
The Reasoned Schemer

The Reasoned Schemer

Daniel P. Friedman
William E. Byrd
Oleg Kiselyov

Drawings by Duane Bibby

The MIT Press
Cambridge, Massachusetts
London, England

c© 2005 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic
or mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

MIT Press books may be purchased at special quantity discounts for business or sales pro­
motional use. For information, please e-mail special sales@mitpress.mit.edu or write to
Special Sales Department, The MIT Press, 55 Hayward Street, Cambridge, Mass. 02142.

This book was set in Computer Modern by the authors using LATEX. Printed and bound in the
United States of America.

Library of Congress Cataloging-in-Publication Data

Friedman, Daniel P.
The reasoned schemer / Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov; drawings

by Duane Bibby.
p. cm.

Includes index.
ISBN 0-262-56214-6 (pbk. : alk. paper)
1. Scheme (Computer program language) I. Byrd, William E. II. Kiselyov, Oleg. III. Title.

QA76.73.S34F76 2005
005.13'3—dc22

2005051092
10 9 8 7 6 5 4 3 2 1

To Mary, Sarah, Rachel, Shannon and Rob,
and to the memory of Brian.

To Mom, Dad, Brian, Mary, and Renzhong.

((Contents)

(Preface ix)

((1. Playthings) 2)

((2. Teaching Old Toys New Tricks) 16)

((3. Seeing Old Friends in New Ways) 26)

((4. Members Only) 46)

((5. Double Your Fun) 60)

((6. The Fun Never Ends . . .) 76)

((7. A Bit Too Much) 86)

((8. Just a Bit More) 108)

((9. Under the Hood) 130)

((10. Thin Ice) 144)

(Connecting the Wires 158)

(Welcome to the Club 162)

(Index 164))

Preface

The goal of this book is to show the beauty of relational programming. We believe that it is
natural to extend functional programming to relational programming. We demonstrate this by
extending Scheme with a few new constructs, thereby combining the benefits of both styles. This
extension also captures the essence of Prolog, the most well-known logic programming language.

Our main assumption is that you understand the first eight chapters of The Little Schemer 1 .
The only true requirement, however, is that you understand functions as values. That is, a
function can be both an argument to and the value of a function call. Furthermore, you should
know that functions remember the context in which they were created. And that’s it—we
assume no further knowledge of mathematics or logic. Readers of the appendix Connecting
the Wires, however, must also have a rudimentary knowledge of Scheme macros at the level of
let, and, and cond.

In order to do relational programming, we need only two constants: #s and #u, and only
three operators: ≡, fresh, and conde. These are introduced in the first chapter and are the
only operators used until chapter 6. The additional operators we introduce are variants of these
three. In order to keep this extension simple, we mimicked existing Scheme syntax. Thus, #s
and #u are reminiscent of the Boolean constants: #t and #f; fresh expressions resemble lambda
expressions; and conde expressions are syntactically like cond expressions.

We use a few notational conventions throughout the text—primarily changes in font for
different classes of symbols. Lexical variables are in italics, forms are in boldface, data are
in sans serif, and lists are wrapped by boldfaced parentheses ‘(())’. A relation, a function that
returns a goal as its value, ends its name with a superscript ‘o’ (e.g., car o and null o). We also
use a superscript with our interface to Scheme, run, which is fully explained in the first chapter.
We have taken certain liberties with punctuation to increase clarity, such as frequently omitting
a question mark when a question ends with a special symbol. We do this to avoid confusion
with function names that might end with a question mark.

In chapters 7 and 8 we define arithmetic operators as relations. The +o relation can not
only add but also subtract; ∗o can not only multiply but also factor numbers; and logo can not
only find the logarithm given a number and a base but also find the base given a logarithm and
a number. Just as we can define the subtraction relation from the addition relation, we can
define the exponentiation relation from the logarithm relation.

In general, given (∗o x y z) we can specify what we know about these numbers (their values,
whether they are odd or even, etc.) and ask ∗o to find the unspecified values. We don’t specify
how to accomplish the task; rather, we describe what we want in the result.

1Friedman, Daniel P., and Matthias Felleisen. The Little Schemer, fourth ed. MIT Press, 1996.

Preface ix

This book would not have been possible without earlier work on implementing and using
logic systems with Matthias Felleisen, Anurag Mendhekar, Jon Rossie, Michael Levin, Steve
Ganz, and Venkatesh Choppella. Steve showed how to partition Prolog’s named relations into
unnamed functions, while Venkatesh helped characterize the types in this early logic system.
We thank them for their effort during this developmental stage.

There are many others we wish to thank. Mitch Wand struggled through an early draft and
spent several days in Bloomington clarifying the semantics of the language, which led to the
elimination of superfluous language forms. We also appreciate Kent Dybvig’s and Yevgeniy
Makarov’s comments on the first few chapters of an early draft and Amr Sabry’s Haskell
implementation of the language.

We gratefully acknowledge Abdulaziz Ghuloum’s insistence that we remove some abstract
material from the introductory chapter. In addition, Aziz’s suggestions significantly clarified the
run interface. Also incredibly helpful were the detailed criticisms of Chung-chieh Shan, Erik
Hilsdale, John Small, Ronald Garcia, Phill Wolf, and Jos Koot. We are especially grateful to
Chung-chieh for Connecting the Wires so masterfully in the final implementation.

We thank David Mack and Kyle Blocher for teaching this material to students in our
undergraduate programming languages course and for making observations that led to many
improvements to this book. We also thank those students who not only learned from the
material but helped us to clarify its presentation.

There are several people we wish to thank for contributions not directly related to the
ideas in the book. We would be remiss if we did not acknowledge Dorai Sitaram’s incredibly
clever Scheme typesetting program, SLATEX. We are grateful for Matthias Felleisen’s typesetting
macros (created for The Little Schemer), and for Oscar Waddell’s implementation of a tool that
selectively expands Scheme macros. Also, we thank Shriram Krishnamurthi for reminding us of
a promise we made that the food would be vegetarian in the next little book. Finally, we thank
Bob Prior, our editor, for his encouragement and enthusiasm for this effort.

Food appears in examples throughout the book for two reasons. First, food is easier to
visualize than abstract symbols; we hope the food imagery helps you to better understand the
examples and concepts. Second, we want to provide a little distraction. We know how frustrating
the subject matter can be, thus these culinary diversions are for whetting your appetite. As
such, we hope that thinking about food will cause you to stop reading and have a bite.

You are now ready to start. Good luck! We hope you enjoy the book.

Bon appétit!

Daniel P. Friedman
William E. Byrd
Bloomington, Indiana

Oleg Kiselyov
Monterey, California

Preface x

The Reasoned Schemer

Chapter 1

Playthings

Welcome.
1

It is good to be here.

Have you read The Little Schemer?†
2

#f.

† Or The Little LISPer .

Are you sure you haven’t read
The Little Schemer?

3
Well. . .

Do you know about
Lambda the Ultimate?

4
#t.

Are you sure you have read that much of
The Little Schemer?

5

Absolutely.†

† If you are familiar with recursion and know that functions
are values, you may continue anyway.

What is #s†
6

It is a goal that succeeds.

†
#s is written succeed.

What is the name of #s
7

succeed,
because it succeeds.

†What is #u
8

It is a goal that fails; it is unsuccessful.

†
#u is written fail.

Playthings 3

What is the name of #u
9

fail,

because it fails.

What is the value of †

(run ∗ (q)
#u)

10

(()),
since #u fails, and because the expression†

(run ∗ (q) g . . .)

has the value (()) if any goal in g . . . fails.

† This expression is written (run #f (q) #u). † This expression is written (run #f (q) g ...).

What is the value of †

(run ∗ (q)
(≡ #t q))

11

((#t)),
because #t is associated with q if (≡ #t q)
succeeds.

† (≡ v w) is read “unify v with w” and ≡ is written ==.

What is the value of

(run ∗ (q)
#u
(≡ #t q))

12

(()),
because the expression

(run ∗ (q) g . . . (≡ #t q))

has the value (()) if the goals g . . . fail.

What value is associated with q in

(run ∗ (q)
#s
(≡ #t q))

13

#t (a Boolean† value),
because the expression

(run ∗ (q) g . . . (≡ #t q))

associates #t with q if the goals g . . .
(≡ #t q) succeed.

and

† Thank you George Boole (1815–1864).

4 Chapter 1

Then, what is the value of
14

((#t)),
because #s succeeds.(run ∗ (q)

#s

(≡ #t q))

What value is associated with r in†

(run ∗ (r)
#s
(≡ corn r))

15

corn† ,
because r is associated with corn when
(≡ corn r) succeeds.

† corn is written as the expression (quote corn).

† It should be clear from context that corn is a value; it is
not an expression. The phrase the value associated with
corresponds to the phrase the value of, but where the outer
parentheses have been removed. This is our convention for
avoiding meaningless parentheses.

What is the value of

(run ∗ (r)
#s
(≡ corn r))

16

((corn)),
because r is associated with corn when
(≡ corn r) succeeds.

What is the value of

(run ∗ (r)
#u
(≡ corn r))

17

(()),
because #u fails.

What is the value of

(run ∗ (q)
#s
(≡ #f q))

18

((#f)),
because #s succeeds and because run ∗

returns a nonempty list if its goals succeed.

Does

(≡ #f x)

succeed?

19
It depends on the value of x .

Playthings 5

Does

(let ((x #t))
(≡ #f x))†

succeed?

20
No,

since #f is not equal to #t.

† This let expression is the same as

((lambda (x) (≡ #f x)) #t).

We say that let binds x to #t and evaluates the body
(≡ #f x) using that binding.

Does

(let ((x #f))
(≡ #f x))

succeed?

What is the value of

(run ∗ (x)
(let ((x #f))

(≡ #t x)))

What value is associated with q in

(run ∗ (q)
(fresh (x)

(≡ #t x)
(≡ #t q)))

When is a variable fresh?

21

22

23

24

Yes,
since #f is equal to #f.

(()),
since #t is not equal to #f.

#t,
because ‘(fresh (x . . .) g . . .)’ binds fresh
variables to x . . . and succeeds if the goals
g . . . succeed. (≡ v x) succeeds when x is
fresh.

When it has no association.

Is x the only variable that starts out fresh in
25

No,
since q also starts out fresh. (run ∗ (q)

(fresh (x)

(≡ #t x)

(≡ #t q)))

Chapter 1 6

The Law of Fresh
If x is fresh, then (≡ v x) succeeds
and associates x with v .

What value is associated with q in
26

#t,
because the order of arguments to ≡ does (run ∗ (q)
not matter. (fresh (x)

(≡ x #t)

(≡ #t q)))

What value is associated with q in
27

#t,
because the order of arguments to ≡ does (run ∗ (q)
not matter. (fresh (x)

(≡ x #t)

(≡ q #t)))

The Law of ≡

(≡ v w) is the same as (≡ w v).

What value is associated with x in

(run ∗ (x)
#s)

28
0 ,
a symbol representing a fresh variable.†

† This symbol is .0, and is created using (reify-name 0).
See the definition of reify-name in frame 52 of chapter 9
(i.e., 9:52).

Playthings 7

What is the value of

(run ∗ (x)
(let ((x #f))

(fresh (x)
(≡ #t x))))

What value is associated with r in

(run ∗ (r)
(fresh (x y)

(≡ (cons x (cons y (())†)) r)))

29

30

((0)),
since the x in (≡ #t x) is the one
introduced by the fresh expression; it is
neither the x introduced in the run
expression nor the x introduced in the
lambda expression.

((0 1)).
For each different fresh variable there is a
symbol with an underscore followed by a
numeric subscript. This entity is not a
variable but rather is a way of showing
that the variable was fresh.† We say that
such a variable has been reified .

†
() is (quote ()).

What value is associated with s in

(run ∗ (s)
(fresh (t u)

(≡ (cons t (cons u (()))) s)))

31

† Thank you, Thoralf Albert Skolem (1887–1963).

((0 1)).
The expressions in this and the previous
frame differ only in the names of the
lexical variables. Therefore the values are
the same.

What value is associated with r in
32

((0 1 0)).
(run ∗ (r)

(fresh (x)
(let ((y x))

Within the inner fresh, x and y are
different variables, and since they are still
fresh, they get different reified names.

(fresh (x)
(≡ (cons y (cons x (cons y (())))) r)))))

What value is associated with r in
33

((0 1 0)).
x and y are different variables, and since (run ∗ (r)
they are still fresh, they get different (fresh (x)
reified names. Reifying r ’s value reifies the (let ((y x))
fresh variables in the order in which they (fresh (x)
appear in the list. (≡ (cons x (cons y (cons x (())))) r)))))

Chapter 1 8

What is the value of
34

(()).
The first goal (≡ #f q) succeeds, (run ∗ (q)
associating #f with q ; #t cannot then be (≡ #f q)
associated with q , since q is no longer (≡ #t q))
fresh.

What is the value of
35

((#f)).
In order for the run to succeed, both (run ∗ (q)
(≡ #f q) and (≡ #f q) must succeed. The (≡ #f q)
first goal succeeds while associating #f(≡ #f q))
with the fresh variable q . The second goal
succeeds because although q is no longer
fresh, #f is already associated with it.

What value is associated with q in
36

#t,
because q and x are the same. (run ∗ (q)

(let ((x q))

(≡ #t x)))

37
0 ,What value is associated with r in because r starts out fresh and then r gets

(run ∗ (r) whatever association that x gets, but both

(fresh (x) x and r remain fresh. When one variable

(≡ x r)†)) is associated with another, we say they

co-refer or share.

What value is associated with q in
38

#t,
because q starts out fresh and then q gets(run ∗ (q)
x ’s association. (fresh (x)

(≡ #t x)

(≡ x q)))

What value is associated with q in
39

#t,
because the first goal ensures that (run ∗ (q)
whatever association x gets, q also gets. (fresh (x)

(≡ x q)

(≡ #t x)))

Playthings 9

Are q and x different variables in

(run ∗ (q)
(fresh (x)

(≡ #t x)
(≡ x q)))

40
Yes, they are different because both

(run ∗ (q)
(fresh (x)

(≡ (eq? x q) q)))

and

(run ∗ (q)
(let ((x q))

(fresh (q)
(≡ (eq? x q) x))))

associate #f with q . Every variable
introduced by fresh (or run) is different
from every other variable introduced by
fresh (or run).†

What is the value of

(cond
(#f #t)
(else #f))

Which #f is the value?

Does

(cond
(#f #s)
(else #u))

succeed?

41

42

43

† Thank you, Jacques Herbrand (1908–1931).

#f,
because the question of the first cond line
is #f, so the value of the cond expression is
determined by the answer in the second
cond line.

The one in the (else #f) cond line.

No,
it fails because the answer of the second
cond line is #u.

Chapter 1 10

Does

(conde

(#u #s)
(else #u))

succeed?†

44
No,

because the question of the first conde line
is the goal #u.

† conde is written conde and is pronounced “con-dee”.
conde is the default control mechanism of Prolog. See
William F. Clocksin. Clause and Effect. Springer, 1997.

Does

(conde

(#u #u)
(else #s))

succeed?

Does

(conde

(#s #s)
(else #u))

succeed?

What is the value of

(run ∗ (x)
(conde

((≡ olive x) #s)
((≡ oil x) #s)
(else #u)))

45

46

47

Yes,
because the question of the first conde line
is the goal #u, so conde tries the second
line.

Yes,
because the question of the first conde line
is the goal #s, so conde tries the answer of
the first line.

((olive oil)),
because (≡ olive x) succeeds; therefore, the
answer is #s. The #s preserves the
association of x to olive. To get the second
value, we pretend that (≡ olive x) fails;
this imagined failure refreshes x . Then
(≡ oil x) succeeds. The #s preserves the
association of x to oil. We then pretend
that (≡ oil x) fails, which once again
refreshes x . Since no more goals succeed,
we are done.

Playthings 11

The Law of conde

To get more values from conde ,
pretend that the successful conde

line has failed, refreshing all vari­
ables that got an association from
that line.

What does the “e” stand for in conde

What is the value of †

(run1 (x)
(conde

((≡ olive x) #s)
((≡ oil x) #s)
(else #u)))

48

49

It stands for every line, since every line can
succeed.

((olive)),
because (≡ olive x) succeeds and because
run1 produces at most one value.

† This expression is written (run 1 (x) ...).

What is the value of

(run ∗ (x)
(conde

((≡ virgin x) #u)
((≡ olive x) #s)
(#s #s)
((≡ oil x) #s)
(else #u)))

In the previous run ∗ expression, which
conde line led to 0

50

51

((olive 0 oil)).
Once the first conde line fails, it is as if
that line were not there. Thus what results
is identical to

(conde

((≡ olive x) #s)
(#s #s)
((≡ oil x) #s)
(else #u)).

(#s #s),
since it succeeds without x getting an
association.

12 Chapter 1

What is the value of
52

((extra olive)),

(run2 (x)
(conde

since we do not want every value; we want
only the first two values.

((≡ extra x) #s)
((≡ virgin x) #u)
((≡ olive x) #s)
((≡ oil x) #s)
(else #u)))

† When we give run a positive integer n and the run
expression terminates, it produces a list whose length is less
than or equal to n.

What value is associated with r in

(run ∗ (r)
(fresh (x y)

(≡ split x)
(≡ pea y)
(≡ (cons x (cons y (()))) r)))

53

((split pea)).

What is the value of

(run ∗ (r)
(fresh (x y)

(conde

((≡ split x) (≡ pea y))
((≡ navy x) (≡ bean y))
(else #u))

(≡ (cons x (cons y (()))) r)))

54

The list ((((split pea)) ((navy bean)))).

What is the value of

(run ∗ (r)
(fresh (x y)

(conde

((≡ split x) (≡ pea y))
((≡ navy x) (≡ bean y))
(else #u))

55

The list ((((split pea soup)) ((navy bean soup)))).

(≡ (cons x (cons y (cons soup (())))) r)))

Playthings 13

Consider this very simple definition.
56

((tea cup)).

(define teacup o

(lambda (x)
(conde

((≡ tea x) #s)
((≡ cup x) #s)
(else #u))))

What is the value of

(run ∗ (x)
(teacup o x))

Also, what is the value of
57

((((tea #t)) ((cup #t)) ((#f #t)))).
From (teacup o x), x gets two associations, (run ∗ (r)
and from (≡ #f x), x gets one association. (fresh (x y)

(conde

((teacup o x) (≡ #t y) #s)†

((≡ #f x) (≡ #t y))

(else #u))

(≡ (cons x (cons y (()))) r)))

† The question is the first goal of a line, however the answer
is the rest of the goals of the line. They must all succeed for
the line to succeed.

What is the value of
58

((((0 1)) ((0 1)))),
(run ∗ (r)

(fresh (x y z)
(conde

but it looks like both occurrences of 0

have come from the same variable and
similarly for both occurrences of 1 .

((≡ y x) (fresh (x) (≡ z x)))
((fresh (x) (≡ y x)) (≡ z x))
(else #u))

(≡ (cons y (cons z (()))) r)))

Chapter 1 14

Then, what is the value of
59

((((#f 0)) ((0 #f)))),
which clearly shows that the two (run ∗ (r)
occurrences of 0 in the previous frame (fresh (x y z)
represent different variables. (conde

((≡ y x) (fresh (x) (≡ z x)))

((fresh (x) (≡ y x)) (≡ z x))

(else #u))

(≡ #f x)

(≡ (cons y (cons z (()))) r)))

What is the value of
60	

((#f)), which shows that (≡ #t q) and (≡ #f q)
are expressions, each of whose value is a goal. (run ∗ (q)
But, here we only treat the (≡ #f q)(let ((a (≡ #t q))
expression’s value, b, as a goal. (b (≡ #f q)))

b))

What is the value of
61	

((#f)), which shows that (≡ . . .), (fresh . . .),
and (conde . . .) are expressions, each of (run ∗ (q)
whose value is a goal. But, here we only (let ((a (≡ #t q))
treat the fresh expression’s value, b, as a (b (fresh (x)
goal. This is indeed interesting. (≡ x q)

(≡ #f x)))

(c (conde

((≡ #t q) #s)

(else (≡ #f q)))))

b))

=⇒ Now go make yourself a peanut butter and jam sandwich. ⇐=

This space reserved for

JAM STAINS!

Playthings 15

Chapter 2

Teaching Old Toys New Tricks

What is the value of

(let ((x (lambda (a) a))
(y c))

(x y))

What value is associated with r in

(run ∗ (r)
(fresh (y x)

(≡ ((x y))† r)))

1

2

c,
because (x y) applies (lambda (a) a) to c.

((0 1))† ,
because the variables in ((x y)) have been
introduced by fresh.

† This list is written as the expression ‘(,x ,y) or
(cons x (cons y (()))). This list is distinguished from the
function application (x y) by the use of bold parentheses.

What is the value of

(run ∗ (r)
(fresh (v w)

(≡ (let ((x v) (y w)) ((x y))) r)))

What is the value of

(car ((grape raisin pear)))

3

4

† It should be clear from context that this list is a value; it is
not an expression. This list could have been built (see 9:52)
using (cons (reify-name 0) (cons (reify-name 1) (()))).

((((0 1)))),
because v and w are variables introduced
by fresh.

grape.

a.What is the value of
5

(car ((a c o r n)))

What value is associated with r in†

(run ∗ (r)
(car o ((a c o r n)) r))

6 a,
because a is the car of ((a c o r n)).

† car o is written caro and is pronounced “car-oh”.
Henceforth, consult the index for how we write the names of
functions.

Teaching Old Toys New Tricks 17

What value is associated with q in
7

#t,

(run ∗ (q) because a is the car of ((a c o r n)).

(car o ((a c o r n)) a)
(≡ #t q))

What value is associated with r in

(run ∗ (r)
(fresh (x y)

(car o ((r y)) x)
(≡ pear x)))

8 pear,
since x is associated with the car of ((r y)),
which is the fresh variable r . Then x is
associated with pear, which in turn
associates r with pear.

Here is the definition of car o .

(define car o

(lambda (p a)
(fresh (d)

(≡ (cons a d) p))))

What is unusual about this definition?

What is the value of

(cons
(car ((grape raisin pear)))
(car ((((a)) ((b)) ((c))))))

9

10

Whereas car takes one argument, car o takes
two.

That’s easy: ((grape a)).

What value is associated with r in

(run ∗ (r)
(fresh (x y)

(car o ((grape raisin pear)) x)
(car o ((((a)) ((b)) ((c)))) y)
(≡ (cons x y) r)))

11

That’s the same: ((grape a)).

Why can we use cons
12

Because variables introduced by fresh are
values, and each argument to cons can be
any value.

18 Chapter 2

What is the value of
13

That’s easy: ((raisin pear)).
(cdr ((grape raisin pear)))

What is the value of
14 c.

(car (cdr ((a c o r n))))

What value is associated with r in

(run ∗ (r)
(fresh (v)

(cdr o ((a c o r n)) v)
(car o v r)))

15 c.
The process of transforming (car (cdr l))
into (cdr o l v) and (car o v r) is called
unnesting. †

† Some readers may recognize the similarity between
unnesting and continuation-passing style.

Here is the definition of cdr o .
16

Oh. It is almost the same as car o .

(define cdr o

(lambda (p d)
(fresh (a)

(≡ (cons a d) p))))

What is the value of
17

That’s easy: ((((raisin pear)) a)).
(cons

(cdr ((grape raisin pear)))
(car ((((a)) ((b)) ((c))))))

What value is associated with r in
18

That’s the same: ((((raisin pear)) a)).
(run ∗ (r)

(fresh (x y)
(cdr o ((grape raisin pear)) x)
(car o ((((a)) ((b)) ((c)))) y)
(≡ (cons x y) r)))

Teaching Old Toys New Tricks 19

What value is associated with q in

(run ∗ (q)
(cdr o ((a c o r n)) ((c o r n)))
(≡ #t q))

What value is associated with x in

(run ∗ (x)
(cdr o ((c o r n)) ((x r n))))

What value is associated with l in

(run ∗ (l)
(fresh (x)

(cdr o l ((c o r n)))
(car o l x)
(≡ a x)))

What value is associated with l in

(run ∗ (l)
(cons o ((a b c)) ((d e)) l))

What value is associated with x in

(run ∗ (x)
(cons o x ((a b c)) ((d a b c))))

What value is associated with r in

(run ∗ (r)
(fresh (x y z)

(≡ ((e a d x)) r)
(cons o y ((a z c)) r)))

What value is associated with x in

(run ∗ (x)
(cons o x ((a x c)) ((d a x c))))

19

20

21

22

23

24

25

#t,
because ((c o r n)) is the cdr of ((a c o r n)) .

o,
because ((o r n)) is the cdr of ((c o r n)) , so x
gets associated with o.

((a c o r n)) ,
because if the cdr of l is ((c o r n)) , then l
must be the list ((a c o r n)) , where a is the
fresh variable introduced in the definition
of cdr o. Taking the car o of l associates the
car of l with x . When we associate x with
a, we also associate a, the car of l , with a,
so l is associated with the list ((a c o r n)) .

((((a b c)) d e)) ,
since cons o associates l with
(cons ((a b c)) ((d e))).

d.
Since (cons d ((a b c))) is ((d a b c)) , cons o

associates x with d.

((e a d c)) ,
because first we associate r with a list
whose last element is the fresh variable x .
We then perform the cons o, associating x
with c, z with d, and y with e.

d.
What value can we associate with x so
that (cons x ((a x c))) is ((d a x c)) ?
Obviously, d is the value.

