
Page 1

Copyright 2002, Mark Watson. All rights reserved.

Loving Lisp, or the Savvy Programmer's Secret Weapon
Mark Watson

Copyright 2002, Mark Watson, all rights reserved.

Version 0.7 Last updated: September 18, 2002

This document can be redistributed in its original and un-altered form.

Please check Mark Watson's web site www.markwatson.com for updated versions.

Requests from the author

This web book may be distributed freely in an unmodified form. Please report any errors
to markw@markwatson.com.

I live in a remote area, the mountains of Northern Arizona and work remotely via the
Internet. Although I really enjoy writing Open Content documents like this Web Book
and working on Open Source projects, I earn my living as a Java and Common Lisp
consultant. Please keep me in mind for consulting jobs! Also, please read my resume and
consulting terms at www.markwatson.com.

If you enjoy this free Web Book and can afford to, please consider making a small
donation of $2.00 using the PayPal link on www.markwatson.com or sending a check or
cash to:

Mark Watson
120 Farmer Brothers Drive
Sedona, AZ 86336

Page 2

Copyright 2002, Mark Watson. All rights reserved.

ACKNOWLEDGEMENTS.. 4

1. INTRODUCTION.. 5

1.1 Why did I write this book? ... 5

1.2 Free software tools for Common Lisp programming.. 5

1.3 How is Lisp different from languages like Java and C++? .. 6

1.4 Advantages of working in a Lisp environment .. 7

1.5 Getting Started with CLISP ... 8

2. THE BASICS OF LISP PROGRAMMING.. 11

2.1 Symbols.. 15

2.2 Operations on Lists .. 15

2.3 Using arrays and vectors... 19

2.4 Using Strings... 20

2.5 Using hash tables.. 23

2.6 Using Eval to evaluate Lisp Forms .. 26

2.7 Using a text editor to edit Lisp source files... 26

2.8 Recovering from Errors .. 27

2.9 Garbage collection ... 28

2.10 Loading your Working Environment Quickly... 28

3. DEFINING LISP FUNCTIONS ... 30

3.1 Using lambda forms... 31

3.2 Using recursion... 32

3.3 Closures ... 33

4. DEFINING COMMON LISP MACROS... 35

4.1 Example macro... 35

4.2 Using the splicing operator ... 36

Page 3

Copyright 2002, Mark Watson. All rights reserved.

4.3 Using macroexpand-1.. 36

5. USING COMMON LISP LOOP MACROS ... 37

5.1 dolist... 37

5.2 dotimes... 37

5.3 do .. 38

5.4 loop... 39

6. INPUT AND OUTPUT.. 40

6.1 The Lisp read and read-line functions .. 40

6.2 Lisp printing functions .. 42

7. COMMON LISP PACKAGE SYSTEM... 45

8. COMMON LISP OBJECT SYSTEM - CLOS ... 47

8.1 Example of using a CLOS class.. 47

8.2 Implementation of the HTMLstream class... 48

8.3 Other useful CLOS features ... 51

9. NETWORK PROGRAMMING.. 52

9.1 An introduction to sockets .. 52

9.2 A server example.. 53

9.3 A client example ... 54

9.4 An Email Client.. 55

INDEX .. 59

Page 4

Copyright 2002, Mark Watson. All rights reserved.

Acknowledgements
I would like to thank the following people who made suggestions for improving this web
book:

Sam Steingold, Andrew Philpot, Kenny Tilton, Mathew Villeneuve, Eli Draluk, Erik
Winkels, Adam Shimali, and Paolo Amoroso.

I would like to thank Paul Graham for coining the phrase "The Secret Weapon" (in his
excellent paper "Beating the Averages") in discussing the advantages of Lisp.

Page 5

Copyright 2002, Mark Watson. All rights reserved.

1. Introduction

This book is intended to get you, the reader, programming quickly in Common Lisp.
Although the Lisp programming language is often associated with artificial intelligence,
this is not a book on artificial intelligence.

This free web book is distributed as a ZIP file that also contains a directory src
containing Lisp example programs and an HTML file readme.html that contains web
links for Common Lisp resources on the Internet.

