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Abstract

Programming language design benefits from constructs for extend-
ing the syntax and semantics of a host language. While C’s string-
based macros empower programmers to introduce notational short-
hands, the parser-level macros of Lisp encourage experimentation
with domain-specific languages. The Scheme programming lan-
guage improves on Lisp with macros that respect lexical scope.

The design of Racket—a descendant of Scheme—goes even fur-
ther with the introduction of a full-fledged interface to the static se-
mantics of the language. A Racket extension programmer can thus
add constructs that are indistinguishable from “native” notation,
large and complex embedded domain-specific languages, and even
optimizing transformations for the compiler backend. This power
to experiment with language design has been used to create a series
of sub-languages for programming with first-class classes and mod-
ules, numerous languages for implementing the Racket system, and
the creation of a complete and fully integrated typed sister language
to Racket’s untyped base language.

This paper explains Racket’s language extension API via an im-
plementation of a small typed sister language. The new language
provides a rich type system that accommodates the idioms of un-
typed Racket. Furthermore, modules in this typed language can
safely exchange values with untyped modules. Last but not least,
the implementation includes a type-based optimizer that achieves
promising speedups. Although these extensions are complex, their
Racket implementation is just a library, like any other library, re-
quiring no changes to the Racket implementation.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Design

1. Growing Many Languages

I need to design a language that can grow. — Guy Steele, 1998

Virtual machines inspire language experimentation. For example,
the Java Virtual Machine and the .NET CLR attracted many im-
plementors to port existing languages. Their goal was to benefit
from the rich set of libraries and runtime facilities, such as garbage
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collectors and thread abstractions, that these platforms offer. Both
platforms also inspired language design projects that wanted to ex-
periment with new paradigms and to exploit existing frameworks;
thus Clojure, a parallelism-oriented descendant of Lisp, and Scala,
a multi-paradigm relative of Java, target the JVM, while F# is built
atop .NET. In all of these cases, however, the platform is only a
target, not a tool for growing languages. As a result, design experi-
ments on these platforms remain costly, labor-intensive projects.

To follow Steele’s advice on growing a language (1998) re-
quires more than a reusable virtual machine and its libraries;
it demands an extensible host language that supports linguistic
reuse (Krishnamurthi 2001). Thus, a derived language should be
able to reuse the scoping mechanisms of the host language. Simi-
larly, if the host language offers namespace management for iden-
tifiers, a language designer should have the freedom to lift that
management into an experimental language.

Providing such freedoms to designers demands a range of ex-
tension mechanisms. A programmer may wish to manipulate the
surface syntax and the AST, interpose a new context-sensitive static
semantics, and communicate the results of the static semantics to
the backend. Best of all, this kind of work can proceed without any
changes to the host language, so that the resulting design is essen-
tially a library that supplements the existing compiler.

In this paper, we present the Racket1 (Flatt and PLT 2010) plat-
form, which combines a virtual machine and JIT compiler with
a programming language that supports extension mechanisms for
all phases of language implementation. With Racket’s arsenal of
extension mechanisms, a programmer may change all aspects of
a language: lexicographic and parsed notation, the static seman-
tics, module linking, and optimizations. The Racket development
team has exploited this extensibility for the construction of two
dozen frequently used languages, e.g., language extensions for
classes (Flatt et al. 2006) and ML-style functors (Culpepper et
al. 2005; Flatt and Felleisen 1998), another for creating interac-
tive web server applications (Krishnamurthi et al. 2007), two lan-
guages implementing logic programming2 and a lazy variant of
Racket (Barzilay and Clements 2005). This paper is itself a pro-
gram in Racket’s documentation language (Flatt et al. 2009).

Racket derives its power from a carefully designed revision of a
Scheme-style macro systems. The key is to make language choice
specific to each module. That is, individual modules of a program
can be implemented in different languages, where the language
implementation has complete control over the syntax and semantics
of the module. The language implementation can reuse as much
of the base language as desired, and it can export as much of the
module’s internals as desired. In particular, languages can reuse
Racket’s macro facilities, which is supported with a mechanism for
locally expanding macros into attributed ASTs.

1 Formerly known as PLT Scheme.
2 Schelog (1993) http://docs.racket-lang.org/racklog

Datalog (2010) http://docs.racket-lang.org/datalog
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For simplicity, we demonstrate the idea of true language ex-
tensibility via a single example: the Typed Racket implementation.
Typed Racket (Tobin-Hochstadt and Felleisen 2008) is a statically
typed sister language of Racket that is designed to support the grad-
ual porting of untyped programs. Its type system accommodates the
idioms of Racket, its modules can exchange values with untyped
modules, and it has a type-driven optimizer—all implemented as
plain Racket libraries.

The remainder of this paper starts with a description of Racket’s
language extension facilities and the challenges posed by the Typed
Racket extension. Following these background sections, the paper
shows how we use syntactic extension to introduce Typed Racket
notation; how we splice the type checker into the tool chain; how
we enable inter-language linking; and how we add realistic op-
timizing transformations via a library. Finally, we relate our ap-
proach to existing facilities for meta-programming with static se-
mantics as well as extensible compiler projects.

2. Language Extension in Racket

Racket provides a range of facilities for language extension. In
this section, we outline the most relevant background as well as
extension mechanisms provided with Racket.