20 Chapter 2

What value is associated with l in
26

((d a d c)) ,
∗ because l is ((d a x c)) . Then when we (run (l)

cons o x onto ((a x c)) , we associate x with(fresh (x)

(≡ ((d a x c)) l) d.

(cons o x ((a x c)) l)))

What value is associated with l in
27

((d a d c)) ,
∗ because we cons x onto ((a x c)) , and (run (l)

associate l with the list ((x a x c)) . Then(fresh (x)
when we associate l with ((d a x c)) , we (cons o x ((a x c)) l)
associate x with d.(≡ ((d a x c)) l)))

Define cons o using ≡.
28

(define cons o

(lambda (a d p)
(≡ (cons a d) p)))

What value is associated with l in
29

((b e a n s)) .
l must clearly be a five element list, since s ∗(run (l) is (cdr l). Since l is fresh, (cdr o l s) places

(fresh (d x y w s) a fresh variable in the first position of l ,
(cons o w ((a n s)) s) while associating w and ((a n s)) with the
(cdr o l s) second position and the cdr of the cdr of l ,
(car o l x) respectively. The first variable in l gets
(≡ b x) associated with x , which in turn gets
(cdr o l d) associated with b. The cdr of l is a list
(car o d y) whose car is the variable w . That variable
(≡ e y))) gets associated with y , which in turn gets

associated with e.

What is the value of

(null? ((grape raisin pear)))

30
#f.

What is the value of

(null? (()))

31
#t.

Teaching Old Toys New Tricks 21

What is the value of
32

(()).
(run ∗ (q)

(null o ((grape raisin pear)))

(≡ #t q))

What is the value of
33

((#t)).
(run ∗ (q)

(null o (()))

(≡ #t q))

What is the value of
34

(((()))).
(run ∗ (x)

(null o x))

Define null o using ≡.
35

(define null o

(lambda (x)
(≡ (()) x)))

What is the value of

(eq? pear plum)

36
#f.

What is the value of

(eq? plum plum)

37
#t.

What is the value of

(run ∗ (q)
(eq o pear plum)
(≡ #t q))

38

(()).

Chapter 2 22

What is the value of

(run ∗ (q)
(eq o plum plum)
(≡ #t q))

39

((#t)) .

Define eq o using ≡.
40

It is easy.

(define eq o

(lam b d a (x y)
(≡ x y)))

Is ((split ! pea)) a pair?
41

Yes.

Is ((split ! x)) a pair?
42

Yes.

What is the value of

(pair? ((((split)) ! pea)))

43
#t.

What is the value of

(pair? (()))

44
#f.

Is pair a pair?
45

No.

Is pear a pair?
46

No.

Is ((pear)) a pair?
47

Yes,
it is the pair ((pear ! (()))) .

pear.What is the value of
48

(car ((pear)))

Teaching Old Toys New Tricks 23

What is the value of

(cdr ((pear)))

49

(()).

How can we build these pairs?
50

Use Cons the Magnificent.

What is the value of

(cons ((split)) pea)

51

((((split)) ! pea)).

What value is associated with r in

(run ∗ (r)
(fresh (x y)

(≡ (cons x (cons y salad)) r)))

52

((0 1 ! salad)).

Here is the definition of pair o .
53

No, it is not.

(define pair o

(lambda (p)
(fresh (a d)

(cons o a d p))))

Is pair o recursive?

What is the value of

(run ∗ (q)
(pair o (cons q q))
(≡ #t q))

54

((#t)).

What is the value of

(run ∗ (q)
(pair o (()))
(≡ #t q))

55

(()).

Chapter 2 24

What is the value of

(run ∗ (q)
(pair o pair)
(≡ #t q))

56

(()).

What value is associated with x in

(run ∗ (x)
(pair o x))

57

((0 ! 1)).

What value is associated with r in

(run ∗ (r)
(pair o (cons r pear)))

58
0 .

Is it possible to define car o , cdr o, and pair o

using cons o

59
Yes.

This space reserved for

“Conso the Magnificento”

Teaching Old Toys New Tricks 25

Chapter 3

Seeing Old Friends in New Ways

Consider the definition of list?.
1

#t.

(define list?
(lambda (l)

(cond
((null? l) #t)
((pair? l) (list? (cdr l)))
(else #f))))

What is the value of

(list? ((((a)) ((a b)) c)))

What is the value of

(list? (()))

2
#t.

What is the value of

(list? s)

3
#f.

What is the value of

(list? ((d a t e ! s)))

4
#f,

because ((d a t e ! s)) is not a proper list.†

† A list is proper if it is the empty list or if its cdr is proper.

Consider the definition of list o .

(define list o

(lambda (l)
(conde

((null o l) #s)
((pair o l)
(fresh (d)

(cdr o l d)
(list o d)))

(else #u))))

How does list o differ from list?

5
The definition of list? has Boolean values as
questions and answers. list o has goals as
questions† and answers. Hence, it uses
conde instead of cond.

† else is like #t in a cond line, whereas else is like #s in a
conde line.

Seeing Old Friends in New Ways 27

Where does
6

It is an unnesting of (list? (cdr l)). First we

(fresh (d)
(cdr o l d)
(list o d))

take the cdr of l and associate it with a fresh
variable d , and then we use d in the
recursive call.

come from?

The First Commandment
To transform a function whose value is a Boolean
into a function whose value is a goal, replace cond
with conde and unnest each question and answer.
Unnest the answer #t (or #f) by replacing it with #s
(or #u).

What value is associated with x in

(run ∗ (x)
(list o ((a b x d))†))

7
0 ,
since x remains fresh.

where a, b, and d are symbols, and x is a
variable.

† Reminder: This is the same as .))a b ,x d ((‘

Why is 0 the value associated with x in

(run ∗ (x)
(list o ((a b x d))))

8
When determining the goal returned by list o ,
it is not necessary to determine the value of
x . Therefore x remains fresh, which means
that the goal returned from the call to list o

succeeds for all values associated with x .

How is 0 the value associated with x in

(run ∗ (x)
(list o ((a b x d))))

9
When list o reaches the end of its argument,
it succeeds. But x does not get associated
with any value.

28 Chapter 3

What value is associated with x in

(run1 (x)
(list o ((a b c ! x))))

10

(()).

Why is (()) the value associated with x in

(run1 (x)
(list o ((a b c ! x))))

11

Because ((a b c ! x)) is a proper list when x is
the empty list.

How is (()) the value associated with x in

(run1 (x)
(list o ((a b c ! x))))

12

When list o reaches the end of ((a b c ! x)),
(null o x) succeeds and associates x with the
empty list.

What is the value of

(run ∗ (x)
(list o ((a b c ! x))))

13
It has no value.

Maybe we should use run5 to get the first
five values.

What is the value of

(run5 (x)
(list o ((a b c ! x))))

14

(((())
((0))
((0 1))
((0 1 2))
((0 1 2 3)))).

Describe what we have seen in transforming
15

In list? each cond line results in a value,
list? into list o . whereas in list o each conde line results in a

goal. To have each conde result in a goal, we
unnest each cond question and each cond
answer. Used with recursion, a conde

expression can produce an unbounded
number of values. We have used an upper
bound, 5 in the previous frame, to keep from
creating a list with an unbounded number of
values.

Seeing Old Friends in New Ways 29

Consider the definition of lol?, where lol?
16

As long as each top-level value in the list l is
stands for list-of-lists?. a proper list, lol? returns #t. Otherwise, lol?

returns #f.
(define lol?

(lambda (l)

(cond

((null? l) #t)

((list? (car l)) (lol? (cdr l)))

(else #f))))

Describe what lol? does.

Here is the definition of lol o .
17	

The definition of lol? has Boolean values as
questions and answers. lol o has goals as

(define lol o
questions and answers. Hence, it uses conde

(lambda (l) instead of cond.
(conde

((null o l) #s)

((fresh (a)

(car o l a)

(list o a))

(fresh (d)

(cdr o l d)

(lol o d)))

(else #u))))

How does lol o differ from lol?

What else is different?
18

(list? (car l)) and (lol? (cdr l)) have been
unnested.

Is the value of (lol o l) always a goal?
19

Yes.

What is the value of
20

(((()))).
Since l is fresh, (null o l) succeeds and in (run1 (l)
the process associates l with (()).(lol o l))

Chapter 3 30

What value is associated with q in

(run ∗ (q)
(fresh (x y)

(lol o ((((a b)) ((x c)) ((d y)))))
(≡ #t q)))

21
#t,

since ((((a b)) ((x c)) ((d y)))) is a list of lists.

What value is associated with q in

(run1 (q)
(fresh (x)

(lol o ((((a b)) ! x)))
(≡ #t q)))

22
#t,

because null o of a fresh variable always
succeeds and associates the fresh variable,
in this case x , with (()).

What is the value of

(run1 (x)
(lol o ((((a b)) ((c d)) ! x))))

23

(((()))),
since replacing x with the empty list in
((((a b)) ((c d)) ! x)) transforms it to
((((a b)) ((c d)) ! (()))), which is the same as
((((a b)) ((c d)))).

What is the value of

(run5 (x)
(lol o ((((a b)) ((c d)) ! x))))

24

(((())
(((())))
(((()) (())))
(((()) (()) (())))
(((()) (()) (()) (()))))).

What do we get when we replace x by the
last list in the previous frame?

25

((((a b)) ((c d)) ! (((()) (()) (()) (()))))),
which is the same as

((((a b)) ((c d)) (()) (()) (()) (()))).

Is ((tofu tofu)) a twin?
26

Yes,
because it is a list of two identical values.

Is ((e tofu)) a twin?
27

No,

because e and tofu differ.

Seeing Old Friends in New Ways 31

Is ((g g g)) a twin?
28

No,
because it is not a list of two values.

Is ((((g g)) ((tofu tofu)))) a list of twins?
29

Yes,
since both ((g g)) and ((tofu tofu)) are twins.

Is ((((g g)) ((e tofu)))) a list of twins?
30

No,
since ((e tofu)) is not a twin.

Consider the definition of twins o .
31

No, it isn’t.

(define twins o

(lambda (s)
(fresh (x y)

(cons o x y s)
(cons o x (()) y))))

Is twins o recursive?

What value is associated with q in
32	

#t.

(run ∗ (q)

(twins o ((tofu tofu)))

(≡ #t q))

What value is associated with z in
33	

tofu.

(run ∗ (z)

(twins o ((z tofu))))

Why is tofu the value associated with z in
34	

Because ((z tofu)) is a twin only when z is
associated with tofu.(run ∗ (z)

(twins o ((z tofu))))

Chapter 3 32

How is tofu the value associated with z in

(run ∗ (z)
(twins o ((z tofu))))

35
In the call to twins o the first cons o

associates x with the car of ((z tofu)), which is
z , and associates y with the cdr of ((z tofu)),
which is ((tofu)). Remember that ((tofu)) is the
same as ((tofu ! (()))). The second cons o

associates x , and therefore z , with the car of
y , which is tofu.

Redefine twins o without using cons o .
36

Here it is.

(define twins o

(lambda (s)
(fresh (x)

(≡ ((x x)) s))))

Consider the definition of lot o .
37

lot stands for list-of-twins.

(define lot o

(lambda (l)
(conde

((null o l) #s)
((fresh (a)

(car o l a)
(twins o a))

(fresh (d)
(cdr o l d)
(lot o d)))

(else #u))))

What does lot stand for?

What value is associated with z in

(run1 (z)
(lot o ((((g g)) ! z))))

38

(()).

Why is (()) the value associated with z in

(run1 (z)
(lot o ((((g g)) ! z))))

39

Because ((((g g)) ! z)) is a list of twins when z
is the empty list.

Seeing Old Friends in New Ways 33

What do we get when we replace z by (())
40

((((g g)) ! (()))),
which is the same as

((((g g)))).

How is (()) the value associated with z in
41	

In the first call to lot o , l is the list
((((g g)) ! z)). Since this list is not null, (run1 (z) (null o l) fails and we move on to the second (lot o ((((g g)) ! z))))
conde line. In the second conde line, d is
associated with the cdr of ((((g g)) ! z)), which
is z . The variable d is then passed in the
recursive call to lot o. Since the variable z
associated with d is fresh, (null o l) succeeds
and associates d and therefore z with the
empty list.

What is the value of
42

(((())
((((0 0)))) (run5 (z)
((((0 0)) ((1 1)))) (lot o ((((g g)) ! z))))
((((0)) ((1)) ((2)))) 0 1 2

((((0)) ((1)) ((2)) ((3)))))).0 1 2 3

Why are the nonempty values ((n n))
43	

Each n corresponds to a fresh variable that
has been introduced in the question of the
second conde line of lot o .

What do we get when we replace z by the
44

((((g g)) ! ((((0)) ((1)) ((2)))))),0 1 2

fourth list in frame 42? which is the same as

((((g g)) ((0)) ((1)) ((2)))).0 1 2

What is the value of
45

((((e ((0 0)) (())))
((e ((0 0)) ((((1 1)))))) (run5 (r)
((e ((0)) ((((1)) ((2)))))) 0 1 2

((e ((0)) ((((1)) ((2)) ((3))))))
(fresh (w x y z)

0 1 2 3

((e ((0)) ((((1)) ((2)) ((3)) ((4)))))))).
(lot o ((((g g)) ((e w)) ((x y)) ! z)))

0 1 2 3 4(≡ ((w ((x y)) z)) r)))

Chapter 3 34

What do we get when we replace w , x , y ,
46

((((g g)) ((e e)) ((0)) ! ((((1)) ((2)))))),0 1 2

and z by the third list in the previous frame? which is the same as

((((g g)) ((e e)) ((0)) ((1)) ((2)))).0 1 2

What is the value of

(run3 (out)
(fresh (w x y z)

(≡ ((((g g)) ((e w)) ((x y)) ! z)) out)
(lot o out)))

47

((((((g g)) ((e e)) ((0

((((g g)) ((e e)) ((0

((((g g)) ((e e)) ((0

0))))

0)) ((1

0)) ((1

1))))

1)) ((2 2)))))).

Here is listof o .
48

Yes.

(define listof o

(lambda (pred o l)
(conde

((null o l) #s)
((fresh (a)

(car o l a)
(pred o a))

(fresh (d)
(cdr o l d)
(listof o pred o d)))

(else #u))))

Is listof o recursive?

What is the value of

(run3 (out)
(fresh (w x y z)

(≡ ((((g g)) ((e w)) ((x y)) ! z)) out)
(listof o twins o out)))

49

((((((g g)) ((e e)) ((0

((((g g)) ((e e)) ((0

((((g g)) ((e e)) ((0

0))))

0)) ((1

0)) ((1

1))))

1)) ((2 2)))))).

Now redefine lot o using listof o and twins o .
50

That’s simple.

(define lot o

(lambda (l)
(listof o twins o l)))

Seeing Old Friends in New Ways 35

Remember member?

(define member?
(lambda (x l)

(cond
((null? l) #f)
((eq-car? l x) #t)
(else (member? x (cdr l))))))

51
member? is an old friend, but that’s a
strange way to define it.

(define eq-car?
(lambda (l x)

(eq? (car l) x)))

Define eq-car?.

Don’t worry. It will make sense soon.
52

Okay.

What is the value of

(member? olive ((virgin olive oil)))

53
#t, but this is uninteresting.

Consider this definition of eq-car o .
54

(define eq-car o

(lambda (l x)
(car o l x)))

Define member o using eq-car o .

(define member o

(lambda (x l)
(conde

((null o l) #u)
((eq-car o l x) #s)
(else

(fresh (d)
(cdr o l d)
(member o x d))))))

Is the first conde line unnecessary?
55

Yes.
Whenever a conde line is guaranteed to
fail, it is unnecessary.

Which expression has been unnested?
56

(member? x (cdr l)).

What value is associated with q in

(run ∗ (q)
(member o olive ((virgin olive oil)))
(≡ #t q))

57
#t,

because (member o a l) succeeds, but this
is still uninteresting.

36 Chapter 3

What value is associated with y in
58

hummus,
because we can ignore the first conde line(run1 (y)
since l is not the empty list, and because (member o y ((hummus with pita))))
the second conde line associates the fresh
variable y with the value of (car l), which
is hummus.

What value is associated with y in
59

with,
because we can ignore the first conde line(run1 (y)
since l is not the empty list, and because (member o y ((with pita))))
the second conde line associates the fresh
variable y with the value of (car l), which
is with.

What value is associated with y in
60

pita,
because we can ignore the first conde line(run1 (y)
since l is not the empty list, and because (member o y ((pita))))
the second conde line associates the fresh
variable y with the value of (car l), which
is pita.

What is the value of
61

(()),
because the (null o l) question of the first (run ∗ (y)
conde line now holds, resulting in failure (member o y (())))
of the goal (member o y l).

What is the value of
62

((hummus with pita)),
since we already know the value of each (run ∗ (y)
recursive call to member o, provided y is(member o y ((hummus with pita))))
fresh.

Why is y a fresh variable each time we enter
63

Since we pretend that the second conde line
member o recursively? has failed, we also get to assume that y has

been refreshed.

Seeing Old Friends in New Ways 37

So is the value of
64

Yes.

(run ∗ (y)
(member o y l))

always the value of l

Using run ∗, define a function called identity
65

whose argument is a list, and which returns (define identity
that list. (lambda (l)

(run ∗ (y)
(member o y l))))

What value is associated with x in

(run ∗ (x)
(member o e ((pasta x fagioli))))

66 e.
The list contains three values with a
variable in the middle. The member o

function determines that x ’s value should
be e.

Why is e the value associated with x in

(run ∗ (x)
(member o e ((pasta x fagioli))))

67

Because (member o e ((pasta e fagioli)))
succeeds.

What have we just done?
68

We filled in a blank in the list so that
member o succeeds.

What value is associated with x in

(run1 (x)
(member o e ((pasta e x fagioli))))

69
0 ,
because the recursion succeeds before it
gets to the variable x .

What value is associated with x in

(run1 (x)
(member o e ((pasta x e fagioli))))

70 e,
because the recursion succeeds when it
gets to the variable x .

Chapter 3 38

What is the value of
71	

((((e 0)) ((0 e)))).
(run ∗ (r)

(fresh (x y)

(member o e ((pasta x fagioli y)))

(≡ ((x y)) r)))

What does each value in the list mean?
72	

There are two values in the list. We know
from frame 70 that when x gets associated
with e, (member o e ((pasta x fagioli y)))
succeeds, leaving y fresh. Then x is
refreshed. For the second value, y gets an
association, but x does not.

What is the value of
73	

((((tofu ! 0)))).

(run1 (l)

(member o tofu l))

Which lists are represented by ((tofu ! 0))
74

Every list whose car is tofu.

What is the value of
75

It has no value,
because run ∗ never finishes building the (run ∗ (l)
list.(member o tofu l))

What is the value of
76

((((tofu ! 0))
((0 tofu ! 1))(run5 (l)
((0 1 tofu ! 2))(member o tofu l))
((0 tofu !))1 2 3

((0 tofu !)))).1 2 3 4

Clearly each list satisfies member o, since
tofu is in every list.

Seeing Old Friends in New Ways 39

Explain why the answer is
77

Assume that we know how the first four lists

((((tofu ! 0))
((0 tofu ! 1))
((0 1 tofu ! 2))
((0 1 2 tofu ! 3))
((0 1 2 3 tofu ! 4))))

are determined. Now we address how the
fifth list appears. When we pretend that
eq-car o fails, l is refreshed and the last
conde line is tried. l is refreshed, but we
recur on its cdr, which is also fresh. So each
value becomes one longer than the previous
value. In the recursive call (member o x d),
the call to eq-car o associates tofu with the
car of the cdr of l . Thus 3 will appear where
tofu appeared in the fourth list.

Is it possible to remove the dotted variable at
78

Perhaps,
the end of each list, making it proper?	 but we do know when we’ve found the

value we’re looking for.

Yes, that’s right. That should give us enough
79

It should be the empty list if we find the

of a clue. What should the cdr be when we value at the end of the list.

find this value?

Here is a definition of pmember o .
80

((((tofu))
((0 tofu))

(define pmember o

(lambda (x l)
(conde

((null o l) #u)

((0

((0

((0

1

1

1

tofu))
2 tofu))
2 3 tofu)))).

((eq-car o l x) (cdr o l (())))
(else

(fresh (d)
(cdr o l d)
(pmember o x d))))))

What is the value of

(run5 (l)
(pmember o tofu l))

Chapter 3 40

What is the value of

(run ∗ (q)
(pmember o tofu ((a b tofu d tofu)))
(≡ #t q))

81

Is it ((#t #t))?

No, the value is ((#t)). Explain why.
82

The test for being at the end of the list
caused this definition to miss the first tofu.

Here is a refined definition of pmember o .

(define pmember o

(lambda (x l)
(conde

((null o l) #u)
((eq-car o l x) (cdr o l (())))
((eq-car o l x) #s)
(else

(fresh (d)
(cdr o l d)
(pmember o x d))))))

83
We have included an additional conde line
that succeeds when the car of l matches x .

How does this refined definition differ from
the original definition of pmember o

What is the value of

(run ∗ (q)
(pmember o tofu ((a b tofu d tofu)))
(≡ #t q))

84

Is it ((#t #t))?

No, the value is ((#t #t #t)). Explain why.
85

The second conde line contributes a value
because there is a tofu at the end of the list.
Then the third conde line contributes a
value for the first tofu in the list and it
contributes a value for the second tofu in the
list. Thus in all, three values are contributed.

Seeing Old Friends in New Ways 41

Here is a more refined definition of
86

We have included a test to make sure that its
pmember o . cdr is not the empty list.

(define pmember o

(lambda (x l)
(conde

((null o l) #u)
((eq-car o l x) (cdr o l (())))
((eq-car o l x)
(fresh (a d)

(cdr o l ((a ! d)))))
(else

(fresh (d)
(cdr o l d)
(pmember o x d))))))

How does this definition differ from the
previous definition of pmember o

How can we simplify this definition a bit
more?

87
We know that a conde line that always fails,
like the first conde line, can be removed.

Now what is the value of

(run ∗ (q)
(pmember o tofu ((a b tofu d tofu)))
(≡ #t q))

88

((#t #t)) as expected.

Now what is the value of
89

((((tofu))

(run12 (l)
(pmember o tofu l))

((tofu 0 !
((0 tofu))
((0 tofu 1

1))

! 2))
((0 1 tofu))
((0 1 tofu 2 ! 3))
((0 1 2 tofu))
((0 1 2 tofu 3 ! 4))
((0 1 2 3 tofu))
((0 1 2 3 tofu 4 ! 5))
((0 1 2 3 4 tofu))
((0 1 2 3 4 tofu 5 ! 6)))).

Chapter 3 42

How can we characterize this list of values?
90

All of the odd positions are proper lists.

Why are the odd positions proper lists?
91

Because in the second conde line the cdr of l
is the empty list.

Why are the even positions improper lists?
92

Because in the third conde line the cdr of l
is a pair.

How can we redefine pmember o so that the
lists in the odd and even positions are

93
We merely swap the first two conde lines of
the simplified definition.

swapped?
(define pmember o

(lambda (x l)
(conde

((eq-car o l x)
(fresh (a d)

(cdr o l ((a ! d)))))
((eq-car o l x) (cdr o l (())))
(else

(fresh (d)
(cdr o l d)
(pmember o x d))))))

Now what is the value of
94

((((tofu 0 ! 1))
((tofu))(run12 (l)
((0 tofu 1 ! 2))(pmember o tofu l))
((0 tofu))
((0 tofu !))
((

1 2 3

0 1 tofu))
((0 tofu !))
((

1 2 3 4

0 1 2 tofu))
((0 tofu !))1 2 3 4 5

((0 tofu))1 2 3

((0 tofu !))1 2 3 4 5 6

((0 tofu)))).1 2 3 4

Seeing Old Friends in New Ways 43

Consider the definition of first-value, which
takes a list of values l and returns a list that
contains the first value in l .

(define first-value
(lambda (l)

(run1 (y)
(member o y l))))

95
If l is the empty list or not a list,
(first-value l) returns (()), whereas with car
there is no meaning. Also, instead of
returning the first value, it returns the list of
the first value.

Given that its argument is a list, how does
first-value differ from car

What is the value of
96

((pasta)).
(first-value ((pasta e fagioli)))

What value is associated with y in
97

pasta.

(first-value ((pasta e fagioli)))

Consider this variant of member o .
98

We have swapped the second conde line with
the third conde line† .

(define memberrev o

(lambda (x l)
(conde

((null o l) #u)

(#s

(fresh (d)

(cdr o l d)

(memberrev o x d)))

(else (eq-car o l x))))) † oClearly, #s corresponds to else. The (eq-car l x) is now
the last question, so we can insert an else to improve clarity.
We haven’t swapped the expressions in the second conde

How does it differ from the definition of line of memberrev o, but we could have, since we can add or
member o in frame 54? remove #s from a conde line without affecting the line.

How can we simplify this definition?
99

By removing a conde line that is guaranteed
to fail.

What is the value of
100

((fagioli e pasta)).
(run ∗ (x)

(memberrev o x ((pasta e fagioli))))

Chapter 3 44

Define reverse-list, which reverses a list,
101

Here it is.
using the definition of memberrev o .

