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Preface 

The goal of this book is to show the beauty of relational programming. We believe that it is 
natural to extend functional programming to relational programming. We demonstrate this by 
extending Scheme with a few new constructs, thereby combining the benefits of both styles. This 
extension also captures the essence of Prolog, the most well-known logic programming language. 

Our main assumption is that you understand the first eight chapters of The Little Schemer 1 . 
The only true requirement, however, is that you understand functions as values. That is, a 
function can be both an argument to and the value of a function call. Furthermore, you should 
know that functions remember the context in which they were created. And that’s it—we 
assume no further knowledge of mathematics or logic. Readers of the appendix Connecting 
the Wires, however, must also have a rudimentary knowledge of Scheme macros at the level of 
let, and, and cond. 

In order to do relational programming, we need only two constants: #s and #u, and  only  
three operators: ≡, fresh, and conde. These are  introduced in the  first chapter and are  the  
only operators used until chapter 6. The additional operators we introduce are variants of these 
three. In order to keep this extension simple, we mimicked existing Scheme syntax. Thus, #s 
and #u are reminiscent of the Boolean constants: #t and #f; fresh expressions resemble lambda 
expressions; and conde expressions are syntactically like cond expressions. 

We use a few notational conventions throughout the text—primarily changes in font for 
different classes of symbols. Lexical variables are in italics, forms  are  in  boldface, data  are  
in sans serif, and lists are wrapped by boldfaced parentheses ‘(())’. A relation, a function that 
returns a goal as its value, ends its name with a superscript ‘o’ (e.g., car o and null o). We also 
use a superscript with our interface to Scheme, run, which  is  fully  explained  in  the  first  chapter.  
We have taken certain liberties with punctuation to increase clarity, such as frequently omitting 
a question mark  when a question ends  with a  special  symbol.  We  do  this  to avoid confusion  
with function names that might end with a question mark. 

In chapters 7 and 8 we define arithmetic operators as relations. The +o relation can not 
only add but also subtract; ∗o can not only multiply but also factor numbers; and logo can not 
only find the logarithm given a number and a base but also find the base given a logarithm and 
a number.  Just as we can  define the subtraction  relation  from the addition  relation,  we can  
define the exponentiation relation from the logarithm relation. 

In general, given (∗o x y z  ) we can specify what  we  know  about these  numbers  (their values,  
whether they are odd or even, etc.) and ask ∗o to find the unspecified values. We don’t specify 
how to accomplish the task; rather, we describe what we want in the result. 

1Friedman, Daniel P., and Matthias Felleisen. The Little Schemer, fourth ed. MIT Press, 1996. 
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This book would not have been possible without earlier work on implementing and using 
logic systems with Matthias Felleisen, Anurag Mendhekar, Jon Rossie, Michael Levin, Steve 
Ganz, and Venkatesh Choppella. Steve showed how to partition Prolog’s named relations into 
unnamed functions, while Venkatesh helped characterize the types in this early logic system. 
We thank them for their effort during this developmental stage. 

There are many others we wish to thank. Mitch Wand struggled through an early draft and 
spent several days in Bloomington clarifying the semantics of the language, which led to the 
elimination of superfluous language forms. We also appreciate Kent Dybvig’s and Yevgeniy 
Makarov’s comments on the first few chapters of an early draft and Amr Sabry’s Haskell 
implementation of the language. 

We gratefully acknowledge Abdulaziz Ghuloum’s insistence that we remove some abstract 
material from the introductory chapter. In addition, Aziz’s suggestions significantly clarified the 
run interface. Also incredibly helpful were the detailed criticisms of Chung-chieh Shan, Erik 
Hilsdale, John Small, Ronald Garcia, Phill Wolf, and Jos Koot. We are especially grateful to 
Chung-chieh for Connecting the Wires so masterfully in the final implementation. 

We thank David Mack and Kyle Blocher for teaching this material to students in our 
undergraduate programming languages course and for making observations that led to many 
improvements to this book. We also thank those students who not only learned from the 
material but helped us to clarify its presentation. 

There are several people we wish to thank for contributions not directly related to the 
ideas in the book. We would be remiss if we did not acknowledge Dorai Sitaram’s incredibly 
clever Scheme typesetting program, SLATEX. We are grateful for Matthias Felleisen’s typesetting 
macros (created for The Little Schemer), and for Oscar Waddell’s implementation of a tool that 
selectively expands Scheme macros. Also, we thank Shriram Krishnamurthi for reminding us of 
a promise  we made that  the food  would  be  vegetarian  in  the  next  little book. Finally, we thank 
Bob Prior, our editor, for his encouragement and enthusiasm for this effort. 

Food appears in examples throughout the book for two reasons. First, food is easier to 
visualize than abstract symbols; we hope the food imagery helps you to better understand the 
examples and concepts. Second, we want to provide a little distraction. We know how frustrating 
the subject matter can be, thus these culinary diversions are for whetting your appetite. As 
such, we hope that thinking about food will cause you to stop reading and have a bite. 

You are now ready to start. Good luck! We hope you enjoy the book. 

Bon appétit! 

Daniel P. Friedman 
William E. Byrd 
Bloomington, Indiana 

Oleg Kiselyov 
Monterey, California 
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Chapter 1

Playthings



Welcome. 
1 

It is good to be here. 

Have you read The Little Schemer?† 
2 

#f. 

† Or The Little LISPer . 

Are you sure you haven’t read 
The Little Schemer? 

3 
Well. . . 

Do you know about 
Lambda the Ultimate? 

4 
#t. 

Are you sure you have read that much of 
The Little Schemer? 

5 

Absolutely.† 

† If you are familiar with recursion and know that functions 
are values, you may continue anyway. 

What is #s† 
6 

It is a goal that succeeds. 

† 
#s is written succeed. 

What is the name of #s 
7 

succeed, 
because it succeeds. 

†What is #u
8 

It is a goal that fails; it is unsuccessful. 

† 
#u is written fail. 
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What is the name of #u 
9 

fail,
 
because it fails.
 

What is the value of † 

(run ∗ (q) 
#u) 

10 

(()), 
since #u fails, and because the expression† 

(run ∗ (q) g . . . )  

has the value (()) if any goal in g . . . fails. 

† This expression is written (run #f (q) #u). † This expression is written (run #f (q) g ...). 

What is the value of † 

(run ∗ (q) 
(≡ #t q)) 

11 

((#t)), 
because #t is associated with q if (≡ #t q) 
succeeds. 

† (≡ v w) is read “unify v with w” and ≡ is written ==. 

What is the value of 

(run ∗ (q) 
#u 
(≡ #t q)) 

12 

(()), 
because the expression 

(run ∗ (q) g . . .  (≡ #t q)) 

has the value (()) if the goals g . . . fail. 

What value is associated with q in 

(run ∗ (q) 
#s 
(≡ #t q)) 

13 

#t (a Boolean† value), 
because the expression 

(run ∗ (q) g . . .  (≡ #t q)) 

associates #t with q if the goals g . . .  
(≡ #t q) succeed.  

and  

† Thank you George Boole (1815–1864). 
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Then, what is the value of 
14 

((#t)), 
because #s succeeds.(run ∗ (q) 

#s
 
(≡ #t q))
 

What value is associated with r in† 

(run ∗ (r) 
#s 
(≡ corn r )) 

15 

corn† , 
because r is associated with corn when 
(≡ corn r) succeeds.  

† corn is written as the expression (quote corn). 

† It should be clear from context that corn is a value; it is 
not an expression. The phrase the value associated with 
corresponds to the phrase the value of, but where the outer  
parentheses have been removed. This is our convention for 
avoiding meaningless parentheses. 

What is the value of 

(run ∗ (r) 
#s 
(≡ corn r )) 

16 

((corn)), 
because r is associated with corn when 
(≡ corn r) succeeds.  

What is the value of 

(run ∗ (r) 
#u 
(≡ corn r )) 

17 

(()), 
because #u fails. 

What is the value of 

(run ∗ (q) 
#s 
(≡ #f q)) 

18 

((#f)), 
because #s succeeds and because run ∗ 

returns a nonempty list if its goals succeed. 

Does 

(≡ #f x ) 

succeed? 

19 
It depends on the value of x . 
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Does 

(let ((x #t)) 
(≡ #f x ))† 

succeed? 

20 
No, 

since #f is not equal to #t. 

† This let expression is the same as 

((lambda (x) (≡ #f x )) #t). 

We say that let binds x to #t and evaluates the body 
(≡ #f x) using  that  binding.  

Does 

(let ((x #f)) 
(≡ #f x )) 

succeed? 

What is the value of 

(run ∗ (x ) 
(let ((x #f)) 

(≡ #t x ))) 

What value is associated with q in 

(run ∗ (q) 
(fresh (x ) 

(≡ #t x ) 
(≡ #t q))) 

When is a variable fresh? 

21 

22 

23 

24 

Yes, 
since #f is equal to #f. 

(()), 
since #t is not equal to #f. 

#t, 
because ‘(fresh (x . . . )  g . .  . )’  binds  fresh 
variables to x . .  .  and  succeeds  if  the  goals  
g . .  .  succeed.  (≡ v x  ) succeeds  when  x is 
fresh. 

When it has no association. 

Is x the only variable that starts out fresh in 
25 

No, 
since q also starts out fresh. (run ∗ (q) 

(fresh (x )
 
(≡ #t x )
 
(≡ #t q)))
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The Law of Fresh 
If x is fresh, then (≡ v x) succeeds  
and associates x with v . 

What value is associated with q in 
26 

#t, 
because the order of arguments to ≡ does (run ∗ (q) 
not matter. (fresh (x )
 

(≡ x #t)
 
(≡ #t q)))
 

What value is associated with q in 
27 

#t, 
because the order of arguments to ≡ does (run ∗ (q) 
not matter. (fresh (x )
 

(≡ x #t)
 
(≡ q #t)))
 

The Law of ≡ 

(≡ v w) is the  same as (≡ w v). 

What value is associated with x in 

(run ∗ (x ) 
#s) 

28 
0 , 
a symbol representing a fresh variable.† 

† This symbol is .0, and is  created using (reify-name 0). 
See the definition of reify-name in frame 52 of chapter 9 
(i.e., 9:52). 
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What is the value of 

(run ∗ (x ) 
(let ((x #f)) 

(fresh (x ) 
(≡ #t x )))) 

What value is associated with r in 

(run ∗ (r) 
(fresh (x y) 

(≡ (cons x (cons y (())†)) r))) 

29 

30 

(( 0 )), 
since the x in (≡ #t x ) is  the  one  
introduced by the fresh expression; it is 
neither the x introduced in the run 
expression nor the x introduced in the 
lambda expression. 

(( 0 1 )). 
For each different fresh variable there is a 
symbol with an underscore followed by a 
numeric subscript. This entity is not a 
variable but rather is a way of showing 
that the variable was fresh.† We say that 
such a variable has been reified . 

† 
() is (quote ()). 

What value is associated with s in 

(run ∗ (s) 
(fresh (t u) 

(≡ (cons t (cons u (()))) s))) 

31 

† Thank you, Thoralf Albert Skolem (1887–1963). 

(( 0 1 )). 
The expressions in this and the previous 
frame differ only in the names of the 
lexical variables. Therefore the values are 
the same. 

What value is associated with r in 
32 

(( 0 1 0 )). 
(run ∗ (r) 

(fresh (x ) 
(let ((y x  )) 

Within the inner fresh, x and y are 
different variables, and since they are still 
fresh, they get different reified names. 

(fresh (x ) 
(≡ (cons y (cons x (cons y (())))) r ))))) 

What value is associated with r in 
33 

(( 0 1 0 )). 
x and y are different variables, and since (run ∗ (r) 
they are still fresh, they get different (fresh (x ) 
reified names. Reifying r ’s value reifies the (let ((y x  )) 
fresh variables in the order in which they (fresh (x ) 
appear in the list. (≡ (cons x (cons y (cons x (())))) r))))) 
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What is the value of 
34 

(()). 
The first goal (≡ #f q) succeeds,  (run ∗ (q) 
associating #f with q ; #t cannot then be (≡ #f q) 
associated with q , since  q is no longer (≡ #t q)) 
fresh. 

What is the value of 
35 

((#f)). 
In order for the run to succeed, both (run ∗ (q) 
(≡ #f q) and (≡ #f q) must succeed. The (≡ #f q) 
first goal succeeds while associating #f(≡ #f q)) 
with the fresh variable q . The second goal 
succeeds because although q is no longer 
fresh, #f is already associated with it. 

What value is associated with q in 
36 

#t, 
because q and x are the same. (run ∗ (q)
 

(let ((x q))
 
(≡ #t x )))
 

37 
0 ,What value is associated with r in because r starts out fresh and then r gets 

(run ∗ (r) whatever association that x gets, but both
 
(fresh (x ) x and r remain fresh. When one variable
 

(≡ x r)†)) is associated with another, we say they
 
co-refer or share. 

What value is associated with q in 
38 

#t, 
because q starts out fresh and then q gets(run ∗ (q) 
x ’s association. (fresh (x )
 

(≡ #t x )
 
(≡ x q)))
 

What value is associated with q in 
39 

#t, 
because the first goal ensures that (run ∗ (q) 
whatever association x gets, q also gets. (fresh (x )
 

(≡ x q)
 
(≡ #t x )))
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Are q and x different variables in 

(run ∗ (q) 
(fresh (x ) 

(≡ #t x ) 
(≡ x q))) 

40 
Yes, they are different because both 

(run ∗ (q) 
(fresh (x ) 

(≡ (eq? x q) q))) 

and 

(run ∗ (q) 
(let ((x q)) 

(fresh (q) 
(≡ (eq? x q) x )))) 

associate #f with q . Every  variable  
introduced by fresh (or run) is  different 
from every other variable introduced by 
fresh (or run).† 

What is the value of 

(cond 
(#f #t) 
(else #f)) 

Which #f is the value? 

Does 

(cond 
(#f #s) 
(else #u)) 

succeed? 

41 

42 

43 

† Thank you, Jacques Herbrand (1908–1931). 

#f, 
because the question of the first cond line 
is #f, so  the  value  of  the  cond expression is 
determined by the answer in the second 
cond line. 

The one in the (else #f) cond line. 

No, 
it fails because the answer of the second 
cond line is #u. 
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Does 

(conde 

(#u #s) 
(else #u)) 

succeed?† 

44 
No, 

because the question of the first conde line 
is the goal #u. 

† conde is written conde and is pronounced “con-dee”. 
conde is the default control mechanism of Prolog. See 
William F. Clocksin. Clause and Effect. Springer, 1997.  

Does 

(conde 

(#u #u) 
(else #s)) 

succeed? 

Does 

(conde 

(#s #s) 
(else #u)) 

succeed? 

What is the value of 

(run ∗ (x ) 
(conde 

((≡ olive x ) #s) 
((≡ oil x ) #s) 
(else #u))) 

45 

46 

47 

Yes, 
because the question of the first conde line 
is the goal #u, so conde tries the second 
line. 

Yes, 
because the question of the first conde line 
is the goal #s, so  conde tries the answer of 
the first line. 

((olive oil)), 
because (≡ olive x ) succeeds; therefore, the  
answer is #s. The #s preserves the 
association of x to olive. To  get  the  second  
value, we pretend that (≡ olive x ) fails;  
this imagined failure refreshes x . Then 
(≡ oil x ) succeeds.  The  #s preserves the 
association of x to oil. We then pretend 
that (≡ oil x ) fails, which once again 
refreshes x . Since  no  more  goals  succeed,  
we are done. 
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The Law of conde 

To get more values from conde , 
pretend that the successful conde 

line has failed, refreshing all vari­
ables that got an association from 
that line. 

What does the “e” stand for in  conde 

What is the value of † 

(run1 (x ) 
(conde 

((≡ olive x ) #s) 
((≡ oil x ) #s) 
(else #u))) 

48 

49 

It stands for every line, since every line can 
succeed. 

((olive)), 
because (≡ olive x ) succeeds and because 
run1 produces at most one value. 

† This expression is written (run 1 (x ) ...). 

What is the value of 

(run ∗ (x ) 
(conde 

((≡ virgin x ) #u) 
((≡ olive x ) #s) 
(#s #s) 
((≡ oil x ) #s) 
(else #u))) 

In the previous run ∗ expression, which 
conde line led to 0 

50 

51 

((olive 0 oil)). 
Once the first conde line fails, it is as if 
that line were not there. Thus what results 
is identical to 

(conde 

((≡ olive x ) #s) 
(#s #s) 
((≡ oil x ) #s) 
(else #u)). 

(#s #s), 
since it succeeds without x getting an 
association. 
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What is the value of 
52 

((extra olive)), 

(run2 (x ) 
(conde 

since we do not want every value; we want 
only the first two values. 

((≡ extra x ) #s) 
((≡ virgin x ) #u) 
((≡ olive x ) #s) 
((≡ oil x ) #s) 
(else #u))) 

† When we give run a positive  integer  n and the run 
expression terminates, it produces a list whose length is less 
than or equal to n. 

What value is associated with r in 

(run ∗ (r) 
(fresh (x y) 

(≡ split x ) 
(≡ pea y) 
(≡ (cons x (cons y (()))) r ))) 

53 

((split pea)). 

What is the value of 

(run ∗ (r) 
(fresh (x y) 

(conde 

((≡ split x ) (≡ pea y)) 
((≡ navy x ) (≡ bean y)) 
(else #u)) 

(≡ (cons x (cons y (()))) r ))) 

54 

The list ((((split pea)) ((navy bean)))). 

What is the value of 

(run ∗ (r) 
(fresh (x y) 

(conde 

((≡ split x ) (≡ pea y)) 
((≡ navy x ) (≡ bean y)) 
(else #u)) 

55 

The list ((((split pea soup)) ((navy bean soup)))). 

(≡ (cons x (cons y (cons soup (())))) r ))) 
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Consider this very simple definition. 
56 

((tea cup)). 

(define teacup o 

(lambda (x ) 
(conde 

((≡ tea x ) #s) 
((≡ cup x ) #s) 
(else #u)))) 

What is the value of 

(run ∗ (x ) 
(teacup o x )) 

Also, what is the value of 
57 

((((tea #t)) ((cup #t)) ((#f #t)))). 
From (teacup o x ), x gets two associations, (run ∗ (r) 
and from (≡ #f x ), x gets one association. (fresh (x y) 

(conde
 

((teacup o x ) (≡ #t y) #s)†
 

((≡ #f x ) (≡ #t y))
 
(else #u))
 

(≡ (cons x (cons y (()))) r ))) 

† The question is the first goal of a line, however the answer 
is the rest of the goals of the line. They must all succeed for 
the line to succeed. 

What is the value of 
58 

(((( 0 1 )) (( 0 1 )))), 
(run ∗ (r) 

(fresh (x y  z  ) 
(conde 

but it looks like both occurrences of 0 

have come from the same variable and 
similarly for both occurrences of 1 . 

((≡ y x  ) (fresh (x ) (≡ z x  ))) 
((fresh (x ) (≡ y x  )) (≡ z x  )) 
(else #u)) 

(≡ (cons y (cons z (()))) r))) 
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Then, what is the value of 
59 

((((#f 0 )) (( 0 #f)))), 
which clearly shows that the two (run ∗ (r) 
occurrences of 0 in the previous frame (fresh (x y z  ) 
represent different variables. (conde
 

((≡ y x  ) (fresh (x ) (≡ z x  )))
 
((fresh (x ) (≡ y x  )) (≡ z x  ))
 
(else #u))
 

(≡ #f x )
 
(≡ (cons y (cons z (()))) r)))
 

What is the value of 
60	 

((#f)), which shows that (≡ #t q) and (≡ #f q) 
are expressions, each of whose value is a goal. (run ∗ (q) 
But, here we only treat the (≡ #f q)(let ((a (≡ #t q)) 
expression’s value, b, as a goal. (b (≡ #f q)))
 

b))
 

What is the value of 
61	 

((#f)), which shows that (≡ . . . ),  (fresh . . . ),  
and (conde . .  . )  are  expressions,  each  of  (run ∗ (q) 
whose value is a goal. But, here we only (let ((a (≡ #t q)) 
treat the fresh expression’s value, b, as a  (b (fresh (x ) 
goal. This is indeed interesting. (≡ x q)
 

(≡ #f x )))
 
(c (conde
 

((≡ #t q) #s)
 
(else (≡ #f q)))))
 

b)) 

=⇒ Now go make yourself a peanut butter and jam sandwich. ⇐= 

This space reserved for 

JAM STAINS! 
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Chapter 2

Teaching Old Toys New Tricks



What is the value of 

(let ((x (lambda (a) a)) 
(y c)) 

(x y)) 

What value is associated with r in 

(run ∗ (r) 
(fresh (y x ) 

(≡ ((x y))† r))) 

1 

2 

c, 
because (x y) applies (lambda (a) a) to c. 

(( 0 1 ))† , 
because the variables in ((x y)) have been 
introduced by fresh. 

† This list is written as the expression ‘(,x ,y) or 
(cons x (cons y (()))). This list is distinguished from the 
function application (x y) by the use  of bold parentheses.  

What is the value of 

(run ∗ (r) 
(fresh (v w) 

(≡ (let ((x v) (y w)) ((x y))) r))) 

What is the value of 

(car ((grape raisin pear))) 

3 

4 

† It should be clear from context that this list is a value; it is 
not an expression. This list could have been built (see 9:52) 
using (cons (reify-name 0) (cons (reify-name 1) (()))). 

(((( 0 1 )))), 
because v and w are variables introduced 
by fresh. 

grape. 

a.What is the value of 
5 

(car ((a c o r n))) 

What value is associated with r in† 

(run ∗ (r) 
(car o ((a c o r n)) r)) 

6 a, 
because a is the car of ((a c o r n)). 

† car o is written caro and is pronounced “car-oh”. 
Henceforth, consult the index for how we write the names of 
functions. 
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What value is associated with q in 
7 

#t, 

(run ∗ (q) because a is the car of ((a c o r n)). 

(car o ((a c o r n)) a) 
(≡ #t q)) 

What value is associated with r in 

(run ∗ (r) 
(fresh (x y) 

(car o ((r y)) x ) 
(≡ pear x ))) 

8 pear, 
since x is associated with the car of ((r y)), 
which is the fresh variable r . Then x is 
associated with pear, which in turn  
associates r with pear. 

Here is the definition of car o . 

(define car o 

(lambda (p a) 
(fresh (d ) 

(≡ (cons a d) p)))) 

What is unusual about this definition? 

What is the value of 

(cons 
(car ((grape raisin pear))) 
(car ((((a)) ((b)) ((c)))))) 

9 

10 

Whereas car takes one argument, car o takes 
two. 

That’s easy: ((grape a)). 

What value is associated with r in 

(run ∗ (r) 
(fresh (x y) 

(car o ((grape raisin pear)) x ) 
(car o ((((a)) ((b)) ((c)))) y) 
(≡ (cons x y) r ))) 

11 

That’s the same: ((grape a)). 

Why can we use cons 
12 

Because variables introduced by fresh are 
values, and each argument to cons can be 
any value. 
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What is the value of 
13 

That’s easy: ((raisin pear)). 
(cdr ((grape raisin pear))) 

What is the value of 
14 c. 

(car (cdr ((a c o r n)))) 

What value is associated with r in 

(run ∗ (r) 
(fresh (v ) 

(cdr o ((a c o r n)) v ) 
(car o v r  ))) 

15 c. 
The process of transforming (car (cdr l)) 
into (cdr o l v) and (car o v r  ) is called 
unnesting. † 

† Some readers may recognize the similarity between 
unnesting and continuation-passing style. 

Here is the definition of cdr o . 
16 

Oh. It is almost the same as car o . 

(define cdr o 

(lambda (p d) 
(fresh (a) 

(≡ (cons a d) p)))) 

What is the value of 
17 

That’s easy: ((((raisin pear)) a)). 
(cons 

(cdr ((grape raisin pear))) 
(car ((((a)) ((b)) ((c)))))) 

What value is associated with r in 
18 

That’s the same: ((((raisin pear)) a)). 
(run ∗ (r) 

(fresh (x y) 
(cdr o ((grape raisin pear)) x ) 
(car o ((((a)) ((b)) ((c)))) y) 
(≡ (cons x y) r ))) 
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What value is associated with q in 

(run ∗ (q) 
(cdr o (( a c o r n)) (( c o r n)) ) 
(≡ #t q)) 

What value is associated with x in 

(run ∗ (x ) 
(cdr o (( c o r n)) (( x r n)) )) 

What value is associated with l in 

(run ∗ (l) 
(fresh (x ) 

(cdr o l (( c o r n)) ) 
(car o l x  ) 
(≡ a x ))) 

What value is associated with l in 

(run ∗ (l) 
(cons o (( a b c)) (( d e)) l)) 

What value is associated with x in 

(run ∗ (x ) 
(cons o x (( a b c)) (( d a b c)) )) 

What value is associated with r in 

(run ∗ (r) 
(fresh (x y  z  ) 

(≡ (( e a d x )) r ) 
(cons o y (( a z c)) r ))) 

What value is associated with x in 

(run ∗ (x ) 
(cons o x (( a x c)) (( d a x c)) )) 

19 

20 

21 

22 

23 

24 

25 

#t, 
because (( c o r n)) is the cdr of (( a c o r n)) . 

o, 
because (( o r n)) is the cdr of (( c o r n)) , so  x 
gets associated with o. 

(( a c o r n)) , 
because if the cdr of l is (( c o r n)) , then l 
must be the list (( a c o r n)) , where a is the 
fresh variable introduced in the definition 
of cdr o. Taking  the  car o of l associates the 
car of l with x . When  we  associate  x with 
a, we also associate a, the car of l , with a, 
so l is associated with the list (( a c o r n)) . 

(((( a b c)) d e)) , 
since cons o associates l with 
(cons (( a b c)) (( d e)) ). 

d. 
Since (cons d (( a b c)) ) is (( d a b c)) , cons o 

associates x with d. 

(( e a d c)) , 
because first we associate r with a list 
whose last element is the fresh variable x . 
We then perform the cons o, associating x 
with c, z with d, and y with e. 

d. 
What value can we associate with x so 
that (cons x (( a x c)) ) is (( d a x c)) ? 
Obviously, d is the value. 
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What value is associated with l in 
26 

(( d a d c)) , 
∗ because l is (( d a x c)) . Then when we (run (l) 

cons o x onto (( a x c)) , we associate  x with(fresh (x )
 
(≡ (( d a x c)) l) d.
 