2.1 Macros

From Lisp (Steele Jr. 1994) and Scheme (Sperber et al. 2009),
Racket takes hygienic macros as the basis of its syntactic exten-
sion mechanisms. In Racket, macros are functions from syntax to
syntax, which are executed at compile time. During compilation,
Racket’s macro expander recursively traverses the input syntax.
When it reaches the use of a macro, it runs the associated function,
the transformer, and continues by traversing the result.

Macros may use arbitrary Racket libraries and primitives to
compute the result syntax. The following macro queries the system
clock at compile time:

(define-syntax (when-compiled stx)

(with-syntax ([ct (current-seconds)])

#’ct))

This macro computes, at compile time, the current time in seconds,
and uses the with-syntax form to bind the identifier ct to
a syntax object representing this number. Syntax objects are the
ASTs of Racket, and contain syntactic data as well as metadata
such as source location information. The #’ form (analogous to ’

for lists) constructs syntax objects and can refer to identifiers bound
by with-syntax in its context. In the following function, we use
the when-compiled macro:

(define (how-long-ago?)

(- (current-seconds) (when-compiled)))

Since the when-compiled form expands into the current date
in seconds at the time the form is compiled and since the value of
(current-seconds) continues to change, the value produced
by how-long-ago? continually increases

> (how-long-ago?)

0

> (sleep 1)

> (how-long-ago?)

1

Most macros generate new expressions based on their input:
(define-syntax (do-10-times stx)

(syntax-parse stx

[(do-10-times body:expr ...)

#’(for ([i (in-range 10)])

body ...)]))

> (do-10-times (display "*") (display "#"))

*#*#*#*#*#*#*#*#*#*#

The do-10-times macro consumes a sequence of expressions
and produces code that runs these expressions 10 times. To this
end, it first decomposes its input, stx, with the syntax-parse

form (Culpepper and Felleisen 2010), a pattern matcher designed
for implementing macros. The pattern requires a sequence of
subexpressions, indicated with ..., named body, each of which
is constrained to be an expr. The resulting syntax is a for loop
that contains the body expressions. Thanks to macro hygiene, if
the bodys use the variable i, it is not interfered with by the use of
i in the for loop.

2.2 Manipulating Syntax Objects

Since syntax objects are Racket’s primary compile-time data struc-
ture, roughly analagous to the ASTs of conventional languages,
syntax objects come with a rich API.

Constructors and Accessors Besides with-syntax and #’ for
constructing and manipulating syntax objects, the remainder of the
paper also uses the following forms and functions:

• syntax->list converts a non-atomic syntax object to a list;

• free-identifier=? compares two identifiers to deter-
mine if they refer to the same binding;

• the #‘ and #, forms implement Lisp’s quasiquote and unquote
for syntax object construction.

Syntax properties Racket macros can add out-of-band informa-
tion to syntax objects, e.g., source locations, dubbed syntax proper-
ties. The syntax-property-put and syntax-property-

get procedures attach and retrieve arbitrary key-value pairs on
syntax objects, which are preserved by the macro expander. Thus
syntactic extensions may communicate with each other without in-
terfering with each other.

Local Expansion The local-expand procedure expands a
syntax object to core Racket. This explicitly specified core lan-
guage consists of approximately 20 primitive syntactic forms that
implement Racket; see figure 1 for a subset of this grammar. Using
local-expand, a language extension may analyze an arbitrary
expression, even if that expression uses macros. For example, the
following macro requires that its argument be a λ expression:
(define-syntax (only-λ stx)

(syntax-parse stx

[(_ arg:expr)

(define c

(local-expand #’arg ’expression ’()))

(define k (first (syntax->list c)))

(if (free-identifier=? #’#%plain-lambda k)

c

(error "not λ"))]))

The only-λ macro uses local-expand on the arg subexpres-
sion to fully expand it:

> (only-λ (λ (x) x))

#<procedure>

> (only-λ 7)

not λ
If we add a definition that makes function the same as λ, we
still get the correct behavior.

> (only-λ (function (x) x))

#<procedure>

The only-λ macro can see through the use of function be-
cause of the use of local-expand.

2.3 Modules and Languages

Racket provides a first-order module system that supports import
and export of language extensions (Flatt 2002). For the purposes



mod-form = expr

| (#%provide provide-spec)

| (define-values (id) expr)

| ...

expr = id

| (#%plain-lambda (id ...)

expr ...+)

| (if expr expr expr)

| (quote datum)

| (#%plain-app expr ...+)

| ...

Figure 1: Racket’s core forms (abbreviated)

of this paper, two aspects of the module system are crucial. First,
modules can export static bindings, such as macros, as well as value
bindings, such as procedures, without requiring clients to distin-
guish between them. Thus, value bindings can be replaced with
static bindings without breaking clients. Second, each module is
compiled with a fresh store. That is, mutations to state created dur-
ing one compilation do not affect the results of other compilations.

Every module specifies—in the first line of the module—the
language it is written in. For example,

#lang racket

specifies racket as the module’s language, and
#lang datalog

specifies datalog instead, a language extension with different
lexical syntax, static and dynamic semantics from plain Racket.