(define reverse-list
(lambda (l)

(run ∗ (y)
(memberrev o y l))))

=⇒ Now go make yourself a peanut butter and marmalade sandwich. ⇐=

This space reserved for

MARMALADE STAINS!

Seeing Old Friends in New Ways 45

Chapter 4

Members Only

Consider this very simple function.
1

((tofu d peas e)) .

(define mem
(lambda (x l)

(cond
((null? l) #f)
((eq-car? l x) l)
(else (mem x (cdr l))))))

What is the value of

(mem tofu ((a b tofu d peas e)))

What is the value of

(mem tofu ((a b peas d peas e)))

What value is associated with out in

(run ∗ (out)
(≡ (mem tofu ((a b tofu d peas e))) out))

What is the value of

(mem peas
(mem tofu ((a b tofu d peas e))))

What is the value of

(mem tofu
(mem tofu ((a b tofu d tofu e))))

What is the value of

(mem tofu
(cdr (mem tofu ((a b tofu d tofu e)))))

2

3

4

5

6

#f.

((tofu d peas e)) .

((peas e)) .

((tofu d tofu e)) ,
because the value of
(mem tofu ((a b tofu d tofu e))) is
((tofu d tofu e)) , and because the value of
((mem tofu ((tofu d tofu e)))) is
((tofu d tofu e)) .

((tofu e)) ,
because the value of
(mem tofu ((a b tofu d tofu e))) is
((tofu d tofu e)) , the value of
((cdr ((tofu d tofu e)))) is ((d tofu e)) , and the
value of ((mem tofu ((d tofu e)))) is ((tofu e)) .

Members Only 47

Here is memo .

(define memo

(lambda (x l out)
(conde

((null o l) #u)
((eq-car o l x) (≡ l out))
(else

(fresh (d)
(cdr o l d)
(memo x d out))))))

7
The list?, lol?, and member? definitions from
the previous chapter have only Booleans as
their values, but mem, on the other hand,
does not. Because of this we need an
additional variable, which here we call out ,
that holds memo’s value.

How does memo differ from list o , lol o, and
member o

Which expression has been unnested?
8

(mem x (cdr l)).

The Second Commandment
To transform a function whose value is not a
Boolean into a function whose value is a goal, add
an extra argument to hold its value, replace cond
with conde, and unnest each question and answer.

In a call to memo from run1, how many
times does out get an association?

9
At most once.

What is the value of

(run1 (out)
(memo tofu ((a b tofu d tofu e)) out))

10

((((tofu d tofu e)))).

What is the value of
11	

((((tofu d tofu e)))), which would be correct if x
were tofu.(run1 (out)

(fresh (x)

(memo tofu ((a b x d tofu e)) out)))

Chapter 4 48

What value is associated with r in
12

tofu.
∗(run (r)

(memo r

((a b tofu d tofu e))
((tofu d tofu e))))

What value is associated with q in

(run ∗ (q)
(memo tofu ((tofu e)) ((tofu e)))
(≡ #t q))

13
#t,

since ((tofu e)) , the last argument to memo ,
is the right value.

What is the value of

(run ∗ (q)
(memo tofu ((tofu e)) ((tofu)))
(≡ #t q))

14

(()) ,
since ((tofu)) , the last argument to memo, is
the wrong value.

What value is associated with x in

(run ∗ (x)
(memo tofu ((tofu e)) ((x e))))

15
tofu,

when the value associated with x is tofu,
then ((x e)) is ((tofu e)) .

What is the value of

(run ∗ (x)
(memo tofu ((tofu e)) ((peas x))))

16

(()) ,
because there is no value that, when
associated with x , makes ((peas x)) be
((tofu e)) .

What is the value of

(run ∗ (out)
(fresh (x)

(memo tofu ((a b x d tofu e)) out)))

17

((((tofu d tofu e)) ((tofu e)))) .

Members Only 49

What is the value of
18

((0

(run12 (z)
(fresh (u)

(memo tofu ((a b tofu d tofu e ! z)) u)))

0

((tofu ! 0))
((0 tofu ! 1))
((0 1 tofu ! 2))
((0 1 2 tofu ! 3))
((0 1 2 3 tofu ! 4))
((0 1 2 3 4 tofu ! 5))
((0 1 2 3 4 5 tofu ! 6))
((0 1 2 3 4 5 6 tofu ! 7))
((0 1 2 3 4 5 6 7 tofu ! 8))
((0 1 2 3 4 5 6 7 8 tofu ! 9)))).

How do we get the first two 0 ’s?
19

The first 0 corresponds to finding the first
tofu. The second 0 corresponds to finding
the second tofu.

Where do the other ten lists come from?
20

In order for

(memo tofu ((a b tofu d tofu e ! z)) u)

to succeed, there must be a tofu in z . So
memo creates all the possible lists with tofu
as one element of the list. That’s very
interesting!

How can memo be simplified?
21

The first conde line always fails, so it can be
removed.

(define memo

(lambda (x l out)
(conde

((eq-car o l x) (≡ l out))
(else

(fresh (d)
(cdr o l d)
(memo x d out))))))

Chapter 4 50

Remember rember.	
22

Of course, it’s an old friend.

(define rember
(lambda (x l)

(cond
((null? l) (()))
((eq-car? l x) (cdr l))
(else

(cons (car l)
(rember x (cdr l)))))))

What is the value of
23

((a b d peas e)).
(rember peas ((a b peas d peas e)))

Consider rember o .
24

Yes, just like rember.

(define rember o

(lambda (x l out)
(conde

((null o l) (≡ (()) out))
((eq-car o l x) (cdr o l out))
(else

(fresh (res)
(fresh (d)

(cdr o l d)
(rember o x d res))

(fresh (a)
(car o l a)
(cons o a res out)))))))

Is rember o recursive?

Why are there three freshes in
25	

Because d is only mentioned in (cdr o l d)
and (rember o x d res); a is only mentioned (fresh (res)
in (car o l a) and (cons o a res out); but res (fresh (d)
is mentioned throughout. (cdr o l d)

(rember o x d res))
(fresh (a)

(car o l a)
(cons o a res out)))

Members Only 51

Rewrite
26

(fresh (a d res)
(cdr o l d)(fresh (res)
(rember o x d res)(fresh (d)
(car o l a)(cdr o l d)
(cons o a res out)).(rember o x d res))

(fresh (a)
(car o l a)
(cons o a res out)))

using only one fresh.

How might we use cons o in place of the car o 27

(fresh (a d res)
and the cdr o	 (cons o a d l)

(rember o x d res)
(cons o a res out)).

How does the first cons o differ from the
second one?

28

The first cons o, (cons o a d l), appears to
associate values with the variables a and d .
In other words, it appears to take apart a
cons pair, whereas (cons o a res out) appears
to be used to build a cons pair.

But, can appearances be deceiving?
29

Indeed they can.

What is the value of

(run1 (out)
(fresh (y)

(rember o peas ((a b y d peas e)) out)))

30

((((a b d peas e)))),
because y is a variable and can take on
values. The car o within the (eq-car o l x)
associates y with peas, forcing y to be
removed from the list. Of course we can
associate with y a value other than peas.
That will still cause
(rember o peas ((a b y d peas e)) out) to
succeed, but run1 produces only one value.

Chapter 4 52

What is the value of
31

((((b a d 0 e))
∗ ((a b d 0 e))(run (out)

((a b d 0 e))(fresh (y z)
((a b d 0 e))(rember o y ((a b y d z e)) out)))
((a b 0 d e))
((a b e d 0))
((a b 0 d 1 e)))) .

Why is

((b a d 0 e))

the first value?

32
It looks like b and a have been swapped, and
y has disappeared.

No. Why does b come first?
33

The b comes first because the a has been
removed.

Why is

((a b d 0 e))

the second value?

35
It looks like y has disappeared.

No. Has the b in the original list been
removed?

36
Yes.

Why does the list still contain a b
37

In order to remove the b, y gets associated
with b. The y in the list is then replaced
with its value.

Why is

((a b d 0 e))

the third value?

38

Is it for the same reason that ((a b d 0 e)) is
the second value?

Members Only 53

Why does the list still contain a
34

In order to remove the a, y gets associated
with a. The y in the list is then replaced
with its value.

Not quite. Has the b in the original list been
39

No,

removed? but the y has been removed.

Why is

((a b d 0 e))

the fourth value?

Why does the list still contain a d

Why is

((a b 0 d e))

the fifth value?

Why does the list contain 0

Why is

((a b e d 0))

the sixth value?

Why does the list contain 0

Why don’t z and y co-refer?

40

41

42

43

44

45

46

Because the d has been removed from the
list.

In order to remove the d, y gets associated
with d. Also the y in the list is replaced with
its value.

Because the z has been removed from the
list.

When (car l) is y , (car o l a) associates the
fresh variable y with the fresh variable a. In
order to remove the y , y gets associated with
z . Since z is also a fresh variable, the a, y ,
and z co-refer.

Because the e has been removed from the list.

When (car l) is z , (car o l a) associates the
fresh variable z with the fresh variable a.

Because we are within a run ∗, we get to
pretend that (eq-car o l x) fails when (car l)
is z and x is y . Thus z and y no longer
co-refer.

54 Chapter 4

Why is

((a b 0 d 1 e))

the seventh value?

Why does the list contain 0 and 1

What is the value of

(run ∗ (r)
(fresh (y z)

(rember o y ((y d z e)) ((y d e)))
(≡ ((y z)) r)))

Why is

((d d))

the first value?

Why is

((d d))

the second value?

Why is

((0 0))

the third value?

How is

((d d))

the first value?

47

48

49

50

51

52

53

Because we have not removed anything from
the list.

When (car l) is y , (car o l a) associates the
fresh variable y with the fresh variable a.
When (car l) is z , (car o l a) associates the
fresh variable z with a new fresh variable a.
Also the y and z in the list are replaced
respectively with their reified values.

((((d d))
((d d))
((0 0))
((e e)))) .

When y is d and z is d, then

(rember o d ((d d d e)) ((d d e)))

succeeds.

When y is d and z is d, then

(rember o d ((d d d e)) ((d d e)))

succeeds.

As long as y and z are the same, y can be
anything.

rember o removes y from the list ((y d z e)) ,
yielding the list ((d z e)) ; ((d z e)) is the same
as out , ((y d e)) , only when both y and z are
the value d.

Members Only 55

How is
54	

Next, rember o removes d from the list
((y d z e)) , yielding the list ((y z e)) ; ((y z e)) is((d d))
the same as out , ((y d e)) , only when z is d.

the second value? Also, in order to remove the d, y gets
associated with d.

How is
55	

Next, rember o removes z from the list
((y d z e)) , yielding the list ((y d e)) ; ((y d e)) is((0 0)) always the same as out , ((y d e)) . Also, in

the third value? order to remove the z , y gets associated with
z , so they co-refer.

How is
56	

Next, rember o removes e from the list
((y d z e)) , yielding the list ((y d z)) ; ((y d z)) is((e e))
the same as out , ((y d e)) , only when z is e.

the fourth value? Also, in order to remove the e, y gets
associated with e.

What is the value of
57	

((0

0(run 13 (w)
0(fresh (y z out)
0(rember o y ((a b y d z ! w)) out)))
0

(())

((0 ! 1))

((0))

((!))

((

0 1 2

0 1))
((!))0 1 2 3

(())0 1 2

((!)))) .0 1 2 3 4

Why is
58	

When y is a, out becomes ((b y d z ! w)) ,
which makes

the first value? (rember o y ((a b y d z ! w)) ((b y d z ! w)))

succeed for all values of w .

Chapter 4

0

56

0

0

0

How is
59	

rember o removes a from l , while ignoring the
fresh variable w .

the first value?

How is
60

This is the same as in the previous frame,
except that rember o removes b from the
original l , y from the original l , and d fromthe second, third, and fourth value?
the original l , respectively.

How is
61	

Next, rember o removes z from l . When the
(eq-car o l x) question of the second conde

line succeeds, (car l) is z . The answer of the the fifth value?
second conde line, (cdr o l out), also
succeeds, associating the cdr of l (the fresh
variable w) with the fresh variable out . The
variable out , however, is just res, the fresh
variable passed into the recursive call to
rember o .

How is
62	

Because none of the first five values in l are
removed. The (null o l) question of the first (())
conde line then succeeds, associating w with

the sixth value? the empty list.

How is
63	

Because none of the first five values in l are
removed, and because we pretend that the ((0 ! 1)) (null o l) question of the first conde line

the seventh value? fails. The (eq-car o l x) question of the
second conde line succeeds, however, and
associates w with a pair whose car is y . The
answer (cdr o l out) of the second conde line
also succeeds, associating w with a pair
whose cdr is out . The variable out , however,
is just res, the fresh variable passed into the
recursive call to rember o. During the
recursion, the car o inside the second conde

line’s eq-car o associates the fresh variable y
with the fresh variable a.

Members Only 57

How is
64	

This is the same as the seventh value,
((0 ! 1)) , except that the (null o l) question of ((0)) the first cond e line succeeds, associating out

the eighth value? (and, therefore, res) with the empty list.

How is
65	

For the same reason that ((0 ! 1)) is the
seventh value, except that the ninth value ((!))0 1 2 performs an additional recursive call, which

the ninth value? results in an additional cons o .

Do the tenth and twelfth values correspond
66

Yes.
to the eighth value?

Do the eleventh and thirteenth values
67

Yes.

correspond to the ninth value? All w of the form

((. . . !))0 n n+1

make (rember o y ((a b y d z ! w)) out)
succeed.

Here is surprise o .
68	

Yes, (surprise o s) should succeed for all
values of s other than a, b, and c.

(define surprise o

(lambda (s)

(rember o s ((a b c)) ((a b c)))))

Are there any values of s for which
(surprise o s) should succeed?

What value is associated with r in
69	

d.
∗(run (r)

(≡ d r)

(surprise o r))

What is the value of
70	

((0)) .
∗	 When r is fresh, (surprise o r) succeeds (run (r)

and leaves r fresh.(surprise o r))

Chapter 4 58

Write an expression that shows why this
71

Here is such an expression:
definition of surprise o should not succeed (run ∗ (r)
when r is fresh. (surprise o r)

(≡ b r)).

If (surprise o r) were to leave r fresh, then
(≡ b r) would associate r with b. But if r
were b, then (rember o r ((a b c)) ((a b c)))
should have failed, since removing b from the
list ((a b c)) results in ((a c)), not ((a b c)).

And what is the value of
72

((b)),
which also makes no sense. Please pass the (run ∗ (r)
aspirin!(≡ b r)

(surprise o r))

=⇒ Now go munch on some carrots. ⇐=

This space reserved for

CARROT STAINS!

Members Only 59

Chapter 5

Double Your Fun

Ever seen append
1

No.

2

Here it is.† ((a b c d e)).

(define append
(lambda (l s)

(cond
((null? l) s)
(else (cons (car l)

(append (cdr l) s))))))

What is the value of

(append ((a b c)) ((d e)))

† For a different approach to append, see William F.
Clocksin. Clause and Effect. Springer, 1997, page 59.

What is the value of

(append ((a b c)) (()))

3

((a b c)).

What is the value of

(append (()) ((d e)))

4

((d e)).

What is the value of

(append a ((d e)))

5
It has no meaning,

because a is neither the empty list nor a
proper list.

What is the value of

(append ((d e)) a)

6
It has no meaning, again?

No. The value is ((d e ! a)). 7
How is that possible?

Double Your Fun 61

Look closely at the definition of append;
8

Ouch.
there are no questions asked about s.

Define append o .
9

(define append o

(lambda (l s out)
(conde

((null o l) (≡ s out))
(else

(fresh (a d res)
(car o l a)
(cdr o l d)
(append o d s res)
(cons o a res out))))))

What value is associated with x in
10

((cake tastes yummy)).
(run ∗ (x)

(append o

((cake))
((tastes yummy))
x))

What value is associated with x in
11

((cake with ice 0 tastes yummy)).
(run ∗ (x)

(fresh (y)
(append o

((cake with ice y))
((tastes yummy))
x)))

What value is associated with x in
12

((cake with ice cream ! 0)).
(run ∗ (x)

(fresh (y)

(append o

((cake with ice cream))
y

x)))

Chapter 5 62

What value is associated with x in

(run1 (x)
(fresh (y)

(append o ((cake with ice ! y)) ((d t)) x)))

13

((cake with ice d t)),
because the last call to null o associates y
with the empty list.

How can we show that y is associated with
the empty list?

14
By this example

(run1 (y)
(fresh (x)

(append o ((cake with ice ! y)) ((d t)) x)))

which associates y with the empty list.

Redefine append o to use a single cons o in
place of the car o and cdr o (see 4:27).

15

(define append o

(lambda (l s out)
(conde

((null o l) (≡ s out))
(else

(fresh (a d res)
(cons o a d l)
(append o d s res)
(cons o a res out))))))

What is the value of

(run5 (x)
(fresh (y)

(append o ((cake with ice ! y)) ((d t)) x)))

16

((((cake with ice d t))
((cake with ice 0 d t))
((cake with ice 0 1 d t))
((cake with ice 0 1 2 d t))
((cake with ice 0 1 2 3 d t)))).

What is the value of

(run5 (y)
(fresh (x)

(append o ((cake with ice ! y)) ((d t)) x)))

17

(((())
((0))
((0 1))
((0 1 2))
((0 1 2 3)))).

Double Your Fun 63

Let’s consider plugging in ((0 1

((cake with ice ! y)) .

Then we get

((cake with ice ! ((0 1 2)))) .

What list is this the same as?

2)) for y in
18

((cake with ice 0 1 2)) .

Right. What is

(append ((cake with ice 0 1 2)) ((d t)))

19
The fourth list in frame 16.

What is the value of
20

((((cake with ice d t))
((cake with ice 0 d t 0))(run 5 (x)
((cake with ice d t))0 1 0 1(fresh (y)
((cake with ice d t))0 1 2 0 1 2(append o

((cake with ice d t)))) .0 1 2 3 0 1 2 3((cake with ice ! y))
((d t ! y))

x)))

What is the value of
21

((((cake with ice cream d t ! 0)))) .
∗(run (x)

(fresh (z)

(append o

((cake with ice cream))

((d t ! z))

x)))

Why does the list contain only one value?
22

Because z stays fresh.

Let’s try an example in which the first two
23

(((())
arguments are variables. What is the value ((cake))
of ((cake with))

((cake with ice))(run 6 (x)
((cake with ice d))(fresh (y)
((cake with ice d t)))) .(append o x y ((cake with ice d t)))))

Chapter 5 64

How might we describe these values?
24

The values include all of the prefixes of the
list ((cake with ice d t)).

Now let’s try this variation.

(run6 (y)
(fresh (x)

(append o x y ((cake with ice d t)))))

What is its value?

25

((((cake with ice d t))
((with ice d t))
((ice d t))
((d t))
((t))
(()))).

How might we describe these values?
26

The values include all of the suffixes of the
list ((cake with ice d t)).

Let’s combine the previous two results.
What is the value of

(run6 (r)
(fresh (x y)

(append o x y ((cake with ice d t)))
(≡ ((x y)) r)))

27

(((((()) ((cake with ice d t))))
((((cake)) ((with ice d t))))
((((cake with)) ((ice d t))))
((((cake with ice)) ((d t))))
((((cake with ice d)) ((t))))
((((cake with ice d t)) (()))))).

How might we describe these values?
28

Each value includes two lists that, when
appended together, form the list

((cake with ice d t)).

What is the value of

(run7 (r)
(fresh (x y)

(append o x y ((cake with ice d t)))
(≡ ((x y)) r)))

29
It has no value,

since it is still looking for the seventh
value.

Should its value be the same as if we asked
for only six values?

30
Yes, that would make sense.

Double Your Fun 65

How can we change the definition of append o 31
Swap the last two goals of append o .

so that is indeed what happens?
(define append o

(lambda (l s out)
(conde

((null o l) (≡ s out))
(else

(fresh (a d res)
(cons o a d l)
(cons o a res out)
(append o d s res))))))

Now, using this revised definition of append o ,
32

The value is in frame 27.
what is the value of

(run7 (r)
(fresh (x y)

(append o x y ((cake with ice d t)))

(≡ ((x y)) r)))

What is the value of
33

(((())
((0))(run7 (x)
((0 1))(fresh (y z)
((0 1 2))(append o x y z)))
((0))1 2 3

((0))1 2 3 4

((0)))).1 2 3 4 5

What is the value of
34

((0

(run7 (y) 0

0(fresh (x z)
0

0

0

(append o x y z)))

0)).

It should be obvious how we get the first
35

A new fresh variable res is passed into each
value. Where do the last four values come recursive call to append o . After (null o l)
from? succeeds, res is associated with s, which is

the fresh variable z .

Chapter 5 66

What is the value of

(run7 (z)
(fresh (x y)

(append o x y z)))

36

((0

((0 ! 1))
((0 1 ! 2))
((0 1 2 ! 3))
((0 1 2 3 ! 4))
((0 1 2 3 4 ! 5))
((0 1 2 3 4 5 ! 6)))).

Let’s combine the previous three results.
What is the value of

(run7 (r)
(fresh (x y z)

(append o x y z)
(≡ ((x y z)) r)))

37

(((((()) 0 0))
((((0)) 1 ((0 ! 1))))
((((0 1)) 2 ((0 1 ! 2))))
((((0 1 2)) 3 ((0 1 2 ! 3))))
((((0 1 2 3)) 4 ((0 1 2 3 ! 4))))
((((0 1 2 3 4)) 5 ((0 1 2 3 4 ! 5))))
((((0 1 2 3 4 5)) 6 ((0 1 2 3 4 5 ! 6)))))).

Define swappend o, which is just append o 38
That’s a snap.

with its two conde lines swapped.
(define swappend o

(lambda (l s out)
(conde

(#s
(fresh (a d res)

(cons o a d l)
(cons o a res out)
(swappend o d s res)))

(else (null o l) (≡ s out)))))

What is the value of
39

It has no value.

(run1 (z)

(fresh (x y)

(swappend o x y z)))

Double Your Fun 67

Why does

(run1 (z)

(fresh (x y)

(swappend o x y z)))

have no value?†

† We can redefine swappend o so that this run expression
has a value.

(define swappend o

(lambda-limited 5 (l s out)
(conde

(#s
(fresh (a d res)

o(cons a d l)
o(cons a res out)

(swappend o d s res)))

(else (null o l) (≡ s out)))))

Where lambda-limited is defined on the right.

40

In (swappend o d s res) the variables d , s,
and res remain fresh, which is where we
started.

Here is lambda-limited with its auxiliary function ll.

(define-syntax lambda-limited

(syntax-rules ()

((n formals g)

(let ((x (var x)))

(lambda formals

(ll n x g))))))

(define ll

(lambda (n x g)

(λG (s)

(let ((v (walk x s)))

(cond
((var? v) (g (ext-s x 1 s)))
((< v n) (g (ext-s x (+ v 1) s)))
(else (#u s)))))))

The functions var, walk, and ext-s are described in 9:6, 9:27,
and 9:29, respectively. λG (see appendix) is just lambda.

Consider this definition.
41

pizza.

(define unwrap
(lambda (x)

(cond
((pair? x) (unwrap (car x)))
(else x))))

What is the value of

(unwrap ((((((((pizza)))))))))

What is the value of
42

pizza.

(unwrap ((((((((pizza pie)) with)))) extra cheese)))

This might be a good time for a pizza break.
43

Good idea.

Back so soon? Hope you are not too full.
44

Not too.

Chapter 5 68

Define unwrap o .
45

That’s a slice of pizza!

(define unwrap o

(lambda (x out)
(conde

((pair o x)
(fresh (a)

(car o x a)
(unwrap o a out)))

(else (≡ x out)))))

What is the value of

(run ∗ (x)
(unwrap o ((((((pizza)))))) x))

46

((pizza
((pizza))
((((pizza))))
((((((pizza)))))))).

The first value of the list seems right. In
what way are the other values correct?

47
They represent partially wrapped versions of
the list ((((((pizza)))))). And the last value is the
fully-wrapped original list ((((((pizza)))))).

What is the value of

(run1 (x)
(unwrap o x pizza))

48
It has no value.

What is the value of

(run1 (x)
(unwrap o ((((x)))) pizza))

49
It has no value.

Why doesn’t

(run1 (x)
(unwrap o ((((x)))) pizza))

have a value?

50
The recursion happens too early. Therefore
the (≡ x out) goal is not reached.

What can we do about that?
51

Introduce a revised definition of unwrap o?

Double Your Fun 69

Yes. Let’s swap the two conde lines as in
52

Like this.
3:98.

(define unwrap o

(lambda (x out)
(conde

(#s (≡ x out))
(else

(fresh (a)
(car o x a)
(unwrap o a out))))))

What is the value of
53

((pizza
((pizza ! 0))(run5 (x)
((((pizza ! 0)) ! 1))(unwrap o x pizza))
((((((pizza !)) !)) !))0 1 2

((((((((pizza !)) !)) !)) !)))).0 1 2 3

What is the value of
54

((((((pizza))))
((((((pizza)))) ! 0))(run5 (x)
((((((((pizza)))) ! 0)) ! 1))(unwrap o x ((((pizza))))))
((((((((((pizza)))) !)) !)) !))0 1 2

((((((((((((pizza)))) !)) !)) !)) !)))).0 1 2 3

What is the value of
55

((pizza
((pizza ! 0))(run5 (x)
((((pizza ! 0)) ! 1))(unwrap o ((((x)))) pizza))
((((((pizza !)) !)) !))0 1 2

((((((((pizza !)) !)) !)) !)))).0 1 2 3

If you haven’t taken a pizza break yet, stop
56

Okay, okay!

and take one now! We’re taking an ice cream

break.