(cons o x (( a x c)) l)))
 

What value is associated with l in 
27 

(( d a d c)) , 
∗ because we cons x onto (( a x c)) , and (run (l) 

associate l with the list (( x a x c)) . Then(fresh (x ) 
when we associate l with (( d a x c)) , we  (cons o x (( a x c)) l) 
associate x with d.(≡ (( d a x c)) l))) 

Define cons o using ≡. 
28 

(define cons o 

(lambda (a d p) 
(≡ (cons a d) p))) 

What value is associated with l in 
29 

(( b e a n s)) . 
l must clearly be a five element list, since s ∗(run (l) is (cdr l). Since l is fresh, (cdr o l s) places 

(fresh (d x y w s) a fresh variable  in  the  first position  of  l ,
(cons o w (( a n s)) s) while associating w and (( a n s)) with the 
(cdr o l s) second position and the cdr of the cdr of l ,
(car o l x  ) respectively. The first variable in l gets
(≡ b x ) associated with x , which in turn gets  
(cdr o l d) associated with b. The cdr of l is a list 
(car o d y) whose car is the variable w . That  variable  
(≡ e y))) gets associated with y , which in turn gets  

associated with e. 

What is the value of 

(null? (( grape raisin pear)) ) 

30 
#f. 

What is the value of 

(null? (()) ) 

31 
#t. 
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What is the value of 
32 

(()). 
(run ∗ (q)
 

(null o ((grape raisin pear)))
 
(≡ #t q))
 

What is the value of 
33 

((#t)). 
(run ∗ (q)
 

(null o (()))
 
(≡ #t q))
 

What is the value of 
34 

(((()))). 
(run ∗ (x )
 

(null o x ))
 

Define null o using ≡. 
35 

(define null o 

(lambda (x ) 
(≡ (()) x ))) 

What is the value of 

(eq? pear plum) 

36 
#f. 

What is the value of 

(eq? plum plum) 

37 
#t. 

What is the value of 

(run ∗ (q) 
(eq o pear plum) 
(≡ #t q)) 

38 

(()). 
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What is the value of 

(run ∗ (q) 
(eq o plum plum) 
(≡ #t q)) 

39 

(( #t)) . 

Define eq o using ≡. 
40 

It is easy. 

(define eq o 

(lam b d a (x y  ) 
(≡ x y))) 

Is (( split ! pea)) a pair?  
41 

Yes. 

Is (( split ! x )) a pair?  
42 

Yes. 

What is the value of 

(pair? (((( split)) ! pea)) ) 

43 
#t. 

What is the value of 

(pair? (()) ) 

44 
#f. 

Is pair a pair?  
45 

No. 

Is pear a pair?  
46 

No. 

Is (( pear)) a pair?  
47 

Yes, 
it is the pair (( pear ! (()))) . 

pear.What is the value of 
48 

(car (( pear)) ) 
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What is the value of 

(cdr ((pear))) 

49 

(()). 

How can we build these pairs? 
50 

Use Cons the Magnificent. 

What is the value of 

(cons ((split)) pea) 

51 

((((split)) ! pea)). 

What value is associated with r in 

(run ∗ (r) 
(fresh (x y) 

(≡ (cons x (cons y salad)) r))) 

52 

(( 0 1 ! salad)). 

Here is the definition of pair o . 
53 

No, it is not. 

(define pair o 

(lambda (p) 
(fresh (a d) 

(cons o a d p)))) 

Is pair o recursive? 

What is the value of 

(run ∗ (q) 
(pair o (cons q q)) 
(≡ #t q)) 

54 

((#t)). 

What is the value of 

(run ∗ (q) 
(pair o (())) 
(≡ #t q)) 

55 

(()). 
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What is the value of 

(run ∗ (q) 
(pair o pair) 
(≡ #t q)) 

56 

(()). 

What value is associated with x in 

(run ∗ (x ) 
(pair o x )) 

57 

(( 0 ! 1 )). 

What value is associated with r in 

(run ∗ (r) 
(pair o (cons r pear))) 

58 
0 . 

Is it possible to define car o , cdr o, and pair o 

using cons o 

59 
Yes. 

This space reserved for 

“Conso the Magnificento” 
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Chapter 3

Seeing Old Friends in New Ways



Consider the definition of list?. 
1 

#t. 

(define list? 
(lambda (l) 

(cond 
((null? l) #t) 
((pair? l ) (list? (cdr l))) 
(else #f)))) 

What is the value of 

(list? ((((a)) ((a b)) c))) 

What is the value of 

(list? (())) 

2 
#t. 

What is the value of 

(list? s) 

3 
#f. 

What is the value of 

(list? ((d a t e ! s))) 

4 
#f, 

because ((d a t e ! s)) is not a proper list.† 

† A list is proper if it is the empty list or if its cdr is proper. 

Consider the definition of list o . 

(define list o 

(lambda (l) 
(conde 

((null o l) #s) 
((pair o l) 
(fresh (d) 

(cdr o l d) 
(list o d ))) 

(else #u)))) 

How does list o differ from list? 

5 
The definition of list? has Boolean values as 
questions and answers. list o has goals as 
questions† and answers. Hence, it uses 
conde instead of cond. 

† else is like #t in a cond line, whereas else is like #s in a 
conde line. 
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Where does 
6 

It is an unnesting of (list? (cdr l)). First we 

(fresh (d) 
(cdr o l d) 
(list o d)) 

take the cdr of l and associate it with a fresh 
variable d , and then we use d in the 
recursive call. 

come from? 

The First Commandment 
To transform a function whose value is a Boolean 
into a function whose value is a goal, replace cond 
with conde and unnest each question and answer. 
Unnest the answer #t (or #f) by replacing it with  #s 
(or #u). 

What value is associated with x in 

(run ∗ (x ) 
(list o ((a b x d))†)) 

7 
0 , 
since x remains fresh. 

where a, b, and d are symbols, and x is a 
variable. 

† Reminder: This is the same as .))a b ,x d ((‘ 

Why is 0 the value associated with x in 

(run ∗ (x ) 
(list o ((a b x d)))) 

8 
When determining the goal returned by list o , 
it is not necessary to determine the value of 
x . Therefore x remains fresh, which means 
that the goal returned from the call to list o 

succeeds for all values associated with x . 

How is 0 the value associated with x in 

(run ∗ (x ) 
(list o ((a b x d)))) 

9 
When list o reaches the end of its argument, 
it succeeds. But x does not get associated 
with any value. 
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What value is associated with x in 

(run1 (x ) 
(list o ((a b c ! x )))) 

10 

(()). 

Why is (()) the value associated with x in 

(run1 (x ) 
(list o ((a b c ! x )))) 

11 

Because ((a b c ! x )) is a proper list when x is 
the empty list. 

How is (()) the value associated with x in 

(run1 (x ) 
(list o ((a b c ! x )))) 

12 

When list o reaches the end of ((a b c ! x )), 
(null o x ) succeeds and associates x with the 
empty list. 

What is the value of 

(run ∗ (x ) 
(list o ((a b c ! x )))) 

13 
It has no value. 

Maybe we should use run5 to get the first 
five values. 

What is the value of 

(run5 (x ) 
(list o ((a b c ! x )))) 

14 

(((()) 
(( 0 )) 
(( 0 1 )) 
(( 0 1 2 )) 
(( 0 1 2 3 )))). 

Describe what we have seen in transforming 
15 

In list? each cond line results in a value, 
list? into list o . whereas in list o each conde line results in a 

goal. To have each conde result in a goal, we 
unnest each cond question and each cond 
answer. Used with recursion, a conde 

expression can produce an unbounded 
number of values. We have used an upper 
bound, 5 in the previous frame, to keep from 
creating a list with an unbounded number of 
values. 
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Consider the definition of lol?, where lol? 
16 

As long as each top-level value in the list l is 
stands for list-of-lists?. a proper list,  lol? returns #t. Otherwise, lol? 

returns #f. 
(define lol?
 

(lambda (l)
 
(cond
 

((null? l) #t)
 
((list? (car l)) (lol? (cdr l)))
 
(else #f))))
 

Describe what lol? does. 

Here is the definition of lol o . 
17	 

The definition of lol? has Boolean values as 
questions and answers. lol o has goals as 

(define lol o 
questions and answers. Hence, it uses conde 

(lambda (l) instead of cond. 
(conde
 

((null o l) #s)
 
((fresh (a)
 

(car o l a)
 
(list o a))
 

(fresh (d)
 
(cdr o l d)
 
(lol o d )))
 

(else #u)))) 

How does lol o differ from lol? 

What else is different? 
18 

(list? (car l)) and (lol? (cdr l)) have been 
unnested. 

Is the value of (lol o l) always a goal? 
19 

Yes. 

What is the value of 
20 

(((()))). 
Since l is fresh, (null o l) succeeds  and in  (run1 (l) 
the process associates l with (()).(lol o l)) 
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What value is associated with q in 

(run ∗ (q) 
(fresh (x y) 

(lol o ((((a b)) ((x c)) ((d y))))) 
(≡ #t q))) 

21 
#t, 

since ((((a b)) ((x c)) ((d y)))) is a list of lists. 

What value is associated with q in 

(run1 (q) 
(fresh (x ) 

(lol o ((((a b)) ! x ))) 
(≡ #t q))) 

22 
#t, 

because null o of a fresh variable always 
succeeds and associates the fresh variable, 
in this case x , with (()). 

What is the value of 

(run1 (x ) 
(lol o ((((a b)) ((c d)) ! x )))) 

23 

(((()))), 
since replacing x with the empty list in 
((((a b)) ((c d)) ! x )) transforms it to 
((((a b)) ((c d)) ! (()))), which is  the  same as  
((((a b)) ((c d)))). 

What is the value of 

(run5 (x ) 
(lol o ((((a b)) ((c d)) ! x )))) 

24 

(((()) 
(((()))) 
(((()) (()))) 
(((()) (()) (()))) 
(((()) (()) (()) (()))))). 

What do we get when we replace x by the 
last list in the previous frame? 

25 

((((a b)) ((c d)) ! (((()) (()) (()) (()))))), 
which is the same as 

((((a b)) ((c d)) (()) (()) (()) (()))). 

Is ((tofu tofu)) a twin? 
26 

Yes, 
because it is a list of two identical values. 

Is ((e tofu)) a twin? 
27 

No,
 
because e and tofu differ.
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Is ((g g g)) a twin? 
28 

No, 
because it is not a list of two values. 

Is ((((g g)) ((tofu tofu)))) a list of twins?  
29 

Yes, 
since both ((g g)) and ((tofu tofu)) are twins. 

Is ((((g g)) ((e tofu)))) a list of twins?  
30 

No, 
since ((e tofu)) is not a twin. 

Consider the definition of twins o . 
31 

No, it isn’t. 

(define twins o 

(lambda (s) 
(fresh (x y) 

(cons o x y s) 
(cons o x (()) y)))) 

Is twins o recursive? 

What value is associated with q in 
32	 

#t. 

(run ∗ (q)
 
(twins o ((tofu tofu)))
 
(≡ #t q))
 

What value is associated with z in 
33	 

tofu. 

(run ∗ (z )
 
(twins o ((z tofu))))
 

Why is tofu the value associated with z in 
34	 

Because ((z tofu)) is a twin only when z is 
associated with tofu.(run ∗ (z )
 

(twins o ((z tofu))))
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How is tofu the value associated with z in 

(run ∗ (z ) 
(twins o ((z tofu)))) 

35 
In the call to twins o the first cons o 

associates x with the car of ((z tofu)), which is 
z , and  associates  y with the cdr of ((z tofu)), 
which is ((tofu)). Remember that ((tofu)) is the 
same as ((tofu ! (()))). The  second  cons o 

associates x , and therefore  z , with the  car of 
y , which is tofu. 

Redefine twins o without using cons o . 
36 

Here it is. 

(define twins o 

(lambda (s) 
(fresh (x ) 

(≡ ((x x  )) s)))) 

Consider the definition of lot o . 
37 

lot stands for list-of-twins. 

(define lot o 

(lambda (l) 
(conde 

((null o l) #s) 
((fresh (a) 

(car o l a) 
(twins o a)) 

(fresh (d) 
(cdr o l d) 
(lot o d ))) 

(else #u)))) 

What does lot stand for? 

What value is associated with z in 

(run1 (z ) 
(lot o ((((g g)) ! z )))) 

38 

(()). 

Why is (()) the value associated with z in 

(run1 (z ) 
(lot o ((((g g)) ! z )))) 

39 

Because ((((g g)) ! z )) is a list of twins when z 
is the empty list. 
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What do we get when we replace z by (()) 
40 

((((g g)) ! (()))), 
which is the same as 

((((g g)))). 

How is (()) the value associated with z in 
41	 

In the first call to lot o , l is the list 
((((g g)) ! z )). Since  this  list  is  not  null,  (run1 (z ) (null o l) fails  and  we  move  on to the  second  (lot o ((((g g)) ! z )))) 
conde line. In the second conde line, d is 
associated with the cdr of ((((g g)) ! z )), which 
is z . The  variable  d is then passed in the 
recursive call to lot o. Since  the  variable  z 
associated with d is fresh, (null o l) succeeds  
and associates d and therefore z with the 
empty list. 

What is the value of 
42 

(((()) 
(((( 0 0 )))) (run5 (z ) 
(((( 0 0 )) (( 1 1 )))) (lot o ((((g g)) ! z )))) 
(((( 0 )) (( 1 )) (( 2 )))) 0 1 2 

(((( 0 )) (( 1 )) (( 2 )) (( 3 )))))).0 1 2 3 

Why are the nonempty values (( n n)) 
43	 

Each n corresponds to a fresh variable that 
has been introduced in the question of the 
second conde line of lot o . 

What do we get when we replace z by the 
44 

((((g g)) ! (((( 0 )) (( 1 )) (( 2 )))))),0 1 2 

fourth list in frame 42? which is the same as 

((((g g)) (( 0 )) (( 1 )) (( 2 )))).0 1 2 

What is the value of 
45 

((((e (( 0 0 )) (()))) 
((e (( 0 0 )) (((( 1 1 )))))) (run5 (r) 
((e (( 0 )) (((( 1 )) (( 2 )))))) 0 1 2 

((e (( 0 )) (((( 1 )) (( 2 )) (( 3 )))))) 
(fresh (w x y z  ) 

0 1 2 3 

((e (( 0 )) (((( 1 )) (( 2 )) (( 3 )) (( 4 )))))))). 
(lot o ((((g g)) ((e w )) ((x y)) ! z ))) 

0 1 2 3 4(≡ ((w ((x y)) z )) r))) 
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What do we get when we replace w , x , y , 
46 

((((g g)) ((e e)) (( 0 )) ! (((( 1 )) (( 2 )))))),0 1 2 

and z by the third list in the previous frame? which is the same as 

((((g g)) ((e e)) (( 0 )) (( 1 )) (( 2 )))).0 1 2 

What is the value of 

(run3 (out) 
(fresh (w x  y  z  ) 

(≡ ((((g g)) ((e w)) ((x y)) ! z )) out) 
(lot o out))) 

47 

((((((g g)) ((e e)) (( 0 

((((g g)) ((e e)) (( 0 

((((g g)) ((e e)) (( 0 

0 )))) 

0 )) (( 1 

0 )) (( 1 

1 )))) 

1 )) (( 2 2 )))))). 

Here is listof o . 
48 

Yes. 

(define listof o 

(lambda (pred o l) 
(conde 

((null o l) #s) 
((fresh (a) 

(car o l a) 
(pred o a)) 

(fresh (d) 
(cdr o l d) 
(listof o pred o d))) 

(else #u)))) 

Is listof o recursive? 

What is the value of 

(run3 (out) 
(fresh (w x  y  z  ) 

(≡ ((((g g)) ((e w)) ((x y)) ! z )) out) 
(listof o twins o out))) 

49 

((((((g g)) ((e e)) (( 0 

((((g g)) ((e e)) (( 0 

((((g g)) ((e e)) (( 0 

0 )))) 

0 )) (( 1 

0 )) (( 1 

1 )))) 

1 )) (( 2 2 )))))). 

Now redefine lot o using listof o and twins o . 
50 

That’s simple. 

(define lot o 

(lambda (l) 
(listof o twins o l))) 
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Remember member? 

(define member? 
(lambda (x l  ) 

(cond 
((null? l) #f) 
((eq-car? l x ) #t) 
(else (member? x (cdr l)))))) 

51 
member? is an old friend, but that’s a 
strange way to define it. 

(define eq-car? 
(lambda (l x  ) 

(eq? (car l) x ))) 

Define eq-car?. 

Don’t worry. It will make sense soon. 
52 

Okay. 

What is the value of 

(member? olive ((virgin olive oil))) 

53 
#t, but this is  uninteresting.  

Consider this definition of eq-car o . 
54 

(define eq-car o 

(lambda (l x  ) 
(car o l x  ))) 

Define member o using eq-car o . 

(define member o 

(lambda (x l  ) 
(conde 

((null o l) #u) 
((eq-car o l x  ) #s) 
(else 

(fresh (d ) 
(cdr o l d) 
(member o x d  )))))) 

Is the first conde line unnecessary? 
55 

Yes. 
Whenever a conde line is guaranteed to 
fail, it is unnecessary. 

Which expression has been unnested? 
56 

(member? x (cdr l)). 

What value is associated with q in 

(run ∗ (q) 
(member o olive ((virgin olive oil))) 
(≡ #t q)) 

57 
#t, 

because (member o a l) succeeds, but this 
is still uninteresting. 
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What value is associated with y in 
58 

hummus, 
because we can ignore the first conde line(run1 (y) 
since l is not the empty list, and because (member o y ((hummus with pita)))) 
the second conde line associates the fresh 
variable y with the value of (car l), which 
is hummus. 

What value is associated with y in 
59 

with, 
because we can ignore the first conde line(run1 (y) 
since l is not the empty list, and because (member o y ((with pita)))) 
the second conde line associates the fresh 
variable y with the value of (car l), which 
is with. 

What value is associated with y in 
60 

pita, 
because we can ignore the first conde line(run1 (y) 
since l is not the empty list, and because (member o y ((pita)))) 
the second conde line associates the fresh 
variable y with the value of (car l), which 
is pita. 

What is the value of 
61 

(()), 
because the (null o l) question of the  first  (run ∗ (y) 
conde line now holds, resulting in failure (member o y (()))) 
of the goal (member o y l). 

What is the value of 
62 

((hummus with pita)), 
since we already know the value of each (run ∗ (y) 
recursive call to member o, provided  y is(member o y ((hummus with pita)))) 
fresh. 

Why is y a fresh variable  each time  we  enter  
63 

Since we pretend that the second conde line 
member o recursively? has failed, we also get to assume that y has 

been refreshed. 
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So is the value of 
64 

Yes. 

(run ∗ (y) 
(member o y l)) 

always the value of l 

Using run ∗, define  a function called  identity 
65 

whose argument is a list, and which returns (define identity 
that list. (lambda (l ) 

(run ∗ (y) 
(member o y l)))) 

What value is associated with x in 

(run ∗ (x ) 
(member o e ((pasta x fagioli)))) 

66 e. 
The list contains three values with a 
variable in the middle. The member o 

function determines that x ’s value should 
be e. 

Why is e the value associated with x in 

(run ∗ (x ) 
(member o e ((pasta x fagioli)))) 

67 

Because (member o e ((pasta e fagioli))) 
succeeds. 

What have we just done? 
68 

We filled in a blank in the list so that 
member o succeeds. 

What value is associated with x in 

(run1 (x ) 
(member o e ((pasta e x fagioli)))) 

69 
0 , 
because the recursion succeeds before it 
gets to the variable x . 

What value is associated with x in 

(run1 (x ) 
(member o e ((pasta x e fagioli)))) 

70 e, 
because the recursion succeeds when it 
gets to the variable x . 
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What is the value of 
71	 

((((e 0 )) (( 0 e)))). 
(run ∗ (r) 

(fresh (x y)
 
(member o e ((pasta x fagioli y)))
 
(≡ ((x y)) r)))
 

What does each value in the list mean? 
72	 

There are two values in the list. We know 
from frame 70 that when x gets associated 
with e, (member o e ((pasta x fagioli y))) 
succeeds, leaving y fresh. Then x is 
refreshed. For the second value, y gets an 
association, but x does not. 

What is the value of 
73	 

((((tofu ! 0 )))). 

(run1 (l)
 
(member o tofu l))
 

Which lists are represented by ((tofu ! 0 )) 
74 

Every list whose car is tofu. 

What is the value of 
75 

It has no value, 
because run ∗ never finishes building the (run ∗ (l) 
list.(member o tofu l)) 

What is the value of 
76 

((((tofu ! 0 )) 
(( 0 tofu ! 1 ))(run5 (l) 
(( 0 1 tofu ! 2 ))(member o tofu l)) 
(( 0 tofu ! ))1 2 3 

(( 0 tofu ! )))).1 2 3 4 

Clearly each list satisfies member o, since 
tofu is in every list. 
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Explain why the answer is 
77 

Assume that we know how the first four lists 

((((tofu ! 0 )) 
(( 0 tofu ! 1 )) 
(( 0 1 tofu ! 2 )) 
(( 0 1 2 tofu ! 3 )) 
(( 0 1 2 3 tofu ! 4 )))) 

are determined. Now we address how the 
fifth list appears. When we pretend that 
eq-car o fails, l is refreshed and the last 
conde line is tried. l is refreshed, but we 
recur on its cdr, which is  also fresh.  So  each  
value becomes one longer than the previous 
value. In the recursive call (member o x d), 
the call to eq-car o associates tofu with the 
car of the cdr of l . Thus 3 will appear where 
tofu appeared in the fourth list. 

Is it possible to remove the dotted variable at 
78 

Perhaps, 
the end of each list, making it proper?	 but we do know when we’ve found the 

value we’re looking for. 

Yes, that’s right. That should give us enough 
79 

It should be the empty list if we find the
 
of a clue. What should the cdr be when we value at the end of the list.
 
find this value?
 

Here is a definition of pmember o . 
80 

((((tofu)) 
(( 0 tofu))

(define pmember o 

(lambda (x l  ) 
(conde 

((null o l) #u) 

(( 0 

(( 0 

(( 0 

1 

1 

1 

tofu)) 
2 tofu)) 
2 3 tofu)))). 

((eq-car o l x  ) (cdr o l (()))) 
(else 

(fresh (d) 
(cdr o l d) 
(pmember o x d)))))) 

What is the value of 

(run5 (l) 
(pmember o tofu l)) 
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What is the value of 

(run ∗ (q) 
(pmember o tofu ((a b tofu d tofu))) 
(≡ #t q)) 

81 

Is it ((#t #t))? 

No, the value is ((#t)). Explain  why.  
82 

The test for being at the end of the list 
caused this definition to miss the first tofu. 

Here is a refined definition of pmember o . 

(define pmember o 

(lambda (x l  ) 
(conde 

((null o l) #u) 
((eq-car o l x  ) (cdr o l (()))) 
((eq-car o l x  ) #s) 
(else 

(fresh (d) 
(cdr o l d) 
(pmember o x d)))))) 

83 
We have included an additional conde line 
that succeeds when the car of l matches x . 

How does this refined definition differ from 
the original definition of pmember o 

What is the value of 

(run ∗ (q) 
(pmember o tofu ((a b tofu d tofu))) 
(≡ #t q)) 

84 

Is it ((#t #t))? 

No, the value is ((#t #t #t)). Explain  why.  
85 

The second conde line contributes a value 
because there is a tofu at the end of the list. 
Then the third conde line contributes a 
value for the first tofu in the list and it 
contributes a value for the second tofu in the 
list. Thus in all, three values are contributed. 
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Here is a more refined definition of 
86 

We have included a test to make sure that its 
pmember o . cdr is not the empty list. 

(define pmember o 

(lambda (x l  ) 
(conde 

((null o l) #u) 
((eq-car o l x  ) (cdr o l (()))) 
((eq-car o l x  ) 
(fresh (a d) 

(cdr o l ((a ! d))))) 
(else 

(fresh (d) 
(cdr o l d) 
(pmember o x d)))))) 

How does this definition differ from the 
previous definition of pmember o 

How can we simplify this definition a bit 
more? 

87 
We know that a conde line that always fails, 
like the first conde line, can be removed. 

Now what is the value of 

(run ∗ (q) 
(pmember o tofu ((a b tofu d tofu))) 
(≡ #t q)) 

88 

((#t #t)) as expected. 

Now what is the value of 
89 

((((tofu)) 

(run12 (l) 
(pmember o tofu l)) 

((tofu 0 ! 
(( 0 tofu)) 
(( 0 tofu 1 

1 )) 

! 2 )) 
(( 0 1 tofu)) 
(( 0 1 tofu 2 ! 3 )) 
(( 0 1 2 tofu)) 
(( 0 1 2 tofu 3 ! 4 )) 
(( 0 1 2 3 tofu)) 
(( 0 1 2 3 tofu 4 ! 5 )) 
(( 0 1 2 3 4 tofu)) 
(( 0 1 2 3 4 tofu 5 ! 6 )))). 
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How can we characterize this list of values? 
90 

All of the odd positions are proper lists. 

Why are the odd positions proper lists? 
91 

Because in the second conde line the cdr of l 
is the empty list. 

Why are the even positions improper lists? 
92 

Because in the third conde line the cdr of l 
is a pair. 

How can we redefine pmember o so that the 
lists in the odd and even positions are 

93 
We merely swap the first two conde lines of 
the simplified definition. 

swapped? 
(define pmember o 

(lambda (x l  ) 
(conde 

((eq-car o l x  ) 
(fresh (a d) 

(cdr o l ((a ! d))))) 
((eq-car o l x  ) (cdr o l (()))) 
(else 

(fresh (d ) 
(cdr o l d) 
(pmember o x d  )))))) 

Now what is the value of 
94 

((((tofu 0 ! 1 )) 
((tofu))(run12 (l) 
(( 0 tofu 1 ! 2 ))(pmember o tofu l)) 
(( 0 tofu)) 
(( 0 tofu ! )) 
(( 

1 2 3 

0 1 tofu)) 
(( 0 tofu ! )) 
(( 

1 2 3 4 

0 1 2 tofu)) 
(( 0 tofu ! ))1 2 3 4 5 

(( 0 tofu))1 2 3 

(( 0 tofu ! ))1 2 3 4 5 6 

(( 0 tofu)))).1 2 3 4 
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Consider the definition of first-value, which 
takes a list of values l and returns a list that 
contains the first value in l . 

(define first-value 
(lambda (l) 

(run1 (y) 
(member o y l)))) 

95 
If l is the empty list or not a list, 
(first-value l) returns  (()), whereas with car 
there is no meaning. Also, instead of 
returning the first value, it returns the list of 
the first value. 

Given that its argument is a list, how does 
first-value differ from car 

What is the value of 
96 

((pasta)). 
(first-value ((pasta e fagioli))) 

What value is associated with y in 
97 

pasta. 

