objects, Databases, and Applications

__PACKAGE__->autoupdate(1);

package (D::Artist;
use base 'CD::DBI';

__PACKAGE__->set_up_table("artist");

This uses the mysql extension to query the database for the columns in the table.

Once we’ve set up all our tables, we can start declaring the relationships between

them.

Relationships

Class::DBI supports several types of database relationships. The two most common
are has_a and has_many. It also allows you to use or write plug-in modules to declare

other relationship types.

The diagram in Figure 4-1 illustrates the difference between has_a and has_many.

[©)

Id name

Blood Money

Alice

Rain Dogs

1
2
3 Get Happy!
4
5

Edge of A Dream

A (D has_a artist

| store target’s
primary key

artist

name

Tom Wiats

Elvis Costello

Elliot Smith

John Martyn

Bert Jansch

A (D has_many l
D tracks Track

Id name artist Id name o
1 Blood Money 1 1 Singapore 4
2 Alice 1 2 Riot Act 3
Get Happy! 2 3 Edge ofaD 5

£ e. S0 Target stores .ge UL
4) RainDogs 1 my primary key |4 | Alice 2
5 Edge of ADream | 5 5 | ClapHands 4

Figure 4-1. has_a versus has_many

We've already seen the use of a has_a relationship between CDs and artists—each
CD has_a artist. We've also already written some code to implement a nice Perlish
interface to it: when we ask a CD object for its artist, it takes the artist’s primary key,
finds the row in the artist table with that ID, and returns the appropriate object.
However, in Class::DBI, instead of writing our own accessor, we just declare the

relationship:

(D->has_a(artist => "CD::Artist");

CD::Track->has_a(song => "CD::Song");

...

Database Abstraction

139

The nice thing about this is that we can also declare relationships to classes that are
not Class::DBI based but that follow the same general pattern: find the column in
the database, do something to it, and turn it into an object. For instance, the
publishdate column needs to be turned into a Time: :Piece object:
(D->has_a(publishdate => 'Time::Piece’,
inflate => sub { Time::Piece->strptime(shift, "%Y-%m-%d") },
deflate => 'ymd',
)s

As before, we relate a column to a class, but we also specify a subroutine that goes
from the data in the database to an object, and a method to go the other way, to seri-
alize the object back into the database.

A has_many relationship is also easy to set up; instead of writing the tracks accessor
as we did before, we ask Class: :DBI to do it for us:

(D->has_many(tracks => "CD::Track");
Now, for instance, to dump all the tracks in the database, we can say:

for my $cd (CD->retrieve all) {
print "CD: ".$cd->title."\n";
print "Artist: ".$cd->artist->name."\n";
for my $track ($cd->tracks) {
print "\t".$track->song->name."\n";
}

print "\n\n";

}
For more complex relationships, such as the way an artist is either a person or a
group, we can use a plug-in relationship like Class: :DBI::Relationship: :IsA:

use Class::DBI::Relationship::IsA;

(D::Artist->is_a(person => '(D::Person');

(D::Artist->is_a(artistgroup => 'CD::Artistgroup');
The is_a relationship does the right thing: it inherits the accessors of the class that
we're referring to. If we ask a CD::Artist for haircolor, it transforms this into a call
to $artist->person->haircolor.

Plug-in relationships for Class::DBI are a relatively new concept, and there are not
many on CPAN at the moment. HasVariant allows you to use one column to inflate
to more than one kind of object; so, for instance, you could have your $cd->artist
return a CD::Person or (D::Artistgroup directly depending on the data in the col-
umn. There’s also HasManyOrdered, which is similar to has_many but allows you to
specify how the results should be returned; we should, for instance, ensure that the
tracks returned by $cd->tracks are returned in their track number on the CD.

140 | Chapter4: Objects, Databases, and Applications

Class::DBI extensions

The other great thing about Class: :DBI is that there are so many additional modules
that make it easier to use. For instance, in the same way that Class::DBI::mysql
asked the database for its rows, you can set up all your classes at once by asking the
database for its tables as well. The Class: :DBI::Loader module does just this:
my $loader = Class::DBI::Loader->new(
dsn => "dbd:mysql:music",
namespace => "MusicDB"
)s
With our database, this will set up classes called MusicDB: :(D, MusicDB: :Artist, and
so on. All we need to do is set up the reltionships between the classes.

For very simple relationships, Class::DBI::Loader::Relationship can help set these
up as well:

$loader->relationship("a cd has an artist");

$loader->relationship("a cd has tracks");

...
There’s also Class::DBI::DATA::Schema to define database tables from schemas
placed in the DATA section of a class, Class: :DBI::Plugin: :RetrieveAll adds the func-
tionality to easily do a SELECT * with various ordering and restrictions, and we’ll
meet a few more plug-in classes later in the chapter.

Other Contenders

I’ve just demonstrated Class::DBI here, but there are many more object-relational
mapping tools on CPAN. I believe that Class::DBI has the cleanest and the simplest
interface, which makes it ideal for demonstrating the principles of object-relational
mapping, but there are those who would contend that this simplicity limits what it
can do. Some of the other tools available make different trade-offs between complex-
ity and power.

For instance, one limitation of Class: :DBI is the difficulty of creating complex multi-
table joins that are executed in one SQL statement, letting the database do the work.
Class::DBI leaves it to programmers to do this kind of work in Perl or build their
own abstracted SQL using Class::DBI hooks and extensions. On the other hand,
something like DBIx::SearchBuilder excels at constructing SQL in advance. Search-
Builder is the foundation of the Request Tracker problem tracking system, perhaps
one of the most widely deployed and complex enterprise Perl applications; so Search-
Builder is clearly up to the job.

Other modules you should know about include SPOPS and Alzabo, both mature and
fully featured relational mappers. There’s also interesting work going on in Class::
PINT to apply Tangram-style object persistence on top of Class: :DBI.

Database Abstraction | 141

Practical Uses in Web Applications

One of the more popular ways of creating web-based applications these days is called
the MVC Pattern—it’s a design pattern where you have three components: a model
of your data, a view that displays it, and a controller that routes requests and actions
between the other two. It’s a design pattern that first appeared in graphical applica-
tions in the Smalltalk programming language, but has translated reasonably well over
to the Web. The key point of MVC is that, if you do it properly, your data model,
your view, and your controller can be completely independent components, and you
only need to worry about what goes on at the edges.

Now, the kind of templating system we looked at in the previous chapter looks very
much like a view class: it abstracts out a way of presenting data. Similarly, the ways
of treating database rows as objects look very much like model classes. Almost for
free, using CPAN modules, we’ve got two of the three parts we need for a web appli-
cation. The upshot is that, if you follow the MVC strategy, you have a very cheap
way of writing web applications in which you delegate presentation to a templating
library, you delegate data representation to an ORM library, and all you need to care
about is what the darned thing actually does.

While this strategy can be applied to pretty much any of the tools we’ve talked about in
the past two chapters, I want to look particularly at using Class::DBI and Template
Toolkit; partly for the sake of example, partly because I personally think they fit together
extremely well, and partly for another reason that will become apparent shortly.

(lass::DBI and the Template Toolkit

The magic coupling of CDBI and TT, as they’re affectionately known, was first popular-
ized around 2001 by Tony Bowden, who’d just taken over maintaining Class: :DBI. The
idea spread through the mailing lists and Perl-mongers groups until, in 2003, Kate Pugh
wrote a perl.com article (http://www.perl.com/Ipt/a/2003/07/15/mocode.html) expounding
the concept. Why? Because, as Pugh says, CDBI and TT work extremely well together.

Part of the reason for this is that, when templating database applications, you often
want to display your objects and their attributes. Class::DBI allows you to get at
their attributes by simple method calls, and Template Toolkit provides an easy way
of making method calls in the templates. Your data goes straight from the database
to the template without much need for any code in the middle.

For instance, for the simple job of viewing a CD, we can have a CGI script like so:

use CD;

use CGI qw/:standard/;
use Template;

print header();

142 | Chapter4: Objects, Databases, and Applications

my $id = param("id");
if (1$id) {

print "<h1> You must supply an ID! </h1>"; exit;
}

my $obj = CD->retrieve($id);
Template->new()->process("view.tt", { cd => $obj });

This takes the ID of a CD from the CGI form variables, retrieves the relevant CD,
and passes it through to the template, which might look like this:

<html>

<head> <title>[% cd.name %]</title> </head>
<body>

<h1> [% cd.name %] </h1>

<h2> [% cd.artist.name %] </h2>

[% FOR track = cd.tracks %]
 [% track.song.name %] </1i>
[% END %]

</body>
</html>

To view a list of CDs, we simply pass more objects to the template. However, if we
want to avoid hitting the user’s browser with the data on several hundred CDs, we
can restrict the number of items on a page with Class: :DBI: :Pager:

use CD;
package CD;
use Class::DBI::Pager;

package main;

use CGI qw/:standard/;

use Template;

print header();

use constant ITEMS_PER_PAGE => 20;

my $page = param(“page") || 1;

my $pager = CD->page(ITEMS PER_PAGE, $page);

my @cds = $pager->retrieve all;

Template->new()->process("view.tt", { cds => \@cds, pager => $pager });
Class::DBI::Pager is a mix-in for Class: :DBI-based classes that allows you to ask for
a particular page of data, given the number of items of data on a page and the page
number you want. Calling page returns a Data: :Page object that knows the first page,
the last page, which items are on this page, and so on, and can be used in our tem-
plate for navigation:

[% IF pager.previous page %]

 Previous page

Practical Uses in Web Applications | 143

[% END %]

Page [% pager.current_page %]

[% IF pager.next page %]

| Next page

[% END%]
The Class::DBI::FromCGI and Class: :DBI::AsForm modules make it easy to construct
forms for editing or creating records and then processing those changes in the data-
base.

Of course, similar tricks can be done with templating languages other than ‘Tem-
plate Toolkit, such as HTML: :Mason, but TT allows relatively complex constructs, such
as method calls, without requiring the template writer to learn a fully fledged pro-
gramming language. In an ideal world, the database can be handed off to a database
team to populate, the templates given to web designers to create, and all that you as
a programmer need to write are the kind of short scripts given above.

Or maybe even less....

Maypole

At the beginning of 2004, a few ideas relating to CDBI and TT came together in my
head, and I found myself writing lots of web applications that all did more or less the
same sort of thing—they determined a set of CDBI objects to retrieve, got them out
of a database, performed some action on them, and placed them into a template. I
did what every good programmer should do on feeling that they’ve had to do some-
thing twice—I abstracted it out. The result was Maypole.

Maypole has two complementary but very distinct goals. Its first goal is to be a way
of rapidly designing web applications by providing all the common code and tem-
plates for a standard frontend to a database: if you need a way to simply add, delete,
view, and update records in a relational database, you can do it in no more than 20
lines of Perl code.

The second goal of Maypole is to be a generic controller method for all web applica-
tions. By default, it hooks into CDBI as a model class and TT as a template class to
provide all the scaffolding code for a web application; all that you need to do is write
the logic specific to what your application should do. And so the first goal-—a web
frontend to a database—uses this generic controller with a load of metadata from the
model class and a set of carefully designed default templates to produce an applica-
tion that does the right thing.

Let’s demonstrate Maypole by putting a quick frontend onto our Class: :DBI record
database. The code is simple enough:

package CDPole;

use base 'Maypole::Application’;

use (D;
(DPole->config->model("Maypole: :Model: :CDBI::Plain");

144 | Chapter4: Objects, Databases, and Applications

CDPole->setup([qw/ CD CD::Artist CD::Track /]);
(DPole->config->uri_base("http://localhost/cdpole/");
(DPole->config->template root("/home/simon/modules/Apache-MVC/templates/");
1;
We first say that we are based on Maypole: :Application, a special class that determines
whether this application should be CGI-based or Apache mod_perl-based, and sets up the
inheritance appropriately. In our case, we’re going to run this as amod_per] application.

Next, we say that we’re using a plain Class::DBI data source. If we didn’t say this,
Maypole would default to using Class::DBI::Loader to automatically read the tables
from our data source. We also tell the application about the classes—that is, the
tables—that we want to use. Finally, we configure the application, telling it where it
will live and where the templates are. With no change to the default templates, our
application looks like Figure 4-2.

Listing of all artists

| Name H Popularity |
Tom Waits (edit) ((delere) Search
Elvis Costello @ (delete) Name

T
Elliot Smith (edic) (detere) ’_se:m. .“'
John Martyn edit ((delete) f—"
Bert Jansch (edit) (delete)
Martyn Joseph edit (delere’)

Add a new artist

pularity

create

Figure 4-2. Viewing artists in Maypole

Of course, we don’t always want to use the default templates; in fact, we should
hardly ever use them, although they are useful for having something up and running
quickly to interface to a database. Maypole allows us to override the templates in
several ways. To understand these, we need to look at the basic principles of how
Maypole works. Now we are moving from the first goal, the database interface, to
the second goal, the application framework.

Maypole applications are made up of actions, which pull together some Perl code
from the model side of the application with a template from the view side. The
action we saw in the figure above was a list action on the artist class. Maypole, in
effect, called CD::Artist->1ist() and put the results into a suitable list template. A

Practical Uses in Web Applications | 145

more complicated action would be triggered by the URL http://localhost/cdpole/
artist/edit/110. This would select artist ID 110 (Joni Mitchell), call CD::Artist->
edit with that artist object as a parameter, and then find an edit template. We can
view the whole Maypole process pictorially in Figure 4-3.

Request from

user
/view/beer/1

Parse URL and fill
request object

Check “view"is
exported for table
“beer”

Authenticate

Load up row “1”

Process in model
class

BeerDB:Beer->view I

Feed to templater

Output to
browser

Figure 4-3. The Maypole work flow

To find the appropriate template, Maypole looks in three directories: first, a direc-
tory named after the table. So for /artist/edit/110, it would look for artist/edit. If
this is not found, it looks in a directory specific to your application, which is called
custom; that is, custom/edit. If again this is not found, Maypole falls back to the fac-
tory-supplied template in factory/edit.

As well as designing your own templates, you can also design your own actions by
specifying that a particular class’s method is exported and can be called from the
web. This is done with the :Exported attribute:

package (D::Artist;

sub all_tracks :Exported {
my ($self, $r, $artist) = @ ;

146 | Chapter4: Objects, Databases, and Applications

$r->template args->{tracks} = [map { $_->tracks } $artist->cds]
}
This method receives the Maypole request object and the artist object. We get a list
of all the tracks on all the CDs that this artist has recorded and feed that to the tem-
plate. The artist/all_tracks template might look like this:
[% PROCESS macros %]

[% INCLUDE header %]
<h2> All tracks for [% artist.name %] </h2>

[% FOR track = tracks %]

<1li> [% maybe link view(track) %] </1i>

[% END %]

[% INCLUDE footer %]
That’s all it takes to add a new action to the application. These are the basics of May-
pole and enough to construct reasonably sophisticated web applications. Maypole
has a full manual available at hitp://maypole.perl.org/.

We've seen Maypole in relation to Class::DBI and Template Toolkit, but its model
and view classes are abstracted out such that you can use it with Alzabo or SPOPS,
or with HTML: :Mason or any other templating or database abstraction class you wish.
This brings us onto the whole range of other application frameworks available for
Perl.

Other Application Frameworks

Maypole is not the only player in the application framework space.

Openlnteract is Chris Winters’s application framework using the SPOPS database
abstraction layer. It’s a fully featured framework, with session handling, LDAP sup-
port, authentication, groups, caching, cookies, and all sorts of other bits in the core.

PageKit is not tied to any object mapper, but it does require you to use either HTML: :
Template for your templates or XSLT.

OpenFrame has no relation to Openlnteract. It is something more than a web appli-
cation framework; it works around the concept of pipelines, similar to the Maypole
workflow we saw above, but in a much more generic way. Unlike the other tools, it
doesn’t provide any link with a data store; you have to code all that up yourself.

CGI::Application is an interesting idea that is parallel to these other kinds of applica-
tion frameworks; it provides a way of reusing components of CGI applications (such
as a package that provides a web-to-email form) so that you can recombine them in
whatever way you want. It’s another way of quickly creating web applications, but
again it doesn’t provide any MVC functionality or any direct link to a data store.

Practical Uses in Web Applications | 147

Conclusion

Storing and retrieving data is the backbone of programming, so it shouldn’t be much
of a surprise that there are so many techniques available to make it easier. We've
looked at ways of storing keyed data using DBMs, extended that with serialization of
objects to create a way to store objects in DBMs, then used Pixie to organize our
object store. This brought us on to looking at Tangram as a more flexible and power-
ful object database. Next, we turned the problem over and tried to make databases
look like objects, using Class::DBI. Finally, we showed how this view of databases
works in concert with the templating techniques we looked at in Chapter 3 to create
application frameworks like Maypole, allowing you to write large web applications
with very little code.

148 | Chapter4: Objects, Databases, and Applications

CHAPTER 5
Natural Language Tools

Sean Burke, author of Perl and LWP and a professional linguist, once described artifi-
cial intelligence as the study of programming situations where you either don’t know
what you want or don’t know how to get it.

Natural-language processing, or NLP, is the application of Al techniques to answer
questions about text written in a human language: what does it mean, what other
documents is it like, and so on. As Perl is often described as a text-processing lan-
guage, it shouldn’t be much of a surprise to find that there are a great many modules
and techniques available in Perl for carrying out NLP-related tasks.

But as we’ve seen so far in this book, the real strength of Perl is not in the ease with
which we can program particular techniques, but that so many of the techniques we
need—techniques to break texts into sentences and words, to correctly strip the end-
ings off inflected words, to put the right endings back on again, and so on—have
already been implemented and placed on CPAN. So in this chapter we’re going to
take a tour of the natural language section of CPAN, and see how we can use its
modules to slice and dice any language text we need to deal with.

Perl and Natural Languages

There’s an especially good reason why Perl is used for handling natural language
problems—Perl was created with natural languages in mind. In fact, Perl’s creator,
Larry Wall, has a joint degree in natural and artificial languages and sees Perl as
influenced by both branches of his education.

For instance, as Larry says, it is “officially OK” to program in a restricted subset
of Perl, a sort of baby Perl. Much as no one is expected to learn the entirety of a
human language before speaking it, Perl’s ability to express programming con-
cepts in multiple ways allows for a wide range of abilities to get the same job
done.

149

This is also why Perl folk aren’t particularly worried about the ambiguities in the
grammar of the language—natural languages need ambiguity.” Perl can work out
whether / is the division operator or the start of a regular expression based on con-
text, the way humans do.

You can read more about the natural language concepts that influenced (and con-
tinue to influence) the design of Perl at Larry’s site: http://www.wall.org/~larry/
natural.html.

Handling English Text

Most of the time when dealing with natural-language processing we don’t really need
any heavy, state-of-the-art language manipulation algorithms. Indeed, most of what
we’re doing with Perl involves merely throwing around different chunks of text.

Pluralizations and Inflections

Our introduction to handling English text comes from the perennial user interface
disaster:

You have 1 messages.

If you’ve been using (or perhaps writing) bad code for long enough, you might not
see anything wrong with that, but it is actually somewhat grammatically lacking.
Everyone at some point has written code that gets around the problem, perhaps a lit-

tle like this:

print "You have " . $messages .

message" . ($messages == 12 "" : "s") . ".\n";

This itself should already be looking like a candidate for modularization, but the
problem gets worse:

You have 2 messages in 2 mailboxs.

Another oops. We surely meant mailboxes. We could write another special case for
the word mailbox, but what’s really needed is a generic routine to make things agree
with a number. Unfortunately, of course, due to the hideous complexity of the
English language, this is a near-impossible task. Thankfully, the great Dr. Damian
Conway speaks Australian English, simplifying the problem dramatically, and has
produced the Lingua: :EN::Inflect module.

This provides a whole host of subroutines, but perhaps the most useful for us are the
PL, NO, and NUMWORDS routines.

* The aforementioned Sean Burke has a linguistic conjecture that says all natural languages tend toward some
element of grammatical ambiguity; ambiguous languages are easier to learn. This may explain the relative
difficulty of learning highly regularized artificial languages, such as Lojban.

150 | Chapter5: Natural Language Tools

The first subroutine, PL, provides a way to get at the plural form of a given word:

% perl -MLingua::EN::Inflect=PL -le 'print "There are 2 ",PL("aide-de-camp")’

There are 2 aides-de-camp
Additionally, you can pass in a number as well as a word to be pluralized, and PL will
only do the pluralization if the number requires a plural.

use Lingua::EN::Inflect quw(PL);

for my $catcount (0..2) {
print "I saw $catcount ", PL("cat", $catcount), "\n";

}

I saw O cats
I saw 1 cat
I saw 2 cats

Now we’re closer to solving our message/mailbox problem:

print "You have $message ", PL("message"”, $message), ,
" in $mailbox ", PL("mailbox", $mailbox), "\n";
This is a little smarter, although there’s a certain amount of repetition in there. This
is where we move onto the next subroutine, NO. This combines the number with the
appropriate plural and, additionally, translates “0” into the slightly more readable

« »

no :

use Lingua::EN::Inflect qw(NO);
my $message = 0; my $mailbox = 4;

print "You have ".NO("message", $message). " in
NO("mailbox", $mailbox)."\n";

You have no messages in 4 mailboxes

I prefer a slightly more refined approach, which takes advantage of the fact that peo-
ple find it easier to read numbers from one to ten in running text if they’re spelled
out. For this, we need to bring in the NUMWORDS subroutine, which converts a number
to its English equivalent. My preferred pluralization routine looks like this:

sub pl {
my ($thing, $number) = @ ;
return NUMWORDS($number). " ".PL($thing, $number)

if $number >= 1 and $number <= 10;

NO($thing, $number);
}

This handles “no cats,
fectly well.

» <« » o«

one cat,” “two cats,” and “65 poets-in-residence” all per-

Handling English Text | 151

Inflections

The whole problem of inflections gets much harder when you’re localizing an applica-
tion for different languages. Sean M. Burke and Jordan Lachler wrote a good article on
the subject about Locale: :Maketext—a module that helps you deal with localizations
in a smart way. You can find the article at http://interglacial.com/~sburke/tpjlas_html/
tpj13.html, or in the documentation for Locale: :Maketext.

Converting Words to Numbers

The handy NUMWORDS subroutine from Lingua::EN::Inflect turns a number into
English text for human-friendly display. A bunch of other modules on CPAN do
roughly the same thing, including Lingua: :EN: :Numbers, Lingua: :EN: :Nums2Words, and
Lingua: :Num2Word.

However, if we’re really doing natural language work and trying to extract meaning
from a chunk of text, we are often called to do precisely the opposite—turn some
English text representing a number into its computer-friendly set of digits. The best
Perl module for this on CPAN is Joey Hess’s Lingua: :EN: :Words2Nums.

Although it doesn’t give you a regular expression for extracting numbers directly,
once you have your number, it does a very thorough job of turning it into a digit
string. The module exports the words2nums function, which does all the hard work:
% perl -MLingua::EN::Words2Nums -e 'print words2nums("twenty-five")'
25
[particularly like this module because it caters to the fact that I can’t spell. So, if T
misspell forty-two, words2nums still returns the desired result:
% perl -MLingua::EN::Words2Nums -e 'print words2nums("fourty-two")"
a2
However, the fact that it can’t scan through a text and return the first number it sees
can be a bit of a pain. It’s all very well if we’re using it when prompting for a number:
my $times;
do {
print "How many times should we repeat the process? ";
$times = words2nums(scalar <STDIN>);
last if defined $times;
print "Sorry, I didn't understand that number.\n";
} while 1;
But if, for instance, we want to write a supply chain program that automatically pro-
cesses customer orders by email, we need to be able to scan through the text of the
email to extract the numbers, so we can turn “I would like to buy forty-five copies of
Advanced Perl Programming” into:

$order = { quantity => 45, title => "Advanced Perl Programming" };

152 | (Chapter5: Natural Language Tools

As it stands, Lingua: :EN: :Words2Nums won’t let us do this; it wants the numbers pre-
extracted. So we have to do a bit of trickery. Looking at how Lingua: :EN: :Words2Nums
works, we see that it builds up a regular expression from a set of words:

our %nametosub = (

naught => [\&num, 0], # Cardinal numbers, leaving out the a
nought => [\&num, 0],

Zero => [\&num, 0], # ones that just add "th".

one => [\&num, 1], first => [\&num, 1 1],

)s

Note the ordering, so that eg, ninety has a chance to match before nine.

my $numregexp = join("|", reverse sort keys %nametosub);

$numregexp=qr/($numregexp)/;
This is a big help, but we can’t, unfortunately, steal this regexp directly, for two rea-
sons. First, it’s in a private lexical variable, so we can’t easily get at it. Second,
Words2Nums also does some munging on the text separate to the regular expression,
removing non-numbers like “and,” hyphens, and so on. But we’ll start by grabbing
the expression and passing it through the wonderful Regex: :PreSuf module to opti-
mize it. This module generates a regular expression from a list of words that matches
the same words as the original list. The result looks like this:

(?-xism: ((?:b(?:akers?dozen|illi(?:ard|on))|centillion|d(?:ecilli(?:ard|on)

ozen|u(?:0(?:decilli(?:ard|on)|vigintillion)|vigintillion))|e(?:ight(?:een|

ieth|[yh])?|leven(?:ty(?:first|one))?|s)|f(?:1(2:ft(?:een|ieth|[yh])|rst|ve)]|

o(?:rt(?:ieth|y)|ur(?:t(?:ieth|[yh]))?))|g(?:00g0l(?:plex)?|ross) [hundred|mi

(?:1(?:ion|li(?:axd|on))|nus)|n(?:aught|egative|in(?:et(?:ieth|y)|t(?:een|

[yh])|e)|o(?:nilli(?:ard|on) |ught|vem(?:dec|vigint)illion))|o(?:ct(?:i11i

(?:ard|on)|o(?:dec|vigint)illion)|ne)|qu(?:a(?:drilli(?:ard|on)|ttuor

(?:decilli(?:ard|on)|vigintillion))|in(?:decilli(?:ard|on)|tilli(?:ard]|on)|

vigintillion))|s(?:core|e(?:cond|pt(?:en(?:dec|vigint)illion|illi(?:ard|on))

ven(?:t(?:ieth|y))?|x(?:decillion|tilli(?:ard|on)|vigintillion))|ix(?:t(?:ieth]|

y))?2)[t(?:ee?n|h(?:ix(?:t(?:een|ieth|y)|d)|ousand|ree) |r(?:e(?:decilli(?:ard|

on)|vigintillion)|i(?:gintillion|11i(?:ard|on)))|w(?:e(?2:1(?:fth|ve)|nt(?:ieth]|

y))lo)|h)|un(?:decilli(?:ard|on)|vigintillion)|vigintillion|zerols)))
It’s a start. Now we have to extend this to allow for all the munging that words2nums
does on the text. The important bits of the code are:

s/\b(and|a|of)\b//g; # ignore some common words
s/[*A-Za-2z0-9.]//g; # ignore spaces and punctuation, except period.

This is fine if we can change the text we’re matching, but we don’t necessarily want
to do that. Instead, we have to construct a regular expression around our big opti-
mized list of numbers that allows for and silently ignores these words and spaces.
We also need to remember that we want to find numbers that are not in the middle
of a word (“zone” does not mean a “z” followed by the number 1) so we use Perl’s
regular expression boundary condition (\b) to surround the final regexp. Here’s what
it looks like:

Handling English Text | 153

my $ok words = qr/\b(and|a|of)\b/;

my $ok_things = qr/["A-Za-z0-9.]/;

my $number = qr/\b(($numbers($ok words|$ok things)*)+)\b/i;

Where $numbers is the big mad expression above.
Bundling this into a package with a couple of utility functions gives you the Lingua: :
EN: :FindNumber CPAN module:

use Lingua::EN::FindNumber;
print numify("Fourscore and seven years ago, our four fathers...");

which prints out:
87 years ago, our 4 fathers...

To go the other way, and turn numbers into words, there is a whole family of mod-
ules named Lingua: :XX: :Numbers where XX is the ISO language code of the language
you want your numbers in: Lingua::EN::Numbers for English, for instance. There’s
also Lingua: :EN: :Numbers: :0rdinate to turn “2” into “2nd”. Similar modules exist for
other languages.

Modules for Parsing English

Parsing ordinary written text is perhaps the ultimate goal of any natural-language
processing system, and, to be honest, we’re still a long way from it at the moment.

Even so, there are a good number of modules on CPAN that can help us deal with
understanding what’s going on in a chunk of text.

Splitting Up Text

There are many scenarios in which a large document needs to be split up into some
kind of chunks. This can vary from splitting out individual words, to splitting out
sentences and paragraphs, and right up to splitting a document into logical subsec-
tions—working out which sets of paragraphs refer to a common topic and which
others are unrelated.

We'll begin with splitting up sentences, since there are a variety of ways to do this.
The naive approach is to assume that a period, question mark, or exclamation mark
followed by whitespace or the end of text is the end of a sentence, and to use punctu-
ation and capitals to help this determination. This is what Text: :Sentence does, and
it’s not bad:

use Text::Sentence qw(split_sentences);

my $text = <<EOF;

This is the first sentence. Is this the second sentence? This is the

third sentence, with an additional clause!

EOF

print "#$ \n\n" for split sentences($text);

154 | Chapter5: Natural Language Tools

This prints out:

#This is the first sentence.
#Is this the second sentence?

#This is the third sentence, with an additional clause!

This punctuation-based assumption is generally good enough, but screws up messily
on sentences containing abbreviations followed by capital letters, e.g., This one. It
incorrectly identifies the boundary between the punctuation and the capital letter as
a sentence boundary:

#This punctuation-based assumption is generally good enough, but screws

up messily on sentences containing abbreviations followed by capital
letters, e.g.,

#This one.

Thankfully, the exceptions are sufficiently rare that even if you’re doing some kind of
statistical analysis on your sentences, with a big enough corpus the effect of the
assumption failing is insignificant. For cases where it really does matter, though,
Shlomo Yona’s Lingua: :EN: : Sentence does a considerably better job:

use Lingua::EN::Sentence qw(get sentences add_acronyms);
my $text = <<EOF;
This punctuation-based assumption is generally good enough, but screws
up messily on sentences containing abbreviations followed by capital
letters, e.g., This one. Shlomo Yona's Lingua::EN::Sentence does a
considerably better job:
EOF
my $sentences=get sentences($text);
foreach my $sentence (@$sentences) {

print "#", $sentence, "\n\n";

}
The result of this example is:

#This punctuation-based assumption is generally good enough, but screws
up messily on sentences containing abbreviations followed by capital
letters, e.g., This one.

#Shlomo Yona's Lingua::EN::Sentence does a considerably better job:

For things that aren’t sentences, my favorite segmentation module is Lingua: :EN::
Splitter; this can handle paragraph- and word-level segmentation, and its cousin
Lingua::Segmenter::TextTiling takes a stab at clustering paragraphs into discrete
sections of a document.

Modules for Parsing English | 155

The paragraph and word segmentation are done using fairly simple regular expres-
sions, but the paragraph clustering is done using a technique invented by Marti
Hearst called TextTiling. This measures the correlation of particular words in order
to detect sets of paragraphs with distinct vocabularies.

We'll use Lingua::En::Splitter’s words routine often in this chapter. It’s an excel-
lent building block for analyzing texts, as in this simple concordancer for generating
histograms of word-frequency:

use Lingua::EN::Splitter qw(words);

my $text = "Here is Edward Bear, coming downstairs now, bump, bump,
bump, on the back of his head, behind Christopher Robin.";

my %histogram;
$histogram{lc $ }++ for @{ words($text) };
use Data::Dumper; print Dumper(\%histogram);

This example correctly counts up three occurrences of bump, and one each of the
other words:

$VAR1L = {
'robin' => 1,
‘here' => 1,
'edward' => 1,
"now' => 1,
'bear' => 1,
‘coming' => 1,
‘head' => 1,
'his' => 1,
'downstairs' => 1,
"of' => 1,
"bump' => 3,
‘on' => 1,
"the' => 1,
'behind' => 1,
‘back' => 1,
'is' = 1,
‘christopher' => 1

s

Stemming and Stopwording

Of course, merely building up a histogram of words isn’t enough for most serious
analyses; our job is complicated by two main factors. First, there’s the fact that most
languages have some system of inflection where the same root word can appear in
multiple forms.

For instance, if you’re trying to analyze a mass of scientific articles to find something
about what happens when volcanos erupt, you want to find all those that speak
about “volcanic eruption,” “volcano erupting,” “volcanos erupted,” and so on.

156 | Chapter5: Natural Language Tools

While these are quite obviously different words, we want them all to be treated the
same for the purposes of searching.

The usual process for doing this is to stem the words, pruning them back to their
roots: all of the “volcanos erupting” phrases should be pruned back to “volcano
erupt” or similar. Porter’s stemming algorithm, invented by Martin Porter at Cam-
bridge University and first described in the paper An algorithm for suffix stripping is
by far the most widely used algorithm for stemming English words."

Benjamin Franz has implemented a generic framework for stemmers such as the Por-
ter algorithm in Lingua::Stemmer; it contains stemming algorithms for many lan-
guages, but we’ll look at Lingua: :Stem: :En for the moment.

For a module later in this chapter, I needed to know if a particular word was a dictio-
nary word, as opposed to some kind of personal noun. Of course, thanks to inflec-
tions, there are plenty of “dictionary” words that aren’t in the dictionary. I employed
a Porter stemmer to catch these.

First we need to stem all the words in the dictionary, or else they aren’t going to
match the stemmed versions we’re looking for:
sub stem {
require Lingua::Stem::En;
my ($stemmed) = @{ Lingua::Stem::En::stem({ -words => [shift] }) };

}
while (<DICT>) {
chomp;
next if /[A-Z]/;
$wordlist{stem($)}=1;
}

We actually make %wordlist a tied hash to a DBM file, so that we only need to stem
the dictionary once, no matter how many times we look up words in it. Once that’s
done, we can now remove all the dictionary words from a list:
my @proper = grep { !$wordlist{$ } }
@{ Lingua::Stem::En::stem({ -words => \@words }) };
Similarly, the Plucene Perl-based search engine has an analyzer that stems words so
that searches for “erupting” and “erupt” give the same results.

The second problem that arises is that there are a large number of English words that
don’t carry very much semantic content. For instance, you probably wouldn’t miss
much from that previous sentence if it were transformed into “The second problem

* That doesn’t mean, of course, that it’s particularly good. Porter himself says: “It is important to remember
that the stemming algorithm cannot achieve perfection. On balance it will (or may) improve IR [information
retrieval] performance, but in individual cases it may sometimes make what are, or what seem to be, errors.”