For the purposes of this paper, a language L is a library that
provides two linguistic features:

• a set of bindings for L, including both syntactic forms such
as define and values such as +, which constitute the base
environment of modules written in the language, and

• a binding named #%module-begin, which is used to imple-
ment the whole-module semantics of L.

The #%module-begin form is applied to the entire module
before the macro expander takes over. For example, here is the
#%module-begin form for the count language:
(define-syntax (#%module-begin stx)

(syntax-parse stx

[(#%module-begin body ...)

#‘(#%plain-module-begin

(printf "Found ∼a expressions."

#,(length

(syntax->list

#’(body ...))))

body ...)]))

The #%plain-module-begin form is the base module wrap-
per, adding no new static semantics.

When this language is used, it prints the number of top-level
expressions in the program, then runs the program as usual. For
example, consider the following module written in count:

#lang count

(printf "*∼a" (+ 1 2))

(printf "*∼a" (- 4 3))

When run, this module prints:
Found 2 expressions.*3*1.
The #%module-begin language mechanism allows a lan-

guage author to implement arbitrary new whole-module static se-
mantics using macro rewriting.

3. Typed Racket as a Library

Typed Racket combines a type system for enriching Racket mod-
ules with sound type information and a mechanism for linking
typed and untyped modules. Its implementation not only benefits
from, but demands, as much linguistic reuse as possible. After all,
Typed Racket must implement the same semantics as Racket plus
purely syntactic type checking; there is no other way to provide
a smooth migration path that turns Racket programs into Typed
Racket programs on a module-by-module basis. And the best way
to implement the same semantics is to share the compiler.

At the same time, linguistic reuse poses novel challenges in
addition to those faced by every implementer of a typed language.
In this section, we explain these challenges with examples; in
the remainder of the paper we explain our solutions. As for the
particular challenges, we show how to:

1. annotate bindings with type specifications;

2. check type correctness in a context-sensitive fashion;

3. type check programs written in an extensible language;

4. integrate type checking with separate compilation of modules;

5. provide safe interaction with untyped modules; and

6. optimize programs based on type information.

3.1 Layering Types on an Untyped Language

Consider this trivial Typed Racket program:
#lang typed/racket

(define: x : Number 3)

It specifies that x has type Number. To implement define:,
Typed Racket reuses the plain define provided by Racket. Thus
we must associate the type declaration for x out-of-band.

Further, although modern languages come with a wide variety
of syntactic forms, most can be reduced to simpler forms via rewrite
rules implemented as macros, e.g.:

(define-syntax (let: stx)

(syntax-parse stx

[(let ([x:id : T rhs:expr]) body:expr)

#’((λ: ([x : T]) body) rhs)]))

For Typed Racket, these rewriting rules must preserve the specified
type information without interfering with the implementation of the
typechecker.

These are two instances of Typed Racket’s linguistic reuse.
This linguistic reuse is comprehensive through all layers of Typed
Racket. Modules in Typed Racket are simply Racket modules. The
same is true of functions and variables, which map directly to their
Racket equivalents. At the intermediate level, Typed Racket reuses
Racket’s binding forms, such as define and λ, with additions for
the specification of types as described above. At the lowest level,
runtime values are shared between Racket and Typed Racket.

Returning to our example, the plain Racket definition form is:
(define x 3)

There is no place in such a definition for a type annotation. Hence,
the macro must store the type information out-of-band. Fortunately,
syntax properties allow for define: to record precisely such
additional information:

(define-syntax (define: stx)

(syntax-parse stx

[(define: name:id : ty rhs:expr)

(with-syntax

([ann-name

(syntax-property-put

#’name ’type-annotation #’ty)])

#’(define ann-name rhs))]))



Here, ann-name is the original name, but with a syntax property
indicating that it is annotated with the type ty. With this implemen-
tation, later stages of processing can read the type annotation from
the binding, but the type annotation does not affect the behavior of
Racket’s define, allowing reuse as desired.

3.2 Challenges

Next we turn to the challenges of other processing phases.

Context-sensitive Checking Type checking is inherently context-
sensitive. For example, this Typed Racket program:

#lang typed/racket

(: f (Number -> Number))

(define (f z) (sqrt (* 2 z)))

(f 7)

relies on contextual information about the type of f when check-
ing the function application (f 7). Tracking this information de-
mands an implementation that typechecks the entire module, rather
than just the syntax available at a particular program point; in other
words, it is a whole-module analysis.

Checking an Extended Language Typed Racket programmers
expect to use the numerous libraries provided by Racket, many
of which provide syntactic abstractions. For example, this module
uses match, a syntactic form implemented in a library written in
plain Racket, rather than a primitive form as in ML or Haskell, but
nonetheless indistinguishable from a language primitive:

#lang racket

(match (list 1 2 3)

[(list x y z)

(+ x y z)])

Naturally, Typed Racket programmers want to reuse such conve-
nient libraries, ideally without modifications, so that the above be-
comes a valid Typed Racket module by using typed/racket.

Therefore, we must either extend our typechecker to handle
match, or translate match into a simpler form that the type-
checker understands. The former solution works for existing lan-
guage extensions, but in Racket, programmers can write new lan-
guage extensions at any time, meaning that Typed Racket cannot
possibly contain a catalog of all of them.