(first-value ((pasta e fagioli))) 

Consider this variant of member o . 
98 

We have swapped the second conde line with 
the third conde line† . 

(define memberrev o 

(lambda (x l  ) 
(conde
 

((null o l) #u)
 
(#s
 

(fresh (d)
 
(cdr o l d)
 
(memberrev o x d)))
 

(else (eq-car o l x  ))))) † oClearly, #s corresponds to else. The (eq-car l x) is now 
the last question, so we can insert an else to improve clarity. 
We haven’t swapped the expressions in the second conde

How does it differ from the definition of line of memberrev o, but we could have, since we can add or 
member o in frame 54? remove #s from a conde line without affecting the line. 

How can we simplify this definition? 
99 

By removing a conde line that is guaranteed 
to fail. 

What is the value of 
100 

((fagioli e pasta)). 
(run ∗ (x )
 

(memberrev o x ((pasta e fagioli))))
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Define reverse-list, which reverses  a list,  
101 

Here it is. 
using the definition of memberrev o . 

(define reverse-list 
(lambda (l ) 

(run ∗ (y) 
(memberrev o y l)))) 

=⇒ Now go make yourself a peanut butter and marmalade sandwich. ⇐= 

This space reserved for 

MARMALADE STAINS! 
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Consider this very simple function. 
1 

(( tofu d peas e)) . 

(define mem 
(lambda (x l  ) 

(cond 
((null? l) #f) 
((eq-car? l x ) l) 
(else (mem x (cdr l)))))) 

What is the value of 

(mem tofu (( a b tofu d peas e)) ) 

What is the value of 

(mem tofu (( a b peas d peas  e)) ) 

What value is associated with out in 

(run ∗ (out) 
(≡ (mem tofu (( a b tofu d peas e)) ) out)) 

What is the value of 

(mem peas 
(mem tofu (( a b tofu d peas e)) )) 

What is the value of 

(mem tofu 
(mem tofu (( a b tofu  d tofu e)) )) 

What is the value of 

(mem tofu 
(cdr (mem tofu (( a b tofu d tofu e)) ))) 

2 

3 

4 

5 

6 

#f. 

(( tofu d peas e)) . 

(( peas e)) . 

(( tofu d tofu e)) , 
because the value of 
(mem tofu (( a b tofu d tofu e)) ) is 
(( tofu d tofu e)) , and because the value of 
(( mem tofu (( tofu d tofu e)))) is 
(( tofu d tofu e)) . 

(( tofu e)) , 
because the value of 
(mem tofu (( a b tofu d tofu e)) ) is 
(( tofu d tofu e)) , the value of 
(( cdr (( tofu d tofu e)))) is (( d tofu e)) , and the 
value of (( mem tofu (( d tofu e)))) is (( tofu e)) . 
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Here is memo . 

(define memo 

(lambda (x l out) 
(conde 

((null o l) #u) 
((eq-car o l x  ) (≡ l out)) 
(else 

(fresh (d) 
(cdr o l d) 
(memo x d out)))))) 

7 
The list?, lol?, and member? definitions from 
the previous chapter have only Booleans as 
their values, but mem, on the  other hand,  
does not. Because of this we need an 
additional variable, which here we call out , 
that holds memo’s value. 

How does memo differ from list o , lol o, and 
member o 

Which expression has been unnested? 
8 

(mem x (cdr l)). 

The Second Commandment 
To transform a function whose value is not a 
Boolean into a function whose value is a goal, add 
an extra argument to hold its value, replace cond 
with conde, and  unnest  each  question  and  answer.  

In a call to memo from run1, how many 
times does out get an association? 

9 
At most once. 

What is the value of 

(run1 (out) 
(memo tofu ((a b tofu d tofu e)) out)) 

10 

((((tofu d tofu e)))). 

What is the value of 
11	 

((((tofu d tofu e)))), which would be  correct  if  x 
were tofu.(run1 (out)
 

(fresh (x )
 
(memo tofu ((a b  x d tofu e)) out)))
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What value is associated with r in 
12 

tofu. 
∗(run (r)
 

(memo r
 
(( a b tofu d tofu e)) 
(( tofu d tofu e)) )) 

What value is associated with q in 

(run ∗ (q) 
(memo tofu (( tofu e)) (( tofu e)) ) 
(≡ #t q)) 

13 
#t, 

since (( tofu e)) , the last  argument  to  memo , 
is the right value. 

What is the value of 

(run ∗ (q) 
(memo tofu (( tofu e)) (( tofu)) ) 
(≡ #t q)) 

14 

(()) , 
since (( tofu)) , the last  argument  to  memo, is 
the wrong value. 

What value is associated with x in 

(run ∗ (x ) 
(memo tofu (( tofu e)) (( x e)) )) 

15 
tofu, 

when the value associated with x is tofu, 
then (( x e)) is (( tofu e)) . 

What is the value of 

(run ∗ (x ) 
(memo tofu (( tofu e)) (( peas x )) )) 

16 

(()) , 
because there is no value that, when 
associated with x , makes  (( peas x )) be 
(( tofu e)) . 

What is the value of 

(run ∗ (out) 
(fresh (x ) 

(memo tofu (( a b  x d tofu e)) out))) 

17 

(((( tofu d tofu e)) (( tofu e)))) . 
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What is the value of 
18 

(( 0 

(run12 (z ) 
(fresh (u) 

(memo tofu ((a b tofu d tofu e ! z )) u))) 

0 

((tofu ! 0 )) 
(( 0 tofu ! 1 )) 
(( 0 1 tofu ! 2 )) 
(( 0 1 2 tofu ! 3 )) 
(( 0 1 2 3 tofu ! 4 )) 
(( 0 1 2 3 4 tofu ! 5 )) 
(( 0 1 2 3 4 5 tofu ! 6 )) 
(( 0 1 2 3 4 5 6 tofu ! 7 )) 
(( 0 1 2 3 4 5 6 7 tofu ! 8 )) 
(( 0 1 2 3 4 5 6 7 8 tofu ! 9 )))). 

How do we get the first two 0 ’s? 
19 

The first 0 corresponds to finding the first 
tofu. The  second  0 corresponds to finding 
the second tofu. 

Where do the other ten lists come from? 
20 

In order for 

(memo tofu ((a b tofu d tofu e  ! z )) u) 

to succeed, there must be a tofu in z . So 
memo creates all the possible lists with tofu 
as one element of the list. That’s very 
interesting! 

How can memo be simplified? 
21 

The first conde line always fails, so it can be 
removed. 

(define memo 

(lambda (x l out) 
(conde 

((eq-car o l x  ) (≡ l out)) 
(else 

(fresh (d ) 
(cdr o l d) 
(memo x d out)))))) 
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Remember rember.	 
22 

Of course, it’s an old friend. 

(define rember 
(lambda (x l  ) 

(cond 
((null? l) (())) 
((eq-car? l x ) (cdr l)) 
(else 

(cons (car l) 
(rember x (cdr l))))))) 

What is the value of 
23 

((a b d peas e)). 
(rember peas ((a b peas d peas e))) 

Consider rember o . 
24 

Yes, just like rember. 

(define rember o 

(lambda (x l out) 
(conde 

((null o l) (≡ (()) out)) 
((eq-car o l x  ) (cdr o l out)) 
(else 

(fresh (res) 
(fresh (d) 

(cdr o l d) 
(rember o x d res)) 

(fresh (a) 
(car o l a) 
(cons o a res out))))))) 

Is rember o recursive? 

Why are there three freshes in 
25	 

Because d is only mentioned in (cdr o l d) 
and (rember o x d res); a is only mentioned (fresh (res) 
in (car o l a) and (cons o a res out); but res (fresh (d) 
is mentioned throughout. (cdr o l d) 

(rember o x d res)) 
(fresh (a) 

(car o l a) 
(cons o a res out))) 
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Rewrite 
26 

(fresh (a d res) 
(cdr o l d)(fresh (res) 
(rember o x d res)(fresh (d) 
(car o l a)(cdr o l d) 
(cons o a res out)).(rember o x d res)) 

(fresh (a) 
(car o l a) 
(cons o a res out))) 

using only one fresh. 

How might we use cons o in place of the car o 27 

(fresh (a d res) 
and the cdr o	 (cons o a d l) 

(rember o x d res) 
(cons o a res out)). 

How does the first cons o differ from the 
second one? 

28 

The first cons o, (cons o a d  l), appears to 
associate values with the variables a and d . 
In other words, it appears to take apart a 
cons pair, whereas (cons o a res out) appears 
to be used to build a cons pair. 

But, can appearances be deceiving? 
29 

Indeed they can. 

What is the value of 

(run1 (out) 
(fresh (y) 

(rember o peas ((a b y d peas e)) out))) 

30 

((((a b d peas e)))), 
because y is a variable and can take on 
values. The car o within the (eq-car o l x  ) 
associates y with peas, forcing  y to be 
removed from the list. Of course we can 
associate with y a value  other than  peas. 
That will still cause 
(rember o peas ((a b y d peas e)) out) to 
succeed, but run1 produces only one value. 
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What is the value of 
31 

(((( b a d  0 e)) 
∗ (( a b d  0 e))(run (out) 

(( a b d  0 e))(fresh (y z  ) 
(( a b d  0 e))(rember o y (( a b y d z e)) out))) 
(( a b  0 d e)) 
(( a b e d  0 )) 
(( a b  0 d 1 e)))) . 

Why is 

(( b a d  0 e)) 

the first value? 

32 
It looks like b and a have been swapped, and 
y has disappeared. 

No. Why does b come first? 
33 

The b comes first because the a has been 
removed. 

Why is 

(( a b d  0 e)) 

the second value? 

35 
It looks like y has disappeared. 

No. Has the b in the original list been 
removed? 

36 
Yes. 

Why does the list still contain a b 
37 

In order to remove the b, y gets associated 
with b. The y in the list is then replaced 
with its value. 

Why is 

(( a b d  0 e)) 

the third value? 

38 

Is it for the same reason that (( a b d  0 e)) is 
the second value? 
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Why does the list still contain a 
34 

In order to remove the a, y gets associated 
with a. The y in the list is then replaced 
with its value. 



Not quite. Has the b in the original list been 
39 

No,
 
removed? but the y has been removed.
 

Why is 

(( a b d  0 e)) 

the fourth value? 

Why does the list still contain a d 

Why is 

(( a b  0 d e)) 

the fifth value? 

Why does the list contain 0 

Why is 

(( a b e d  0 )) 

the sixth value? 

Why does the list contain 0 

Why don’t z and y co-refer? 

40 

41 

42 

43 

44 

45 

46 

Because the d has been removed from the 
list. 

In order to remove the d, y gets associated 
with d. Also  the  y in the list is replaced with 
its value. 

Because the z has been removed from the 
list. 

When (car l) is y , (car o l a) associates  the  
fresh variable y with the fresh variable a. In 
order to remove the y , y gets associated with 
z . Since  z is also a fresh variable, the a, y , 
and z co-refer. 

Because the e has been removed from the list. 

When (car l) is z , (car o l a) associates the 
fresh variable z with the fresh variable a. 

Because we are within a run ∗, we get to 
pretend that (eq-car o l x  ) fails  when (car l) 
is z and x is y . Thus z and y no longer 
co-refer. 
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Why is 

(( a b  0 d 1 e)) 

the seventh value? 

Why does the list contain 0 and 1 

What is the value of 

(run ∗ (r) 
(fresh (y z  ) 

(rember o y (( y d z e)) (( y d e)) ) 
(≡ (( y z  )) r ))) 

Why is 

(( d d)) 

the first value? 

Why is 

(( d d)) 

the second value? 

Why is 

(( 0 0 )) 

the third value? 

How is 

(( d d)) 

the first value? 

47 

48 

49 

50 

51 

52 

53 

Because we have not removed anything from 
the list. 

When (car l) is y , (car o l a) associates  the  
fresh variable y with the fresh variable a. 
When (car l) is z , (car o l a) associates the 
fresh variable z with a new fresh variable a. 
Also the y and z in the list are replaced 
respectively with their reified values. 

(((( d d)) 
(( d d)) 
(( 0 0 )) 
(( e e)))) . 

When y is d and z is d, then 

(rember o d (( d d d e)) (( d d e)) ) 

succeeds. 

When y is d and z is d, then 

(rember o d (( d d d e)) (( d d e)) ) 

succeeds. 

As long as y and z are the same, y can be 
anything. 

rember o removes y from the list (( y d z e)) , 
yielding the list (( d z e)) ; (( d z e)) is the same 
as out , (( y d e)) , only when both  y and z are 
the value d. 
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How is 
54	 

Next, rember o removes d from the list 
(( y d z e)) , yielding the  list  (( y z  e)) ; (( y z  e)) is(( d d)) 
the same as out , (( y d e)) , only when  z is d. 

the second value? Also, in order to remove the d, y gets 
associated with d. 

How is 
55	 

Next, rember o removes z from the list 
(( y d z e)) , yielding the  list  (( y d e)) ; (( y d e)) is(( 0 0 )) always the same as out , (( y d e)) . Also, in 

the third value? order to remove the z , y gets associated with 
z , so they co-refer.  

How is 
56	 

Next, rember o removes e from the list 
(( y d z e)) , yielding the  list  (( y d z )) ; (( y d z )) is(( e e)) 
the same as out , (( y d e)) , only when  z is e. 

the fourth value? Also, in order to remove the e, y gets 
associated with e. 

What is the value of 
57	 

(( 0 

0(run 13 (w) 
0(fresh (y z  out) 
0(rember o y (( a b y d z ! w)) out))) 
0 

(())
 
(( 0 ! 1 ))
 
(( 0 ))
 
(( ! ))
 
(( 

0 1 2 

0 1 )) 
(( ! ))0 1 2 3 

(( ))0 1 2 

(( ! )))) .0 1 2 3 4 

Why is 
58	 

When y is a, out becomes (( b y d z ! w )) , 
which makes 

the first value? (rember o y (( a b y d z ! w )) (( b y d z ! w )) ) 

succeed for all values of w . 
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0 

0 

0 

How is 
59	 

rember o removes a from l , while  ignoring  the  
fresh variable w . 

the first value? 

How is 
60 

This is the same as in the previous frame, 
except that rember o removes b from the 
original l , y from the original l , and d fromthe second, third, and fourth value? 
the original l , respectively.  

How is 
61	 

Next, rember o removes z from l . When  the  
(eq-car o l x  ) question of the second conde 

line succeeds, (car l) is z . The  answer  of  the  the fifth value? 
second conde line, (cdr o l out), also 
succeeds, associating the cdr of l (the fresh 
variable w) with the  fresh variable  out . The 
variable out , however, is just  res, the fresh 
variable passed into the recursive call to 
rember o . 

How is 
62	 

Because none of the first five values in l are 
removed. The (null o l ) question of the first (()) 
conde line then succeeds, associating w with 

the sixth value? the empty list. 

How is 
63	 

Because none of the first five values in l are 
removed, and because we pretend that the (( 0 ! 1 )) (null o l) question of the  first  conde line 

the seventh value? fails. The (eq-car o l x  ) question of the  
second conde line succeeds, however, and 
associates w with a pair whose car is y . The 
answer (cdr o l out) of the second conde line 
also succeeds, associating w with a pair 
whose cdr is out . The  variable  out , however, 
is just res, the fresh variable passed into the 
recursive call to rember o. During  the  
recursion, the car o inside the second conde 

line’s eq-car o associates the fresh variable y 
with the fresh variable a. 
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How is 
64	 

This is the same as the seventh value, 
(( 0 ! 1 )) , except that the (null o l) question of (( 0 )) the first cond e line succeeds, associating out 

the eighth value? (and, therefore, res) with the  empty  list.  

How is 
65	 

For the same reason that (( 0 ! 1 )) is the 
seventh value, except that the ninth value (( ! ))0 1 2 performs an additional recursive call, which 

the ninth value? results in an additional cons o . 

Do the tenth and twelfth values correspond 
66 

Yes. 
to the eighth value? 

Do the eleventh and thirteenth values 
67 

Yes.
 
correspond to the ninth value? All w of the form
 

(( . . .  ! ))0 n n+1 

make (rember o y (( a b y d z ! w )) out) 
succeed. 

Here is surprise o . 
68	 

Yes, (surprise o s) should succeed for all  
values of s other than a, b, and c. 

(define surprise o
 

(lambda (s)
 
(rember o s (( a b c)) (( a b c)) )))
 

Are there any values of s for which 
(surprise o s) should succeed?  

What value is associated with r in 
69	 

d. 
∗(run (r)
 

(≡ d r )
 
(surprise o r))
 

What is the value of 
70	 

(( 0 )) . 
∗	 When r is fresh, (surprise o r ) succeeds  (run (r) 

and leaves r fresh.(surprise o r)) 
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Write an expression that shows why this 
71 

Here is such an expression: 
definition of surprise o should not succeed (run ∗ (r )
when r is fresh. (surprise o r) 

(≡ b r )). 

If (surprise o r ) were to leave r fresh, then 
(≡ b r) would associate  r with b. But if r 
were b, then (rember o r ((a b c)) ((a b c))) 
should have failed, since removing b from the 
list ((a b c)) results in ((a c)), not ((a b c)). 

And what is the value of 
72 

((b)), 
which also makes no sense. Please pass the (run ∗ (r) 
aspirin!(≡ b r ) 

(surprise o r)) 

=⇒ Now go munch on some carrots. ⇐= 

This space reserved for 

CARROT STAINS! 
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Chapter 5

Double Your Fun



Ever seen append 
1 

No. 

2 

Here it is.† ((a b c d e)). 

(define append 
(lambda (l s) 

(cond 
((null? l) s) 
(else (cons (car l) 

(append (cdr l) s)))))) 

What is the value of 

(append ((a b c)) ((d e))) 

† For a different approach to append, see William F.  
Clocksin. Clause and Effect. Springer, 1997, page  59.  

What is the value of 

(append ((a b c)) (())) 

3 

((a b c)). 

What is the value of 

(append (()) ((d e))) 

4 

((d e)). 

What is the value of 

(append a ((d e))) 

5 
It has no meaning, 

because a is neither the empty list nor a 
proper list. 

What is the value of 

(append ((d e)) a) 

6 
It has no meaning, again? 

No. The value is ((d e ! a)). 7 
How is that possible? 
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Look closely at the definition of append; 
8 

Ouch. 
there are no questions asked about s. 

Define append o . 
9 

(define append o 

(lambda (l s  out) 
(conde 

((null o l) (≡ s out)) 
(else 

(fresh (a d res) 
(car o l a) 
(cdr o l d) 
(append o d s res) 
(cons o a res out)))))) 

What value is associated with x in 
10 

((cake tastes yummy)). 
(run ∗ (x ) 

(append o 

((cake)) 
((tastes yummy)) 
x )) 

What value is associated with x in 
11 

((cake with ice 0 tastes yummy)). 
(run ∗ (x ) 

(fresh (y) 
(append o 

((cake with ice y)) 
((tastes yummy)) 
x ))) 

What value is associated with x in 
12 

((cake with ice cream ! 0 )). 
(run ∗ (x )
 

(fresh (y)
 
(append o
 

((cake with ice cream)) 
y
 
x )))
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What value is associated with x in 

(run1 (x ) 
(fresh (y) 

(append o ((cake with ice ! y)) ((d t)) x ))) 

13 

((cake with ice d t)), 
because the last call to null o associates y 
with the empty list. 

How can we show that y is associated with 
the empty list? 

14 
By this example 

(run1 (y) 
(fresh (x ) 

(append o ((cake with ice ! y)) ((d t)) x ))) 

which associates y with the empty list. 

Redefine append o to use a single cons o in 
place of the car o and cdr o (see 4:27). 

15 

(define append o 

(lambda (l s  out) 
(conde 

((null o l) (≡ s out)) 
(else 

(fresh (a d res) 
(cons o a d  l) 
(append o d s res) 
(cons o a res out)))))) 

What is the value of 

(run5 (x ) 
(fresh (y) 

(append o ((cake with ice ! y)) ((d t)) x ))) 

16 

((((cake with ice d t)) 
((cake with ice 0 d t)) 
((cake with ice 0 1 d t)) 
((cake with ice 0 1 2 d t)) 
((cake with ice 0 1 2 3 d t)))). 

What is the value of 

(run5 (y) 
(fresh (x ) 

(append o ((cake with ice ! y)) ((d t)) x ))) 

17 

(((()) 
(( 0 )) 
(( 0 1 )) 
(( 0 1 2 )) 
(( 0 1 2 3 )))). 
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Let’s consider plugging in (( 0 1 

(( cake with ice ! y)) . 

Then we get 

(( cake with ice ! (( 0 1 2 )))) . 

What list is this the same as? 

2 )) for y in 
18 

(( cake with ice 0 1 2 )) . 

Right. What is 

(append (( cake with ice 0 1 2 )) (( d t)) ) 

19 
The fourth list in frame 16. 

What is the value of 
20 

(((( cake with ice d t)) 
(( cake with ice 0 d t  0 ))(run 5 (x ) 
(( cake with ice d t  ))0 1 0 1(fresh (y) 
(( cake with ice d t  ))0 1 2 0 1 2(append o 

(( cake with ice d t  )))) .0 1 2 3 0 1 2 3(( cake with ice ! y)) 
(( d t  ! y))
 
x )))
 

What is the value of 
21 

(((( cake with ice cream d t ! 0 )))) . 
∗(run (x )
 

(fresh (z )
 
(append o
 

(( cake with ice cream))
 
(( d t  ! z ))
 
x )))
 

Why does the list contain only one value? 
22 

Because z stays fresh. 

Let’s try an example in which the first two 
23 

(((()) 
arguments are variables. What is the value (( cake)) 
of (( cake with)) 

(( cake with ice))(run 6 (x ) 
(( cake with ice d))(fresh (y) 
(( cake with ice d t)))) .(append o x y  (( cake with ice d t)) ))) 
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How might we describe these values? 
24 

The values include all of the prefixes of the 
list ((cake with ice d t)). 

Now let’s try this variation. 

(run6 (y) 
(fresh (x ) 

(append o x y  ((cake with ice d t))))) 

What is its value? 

25 

((((cake with ice d t)) 
((with ice d t)) 
((ice d t)) 
((d t)) 
((t)) 
(()))). 

How might we describe these values? 
26 

The values include all of the suffixes of the 
list ((cake with ice d t)). 

Let’s combine the previous two results. 
What is the value of 

(run6 (r) 
(fresh (x y) 

(append o x y  ((cake with ice d t))) 
(≡ ((x y)) r))) 

27 

(((((()) ((cake with ice d t)))) 
((((cake)) ((with ice d t)))) 
((((cake with)) ((ice d t)))) 
((((cake with ice)) ((d t)))) 
((((cake with ice d)) ((t)))) 
((((cake with ice d t)) (()))))). 

How might we describe these values? 
28 

Each value includes two lists that, when 
appended together, form the list 

((cake with ice d t)). 

What is the value of 

(run7 (r) 
(fresh (x y) 

(append o x y  ((cake with ice d t))) 
(≡ ((x y)) r))) 

29 
It has no value, 

since it is still looking for the seventh 
value. 

Should its value be the same as if we asked 
for only six values? 

30 
Yes, that would make sense. 
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How can we change the definition of append o 31 
Swap the last two goals of append o . 

so that is indeed what happens? 
(define append o 

(lambda (l s  out) 
(conde 

((null o l) (≡ s out)) 
(else 

(fresh (a d res) 
(cons o a d l) 
(cons o a res out) 
(append o d s res)))))) 

Now, using this revised definition of append o , 
32 

The value is in frame 27. 
what is the value of 

(run7 (r) 
(fresh (x y)
 

(append o x y  ((cake with ice d t)))
 
(≡ ((x y)) r)))
 

What is the value of 
33 

(((()) 
(( 0 ))(run7 (x ) 
(( 0 1 ))(fresh (y z  ) 
(( 0 1 2 ))(append o x y z  ))) 
(( 0 ))1 2 3 

(( 0 ))1 2 3 4 

(( 0 )))).1 2 3 4 5 

What is the value of 
34 

(( 0 

(run7 (y) 0 

0(fresh (x z  ) 
0 

0 

0 

(append o x y z  ))) 

0 )). 

It should be obvious how we get the first 
35 

A new  fresh variable  res is passed into each 
value. Where do the last four values come recursive call to append o . After (null o l) 
from? succeeds, res is associated with s, which is 

the fresh variable z . 
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What is the value of 

(run7 (z ) 
(fresh (x y) 

(append o x y  z  ))) 

36 

(( 0 

(( 0 ! 1 )) 
(( 0 1 ! 2 )) 
(( 0 1 2 ! 3 )) 
(( 0 1 2 3 ! 4 )) 
(( 0 1 2 3 4 ! 5 )) 
(( 0 1 2 3 4 5 ! 6 )))). 

Let’s combine the previous three results. 
What is the value of 

(run7 (r) 
(fresh (x y  z  ) 

(append o x y  z  ) 
(≡ ((x y  z  )) r))) 

37 

(((((()) 0 0 )) 
(((( 0 )) 1 (( 0 ! 1 )))) 
(((( 0 1 )) 2 (( 0 1 ! 2 )))) 
(((( 0 1 2 )) 3 (( 0 1 2 ! 3 )))) 
(((( 0 1 2 3 )) 4 (( 0 1 2 3 ! 4 )))) 
(((( 0 1 2 3 4 )) 5 (( 0 1 2 3 4 ! 5 )))) 
(((( 0 1 2 3 4 5 )) 6 (( 0 1 2 3 4 5 ! 6 )))))). 

Define swappend o, which is just append o 38 
That’s a snap. 

with its two conde lines swapped. 
(define swappend o 

(lambda (l s  out) 
(conde 

(#s 
(fresh (a d res) 

(cons o a d l) 
(cons o a res out) 
(swappend o d s res))) 

(else (null o l) (≡ s out))))) 

What is the value of 
39 

It has no value. 

(run1 (z )
 
(fresh (x y)
 

(swappend o x y z  )))
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Why does 

(run1 (z )
 
(fresh (x y)
 

(swappend o x y z  )))
 

have no value?† 

† We can redefine swappend o so that this run expression 
has a value. 

(define swappend o 

(lambda-limited 5 (l s out) 
(conde 

(#s 
(fresh (a d res) 

o(cons a d l) 
o(cons a res  out)
 

(swappend o d s res)))
 
(else (null o l) (≡ s out)))))
 

Where lambda-limited is defined on the right. 

40 

In (swappend o d s res) the variables  d , s, 
and res remain fresh, which is where we 
started. 

Here is lambda-limited with its auxiliary function ll. 