However, as with the infamous Brill part of speech tagger, once something gets established as the de facto
standard tool in NLP, it’s very hard to shift it.

Modules for Parsing English | 157

arises large number English words don’t carry semantic content.” Words like “are,”
“that,” and “very” are called stopwords.

Stopwords don’t add much to the underlying meaning of an utterance. In fact, if
we're trying to wade through English text with Perl, we probably want to get rid of
any such words and concentrate on the ones that are left.

The Lingua: :EN: :StopWords module contains a handy hash of stopwords so that you
can quickly look up whether a word has weight:

use Lingua::EN::StopWords qw(%StopWords);

my @words = qw(the second problem that arises is that there are a
large number of English words that don't carry very much semantic
content);

print join " ", grep { !$StopWords{$_} } @words;

second problem arises large number English words don't carry
semantic content

By combining these two modules and Lingua: :EN::Splitter, we can get some kind of
a metric of the similarity of two sentences:

use Lingua::EN::StopWords quw(%StopWords);

use Lingua::Stem::En;

use Lingua::EN::Splitter qw(words);

use List::Util qw(sum);

print compare(
"The AD 79 volcanic eruption of Mount Vesuvius",
"The volcano, Mount Vesuvius, erupted in 79AD"

);

sub sentence2hash {
my $words = words(lc(shift));
my $stemmed = Lingua::Stem::En::stem({
-words => [grep { !$StopWords{$ } } @$words]

1
return { map {$_ => 1} grep $, @$stemmed };

sub compare {
my ($h1, $h2) = map { sentence2hash($) } @_;
my %composite = %$h1;
$composite{$ }++ for keys %$h2;
return 100*(sum(values %composite)/keys %composite)/2;

}
The compare subroutine tells us the percentage of compatibility between two sen-
tences—in this example, 83%. The sentence2hash subroutine first splits a sentence
into individual words, using Lingua::EN::Splitter. Then, after grepping out the
stopwords, it stems them, makes sure there’s something left after stemming (to get
rid of non-words like “79”), and maps them into a hash.

158 | Chapter5: Natural Language Tools

The compare subroutine simply builds up a hash that contains all the stemmed words
and the number of times they appear in the two sentences. If the sentences mesh per-
fectly, then each word will appear precisely twice in the composite hash, and so the
average value of the hash will be 2. To find the compability of the sentences, we
divide the average by 2, and multiply by 100 to get a percentage.

In this case, our two sentences only differed by the fact that the Porter stemmer
didn’t stem “volcano” to “volcan” as it did for “volcanic.” It’s not perfect, but it’s
good enough for NLP.

Categorization and Extraction

It is no exaggeration to say that the most widely used application of NLP, and also
the one with the greatest research effort these days, is the fight against spam—decid-
ing on the basis of the content whether a particular email is wanted or unwanted.
Some anti-spam software, such as SpamAssassin, takes a relatively straightforward
approach to the problem: an email gets points if it contains certain words or phrases,
and this is combined with the use of relay blacklists and other non-textual evidence.

However, anti-spam authors are increasingly taking an altogether different, and gen-
erally more successful, approach. They take one corpus of mail that is known to be
spam and one that is known to be not spam (ham), and use statistical means to iden-
tify attributes that make a particular message more spammy or more hammy. When
a new message comes in, the same statistical analysis is performed to determine its
likely spamminess.

This is an application of the field of natural-language processing called document
categorization. We have two categories—spam and ham—and want to determine
which category a new document is likely to fall into. Naturally, this can be used for
many other purposes, although the fight against spam is arguably the most urgent:
automatically determining the language of a document; helping to route enquiries to
the most appropriate department of a company; even organizing recipe collections.

We'll look at a few applications of document categorization, and the related field of
information extraction.

Bayesian Analysis

Here’s one application of document categorization that I found particularly useful.
As we saw in the last chapter, I'm a big fan of receiving news and stories from web
pages via RSS aggregation. The problem with subscribing to a variety of RSS feeds is
that the quality and interest level of the stories varies wildly. While I like to know
about upcoming Perl conferences through hitp://use.perl.org, I don’t really care to be
told about Perl Mongers meetings on the other side of the world.

Categorization and Extraction | 159

So there are a set of news stories I find interesting and a set I find boring. I should
not be having to make the decision about whether something is interesting or boring
when I have several thousand dollars of processor power in front of me. This is a
document categorization problem, not too dissimilar to the spam problem, so we can
use the same techniques to solve it.

One technique that’s found favor in anti-spam circles recently is Bayesian analysis.
This is a very old technique, an application of the Bayesian theory of probability. It is
used to invert conditional probabilities.

Bayes and Predicting Diseases

A quick introduction to Bayes’s theorem is in order. For example, the chance that
someone who has a particular rare genetic disease will test positive to a clinical test is
99%. Let’s say John takes the test, and he tests positive. What are the chances that he
has the disease? It’s not 99%. Nothing like it. The short answer is that, at the moment,
we can’t say. We need more information.

Now suppose we know that the test yields a 5% false-positive rate. That is, if John
doesn’t have the disease, there’s a 5% chance he’ll test positive anyway. We also need
to know how common the disease is; let’s say it’s 0.5% prevalent in the general popu-
lation. (We’ll say P(D) = 0.005 for the probability of the disease.)

Now we can work out the probability that any given test will be positive (P(T)). This is
the combination of two situations: that the test is positive for someone who has the dis-
ease (0.005 * 0.99) and that the test is positive for someone who doesn’t (0.995 * 0.05).
This adds up to 4.975% + 0.495% = 5.47%. Should John be worried about this?

To find out, we use Bayes’s theorem. This allows us to turn on its head the probability
that a person tests positive given that he has the disease (P(T|D) = 0.99) and gives us
P(D|T), the probability that he has the disease given that he tests positive.
Bayes’s formula is:

P(D|T) = [P(T|D) x P(D)] / P(T)
And plugging in the numbers, we find that John is only 9.05% likely to have the dis-
ease. Bayes’s theorem is important because it forces us to take into account everything

we know—even though there was a relatively high chance that the test was accurate,
we need to factor in the relative rarity of the disease in the general population.

We want to find out the probability that a document is interesting given the particu-
lar set of words in it. We know the probability that any document is interesting,
regardless of its words; just count up the number of documents that are interesting,
count up all the documents, and divide. We can work out the probability that an
interesting document contains a given set of words, and so all that’s left is a lot of
tedious mathematics.

160 | Chapter5: Natural Language Tools

Thankfully, the Algorithm::NaiveBayes module can help to hide that away. It
includes an analyzer that takes a number of attributes and corresponding weights,
and associates them with a set of labels. Typically, for a text document, the
attributes are the words of the document, and the weight is the number of times
each word occurs. The labels are the categories under which we want to file the
document.

For instance, suppose we have the news article:

The YAPC::Taipei website is now open and calls for registration. Welcome to Taipei
and join the party with us!

We split that up into words, count the occurrence of the relevant words, and pro-
duce a hash like this:

my $news = {
now => 1, taipei => 2, join => 1, party => 1, us => 1,
registration => 1, website => 1, welcome => 1, open => 1,
calls => 1, yapc => 1
b
Then we add this article to our categorizer’s set of known documents:
my $categorizer = Algorithm::NaiveBayes->new;
$categorizer->add_instance(attributes => $news,
label => "interesting");
When we’ve added a load of documents, the categorizer has a good idea of what
kind of words make up stories that I would categorize as interesting. We then ask it
to do some sums, and we can find out what it thinks about a new document:
$categorizer->train;
my $probs = $categorizer->predict(attributes => $new news);
This returns a hash mapping each category to the probability that the document fits into
that category. So once we have our categorizer trained with a few hand-categorized doc-
uments, we can say:
if ($probs->{interesting} > 0.5) {
Probably interesting
}
Of course, now the main problem is getting the document into the hash of words
and weights. We use our now-familiar Lingua::EN::Splitter and Lingua::EN::
StopWords techniques to produce a subroutine like this:
sub invert string {
my ($string, $weight, $hash) = @ ;
$hash->{$_} += $weight for
grep { !$StopWords{$ } }
@{words(lc($string))};
}
This inverts a string, adding its component words into a hash. In our RSS aggregator
example, the stories will be hashes extracted from XML: :RSS objects. We want to give

Categorization and Extraction | 161

more weight to words that appear in the title of a story than those that appear in the
body, so we end up with this:

sub invert_item {
my $item = shift;
my %hash;
invert string($item->{title}, 2, \%hash);
invert_string($item->{description}, 1, \%hash);
return \%hash;

}

With these subroutines in place, we can now train our analyzer on two carefully con-
structed RDF sources:

#!/usr/bin/perl

use XML::RSS;

use Algorithm::NaiveBayes;

use Lingua::EN::Splitter gw(words);

use Lingua::EN::StopWords quw(%StopWords);

my $nb = Algorithm::NaiveBayes->new();

for my $category (qw(interesting boring)) {
my $rss = new XML::RSS;
$rss->parsefile("$category.rdf");
$nb->add_instance(attributes => invert item($),
label => $category) for @{$rss->{'items'}};
}

$nb->train; # Work out all the probabilities
And now we can ask it how we feel about the articles in a third source:

my $target = new XML::RSS;

$target->parsefile("incoming.rdf");

for my $item (@{$target->{'items'}}) {
print "$item->{title}: ";

my $predict = $nb->predict(attributes => invert_item($item));
print int($predict->{interesting}*100)."% interesting\n";

}
If we train the categorizer from two weblogs written by Bob (interesting) and George
(boring) as the data sources and then compare it with the Slashdot feed from a ran-
dom day, it predicts the following:

Elektro, the Oldest U.S. Robot: 12% interesting

French Court Orders Google to Stop Competing Ad Displays: 0% interesting
Personal Spaceflight Leaders Form New Federation: 43% interesting
Symantec Antivirus May Execute Virus Code: 0% interesting

Open-Source Technique for GM Crops: 99% interesting

North Korea Admits to Having Nuclear Weapons: 19% interesting

162 | Chapter5: Natural Language Tools

Judge Slams SCO's Lack of Evidence: 24% interesting

Sci-Fi Channel Renews Battlestar Galactica: 0% interesting

Tecmo Sues Game Hackers Under DMCA: 15% interesting

Identifying World's Species With Genetic Bar Codes: 32% interesting

This is a very simple case of categorization where we’ve only really used one dimen-
sion—interesting versus boring. Now we’ll look at a more complex example, using
multiple dimensions and a more sophisticated algorithm.

Keyword Extraction and Summary

One extremely common task in language processing is the reduction of a text down
to essential keywords or phrases. Perl people are busy people and don’t want to read
through masses of documents if they don’t need to. Why not get a computer to do
the bulk of the reading for them?

There are two ways to getting a sense of what a document is about. The first is to
extract what appear to be key sentences and strip away anything that doesn’t seem
so important. This is particularly good for summarizing scientific or factual input.
The second is to look for particularly important keywords, nouns, and noun
phrases that recur frequently in a text. This doesn’t give a readable overview of the
sense of the text, but it is often enough to give a good overview of the key con-
cepts involved.

Lingua::EN::Summarize is the module for the first approach, extracting key sen-
tences. Digging into the source, we see it takes a relatively naive approach by look-
ing for clauses that could be declarative:

my $keywords = "(is|are|was|were|will|have)";

my @clauses = grep { /\b$keywords\b/i }

map { split /(,|;|--)/ } split_sentences($text);

It then tries to trim them to a required length. To be honest, it isn’t great. If we run
the summarize subroutine on the first part of this chapter:

use Lingua::EN::Summarize;
print summarize($chapter5, maxlength => 300, wrap => 70);

it produces the following summary:

Is the application of AI techniques to answer questions about text
written in a human language: what does it mean. What other documents
is it like. As Perl is often described as a text-processing

language. It shouldn't be much of a surprise to find that there are a
great many modules and techniques available in Perl for carrying out
NLP-related tasks.

Categorization and Extraction | 163

To make a better text summarizer, we need to turn to the academic literature, and
there’s a lot of it. A paper by Kupiec, Pedersen, and Chen” uses a Bayesian categorizer,
like the one we used to categorize RSS stories, to determine whether or not a given sen-
tence would be in a summary. Implementing this using Algorithm: :NaiveBayes should
be a relatively straightforward exercise for the interested reader.

Another technique (by Hans Peter Luhnt) uses something called Zipf’s Law of Word
Distribution, which states that a small corpus of words occur very frequently, some
words occur with moderate frequency, and many words occur infrequently. To sum-
marize a text, you take the sentences that contain words that appear very frequently.
Unfortunately, this requires a very large corpus of related material, in order to filter
out relatively common phrases, but let’s implement this in Perl.

I grabbed a bunch of technical papers on computational linguistics from http://
www.arxiv.org and built up background and document-specific frequency histo-
grams using the usual techniques:

use Lingua::EN::Splitter qw(words);

use Lingua::EN::Sentence qw(get sentences);
use File::Slurp;

use Lingua::Stem::En;

use Lingua::EN::StopWords qw(%StopWords);
use List::Util qw(sum);

use strict;

my %base;

my %per_file;

my $amount = shift;
for my $file (<*.txt>) {
my $sentences = get_sentences (scalar read file($file));
for my $sentence (@$sentences) {
my @words = grep { !$StopWords{$ } } @{words(lc $sentence) };
for my $word (@{ Lingua::Stem::En::stem({ -words => \@words }) }) {
$base{$word}++;
$per file{$file}{$word}++;

}

Now we convert these histograms into frequency tables, by dividing the count for
each word by the total number of hits in the hash:

my $sum = sum values %base; $base{$ } /= $sum for keys %base;
my %totals;

* Julian Kupiec, Jan O. Pedersen, and Francine Chen. 1995. “A Trainable Document Summarizer.” In
Research and Development in Information Retrieval, pages 68-73. Available at hitp://www.dcs.shef.ac.uk/
~mlap/teaching/kupiec95trainable.pdf.

T Hans Peter Luhn. 1958. “The Automatic Creation of Literature Abstracts.” IBM Journal of Research and
Development, 2(2):159-165. Reprinted in H.P. Luhn: Pioneer of Information Science, Selected Works. Edited
by Claire K. Schultz. Spartan Books, New York. 1968.

164 | Chapter5: Natural Language Tools

for my $file (keys %per_file) {

$sum = sum values %{$per file{$file}};

$per file{$file}{$ } /= $sum for keys %{$per file{$file}};
}

Now that we have our frequencies of words relative to the corpus as a whole and rel-
ative to individual documents, we can start our second pass: look over a document
and score each sentence in terms of the average relative unusualness of its constitu-
ent words. We begin as before:

for my $file (<*.txt>) {
print $file,":\n";
my $sentences = get sentences (scalar read file($file));
my %markings;
my $order = 0;
for my $sentence (@$sentences) {
my @words = grep { !$StopWords{$ } } @{words(lc $sentence) };

But this time we want to mark the sentence with its order in the document and a
score for each word; this is the ratio between the expected frequency and the
observed frequency:

my @words = grep { !$StopWords{$ } } @{words(lc $sentence) };
$markings{$sentence}->{order} = $order++;
if (l@words) {
$markings{$sentence}->{score} = 0;
next;
}
for my $word (@{ Lingua::Stem::En::stem({ -words => \@words }) }) {
my $score = $per file{$file}{$word} / $base{$word};
$markings{$sentence}->{score} += $score;

}

Finally, we divide the sentence’s score by the number of words to find the average
and so that we’re not unfairly favoring longer sentences.

$markings{$sentence}->{score} /= @words;

Now we have a score for each sentence in the document. We can sort the sentences
by score to find the 10 highest-scoring, then re-sort them by order so that they
appear in the original order:

my @sorted = sort
{ $markings{$b}->{score} <=> $markings{$a}->{score} }
keys %markings;

my @selected = sort
{ $markings{$a}->{order} <=> $markings{$b}->{order} }
@sorted[0..9];

print "@selected\n\n";

Categorization and Extraction | 165

And that’s all we need for a simple frequency-based summarizer. To take an exam-
ple of the output, the summarizer reduced a 2,000-word paper on language genera-
tion down to the following abstract:

This paper introduces the neca mnlg; a Multimodal Natural Language Generator. The
neca mnlg adopts the conventional pipeline architecture for generators (Reiter and
Dale, 2000). Feature structures are also used in the fuf/surge generator. See http://
www.cs.bgu.ac.il/surge/. Matching trees might in turn have incomplete daughter nodes.
These are recursively expanded by matching them with the trees in the repository,
until all daughters are complete. The module is based on the work of Krahmer and
Theune (2002). The negation is passed on to the VP subtree via the feature. The
attributes x and y allow us to capture unbounded dependencies via feature perloca-
tion. The value of the attribute is passed on from the mother node to the daughter
nodes. The neca mnlg has been implemented in prolog.

Keyword extraction

The second approach to document summary, extracting keywords, is a little easier,
and it is instructive to have a look at the Lingua: :EN: :Keywords module and how its
techniques evolved.

The first versions of Lingua: :EN: :Keywords were very simple. They split the text into
words manually, then counted up the frequency of each word, and returned the top
five most frequent words. This was, of course, pretty bad.

The second set of versions used a hardwired stopword list, which was a little better,
but still not good enough. The third series used the Lingua::EN::StopWords tech-
niques we’ve seen several times in this chapter. The fourth iteration used the same
technique as “Keyword Extraction and Summary” earlier in this chapter to detect
and score proper names that wouldn’t appear in the dictionary, rather than ordinary
words that would. This was because proper nouns are more easily identifiable as the
topic of a document.

And there it sat for a while as I looked for ways to extract not just words but key
phrases. There are various academic papers about how to do this, but, to be honest, T
couldn’t get any of them to work accurately. Finally, something caught my eye:
Maciej Ceglowski and his team at Middlebury College released Lingua::EN::Tagger,
a rather nice English part-of-speech tagger, which contained a noun-phrase extrac-
tor. This produces histograms of all the nonstop words in the text, but also tries to
group together nouns into phrases:

use Lingua::EN::Tagger;

my $tag = Lingua::EN::Tagger->new(longest noun phrase => 5,

weight_noun_phrases => 0);

my %wordlist = $tag->get words("This is a test of the emergency warning
system. This is only a test. If this had been an actual emergency, you
would have been instructed to tune to either Cable Channel 3 or

local emergency radio stations.");

166 | Chapter5: Natural Language Tools

This produces the following histogram in our word list %wordlist:

"emergency warning system' => 1,
"emerg' => 3,

'cable channel' => 1,

'warn' => 1,

'radio stations' => 1,

"actual emergency' => 1,

'local emergency radio stations' => 1,
'radio’ => 1,

"emergency radio stations' => 1,
"emergency radio' => 1,
"channel' => 1,

'warning system' => 1,
"emergency warning' => 1,
'station' => 1,

"system' => 1,

"test' => 2

As you can see, individual words (emergency) are stemmed (emerg), but noun
phrases are kept together. If we collate these histograms over a large document,
nouns that appear together as a phrase will rise to the top. For instance, if the docu-
ment always talks about “local football leagues,” then that phrase will be ranked
highly. However, if there’s a relatively even split between “local football leagues” and
“local football matches,” then “local football” will be the most frequent phrase.

With this module available, Lingua: :EN: :Keywords just becomes a matter of collating
the histograms and spitting back the most common phrases, with one slight excep-
tion. The problem is that when we constructed the histogram, we stemmed the
words. To present these words to the user, we need to unstem them, but that’s not
very easy. The way we do this in Lingua: :EN: :Keywords is to cache every stemming in
a hash, then reverse the hash to go from a stemmed word to the original. By subclass-
ing Lingua::EN::Tagger, we can override the stem method, and provide another
method to get access to the cache:
package My::Tagger;
use base 'Lingua::EN::Tagger';
my %known_stems;
sub stem {
my ($self, $word) = @_;
return $word unless $self->{'stem'};

return $known stems{ $word } if exists $known stems{$word};
my $stemref = Lingua::Stem::En::stem(-words => [$word]);

$known_stems{ $word } = $stemref->[0] if exists $stemref->[0];

}

sub stems { reverse %known stems; }

Now we can write a trivial unstem routine that looks up the original word from its
stem in the reversed hash, shown in the next block of code.

Categorization and Extraction | 167

use My::Tagger;
my $tag = My::Tagger->new(longest noun_phrase => 5,
weight noun phrases => 0);

sub unstem {
my %cache = $tag->stems;
my $stem = shift;
return $cache{$stem} || $stem;
}
This isn’t a perfect solution. If two different words have the same stem, the distinc-
tion is lost in the reverse operation. A few modifications to the stems subroutine can
keep a record of the exact variations found in the original text if that information is
important. Finally, the keyword subroutine is as simple as:
sub keywords {
my %wordlist = $tag->get words(shift);
my %newwordlist;
$newwordlist{unstem($_)} += $wordlist{$ } for keys %wordlist;
my @keywords = sort { $newwordlist{$b} <=> $newwordlist{$a} } keys %newwordlist;
return $keywords[0..4];
}
This generates a Lingua: :EN: : Tagger histogram from the single string argument. It then
creates a new hash combining the counts from the original histogram with the
unstemmed keywords. It sorts the keywords by frequency and returns the five most com-
mon keywords. If we pass the keywords subroutine the same text as the first example in
this section, the first two results are emergency and test. The remaining three keywords
of the top five aren’t in a predictable order because they’re all equally frequent.

Extracting Names and Places

An extension of the principle of extracting keywords from text involves what’s
known in the trade as named-entity extraction. A named entity is any proper noun,
such as a place, a person’s name, an organization’s name, and so on. Extracting these
proper nouns and categorizing them is a good first step to retrieving pertinent infor-
mation from a particular source text.

There are any number of well-documented algorithms for named-entity extraction in
the academic literature, but, being Perl hackers, we’re interested in a quick, easy but
efficient ready-made solution.

There are two modules that perform named-entity extraction for English text: GATE: :
ANNIE::Simple and Lingua::EN: :NamedEntity. GATE: :ANNIE::Simple is an Inline::Java
wrapper around the GATE" project’s ANNIET named-entity extraction engine. The

* General Architecture for Text Engineering (http:/www.gate.ac.uk).

1 A Nearly-New Information Extraction system. When it comes to acronymic naming schemes, academics can
be just as bad as hackers.

168 | Chapter5: Natural Language Tools

GATE documentation talks of this use of ANNIE as a “textual sausage machine”—
you feed text in at one end, and out the other end comes a categorized set of entities.
This is the sort of solution we’re looking for.

use GATE::ANNIE::Simple;

$text = <<EOF;

The United States is to ask the United Nations to approve the creation

of a multinational force in Iraq in return for ceding some political

authority, US officials say.

EOF

%entities = annie_extract($text);

This results in the following entries in the %entities hash:

'Iraq' => 'lLocation’,

'United Nations' => 'Organization’,

'US" => 'lLocation',

"United States' => 'lLocation’
ANNIE has very high recall and categorization accuracy, meaning that it can find
most of the relevant entities in a document (and doesn’t find too many things that
aren’t actually named entities) and can decide whether the entity is a person, a place,
an organization, and so on. It can also extract dates, numbers, and amounts of
money. The downside of ANNIE is its complexity, requiring a bridge to Java, and its
speed—Dbefore the first set of extraction, ANNIE must first load all its rulesets into
memory, something that can take a matter of minutes even on a fast machine.

When looking at alternatives to ANNIE for the purposes of writing this chapter, I
started writing about a relatively naive approach:

* First, extract all phrases of capitalized words, storing the context two or three
words before and two or three words after.

* Second, trim out those that are purely sentence-initial dictionary words, using a
stemmer (see above) to remove inflections.

* Third, allocate a score to each entity in each of the following categories: person,
place, organization. If the first word in the entity is found in a lexicon of fore-
names, score it up as a person, and so on.

Then I realized that by the time I'd finished describing this heuristic in English, I could
have already written it in Perl, and Lingua: :EN::NamedEntity was born. It was origi-
nally designed to be a benchmark against which more academically correct solutions
could be measured. Although it doesn’t have the same precision as ANNIE, Lingua::
EN: :NamedEntity actually turned out to be good enough for most named-entity work.

When you install the module from CPAN, it sets up a series of files in the .namedentity
subdirectory of your home directory, precomputing the forename and lexicon data-
bases to speed up their loading. Once it’s all installed and set up, you can use the
extract_entities subroutine to produce a list of named entities.

Categorization and Extraction | 169

As with most information-extraction techniques, named-entity recognition works
well on reasonably long documents, so I ran it on a Perl 6 Summary:

use File::Slurp;
use Lingua::EN::NamedEntity;

my $file = read_file("summary.txt");
for my $ent (extract entities($file)) {

print $ent->{entity}, ": ", $ent->{class}, "\n";
}

The results weren’t perfect, as you’ll see:

Go Melvin: person

Larry and Damian: organisation
Hughes: place

Perlcentricity: place

Jonathan Worthington: person
Melvin Smith: person

Meanwhile Melvin Smith: person
Piers Cawley: person

Austin Hastings: person

Perl Foundation and the Perl: organisation
Simon Cozens: person

Robin Redeker: person

Simon: person

Right Thing: person

Leo T: person

Leon Brocard: person

Payrard: place

Perl: place

London: place

However, one thing to note is that Lingua: :EN::NamedEntity ends up erring on the
side of recklessness, much more so than ANNIE—it will extract a lot of entities, and
usually end up catching all the entities in a document, even if it does extract a few
things that aren’t really entities.

There are three main plans for future work on the module. The first is to tighten up
the categorization somewhat and extend the number of categories. At the moment,
for instance, it filed Perl as a place, because the summary talks so much about things
being “in Perl.”

The second is to remove some false positives by checking for supersets of supersets
of entities: for instance, seeing “Melvin Smith” as an entity should make it less likely
that “Meanwhile Melvin Smith” is really a person. Conversely, the third plan is to
correlate subsets—not only should it know that “Melvin Smith” and “Melvin” are
the same person, but it should use the combined ranking to strengthen its certainty
that both belong in the person category.

170 | Chapter5: Natural Language Tools

Conclusion

In this chapter, we’ve looked at just a few of the available tools for working with nat-
ural language data. Many more are available on CPAN, including modules for local-
ization, machine translation, guessing the language of a text, and formatting text or
numbers in ways unique to a language. If you have a language-related problem to
solve, youll do well looking through the Lingua::*, Locale::*, and Text::*
namespaces on CPAN.

Condusion | 171

CHAPTER 6
Perl and Unicode

Over the last couple of major releases, Perl has gained more advanced support for
Unicode data manipulation. With the Perl 5.8 series, this support is now mature, so
it’s worth taking some time to look at what Unicode means for your applications and
what tools Perl hands you to deal with it.

Terminology

It’s a good idea to take a little time out, before we think about what Unicode is and
what problem it solves, to clarify in our minds a few terms that have been widely
used and abused in the programming world. In particular, the term character set is
more troublesome than it might appear.

We often talk about the ASCII character set, but this relates to many different
ideas—it could mean the actual suite of characters involved, or the order in which
they are placed in that suite, or the way that a piece of text is represented in bytes. In
fact, when people talk about text from an ASCII system, it may not even be ASCIL.
The potential for confusion comes because ASCII is a seven-bit character set,
whereas for the past 25 years or so, computers have had eight-bit bytes. ASCII only
defines the meaning of the first 128 entries in the set, so what should be done with
the other 128? Rather than leave them unused and wasted, nearly every ASCII sys-
tem chooses to define them in some way, usually with accented characters and extra
symbols. Many manufacturers chose to make their machines use one of the range of
national sets as defined by ISO standard 8859. Of these sets, ISO-8859-1—generally
called “Latin 1”—was the most popular because it provides all the accented letters
needed by most Western European languages. It is also the default encoding
assumed by protocols such as HTTP. So prior to Unicode, many computers suppos-
edly using ASCII actually produced text using all 8 bits and assumed that any
machine that they exchanged data with also happened to associate the same mean-
ing for the 128 non-ASCII characters. You can see the potential for mistakes here,

172

and that’s just with the data. There’s also ambiguity about what the term character
set means, so really we want avoid it altogether and replace it with some more pre-
cise terms:

character
A character is somewhat easier to define; it is the abstract description of a sym-
bol, devoid of any formatting expectations. There are any number of ways that
one might format the character that Unicode calls LATIN SMALL LETTER A: a, a, a,
a, and so on. However, they all represent the same character. This is distinct
from a glyph.

glyph
A glyph is the physical, visual representation of a character. A glyph concerns
itself with shape, typeface, point size, boldness, slant, and so on; a character
does not. “a” and “a” are the same character, but different glyphs.

Unicode does not concern itself with glyphs in any way; it does not determine
how its characters should look, just what they are. On the other hand, character
repertoires such as the Japanese standards JIS do specify not just the collection of
characters used, but also their appearance.

character repertoire
A character repertoire is a collection of characters. Latin 1 has a character reper-
toire of 256 characters. The character repertoire itself does not specify the order
in which the characters appear, nor does it map characters to codepoints. (See
below.)

character code
The order and the mapping is specified by the character code. This is what tells
us that, for instance, the Unicode character LATIN SMALL LETTER B comes directly
after LATIN SMALL LETTER A.

codepoint
A character’s codepoint is the number relating to the position of a character in a
given character code. The Perl function to get a character’s codepoint is ord.

character encoding
When dealing with a 256-character repertoire such as Latin 1, it is easy to see
how the codepoints should be represented to a computer—each codepoint is
simply encoded as one byte. When we get to 65,536 characters and above, on
the other hand, we need to specify rather precisely how we’re going to represent
each character as a sequence of bytes. This is the character encoding of our data.

Unicode typically uses a set of well-specified character encodings it calls Uni-
code Transformation Formats or UTFs. We'll look at the most commonly used
UTFs later on in the chapter.

Terminology | 173

What Is Unicode?

In the bad old days of data handling, if you wanted to work with text in a different
language, you’d probably have to deal with a different character set. This could mean
a different character repertoire, or a different character encoding, or both. Applica-
tions that needed to process Japanese data had to deal with at least two major char-
acter sets in any of three encodings—more if you needed to deal with Latin 1, as
well. Each encoding would need special-case code to handle it, and programming
was not fun.

Unicode—or, more formally, the Unicode Standard—is an attempt to put that right.
The core of the Unicode Standard defines a universal character repertoire; it then
also defines standard encodings for that repertoire. The Unicode Standard is aug-
mented by a series of Unicode Technical Reports (UTRs), which provide additional
information: more encodings, additions, and corrections to the standard; algorithms
for collation; and so on.

The Unicode effort started in the late ’80s—the term Unicode was first used in
1987—by programmers working at Xerox and Apple. The first edition of the Uni-
code Standard was released in 1990.

Unicode is based on four primary design principles (quoted from Tony Graham’s
book Unicode: A Primer):

a. Universal. The character repertoire should be large enough to encompass all charac-
ters likely to be used in general text interchange.

b. Efficient. Plain text, composed of a sequence of fixed-width characters, is simple to
parse, and software does not need to maintain state, look for special escape sequences,
or search forward or backward through text to identify characters.

c. Uniform. A fixed-length character code allows efficient sorting, searching, display and
editing of text.

d. Unambiguous. Any given 16-bit value always represents the same character.

These goals were obtained by a combination of an extensive character repertoire and
a fixed-width native coding scheme, UTF-16.

What Is UCS?

At the same time as the Unicode teams at Apple and Xerox were putting together a
universal character set, the ISO standards organization was developing an interna-
tional character set standard, ISO 10646. Realizing the futility of having two stan-
dard, universal character sets, the Unicode team and the ISO working group (ISO/
IEC JTC1/SC2/WG@G2) agreed in 1991 to join forces. This has ensured that the indus-
try standard, Unicode, and the international standard, ISO 10646, have remained—
to all intents and purposes—identical.

174 | Chapter6: Perland Unicode

However, since we have two cooperating standards, we have two sets of terminology
to deal with—unfortunately, ISO standards tend to use different terms from indus-
try standards. Hence, the Unicode character repertoire, as defined by the Unicode
Standard, is known as the Universal Character Set, or UCS in ISO legalese. UCS is
also slightly different: while it is character-for-character identical with the Unicode
character repertoire, it allows for much more expansion.

As far as the Unicode Standard is concerned, the character repertoire consists of a
maximum of 65,536 characters. This was initially thought to be far more than
required for all the world’s languages. By the time the second edition of the Unicode
Standard was published, there were still 18,000 unassigned codepoints; by Unicode
3.0, there were 8,000 code points to go. This is obviously not enough, especially with
the thousands of rare Chinese and Japanese characters that have been submitted for
inclusion. The Unicode way of coping with this is to extend to two characters by
means of the surrogate pair extension mechanism. In ISO 10646, however, the
65,536 characters form something called the Basic Multilingual Plane (BMP) and the
UCS is made up of multiple planes.

The UCS is conceptually a series of cubes, or groups. There are 256x256 cells in a
plane, and 256 planes in a group. There are 128 groups in total, allowing UCS to
encode a massive 256x256x256x128 = 2,147,483,648 characters. These will never all
be assigned, of course; Unicode’s native encoding format UTF-16, with its surrogate
pair mechanism, can only encode 16 planes (1,048,576 characters).

The ISO standard also defines two encoding mechanisms for UCS: UCS-2 and UCS-
4. UCS-2 is conceptually identical to UTF-16. We will examine both encodings in
the section on UTFs later in this chapter.

What is the Unicode Consortium?

After the ISO and Unicode efforts merged, a consortium of interested parties was set
up to manage and develop the Unicode portion of the combined standard. The Uni-
code Consortium was founded in 1990 and incorporated as Unicode, Inc., in 1991.

The technical work of the consortium is carried out by the Unicode Technical Com-
mittee (UTC), which publishes the Unicode Standard and also issues Unicode Tech-
nical Reports.

The consortium also maintains many mailing lists, FAQs, and other resources avail-
able from http://www.unicode.org/, the Unicode Consortium web site.

Membership in the consortium is open to anyone, and there are a variety of member-
ship levels. Perl is a member of the consortium, represented at associate member level,
the first programming language to be independently represented to the consortium.

What s Unicode? | 175

Why Should | Care?

The most important thing that this chapter can teach you about Unicode is that you
should find out more about it and start being aware of it in your own programs. Uni-
code is coming.

If you’re already working with data in various languages, you’ll know the hell you
need to go through to get everything working. Unicode makes it a lot easier.

If you’re not already working with different languages, you will. Unicode can help
you internationalize and localize your programs; Unicode awareness and support can
make multinationalization a great deal more straightforward—once your program is
Unicode-aware, common tasks such as sorting, searching, and regular expression
matching just work in any language.

And if you don’t think you will ever work with different languages, you still need to
know about Unicode. Will you be receiving data from external sources? There’s a
growing possibility this data will be in Unicode, and you’re going to need to know
how to handle it.