Supporting Modular Programs Racket programs consist of mul-
tiple modules; Typed Racket therefore supports modules as well.
The types of bindings defined in one module must be accessible in
other typed modules without the need to repeat type declarations.
For example:

#lang typed/racket ;; module server

(: add-5 : Integer -> Integer)

(define (add-5 x) (+ x 5))

;; export ‘add-5’ from the module

(provide add-5)

#lang typed/racket ;; module client

(require server)

(add-5 7) ;; type checks correctly

Because modules are compiled separately, the server module
is compiled before the client module, but must communicate the
static information about the type of add-5 to client. Therefore,
compiling a Typed Racket module must produce a persistent record
of the types of exported bindings.

Integrating with Untyped Modules Racket comes with hundreds
of thousands of lines of libraries, almost all of which are written
without types. Effective use of Typed Racket, therefore, requires
interoperation with untyped modules. Typed Racket supports such
interoperation in both directions. First, typed modules can import
untyped bindings by specifying their types:

#lang typed/racket

(require/typed racket/file

[file->lines (Path -> (Listof String))])

(file->lines "/etc/passwd")

Second, untyped modules can import typed bindings:
#lang racket ;; client

(require server)

(add-5 12) ;; safe use

(add-5 "bad") ;; unsafe use

Typed Racket must protect its soundness invariants and check value
flow across the boundary between typed and untyped programs. It
must also avoid, however, imposing unnecessary dynamic checks
between typed modules.

Optimizing with Type Information Type information enables a
wide variety of optimizations. Tag checking, ubiquitous in untyped
Racket programs, is unnecessary in typed programs. For example,
this program need not check that the argument to first is a pair:

#lang typed/racket

(: p : (List Number Number Number))

(define p (list 1 2 3))

(first p)

Of course, with type information, more significant optimizations
are also possible. The following loop is transformed into one that
performs only machine-level floating-point computation:

#lang typed/racket

(: count : Float-Complex -> Integer)

(define (count f)

(let loop ([f f])

(if (< (magnitude f) 0.001)

0

(add1 (loop (/ f 2.0+2.0i))))))

In particular, the type information should assist the compiler back-
end with the treatment of complex and floating-point numbers.

4. A Single-Module Typechecker

This section presents the single-module core of a simply-typed
version of Typed Racket. It concludes with an explanation of how
to scale the system to the full typechecker of Typed Racket.

4.1 An Example

Assume our language is available from the simple-type library.
Thus, we can write modules like the following:

#lang simple-type

(define x : Integer 1)

(define y : Integer 2)

(define (f [z : Integer]) : Integer

(* x (+ y z)))

Such a module is first fully expanded to the appropriate core
forms and then typechecked. Thus, type-incorrect definitions and
expressions signal compile-time errors.

(define w : Integer 3.7)

typecheck: wrong type in: 3.7
Modules with type errors are not executable.

4.2 Wiring Up the Typechecker

Typechecking a module is a context-sensitive process and therefore
demands a whole-module analysis via #%module-begin.

Since Racket provides a rich mechanism for syntactic exten-
sion, many important language features are implemented as lan-
guage extensions. Major examples are pattern matching, keyword
arguments, and even simple conditional forms such as case and
cond. Providing appropriate type rules for every syntactic exten-
sion, however, is clearly impossible, because programmers can in-
vent new extensions at any time. Instead, we consider only the



(define-syntax (#%module-begin stx)

(syntax-parse stx

[(_ forms ...)

(with-syntax ([(_ core-forms ...)

(local-expand #’(#%plain-module-begin forms ...) ’module-begin ’())])

(for-each typecheck (syntax->list #’(core-forms ...)))

#’(#%plain-module-begin core-forms ...))]))

Figure 2: The Top-level Driver

(define (typecheck t [check #f])

(define the-type

(syntax-parse t

[v:identifier (lookup-type #’v)]

[(quote n:number) (cond [(exact-integer? (syntax-e #’n)) IntT]

[(flonum? (syntax-e #’n)) FloatT]

[else NumberT])]

[(if e1 e2 e3)

(typecheck #’e1 BooleanT)

(unless (equal? (typecheck #’e2) (typecheck #’e3))

(type-error "if branches must agree"))

(typecheck #’e3)]

[(#%plain-lambda formals body:expr)

(define formal-types (map type-of (syntax->list #’formals)))

(for-each add-type! (syntax->list #’formals) formal-types)

(make-fun-type formal-types (typecheck #’body))]

[(#%plain-app op . args)

(define argtys (map typecheck (syntax->list #’args)))

(match (typecheck #’op)

[(struct fun-type (formals ret))

(unless (and (= (length argtys) (length formals)) (andmap subtype argtys formals))

(type-error "wrong argument types" t))

ret]

[t (type-error "not a function type" #’op)])]

[(define-values (id) rhs)

(add-type! #’id (type-of #’id)) (typecheck #’rhs (type-of #’id))]))

(when (and check (not (subtype the-type check))) (type-error "wrong type" t))

the-type)

;; get the type of a binding

(define (type-of id)

(unless (syntax-property-get id ’type) (type-error "untyped variable" id))

(parse-type (syntax-property-get id ’type)))

Figure 3: The Typechecker

small fixed set of core forms of figure 1, and reduce all other forms
to these before type checking.