(define-syntax lambda-limited
 
(syntax-rules ()
 

(( n formals  g)
 
(let ((x (var x)))
 

(lambda formals
 
(ll n x g))))))
 

(define ll
 
(lambda (n x g)
 

(λG (s)
 
(let ((v (walk x s)))
 

(cond 
((var? v) (g (ext-s x 1 s))) 
((< v n) (g (ext-s x (+ v 1) s))) 
(else (#u s))))))) 

The functions var, walk, and ext-s are described in 9:6, 9:27, 
and 9:29, respectively. λG (see appendix) is just lambda. 

Consider this definition. 
41 

pizza. 

(define unwrap 
(lambda (x ) 

(cond 
((pair? x ) (unwrap (car x ))) 
(else x )))) 

What is the value of 

(unwrap ((((((((pizza))))))))) 

What is the value of 
42 

pizza. 

(unwrap ((((((((pizza pie)) with)))) extra cheese))) 

This might be a good time for a pizza break. 
43 

Good idea. 

Back so soon? Hope you are not too full. 
44 

Not too. 
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Define unwrap o . 
45 

That’s a slice of pizza! 

(define unwrap o 

(lambda (x out) 
(conde 

((pair o x ) 
(fresh (a) 

(car o x a) 
(unwrap o a out))) 

(else (≡ x out))))) 

What is the value of 

(run ∗ (x ) 
(unwrap o ((((((pizza)))))) x )) 

46 

((pizza 
((pizza)) 
((((pizza)))) 
((((((pizza)))))))). 

The first value of the list seems right. In 
what way are the other values correct? 

47 
They represent partially wrapped versions of 
the list ((((((pizza)))))). And  the  last  value  is  the  
fully-wrapped original list ((((((pizza)))))). 

What is the value of 

(run1 (x ) 
(unwrap o x pizza)) 

48 
It has no value. 

What is the value of 

(run1 (x ) 
(unwrap o ((((x )))) pizza)) 

49 
It has no value. 

Why doesn’t 

(run1 (x ) 
(unwrap o ((((x )))) pizza)) 

have a value? 

50 
The recursion happens too early. Therefore 
the (≡ x out) goal is not reached. 

What can we do about that? 
51 

Introduce a revised definition of unwrap o? 
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Yes. Let’s swap the two conde lines as in 
52 

Like this. 
3:98. 

(define unwrap o 

(lambda (x out) 
(conde 

(#s (≡ x out)) 
(else 

(fresh (a) 
(car o x a) 
(unwrap o a out)))))) 

What is the value of 
53 

((pizza 
((pizza ! 0 ))(run5 (x ) 
((((pizza ! 0 )) ! 1 ))(unwrap o x pizza)) 
((((((pizza ! )) ! )) ! ))0 1 2 

((((((((pizza ! )) ! )) ! )) ! )))).0 1 2 3 

What is the value of 
54 

((((((pizza)))) 
((((((pizza)))) ! 0 ))(run5 (x ) 
((((((((pizza)))) ! 0 )) ! 1 ))(unwrap o x ((((pizza)))))) 
((((((((((pizza)))) ! )) ! )) ! ))0 1 2 

((((((((((((pizza)))) ! )) ! )) ! )) ! )))).0 1 2 3 

What is the value of 
55 

((pizza 
((pizza ! 0 ))(run5 (x ) 
((((pizza ! 0 )) ! 1 ))(unwrap o ((((x )))) pizza)) 
((((((pizza ! )) ! )) ! ))0 1 2 

((((((((pizza ! )) ! )) ! )) ! )))).0 1 2 3 

If you haven’t taken a pizza break yet, stop 
56 

Okay, okay!
 
and take one now! We’re taking an ice cream
 
break.
 

Did you enjoy the pizza as much as we 
57 

Indubitably! 
enjoyed the ice cream? 
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Consider this definition. 
58 

((a b c)). 

(define flatten 
(lambda (s) 

(cond 
((null? s) (())) 
((pair? s) 
(append 

(flatten (car s)) 
(flatten (cdr s)))) 

(else (cons s (())))))) 

What is the value of 

(flatten ((((a b)) c))) 

Define flatten o . 
59 

Here it is. 

(define flatten o 

(lambda (s out) 
(conde 

((null o s) (≡ (()) out)) 
((pair o s) 
(fresh (a d  res-a res-d) 

(cons o a d s)† 

(flatten o a res-a) 
(flatten o d res-d ) 
(append o res-a res-d out ))) 

(else (cons o s (()) out))))) 

† See 4:27. 

What value is associated with x in 

(run1 (x ) 
(flatten o ((((a b)) c)) x )) 

60 

((a b c)). 
No surprises here. 

What value is associated with x in 

(run1 (x ) 
(flatten o ((a ((b c)))) x )) 

61 

((a b c)). 
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What is the value of 
62 

((((a)) 
((a (()))) (run ∗ (x ) 
((((a)))))).(flatten o ((a)) x )) 
Here is a surprise! 

The value in the previous frame contains 
63 

None of the lists are the same.
 
three lists. Which of the lists, if any, are the
 
same?
 

What is the value of 
64 

((((a)) 
((a (()))) (run ∗ (x ) 
((a (()))) (flatten o ((((a)))) x )) 
((a (()) (()))) 
((((a)))) 
((((a)) (()))) 
((((((a)))))))). 

The value in the previous frame contains 
65 

The second and third lists are the same.
 
seven lists. Which of the lists, if any, are the
 
same?
 

What is the value of 
66 

((((a)) 
((a (()))) (run ∗ (x ) 
((a (()))) (flatten o ((((((a)))))) x )) 
((a (()) (()))) 
((a (()))) 
((a (()) (()))) 
((a (()) (()))) 
((a (()) (()) (()))) 
((((a)))) 
((((a)) (()))) 
((((a)) (()))) 
((((a)) (()) (()))) 
((((((a)))))) 
((((((a)))) (()))) 
((((((((a)))))))))). 
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The value in the previous frame contains 
67 

The second, third, and fifth lists are the 
fifteen lists. Which of the lists, if any, are the same; the fourth, sixth, and seventh lists are 
same? the same; and the tenth and eleventh lists 

are the same. 

What is the value of 
68 

((((a b c)) 
((a b c (()))) (run ∗ (x ) 
((a b ((c)))) (flatten o ((((a b)) c)) x )) 
((a b (()) c)) 
((a b (()) c (()))) 
((a b (()) ((c)))) 
((a ((b)) c)) 
((a ((b)) c (()))) 
((a ((b)) ((c)))) 
((((a b)) c)) 
((((a b)) c (()))) 
((((a b)) ((c)))) 
((((((a b)) c)))))). 

The value in the previous frame contains 
69 

None of the lists are the same.
 
thirteen lists. Which of the lists, if any, are
 
the same?
 

Characterize that list of lists. 
70	 

Each list flattens to ((a b c)). These  are  all  
the lists generated by attempting to flatten 
((((a b)) c)). Remember  that  a  singleton  list  
((a)) is really the same as ((a ! (()))), and with 
that additional perspective the pattern 
becomes clearer. 

What is the value of 
71	 

It has no value. 

(run ∗ (x )
 
(flatten o x ((a b c))))
 

What can we do about it?	 
72 

Swap some of the conde lines? 
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Yes. Here is a variant of flatten o . 

(define flattenrev o 

(lambda (s out) 
(conde 

(#s (cons o s (()) out)) 
((null o s) (≡ (()) out)) 
(else 

(fresh (a d  res-a res-d) 
(cons o a d  s) 
(flattenrev o a res-a) 
(flattenrev o d res-d) 
(append o res-a res-d out )))))) 

How does flatten o differ from this variant? 

73 
The last conde line of flatten o is the first 
conde line of this variant (see 3:98). 

In flatten o there is a (pair o s) test.  Why  
doesn’t flattenrev o have the same test? 

74 

Because (cons o a d  s) in the fresh 
expression guarantees that s is a pair. In 
other words, the (pair o s) question is 
unnecessary in flatten o . 

What is the value of 

(run ∗ (x ) 
(flattenrev o ((((a b)) c)) x )) 

75 

((((((((a b)) c)))) 
((((a b)) ((c)))) 
((((a b)) c (()))) 
((((a b)) c)) 
((a ((b)) ((c)))) 
((a ((b)) c (()))) 
((a ((b)) c)) 
((a b (()) ((c)))) 
((a b (()) c (()))) 
((a b (()) c)) 
((a b ((c)))) 
((a b c (()))) 
((a b c)))). 

What is the value of 

(reverse 
(run ∗ (x ) 

(flattenrev o ((((a b)) c)) x ))) 

76 
The value in frame 68. 
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What is the value of 
77 

((((a b ! c)) 
((a b c)))).(run2 (x )
 

(flattenrev o x ((a b c))))
 

Why is the value 
78	 

Because (flattenrev o ((a b ! c)) ((a b c))) and 
(flattenrev o ((a b c)) ((a b c))) both succeed.  ((((a b ! c))
 

((a b c))))
 

What is the value of 
79 

It has no value. 
In fact, it is still trying to determine the (run3 (x ) 
third value. (flattenrev o x ((a b c)))) 

What is the value of 
80 

574. 

(length Wow! 

(run ∗ (x ) 
(flattenrev o ((((((((a ((((((b)))))) c)))))) d)) x ))) 

=⇒ Now go make yourself a cashew butter and chutney sandwich. ⇐= 

This space reserved for 

CHUTNEY STAINS! 
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Chapter 6

The Fun Never Ends . . .



Here is an unusual definition. 
1 

Yes. 

(define any o 

(lambda (g) 
(conde 

(g #s) 
(else (any o g))))) 

Is it recursive? 

Is there a base case? 
2 

Yes. 

Can any o ever succeed? 
3 

Yes, if the goal g succeeds. 

Here is another definition. 

(define never o (any o #u)) 

Can never o ever succeed or fail? 

4 
No, 

because although the question of the first 
conde line within any o fails, the answer of 
the second conde line, (any o #u), is where 
we started. 

What is the value of 

(run1 (q) 
never o 

(≡ #t q)) 

5 

Of course, the run1 expression has no value. 

What is the value of 

(run1 (q) 
#u 
never o) 

6 

(()), 
because #u fails before never o is reached. 

Here is a useful definition. 

(define always o (any o #s)) 

7 
#t. 

What value is associated with q in 

(run1 (q)
 
always o
 

(≡ #t q))
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Compare always o to #s. 
8 

always o always can succeed any number of 
times, whereas #s can succeed only once. 

What is the value of 

(run ∗ (q) 
always o 

(≡ #t q)) 

9 
It has no value, 

since run ∗ never finishes building the list 
((#t #t #t ... 

What is the value of 

(run5 (q) 
always o 

(≡ #t q)) 

10 

((#t #t #t #t #t)). 

And what is the value of 

(run5 (q) 
(≡ #t q) 
always o) 

11 

It’s the same: ((#t #t #t #t #t)). 

†Here is the definition of sal o . 
12 

No. 

(define sal o 

(lambda (g) 
(conde 

(#s #s) 
(else g)))) 

Is sal o recursive? 

† sal o stands for “succeeds at least once”. 

What is the value of 
13 

((#t)), 

(run1 (q) 
(sal o always o) 

because the first conde line of sal o 

succeeds. 

(≡ #t q)) 
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What is the value of 

(run1 (q) 
(sal o never o) 
(≡ #t q)) 

14 

((#t)), 
because the first conde line of sal o 

succeeds. 

What is the value of 

(run ∗ (q) 
(sal o never o) 
(≡ #t q)) 

15 
It has no value, 

because run ∗ never finishes determining 
the second value. 

What is the value of 

(run1 (q) 
(sal o never o) 
#u 
(≡ #t q)) 

16 
It has no value, 

because when the #u occurs, we pretend 
that the first conde line of sal o fails, 
which causes conde to try never o, which 
neither succeeds nor fails. 

What is the value of 

(run1 (q) 
always o 

#u 
(≡ #t q)) 

17 
It has no value, 

because always o succeeds, followed by #u, 
which causes always o to be retried, which 
succeeds again, which leads to #u again, 
which causes always o to be retried again, 
which succeeds again, which leads to #u, 
etc. 

What is the value of 

(run1 (q) 
(conde 

((≡ #f q) always o) 
(else (any o (≡ #t q)))) 

(≡ #t q)) 

18 
It has no value. 

First, #f gets associated with q , then 
always o succeeds once. But in the outer 
(≡ #t q) we can’t associate #t with q since 
q is already associated with #f. So the 
outer (≡ #t q) fails, then always o succeeds 
again, and then (≡ #t q) fails  again, etc.  
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19 

What is the value of † ((#t)), 
because after the first failure, instead of (run1 (q) staying on the first line we try the second (condi 
condi line.((≡ #f q) always o)
 

(else (≡ #t q)))
 
(≡ #t q))
 

† condi is written condi and is pronounced “con-deye”. 

What happens if we try for more values? 
20 

It has no value, 
since the second condi line is out of values. (run2 (q) 

(condi
 

((≡ #f q) always o)
 
(else (≡ #t q)))
 

(≡ #t q)) 

So does this give more values? 
21	 

Yes, it yields as many as are requested, 

(run5 (q) ((#t #t #t #t #t)). 
(condi always o succeeds five times, but 

((≡ #f q) always o) contributes none of the five values, since 
(else (any o (≡ #t q)))) then #f would be in the list. 

(≡ #t q)) 

22 

Compare condi to conde .	 condi looks and feels like conde . condi 

does not, however, wait until all the 
successful goals on a line are exhausted 
before it tries the next line. 

Are there other differences? 
23	 

Yes. A condi line that has additional values 
is not forgotten. That is why there is no 
value in frame 20. 
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The Law of condi 

condi behaves like conde , except 
that its values are interleaved. 

What is the value of 

(run5 (r) 
(condi 

((teacup o† r ) #s) 
((≡ #f r) #s) 
(else #u))) 

24 

((tea #f cup)). 

† See 1:56. 

Let’s be sure that we understand the 
difference between conde and condi . 
What is the value of 

(run5 (q) 
(condi 

((≡ #f q) always o) 
((≡ #t q) always o) 
(else #u)) 

(≡ #t q)) 

25 

((#t #t #t #t #t)). 

And if we replace condi by conde, do we get  
26 

No,
 
the same value? then the expression has no value.
 

Why does 

(run5 (q) 
(conde 

((≡ #f q) always o) 
((≡ #t q) always o) 
(else #u)) 

(≡ #t q)) 

have no value? 

27 
It has no value, 

because the first conde line succeeds, but 
the outer (≡ #t q) fails.  This  causes  the  
first conde line to succeed again, etc. 
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What is the value of 
28 

It is ((#t #t #t #t #t)). 

(run5 (q) 
(conde
 

(always o #s)
 
(else never o))
 

(≡ #t q)) 

And if we replace conde by condi, do we get  
29 

No. 
the same value? 

And what about the value of 
30 

It has no value, 

(run5 (q) 
(condi 

(always o #s) 
(else never o)) 

because after the first condi line succeeds, 
rather than staying on the same condi 

line, it tries for more values on the second 
condi line, but that line is never o . 

(≡ #t q)) 

What is the value of † 

(run1 (q)
 
(all
 

(conde
 

((≡ #f q) #s)
 
(else (≡ #t q)))
 

always o)
 
(≡ #t q))
 

† The goals of an all must succeed for the all to succeed. 

31 
It has no value. 

First, #f is associated with q . Then 
always o, the second goal of the  all 
expression, succeeds, so the entire all 
expression succeeds. Then (≡ #t q) tries to  
associate a value that is different from #f 
with q . This  fails. So  always o succeeds 
again, and once again the second goal, 
(≡ #t q), fails. Since always o always 
succeeds, there is no value. 

Have a slice of Key lime pie. 
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32 

Now, what is the value of † ((#t)). 
First, #f is associated with q . Then,(run1 (q) always o succeeds. Then the outer goal (alli 
(≡ #t q) fails. This time, however, alli 

(conde 
moves on to the second conde line and ((≡ #f q) #s) associates #t with q . Then always o 

(else (≡ #t q))) succeeds, as does the outer (≡ #t q).always o)
 
(≡ #t q))
 

† alli is written alli and is pronounced “all-eye”. 

Now, what if we want more values? 
33 

((#t #t #t #t #t)). 
always o succeeds ten times, with the value (run5 (q) 
associated with q alternating between #f(alli 

and #t.(conde
 

((≡ #f q) #s)
 
(else (≡ #t q)))
 

always o)
 
(≡ #t q))
 

What if we swap the two conde lines? 
34 

Its value is the same: ((#t #t #t #t #t)). 

(run5 (q)
 
(alli
 

(conde
 

((≡ #t q) #s)
 
(else (≡ #f q)))
 

always o)
 
(≡ #t q))
 

What does the “i” stand for in  condi and 
35 

It stands for interleave. 
alli 
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Let’s be sure that we understand the 
36 

((#t #t #t #t #t)). 
difference between all and alli . What is the 
value of 

(run5 (q)
 
(all
 

(conde
 

(#s #s)
 
(else never o))
 

always o)
 
(≡ #t q))
 

And if we replace all by alli, do we  get  the  
37 

No,
 
same value? it has no value.
 

Why does 
38 

It has no value, 
because the first conde line succeeds, and (run5 (q) 
the outer (≡ #t q) succeeds.  This yields  (alli 

one value, but when we go for a second (conde 

value, we reach never o .(#s #s)
 
(else never o))
 

always o)
 
(≡ #t q))
 

have no value? 

Could condi have been used instead of 
39 

Yes, 
conde in these last two examples?	 since none of the conde lines contribute 

more than one value. 

=⇒ This is a good time to take a break. ⇐= 
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This is 

A BREAK  
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Chapter 7

A Bit Too Much



Is 0 a bit? 
1 

Yes. 

Is 1 a bit? 
2 

Yes. 

Is 2 a bit? 
3 

No. 
A bit is either a 0 or a 1. 

Which bits are represented by x 
4 

0 and 1. 

Consider the definition of bit-xor o . 
5 

When x and y are the same.† 

(define bit-xor o 

(lambda (x y  r) 
(conde 

((≡ 0 x ) (≡ 0 y) (≡ 0 r)) 
((≡ 1 x ) (≡ 0 y) (≡ 1 r)) 
((≡ 0 x ) (≡ 1 y) (≡ 1 r)) 
((≡ 1 x ) (≡ 1 y) (≡ 0 r )) 
(else #u)))) 

† Another way to define bit-xor o is to use bit-nand o 

(define bit-xor o 

(lambda (x y  r) 
(fresh (s t  u) 

(bit-nand o x y  s) 
(bit-nand o x s  t) 
(bit-nand o s y  u) 
(bit-nand o t u  r)))) 

When is 0 the value of r where bit-nand o is 

(define bit-nand o 

(lambda (x y  r) 
(conde 

((≡ 0 x ) (≡ 0 y) (≡ 1 r)) 
((≡ 1 x ) (≡ 0 y) (≡ 1 r)) 
((≡ 0 x ) (≡ 1 y) (≡ 1 r)) 
((≡ 1 x ) (≡ 1 y) (≡ 0 r)) 
(else #u)))) 

bit-nand o is a universal binary boolean relation, since it can 
be used to define all other binary boolean relations. 

Demonstrate this using run ∗ . 
6 

(run ∗ (s) 
(fresh (x y) 

(bit-xor o x y  0) 
(≡ ((x y)) s))) 

which has the value 

((((0 0)) 
((1 1)))). 
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When is 1 the value of r 
7 

When x and y are different. 

Demonstrate this using run ∗ . 
8 

(run ∗ (s) 
(fresh (x y) 

(bit-xor o x y  1) 
(≡ ((x y)) s))) 

which has the value 

((((1 0)) 
((0 1)))). 

What is the value of 
9 

((((0 0 0)) 

(run ∗ (s) ((1 0 1)) 

(fresh (x y  r  ) ((0 1 1)) 

(bit-xor o x y  r  ) ((1 1 0)))). 
(≡ ((x y  r  )) s))) 

Consider the definition of bit-and o . 

(define bit-and o 

(lambda (x y r) 
(conde 

((≡ 0 x ) (≡ 0 y) (≡ 0 r)) 
((≡ 1 x ) (≡ 0 y) (≡ 0 r)) 
((≡ 0 x ) (≡ 1 y) (≡ 0 r)) 
((≡ 1 x ) (≡ 1 y) (≡ 1 r )) 
(else #u)))) 

When is 1 the value of r 

10 

When x and y are both 1. † 

† Another way to define bit-and o is to use bit-nand o and 
bit-not o 

(define bit-and o
 

(lambda (x y r)
 
(fresh (s)
 

(bit-nand o x y s)
 
(bit-not o s r))))
 

where bit-not o itself is defined in terms of bit-nand o 

(define bit-not o
 

(lambda (x r)
 
(bit-nand o x x r)))
 

Demonstrate this using run ∗ . 
11 

(run ∗ (s) 
(fresh (x y) 

(bit-and o x y  1) 
(≡ ((x y)) s))) 

which has the value 

((((1 1)))). 
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Consider the definition of half-adder o . 

(define half-adder o 

(lambda (x y  r  c) 
(all 

(bit-xor o x y  r  ) 
(bit-and o x y  c)))) 

What value is associated with r in 

(run ∗ (r) 
(half-adder o 1 1 r 1)) 

12 

0. † 

† half-adder o can be redefined as follows. 

(define half-adder o 

(lambda (x y  r  c) 
(conde 

((≡ 0 x ) (≡ 0 y) (≡ 0 r) (≡ 0 c)) 
((≡ 1 x ) (≡ 0 y) (≡ 1 r) (≡ 0 c)) 
((≡ 0 x ) (≡ 1 y) (≡ 1 r) (≡ 0 c)) 
((≡ 1 x ) (≡ 1 y) (≡ 0 r) (≡ 1 c)) 
(else #u)))) 

What is the value of 

(run ∗ (s) 
(fresh (x y  r  c) 

(half-adder o x y  r  c) 
(≡ ((x y  r  c)) s))) 

13 

((((0 0 0 0)) 
((1 0 1 0)) 
((0 1 1 0)) 
((1 1 0 1)))). 

Describe half-adder o . 
14 

Given the bits x , y , r , and c, half-adder o 

satisfies x + y = r + 2  · c. 

Here is full-adder o . 
15 

((0 1)). † 

(define full-adder o 

(lambda (b x  y  r  c) 
(fresh (w xy wz ) 

(half-adder o x y w xy) 
(half-adder o w b  r wz  ) 
(bit-xor o xy wz c)))) † full-adder o can be redefined as follows. 

The x , y , r , and c variables serve the same 
purpose as in half-adder o . full-adder o also 
takes a carry-in bit, b. What value is 
associated with s in 

(run ∗ (s) 
(fresh (r c) 

(full-adder o 0 1 1 r c) 
(≡ ((r c)) s))) 

(define full-adder o 

(lambda (b x  y  r  c) 
(conde 

((≡ 0 b) (≡ 0 x ) (≡ 0 y) (≡ 0 r) (≡ 0 c)) 
((≡ 1 b) (≡ 0 x ) (≡ 0 y) (≡ 1 r) (≡ 0 c)) 
((≡ 0 b) (≡ 1 x ) (≡ 0 y) (≡ 1 r) (≡ 0 c)) 
((≡ 1 b) (≡ 1 x ) (≡ 0 y) (≡ 0 r) (≡ 1 c)) 
((≡ 0 b) (≡ 0 x ) (≡ 1 y) (≡ 1 r) (≡ 0 c)) 
((≡ 1 b) (≡ 0 x ) (≡ 1 y) (≡ 0 r) (≡ 1 c)) 
((≡ 0 b) (≡ 1 x ) (≡ 1 y) (≡ 0 r) (≡ 1 c)) 
((≡ 1 b) (≡ 1 x ) (≡ 1 y) (≡ 1 r) (≡ 1 c)) 
(else #u)))) 
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What value is associated with s in 

(run ∗ (s) 
(fresh (r c) 

(full-adder o 1 1 1 r c) 
(≡ (( r c)) s))) 

16 

(( 1 1)) . 

What is the value of 

(run ∗ (s) 
(fresh (b x  y  r  c) 

(full-adder o b x  y  r  c) 
(≡ (( b x  y  r  c)) s))) 

17 

(((( 0 0 0 0 0)) 
(( 1 0 0 1 0)) 
(( 0 1 0 1 0)) 
(( 1 1 0 0 1)) 
(( 0 0 1 1 0)) 
(( 1 0 1 0 1)) 
(( 0 1 1 0 1)) 
(( 1 1 1 1 1)))) . 

Describe full-adder o . 
18 

Given the bits b, x , y , r , and c, full-adder o 

satisfies b + x + y = r + 2  · c. 

What is a number? 
19 

A number is an integer greater than or equal 
to zero. 

Is each number represented by a bit? 
20 

No. 
Each number is represented as a list of 
bits. 

Which list represents the number zero? 
21 

(( 0)) ? 

Not quite. Try again. 
22 

How about the empty list (()) ? 

Correct. Is there any number that (( 0)) 
represents? 

23 
No. 

Each number is represented uniquely, 
therefore (( 0)) cannot also represent the 
number zero. 
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Which list represents the number one? 
24 

(( 1)) , 
because the value of (( 1)) is 1 · 20, which is 
the number one. 

Which number is represented by 

(( 1 0 1)) 

25 
5, 

because the value of (( 1 0 1)) is 
1 · 20 + 0  · 21 + 1  · 22, which is  the  same as  
1 + 0 + 4, which is five. 

Correct. Which number is represented by 

(( 1 1 1)) 

26 
7, 

because the value of (( 1 1 1)) is 
1 · 20 + 1  · 21 + 1  · 22, which is  the  same as  
1 + 2 + 4, which is seven. 

Also correct. Which list represents 9 
27 

(( 1 0 0 1)) , 
because the value of (( 1 0 0 1)) is 
1 · 20 + 0  · 21 + 0  · 22 + 1  · 23, which is the 
same as 1 + 0 + 0 + 8, which is nine. 

Yes. How do we represent 6 
28 

As the list (( 1 1 0)) ? 

No. Try again. 
29 

Then it must be (( 0 1 1)) , 
because the value of (( 0 1 1)) is 
0 · 20 + 1  · 21 + 1  · 22, which is  the  same as  
0 + 2 + 4, which is six. 

Correct. Does this seem unusual? 
30 

Yes, it seems very unusual. 

How do we represent 19 
31 

As the list (( 1 1 0 0 1)) ? 

Yes. How do we represent 17290 
32 

As the list (( 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1)) ? 
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Correct again. What is interesting about the 
33 

They contain only 0’s and 1’s.
 
lists that represent the numbers that we have
 
seen?
 

