
Logic Programming

in Scheme

Nils M Holm

Copyright c© 2007 Nils M Holm
Print and distribution: Lulu Press, Inc

http://lulu.com/nmh/



1

Preface

This text discusses Logic Programming in terms of purely functional and
symbolic Scheme.

It is the “Scheme version” of “Logic Programming in Symbolic LISP”. It
covers exactly the same topics, but uses Scheme as its host language.

Chapter 1 introduces logic programming basics by means of the AMK
logic programming system.

Chapter 2 outlines the application of the techniques from Chapter 1 to
a well-known logic puzzle.

Chapter 3 describes the implementation of the AMK logic programming
system. Complete code included!

The AMK source code can be found in the SketchyLISP section at
http://t3x.org.

Before reading this text, you should be familiar with the basics of the
Scheme programming language, including concepts like lists, functions, clo-
sures, and recursion.

This work has been greatly influenced by the book “The Reasoned
Schemer” by Daniel P. Friedman, et al.

The AMK (Another Micro Kanren) logic programming system is losely
based upon Oleg Kiselyov’s “Sokuza Mini Kanren”.

Welcome to the world of Logic Programming.

Go ahead, explore, and enjoy!

Nils M Holm, 2007



Contents

1 Introduction 3

1.1 Functions vs Goals . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Logic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Parameterized Goals . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Reification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Converting Predicates to Goals . . . . . . . . . . . . . . . . . . 12
1.8 Converting Functions to Goals . . . . . . . . . . . . . . . . . . 13
1.9 COND vs ANY . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.10 First Class Variables . . . . . . . . . . . . . . . . . . . . . . . . 17
1.11 First Class Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.12 Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.13 Cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Application 24

3 Implementation 30

3.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Anonymous Variables . . . . . . . . . . . . . . . . . . . . . . . 38

2



1

Introduction

1.1 Functions vs Goals

In Functional Programming, functions are combined to form programs. For
example, the append function of Scheme concatenates some lists:

(append ’(orange) ’(juice)) => (orange juice)

The basic building stones of Logic Programming are called goals. A goal
is a function that maps knowledge to knowledge:

(run* () (appendo ’(orange) ’(juice) ’(orange juice))) => (())

An application of run* is called a query. Run* is the interface between
Scheme and the logic programming subsystem. The result of run* is called
the answer to the corresponding query.

The goal used in the above query is append0 [page 17].

An answer of the form (()) means “yes”. In the above example, this
means that (orange juice) is indeed equal to the concatenation of (orange)
and (juice).

A goal returning a positive answer is said to succeed.

The goal

(run* () (appendo ’(orange) ’(juice) ’(fruit salad))) => ()

does not succeed, because (fruit salad) cannot be constructed by ap-
pending (orange) and (juice).

3



1. INTRODUCTION 4

A goal that does not succeed is said to fail. Failure is represented by ().

When one or more arguments of a goal are replaced with variables, the
goal attempts to infer the values of these variables.

Logic variables are created by the var function:

(define vq (var ’q))

Any argument of a goal can be a variable:

(run* (vq) (appendo ’(orange) ’(juice) vq)) => ((orange juice))

(run* (vq) (appendo ’(orange) vq ’(orange juice))) => ((juice))

(run* (vq) (appendo vq ’(juice) ’(orange juice))) => ((orange))

In this example, run* is told that we are interested in the value of vq. It
runs the given goal and then returns the value or values of vq rather than
just success or failure.

Goals are non-deterministic, so a query may return more than a single
outcome:

(run* (vq) (fresh (dont-care)

(appendo dont-care vq ’(a b c d))))

=> ((a b c d) (b c d) (c d) (d) ())

This query returns all values which give (a b c d) when appended to
something that is not interesting. In other words, it returns all suffixes of
(a b c d).

The part we do not care about is bound to the fresh variable dont-care.
The fresh form

(fresh (x1 x2 ...) goal)

is just syntactic sugar for

(let ((x1 (var ’x1)) (x2 (var ’x2)) ...) goal)

When querying the second position of append0, the query returns all
prefixes of the given list:

(run* (vq) (fresh (dont-care)

(appendo vq dont-care ’(a b c d))))

=> (() (a) (a b) (a b c) (a b c d))



1. INTRODUCTION 5

What do you think is the answer to the following query?

(run* (vq) (fresh (x y) (appendo x y vq)))

Does it have an answer at all?

Answer: The query has no answer, because there is an indefinite number of
combinations that can be used to form a concatenation with an unspecified
prefix and suffix. So append0 never stops generating combinations of values
for x and y.

1.2 Unification

Unification is an algorithm that forms the heart of every logic programming
system. The “unify” goal is written ==. The query

(run* () (== x y))

means “unify x with y”. The answer of this query depends on the values of
x and y :

(run* (vq) (== ’pizza ’pizza)) => (())

(run* (vq) (== ’cheese ’pizza)) => ()

(run* (vq) (== vq vq)) => (())

(run* (vq) (== ’cheese vq)) => (cheese)

When two atoms are passed to ==, it succeeds if the atoms are equal.

When a variable is passed to ==, the variable is bound to the other
argument:

(run* (vq) (== vq ’cheese)) => (cheese)

(run* (vq) (== ’cheese vq)) => (cheese)

The order of arguments does not matter.

When two variables are unified, these two variables are guaranteed to
always bind to the same value:

(run* (vq) (fresh (x) (== vq x)))



1. INTRODUCTION 6

makes vq and x bind to the same value. Binding a value to one of them at
a later time automatically binds that value to both of them.