Did you enjoy the pizza as much as we
57

Indubitably!
enjoyed the ice cream?

Chapter 5 70

Consider this definition.
58

((a b c)).

(define flatten
(lambda (s)

(cond
((null? s) (()))
((pair? s)
(append

(flatten (car s))
(flatten (cdr s))))

(else (cons s (()))))))

What is the value of

(flatten ((((a b)) c)))

Define flatten o .
59

Here it is.

(define flatten o

(lambda (s out)
(conde

((null o s) (≡ (()) out))
((pair o s)
(fresh (a d res-a res-d)

(cons o a d s)†

(flatten o a res-a)
(flatten o d res-d)
(append o res-a res-d out)))

(else (cons o s (()) out)))))

† See 4:27.

What value is associated with x in

(run1 (x)
(flatten o ((((a b)) c)) x))

60

((a b c)).
No surprises here.

What value is associated with x in

(run1 (x)
(flatten o ((a ((b c)))) x))

61

((a b c)).

Double Your Fun 71

What is the value of
62

((((a))
((a (()))) (run ∗ (x)
((((a)))))).(flatten o ((a)) x))
Here is a surprise!

The value in the previous frame contains
63

None of the lists are the same.

three lists. Which of the lists, if any, are the

same?

What is the value of
64

((((a))
((a (()))) (run ∗ (x)
((a (()))) (flatten o ((((a)))) x))
((a (()) (())))
((((a))))
((((a)) (())))
((((((a)))))))).

The value in the previous frame contains
65

The second and third lists are the same.

seven lists. Which of the lists, if any, are the

same?

What is the value of
66

((((a))
((a (()))) (run ∗ (x)
((a (()))) (flatten o ((((((a)))))) x))
((a (()) (())))
((a (())))
((a (()) (())))
((a (()) (())))
((a (()) (()) (())))
((((a))))
((((a)) (())))
((((a)) (())))
((((a)) (()) (())))
((((((a))))))
((((((a)))) (())))
((((((((a)))))))))).

Chapter 5 72

The value in the previous frame contains
67

The second, third, and fifth lists are the
fifteen lists. Which of the lists, if any, are the same; the fourth, sixth, and seventh lists are
same? the same; and the tenth and eleventh lists

are the same.

What is the value of
68

((((a b c))
((a b c (()))) (run ∗ (x)
((a b ((c)))) (flatten o ((((a b)) c)) x))
((a b (()) c))
((a b (()) c (())))
((a b (()) ((c))))
((a ((b)) c))
((a ((b)) c (())))
((a ((b)) ((c))))
((((a b)) c))
((((a b)) c (())))
((((a b)) ((c))))
((((((a b)) c)))))).

The value in the previous frame contains
69

None of the lists are the same.

thirteen lists. Which of the lists, if any, are

the same?

Characterize that list of lists.
70	

Each list flattens to ((a b c)). These are all
the lists generated by attempting to flatten
((((a b)) c)). Remember that a singleton list
((a)) is really the same as ((a ! (()))), and with
that additional perspective the pattern
becomes clearer.

What is the value of
71	

It has no value.

(run ∗ (x)

(flatten o x ((a b c))))

What can we do about it?	
72

Swap some of the conde lines?

Double Your Fun 73

Yes. Here is a variant of flatten o .

(define flattenrev o

(lambda (s out)
(conde

(#s (cons o s (()) out))
((null o s) (≡ (()) out))
(else

(fresh (a d res-a res-d)
(cons o a d s)
(flattenrev o a res-a)
(flattenrev o d res-d)
(append o res-a res-d out))))))

How does flatten o differ from this variant?

73
The last conde line of flatten o is the first
conde line of this variant (see 3:98).

In flatten o there is a (pair o s) test. Why
doesn’t flattenrev o have the same test?

74

Because (cons o a d s) in the fresh
expression guarantees that s is a pair. In
other words, the (pair o s) question is
unnecessary in flatten o .

What is the value of

(run ∗ (x)
(flattenrev o ((((a b)) c)) x))

75

((((((((a b)) c))))
((((a b)) ((c))))
((((a b)) c (())))
((((a b)) c))
((a ((b)) ((c))))
((a ((b)) c (())))
((a ((b)) c))
((a b (()) ((c))))
((a b (()) c (())))
((a b (()) c))
((a b ((c))))
((a b c (())))
((a b c)))).

What is the value of

(reverse
(run ∗ (x)

(flattenrev o ((((a b)) c)) x)))

76
The value in frame 68.

74 Chapter 5

What is the value of
77

((((a b ! c))
((a b c)))).(run2 (x)

(flattenrev o x ((a b c))))

Why is the value
78	

Because (flattenrev o ((a b ! c)) ((a b c))) and
(flattenrev o ((a b c)) ((a b c))) both succeed. ((((a b ! c))

((a b c))))

What is the value of
79

It has no value.
In fact, it is still trying to determine the (run3 (x)
third value. (flattenrev o x ((a b c))))

What is the value of
80

574.

(length Wow!

(run ∗ (x)
(flattenrev o ((((((((a ((((((b)))))) c)))))) d)) x)))

=⇒ Now go make yourself a cashew butter and chutney sandwich. ⇐=

This space reserved for

CHUTNEY STAINS!

Double Your Fun 75

Chapter 6

The Fun Never Ends . . .

Here is an unusual definition.
1

Yes.

(define any o

(lambda (g)
(conde

(g #s)
(else (any o g)))))

Is it recursive?

Is there a base case?
2

Yes.

Can any o ever succeed?
3

Yes, if the goal g succeeds.

Here is another definition.

(define never o (any o #u))

Can never o ever succeed or fail?

4
No,

because although the question of the first
conde line within any o fails, the answer of
the second conde line, (any o #u), is where
we started.

What is the value of

(run1 (q)
never o

(≡ #t q))

5

Of course, the run1 expression has no value.

What is the value of

(run1 (q)
#u
never o)

6

(()),
because #u fails before never o is reached.

Here is a useful definition.

(define always o (any o #s))

7
#t.

What value is associated with q in

(run1 (q)

always o

(≡ #t q))

The Fun Never Ends . . . 77

Compare always o to #s.
8

always o always can succeed any number of
times, whereas #s can succeed only once.

What is the value of

(run ∗ (q)
always o

(≡ #t q))

9
It has no value,

since run ∗ never finishes building the list
((#t #t #t ...

What is the value of

(run5 (q)
always o

(≡ #t q))

10

((#t #t #t #t #t)).

And what is the value of

(run5 (q)
(≡ #t q)
always o)

11

It’s the same: ((#t #t #t #t #t)).

†Here is the definition of sal o .
12

No.

(define sal o

(lambda (g)
(conde

(#s #s)
(else g))))

Is sal o recursive?

† sal o stands for “succeeds at least once”.

What is the value of
13

((#t)),

(run1 (q)
(sal o always o)

because the first conde line of sal o

succeeds.

(≡ #t q))

Chapter 6 78

What is the value of

(run1 (q)
(sal o never o)
(≡ #t q))

14

((#t)),
because the first conde line of sal o

succeeds.

What is the value of

(run ∗ (q)
(sal o never o)
(≡ #t q))

15
It has no value,

because run ∗ never finishes determining
the second value.

What is the value of

(run1 (q)
(sal o never o)
#u
(≡ #t q))

16
It has no value,

because when the #u occurs, we pretend
that the first conde line of sal o fails,
which causes conde to try never o, which
neither succeeds nor fails.

What is the value of

(run1 (q)
always o

#u
(≡ #t q))

17
It has no value,

because always o succeeds, followed by #u,
which causes always o to be retried, which
succeeds again, which leads to #u again,
which causes always o to be retried again,
which succeeds again, which leads to #u,
etc.

What is the value of

(run1 (q)
(conde

((≡ #f q) always o)
(else (any o (≡ #t q))))

(≡ #t q))

18
It has no value.

First, #f gets associated with q , then
always o succeeds once. But in the outer
(≡ #t q) we can’t associate #t with q since
q is already associated with #f. So the
outer (≡ #t q) fails, then always o succeeds
again, and then (≡ #t q) fails again, etc.

The Fun Never Ends . . . 79

19

What is the value of † ((#t)),
because after the first failure, instead of (run1 (q) staying on the first line we try the second (condi
condi line.((≡ #f q) always o)

(else (≡ #t q)))

(≡ #t q))

† condi is written condi and is pronounced “con-deye”.

What happens if we try for more values?
20

It has no value,
since the second condi line is out of values. (run2 (q)

(condi

((≡ #f q) always o)

(else (≡ #t q)))

(≡ #t q))

So does this give more values?
21	

Yes, it yields as many as are requested,

(run5 (q) ((#t #t #t #t #t)).
(condi always o succeeds five times, but

((≡ #f q) always o) contributes none of the five values, since
(else (any o (≡ #t q)))) then #f would be in the list.

(≡ #t q))

22

Compare condi to conde .	 condi looks and feels like conde . condi

does not, however, wait until all the
successful goals on a line are exhausted
before it tries the next line.

Are there other differences?
23	

Yes. A condi line that has additional values
is not forgotten. That is why there is no
value in frame 20.

Chapter 6 80

The Law of condi

condi behaves like conde , except
that its values are interleaved.

What is the value of

(run5 (r)
(condi

((teacup o† r) #s)
((≡ #f r) #s)
(else #u)))

24

((tea #f cup)).

† See 1:56.

Let’s be sure that we understand the
difference between conde and condi .
What is the value of

(run5 (q)
(condi

((≡ #f q) always o)
((≡ #t q) always o)
(else #u))

(≡ #t q))

25

((#t #t #t #t #t)).

And if we replace condi by conde, do we get
26

No,

the same value? then the expression has no value.

Why does

(run5 (q)
(conde

((≡ #f q) always o)
((≡ #t q) always o)
(else #u))

(≡ #t q))

have no value?

27
It has no value,

because the first conde line succeeds, but
the outer (≡ #t q) fails. This causes the
first conde line to succeed again, etc.

The Fun Never Ends . . . 81

What is the value of
28

It is ((#t #t #t #t #t)).

(run5 (q)
(conde

(always o #s)

(else never o))

(≡ #t q))

And if we replace conde by condi, do we get
29

No.
the same value?

And what about the value of
30

It has no value,

(run5 (q)
(condi

(always o #s)
(else never o))

because after the first condi line succeeds,
rather than staying on the same condi

line, it tries for more values on the second
condi line, but that line is never o .

(≡ #t q))

What is the value of †

(run1 (q)

(all

(conde

((≡ #f q) #s)

(else (≡ #t q)))

always o)

(≡ #t q))

† The goals of an all must succeed for the all to succeed.

31
It has no value.

First, #f is associated with q . Then
always o, the second goal of the all
expression, succeeds, so the entire all
expression succeeds. Then (≡ #t q) tries to
associate a value that is different from #f
with q . This fails. So always o succeeds
again, and once again the second goal,
(≡ #t q), fails. Since always o always
succeeds, there is no value.

Have a slice of Key lime pie.

Chapter 6 82

32

Now, what is the value of † ((#t)).
First, #f is associated with q . Then,(run1 (q) always o succeeds. Then the outer goal (alli
(≡ #t q) fails. This time, however, alli

(conde
moves on to the second conde line and ((≡ #f q) #s) associates #t with q . Then always o

(else (≡ #t q))) succeeds, as does the outer (≡ #t q).always o)

(≡ #t q))

† alli is written alli and is pronounced “all-eye”.

Now, what if we want more values?
33

((#t #t #t #t #t)).
always o succeeds ten times, with the value (run5 (q)
associated with q alternating between #f(alli

and #t.(conde

((≡ #f q) #s)

(else (≡ #t q)))

always o)

(≡ #t q))

What if we swap the two conde lines?
34

Its value is the same: ((#t #t #t #t #t)).

(run5 (q)

(alli

(conde

((≡ #t q) #s)

(else (≡ #f q)))

always o)

(≡ #t q))

What does the “i” stand for in condi and
35

It stands for interleave.
alli

The Fun Never Ends . . . 83

Let’s be sure that we understand the
36

((#t #t #t #t #t)).
difference between all and alli . What is the
value of

(run5 (q)

(all

(conde

(#s #s)

(else never o))

always o)

(≡ #t q))

And if we replace all by alli, do we get the
37

No,

same value? it has no value.

Why does
38

It has no value,
because the first conde line succeeds, and (run5 (q)
the outer (≡ #t q) succeeds. This yields (alli

one value, but when we go for a second (conde

value, we reach never o .(#s #s)

(else never o))

always o)

(≡ #t q))

have no value?

Could condi have been used instead of
39

Yes,
conde in these last two examples?	 since none of the conde lines contribute

more than one value.

=⇒ This is a good time to take a break. ⇐=

Chapter 6 84

This is

A BREAK

The Fun Never Ends . . . 85

Chapter 7

A Bit Too Much

Is 0 a bit?
1

Yes.

Is 1 a bit?
2

Yes.

Is 2 a bit?
3

No.
A bit is either a 0 or a 1.

Which bits are represented by x
4

0 and 1.

Consider the definition of bit-xor o .
5

When x and y are the same.†

(define bit-xor o

(lambda (x y r)
(conde

((≡ 0 x) (≡ 0 y) (≡ 0 r))
((≡ 1 x) (≡ 0 y) (≡ 1 r))
((≡ 0 x) (≡ 1 y) (≡ 1 r))
((≡ 1 x) (≡ 1 y) (≡ 0 r))
(else #u))))

† Another way to define bit-xor o is to use bit-nand o

(define bit-xor o

(lambda (x y r)
(fresh (s t u)

(bit-nand o x y s)
(bit-nand o x s t)
(bit-nand o s y u)
(bit-nand o t u r))))

When is 0 the value of r where bit-nand o is

(define bit-nand o

(lambda (x y r)
(conde

((≡ 0 x) (≡ 0 y) (≡ 1 r))
((≡ 1 x) (≡ 0 y) (≡ 1 r))
((≡ 0 x) (≡ 1 y) (≡ 1 r))
((≡ 1 x) (≡ 1 y) (≡ 0 r))
(else #u))))

bit-nand o is a universal binary boolean relation, since it can
be used to define all other binary boolean relations.

Demonstrate this using run ∗ .
6

(run ∗ (s)
(fresh (x y)

(bit-xor o x y 0)
(≡ ((x y)) s)))

which has the value

((((0 0))
((1 1)))).

A Bit Too Much 87

When is 1 the value of r
7

When x and y are different.

Demonstrate this using run ∗ .
8

(run ∗ (s)
(fresh (x y)

(bit-xor o x y 1)
(≡ ((x y)) s)))

which has the value

((((1 0))
((0 1)))).

What is the value of
9

((((0 0 0))

(run ∗ (s) ((1 0 1))

(fresh (x y r) ((0 1 1))

(bit-xor o x y r) ((1 1 0)))).
(≡ ((x y r)) s)))

Consider the definition of bit-and o .

(define bit-and o

(lambda (x y r)
(conde

((≡ 0 x) (≡ 0 y) (≡ 0 r))
((≡ 1 x) (≡ 0 y) (≡ 0 r))
((≡ 0 x) (≡ 1 y) (≡ 0 r))
((≡ 1 x) (≡ 1 y) (≡ 1 r))
(else #u))))

When is 1 the value of r

10

When x and y are both 1. †

† Another way to define bit-and o is to use bit-nand o and
bit-not o

(define bit-and o

(lambda (x y r)

(fresh (s)

(bit-nand o x y s)

(bit-not o s r))))

where bit-not o itself is defined in terms of bit-nand o

(define bit-not o

(lambda (x r)

(bit-nand o x x r)))

Demonstrate this using run ∗ .
11

(run ∗ (s)
(fresh (x y)

(bit-and o x y 1)
(≡ ((x y)) s)))

which has the value

((((1 1)))).

Chapter 7 88

Consider the definition of half-adder o .

(define half-adder o

(lambda (x y r c)
(all

(bit-xor o x y r)
(bit-and o x y c))))

What value is associated with r in

(run ∗ (r)
(half-adder o 1 1 r 1))

12

0. †

† half-adder o can be redefined as follows.

(define half-adder o

(lambda (x y r c)
(conde

((≡ 0 x) (≡ 0 y) (≡ 0 r) (≡ 0 c))
((≡ 1 x) (≡ 0 y) (≡ 1 r) (≡ 0 c))
((≡ 0 x) (≡ 1 y) (≡ 1 r) (≡ 0 c))
((≡ 1 x) (≡ 1 y) (≡ 0 r) (≡ 1 c))
(else #u))))

What is the value of

(run ∗ (s)
(fresh (x y r c)

(half-adder o x y r c)
(≡ ((x y r c)) s)))

13

((((0 0 0 0))
((1 0 1 0))
((0 1 1 0))
((1 1 0 1)))).

Describe half-adder o .
14

Given the bits x , y , r , and c, half-adder o

satisfies x + y = r + 2 · c.

Here is full-adder o .
15

((0 1)). †

(define full-adder o

(lambda (b x y r c)
(fresh (w xy wz)

(half-adder o x y w xy)
(half-adder o w b r wz)
(bit-xor o xy wz c)))) † full-adder o can be redefined as follows.

The x , y , r , and c variables serve the same
purpose as in half-adder o . full-adder o also
takes a carry-in bit, b. What value is
associated with s in

(run ∗ (s)
(fresh (r c)

(full-adder o 0 1 1 r c)
(≡ ((r c)) s)))

(define full-adder o

(lambda (b x y r c)
(conde

((≡ 0 b) (≡ 0 x) (≡ 0 y) (≡ 0 r) (≡ 0 c))
((≡ 1 b) (≡ 0 x) (≡ 0 y) (≡ 1 r) (≡ 0 c))
((≡ 0 b) (≡ 1 x) (≡ 0 y) (≡ 1 r) (≡ 0 c))
((≡ 1 b) (≡ 1 x) (≡ 0 y) (≡ 0 r) (≡ 1 c))
((≡ 0 b) (≡ 0 x) (≡ 1 y) (≡ 1 r) (≡ 0 c))
((≡ 1 b) (≡ 0 x) (≡ 1 y) (≡ 0 r) (≡ 1 c))
((≡ 0 b) (≡ 1 x) (≡ 1 y) (≡ 0 r) (≡ 1 c))
((≡ 1 b) (≡ 1 x) (≡ 1 y) (≡ 1 r) (≡ 1 c))
(else #u))))

A Bit Too Much 89

What value is associated with s in

(run ∗ (s)
(fresh (r c)

(full-adder o 1 1 1 r c)
(≡ ((r c)) s)))

16

((1 1)) .

What is the value of

(run ∗ (s)
(fresh (b x y r c)

(full-adder o b x y r c)
(≡ ((b x y r c)) s)))

17

((((0 0 0 0 0))
((1 0 0 1 0))
((0 1 0 1 0))
((1 1 0 0 1))
((0 0 1 1 0))
((1 0 1 0 1))
((0 1 1 0 1))
((1 1 1 1 1)))) .

Describe full-adder o .
18

Given the bits b, x , y , r , and c, full-adder o

satisfies b + x + y = r + 2 · c.

What is a number?
19

A number is an integer greater than or equal
to zero.

Is each number represented by a bit?
20

No.
Each number is represented as a list of
bits.

Which list represents the number zero?
21

((0)) ?

Not quite. Try again.
22

How about the empty list (()) ?

Correct. Is there any number that ((0))
represents?

23
No.

Each number is represented uniquely,
therefore ((0)) cannot also represent the
number zero.

90 Chapter 7

Which list represents the number one?
24

((1)) ,
because the value of ((1)) is 1 · 20, which is
the number one.

Which number is represented by

((1 0 1))

25
5,

because the value of ((1 0 1)) is
1 · 20 + 0 · 21 + 1 · 22, which is the same as
1 + 0 + 4, which is five.

Correct. Which number is represented by

((1 1 1))

26
7,

because the value of ((1 1 1)) is
1 · 20 + 1 · 21 + 1 · 22, which is the same as
1 + 2 + 4, which is seven.

Also correct. Which list represents 9
27

((1 0 0 1)) ,
because the value of ((1 0 0 1)) is
1 · 20 + 0 · 21 + 0 · 22 + 1 · 23, which is the
same as 1 + 0 + 0 + 8, which is nine.

Yes. How do we represent 6
28

As the list ((1 1 0)) ?

No. Try again.
29

Then it must be ((0 1 1)) ,
because the value of ((0 1 1)) is
0 · 20 + 1 · 21 + 1 · 22, which is the same as
0 + 2 + 4, which is six.

Correct. Does this seem unusual?
30

Yes, it seems very unusual.

How do we represent 19
31

As the list ((1 1 0 0 1)) ?

Yes. How do we represent 17290
32

As the list ((0 1 0 1 0 0 0 1 1 1 0 0 0 0 1)) ?

A Bit Too Much 91

Correct again. What is interesting about the
33

They contain only 0’s and 1’s.

lists that represent the numbers that we have

seen?

Yes. What else is interesting?
34

Every list ends with a 1.

Does every list representation of a number
end with a 1?

35

Yes, except for the empty list (()) , which
represents zero.

Compare the numbers represented by n and
((0 ! n))

36

((0 ! n)) is twice n.
But n cannot be (()) , since ((0 ! n)) is ((0)) ,
which does not represent a number.

If n were ((1 0 1)) , what would ((0 ! n)) be?
37

((0 1 0 1)) ,
since twice five is ten.

Compare the numbers represented by n and
((1 ! n))

38

((1 ! n)) is one more than twice n,
even when n is (()) .

If n were ((1 0 1)) , what would ((1 ! n)) be?
39

((1 1 0 1)) ,
since one more than twice five is eleven.

What is the value of

(build-num 0)

40

(()) .

What is the value of

(build-num 36)

41

((0 0 1 0 0 1)) .

What is the value of

(build-num 19)

42

((1 1 0 0 1)) .

92 Chapter 7

Define build-num.
43

Here is one way to define it.

(define build-num
(lambda (n)

(cond
((zero? n) (()))
((and (not (zero? n)) (even? n))
(cons 0

(build-num (÷ n 2))))
((odd? n)
(cons 1

(build-num (÷ (− n 1) 2)))))))

Redefine build-num, where (zero? n) is not
44

That’s easy.
the question of the first cond line.

(define build-num
(lambda (n)

(cond
((odd? n)
(cons 1

(build-num (÷ (− n 1) 2))))
((and (not (zero? n)) (even? n))
(cons 0

(build-num (÷ n 2))))
((zero? n) (())))))

Is there anything interesting about these
45

For any number n, one and only one cond
definitions of build-num question is true.†

† Thank you Edsger W. Dijkstra (1930–2002).

Can we rearrange the cond lines in any
order?

46
Yes.

This is called the non-overlapping
property. It appears rather frequently
throughout this and the next chapter.

A Bit Too Much 93

What is the sum of ((1)) and ((1))
47

((0 1)) , which is just two.

What is the sum of ((0 0 0 1)) and ((1 1 1))
48

((1 1 1 1)) , which is just fifteen.

What is the sum of ((1 1 1)) and ((0 0 0 1))
49

((1 1 1 1)) , which is just fifteen.

What is the sum of ((1 1 0 0 1)) and (())
50

((1 1 0 0 1)) , which is just nineteen.

What is the sum of (()) and ((1 1 0 0 1))
51

((1 1 0 0 1)) , which is just nineteen.

What is the sum of ((1 1 1 0 1)) and ((1))
52

((0 0 0 1 1)) , which is just twenty-four.

Which number is represented by

((x 1))

53
It depends on what x is.

Which number would be represented by

((x 1))

if x were 0?

54
Two,

which is represented by ((0 1)) .

Which number would be represented by

((x 1))

if x were 1?

55
Three,

which is represented by ((1 1)) .

So which numbers are represented by

((x 1))

56
Two and three.

Which numbers are represented by

((x x 1))

57
Four and seven,

which are represented by ((0 0 1))
and ((1 1 1)) , respectively.

94 Chapter 7

Which numbers are represented by

((x 0 y 1))

58
Eight, nine, twelve, and thirteen,

which are represented by ((0 0 0 1)) ,
((1 0 0 1)) , ((0 0 1 1)) , and ((1 0 1 1)) ,
respectively.

Which numbers are represented by

((x 0 y z))

59
Once again, eight, nine, twelve, and thirteen,

which are represented by ((0 0 0 1)) ,
((1 0 0 1)) , ((0 0 1 1)) , and ((1 0 1 1)) ,
respectively.

Why do both ((x 0 y 1)) and ((x 0 y z))
represent the same numbers?

60
Because z must be either a 0 or a 1. If z
were 0, then ((x 0 y z)) would not represent
any number. Therefore z must be 1.

Which number is represented by

((x))

61
One,

which is represented by ((1)) , since ((0)) does
not represent a number.

What does z represent?
62

Every number greater than or equal to zero.

Which numbers are represented by

((1 ! z))

63
It depends on what z is.

Which number is represented by

((1 ! z))
where z is (())

64
One,

since ((1 ! (()))) is ((1)) .

Which number is represented by

((1 ! z))
where z is ((1))

65
Three,

since ((1 ! ((1)))) is ((1 1)) .