Given an implementation of the typechecker, we must connect it
to the program so that it receives appropriate fully-expanded syntax
objects as input. The basic driver is given in figure 2. The driver
is straightforward, performing only two functions. Once we have
fully expanded the body of the module, we typecheck each form in
turn. The typechecker raises an error if it encounters an untypable
form. Finally, we construct the output module from new core forms,
thus avoiding a re-expansion of the input.

The strategy of reducing syntactic sugar to core forms is com-
mon in many other languages, and even specified in the standards
for ML (Milner et al. 1997) and Haskell (Marlow 2010). In a lan-
guage with syntactic extension, we need more sophisticated sup-
port from the system to implement this strategy, and that support is
provided in Racket by local-expand.

For successful typechecking, we must also provide an initial en-
vironment. The initial environment specifies types for any identi-

fiers that the language provides, such as +, as well as the initial
type names. Finally, we provide the define and λ binding forms
that attach the appropriate syntax properties for type annotations to
the bound variables, as described in section 2.1.

4.3 Typechecking Syntax

Figure 1 displays the grammar for our simple language. It is a sub-
set of the core forms of full Racket. Modules consist of a sequence
of mod-forms, which are either expressions or definitions.

Figure 3 specifies the typechecker for this core language. The
typecheck function takes a term and an optional result type.
Each clause in the syntax-parse expression considers one of
the core forms described in figure 1.

Two aspects of the typechecker are distinctive. First, the type en-
vironment uses a mutable table mapping identifiers to types based
on their binding; the table is accessed with lookup-type and up-
dated with add-type!. Shadowing is impossible because identi-
fiers in fully-expanded Racket programs are unique with respect to



the entire program. We update the type environment in the clauses
for both #%plain-lambda and define-values. Using an
identifier-keyed table allows reuse of the Racket binding structure
without having to reimplement variable renaming or environments.

The second distinctive feature of the typechecker is the type-

of function. It reads the syntax properties attached by forms such
as define: in section 3.1 with a known key to determine the type
the user has added to each binding position.

4.4 Scaling to Typed Racket

While this module-level typechecker is simple, the full implemen-
tation for Typed Racket employs the same strategy. The impor-
tant differences concern mutual recursion and complex definition
forms. Mutual recursion is implemented with a two-pass type-
checker: the first pass collects definitions with their types, and
the second pass checks individual expressions in this type context.
Complex declarations, such as the definition of new types, are also
handled in the first pass. They are recognized by the typechecker,
and the appropriate bindings and types are added to the relevant
environments.

Of course, the Typed Racket type system is much more com-
plex (Strickland et al. 2009; Tobin-Hochstadt and Felleisen 2010)
than the one we have implemented here, but that complexity does
not require modifications to the structure of the implementation—it
is encapsulated in the behavior of typecheck on the core forms.

5. Modular Typed Programs

The typechecker in section 4 deals only with individual modules.
To deal with multiple modules, we must both propagate type infor-
mation between typed modules, and also persist type information
in compiled code to support separate compilation.

For the first point, we reuse some Racket infrastruture. Names-
pace management in a modular language is a complex problem, and
one that Racket already solves. In particular, identifiers in Racket
are given globally fresh names that are stable across modules dur-
ing the expansion process. Since our type environment is keyed by
identifiers, type environment lookup reuses and respects Racket’s
scoping. An identifier imported from one module maintains its
identity in the importing module, and therefore the typechecker is
able to look up the appropriate type for the binding.

The second step is to maintain the type environment across com-
pilations. Since each module is compiled in a separate and fresh
store, mutations to the type environment do not persist between
compilations. Therefore, Typed Racket must incorporate the type
environment into the residual program, because that is the only per-
sistent result of compilation. Our strategy — due to Flatt (2002) —
is to include code in the resulting module that populates the type
environment every time the module is required.

In our example system, we implement this by adding a single
rewriting pass to the #%module-begin form for Typed Racket.
Expressions and definitions are left alone; an appropriate compile-
time declaration is added for each export:
(provide n) ; The original export

; ==> (is rewritten into)

(with-syntax ([t (serialize (type-of #’n))])

#‘(begin

(#%provide n) ; The core export form

(begin-for-syntax

(add-type! #’n t))))

The resulting code uses #%provide to maintain the original ex-
port. The type declaration is wrapped in begin-for-syntax,
meaning that it is executed at compile time to declare that n is
mapped to the serialization of its type in the type environment.

(define-syntax (require/typed stx)

(syntax-parse stx

[(_ module [id ty])

#‘(begin-ignored

; Stage 1

(require (only-in module

[id unsafe-id]))

; Stage 2

(begin-for-syntax

(add-type! #’id (parse-type #’ty)))

; Stage 3

(define id

(contract

#,(type->contract

(parse-type #’ty))

unsafe-id

(quote module)

’typed-module)))]))

Figure 4: Import of Untyped Code

6. Safe Cross-Module Integration

A module in Typed Racket should have access to the large col-
lection of untyped libraries in Racket. Conversely, our intention
to support gradual refactoring of untyped into typed systems de-
mands that typed modules can export bindings to untyped mod-
ules. However, untyped programs are potentially dangerous to the
invariants of typed modules. To protect these invariants, we auto-
matically generate run-time contracts from the types of imported
and exported bindings (Tobin-Hochstadt and Felleisen 2006).