Non-atomic arguments are unified recursively by first unifying the car
parts of the arguments and then unifying their cdr parts:

(run* (vq) (== ’(x (y) z) ’(x (y) z))) => (())

(run* (vq) (== ’(x (y) z) ’(x (X) z))) => ()

(run* (vq) (== vq ’(x (y) z))) => ((x (y) z))

Inference works even if variables are buried inside of lists:

(run* (vq) (== (list ’x vq ’z) ’(x (y) z))) => ((y))

Because (y) is the only value for vq that makes the goal succeed, that
value is bound to vq.

How does this work?

• x is unified with x;

• vq is unified with (y) (binding vq to (y));

• z is unified with z.

Each unification may expand the “knowledge” of the system by binding
a variable to a value or unifying two variables.

When unifying lists, the cdr parts of the lists are unified in the context
of the knowledge gained during the unification of their car parts:

(run* (vq) (== ’(pizza fruit-salad) (list vq vq))) => ()

The unification cannot succeed, because first vq is bound to pizza and
then the same variable is bound to fruit-salad.

When vq is unified with pizza, vq is fresh. A variable is fresh if it is not
(yet) bound to any value.

Only fresh variables can be bound to values.

When a form is unified with a bound variable, it is unified with the value
of that variable. Hence

(run* (vq) (== ’(pizza fruit-salad) (list vq vq))) => ()



1. INTRODUCTION 7

is equivalent to

(run* (vq) (== ’(pizza fruit-salad) (list vq ’pizza))) => ()

The following query succeeds because no contradiction is introduced:

(run* (vq) (== ’(pizza pizza) (list vq vq))) => (pizza)

First vq is unified with pizza and then the value of vq (which is pizza at
this point) is unified with pizza.

Bound variables can still be unified with fresh variables:

(run* (vq) (fresh (vx)

(== (list ’pizza vq)

(list vx vx)))) => (pizza)

Here vx is unified with pizza and then the fresh variable vq is unified
with vx, binding vq and vx to the same value.

Again, the order of unification does not matter:

(run* (vq) (fresh (vx)

(== (list vq ’pizza)

(list vx vx)))) => (pizza)

1.3 Logic Operators

The any goal succeeds, if at least one of its subgoals succeeds:

(run* (vq) (any (== vq ’pizza)

(== ’orange ’juice)

(== ’yes ’no)))

=> (pizza)

In this example, one of the three subgoals succeeds and contributes to
the anwer.

Because any succeeds only if at least one of its subgoals succeeds, it fails
if no subgoals are given:

(run* () (any)) => ()



1. INTRODUCTION 8

Multiple subgoals of any may unify the same variable with different
forms, giving a non-determistic answer:

(run* (vq) (any (== vq ’apple)

(== vq ’orange)

(== vq ’banana)))

=> (apple orange banana)

No contradiction is introduced. Vq is bound to each of the three values.

The any goal implements the union of the knowledge gained by running
its subgoals:

(run* (vq) (any fail

(== vq ’fruit-salad)

fail))

=> (fruit-salad)

It succeeds even if some of its subgoals fail. Therefore it is equivalent to
the logical or.

Fail is a goal that always fails.

The all goal is a cousin of any that implements the logical and :

(run* (vq) (all (== vq ’apple)

(== ’orange ’orange)

succeed))

=> (apple)

Succeed is a goal that always succeeds.

All succeeds only if all of its subgoals succeed, but it does more than
this.

All forms the intersection of the knowledge gathered by running its sub-
goals by removing any contradictions from their answers:

(run* (vq) (all (== vq ’apple)

(== vq ’orange)

(== vq ’banana))) => ()

This goal fails because vq cannot be bound to apple, orange, and banana
at the same time.

This effect of all is best illustrated in combination with any:



1. INTRODUCTION 9

(run* (vq) (all (any (== vq ’orange)

(== vq ’pizza))

(any (== vq ’apple)

(== vq ’orange))))

=> (orange)

The first any binds vq to orange or pizza and the second one binds it
to apple or orange.

All forms the intersection of this knowledge by removing the contradic-
tions vq=pizza and vq=apple. Vq=orange is no contradiction because it
occurs in both subgoals of all.

All fails if at least one of its subgoals fails. Therefore, it succeeds, if no
goals are passed to it:

(run* () (all)) => (())

1.4 Parameterized Goals

A parameterized goal is a function returning a goal:

(define (conso a d p) (== (cons a d) p))

Applications of conso evaluate to a goal, so cons0 can be used to form
goals in queries:

(run* (vq) (conso ’heads ’tails vq)) => ((heads . tails))

In the prose, conso is written cons0. The trailing “0” of goal names is
pronounced separately (e.g. “cons-oh”).

Obviously, cons0 implements something that is similar to the cons func-
tion.

However, cons0 can do more:

(run* (vq) (conso ’heads vq ’(heads . tails))) => (tails)

(run* (vq) (conso vq ’tails ’(heads . tails))) => (heads)

So conso0 can be used to define two other useful goals:

(define (caro p a)

(fresh (_)

(conso a _ p)))



1. INTRODUCTION 10

Car0 is similar to the car function of Scheme and cdr0 is similar to its
cdr function:

(define (cdro p d)

(fresh (_)

(conso _ d p)))

Like in PROLOG, the name indicates that the value bound to that
variable is of no interest.

Unlike in PROLOG, however, is an ordinary variable without any special
properties.

When the second argument of car0 and cdr0 is a variable, they resemble
car and cdr:

(run* (vq) (caro ’(x . y) vq)) => (x)

(run* (vq) (cdro ’(x . y) vq)) => (y)

Like cons0, car0 and cdr0 can do more than their Scheme counterparts,
though:

(run* (vq) (caro vq ’x)) => ((x . _.0))

(run* (vq) (cdro vq ’y)) => ((_.0 . y))

The query

(run* (vq) (caro vq ’x))

asks: “what has a car part of x?” and the answer is “any pair that has a
car part of x and a cdr part that does not matter.”