A Bit Too Much 95

Which number is represented by

((1 ! z))

where z is ((0 1))

66
Five,

since ((1 ! ((0 1)))) is ((1 0 1)) .

So which numbers are represented by

((1 ! z))

67
All the odd numbers?

Right. Then, which numbers are represented
by

((0 ! z))

68
All the even numbers?

Not quite. Which even number is not of the
form ((0 ! z))

69

Zero, which is represented by (()) .

For which values of z does

((0 ! z))

represent numbers?

70
All numbers greater than zero.

Are the even numbers all the numbers that
are multiples of two?

71
Yes.

Which numbers are represented by

((0 0 ! z))

72
Every other even number, starting with four.

Which numbers are represented by

((0 1 ! z))

73
Every other even number, starting with two.

Which numbers are represented by

((1 0 ! z))

74
Every other odd number, starting with five.

96 Chapter 7

Which numbers are represented by

((1 0 y ! z))

75
Once again, every other odd number,
starting with five.

Why do ((1 0 ! z)) and ((1 0 y ! z)) represent
the same numbers?

76
Because z cannot be the empty list in
((1 0 ! z)) and y cannot be 0 when z is the
empty list in ((1 0 y ! z)) .

Which numbers are represented by

((0 y ! z))

77
Every even number, starting with two.

Which numbers are represented by

((1 y ! z))

78
Every odd number, starting with three.

Which numbers are represented by

((y ! z))

79
Every number, starting with one—in other
words, the positive numbers.

Consider the definition of pos o .
80

#t.

(define pos o

(lambda (n)
(fresh (a d)

(≡ ((a ! d)) n))))

What value is associated with q in
∗(run (q)

(pos o ((0 1 1)))

(≡ #t q))

What value is associated with q in
81

#t.
∗(run (q)

(pos o ((1)))

(≡ #t q))

A Bit Too Much 97

What is the value of

(run ∗ (q)
(pos o (()))
(≡ #t q))

82

(()).

What value is associated with r in

(run ∗ (r)
(pos o r))

83

((0 ! 1)).

Does this mean that (pos o r) always
succeeds when r is a fresh variable?

84
Yes.

Which numbers are represented by

((x y ! z))

85
Every number, starting with two—in other
words, every number greater than one.

Consider the definition of >1o .
86

#t.

(define >1o

(lambda (n)
(fresh (a ad dd)†

(≡ ((a ad ! dd)) n))))

What value is associated with q in

(run ∗ (q)

(>1o ((0 1 1)))

(≡ #t q))

† The names a, ad , and dd correspond to car, cadr , and
cddr .

What is the value of
87

((#t)).
(run ∗ (q)

(>1o ((0 1)))

(≡ #t q))

Chapter 7 98

What is the value of

(run ∗ (q)
(>1 o ((1)))
(≡ #t q))

88

(()) .

What is the value of

(run ∗ (q)
(>1 o (()))
(≡ #t q))

89

(()) .

What value is associated with r in

(run ∗ (r)
(>1 o r))

90

((0 1 ! 2)) .

Does this mean that (>1 o r) always succeeds
91

Yes.
when r is a fresh variable?

An n-representative is the first n bits of a
92

((0 1 1)) .
number, up to and including the rightmost 1.
If there is no rightmost 1, then the
n-representative is the empty list. What is
the n-representative of

((0 1 1))

What is the n-representative of
93

((0 x 1)) ,
since everything to the right of the ((0 x 1 0 y ! z))
rightmost 1 is ignored.

What is the n-representative of
94

(()) ,
since there is no rightmost 1.((0 0 y ! z))

What is the n-representative of
95

(()) .
z

A Bit Too Much 99

What is the value of †

(run3 (s)
(fresh (x y r)

(adder o 0 x y r)
(≡ ((x y r)) s)))

96
That depends on the definition of adder o ,
which we do not see until frame 118. But we
can understand adder o: given the bit d , and
the numbers n, m, and r , adder o satisfies
d + n + m = r.

What is the value of †

(run3 (s)
(fresh (x y r)

(adder o 0 x y r)
(≡ ((x y r)) s)))

97

((((0 (()) 0))
(((()) ((0 ! 1)) ((0 ! 1))))
((((1)) ((1)) ((0 1)))))).
(adder o 0 x y r) sums x and y to produce
r . For example, in the first value, zero
added to a number is the number. In the
second value, the sum of (()) and ((0 ! 1)) is
((0 ! 1)). In other words, the sum of zero
and a positive number is the positive
number.

Is ((((1)) ((1)) ((0 1)))) a ground value?
98

Yes.

Is ((0 (()) 0)) a ground value?
99

No,
because it contains one or more variables.†

†
0 ((In fact, ()()))0 has no variables, however prior to being

reified, it contained two occurrences of the same variable.

What can we say about the three values in
100

The third value is ground and the other two
frame 97? values are not.

Before reading the next frame,

Treat Yourself to a Hot Fudge Sundae!

100 Chapter 7

What is the value of
101

((((0 (()) 0))
(((()) ((0 ! 1)) ((0 ! 1)))) (run22 (s)
((((1)) ((1)) ((0 1)))) (fresh (x y r)

o ((((1)) ((0 0 ! 1)) ((1 0 ! 1)))) (adder 0 x y r)
((((0 0 ! 1)) ((1)) ((1 0 ! 1)))) (≡ ((x y r)) s)))
((((1)) ((1 1)) ((0 0 1))))

((((0 1)) ((0 1)) ((0 0 1))))

((((1)) ((1 0 0 ! 1)) ((0 1 0 ! 1))))

((((1 1)) ((1)) ((0 0 1))))

((((1)) ((1 1 1)) ((0 0 0 1))))

((((1 1)) ((0 1)) ((1 0 1))))

((((1)) ((1 1 0 0 ! 1)) ((0 0 1 0 ! 1))))

((((1 0 0 ! 1)) ((1)) ((0 1 0 ! 1))))

((((1)) ((1 1 1 1)) ((0 0 0 0 1))))

((((0 1)) ((0 0 0 ! 1)) ((0 1 0 ! 1))))

((((1)) ((1 1 1 0 0 ! 1)) ((0 0 0 1 0 ! 1))))

((((1 1 1)) ((1)) ((0 0 0 1))))

((((1)) ((1 1 1 1 1)) ((0 0 0 0 0 1))))

((((0 1)) ((1 1)) ((1 0 1))))

((((1)) ((1 1 1 1 0 0 ! 1)) ((0 0 0 0 1 0 ! 1))))

((((1 1 0 0 ! 1)) ((1)) ((0 0 1 0 ! 1))))

((((1)) ((1 1 1 1 1 1)) ((0 0 0 0 0 0 1)))))).

How many of its values are ground, and how
102

Eleven values are ground and eleven values
many are not? are not.

What are the nonground values?
103

((((0 (()) 0))
(((()) ((0 ! 1)) ((0 ! 1))))
((((1)) ((0 0 ! 1)) ((1 0 ! 1))))
((((0 0 ! 1)) ((1)) ((1 0 ! 1))))
((((1)) ((1 0 0 ! 1)) ((0 1 0 ! 1))))
((((1)) ((1 1 0 0 ! 1)) ((0 0 1 0 ! 1))))
((((1 0 0 ! 1)) ((1)) ((0 1 0 ! 1))))
((((0 1)) ((0 0 0 ! 1)) ((0 1 0 ! 1))))
((((1)) ((1 1 1 0 0 ! 1)) ((0 0 0 1 0 ! 1))))
((((1)) ((1 1 1 1 0 0 ! 1)) ((0 0 0 0 1 0 ! 1))))
((((1 1 0 0 ! 1)) ((1)) ((0 0 1 0 ! 1)))))).

A Bit Too Much 101

What interesting property do these eleven
104

The width† of r is the same as the width of
values possess? the wider of x and y .

† The width of a number n can be defined as

(define width

(lambda (n)

(cond
((null? n) 0)
((pair? n) (+ (width (cdr n)) 1))
(else 1))))

What is another interesting property that
these eleven values possess?

105
Variables appear in r , and in either x or y ,
but not in both.

What is another interesting property that
these eleven values possess?

106
Except for the first value, r always ends with

0 ! 1 as does the wider of x and y .

What is another interesting property that
these eleven values possess?

107
The n-representative of r is equal to the sum
of the n-representatives of x and y .

In the ninth value, for example, the sum of
((1)) and ((1 1 1)) is ((0 0 0 1)) .

Describe the third value.
108

Huh?

Here x is ((1)) and y is ((0 0 ! 1)) , a positive
even number. Adding x to y yields the odd
numbers greater than one. Is the fifth value
the same as the seventh?

109
Almost,

since x + y = y + x.

Does each value have a corresponding value
in which x and y are swapped?

110
No.

For example, the first two values do not
correspond to any other values.

102 Chapter 7

What is the corresponding value for the
111

((((1 1 1 1 0 0 ! 1)) ((1)) ((0 0 0 0 1 0 ! 1)))).
tenth value?	 However, this is the nineteenth nonground

value, and we have presented only the first
eleven.

Describe the seventh value.
112

Frame 75 shows that ((1 0 0 ! 1)) represents
every other odd number, starting at five.
Incrementing each of those numbers by one
produces every other even number, starting
at six, which is represented by ((0 1 0 ! 1)).

Describe the eighth value.
113	

The eighth value is like the third value, but
with an additional leading 0. In other words,
each number is doubled.

Describe the 198th value, which has the
114

((1 0 0 0 ! 1)) represents every fourth odd
value ((((0 0 1)) ((1 0 0 0 ! 1)) ((1 0 1 0 ! 1)))).	 number, starting at nine. Incrementing each

of those numbers by four produces every
fourth odd number, starting at thirteen,
which is represented by ((1 0 1 0 ! 1)).

What are the ground values of frame 101?
115

((((((1)) ((1)) ((0 1))))
((((1)) ((1 1)) ((0 0 1))))
((((0 1)) ((0 1)) ((0 0 1))))
((((1 1)) ((1)) ((0 0 1))))
((((1)) ((1 1 1)) ((0 0 0 1))))
((((1 1)) ((0 1)) ((1 0 1))))
((((1)) ((1 1 1 1)) ((0 0 0 0 1))))
((((1 1 1)) ((1)) ((0 0 0 1))))
((((1)) ((1 1 1 1 1)) ((0 0 0 0 0 1))))
((((0 1)) ((1 1)) ((1 0 1))))
((((1)) ((1 1 1 1 1 1)) ((0 0 0 0 0 0 1)))))).

What interesting property do these values
possess?

116
The width of r is one greater than the width
of the wider of x and y .

A Bit Too Much 103

117
What is another interesting property of these Each list cannot be created from any list in
values? frame 103, regardless of which values are

chosen for the variables there. This is an
example of the non-overlapping property
described in frame 46.

Here are adder o and gen-adder o .
118

A carry bit.†

(define adder o

(lambda (d n m r)
(condi

((≡ 0 d) (≡ (()) m) (≡ n r))
((≡ 0 d) (≡ (()) n) (≡ m r)
(pos o m))

((≡ 1 d) (≡ (()) m)
(adder o 0 n ((1)) r))

((≡ 1 d) (≡ (()) n) (pos o m)
(adder o 0 ((1)) m r))

((≡ ((1)) n) (≡ ((1)) m)
(fresh (a c)

(≡ ((a c)) r)
(full-adder o d 1 1 a c)))

((≡ ((1)) n) (gen-adder o d n m r))
((≡ ((1)) m) (>1o n) (>1o r)
(adder o d ((1)) n r))

((>1o n) (gen-adder o d n m r))
(else #u))))

(define gen-adder o

(lambda (d n m r)
(fresh (a b c e x y z)

(≡ ((a ! x)) n)
(≡ ((b ! y)) m) (pos o y)
(≡ ((c ! z)) r) (pos o z)
(alli

(full-adder o d a b c e)
(adder o e x y z)))))

What is d † See 10:26 for why gen-adder o requires alli instead of all.

What are n, m, and r
119

They are numbers.

104 Chapter 7

What value is associated with s in

(run ∗ (s)
(gen-adder o 1 ((0 1 1)) ((1 1)) s))

120

((0 1 0 1)).

What are a, b, c, d , and e
121

They are bits.

What are n, m, r , x , y , and z
122

They are numbers.

In the definition of gen-adder o, (pos o y) and
123

Because in the first call to gen-adder o from

(pos o z) follow (≡ ((b ! y)) m) and adder o , n can be ((1)).

(≡ ((c ! z)) r), respectively. Why isn’t there a

(pos o x)

What about the other call to gen-adder o 124

The (>1o n) call that precedes the call to
from adder o	 gen-adder o is the same as if we had placed a

(pos o x) following (≡ ((a ! x)) n). But if we
were to use (pos o x) in gen-adder o, then it
would fail for n being ((1)).

Describe gen-adder o .
125	

Given the bit d , and the numbers n, m, and
r , gen-adder o satisfies d + n + m = r,
provided that n is positive and m and r are
greater than one.

What is the value of
126

((((((1 0 1)) (())))
(((()) ((1 0 1)))) (run ∗ (s)
((((1)) ((0 0 1)))) (fresh (x y)
((((0 0 1)) ((1)))) (adder o 0 x y ((1 0 1)))
((((1 1)) ((0 1)))) (≡ ((x y)) s)))
((((0 1)) ((1 1)))))).

Describe the values produced by
127	

The values are the pairs of numbers that sum
to five. (run ∗ (s)

(fresh (x y)

(adder o 0 x y ((1 0 1)))

(≡ ((x y)) s)))

A Bit Too Much 105

oWe can define +o using adder .
128	

Here is an expression that generates the pairs
of numbers that sum to five:

(define +o
(run ∗ (s)(lambda (n m k) (fresh (x y)o(adder 0 n m k))) (+o x y ((1 0 1)))

(≡ ((x y)) s))).
Use +o to generate the pairs of numbers that
sum to five.

What is the value of
129

((((((1 0 1)) (())))
(((()) ((1 0 1)))) (run ∗ (s)
((((1)) ((0 0 1)))) (fresh (x y)
((((0 0 1)) ((1)))) (+o x y ((1 0 1)))
((((1 1)) ((0 1)))) (≡ ((x y)) s)))
((((0 1)) ((1 1)))))).

Now define −o using +o .	
130

That is easy.

(define −o

(lambda (n m k)
(+o m k n)))

What is the value of

(run ∗ (q)
(−o ((0 0 0 1)) ((1 0 1)) q))

131

((((1 1)))).

What is the value of

(run ∗ (q)
(−o ((0 1 1)) ((0 1 1)) q))

132

(((()))).

What is the value of
133

(()).
Eight cannot be subtracted from six, since (run ∗ (q)
we do not represent negative numbers. (−o ((0 1 1)) ((0 0 0 1)) q))

=⇒ Now go make yourself a baba ghanoush pita wrap. ⇐=

106 Chapter 7

This space reserved for

BABA GHANOUSH STAINS!

A Bit Too Much 107

Chapter 8

Just a Bit More

What is the value of
1

(((((()) 0 (())))

(run34 (t)
(fresh (x y r)

(∗o x y r)
(≡ ((x y r)) t)))

((((0 ! 1)) (()) (())))
((((1)) ((0 ! 1)) ((0 ! 1))))
((((0 1 ! 2)) ((1)) ((0 1 ! 2))))
((((0 1)) ((0 1 ! 2)) ((0 0 1 ! 2))))
((((1 0 ! 1)) ((0 1)) ((0 1 0 ! 1))))
((((0 0 1)) ((0 1 ! 2)) ((0 0 0 1 ! 2))))
((((1 1)) ((1 1)) ((1 0 0 1))))
((((0 1 0 ! 1)) ((0 1)) ((0 0 1 0 ! 1))))
((((1 0 ! 1)) ((0 0 1)) ((0 0 1 0 ! 1))))
((((0 0 0 1)) ((0 1 ! 2)) ((0 0 0 0 1 ! 2))))
((((1 1)) ((1 0 1)) ((1 1 1 1))))
((((0 1 1)) ((1 1)) ((0 1 0 0 1))))
((((1 1)) ((0 1 1)) ((0 1 0 0 1))))
((((0 0 1 0 ! 1)) ((0 1)) ((0 0 0 1 0 ! 1))))
((((1 1)) ((1 1 1)) ((1 0 1 0 1))))
((((0 1 0 ! 1)) ((0 0 1)) ((0 0 0 1 0 ! 1))))
((((1 0 ! 1)) ((0 0 0 1)) ((0 0 0 1 0 ! 1))))
((((0 0 0 0 1)) ((0 1 ! 2)) ((0 0 0 0 0 1 ! 2))))
((((1 0 1)) ((1 1)) ((1 1 1 1))))
((((0 1 1)) ((1 0 1)) ((0 1 1 1 1))))
((((1 0 1)) ((0 1 1)) ((0 1 1 1 1))))
((((0 0 1 1)) ((1 1)) ((0 0 1 0 0 1))))
((((1 1)) ((1 0 0 1)) ((1 1 0 1 1))))
((((0 1 1)) ((0 1 1)) ((0 0 1 0 0 1))))
((((1 1)) ((0 0 1 1)) ((0 0 1 0 0 1))))
((((0 0 0 1 0 ! 1)) ((0 1)) ((0 0 0 0 1 0 ! 1))))
((((1 1)) ((1 1 0 1)) ((1 0 0 0 0 1))))
((((0 1 1)) ((1 1 1)) ((0 1 0 1 0 1))))
((((1 1 1)) ((0 1 1)) ((0 1 0 1 0 1))))
((((0 0 1 0 ! 1)) ((0 0 1)) ((0 0 0 0 1 0 ! 1))))
((((1 1)) ((1 0 1 1)) ((1 1 1 0 0 1))))
((((0 1 0 ! 1)) ((0 0 0 1)) ((0 0 0 0 1 0 ! 1))))
((((1 0 ! 1)) ((0 0 0 0 1)) ((0 0 0 0 1 0 ! 1)))))).

It is difficult to see patterns when looking at
2

Yes,
all thirty-four values. Would it be easier to thanks.
examine only the nonground values?

Just a Bit More 109

What are the first eighteen nonground
values?

The value associated with p in

(run ∗ (p)
(∗o ((0 1)) ((0 0 1)) p))

is ((0 0 0 1)). To which nonground value does
this correspond?

Describe the fifth nonground value.

Describe the sixth nonground value.

Is the product of ((1 0 ! 1)) and ((0 1)) odd or
even?

Is there a nonground value that shows that
the product of three and three is nine?

3

4

5

6

7

8

(((((()) 0 (())))
((((0 ! 1)) (()) (())))
((((1)) ((0 ! 1)) ((0 ! 1))))
((((0 1 ! 2)) ((1)) ((0 1 ! 2))))
((((0 1)) ((0 1 ! 2)) ((0 0 1 ! 2))))
((((1 0 ! 1)) ((0 1)) ((0 1 0 ! 1))))
((((0 0 1)) ((0 1 ! 2)) ((0 0 0 1 ! 2))))
((((0 1 0 ! 1)) ((0 1)) ((0 0 1 0 ! 1))))
((((1 0 ! 1)) ((0 0 1)) ((0 0 1 0 ! 1))))
((((0 0 0 1)) ((0 1 ! 2)) ((0 0 0 0 1 ! 2))))
((((0 0 1 0 ! 1)) ((0 1)) ((0 0 0 1 0 ! 1))))
((((0 1 0 ! 1)) ((0 0 1)) ((0 0 0 1 0 ! 1))))
((((1 0 ! 1)) ((0 0 0 1)) ((0 0 0 1 0 ! 1))))
((((0 0 0 0 1)) ((0 1 ! 2)) ((0 0 0 0 0 1 ! 2))))
((((0 0 0 1 0 ! 1)) ((0 1)) ((0 0 0 0 1 0 ! 1))))
((((0 0 1 0 ! 1)) ((0 0 1)) ((0 0 0 0 1 0 ! 1))))
((((0 1 0 ! 1)) ((0 0 0 1)) ((0 0 0 0 1 0 ! 1))))
((((1 0 ! 1)) ((0 0 0 0 1)) ((0 0 0 0 1 0 ! 1)))))).

The fifth nonground value

((((0 1)) ((0 1 ! 2)) ((0 0 1 ! 2)))).

The product of two and a number greater
than one is twice the number greater than
one.

The product of an odd number, three or
greater, and two is twice the odd number.

It is even,
since the first bit of ((0 1 0 ! 1)) is 0.

No.

110 Chapter 8

Is there a ground value that shows that the
product of three and three is nine?

9
Yes,

the first ground value

((((1 1)) ((1 1)) ((1 0 0 1))))

shows that the product of three and three
is nine.

Here is the definition of ∗o .

(define ∗o

(lambda (n m p)
(condi

((≡ (()) n) (≡ (()) p))
((pos o n) (≡ (()) m) (≡ (()) p))
((≡ ((1)) n) (pos o m) (≡ m p))
((>1o n) (≡ ((1)) m) (≡ n p))
((fresh (x z)

(≡ ((0 ! x)) n) (pos o x)

(≡ ((0 ! z)) p) (pos o z)

(>1o m)

(∗o x m z)))

((fresh (x y)
(≡ ((1 ! x)) n) (pos o x)
(≡ ((0 ! y)) m) (pos o y)
(∗o m n p)))

((fresh (x y)
(≡ ((1 ! x)) n) (pos o x)
(≡ ((1 ! y)) m) (pos o y)
(odd-∗o x n m p)))

(else #u))))

Describe the first and second condi lines.

Why isn’t ((≡ (()) m) (≡ (()) p)) the second
condi line?

11
To avoid producing two values in which both
n and m are zero. In other words, we enforce
the non-overlapping property.

Describe the third and fourth condi lines.
12

The third condi line says that the product
of one and a positive number is the number.
The fourth line says that the product of a
number greater than one and one is the
number.

Just a Bit More 111

10

The first condi line says that the product of
zero and a number is zero. The second line
says that the product of a positive number
and zero is also equal to zero.

13

Describe the fifth condi line. The fifth condi line says that the product of
an even positive number and a number
greater than one is an even positive number,
using the equation n · m = 2 · (n

2 · m).

Why do we use this equation?
14

In order for the recursive call to have a value,
one of the arguments to ∗o must shrink.
Dividing n by two clearly shrinks n.

How do we divide n by two?
15

With (≡ ((0 ! x)) n), where x is not (()).

Describe the sixth condi line.
16

This one is easy. The sixth condi line says
that the product of an odd positive number
and an even positive number is the same as
the product of the even positive number and
the odd positive number.

Describe the seventh condi line.
17

This one is also easy. The seventh condi line
says that the product of an odd number
greater than one and another odd number
greater than one is the result of
(odd-∗o x n m p), where x is n−1

2 .

Here is odd-∗o .

(define odd-∗o

18

We know that x is n−1
2 . Therefore,

n · m = 2 · (n−1
2 · m) + m.

(lambda (x n m p)
(fresh (q)

(bound-∗o q p n m)
(∗o x m q)
(+o ((0 ! q)) m p))))

If we ignore bound-∗o, what equation
describes the work done in odd-∗o

112 Chapter 8

Here is a hypothetical definition of bound-∗o .
19

Okay, so this is not the final definition of
bound-∗o .

(define bound-∗o

(lambda (q p n m)
#s))

20
Using the hypothetical definition of bound-∗o , ((((1)) ((1)))).
what value would be associated with t in This value is contributed by the third

(run1 (t) condi line of ∗o .

(fresh (n m)
(∗o n m ((1)))
(≡ ((n m)) t)))

Now what would be the value of
21

It would have no value,
because run would never finish (run2 (t)
determining the second value. (fresh (n m)

(∗o n m ((1)))

(≡ ((n m)) t)))

Here is bound-∗o .
22

Clearly.

(define bound-∗o

(lambda (q p n m)
(conde

((null o q) (pair o p))

(else

(fresh (x y z)

(cdr o q x)

(cdr o p y)

(condi

((null o n)
(cdr o m z)
(bound-∗o x y z (())))

(else
(cdr o n z)
(bound-∗o x y z m))))))))

Is this definition recursive?

Just a Bit More 113

What is the value of
23

((((((1)) ((1)))))),
because bound-∗o fails when the product of (run2 (t)
n and m is larger than p, and since the (fresh (n m)
length of n plus the length of m is an (∗o n m ((1)))
upper bound on the length of p.(≡ ((n m)) t)))

What value is associated with p in
24

((1 0 0 1 1 1 0 1 1)),
which contains nine bits. (run ∗ (p)

(∗o ((1 1 1)) ((1 1 1 1 1 1)) p))

If we replace a 1 by a 0 in
25

Yes,
because ((1 1 1)) and ((1 1 1 1 1 1)) represent (∗o ((1 1 1)) ((1 1 1 1 1 1)) p),
the largest numbers of lengths three and

is nine still the maximum length of p six, respectively. Of course the rightmost 1
in each number cannot be replaced by a 0.

Here is the definition of =l o .
26

Yes, it is.

(define =l o

(lambda (n m)
(conde

((≡ (()) n) (≡ (()) m))
((≡ ((1)) n) (≡ ((1)) m))
(else

(fresh (a x b y)
(≡ ((a ! x)) n) (pos o x)
(≡ ((b ! y)) m) (pos o y)
(=l o x y))))))

Is this definition recursive?