If you’re a Perl module author, there’s absolutely no excuse; you have no idea how
people will use your module or what data they might throw at it. If it can’t cope with
that data, it’s broken, and people will blame you.

Finally, even if you’re sure you’ll never ever touch data that’s not in good ol’” ASCII,
it does you good to know about Unicode anyway, since it is the way the world’s
going. Unicode support is very easy to achieve, especially in Perl, and it makes you a
better programmer. The Perl value of laziness is important, but good laziness means
you’ll take the time to make your programs Unicode-aware first, so you won’t need
to make any changes when the time comes to support non-ASCII data.

Unicode Transformation Formats

As we’ve mentioned, with hundreds of thousands of characters in a character reper-
toire now, it’s no longer possible to fit one character into one byte. We’ve intro-
duced the concept of UTF-16, the native character encoding for Unicode, but there
are several other standard encodings. Those starting with UTF are defined by the
Unicode Standard or associated Unicode Technical Reports; the two UCS encodings
are defined by the ISO 10646 standard.

ucs-2

UCS-2 is the two-byte ISO 10646 encoding. Recall that ISO defines the UCS in terms
of groups and planes, where planes consist of 256 rows and 256 columns. In UCS-2,
the first byte encodes the row, and the second encodes the column. Hence, UCS-2
can only encode the 65,536 characters in the Basic Multilingual Plane; furthermore,

176 | Chapter6: Perland Unicode

ISO does not recognize the surrogate pair extension mechanism, so UCS-2 cannot be
used to access any characters outside the BMP.

UTF-8

Formerly known as File System Safe UCS Transformation Format, UTF-8 is the Uni-
code encoding supported natively by Perl. It is an integral part of the Unicode Stan-
dard and is recognized by the ISO standard.

Unlike all the other UTFs, UTF-8 is a variable-width encoding; this is regarded as a
compromise, as you may remember that one of the Unicode design goals was that
encodings should be fixed width.

One redeeming feature of UTF-8, however, is that it is a superset of seven-bit ASCII.
That is, data that is purely seven-bit ASCIl—containing no bytes 128 or above—is
valid UTF-8. Additionally, UTF-8 encodes codepoints 128 and above using only
bytes 128 and above, so that the bytes 0 to 127 in a UTF-8 encoded string only ever
correspond to the codepoints O to 127 (the ASCII characters). This means that any
application that gives special meaning to some ASCII characters but is unaware of
UTF-8 cannot be confused or tricked, such as a filesystem that allows bytes 0 to 255
in filenames and treats “/” as a directory separator.

UTF-8’s encoding algorithm is slightly complex, because the algorithm used depends
on the codepoint. For codepoints up to 128 (U+007F), the character is encoded as in
ASCII: one byte per codepoint. From U+0080 up to U+07FF, the codepoint is con-
verted to its bit pattern, and this bit pattern is split over two bytes. For instance,
U+0169 LATIN CAPITAL LETTER U WITH TILDE has the bit sequence 0000000101101001.
The six least significant bits and the next five significant bits are 101001 and 00101.
We prefix the five with 110 to make 11000101, and the six with 10 to make 10101001.
Hence, our character in UTF-8 is encoded as 11000101 10101001; that is, character
197 and character 169. The following Perl code demonstrates this technique and
extends it to characters requiring three or four bytes to encode:

§d = "

if ($uv < 0x800) {

$d .= chr(($uv >> 6) | 0xc0);
$d .= chr(($uv & ox3f) | 0x80);

return $d;

}

if ($uv < 0x10000) {
$d .= chr(($uv >> 12) | 0xe0);
$d .= chr((($uv >> 6) & ox3f) | 0x80);
$d .= chr(($uv & ox3f) | 0x80);
return $d;

if ($uv < 0x200000) {
$d .= chr(($uv >> 18) | oxfo);
$d .= chr((($uv >> 12) & ox3f) | 0x80);
$d .= chr((($uv >> 6) & 0x3f) | 0x80);

Unicode Transformation Formats | 177

$d .= chr(($uv & ox3f) | 0x80);
return $d;

UTF-16BE

Unicode’s own native encoding is the two-byte UTF-16. This is available in big-
endian and little-endian flavors; data sent over a network is expected to be in net-
work order (big-endian).

UTF-16 is very similar to UCS-2; in fact, any UCS-2 encoded data is valid UTF-16BE.
However, UTF-16 is extended to characters beyond the BMP by the use of surrogate
pairs.

The surrogate pair mechanism uses two characters, one from the High Surrogate
Zone, which ranges from U+D800 to U+DBFF, and one from the Low Surrogate Zone,
which stretches from U+DC00 up to U+DFFF. The codepoint of a pair of characters so
used is calculated as (HIGH - 0xD800) * 0x400 + (LOW - 0xDCOO) * 0x10000. With
1024 high and 1024 low surrogates, the surrogate pair mechanism extends UTF-16
with another 1,048,576 characters.

UTF-16LE
UTF-16LE is the little-endian version of UTF-16BE.

ucs-4

UCS-4 is the four-byte ISO 10646 encoding. Whereas UCS-2 encoded just the row
and column coordinates of a character cell in the BMP, UCS-4 encodes the four-
dimensional coordinates of group, plane, row, and column; within the BMP, the first
two bytes of each character will be zero. The advantage of UCS-4 is that it can
encode every single codepoint in the UCS; the disadvantage is that every single char-
acter requires four bytes.

UTF-32

UTF-32 is, roughly speaking, the Unicode equivalent of ISO’s UCS-4. The only dif-
ference is that UTF-32 is restricted to encoding the same range of codepoints as
UTEF-16; it even uses the surrogate pairs mechanism to extend its range beyond those
codepoints. It can therefore be thought of as a wide form of UTF-16, and, like UTF-
16, comes in big-endian and little-endian flavors. Nobody seems to know what it’s
for.

178 | Chapter6: Perland Unicode

UTF-EBCDIC

UTF-EBCDIC is the encoding method designed for EBCDIC systems; it is specified
in Unicode Technical Report 15. It’s not intended as an open interchange format and
should only be used internally to EBCDIC machines. Unless you’re exchanging data
with or using an EBCDIC system, you’re unlikely to need this.

UTF-7

UTF-7 is another of those UTFs you’ll probably never need. It’s used in environ-
ments where eight-bit cleanliness is not guaranteed, such as passing mail through a
VAX. Ergh. But fear not, Perl versions 5.8.1 and higher know how to translate it.

Handling UTF-8 Data

So much for theory. Let’s now look at what Unicode means for Perl.

Let’s suppose we've got some text encoded in UTF-8, and we want to mess about
with it in Perl. You’d think we could just open the file and it would all magically
work, but fortunately, Perl’s not that clever. I say fortunately because we don’t actu-
ally want Perl to automatically treat data as UTF-8; imagine, for instance, handling a
piece of binary data, such as a JPEG image, and Perl obliviously tries to treat it as
UTF-8.

Instead, Perl has two distinct processing modes for data—byte mode and character
mode. The default is byte mode, and this works equally well for binary data and text
encoded in a system that requires one byte per character, such as ordinary Latin 1.
Character mode, on the other hand, treats the data as UTF-8. What does this mean
in practice? Well, let’s suppose we have the following text file, encoded in UTF-8:
iicooe
The UTF-8 representation of that string is:
(3 9C C3 B1 C3 AE (3 A7 (3 B6 C3 BO C3 A8 OA
(0x0A is the newline at the end.)

So we can see that the file itself is 15 bytes long. And if we don’t inform Perl, we get
15 bytes:

% perl -e 'open IN, "foo.utf8"; $a = <IN>; print length ($a)’
15

But we also know that, although there are 15 bytes in the file, there are only 8 UTF-8
characters. So we tell Perl to open the file as UTF-8, and now:

% perl -e 'open IN, "<:utf8", "foo.utf8"; $a = <IN>; print length ($a)’
8

Handling UTF-8Data | 179

Once you have your UTF-8 data correctly treated as UTF-8, everything works as you
would expect; Perl converts the UTF-8 data to its internal Unicode format” on input, and
you can use length (as demonstrated), substr, index, and all other built-in Perl func-
tions on character data, and they’ll use character positions instead of byte positions.

If you get your input and output correct, most of the rest of your problems go away.
Convert your input to Unicode right away, as it enters the program. Convert your
output to the desired encoding at the last possible point, just as it leaves your pro-
gram. This ensures all the data inside your program is Unicode and doesn’t need to
be converted. If you add conversions somewhere inside your dataflow, you run the
risk of performing the conversions more than once, or wrongly concatenating data in
two different encodings. The most common symptom of this kind of problem is out-
putting double encoding—that is, the UTF-8 encoding of the UTF-8 encoding of a
Unicode string. This is similar to entity-encoding text in a web page that’s already
entity-encoded, so a literal > would give you &1t; in the HTML source instead of
the correct 81t;. Convert at the boundaries and let Perl keep track of things inter-
nally—it’s what it’s good at.

Entering Unicode Characters

We’ve looked at how to read in UTF-8 data from external sources (filehandles); how

about generating Unicode from inside our program? There are three main ways to do
this.

The first way is perhaps the most obvious: functions like chr are automatically
extended to produce Unicode strings when they need to. In fact, for lack of a decent
Unicode editor, I generated some of my test files for this chapter using code like this:

binmode(STDOUT, ":utf8");

print chr $_ for

(0x30b8, 0x30a7, 0x30c3, 0x30cb, 0x306f, 0x5927, 0x597d, 0x304d, 0xff01);
In the same way that we told Perl to treat data from a particular input filehandle as
UTF-8, we also need to tell it that a particular output filehandle expects UTF-8 data.
The call to binmode in the previous example sets this UTF-8 handling on a filehandle
that’s already open.

The second way of entering Unicode data is as string literals. In this case the \x nota-
tion is extended beyond \xFF by means of curly braces:

binmode(STDOUT, ":utf8");
print "\x{30B8}\x{30A7}...";

* Perl’s internal Unicode format happens to be UTF-8, but you don’t need to know these implementation
details to be able to use Unicode in Perl unless you write XS code. Use a recent 5.8.x release and simply treat
the internals as a black box.

180 | Chapter6: Perland Unicode

And third, if your Unicode characters happen to have names defined in the Unicode
Standard, you can use the \N literal notation in conjunction with the charnames
pragma.

use charnames ":full";
binmode(STDOUT, ":utf8");

print "I \N{HEAVY BLACK HEART} Unicode\n";

Writing the full names can be tedious sometimes, particularly when you’re entering
characters from particular alphabets. Instead, charnames provides a shorter form to
access characters from particular Unicode blocks:

use charnames ":short";
binmode(STDOUT, ":utf8");

print "\N{hebrew:alef} \N{greek:omega}\n";

This only works where the Unicode name is of the form SCRIPT LETTER NAME or SCRIPT
CAPITAL/SMALL LETTER NAME. Capitals can be obtained, intuitively, by starting the char-
acter name with a capital:

use charnames ":short";
binmode(STDOUT, ":utf8");

print "\N{greek:Sigma}\N{greek:iota}\N{greek:mu}\N{greek:omicron}\N{greek:nu}";
But as you can see, this also gets tedious if you’re working in the same alphabet. The
charnames pragma allows you to import particular alphabets, like so:

use charnames qu(greek hebrew);

binmode(STDOUT, ":utf8");

print "\N{Sigma}\N{iota}\N{mu}\N{omicron}\N{nu}\n";

print "\N{alef}\N{bet}\N{gimel}\n";

On a Unicode terminal, this may output:

Zapov
AR

Notice that although Perl outputs the Hebrew characters in alphabetical order, the
terminal is responsible for handling the right-to-left aspects of the Hebrew output.

Of course, perhaps the most intuitive way of all for getting Unicode characters into
Perl literals is simply to dump them into the middle of a string. You can do this, so
long as you use the utf8 pragma. Perl allows you to use Unicode characters for string
literals, comments, and, if you feel so inclined, the names of Perl identifiers.

Unicode Regular Expressions

Perl’s regular expression engine supports what it calls polymorphic regular expres-
sions; when matching against Unicode data, regular expression operators have char-

Handling UTF-8Data | 181

acter semantics, and when matching against non-Unicode data, the same regular
expressions have byte semantics. No change to your code is needed to make regular
expressions do the right thing in each context.

What does it mean for a regular expression to have character semantics? The first
and most obvious thing is that operators such as . don’t just match a single byte, but
match an entire Unicode character:

use charnames qw(katakana);
binmode(STDOUT, ":utf8");

$x = "\N{sa}\N{i}";
$x =~ /(.)$/;
print $1;
This prints -, the last character in the string, instead of the last byte in the UTF-8

representation, which is \xA4. So far so good—Perl does what you mean.

If this isn’t what you mean, and you do want to slice up a string into its component
bytes, you have two ways of doing so; the first is the lexically scoped use bytes
pragma, which pretends we are in 5.005 land, where Unicode does not even exist:

use charnames qw(katakana);
binmode(STDOUT, ":utf8");

$x = "\N{sa}\N{i}";

{

use bytes;

$x =~ /(.)$/;

printf "\\x%X\n", $1;
}

This one does, indeed, print out \xA4. Your other alternative is to use the new \C
match operator, which matches an individual byte.” Both of these methods require
some caution, as they make it easy to generate ill-formed UTF-8.

Other properties of Unicode regular expressions are much friendlier. For instance,
character classes such as \d and \w take their definitions from the Unicode Standard;
we now know about more numbers than just our Arabic digits:

use charnames qw(:full);
binmode(STDOUT, ":utf8");

$x = "Some numbers: \N{DEVANAGARI DIGIT TWO}\N{DEVANAGARI DIGIT SIX}";
print "Found a number: $1" if $x =~ /(\d+)/;

Found a number: R %

* \C was named, perhaps unwisely, after C’s char data type—char, of course, is a byte, not a character.

182 | Chapter6: Perland Unicode

Sadly, there’s no easy way to get at the digit value yet, and non-Arabic numbers do
not convert between strings and numbers in the usual Perl way. You cannot (yet) say
"\N{DEVANAGARI DIGIT TWO}" + 3 to get5.

The Unicode Standard also declares that particular characters have particular proper-
ties, and regular expressions can match against these properties using the \p{...}
notation. For instance, $, ¥, and € all have the Unicode CurrencySymbol property so /
\p{CurrencySymbol}/ matches against them. A negated version, \P{...}, matches all
characters that don’t have the named property.

Finally, Perl provides the \X shortcut for matching complete decomposed characters.
Many characters in the Unicode character repertoire can combine with a myriad vari-
ety of accents, marks, voicings, and other decorations; naturally, it’s not practical for
the character repertoire to include all possible combinations of marks on each char-
acter. Instead, base characters can be followed by combining characters that should
all be treated as a single unit. For example, as Table 6-1 shows, the polytonic Greek
character ¥ can be broken down (decomposed) into three constituent parts.

Table 6-1. Decomposing Unicode characters

Q) 1 N +
GREEK SMALL LETTER UPSILON COMBINING DIAERESIS COMBINING ACUTE ACCENT

\X allows you to match these single decomposed units:
% perl -le 'my $x = chr(0x03c5).chr(0x0308).chr (0x0301); $x="/(\X)/ and print length
$1'
3

In general, you should use \X rather than . to pick out individual, meaningful charac-
ters; for example, I was recently asked to write some code that displayed names verti-
cally by putting a newline in between each character.” Doing this with print "$ \n"
for $name =~/(.)/g led to the occasional surprise with decomposed data:

L

0
i

S

The right answer, of course, was to use /(\X)/g:

w o

* Thankfully, I was guaranteed that the names would not be in any of the right-to-left or top-to-bottom scripts,
which would have led to a whole world of pain.

Handling UTF-8 Data | 183

The most important thing for most people to know about handling

Unicode data in Perl, however, is that if you don’t ever use any Uni-

1+ code data—if none of your files are marked as UTE-8 and you don’t

" use UTF-8 locales—then you can happily pretend that you’re back in
Perl 5.005_03 land; the Unicode features will in no way interfere with
your code unless you're explicitly using them. Sometimes the twin
goals of embracing Unicode but not disturbing old-style byte-oriented
scripts has led to compromise and confusion, but it’s the Perl way to
silently do the right thing, which is what Perl ends up doing.

Encode

Life would be so much easier if everything in the world was already Unicode. We’d
have this one standard data interchange format, data processing would be trivial,
world peace would be easily achievable, and Perl programmers could get back to
finding cures for cancer and watching Buffy the Vampire Slayer DVDs.

Sadly, that hasn’t happened yet, and we still have to deal with a wide variety of char-
acter encodings in existing data. Based on initial work by Nick Ing-Simmons, Dan
Kogai has produced the Encode family of modules, which do an admirable job of con-
verting data between various character encodings and Perl’s own internal format.
We’ll examine these modules in a little more detail later in the chapter.

Suppose I have some text in Shift JIS, the standard Japanese encoding for Windows
machines, and [want to manipulate it in Perl. I can read the bytes from a file into the
scalar $text, but Perl sees opaque bytes, rather than a sequence of Unicode charac-
ters. So I need to start by changing it into Perl’s internal format, using the Encode
function decode:

use Encode;

my $intern = decode("shiftjis", $text);
The text in $intern is Unicode characters, which Perl can understand. Internally, Perl
stores them as UTF-8, but unless you’re dealing directly with Perl’s internals, the repre-
sentation of Unicode characters isn’t important. Because ASCII is a strict subset of
UTF-8, $intern is also a valid ASCII string if the input happened to contain only char-
acters in the ASCII range (though, given that it was initially Japanese, this is unlikely
here). Indeed, on a UTF-8 terminal, I can now print out $intern as Unicode text:

binmode(STDOUT, ":utf8");

print $intern;
Or, I can perform the same conversion on the command line using the -C command-
line option to set STDOUT to UTF-8:

% perl -C2 -MEncode -MFile::Slurp\
-e 'print decode("shiftjis", read_file("japanese.sjis"));"

N—JLRXRFE!

184 | Chapter6: Perland Unicode

The -C command-line option sets UTF-8 handling on STDIN, STDOUT,
as STDERR, @ARGV, and the Per1I0 layer. The PERL_UNICODE environment vari-
1kt able is equivalent and takes the same options as -C. These are available
" in Perl Versions 5.8.1 and higher. Read more in the perlrun documenta-
tion file.

There’s also a corresponding function called encode for turning data from Perl’s
internal representation into another representation; we can use these two functions
to make a cheap and cheerful character set convertor:

#!/usr/bin/perl -n0 -MEncode
BEGIN{($from, $to) = splice @ARGV,0,2};

print encode($to, decode($from, $));
This allows us to say, for instance:
% transcode shiftjis euc-jp < japanese.sjis > japanese.euc

to convert a file between two of the more common Japanese encodings. (Transcod-
ing is the jargon for converting from one encoding to another.)

A w
y

The conversion direction of the two functions encode and decode isn’t
instantly memorable. It may help to remember that the Perl inter-
N preter only understands UTF-8 and subsets of UTF-8 (ASCIL, Latin 1),
" and so anything else needs decoding before the interpreter can under-
stand it as text.

How do we know what encodings are available? Well, we can ask Encode to tell us:

% perl -MEncode -le 'print for Encode->encodings(":all")’

7bit-jis
AdobeStandardEncoding
AdobeSymbol
AdobeZdingbat

ascii

We use the :all parameter to include not just the standard set of encodings that
Encode provides, but also those defined in any Encode: :* modules that it’s been able
to find; for instance, many of the Japanese encodings are stored in Encode: : JP.

There’s also a handy shorthand for transcoding, called from to. The only thing to
note about this is that it converts the string in-place, modifying its input.

Encode | 185

The PerllO Trick

Perl 5.8.0 came with a very neat feature called PerllO, which is a complete standard
/O library written exclusively for Perl. Normally, this would only excite really hard-
core Perl maintainers (I must confess to being pretty baffled by most of it), but it pro-
vides a number of useful hooks to allow Perl modules to play about with any data
going through the I/O system.

The upshot is that you can tell Perl to automatically encode and decode data as it’s
read from and written to a filehandle. If we want to transcode a file from Shift-JIS to
EUC, we can just say:

use Encode;

open IN, "<:encoding(shiftjis)", "data.jis" or die $!;

open OUT, ">:encoding(euc-jp)", “"data.euc" or die $!;

print OUT <IN>;
Anything read from IN will be decoded from Shift-]JIS into Perl’s internal format; sim-
ilarly, anything written to OUT will be encoded as EUC.

The Gory Details

A w
< You should probably not read this section unless you’re either work-
.‘s‘ ing with XS code that handles Unicode data, or if you're doing
T Gk extremely clever things with Unicode and you can’t get Encode to do

what you want.

There are two dirty secrets about Encode and handling Unicode data in Perl. The first
dirty secret is that Perl knows very little about Unicode, but it knows a lot about UTF-8.
That’s to say, Perl primarily cares about whether or not a string is UTF-8 encoded, and it
cares little about the string’s actual character code; knowing that a string is encoded in
UTEF-8 does not tell you whether it’s Unicode, Latin 1, or anything else. Perl does not
keep track of the character code anywhere, but assumes, for the purposes of regular
expression matching, that things that are marked as UTF-8 will be Unicode. Many of the
problems that people have with Unicode come about by thinking that once they’ve got
data in UTF-8, they can do Unicode things with it; that’s not the case. Similarly, you
can’t assume anything about the character coding of a string that isn’t UTF-8. It might be
Latin 1, but it might be something else entirely.

A
o UTF-8 is just a character encoding, and it implies nothing about char-
. .
:;’\‘ acter repertoires.

The other dirty secret is how Perl decides how to treat a string. There isn’t a global
setting as to whether we’re in byte or character mode; the decision about what to do
with a string is made on a string-by-string basis. Each Perl string has a flag inside it

186 | Chapter6: Perland Unicode

that determines whether it’s in UTF-8 encoding or not. There’s only one flag to
determine both whether a string is internally stored as UTF-8, and whether a string is
to be treated with Unicode semantics by the regular expression engine and functions
such as lc. So, if a string is converted to UTF-8 internally, it will be treated as Uni-
code.”

This has historically led to some interesting conundrums with what to do when data
of one type meets data of another. Take this piece of Perl code:

my $acute = chr(193);
print $acute;

$identity = $acute . chr(194); chop $identity;
print $identity;

$itentity = $acute . chr(257); chop $identity;

print $itentity;
Character 193 in Latin 1 is a capital A with acute accent (A), so when I run this, I
would expect to see AAA. This works nicely on Perl 5.8.0, but on Perl 5.6.0, I see AAA.

This is a leakage of what’s going on inside Perl’s Unicode support. When our non-
UTF-8 string ($acute) meets the UTF-8 string chr(257), Perl has to recode the origi-
nal character in UTF-8 before concatenating it. This is to avoid situations where the
original string contains valid UTF-8 representations of a completely different charac-
ter. It’s similar to the situation where you have to escape text before putting it inside
HTML, as symbols like <, >, and & have different meanings there.

So our A is now encoded in UTF-8, and when Perl 5.6.0 comes to print it out, it
prints the UTF-8 bytes. The first byte is character 195, A. Oops. Perl 5.8.0 corrects
this by attempting to downgrade strings from UTF-8 to Latin 1 when they’re output
to filehandles not explicitly marked as UTF-8, but it gives you an idea of the shenani-
gans that are required to make the byte-character duality work.

What does this mean for troubleshooting Unicode problems? Well, the most com-
mon problems occur when a scalar’s internal UTF-8 flag is incorrectly set and Perl
treats the string with the wrong semantics. If the flag is wrongly turned off, then Perl
treats what should be a Unicode string as a sequence of bytes. These bytes are the
UTF-8 encoding of the Unicode characters, because Perl’s internal representation of
Unicode has been accidentally exposed. If the flag is wrongly turned on, then Perl
provides Unicode semantics for that scalar and treats whatever sequence of bytes
were in the scalar as UTF-8. Perl’s internals will expect the bytes to be valid UTF-8,
and will issue loud warnings if they are not. The easiest way to get this internal flag
incorrect is by marking a filehandle as UTF-8 when it is not, or forgetting to mark it
when it is.

* Arguably this is a bug, but it’s one we have to live with until Perl 6.

Encode | 187

For instance, writing this chapter, I had my sample file containing Ufii¢sse, encoded
in UTF-8, and I ran the following code in a UTF-8-aware terminal:

open IN, "<:utf8", "foo.utf8" or die $!;

$a = <IN>;

print $a;
I was mildly surprised to get gibberish thrown back at me—since I know how the
internals store Unicode—until I remembered what was going on: standard output
was not marked as expecting UTF-8, so Perl automatically downgraded the string to
Latin 1 on printing it. The downgraded string was not valid UTF-8, so my terminal
went mad. The upshot is that this new-fangled Unicode-aware Perl code didn’t work
on a new-fangled Unicode-aware terminal, although it works just fine on an old-fash-
ioned Latin 1 terminal.

The Encode module allows you to generate the UTF-8 encoding of any Perl string
with encode("utf8", $string).

use Encode;

open IN, "<:utf8", "foo.utf8" or die $!;

$a = <IN>;
$b = encode("utf8", $a);
print $b;

This made my UTF-8 terminal happy again, because Perl’s output is a string of bytes
that is valid UTF-8. Perls doesn’t know (or care) that the characters $b contains hap-
pen to be UTF-8. They’re just characters between 0 and 255, and as standard output
is taking bytes (the default), it will output one byte per character. If we were to ask
Perl for the lengths of the two strings, we’d see that $a had 8 characters and $b had
15. As internals gurus we know that they are probably stored in memory as the same
sequence of bytes, but the interface Perl presents to the programmer is that strings
are built from characters, and how those characters are stored should remain hidden.

If you have the opposite problem—data that you believe to be Unicode but which
Perl is still storing as a sequence of UTF-8 bytes—you can convert a string to Uni-
code using decode("utf8", $string). These functions can be handy for ensuring that
data coming into or going out of your routines will be in the form you expect.

So far we haven’t worked out how to determine whether any given string uses byte or
character semantics, because the Perl way is that you shouldn’t have to care and Perl
should transparently do the right thing. But since we’re discussing how to deal with
situations where Perl is not doing the right thing, let’s look at how to deal with the
UTF-8 flag directly.

Encode provides three internal-use functions that we can import on demand: is_utf8,
_utf8 on,and utf8 off.

Let’s suppose we’ve just read some data from an I/O socket, using read. By default,
Perl will assume that this data has byte semantics. The only thing that can determine

188 | Chapter6: Perland Unicode

whether the string is bytes or UTF-8 encoded characters is the specification for the
protocol that we’re reading—are we expecting to see UTF-8 data? If we are, then we
can take advantage of our knowledge that Perl stores its Unicode strings internally as
UTF-8. We just need some way of telling Perl to treat the data that it just read as
Unicode. utf8 on comes to our rescue here:

use Encode qw(_utf8 on);

my ($length, $data);

read(SOCKET, $length, 2);

read(SOCKET, $data, $length);

_utf8 on($data);
Now we can use $data with the correct semantics. There is another way to achieve
the same effect without using Encode; whether it is considered more or less ugly is a
matter of taste. It relies on the new U modifier to pack—pack("U", $number) is now
equivalent to chr($number). The difference is that if U is the first template in the call
to pack, it is guaranteed to return a UTF-8-on string:

use Encode gw(is_utf8);

$s1 = chr(70);

print "String 1 is ", (is_utf8($s1) ? "" : "not "), "UTF-8 encoded\n";

$s2 = pack("C", 70);

print "String 2 is ", (is_utf8($s2) ? "" : "not "), "UTF-8 encoded\n";

$s3 = pack("U", 70);

print "String 3 is ", (is_utf8($s3) ? "" : "not "), "UTF-8 encoded\n";
This produces:

String 1 is not UTF-8 encoded

String 2 is not UTF-8 encoded

String 3 is UTF-8 encoded
To force a string to be treated as containing Unicode characters, we create a pack for-
mat that begins with U, but packs zero characters. Internally, pack creates a string
with the UTF-8 flag set. Then we fill the string up with ordinary characters using the
C* pattern—this special pattern tells pack to ignore whether the scalars are internally
encoded as UTF-8 and to directly use the raw bytes stored, so it will fill up the string
with whatever UTF-8 encoded bytes you throw in. You’re directly manipulating the
internal representation of scalars here, so you need to be sure of what you’re doing—
pack won’t check that the UTF-8 sequence it is building is valid. In this case, as long
as we pass in valid UTF-8 byte sequences, all will be fine. The end result is to turn on
Perl’s internal UTF-8 flag without changing the raw bytes, which makes Perl treat
those bytes as Unicode characters. The code to do this looks like this:

$string = pack("UoC*", unpack("C*", $string));

Encode | 189

Another useful feature is the bytes pragma, which lexically turns off any kind of
UTF-8 processing and allows you to see any string as its byte representation, no mat-
ter what:

open IN, "<:utf8", "foo.utf8" or die $!;

$a = <IN>;
chomp $a;

print length $a; # 8

{

use bytes;
print length $a; # 15
}
This can be handy if we’re dealing with data that has to be sent over a network con-
nection, or packed into a fixed-length structure.

Unicode for XS Authors

If you write XS routines, Unicode means a whole new set of rules for processing
strings. Standard C tricks for iterating over the characters in a string no longer work
in the Unicode world. Instead, Perl provides a series of functions and macros that
make handling Unicode strings a little easier.

Traversing Strings

The first problem everyone comes across is that they have a large amount of legacy
code that assumes that everything is in some seven- or eight-bit character encoding,
and they can write:

while (*s++) {

/* Do something with *s here */

}
Along comes a string that has its data encoded in UTF-8, and it all goes horribly
wrong. What can we do about this situation?

First, we should take note that this situation means we can no longer pass raw char*
strings around; we need to know whether or not such a C string is encoded in UTF-8.
The most obvious way to do that is to pass around SVs instead of char*s, but where
this isn’t possible, you either need to use an explicit interface convention between the
functions of your XS code, or pass around a boolean denoting the UTF-8 encoding of
the string.

Once we have a string and know whether it’s supposed to be encoded in UTF-8, we
can use some of Perl’s Unicode handling functions to help us walk along it. The most
obviously useful one is utf8_to_uvchr, which pulls a code point out of a string:

STRLEN len;
while (*s) {

190 | Chapter6: Perland Unicode

W ¢ = utf8 to uvchr(s, &len);
printf("Saw a character with codepoint %d, length %d\n", c, len);
s += len;
}
Perl deals with Unicode codepoints as UVs, unsigned integer values. This actually
gives Perl support for UTF-8 characters beyond the range that the Unicode Standard
provides, but that’s OK. Maybe they’ll catch up with us one day.

If you want to avoid extra work in the case of invariant characters—those that look
just the same in UTF-8 and in byte encodings—you can use the UTF8_IS INVARIANT()
macro to test for this:
while (*s) {
if (UTF8_IS_INVARIANT(*s)) {
/* Use *s just like in the good old ASCII days */
S++;
} else {
STRLEN len;
W c = utf8 to uvchr(s, &len);
/* Do the Unicode thing. */
s += len;

}

If you’re not interested in looking at the Unicode characters, you can just skip over
them, but you have to do this in a sensible way. If you just skip the first byte in the
character, you can end up horribly misaligned and seeing characters that aren’t there.
Instead, use the UTF8SKIP() macro to fetch the length of the character, and use that
to skip over it:
while (*s) {
if (UTF8_IS INVARIANT(*s)) {
/* Use *s just like in the good old ASCII days */
S++;
} else {
/* Don't care about these scary high characters */
s += UTF8SKIP(*s);
}

Encoding Strings

As well as getting data out of strings, we might occasionally find ourselves wanting to
put Unicode characters into a string. We can do this in a number of ways. First, we can
enter characters one codepoint at a time, much in the same way as we traversed strings
one character at a time. When getting Unicode codepoints out of strings, we used
utf8_to_uvchr, so it should be no surprise that to put Unicode codepoints into strings,
we can use uvchr_to_utf8. As UTF-8 is a variable-length encoding, we cannot infer the
number of bytes needed to store our string from the number of characters, so

Unicode for XS Authors | 191

allocating the correct amount of memory is tricky. The easiest thing to do is loop twice,
once to work out the number of bytes needed, and once to act.

/* Convert an array of numbers into a Unicode string */

132 len, i;

STRLEN strlen = 0;

SV* sv;

char* s;

len = av_len(av) + 1;

for (i = 0; i < len; i++) {
SV¥* sav = av_fetch(av, i, 0);
if (! sav) continue;
strlen += UNISKIP(SvUV(*sav));
}

/* Allocate space for the string */
sv = newSV(strlen);
s = SVPVX(sv);

for (i = 0; i < len; i++) {

SV¥* sav = av_fetch(av, i, 0);

if (! sav) continue;

s = uvchr_to utf8(s, SvUV(*sav));
}

/* Perl internally expects a NUL byte after every buffer, so write one */
s ='\0";

/* Tell Perl how long our scalar is, that it has a valid string
buffer, and that the buffer holds UTF-8 */

SVCUR_set(sv, strlen);

SVPOK_on(sv);

SVUTF8 on(sv);
As can be seen from this example, uvchr_to utf8 returns the advanced pointer after
the new character has been added. This is the recommended UTF-8-aware way of
adding a character to a buffer, unlike *s++ = c;, which assumes all characters are the
same size. The UNISKIP function returns the number of bytes required to UTF-8-
encode a Unicode codepoint.

If we have a string that is Unicode but stored as bytes instead of UTF-8, you can use
the sv_utf8 upgrade function, which converts an existing SV to UTF-8. Conversely, if
you have a string that is valid UTF-8 but Perl doesn’t know that fact yet, you can use
the SVUTF_on(sv) macro to turn on the UTF-8 flag:

sv_gets(sv, fp, 0);

/* But we expect that to be Unicode */
SVUTF8 on(sv);

192 | Chapter6: Perland Unicode

Of course, the problem here is that we haven’t checked that the data really is valid
UTF-8 before telling Perl that it is. We can do this with is utf8 string to avoid
problems later:

STRLEN len;
char *s;

sv_gets(sv, fp, 0);
s = SvPV(sv, len);
if (is_utf8 string(s, len)) {
SVUTF8 on(sv);
} else {
/* Not really UTF-8-what is going on? */
}

Transcoding with XS is quite tricky, and you would be best doing that stage in Perl.
There are plans to allow easy transcoding from C in the future, but for the moment,
the only available option is to do something like this to get an Encode: : XS object:

ENTER;
SAVETMPS;

PUSHMARK (sp) ;

XPUSHp("euc-jp", 6);

PUTBACK;

call pv("Encode::find_encoding", G_SCALAR);
SPAGAIN;

encoding obj = POPs;

PUTBACK;

And then use this object to perform decoding and encoding:

PUSHMARK (sp) ;
XPUSHs (encoding obj);
XPUSHs (euc_data);
XPUSHi(0);
PUTBACK;
if (call method("decode", G SCALAR) != 1) {
Perl die(aTHX "panic: decode did not return a value");
}

SPAGAIN;

uni = POPs;

PUTBACK;
It isn’t pretty, but it works. The code in ext/PerlIO/encoding/encoding.xs in the Perl
source tree is probably the only example of this around at the moment.