Clever, isn’t it?

1.5 Reification

Atoms of the form .n, where n is a unique number, occur whenever an
answer would otherwise contain fresh variables:

(run* (vq) (fresh (x y z)

(== vq (list x y z))))

=> ((_.0 _.1 _.2))



1. INTRODUCTION 11

In the remainder of this text, .n may be spelled –
n
.

–0, –1, etc are called reified variables.

The replacement of fresh variables with reified names is called reification.
It replaces each fresh variable with a unique “item” (res being the latin word
for “item”).

1.6 Recursion

Here is a recursive Scheme predicate:

(define (mem? x l)

(cond ((null? l) #f)

((eq? x (car l)) #t)

(else (mem? x (cdr l)))))

Mem? tests whether l contains x :

(mem? ’c ’(a b c d e f)) => #t

(mem? ’x ’(a b c d e f)) => #f

In logic programming, there is no function composition. So you cannot
write code like (eq? x (car l)).

Each argument of a goal must be either a datum or a variable. Only any
and all have subgoals:

(define (memo x l)

(fresh (a d)

(any (all (caro l a)

(eqo x a))

(all (cdro l d)

(memo x d)))))

Here are some observations:

• One any containing one or multiple all goals is the logic programming
equivalent of cond.

• Each time mem0 is entered, a fresh a and d is created.

• Mem0 does not seem to check whether l is ().



1. INTRODUCTION 12

Does mem0 work? Yes:

(run* () (memo ’c ’(a b c d e f))) => (())

(run* () (memo ’x ’(a b c d e f))) => ()

How does it work?

The first all unifies the car part of l with a. In case l=(), all fails.

Eq0 is a synonym for ==.

If a (which is now an alias of (car l)) can be unified with x, this branch
of any succeeds.

If l is (), both of these goals fail:

(caro l a) => ()

(cdro l d) => ()

and so the entire mem0 fails. There is no need to test for l=() explicitly.

The second all of mem0 unifies d with the cdr part of l and then recurses.

1.7 Converting Predicates to Goals

A predicate is a function returning a truth value.

Each goal is a predicate in the sense that it either fails or succeeds.

There are four steps involved in the conversion of a predicate to a goal:

c1. Decompose function compositions.

c2. Replace functions by parameterized goals.

c3. Replace cond with any and its clauses with all.

c4. Remove subgoals that make the predicate fail.

Mem [page 11] is converted this way:

((eq? x (car l)) #t)

becomes (by c1, c2, c3)



1. INTRODUCTION 13

(fresh (a)

(all (caro l a)

(eqo x a)))

and

(else (mem? x (cdr l)))

becomes (again by c1, c2, c3)

(fresh (d)

(all (cdro l d)

(memo x d)))

Finally

((null? l) #f)

is removed (by c4) and cond is replaced with any (by c3).

In the original definition of mem0 [page 11], (fresh (a) ...) and
(fresh (d) ...) are combined and placed before any.

1.8 Converting Functions to Goals

Member is similar to mem? (and identical to the Scheme standard procedure
with the same name):

(define (member x l)

(cond ((null? l) #f)

((eq? x (car l)) l)

(else (member x (cdr l)))))

Instead of returning just #t in case of success, it returns the first sublist
of l whose car part is x :

(member ’orange ’(apple orange banana)) => (orange banana)

Functions are converted to goals in the same way as predicates, but there
is one additional rule:

c5. Add an additional argument to unify with the result.



1. INTRODUCTION 14

Member0 is similar to mem0, but it has an additonal argument r for
the result, and an additional goal which unifies the answer with r :

(define (membero x l r)

(fresh (a d)

(any (all (caro l a)

(eqo x a)

(== r l))

(all (cdro l d)

(membero x d r)))))

Like member, member0 can be queried to deliver the first sublist of l
whose head is x :

(run* (vq) (membero ’orange ’(apple orange banana) vq))

=> ((orange banana))

Member0 even delivers all the sublists of l beginning with x :

(run* (vq) (membero ’b ’(a b a b a b c) vq))

=> ((b a b a b c) (b a b c) (b c))

If you are only interested in the first one, take the car part of the anwer.

Member0 can also be used to implement the identity function:

(run* (vq) (fresh (_)

(membero vq ’(orange juice) _)))

=> (orange juice)

How does this work?

The question asked here is “what should vq be unified with to make
(membero vq ’(orange juice) _) succeed?”

The eq0 in member0 unifies vq with orange and because vq is fresh, it
succeeds.

The second case also succeeds. It binds l to (juice) and re-tries the
goal. In this branch, vq is still fresh.

The eq0 in member0 unifies vq with juice and because vq is fresh, it
succeeds.



1. INTRODUCTION 15

The second case also succeeds. It binds l to () and re-tries the goal. In
this branch, vq is still fresh.

(Membero vq () _) fails, because neither car0 nor cdr0 can succeed with
l=().

Any forms the union of vq=orange and vq=juice, which is the answer
to the query.

1.9 COND vs ANY

Scheme’s cond syntax tests the predicates of its clauses sequentially and
returns the normal form of the expression associated with the first true
predicate:

(cond (#t ’bread)

(#f ’with)

(#t ’butter)) => bread

Even though the clause (#t ’butter) also has a true predicate, the
above cond will never return butter.

A combination of any and all can be used to form a logic programming
equivalent of cond:

(run* (vq) (any (all succeed (== vq ’bread))

(all fail (== vq ’with))

(all succeed (== vq ’butter))))

=> (bread butter)

Any replaces cond and all introduces each individual case.