What value is associated with t in

(run ∗ (t)
(fresh (w x y)

(=l o ((1 w x ! y)) ((0 1 1 0 1)))
(≡ ((w x y)) t)))

27

((0 1 ((2 1)))),
since y is ((2 1)), the length of ((1 w x ! y))
is the same as the length of ((0 1 1 0 1)).

114 Chapter 8

What value is associated with b in

(run ∗ (b)
(=l o ((1)) ((b))))

What value is associated with n in

(run ∗ (n)
(=l o ((1 0 1 ! n)) ((0 1 1 0 1))))

What is the value of

(run5 (t)
(fresh (y z)

(=l o ((1 ! y)) ((1 ! z)))
(≡ ((y z)) t)))

What is the value of

(run5 (t)
(fresh (y z)

(=l o ((1 ! y)) ((0 ! z)))
(≡ ((y z)) t)))

Why isn’t (((()) (()))) the first value?

What is the value of

(run5 (t)
(fresh (y z)

(=l o ((1 ! y)) ((0 1 1 0 1 ! z)))
(≡ ((y z)) t)))

28

29

30

31

32

33

1,
because if b were associated with 0, then
((b)) would have become ((0)), which does
not represent a number.

((0 1)),
because if n were ((0 1)), then the length of
((1 0 1 ! n)) would be the same as the
length of ((0 1 1 0 1)).

(((((()) (())))
((((1)) ((1))))
((((0 1)) ((1 1))))
((((0 1 1)) ((2 3 1))))
((((0 1 2 1)) ((3 4 5 1)))))),
because each y and z must be the same
length in order for ((1 ! y)) and ((1 ! z)) to
be the same length.

((((((1)) ((1))))
((((0 1)) ((1 1))))
((((0 1 1)) ((2 3 1))))
((((0 1 2 1)) ((3 4 5 1))))
((((0 1 2 3 1)) ((4 5 6 7 1)))))).

Because if z were (()), then ((0 ! z)) would not
represent a number.

((((((0 1 2 1)) (())))
((((0 1 2 3 1)) ((1))))
((((0 1 2 3 4 1)) ((5 1))))
((((0 1 2 3 4 5 1)) ((6 7 1))))
((((0 1 2 3 4 5 6 1)) ((7 8 9 1)))))),
because the shortest z is (()), which forces y
to be a list of length four. Thereafter, as y
grows in length, so does z .

Just a Bit More 115

Here is the definition of <l o .

(define <l o

(lambda (n m)
(conde

((≡ (()) n) (pos o m))
((≡ ((1)) n) (>1o m))
(else

(fresh (a x b y)
(≡ ((a ! x)) n) (pos o x)
(≡ ((b ! y)) m) (pos o y)
(<l o x y))))))

How does this definition differ from the
definition of =l o

34

In the first conde line, (≡ (()) m) is replaced
by (pos o m). In the second line, (≡ ((1)) m)
is replaced by (>1o m). This guarantees that
n is shorter than m.

What is the value of

(run8 (t)
(fresh (y z)

(<l o ((1 ! y)) ((0 1 1 0 1 ! z)))
(≡ ((y z)) t)))

35

(((((()) 0))
((((1)) 0))
((((0 1)) 1))
((((0 1 1)) 2))
((((0 1 2 1)) ((3 ! 4))))
((((0 1 2 3 1)) ((4 5 ! 6))))
((((0 1 2 3 4 1)) ((5 6 7 ! 8))))
((((0 1 2 3 4 5 1)) ((6 7 8 9 ! 10)))))).

Why does z remain fresh in the first four
values?

36
The variable y is associated with a list that
represents a number. If the length of this list
is at most three, then ((1 ! y)) is shorter than
((0 1 1 0 1 ! z)), regardless of the value
associated with z .

What is the value of

(run1 (n)
(<l o n n))

37
It has no value.

Clearly the first two conde lines fail. In
the recursive call, x and y are associated
with the same fresh variable, which is
where we started.

116 Chapter 8

o o oDefine !l using =l and <l .
38

Is this correct?

o(define !l
(lambda (n m)

(conde

o((=l n m) #s)
o((<l n m) #s)

(else #u))))

It looks like it might be correct. What is the
39

(((((()) (())))
value of ((((1)) ((1))))

((((0 1)) ((1 1)))) (run8 (t)
((((0 1 1)) ((2 3 1)))) (fresh (n m)

o ((((0 1)) ((3 1)))) 1 2 4 5

((((0 1)) ((4 1))))
(!l n m)

1 2 3 5 6 7

((((0 1)) ((5 1))))
(≡ ((n m)) t)))

1 2 3 4 6 7 8 9

((((0 1)) ((6 1)))))) 1 2 3 4 5 7 8 9 10 11

What value is associated with t in
40

(((()) (()))).

(run1 (t)

(fresh (n m)

o(!l n m)

(∗o n ((0 1)) m)

(≡ ((n m)) t)))

What is the value of
41

It has no value,

(run2 (t)
(fresh (n m)

(!l o n m)
(∗o n ((0 1)) m)

because the first conde line of !l o always
succeeds, which means that n and m are
always the same length. Therefore
(∗o n ((0 1)) m) succeeds only when n is (()).

(≡ ((n m)) t)))

Just a Bit More 117

oHow can we redefine !l so that
42

Let’s use condi .
(run2 (t)

(fresh (n m)
o(!l n m)

(∗o n ((0 1)) m)
(≡ ((n m)) t)))

has a value?

o(define !l
(lambda (n m)

(condi

o((=l n m) #s)
o((<l n m) #s)

(else #u))))

What is the value of
43

(((((()) (())))

(run10 (t)
(fresh (n m)

(!l o n m)
(∗o n ((0 1)) m)
(≡ ((n m)) t)))

((((1)) ((0 1))))
((((0 1)) ((0 0 1))))
((((1 1)) ((0 1 1))))
((((0 0 1)) ((0 0 0 1))))
((((1 0 1)) ((0 1 0 1))))
((((0 1 1)) ((0 0 1 1))))
((((0 0 0 1)) ((0 0 0 0 1))))
((((1 0 1 1)) ((0 1 0 1 1))))
((((0 1 0 1)) ((0 0 1 0 1)))))).

Now what is the value of

(run15 (t)
(fresh (n m)

(!l o n m)
(≡ ((n m)) t)))

44

(((((()) (())))
(((()) ((0 " 1))))
((((1)) ((1))))
((((1)) ((0 1 " 2))))
((((0 1)) ((1 1))))
((((0 1)) ((1 2 3 " 4))))
((((0 1 1)) ((2 3 1))))
((((0 1 1)) ((2 3 4 5 " 6))))
((((0 1 2 1)) ((3 4 5 1))))
((((0 1 2 1)) ((3 4 5 6 7 " 8))))
((((0 1 2 3 1)) ((4 5 6 7 1))))
((((0 1 2 3 1)) ((4 5 6 7 8 9 " 10))))
((((0 1 2 3 4 1)) ((5 6 7 8 9 1))))
((((0 1 2 3 4 1)) ((5 6 7 8 9 10 11 " 12))))
((((0 1 2 3 4 5 1)) ((6 7 8 9 10 11 1)))))).

Do these values include all of the values
produced in frame 39?

45
Yes.

118 Chapter 8

Here is the definition of <o .
46

That is easy.

(define <o (define !o

(lambda (n m) (lambda (n m)
(condi (condi

((<l o n m) #s) ((≡ n m) #s)
((=l o n m) ((<o n m) #s)
(fresh (x) (else #u))))

(pos o x)
(+o n x m)))

(else #u))))

Define !o using <o .

What value is associated with q in
47

#t,
since five is less than seven. (run ∗ (q)

(<o ((1 0 1)) ((1 1 1)))

(≡ #t q))

What is the value of
48

(()),
since seven is not less than five. (run ∗ (q)

(<o ((1 1 1)) ((1 0 1)))

(≡ #t q))

What is the value of

(run ∗ (q)
(<o ((1 0 1)) ((1 0 1)))
(≡ #t q))

49

(()),
since five is not less than five. But if we
were to replace <o with !o, the value
would be ((#t)).

What is the value of

(run6 (n)
(<o n ((1 0 1))))

50

(((()) ((0 0 1)) ((1)) ((0 1)))),
since ((0 1)) represents the numbers two
and three.

What is the value of

(run6 (m)
(<o ((1 0 1)) m))

51

((((0 1 2 3 " 4)) ((0 1 1)) ((1 1 1)))),
since ((0 1 2 3 " 4)) represents all the
numbers greater than seven.

Just a Bit More 119

What is the value of

(run ∗ (n)
(<o n n))

What is the value of

(run15 (t)
(fresh (n m q r)

(÷o n m q r)
(≡ ((n m q r)) t)))

List all of the values that contain variables.

Does the third value ((((0 1)) ((0 1)) ((1)) (())))
represent two ground values?

Do the fourth and fifth values in frame 54
each represent two ground values?

52

53

54

55

56

It has no value,
since <o calls <l o .

(((((()) ((0 ! 1)) (()) (())))
((((1)) ((1)) ((1)) (())))
((((0 1)) ((1 1)) (()) ((0 1))))
((((0 1)) ((1)) ((0 1)) (())))
((((1)) ((0 1 ! 2)) (()) ((1))))
((((0 1)) ((0 1)) ((1)) (())))
((((0 0 1)) ((1 0 1)) (()) ((0 0 1))))
((((0 0 1)) ((0 1)) ((0 1)) (())))
((((0 1)) ((1 2 3 ! 4)) (()) ((0 1))))
((((1 1)) ((0 1)) ((1)) ((1))))
((((0 0 1)) ((0 1 1)) (()) ((0 0 1))))
((((1 1)) ((1)) ((1 1)) (())))
((((0 1 1)) ((2 3 4 5 ! 6)) (()) ((0 1 1))))
((((0 1 1)) ((0 1 1)) ((1)) (())))
((((1 0 1)) ((0 1 1)) (()) ((1 0 1)))))).

÷o divides n by m, producing a quotient q
and remainder r .

(((((()) ((0 ! 1)) (()) (())))
((((1)) ((0 1 ! 2)) (()) ((1))))
((((0 1)) ((0 1)) ((1)) (())))
((((0 0 1)) ((1 0 1)) (()) ((0 0 1))))
((((0 0 1)) ((0 1)) ((0 1)) (())))
((((0 1)) ((1 2 3 ! 4)) (()) ((0 1))))
((((0 1 1)) ((2 3 4 5 ! 6)) (()) ((0 1 1))))
((((0 1 1)) ((0 1 1)) ((1)) (()))))).

Yes.
((((0 1)) ((0 1)) ((1)) (())))
represents the two values
((((0 1)) ((0 1)) ((1)) (()))) and
((((1 1)) ((1 1)) ((1)) (()))).

Yes.

120 Chapter 8

Does the eighth value in frame 54,
57

Yes.
((((0 1 1)) ((0 1 1)) ((1)) (()))) ((((0 1 1)) ((0 1 1)) ((1)) (()))),
represents the four values

represent four ground values?	 ((((0 0 1)) ((0 0 1)) ((1)) (()))),
((((1 0 1)) ((1 0 1)) ((1)) (()))),
((((0 1 1)) ((0 1 1)) ((1)) (()))), and
((((1 1 1)) ((1 1 1)) ((1)) (()))).

So is ((((0 1 1)) ((0 1 1)) ((1)) (()))) just
58

Yes.
shorthand notation?

Does the first value in frame 54,
59

Yes.
(((()) ((0 ! 1)) (()) (()))) (((()) ((0 ! 1)) (()) (()))),
represents the values

represent ground values? (((()) ((1)) (()) (())))
(((()) ((0 1)) (()) (())))
(((()) ((1 1)) (()) (())))
(((()) ((0 0 1)) (()) (())))
(((()) ((1 0 1)) (()) (())))
(((()) ((0 1 1)) (()) (())))
(((()) ((1 1 1)) (()) (())))
(((()) ((0 0 0 1)) (()) (())))
(((()) ((1 0 0 1)) (()) (())))
(((()) ((0 1 0 1)) (()) (())))
(((()) ((1 1 0 1)) (()) (())))
(((()) ((0 0 1 1)) (()) (())))
(((()) ((1 0 1 1)) (()) (())))
. . .

Is (((()) ((0 ! 1)) (()) (()))) just shorthand
60

No,
notation?	 since it is impossible to write every ground

value that is represented by
(((()) ((0 ! 1)) (()) (()))).

Is it possible to write every ground value
61

No.
that is represented by the second, sixth, and
seventh values in frame 54?

Just a Bit More 121

How do the first, second, sixth, and seventh
values in frame 54 differ from the other
values in that frame?

62
They each contain an improper list whose
last cdr is a variable.

Define ÷o .
63

(define ÷o

(lambda (n m q r)
(condi

((≡ (()) q) (≡ n r) (<o n m))
((≡ ((1)) q) (≡ (()) r) (≡ n m)
(<o r m))

((<o m n) (<o r m)
(fresh (mq)

o(!l mq n)
(∗o m q mq)
(+o mq r n)))

(else #u)))).

With which three cases do the three condi

lines correspond?

64
The cases in which the dividend n is less
than, equal to, or greater than the divisor m,
respectively.

Describe the first condi line.
65

The first condi line divides a number n by a
number m greater than n. Therefore the
quotient is zero, and the remainder is equal
to n.

According to the standard definition of
66

Yes.
division, division by zero is undefined and The divisor m is greater than the dividend
the remainder r must always be less than the n, which means that m cannot be zero.
divisor m. Does the first condi line enforce Also, since m is greater than n and n is
both of these restrictions? equal to r, we know that m is greater than

the remainder r. By enforcing the second
restriction, we automatically enforce the
first.

122 Chapter 8

In the second condi line the dividend and
divisor are equal, so the quotient obviously
must be one. Why, then, is the (<o r m)
goal necessary?

67
Because this goal enforces both of the
restrictions given in the previous frame.

Describe the first two goals in the third
condi line.

68

The goal (<o m n) ensures that the divisor
is less than the dividend, while the goal
(<o r m) enforces the restrictions in
frame 66.

Describe the last three goals in the third
condi line.

69
The last three goals perform division in terms
of multiplication and addition. The equation

n
m

= q with remainder r

can be rewritten as

n = m · q + r.

That is, if mq is the product of m and q,
then n is the sum of mq and r. Also, since r
cannot be less than zero, mq cannot be
greater than n.

Why does the third goal in the last condi

line use !l o instead of <o

70
Because !l o is a more efficient
approximation of <o . If mq is less than or
equal to n, then certainly the length of the
list representing mq cannot exceed the length
of the list representing n.

What is the value of

(run ∗ (m)
(fresh (r)

(÷o ((1 0 1)) m ((1 1 1)) r)))

71

(()),
since it fails.

Just a Bit More 123

Why is (()) the value of
72	

We are trying to find a number m such that
dividing five by m produces seven. Of course, (run ∗ (m)
no such m exists.(fresh (r)

(÷o ((1 0 1)) m ((1 1 1)) r)))

73
How is (()) the value of	 The third condi line of ÷o ensures that m is

less than n when q is greater than one. (run ∗ (m)
Therefore ÷o can stop looking for possible (fresh (r)
values of m when m reaches four. (÷o ((1 0 1)) m ((1 1 1)) r)))

Why do we need the first two condi lines,
given that the third condi line seems so
general? Why don’t we just remove the first
two condi lines and remove the (<o m n)
goal from the third condi line, giving us a
simpler definition of ÷o

(define ÷o

(lambda (n m q r)
(fresh (mq)

(<o r m)
o(!l mq n)

(∗o m q mq)
(+o mq r n))))

74	
Unfortunately, our “improved” definition of
÷o has a problem—the expression

(run ∗ (m)
(fresh (r)

(÷o ((1 0 1)) m ((1 1 1)) r)))

no longer has a value.

Why doesn’t the expression
75	

Because the new ÷o does not ensure that m
is less than n when q is greater than one. (run ∗ (m)
Therefore ÷o will never stop trying to find (fresh (r)
an m such that dividing five by m produces (÷o ((1 0 1)) m ((1 1 1)) r)))
seven.

have a value when we use the new definition
of ÷o

124	 Chapter 8

Hold on! It’s going to get subtle!

Here is an improved definition of ÷o which is
76

Yes,

more sophisticated than the ones given in the new ÷o relies on split o .

frames 63 and 74. All three definitions

implement division with remainder, which
means that (÷o n m q r) satisfies
n = m · q + r with 0 : r < m.

(define ÷o

(lambda (n m q r)
(condi

((≡ r n) (≡ (()) q) (<o n m))
)q) (= l o n m) (+o r m n))1((≡((

(<o r m))

(else

(alli

(<l o m n)

(<o r m)

o(pos q)

(fresh (nh nl qh ql qlm qlmr rr rh)

(alli

(split o n r nl nh)
(split o q r ql qh)
(conde

((≡ () nh)()

(≡ () qh)
()
(−o nl r qlm)
(∗o ql m qlm))

(else
(alli

o(pos nh)
(∗o ql m qlm)
(+o qlm r qlmr)
(−o qlmr nl rr)
(split o rr r () rh)()
(÷o nh m qh rh)))))))))))

Does the redefined ÷o use any new helper
functions?

(define split o

(lambda (n r l h)
(condi

((≡ (()) n) (≡ (()) h) (≡ (()) l))
((fresh (b n̂)

(≡ ((0 b . n̂)) n)
(≡ (()) r)
(≡ ((b . n̂)) h)
(≡ (()) l)))

((fresh (n̂)
(≡ ((1 . n̂)) n)
(≡ (()) r)
(≡ n̂ h)
(≡ ((1)) l)))

((fresh (b n̂ a r̂)
(≡ ((0 b . n̂)) n)
(≡ ((a . r̂)) r)
(≡ () l)()
(split o ((b . n̂)) r̂ (()) h)))

((fresh (n̂ a r̂)
(≡ ((1 . n̂)) n)
(≡ ((a . r̂)) r)
(≡ ((1)) l)
(split o n̂ r̂ (()) h)))

ˆ((fresh (b n̂ a r̂ l)
(≡ ((b . n̂)) n)
(≡ ((a . r̂)) r)
(≡ ((b . l̂)) l)

o ˆ(pos l)
(split o n̂ r̂ l̂ h)))

(else #u))))

Just a Bit More 125

What does split o do?
77

The call (split o n (()) l h) moves the lowest
bit† of n, if any, into l , and moves the
remaining bits of n into h; (split o n ((1)) l h)
moves the two lowest bits of n into l and
moves the remaining bits of n into h; and
(split o n ((1 1 1 1)) l h),
(split o n ((0 1 1 1)) l h), or
(split o n ((0 0 0 1)) l h) move the five lowest
bits of n into l and move the remaining bits
into h; and so on.

What else does split o do?

Why is split o’s definition so complicated?

How does split o ensure that ((0)) is not
constructed?

78

79

80

† The lowest bit of a positive number n is the car of n.

Since split o is a relation, it can construct n
by combining the lower-order bits of l with
the higher-order bits of h, inserting padding
bits as specified by the length of r .

Because split o must not allow the list ((0)) to
represent a number. For example,
(split o ((0 0 1)) (()) (()) ((0 1))) should succeed,
but (split o ((0 0 1)) (()) ((0)) ((0 1))) should not.

By removing the rightmost zeros after
splitting the number n into its lower-order
bits and its higher-order bits.

What is the value of this expression when
using the original definition of ÷o, as defined
in frame 63?

(run 3 (t)
(fresh (y z)

(÷o ((1 0 ! y)) ((0 1)) z (()))

(≡ ((y z)) t)))

81
It has no value.

We cannot divide an odd number by two
and get a remainder of zero. The old
definition of ÷o never stops looking for
values of y and z that satisfy the division
relation, even though no such values exist.
With the latest definition of ÷o as defined
in frame 76, however, the expression fails
immediately.

126 Chapter 8

Here is logo and its two helper functions.
82

(define logo

(lambda (n b q r)
(condi

o ()()n) (pos))((≡((1 b) (≡ () q) (≡ () r))
))n))1((q) (<o n b) (+o r())(≡((

))q) (>1o b) (=l o n b) (+o r b n))1((≡((
o))n))1((b) (pos q) (+o r))1((≡((

o((≡ (()) b) (pos q) (≡ r n))
)b))0 1((≡((

(fresh (a ad dd)
o(pos dd)

)n))dd!a ad ((≡(
(exp2 o n () q)()

(fresh (s)

(split o n dd r s))))

((fresh (a ad add ddd)

(conde

))b))1 1((≡((
))))b))ddd!a ad add((≡(else(

(<l o b n)
(fresh (bw1 bw nw nw1 ql1 ql s)

(exp2 o b () bw1)()
)bw))1((o bw1(+

(<l o q n)
(fresh (q1 bwq1)

)q1))1((o q(+
(∗o bw q1 bwq1)
(<o nw1 bwq1))
(exp2 o n () nw1)()

)nw))1((o nw1(+
(÷o nw bw ql1 s)

)ql1))1((o ql(+
(conde

((≡ q ql))
(else (<l o ql q)))

(fresh (bql qh s qdh qd)
(repeated-mul o b ql bql)
(÷o nw bw1 qh s)
(+o ql qdh qh)
(+o ql qd q)
(conde

((≡ qd qdh))
(else (<o qd qdh)))

(fresh (bqd bq1 bq)
(repeated-mul o b qd bqd)
(∗o bql bqd bq)
(∗o b bq bq1)
(+o bq r n)
(<o n bq1)))))

(else #u))))

(define exp2 o

(lambda (n b q)
(condi

((≡ ((1)) n) (≡ () q))
((>1o n) (≡ ((1)) q)
(fresh (s)

(split o n b s ((1)))))
((fresh (q1 b2)

(alli

(≡ ((0 ! q1)) q)
(pos o q1)
(<l o b n)
(append o b ((1 ! b)) b2)
(exp2 o n b2 q1))))

((fresh (q1 nh b2 s)
(alli

(≡ ((1 ! q1)) q)
(pos o q1)
(pos o nh)
(split o n b s nh)
(append o b ((1 ! b)) b2)
(exp2 o nh b2 q1))))

(else #u))))

(define repeated-mul o

(lambda (n q nq)
(conde

((pos o n) (≡ () q) (≡ ((1)) nq))
((≡ ((1)) q) (≡ n nq))
((>1o q)
(fresh (q1 nq1)

(+o q1 ((1)) q)
(repeated-mul o n q1 nq1)
(∗o nq1 n nq)))

(else #u))))

Just a Bit More 127

Guess what logo does?
83

It builds a split-rail fence.

Not quite. Try again.
84

It implements the logarithm relation:
(logo n b q r) holds if n = bq + r.

Are there any other conditions that the
logarithm relation must satisfy?

85
There had better be!

Otherwise, the relation would always hold
if q = 0 and r = n − 1, regardless of the
value of b.

Give the complete logarithm relation.
86

(logo n b q r) holds if n = bq + r, where
0 ≤ r and q is the largest number that
satisfies the relation.

Does the logarithm relation look familiar?
87

Yes.
The logarithm relation is similar to the
division relation, but with exponentiation
in place of multiplication.

In which ways are logo and ÷o similar?
88

Both logo and ÷o are relations that take four
arguments, each of which can be fresh
variables. The ÷o relation can be used to
define addition, multiplication, and
subtraction. The logo relation is equally
flexible, and can be used to define
exponentiation, to determine exact discrete
logarithms, and even to determine discrete
logarithms with a remainder. The logo

relation can also find the base b that
corresponds to a given n and q .

What value is associated with r in

(run ∗ (r)
(logo ((0 1 1 1)) ((0 1)) ((1 1)) r))

89

((0 1 1)) ,
since 14 = 23 + 6.

128 Chapter 8

What is the value of
90

((((((1)) ((0 1 ! 2)) ((1 1 0 0 0 0 1))))

(run8 (s)
(fresh (b q r)

(logo ((0 0 1 0 0 0 1)) b q r)
(>1o q)
(≡ ((b q r)) s)))

(((()) ((0 1 ! 2)) ((0 0 1 0 0 0 1))))
((((0 1)) ((0 1 1)) ((0 0 1))))
((((0 0 1)) ((1 1)) ((0 0 1))))
((((1 0 1)) ((0 1)) ((1 1 0 1 0 1))))
((((0 1 1)) ((0 1)) ((0 0 0 0 0 1))))
((((1 1 1)) ((0 1)) ((1 1 0 0 1))))
((((0 0 0 1)) ((0 1)) ((0 0 1)))))),

since
68 = 1n + 67 where n is greater than one,
68 = 0n + 68 where n is greater than one,
68 = 26 + 4,
68 = 43 + 4,
68 = 52 + 43,
68 = 62 + 32,
68 = 72 + 19, and
68 = 82 + 4.

Define expo using logo .
91

That’s easy.

o(define exp
(lambda (b q n)

(logo n b q (()))))

What value is associated with t in
92

((1 1 0 0 1 1 1 1)),
which is the same as (build-num 243).(run ∗ (t)

o(exp ((1 1)) ((1 0 1)) t))

=⇒ Time for a banquet; you’ve earned it. ⇐=

THIS IS A NAPKIN!

Just a Bit More 129

Chapter 9

Under the Hood

What is the essence of our style of
1

conde and condi?
definitions?

No. Their job is to manage the order of
values. Try again.

2
How about car o , cdr o , cons o , null o , eq o, and
pair o?

Not quite, but closer. One more try.
3

Well, each of those six definitions rely on ≡,
so it must be the essence.