Conclusion

Perl’s Unicode support has developed slowly and steadily over the past few versions,
but it is now at a point where one can write major programs with core Unicode com-
ponents. Hopefully this chapter has shown you some of the things that Perl’s Unicode

Conclusion | 193

support can allow you to do and how deploying Unicode can save a lot of hassle with
alternate character repertoires.

We’ve looked at the differences between Unicode and legacy encodings, and the vari-
ous different UTF encodings. As we have noted, Perl speaks UTF-8 internally but
tries hard to allow users to use Unicode features without knowing anything about
the internal representation.

Perl’s support for Unicode extends to distinguishing between character and byte
semantics, providing Unicode character escapes and names, and transcoding mod-
ules to allow easy input of legacy data.

We've also seen what to do if Unicode doesn’t behave as you might expect, and how
to convert old XS code to support Unicode data.

194 | Chapter6: Perland Unicode

CHAPTER 7
POE

In this chapter, we’re going to look at what Mark-Jason Dominus called “the most
interesting development in Perl 5”: the Perl Object Environment. POE has many
goals and many uses; to give a few of them:

* Provide a cooperative scheduling and multitasking environment rivalling threads
and IPC

* Simplify the development of protocol-driven network clients and servers
* Provide an architecture for creating state machines

* Abstract away a lot of the boring I/O details from complex programs

As you can see, POE is a difficult thing to describe,” but the main point is that POE
attempts to hide the menial details of event-driven programming.

Programming in an Event-Driven
Environment

If you’ve ever programmed a graphical application using something like Tk or Gtk,
you’ll know that it’s a little different than ordinary procedural programming. In nor-
mal programming, you write a sequence of things you’d like the program to do, and
it does them. However, GUIs don’t work like that—instead, you set up an environ-
ment (a window, for instance) that responds to certain events (clicking a button or
selecting a menu item). This is called the event-driven paradigm.

It’s not just GUIs that use this paradigm. For example, a network server does not do
a sequence of events, but it sits waiting for a connection (an event), and then ser-
vices the connection depending on the input from the client. When the client is done
and disconnects, it goes back to waiting for the next event.

* It’s been described as a small operating system implemented in Perl, and this isn’t too far from the truth—it
has kernel, which contains a scheduler; it has I/O abstraction layers; and so on.

195

Similarly, you could write something that watches over a directory; it sits around
watching, periodically looking at the files in the directory, and as it detects changes
made to the files, it fires off certain responses.

The core of the event-driven paradigm is the event loop, sometimes called the main
loop. Tk has one, the Event module has one, and POE, an event-driven environment,
has one. POE’s event loop is handled by the POE kernel.

As we’ve said, POE can be thought of as a minute operating system, and so the name
kernel is no coincidence. When an ordinary operating system’s kernel has finished
setting up the working environment, it too sits back and waits for events. These can
be system calls from user space, or they can be hardware interrupts. As well as servic-
ing events, it takes care of passing messages between different components—typi-
cally communication between processes (IPC).

POE’s kernel also services events and handles communications between different
parts of the POE world, although the equivalent of processes are called sessions.

Hello, POE

There’s been a lot of talk so far and very little code, so let’s rectify this with a brief
example.

use POE;

POE: :Session->create(
inline states => {
_start => \&start,
hello => \&hello,
s

)5

print "Running Kernel\n";
$poe_kernel->run();
print "Exiting\n";
exit(0);

sub start {
my ($kernel) = $_[KERNEL];
print "Setting up a session\n";
$kernel->yield("hello");

}

sub hello { print "Hello, world\n"; }

This is the POE equivalent of the famous Hello World program. If we’re going to
continue to think in operating system terms (which will shortly become unhelpful,
but will do for now) then we’re starting up a machine’s kernel and creating a single
process that prints out Hello World and then exits. Let’s look at the different pieces
of this in turn.

196 | Chapter7: POE

use POE;
print "Running Kernel\n";
$poe_kernel->run();
print "Exiting\n";
exit(0);
This is the core of any POE program; the variable $poe_kernel is provided by the POE
module and represents the POE kernel itself. In many cases the call to run will never
return; for instance, a network server should sit in a loop accepting new connections
until something awful happens. In our case, however, we’re only setting up one brief
session that soon terminates. Newer code may prefer to say POE: :Kernel->run, which is
pretty much the same.
POE: :Session->create(
inline states => {
_start => \&start,
hello => \&hello,
I
)s
This creates a session. A session can be thought of as a state machine with multiple
states, or as a handler for multiple events—the two representations are equivalent. In
state-speak, the preceding example defines two states in the inline_states parame-
ter passed to the constructor. States whose names begin with an underscore are pre-
defined by POE, whereas all other states are user-defined. The session automatically
enters the _start state after it has been successfully constructed.

If you prefer an event-driven explanation, then we say that our session responds to
the start event and the hello event, and POE posts a _start event to the session as
soon as it has been created.

There are other predefined events, most of which are to do with parent/child rela-
tionships and signals; there’s the _stop event, which is posted when a session is due
to finish. Let’s now see how we handle the events that we’ve defined:
sub start {
my ($kernel) = $ [KERNEL];
print "Setting up a session\n";
$kernel->yield("hello");
}

sub hello { print "Hello, world\n"; }

We pass our start handler a number of parameters, one of which is a handle on the
POE kernel. We extract this from the parameter list using the KERNEL constant. For
the sake of efficiency, POE uses constants like this for indexes into @_, rather than a
parameter hash. You’ll often see POE state handlers that start something like this:

my ($kernel, $heap, $session) = @ [KERNEL, HEAP, SESSION];

This is just an ordinary array slice with constant indexes, returning the POE kernel,
the heap, and the current session object. The heap is a place where a session can

Programming in an Event-Driven Environment | 197

store its private, per-session stuff. We’ll come back to what sort of stuff is good to
store in a heap later.

Now that we have the kernel, what do we do with it? Well, we tell it that we want to
be in another state, the hello state:

$kernel->yield("hello");

We’re yielding because we’re posting an event to the current session; if we had
stored a handle to another session, we could communicate with it by posting an
event to it using the post method. We’ll see examples of this later on.

So our start-up state has told the POE kernel that soon we want to move to the hello
state. This will not happen, however, until the next time POE runs over its event
loop. Once we run the loop with $poe_kernel->run, the kernel looks at its list of
pending tasks, finds that the first thing it needs to do is move our session into the
hello state, and fires off the appropriate handler. Then it prints our Hello, world!
message.

Hello, Again, POE!

Suppose we now want the message to repeat every five seconds. We could, of course

do this:

sub hello {
my ($kernel) = $ [KERNEL];
print "Hello, world!\n";
sleep 5;
$kernel->yield("hello");

}

However, this is no way to behave in a cooperative multitasking environment. We
can’t simply hog the whole kernel for five seconds, because other sessions may
have things to do: there might be things coming in from the network that need
immediate servicing, and so in. Instead, we need to allow the kernel to schedule
the hello state for five seconds in the future. We do this with the delay set method
to the kernel:
sub hello {
my ($kernel) = $_[KERNEL];
print "Hello, world!\n";
$kernel->delay set("hello", 5);
}

Now we’re a little more polite. Let’s now see what we can do with two different ses-
sions running. Here’s some code lightly modified from Matt Sergeant’s wonderful
POE tutorial (hitp://www.axkit.org/docs/presentations/tpc2002/poe/):

use POE;

for my $session_no (1..2) {
POE: :Session->create(

198 | Chapter7: POE

inline states => {
hello => \8hello,
_start => sub { $ [KERNEL]->alias set("session " . $session_no) },
D;
}

$poe_kernel->post("session_ 1", "hello", "session 2");
$poe_kernel->run();
exit(0);

sub hello {
my ($kernel, $session, $next) = @ [KERNEL, SESSION, ARGO];
print "Event in ", $kernel->alias list($session), "\n";
$kernel->post($next, "hello", $session->ID);

We’ve seen much of this before; we create a session (this time, we create two of
them) that has a start handler and a handler for the hello event. Notice that both ses-
sions are sharing the code for the two handlers (_start and hello), although the data
passed to the code will be quite different in each case.

This time, the start handler does something a little different from the previous pro-
gram. It tells the kernel to register an alias for this session. Each session has an inter-
nal ID (which we also use later in the program) but that’s really known only to POE
when the sessions are created. By registering a programmer-friendly alias, we get a
handle by which we can refer to the session later in the program.

Again in order to be programmer-friendly, we can ask the kernel for a session’s alias
in order to output our messages in an understandable manner:

print "Event in ", $kernel->alias list($session), "\n";

Now that we have two sessions going on, we need to tell the kernel which of them is
going to start the action, and we do this by posting a hello event to session 1,
referred to by its alias:

$poe_kernel->post("session_1", "hello", "session 2");
When we’re posting or yielding events, we can pass additional parameters with the
event, which get passed in to the event’s handler. These arguments arrive in @_ start-

ing at position ARGO. If we had many arguments, we could say something like this to
collect them all up:

my ($kernel, $session, @args) = @ [KERNEL, SESSION, ARGO..$#];

But here we are only interested in the first argument, which is the name of the next
session to call. Session 1 passes control to session 2, and vice versa. Now that we’re
up and running, we don’t need to be programmer-friendly any more, so we can iden-
tify the next session to run by its internal session ID:

$kernel->post($next, "hello", $session->ID);

This says “I'm calling you now, and next time around you call me (by ID).”

Programming in an Event-Driven Environment | 199

With these two sessions running, we now have a cooperative multitasking environment:

Event in session 1
Event in session 2
Event in session_1
Event in session 2

However, if we’re going to do anything interesting with our newfound environment,
we have to start looking at POE’s provisions for more complex 1I/O.

Wheels

Wheels are the driving force (hah, hah) of POE’s I/O system. A wheel is a connec-
tion to the outside world that generates events. You can think of wheels as POE’s
equivalent to filehandles, but there’s more to them than that.

The simplest wheel to understand is POE: :Wheel: :FollowTail, which follows an ever-
growing file. You give a filename to the wheel, and it generates events when that file
has more data in it. Here’s a nice compact example:

use POE qw(Wheel::FollowTail);

POE: :Session->create(
inline states => {
_start => sub {
my ($heap) = $_[HEAP];
my $log watcher = POE::Wheel::FollowTail->new(
Filename => "my log file.txt",
InputEvent => "got record",

)s

$heap->{watcher} = $log watcher;

b
got_record => sub { my $record = $ [ARGO]; print $record,"\n"; }

}
)s

$poe_kernel->run();

First, notice the compact way of loading up multiple POE modules; any parameters
to use POE will be interpreted as module names under POE: : and use’d in turn.

As before, we have two states. The got_record state is nice and easy to understand: it
prints its argument. Let’s have a look at the start state in a little more detail,
though:

my $log watcher = POE::Wheel::FollowTail->new(
Filename => "my log file.txt",
InputEvent => "got record",

)s

200 | Chapter7: POE

The job of our start state is to set up our wheel. We tell the wheel to watch the file
my_log_file.txt and post a got_record event every time it sees a new line.

What do we do with our wheel? We’d like it to persist for the duration of the ses-
sion—else it’s pretty useless—but as it’s just an ordinary Perl object, it’ll be
destroyed at the end of the current block if we don’t store it somewhere. Now we see
the immediate value of having a per-session storage area, the heap:

my ($heap) = $ [HEAP];

$heap->{watcher} = $log watcher;

And this is all we need; the wheel happily sits there watching the file and generating
events, and our event handler prints out the line that was seen. Now let’s add
another wheel into the equation.

Let’s suppose, for some reason, our log file is actually binary data and we want to
print out new lines in hexadecimal using the hexdump command.”

The POE: :Wheel: :Run wheel handles I/O with regard to external programs. We can
simply create a wheel that calls hexdump, and feed it the data we get:

use POE gw(Wheel::FollowTail Wheel::Run);

POE: :Session->create(
inline states => {
_start => sub {
my ($heap) = $_[HEAP];
my $log watcher = POE::Wheel::FollowTail->new(
Filename => "my_log file.txt",
InputEvent => "redirect",

);

my $dumper = POE::Wheel::Run->new(
Program => "/usr/bin/hexdump",
StdoutEvent => "print"

)s

$heap->{watcher} = $log watcher;
$heap->{dumper} = $dumper;

b

redirect => sub {
my ($heap, $data) = @ [HEAP, ARGO];
$heap->{dumper}->put($data);

b

* If you don’t have a hexdump command in your operating system, demand one! You can also mock one with
Perl, of course. Something like this ought to do the trick:
my $i = -16;
binmode(STDIN);
my $data; $|++;
printf "%07x ". ("%02x%02x "x8)."\n", $i+=16, map ord, split//,$data
while read STDIN, $data, 16;

Programming in an Event-Driven Environment | 201

print => sub { my $record = $ [ARGO]; print $record, "\n"; }
}
)s

Let’s look at a diagram of what’s going on in Figure 7-1.

my_log_file.txt

FollowTail

Figure 7-1. Filtered log tailing

The FollowTail wheel feeds data into the program and sends it to the session, which
sends it straight back out to the Run wheel, which in turn generates print events and
prints the data. Wonderful.

Except it doesn’t work. If we try and run this with an ordinary Unix hexdump, all our
data disappears into the ether and is never seen again. But here’s an interesting thing:
if we use our makeshift Perl hexdump, it works just fine. Can you guess why this is?

The key is in the magic $|++ in our version. The system’s hexdump buffers its output
completely if it senses that it’s connected to a pipe. Since our program isn’t sup-
posed to terminate, hexdump just sits there buffering data until we break, at which
point everything is lost. We need to trick hexdump into thinking that it’s connected to
a real terminal. Unsurprisingly, POE provides a way to do this:
my $dumper = POE::Wheel::Run->new(
Program => "/usr/bin/hexdump",
Conduit =>
StdoutEvent => "print"
)
There are various other wheels you can fit together like this: POE: :Wheel::Curses
reads data using the non-blocking Curses interface library, whereas POE: :Wheel::
ReadLine uses Term: :ReadKey to implement a line-based editable console input inter-
face. POE: :Wheel::ListenAccept is a low-level socket-based listener. We’ll look at two
of the more important wheels in our next example, POE: :Wheel: :ReadWrite and POE: :
Wheel: :SocketFactory.

202 | Chapter7: POE

A Port Forwarder

You know the story. You’re at work. You’re behind an aggressive firewall that won’t
let you IRC. You simply can’t work without IRC, so you perform some nasty shenan-
igans. You’re going to set up some forwarders so that when you connect to port 6667
on your local machine, it heads off to port 80 (which is allowed through the firewall)
on your hosted box out in the real world. Then another forwarder will listen on port
80 of that machine and forward connections through to port 6667 on the IRC server.
You set your IRC client to connect to localhost, and, boom, you’re connected right
through. Let’s see how POE can help you lose your job.
A s
This example was inspired by the wonderful POE Cookbook (http://

poe.perl.org/?POE_Cookbook) and a certain large accounting com-
i3} pany’s overly restrictive firewall.

Let’s start by setting up the server that listens for connections:

my $office = shift;

my ($local address, $local port, $remote address, $remote port);
($office ? $remote address : $local address) = "mybox.real-world.int";
($office ? $local port 1 $remote port) 6667;

($office ? $remote port : $local port) = 80;

if ($office) {
$local address = "127.0.0.1";
} else {
$remote_address = "irc.perl.org";

}

POE: :Session->new
(_start => \&server start,
client_connected => \&client_connected,
[$local address, $local port, $remote address, $remote port]

$poiikerne1—>run;
Once we've worked out whether we’re the forwarder from the office to the hosted
machine or from the hosted machine to the eventual server, we set up the various
addresses and ports, and create a new session with the appropriate parameters. This
one session starts up all the other sessions we need. As we’re dealing with three par-
ties in this forwarding exchange—the socket we bind to, the client that connects to
us, and the server that we tunnel to—we need three sessions and three wheels.

Programming in an Event-Driven Environment | 203

We’ve omitted a lot of error handling in this and later sessions, partly
for clarity of the explanation, and partly because if an error does hap-
pen while, say, accepting a connection, there’s very little you can do
about it other than ignore it and wait for the next successful connection.

But you shouldn’t do that, of course. Even just logging an error and
then doing nothing about it shows you’ve thought it through a little.

The first wheel comes in the server’s start state; this has to set up a listener on the
appropriate address and port, which we’ll do with the SocketFactory wheel:

sub server_start {
my ($heap, $local addr, $local port, $remote addr, $remote port)
= @ [HEAP, ARGO, ARG1, ARG2, ARG3 1;

Store our parameters

$heap->{local addr} = $local addr;
$heap->{local_port} = $local_port;
$heap->{remote_addr} = $remote addr;
$heap->{remote port} = $remote port;

Create and store a wheel
$heap->{server wheel} = POE::Wheel::SocketFactory->new
(BindAddress => $local addr,
BindPort => $local port,
Reuse => 'yes',
SuccessEvent => 'client_connected’
)s
}

When the SocketFactory wheel accepts a connection and posts a client_connected
event, it passes the socket and the peer address and port like so:
sub client connected {

my ($heap, $socket, $peer addr, $peer port) =
@ [HEAP, ARGO, ARG1, ARG2];

}
Now we have a server that listens for and accepts connections, but what do we do
once we've accepted one? In an ordinary, non-POE application, we’d probably fork
here or create a new thread to service the request so we can immediately get back to
listening for new connections. In POE terms, we create a new session to handle the
client. Remembering that we’ve stored our connection parameters in the first ses-
sion’s heap, we can pass these on to the new session.

sub accept {

my ($heap, $socket, $peer addr, $peer port) =
@ [HEAP, ARGO, ARG1, ARG2];

POE: :Session->new
(_start => \&forwarder start,
server_connect => \&connected_to_other_side,

204 | Chapter7: POE

client_input => \&forward_outbound,
server_input => \&forward_inbound,

[$socket, $peer addr, $peer port,
$heap->{remote_addr}, $heap->{remote_port}]
)s
}
When this session starts up, it needs to set up the connection to the final destination
and get ready to read and write data from the client. We do this by passing the client
$socket we received to our second wheel, POE: :Wheel: :ReadWrite, POE’s generic I/O
wheel. Just like in a non-POE environment, we reuse the socket that we’ve been
using to handle the connection as a filehandle to read from and write to.

Let’s stop for a moment and look at a diagram of what we’ve got so far in Figure 7-2.

Server Session

SocketFactory
O

Connection —

client_connected

Client Session

Figure 7-2. POE forwarder: step 1

So far we’ve taken care of the client that has connected to us; we also want another
wheel to connect us to the server at the other end of the forwarding tunnel.

sub forwarder start {
my ($heap, $session,
$socket, $peer host, $peer port, $remote addr, $remote port
) =
@ [HEAP, SESSION, ARGO, ARG1, ARG2, ARG3, ARG4];

$heap->{qw(peer_host peer port remote addr remote port)} =
($peer_host, $peer port, $remote addr, $remote_port);

$heap->{wheel client} = POE::Wheel::ReadWrite->new
(Handle => $socket,

Filter => POE::Filter::Stream->new,

InputEvent => 'client input’,

)s

$heap->{wheel server} = POE::Wheel::SocketFactory->new

Programming in an Event-Driven Environment | 205

(RemoteAddress => $remote addr,
RemotePort => $remote_port,
SuccessEvent => 'server connect',

)5
}

We'll add one slight detail to that; since we’re trying to do everything as asynchro-
nously as possible, we have to look out for the case where we’re still establishing a
connection to the server, but we’ve received some data from the client. We add a
queue to store any data we get before the connection is set up:

$heap->{state} = 'connecting';

$heap->{queue} = [];
Now let’s see what happens when data comes in from the client. If we’re still await-
ing the connection, it gets put in the queue. Otherwise, we send it out through the
other wheel to the server:

sub forward outbound {
my ($heap, $input) = @ [HEAP, ARGO];

if ($heap->{state} eq 'connecting') {
push @{ $heap->{queue} }, $input;

}
else {

$heap->{wheel server}->put($input);
}

}

Once we have set up the connection with the other side, we need to do the same sort
of thing again and turn the socket into our third wheel, another ReadWrite wheel.

sub connected to other side {
my ($kernel, $session, $heap, $socket) = @ [KERNEL, SESSION,
HEAP, ARGO

15

$heap->{wheel server} = POE::Wheel::ReadWrite->new
(Handle => $socket,

Driver => POE::Driver::SysRW->new,

Filter => POE::Filter::Stream->new,

InputEvent => 'server_input',

)s

}

We can now run the queue in case anything has built up while we were connecting:

$heap->{state} = 'connected';

foreach my $pending (@{ $heap->{queue} }) {
$kernel->call($session, 'client input', $pending);

}

$heap->{queue} = [1;

206 | Chapter7: POE

For each bit of data we receive, we post the data back to the client input event;
however, this time we are no longer connecting, and the event will pass the data onto
the server.

Finally, we need to move data received from the server back down the tunnel to the
client, by filling in the forward_inbound subroutine:

my ($heap, $input) = @ [HEAP, ARGO];
$heap->{wheel _client}->put($input);

Let’s take a look at a final diagram of the whole forwarder, in Figure 7-3, before we
start to look at how to make this even simpler.

Server Session

SocketFactory
O

> Connection —A*

client_connected

Client Session

SocketFactory server
O

server_connected

1=

Figure 7-3. The completed forwarder

ReadWrite

Top-Level Pieces: Components

The examples we’ve seen so far in this chapter go part way to abstracting out some of
the I/O logic in a program, but not all of it; and they certainly don’t relieve us of
some of the problems of higher layers of program design, such as the protocol layer.
If POE is going to help us concentrate purely on the logic of our particular applica-
tion, we need another layer of abstraction on top—fortunately, we have such a layer,
and it’s provided by POE’s Components.

Components are modules, usually in the POE: :Component:: namespace (often abbre-
viated to PoCo:: in POE documentation), that provide very high-level functionality to
an application. There are components that act as SOAP or XML/RPC servers, pro-
vide the basics of a mail server, speak Jabber or Yahoo! IM, receive syslog messages,
play MP3s, and many other things. We’ll start by looking at one of the protocol-level

Top-Level Pieces: Components | 207

components, such as PoCo::Client::HTTP, and then move up to look at components
that provide the whole core of an application for us.

Medium-Level Components

One of the ideas behind POE components is to hide the more repetitive parts of set-
ting up I/O from the user, to abstract even wheels away. (One of the reasons wheels
are called wheels is because they so often get reinvented.)

The most-used components are those that deal with TCP clients and servers; the server
component knows how to bind to sockets, accept connections, talk to clients, and so on.
Let’s convert our port forwarder to use PoCo::Client::TCP and PoCo::Server::TCP
instead of doing the work ourselves.

First, we have the same idea of a server where we’re listening for connections, but
this is handled somewhat differently:

POE : : Component: : Server: : TCP->new(
Port => 6667,
ClientConnected => \&spawn_client_side,
ClientInput => sub {
my ($kernel, $heap, $input) = @ [KERNEL, HEAP, ARGO];
$kernel->post($heap->{client_id} => send_stuff => $input);
b
InlineStates => {
_child => sub {
my ($heap, $child op, $child) = @ [HEAP, ARGO, ARG1];
$heap->{client_id} = $child->ID
if $child op eq "create";
b
send_stuff => sub {
my ($heap, $stuff) = @ [HEAP, ARGO];
$heap->{client}->put($stuff);
}
b
)s
We start by saying we want to listen on port 6667, and once a client has connected,
we’ll head off and set up the client’s component. The ClientInput state says that
when the client sends us something, we post a send_stuff event to the client session,
which sends it off to the other side of the tunnel.

But wait! How do we know what the client session is? Well, this is what the child
state is for. When something happens to a child session, when it gets created or
destroyed, POE automatically tells our session about it. So using the child state, we
can store the client’s ID so we can talk to it later.

And that’s all we need to do for that part of the session. Now what happens to
spawn the client?

208 | Chapter7: POE

sub spawn_client side {
POE: :Component: :Client: : TCP->new(
RemoteAddress => 'mybox.real-world.int',
RemotePort => 80,

Started => sub { $_[HEAP]->{server id} = $ [SENDER]->ID; },
ServerInput => sub {
my ($kernel, $heap, $input) = @ [KERNEL, HEAP, SESSION, ARGO];

$kernel->post($heap->{server id} => send stuff => $input);
b

InlineStates => {
send_stuff => sub {
my ($heap, $stuff) = @ [HEAP, ARGO];
$heap->{server}->put($stuff);
b
b
)5
}

This session is a POE: :Component::Client::TCP, and the first two parameters set up

where it’s talking to. We store the ID of the server that spawned the new session, so
we can send it stuff.

Now, things are about to get a little tricky to describe, because we have a server
that’s just spawned a client, but that client opens a TCP connection to a completely

different server. So let’s have a quick look at a diagram in Figure 7-4 to explain
what’s going on here.

POE::Co::Server::TCP

....... . client_connected
.

.

POE::Co::Client::TCP —> outside world

.

Figure 7-4. Port forwarder, mark 2

When we receive something from the other end of the tunnel (port 80 of the remote
host), we post it as a send_stuff event to the server component, which, as we’ve
seen, sends it to the end user. Conversely, when the server component tells us to
send stuff arriving on port 6667 of the local host, we want to send it down the POE: :
Wheel: :ReadWrite connection to port 80 of the remote host. PoCo: :Client: : TCP stores

Top-Level Pieces: Components | 209

the wheel in the heap as $heap->{server}, so we just call put on that to send the data
across. And that’s all there is to it—250 lines of code, all told.

Using components has greatly simplified the process of handling network servers and
clients, but we can go much further even than this.

A POE Web Server

The POE component POE: :Component: : Server: :HTTP implements the business end of
a web server in POE; it handles all the network and protocol layers and leaves us a
callback to provide content in response to a request. This couldn’t be simpler: we get
an HTTP: :Request object, and we have to send back an HTTP: :Response object. This is
how programming is meant to be—all we need to do is decide on how we’re going to
create our content.

We could write an extremely simple server using PoCo: :Server: :HTTP, but we’ll be
slightly more advanced and create a file server that serves up files under a given direc-
tory. Here’s all it takes to fire up our web server:

use strict;
use POE::Component::Server::HTTP;
use POE;

my $datadir = "/Users/simon/";

POE: : Component: : Server: :HTTP->new(
ContentHandler => { '/' => \&callback },
Port => 8000

)s

$poe_kernel->run;
Next comes the actual callback that responds to the request:

use URI::Escape;

use HTTP::Headers;

use File::Spec::Functions;
use File::MMagic;

sub callback {
my ($request, $response) = @ ;
my $path = catfile($datadir,canonpath(uri_unescape($request->uri->path)));

return error($response, $request, RC_NOT FOUND) unless -e $path;
return error($response, $request, RC_FORBIDDEN) unless open OUT, $path;

$response->code(RC_0K);

my $magic = File::MMagic->new();

$response->push_header("Content-type", $magic->checktype filename($path));
local $/; $response->content(scalar <OUT>);

close OUT;

return $response;

210 | Chapter7: POE

Let’s briefly pause to examine this function. Most of the magic is done in the second
line:

my $path = catfile($datadir,canonpath(uri unescape($request->uri->path)));

This first extracts the path part of the request URI, turning http://www.foo.int:8000/
somelfile into /some/file. Then, as this is a URI, it may contain characters encoded in
the percent-encoding scheme, so we unescape those using the uri_unescape function
from URT: :Escape.

Now we have a valid local part; however, we have to be careful at this point. If we
blindly tack this onto the end of our data directory, /Users/simon, some joker will
come along and request /../../etc/passwd.” The canonpath function, from File::Spec::
Functions, will tidy this up as though it were an absolute path, and remove leading ..
sequences.

Once we add our document root to the beginning of this path, we’ve got something
that turns http://www.foo.int:8000/some/file into /Users/simon/some/file—this one line
has done the rough equivalent of Apache’s URL mapping phase.

We must now check whether our file actually exists and is readable:

return error($response, $request, RC_NOT_FOUND) unless -e $path;

return error($response, $request, RC_FORBIDDEN) unless open OUT, $path;
We’ll define the error routine in a second; we use the codes from HTTP: :Headers to
represent the 404 (Not Found) and 403 (Forbidden) status codes. If we get past these
two statements, we have a readable file and an active filehandle, so we can return a
200 (OK) status code. The next stage is to establish the MIME type of the file, which
we do using a similar trick to Apache’s mod_mime_magic—the File::MMagic module
gives us a method that looks at the first few bytes of a file to determine its content

type.
$response->push_header("Content-type", $magic->checktype filename($path));

To complete the request, we spit out the contents of the file in a relatively straight-
forward way:

local $/; $response->content(scalar <OUT>);
close OUT;
return $response;

And, finally, the error response subroutine is equally straightforward:

sub not_found {
my ($response, $request, $code) = @ ;
my $uri = $request->uri;
my $message = status_message($code);
my $explanation = $code == RC_FORBIDDEN ? "accessible" : "found";

* And, of course, he’ll find that since this is a Macintosh, that information won’t help him much. But it’s the
principle of the thing.

Top-Level Pieces: Components | 211

$response->code($code);
$response->push_header("Content-type", "text/html");
$response->content (<<EOF);
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>$code $message</TITLE>
</HEAD><BODY>
<H1>$message</H1>
The requested URL $uri was not $explanation on this server.<P>
</BODY></HTML>
EOF
return $response;

}

The key to this is the status_message routine provided by HTTP: :Headers, which turns
a numeric status code (404) into a message (Not Found).

When we put this all together, we have a very simple file server in fewer than 50 lines
of Perl code. The vast majority of these lines are actually taken up with error han-
dling; perhaps that’s the way it should be.

I hope you’ve noticed that when we’ve been looking at this web server, we’ve not
really talked about POE at all. This is deliberate; the idea of POE components is to
make the POE part almost invisible and allow you to concentrate on the program
logic.

Highest-Level Components

As we mentioned at the beginning of this section, there are a wealth of components
out there, and after awhile one can begin to think that most programming with POE
is just a matter of sticking the appropriate bits together.

In Chapter 2, we looked at several implementations of an RSS aggregator and ren-
derer. Now we’ll look at a related problem: a realtime RSS newswire, which periodi-
cally checks a bunch of RSS sources and informs us of any new headlines.

How would you go about this without POE? Maybe use LWP to fetch a list of URLs,
determine which have changed since the last fetch, parse with XML: :RSS, work out the
new articles, report these to the user, then go back to sleep for a while. Sounds easy,
but when you get down to the details of working out the changed feeds and new
headlines, you’re probably looking at about 200 lines of code, at least. If you're
lucky, you might find XML: :RSS: :Feed, which does some of this, but it’s still not a 10-
minute job.

Now that you know about POE, you might think you can use POE::Component::
Client::HTTP to handle queuing and scheduling the HTTP fetches, and have a
response state grab the responses and parse them. That takes some of the pressure
away, but it’s still way too much work. Can’t we get a component to do this?

212 | Chapter7: POE

Here’s a simple RSS newswire using POE: :Component: :RSSAggregator. We'll start by
setting up our arrays of feeds using XML: :RSS: : FeedFactory:

use XML::RSS::Feed::Factory;

my @feeds = feed factory(
{ url => "http://slashdot.org/slashdot.rss",
name => "Slashdot",
delay => 60 },
{ url => "http://blog.simon-cozens.org/blosxom.cgi/xml",
name => "Simon Cozens",
delay => 60 },
{ url => "http://use.perl.org/perl-news-short.rdf",
name => "Perl news",
delay => 60 }
)s
Now we can simply pass this array of feeds to POE::Component: :RSSAggregator, and
most of the work is done:
my $aggie = POE::Component::RSSAggregator->new(
feeds => \@feeds,
callback => \&new_headlines

)5
POE: :Kernel->run;
This sets up the relevant sessions to take care of getting the summaries from the
feeds; all that’s left is to decide what to do each time some RSS arrives:
sub new_headlines {
my ($feed) = shift;
return unless my @newnews = $feed->late breaking news;
for my $headline (@newnews) {
print $headline->headline . ": " . $headline->url . "\n";

}
}
XML::RSS::Feed automatically keeps track of what headlines we’ve seen, so we can
return immediately unless there’s something new for us to see. When there is some-
thing new, we get an XML: :RSS: :Headline object we can interrogate.

Again, POE components have abstracted away the generic pieces of our applica-
tion—fetching and parsing feeds, and keeping track of what headlines we’ve seen—
and allowed us to concentrate on the specific parts: what we want to do with new
headlines.

Conclusion

As we’ve seen, POE is a fantastic module for taking away the complexity in creating
event-based programs. The huge range of POE-related modules on CPAN allows you
to choose precisely how high or low a level you wish to program at, and can make a
great deal of repetitive code, particularly protocol-specific code, disappear in a puff

Condusion | 213

of abstraction. POE also helps when writing nonblocking or multitasking code by
offering a task scheduler and event loop.

POE itself is multilayered, with sessions passing messages between each other,
wheels providing I/O abstraction, and filters wrapping a higher level around wheels.

Finally, POE components represent the very highest level of abstraction, containing
major units of functionality. I’d recommend looking at POE for any event-based pro-
gram where nonblocking I/O or multitasking is important.

214 | Chapter7: POE

CHAPTER 8
Testing

Every programmer likes writing code, but only a brave and masochistic few actually
like writing tests for their code. However, with the rise of XP, Agile programming,
and other programming methodologies, it has become more important for program-
mers to write complete test suites for the code they produce.

Not only that, but thanks to the efforts of the Per] Kwalitee Assurance team, headed
by Michael Schwern, there’s a good deal of social pressure for CPAN module writers
to come up with thorough automated test plans for their modules.

Thankfully, Schwern and others have also produced a bunch of modules that make
producing such test plans relatively painless. We’ll take a look at the more popular
and useful modules in this chapter.

Test::Simple

Back in the mists of time, around the late 1990s, test plans were very simple indeed;
you had a program that spat out “ok” or “not ok” followed by a test number, and an
automated testing harness would go through, run your tests, and pick out the tests
that failed.