Unlike cond, though, this construct returns the values of all cases that
succeed.

While cond ignores the remaining clauses in case of success, any keeps
trying until it runs out of subgoals.

This is the reason why member0 [page 14] returns all sublists starting
with a given form:

(run* (vq) (membero ’b ’(a b a b a b c) vq))

=> ((b a b a b c) (b a b c) (b c))



1. INTRODUCTION 16

It works this way:

When the head of l is not equal to b, the first subgoal of any inmember0

fails, so nothing is added to the answer.

When the head of l is equal to b, the first subgoal of any succeeds, so l
is added to the answer.

In either case, the second goal is tried. It succeeds as long as l can be
decomposed. It fails when the end of the list l has been reached.

When the second goal succeeds, the whole any is tried on the cdr part
of l, which may add more sublists to the answer.

What happens when the order of cases is reversed in member0?

(define (r-membero x l r)

(fresh (a d)

(any (all (cdro l d)

(r-membero x d r))

(all (caro l a)

(eqo x a)

(== r l)))))

Because any keeps trying until it runs out of goals, r-member0 does
indeed return all matching sublists, just like member0. However . . .

(run* (vq) (membero ’b ’(a b a b c) vq)) => ((b a b c) (b c))

(run* (vq) (r-membero ’b ’(a b a b c) vq)) => ((b c) (b a b c))

Because r-member0 first recurses and then checks for a matching sublist, its
answer lists the last matching sublist first.

Reversing the goals of member0 makes it return its results in reverse
order.

While member0 implements the identity function, r-member0 imple-
ments a function that reverses a list:

(run* (vq) (fresh (_)

(r-membero vq ’(ice water) _)))

=> (water ice)



1. INTRODUCTION 17

1.10 First Class Variables

Logic variables are first class values.

When a bound logic variable is used as an argument to a goal, the value
of that variable is passed to the goal:

(run* (vq) (fresh (x)

(all (== x ’piece-of-cake)

(== vq x))))

=> (piece-of-cake)

When a fresh variable is used as an argument to a goal, the variable itself
is passed to that goal:

(run* (vq) (fresh (x)

(== vq x)))

=> (_.0)

(Because the variable x is fresh, it is reified by the interpreter after
running the query, giving –0.)

Variables can even be part of compound data structures:

(run* (vq) (fresh (x)

(conso ’heads x vq)))

=> ((heads . _.0))

Unifying a variable that is part of a data structure at a later time causes
the variable part of the data structure to be “filled in” belatedly:

(run* (vq) (fresh (x)

(all (conso ’heads x vq)

(== x ’tails))))

=> ((heads . tails))

The append0 goal makes use of this fact:

(define (appendo x y r)

(any (all (== x ’()) (== y r))

(fresh (h t tr)

(all (conso h t x)

(conso h tr r)

(appendo t y tr)))))



1. INTRODUCTION 18

Given this definition, how is the following query processed?

(run* (vq) (appendo ’(a b) ’(c d) vq)) => ((a b c d))

In its recursive case, append0 first decomposes x=(a b) into its head
h=a and tail t=(b):

(conso h t x)

The next subgoal states that the head h consed to tr (the tail of the
result) gives the result of append0:

(conso h tr r)

Because tr is fresh at this point, r is bound to a structure containing a
variable:

r0 = (cons a tr0)

Tr and r are called tr0 and r0 here, because they are the first instances
of these variables.

When the goal recurses, tr0 is passed to append
0 in the place of r :

(appendo (b) (c d) tr0)

Append0 creates fresh instances of tr and r (called tr1 and r1).

At this point r1 and tr0 may be considered the same variable, so

(conso h tr1 r1)

results in

r1 = tr0 = (cons b tr1)

and

r0 = (cons a tr0) = (cons a (cons b tr1))

When append0 recurses one final time, tr1 is passed in the place of r and
the instance r2 is created:

(appendo () (c d) tr1)



1. INTRODUCTION 19

Because x=(), the subgoal handling the trivial case is run, resulting in:

(== y r2)

and because r2 and tr1 are the same,

r2 = tr1 = (c d)
r1 = tr0 = (cons b tr1) = (cons b (c d))
r0 = (cons a tr0) = (cons a (cons b tr1)) = (cons a (cons b (c d)))

1.11 First Class Goals

Like Scheme functions, goals are first class values.

The filter0 goal makes use of this fact:

(define (filtero p l r)

(fresh (a d)

(any (all (caro l a)

(p a)

(== a r))

(all (cdro l d)

(filtero p d r)))))

Filter0 extracts all members with a given property from a list.

The property is described by the goal p which is passed as an argument
to filter0:

(run* (vq) (filtero pairo ’(a b (c . d) e (f . g)) vq))

=> ((c . d) (f . g))

where pair0 is defined this way:

(define (pairo x)

(fresh (_1 _2)

(conso _1 _2 x)))

Because all goals are in fact parameterized goals, there is no real need
to invent a new function name, though. Lambda works fine:

(run* (vq) (fresh (_1 _2)

(filtero (lambda (x) (conso _1 _2 x))

’(a b (c . d) e (f . g)) vq)))

=> ((c . d) (f . g))



1. INTRODUCTION 20

Because each application of var is guaranteed to yield a fresh variable
and 1 and 2 are never referred to anyway, the anonymous goal can be
simplied further:

(lambda (x) (conso (var ’_) (var ’_) x))

This property of var is so handy that (_) is introduced as a synonym
for (var ’_), allowing to write

(lambda (x) (conso (_) (_) x))

1.12 Negation

The neg goal succeeds if its subgoal fails, and fails if its subgoal succeeds:

(run* () (neg fail)) => (())

(run* () (neg succeed)) => ()

Neg never contributes any knowledge:

When its subgoal succeeds, neg itself fails, thereby deleting all knowledge
gathered so far.