Yes. What else is interesting? 
34 

Every list ends with a 1. 

Does every list representation of a number 
end with a 1? 

35 

Yes, except for the empty list (()) , which 
represents zero. 

Compare the numbers represented by n and 
(( 0 ! n)) 

36 

(( 0 ! n)) is twice n. 
But n cannot be (()) , since  (( 0 ! n)) is (( 0)) , 
which does not represent a number. 

If n were (( 1 0 1)) , what would (( 0 ! n)) be? 
37 

(( 0 1 0 1)) , 
since twice five is ten. 

Compare the numbers represented by n and 
(( 1 ! n)) 

38 

(( 1 ! n)) is one more than twice n, 
even when n is (()) . 

If n were (( 1 0 1)) , what would (( 1 ! n)) be? 
39 

(( 1 1 0 1)) , 
since one more than twice five is eleven. 

What is the value of 

(build-num 0) 

40 

(()) . 

What is the value of 

(build-num 36) 

41 

(( 0 0 1 0 0 1)) . 

What is the value of 

(build-num 19) 

42 

(( 1 1 0 0 1)) . 
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Define build-num. 
43 

Here is one way to define it. 

(define build-num 
(lambda (n) 

(cond 
((zero? n) (())) 
((and (not (zero? n)) (even? n)) 
(cons 0 

(build-num (÷ n 2)))) 
((odd? n) 
(cons 1 

(build-num (÷ (− n 1) 2))))))) 

Redefine build-num, where (zero? n) is not  
44 

That’s easy. 
the question of the first cond line. 

(define build-num 
(lambda (n) 

(cond 
((odd? n) 
(cons 1 

(build-num (÷ (− n 1) 2)))) 
((and (not (zero? n)) (even? n)) 
(cons 0 

(build-num (÷ n 2)))) 
((zero? n) (()))))) 

Is there anything interesting about these 
45 

For any number n, one and only one  cond 
definitions of build-num question is true.† 

† Thank you Edsger W. Dijkstra (1930–2002). 

Can we rearrange the cond lines in any 
order? 

46 
Yes. 

This is called the non-overlapping 
property. It  appears  rather  frequently  
throughout this and the next chapter. 
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What is the sum of (( 1)) and (( 1)) 
47 

(( 0 1)) , which is just two. 

What is the sum of (( 0 0 0 1)) and (( 1 1 1)) 
48 

(( 1 1 1 1)) , which is just fifteen. 

What is the sum of (( 1 1 1)) and (( 0 0 0 1)) 
49 

(( 1 1 1 1)) , which is just fifteen. 

What is the sum of (( 1 1 0 0 1)) and (()) 
50 

(( 1 1 0 0 1)) , which is just nineteen. 

What is the sum of (()) and (( 1 1 0 0 1)) 
51 

(( 1 1 0 0 1)) , which is just nineteen. 

What is the sum of (( 1 1 1 0 1)) and (( 1)) 
52 

(( 0 0 0 1 1)) , which is  just twenty-four.  

Which number is represented by 

(( x 1)) 

53 
It depends on what x is. 

Which number would be represented by 

(( x 1)) 

if x were 0? 

54 
Two, 

which is represented by (( 0 1)) . 

Which number would be represented by 

(( x 1)) 

if x were 1? 

55 
Three, 

which is represented by (( 1 1)) . 

So which numbers are represented by 

(( x 1)) 

56 
Two and three. 

Which numbers are represented by 

(( x x 1)) 

57 
Four and seven, 

which are represented by (( 0 0 1)) 
and (( 1 1 1)) , respectively.  
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Which numbers are represented by 

(( x 0 y 1)) 

58 
Eight, nine, twelve, and thirteen, 

which are represented by (( 0 0 0 1)) , 
(( 1 0 0 1)) , (( 0 0 1 1)) , and (( 1 0 1 1)) , 
respectively. 

Which numbers are represented by 

(( x 0 y z)) 

59 
Once again, eight, nine, twelve, and thirteen, 

which are represented by (( 0 0 0 1)) , 
(( 1 0 0 1)) , (( 0 0 1 1)) , and (( 1 0 1 1)) , 
respectively. 

Why do both (( x 0 y 1)) and (( x 0 y z)) 
represent the same numbers? 

60 
Because z must be either a 0 or a 1. If z 
were 0, then (( x 0 y z)) would not represent 
any number. Therefore z must be 1. 

Which number is represented by 

(( x)) 

61 
One, 

which is represented by (( 1)) , since  (( 0)) does 
not represent a number. 

What does z represent? 
62 

Every number greater than or equal to zero. 

Which numbers are represented by 

(( 1 ! z)) 

63 
It depends on what z is. 

Which number is represented by 

(( 1 ! z)) 
where z is (()) 

64 
One, 

since (( 1 ! (()))) is (( 1)) . 

Which number is represented by 

(( 1 ! z)) 
where z is (( 1)) 

65 
Three, 

since (( 1 ! (( 1)))) is (( 1 1)) . 
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Which number is represented by 

(( 1 ! z )) 

where z is (( 0 1)) 

66 
Five, 

since (( 1 ! (( 0 1)))) is (( 1 0 1)) . 

So which numbers are represented by 

(( 1 ! z )) 

67 
All the odd numbers? 

Right. Then, which numbers are represented 
by 

(( 0 ! z )) 

68 
All the even numbers? 

Not quite. Which even number is not of the 
form (( 0 ! z )) 

69 

Zero, which is represented by (()) . 

For which values of z does 

(( 0 ! z )) 

represent numbers? 

70 
All numbers greater than zero. 

Are the even numbers all the numbers that 
are multiples of two? 

71 
Yes. 

Which numbers are represented by 

(( 0 0 ! z )) 

72 
Every other even number, starting with four. 

Which numbers are represented by 

(( 0 1 ! z )) 

73 
Every other even number, starting with two. 

Which numbers are represented by 

(( 1 0 ! z )) 

74 
Every other odd number, starting with five. 

96 Chapter 7 



Which numbers are represented by 

(( 1 0 y ! z )) 

75 
Once again, every other odd number, 
starting with five. 

Why do (( 1 0 ! z )) and (( 1 0 y ! z )) represent 
the same numbers? 

76 
Because z cannot be the empty list in 
(( 1 0 ! z )) and y cannot be 0 when z is the 
empty list in (( 1 0 y ! z )) . 

Which numbers are represented by 

(( 0 y ! z )) 

77 
Every even number, starting with two. 

Which numbers are represented by 

(( 1 y ! z )) 

78 
Every odd number, starting with three. 

Which numbers are represented by 

(( y ! z )) 

79 
Every number, starting with one—in other 
words, the positive numbers. 

Consider the definition of pos o . 
80 

#t. 

(define pos o 

(lambda (n) 
(fresh (a d) 

(≡ (( a ! d)) n)))) 

What value is associated with q in 
∗(run (q)
 

(pos o (( 0 1 1)) )
 
(≡ #t q))
 

What value is associated with q in 
81 

#t. 
∗(run (q)
 

(pos o (( 1)) )
 
(≡ #t q))
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What is the value of 

(run ∗ (q) 
(pos o (())) 
(≡ #t q)) 

82 

(()). 

What value is associated with r in 

(run ∗ (r) 
(pos o r )) 

83 

(( 0 ! 1 )). 

Does this mean that (pos o r) always 
succeeds when r is a fresh variable? 

84 
Yes. 

Which numbers are represented by 

((x y  ! z )) 

85 
Every number, starting with two—in other 
words, every number greater than one. 

Consider the definition of >1o . 
86 

#t. 

(define >1o 

(lambda (n) 
(fresh (a ad dd )† 

(≡ ((a ad ! dd)) n)))) 

What value is associated with q in 

(run ∗ (q)
 
(>1o ((0 1 1)))
 
(≡ #t q))
 

† The names a, ad , and dd correspond to car, cadr , and 
cddr . 

What is the value of 
87 

((#t)). 
(run ∗ (q)
 

(>1o ((0 1)))
 
(≡ #t q))
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What is the value of 

(run ∗ (q) 
(>1 o (( 1)) ) 
(≡ #t q)) 

88 

(()) . 

What is the value of 

(run ∗ (q) 
(>1 o (()) ) 
(≡ #t q)) 

89 

(()) . 

What value is associated with r in 

(run ∗ (r) 
(>1 o r)) 

90 

(( 0 1 ! 2 )) . 

Does this mean that (>1 o r ) always succeeds 
91 

Yes. 
when r is a fresh variable? 

An n-representative is the first n bits of a 
92 

(( 0 1 1)) . 
number, up to and including the rightmost 1. 
If there is no rightmost 1, then the 
n-representative is the empty list. What is 
the n-representative of 

(( 0 1 1)) 

What is the n-representative of 
93 

(( 0 x 1)) , 
since everything to the right of the (( 0 x 1 0 y ! z )) 
rightmost 1 is ignored. 

What is the n-representative of 
94 

(()) , 
since there is no rightmost 1.(( 0 0 y ! z )) 

What is the n-representative of 
95 

(()) . 
z 
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What is the value of † 

(run3 (s) 
(fresh (x y  r  ) 

(adder o 0 x y  r  ) 
(≡ ((x y  r  )) s))) 

96 
That depends on the definition of adder o , 
which we do not see until frame 118. But we 
can understand adder o: given the bit d , and 
the numbers n, m, and r , adder o satisfies 
d + n + m = r. 

What is the value of † 

(run3 (s) 
(fresh (x y  r  ) 

(adder o 0 x y  r  ) 
(≡ ((x y  r  )) s))) 

97 

(((( 0 (()) 0 )) 
(((()) (( 0 ! 1 )) (( 0 ! 1 )))) 
((((1)) ((1)) ((0 1)))))). 
(adder o 0 x y  r) sums x and y to produce 
r . For example, in the first value, zero 
added to a number is the number. In the 
second value, the sum of (()) and (( 0 ! 1 )) is 
(( 0 ! 1 )). In  other  words,  the  sum  of  zero  
and a positive number is the positive 
number. 

Is ((((1)) ((1)) ((0 1)))) a ground value? 
98 

Yes. 

Is (( 0 (()) 0 )) a ground value? 
99 

No, 
because it contains one or more variables.† 

† 
0 (( In fact, ()() ))0 has no variables, however prior to being 

reified, it contained two occurrences of the same variable. 

What can we say about the three values in 
100 

The third value is ground and the other two 
frame 97? values are not. 

Before reading the next frame, 

Treat Yourself to a Hot Fudge Sundae! 
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What is the value of 
101 

(((( 0 (()) 0 )) 
(((()) (( 0 ! 1 )) (( 0 ! 1 )))) (run22 (s) 
((((1)) ((1)) ((0 1)))) (fresh (x y r) 

o ((((1)) ((0 0 ! 1 )) ((1 0 ! 1 )))) (adder 0 x y r) 
((((0 0 ! 1 )) ((1)) ((1 0 ! 1 )))) (≡ ((x y r)) s))) 
((((1)) ((1 1)) ((0 0 1))))
 
((((0 1)) ((0 1)) ((0 0 1))))
 
((((1)) ((1 0  0 ! 1 )) ((0 1  0 ! 1 ))))
 
((((1 1)) ((1)) ((0 0 1))))
 
((((1)) ((1 1 1)) ((0 0 0 1))))
 
((((1 1)) ((0 1)) ((1 0 1))))
 
((((1)) ((1 1 0  0 ! 1 )) ((0 0 1  0 ! 1 ))))
 
((((1 0  0 ! 1 )) ((1)) ((0 1  0 ! 1 ))))
 
((((1)) ((1 1 1 1)) ((0 0 0 0 1))))
 
((((0 1)) ((0 0  0 ! 1 )) ((0 1  0 ! 1 ))))
 
((((1)) ((1 1 1 0  0 ! 1 )) ((0 0 0 1  0 ! 1 ))))
 
((((1 1 1)) ((1)) ((0 0 0 1))))
 
((((1)) ((1 1 1 1 1)) ((0 0 0 0 0 1))))
 
((((0 1)) ((1 1)) ((1 0 1))))
 
((((1)) ((1 1 1 1 0  0 ! 1 )) ((0 0 0 0 1  0 ! 1 ))))
 
((((1 1 0  0 ! 1 )) ((1)) ((0 0 1  0 ! 1 ))))
 
((((1)) ((1 1 1 1 1 1)) ((0 0 0 0 0 0 1)))))).
 

How many of its values are ground, and how 
102 

Eleven values are ground and eleven values 
many are not? are not. 

What are the nonground values? 
103 

(((( 0 (()) 0 )) 
(((()) (( 0 ! 1 )) (( 0 ! 1 )))) 
((((1)) ((0 0 ! 1 )) ((1 0 ! 1 )))) 
((((0 0 ! 1 )) ((1)) ((1 0 ! 1 )))) 
((((1)) ((1 0  0 ! 1 )) ((0 1  0 ! 1 )))) 
((((1)) ((1 1 0  0 ! 1 )) ((0 0 1  0 ! 1 )))) 
((((1 0  0 ! 1 )) ((1)) ((0 1  0 ! 1 )))) 
((((0 1)) ((0 0  0 ! 1 )) ((0 1  0 ! 1 )))) 
((((1)) ((1 1 1 0  0 ! 1 )) ((0 0 0 1  0 ! 1 )))) 
((((1)) ((1 1 1 1 0  0 ! 1 )) ((0 0 0 0 1  0 ! 1 )))) 
((((1 1 0  0 ! 1 )) ((1)) ((0 0 1  0 ! 1 )))))). 
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What interesting property do these eleven 
104 

The width† of r is the same as the width of 
values possess? the wider of x and y . 

† The width of a number n can be defined as 

(define width
 
(lambda (n)
 

(cond 
((null? n) 0) 
((pair? n) (+ (width (cdr n)) 1)) 
(else 1)))) 

What is another interesting property that 
these eleven values possess? 

105 
Variables appear in r , and in either x or y , 
but not in both. 

What is another interesting property that 
these eleven values possess? 

106 
Except for the first value, r always ends with 

0 ! 1 as does the wider of x and y . 

What is another interesting property that 
these eleven values possess? 

107 
The n-representative of r is equal to the sum 
of the n-representatives of x and y . 

In the ninth value, for example, the sum of 
(( 1)) and (( 1 1 1)) is (( 0 0 0 1)) . 

Describe the third value. 
108 

Huh? 

Here x is (( 1)) and y is (( 0 0 ! 1 )) , a positive 
even number. Adding x to y yields the odd 
numbers greater than one. Is the fifth value 
the same as the seventh? 

109 
Almost, 

since x + y = y + x. 

Does each value have a corresponding value 
in which x and y are swapped? 

110 
No. 

For example, the first two values do not 
correspond to any other values. 
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What is the corresponding value for the 
111 

((((1 1 1 1 0  0 ! 1 )) ((1)) ((0 0 0 0 1  0 ! 1 )))). 
tenth value?	 However, this is the nineteenth nonground 

value, and we have presented only the first 
eleven. 

Describe the seventh value. 
112 

Frame 75 shows that ((1 0  0 ! 1 )) represents 
every other odd number, starting at five. 
Incrementing each of those numbers by one 
produces every other even number, starting 
at six, which is represented by ((0 1  0 ! 1 )). 

Describe the eighth value. 
113	 

The eighth value is like the third value, but 
with an additional leading 0. In other words, 
each number is doubled. 

Describe the 198th value, which has the 
114 

((1 0 0  0 ! 1 )) represents every fourth odd 
value ((((0 0 1)) ((1 0 0  0 ! 1 )) ((1 0 1  0 ! 1 )))).	 number, starting at nine. Incrementing each 

of those numbers by four produces every 
fourth odd number, starting at thirteen, 
which is represented by ((1 0 1  0 ! 1 )). 

What are the ground values of frame 101? 
115 

((((((1)) ((1)) ((0 1)))) 
((((1)) ((1 1)) ((0 0 1)))) 
((((0 1)) ((0 1)) ((0 0 1)))) 
((((1 1)) ((1)) ((0 0 1)))) 
((((1)) ((1 1 1)) ((0 0 0 1)))) 
((((1 1)) ((0 1)) ((1 0 1)))) 
((((1)) ((1 1 1 1)) ((0 0 0 0 1)))) 
((((1 1 1)) ((1)) ((0 0 0 1)))) 
((((1)) ((1 1 1 1 1)) ((0 0 0 0 0 1)))) 
((((0 1)) ((1 1)) ((1 0 1)))) 
((((1)) ((1 1 1 1 1 1)) ((0 0 0 0 0 0 1)))))). 

What interesting property do these values 
possess? 

116 
The width of r is one greater than the width 
of the wider of x and y . 
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117
What is another interesting property of these Each list cannot be created from any list in 
values? frame 103, regardless of which values are 

chosen for the variables there. This is an 
example of the non-overlapping property 
described in frame 46. 

Here are adder o and gen-adder o . 
118 

A carry bit.† 

(define adder o 

(lambda (d n m r) 
(condi 

((≡ 0 d) (≡ (()) m) (≡ n r)) 
((≡ 0 d) (≡ (()) n) (≡ m r) 
(pos o m)) 

((≡ 1 d) (≡ (()) m) 
(adder o 0 n ((1)) r )) 

((≡ 1 d) (≡ (()) n) (pos o m) 
(adder o 0 ((1)) m r  )) 

((≡ ((1)) n) (≡ ((1)) m) 
(fresh (a c) 

(≡ ((a c)) r ) 
(full-adder o d 1 1 a c))) 

((≡ ((1)) n) (gen-adder o d n m r)) 
((≡ ((1)) m) (>1o n) (>1o r) 
(adder o d ((1)) n r  )) 

((>1o n) (gen-adder o d n m r)) 
(else #u)))) 

(define gen-adder o 

(lambda (d n m r) 
(fresh (a b c e x y z  ) 

(≡ ((a ! x )) n) 
(≡ ((b ! y)) m) (pos o y) 
(≡ ((c ! z )) r ) (pos o z ) 
(alli 

(full-adder o d a b c e) 
(adder o e x y z  ))))) 

What is d † See 10:26 for why gen-adder o requires alli instead of all. 

What are n, m, and r 
119 

They are numbers. 
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What value is associated with s in 

(run ∗ (s) 
(gen-adder o 1 ((0 1 1)) ((1 1)) s)) 

120 

((0 1 0 1)). 

What are a, b, c, d , and e 
121 

They are bits. 

What are n, m, r , x , y , and z 
122 

They are numbers. 

In the definition of gen-adder o, (pos o y) and 
123 

Because in the first call to gen-adder o from
 
(pos o z ) follow  (≡ ((b ! y)) m) and adder o , n can be ((1)).
 
(≡ ((c ! z )) r), respectively. Why isn’t there a
 
(pos o x )
 

What about the other call to gen-adder o 124 

The (>1o n) call that precedes the call to  
from adder o	 gen-adder o is the same as if we had placed a 

(pos o x ) following (≡ ((a ! x )) n). But if we 
were to use (pos o x ) in gen-adder o, then it 
would fail for n being ((1)). 

Describe gen-adder o . 
125	 

Given the bit d , and the numbers n, m, and 
r , gen-adder o satisfies d + n + m = r, 
provided that n is positive and m and r are 
greater than one. 

What is the value of 
126 

((((((1 0 1)) (()))) 
(((()) ((1 0 1)))) (run ∗ (s) 
((((1)) ((0 0 1)))) (fresh (x y) 
((((0 0 1)) ((1)))) (adder o 0 x y  ((1 0 1))) 
((((1 1)) ((0 1)))) (≡ ((x y)) s))) 
((((0 1)) ((1 1)))))). 

Describe the values produced by 
127	 

The values are the pairs of numbers that sum 
to five. (run ∗ (s) 

(fresh (x y)
 
(adder o 0 x y  ((1 0 1)))
 
(≡ ((x y)) s)))
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oWe can define +o using adder . 
128	 

Here is an expression that generates the pairs 
of numbers that sum to five: 

(define +o 
(run ∗ (s)(lambda (n m k) (fresh (x y)o(adder 0 n m k))) (+o x y ((1 0 1))) 

(≡ ((x y)) s))).
Use +o to generate the pairs of numbers that 
sum to five. 

What is the value of 
129 

((((((1 0 1)) (()))) 
(((()) ((1 0 1)))) (run ∗ (s) 
((((1)) ((0 0 1)))) (fresh (x y) 
((((0 0 1)) ((1)))) (+o x y ((1 0 1))) 
((((1 1)) ((0 1)))) (≡ ((x y)) s))) 
((((0 1)) ((1 1)))))). 

Now define −o using +o .	 
130 

That is easy. 

(define −o 

(lambda (n m k) 
(+o m k n))) 

What is the value of 

(run ∗ (q) 
(−o ((0 0 0 1)) ((1 0 1)) q)) 

131 

((((1 1)))). 

What is the value of 

(run ∗ (q) 
(−o ((0 1 1)) ((0 1 1)) q)) 

132 

(((()))). 

What is the value of 
133 

(()). 
Eight cannot be subtracted from six, since (run ∗ (q) 
we do not represent negative numbers. (−o ((0 1 1)) ((0 0 0 1)) q)) 

=⇒ Now go make yourself a baba ghanoush pita wrap. ⇐=
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What is the value of 
1 

(((((()) 0 (()))) 

(run34 (t) 
(fresh (x y  r  ) 

(∗o x y  r  ) 
(≡ ((x y  r  )) t))) 

(((( 0 ! 1 )) (()) (()))) 
((((1)) (( 0 ! 1 )) (( 0 ! 1 )))) 
(((( 0 1 ! 2 )) ((1)) (( 0 1 ! 2 )))) 
((((0 1)) (( 0 1 ! 2 )) ((0 0 1 ! 2 )))) 
((((1 0 ! 1 )) ((0 1)) ((0 1  0 ! 1 )))) 
((((0 0 1)) (( 0 1 ! 2 )) ((0 0  0 1 ! 2 )))) 
((((1 1)) ((1 1)) ((1 0 0 1)))) 
((((0 1  0 ! 1 )) ((0 1)) ((0 0 1  0 ! 1 )))) 
((((1 0 ! 1 )) ((0 0 1)) ((0 0 1  0 ! 1 )))) 
((((0 0 0 1)) (( 0 1 ! 2 )) ((0 0 0  0 1 ! 2 )))) 
((((1 1)) ((1 0 1)) ((1 1 1 1)))) 
((((0 1 1)) ((1 1)) ((0 1 0 0 1)))) 
((((1 1)) ((0 1 1)) ((0 1 0 0 1)))) 
((((0 0 1  0 ! 1 )) ((0 1)) ((0 0 0 1  0 ! 1 )))) 
((((1 1)) ((1 1 1)) ((1 0 1 0 1)))) 
((((0 1  0 ! 1 )) ((0 0 1)) ((0 0 0 1  0 ! 1 )))) 
((((1 0 ! 1 )) ((0 0 0 1)) ((0 0 0 1  0 ! 1 )))) 
((((0 0 0 0 1)) (( 0 1 ! 2 )) ((0 0 0 0  0 1 ! 2 )))) 
((((1 0 1)) ((1 1)) ((1 1 1 1)))) 
((((0 1 1)) ((1 0 1)) ((0 1 1 1 1)))) 
((((1 0 1)) ((0 1 1)) ((0 1 1 1 1)))) 
((((0 0 1 1)) ((1 1)) ((0 0 1 0 0 1)))) 
((((1 1)) ((1 0 0 1)) ((1 1 0 1 1)))) 
((((0 1 1)) ((0 1 1)) ((0 0 1 0 0 1)))) 
((((1 1)) ((0 0 1 1)) ((0 0 1 0 0 1)))) 
((((0 0 0 1  0 ! 1 )) ((0 1)) ((0 0 0 0 1  0 ! 1 )))) 
((((1 1)) ((1 1 0 1)) ((1 0 0 0 0 1)))) 
((((0 1 1)) ((1 1 1)) ((0 1 0 1 0 1)))) 
((((1 1 1)) ((0 1 1)) ((0 1 0 1 0 1)))) 
((((0 0 1  0 ! 1 )) ((0 0 1)) ((0 0 0 0 1  0 ! 1 )))) 
((((1 1)) ((1 0 1 1)) ((1 1 1 0 0 1)))) 
((((0 1  0 ! 1 )) ((0 0 0 1)) ((0 0 0 0 1  0 ! 1 )))) 
((((1 0 ! 1 )) ((0 0 0 0 1)) ((0 0 0 0 1  0 ! 1 )))))). 

It is difficult to see patterns when looking at 
2 

Yes, 
all thirty-four values. Would it be easier to thanks. 
examine only the nonground values? 
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What are the first eighteen nonground 
values? 

The value associated with p in 

(run ∗ (p) 
(∗o ((0 1)) ((0 0 1)) p)) 

is ((0 0 0 1)). To  which  nonground  value  does  
this correspond? 

Describe the fifth nonground value. 

Describe the sixth nonground value. 

Is the product of ((1 0 ! 1 )) and ((0 1)) odd or 
even? 

Is there a nonground value that shows that 
the product of three and three is nine? 

3 

4 

5 

6 

7 

8 

(((((()) 0 (()))) 
(((( 0 ! 1 )) (()) (()))) 
((((1)) (( 0 ! 1 )) (( 0 ! 1 )))) 
(((( 0 1 ! 2 )) ((1)) (( 0 1 ! 2 )))) 
((((0 1)) (( 0 1 ! 2 )) ((0 0 1 ! 2 )))) 
((((1 0 ! 1 )) ((0 1)) ((0 1  0 ! 1 )))) 
((((0 0 1)) (( 0 1 ! 2 )) ((0 0  0 1 ! 2 )))) 
((((0 1  0 ! 1 )) ((0 1)) ((0 0 1  0 ! 1 )))) 
((((1 0 ! 1 )) ((0 0 1)) ((0 0 1  0 ! 1 )))) 
((((0 0 0 1)) (( 0 1 ! 2 )) ((0 0 0  0 1 ! 2 )))) 
((((0 0 1  0 ! 1 )) ((0 1)) ((0 0 0 1  0 ! 1 )))) 
((((0 1  0 ! 1 )) ((0 0 1)) ((0 0 0 1  0 ! 1 )))) 
((((1 0 ! 1 )) ((0 0 0 1)) ((0 0 0 1  0 ! 1 )))) 
((((0 0 0 0 1)) (( 0 1 ! 2 )) ((0 0 0 0  0 1 ! 2 )))) 
((((0 0 0 1  0 ! 1 )) ((0 1)) ((0 0 0 0 1  0 ! 1 )))) 
((((0 0 1  0 ! 1 )) ((0 0 1)) ((0 0 0 0 1  0 ! 1 )))) 
((((0 1  0 ! 1 )) ((0 0 0 1)) ((0 0 0 0 1  0 ! 1 )))) 
((((1 0 ! 1 )) ((0 0 0 0 1)) ((0 0 0 0 1  0 ! 1 )))))). 