So, programmers would write test scripts that looked something like this:

print "1..10\n";

print ((1 +1 =
print ((2 + 2!
if (foobar()) {
print "ok 3\n";
} else {
print "not ok 3\n";
}

2 2 "": "not n)) "ok 1\nu);
7 2 " "not ||), "ok 2\n");

Then some programmers realized they didn’t want to keep score of the test numbers
themselves, so they used a variable instead:

215

print "1..10\n";

my $i = 1;
print ((1+1==2 2?2 "": "not "), "ok ", $i++, "\n");
((2+21'!'=7 2"" "not "), "ok ", $i++, "\n");

The next logical advance would be to put the test into a subroutine that spat out the
appropriate string. Some people came up with their own idiosyncratic way of skip-
ping tests, marking known failures, and providing names for their tests so that they
wouldn’t have to go through and count to find the failing test.

Eventually, we ended up in the situation where every test suite looked more or less
the same but somehow subtly different from the others. It was out of this chaos that
the original Test module was born. Test provided an ok subroutine that compared
one thing with another, and reported the result and an automated test number.

However, Test wasn’t very flexible, and along came its modern replacement, Test::
Simple. It works on exactly the same principle: you have an ok function that runs a
test and prints out the appropriate output. Here’s a simple test plan with Test::
Simple.

use Test::Simple tests => 3;

ok(1 +1==2);

ok(2 +2 !=7, "Two and two are not seven");

ok(foobar());
The first line states how many tests are going to run, so that the automated test har-
ness will know if the test script completed successfully or died halfway through.
Then come the three tests. Test::Simple provides the ok subroutine to emit a test
result. If the first parameter to ok is true, then the test was successful. The second
parameter is an optional description to display along with the test result. When
you’re viewing the output, the description makes it much easier to understand what
the test is for and also helps to locate which tests are failing. Running the preceding
three tests on the command line has the following result:

1..3

ok 1

ok 2 - Two and two are not seven
ok 3

If the first parameter to ok is false, then the test failed. When you test a false value:
ok(1 == 2, "One is two");

The test output includes your description, the name of the test file, and the line num-
ber where the test failed to help you locate which test is failing:

not ok 1 - One is two
Failed test (simple.t at line 5)

216 | Chapter8: Testing

These results are interpreted by the test harness to total up successes and failures.
And this, basically, is all there is to Test::Simple, and all that most people need to
know about testing. Test::Simple was, as its name implies, deliberately made really,
really easy, so that there’d be no excuse” for not writing a decent test plan.

Test::More

If you want a little more than the appropriately named Test: :Simple, you can move
on to the equally appropriately named Test: :More.

The first useful thing this module provides is a number of different ways to compare
a value against another. First, you can provide two values and ask Test::More if
they’re the same:

is(test function(), 1234, "Checking whether test function returns 1234");
or if they’re different:
isnt(MyClass->new(), undef, "new method should succeed");

And you can use regular expressions to see whether something looks like what you
expect:

like(time, qr/"\d+$/, "Time really ought to be a positive integer");

Another useful feature is cmp_ok. It performs explicit numeric, string, or boolean
comparisons so you don’t have to rely on DWIM. This takes two values and a Perl
comparison function, allowing you to specify your tests like this:

cmp_ok(MyModule::foo(), ">", 12, "foo greater than 12");

One advantage of is, isnt, like, and cmp_ok over ok is that they provide more
detailed results when a test fails. These can be helpful in debugging a failure:

not ok 1 - Checking whether test function returns 1234
Failed test (more.t at line 5)

got: '4321"

expected: '1234'

not ok 2 - foo greater than 12

Failed test (more.t at line 9)

'12'
>
'12'

The final set of comparison tests deal with comparing structures, something that tra-
ditionally has been pretty tedious to do with the ordinary Test and Test::Simple
styles of testing. The is_deeply subroutine compares one structure with another and
reports if they’re the same and, if not, at what point they vary:

$got = some function(); # Let's say it returned

* Well, other than laziness, impatience, or hubris.

Test:More | 217

#[1, { a=>"foo", b =>["bar"] }]
$expected = [1, { a => "foo", b => "bar" }];

is_deeply($got, $expected);
This example’s output is:

not ok 1

Failed test (t.pl at line 123)

Structures begin differing at:

$got->[1]{b} = 'ARRAY(0x6590)"
$expected->[1]{b} = 'bar’

Looks like you failed 1 tests of 1.

showing us that we found an array where we expected a bar scalar.

Skips and Todos

In some cases, you won’t want all of your tests to run. There are two major reasons
why: first, because the end user’s system may not actually have some capability you
wish to test; second, you may have written tests for something your code doesn’t
actually do quite yet. Test: :More has the ability to handle both of these cases, which
it calls skips and todos, respectively.

Let’s take an example. You’ve written a web services module, and you’d like to test it
by connecting to some Internet server and making a query. Unfortunately, not all the
world has always-on Internet access yet, so it’s polite not to depend on the fact that
your tests can make network connections. We’ll use the libnet bundle’s Net: :Config
settings to determine whether or not we should make Internet connections during
tests:

use Net::Config qw(%NetConfig);

my $may_make_connections = $NetConfig{test_hosts};
and if we can’t talk to the network, we skip our network-related tests:

SKIP: {
skip "No network connection", 2 unless $may make connections;

ok($client->connect("myhost.foonly.com"));

is($client->request("2+2"),
4,
"Foonly calculator didn't make 2+2 equal 4"

)5

}
The SKIP: label on the block is mandatory, as it allows Test: :More to find the end of
the block. The parameters to skip are a string giving the reason why these tests are
skipped, and the number of tests to skip. These tests are marked as OK but contain

218 | Chapter8: Testing

the keyword “skip” in the output so that test harnesses—the frameworks that check
the output of test suites—will know that they haven’t actually run.

ok 1 # skip No network connection

ok 2 # skip No network connection
The syntax for todo tests is similar, but the outcome is different. Skipped tests out-
put ok and are marked with a skip; todo tests output not ok, but test harnesses will
not fail the test suite because they will know that these are todos.

You mark a TODO block by setting the $T0ODO variable:

TODO: {
local $TODO = "Insufficient funds";
ok(eval { $man->put_on _mars });
ok(eval { $man->colonize planet });

}
When run outside of a testing harness, this will report:

not ok 2 # TODO Insufficient funds
Failed (TODO) test (t.pl at line 6)
not ok 3 # TODO Insufficient funds
Failed (TODO) test (t.pl at line 7)

but inside a harness:

t....ok

All tests successful.

Files=1, Tests=3, 0 wallclock secs (0.19 cusr + 0.01 csys = 0.20 CPU)
The advantage of this is that as you implement the missing functionality, the tests
will gradually begin to pass and the test harness will report them as unexpected suc-
cesses. Once all the tests pass normally, you can remove the TODO designation.

Automated Tests

As we saw when discussing is_deeply above, Test: :More attempts to make it easy to
do more complex tests. It also provides a few other features to help automate the
testing process.

First, eq_set performs an order-agnostic array comparison. For instance, if you know

your function is going to return a list from 1 to 10, but you don’t know the order,
you can make sure you get a full set of results as follows:

ok(eq_set([myfunc()], [1..10]), "We got a list from 1 to 10");

If you’re testing object-oriented modules, Test: :More has a few useful additions for
you. The isa_ok function checks to see if an object belongs to a particular class; this
is typically used to check a constructor:

my $s = I0::Socket->new;
isa ok($s, "IO::Socket");

Test:More | 219

Finally, there’s can_ok, for testing a variety of methods on an object. Strictly speak-
ing, can_ok merely tests the interface to an object, ensuring that it can respond to the
methods specified. It calls the can method on the class of the object. If you don’t
define your own custom version, the universal default can searches the object’s inher-
itance tree for the named method:
can_ok($s, "accept", "timeout", "connected",
"close"); # Inherited from IO::Handle

Using these methods together, a great deal of the pain of testing classes can be taken
away. Later in the chapter, we’ll see how these techniques can be combined with
class-based testing to make the creation of such test suites even easier.

Test::Harness

When you’ve installed CPAN modules, you might have noticed two different styles
of test output. In the first instance, you run something like perl -Mblib t/1.t and
you see a list of results:

1..25

ok 1 - Loaded module

ok 2 - Can create a new object
ok 3 - ... of the correct class

And in the second case, you run make test on a MakeMaker-generated install process
or prove t/*.t, and you see something like this:

L ok
t/20 i, ok
t/3 i, FAILED tests 2, 5

Failed 2/6 tests, 66.67% okay

Failed Test Stat Wstat Total Fail Failed List of Failed

t/3.t 6 2 33.33% 25

Failed 1/20 test scripts, 95.00% okay. 2/349 subtests failed, 99.43% okay.
So, what’s the difference? The difference is that, in the second case, something is run-
ning each test file in the #/ directory—whether it’s one file or many files—and collat-
ing the results. The thing that’s doing the collating is Test::Harness. Its job is to
gather up the test results and make sure everything went OK before the module gets
installed.

So, if you’re planning on writing tests that don’t use the standard Test::Simple or
Test: :More modules (or indeed any of the other test modules out there), or you want
to write your own test module, then you need to know how to produce test output
that Test: :Harness is going to be happy with. Otherwise, it will think your module is

220 | Chapter8: Testing

failing its tests. This standard output format is known as TAP—the Test Anything
Protocol—and credit for the name goes to Joe McMahon and Andy Lester.

The interface to Test::Harness is the runtests function. You give runtests a list of
filenames, it runs each one in turn and produces the summary you just saw. That’s
all. The interesting question is what Test: :Harness expects from a test suite.

The first thing it expects to see from a test suite is a plan. A plan is a line of text, of
the form 1..N, and it must appear as either the first or the last thing seen on stan-
dard output. This ensures that Test: :Harness can determine whether your test ended
when it was supposed to or died in the middle. If you don’t know how many tests
you’re going to have until you’ve run them, you can put out a plan right at the end.
But you must have one, and only one, either at the very start or the very end.

Each test must output the word ok, or the words not ok, and they must say this at
the beginning of a line. They don’t have to say what number they are, but it’s useful.

Test output can contain comments. Like a comment in Perl, these begin with a hash
character. After the ok (or the not ok) and the test number, you can have a descrip-
tion that says what your test is called. Usually these are introducted by a dash, but
anything between the test number and either a # character or the end of the line is
treated as the description. Here are some valid test results:

ok

not ok 2
ok 3 - Array in correct order

And here are some things that are not valid test results:

0K

Checking to see if we can parse the XML again... ok

4 not ok
Test: :Harness treats certain test comments specially. These are called directives. If a
comment starting with skip immediately follows the test number, then the harness
notes that this test has been skipped. Similarly, as we saw when looking at Test::
More, the harness marks a test with a TODO directive as non-fatal.

There are other things your test script might produce that Test: :Harness knows how

to deal with. You can specify that you want to skip the entire test file, by writing out:
1..0

Or you can abort the current test by outputting the magic words Bail out!. Most

other things in your test output will be ignored by the version of Test: :Harness cur-

rent at the time of writing, although that may change. For more details on this for-
mat, read Test: :Harness: : TAP.

Test:Harness | 221

Test::Builder

But to be honest, who would want to write a test module from scratch anyway? Isn’t
there some module we could use to help us with that? Well, rather unsurprisingly,
there is. Written by chromatic and maintained by Michael Schwern, the Test: :Builder
module provides you with useful functionality for, well, building a test module.

Test::Builder is an object-oriented module that implements the concept of a test
object. This object performs some useful housekeeping work for us, such as keeping
score of what test number we’re at, how many tests have passed and failed, and so
on, allowing us to concentrate on deciding whether or not a test should pass.

The test object also provides methods similar to the Test::More tests: ok, is, like,
and so on. In fact, Test: :Simple and Test: :More are mostly just thin wrappers around
Test::Builder methods.

Just like Apache->request, Test: :Builder->new is a singleton object; future calls to new
return the same object. This means you can use test routines from multiple different
classes based on Test::Builder and they’ll work together seamlessly maintaining a
consistent count of passed and failed tests, along with the current test.

The usual incantation to begin using Test: :Builder looks like this:

use Test::Builder;

my $Test = Test::Builder->new;
This creates a lexically scoped name for the singleton test object so you can refer to it
directly within your test module. If you look into the code for Test::Simple, you’ll
find that’s pretty much all there is to it: creating the Test: :Builder object, an import
subroutine, and an ok subroutine that simply calls the test object’s ok method.

sub ok ($;$) {
$Test->ok(@);
}

The real magic is in the import routine. There are various different ways to set it up,
depending on how important it is to be compatible with Perl 5.004 and earlier ver-
sions. One good example is in Test: :Exception by Adrian Howard.

sub import {
my $self = shift;
if (o) {
my $package = caller;
$Test->exported to($package);
$Test->plan(@);
¥
$self->export to level(1, $self, $) foreach @EXPORT;
}

The critical bits of code here are the calls to the test object’s exported to and plan
methods, which tell the test object where the test routines are exported to and set up

222 | Chapter8: Testing

the test plan. These two calls are wrapped in an if so that you can either use Test::
Exception alone and have it set up its own test plan:

use Test::Exception tests => 5;
or use it together with Test: :More:

use Test::More tests => 5;

use Test::Exception;
Suppose you wanted to support fuzzy matching. We’ll start with the standard steps
to create a Test::Builder object and export our custom test routine. We’'ll use
String::Approx to perform the fuzzy matching between the tested value and the
expected value.

package Test::Fuzzy;

use Test::Builder;
use String::Approx qw(amatch);

use base qw(Exporter);
our @EXPORT = quw(is_fuzzy);

my $Test = Test::Builder->new;

Finally, we write is_fuzzy. Just like is, we’ll take two strings as arguments and an
optional test description:
sub is fuzzy ($$;%) {
my ($got, $expected, $desc) = @ ;
my $result = amatch($expected, $got);
$Test->ok($result, $desc);
}
We don’t even have to define an import subroutine if we leave Test: :More to handle
the test plan. To use our custom testing module, we use Test: :More and Test: :Fuzzy,
then call our custom is_fuzzy test routine:

use Test::More tests => 2;
use Test::Fuzzy;

is_fuzzy('one', 'none', "one is like none");
is fuzzy('blue', 'green', "blue is like green");
These two tests produce the following output:

ok 1 - one is like none
not ok 2 - blue is like green
Failed test (fuzzy.t at line 7)

And that’s it!

Test:Builder | 223

Test::Builder::Tester

If you have a particularly perverse mind, you may now be thinking, “So what do the
tests for Test::Builder look like?” Well, even more perverse minds have got there
first, and Test::Builder has its own test suite creation module, rather predictably
called Test::Builder::Tester. (And here it bottoms out, as Test::Builder::Tester
contains enough functionality to test itself.)

The basic premise of Test: :Builder: :Tester is this: you first declare what output you
expect to see from your Test: :Builder module for a particular test; then you run the
test in a controlled manner, producing the output for real; then your actual test com-
pares the expected output with the real output. This may seem a little meta until you
see an example, so let’s look at one now.

We’re writing a test script for our new Test: : Fuzzy module; we begin by using Test::
Fuzzy and also Test::Builder::Tester to provide the meta-testing functions and to
state our test plan.

use Test::Fuzzy;
use Test::Builder::Tester tests => 1;

We're going to run two tests that should pass, so we declare that we expect to see
two successful results:

test out("ok 1");
test out("ok 2");

This tells Test: :Builder: : Tester what to expect on its standard output.

Now we actually run the two tests that should pass:

is_fuzzy("motches", "matches");
is fuzzy("fuzy", "fuzzy");

All being well, this should output:

ok 1
ok 2

since they do match approximately. But in this case, the actual output is not written
to the screen but stashed away by Test: :Builder::Tester so that it can be compared
against our predictions.

The final stage is to see whether or not the test output that’s been stashed away
really did meet our prediction:

test test("Two trivial tests passed OK");

If it did indeed output the right thing, then Test::Builder::Tester finally does out-
put something to the screen, like so:

ok 1 - Two trivial tests passed OK

224 | Chapter8: Testing

There are extensions to Test::Builder::Tester, such as Test::Builder::Tester::
Color, which allows it to disambiguate between, for instance, expected and unex-
pected failures by means of color-coding, but if you’re going that deeply into metat-
esting, you’d probably be best learning the ropes for yourself.

Keeping Tests and Code Together

Putting your tests in a separate file is the usual and traditional way to write a test
suite. However, as with documentation, it’s easier to keep your tests updated if
they’re right there alongside your code. The Test::Inline and Pod::Tests modules
help you do this.

The weird thing about Test::Inline is that it doesn’t actually do anything. It con-
tains no code, only documentation on how to write inline tests. Inline tests are writ-
ten as ordinary Pod, Perl’s plain old documentation format, designed to go alongside
the Pod for the subroutines you’re implementing.

Test::Inline explains how you can add testing blocks to the documentation of your
modules, like so:

=head2 keywords
my @keywords = keywords($text);

This is a very simple algorithm which removes stopwords from a
summarized version of a text and then counts up what it considers to
be the most important "keywords". The C<keywords> subroutine returns a
list of five keywords in order of relevance.

=begin testing

my @keywords = keywords(scalar “perldoc -t perlxs™);
reasonable sample document

is_deeply(\@keywords, [qu(perl xsub keyword code timep)],
"Correct keywords returned from perlxs");

=end testing

sub keywords {

With this layout, the documentation section makes it clear what the subroutine
should do and then the testing section contains code to test it; keeping the documen-
tation and tests together makes it clearer what ought to be tested. It also means that
changes to the functionality can be made in the three important places at the same
time: in the code, in the documentation, and in the tests.

This is all well and good, but once we’ve got these embedded tests, what do we do
with them? The Pod: : Tests module contains a driver for extracting tests, pod2test:

Keeping Tests and Code Together | 225

% pod2test lib/Keywords.pm t/Keywords-embedded.t
% make test

The Test::Inline::Tutorial documentation provides some information about how
to automate the extraction process, as well as tricks to make sure the example code
that you give in your Pod works properly.

Unit Tests

As we mentioned in the introduction, the rise of movements like Extreme Program-
ming” has led to both a revolution and a resurgence of interest in testing methodologies.

One particular feature of the XP approach is unit testing, an old practice recently
brought back to the limelight; the idea that one should test individual components of
a program or module in isolation, proving the functional correctness of each part as
well as the program as a whole.

Needless to say, Perl programming devotees of XP have produced a wealth of mod-
ules to facilitate and encourage unit testing. There are two major XP testing suites,
PerlUnit and Test::Class. PerlUnit is a thorough implementation of the standard
xUnit suite, and will contain many concepts immediately familiar to XP devotees.
However, it’s also insanely complete, containing nearly 30 subclasses and related
modules. We’ll look here at Test::Class, which can be thought of as unit testing in
the Perl idiom. We’ll also be examining modules to help with the nuts and bolts of
unit testing in areas where it may seem difficult.

Test::Class

The Test::Class module can be viewed in two ways—first, as a module for testing
class-based modules and, second, as a base class for classes whose methods are tests.

Suppose we have the following very simple class, and we want to write a test plan for it:

package Person;
sub new {
my $self = shift;
my $name = shift;
return undef unless $name;
return bless {
name => $name
}, $self;

sub name {
my $self = shift;

* Extreme Programming Explained, by Kent Beck (Addison-Wesley), is the canonical work on the subject.

226 | Chapter8: Testing

$self->{name} = shift if @ ;
return $self->{name};
}
We'll start by writing a test class, which we’ll call Person::Test. This inherits from
Test::Class like so:

package Person::Test;
use base 'Test::Class';

use Test::More tests => 1;
use Person;

Tests inside our test class are, predictably, specified in the form of methods. With
one slight special feature—test methods are given the :Test attribute. So, for
instance, we could test the new method:
sub constructor :Test {
my $self = shift;
my $test_person = Person->new("Larry Wall");
isa_ok($test person, "Person");
}
Notice that the job of emitting the usual Perl ok and not ok messages has not gone
away—to do this, we use the Test: :More module and make use of its functions inside
of our test methods.

Although it may seem initially attractive to name your test methods the same as the
methods you’re testing, you’ll find that you may well want to carry out several tests
using and abusing each method. There are two ways to do this. First, you can spec-
ify that a particular method contains a number of tests by passing a parameter to the
:Test attribute:
sub name :Test(2) {
my $self = shift;
my $test_person = Person->new("Larry Wall");

my $test name = $test person->name();
is($test name, "Larry Wall");

my $test name2 = $test person->name("Llaw Yrral");
is($test name2, "Llaw Yrral");
}
Or you could split each test into a separate method—in our Person example, we
could have name with args and name _no_args or get name and set name. In most
cases, you’ll want to use a mixture of these two approaches.

Never name a test method new. Because your test class inherits from
Test::Class, this will override Test::Class’s new method causing it to
run only one test.

It’s fine to define your own test class constructor named new, but make
sure it includes the necessary behavior from Test::Class’s new or calls
SUPER: :new.

UnitTests | 227

Once you define all the tests that you want to run, you can then tell Perl to run the
tests, using the runtests method inherited from Test::Class:

__PACKAGE__-»>runtests;

With that line in Person::Test, you can run the tests within a test file with just use
Person::Test, or on the command line by running perl Person/Test.pm. A more com-
mon strategy is to provide a test script that runs all the class tests for a project:
use Test::(Class;
my @classes;
Test::Class->runtests(@classes);
BEGIN {
my @found = code to find all classes();
foreach my $class (@found) {
eval {require $class};
push @classes if $class->isa('Test::Class');

}
}
That’s how we define test methods and un the test, but how does Test::Class know
which test methods are defined, and in what order does it run the tests?

Well, the truth is quite simple—the Test::Class module goes through the methods
defined in the test class, looking for methods marked with the :Test attribute, and it
calls them in alphabetical order. (Although, depending on the ordering is generally
thought to be a bad thing.)

The problem with this is that sometimes you want an object available all through your
testing so you can poke at it using a variety of methods. Our test class, Person: : Test, is
a real class, and the test methods all get called with a real Person: : Test object that can
store information just like any other module. We want a fresh Person object in each
test to avoid side effects as other test methods alter and test the object repeatedly.

To facilitate this, Test::Class provides another designation for test methods—cer-
tain methods can be set to run before each test starts and after each test finishes, to
set up and tear down test-specific data. These special methods have special parame-
ters to the :Test attribute—those marked as :Test(setup) run before each test, and
those marked as :Test(teardown) run after each test. For instance, we could set up
our Person:
sub setup person :Test(setup) {
my $self = shift;
$self->{person} = Person->new("Larry Wall");

}
and now we can use this object in our test methods:

sub get name :Test {
my $self = shift;
is ($self->{person}->name, "Larry Wall");

228 | Chapter8: Testing

sub set name :Test {
my $self = shift;
$self->{person}->name("Jon Orwant"); # What a transformation!
is ($self->{person}->name, "Jon Orwant");

$self->{person}->name("Larry Wall"); # Better put Larry back.
}
In other cases, setup may be an expensive process you only want to run once, or side
effects may not be an issue because the object is an unchanging resource. Test::Class
provides alternatives to setup and teardown—methods marked as :Test(startup) run
before the first test method and those marked as : Test(shutdown) run after all the tests
have finished. For instance, if our testing requires a database connection, we could set
that up in our test object, too:
sub setup database :Test(startup) {
my $self = shift;
require DBI;
$self->{dbh} = DBI->connect("dbi:mysql:dbname=test", $user, $pass);
die "Couldn't make a database connection!" unless $self->{dbh};

}

sub destroy database :Test(shutdown) {
my $self = shift;
$self->{dbh}->disconnect;

}

One useful feature of Test::Class is that it will do its utmost to run the startup and
finalization methods, despite what may happen during the tests; if something dies
during testing, this will be reported as a failure, and the program will move on to the
next test, to assure that the test suite survives until finalization. For this reason, other
suggested uses of startup and shutdown methods include creating and destroying tem-
porary files, adding test data into a database (and then removing it or rolling it back
again), and so on.

Test::MockObject

One idea behind unit testing is that you want to minimize the amount of code
involved in a given test. For instance, let’s suppose we’re writing some HTML and
web handling code that uses an LWP: :UserAgent in its machinations. We want to test
one subroutine of our program, but to do so would pull in a heap of code from LWP
and may even require a call out to a web site and a dependency on particular infor-
mation there. LWP has its own tests, and we know that it’s relatively well behaved. We
just want to make sure that our subroutine is well behaved. We also want to avoid
unnecessary and unpredictable network access where we can.

Wouldn’t it be nice, then, if we could get hold of something that looked, walked,
and quacked like an LWP: :UserAgent, but was actually completely under our control?

UnitTests | 229

This is what Test::MockObject provides: objects that can conform to an external
interface, but allow the test developer to control the methods.

Let’s first create a new mock object:

use Test::MockObject;

my $mock ua = Test::MockObject->new();

This will eventually become the mock LWP::UserAgent that our subroutine uses. In
order to be like an LWP: :UserAgent, it needs to respond to some methods. We add
methods with the mock method:

$mock_ua->mock('clone', sub { return $mock ua H;

Test: :MockObject offers a series of alternatives to mock—such as set_true and set_
false—that are shortcuts for common cases. For example, set always creates a
mock method that always returns a constant value:

$mock ua->set always(' agent', 'libwww/perl-5.65');

After we’ve built up a set of methods and established what we’d like them to do, we
have a mock user agent that can be passed into our subroutine and produce known
output to known stimuli.

Be careful that the mock object’s interface matches the real object’s
interface. You could end up with passing tests but failing code if, for
example, a mocked method expects an array-reference where the real
method expects an array. Integration tests are a good way to protect
against this.

This is all very well if we are passing in the object to our routine, but what about the
more common case where the routine has to instantiate a new LWP::UserAgent for
itself? Test::MockObject can get around this—in addition to faking an individual
object, we can use it to fake an entire class.

First, we lie to Perl and tell it that we’ve already loaded the LWP: :UserAgent module—
this stops the interpreter loading the real one and stomping all over our fakery:

$mock_ua->fake module("LWP::UserAgent");

Note that this must be done during a BEGIN block or in some other manner before
anything else calls use LWP::UserAgent, or else the real module will be loaded.

Now we can use our mock object to create a constructor for the fake LWP: :UserAgent
class:

$mock_ua->fake_new("LWP::UserAgent");
After this, any call to LWP: :UserAgent->new returns the mock object.

In this way, we can isolate the effects of our tests to a much better-defined area of
code and greatly reduce the complexity of what’s being tested.

230 | Chapter8: Testing

Testing Apache, DBI, and Other Complex Environments

There are many opportunities for us to avoid writing tests, and the more lazy of us
tend to take any such opportunity we can find. Unfortunately, most of these oppor-
tunities are not justified—absolutely any code can be tested in some meaningful way.

For instance, we’ve seen how we can remove the dependency on a remote web server
by using a mock user agent object; but what if we want to test a mod_perl applica-
tion that uses a local web server? Of course, we could set up a special test Apache
instance, something the HTML: :Mason test suite does. This is a bit of a pain, however.

Thankfully, there’s a much easier solution: we can mock up the interface between
our application and Apache, pretending there’s a real, live Apache server on the
other end of our Apache: :Request object. This is a bit more complex than the stan-
dard Test: :MockObject trick and is certainly not something you’d want to set up in
every test you write. The Apache: :FakeRequest module gives you access to an object
that looks and acts like an Apache: :Request, but doesn’t require a web server.

In the majority of cases, you can just call your application’s handler routine with the
fake request object:

use Apache::FakeRequest;
my $r = Apache::FakeRequest->new();

myhandler($r);

However, given that the ordinary Apache request is a singleton object—subsequent
calls to Apache->request return the same object—you may find that lazier program-
mers do not pass the $r object around, but instead pick it up themselves. To allow test-
ing in the face of this kind of opposition, you will have to override the Apache->request
and Apache: :Request->new methods, like so:

use Apache::FakeRequest;

my $r = Apache::FakeRequest->new();
*Apache: :request = sub { $r };
*Apache: :Request::new = sub { $r };

myhandler($r);

This way, no matter what shenanigans your handler attempts to get a request object,
it should always get your fake request.

In some cases, however, you’ve just got to bite the bullet; if you want to test a data-
base-backed application, you’re going to have to set up a database and populate it.
How you do this depends on your situation. If you’re developing an in-house prod-
uct, it makes sense to use your real development database and have something like
Test::Class’s startup and shutdown routines insert and delete the data you need.

UnitTests | 231

If, on the other hand, you’re writing a CPAN module and want remote users to be
able to test the module, things become more tricky. You can, of course, have them
set up a test database and provide your test suite with details of how to access it, but
it’s difficult to do this while keeping the suite non-interactive: developers using the
CPANPLUS module to automatically install modules and their dependencies won’t
appreciate having to stop and set up a database before going on; neither do software
packagers such as those involved in the Debian project need the hassle of setting up a
database just for your tests.

In these cases, one decent solution is to use the DBD: :CSV or DBD: :AnyData modules—
simply put your test data into a set of colon-separated files and have your test suite
work from that instead of a real RDBMS. If your module requires slightly heavier data-
base access than that, a reasonable solution is DBD::SQLite, a lightweight database
server embedded in a C library. This allows you to ship a couple of data files with your
tests, giving you pretty much everything you need from a relational database.

Conclusion

I’d like to end on a philosophical note, to try to persuade you to read through the
chapter again, read Test::Tutorial, visit http://qa.perl.org, or otherwise expand your
knowledge of testing with the many resources available.

I used to be extremely hubristic about testing. My attitude was “if it didn’t work, I
wouldn’t have released it!” and I provided only the most minimal of tests with my
modules. I've since become a reformed character. Over the past few years, I've
become personally more and more convinced of the merit of writing comprehensive
test suites for the modules and code that I produce.

Even if you’re not a devotee of test-driven development—writing your tests first and
then writing code until they pass—a full test suite makes sure that any future
changes you make don’t cause problems with old functionality; I've found it benefi-
cial to add every bug report I've been sent as a test case, to aid regression testing. If
nothing else, adding tests to a module gives the end user confidence that your code is
thorough and robust. And, finally, even the most basic of tests can, to mix meta-
phors, nip glaring bugs in the bud.

In short, tests are a good thing. And, thankfully, with modules like Test: :More and
Test::Simple, they need not be a pain to write. I may have joked earlier that nothing
bar laziness and hubris could stop one from writing tests, but even that doesn’t stand
up to examination—not writing tests is false laziness. The certainty that resolved
bugs are not going to recur is ample payoff for the time spent writing tests.

Get into the discipline of testing. It will save you time, and it will spare you blushes.

232 | Chapter8: Testing

CHAPTER 9
Inline Extensions

Although Perl is a very powerful language, there are still some things that it cannot
do by itself: it can’t communicate directly with hardware or take advantage of com-
plex mathematical libraries. Other things it can do, but not very quickly: you can ask
Perl to rotate an image by reading in and parsing the image file format, doing all the
transformations on a really big array, and writing it out again, but that takes a lot of
time and effort. It’s far better to ask a C library to do this for you, and the way to do
this is to write an extension to allow Perl to talk to the C library. In fact, many graph-
ical interfaces to Perl are merely extensions talking to the relevant C libraries.

The usual way to write an extension to bridge Perl and C is to use a complex and
awkward intermediary language called XS (extension subroutines). If you want to do
things the complex and awkward way, I suggest reading perlxstut in the Perl docu-
mentation, or my Extending and Embedding Perl (Manning). However, since one of
the cardinal virtues of a Perl programmer is laziness, there has to be a less complex
and awkward way to do it, right?

Thankfully, there is; Brian Ingerson got fed up with writing XS and ended up writing
a very clever Perl module called Inline to do it for him. As we’ll see later in the chap-
ter, Inline has become generalized to handle languages other than C, so the module
we’ll look at for now is called Inline::C.

Simple Inline::C

The idea behind Inline::C is pretty straightforward: you write a C function as part of
your Perl program, and the Inline library goes away and does the work required to
make that function available from Perl. So, here’s the simplest C function we could
possibly wrap:

use Inline C => q[

void print hi() {
puts("Hi, world!");

233

}
I
print hi();

The first time this program is run, it takes a little time; Inline::C has to parse the C
code, determine what wrappings are needed to bridge the gap between C and Perl
(almost nothing in this case), write the wrapping, fire up a C compiler, create a
shared library that can be loaded by Perl, and load it up. Only then is the print_hi
subroutine available to Perl.

If we had to go through this rigmarole every time we executed the program, Inline
wouldn’t actually buy us very much. But if we run our program again, we should
find that it’s considerably faster. All Inline needs to do in this case is make sure that
the C code we’re compiling hasn’t changed, and then load up the shared library it
created last time.

Taking and Giving

Of course, real functions are a little more complicated than that; they take argu-
ments, they return a value. With Inline, interfacing with these real functions isn’t
that much more complicated at all.

Let’s take a relatively noncontrived example. You want to display some information
to the user, such as:

You have 2 lives left; score 1500, with 15 gold pieces.

However, you also want the user to be able to customize this information, if they
prefer seeing:

[Lives: 2 XP: 1500 GP:15]

So what you do is set up the output format as a pattern for printf, and have some-
thing like this:

my $pattern = $user_pattern ||

"You have %i lives left; score %04i, with %2i gold pieces";

printf $pattern, $lives, $xp, $gp;
But then you hear that allowing users to supply their own format string caused Korea
to be knocked off the Net last week, which didn’t seem too much of a big deal to
you, but then someone starts telling you scary stories about the %p format, and you
start wondering how you can sanitize the format string you were passed.

234 | Chapter9: Inline Extensions

And then you remember that you’re developing on a BSD Unix, which has the very
handy fmtcheck function in the C library just for this purpose.” So you write a quick
C function that selects the right format, like so:

char* score format(char* pref format, char* user format) {
return fmtcheck(user format, pref format);
}

And once you put that in your Inline section, you can call it just like a normal Perl
subroutine. This time, use a slightly different formulation of Inline; instead of pass-
ing in a string, put your C code into the DATA section at the end of the program. To
tell Inline what to look at, add the C__ marker after the DATA__ marker.

use Inline C;

my $pref format = "You have %i lives left; score %041, with %2i gold pieces";
my ($lives, $score, $gp) = (3, 2500, 50);

my $user format = "[Lives: %i, XP: %i, GP: %i]";
printf(score_format($pref format, $user format), $lives, $score, $gp);

END

#include <stdio.h>

char* score format(char* pref format, char* user format) {
return fmtcheck(user format, pref format);

}
This determines that the user’s format it safe and uses that instead of your format.
Inline::C automatically knows how to deal with int, long, double, char*, and many
other types as specified in the default Perl typemap (found in the ExtUtils subdirec-
tory of your @INC path). Later on in the chapter, we’ll see how to use more complex
structures with Inline.