But, what about #s and #u
4

They too are simple goals, but ≡ is the
simplest goal that can succeed for some
values and fail for others.

Yes. The definition of ≡ relies on unify,
which we are about to discuss.

5
Okay, let’s begin.

Here are three variables u, v , and w . †
6

That’s easy.

(define u (var u)) (define x (var x))†

(define v (var v)) (define y (var y))

(define w (var w)) (define z (var z))

Define the variables x , y , and z .

† Each invocation of var (var is implemented as vector) is
given a symbol and creates a different fresh variable (a
nonempty vector). var? (var? is implemented as vector?)
determines if its argument had been created by var. Prolog’s
anonymous variable (see page 2 of William F. Clocksin.
Clause and Effect. Springer, 1997.) can be defined as an
identifier macro that expands to (var (quote)). For
discussion of identifier macros, see pages 193 and 204 of
R. Kent Dybvig. The Scheme Programming Language third
ed. MIT Press, 2003; and pages 47 and 48 of Matthias
Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram
Krishnamurthi. Building little languages with macros.
Dr. Dobb’s Journal. April, 2004.

† As a reminder, (define x (var x)) is written as
(define x (var (quote x))).

Under the Hood 131

What is
7	

It is our way of representing an association.
The lhs (left-hand side) of an association ((z ! a))
must be a variable. The rhs (right-hand side)
of an association may be any value.†

† lhs is car and rhs is cdr.

What is the value of

(rhs ((z ! b)))

8
b.

What is the value of

(rhs ((z ! w)))

9
The variable w .

What is the value of

(rhs ((z ! ((x e y)))))

10

The list ((x e y)).

What is

((((z ! a)) ((x ! w)) ((y ! z))))

11

It is our way of representing a substitution† ,
a list of associations.

† Most of this chapter is about substitutions and unification.
Our unify is inspired by Franz Baader and Wayne Snyder.
“Unification theory,” Chapter 8 of Handbook of Automated
Reasoning, edited by John Alan Robinson and Andrei
Voronkov. Elsevier Science and MIT Press, 2001.

Is

((((z ! a)) ((x ! x)) ((y ! z))))

a substitution?

12
Not for us,

since we do not permit associations like
((x ! x)) in which its lhs is the same as its
rhs.

Here is empty-s.

(define empty-s (()))

13
It represents a substitution that does not
contain any associations.

What does it represent?

132 Chapter 9

What is the value of

(walk z ((((z ! a)) ((x ! w)) ((y ! z)))))

14 a,
because we walk from z to the rhs of its
association, which is a.

What is the value of

(walk y ((((z ! a)) ((x ! w)) ((y ! z)))))

15 a,
because we walk from y to the rhs of its
association, which is z , and we walk from z
to the rhs of its association, which is a.

What is the value of

(walk x ((((z ! a)) ((x ! w)) ((y ! z)))))

16
The fresh variable w ,

because we walk from x to the rhs of its
association, which is w .

What is the value of

(walk w ((((z ! a)) ((x ! w)) ((y ! z)))))

17
The fresh variable w ,

because w is not the lhs of any association.

What is the value of

(walk x ((((x ! y)) ((z ! x)) ((y ! z)))))

18
It has no value,

because we never stop walking. The
substitution ((((x ! y)) ((z ! x)) ((y ! z)))) is
said to be circular.

What is the value of

(walk w ((((x ! y)) ((w ! b)) ((z ! x)) ((y ! z)))))

19
b,

The substitution
((((x ! y)) ((w ! b)) ((z ! x)) ((y ! z)))) is
circular, but the walk still terminates.

If x is a variable and s is a substitution, does
20

No. See frame 18.
(walk x s) always have a value?

If x is a variable and s is a substitution built
21

Yes.

by unify, does (walk x s) always have a

value?

Under the Hood 133

If a walk has a value, what are the two
22

It could be a fresh variable, or it could be a
possible types of values that it might have? value that is not a variable.

The value of the expression below is b. What
23

They are also b,
are the values of the walks of u, v , and w since each walk leads to x , and we know

where x leads.(walk x

((((y ! b)) ((x ! y)) ((v ! x)) ((w ! x)) ((u ! w)))))

The value of the expression below is z . What
24

They are also z ,
are the values of the walks of u, v , and w since each walk leads to x , and we know

where x leads.(walk x

((((y ! z)) ((x ! y)) ((v ! x)) ((w ! x)) ((u ! w)))))

What is the value of
25

The list ((x e x)).
(walk u ((((x ! b)) ((w ! ((x e x)))) ((u ! w)))))

Why isn’t ((b e b)) the value?
26

The job of walk is to find either a fresh
variable or a non-variable value. In this case
it finds the list ((x e x)), which is a
non-variable value. This is a subtle point,
because one could imagine a different version
of walk (frame 47) that would return the
value ((b e b)).

Here is the definition of walk.
27

Yes.

(define walk
(lambda (v s)

(cond
((var? v)
(cond

((assq v s) ⇒†

(lambda (a)
(walk (rhs a) s)))

(else v)))
(else v))))

Is walk recursive?

† These two expressions are equivalent.

(cond (let ((a (assq v s)))
((assq v s) ⇒ f) (cond
(else v)) (a (f a))

(else v)))

walk relies on assq, a standard function that we use to find
an association in a substitution.

We could revise fresh (and run) so that it would mark
(by associating a variable with itself—see frame 12) where in
the substitution we have introduced a fresh variable. We
could then recognize this pair with (eq? (lhs a) (rhs a)), thus
avoiding a recursion and the need to search the entire
substitution.

134 Chapter 9

When does the recursion happen?
28

When v is the lhs of an association in s.

Consider the definition of ext-s, which
extends a substitution.

(define ext-s
(lambda (x v s)

(cons ((x ! v)) s)))

29
It has no value,

since the extended substitution is the same
as the one in frame 18.

What is the value of

(walk x (ext-s x y ((((z ! x)) ((y ! z))))))

What is the value of

(walk y ((((x ! e)))))

30
The fresh variable y .

What is the value of

(walk y (ext-s y x ((((x ! e))))))

31 e.

What is the value of

(walk x ((((y ! z)) ((x ! y)))))

32
The fresh variable z .

What is the value of

(walk x (ext-s z b ((((y ! z)) ((x ! y))))))

33
b.

What is the value of

(walk x (ext-s z w ((((y ! z)) ((x ! y))))))

34 w .

What is the value of

(unify v w s)

for all values v and w and for all
substitutions s

35
It is either #f or it is a new substitution. The
new substitution includes the associations of
s and perhaps other associations.

Under the Hood 135

Here is unify.
36

We let-bind v (and w) to a possibly different
value. Thus, we know that the new binding

(define unify of v (and w) is either to a fresh variable or to
(lambda (v w s) a non-variable value.†

(let ((v (walk v s))

(w (walk w s)))

(cond

((eq? v w) s)

((var? v) (ext-s v w s))

((var? w) (ext-s w v s))

((and (pair? v) (pair? w))

(cond

((unify (car v) (car w) s) ⇒

(lambda (s)

(unify (cdr v) (cdr w) s)))

(else #f)))
 † Our very simple representation of variables (frame 6)

makes it unsafe to pass vectors, other than variables, as the
first two arguments of unify. We could, however, define

((equal? v w) s)
(else #f))))) variables in many other ways, but it would unnecessarily

complicate the definitions of var and var?. Nevertheless, the
reader should not hesitate to experiment with refined

What is the first thing that happens in unify definitions of var and var?.

What is a simple way to improve unify
37

We could determine if v is the same as w
before let-binding v and w .

What is another way to improve unify
38

If we have two variables, we can walk one of
them, but while it is being walked, we can
see if we meet the other. Then, we know that
the two variables unify. This generalizes the
improvement in the previous frame.

What is the purpose of the eq? test?†

† We are using eq? primarily for comparing two fresh
variables, but we also benefit from the eq? test on some
non-variable values. Furthermore, although we use no
effects, our definitions are not purely functional, since we
rely on eq? to distinguish two variables (nonempty vectors)
that were created at different times. This effect, however,
could be avoided by including a birthdate variable in the
substitution. Each time we would create variables, we would
then extend the substitution with birthdate and the
associated value of birthdate appropriately incremented.

39	
If v and w are the same, we do not extend
the substitution. Conveniently, this works
whether or not v and w are fresh variables.

136	 Chapter 9

Explain why the next cond line uses var?
40	

Because if v is a variable it must be fresh† ,
since it has been walked.

† This behavior is necessary in order for ≡ to satisfy “The
Law of Fresh.”

And what about the next cond line?
41	

Because if w is a variable it must be fresh,
since it has been walked.†

† The answer of this cond line could be replaced by
(unify w v s), because for a value w and a substitution s,

(walk (walk w s) s) = (walk w s).

What happens when both v and w are pairs?
42	

We unify the car of v with the car of w . If
they successfully unify, we get a new
substitution, which we then use to unify the
cdr of v with the cdr of w .

What is the purpose of the ((equal? v w) s)
cond line?

What is the value of

(walk∗ x
((((y ! ((a z c)))) ((x ! y)) ((z ! a)))))

What is the value of

(walk∗ x
((((y ! ((z w c)))) ((x ! y)) ((z ! a)))))

43

44

45

This one is easy. If either v or w is a pair,
and the other is not, then clearly no
substitution exists that can make them
equal. Also, the equal? works for other kinds
of values.

((a a c)).
The walked value of x is ((a z c)). Then the
walk*ed values of each value in the list are
used to create a new list.

((a w c)).
The walked value of x is ((z w c)). Then
the walk*ed values of each value in the list
are used to create a new list.

Under the Hood 137

What is the value of
46

((w b c)).
(walk∗ y

((((y ! ((w z c)))) ((v ! b)) ((x ! v)) ((z ! x)))))
The walked value of y is ((w z c)). Then
the walk*ed values of each value in the list
are used to create a new list.

Here is walk∗ .
47

Yes, and it’s also useful.†

(define walk∗

(lambda (v s)
† Here is project (pronounced “proh-ject”).

(let ((v (walk v s))) (define-syntax project

(cond
(syntax-rules ()

(((x . . .) g . . .)

((var? v) v)
((pair? v)

(λG (s)
(let ((x (walk∗ x s)) . . .)

((all g . . .) s))))))

(cons
(walk∗ (car v) s)

where λG (see appendix) is just lambda. project is
syntactically like fresh, but it binds diffferent values to the

(walk∗ (cdr v) s)))
(else v)))))

lexical variables. project binds walk*ed values, whereas
fresh binds variables using var. For example, the value of

(run ∗ (q)

Is walk∗ recursive?
(≡ #f q)
(project (q)

(≡ (not (not q)) q)))

()(, its value would be q; without projecting))f#((is), since q,
which is represented using a vector (frame 6), is considered
to be nonfalse when passed as an argument to not .

How does walk∗ differ from walk if its first
48

It doesn’t.
argument is a fresh variable? If v is a fresh variable, then only the first

cond line of walk∗ is ever considered.
Thus walk and walk∗ behave the same if v
is fresh.

How does walk∗ differ from walk if its first
49

If its first argument is nonfresh, then the
argument is a nonfresh variable? second cond line of walk∗ must be

considered. Then, if the walked v is a pair,
walk∗ constructs a new pair of the walk∗ of
each value in v , whereas the walked value is
just v . Finally, if the walked value is not a
pair, then walk and walk∗ behave the same.

What property holds with a variable that has
50

We know that if the walked variable is itself
been walked? a variable, then it must be fresh.

138 Chapter 9

What property holds with a value that has
51

We know that any variable that appears in
been walk*ed? the resultant value must be fresh.

Here is the definition of reify-s, whose first
52

(reify-s v empty-s) returns a reified-name
argument is assumed to have been walk*ed substitution in which each variable in v is
and whose second argument starts out as associated with its reified name.†

empty-s. The result of an invocation of
reify-s is called a reified-name substitution.

(define reify-s

(lambda (v s)

(let ((v (walk v s)))

(cond

((var? v)

† Here is reify-name.(ext-s v (reify-name (size-s s)) s))
(define reify-name ((pair? v) (reify-s (cdr v) (lambda (n)

(string!symbol
(string-append " " "." (number!string n)))))

(reify-s (car v) s)))
(else s)))))

The functions string!symbol, string-append, and
number!string are standard; and size-s is length, which is

Describe (reify-s v empty-s). also standard.

What is the value of
53

((0 1 2)).
(let ((r ((w x y))))

(walk∗ r (reify-s r empty-s)))

What is the value of
54

((0 1 2)).
(let ((r (walk∗ ((x y z)) empty-s)))

(walk∗ r (reify-s r empty-s)))

What is the value of
55

((0 ((1 ((2)))))).3 4 3

(let ((r ((u ((v ((w x)) y)) x))))

(walk∗ r (reify-s r empty-s)))

What is the value of
56

((a 0 c 0)),
since r ’s fresh variable w is replaced by the (let ((s ((((y ! ((z w c w)))) ((x ! y)) ((z ! a))))))
reified name 0 (see frame 45). (let ((r (walk∗ x s)))

(walk∗ r (reify-s r empty-s))))

Under the Hood 139

If every nonfresh variable has been removed
57

We know that there are no variables in the

from a value and every fresh variable has resultant value.

been replaced by a reified name, what do we

know?

Consider the definition of reify, where it is
assumed that its only argument has been
walk*ed.

(define reify
(lambda (v)

(walk∗ v (reify-s v empty-s))))

What is the value of

(let ((s ((((y ! ((z w c w)))) ((x ! y)) ((z ! a))))))
(reify (walk∗ x s)))

58

((a 0 c 0)),
since this is just a restatement of frame 56.
Within run, (reify (walk∗ x s)) transforms
the value associated with x by first
removing all nonfresh variables. This is
done by (walk∗ x s), which returns a value
whose variables are fresh. The call to reify
then transforms the walk*ed value,
replacing each fresh variable with its
reified name.

Here are ext-s
√

, a new way to extend a
substitution, and occurs

√
, which it uses.

(define ext-s
√

(lambda (x v s)
(cond

((occurs
√

x v s) #f)
(else (ext-s x v s)))))

(define occurs
√

(lambda (x v s)
(let ((v (walk v s)))

(cond
((var? v) (eq? v x))
((pair? v)
(or

(occurs
√

x (car v) s)
(occurs

√
x (cdr v) s)))

(else #f)))))

59

We use ext-s
√

where we used ext-s in unify,
so here is the definition of unify

√
.

(define unify
√

(lambda (v w s)
(let ((v (walk v s))

(w (walk w s)))
(cond

((eq? v w) s)
((var? v) (ext-s

√
v w s))

((var? w) (ext-s
√

w v s))
((and (pair? v) (pair? w))
(cond

((unify
√

(car v) (car w) s) ⇒
(lambda (s)

(unify
√

(cdr v) (cdr w) s)))
(else #f)))

((equal? v w) s)
(else #f)))))

Where might we want to use ext-s
√

140 Chapter 9

Why might we want to use ext-s
√

What is the value of

(run1 (x)
(≡ ((x)) x))

What is the value of

(run1 (q)
(fresh (x)

(≡ ((x)) x)
(≡ #t q)))

What is the value of

(run1 (q)
(fresh (x y)

(≡ ((x)) y)
(≡ ((y)) x)
(≡ #t q)))

What is the value of

(run1 (x)
(≡

√
((x)) x))

60

61

62

63

64

Because we might want to avoid creating a
circular substitution that if passed to walk∗

might lead to no value.

It has no value.

((#t)).
Although the substitution is circular, x is
not reached by the walk∗ of q from within
run.

((#t)).
Although the substitution is circular,
neither x nor y is reached by the walk∗ of q
from within run.

(()),
where ≡

√
is the same as ≡, except that it

relies on unify
√

instead of unify. †

† Here is ≡
√

.

(define ≡
√

(lambda (v w)
(λG (s)

(cond
((unify

√
v w s) ⇒ #s)

(else (#u s))))))

where #s and #u are defined in the appendix, and λG is just
lambda.

Under the Hood 141

What is the value of
65

It has no value.

(run1 (x)
(fresh (y z)

(≡ x z)

(≡ ((a b z)) y)

(≡ x y)))

What is the value of
66

(()).

(run1 (x)
(fresh (y z)

(≡ x z)

(≡ ((a b z)) y)
√
(≡ x y)))

What is the substitution when (≡
√

x y) fails
in the previous frame?

67

((((y ! ((a b z)))) ((z ! x)))).
(≡

√
x y) fails because

(occurs
√

x y ((((y ! ((a b z)))) ((z ! x)))))
returns #t. occurs

√
first finds y ’s

association, ((a b z)). occurs
√

then searches
((a b z)) and at each step makes sure that
the rhs is walked if it is a variable. When z
is walked, walk returns the fresh variable
x , which means that we have an occurrence
of x in y .

When should we use ≡
√ 68

When we want to avoid creating a circular
(frame 61) substitution.

So, why indeed does

(run1 (x)
(≡ ((x)) x))

have no value?

69

It has no value because run uses walk∗ (see
frame 58) on x and the circular substitution.
This call of walk∗, however, has no value.

142 Chapter 9

What is the substitution generated by
70

((((x ! ((x)))))), which is a circular substitution.

(run1 (x)

(≡ ((x)) x))

=⇒ The end, sort of. Time for vacation. ⇐=

This space reserved for

PALM TREES!

Under the Hood 143

Chapter 10

Thin Ice

Does

(conda

(#u #s)
(else #u))

succeed?†

1
No,

because the question of the first conda

line is the goal #u, so conda tries the
second line.

† conda is written conda and is pronounced “con-day”.
conda is like the so-called soft-cut (also known as
if-then-else) and is described on page 45 of William F.
Clocksin. Clause and Effect. Springer, 1997.

Does

(conda

(#u #s)
(else #s))

succeed?

Does

(conda

(#s #u)
(else #s))

succeed?

Does

(conda

(#s #s)
(else #u))

succeed?

What is the value of

(run ∗ (x)
(conda

((≡ olive x) #s)
((≡ oil x) #s)
(else #u)))

2

3

4

5

Yes,
because the question of the first conda

line is the goal #u, so conda tries the
second line.

No,
because the question of the first conda

line is the goal #s, so conda tries the
answer of the first line.

Yes,
because the question of the first conda

line is the goal #s, so conda tries the
answer of the first line.

((olive)),
because (≡ olive x) succeeds; therefore, the
answer of the first conda line is #s. The #s
preserves the association of x to olive.

Thin Ice 145

The Law of conda

If the question of a conda line suc­
ceeds, pretend that the remaining
conda lines have been replaced by
a single (else #u).

What does the “a” stand for in conda

What is the value of

(run ∗ (x)
(conda

((≡ virgin x) #u)
((≡ olive x) #s)
((≡ oil x) #s)
(else #u)))

What is the value of

(run ∗ (q)
(fresh (x y)

(≡ split x)
(≡ pea y)
(conda

((≡ split x) (≡ x y))
(else #s)))

(≡ #t q))

What value is associated with q in

(run ∗ (q)
(fresh (x y)

(≡ split x)
(≡ pea y)
(conda

((≡ x y) (≡ split x))
(else #s)))

(≡ #t q))

6

7

8

9

It stands for a single line, since at most a
single line can succeed.

(()),
because (≡ virgin x) succeeds, but the
answer of the first conda line fails. We
cannot pretend that (≡ virgin x) fails
because we are within neither a conde nor
a condi .

(()).
(≡ split x) succeeds, since x is already
associated with split. (≡ x y) fails,
however, since x and y are associated with
different values.

#t.
(≡ x y) fails, since x and y are associated
with different values. The question of the
first conda line fails, therefore we try the
second conda line, which succeeds.

146 Chapter 10

Why does the value change when we switch
10

Because only if the question of a conda line
the order of (≡ split x) and (≡ x y) within fails do we consider the remaining conda

the first conda line? lines. If the question succeeds, it is as if the
remaining conda lines have been replaced by
a single (else #u).

Consider the definition of not-pasta o .
11

((spaghetti)),
because x starts out fresh, but the

(define not-pasta o question (not-pasta o x) associates x with
(lambda (x) pasta, but then fails. Since (not-pasta o x)

(conda fails, we try (≡ spaghetti x).
((≡ pasta x) #u)
(else #s))))

What is the value of
(run ∗ (x)

(conda

((not-pasta o x) #u)
(else (≡ spaghetti x))))

Then, what is the value of
12

(()),
(run ∗ (x) because (not-pasta o x) succeeds, which

(≡ spaghetti x) shows the risks involved when using
(conda conda. We can’t allow a fresh variable to

((not-pasta o x) #u) become nonfresh as part of a conda

(else (≡ spaghetti x)))) question.

The Third Commandment
If prior to determining the question of a conda

line a variable is fresh, it must remain fresh in the
question of that line.

Thin Ice 147

What is the value of
13

It has no value,
since run ∗ never finishes building the list (run ∗ (q)
of #t’s.(conda

(always o #s)

(else #u))

(≡ #t q))

14

What is the value of † ((#t)),
because condu is like conda, except that (run ∗ (q)
the successful question, here always o ,(condu

succeeds only once. (always o #s)

(else #u))

(≡ #t q))

† condu is written condu and is pronounced “cond-you”.
condu corresponds to committed-choice of Mercury
(so-called “once”), which is described in Fergus Henderson,
Thomas Conway, Zoltan Somogyi, and David Jeffery. “The
Mercury language reference manual.” University of
Melbourne Technical Report 96/10, 1996. Mercury was the
first language to effectively combine and extensively use
soft-cuts (frame 1) and committed choice, avoiding the cut of
Prolog. See Lee Naish. “Pruning in logic programming.”
University of Melbourne Technical Report 95/16, 1995.

What is the value of
15

It has no value,
since run ∗ never finishes building the list (run ∗ (q)
of #t’s.(condu

(#s always o)

(else #u))

(≡ #t q))

What does the “u” stand for in condu 16
It stands for uni-, because the successful
question of a condu line succeeds only once.

148 Chapter 10

What is the value of
17

It has no value, since always o keeps

(run1 (q) succeeding after the outer #u fails.

(conda

(always o #s)
(else #u))

#u
(≡ #t q))

What is the value of
18

(()),

(run1 (q)
(condu

because condu’s successful question
succeeds only once.

(always o #s)
(else #u))

#u
(≡ #t q))

The Law of condu

condu behaves like conda , except
that a successful question suc­
ceeds only once.

Here is once o .
19

((tea)).
The first conde line of teacup o succeeds.

(define once o
Since once o’s goal can succeed only once,

(lambda (g) there are no more values. But, this breaks
(condu

The Third Commandment.
(g #s)

(else #u))))

What is the value of

(run ∗ (x)

(once o (teacup o x)))

Thin Ice 149

What is the value of
20

(()).
The first conde line of sal o succeeds. This (run1 (q)
is followed by #u, which fails. Since once o’s(once o (sal o never o))
goal can succeed only once, this avoids #u)
never o, so the run fails. This use of once o

obeys The Third Commandment.

What is the value of
21

((tea cup #f)).
(run ∗ (r)

(conde

((teacup o r) #s)

((≡ #f r) #s)

(else #u)))

What is the value of
22

((tea cup)),
breaking The Third Commandment.(run ∗ (r)

(conda

((teacup o r) #s)

((≡ #f r) #s)

(else #u)))

And, what is the value of
23

((#f)),
since this value is included in frame 21. (run ∗ (r)

(≡ #f r)

(conda

((teacup o r) #s)

((≡ #f r) #s)

(else #u)))

What is the value of
24

((#f)).
conda and condu often lead to fewer (run ∗ (r)
values than a similar expression that uses (≡ #f r)
conde. Knowing that helps determine (condu

whether to use conda or condu, or the ((teacup o r) #s)
more general conde or condi .((≡ #f r) #s)

(else #u)))

150 Chapter 10

Let’s do a bit more arithmetic.
25

Okay.

Here is bump o .
26

((((1 1 1))
((0 1 1))

(define bump o ((1 0 1))
(lambda (n x) ((0 0 1))

(conde ((1 1))
((≡ n x) #s) ((0 1))
(else ((1))

(fresh (m) (()))).
(−o n ((1)) m)
(bump o m x))))))

What is the value of

(run ∗ (x)
(bump o ((1 1 1)) x))

Here is gen&test o .

(define gen&test o

(lambda (op i j k)
(once o

(fresh (x y z)
(op x y z)
(≡ i x)
(≡ j y)
(≡ k z)))))

27
#t ,

because four plus three is seven, but there
is more.

What value is associated with q in

(run ∗ (q)
(gen&test o +o ((0 0 1)) ((1 1)) ((1 1 1)))
(≡ #t q))

What values are associated with x , y , and z
after the call to (op x y z), where op is +o

28

0 , (()), and 0 , respectively.

Thin Ice 151

What happens next?
29

(≡ i x) succeeds,
since i is associated with ((0 0 1)) and x is
fresh. As a result, x is associated with
((0 0 1)) .

What happens after (≡ i x) succeeds?
30

(≡ j y) fails,
since j is associated with ((1 1)) and y is
associated with (()) .

What happens after (≡ j y) fails?
31

(op x y z) is tried again, and this time
associates x with (()) , and both y and z with
((0 ! 1)) .

What happens next?
32

(≡ i x) fails,
since i is still associated with ((0 0 1)) and x
is associated with (()) .

What happens after (≡ i x) fails?
33

(op x y z) is tried again and this time
associates both x and y with ((1)) , and z with
((0 1)) .