However, a large library of untyped modules is useless if each
must be modified to work with typed modules. Therefore, our im-
plementation must automatically wrap imports from untyped code,
and protect exports to untyped code, without requiring changes to
untyped modules. Further, communication between typed modules
should not involve extra contract checks, since these invariants are
enforced statically.

6.1 Imports from Untyped Modules

Typed Racket requires the programmer to specify the types of
imports from untyped modules:

(require/typed file/md5

[md5 (Bytes -> Bytes)])

This specification imports the md5 procedure, which computes the
MD5 hash of a byte sequence. The procedure can be used in typed
code with the specified type, and the type is converted to a con-
tract and attached to the procedure on import. This translation and
interposition is implemented in the require/typed form; see
figure 4 for an implementation for our simple-type language.

The implementation of require/typed works in three
stages. Stage 1 imports the specified identifier, id from mod-

ule under the new name unsafe-id. Stage 2 parses and adds
the specified type to the table of types with add-type!. Finally,
stage 3 defines the identifier id as a wrapper around unsafe-id.
The wrapper is a generated contract and establishes a dynamically
enforced agreement between the original module (named module)
and the typed module (with the placeholder name).3 The entire out-
put is wrapped in begin-ignored so that the type checker does
not process this meta-information.

In our example, we would now be able to use the md5 function
in typed code according to the specified type, getting a static type
error if md5 is applied to a number, for example. Conversely, if the

3 In practice, type checking renders the domain contract superfluous.



file/md5 library fails to return a byte string value, a dynamic
contract error is produced, avoiding the possibility that the typed
module might end up with a value that it did not expect.

6.2 Exports to Untyped Modules

Unlike imports into a typed module, exports from such a module
pose a serious problem because the Typed Racket language imple-
mentation is not necessarily in control of the use site. After all, an
exported identifier may be used in both typed and untyped contexts.
Since typed modules statically verify that uses of typed identifiers
accord with their types, no contracts are necessary for exports to
such modules. In contrast, exports from typed to untyped modules
require the insertion of dynamic checks to ensure type safety.

To implement this behavior without cloning every module, we
adopt a novel two-stage module compilation strategy. First, each
export is replaced with an indirection that chooses whether to ref-
erence the contracted or plain version of the exported binding.
Second, the compilation of typed modules sets a flag inside the
#%module-begin transformer before expansion of the module’s
contents; the exported indirections choose which version to ref-
erence based on this flag. Since each module is compiled with a
fresh state, this flag is only set during the compilation of typed
modules—untyped modules have no way to access it. Therefore,
during the compilation of untyped modules, the export indirections
correctly choose the contract-protected version of bindings. The
compilation of typed modules, in contrast, see the set version of
the flag and are able to use the uncontracted versions of bindings.

Implementation Exported identifiers are rewritten in the same
stages as imported identifiers. Since this rewriting occurs after
typechecking, however, it is performed by the #%module-begin

form, just as declarations are added to exports:
(#%provide n) ; An export of n

; ==> (is rewritten to)

#‘(begin

... the declaration from section 5 ...
; Stage 1

(define defensive-n

(contract

#,(type->contract (typecheck #’n))

n ’typed-module ’untyped-module))

; Stage 2

(define-syntax (export-n stx)

(if (unbox typed-context?)

#’n #’defensive-n))

; Stage 3

(provide (rename-out [export-n n])))

First, we define a defensive version of the identifier n, which
uses a contract generated from the type of n. Second, we de-
fine an export-n version of the identifier n, which selects be-
tween n and defensive-n depenending on the value of typed-

context?. Third, we provide export-n under the name n,
making the indirection transparent to clients of the typed module.

The second part comes in the definition of the language:
(define-syntax (#%module-begin stx)

(set-box! typed-context? #t)

... check and transform stx, as in figure 2 ...

... rewrite provides, as above ...)
The initial flag setting means that the expansion of the module, and
in particular the expansion of the indirections imported from other
typed modules, see the typed-context? flag as set to #t.

Finally, because the typed-context? flag is accessible only
from the implementation of the simple-type language, it is
simple to verify that the flag is only set to #t in the #%module-

begin form. Therefore, the implementation can rely on this flag

as an indicator, without the possibility that untyped code might be
able to deceive the typechecker.

6.3 Scaling to Typed Racket

The full implementation of module integration in Typed Racket
follows the strategy outlined. The major complication is the export
of macros and other static information from typed modules. Since
macros from typed modules can refer to internal identifiers not
protected by contracts, expanding such macros in untyped modules
could potentially allow untyped modules to violate the invariants of
typed modules. Therefore, Typed Racket currently prevents macros
defined in typed modules from escaping into untyped modules.

7. Optimization via Rewriting

Source-to-source transformations can express large classes of opti-
mizations, which makes it possible to apply them in the front end
of the compiler. With the right language extension mechanisms, we
can express these transformations as libraries and use them to build
competitive optimizers.