Cis not Always a Win

But first a cautionary tale: there are any number of people who will complain that
Perl is too slow, and if you’re doing anything serious, you should rewrite it in C for
speed. OK, then. This time, we’re going to write a function to find the number of
alphabetic characters in a string. We could use Perl’s tr operator, but perhaps call-
ing out to C will be faster. Here is the C function we’re going to use:
int count_alpha(char* foo) {

int i = 0;

do {

if (isalpha(*foo)) it++;

* OK, we said it was relatively noncontrived. So we lied.

Simple Inline::C | 235

} while (*foo++);
return i;

}
use Inline C;

use Benchmark;
$test = "a b cd e fg" x 10000;

timethese (10000,
{
Perl => sub { $test =~ tr/[a-zA-Z]//; },
C => sub { count_alpha ($test) }
}
)

_ _DATA__

__C__

int count_alpha(char* foo) {
int i = 0;
do {
if (isalpha(*foo)) it++;
} while (*foo++);
return i;

}

This produces output similar to:

Benchmark: timing 10000 iterations of C, Perl.

C: 24 wallclock secs (20.80 usr + 0.1

(n=10000)

5 sys

Perl: 10 wallclock secs (8.05 usr + 0.04 sys

(n=10000)

20.95 CPU) @ 477.33/s

8.09 CPU) @ 1236.09/s

Unfortunately, we find that when we run this, the Perl built-in version is around
twice as fast; this is a good reminder that it’s not always beneficial to recode things in
C for speed.” However, we’ve found that it is easy enough to wrap simple C func-
tions in Perl, receiving and passing values between the two languages without worry-
ing about the usual XS glue.

* With considerable hand-optimization and tuning of the Inline options, we can produce a C function that
competes reasonably well with the Perl built-in. However, the time spent shunting around between Perl and
C means that the built-in will win every time.

236

| Chapter9: Inline Extensions

More Complex Tasks with Inline::C

On the other hand, there are times when we want to mess about with the XS glue,
and Inline allows us to do this, too. In this section, we’ll look at some advanced uses
of the Inline::C module.

Dealing with Perl’s Internal Values

Anyone who’s familiar with XS at all knows that Perl doesn’t use simple types like
ints, char *s, and so on internally; it uses its own special types, SV*s for scalars, Av*s
for arrays, and Hv*s for arrays.

If we know the functions for manipulating these types,” then we can gain a little flexi-
bility by using them directly in our Inline::C programs.

Here’s an example; there’s no (clean) way of telling directly from Perl if a reference is
an object or just an ordinary reference. But this simple piece of XS uses the sv_
isobject API function to determine whether an SV* is an object or not.

use I0::File;

use Inline C => <<'EOT';

int blessed (SV* sv) {

if (SVMAGICAL(sv))
mg_get(sv); /* Call FETCH, etc. if we're tied */

return sv_isobject(sv);

}
EOT

my $a = \123;
my $b = I0::File->new;

print "\$a is a blessed reference\n" if blessed($a);

print "\$b is a blessed reference\n" if blessed($b);
This prints out:

$b is a blessed reference

What else can we know about a scalar? Well, there are various subtypes of scalar:
integers, numbers, and strings. The Perl guys call these IV, NV, and PV types, respec-
tively. Let’s first look at converting between these types and accessing information
about the value of our scalar.

First, there’s SVTYPE, which tells us what sort of SV we’re dealing with. It returns a
member of an enum, shown in Table 9-1.

* You can find a handy guide in the perlapi documentation, or the Perl API chapter of Extending and Embed-
ding Perl.

More Complex Tasks with Inline:C | 237

Table 9-1. Valid svtypes

SVt_NULL Undefined value (undef)

SVt 1V Integer

SVt NV Floating-point number

SVt_PV String

SVt_PVAV Array

SVt_PVHV Hash

SVt _PVFM Format

SVt RV Reference

SvVt_PvCv Code

SVt _Pvav Typeglob

SBt_PVIO 1/0 type (file handle)

SVt_PVIV Like SVt_PV, but also holds an integer value: a stringified integer or a string used as an integer

SVt_PVNV Like SVt_PV, butalso holds a floating-point value and an integer value: a stringified floating-point num-
ber, a string or integer used as a floating-point number, or a floating-point number used as an integer

SVt _PVLV Various types with LValue behavior

SVt_PVMG Blessed or magical scalar

SVt _PVBM Like SVt_PVMG, but does a fast lookup of its string value using the Boyer-Moore algorithm

Note from this that arrays and 3hashes are just advanced types of Svs—although we
refer specifically to these two types as AV and HV later on in our XS programming, it’s
worth remembering that these are just specialized names for something that’s an SV
underneath.

We can ask the scalar to transmogrify itself into an IV, NV, or SV, and read its value
using the suitably named SvIV, SVNV, and SvPV functions. We mustn’t forget that in C,
strings have two properties: where they start and how long they are. SvPV returns the
start of the string but also sets its second argument to be the length of the string:

void dump_values(SV* sv) {
STRLEN len;

printf("As a float: %f\n", SvNV(sv));
printf("As an integer: %i\n", SvIV(sv));
printf("As a string: %s\n", SvPV(sv, len));
}
Notice that the type STRLEN is defined to be an appropriate type for storing string
lengths. If we don’t really care about the length, as in this example, we can use the
SvPV_nolen macro instead.

We can also get at these properties of a string directly using macros: the SvCUR macro
tells us the length of the string. Why is it SvCUR and not SvLEN? Because, predictably,
SVLEN is used for something else—there is a distinction between the current length of
the Perl string, and the amount of space allocated for it. Keeping track of this sepa-

238 | Chapter9: Inline Extensions

rately allows the Perl interpreter to extend a Perl string in place, without having to
call out to memory allocation regions. SvLEN gives us the length of this allocated
region. But how do they differ?

Suppose the following series of operations:

my $a = "abc";

for (1..10) {
$a .= "d";
chop $%a;

}

Everyone knows that this produces the string abc at the end. However, how this is
done is slightly complex. Because in C you need to take close care of the memory
you allocate and release, Perl needs to track the length of the string. So we start with
a C string four characters long—a, b, ¢, and the end-of-string null terminator. But
now we need to add another character to the end, and we have only allocated four
characters—we need to stop and allocate some more. Now our C string is five char-
acters long, and our Perl string is four characters long.

Now, allocating memory during Perl’s runtime is computationally expensive, rela-
tively speaking, and so it’s something we want to avoid doing. So when we chop the
string, what Perl doesn’t do is shrink the string back to four characters. This would
be particularly silly in this case, since the very next thing we do is go around the loop
again and add another character to it, requiring another reallocation. Instead, it
keeps track of the fact that it’s allocated five characters, even though, after the chop,
it’s only presently using four of them. Hence, as the Perl string can expand and con-
tract at will, the allocated memory never shrinks; it only expands. SvCUR tells you the
current length of the Perl string, and SvLEN tells you the total length allocated. (Inci-
dentally, since these macros are just accessors into a structure, we can efficiently chop
a scalar with something like SvCUR(sv)--;).

Of course, just accessing the data is not always enough; sometimes we need to mod-
ify it as well, and this is where the sv_set... series of functions come in. We can set
a scalar’s integer, number, and string values with sv_setiv, sv_setnv and sv_setpv,
respectively. We can also find out what values the scalar currently thinks are valid by
using the SvIOK, SVNOK, and SvPOK macros. For instance, given:

$a = "5";
the value held in $a will only have been used as a string, and hence it will be POK. If
Wwe now say:

$b = $a + 10;
then although $a’s value has not changed, Perl will need to look at its numeric value in

order to add 10 to it. This means it will now be both POK and I0K (or NOK before 5.8.0).
If we now do something like:

$a .= "abc";

More Complex Tasks with Inlinez:C | 239

then we will denature its integer value, and only the string value will be current—it
will now only be POK. We’ll see more examples of these macros later in the chapter.

Other interesting things to do with scalars include looking at and fiddling with their
internal state—as one might imagine, this is not something to do carelessly. For
instance, the macro SvTAINTED tells if a scalar contains tainted data; corresponding
macros SVTAINTED on and SvTAINTED off alter the state of that flag:
void dodgify(SV* sv) {
SVTAINTED on(sv);
}

void blow away all the_security in_my program(SV* sv) {
SVTAINTED off(sv);
}

A scalar’s reference count tells you how many copies of a scalar are knocking
around. For instance, we know that if we have an object like so:

{
}

then the object will be destroyed once $f goes out of scope. However, if we store a
copy of it somewhere else:

{

my $f = I0::Handle->new;

my $f = I0::Handle->new;
$My::Copy = $f;
}
then the reference count is two; it drops back to one once $f goes away and no
longer holds a copy of it, but will remain at one until $My: : Copy stops referring to it.
The object will only be destroyed when the reference count drops to zero—when
$My: : Copy stores something else, or at the end of the program. We can fiddle the ref-
erence count with SYREFCNT inc and SvREFCNT dec:
int immortalize(SV* sv) {
SVREFCNT _inc(sv);

return SVREFCNT(sv);
}

This fools the scalar into thinking that something else is holding a copy of it, and it
won’t go away until the end of the program. It tells Perl that you also have a refer-
ence to the scalar, and not to destroy it when all the references that Perl knows about
go away. Once you remove your private reference to it, you need to decrease the ref-
erence count with SvREFCNT dec, otherwise Perl goes on thinking that someone,
somewhere is referring to it, and hence doesn’t correctly tidy it away. Decreasing the
reference count avoids a leak. Unless, of course, someone fiddles with it again, like
this:

void kill kill kill(Sv* sv) {
SVREFCNT(sv) = 1;

240 | Chapter9: Inline Extensions

SVREFCNT dec(sv);
}
This forces the scalar to be destroyed (calling the DESTROY method if it’s an object),
but woe betide any variables that still believe they refer to it.

Certain special scalars are accessible from C: PL_sv_yes and PL_sv_no refer to true
and false values, respectively; as these are intended to be singleton SVs, they are
always referred to by pointers. Hence you should use &L _sv_yes and &PL_sv_no in
your code:
SV* tainted(SV* sv) {
if (SVTAINTED(sv))
return &PL_sv_yes;
else
return &PL_sv_no;

}

There’s also &PL_sv_undef for undef.

What if you want to get hold of a normal global variable from Perl-space inside your
C function? The get_sv function returns an SV given a name; this is the usual way to
get at options from your extension code:
if (SvTRUE(get sv("MyModule::DEBUG", TRUE")))
printf("XXX Passing control to library function\n");

While there are a large number of other functions for dealing with Svs, these are by
far the most common you will use. Let’s now move on to looking at a situation
where you need to use SVs: varying numbers of arguments.

Handling the Stack

Anyone who has some XS experience may expect that we could quite easily retrieve
variable arguments using an AV* in the function’s prototype. Unfortunately, this
doesn’t quite work; Inline::C by default only handles a fixed number of arguments
to a function. If you want to handle arrays and varying numbers of parameters, you’ll
need to handle the stack yourself. Inline::C provides several macros to help you do
this: Inline Stack Vars sets up the variables used by the other stack handling mac-
ros, Inline Stack Items tells you the number of arguments to your function, and
Inline Stack Item retrieves an item from the stack.

use Inline C => q{

void print array(SV* argi, ...) {
Inline_Stack_Vars;
int i;

for (i=0 ; i < Inline Stack Items ; i++) {
printf("The %ith argument is %s\n", i,
SVPV_nolen(Inline Stack Item(i));

More Complex Tasks with Inlinez:C | 241

}
b
print array("Hello", 123, "fish", 0.12);

Note that although we declared an explicit argument, arg1, it remains on the stack as
Inline Stack Item(0).

So we can read multiple arguments from a stack and return zero or one values. If we
want to return multiple values, then we also need to manipulate the stack.

It’s well known that the Perl special variable $!, the error variable, is a bit, well, spe-
cial; it holds both an integer (error code) and a string (error description):

% perl -le '$!=3; print $!; print $!+0'

No such process

3
We can create such values with the Scalar::Utils function dualvar. Here’s a generic
routine to return both values from this type of dual-valued scalar:

use Inline C => g{

void bothvars (SV* var) {
Inline Stack Vars;
Inline Stack Reset;
if (SvPOK(var) && SvIOK(var)) { /* dual-valued */
Inline_Stack_Push(sv_2mortal(newSViv(SvIV(var)))); /* Push integer part */

}
Inline_Stack_Push(var); /* Push string part */
Inline Stack Done;

}
1
use Scalar::Util qw(dualvar);

my $var = dualvar(10, "Hello");

print "$ \n" for bothvars($var);
We use Inline Stack Vars as before, since we’re manipulating the stack. Inline_
Stack_Reset says that we’re done taking the arguments off the stack (Inline has
already done that for us, putting the value into var) and we’re ready to start pushing
return values back.

Now if it’s a dual-valued scalar—it’s OK to use both the string and the integer parts
at the moment—then we create a new SV* holding the integer part, and use Inline_
Stack_Push to place that onto the stack. We use Inline Stack Push again on the origi-
nal value, as this will give us the string part.

242 | Chapter9: Inline Extensions

Now we’re done, and we tell Inline there are no more values to come, with Inline
Stack_Done.

If you want to have multiple arguments and multiple return values, you can just
combine the two techniques.

Handling More Complex Perl Types

Of course, there’s a far more natural way to deal with arrays in Perl subroutines—
pass them around as references. But first we need to know how to get hold of refer-
ences in XS and what to do with them when we’ve got them.

References

If we arrange our XS function to receive a reference, there are two things we need to
do with it once we’ve got it—first, work out what sort of reference it is and, second,
dereference it. As it happens, in XS, these two things are strongly related. We already
know how to work out what type an SV is, using the SVTYPE macro and the SVt _...
enumeration. The only other trick is to dereference the RV, and we do this with the
SVRV macro.

For instance, we find the following code inside Data: :Dumper:

if (SVROK(sv) 8& (SVTYPE(SVRV(sv)) == SVt _PVAV))
keys = (AV*¥)SVREFCNT inc(SvRV(sv));
This is saying that if sv is a reference, and the type of the referenced SV is an Av—as
we noted when looking at SvTYPE, arrays are just specialized SVs—then we derefer-
ence it, increase its reference count (because we’re about to hold a reference to it
somewhere in a way that’s not managed by Perl) and store it in keys.

Arrays

OK, so we’ve now got an array. What can we do with that? Naturally, all the Perl
operations on arrays have equivalents in C space. We'll only look here at the most
common three operations—finding the length of the array, getting an element, and
storing an element.

The C equivalent to $#array is the av_len macro; like $#tarray it returns the highest
index, or -1 if the array is empty. Hence we can imagine an array iterator would look
something like this:

for (i = 0; 1 <= av_len(array); i++) {
SV* elem;

}

Now we come to extracting the individual SVs. We have two ways to proceed: the
official way uses the av_fetch function. This takes three parameters: an AV, an index,

More Complex Tasks with Inline::C | 243

and a boolean determining whether or not the element should be created if it does
not already exist.
for (i = 0; i <= av_len(array); i++) {
Sv¥* elem p = av_fetch(array, i, 0);
SV* elem;
if (elem_p)
elem = *elem p;

}

As you can see, this returns a pointer, which tells us whether there’s a valid SV in that
array element. (Naturally, if we’d passed in a true value for the third parameter to av_
fetch, then we’d always get valid SVs and wouldn’t need to check elem p.) If we say
something like this from Perl:

my @array;
$array[3] = "Hi there!";

then elements 0, 1, and 2 will not have a valid SV, and so av_fetch can’t return anything.

The less official, but faster, way to retrieve elements takes notice of the fact that AVs
are implemented as real C arrays underneath. The macro AvARRAY gives us a pointer
to the base of the array:
SV¥* base = AVARRAY(array);
for (1 = 0; i <= av_len(array); i++) {
SV* elem = base[i];
if (elem)
printf("Element %i is %s\n", i, SvPV_nolen(elem));
}
Finally, storing SVs in an array uses the predictably named av_store function. This also
takes three parameters—the array, the element, and the index to store. Naturally, as
the array stores pointers to the underlying SV structures, you only need to call this
when you’re putting a completely new SV into an element; if you’re just modifying the
existing SVs, there’s no need to call av_store afterward, because av_fetch() gave you a
pointer to the SV in the array, and the array is still pointing to that same Sv:
for (1 = 0; i <= av_len(array); i++) {
SV** elem p = av_fetch(array, i, 0);
if (elem p) {

SV* elem = elem_p;
sv_setiv(elem, SvIV(elem) + 1); /* add 1 to each element */

Hashes

And what about hashes, then? These also have two functions for getting and setting
values, hv_fetch and hv_store. The hash key is passed to each function as a string
and an integer representing the string’s length. The hv_fetch function, like av_fetch,

244 | Chapter9: Inline Extensions

returns a pointer to an SV¥, not an SV* itself. For instance, DB_File reads some config-
uration values for a DBM file from a Perl hash:

svp = hv_fetch(action, "ffactor", 7, FALSE);
info->db_HA ffactor = svp ? SvIV(*svp) : 0;

svp = hv_fetch(action, "nelem", 5, FALSE);
info->db_HA nelem = svp ? SvIV(*svp) : O;

svp = hv_fetch(action, "bsize", 5, FALSE);

info->db_HA bsize = svp ? SvIV(*svp) : 0;
Again, like av_fetch, the final parameter determines whether or not we should cre-
ate an SV at this point if there isn’t one already there. In fact, given that Perl will hap-
pily create SVs for us, we can pretty much do without hv_store:

SV¥* new sv = hv_fetch(hash, "message", 7, TRUE);

if (Inew_sv)

croak("So what happened there, then?");

sv_setpv(*new_sv, "Hi there!");

(croak is the C interface to Perl’s die and takes a format string a la printf.)

However, if you prefer doing without the surreality of using a function called “fetch”
to store things, hv_store works just fine:

SV¥ message = newSVpv("Hi there!", 9);
hv_store(hash, "message", message, 0);

This creates a new SV, gives it a nine-character-long string value, and then stores that
SV as the message key into the hash. The 0 at the end of hv_store tells Perl that we
didn’t pre-compute the hash value for this key, so we’d like Perl to do it for us. Pre-
computing hash keys is unlikely to be worth your while, so you almost always want
to supply 0 here.

As usual, for more hash manipulation functions, look at perlapi.

Wrapping C Libraries

A common use of extending Perl is to allow access to functions in existing C librar-
ies; it’s no fun making up your own C code all the time. Let’s first look at an exam-
ple of linking in a C library to our ordinary Inline functions.

We'll use Philip Hazel’s pcre library” as an alternative regular expression engine.
Here’s a wrapper function around the library that sets up a regular expression struc-
ture and tries to match against a string.

use Inline C => q{

#define OVECCOUNT 30

* Perl Compatible Regular Expressions (http://www.pcre.org/).

More Complex Tasks with Inline::C | 245

#include <pcre.h>

int pcregrep(char* regex, char* string) {
pcre *re;
const char *error;
int rc, i, erroffset;
int ovector[OVECCOUNT];

re = pcre_compile(regex, 0, 8error, &erroffset, NULL);
if (re == NULL)
croak("PCRE compilation failed at offset %d: %s\n", erroffset,
error);

rc = pcre_exec(re, NULL, string, (int)strlen(string), o, o,
ovector, OVECCOUNT);

if (rc < 0) {
/* Matching failed: handle error cases */
if (rc == PCRE_ERROR_NOMATCH)
return 0;

croak("Matching error %d\n", rc);

}

return 1;

}
b

Of course, this won’t work out of the box—we need to tell Inline where to get the
pcre_compile and pcre_exec functions. We do this by specifying additional configura-
tion options to Inline C:

use Inline C => Config => LIBS => '-L/sw/lib -lpcre' => INC => '-I/sw/include’;

The special option Config tells Inline that what follows are options to Inline::C; the
LIBS option tells the compiler to link in libpcre, while the INC option says that the
pcre.h header file we refer to lives in /sw/include.” By adding the preceding line before
our wrapper function, we set up the compiler’s environment correctly. Now every-
thing works fine:

use Inline C => Config => LIBS => '-L/sw/lib -lpcre' => INC => '-I/sw/include’;
use Inline C => g{

#define OVECCOUNT 30
#include <pcre.h>
/* The big long function we saw before. */

|5

* Usually the header file and library would live in /usr/local/include and /usr/local/lib, but on this machine,
they’re in /sw/.

246 | Chapter9: Inline Extensions

if (pcregrep("f.o", "foobar")) {
print "It matched!\n";

} else {
print "No match!\n";

}

And this does indeed print It matched!.

But we don’t always want to write wrapper functions around C functions in a library;
sometimes we want to call the functions directly. In this case, we use the Inline::C
configuration option AUTOWRAP, which tells the module to parse function prototypes it
finds in our code; now we only need to provide a prototype for the functions we are
interested in:
use Inline C => Config => LIBS => '-L/sw/lib -lpcre' =>
INC => '-I/sw/include’ =>

ENABLE => AUTOWRAP;
use Inline C => "char* pcre version();";

print "We have pcre version ", pcre_version(), "\n";
We have pcre version 3.9 02-Jan-2002
(Notice that we don’t specify an argument type of void; this confuses the Inline::C
parser.)

If we have a suitably written header file, we can merely include that and automati-
cally wrap all our library functions. This is a quick and easy way of getting access to a
C library, but it’s not terribly flexible. However, for many quick hacks, it’s good
enough.

Debugging Inline Extensions

The reason I point out that we shouldn’t specify void in prototypes is, well, bitter
experience, to be honest. I initially had this code:

use Inline C => "char* pcre version(void)";

and had no idea why it was not working. Running the program gave me a torrent of
errors:

pcreversion cidc.c: In function “pcre version':
pcreversion cldc.c:20: parse error before '{' token
pcreversion cldc.c:21: parameter “sp' is initialized
pcreversion cldc.c:21: parameter “mark' is initialized

A problem was encountered while attempting to compile and install your
Inline C code. The command that failed was:
make > out.make 2>&1

The build directory was:
/Users/simon/_Inline/build/pcreversion_cidc

More Complex Tasks with Inline::C | 247

To debug the problem, cd to the build directory, and inspect the

output files.
When a compilation fails, Inline keeps all the files around that it used to build the
shared library, and tells us where to find them. If I look at /Users/simon/_Inline/build/
pcreversion_cldc/pcreversion_cldc.c, I can quite quickly spot the problem:

#include "INLINE.h"

char* pcre version(void)
#line 16 "pcreversion cidc.c"
#ifdef __cplusplus

extern "C"

#endif
XS(boot_pcreversion_cidc)

Oops! 1 forgot the semicolon at the end of my prototype, so the compiler’s seeing
char* pcre version(void) XS(boot pcreversion cidc), which is horribly nonsensical.

But things didn’t immediately improve when I added the stray semicolon:

Can't locate auto/main/pcre versio.al in @INC (@INC contains:
/Users/simon/_Inline/lib /System/Library/Perl/darwin
/System/Library/Perl /Library/Perl/darwin /Library/Perl /Library/Perl
/Network/Library/Perl/darwin /Network/Library/Perl
/Network/Library/Perl .) at pcreversion line 6
Now everything has compiled just fine—which means Inline has cleaned up the
build directory and we don’t have the source any more—but the function in ques-
tion doesn’t seem to have been defined properly.

In this case, what we need to do is force Inline to keep the build directory around so
we can have a poke at it. We do this by passing the option noclean to Inline; the eas-
iest way to do this is on the command line:

% perl -MInline=noclean pcreversion

As Inline options accumulate, this doesn’t replace any of the options we gave in our
script itself.

Now we can go digging around in ~/_Inline/build/ and look at the generated code. In
this case, however, it’s not majorly informative—everything looks OK. So, another
couple of handy options we can add are info, which produces informative messages
about the progress of the Inline process, and force, which forces a recompile even if
the C source code has not changed. These options are case-insensitive, so we end up
with a command line like the following;:

% perl -MInline=Force,NoClean,Info ~/pcreversion

Information about the processing of your Inline C code:

Your source code needs to be compiled. I'll use this build directory:

248 | Chapter9: Inline Extensions

/Users/simon/_Inline/build/pcreversion_5819

and I'll install the executable as:
/Users/simon/_Inline/lib/auto/pcreversion_5819/pcreversion_5819.bundle

No C functions have been successfully bound to Perl.

Ah, OK. Now we have a hint about the problem—1Inline: :C scanned our C code but
didn’t find any functions that it recognized and, hence, didn’t bind anything to Perl.
This tells us that there’s something wrong with our prototype, and, lo and behold,
getting rid of the void clears everything up.

Packaging Inline Modules

In the past I'd always seen Inline::C as useful for prototyping, or a simple glue layer
between C and Perl for quick hacks, and would discourage people from using it for
the “serious” business of creating CPAN modules.

However, Brian “Ingy” Ingerson has worked hard on these issues and there are now
two equally suitable ways to write fully functional Perl modules in Inline, without
bothering with XS.

The first way is a bit of a hack and is still my preferred method: first, create a skele-
ton XS module with h2xs:

% h2xs -n My::Thingy

Writing My/Thingy/Thingy.pm
Writing My/Thingy/Thingy.xs
Writing My/Thingy/Makefile.PL
Writing My/Thingy/test.pl
Writing My/Thingy/Changes
Writing My/Thingy/MANIFEST

You can see the dreaded XS file in there, but don’t worry about that for now.

Next, leave that alone and develop your Inline::C-based program. Run it with the
-MInline=NoClean option to leave the build directory around, and then simply grab
the auto-generated XS code from the end of the .xs file from there and add it to the
end of Thingy.xs into your module directory.

The advantages of this are that you end up with a pure XS module that can be used
completely independently of Inline and doesn’t require the end user to drag down
another CPAN module; the disadvantage is that you end up grubbing around in XS
code, something you set out to avoid.

The second way, which Ingy recommends, is much simpler but ends up with a mod-
ule that does depend on Inline being installed. (As Inline is finding its way into the
Perl core, and so will be installed with every instance of Perl, this should soon cease

More Complex Tasks with Inline::C | 249

to be a consideration.) With this, you start writing your module as though it were
pure-Perl:

% h2xs -XAn My::Thingy

Writing My/Thingy/Thingy.pm

Writing My/Thingy/Makefile.PL

Writing My/Thingy/test.pl

Writing My/Thingy/Changes

Writing My/Thingy/MANIFEST
You then need to set @EXPORT and the other Exporter variables in the usual way,” and
pass the NAME and VERSION options to Inline in your Thingy.pm:

our $VERSION="1.01";

use Inline VERSION => '1.01',
NAME => 'My::Thingy';
Finally, open up the Makefile.PL and change ExtUtils::MakeMaker to Inline::
MakeMaker. This ensures that the C part of the module is compiled only once, when the
end user runs make, and then the C shared library is installed along with the rest of the
module in the usual way during make install.

Inline:: Everything Else

Originally, Inline was just for wrapping C code; however, pretty soon developerst
saw the potential to extend the concept to other languages. Brian rewrote the origi-
nal Inline.pm to support a greater degree of pluggability, and now CPAN contains a
whole host of Inline:: modules.

To round off the chapter, we’ll take a look at some other languages you can use in
the Inline style.

Inline::Python

Perhaps the most advanced of the non-C Inline modules is Neil Watkiss’s Inline::
Python; together with his PyPerl, one can mix Python and Perl code in a near-seamless way.

The first and most obvious thing we can do with Inline::Python is the same sort of
thing we’ve been doing with Inline::C—wrap Python routines and use them from
Perl:

use Inline Python => g{
import os
def orig path():
return os.defpath.split(os.pathsep)

* See the perlnewmod documentation if you’re not sure what the “usual way” of creating Perl modules is.
T Particularly Neil Watkiss, at the time Brian’s coworker at ActiveState.

250 | Chapter9: Inline Extensions

};
print "$ \n" for orig path();

Python’s os.defpath method returns a built-in search path for executables (unmodi-
fied by the value of the $PATH environment variable); we then split this on the separa-
tor character for paths (generally “:” on Unix systems) and return it as a Python
array.

Inline::Python takes care of turning that Python array into an array that we can use
in Perl.

Again, just like Inline::C, we can import library functions without specifying code
for them:
use Inline Python => g{

from quopri import encodestring

1
print encodestring("quoted=printable"); # quoted=3Dprintable

However, we can also import entire classes, allowing access to Python classes and
their methods. Let’s use the RobotFileParser class contained in the Python
robotparser library, used for reading and querying robots.txt files on remote web sites:

use Inline Python => q{
from robotparser import RobotFileParser

|5

my $parser= RobotFileParser->new();

$parser->set_url('http://www.musi-cal.com/robots.txt");

$parser->read();

...
Once we’ve imported a class, all of its methods are available from Perl as though we
were using the class from Python—all arguments to the methods and any return val-
ues come through the Inline::Python bridge, appearing to Perl like Perl values and
appearing to Python like Python values. This allows for a pretty seamless integration
of Python libraries into Perl.

But what if we want to mix the two languages even more? When Inline::Python
starts up, it loads a special Python library called perl. We can use this to grab subrou-
tines from the Perl environment.

use Inline Python => g{
def callperl():
print "This is Python speaking..."
perl.hi world()
1
sub hi world { print "Hello! I'm in Perl!\n" }

callperl();

Inline:; Everything Else | 251

Our Perl main package appears as the perl class inside the Python interpreter. Using
the same magic that wraps Python methods into Perl subroutines, Inline::Python
also turns Perl subroutines into Python methods. That’s seamless integration.

Inline::Python also provides a few other functions that make for a smooth transi-
tion in and out of Python; perl.eval inside Python and py eval inside Perl can evalu-
ate strings in the appropriate foreign language, and there are facilities for controlling
the binding of Perl and Python routines.

Inline::Python works well for applications where the mother tongue is Perl; Neil’s
PyPerl is a first-language Python equivalent. Neil has worked hard to produce an
extremely robust framework for fluid movement between Perl and Python, and the
Inline::Python module is a huge bonus for anyone who wants or needs to use
Python classes in their Perl code.

Inline::Ruby

Ruby (http://www.ruby-lang.org) is an interesting, modern, object-oriented scripting
language created by Yukihiro Matsumoto (Matz). As you might be able to guess,
Inline::Ruby allows you to call Ruby methods and access Ruby classes from Perl. It
works precisely the same way as Inline::Python, but doesn’t support the same sort
of two-way communication. However, you can define methods in Ruby and import
Ruby libraries and have them callable from Perl.

An interesting, but slightly complex, feature of Inline: :Ruby is the ability to pass Perl
subroutines to iterators. Ruby distinguishes between two types of usage for what Perl
calls anonymous subroutines: the first type is called a Proc object in Ruby, and it is
what most uses of Perl anonymous subs turn into; with the second type, all Ruby
methods can take an optional block as an argument following the ordinary formal
parameters. This acts as a callback, and the Ruby method can yield control to the
callback with the yield keyword.

When a method iteratively calls yield over the contents of a data structure, it’s
referred to as an iterator. Here’s an example of iterating over an array:

array = ["Hello", "there", "Ruby!"]
array.each { |x| puts x }

The each iterator method is a little like Perl’s for loop: it calls the attached code
block on each element of the array in turn.

You might asssume that we could happily say something like this in Inline: :Ruby:
$object->each(sub { print $ [0] });

However, as we’ve mentioned, the code block isn’t passed to the iterator as an ordi-
nary argument—it’s attached separately. To get the same effect in Inline: :Ruby, we
need to associate the code block like so:

$object->iter(sub { print $ [0] })->each;

252 | Chapter9: Inline Extensions

This first prepares the object for calling the iterator with the right code block, and
then calls it with no ordinary arguments; this does what we mean.

If you haven’t taken much of a look at Ruby thus far, I'd encourage you to do so;
maybe start by looking at my rubyisms Perl module, which brings some of the more
interesting features from Ruby into Perl.

Inline::CPR

We've seen how Inline::C can create Perl extensions to C libraries; the usual topic
that goes along with extensions is embedding. This is the process of creating a C pro-
gram that contains a Perl interpreter and can call Perl subroutines.

Unfortunately, embedding is tricky—possibly trickier than XS. Ingy’s solution is the
curious Inline::CPR module. It works a little like this: you write a C program in the
usual way that contains amain() function. Here’s a simple one:

void main(void) {
printf("Hello, C!\n");

Now you do something a bit funny with it; you add a shebang (#!) line to make the
C program run under the CPR interpreter, like so:

#!/usr/bin/cpr
void main(void) {

print("Hello, C!\n");
}

At this point, we have a C program that is a CPR script.

The CPR interpreter is a little program that starts a Perl interpreter and passes your C
program wholesale to Inline::C. This compiles your C functions and binds them to
Perl subroutines. Once the Perl interpreter has finished doing the usual Inline: :C thing,
it calls the main subroutine. Conceptually, you’ve written a Perl program like this:

#!/usr/bin/perl

use Inline C => g{

void main(void) {
printf("Hello, C!\n");

}

};

main()

Once this is done, your C program is up and running inside the context of a Perl
interpreter.

Inline:: Everything Else | 253

The neat part is that because you have a C program running inside Perl, you can use
all the Inline::C tricks you've learned about already in this chapter.

Inline::CPR is still in the development stages, and you can’t really do anything too
clever with it, but it’s an interesting framework for solving the embedding problem.

Inline::Struct

You may be thinking that Inline::C is all very well for interfacing to relatively sim-
ple C libraries, but in the real world, libraries use more complicated variable types
than just the strings, integers, and floating-point types we’ve seen so far. Most librar-
ies define their own structures and expect us to pass and recieve these structures.
How can we do this with Inline?

The answer is to use Neil Watkiss’s Inline::Struct. This gives us an object-oriented
approach to C structures. To enable this, we simply add the following to our Inline::C
programs:

use Inline C => Config => ENABLE => STRUCTS;

And then, theoretically, any structures defined in your C code will be wrapped into
Perl classes.

Miscellaneous Other Inlines

There are now more Inline-style modules on the CPAN than it’s sensible to describe,
so we’ll end this chapter by throwing out a few pointers to other modules worth
looking at.

For many years, the only way to plug Java and Perl together was the O’Reilly JPL
(Java Perl Lingo) project. This used the JNI (Java Native Interface) C library to
embed a Java interpreter inside a Perl interpreter. It was slow, complex and not
entirely well documented. Now we have Inline::Java, a Perl-Java bridge that can use
either JNT or a socket connection to a standalone Java server process.

Inline::ASM is an obvious extension of the Inline::C concept which lets you write
assembly code inline; this is turned into a little library that is wrapped with Inline::C
in the usual way.