When its subgoal fails, there is no knowledge to add.

However, neg is not as straight-forward as it seems:

(define (nullo x) (eqo ’() x))

The null0 goal tests whether its argument is ().

What should be the answer to the question “what is not equal to ()?”

(run* (vq) (neg (nullo vq)))

Neg0 answers this question using a principle called the “closed world
assumption”, which says “what cannot be proven true must be false”.

So the answer to above question is “nothing”. Because the value of vq
is not known, neg0 cannot prove that it is not equal to () and fails:

(run* (vq) (neg (nullo vq))) => ()



1. INTRODUCTION 21

Technically, it works like this:

Vq is fresh, so null0 unifies it with () and succeeds. Because null0

succeeds, neg must fail.

This approach has its consequences:

(run* (vq) (run* (vq)

(all (any (== vq ’orange) (all (neg (== vq ’pizza))

(== vq ’pizza) (any (== vq ’orange)

(== vq ’ice-cream)) (== vq ’pizza)

(neg (== vq ’pizza)))) (== vq ’ice-cream))))

=> (orange ice-cream) => ()

Depending on its context, neg has different functions.

In the righthand example, it makes the entire query fail, because the
fresh variable vq can be unified with pizza.

In the lefthand example, where vq already has some values, it removes
the association of vq and pizza.

Therefore

Negation should be used with great care.

1.13 Cutting

The member0 goal [page 14] returned all sublists whose heads matched a
given form:

(run* (vq) (membero ’b ’(a b a b c) vq)) => ((b a b c) (b c))

For the case that you are really, really only interested in the first match,
there is a technique called cutting.

It is implemented by the one goal:

(run* (vq) (one fail

(== vq ’apple)

(== vq ’pie)))

=> (apple)



1. INTRODUCTION 22

As soon as one subgoal of one succeeds, one itself succeeds immediately
and “cuts off” the remaining subgoals.

The name one indicates that at most “one of its subgoals” can succeed.

Using one, a variant of member0 can be implemented which succeeds
with the first match:

(define (firsto x l r)

(fresh (a d)

(one (all (caro l a)

(eqo x a)

(== r l))

(all (cdro l d)

(firsto x d r)))))

The only difference between member0 and first0 is that first0 uses one
in the place of any.

First0 cuts off the recursive case as soon as the first case succeeds:

(run* (vq) (firsto ’b ’(a b a b c) vq)) => ((b a b c))

One is much more like cond than any.

However one suppresses backtracking, which is one of the most interesting
properties of logic programming systems.

Here is another predicate:

(define (juiceo x)

(fresh (tail next)

(all (cdro x tail)

(caro tail next)

(eqo next ’juice))))

Juice0 succeeds, if its argument is a list whose second element is equal
to juice, e.g.:

(run* () (juiceo ’(orange juice))) => (())

(run* () (juiceo ’(cherry juice))) => (())

(run* () (juiceo ’(apply pie ))) => ()

Given the juice0 predicate, member0 can be used to locate your favorite
juice on a menu:



1. INTRODUCTION 23

(define menu ’(apple pie orange pie cherry pie

apple juice orange juice cherry juice))

(run* (vq) (all (membero ’orange menu vq)

(juiceo vq)))

=> ((orange juice cherry juice))

When member0 finds the sublist starting with the orange right before
pie, juice0 fails and backtracking is initiated.

Member0 then locates the next occurence of orange and this time juice0

succeeds.

Using first0 suppresses backtracking and so your favorite juice is never
found:

(run* (vq) (all (firsto ’orange menu vq)

(juiceo vq)))

=> ()

Therefore

Cutting should be used with great care.



2

Application

The Zebra Puzzle is a well-known logic puzzle.

It is defined as follows:

1. Five persons of different nationality live in five houses in a row. The
houses are painted in different colors. The persons enjoy different
drinks and brands of cigarettes. All persons own different pets.

2. The Englishman lives in the red house.

3. The Spaniard owns a dog.

4. Coffee is drunk in the green house.

5. The Ukrainian drinks tea.

6. The green house is directly to the right of the ivory house.

7. The Old Gold smoker owns snails.

8. Kools are being smoked in the yellow house.

9. Milk is drunk in the middle house.

10. The Norwegian lives in the first house on the left.

11. The Chesterfield smoker lives next to the fox owner.

12. Kools are smoked in the house next to the house where the horse is
kept.

13. The Lucky Strike smoker drinks orange juice.

14. The Japanese smokes Parliaments.

15. The Norwegian lives next to the blue house.

Who owns the zebra?

24



2. APPLICATION 25

To solve the puzzle, two questions must be answered:

1. how to represent the data;

2. how to add facts.

There are five houses and five attributes are linked to each house, so
the row of houses can be represented by a five-element list of records. Each
record is a 5-tuple holding the given attributes:

(nation cigarette drink pet color)

Known facts are represented by symbols and unknown ones by variables.

The fact “the Spaniard owns the dog” would look like this:

(list ’spaniard (var ’cigarette) (var ’drink) ’dog (var ’color))

Of course, inventing new variable names for each unknown attribute is
awkward, so we make use of the anonymous variable (_):

(list ’spaniard (_) (_) ’dog (_))

The application of additional facts is explained by means of a simpler
variant of the puzzle with only two attributes and two houses:

(list (list (var ’person1) (var ’drink1))

(list (var ’person2) (var ’drink2)))

1. In one house lives a Swede.

2. In one house lives a beer drinker.

3. In one house lives a Japanese who drinks wine.

4. The beer drinker lives in the left house.

Applying the first fact yields the following options (variables are in lower
case, known facts in upper case):

( ((Swede drink1) (person1 drink2))

((person1 drink1) (Swede drink2) ) )

which means that the Swede (whose drink is unknown) can live in the first
or in the second house.