The fifth nonground value 

((((0 1)) (( 0 1 ! 2 )) ((0 0 1 ! 2 )))). 

The product of two and a number greater 
than one is twice the number greater than 
one. 

The product of an odd number, three or 
greater, and two is twice the odd number. 

It is even, 
since the first bit of ((0 1  0 ! 1 )) is 0. 

No. 
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Is there a ground value that shows that the 
product of three and three is nine? 

9 
Yes, 

the first ground value 

((((1 1)) ((1 1)) ((1 0 0 1)))) 

shows that the product of three and three 
is nine. 

Here is the definition of ∗o . 

(define ∗o 

(lambda (n m p) 
(condi 

((≡ (()) n) (≡ (()) p)) 
((pos o n) (≡ (()) m) (≡ (()) p)) 
((≡ ((1)) n) (pos o m) (≡ m p)) 
((>1o n) (≡ ((1)) m) (≡ n p)) 
((fresh (x z  ) 

(≡ ((0 ! x )) n) (pos o x )
 
(≡ ((0 ! z )) p) (pos o z )
 
(>1o m)
 
(∗o x m z  )))
 

((fresh (x y) 
(≡ ((1 ! x )) n) (pos o x ) 
(≡ ((0 ! y)) m) (pos o y) 
(∗o m n p))) 

((fresh (x y) 
(≡ ((1 ! x )) n) (pos o x ) 
(≡ ((1 ! y)) m) (pos o y) 
(odd-∗o x n m p))) 

(else #u)))) 

Describe the first and second condi lines. 

Why isn’t ((≡ (()) m) (≡ (()) p)) the second 
condi line? 

11 
To avoid producing two values in which both 
n and m are zero. In other words, we enforce 
the non-overlapping property. 

Describe the third and fourth condi lines. 
12 

The third condi line says that the product 
of one and a positive number is the number. 
The fourth line says that the product of a 
number greater than one and one is the 
number. 
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10 

The first condi line says that the product of 
zero and a number is zero. The second line 
says that the product of a positive number 
and zero is also equal to zero. 



13 

Describe the fifth condi line. The fifth condi line says that the product of 
an even positive number and a number 
greater than one is an even positive number, 
using the equation n · m = 2  · ( n 

2 · m). 

Why do we use this equation? 
14 

In order for the recursive call to have a value, 
one of the arguments to ∗o must shrink. 
Dividing n by two clearly shrinks n. 

How do we divide n by two? 
15 

With (≡ ((0 ! x )) n), where x is not (()). 

Describe the sixth condi line. 
16 

This one is easy. The sixth condi line says 
that the product of an odd positive number 
and an even positive number is the same as 
the product of the even positive number and 
the odd positive number. 

Describe the seventh condi line. 
17 

This one is also easy. The seventh condi line 
says that the product of an odd number 
greater than one and another odd number 
greater than one is the result of 
(odd-∗o x n  m  p), where x is n−1 

2 . 

Here is odd-∗o . 

(define odd-∗o 

18 

We know that x is n−1 
2 . Therefore, 

n · m = 2  · ( n−1 
2 · m) +  m. 

(lambda (x n  m  p) 
(fresh (q) 

(bound-∗o q p  n  m) 
(∗o x m  q) 
(+o ((0 ! q)) m p)))) 

If we ignore bound-∗o, what equation  
describes the work done in odd-∗o 
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Here is a hypothetical definition of bound-∗o . 
19 

Okay, so this is not the final definition of 
bound-∗o . 

(define bound-∗o 

(lambda (q p n m) 
#s)) 

20
Using the hypothetical definition of bound-∗o , ((((1)) ((1)))). 
what value would be associated with t in This value is contributed by the third 

(run1 (t) condi line of ∗o . 

(fresh (n m) 
(∗o n m  ((1))) 
(≡ ((n m)) t))) 

Now what would be the value of 
21 

It would have no value, 
because run would never finish (run2 (t) 
determining the second value. (fresh (n m)
 

(∗o n m  ((1)))
 
(≡ ((n m)) t)))
 

Here is bound-∗o . 
22 

Clearly. 

(define bound-∗o 

(lambda (q p n m) 
(conde
 

((null o q) (pair o p))
 
(else
 

(fresh (x y z  )
 
(cdr o q x  )
 
(cdr o p y)
 
(condi
 

((null o n) 
(cdr o m z  ) 
(bound-∗o x y z  (()))) 

(else 
(cdr o n z  ) 
(bound-∗o x y z m)))))))) 

Is this definition recursive? 
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What is the value of 
23 

((((((1)) ((1)))))), 
because bound-∗o fails when the product of (run2 (t) 
n and m is larger than p, and  since the  (fresh (n m) 
length of n plus the length of m is an (∗o n m  ((1))) 
upper bound on the length of p.(≡ ((n m)) t))) 

What value is associated with p in 
24 

((1 0 0 1 1 1 0 1 1)), 
which contains nine bits. (run ∗ (p)
 

(∗o ((1 1 1)) ((1 1 1 1 1 1)) p))
 

If we replace a 1 by a 0 in 
25 

Yes, 
because ((1 1 1)) and ((1 1 1 1 1 1)) represent (∗o ((1 1 1)) ((1 1 1 1 1 1)) p), 
the largest numbers of lengths three and 

is nine still the maximum length of p six, respectively. Of course the rightmost 1 
in each number cannot be replaced by a 0. 

Here is the definition of =l o . 
26 

Yes, it is. 

(define =l o 

(lambda (n m) 
(conde 

((≡ (()) n) (≡ (()) m)) 
((≡ ((1)) n) (≡ ((1)) m)) 
(else 

(fresh (a x b y) 
(≡ ((a ! x )) n) (pos o x ) 
(≡ ((b ! y)) m) (pos o y) 
(=l o x y)))))) 

Is this definition recursive? 

What value is associated with t in 

(run ∗ (t) 
(fresh (w x  y) 

(=l o ((1 w x  ! y)) ((0 1 1 0 1))) 
(≡ ((w x  y)) t))) 

27 

(( 0 1 (( 2 1)))), 
since y is (( 2 1)), the length of ((1 w x  ! y)) 
is the same as the length of ((0 1 1 0 1)). 
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What value is associated with b in 

(run ∗ (b) 
(=l o ((1)) ((b)))) 

What value is associated with n in 

(run ∗ (n) 
(=l o ((1 0 1 ! n)) ((0 1 1 0 1)))) 

What is the value of 

(run5 (t) 
(fresh (y z  ) 

(=l o ((1 ! y)) ((1 ! z ))) 
(≡ ((y z  )) t))) 

What is the value of 

(run5 (t) 
(fresh (y z  ) 

(=l o ((1 ! y)) ((0 ! z ))) 
(≡ ((y z  )) t))) 

Why isn’t (((()) (()))) the first value? 

What is the value of 

(run5 (t) 
(fresh (y z  ) 

(=l o ((1 ! y)) ((0 1 1 0 1 ! z ))) 
(≡ ((y z  )) t))) 

28 

29 

30 

31 

32 

33 

1, 
because if b were associated with 0, then 
((b)) would have become ((0)), which does 
not represent a number. 

(( 0 1)), 
because if n were (( 0 1)), then  the length  of  
((1 0 1 ! n)) would be the same as the 
length of ((0 1 1 0 1)). 

(((((()) (()))) 
((((1)) ((1)))) 
(((( 0 1)) (( 1 1)))) 
(((( 0 1 1)) (( 2 3 1)))) 
(((( 0 1 2 1)) (( 3 4 5 1)))))), 
because each y and z must be the same 
length in order for ((1 ! y)) and ((1 ! z )) to 
be the same length. 

((((((1)) ((1)))) 
(((( 0 1)) (( 1 1)))) 
(((( 0 1 1)) (( 2 3 1)))) 
(((( 0 1 2 1)) (( 3 4 5 1)))) 
(((( 0 1 2 3 1)) (( 4 5 6 7 1)))))). 

Because if z were (()), then ((0 ! z )) would not 
represent a number. 

(((((( 0 1 2 1)) (()))) 
(((( 0 1 2 3 1)) ((1)))) 
(((( 0 1 2 3 4 1)) (( 5 1)))) 
(((( 0 1 2 3 4 5 1)) (( 6 7 1)))) 
(((( 0 1 2 3 4 5 6 1)) (( 7 8 9 1)))))), 
because the shortest z is (()), which forces y 
to be a list of length four. Thereafter, as y 
grows in length, so does z . 
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Here is the definition of <l o . 

(define <l o 

(lambda (n m) 
(conde 

((≡ (()) n) (pos o m)) 
((≡ ((1)) n) (>1o m)) 
(else 

(fresh (a x b y) 
(≡ ((a ! x)) n) (pos o x ) 
(≡ ((b ! y)) m) (pos o y) 
(<l o x y)))))) 

How does this definition differ from the 
definition of =l o 

34 

In the first conde line, (≡ (()) m) is  replaced  
by (pos o m). In the second line, (≡ ((1)) m) 
is replaced by (>1o m). This guarantees that 
n is shorter than m. 

What is the value of 

(run8 (t) 
(fresh (y z ) 

(<l o ((1 ! y)) ((0 1 1 0 1 ! z))) 
(≡ ((y z)) t))) 

35 

(((((()) 0 )) 
((((1)) 0 )) 
(((( 0 1)) 1 )) 
(((( 0 1 1)) 2 )) 
(((( 0 1 2 1)) (( 3 ! 4 )))) 
(((( 0 1 2 3 1)) (( 4 5 ! 6 )))) 
(((( 0 1 2 3 4 1)) (( 5 6 7 ! 8 )))) 
(((( 0 1 2 3 4 5 1)) (( 6 7 8 9 ! 10 )))))). 

Why does z remain fresh in the first four 
values? 

36 
The variable y is associated with a list that 
represents a number. If the length of this list 
is at most three, then ((1 ! y)) is shorter than 
((0 1 1 0 1 ! z)), regardless  of the  value  
associated with z . 

What is the value of 

(run1 (n) 
(<l o n n)) 

37 
It has no value. 

Clearly the first two conde lines fail. In 
the recursive call, x and y are associated 
with the same fresh variable, which is 
where we started. 
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o o oDefine !l using =l and <l . 
38 

Is this correct? 

o(define !l
(lambda (n m) 

(conde 

o((=l n m) #s) 
o((<l n m) #s) 

(else #u)))) 

It looks like it might be correct. What is the 
39 

(((((()) (()))) 
value of ((((1)) ((1)))) 

(((( 0 1)) (( 1 1)))) (run8 (t) 
(((( 0 1 1)) (( 2 3 1)))) (fresh (n m) 

o (((( 0 1)) (( 3 1)))) 1 2 4 5 

(((( 0 1)) (( 4 1)))) 
(!l n m) 

1 2 3 5 6 7 

(((( 0 1)) (( 5 1)))) 
(≡ ((n m)) t))) 

1 2 3 4 6 7 8 9 

(((( 0 1)) (( 6 1)))))) 1 2 3 4 5 7 8 9 10 11 

What value is associated with t in 
40 

(((()) (()))). 

(run1 (t)
 
(fresh (n m)
 

o(!l n m)
 
(∗o n ((0 1)) m)
 
(≡ ((n m)) t)))
 

What is the value of 
41 

It has no value, 

(run2 (t) 
(fresh (n m) 

(!l o n m) 
(∗o n ((0 1)) m) 

because the first conde line of !l o always 
succeeds, which means that n and m are 
always the same length. Therefore 
(∗o n ((0 1)) m) succeeds  only  when  n is (()). 

(≡ ((n m)) t))) 
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oHow can we redefine !l so that 
42 

Let’s use condi . 
(run2 (t) 

(fresh (n m) 
o(!l n m) 

(∗o n ((0 1)) m) 
(≡ ((n m)) t))) 

has a value? 

o(define !l
(lambda (n m) 

(condi 

o((=l n m) #s) 
o((<l n m) #s) 

(else #u)))) 

What is the value of 
43 

(((((()) (()))) 

(run10 (t) 
(fresh (n m) 

(!l o n m) 
(∗o n ((0 1)) m) 
(≡ ((n m)) t))) 

((((1)) ((0 1)))) 
((((0 1)) ((0 0 1)))) 
((((1 1)) ((0 1 1)))) 
((((0 0 1)) ((0 0 0 1)))) 
((((1 0 1)) ((0 1  0 1)))) 
((((0 1 1)) ((0 0 1 1)))) 
((((0 0 0 1)) ((0 0 0 0 1)))) 
((((1 0 1 1)) ((0 1  0 1 1)))) 
((((0 1  0 1)) ((0 0 1  0 1)))))). 

Now what is the value of 

(run15 (t) 
(fresh (n m) 

(!l o n m) 
(≡ ((n m)) t))) 

44 

(((((()) (()))) 
(((()) (( 0 " 1 )))) 
((((1)) ((1)))) 
((((1)) (( 0 1 " 2 )))) 
(((( 0 1)) (( 1 1)))) 
(((( 0 1)) (( 1 2 3 " 4 )))) 
(((( 0 1 1)) (( 2 3 1)))) 
(((( 0 1 1)) (( 2 3 4 5 " 6 )))) 
(((( 0 1 2 1)) (( 3 4 5 1)))) 
(((( 0 1 2 1)) (( 3 4 5 6 7 " 8 )))) 
(((( 0 1 2 3 1)) (( 4 5 6 7 1)))) 
(((( 0 1 2 3 1)) (( 4 5 6 7 8 9 " 10 )))) 
(((( 0 1 2 3 4 1)) (( 5 6 7 8 9 1)))) 
(((( 0 1 2 3 4 1)) (( 5 6 7 8 9 10 11 " 12 )))) 
(((( 0 1 2 3 4 5 1)) (( 6 7 8 9 10 11 1)))))). 

Do these values include all of the values 
produced in frame 39? 

45 
Yes. 
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Here is the definition of <o . 
46 

That is easy. 

(define <o (define !o 

(lambda (n m) (lambda (n m) 
(condi (condi 

((<l o n m) #s) ((≡ n m) #s) 
((=l o n m) ((<o n m) #s) 
(fresh (x ) (else #u)))) 

(pos o x ) 
(+o n x m))) 

(else #u)))) 

Define !o using <o . 

What value is associated with q in 
47 

#t, 
since five is less than seven. (run ∗ (q)
 

(<o ((1 0 1)) ((1 1 1)))
 
(≡ #t q))
 

What is the value of 
48 

(()), 
since seven is not less than five. (run ∗ (q)
 

(<o ((1 1 1)) ((1 0 1)))
 
(≡ #t q))
 

What is the value of 

(run ∗ (q) 
(<o ((1 0 1)) ((1 0 1))) 
(≡ #t q)) 

49 

(()), 
since five is not less than five. But if we 
were to replace <o with !o, the  value  
would be ((#t)). 

What is the value of 

(run6 (n) 
(<o n ((1 0 1)))) 

50 

(((()) ((0 0 1)) ((1)) (( 0 1)))), 
since (( 0 1)) represents the numbers two 
and three. 

What is the value of 

(run6 (m) 
(<o ((1 0 1)) m)) 

51 

(((( 0 1 2 3 " 4 )) ((0 1 1)) ((1 1 1)))), 
since (( 0 1 2 3 " 4 )) represents all the 
numbers greater than seven. 
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What is the value of 

(run ∗ (n) 
(<o n n)) 

What is the value of 

(run15 (t) 
(fresh (n m q r) 

(÷o n m q r) 
(≡ ((n m q r)) t))) 

List all of the values that contain variables. 

Does the third value (((( 0 1)) (( 0 1)) ((1)) (()))) 
represent two ground values? 

Do the fourth and fifth values in frame 54 
each represent two ground values? 

52 

53 

54 

55 

56 

It has no value, 
since <o calls <l o . 

(((((()) (( 0 ! 1 )) (()) (()))) 
((((1)) ((1)) ((1)) (()))) 
((((0 1)) ((1 1)) (()) ((0 1)))) 
((((0 1)) ((1)) ((0 1)) (()))) 
((((1)) (( 0 1 ! 2 )) (()) ((1)))) 
(((( 0 1)) (( 0 1)) ((1)) (()))) 
((((0 0 1)) ((1 0 1)) (()) ((0 0 1)))) 
((((0 0 1)) (( 0 1)) ((0 1)) (()))) 
(((( 0 1)) (( 1 2 3 ! 4 )) (()) (( 0 1)))) 
((((1 1)) ((0 1)) ((1)) ((1)))) 
((((0 0 1)) ((0 1 1)) (()) ((0 0 1)))) 
((((1 1)) ((1)) ((1 1)) (()))) 
(((( 0 1 1)) (( 2 3 4 5 ! 6 )) (()) (( 0 1 1)))) 
(((( 0 1 1)) (( 0 1 1)) ((1)) (()))) 
((((1 0 1)) ((0 1 1)) (()) ((1 0 1)))))). 

÷o divides n by m, producing a quotient  q 
and remainder r . 

(((((()) (( 0 ! 1 )) (()) (()))) 
((((1)) (( 0 1 ! 2 )) (()) ((1)))) 
(((( 0 1)) (( 0 1)) ((1)) (()))) 
((((0 0 1)) ((1 0 1)) (()) ((0 0 1)))) 
((((0 0 1)) (( 0 1)) ((0 1)) (()))) 
(((( 0 1)) (( 1 2 3 ! 4 )) (()) (( 0 1)))) 
(((( 0 1 1)) (( 2 3 4 5 ! 6 )) (()) (( 0 1 1)))) 
(((( 0 1 1)) (( 0 1 1)) ((1)) (()))))). 

Yes. 
(((( 0 1)) (( 0 1)) ((1)) (()))) 
represents the two values 
((((0 1)) ((0 1)) ((1)) (()))) and 
((((1 1)) ((1 1)) ((1)) (()))). 

Yes. 
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Does the eighth value in frame 54, 
57 

Yes. 
(((( 0 1 1)) (( 0 1 1)) ((1)) (()))) (((( 0 1 1)) (( 0 1 1)) ((1)) (()))), 
represents the four values 

represent four ground values?	 ((((0 0 1)) ((0 0 1)) ((1)) (()))), 
((((1 0 1)) ((1 0 1)) ((1)) (()))), 
((((0 1 1)) ((0 1 1)) ((1)) (()))), and 
((((1 1 1)) ((1 1 1)) ((1)) (()))). 

So is (((( 0 1 1)) (( 0 1 1)) ((1)) (()))) just 
58 

Yes. 
shorthand notation? 

Does the first value in frame 54, 
59 

Yes. 
(((()) (( 0 ! 1 )) (()) (()))) (((()) (( 0 ! 1 )) (()) (()))), 
represents the values 

represent ground values? (((()) ((1)) (()) (()))) 
(((()) ((0 1)) (()) (()))) 
(((()) ((1 1)) (()) (()))) 
(((()) ((0 0 1)) (()) (()))) 
(((()) ((1 0 1)) (()) (()))) 
(((()) ((0 1 1)) (()) (()))) 
(((()) ((1 1 1)) (()) (()))) 
(((()) ((0 0 0 1)) (()) (()))) 
(((()) ((1 0 0 1)) (()) (()))) 
(((()) ((0 1 0 1)) (()) (()))) 
(((()) ((1 1 0 1)) (()) (()))) 
(((()) ((0 0 1 1)) (()) (()))) 
(((()) ((1 0 1 1)) (()) (()))) 
. . .  

Is (((()) (( 0 ! 1 )) (()) (()))) just shorthand 
60 

No, 
notation?	 since it is impossible to write every ground 

value that is represented by 
(((()) (( 0 ! 1 )) (()) (()))). 

Is it possible to write every ground value 
61 

No. 
that is represented by the second, sixth, and 
seventh values in frame 54? 
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How do the first, second, sixth, and seventh 
values in frame 54 differ from the other 
values in that frame? 

62 
They each contain an improper list whose 
last cdr is a variable. 

Define ÷o . 
63 

(define ÷o 

(lambda (n m q r) 
(condi 

((≡ (()) q) (≡ n r) (<o n m)) 
((≡ ((1)) q) (≡ (()) r) (≡ n m) 
(<o r m)) 

((<o m n) (<o r m) 
(fresh (mq) 

o(!l mq n) 
(∗o m q mq) 
(+o mq r n))) 

(else #u)))). 

With which three cases do the three condi 

lines correspond? 

64 
The cases in which the dividend n is less 
than, equal to, or greater than the divisor m, 
respectively. 

Describe the first condi line. 
65 

The first condi line divides a number n by a 
number m greater than n. Therefore the 
quotient is zero, and the remainder is equal 
to n. 

According to the standard definition of 
66 

Yes. 
division, division by zero is undefined and The divisor m is greater than the dividend 
the remainder r must always be less than the n, which means  that  m cannot be zero. 
divisor m. Does the first condi line enforce Also, since m is greater than n and n is 
both of these restrictions? equal to r, we know that m is greater than 

the remainder r. By  enforcing  the  second  
restriction, we automatically enforce the 
first. 

122 Chapter 8 



In the second condi line the dividend and 
divisor are equal, so the quotient obviously 
must be one. Why, then, is the (<o r m) 
goal necessary? 

67 
Because this goal enforces both of the 
restrictions given in the previous frame. 

Describe the first two goals in the third 
condi line. 

68 

The goal (<o m n) ensures  that  the  divisor  
is less than the dividend, while the goal 
(<o r m) enforces  the  restrictions in  
frame 66. 

Describe the last three goals in the third 
condi line. 

69 
The last three goals perform division in terms 
of multiplication and addition. The equation 

n 
m 

= q with remainder r 

can be rewritten as 

n = m · q + r. 

That is, if mq is the product of m and q, 
then n is the sum of mq and r. Also,  since  r 
cannot be less than zero, mq cannot be 
greater than n. 

Why does the third goal in the last condi 

line use !l o instead of <o 

70 
Because !l o is a more efficient 
approximation of <o . If mq is less than or 
equal to n, then certainly the length of the  
list representing mq cannot exceed the length 
of the list representing n. 

What is the value of 

(run ∗ (m) 
(fresh (r ) 

(÷o ((1 0 1)) m ((1 1 1)) r))) 

71 

(()), 
since it fails. 
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Why is (()) the value of 
72	 

We are trying to find a number m such that 
dividing five by m produces seven. Of course, (run ∗ (m) 
no such m exists.(fresh (r)
 

(÷o ((1 0 1)) m ((1 1 1)) r)))
 

73
How is (()) the value of	 The third condi line of ÷o ensures that m is 

less than n when q is greater than one. (run ∗ (m) 
Therefore ÷o can stop looking for possible (fresh (r) 
values of m when m reaches four. (÷o ((1 0 1)) m ((1 1 1)) r))) 

Why do we need the first two condi lines, 
given that the third condi line seems so 
general? Why don’t we just remove the first 
two condi lines and remove the (<o m n) 
goal from the third condi line, giving us a 
simpler definition of ÷o 

(define ÷o 

(lambda (n m q r) 
(fresh (mq) 

(<o r m) 
o(!l mq n) 

(∗o m q mq) 
(+o mq r n)))) 

74	 
Unfortunately, our “improved” definition of 
÷o has a problem—the expression 

(run ∗ (m) 
(fresh (r) 

(÷o ((1 0 1)) m ((1 1 1)) r))) 

no longer has a value. 

Why doesn’t the expression 
75	 

Because the new ÷o does not ensure that m 
is less than n when q is greater than one. (run ∗ (m) 
Therefore ÷o will never stop trying to find (fresh (r) 
an m such that dividing five by m produces (÷o ((1 0 1)) m ((1 1 1)) r))) 
seven. 

have a value when we use the new definition 
of ÷o 
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Hold on! It’s going to get subtle! 

Here is an improved definition of ÷o which is 
76 

Yes,
 
more sophisticated than the ones given in the new ÷o relies on split o .
 
frames 63 and 74. All three definitions
 
implement division with remainder, which 
means that (÷o n m q r) satisfies  
n = m · q + r with 0 : r < m. 

(define ÷o 

(lambda (n m q r) 
(condi 

((≡ r n) (≡ (()) q) (<o n m)) 
)q) (=  l o n m) (+o r m n))1((≡((

(<o r m))
 
(else
 

(alli
 

(<l o m n)
 
(<o r m)
 

o(pos q)
 
(fresh (nh nl qh ql qlm qlmr rr rh)
 

(alli 

(split o n r nl nh) 
(split o q r ql qh) 
(conde 

((≡ () nh)()

(≡ () qh)
()
(−o nl r qlm) 
(∗o ql m qlm)) 

(else 
(alli 

o(pos nh) 
(∗o ql m qlm) 
(+o qlm r qlmr) 
(−o qlmr nl rr) 
(split o rr r () rh)()
(÷o nh m qh rh))))))))))) 

Does the redefined ÷o use any new helper 
functions? 

(define split o 

(lambda (n r l h) 
(condi 

((≡ (()) n) (≡ (()) h) (≡ (()) l)) 
((fresh (b n̂) 

(≡ ((0 b . n̂)) n) 
(≡ (()) r) 
(≡ ((b . n̂)) h) 
(≡ (()) l))) 

((fresh (n̂) 
(≡ ((1 . n̂)) n) 
(≡ (()) r) 
(≡ n̂ h) 
(≡ ((1)) l))) 

((fresh (b n̂ a r̂) 
(≡ ((0 b . n̂)) n) 
(≡ ((a . r̂)) r) 
(≡ () l)()
(split o ((b . n̂)) r̂ (()) h))) 

((fresh (n̂ a r̂) 
(≡ ((1 . n̂)) n) 
(≡ ((a . r̂)) r) 
(≡ ((1)) l) 
(split o n̂ r̂ (()) h))) 

ˆ((fresh (b n̂ a r̂ l) 
(≡ ((b . n̂)) n) 
(≡ ((a . r̂)) r) 
(≡ ((b . l̂)) l) 

o ˆ(pos l) 
(split o n̂ r̂ l̂ h))) 

(else #u)))) 
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What does split o do? 
77 

The call (split o n (()) l h) moves the lowest 
bit† of n, if any, into l , and  moves  the  
remaining bits of n into h; (split o n (( 1)) l h) 
moves the two lowest bits of n into l and 
moves the remaining bits of n into h; and 
(split o n (( 1 1 1 1)) l h), 
(split o n (( 0 1 1 1)) l h), or 
(split o n (( 0 0 0 1)) l h) move the five lowest 
bits of n into l and move the remaining bits 
into h; and  so on.  

What else does split o do? 

Why is split o’s definition so complicated? 

How does split o ensure that (( 0)) is not 
constructed? 