Inline::Basic is an interesting language extension because it doesn’t actually call out
to a separate interpreter; it uses a Basic interpreter written in Perl (the Language::
Basic module) to interpret your Inline code. Finally, Inline::Files is not actually an
Inline.pm module at all, but uses a similar technique to allow you to put multiple vir-
tual files into a __DATA__ section of a Perl program, instead of just the one.

254 | Chapter9: Inline Extensions

Conclusion

The Inline modules are an easy-to-use interface for incorporating code and libraries
from other languages in your Perl code. You won’t use them every day, but they are a
valuable addition to any Perl programmer’s toolbox.

Condusion | 255

CHAPTER 10
Fun with Perl

Perl programming isn’t all work and no play. Unlike many other languages, it’s in the
essence of Perl culture not to take itself too seriously—thanks in part to Larry him-
self. After all, it’s hard to be too serious about anything whose mascot is a camel.

So Perl programmers have invented many and varied ways of amusing themselves in
their time off, and understanding these things will get you a step closer to under-
standing Perl culture. What’s particularly interesting about having fun with Perl,
though, is that it can teach you a great deal. When people are trying to squeeze every
last character out of a Perl golf entry, they’ll come up with some interesting tricks in
the language that you may not have thought of; part of the appeal of JAPHs is that
they do obvious things in completely unexpected ways; and some of the Acme:: mod-
ules use extremely advanced or clever techniques in order to do something totally
frivolous.

Some people say that you’ve really mastered a language when you can tell jokes in it;
by the end of this chapter, your sense of Perl humor will be honed a little further—
and, hopefully, your mastery of the language will be furthered, as well.

Obfuscation

Detractors of Perl will invariably say something about it looking like line noise; they point
to wonderfully obvious, but not necessarily friendly, constructions like @{$_[0]||[]} as
examples of how ugly Perl can turn out. (However, put the same detractors in front of a
COBOL program and they’ll probably complain about it being too verbose—you can’t
please some people.) At any rate, the reputation Perl has achieved for being incompre-
hensible is largely due to the recreational activities of the Obfuscated Perl Contest” and
Perl Golf competitions. (Thanks, guys!)

* The Obfuscated Perl Contest was run by The Perl Journal from 1996 until 2000 and took its inspiration from
the International Obfuscated C Contest (http://www.iocc.org/), although for some reason most people don’t
think of C as looking like line noise.

256

But obfuscation is not only about producing code that looks like line noise. Obfusca-
tions are really an outlet for creative impulses that—as professional programmers—
we can’t always use in our day jobs. Working on an obfuscation, we exchange the
various operational constraints of work for another set of constraints: aestethics,
cleverness, shortness, etc. The fact that the program prints “Just another Perl
hacker” or does whatever the rules for the golf hole said is only a side effect.

As an example, we’re going to take on a challenge posed on the Belfast Perl Mongers
mailing list: write a program to solve the game of Boggle™" as quickly as possible. 1
wrote a pretty quick algorithm but decided to obfuscate it before entering. Here’s the
idea I had: first, give the dice coordinates from (1,1) to (4,4). Now we construct a
matrix of each die’s neighbor:

my @neighbors=
(undef, [undef, [

1,2],[2,1],(2,2]],1[1,1],[1,3],[2,1],2,2],[2,3]], [[1,
2],[1,4],12,2],[2,3],(2,4]1,([1,3],[2,3],(2,4]]], [undef, [[1,1], [1,2], [
2,21, (3,11,(3,211, 1[3,21,14,20, (1,31, (2,11, [2,3], 13,11, 3,21, 13,311, [[
1,21,03,31, 15,41, 12,21, (2,41, 13,20, 13,31, 3,411, [[1,31,[1,41, 12,31, 3,
31, 13,4111, [undef, (12,11, [2,2], 3,2], [4,1], [4,2]], [[2,1], [2,2], [2,3], [
3,11,(3,31, (4,11, (4,21, (4,311, [12,21,[2,3),[2,41, 3,21, 3,41, [4,2], [4,
3],[4,4]11,0[2,31,(2,4],(3,31,[4,3],[4,4]]], [undef, [[3,1],[3,2],[4,2]],
13,1, (3,20, 13,30, [4,1], (4,311, 13,21, 13,31, 3,41, [4,2], (4,411, [[3,3]

This tells us that, for instance, the top left die (1,1) has neighbors (1,2), (2,1), and
(2,2). Naturally, I used a small Perl program to pre-compute this for speed.

Next, we need to read the board from standard input and also keep two pieces of
information about it—first, we want to know what letters we have on the board in
total, and also we want to have a hash that looks up dice by the letter on them.
That’s to say, given the following board:

iane
nvpo
oire
ewlg

we can look up “e” and get (1,4), (3,4), and (4.1).

for my $line (1..4) {

chop(my $row = <>);

my @row = split //, $row;

$has.=$row;

push @{$where{ $row[$ 1 }}, [$line, $] for 1..4;
}

* Boggle™ is a word game that uses a grid of lettered dice; you have to find find words by tracing paths through
adjacent letters, without using the same die twice. So in the grid on this page, you can start at p and trace out
peril, but you can’t have piper because that would require going over the p twice.

Obfuscation | 257

(We used one-based arrays to simplify the generation of the @neighbors variable—
detecting that $neighbors[0] is undef is easier than having to check that we don’t
accidentally get an inaccurate answer by looking at $neighbors[-1].)

Next, we read in a word list and determine whether we can find the word in the Bog-
gle grid. You might think it would be better to look through the Boggle grid and see
what words you can make, as a human would, but this turns out to involve nearly
half a million possibilities, whereas we can get any word list down smaller than that.

The key to this is in noting that we’re only interested in words made up of letters that
can actually be found on our grid; that’s the $has variable:
while (<>) {

chomp;

next unless /~[$has]{3,9}$/0;

my @stuff = split //, (my $word=$);
We then locate the first letter of the word in our %where hash, giving us all possible
starting points. The path subroutine takes a position, a hash of the positions already
visited (so we don’t go over the same letter twice) and the letters left to find, and
returns a true value if there’s a path that traces out the letters:

for (@{$where{shift @stuff}}) {

print $word
if path($_, { $_->[0] . $_->[1] => 1 }, @stuff);

}
As you might be able to guess, path is a recursive subroutine; it looks at the available
positions of the next letter to be found, checks that they’re neighbors of the current
position and that they’re not in the history, and then does the same for the next let-
ter to find.

sub path {
my ($pos, $history, @left) = @ ;

my @neigh = @{ $neighbors[$pos->[0]][$pos->[1]] };
for my $newpos (@{ $where{ shift @left } }) {
next if (!scalar grep { $newpos->[0] == $ ->[0] &
$newpos->[1] == $_->[1] } @neigh)

|| $history->{ $newpos->[0] . $newpos->[1] }++;
return !@left || path($newpos, $history, @left);

}

OK, we’ve spent a long time explaining the algorithm. Let’s go around obfuscating
it. First, we look at variable and subroutine names. You’ll get no points for having
descriptive naming, and brevity is a strong element of obfuscation. Let’s replace
@neighbors with @n, $history with $h, $nextpos with $n (note the useful distinction
between @n and $n), and so on. We also get rid of obvious extraneous whitespace to
give us:

#!/usr/bin/perl -1

my@n=
(undef, [undef, [[1,2],[2,1],12,2]1,[[1,1],(1,3],[2,1],(2,2],[2,3] 1, [[1,

258 | Chapter10: FunwithPerl

2],[1,4],02,2],[2,3],(2,4]1,([1,3],[2,3],[2,4]]], [undef, [[1,1],[1,2], [
2,2],(3,11,(3,2]1,[[1,1],[1,2],[1,3],(2,1],02,3],(3,1],(3,2],3,3] L [1
1,2],01,3],[1,4],12,2],[2,4],13,21,(3,3], 13,411, [[1,3],[1,4],[2,3], [3,
3],(3,4]1], [undef, [[2,1],[2,2],(3,2],[4,1],[4,2]],[[2,1],[2,2],[2,3],1
3,11,(3,31,[4,1],[4,2],04,3]1,[[2,2],[2,3],(2,4],(3,2],[3,4],[4,2], [4,
3],[4,4]11,1[2,31,(2,4],(3,31,[4,3],[4,4]1], [undef, [[3,1],[3,2], [4,2]],
[[3,1],03,2],[3,3],[4,1],[4,3]1,([3,2],(3,3],(3,4],[4,2],[4,4]1,[[3,3]
»[3,41,04,3111);

for my $1(1..4){chop(my $r = <>); my @r = split //, $r; $h.=$1;

push @{$w{$r[$_] }}, [$1, $_] for 1..4;}

while (<>) {chomp; next unless /*[$h]{3,9}$/0; my @s = split //, (my

$w=$_);p($_,{$_->[0].$_->[1] => 1},@s) and print $w for @{$w{shift @s}};}

sub p { my ($p, $h, @1) = @_; my @n2 = @{$n[$p->[0]]1[$p->[1]]};For my

n (@{$w{shift @1}}) {

next if (!scalar grep {$n->[0]==$ ->[0]8&$n->[1]==% ->[1]} @n2)

[1$h->{$n->[0].$n->[1]}++; return !@1||p($n,$h,@1);}}
Well, this is still just about comprehensible, so we need to add a few more touches.
For starters, Perl is amazingly tolerant of whitespace. Not only can we get rid of more
whitespace where it’s not needed (such as, for instance, all the whitespace inmy @r =
split //, $r) but we can add whitespace where it might not be expected—for
instance, a pleasing addition is a newline between the $ and r of a variable. We can
also trim the code by replacing those undefs with zeros, and swapping a few control
structures around—X&next instead of next if X, for instance. And, of course, no
obfuscated program is complete without being formed into a nice regular shape:

my@n=(0, [0, [[2,2],[2,1],[1,211,[[2,3],(2,2],(2,1],(1,3]
»[1,111,102,4],02,3],[2,2],[1,4],[1,2]1,[[2,4],02,3],[
,3111,00,[03,21,03,11,[2,21,[1,21, (1,11, (1,210, (3,30,
3 2],[3,1], [2 31,[2,1], [1 31,11,21,[1,311,[(3,4],(3,3],
[3,21,02,4],[2,2],[1,4],[1,3],[1,2]1,[(3,4],(3,3],[2,3]
,[1,]]],[,[[4,2]1,04,11,(3,2],[2,2],[2,1],[2,2]1,[[4,3
] [4,2],[4,1], [3 3], [3 11,12,31,12,21,12,311,([4,4],[4,
31,[4,21,13,41,(3,2],(2,4],(2,31,(2,4]11,[[4,4],[4,3],[3
,31,02,4111,10,[[4,21,(3,21,(3,11, (3,211, [4,3],(4,1], [
3,31,[3,2]1,[3,311, [[4,4],[4 21,13,41,13,31,13,411,[[4,3
1,[3,4111);my@b=[];my($h,%w);for my $1(0,1,2,3){chop(my

$r=<>);my@r=split//, $r;push@b,[0,@r];push@{$w{$r[$ 1}},
[$1,$]for 1..4;$h.=$r}while (<>){/~[$h]{3,9}$/0]|next;
chomp;my@s=split//, (my$w=$_);p($_,{$_->[0].$_->[1]=>1},
@s)88print$w."\n"for@{$w{shift@s}}}sub p{my($p,$h,@l)=@
_smy@z-0{$n[$p->[0]1[$p->[1]]}; for my$n(e{su{shiftel}})
{next if(!scalar grep{$n->[0]==%_->[0]8&$n->[1]==$_->[1
1}@z) | |$h->{$n->[0].$n->[1]}++;return!@L] [p($n,$h,@1)}}

It was at this point that we tripped over a Perl 5.6.0 parser buffer overflow:

syntax error at boggle.pl.old line 14, near "5{"
Unrecognized character \x02 at boggle.pl.old line 14.

which suggested that this was obfuscated enough.

But I am but an amateur at the obfuscation game; for instance, it’s possible to deter-
mine what my algorithm does by inspection—it doesn’t do anything interesting like

Obfuscation | 259

rewrite itself on the fly or redefine subroutines at runtime. I don’t make use of the
interesting properties of Perl’s special variables, such as the wonderful discovery that
$} (and hence @}, %}, and *}) is a legal variable name that happens to be unused by
the system.

For a piece of code that uses all these tricks and more, check out Damian Conway’s
SeltGOL. This program, if we can call it such, is just more than 1,000 bytes of pure,
unadulterated evil. Instead of entering a different program for each category of the
Obfuscated Perl Contest, Damian entered “SelfGOL” to all four.

SelfGOL can reproduce itself; it can turn other programs into a quine; it can display
a scrolling banner; it plays the Game of Life; and it contains no (ordinary) loops,
goto statements, or if statements. Control flow is done, well, interestingly. We
reproduce it here in its entirety without comment, as it takes Damian three to seven
hours to explain it:

#!/usr/bin/perl -s

$;=$/; seek+DATA,undef$/, 1$s;$ =<DATA>;$s88print| | (*{q;::\;

5 }=sub{$d=$d-12$d:$0;s; ' ; \t#$d#;,$_})88$gdBdo{$y=($x|[=20)*($y|[8);sub
i{sleep&f}sub'p{print$;x$=,join$;,$b="/.{$x}/g,$; }sub'f{pop||1}sub'n{substr($b,
&f%$y,3)="tr,0,0,}sub'g{@ [~~@]=@ ;--($F=&f);$m=substr($b,&f,1); ($w,$w,$m,0)
[n($F-$x)+n($x+$F) - (${m}eq+0=>)+n$F] | | $w}$w="\40";$b=join" ' ,@ARGV?<>:$,$w
x$y;$b="5).)$8="/\w/?0:$w)gse; substr($b,$y)=q++;$g="$i=0;$i?$b:$c=$b;
substr+$c,$i,1,g$1;$g="s?2\d+?($8+1)%$y?e;$i-$y+17eval$g:do{$b=$c;p;i}’;
sub'e{eval$g;8e};e}||eval]| |die+No.$;

__DATA__

$d8&do{{$"W=3$];* =sub{$=+s=#([A-2]) (. *)#=H#$+$1#=g}}
@s=(q[$_=sprintf+pop@s,@s],";\n"->($_=q[

$d8&do{{$"W=3$|;* =sub{$=+s=#([A-2])(.*)#=H$+$18=g}}"
@s=(q[%s],q[%s])x2;%s;print"\n"x8 ,$;i;eval};
1))x2;$_=sprintf+pop@s,@s;print"\n"x& ,$_;i;eval};$/=$y;$"=",";print
q<#!/usr/bin/perl -sw
1$s?2{do{>.($_=<>).q<}:do{@s=(q[printf+pop@s,@s],q[#!/usr/bin/perl -sw
1$s?{do{>. (s$%$%%k3g,y=[====y=]==||&d,$_).q<}:do{@s=(q[%s],q[%s])x2;%s}
1)x2;printf+pop@s,@s}

>

These are its command-line switches:

% selfgol -g # play the Game of Life
% selfgol -s # reproduce
% selfgol -d # display banner

% selfgol -f script.pl # convert script.pl into a quine

We cannot leave the topic of obfuscation without mentioning B: :Deparse. More than
a few people have come up with the bright idea of writing auto-obfuscation pro-
grams in order to safeguard their code against prying eyes for commercial reasons;
still others produce horrifyingly obfuscated code that you would prefer to under-
stand before running. Deparse helps with both of these. For instance, Mark-Jason
Dominus’s entry in the 5th Obfuscated Perl Contest looks like this:

@P=split//," .URRUU\C8R";@d=split//,"\nrekcah xinU / lreP rehtona tsul";sub p{
@p{"1$p", "usp"}=(P,P);pipe"r$p", "usp";++$p; ($q*=2)+=$f=!fork;map{$P=$P[$f|ord

260 | Chapter10: FunwithPerl

($p{$_})86];$p{$_}=/ "$P/ix?$P:close$_}keyskp}p;p;p;p;p;map{$p{$_}=~/~[P.]/8&
close$ }hp;wait until$?;map{/ r/88<$_>}%p;$ =$d[$q];sleep rand(2)if/\S/;print

If you want to deconstruct this, you could do worse than starting with the following:

% perl -MO=Deparse mjd-japh

@ = split(??, '.URRUUXR', 0);

@d = split(??, "\nrekcah xinU / lreP rehtona tsul", 0);
sub p {
@p{"r$p", "u$p"} = ('P', 'P');
pipe *{"r$p"}, *{"u$p"};
++$p;
($q *= 2) += $f = !fork;
map {$P = $P[$f | ord $p{$_} & 6];
$p{$_} =/ "$P/xi ? $P : close *$_;} keys %p;
}
[
[
[
[
b

map {close *$ if $p{$ } =~ /~[P.1/;} %p;

wait until $?;

map {<$ > if /*x/;} %p;

$_ = $d[$q];

sleep rand 2 if /\S/;

print $_;
B::Deparse is a module designed to work with the Perl compiler, O.pm. If we tell 0 to
use the Deparse backend, (use 0 'Deparse', or perl -MO=Deparse as it’s more com-
monly spelled) instead of spitting out C or Perl bytecode, it spits out Perl as parsed
by the Perl parser and then unparsed again.

If you need another hint, the -p option to Deparse can be used to add additional
parentheses:

% perl -MO=Deparse,-p mjd-japh

(!fork)));

(89 *= 2) += (8F -
$F | (ord($p{8_}) & 6))1);

map({($P = $P[(

Just Another Perl Hacker

A long time ago, in a Usenet newsgroup far, far away, Perl hacker Randal Schwartz
(coauthor of Learning Perl and the early Programming Perl books) signed off a
Usenet post with the famous words:

Just another Perl hacker,

Just Another Perl Hacker | 261

Of course, since Randal was talking about Perl and demonstrating techniques in Perl,
this signature very soon mutated into the very obvious Perl code:

print "Just another Perl hacker,\n";

and at this point, the JAPH was born. As Randal and others demonstrated a Perl pro-
gramming technique in their Usenet articles, the point would be highlighted by a
valedictory JAPH. For instance, when demonstrating the fact that sort sorts lexico-
graphically with uppercase characters first, one might sign off:

print join" ", (sort(qw(another Just Perl hacker,)))[0,2,1,3];

Since then, it has become a Perl tradition to produce programs that output the words
“Just another Perl hacker” in cute, educational, or unexpected ways. The undis-
puted king—or perhaps, queen—of JAPHdom is the Dutch hacker Abigail, who has
contributed some of the most surprising JAPHs to the Perl community. The JAPH
culture is so established that some of Abigail’s JAPHs have been included in recent
versions of Perl as regression tests, since they expose some of the strangest edge cases
of the perl interpreter’s behavior.

Abigail’s JAPHs use many of the tricks involved in obfuscated Perl but always end up
surprising many readers. For instance, here’s one of the more famous ones:

k %k ok ok ok ok ok ok ok * ok ko ok ok ok ook ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok

VAV YAV A
I A A A A N B I A A W N T
BEGIN {% % = ($ _ =" " => print "Just another Perl Hacker\n")}

3R~ *

The fact that this prints out a JAPH should be no surprise, since this is given entirely in
the last line; the surprise should be in the fact that the whole thing parses as valid Perl
code. But if you remember that // is a valid pattern match, %% is a perfectly good name
for a hash, and ** is a perfectly good glob, then all should become relatively clear.

There’s a varying degree of complexity involved in JAPHs. The most basic JAPH
somehow encodes the JAPH string, and then decodes it. This is pretty boring:
$_ = q ;4a75737420616e674686572205065726C204861636b65720as; ;
for (s;s;5;5;5;5;5;5;5;5;5;S)
{s;(..)s?;qq gprint chr 0x$1 and \161 ssq;excess;}
Then there are the kind of JAPHs that obviously contain the JAPH string, but it’s not
at all obvious how it reaches standard output:

eval {die [[qq [Just another Perl Hacker]]]};; print

s{s{s{@r}[s{e{s{0}}}]}[s#{s{0{s{e}}} [$#{0{${@}}}]}]
And then there are those JAPHs that look like they might contain something like the
JAPH string, but the rest is unclear:

BEGIN {$"H {q} = sub {$_ [1] =~ y/S-ZA-IK-0/q-tc-fe-m/d; $_[1]}; $"H= 0x28100}

print "Just another PYTHON hacker\n";
This particular JAPH relies upon a little-known feature of the overload pragma—
explained in Chapter 1—combined with a little-known feature of its implementation—
the fact that it relies on placing specific values in the magic variables $"H and %"H.

262 | Chapter10: FunwithPerl

A similar effect, it turns out, can be obtained by tying special variables:

tie $" => A; $, =" "; $\ = "\n"; @ = ("") x 2; print map {"@"} 1 .. 4;
sub A::TIESCALAR {bless \my $A => A} # VYet Another silly JAPH by Abigail
sub A::FETCH {@q = qw /Just Another Perl Hacker/ unless @q; shift @q}

Here, the $" variable, which is used to join array elements when they are interpo-

lated in double-quoted strings, is tied; hence, when we interpolate the (empty) array
@a, the tied variable pulls out another word from the JAPH string stored in @q.

Special variables also play an interesting part in this Abigail creation, but in a very
different way:

map{${+chr}=chr}map{$ =>$ “ord$"}$=+$]..3%$=/2;

print "Iu$sst an$ostihsedr Pesr$l Hacskedr\n”;
This takes advantage of the very fortuitous coincidences that the value of $= (the
default number of lines on a format page) plus $] (the Perl version, generally just
over 5 for now) is 65, the ASCII code for “A,” and three-over-two times $= is 90, the
ASCII code for “Z.” Combined with the fact that the ASCII character set is arranged
so that you can flip between lower- and uppercase letters by flipping the 5th bit (32,
the value of a space character, as stored in $"), the first line of this JAPH sets $a to a,
$b to b, and so on through to $Z; once this is accomplished, the second line follows
naturally.

SA++

This discipline was invented by the Paris Perl Mongers, who also host a list of results
at http://paris.mongueurs.net/aplusplus.html. The challenge is to increment the value of
$A by one. There are currently 288 entries, ranging from the simple:

$A++;
to the mind-blowing:

y ccced x s vvchr oct oct ord uc ave x s vvucve le
s vvuc ave x s vvchr oct oct oct ord uc bve x eval

Perl Golf

The golfers are another example of the funny side of Perl; these are players of the
game invented by Uri Guttman and played out on the golf@perl.org (Perl Golfers)
mailing list and far too many other places, such as in front of those asking for help
with relatively trivial problems on comp.lang.perl.misc. The goal of this particular
sport is to solve a programming problem in as few characters as possible.

For instance, consider generating the Fibonnacci series (1, 1, 2, 3, 3, 8, etc.). One
might start with the following uninspired program:

perl -e '$a=$b=1; while (1) {$c= $a+$b; print $c,"\n"; $a=$b; $b=$c; }'

PerlGolf | 263

This weighs in at an abysmal 61 characters, or strokes. We can immediately improve
on this by removing extraneous whitespace and making use of the -1 option to print
newlines after every print statement:

perl -le '$a=$b=1;while(1){$c=$a+$b;print$c;$a=$b;$b=$c;}"

This gives us a slightly more respectable 48 (the -1 counts as a stroke), but that’s still
way over par. Let’s notice that the second “1” constant isn’t doing anything, the
assignment followed by print will always yield a true value, so we can use that
instead:

perl -le '$a=$b=1;while(print$c=$a+$b){$a=$b;$b=%c;}'

We’re now down to 43, and we can get rid of the initial $a= and the last semicolon
for another three strokes. Maybe you feel we would be better off without an interme-
diate variable:

perl -le "$b=1;while(print$a+$b){($a,$b)=($b,$a+$b)}"
but this again yields 43 strokes. A new train of thought is required.

So far we’ve been computing the n’th term and printing it, then shuffling our vari-
ables around so we stored the n’th and n-1’th. But what we can do is carry about the
n’th and n-1’th terms and increment each by the other: f(n) + f(n-1) yields f(n+1),
and f(n+1) + f(n) yields f(n+2). This time we generate two terms inside our loop:

perl -le '$b=1;while(1){$a+=$b;print$a;$b+=$a;print$b}’

We’re now back up to 45 strokes, but this formulation leads naturally to:
perl -le "$b=1;while(1){print$a+=$b;print$b+=$a}"

and thence to the beautifully symmetric:
perl -le '$b=1;print$a+=$b while print$b+=$a’

This is 35 strokes, not bad; I dare say it can be improved upon, but aesthetics forces
me to stop here. Ooh, no, one more thing:

perl -le 'print$a+=$b while print$b+=$a||1"

33 strokes in all. Oh, and we can shave a character by using a special variable instead
of $b, because then we won’t need the space after while:

perl -le 'print$a+=$}while print$}+=$al |1’
32 strokes. Beat that if you can!

All right, T admit it; it’s addictive.

Perl Poetry

Programming Perl mentions the arcane art of Perl Poetry—writing valid Perl pro-
grams that, shall we say, have greater literary than pragmatic value.

264 | Chapter10: FunwithPerl

One-Liners

Somewhat related to golf is the culture of one-liners; seeing how much you can get
done in a single line of Perl, sometimes in unexpected ways. For instance, everyone
knows that you can count the number of lines in a file using the -n switch to Perl:

perl -nle '$count++; END{print $count}’
And that you can use the $. variable instead, Perl’s built-in line counter:
perl -nle 'END{print $.}'
But only an expert one-linerer, such as Abigail, might come up with something like:*
perl -wlpe 'H$ =$.'
Or how about this golf one-liner that uses a regular expression to factor a number, and
hence test it for primacy?
perl -le '(1x shift)="/~12$|~(11+?)\1+$/||print"Prime"’

*If these one-liners make too little sense, try using B: :Deparse to see what Perl is really doing.

The trend for writing Perl Poetry began, of course, with Larry and the first Perl
haiku:

print STDOUT q

Just another Perl hacker,

unless $spring
However, Perl haiku have problems—they require the reader to agree on certain syl-
labic conventions. In this case, STDOUT must be read as “standard out” instead of the
more usual “studout,” and the $ in $spring must be pronounced.

To avoid these kinds of confusion, Perl poems have gravitated toward the abstract,
generally without a rhyme or syllabic structure. The first example of this, and the
most widely known example of Perl poetry, is attributed to Larry: the Black Perl
poem that can be found in Programming Perl.

As noted there, the undisputed master of Perl poetry is Sharon Hopkins, whose lis-
ten, reverse, rush, and shopping poems have received widespread critical acclaim and
publication in major periodicals.

The practice of Perl poetry has passed its azimuth and is now in decline, save for the occa-
sional Perl poetry contest and entries on the Poetry page of perlmonks.org. This is partially
due to lack of interest and partially due to a concerted effort by Larry to ensure that Black
Perl does not run on modern versions of Perl. That said, I wish to humbly offer a personal
example, inspired by the great masterwork of Proust, A la Récherche du Temps Perdu:

for(long => time) {$early 8& $self->went($bed);}
rand time && do {

PerlPoetry | 265

while ($candle--) {
(time => $eyes->shut()) < (time => print "Falling asleep!")
}
};

Acme::*

With all this crazy hackery going on, an outlet was needed on CPAN for less serious
module contributions to the Perl world. The Acme namespace was set aside for
wacky, explosive, or Heath-Robinsonian modules, and has very quickly become one
of the more densely populated namespaces on CPAN. Most, if not all, of Acme: : is, in
some way, London.pm’s fault.

It all started with the Bleach module, a neat toy by Damian Conway that spawned a
host of less amusing and sadly uninspired imitators. Because of the host of imitators
that followed, clogging up the root of the CPAN namespace, it was decided that silli-
ness should not be discouraged, but moved to Acme::, and Bleach became Acme: :
Bleach. Bleach is really clever; it takes an ordinary program, like so:

use Bleach;

for my $i (1..10) {
print "Hello! $i\n";

}

The first time this program runs, it appears to do nothing at all. However, when you
come to look at the code again, it now looks like:

use Bleach;

The really clever part is that it still runs, and it now prints out the message 10 times. This
is astonishing until you know the trick. How does Bleach work, then? Everyone assumed
this was done with source filters, but the business end of Bleach is a mere 11 lines long:

my $tie = " \t"x8;

sub whiten { local $ = unpack "b*", pop; tr/01/\t/; s/(.{9})/$1\n/g; $tie.$ }
sub brighten { local $ = pop; s/~$tie|[~ \t]//g; tr/ \t/01/; pack "b*", $ }
sub dirty { $_[0] =~ /\S/ }

sub dress { $_[0] =~ /~$tie/ }

open 0 or print "Can't rebleach'$0'\n" and exit;

(my $shirt = join "", <0>) =~ s/.*"\s*use\s+Acme: :Bleach\s*;\n//sm;

local $SIG{__WARN__} = \&dirty;

do {eval brighten $shirt; exit} unless dirty $shirt && not dress $shirt;

open 0, ">$0" or print "Cannot bleach '$0'\n" and exit;

print {0} "use Acme::Bleach;\n", whiten $shirt and exit;

266 | Chapter10: FunwithPerl

It all becomes pretty obvious when you look at what the subroutines do. The whiten sub-
routine takes a string, turns it into its binary representation, and turns the zeros and ones
into different types of whitespace. The brighten subroutine does the opposite, after first
removing the signature $tie. The dirty subroutine checks to see if there’s anything in a
string that isn’t whitespace, and dress checks to see if the signature is present.

So the module loads up your code by using a slightly nifty Perl trick, found in the
documentation of open:

If EXPR is omitted, the scalar variable of the same name as the FILEHANDLE con-
tains the filename.
That is, by opening a filehandle called 0, we take the filename from $0, the location of
our program. Then we lop off everything before use Acme: :Bleach, and turn off warn-
ings by setting the warn handler to an irrelevant subroutine. Now the code we’ve read
in could be already bleached, in which case it’s not dirty and will be dressed; if this is
the case, we brighten it and execute it. If not, we whiten it and write it back.

Very simple, once you’ve seen the trick. Other modules based on the same principle
include Acme: :Buffy, Acme: :Pony, and many other London.pm in-jokes.

There are, of course, some Acme: : modules that do other things. They range from the
amusing but simple and uninspired (Acme::Handwave—you tell it what data you
expect, and it returns it), through amusing, simple, and inspired (Acme: :Don’ t—Ilike a
do block, but not quite) right up to the spectacular.

Acme: :Eyedrops, for instance, deserves an honorable mention. This takes an ordinary
Perl program—and let’s use a classic:

print "hello world\n";

and automatically obfuscates it:

perl -MAcme::EyeDrops=sightly -e 'print sightly("helloworld.pl")

eval eval

L)
CP)R-
l!/).(I[l/\l)t). ~

+).

AR D PR P
0O
\

orna o ('I"\
. « 5 . !

(We’ve reformatted the actual output slightly for, um, readability.)

Now you can probably see what it’s done here—it’s encoded the ASCII values of
each character in the program: the first characteris '[' » '+', which is p, and so on.
But that’s not all it can do; it can pour that mess of punctuation into pretty shapes.
For instance, if you pass the shape => "simon" option, you get a rather unflattering
portrait” of your humble author:

* Based on a very flattering portrait.

Acme:* | 267

eval eval '"'

(G N GAV
DIDH AN DI NG
[P G VAR PG S)
AR) (O
LCTCLTN)L O
[0 0.or L.
YOI C) Y
AL PR G R
RS T e G SN R I ¥
S R B G i e B A N D A A
$e=" "N gm=("0") | (" ;9 =)'
;9= 8= 1S,
=TG-)N "}%:=
tAg=te | (! ;($7)=
B RO - Y $_="(
MEGEET T8N ")
=AY = (@)
["(587=")"" 158/ =
[".58 ="(""'}5%, = ((
UMY (((
FN)ss=to e (0 (O ((<«
$INN="@"|"N("; (((((
$INN=") 58 = IR (
C s)="0C"}58, =" ;($\) = (
C INME58 = (
LA ($)
= '@ \ (
(((
(((
(((
(C(((((
(((((
(((¢
((
«
((NN)
)) INNINIIN))
)) N 5
((="
5 # 5
; # ;
;
H N 5
H
;
5
;
; #

Some modules are perhaps better left unwritten.

On the other hand, there are some Acme:: modules that are interesting ideas in other
ways—~Acme: :Your, for instance, works like our, but you get to use unqualified pack-

268 | Chapter10: FunwithPerl

age variables from a different package. This is an inventive (and possibly even useful)
use of source filters, which allow you to wrap a filtering layer around Perl’s parser,
affecting the program code it sees.

Source Filters

Sourece filters were invented by Paul Marquess and provide a way of intercepting Perl
source code before it reaches Perl’s parser. Using the functions in Filter::Util::Call
to talk to the Perl internals, you can install Perl subroutines into the way of the input
stream, the way Perl reads a program.

The easiest way to do this is with the Filter::Simple module, which abstracts away a
lot of the business of registering filters, reading from the input stream, putting things
back into the input stream, and so on. Instead of the original, clumsy source filter
mechanism, you can now say:

package Filter::Rot13;

use Filter::Simple;

FILTER { tr[a-z][n-za-m]; }
When some code now use’s Filter::Rot13, all code after the use statement will be
passed through the FILTER block, here rotating the alphabet 13 places.

Many Acme modules derive their usefulness from Filter::Simple, whereas Switch,
which provides an implementation of a switch-case statement for Perl, is possibly the
most comprehensive use of source filters.

A final Acme curiosity, and one of my favourites, is Acme: :Chef, an implementation of
David Morgan-Mar’s Chef programming language. In Chef, programs are expressed
in the form of recipes:

Hello World Souffle.

This recipe prints the immortal words "Hello world!", in a basically
brute force way. It also makes a lot of food for one person.

Ingredients.

72 g haricot beans
101 eggs

108 g lard

111 cups oil

32 zucchinis

119 ml water

114 g red salmon
100 g dijon mustard
33 potatoes

Method.

Acme:* | 269

Put potatoes into the mixing bowl. Put dijon mustard into the mixing
bowl. Put lard into the mixing bowl. Put red salmon into the mixing
bowl. Put oil into the mixing bowl. Put water into the mixing

bowl. Put zucchinis into the mixing bowl. Put oil into the mixing
bowl. Put lard into the mixing bowl. Put lard into the mixing

bowl. Put eggs into the mixing bowl. Put haricot beans into the mixing
bowl. Liquify contents of the mixing bowl. Pour contents of the mixing
bowl into the baking dish.

Serves 1.

Acme: :Chef comes with a Chef interpreter and a compiler to turn Chef programs into
Perl programs. I can’t help wondering how much programmer time gets spent on this
sort of thing.

Conclusion

In this chapter, we’ve looked at some of the things that Perl hackers do to let their
hair down: obfuscation, poetry, JAPHs, and plain, all-out silliness.
If these things sound like your idea of fun, I have three pieces of advice for you:

* Subscribe to the fwp@perl.org Fun With Perl mailing list.