What happens next?
34

(≡ i x) fails,
since i is still associated with ((0 0 1)) and x
is associated with ((1)) .

What happens the eighty-second time that
(op x y z) is called?

35

(op x y z) associates both x and z with
((0 0 0 ! 1)) , and y with ((1 1)) .

What happens next?
36

(≡ i x) succeeds,
associating x , and therefore z , with
((0 0 1)) .

152 Chapter 10

What happens after (≡ i x) succeeds?
37

(≡ j y) succeeds,
since both j and y are associated with
((1 1)).

What happens after (≡ j y) succeeds?
38

(≡ k z) succeeds,
since both k and z are associated with
((0 0 1)).

What values are associated with x , y , and z
after the call to (op x y z) is made in the
body of gen&test o

39
x , y , and z are not associated with any
values, since they are fresh.

What is the value of

(run1 (q)
(gen&test o +o ((0 0 1)) ((1 1)) ((0 1 1))))

40
It has no value.

Can (op x y z) fail when x , y , and z are
fresh?

41
Never.

Why doesn’t
42	

(op x y z) generates various associations for
x y , and z , and then tests (≡ i x), (≡ j y),(run1 (q)

+o	 and (≡ k z) if the given triple of values i , j ,(gen&test o ((0 0 1)) ((1 1)) ((0 1 1))))
and k is present among the generated triple

have a value?	 x , y , and z . All the generated triples x , y ,
and z satisfy, by definition, the relation op,
+o in our case. If the triple of values i , j ,
and k is so chosen that i + j is not equal to
k , and our definition of +o is correct, then
that triple of values cannot be found among
those generated by +o. (op x y z) will
continue to generate associations, and the
tests (≡ i x), (≡ j y), and (≡ k z) will
continue to reject them. So this run1

expression will have no value.

Thin Ice	 153

Here is enumerate o .

(define enumerate o

(lambda (op r n)
(fresh (i j k)

(bump o n i)
(bump o n j)
(op i j k)
(gen&test o op i j k)
(≡ ((i j k)) r))))

What is the value of

(run ∗ (s)
(enumerate o +o s ((1 1))))

43

((((((1 1)) ((1 1)) ((0 1 1))))
((((1 1)) ((0 1)) ((1 0 1))))
((((1 1)) ((1)) ((0 0 1))))
((((1 1)) (()) ((1 1))))
((((0 1)) ((1 1)) ((1 0 1))))
((((0 1)) ((0 1)) ((0 0 1))))
((((0 1)) ((1)) ((1 1))))
((((0 1)) (()) ((0 1))))
((((1)) ((1 1)) ((0 0 1))))
((((1)) ((0 1)) ((1 1))))
((((1)) ((1)) ((0 1))))
((((1)) (()) ((1))))
(((()) ((1 1)) ((1 1))))
(((()) ((0 1)) ((0 1))))
(((()) ((1)) ((1))))
(((()) (()) (()))))).

Describe the values in the previous frame.
44

The values are arranged into four groups of
four values. Within the first group, the first
value is always ((1 1)); within the second
group, the first value is always ((0 1)); etc.
Then, within each group, the second value
ranges from ((1 1)) to (()), consecutively. And
the third value, of course, is the sum of first
two values.

What is true about the value in frame 43?
45

It appears to contain all triples ((i j k)) where
i + j = k with i and j ranging from (()) to
((1 1)).

All such triples?
46

It seems so.

Can we be certain without counting and
47

That’s confusing.

analyzing the values? Can we be sure just by

looking at the values?

154 Chapter 10

Okay, suppose one of the triples were
48

But how could that be? We know
missing. For example, suppose (bump o n i) associates i with the numbers
((((0 1)) ((1 1)) ((1 0 1)))) were missing. within the range (()) through n. So if we try it

enough times, we eventually get all such
numbers. The same is true for (bump o n j).
So, we definitely will determine (op i j k)
when i is ((0 1)) and j is ((1 1)), which will
then associate k with ((1 0 1)). We have
already seen that.

Then what happens?
49

Then we will try to find if
(gen&test o +o i j k) can succeed, where i is
((0 1)), j is ((1 1)), and k is ((1 0 1)).

At least once?
50

Yes,
since we are interested in only one value.
We first determine (op x y z), where x , y ,
and z are fresh. Then we see if that result
matches ((((0 1)) ((1 1)) ((1 0 1)))). If not, we
try (op x y z) again, and again.

What if such a triple were found?
51

Then gen&test o would succeed, producing
the triple as the result of enumerate o . Then,
because the fresh expression in gen&test o is
wrapped in a once o, we would pick a new
pair of i -j values, etc.

What if we were unable to find such a triple?
52

Then the run expression would have no
value.

Why would it have no value?
53	

If no result of (op x y z) matches the desired
triple, then, as in frame 40, we would keep
trying (op x y z) forever.

Thin Ice	 155

So can we say that
54

Yes, that’s clear.
If one triple were missing, we would have (run ∗ (s)

+o	 no value at all! (enumerate o s ((1 1))))

produces all such triples ((i j k)) where
i + j = k with i and j ranging from (())
through ((1 1)), just by glancing at the value?

So what does enumerate o determine?
55	

It determines that (op x y z) with x , y , and
z being fresh eventually generates all triples
where x + y = z. At least, enumerate o

determines that for numbers x and y being
(()) through some n.

What is the value of
56

((((((1 1 1)) ((1 1 1)) ((0 1 1 1)))))).

(run1 (s)
(enumerate o +o s ((1 1 1))))

How does this definition of gen-adder o differ
57

The definition in chapter 7 has an alli ,
from the one in 7:118? whereas this definition uses all.

(define gen-adder o

(lambda (d n m r)
(fresh (a b c e x y z)

(≡ ((a ! x)) n)
(≡ ((b ! y)) m) (pos o y)
(≡ ((c ! z)) r) (pos o z)
(all

(full-adder o d a b c e)
(adder o e x y z)))))

What is the value of
58

It has no value.

(run1 (q)
(gen&test o +o ((0 1)) ((1 1)) ((1 0 1))))

using the second definition of gen-adder o

156	 Chapter 10

Why doesn’t
59

When using all instead of alli, things can get
(run1 (q) stuck.

(gen&test o +o ((0 1)) ((1 1)) ((1 0 1))))

have a value?

Where does the second definition of
60

If a, b, c, d , x , y , and z are all fresh, then
gen-adder o get stuck? (full-adder o d a b c e) finds such bits where

d + a + b = c + 2 · e and (adder o e x y z) will
find the rest of the numbers. But there are
several ways to solve this equation. For
example, both 0 + 0 + 0 = 0 + 2 · 0 and
0 + 1 + 0 = 1 + 2 · 0 work. Because
(adder o e x y z) keeps generating new x , y ,
and z forever, we never get a chance to
explore other values. Because
(full-adder o d a b c e) is within an all, not
an alli, the (full-adder o d a b c e) gets stuck
on its first value.

Good. Let’s see if it is true. Redo the effort
61

Some things are missing like
of frame 103 and frame 115 but using the ((((1)) ((1 1 0 0 ! 1)) ((0 0 1 0 ! 1))))
second definition of gen-adder o . What do we and ((((0 1)) ((1 1)) ((1 0 1)))).
discover?

If something is missing because we are using
the second definition of gen-adder o, can we
predict the value of

(run ∗ (q)
(enumerate o +o q ((1 1 1))))

62
Of course, we know that it has no value.

Can logo and ÷o also be enumerated?
63

Yes, of course.

=⇒ Get ready to connect the wires. ⇐=

Thin Ice 157

Appendix A

Connecting the Wires

A goal g is a function that maps a substitution s to an ordered sequence s∞ of zero or more
substitutions. (For clarity, we notate lambda as λG when creating such a function g .) Because
the sequence of substitutions may be infinite, we represent it not as a list but a stream.

Streams contain either zero, one, or more substitutions.1 We use (mzero) to represent the
empty stream of substitutions. For example, #u maps every substitution to (mzero). If a is
a substitution, then (unit a) represents the stream containing just a. For instance, #s maps
every substitution s to just (unit s). The goal created by an invocation of the ≡ operator
maps a substitution s to either (mzero) or to a stream containing a single (possibly extended)
substitution, depending on whether that goal fails or succeeds. To represent a stream containing
multiple substitutions, we use (choice a f), where a is the first substitution in the stream, and
where f is a function of zero arguments. Invoking the function f produces the remainder of the
stream, which may or may not be empty. (For clarity, we notate lambda as λF when creating
such a function f .)

When we use the variable a rather than s for substitutions, it is to emphasize that this
representation of streams works for other kinds of data, as long as a datum is never #f or a pair
whose cdr is a function—in other words, as long as the three cases above are never represented
in overlapping ways. To discriminate among the cases we define the macro case∞ .

The second case is redundant in this representation: (unit a) can be represented as
(choice a (λF () #f)). We include unit, which avoids building and taking apart pairs and
invoking functions, because many goals never return multiple substitutions. run converts a
stream of substitutions s∞ to a list of values using map∞ .

Two streams can be merged either by concatenating them using mplus (also known as stream-
append) or by interleaving them using mplusi. The only difference between the definitions mplus
and mplusi lies in the recursive case: mplusi swaps the two streams; mplus does not.

Given a stream s∞ and a goal g , we can feed each value in s∞ to the goal g to get a
new stream, then merge all these new streams together using either mplus or mplusi . When
using mplus, this operation is called monadic2 bind, and it is used to implement the conjunction
all. When using mplusi, this operation is called bind i, and it is used to implement the fair
conjunction alli . The operators all and alli are like and, since they are short-circuiting: the
false value short-circuits and, and any failed goal short-circuits all and alli. Also, the let in the
third clause of all-aux ensures that (all e), (alli e), (all e #s), and (alli e #s) are equivalent
to e, even if the expression e has no value. The addition of the superfluous second clause allows
all-aux expressions to expand to simpler code.

To take the disjunction of goals we define conde, and to take the fair disjunction we define
condi . They combine successive question-answer lines using mplus and mplusi, respectively.
Two stranger kinds of disjunction are conda and condu . When a question g0 succeeds, both
conda and condu skip the remaining lines. However, condu chops off every substitution after
the first produced by g0 , whereas conda leaves the stream produced by g0 intact.

1See Philip L. Wadler. How to replace failure by a list of successes: a method for exception handling, back­
tracking, and pattern matching in lazy functional languages. Functional Programming Languages and Computer
Architecture, Lecture Notes in Computer Science 201, Springer, pages 113–128; J. Michael Spivey and Silvija
Seres. Combinators for logic programming. The Fun of Programming. Palgrave; and Mitchell Wand and Dale
Vaillancourt. Relating Models of Backtracking. Ninth International Conference on Functional Programming.
2004, pages 54–65.

2See Eugenio Moggi. Notions of computation and monads. Information and Computation 93(1):55–92, 1991;
Philip L. Wadler. The essence of functional programming. Nineteenth Symposium on Principles of Programming
Languages. 1992, pages 1–14; and Ralf Hinze. Deriving backtracking monad transformers. Fifth International
Conference on Functional Programming . 2000, pages 186–197.

Connecting the Wires 159

1

(define-syntax run 9 : 6, 13, 47, 58
(syntax-rules ()

((n̂ (x) g . . .)
(let ((n n̂) (x (var x)))

(if (or (not n) (> n 0))
(map ∞ n

(lambda (s)
(reify (walk∗ x s)))

((all g . . .) empty-s))
())))))()

(define-syntax case∞

(syntax-rules ()
((e on-zero ((â) on-one) ((a f) on-choice))
(let ((a ∞ e))

(cond
((not a∞) on-zero)
((not (and

(pair? a ∞)
(procedure? (cdr a∞))))

(let ((â a ∞))
on-one))

(else (let ((a (car a ∞)) (f (cdr a∞)))
on-choice)))))))

(define-syntax mzero
(syntax-rules ()

(() #f)))

(define-syntax unit
(syntax-rules ()

((a) a)))

(define-syntax choice
(syntax-rules ()

((a f) (cons a f))))

(define map ∞

(lambda (n p a ∞)
(case ∞ a ∞

()()
((a)

(cons (p a) ()))
()

((a f)

(cons (p a)

(cond
((not n) (map ∞ n p (f)))
((> n 1) (map ∞ (− n 1) p (f)))
(else (()))))))))

2

(define #s (λG (s) (unit s)))

(define #u (λG (s) (mzero)))

(define ≡ 9 : 27, 36
(lambda (v w)

(λG (s)
(cond

((unify v w s) ⇒ #s)
(else (#u s))))))

(define-syntax fresh 9 : 6
(syntax-rules ()

(((x . . .) g . . .)
(λG (s)

(let ((x (var x)) . . .)
((all g . . .) s))))))

(define-syntax conde

(syntax-rules ()
((c . . .) (cond-aux if e c . . .))))

(define-syntax all
(syntax-rules ()

((g . . .) (all-aux bind g . . .))))

(define-syntax alli

(syntax-rules ()
((g . . .) (all-aux bind i g . . .))))

(define-syntax condi

(syntax-rules ()
((c . . .) (cond-aux if i c . . .))))

(define-syntax conda

(syntax-rules ()
((c . . .) (cond-aux if a c . . .))))

(define-syntax condu

(syntax-rules ()
((c . . .) (cond-aux if u c . . .))))

160 Appendix A

3

(define mplus
(lambda (a ∞ f)

(case ∞ a ∞

(f)

((a) (choice a f))

((a f0) (choice a

(λF () (mplus (f0) f)))))))

(define bind
(lambda (a ∞ g)

(case ∞ a ∞

(mzero)

((a) (g a))

((a f) (mplus (g a)

(λF () (bind (f) g)))))))

(define mplusi

(lambda (a ∞ f)
(case ∞ a ∞

(f)

((a) (choice a f))

((a f0) (choice a

(λF () (mplusi (f) f0)))))))

(define bind i

(lambda (a ∞ g)
(case ∞ a ∞

(mzero)

((a) (g a))

((a f) (mplusi (g a)

(λF () (bind i (f) g)))))))

4

5

(define-syntax cond-aux
(syntax-rules (else)

((ifer) #u)
((ifer (else g . . .)) (all g . . .))
((ifer (g . . .)) (all g . . .))
((ifer (g0 g . . .) c . . .)
(ifer g0

(all g . . .)
(cond-aux ifer c . . .)))))

(define-syntax all-aux
(syntax-rules ()

((bnd) #s)
((bnd g) g)
((bnd g0 g . . .)
(let ((ĝ g0))

(λG (s)
(bnd (ĝ s)

(λG (s) ((all-aux bnd g . . .) s))))))))

(define-syntax if e

(syntax-rules ()
((g0 g1 g2)
(λG (s)

(mplus ((all g0 g1) s) (λF () (g2 s)))))))

(define-syntax if i

(syntax-rules ()
((g0 g1 g2)
(λG (s)

(mplusi ((all g0 g1) s) (λF () (g2 s)))))))

6

(define-syntax if a

(syntax-rules ()
((g0 g1 g2)
(λG (s)

(let ((s ∞ (g0 s)))
(case ∞ s ∞

(g2 s)
((s) (g1 s))
((s f) (bind s∞ g1))))))))

(define-syntax if u

(syntax-rules ()
((g0 g1 g2)
(λG (s)

(let ((s ∞ (g0 s)))
(case ∞ s ∞

(g2 s)
((s) (g1 s))
((s f) (g1 s))))))))

Connecting the Wires 161

Appendix B

Welcome to the Club

Here is a small collection of entertaining and illuminating books.

Carroll, Lewis. The Annotated Alice: The Definitive Edition. W. W. Norton &

Company, New York, 1999. Introduction and notes by Martin Gardner.

Hein, Piet. Grooks. The MIT Press, 1960.

Hofstadter, Douglas R. Gödel, Escher, Bach: an Eternal Golden Braid. Basic Books,

Inc., 1979.

Nagel, Ernest, and James R. Newman. Gödel’s Proof. New York University Press, 1958.

Smullyan, Raymond. To Mock a Mockingbird. Alfred A. Knopf, Inc., 1985.

Suppes, Patrick. Introduction to Logic. Van Nostrand Co., 1957.

Welcome to the Club 163

Index

Italic page numbers refer to definitions.

+o (+o), ix, 106

−o (-o), 106

∗o (*o), ix, 111

÷o (/o), 122

simplified, incorrect version, 124

sophisticated version using split o , 125

!l o (<=lo), 117

using condi instead of conde , 118

!o (<=o), 119

<l o (<lo), 116

<o (<o), 119

≡ (==), ix, 4, 159, 160
√
≡ (==-check), 141

⇒ (=>), 134

=l o (=lo), 114

>1o (>1o), 98

#s (succeed), ix, 3, 159, 160

#u (fail), ix, 3, 159, 160

λF, 159

λG, 159

adder o , 104

all, 82, 159, 160

alli (alli), 159, 160

all-aux, 159, 161

always o , 77

and macro, ix

anonymous variable, 131

answer (of a cond line), 10

any o , 77

append, 61

append o , 62

swapping last two goals, 66

using cons o , 63

arithmetic, ix

arithmetic operators

+o, ix, 106

−o , 106

∗o, ix, 111

÷o , 122

simplified, incorrect version, 124

sophisticated version using split o , 125

!l o , 117

using condi instead of conde , 118

!o , 119

<l o , 116

<o , 119

=l o , 114

>1o , 98

adder o , 104

build-num, 93

shows non-overlapping property, 93

oexp , 129

gen-adder o , 104

using all instead of alli , 156

logo, ix, 127

pos o , 97

associate (a value with a variable), 4

association, 132

assq, 134

Baader, Franz, 132

bind, 159, 161

bind i (bindi), 161

Index 165

birthdate, 136
bit operators

bit-and o , 88

bit-nand o , 87

bit-not o , 88

bit-xor o , 87

full-adder o , 89

half-adder o , 89

bit-and o , 88

bit-nand o , 87

bit-not o , 88

bit-xor o , 87

Boole, George, 4

Boolean value, 4

bound-∗o (bound-*o), 113

hypothetical definition, 113

build-num, 93

shows non-overlapping property, 93

bump o , 151

car, 17

car o, 17, 18

Carroll, Lewis, 163

carry bit, 104

case∞ (case-inf), 159, 160

cdr, 19

cdr o , 19

choice, 159, 160

Clocksin, William F., 11, 61, 131, 145

Commandments

The First Commandment, 28

The Second Commandment, 48

The Third Commandment, 147

committed-choice, 148

cond macro, ix

⇒ (=>), 134

conda (conda), 145, 159, 160

conda-line answer, 145

conda-line question, 145

conde (conde), ix, 11, 159, 160

conde-line answer, 11

conde-line question, 11

condi (condi), 80, 159, 160

condu (condu), 148, 159, 160

cond-aux, 161

conjunction, 159. See also all

fair, 159 (see also alli)

cons o, 20, 21

continuation-passing style (CPS), 19

Conway, Thomas, 148

co-refer, 9

cut operator, 148

Dijkstra, Edsger W., 93

discrete logarithm. See logo

disjunction, 159. See also conde

fair, 159 (see also condi)

Dybvig, R. Kent, 131

empty-s, 132

enumerate o , 154

eq-car?, 36

eq-car o , 36

eq?, 22, 136, 140

used to distinguish between variables, 136

eq o , 23

exp2 o (help function for logo), 127

oexp , 129

ext-s, 135
√
ext-s (ext-s-check), 140

fail (#u), ix, 3, 159, 160

fair conjuction, 159. See also alli

fair disjunction, 159. See also condi

Felleisen, Matthias, 131

Findler, Robert Bruce, 131

The First Commandment, 28

first-value, 44

Flatt, Matthew, 131

flatten, 71

flatten o , 71

flattenrev o , 74

food, x

fresh, ix, 6, 160

fresh variable, 6

full-adder o , 89

functional programming, ix

functions (as values), ix, 3

Gardner, Martin, 163

gen&test o , 151

gen-adder o , 104

using all instead of alli , 156

goal, 3, 159

166 Index

ground value, 100

half-adder o , 89

Haskell, x

Hein, Piet, 163

Henderson, Fergus, 148

Herbrand, Jacques, 10

Hofstadter, Douglas R., 163

identifier macro, 131

identity, 38

if a (ifa), 161

if e (ife), 161

if i (ifi), 161

if u (ifu), 161

implementation

≡, 159, 160
√
≡ , 141

#s, 159, 160

#u, 159, 160

all, 159, 160

all-aux, 159, 161

alli, 159, 160

bind, 159, 161

bind i , 161

case∞ , 159, 160

choice, 159, 160

cond-aux, 161

conda, 159, 160

conde, 159, 160

condi, 159, 160

condu, 159, 160

empty-s, 132

ext-s, 135
√
ext-s , 140

fresh, 160

if a , 161

if e , 161

if i , 161

if u , 161

lhs, 132

map∞ , 159, 160

mplus, 159, 161

mplusi, 159, 161

mzero, 159, 160
√
occurs , 140

reify, 140

reify-name, 7, 17, 139

reify-s, 139

rhs, 132

run, 159, 160

size-s, 139

unify, 136
√
unify , 140

unit, 159, 160

var, 131

var?, 131

walk, 133, 134

walk∗ , 138

Jeffery, David, 148

Krishnamurthi, Shriram, 131

Lambda the Ultimate, 3

lambda-limited, 68

The Law of ≡, 7

The Law of conda, 146

The Law of conde, 12

The Law of condi, 81

The Law of condu, 149

The Law of Fresh, 7

length, 139

let macro, ix

lexical variable, 138

lhs, 132

list-of-lists?. See lol?

list?, 27

list o , 27

listof o , 35

ll (help function for lambda-limited), 68

logic programming, ix

logo, ix, 127

lol?, 30

lol o , 30

lot o , 33

using listof o and twins o , 35

macros

LATEX, x

identifier, 131

Scheme, ix

map∞ (map-inf), 159, 160

mem, 47

Index 167

memo , 48

simplified definition, 50

member?, 36

member o , 36

memberrev o , 44

Mercury, 148

soft-cut operator, 148

Moggi, Eugenio, 159

monadic operation, 159

mplus, 159, 161

mplusi (mplusi), 159, 161

mzero, 159, 160

n-representative, 99

Nagel, Ernest, 163

Naish, Lee, 148

never o , 77

Newman, James R., 163

non-overlapping property, 93

notational conventions, ix

not-pasta o , 147

no value (for an expression), 29

null?, 21

null o , 22

number!string, 139

√
occurs (occurs-check), 140

odd-∗o (odd-*o), 112

once o , 149, 151

pair o , 24

pmember o , 40

with additional conde line, 41

testing that cdr is not the empty list, 42

swapping first and second conde lines, 43

pos o , 97

programming languages

Haskell, x

Mercury, 148

soft-cut operator, 148

Prolog, ix

cut operator, 148

anonymous variable, 131

Scheme, ix

macros, ix

project, 138

Prolog, ix

cut operator, 148

anonymous variable, 131

proper list, 27

punctuation, ix

question (of a cond line), 10

refresh (a variable), 11

reified

name, 8

variable, 8

reify, 140

reify-name, 7, 17, 139

reify-s, 139

relational programming, ix

relations

partitioning into unnamed functions, x

rember, 51

rember o , 51

redefined using cons o , 52

repeated-mul o (help function for logo), 127

reverse-list, 45

rhs, 132

Robinson, John Alan, 132

run, 12, 159, 160

run ∗ (run #f), 4

sal o , 78

Scheme, ix

macros, ix

The Second Commandment, 48

Seres, Silvija, 159

share, 9

short-circuit operators, 159

size-s, 139

Skolem, Thoralf Albert, 8

SLATEX, x

Smullyan, Raymond, 163

Snyder, Wayne, 132

soft-cut operator, 11, 145, 148

Somogyi, Zoltan, 148

Spivey, J. Michael, 159

split o (help function for ÷o), 125

stream, 159

stream-append, 159

string-append, 139

string!symbol, 139

168 Index

substitution, 132, 159

reified name, 139

succeed (#s), ix, 3, 159, 160

superscripts. See notational conventions

Suppes, Patrick, 163

surprise o , 58

swappend o , 67

using lambda-limited, 68

teacup o , 14

The Little LISPer, 3

The Little Schemer, ix, 3

The Third Commandment, 147

twin, 31

twins o , 32

without using cons o , 33

unification, 132

unify, 4, 136. See also ≡

improvements to, 136
 √ √
unify (unify-check), 140. See also ≡

unit, 159, 160

unnamed functions, x

unnesting a goal, 19

unwrap, 68

unwrap o , 69

with swapped conde lines, 70

Vaillancourt, Dale, 159

value of a run/run ∗ expression, 5

var, 131, 136

var?, 131, 136

variable

anonymous, 131

fresh, 6

lexical, 138

reified, 8

vector, 131

vector (cannot pass to unify), 136

vector?, 131

Voronkov, Andrei, 132

Wadler, Philip L., 159

walk, 133, 134

walk∗ (walk*), 138

Wand, Mitchell, 159

width (of a number), 102

Index 169

	Front Cover
	Copyright
	Contents
	Preface
	1. Playthings
	2. Teaching Old Toys New Tricks
	3. Seeing Old Friends in New Ways
	4. Members Only
	5. Double Your Fun
	6. The Fun Never Ends...
	7. A Bit Too Much
	8. Just a Bit More
	9. Under the Hood
	10. Thin Ice
	Connecting the Wires
	Welcome to the Club
	Index