7.1 Compiler architecture

Since Typed Racket is built as a language extension of Racket and
the Racket compiler is for an untyped language, Typed Racket
has to apply typed optimizations before handing programs to the
Racket compiler. In contrast, compilers for typed languages can
keep track of types across all phases in the compiler and use
them to guide optimizations. Hence, Typed Racket features a type-
driven optimization pass after typechecking. This optimization pass
transforms the code that the front end of Typed Racket generates,
using the validated and still accessible type information.

To support realistic optimizers as libraries, the host language
must provide ways for language extensions to communicate their
results to the compiler’s backend. As part of its language exten-
sion features, Racket exposes unsafe type-specialized primitives.4

For instance, the unsafe-fl+ primitive adds two floating-point
numbers, but has undefined behavior when applied to anything
else. These type-specialized primitives are more efficient than their
generic equivalents; not only do these primitives avoid the run-
time dispatch of generic operations, they also serve as signals to
the Racket code generator to guide its unboxing optimizations.

Typed Racket’s optimizer generates code that uses these prim-
itives. In figure 5, we show an excerpt from the optimizer that
specializes floating-point operations using rewrite rules; the opti-
mizer rewrites uses of generic arithmetic operations on floating-
point numbers to specialized operations.

7.2 Scaling to Typed Racket

Typed Racket uses the same techniques as the simple optimizer pre-
sented here, but applies a wider range of optimizations. It supports a
number of floating-point specialization transformations, eliminates
tag-checking made redundant by the typechecker and performs ar-
ity raising on functions with complex number arguments.

7.3 Results

Untyped Racket is already competitive among optimizing Scheme
compilers. The addition of a type-driven optimizer makes a notice-
able difference and makes it an even more serious contender.

We show the impact of our optimizer on micro-benchmarks
taken from the Gabriel (1985) and Larceny (Clinger and Hansen
1994) benchmark suites and the Computer Language Benchmark
Game,5 as well as on large benchmarks: the pseudoknot (Hartel

4 Initially these primitives were provided because some programmers
wanted to hand-optimize code.
5 http://shootout.alioth.debian.org

http://shootout.alioth.debian.org


(define (optimize t)

(syntax-parse t

[(#%plain-app op:id e1:expr e2:expr)

(with-syntax ([new-op (if (and (equal? FloatT (type-of #’e1))

(equal? FloatT (type-of #’e2)))

(cond [(free-identifier=? #’op #’+) #’unsafe-fl+]

[(free-identifier=? #’op #’-) #’unsafe-fl-]

[else #’op])

#’op)])

#‘(#%plain-app new-op #,(optimize #’e1) #,(optimize #’e2)))]

... structurally recur on the other forms ...))

Figure 5: The Optimizer
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Figure 6: Results on the Gabriel and Larceny benchmarks (smaller is better)
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Figure 7: Results on the Computer Language Benchmark Game
(smaller is better)
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Figure 8: Results on pseudoknot (smaller is better)
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Figure 9: Results on large benchmarks (smaller is better)

et al. 1996) floating-point benchmark, a ray tracer, an industrial
strength FFT and the implementation of two purely functional data
structures (Prashanth and Tobin-Hochstadt 2010). Each benchmark
comes in two versions: the original version and a translation to
Typed Racket. The typed versions have type annotations and extra
predicates where required to typecheck the program.

The typed version runs in Racket 5.0.2 using our type-driven op-
timizer and the untyped version in Racket 5.0.2, Gambit 4.6.0 (Fee-
ley and Miller 1990), Larceny 0.97 (Clinger and Hansen 1994)
and Bigloo 3.5a (Serrano and Weis 1995), using the highest safe
optimization settings in each case. Benchmarks from the Com-
puter Language Benchmarks Game and our sample applications
use Racket-specific features and cannot be measured with other
Scheme compilers. Bigloo fails to compile the cpstack and pseu-
doknot benchmarks. All our results are the average of 20 runs on a
Dell Optiplex GX270 running GNU/Linux with 1GB of memory.

These benchmarks fall into two categories: benchmarks where
Racket is already competitive with other well-known optimizing
Scheme compilers, and benchmarks where Racket does not per-
form as well. In some cases where Racket is slower than the compe-
tition, Typed Racket’s optimizer helps bridge the gap. For instance,
it is responsible for a 33% speedup on the fft benchmark and a
123% speedup on pseudoknot. The large applications benefit even
more from our optimizer than the microbenchmarks.

The results presented in this section demonstrate (a) that the
Racket compiler and runtime are already competitive with leading
compilers for Scheme, and (b) that Typed Racket’s optimizer, writ-
ten entirely as a library, nonetheless provides noticeable speedups
on both widely-used benchmarks and existing Racket programs.



8. Related Work

While many individual aspects of our extensible language have
long histories, some are novel and so is the combination as a whole.
In this section, we sketch the history of each of these aspects.

8.1 Extensible Static Semantics

Macros have a long history in Lisp and Scheme (Steele Jr. and
Gabriel 1993; Dybvig et al. 1992; Kohlbecker 1986). Several as-
pects of Racket’s macro system improve on prior techniques.

First, the #%module-begin macro offers control over the en-
tire module. Many Lisp programmers have approximated it with
explicit wrappers. Second, many Lisp systems provide analogues
of local-expand under the names expand or macroex-

pand. These features are more limited, however. Most importantly,
they do not compose with other macros (Culpepper and Felleisen
2010). Third, Chez Scheme (Dybvig 2009) provides a define-

property form, which simulates identifier-keyed tables for the
same purposes described in section 5. Chez Scheme’s form is less
general than Racket’s: while define-property would support
Typed Racket’s maintenance of type environments, it would not
work for the interoperability mechanism described in section 6.2.