1.1 Why did I write this book?

Why the title “Loving Lisp”? Simple! I have been using Lisp for over 20 years and
seldom do I find a better match between a programming language and the programming
job at hand. I am not a total fanatic on Lisp however. I like Java for server side
programming, and the few years that I spent working on Nintendo video games and
virtual reality systems for SAIC and Disney, I found C++ to be a good bet because of
stringent runtime performance requirements. For some jobs, I find the logic-programming
paradigm useful: I also enjoy the Prolog language.

In any case, I love programming in Lisp, especially the industry standard Common Lisp.

As programmers, we all (hopefully) enjoy applying our experience and brains to tackling
interesting problems. My wife and I recently watched a two-night 7-hour PBS special
“Joseph Campbell, and the Power of Myths”. Campbell, a college professor for almost 40
years, said that he always advised his students to “follow their bliss” and to not settle jobs
and avocations that are not what they truly want to do. That said I always feel that when a
job calls for using Java, C++, or perhaps Prolog, that even though I may get a lot of
pleasure from completing the job, I am not following my bliss.

My goal in this book is to introduce you to my favorite programming language, Common
Lisp. I assume that you already know how to program in another language, but if you are
a complete beginner, you can still master the material in this book with some effort. I
challenge you to make this effort.

1.2 Free software tools for Common Lisp programming

There are several Common Lisp compilers and runtime tools available for free on the
web:

• CLISP - licensed under the GNU GPL and is available for Windows, Macintosh,
and Linux/Unix

Page 6

Copyright 2002, Mark Watson. All rights reserved.

• OpenMCL - licensed under the GNU LGPL license and is available for Mac OS
X

• CMU Common Lisp - a public domain style license and is available for several
types of Unix and Linux (Pentium, SPARK, and ALPHA – with some work
towards PowerPC support)

• Steel Bank Common Lisp - derived from CMU Common Lisp

There are also fine commercial Common Lisp products:

• Xanalys LispWorks - high quality and reasonably priced system for Windows and
Linux. No charge for distributing compiled applications.

• Franz Allegro Lisp - high quality and high cost.
• MCL - Macintosh Common Lisp. I used this Lisp environment in the late 1980s,

and it seems to get better every year.

For working through this book, I will assume that you are using CLISP.

1.3 How is Lisp different from languages like Java and C++?

This is a trick question! Lisp is more similar to Java than C++ so we will start by
comparing Lisp and Java.

In Java, variables are strongly typed while in Common Lisp values are strongly typed.
For example, consider the Java code:

 Float x = new Float(3.14f);
 String s = " the cat ran " ;
 Object any_object = null;
 any_object = s;
 x = s; // illegal: generates a compilation error

Here, in Java, variables are strongly typed so a variable x of type Float can not legally be
assigned a string value: this would generate a compilation error.

Java and Lisp share the capability of automatic memory management. In either language,
you can create new data structures and not worry about freeing memory when the data is
no longer used, or to be more precise, no longer referenced.

Common Lisp is an ANSI standard language. Portability between different Common Lisp
implementations and on different platforms is very good. I do most of my Lisp
development on a Mac running OS X using CLISP, Emacs, and ILISP; when I need to
deliver executables for delivery under Windows or Linux, I simply re-compile the code
using Xanalys LispWorks on those alternative platforms.

Page 7

Copyright 2002, Mark Watson. All rights reserved.

ANSI Common Lisp was the first object oriented language to become an ANSI standard
language. The Common Lisp Object System (CLOS) is probably the best platform for
object oriented programming.

The CLOCC project provides portable Common Lisp utilities for a wide variety of
Common Lisp implementations. Check out the web site http://clocc.sourceforge.net.

In C++ programs, a common bug that affects a program’s efficiency is forgetting to free
memory that is no longer used (in a virutal memory system, the effect of a program’s
increasing memory usage is usually just poorer system performance but can lead to
system crashes or failures if all available virtual memory is exhausted.) A worse type of
C++ error is to free memory and then try to use it. Can you say “program crash”? C
programs suffer from the same types of memory related errors.

Since computer processing power is usually much less expensive than the costs of
software development, it is almost always worth while to give up a few percent of
runtime efficiency and let the programming environment of runtime libraries manage
memory for you. Languages like Lisp, Python, and Java are said to perform automatic
garbage collection.