78 

79 

80 

† The lowest bit of a positive number n is the car of n. 

Since split o is a relation, it can construct n 
by combining the lower-order bits of l with 
the higher-order bits of h, inserting  padding 
bits as specified by the length of r . 

Because split o must not allow the list (( 0)) to 
represent a number. For example, 
(split o (( 0 0 1)) (()) (()) (( 0 1)) ) should succeed,  
but (split o (( 0 0 1)) (()) (( 0)) (( 0 1)) ) should not.  

By removing the rightmost zeros after 
splitting the number n into its lower-order 
bits and its higher-order bits. 

What is the value of this expression when 
using the original definition of ÷o, as defined 
in frame 63? 

(run 3 (t) 
(fresh (y z  )
 

(÷o (( 1 0 ! y)) (( 0 1)) z (()) )
 
(≡ (( y z  )) t)))
 

81 
It has no value. 

We cannot divide an odd number by two 
and get a remainder of zero. The old 
definition of ÷o never stops looking for 
values of y and z that satisfy the division 
relation, even though no such values exist. 
With the latest definition of ÷o as defined 
in frame 76, however, the expression fails 
immediately. 
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Here is logo and its two helper functions. 
82 

(define logo 

(lambda (n b q r) 
(condi 

o ()()n) (pos))((≡(( 1 b) (≡ () q) (≡ () r)) 
))n ))1((q) (<o n b) (+o r())(≡((

))q) (>1o b) (=l o n b) (+o r b n))1((≡((
o ))n ))1((b) (pos q) (+o r))1((≡((

o((≡ (()) b) (pos q) (≡ r n)) 
)b ))0 1((≡((

(fresh (a ad  dd) 
o(pos dd) 

)n ))dd!a ad  ((≡(
(exp2 o n () q)()

(fresh (s)
 

(split o n dd  r  s))))
 
((fresh (a ad  add  ddd)
 

(conde
 

))b ))1 1((≡((
))))b ))ddd!a ad add((≡(else(

(<l o b n) 
(fresh (bw1 bw nw nw1 ql1 ql s) 

(exp2 o b () bw1 )()
)bw ))1((o bw1(+

(<l o q n) 
(fresh (q1 bwq1 ) 

)q1))1((o q(+
(∗o bw q1 bwq1 ) 
(<o nw1 bwq1 )) 
(exp2 o n () nw1 )()

)nw ))1((o nw1(+
(÷o nw bw ql1 s) 

)ql1 ))1((o ql(+
(conde 

((≡ q ql)) 
(else (<l o ql q))) 

(fresh (bql qh s qdh qd) 
(repeated-mul o b ql bql) 
(÷o nw bw1 qh s) 
(+o ql qdh qh) 
(+o ql qd q) 
(conde 

((≡ qd qdh)) 
(else (<o qd qdh))) 

(fresh (bqd bq1 bq) 
(repeated-mul o b qd bqd) 
(∗o bql bqd bq) 
(∗o b bq bq1 ) 
(+o bq r n) 
(<o n bq1  ))))) 

(else #u)))) 

(define exp2 o 

(lambda (n b q) 
(condi 

((≡ ((1)) n) (≡ () q)) 
((>1o n) (≡ ((1)) q) 
(fresh (s) 

(split o n b s  ((1))))) 
((fresh (q1 b2 ) 

(alli 

(≡ ((0 ! q1 )) q) 
(pos o q1 ) 
(<l o b n) 
(append o b ((1 ! b)) b2 ) 
(exp2 o n b2 q1 )))) 

((fresh (q1 nh b2 s) 
(alli 

(≡ ((1 ! q1 )) q) 
(pos o q1 ) 
(pos o nh) 
(split o n b s nh) 
(append o b ((1 ! b)) b2 ) 
(exp2 o nh b2 q1 )))) 

(else #u)))) 

(define repeated-mul o 

(lambda (n q nq) 
(conde 

((pos o n) (≡ () q) (≡ ((1)) nq)) 
((≡ ((1)) q) (≡ n nq)) 
((>1o q) 
(fresh (q1 nq1 ) 

(+o q1 ((1)) q) 
(repeated-mul o n q1 nq1 ) 
(∗o nq1 n nq))) 

(else #u)))) 
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Guess what logo does? 
83 

It builds a split-rail fence. 

Not quite. Try again. 
84 

It implements the logarithm relation: 
(logo n b  q  r) holds  if  n = bq + r. 

Are there any other conditions that the 
logarithm relation must satisfy? 

85 
There had better be! 

Otherwise, the relation would always hold 
if q = 0  and  r = n − 1, regardless of the 
value of b. 

Give the complete logarithm relation. 
86 

(logo n b  q  r) holds  if  n = bq + r, where 
0 ≤ r and q is the largest number that 
satisfies the relation. 

Does the logarithm relation look familiar? 
87 

Yes. 
The logarithm relation is similar to the 
division relation, but with exponentiation 
in place of multiplication. 

In which ways are logo and ÷o similar? 
88 

Both logo and ÷o are relations that take four 
arguments, each of which can be fresh 
variables. The ÷o relation can be used to 
define addition, multiplication, and 
subtraction. The logo relation is equally 
flexible, and can be used to define 
exponentiation, to determine exact discrete 
logarithms, and even to determine discrete 
logarithms with a remainder. The logo 

relation can also find the base b that 
corresponds to a given n and q . 

What value is associated with r in 

(run ∗ (r) 
(logo (( 0 1 1 1)) (( 0 1)) (( 1 1)) r)) 

89 

(( 0 1 1)) , 
since 14 = 23 + 6. 
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What is the value of 
90 

((((((1)) (( 0 1 ! 2 )) ((1 1 0 0 0 0 1)))) 

(run8 (s) 
(fresh (b q  r) 

(logo ((0 0 1 0 0 0 1)) b q  r  ) 
(>1o q) 
(≡ ((b q  r)) s))) 

(((()) (( 0 1 ! 2 )) ((0 0 1 0 0 0 1)))) 
((((0 1)) ((0 1 1)) ((0 0 1)))) 
((((0 0 1)) ((1 1)) ((0 0 1)))) 
((((1 0 1)) ((0 1)) ((1 1 0 1 0 1)))) 
((((0 1 1)) ((0 1)) ((0 0 0 0 0 1)))) 
((((1 1 1)) ((0 1)) ((1 1 0 0 1)))) 
((((0 0 0 1)) ((0 1)) ((0 0 1)))))), 

since 
68 = 1n + 67 where n is greater than one, 
68 = 0n + 68 where n is greater than one, 
68 = 26 + 4, 
68 = 43 + 4, 
68 = 52 + 43, 
68 = 62 + 32, 
68 = 72 + 19, and 
68 = 82 + 4. 

Define expo using logo . 
91 

That’s easy. 

o(define exp
(lambda (b q n) 

(logo n b q  (())))) 

What value is associated with t in 
92 

((1 1 0 0 1 1 1 1)), 
which is the same as (build-num 243).(run ∗ (t) 

o(exp ((1 1)) ((1 0 1)) t)) 

=⇒ Time for a banquet; you’ve earned it. ⇐= 

THIS IS A NAPKIN!
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Chapter 9

Under the Hood



What is the essence of our style of 
1 

conde and condi? 
definitions? 

No. Their job is to manage the order of 
values. Try again. 

2 
How about car o , cdr o , cons o , null o , eq o, and 
pair o? 

Not quite, but closer. One more try. 
3 

Well, each of those six definitions rely on ≡, 
so it must be the essence. 

But, what about #s and #u 
4 

They too are simple goals, but ≡ is the 
simplest goal that can succeed for some 
values and fail for others. 

Yes. The definition of ≡ relies on unify, 
which we are about to discuss. 

5 
Okay, let’s begin. 

Here are three variables u, v , and w . † 
6 

That’s easy. 

(define u (var u)) (define x (var x))† 

(define v (var v)) (define y (var y)) 

(define w (var w)) (define z (var z)) 

Define the variables x , y , and z . 

† Each invocation of var (var is implemented as vector) is  
given a symbol and creates a different fresh variable (a 
nonempty vector). var? (var? is implemented as vector?) 
determines if its argument had been created by var. Prolog’s  
anonymous variable (see page 2 of William F. Clocksin. 
Clause and Effect. Springer,  1997.)  can  be  defined  as  an  
identifier macro that expands to (var (quote )). For 
discussion of identifier macros, see pages 193 and 204 of 
R. Kent Dybvig. The Scheme Programming Language third 
ed. MIT Press, 2003; and pages 47 and 48 of Matthias 
Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram 
Krishnamurthi. Building little languages with macros. 
Dr. Dobb’s Journal. April, 2004. 

† As a reminder, (define x (var x)) is written as 
(define x (var (quote x))). 
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What is 
7	 

It is our way of representing an association. 
The lhs (left-hand side) of an association ((z ! a)) 
must be a variable. The rhs (right-hand side) 
of an association may be any value.† 

† lhs is car and rhs is cdr. 

What is the value of 

(rhs ((z ! b))) 

8 
b. 

What is the value of 

(rhs ((z ! w))) 

9 
The variable w . 

What is the value of 

(rhs ((z ! ((x e y))))) 

10 

The list ((x e y)). 

What is 

((((z ! a)) ((x ! w )) ((y ! z )))) 

11 

It is our way of representing a substitution† , 
a list of associations.  

† Most of this chapter is about substitutions and unification. 
Our unify is inspired by Franz Baader and Wayne Snyder. 
“Unification theory,” Chapter 8 of Handbook of Automated 
Reasoning, edited  by John Alan  Robinson  and  Andrei  
Voronkov. Elsevier Science and MIT Press, 2001. 

Is 

((((z ! a)) ((x ! x )) ((y ! z )))) 

a substitution?  

12 
Not for us, 

since we do not permit associations like 
((x ! x )) in which its lhs is the same as its 
rhs. 

Here is empty-s. 

(define empty-s (())) 

13 
It represents a substitution that does not 
contain any associations. 

What does it represent? 
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What is the value of 

(walk z ((((z ! a)) ((x ! w)) ((y ! z ))))) 

14 a, 
because we walk from z to the rhs of its 
association, which is a. 

What is the value of 

(walk y ((((z ! a)) ((x ! w)) ((y ! z ))))) 

15 a, 
because we walk from y to the rhs of its 
association, which is z , and  we  walk  from  z 
to the rhs of its association, which is a. 

What is the value of 

(walk x ((((z ! a)) ((x ! w)) ((y ! z ))))) 

16 
The fresh variable w , 

because we walk from x to the rhs of its 
association, which is w . 

What is the value of 

(walk w ((((z ! a)) ((x ! w )) ((y ! z ))))) 

17 
The fresh variable w , 

because w is not the lhs of any association. 

What is the value of 

(walk x ((((x ! y)) ((z ! x )) ((y ! z ))))) 

18 
It has no value, 

because we never stop walking. The 
substitution ((((x ! y)) ((z ! x )) ((y ! z )))) is 
said to be circular. 

What is the value of 

(walk w ((((x ! y)) ((w ! b)) ((z ! x )) ((y ! z ))))) 

19 
b, 

The substitution 
((((x ! y)) ((w ! b)) ((z ! x )) ((y ! z )))) is 
circular, but the walk still terminates. 

If x is a variable and s is a substitution, does 
20 

No. See frame 18. 
(walk x s) always  have  a value?  

If x is a variable and s is a substitution built 
21 

Yes.
 
by unify, does (walk x s) always have a
 
value?
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If a walk has a value, what are the two 
22 

It could be a fresh variable, or it could be a 
possible types of values that it might have? value that is not a variable. 

The value of the expression below is b. What  
23 

They are also b, 
are the values of the walks of u, v , and w since each walk leads to x , and  we  know  

where x leads.(walk x
 
((((y ! b)) ((x ! y)) ((v ! x )) ((w ! x )) ((u ! w )))))
 

The value of the expression below is z . What 
24 

They are also z , 
are the values of the walks of u, v , and w since each walk leads to x , and  we  know  

where x leads.(walk x
 
((((y ! z )) ((x ! y)) ((v ! x )) ((w ! x )) ((u ! w )))))
 

What is the value of 
25 

The list ((x e x )). 
(walk u ((((x ! b)) ((w ! ((x e x )))) ((u ! w ))))) 

Why isn’t ((b e b)) the value? 
26 

The job of walk is to find either a fresh 
variable or a non-variable value. In this case 
it finds the list ((x e x )), which is a 
non-variable value. This is a subtle point, 
because one could imagine a different version 
of walk (frame 47) that would return the 
value ((b e b)). 

Here is the definition of walk. 
27 

Yes. 

(define walk 
(lambda (v s) 

(cond 
((var? v ) 
(cond 

((assq v s) ⇒† 

(lambda (a) 
(walk (rhs a) s))) 

(else v ))) 
(else v)))) 

Is walk recursive? 

† These two expressions are equivalent. 

(cond (let ((a (assq v s))) 
((assq v s) ⇒ f ) (cond 
(else v)) (a (f a)) 

(else v))) 

walk relies on assq, a  standard  function that we use to  find  
an association in a substitution. 

We could revise fresh (and run) so  that it would mark  
(by associating a variable with itself—see frame 12) where in 
the substitution we have introduced a fresh variable. We 
could then recognize this pair with (eq? (lhs a) (rhs a)), thus 
avoiding a recursion and the need to search the entire 
substitution. 
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When does the recursion happen? 
28 

When v is the lhs of an association in s. 

Consider the definition of ext-s, which 
extends a substitution. 

(define ext-s 
(lambda (x v  s) 

(cons ((x ! v)) s))) 

29 
It has no value, 

since the extended substitution is the same 
as the one in frame 18. 

What is the value of 

(walk x (ext-s x y ((((z ! x )) ((y ! z )))))) 

What is the value of 

(walk y ((((x ! e))))) 

30 
The fresh variable y . 

What is the value of 

(walk y (ext-s y x ((((x ! e)))))) 

31 e. 

What is the value of 

(walk x ((((y ! z )) ((x ! y))))) 

32 
The fresh variable z . 

What is the value of 

(walk x (ext-s z b ((((y ! z )) ((x ! y)))))) 

33 
b. 

What is the value of 

(walk x (ext-s z w ((((y ! z )) ((x ! y)))))) 

34 w . 

What is the value of 

(unify v w s) 

for all values v and w and for all 
substitutions s 

35 
It is either #f or it is a new substitution. The 
new substitution includes the associations of 
s and perhaps other associations. 
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Here is unify. 
36 

We let-bind v (and w) to a possibly different 
value. Thus, we know that the new binding 

(define unify of v (and w ) is either to a fresh variable or to 
(lambda (v w s) a non-variable value.†
 

(let ((v (walk v s))
 
(w (walk w s)))
 

(cond
 
((eq? v w) s)
 
((var? v ) (ext-s v w s))
 
((var? w ) (ext-s w v s))
 
((and (pair? v ) (pair? w ))
 
(cond
 

((unify (car v ) (car w) s) ⇒
 
(lambda (s)
 

(unify (cdr v ) (cdr w) s)))
 
(else #f)))
 † Our very simple representation of variables (frame 6) 

makes it unsafe to pass vectors, other than variables, as the 
first two arguments of unify. We  could,  however,  define  

((equal? v w ) s) 
(else #f))))) variables in many other ways, but it would unnecessarily 

complicate the definitions of var and var?. Nevertheless,  the  
reader should not hesitate to experiment with refined 

What is the first thing that happens in unify definitions of var and var?. 

What is a simple way to improve unify 
37 

We could determine if v is the same as w 
before let-binding v and w . 

What is another way to improve unify 
38 

If we have two variables, we can walk one of 
them, but while it is being walked, we can 
see if we meet the other. Then, we know that 
the two variables unify. This generalizes the 
improvement in the previous frame. 

What is the purpose of the eq? test?† 

† We are using eq? primarily for comparing two fresh 
variables, but we also benefit from the eq? test on some 
non-variable values. Furthermore, although we use no 
effects, our definitions are not purely functional, since we 
rely on eq? to distinguish two variables (nonempty vectors) 
that were created at different times. This effect, however, 
could be avoided by including a birthdate variable in the 
substitution. Each time we would create variables, we would 
then extend the substitution with birthdate and the 
associated value of birthdate appropriately incremented. 

39	 
If v and w are the same, we do not extend 
the substitution. Conveniently, this works 
whether or not v and w are fresh variables. 
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Explain why the next cond line uses var? 
40	 

Because if v is a variable it must be fresh† , 
since it has been walked. 

† This behavior is necessary in order for ≡ to satisfy “The 
Law of Fresh.” 

And what about the next cond line? 
41	 

Because if w is a variable it must be fresh, 
since it has been walked.† 

† The answer of this cond line could be replaced by 
(unify w v s), because for a value w and a substitution s, 

(walk (walk w s) s) = (walk w s). 

What happens when both v and w are pairs? 
42	 

We unify the car of v with the car of w . If 
they successfully unify, we get a new 
substitution, which we then use to unify the 
cdr of v with the cdr of w . 

What is the purpose of the ((equal? v w ) s) 
cond line? 

What is the value of 

(walk∗ x 
((((y ! ((a z c)))) ((x ! y)) ((z ! a))))) 

What is the value of 

(walk∗ x 
((((y ! ((z w  c)))) ((x ! y)) ((z ! a))))) 

43 

44 

45 

This one is easy. If either v or w is a pair, 
and the other is not, then clearly no 
substitution exists that can make them 
equal. Also, the equal? works for other kinds 
of values. 

((a a c)). 
The walked value of x is ((a z c)). Then the 
walk*ed values of each value in the list are 
used to create a new list. 

((a w c)). 
The walked value of x is ((z w  c)). Then 
the walk*ed values of each value in the list 
are used to create a new list. 
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What is the value of 
46 

((w b c)). 
(walk∗ y 

((((y ! ((w z  c)))) ((v ! b)) ((x ! v )) ((z ! x ))))) 
The walked value of y is ((w z  c)). Then 
the walk*ed values of each value in the list 
are used to create a new list. 

Here is walk∗ . 
47 

Yes, and it’s also useful.† 

(define walk∗ 

(lambda (v s) 
† Here is project (pronounced “proh-ject”). 

(let ((v (walk v s))) (define-syntax project 

(cond 
(syntax-rules () 

(( (x . . . )  g . . . )  

((var? v ) v) 
((pair? v ) 

(λG (s) 
(let ((x (walk∗ x s)) . . . ) 

((all g . . . )  s)))))) 

(cons 
(walk∗ (car v) s) 

where λG (see appendix) is just lambda. project is 
syntactically like fresh, but it  binds diffferent values to  the  

(walk∗ (cdr v) s))) 
(else v))))) 

lexical variables. project binds walk*ed values, whereas 
fresh binds variables using var. For  example,  the  value  of  

(run ∗ (q) 

Is walk∗ recursive? 
(≡ #f q) 
(project (q) 

(≡ (not (not q)) q))) 

()(, its value would be  q; without projecting))f#(( is ), since  q, 
which is represented using a vector (frame 6), is considered 
to be nonfalse when passed as an argument to not . 

How does walk∗ differ from walk if its first 
48 

It doesn’t. 
argument is a fresh variable? If v is a fresh variable, then only the first 

cond line of walk∗ is ever considered. 
Thus walk and walk∗ behave the same if v 
is fresh. 

How does walk∗ differ from walk if its first 
49 

If its first argument is nonfresh, then the 
argument is a nonfresh variable? second cond line of walk∗ must be 

considered. Then, if the walked v is a pair, 
walk∗ constructs a new pair of the walk∗ of 
each value in v , whereas  the  walked value  is  
just v . Finally,  if  the  walked  value  is  not  a  
pair, then walk and walk∗ behave the same. 

What property holds with a variable that has 
50 

We know that if the walked variable is itself 
been walked? a variable, then  it must be  fresh.  
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What property holds with a value that has 
51 

We know that any variable that appears in 
been walk*ed? the resultant value must be fresh. 

Here is the definition of reify-s, whose  first  
52 

(reify-s v empty-s) returns  a reified-name  
argument is assumed to have been walk*ed substitution in which each variable in v is 
and whose second argument starts out as associated with its reified name.† 

empty-s. The result of an invocation of 
reify-s is called a reified-name substitution. 

(define reify-s
 
(lambda (v s)
 

(let ((v (walk v s)))
 
(cond
 

((var? v )
 
† Here is reify-name.(ext-s v (reify-name (size-s s)) s)) 
(define reify-name ((pair? v ) (reify-s (cdr v) (lambda (n) 

(string!symbol 
(string-append " " "." (number!string n))))) 

(reify-s (car v) s))) 
(else s))))) 

The functions string!symbol, string-append, and 
number!string are standard; and size-s is length, which is 

Describe (reify-s v empty-s). also standard. 

What is the value of 
53 

(( 0 1 2 )). 
(let ((r ((w x y))))
 

(walk∗ r (reify-s r empty-s)))
 

What is the value of 
54 

(( 0 1 2 )). 
(let ((r (walk∗ ((x y z  )) empty-s)))
 

(walk∗ r (reify-s r empty-s)))
 

What is the value of 
55 

(( 0 (( 1 (( 2 )) )) )).3 4 3 

(let ((r ((u ((v ((w x  )) y)) x ))))
 
(walk∗ r (reify-s r empty-s)))
 

What is the value of 
56 

((a 0 c 0 )), 
since r ’s fresh variable w is replaced by the (let ((s ((((y ! ((z w  c w)))) ((x ! y)) ((z ! a)))))) 
reified name 0 (see frame 45). (let ((r (walk∗ x s)))
 

(walk∗ r (reify-s r empty-s))))
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If every nonfresh variable has been removed 
57 

We know that there are no variables in the
 
from a value and every fresh variable has resultant value.
 
been replaced by a reified name, what do we
 
know?
 

Consider the definition of reify, where  it  is  
assumed that its only argument has been 
walk*ed. 

(define reify 
(lambda (v) 

(walk∗ v (reify-s v empty-s)))) 

What is the value of 

(let ((s ((((y ! ((z w  c w)))) ((x ! y)) ((z ! a)))))) 
(reify (walk∗ x s))) 

58 

((a 0 c 0 )), 
since this is just a restatement of frame 56. 
Within run, (reify (walk∗ x s)) transforms 
the value associated with x by first 
removing all nonfresh variables. This is 
done by (walk∗ x s), which returns a value 
whose variables are fresh. The call to reify 
then transforms the walk*ed value, 
replacing each fresh variable with its 
reified name. 

Here are ext-s 
√ 

, a new  way  to  extend a  
substitution, and occurs 

√ 
, which it uses.  

(define ext-s 
√ 

(lambda (x v  s) 
(cond 

((occurs 
√ 

x v  s) #f) 
(else (ext-s x v s))))) 

(define occurs 
√ 

(lambda (x v  s) 
(let ((v (walk v s))) 

(cond 
((var? v ) (eq? v x )) 
((pair? v ) 
(or 

(occurs 
√ 

x (car v ) s) 
(occurs 

√ 
x (cdr v ) s))) 

(else #f))))) 

59 

We use ext-s 
√ 

where we used ext-s in unify, 
so here is the definition of unify 

√ 
. 

(define unify 
√ 

(lambda (v w s) 
(let ((v (walk v s)) 

(w (walk w s))) 
(cond 

((eq? v w) s) 
((var? v ) (ext-s 

√ 
v w s)) 

((var? w ) (ext-s 
√ 

w v s)) 
((and (pair? v ) (pair? w )) 
(cond 

((unify 
√ 

(car v ) (car w) s) ⇒ 
(lambda (s) 

(unify 
√ 

(cdr v) (cdr w) s))) 
(else #f))) 

((equal? v w ) s) 
(else #f))))) 

Where might we want to use ext-s 
√ 
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Why might we want to use ext-s 
√ 

What is the value of 

(run1 (x ) 
(≡ ((x )) x )) 

What is the value of 

(run1 (q) 
(fresh (x ) 

(≡ ((x )) x ) 
(≡ #t q))) 

What is the value of 

(run1 (q) 
(fresh (x y) 

(≡ ((x )) y) 
(≡ ((y)) x ) 
(≡ #t q))) 

What is the value of 

(run1 (x ) 
(≡ 

√ 
((x )) x )) 

60 

61 

62 

63 

64 

Because we might want to avoid creating a 
circular substitution that if passed to walk∗ 

might lead to no value. 

It has no value. 

((#t)). 
Although the substitution is circular, x is 
not reached by the walk∗ of q from within 
run. 

((#t)). 
Although the substitution is circular, 
neither x nor y is reached by the walk∗ of q 
from within run. 

(()), 
where ≡ 

√ 
is the same as ≡, except that it 

relies on unify 
√ 

instead of unify. † 

† Here is ≡ 
√ 

. 

(define ≡ 
√ 

(lambda (v w) 
(λG (s) 

(cond 
((unify 

√ 
v w s) ⇒ #s) 

(else (#u s)))))) 

where #s and #u are defined in the appendix, and λG is just 
lambda. 
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What is the value of 
65 

It has no value. 

(run1 (x ) 
(fresh (y z  )
 

(≡ x z  )
 
(≡ ((a b z )) y)
 
(≡ x y)))
 

What is the value of 
66 

(()). 

(run1 (x ) 
(fresh (y z  )
 

(≡ x z  )
 
(≡ ((a b z )) y)
√ 
(≡ x y))) 

What is the substitution when (≡ 
√ 

x y) fails 
in the previous frame? 

67 

((((y ! ((a b z )))) ((z ! x )))). 
(≡ 

√ 
x y) fails  because  

(occurs 
√ 

x y  ((((y ! ((a b z )))) ((z ! x ))))) 
returns #t. occurs 

√ 
first finds y ’s 

association, ((a b z )). occurs 
√ 

then searches 
((a b z )) and at each step makes sure that 
the rhs is walked if it is a variable. When z 
is walked, walk returns the fresh variable 
x , which  means  that  we  have  an  occurrence 
of x in y . 

When should we use ≡ 
√ 68 

When we want to avoid creating a circular 
(frame 61) substitution. 

So, why indeed does 

(run1 (x ) 
(≡ ((x )) x )) 

have no value? 

69 

It has no value because run uses walk∗ (see 
frame 58) on x and the circular substitution. 
This call of walk∗, however, has no value. 
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What is the substitution generated by 
70 

((((x ! ((x )))))), which is a circular substitution. 

(run1 (x )
 
(≡ ((x )) x ))
 

=⇒ The end, sort of. Time for vacation. ⇐= 

This space reserved for 

PALM TREES! 
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Chapter 10

Thin Ice



Does 

(conda 

(#u #s) 
(else #u)) 

succeed?† 

1 
No, 

because the question of the first conda 

line is the goal #u, so  conda tries the 
second line. 