Adding the second fact multiplies the options:



2. APPLICATION 26

( ((Swede Beer) (person1 drink1))

((Swede drink1) (person1 Beer) )

((person1 Beer) (Swede drink1) )

((person1 drink1) (Swede Beer) ) )

The key to the application of facts is unification. The fact

(list ’Swede (_))

can be unified with any fresh variable like h1 or h2. The variables h1 and
h2 represent the two houses.

(fresh (h1)

(run* (h1) (== (list ’Swede (_)) h1)))

=> ((swede _.0))

To create all possible outcomes, each fact must be applied to each house:

(fresh (h)

(run* (h) (fresh (h1 h2)

(all (== h (list h1 h2))

(any (== h1 (list ’Swede (_)))

(== h2 (list ’Swede (_))))))))

=> (((swede _.0) _.1)

(_.0 (swede _.1)))

Remember: reified variables like –0 and –1 denote something that is not
known and/or of no interest.

In the above result, –0 represents an unknown drink in the first outcome
and an unknown house in the second one. –1 represents an unknown house
in the first outcome and an unknown drink in the second.

Each fact has be unified with all outcomes produced by the applications
of the previous facts.

A goal which automatically unifies a fact with all outcomes found so far
would be helpful. In fact such a goal has been defined earlier in this text.

Mem0 [page 11] tries to unify a given form with each member of a list.
Replace “form” with “fact” and “list” with “outcomes”, and here we go:



2. APPLICATION 27

(fresh (h)

(run* (h) (all (== h (list (_) (_)))

(memo (list ’Swede (_)) h)

(memo (list (_) ’Beer) h))))

=> (((swede beer) _.0)

((swede _.0) (_.1 beer))

((_.0 beer) (swede _.1))

(_.0 (swede beer)))

At this point the query is still underspecified ; the known facts are not
sufficient to tell where the Swede lives or whether he drinks beer or not.

By adding the third fact, some outcomes are eliminated:

(fresh (h)

(run* (h) (all (== h (list (_) (_)))

(memo (list ’Swede (_)) h)

(memo (list (_) ’Beer) h)

(memo (list ’Japanese ’Wine) h))))

=> (((swede beer) (japanese wine))

((japanese wine) (swede beer)))

The query is still underspecified, but because the third fact contradicts
the assumption that the other person drinks beer, we now know that the
Swede drinks beer.

To add the final fact, another goal is needed. Left0 checks whether x is
directly on the left of y in the list l :

(define (lefto x y l)

(fresh (h t ht)

(any (all (caro l h)

(cdro l t)

(caro t ht) ; ht = head of tail

(== h x)

(== ht y))

(all (cdro l t)

(lefto x y t)))))

Using left0, we can add the fact that the beer drinker lives in the lefthand
house. The puzzle is thereby solved:



2. APPLICATION 28

(fresh (h)

(run* (h) (all (== h (list (_) (_)))

(memo (list ’Swede (_)) h)

(memo (list (_) ’Beer) h)

(memo (list ’Japanese ’Wine) h)

(lefto (list (_) ’Beer) (_) h))))

=> (((swede beer) (japanese wine)))

To solve the Zebra Puzzle, only one additional predicate is needed. It
has to express that x is next to y.

X is next to y, if x is on the left of y or y is on the left of x, so:

(define (nexto x y l)

(any (lefto x y l)

(lefto y x l)))

Predicates which state that a house is at a specific position in the row
are not required, because houses can be placed directly in the initial record:

(list (list ’norwegian (_) (_) (_) (_))

(_)

(list (_) (_) ’milk (_) (_))

(_)

(_))

The solution to the Zebra Puzzle follows on the next page.

Note that the Zebra puzzle is in fact underspecified. The drink of the
Norwegian is not known. In case you prefer a fully specified query, you may
comment out the following goal in the zebra program:

(memo (list (_) (_) ’water (_) (_)) h)

It adds the additional information that one of the persons drinks water.
This information is not revealed in the original puzzle, though.



2. APPLICATION 29

(define (zebra)

(fresh (h)

(run* (h)

(all

(== h (list (list ’norwegian (_) (_) (_) (_))

(_)

(list (_) (_) ’milk (_) (_))

(_)

(_)))

(memo (list ’englishman (_) (_) (_) ’red) h)

(lefto (list (_) (_) (_) (_) ’green)

(list (_) (_) (_) (_) ’ivory) h)

(nexto (list ’norwegian (_) (_) (_) (_))

(list (_) (_) (_) (_) ’blue) h)

(memo (list (_) ’kools (_) (_) ’yellow) h)

(memo (list ’spaniard (_) (_) ’dog (_)) h)

(memo (list (_) (_) ’coffee (_) ’green) h)

(memo (list ’ukrainian (_) ’tea (_) (_)) h)

(memo (list (_) ’luckystrikes ’orangejuice (_) (_)) h)

(memo (list ’japanese ’parliaments (_) (_) (_)) h)

(memo (list (_) ’oldgolds (_) ’snails (_)) h)

(nexto (list (_) (_) (_) ’horse (_))

(list (_) ’kools (_) (_) (_)) h)

(nexto (list (_) (_) (_) ’fox (_))

(list (_) ’chesterfields (_) (_) (_)) h)

; (memo (list (_) (_) ’water (_) (_)) h)

(memo (list (_) (_) (_) ’zebra (_)) h)))))

Here is the result of the program:

(zebra)

=> (((norwegian kools _.0 fox yellow)

(ukrainian chesterfields tea horse blue)

(englishman oldgolds milk snails red)

(japanese parliaments coffee zebra green)

(spaniard luckystrikes orangejuice dog ivory)))



3

Implementation

The complete implementation is written in purely functional Scheme.