I have written six books on Java, and I have been quoted as saying that for me,
programming in Java is about twice as efficient (in terms of my time) than programming
in C++. I base this statement on approximately ten years of C++ experience on projects
for SAIC, PacBell, Angel Studios, Nintendo, and Disney. I find Common Lisp to be
about twice as efficient (again, in terms of my time) than Java.

What do I mean by programmer efficiency? Simple: for a given job, how long does it
take me to design, code, debug, and later maintain the software for a given task.

1.4 Advantages of working in a Lisp environment

We will soon see in this book that Lisp is not just a language; it is also a programming
environment and runtime environment.

The beginning of this book introduces the basics of Lisp programming. In later chapters,
we will develop interesting and non-trivial programs in Common Lisp that I argue would
be more difficult to implement in other languages and programming environments.

The big win in programming in a Lisp environment is that you can set up an environment
and interactively write new code and test new code in small pieces. We will cover
programming with large amounts of data in a separate chapter later, but let me share a use
case for work that I do every day that is far more efficient in Lisp:

Most of my Lisp programming is to write commercial natural language processing (NLP)
programs for my company www.knowledgebooks.com. My Lisp NLP code uses a huge

Page 8

Copyright 2002, Mark Watson. All rights reserved.

amount of memory resident data; for example: hash tables for different types of words,
hash tables for text categorization, 200,000 proper nouns for place names (cities,
counties, rivers, etc.), and about 40,000 common first and last names of various
nationalities. If I was writing our NLP products in C++, I would probably use a relational
database to store this data because if I read all of this data into memory for each test run
of a C++ program, I would wait 30 seconds every time that I ran a program test. I do
most of my programming on a Macintosh using OS X and my programming environment
is free and powerful: Emacs with CLISP. When I start working, I do have to load the
linguistic data into memory one time, but then can code/test/code/test... for hours with no
startup overhead for reloading the data that my programs need to run. Because of the
interactive nature of Lisp development, I can test small bits of code when tracking down
problem in the code.

It is a personal preference, but I find the combination of the stable Common Lisp
language and an iterative Lisp programming environment to be much more productive
than, for example, the best Java IDEs (e.g., IntelliJ Idea is my favorite) and Microsoft's
VisualStudio.Net (which admittedly makes writing web services almost trivial).

1.5 Getting Started with CLISP

As we discussed in the introduction, there are many different Lisp programming
environments that you can choose from. I recommend a free set of tools: Emacs, ILISP,
and CLISP. Emacs is a fine text editor that is extensible to work well with many
programming languages and document types (e.g., HTML and XML). ILISP is a Emacs
extension package that greatly facilitates Lisp development. CLISP is a robust Common
Lisp compiler and runtime system. I will not discuss the use of Emacs and ILISP in this
book. If you either already use Emacs or do not mind spending the effort to learn Emacs,
then search the web first for an Emacs tutorial (“Emacs tutorial”) and then for
information on ILISP (web search for: “Emacs ILISP CLISP” - assuming that you will
start with the CLISP Common Lisp compiler).

If you do not already have CLISP installed on your computer, visit the web site
http://CLISP.sourceforge.net/ and download CLISP for your computer type.

Here, we will assume that under Windows, Unix, Linux, or Mac OS X that you will use
one command window to run CLISP and a separate editor that can edit plain text files.

When we start CLISP, we see a introductory message crediting the people who work on
CLISP and then an input prompt. We will start with a short tutorial, walking you through
a session using CLISP (other Common LISP systems are very similar). Assuming that
CLISP is installed on your system, start CLISP by running the CLISP program:

[localhost:~] markw% CLISP
 i i i i i i i ooooo o ooooooo ooooo ooooo
 I I I I I I I 8 8 8 8 8 o 8 8

Page 9

Copyright 2002, Mark Watson. All rights reserved.

 I \ `+' / I 8 8 8 8 8 8
 \ `-+-' / 8 8 8 ooooo 8oooo
 `-__|__-' 8 8 8 8 8
 | 8 o 8 8 o 8 8
 ------+------ ooooo 8oooooo ooo8ooo ooooo 8

Copyright (c) Bruno Haible, Michael Stoll 1992, 1993
Copyright (c) Bruno Haible, Marcus Daniels 1994-1997
Copyright (c) Bruno Haible, Pierpaolo Bernardi, Sam Steingold 1998
Copyright (c) Bruno Haible, Sam Steingold 1999-2001