* Visit the appropriate sections on perlmonks.org.

* Seek professional guidance.

270 | Chapter10: FunwithPerl

Symbols

{ } (braces)
escaping, 89
evaluating code inside of, 84-86
[] (square brackets), 46
""" (stringification operator), 28
\ (backslash), escaping, 89
$! (special variable), 25
| (pipe) symbol, 109

Numbers

0+ (numification operator), 28
0+$object, 24

A

Abigail, 262, 265
accessors
AUTOLOAD and, 10
Class::Accessor:Assert module, 119
converting methods to, 23
Acme::
Acme::Bleach, 266-267
Acme::Chef, 269-270
overview of, 266—270
actions, Parse::RecDescent, 48-51
advanced techniques
AUTOLOAD, 10-12
globs (see globs)
time shifting (see time shifting)
unexpected code (see unexpected code)
Algorithm::NaiveBayes, 164

Index

algorithms
Algorithm::NaiveBayes, 161-164
encoding, 174-177
named-entity extraction, 168
stemming words, 157
aliasing
creating subroutines with glob
assignment, 8-10
glob assignment for, 4-5
Alzabo
Maypole and, 147
relational mappers, 141
ANNIE, GATE::ANNIE::Simple, 168-170
Apache
Apache Cocoon project, 114
testing, 231-232
Application, CGI::Application, 147
applications, Web (see Web appliations)
artificial intelligence, 149
(see also NLP)
ASCII character set, 172
ASM, Inline::ASM, 254
attrs module, 36
autohandler, HTML::Mason and, 99
AUTOLOAD
combining with UNIVERSAL, 23
overview of, 10-12
automation
automated testing, 219-220
autostubbing, 59
Parse::RecDescent, 57-59
AxKit, 114-116

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

27

B

B module, for inspecting bytecode
tree, 17-19
back-references, object, 133
Balanced, Text::Balanced, 46
Bayes’s theorem, 160
B::Deparse, 260-261
BEGIN blocks, 34-35
Belfast Perl Mongers, 257-258
Berkeley DB, 118
binary serialization, 123
blocks (see code blocks)
boggle, 259
bottom-up parsers
overview of, 43
yacc, 68
Bowden, Tony, 137, 142
braces (see {})
BROKEN subroutine,
Text::Template, 88—89
built-in functions
recoding in C vs. Perl built-in
function, 12-14
replacing with CORE and
CORE::GLOBAL, 12-14
Burke, Sean, 75, 150
byte mode, data handling, 179
bytecode, inspecting, 16—19

C

C libraries

DBMs and, 118

fmtcheck function, 235

Perl and, 233

recoding in C vs. Perl built-in

function, 235-236

SQLite and, 135

wrapping, 245-247
C++ overloading, 26
calculators, parsing applications, 72
caller function, HOOK::LexWrap, 14-15
can method, UNIVERSAL class, 20
CDBI (see Class::DBI)
Ceglowski, Maciej, 166
CGL::Application, 147
character code, in Unicode, 173
character encoding, in Unicode, 173
character mode, data handling, 179
character repertoire, in Unicode, 173
character set, ASCII, 172

characters, in Unicode, 173
CHECK blocks, 35-38
Chen, Francine, 164
chr, 178
class subroutine, 19
Class::Accessor::Assert module, 119
Class::DBI
combining with Template
Toolkit, 142-144
extensions, 141
Maypole and, 144-147
object relational mapping with, 135,
137-141
relationships, 139-140
schema and classes, 119
setting up, 137-138
updates, 138
classes
Test::Class, 226-229
UNIVERSAL, 20-23
Class::PINT, 141
closures, 9-10
COBOL, 256
code
keeping tests and code together, 225
testing (see testing)
code blocks
actions and, 50
matiching portions of data stream, 47
parsing, 60
codepoint, in Unicode, 173
<commit> directive,
Parse::RecDescent, 53-54
comp method, HTML::Mason, 104
components, HTML::Mason, 96-97
components, POE
high-level, 212-213
medium-level, 208-210
overview of, 207-208
components, Template Toolkit, 112-113
concatenation operator, 33
conditional statements, parsing, 54-55
conditions, HTML:: Template, 90-92
Config::Auto, 78
configuration files, parsing, 77
context sensitivity, 51
Conway, Damian, 23, 36, 44, 150, 260
CORE, 12-14
CORE::GLOBAL, 12-13
CPANPLUS module, 124

272 | Index

CPR interpreter, Inline::CPR, 253-254
curses, POE::Wheel::Curses, 202

D

data
character encodings, 184-185
handling, 179
iCalendar formats, 60
matching portions of data stream, 47
scalars compared with objects, 119
storing in/retrieving from DBMs, 123
structured, 82
structured vs. other, 43
UTE-8, 179-180
data structures
Inline::Struct, 254
scalars compared with objects, 119
database abstraction, 134
databases
DBMs (see DBMs)
object databases (see object databases)
database-side object, Tangram, 132
Data::Dumper, 121-123, 126
DB_File, 118
DBIx::SearchBuilder, 141
DBMs, 118-129
Dumping Data, 121-123
flat files and, 118
multilevel, 125-127
object databases, 129
object serialization and, 119
overview of, 118-119
Pixie module, 127-129
pruning problem, 124-125
schema and classes, 119-121
storing/retrieving data, 123
debugging, 14
Inline::C, 247-249
Parse::RecDescent, 51-53
serialization during, 121
TANGRAM_TRACE, 134
deleting objects, Tangram, 134
DELIMITERS option, Text::Template, 89
Désarménien, Francois, 68
DESTROY
AUTOLOAD and, 10
time shifting and, 25
document categorization
Bayesian approach, 159-163
keyword extraction, 166-168

name and place extraction, 168-170
overview of, 159
summarization, 163—-166
documentation, perlxstut, 233
Dominus, Mark-Jason, 84, 195, 260
dumping data (Data::Dumper), 121-123,
126
DWIM (do what I mean) methods, 33, 130,
217
dynamic method resolution, in class
model, 23

E

e-mail, filtering, Mail::Audit, 64-68
Encode, 184-189
converting data between various character
encodings, 184-185
handling Unicode data in Perl, 186-190
English
Lingua::EN::Inflect, 150-154
Lingua::EN::Keywords, 166—168
Lingua::EN::NamedEntity, 168-170
Lingua::EN::Sentence, 155
Lingua::EN::Splitter, 155-156, 158
Lingua::EN::StopWords, 158, 166
Lingua::EN::Summarize, 163
Lingua::EN::Tagger, 166
<error> directive, Parse::RecDescent, 55-56
escaping
HTML::Mason, 102
Text::Template, 89
eval, 34-35
event loop, 196
event-driven paradigm, 195-196
Exporter module, glob assignment and, 4-5
Extending and Embedding Perl
(Manning), 233
Extensible Server Pages (XSP), 114
extension subroutines (see XS)
extensions, Class::DBI, 138
Extreme Programming (XP), 215,226

F

fallback feature, of overload pragma, 28
filehandles
formats and, 82
POE wheels as equivalent of, 200
UTF-8 and, 180
Filter, Tangram::Filter, 133

Index | 273

filters
DBM filter facility, 125-126
in Template Toolkit, 109
Filter::Simple, 269
Filter::Util::Call, 269
final attribute, 36
final methods, Java, 37
fmt command, Unix, 82-83, 235
format filter, Template Toolkit, 109
format STDOUT, 80-82
formats
HTML (see HTML::Mason;
HTML:: Template)
iCalendar, 60
Perl, 80-84
text (see Text::Template)
Franz, Benjamin, 157
FreezeThaw module, 126
fun and games
Acme::*, 266-270
JAPH (Just Another Perl
Hacker), 262-263
obfuscation, with Perl, 256-261
Perl Golf, 263-265
Perl Poetry, 264-265
functions, built-in
C vs. Perl built-in, 12-14
replacing with CORE and
CORE::GLOBAL, 12-14
fwp (Fun With Perl), 270

G

game tree, for Go, 45
GATE::ANNIE::Simple, 168-170
*glob = ... (assigning references to globs), 8
GLOBAL, CORE::GLOBAL, 12-13
globs, 2-10
accessing parts of, 5-8
aliasing, 4-5
finding in symbol table, 2-3
subroutines created with, 9-10
glyphs, Unicode, 173
GNU libgdbm, 118
Go game, 44-45
golf, Perl Golf, 263-265
Graham, Tony, 174
grammar, Parse::Yapp, 69-70
Gtk, 195
GUISs, event-driven paradigm and, 195
Guttman, Uri, 263

H

handlers
autohandler, 100
filehandles, 82, 180, 200
UTF8 data, 179-180
harness, Test::Harness, 220-221
has_a relationship, Class::DBI, 139
hash keys, globs accessed by, 8
hashdump, 97, 98
hashes
Inline::C, 244-245
Text::Template, 86—87
has_many relationships,
Class::DBI, 139-140
Hazel, Philip, 245
Hearst, Marti, 156
Hello World examples, POE, 196-200
hexdump command, 201-202
HOOK::LexWrap, 14-16
Hopkins, Sharon, 265
HTML
formatting (see HTML:: Template)
HTML::Parser, 73-75
templating modules, 79
transforming XML to, 114
HTML::LinkExtor, 75
HTML::Mason, 96-107
adding templates to Mason pages, 97-98
Class::Class::DBI and Template Toolkit
and, 119
compared with Template Toolkit, 107
components, 96-97
Maypole and, 147
overview of, 96
Perl logic, 98
RSS aggregation, 98-107
HTML::Parser, 73-75
HTML:: Template, 90-96
loops, 93
overview of, 90
PageKit and, 147
validation, 92
variables and conditions, 90-92
HTML::TokeParser, 75
HTTP
POE::Component::Client:: HTTP, 212
POE::Component::Server::HTTP, 210-2
12
hyphenation, 84

274 | Index

iCalendar, parsing, 60—64
import routine, 5
INCLUDE directive, 112-113
ined, 144
inflections, natural language tools
for, 150-152
Ingerson, Brian, 233, 249
Ing-Simmons, Nick, 184
inheritance
dynamic method resolution, 23
final methods and, 35
handling with package variables, 25
in Perl OO, 20
inline extensions, 233-255
Inline::C (see Inline::C)
Inline::CPR, 253-254
Inline::Python, 251-252
Inline::Ruby, 252-253
Inline::Struct, 254
others, 260
overview of, 233
Inline::ASM, 254
Inline::Basic, 254
Inline::C
arrays, 243-244
C vs. Perl built-in functions, 235-236
dealing with Perl’s Internal Values
(scalars, and arrays), 237-241
debugging, 247-249
hashes, 244-245
inline extensions, 233-235
packaging inline modules, 249-250
references, 243
stack handling, 241-243
wrapping C libraries, 245-247
Inline::CPR, 253-254
Inline::Java, 254
Inline::Python, 250-252
Inline::Ruby, 252-253
Inline_Stack_Item, 241-242
Inline::Struct, 254
1/0 library, PerllO, 186
isa method, UNIVERSAL class, 20-21
is_a relationships, Class::DBI, 140
ISO standards
ASCII, 172
Unicode and, 174-175
%item hash, in Parse::RecDescent, 59

J

(JAPH) Just Another Perl Hacker, 261-263
Java
final methods, 35
Inline::Java, 254
joins, multitable, 141
JPL (Java Perl Lingo), 254

K

kernel, POE, 196

key-values, in DBMs, 119

keyword extraction, document
categorization, 166—168

Knuth, Donald, 84

Kogai, Dan, 184

Kupiec, Julian, 164

L

languages
NLP, 149-171
OO programming, 53-54
text-processing, 149
Latin 1 standard, ISO, 172
Learning Perl (Schwartz), 261
Leroy, Jean-Louis, 130
Lester, Andy, 221
lex & yacc, 68
lexing operations
HOOK::LexWrap, 14-16
Parse::Lex, 71
Lingua::EN::Inflect, 150-154
NUMWORDS subroutine, 152-154
overview of, 150
PL and NO subroutines, 151
Lingua::EN::Keywords, 166-168
Lingua::EN::NamedEntity, 168—-170
Lingua::EN::Sentence, 155
Lingua::EN::Splitter, 155-156, 158
Lingua::EN::StopWords, 158, 166
Lingua::EN::Summarize, 163
Lingua::EN::Tagger, 166
Lingua::Segmenter:: TextTiling, 155-156
Lingua::Stem::En, 157
Lingua::Stemmer, 157
Lingua::Stopwords, 161
LinkExtor, HTML::LinkExtor, 75
loops
event loop (or main loop), 196

Index | 275

loops (continued)
HTML::Template, 93
Text::Template and, 86-87
Luhn, Hans Peter, 164

M

MACRO directive, 112
macros, in Template Toolkit, 112-113
Mail::Audit, 64—68
main loop, in event-driven paradigm, 196
maps, trivial object-relational mapping, 141
Marquess, Paul, 269
Mason (see HTML::Mason)
matches, data stream, 47-48
Matsumoto, Yukihiro, 24, 252
Maypole, 144-147

actions, 145-146

Class::DBI and, 144-145

goals or functions of, 144
McMahon, Joe, 221
memory location, 25
method calls

concatenation operator and, 33

in OO programming languages, 5354
MLDBM, 126-127
modifiers, getting values of, 59
modules, POE (see components, POE)
Mono project, 76
multilevel DBMs, 125-127
multitable joins, 141
mutators, converting methods to, 23
MVC Patterns, 142
my variables, 85, 98
MySQL, 119

N

named-entity extraction,
Lingua::EN::NamedEntity,
168-170
namespace, POE::Component::
namespace, 207
natural language processing (see NLP)
network servers, event-driven paradigm
for, 195
NLP (natural language processing), 149-171
converting words to numbers, 152-154
document categorization, 159-170
inflections, 150-152
overview of, 149

parsing English, 154

Perl and, 149-150

pluralization, 150-151

splitting text into chunks, 154-156

stemming words, 156157

stop words, 158
NO subroutine, Lingua::EN::Inflect, 151
numbers, converting words to, 152-154
NUMWORDS subroutine,

Lingua::EN::Inflect, 151-154

0

Obfuscated Perl Contest, 256, 260
obfuscation, with Perl, 256-261
object databases
Class::DBI, 137-140
database abstraction, 134
overview of, 129
pitfalls of, 130
Tangram, 130-134
trivial object-relational
mapping, 135-137
object orientation (see 00)
Object Oriented Perl (Conway), 23
object serialization (see serialization)
objects
relationships in Tangram, 133
schema and classes, 119-121
on-demand storage references, Tangram, 133
one-liners, 265
OO (object orientation), 20-25
dynamic method resolution, 23
method calling, 53-54
singleton methods, 24-25
UNIVERSAL class, 20-23
op tree, 19-20
OpenFrame, 147
Openlnteract, 147
operators
concatenation, 33
in B module, 17
numification, 28
overloading, 26-29
stringification, 28
Oracle, 119
$OUT variable, Text:: Template, 87
overloading
limitations of, 34
non-operator overloading, 29-33

276 | Index

operator overloading, 26-28
overview of, 26-28

P

pack, getting formatted output, 80
PageKit, 147
Paris Perl Mongers, 263
Parse::Lex, 71
Parse::RecDescent, 44—68
actions, 48-51
applying to game of Go, 44-45
automating, 57-59
commit, reject, and error, 53-56
debugging, 51-53
iCalendar example, 60—64
matching portions of data stream, 47
other features, 59-60
procmail example, 64—68
Text::Balanced, 46-47
whitespace, 56-57
Parse::Yapp, 68-72
parsing techniques, 43-78
Config::Auto, 78
HTML::Parser, 73-75
natural language tools for parsing English
text, 159
overview of, 43-44
Parse::Lex, 71
Parse::RecDescent (see Parse::RecDescent)
Parse::Yapp, 68-72
XML::Parser, 75-77
Pazdziora, Jan, 84
pere library, 245-247
Pedersen, Jan O., 164
Perl & LWP, 75
Perl & XML, 77
Perl formats
overview of, 80-82
Text::Autoformat compared with, 83-84
Perl Golf, 263-265
Perl Kwalitee Assurance team, 215
Perl logic, HTML::Mason and, 97-98
Perl Object Environment (see POE)
Perl poetry, 264-266
PerlUnit, 226
perlxstut, Perl documentation, 233
PINT, Class::PINT, 141
pipe (|) symbol, 109
Pixie module, 127-129
PL subroutine, Lingua::EN::Inflect, 151

place extraction, document
categorization, 168-170
plaintext
formatting, 84
matching portions of data stream, 47
plugins
Class::DBI plug-in relationships, 140
in Template Toolkit, 110-111
Template::Plugin, 110, 113
pluralization, natural language tools
for, 150-154
PoCo (see POE::Component)
Pod::Tests, 225
POE (Perl Object Environment), 195-214
components, 207-213
event-driven paradigm, 195-196
Hello World example, 196-200
overview of, 195
port forwarder, 203-207
wheels, 200-202
POE::Component::Client::HTTP, 212
POE::Component::Client:: TCP, 208-210
POE::Component::namespace, 207
POE::Component::RSSAggregator, 213
POE::Component::Server::HTTP, 210-212
POE::Component::Server:: TCP, 208-210
POE::Wheel::Curses, 202
POE::Wheel::FollowTail, 200-202
POE::Wheel::ReadWrite, 205-206
POE::Wheel::SocketFactory, 204—206
polymorphism, 132
port forwarder, POE, 203-207
Porter, Martin, 157
printf
format filter compared with, 109
getting formatted output, 80
procmail, Parse::RecDescent
examples, 64-68
programmers, rites of passage, 79
Programming Perl (Wall), 1,261
pruning DBMs, 124-125
Pugh, Kate, 142
Python, Inline::Python, 250-252

Q

queries, Tangram, 134

R

RecDescent (see Parse::RecDescent)
recognizer, in Parse::RecDescent, 48-49
redos, testing and, 222-223

Index | 277

references
assigning to parts of globs, 6-8
Inline::C, 233
looking up, 3
regular expressions
matching portions of data stream, 47
Unicode, 181-183
<reject> directive, Parse::RecDescent, 54-55
relational databases
object-relational mapping, 135-137
Oracle and MySQL, 119
SQLite, 135
relationships, Class::DBI, 139-140
remote objects, searching and retrieving,
Tangram, 131
repetition directives, 47
require module, UNIVERSAL class, 22
RSS (Remote Site Summary)
aggregation, 93-96
HTML::Mason and, 98-107
HTML:: Template and, 95
in template toolkit, 113-114
overview of, 90
POE::Component::RSSAggregator, 213
Ruby, 24
Inline::Ruby, 252-253
objects in, 30-31
overloading in, 26, 31-33
rules, matching portions of data stream, 47

S

scalars
compared with objects, 119
Inline::C, 237-241
schema, DBMs, 119-121
Schwartz, Randal, 261
Schwern, Michael, 137,215, 222
SDBM library, 118
SearchBuilder, DBIx::SearchBuilder, 141
security, Text::Template, 87
segmenters,
Lingua::Segmenter:: TextTiling, 15
5-156
SelfGOL, 260
sentences
extracting key, 163
Lingua::EN::Sentence, 155
splitting up, 154-155
Sergeant, Matt, 198

serialization, 119-129
Data::Dumper, 121-123
multilevel DBMs and, 125-127
overview of
Pixie module, 127-129
pruning problem, 124-125
Storable and FreezeThaw, 125
YAML, 122

sessions, POE, 196

SGF (Smart Game Format), 44—45

shutdown methods, Test::Class, 229

singleton method, applying to object rather

than class, 24-25

skips, testing and, 218-219

Sleepycat Berkeley DB, 118

Smart Game Format (SGF), 44-45

source filters, 269

spam, NLP for preventing, 159

SpamAssassin, 159

special variables
$! (special variable), 25
formats and, 82

splitters, Lingua::EN::Splitter, 155-156, 158

SPOPS
Maypole and, 147
relational mappers, 141

sprintf, getting formatted output, 80

SQLite, 135

square brackets ([]), 46

stack, handling in Inline::C, 241-243

standards, Unicode (see Unicode)

startup methods, Test::Class, 229

stemming words, natural language

tools, 156-157

stopwords
Lingua::EN::StopWords, 158, 166
natural language tools, 158

Storable module, 123

storage, symbol table mapping to, 2

storing/retrieving data, 129
(see also DBMs)

stringification operator (" "), 28

strings
encoding, 191-193
overloading and, 31-33
traversing, 190-191

Struct, Inline::Struct, 254

structured data
parsing, 43
wrapping, 82

278 | Index

subclassing, singleton method and, 24
subroutines
creating with globs, 8-10
wrappers around, 14-16
subrules, matching portions of data
stream, 47
substr, getting formatted output, 80
summarization, document
categorization, 163-166
Summarization,
Lingua::EN::Summarize, 163
symbol table
finding globs in, 2-3
looking up variable names in, 2-3

T

tagging documents, Lingua::EN::Tagger, 166
taint mode, Text::Template, 87
Tangram, 130-134
classes and schema, 130-131
create, read, update, delete, 132-134
overview of, 130-131
Tangram::Cursor, 133
Tangram::Expr, 133
Tangram::Filter, 133
Tangram::Storage, 133-134
TANGRAM_TRACE, 134
TAP (Test Anything Protocol), 221
TCP
POE::Component::Client:: TCP, 208-210
POE::Component::Server:: TCP, 208-212
Template Toolkit
Class::DBI and, 142-144
components and macros, 112-113
filters, 109
overview of, 107-109
pluggins, 110-111
RSS Aggregator, 113-114
Template::Plugin::Autoformat, 110
Template::Plugin::XML::RSS, 113-114
Template::Plugin::XML::Simple, 110
templating tools
AxKit, 114-117
formats and, 80-82
HTML::Mason (see HTML:: Template)
HTML:: Template (see HTML::Template)
Template Toolkit (see Template Toolkit)
Text::Autoformat, 82-84
Text::Template (see Text::Template)
terminal symbol, parsing for, 52
Test Anything Protocol (TAP), 221

Test::Builder, 222-223
Test::Builder::Tester, 224-225
Test::Class, 226-229
overview of, 226-227
startup and shutdown methods, 229
testing Apache, DBI, and other complex
environments, 231-232
Test::Fuzzy, 224
Test::Harness, 220-221
testing
Apache, 231-232
automated, 219-220
DBI, 231
keeping tests and code together, 225
overview of, 215
Pod::Tests, 225
skips and redos, 218-219
Test::Builder, 222-223
Test::Builder:: Tester, 224-225
Test::Class, 226-229
Test::Harness, 220-221
Test::MockObject, 229-230
Test::More, 217-218
Test::Simple, 215-217
unit tests, 226
Test::Inline, 225
Test::MockObject, 229-230
Test::More
automated testing with, 219-220
overview of, 217-218
skips and redos, 218-219
Test::Simple, 215-217
Test::Tutorial, 232
TeX package, 84
text, English
converting words to numbers, 152-154
document categorization (see document
categorization)
inflections, 150-152
pluralization, 150-151
splitting into chunks, 154-156
stemming words, 156-157
stopwords, 158
text formatting (see Text::Template)
text handlers, 74
Text::Autoformat, 82-84
compared with Perl formatting
language, 83-84
hyphenation and, 84
Template::Plugin::Autoformat, 110
wrapping structured text, 82—83

Index | 279

Text::Balanced, 46
text-processing languages, 149, 171
Text::Sentence, 154
Text::Template
compared with Template Toolkit, 108
loops, arrays, and hashes and, 86-87
overview of, 84-86
security and error checking, 87
tricks, 89-90
TextTiling,
Lingua::Segmenter:: TextTiling, 15
5-156
Text::Wrap, 82
threading, attributes and, 36
Time module, overloading, 26-28
time shifting
BEGIN, 34-35
CHECK blocks and, 35-38
DESTROY, 38
eval, 34-35
overview of, 34
Tk, 195-196
<TMPL_ELSE>, HTML:: Template, 92
<TMPL_IF>, HTML:: Template, 92
<TMPL_LOOP>, HTML::Template, 93
<TMPL_VAR>, HTML:: Template, 90
tokens
bottom-up parsing and, 43
HTML::TokeParser, 75
top-down parsers, 43
(see also Parse::RecDescent)
tracing, TANGRAM_TRACE, 134
TT (see Template Toolkit)
tutorials
POE, 198
Test::Tutorial, 232

U

UCS (Universal Character Set)
overview of, 175
UCs-2, 176-177
UCS-4, 178

unexpected code
limitations of overloading, 34
non-operator overloading, 29
operator overloading, 26-28
overloading, 26-28
overview of, 25

Unicode, 172-194
entering Unicode characters, 180-181
handling UTF-8 data, 179-180

overview of, 174

PerlIO and, 186

reasons for using, 176

regular expressions, 181-183

terminology and, 172-173

transformation formats (see UTF)

UCS (Universal Character Set), 174-175

Unicode Consortium, 175

XS authoring and, 190-193
Unicode: A Primer (Graham), 174
Unicode Technical Committee (UTC), 175
Unicode Technical Report (UTR), 174
unit tests

overview of, 226

Test::Class, 226229

Test::MockObject, 229-230
Universal Character Set (see UCS)
UNIVERSAL class, 20-23

can method, 20

combine with AUTOLOAD, 23

isa method, 20-21

methods, 20

require module, 22

VERSION method, 20-22
updates

Class::DBI, 138

Tangram, 133
use strict, 85
UTC (Unicode Technical Committee), 175
UTF (Unicode Transformation Format)

character encoding, 173

transformation formats, 176-180

UCS-2, 176-177

UCS-4, 178

UTF-16BE, 178

UTF-16LE, 178

UTE-32, 178

UTF-7, 179

UTF-8, 179-180

UTF-EBCDIC, 179
UTE-8

encoding strings, 191-193

handling UTF-8 data from external

sources, 179-180
handling UTF-8 data from inside
program, 180-181

overview of, 177

traversing strings, 190-191
UTR (Unicode Technical Report), 174

280 | Index

v

validation, HTML:: Template, 92
variables
accessing, 2-3
HTML:: Template, 90-92
VERSION method, UNIVERSAL
class, 20-22
virtual machines, Perl, 18

w

Wall, Larry, 149-150
Wardley, Andy, 107
Watkiss, Neil, 250, 254
Web applications
Class::DBI and Template Toolkit
and, 142-144
Maypole, 144-147
overview of, 142
Web sites
Paris Perl Mongers, 263
POE tutorial, 198
Test::Tutorial, 232
wheels, POE, 200-202
POE::Wheel::Curses, 202
POE::Wheel::FollowTail, 200-202
POE::Wheel::ReadWrite, 205-206
POE::Wheel::SocketFactory, 204-206
whitespace
Parse::RecDescent, 5657
Perl tolerance of, 258-259
Winters, Chris, 147
word distribution, Zipf’s Law, 164
words, natural language tools for converting
to numbers, 152-154
wrappers
around subroutines, 14-16
C libraries, 245-247
HOOK::LexWrap, 14-16

Text::Autoformat, 82-83
Text::Wrap, 82

X

XML
RSS based on, 90
Template::Plugin:: XML::RSS, 113
Template::Plugin::XML::Simple, 110
transforming to HTML, 114
XML::Parser, 75-77
XP (Extreme Programming), 215, 226
XS (extension subroutines), 190-193
bridging Perl and C, 233
encoding strings, 191-193
Perl internal values and, 237
references, 243
skeleton module, 249
traversing strings, 191-193
XS (extention subroutines)
traversing strings, 190-191
XSP (Extensible Server Pages), 114

Y

yacc (Yet Another Compiler Compiler)
as traditional parser, 44
overview of, 68
YAML (YAML Ain’t Markup Language), 122
yapp
command-line utility, 71-72
Parse::Yapp, 68-72
Yona, Shlomo, 155

Z
Zipf’s Law of Word Distribution, 164

Index | 281

About the Author

Simon Cozens is an open source programmer and author. He has released over 100
Perl modules, including Email::Simple, Mail::Audit, Maypole, Plucene, and
B::Generate. He’s the coauthor of Beginning Perl (Wrox) and Extending and Embed-
ding Perl (Manning) and was the managing editor of Perl.com from 2001 to 2004. A
graduate of Oxford University with a degree in Japanese, he now lives in Wales and
enjoys Japanese and Greek food, bizarre music, and fine typography.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Advanced Perl Programming, Second Edition is a black
leopard. Most leopards are easily recognized by the rosette-patterned spots on their
coat. Black leopards, often called “black panthers,” also have these spots, but they
are difficult to see because of the darkness of the fur. Black leopards are born into the
same litters as the more common yellowish leopards. They occur most frequently in
the wet, forested areas of India and southeast Asia, where the dark color aids in
camouflage and hunting.

Leopards are among the most widely distributed wild cats. Their range extends
throughout most of Africa and India and into much of Asia, the Middle East, and the
East Indies. Highly adaptable, leopards are able to hunt almost any animal, and can
live in both very wet and arid conditions. Because they almost always share their
range with bigger cats, such as lions or tigers, leopards are very cautious. After
catching its prey, the leopard will carry it high up into a tree to devour it. The incred-
ible strength of the leopard enables it to climb while carrying animals up to three
times its own body weight.

Darren Kelly was the production editor, Cindy Gierhart was the copyeditor, and
Kaesmene Harrison Banks was the proofreader for Advanced Perl Programming,
Second Edition. Marlowe Shaeffer and Claire Cloutier provided quality control.
nSight, Inc. provided production services. Jack Lewis wrote the index.

Edie Freedman designed the cover of this book, using a 19th-century engraving from
the Dover Pictorial Archive. Karen Montgomery produced the cover layout with
Adobe InDesign CS using Adobe’s ITC Garamond font.

David Futato designed the interior layout. This book was converted by Joe Wizda to
FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason Mcln-
tosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font
is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is

LucasFont’s TheSans Mono Condensed. The illustrations that appear in the book
were produced by Robert Romano, Jessamyn Read, and Lesley Borash using Macro-
media FreeHand MX and Adobe Photoshop CS. The tip and warning icons were
drawn by Christopher Bing. This colophon was written by Clairemarie Fisher
O’Leary.

	Table of Contents
	Preface
	Audience
	Contents
	Conventions Used in This Book
	Using Code Examples
	We’d Like to Hear from You
	Safari® Enabled
	Acknowledgments

	Advanced Techniques
	Introspection
	Preparatory Work: Fun with Globs
	Aliasing
	Accessing parts of a glob
	Creating subroutines with glob assignment

	AUTOLOAD
	CORE and CORE::GLOBAL
	Case Study: Hook::LexWrap
	Introspection with B

	Messing with the Class Model
	UNIVERSAL
	Dynamic Method Resolution
	Case Study: Singleton Methods

	Unexpected Code
	Overloading
	Simple operator overloading
	Other operator overloading
	Non-operator overloading

	Time Shifting
	Doing things now with eval/BEGIN
	Doing things later with CHECK
	Doing things at the end with DESTROY
	Case study: Acme::Dot

	Conclusion

	Parsing Techniques
	Parse::RecDescent Grammars
	Simple Parsing with Parse::RecDescent
	Types of match
	Actions

	Debugging
	More Difficult Parsing
	Commit, reject, and error
	Syntactic whitespace
	Automating the process
	And much more...

	Some Examples
	Parsing iCalendar data
	.procmailrc

	Parse::Yapp
	Other Parsing Techniques
	HTML::Parser
	XML Parsing
	And Everything Else...

	Conclusion

	Templating Tools
	Formats and Text::Autoformat
	Text::Autoformat

	Text::Template
	Loops, Arrays, and Hashes
	Security and Error Checking
	Text::Template Tricks

	HTML::Template
	Variables and Conditions
	Loops
	RSS Aggregation

	HTML::Mason
	Basic Components
	Basic Dynamism
	Perl Blocks
	Our RSS Aggregator

	Template Toolkit
	Filters
	Plugins
	Components and Macros
	The RSS Aggregator

	AxKit
	Conclusion

	Objects, Databases, and Applications
	Beyond Flat Files
	Object Serialization
	Our Schema and Classes
	Dumping Data
	Storing and Retrieving Data
	The Pruning Problem
	Multilevel DBMs
	Pixie

	Object Databases
	Object Database Pitfalls
	Tangram
	Tangram CRUD: create, read, update, delete

	Database Abstraction
	Trivial Mapping
	Class::DBI
	Relationships
	Class::DBI extensions

	Other Contenders

	Practical Uses in Web Applications
	Class::DBI and the Template Toolkit
	Maypole
	Other Application Frameworks

	Conclusion

	Natural Language Tools
	Perl and Natural Languages
	Handling English Text
	Pluralizations and Inflections
	Converting Words to Numbers

	Modules for Parsing English
	Splitting Up Text
	Stemming and Stopwording

	Categorization and Extraction
	Bayesian Analysis
	Keyword Extraction and Summary
	Keyword extraction

	Extracting Names and Places

	Conclusion

	Perl and Unicode
	Terminology
	What Is Unicode?
	What Is UCS?
	What is the Unicode Consortium?
	Why Should I Care?

	Unicode Transformation Formats
	UCS-2
	UTF-8
	UTF-16BE
	UTF-16LE
	UCS-4
	UTF-32
	UTF-EBCDIC
	UTF-7

	Handling UTF-8 Data
	Entering Unicode Characters
	Unicode Regular Expressions

	Encode
	The PerlIO Trick
	The Gory Details

	Unicode for XS Authors
	Traversing Strings
	Encoding Strings

	Conclusion

	POE
	Programming in an Event-Driven Environment
	Hello, POE
	Hello, Again, POE!
	Wheels
	A Port Forwarder

	Top-Level Pieces: Components
	Medium-Level Components
	A POE Web Server
	Highest-Level Components

	Conclusion

	Testing
	Test::Simple
	Test::More
	Skips and Todos
	Automated Tests

	Test::Harness
	Test::Builder
	Test::Builder::Tester
	Keeping Tests and Code Together
	Unit Tests
	Test::Class
	Test::MockObject
	Testing Apache, DBI, and Other Complex Environments

	Conclusion

	Inline Extensions
	Simple Inline::C
	Taking and Giving
	C is not Always a Win

	More Complex Tasks with Inline::C
	Dealing with Perl’s Internal Values
	Handling the Stack
	Handling More Complex Perl Types
	References
	Arrays
	Hashes

	Wrapping C Libraries
	Debugging Inline Extensions
	Packaging Inline Modules

	Inline:: Everything Else
	Inline::Python
	Inline::Ruby
	Inline::CPR
	Inline::Struct
	Miscellaneous Other Inlines

	Conclusion

	Fun with Perl
	Obfuscation
	Just Another Perl Hacker
	Perl Golf
	Perl Poetry
	Acme::*
	Conclusion

	Index