Fisher and Shivers (2006; 2008) present a system for handling
analysis of programs written in an extensible language. Specifi-
cally, their system can implement static analyses, such as type sys-
tems, on top of extensible languages, without requiring the anal-
ysis to know about every possible language extension. The sys-
tem employs a dispatch mechanism so that each extension can an-
swer the static analysis question about its own use. This approach
is extensible and expressive, but inherently unsound, because lan-
guage extensions may provide analysis results that disagree with
their runtime behavior. Our solution using local-expand relies
on the inference of high-level properties from core forms and re-
spects soundness, though it imposes limits on some macro uses in
language extensions.

In the functional-logic programming world, the Ciao Prolog
system (Hermenegildo et al. 2008) comes close to Racket. It also al-
lows programmers to annotate their programs with new static asser-
tions and to control when these assertions are checked. This strat-
egy accommodates customizable static semantics and enabling new
optimizations. In contrast to our system, Ciao builds the assertion
language into the compiler, which furthers tight integration with
its existing static analyzers and compiler, but prevents users from
developing truly new semantics and whole program checking.

The ArBB and Rapidmind (Ghuloum et al. 2010) tools take
the approach of embedding languages for novel execution models
within C++. In contrast with the approach we present, their embed-
ding demands the use of the C++ type system and necessitates the
creation of ad-hoc replacements for fundamental language features
such as ‘if’ and ‘for’ statements, thus limiting linguistic reuse. Ad-
ditionally, because individual constructs see only a portion of the
program, the scope for an analysis is necessarily local, in contrast
to Typed Racket which can check an entire module.

8.2 Extensible Compilers

Since compilers are valuable and complex pieces of software, many
projects have designed extensible compilers. Extensibility means
that programmers can add front-ends, backends, optimizations,
analyses, or other plug-ins (Bravenboer and Visser 2004; Bachrach
and Playford 2001; Cox et al. 2008; Nystrom et al. 2003). All of
these systems differ significantly from our implementation of a
language as a library. First, they require interoperation at the level
of the compiler rather than the language. Language extensions in
Racket are implemented as Racket programs, operate on Racket
programs, and produce Racket programs; they operate without any
reliance on the details of the underlying compiler or runtime. This

higher level of abstraction means that the compiler can be mod-
ified without breaking existing extensions, and extensions need
not depend on the specialized representations and analyses in the
compiler implementation.

Second, extensible compilers are not libraries in the same
sense as ordinary libraries. Instead, they are plug-ins to a different
application—the compiler, which may be written in a different lan-
guage using a different architecture. This means compiler plugins
cannot take advantage of the same library distribution mechanisms,
debugging mechanisms, tools, and the rest of the software infras-
tructure around the language. This difference makes them both
more difficult to develop and to use for programmers, thus limiting
language experimentation.

8.3 Rewriting-based Optimization

The specific optimization techniques described in section 7 are not
new to Typed Racket. Kelsey (1989) presents a transformational
compiler that expresses optimizations as rewritings from the source
language, an extended continuation-passing style lambda calculus,
to itself. These transformations are encoded inside the compiler,
however, which places them off-limits for programmers.

The Glasgow Haskell Compiler (Peyton Jones 1996) also ex-
presses optimizations as rewrite rules. Unlike Kelsey’s work, GHC
makes it possible for programmers to supplement these rules with
their own. To preserve safety, the compiler enforces that all rewrite
rules must preserve types; that is the result of applying a rewrite
rule must be of the same type as the the original term. In contrast to
Racket, the GHC rewrite rules are expressed in a limited domain-
specific language.

It would be impossible to implement the arity-raising transfor-
mation mentioned in section 7.2 in the GHC framework; such opti-
mizations are instead built-in to GHC.

9. Conclusion

In Growing a Language, Steele writes “if we grow the language in
these few ways, then we will not need to grow it in a hundred other
ways; the users can take on the rest of the task.” In this paper, we
have explained how Racket’s small number of language extensibil-
ity mechanisms empower the application programmer to grow even
a highly sophisticated language. While these mechanisms continue
the long tradition of Lisp and Scheme macros, they also go far
beyond macros. Most importantly, Racket programmers can use
#%module-begin to create libraries that process modules in a
context-sensitive manner—without interfering with macros. Fur-
ther, the syntax system can use attributed ASTs to communicate
out-of-band information. As a result, programmers can interpolate
context-sensitive analyses and source-based optimizations where
the latter may exploit the result of the former.

One running example, Typed Racket, illustrates the range of
Racket’s extensibility mechanism. Specifically, the implementation
of Typed Racket covers almost all aspects of language experimenta-
tion, from the front end to the back end. As our benchmarks demon-
strate, the current backend of Typed Racket delivers competitive
performance. What reduces the performance from “highly compet-
itive” to just “competitive” is the lack of Racket APIs for process-
ing intermediate representations and/or JIT compiler information.
Until such APIs are available, compiler optimizations for language
extensions remain limited to source-level transformations.
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