;; Loading file /Users/markw/.CLISPrc ...
;; Loading of file /Users/markw/.CLISPrc is finished.
[1]>

I customize my CLISP environment by placing my own initialization code in a special
file .clisprc that can be placed in your home directory. We will discuss customization
later. The last line [1]> indicates that CLISP is ready to process command number 1. We
will start by defining a variable and performing a few simple operations to introduce you
to working in a Lisp listener interface. A Lisp listener interface is a loop that waits for
you to type in an expression, evaluates and prints the value of that expression, then waits
for you to type another command. We will continue with our introduction to using a Lisp
listener:

[1]> (defvar x 1.0)
X
[2]> x
1.0
[3]> (+ x 1)
2.0
[4]> x
1.0
[5]> (setq x (+ x 1))
2.0
[6]> x
2.0
[7]> (setq x "the dog chased the cat")
"the dog chased the cat"
[8]> x
"the dog chased the cat"
[9]>

We started by defining a new variable x. Notice how the value of the defvar macro is the
symbol that is defined. The Lisp reader prints X capitalized because symbols are made
upper case (we will look at the exception later).

In Lisp, a variable can reference any data type. We start by assigning a floating point
value to the variable x, using the + function to add 1 to x, using the setq function to
change the value of x first to another floating point value and finally setting x to a string
value. One thing that you will have noticed: function names always occur first, then the
arguments to a function. Also, parenthesis is used to separate expressions.

Page 10

Copyright 2002, Mark Watson. All rights reserved.

I learned to program Lisp in 1974 and my professor half-jokingly told us that Lisp was an
acronym for “Lots-of Irritating Superfluous Parenthesis”. There may be some truth in this
when you are just starting with Lisp programming, but you will quickly get used to the
parenthesis, especially if you use an editor like Emacs that automatically indents Lisp
code for you and highlights the opening parenthesis for every closing parenthesis that you
type. Many other editors also support coding in Lisp but we will only cover the use of
Emacs in this web book. Newer versions of Emacs and XEmacs also provide colored
syntax highlighting of Lisp code. While I use XEmacs and CLISP for my work (because
only XEmacs provides color syntax highlighting on my system), I will provide screen
shots of Emacs and CLISP in this web book. Take your pick and choose the text editor
that works best for you; I prefer Emacs (or XEmacs).

Before you proceed to the next chapter, please take the time to install CLISP on your
computer and try typing some expressions into the Lisp listener. If you get errors, or want
to quit, try using the quit function:

[10]> (+ 1 2 3 4)
10
[11]> (quit)
Bye.

Page 11

Copyright 2002, Mark Watson. All rights reserved.

2. The Basics of Lisp Programming

Although we will use CLISP in the web book, any Common Lisp environment will do
fine. In the Introduction, we saw the top-level Lisp prompt and how we could type any
expression that would be evaluated:

[1]> 1
1
[2]> 3.14159
3.14159
[3]> "the dog bit the cat"
"the dog bit the cat"
[4]> (defun my-add-one (x)
(+ x 1))
MY-ADD-ONE
[5]> (my-add-one -10)
-9

CLISP keeps a counter of how many expressions have been evaluated; this number
appears in square brackets before the > prompt. For the rest of this web book, we will
omit the expression counter.

Notice that when we defined the function my-add-one, we split the definition over two
lines. The top level Lisp evaluator counts parentheses and considers a form to be
complete when the number of closing parentheses equals the number of opening
parentheses. When we evaluate a number (or a variable), there are no parentheses, so
evaluation proceeds when we hit a new line (or carriage return).

The Lisp reader by default tries to evaluate any form that you enter. There is a reader
macro ' that prevents the evaluation of an expression. You can either use the ' character or
"quote":

> (+ 1 2)
3
> '(+ 1 2)
(+ 1 2)
> (quote (+ 1 2))
(+ 1 2)
>

Lisp supports both global and local variables. Global variables can be declared using
defvar:

> (defvar *x* "cat")
X
> *x*
"cat"
> (setq *x* "dog")
"dog"
> *x*

Page 12

Copyright 2002, Mark Watson. All rights reserved.