3.1 Basics

These are the fail and succeed goals:

(define (fail x)

’())

(define (succeed x)

(list x))

Var creates a logic variable and var? checks whether an object is a logic
variable. Logic variables are represented by forms like (? . x) where x is
the name of the variable.

(define (var x)

(cons ’? x))

(define (var? x)

(and (pair? x)

(eq? (car x) ’?)))

Empty-s represents ignorance:

(define empty-s ’())

30



3. IMPLEMENTATION 31

Knowledge is represented by substitutions. Substitutions are imple-
mented using association lists. Empty-s is an empty substitution.

Ext-s adds the association of the variable x with the value v to the
substitution s.

(define (ext-s x v s)

(cons (cons x v) s))

Walk looks up the value of x in the substitution s:

(walk vx ’((vx . bread))) => bread

(Vx denotes the logic variable x, i.e. the form (? . x).)

Walk may look like assoc or assq, but it does more:

(define (walk x s)

(cond ((not (var? x)) x)

(else (let ((v (assq x s)))

(if v (walk (cdr v) s)

x)))))

When the value associated with a variable is another variable, walk looks
up the other variable, thereby tracking chains of variables:

(walk vx ’((vx . vy) (vz . sushi) (vy . vz))) => sushi

This is how the unification of variables is implemented.

When the variable passed to walk is fresh or a fresh variable is found
while tracking a chain of variables, the fresh variable is returned:

(walk vx empty-s) => vx

This is why fresh variables are first-class objects.

Everything that is not a pair is an atom:

(define (atom? x)

(not (pair? x)))

Unify is the heart of AMK. It unifies x with y, looking up values of
variables in s.



3. IMPLEMENTATION 32

(define (unify x y s)

(let ((x (walk x s))

(y (walk y s)))

(cond

((eqv? x y) s)

((var? x) (ext-s x y s))

((var? y) (ext-s y x s))

((or (atom? x) (atom? y)) #f)

(else (let ((s (unify (car x) (car y) s)))

(and s (unify (cdr x) (cdr y) s)))))))

Upon success unify returns s or an extension of s with new substitutions
added.

In case of failure unify returns #f.

3.2 Goals

This is the == goal. == is like unify, but it succeeds or fails rather than
returning a substitution or error flag.

(define (== x y)

(lambda (s)

(let ((s2 (unify x y s)))

(if s2 (succeed s2)

(fail s)))))

Note that== returns a procedure that must be applied to a substitution
to let the unification take place:

(== vq ’orange-juice) => #<procedure (s)>

((== vq ’orange-juice) empty-s) => (((vq . orange-juice)))

Also note that when == succeeds, it adds another list around the re-
sulting substitution.

Here is a helper function of the any goal:

(define (any* . g*)

(lambda (s)

(letrec



3. IMPLEMENTATION 33

((try

(lambda g*

(cond ((null? g*) (fail s))

(else (append ((car g*) s)

(apply try (cdr g*))))))))

(apply try g*))))

It forms a list of substitutions by applying each member of the list of
goals g* to the given knowledge s and appending the results:

((any* (== vq ’ice) (== vq ’cream)) empty-s)

=> (((vq . ice)) ((vq . cream)))

Any* creates a list of substitutions. Each individual substitution is free
of conflicting associations.

Any is the only goal that may produce multiple substitutions.

Any itself has to be implemented as syntax:

(define-syntax any

(syntax-rules ()

((_) fail)

((_ g ...)

(any* (lambda (s) (g s)) ...))))

The reason is that Scheme evaluates expressions eagerly. When a re-
cursive goal (like mem0 on page 11) is evaluated, recursion could occur too
early, resulting in indefinite evaluation.

If any was a function, recursion would occur before any was applied. To
postpone the application of its subgoals any, eta expands them, so that

(any (g1) (g2) ...)

becomes

(any* (lambda (s) ((g1) s))

(lambda (s) ((g2) s))

...)

Here is all:



3. IMPLEMENTATION 34

(define (all . g*)

(lambda (s)

(letrec

((try

(lambda (g* s*)

(cond ((null? g*) s*)

(else (try (cdr g*)

(apply append

(map (car g*) s*))))))))

(try g* (succeed s)))))

All applies all its subgoals to the knowledge s*.

Because some of its subgoals may be applications of any, all uses map to
map over multiple substitutions.

Each application of a subgoal eliminates all contradictions with that goal
and the remaining substitutions are appended to form a new one.

The application of the first subgoal to s* results in a new substitution
s*1. The next subgoal of all is mapped over s*1, giving s*2, etc.

Each subgoal is applied to the conjunction of the subgoals applied to far.

The subgoals of all need no protection by eta expansion, because all of
them have to be evaluated anyway.

One is similar to any, but instead of appending substitutions, it returns
s as soon as one of its subgoals succeeds:

(define failed? null?)

(define (one* . g*)

(lambda (s)

(letrec

((try

(lambda g*

(cond ((null? g*) (fail s))

(else (let ((out ((car g*) s)))

(cond ((failed? out)

(apply try (cdr g*)))

(else out))))))))

(apply try g*))))



3. IMPLEMENTATION 35

For the same reasons as any, one has to protect its goals using eta
expansion:

(define-syntax one

(syntax-rules ()

((_) fail)

((_ g ...)

(one* (lambda (s) (g s)) ...))))