† conda is written conda and is pronounced “con-day”. 
conda is like the so-called soft-cut (also known as 
if-then-else) and is described on  page 45  of William F.  
Clocksin. Clause and Effect. Springer,  1997.  

Does 

(conda 

(#u #s) 
(else #s)) 

succeed? 

Does 

(conda 

(#s #u) 
(else #s)) 

succeed? 

Does 

(conda 

(#s #s) 
(else #u)) 

succeed? 

What is the value of 

(run ∗ (x ) 
(conda 

((≡ olive x ) #s) 
((≡ oil x ) #s) 
(else #u))) 

2 

3 

4 

5 

Yes, 
because the question of the first conda 

line is the goal #u, so  conda tries the 
second line. 

No, 
because the question of the first conda 

line is the goal #s, so conda tries the 
answer of the first line. 

Yes, 
because the question of the first conda 

line is the goal #s, so conda tries the 
answer of the first line. 

((olive)), 
because (≡ olive x ) succeeds; therefore, the 
answer of the first conda line is #s. The #s 
preserves the association of x to olive. 
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The Law of conda 

If the question of a conda line suc­
ceeds, pretend that the remaining 
conda lines have been replaced by 
a single (else  #u). 

What does the “a” stand for in  conda 

What is the value of 

(run ∗ (x ) 
(conda 

((≡ virgin x ) #u) 
((≡ olive x ) #s) 
((≡ oil x ) #s) 
(else #u))) 

What is the value of 

(run ∗ (q) 
(fresh (x y) 

(≡ split x ) 
(≡ pea y) 
(conda 

((≡ split x ) (≡ x y)) 
(else #s))) 

(≡ #t q)) 

What value is associated with q in 

(run ∗ (q) 
(fresh (x y) 

(≡ split x ) 
(≡ pea y) 
(conda 

((≡ x y) (≡ split x )) 
(else #s))) 

(≡ #t q)) 

6 

7 

8 

9 

It stands for a single line, since at most a 
single line can succeed. 

(()), 
because (≡ virgin x ) succeeds, but the  
answer of the first conda line fails. We 
cannot pretend that (≡ virgin x ) fails  
because we are within neither a conde nor 
a condi . 

(()). 
(≡ split x ) succeeds, since  x is already 
associated with split. (≡ x y) fails, 
however, since x and y are associated with 
different values. 

#t. 
(≡ x y) fails, since  x and y are associated 
with different values. The question of the 
first conda line fails, therefore we try the 
second conda line, which succeeds. 

146 Chapter 10 



Why does the value change when we switch 
10 

Because only if the question of a conda line 
the order of (≡ split x ) and (≡ x y) within  fails do we consider the remaining conda 

the first conda line? lines. If the question succeeds, it is as if the 
remaining conda lines have been replaced by 
a single  (else #u). 

Consider the definition of not-pasta o . 
11 

((spaghetti)), 
because x starts out fresh, but the 

(define not-pasta o question (not-pasta o x ) associates  x with 
(lambda (x ) pasta, but then fails.  Since  (not-pasta o x )

(conda fails, we try (≡ spaghetti x ).
((≡ pasta x ) #u) 
(else #s)))) 

What is the value of 
(run ∗ (x ) 

(conda 

((not-pasta o x ) #u) 
(else (≡ spaghetti x )))) 

Then, what is the value of 
12 

(()), 
(run ∗ (x ) because (not-pasta o x ) succeeds, which 

(≡ spaghetti x ) shows the risks involved when using 
(conda conda. We  can’t  allow  a  fresh  variable  to  

((not-pasta o x ) #u) become nonfresh as part of a conda 

(else (≡ spaghetti x )))) question. 

The Third Commandment 
If prior to determining the question of a conda 

line a variable is fresh, it must remain fresh in the 
question of that line. 
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What is the value of 
13 

It has no value, 
since run ∗ never finishes building the list (run ∗ (q) 
of #t’s.(conda
 

(always o #s)
 
(else #u))
 

(≡ #t q)) 

14 

What is the value of † ((#t)), 
because condu is like conda, except that  (run ∗ (q) 
the successful question, here always o ,(condu 

succeeds only once. (always o #s)
 
(else #u))
 

(≡ #t q))
 

† condu is written condu and is pronounced “cond-you”. 
condu corresponds to committed-choice of Mercury 
(so-called “once”), which is described in Fergus Henderson, 
Thomas Conway, Zoltan Somogyi, and David Jeffery. “The 
Mercury language reference manual.” University of 
Melbourne Technical Report 96/10, 1996. Mercury was the 
first language to effectively combine and extensively use 
soft-cuts (frame 1) and committed choice, avoiding the cut of 
Prolog. See Lee Naish. “Pruning in logic programming.” 
University of Melbourne Technical Report 95/16, 1995. 

What is the value of 
15 

It has no value, 
since run ∗ never finishes building the list (run ∗ (q) 
of #t’s.(condu
 

(#s always o)
 
(else #u))
 

(≡ #t q)) 

What does the “u” stand for in  condu 16 
It stands for uni-, because the successful 
question of a condu line succeeds only once. 
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What is the value of 
17 

It has no value, since always o keeps 

(run1 (q) succeeding after the outer #u fails. 

(conda 

(always o #s) 
(else #u)) 

#u 
(≡ #t q)) 

What is the value of 
18 

(()), 

(run1 (q) 
(condu 

because condu’s successful question 
succeeds only once. 

(always o #s) 
(else #u)) 

#u 
(≡ #t q)) 

The Law of condu 

condu behaves like conda , except 
that a successful question suc­
ceeds only once. 

Here is once o . 
19 

((tea)). 
The first conde line of teacup o succeeds. 

(define once o 
Since once o’s goal can succeed only once, 

(lambda (g) there are no more values. But, this breaks 
(condu 

The Third Commandment. 
(g #s)
 
(else #u))))
 

What is the value of 

(run ∗ (x )
 
(once o (teacup o x )))
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What is the value of 
20 

(()). 
The first conde line of sal o succeeds. This (run1 (q) 
is followed by #u, which  fails.  Since  once o’s(once o (sal o never o)) 
goal can succeed only once, this avoids #u) 
never o, so the run fails. This use of once o 

obeys The Third Commandment. 

What is the value of 
21 

((tea cup #f)). 
(run ∗ (r) 

(conde
 

((teacup o r ) #s)
 
((≡ #f r) #s)
 
(else #u)))
 

What is the value of 
22 

((tea cup)), 
breaking The Third Commandment.(run ∗ (r) 

(conda
 

((teacup o r ) #s)
 
((≡ #f r) #s)
 
(else #u)))
 

And, what is the value of 
23 

((#f)), 
since this value is included in frame 21. (run ∗ (r)
 

(≡ #f r )
 
(conda
 

((teacup o r ) #s)
 
((≡ #f r) #s)
 
(else #u)))
 

What is the value of 
24 

((#f)). 
conda and condu often lead to fewer (run ∗ (r) 
values than a similar expression that uses (≡ #f r ) 
conde. Knowing  that  helps  determine  (condu 

whether to use conda or condu, or the ((teacup o r ) #s) 
more general conde or condi .((≡ #f r) #s) 

(else #u))) 
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Let’s do a bit more arithmetic. 
25 

Okay. 

Here is bump o . 
26 

((((1 1 1)) 
((0 1 1))

(define bump o ((1 0 1))
(lambda (n x  ) ((0 0 1))

(conde ((1 1))
((≡ n x  ) #s) ((0 1))
(else ((1))

(fresh (m) (()))). 
(−o n ((1)) m) 
(bump o m x  )))))) 

What is the value of 

(run ∗ (x ) 
(bump o ((1 1 1)) x )) 

Here is gen&test o . 

(define gen&test o 

(lambda (op i j k) 
(once o 

(fresh (x y  z  ) 
(op x y z ) 
(≡ i x  ) 
(≡ j y) 
(≡ k z  ))))) 

27 
#t , 

because four plus three is seven, but there 
is more. 

What value is associated with q in 

(run ∗ (q) 
(gen&test o +o ((0 0 1)) ((1 1)) ((1 1 1))) 
(≡ #t q)) 

What values are associated with x , y , and z 
after the call to (op x y z ), where op is +o 

28 

0 , (()), and 0 , respectively.  
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What happens next? 
29 

(≡ i x ) succeeds,  
since i is associated with (( 0 0 1)) and x is 
fresh. As a result, x is associated with 
(( 0 0 1)) . 

What happens after (≡ i x ) succeeds?  
30 

(≡ j y) fails,  
since j is associated with (( 1 1)) and y is 
associated with (()) . 

What happens after (≡ j y) fails?  
31 

(op x y z ) is  tried again, and this  time  
associates x with (()) , and both y and z with 
(( 0 ! 1 )) . 

What happens next? 
32 

(≡ i x ) fails,  
since i is still associated with (( 0 0 1)) and x 
is associated with (()) . 

What happens after (≡ i x ) fails? 
33 

(op x y z ) is  tried again and this  time  
associates both x and y with (( 1)) , and z with 
(( 0 1)) . 

What happens next? 
34 

(≡ i x ) fails,  
since i is still associated with (( 0 0 1)) and x 
is associated with (( 1)) . 

What happens the eighty-second time that 
(op x y z ) is called? 

35 

(op x y z ) associates  both  x and z with 
(( 0 0  0 ! 1 )) , and y with (( 1 1)) . 

What happens next? 
36 

(≡ i x ) succeeds,  
associating x , and therefore z , with 
(( 0 0 1)) . 
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What happens after (≡ i x  ) succeeds?  
37 

(≡ j y) succeeds,  
since both j and y are associated with 
((1 1)). 

What happens after (≡ j y) succeeds?  
38 

(≡ k z  ) succeeds,  
since both k and z are associated with 
((0 0 1)). 

What values are associated with x , y , and z 
after the call to (op x y z ) is  made in the  
body of gen&test o 

39 
x , y , and z are not associated with any 
values, since they are fresh. 

What is the value of 

(run1 (q) 
(gen&test o +o ((0 0 1)) ((1 1)) ((0 1 1)))) 

40 
It has no value. 

Can (op x y z ) fail when  x , y , and z are 
fresh? 

41 
Never. 

Why doesn’t 
42	 

(op x y z ) generates various associations for 
x y , and z , and then tests (≡ i x  ), (≡ j y),(run1 (q) 

+o	 and (≡ k z  ) if the  given triple of values  i , j ,(gen&test o ((0 0 1)) ((1 1)) ((0 1 1)))) 
and k is present among the generated triple 

have a value?	 x , y , and z . All  the  generated  triples  x , y , 
and z satisfy, by definition, the relation op, 
+o in our case. If the triple of values i , j , 
and k is so chosen that i + j is not equal to 
k , and  our definition of +o is correct, then 
that triple of values cannot be found among 
those generated by +o. (op x y z ) will 
continue to generate associations, and the 
tests (≡ i x  ), (≡ j y), and (≡ k z  ) will 
continue to reject them. So this run1 

expression will have no value. 
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Here is enumerate o . 

(define enumerate o 

(lambda (op r n) 
(fresh (i j k  ) 

(bump o n i) 
(bump o n j  ) 
(op i j k ) 
(gen&test o op i j k) 
(≡ ((i j k  )) r )))) 

What is the value of 

(run ∗ (s) 
(enumerate o +o s ((1 1)))) 

43 

((((((1 1)) ((1 1)) ((0 1 1)))) 
((((1 1)) ((0 1)) ((1 0 1)))) 
((((1 1)) ((1)) ((0 0 1)))) 
((((1 1)) (()) ((1 1)))) 
((((0 1)) ((1 1)) ((1 0 1)))) 
((((0 1)) ((0 1)) ((0 0 1)))) 
((((0 1)) ((1)) ((1 1)))) 
((((0 1)) (()) ((0 1)))) 
((((1)) ((1 1)) ((0 0 1)))) 
((((1)) ((0 1)) ((1 1)))) 
((((1)) ((1)) ((0 1)))) 
((((1)) (()) ((1)))) 
(((()) ((1 1)) ((1 1)))) 
(((()) ((0 1)) ((0 1)))) 
(((()) ((1)) ((1)))) 
(((()) (()) (()))))). 

Describe the values in the previous frame. 
44 

The values are arranged into four groups of 
four values. Within the first group, the first 
value is always ((1 1)); within the  second  
group, the first value is always ((0 1)); etc.  
Then, within each group, the second value 
ranges from ((1 1)) to (()), consecutively. And 
the third value, of course, is the sum of first 
two values. 

What is true about the value in frame 43? 
45 

It appears to contain all triples ((i j  k  )) where 
i + j = k with i and j ranging from (()) to 
((1 1)). 

All such triples? 
46 

It seems so. 

Can we be certain without counting and 
47 

That’s confusing.
 
analyzing the values? Can we be sure just by
 
looking at the values?
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Okay, suppose one of the triples were 
48 

But how could that be? We know 
missing. For example, suppose (bump o n i) associates  i with the numbers 
((((0 1)) ((1 1)) ((1 0 1)))) were missing. within the range (()) through n. So  if  we  try  it  

enough times, we eventually get all such 
numbers. The same is true for (bump o n j  ). 
So, we definitely will determine (op i j k) 
when i is ((0 1)) and j is ((1 1)), which will 
then associate k with ((1 0 1)). We have 
already seen that. 

Then what happens? 
49 

Then we will try to find if 
(gen&test o +o i j  k) can  succeed, where  i is 
((0 1)), j is ((1 1)), and k is ((1 0 1)). 

At least once? 
50 

Yes, 
since we are interested in only one value. 
We first determine (op x y z ), where x , y , 
and z are fresh. Then we see if that result 
matches ((((0 1)) ((1 1)) ((1 0 1)))). If not, we 
try (op x y z ) again,  and again.  

What if such a triple were found? 
51 

Then gen&test o would succeed, producing 
the triple as the result of enumerate o . Then, 
because the fresh expression in gen&test o is 
wrapped in a once o, we would pick a new  
pair of i -j values, etc. 

What if we were unable to find such a triple? 
52 

Then the run expression would have no 
value. 

Why would it have no value? 
53	 

If no result of (op x y z ) matches  the  desired  
triple, then, as in frame 40, we would keep 
trying (op x y z ) forever.  
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So can we say that 
54 

Yes, that’s clear. 
If one triple were missing, we would have (run ∗ (s) 

+o	 no value at all! (enumerate o s ((1 1)))) 

produces all such triples ((i j k  )) where 
i + j = k with i and j ranging from (()) 
through ((1 1)), just by glancing at the value?  

So what does enumerate o determine? 
55	 

It determines that (op x y z ) with x , y , and 
z being fresh eventually generates all triples 
where x + y = z. At  least,  enumerate o 

determines that for numbers x and y being 
(()) through some n. 

What is the value of 
56 

((((((1 1 1)) ((1 1 1)) ((0 1 1 1)))))). 

(run1 (s) 
(enumerate o +o s ((1 1 1)))) 

How does this definition of gen-adder o differ 
57 

The definition in chapter 7 has an alli , 
from the one in 7:118? whereas this definition uses all. 

(define gen-adder o 

(lambda (d n  m  r) 
(fresh (a b  c  e  x  y  z  ) 

(≡ ((a ! x )) n) 
(≡ ((b ! y)) m) (pos o y) 
(≡ ((c ! z )) r ) (pos o z ) 
(all 

(full-adder o d a  b  c  e) 
(adder o e x  y  z  ))))) 

What is the value of 
58 

It has no value. 

(run1 (q) 
(gen&test o +o ((0 1)) ((1 1)) ((1 0 1)))) 

using the second definition of gen-adder o 
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Why doesn’t 
59 

When using all instead of alli, things can get 
(run1 (q) stuck. 

(gen&test o +o ((0 1)) ((1 1)) ((1 0 1)))) 

have a value? 

Where does the second definition of 
60 

If a, b, c, d , x , y , and z are all fresh, then 
gen-adder o get stuck? (full-adder o d a  b  c  e) finds  such bits  where  

d + a + b = c + 2  · e and (adder o e x  y  z  ) will 
find the rest of the numbers. But there are 
several ways to solve this equation. For 
example, both 0 + 0 + 0  =  0 + 2  · 0 and 
0 + 1 + 0  =  1 + 2  · 0 work. Because 
(adder o e x  y  z  ) keeps generating new  x , y , 
and z forever, we never get a chance to 
explore other values. Because 
(full-adder o d a  b  c  e) is  within an  all, not 
an alli, the (full-adder o d a  b  c  e) gets stuck 
on its first value. 

Good. Let’s see if it is true. Redo the effort 
61 

Some things are missing like 
of frame 103 and frame 115 but using the ((((1)) ((1 1 0  0 ! 1 )) ((0 0 1  0 ! 1 )))) 
second definition of gen-adder o . What do we and ((((0 1)) ((1 1)) ((1 0 1)))). 
discover? 

If something is missing because we are using 
the second definition of gen-adder o, can we 
predict the value of 

(run ∗ (q) 
(enumerate o +o q ((1 1 1)))) 

62 
Of course, we know that it has no value. 

Can logo and ÷o also be enumerated? 
63 

Yes, of course. 

=⇒ Get ready to connect the wires. ⇐= 
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Appendix A
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A goal g is a function that maps a substitution s to an ordered sequence s∞ of zero or more 
substitutions. (For clarity, we notate lambda as λG when creating such a function g .) Because 
the sequence of substitutions may be infinite, we represent it not as a list but a stream. 

Streams contain either zero, one, or more substitutions.1 We use (mzero) to represent the  
empty stream of substitutions. For example, #u maps every substitution to (mzero). If a is 
a substitution,  then (unit a) represents the stream containing just a. For instance, #s maps 
every substitution s to just (unit s). The goal created by an invocation of the ≡ operator 
maps a substitution s to either (mzero) or  to a  stream containing a single  (possibly  extended)  
substitution, depending on whether that goal fails or succeeds. To represent a stream containing 
multiple substitutions, we use (choice a f  ), where a is the first substitution in the stream, and 
where f is a function of zero arguments. Invoking the function f produces the remainder of the 
stream, which may or may not be empty. (For clarity, we notate lambda as λF when creating 
such a function f .) 

When we use the variable a rather than s for substitutions, it is to emphasize that this 
representation of streams works for other kinds of data, as long as a datum is never #f or a pair 
whose cdr is a function—in other words, as long as the three cases above are never represented 
in overlapping ways. To discriminate among the cases we define the macro case∞ . 

The second case is redundant in this representation: (unit a) can  be represented as  
(choice a (λF () #f)). We include unit, which  avoids  building  and  taking  apart  pairs  and  
invoking functions, because many goals never return multiple substitutions. run converts a 
stream of substitutions s∞ to a list of values using map∞ . 

Two streams can be merged either by concatenating them using mplus (also known as stream-
append) or  by  interleaving them  using  mplusi. The  only  difference  between  the  definitions  mplus 
and mplusi lies in the recursive case: mplusi swaps the two streams; mplus does not. 

Given a stream s∞ and a goal g , we  can  feed  each  value  in  s∞ to the goal g to get a 
new stream, then merge all these new streams together using either mplus or mplusi . When 
using mplus, this  operation  is  called  monadic2 bind, and it is used to implement the conjunction 
all. When  using  mplusi, this operation is called bind i, and  it  is  used  to  implement  the  fair  
conjunction alli . The operators all and alli are like and, since  they  are  short-circuiting:  the  
false value short-circuits and, and  any  failed  goal  short-circuits  all and alli. Also,  the  let in the 
third clause of all-aux ensures that (all e), (alli e), (all e #s), and (alli e #s) are equivalent 
to e, even  if  the  expression  e has no value. The addition of the superfluous second clause allows 
all-aux expressions to expand to simpler code. 

To take the disjunction of goals we define conde, and  to  take  the  fair  disjunction  we  define  
condi . They combine successive question-answer lines using mplus and mplusi, respectively.  
Two stranger kinds of disjunction are conda and condu . When a question g0 succeeds, both 
conda and condu skip the remaining lines. However, condu chops off every substitution after 
the first produced by g0 , whereas conda leaves the stream produced by g0 intact. 

1See Philip L. Wadler. How to replace failure by a list of successes: a method for exception handling, back­
tracking, and pattern matching in lazy functional languages. Functional Programming Languages and Computer 
Architecture, Lecture  Notes  in  Computer  Science  201, Springer, pages  113–128;  J.  Michael  Spivey  and  Silvija  
Seres. Combinators for logic programming. The Fun of Programming. Palgrave; and Mitchell Wand and Dale 
Vaillancourt. Relating Models of Backtracking. Ninth International Conference on Functional Programming. 
2004, pages 54–65. 

2See Eugenio Moggi. Notions of computation and monads. Information and Computation 93(1):55–92, 1991; 
Philip L. Wadler. The essence of functional programming. Nineteenth Symposium on Principles of Programming 
Languages. 1992,  pages 1–14;  and Ralf Hinze. Deriving  backtracking  monad  transformers.  Fifth International 
Conference on Functional Programming . 2000,  pages  186–197.  
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1 

(define-syntax run 9 : 6, 13, 47, 58 
(syntax-rules () 

(( n̂ (x) g . . . )  
(let ((n n̂) (x (var x))) 

(if (or (not n) (> n 0)) 
(map ∞ n 

(lambda (s) 
(reify (walk∗ x s))) 

((all g . . . )  empty-s)) 
())))))()

(define-syntax case∞ 

(syntax-rules () 
(( e on-zero ((â) on-one) ((a f  ) on-choice)) 
(let ((a ∞ e)) 

(cond 
((not a∞ ) on-zero) 
((not (and 

(pair? a ∞ ) 
(procedure? (cdr a∞ )))) 

(let ((â a ∞ )) 
on-one)) 

(else (let ((a (car a ∞ )) (f (cdr a∞ ))) 
on-choice))))))) 

(define-syntax mzero 
(syntax-rules () 

(( ) #f))) 

(define-syntax unit 
(syntax-rules () 

(( a) a))) 

(define-syntax choice 
(syntax-rules () 

(( a f  ) (cons a f )))) 

(define map ∞ 

(lambda (n p a  ∞ ) 
(case ∞ a ∞ 

()()
((a)
 
(cons (p a) ()))
()

((a f  )
 
(cons (p a)
 

(cond 
((not n) (map ∞ n p  (f ))) 
((> n 1) (map ∞ (− n 1) p (f ))) 
(else (())))))))) 

2 

(define #s (λG (s) (unit s))) 

(define #u (λG (s) (mzero))) 

(define ≡ 9 : 27, 36 
(lambda (v w) 

(λG (s) 
(cond 

((unify v w s) ⇒ #s) 
(else (#u s)))))) 

(define-syntax fresh 9 : 6  
(syntax-rules () 

(( (x . . . )  g . . . )  
(λG (s) 

(let ((x (var x)) . . . ) 
((all g . . . )  s)))))) 

(define-syntax conde 

(syntax-rules () 
(( c . . . )  (cond-aux if e c . . . )))) 

(define-syntax all 
(syntax-rules () 

(( g . . . )  (all-aux bind g . . . )))) 

(define-syntax alli 

(syntax-rules () 
(( g . . . )  (all-aux bind i g . . . )))) 

(define-syntax condi 

(syntax-rules () 
(( c . . . )  (cond-aux if i c . . . )))) 

(define-syntax conda 

(syntax-rules () 
(( c . . . )  (cond-aux if a c . . . )))) 

(define-syntax condu 

(syntax-rules () 
(( c . . . )  (cond-aux if u c . . . )))) 
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3 

(define mplus 
(lambda (a ∞ f ) 

(case ∞ a ∞ 

(f )
 
((a) (choice a f  ))
 
((a f0 ) (choice a
 

(λF () (mplus (f0 ) f ))))))) 

(define bind 
(lambda (a ∞ g) 

(case ∞ a ∞
 

(mzero)
 
((a) (g a))
 
((a f  ) (mplus (g a)
 

(λF () (bind (f ) g))))))) 

(define mplusi 

(lambda (a ∞ f ) 
(case ∞ a ∞ 

(f )
 
((a) (choice a f  ))
 
((a f0 ) (choice a
 

(λF () (mplusi (f ) f0 ))))))) 

(define bind i 

(lambda (a ∞ g) 
(case ∞ a ∞
 

(mzero)
 
((a) (g a))
 
((a f  ) (mplusi (g a)
 

(λF () (bind i (f ) g))))))) 

4 

5 

(define-syntax cond-aux 
(syntax-rules (else) 

(( ifer) #u) 
(( ifer (else g . . . ))  (all g . . . ))  
(( ifer (g . . . ))  (all g . . . ))  
(( ifer (g0 g . . . )  c . . . )  
(ifer g0 

(all g . . . )  
(cond-aux ifer c . .  . )))))  

(define-syntax all-aux 
(syntax-rules () 

(( bnd) #s) 
(( bnd g) g) 
(( bnd g0 g . . . )  
(let ((ĝ g0 )) 

(λG (s) 
(bnd (ĝ s) 

(λG (s) ((all-aux bnd g . . . )  s)))))))) 

(define-syntax if e 

(syntax-rules () 
(( g0 g1 g2 ) 
(λG (s) 

(mplus ((all g0 g1 ) s) (λF () (g2 s))))))) 

(define-syntax if i 

(syntax-rules () 
(( g0 g1 g2 ) 
(λG (s) 

(mplusi ((all g0 g1 ) s) (λF () (g2 s))))))) 

6 

(define-syntax if a 

(syntax-rules () 
(( g0 g1 g2 ) 
(λG (s) 

(let ((s ∞ (g0 s))) 
(case ∞ s ∞ 

(g2 s) 
((s) (g1 s)) 
((s f  ) (bind s∞ g1 )))))))) 

(define-syntax if u 

(syntax-rules () 
(( g0 g1 g2 ) 
(λG (s) 

(let ((s ∞ (g0 s))) 
(case ∞ s ∞ 

(g2 s) 
((s) (g1 s)) 
((s f  ) (g1 s)))))))) 
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Appendix B

Welcome to the Club



Here is a small collection of entertaining and illuminating books. 

Carroll, Lewis. The Annotated Alice: The Definitive Edition. W.  W.  Norton  & 
  
Company, New York, 1999. Introduction and notes by Martin Gardner.
 

Hein, Piet. Grooks. The MIT Press, 1960.
 

Hofstadter, Douglas R. Gödel, Escher, Bach: an Eternal Golden Braid. Basic  Books, 
  
Inc., 1979.
 

Nagel, Ernest, and James R. Newman. Gödel’s Proof. New York University Press, 1958.
 

Smullyan, Raymond. To Mock a Mockingbird. Alfred A. Knopf, Inc., 1985.
 

Suppes, Patrick. Introduction to Logic. Van  Nostrand  Co.,  1957. 
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