Here is the neg goal. Its implementation is more straight-forward than
its application:

(define (neg g)

(lambda (s)

(let ((out (g s)))

(cond ((failed? out) (succeed s))

(else (fail s))))))

Fresh is used to create fresh logic variables:

(fresh (a b c) (list a b c)) => ((? . a) (? . b) (? . c))

It is merely some syntactic sugar for let:

(define-syntax fresh

(syntax-rules ()

((_ () g)

(let () g))

((_ (v ...) g)

(let ((v (var ’v)) ...) g))))

3.3 Interface

Occurs? and circular? are helper functions that will be used by walk*,
which is explained right after them.

Occurs? checks whether the symbol or variable x occurs in the form y.
Like walk, occurs? tracks variables. Values of variables are looked up in s.



3. IMPLEMENTATION 36

(define (occurs? x y s)

(let ((v (walk y s)))

(cond

((var? y) (eq? x y))

((var? v) (eq? x v))

((atom? v) #f)

(else (or (occurs? x (car v) s)

(occurs? x (cdr v) s))))))

A value of a variable that contains references to that variable is called
circular :

((== vq (list vq)) empty-s) => ’(((vq . (vq))))

A circular answer is not valid, because it is self-referential.

Circular? checks whether the value of a variable is circular:

(define (circular? x s)

(let ((v (walk x s)))

(cond ((eq? x v) #f)

(else (occurs? x (walk x s) s)))))

Walk* is like walk: it turns a variable x into a value v. In addition it
replaces all variables found in v with their values.

Walk* brings the answers generated by the logic extensions into a com-
prehensible form:

((all (== vq (list vx)) (== vx ’foo)) empty-s)

=> (((vx . foo) (vq . (vx))))

(walk* vq ’((vx . foo) (vq . (vx)))

=> (foo)

When walk* encounters a fresh variable, it leaves it in the result.

When the variable to be walk*ed is bound to a circular value, walk*
returns _bottom_.

(define _BOTTOM_ (var ’bottom))

(define (walk* x s)

(letrec



3. IMPLEMENTATION 37

((w* (lambda (x s)

(let ((x (walk x s)))

(cond

((var? x) x)

((atom? x) x)

(else (cons (w* (car x) s)

(w* (cdr x) s))))))))

(cond ((circular? x s) _BOTTOM_)

((eq? x (walk x s)) empty-s)

(else (w* x s)))))

Reify-name generates a reified name.

(define (reify-name n)

(string->symbol

(string-append "_." (number->string n))))

Reify creates a substitution in which each fresh variable contained in
the form v is associated with a unique reified name:

(reify (list vx vy vz)) => ((vz . _.2) (vy . _.1) (vx . _.0))

The value v that is passed to reify must have been walk*ed before.

(define (reify v)

(letrec

((reify-s

(lambda (v s)

(let ((v (walk v s)))

(cond ((var? v)

(ext-s v (reify-name (length s)) s))

((atom? v) s)

(else (reify-s (cdr v)

(reify-s (car v) s))))))))

(reify-s v empty-s)))

Preserve-bottom implements bottom preservation. No surprise here.

Explanation: The term bottom is used in mathematics to denote an
undefined result, like a diverging function. Bottom preservation is a principle
that says that any form that contains a bottom element is itself equal to
bottom.



3. IMPLEMENTATION 38

When an answer contains the symbol _bottom_, the answer has a circular
structure and the query that resulted in that answer should fail.

(define (preserve-bottom s)

(if (occurs? _BOTTOM_ s s) ’() s))

Run is a helper function of run*, which forms the primary interface for
submitting queries to AMK.

(define (run x g)

(preserve-bottom

(map (lambda (s)

(walk* x (append s (reify (walk* x s)))))

(g empty-s))))

X may be a logic variable or ().

When x is a variable, run returns the value or values of that variable.
When x=(), run returns (()) or ().

When a query fails, run returns ().

Run runs the goal g and then walk*s each substitution of the answer.

It also reifies the fresh variables contained in each substitution.

Run* is just some syntactic sugar on top of run:

(define-syntax run*

(syntax-rules ()

((_ () goal) (run #f goal))

((_ (v) goal) (run v goal))))

3.4 Anonymous Variables

Here is the function:

(define (_) (var ’_))

It exploits the fact that logic variables are created by cons and compared
using eq?:

(eq? (var ’_) (var ’_)) => #f

Because cons always creates a fresh pair, two logic variables cannot be
identical, even if they share the same name.



Index

==, 5, 32

, 20

–
n
, 10, 26

all, 8, 11, 33
answer, 3
any, 7, 11, 15, 32
append0, 3, 17

backtracking, 22
bind, 5
bottom, 37
bottom preservation, 37
bound, 5

car0, 9
cdr0, 10
circular value, 36
closed world assumption, 20
cond, 11, 15, 22
cons0, 9
conversion
of functions, 13
of predicates, 11

cutting, 21

eq0, 12
eta expansion, 33

fail, 4, 8, 30
filter0, 19
first0, 22

fresh, 4, 35
function, 13
function composition, 11

goal, 3
parameterized, 9, 19

infinite loop, 5

juice0, 22

left0, 27
logical and, 8
logical or, 8

mem?, 11
member, 13, 14
member0, 11

neg, 20, 35
negation, 20
next0, 28
non-deterministic, 4
null0, 20

one, 21, 34

pair0, 19
predicate, 11

query, 3

r-member0, 16
recursion, 11, 14, 18, 33
reification, 10

39



INDEX 40

reify, 37
run*, 3, 38

subgoal, 7
substitution, 30
succeed, 3, 30

underspecified, 27
unification, 5
unify, 31
union, 8

var, 4, 20, 30
variable, 4, 17
anonymous, 38
fresh, 4, 6, 31
reified, 11

walk, 31
walk*, 36

zebra puzzle, 24