"dog"
> (setq *x* 3.14159)
3.14159
> *x*
3.14159

One thing to be careful of when defining global variables with defvar: the declared
global variable is dynamically scoped. We will discuss dynamic versus lexical coping
later, but for now a warning: if you define a global variable avoid redefining the same
variable name inside functions. Lisp programmers usually use a global variable naming
convention of beginning and ending dynamically scoped global variables with the *
character. If you follow this naming convention and also do not use the * character in
local variable names, you will stay out of trouble. For convenience, I do not always
follow this convention in short examples in this book.

Lisp variables have no type. Rather, values assigned to variables have a type. In this last
example, the variable x was set to a string, then to a floating-point number. Lisp types
support inheritance and can be thought of as a hierarchical tree with the type t at the top.
(Actually, the type hierarchy is a DAG, but we can ignore that for now.) Common Lisp
also has powerful object oriented programming facilities in the Common Lisp Object
System (CLOS) that we will discuss in a later chapter.

Here is a partial list of types (note that indentation denotes being a subtype of the
preceding type):

t [top level type (all other types are a sub-type)]
 sequence
 list
 array
 vector
 string
 number
 float
 rational
 integer
 ratio
 complex
 character
 symbol
 structure
 function
 hash-table

We can use the typep function to test the type of value of any variable or expression:

> (setq x '(1 2 3))
(1 2 3)
> (typep x 'list)
T
> (typep x 'sequence)
T
> (typep x 'number)
NIL

Page 13

Copyright 2002, Mark Watson. All rights reserved.

> (typep (+ 1 2 3) 'number)
T
>

A useful feature of the CLISP (and all ANSI standard Common Lisp implementations)
top-level listener is that it sets * to the value of the last expression evaluated. For
example:

> (+ 1 2 3 4 5)
15
> *
15
> (setq x *)
15
> x
15

All Common Lisp environments set * to the value of the last expression evaluated.

Frequently, when you are interactively testing new code, you will call a function that you
just wrote with test arguments; it is useful to save intermediate results for later testing. It
is the ability to create complex data structures and then experiment with code that uses or
changes these data structures that makes Lisp programming environments so effective.

Common Lisp is a lexically scoped lexically scoped language that means that variable
declarations and function definitions can be nested and that the same variable names can
be used in nested let forms; when a variable is used, the current let form is searched for a
definition of that variable and if it is not found, then the next outer let form is searched.
Of course, this search for the correct declaration of a variable is done at compile time so
there need not be extra runtime overhead. Consider the following example in the file
nested.lisp (all example files are in the src directory that is distributed with the PDF file
for this web book):

(let ((x 1)
 (y 2))
 ;; define a test function nested inside a let statement:
 (defun test (a b)
 (let ((z (+ a b)))
 ;; define a helper function nested inside a let/function/let:
 (defun nested-function (a)
 (+ a a))
 ;; return a value for this inner let statement (that defines
‘z’):
 (nested-function z)))
 ;; print a few blank lines, then test function 'test':
 (format t "~%~%test result is ~A~%~%" (test x y)))

The outer let form defines two local (lexically scoped) variables x and y with and assigns
them the values 1 and 2 respectively. The inner function nested-function is contained
inside a let statement, which is contained inside the definition of function test, which is
contained inside the outer let statement that defines the local variables x and y. The

Page 14

Copyright 2002, Mark Watson. All rights reserved.

format function is used for formatted I/O. If the first argument is t, then output goes to
standard output. The second (also required) argument to the format function is a string
containing formatting information. The ~A is used to print the value of any Lisp variable.
The format function expects a Lisp variable or expression argument for each ~A in the
formatting string. The ~%, prints a new line. Instead of using ~%~%, to print two new
line characters, we could have used an abbreviation ~2%. We will cover file I/O in a later
chapter and also discuss other I/O functions like print, read, read-line, and princ.

If we use the Lisp load function to evaluate the contents of the file nested.lisp, we see:

> (load "nested.lisp")
;; Loading file nested.lisp ...

test result is 6

;; Loading of file nested.lisp is finished.
T
>

The function load returned a value of t (prints in upper case as T) after successfully
loading the file.

We will use Common Lisp vectors and arrays frequently in later chapters, but will also
briefly introduce them here. A singly dimensioned array is also called a vector. Although
there are often more efficient functions for handling vectors, we will just look at generic
functions that handle any type of array, including vectors. Common Lisp provides
support for functions with the same name that take different argument types; we will
discuss this is some detail when we cover CLOS in Chapter 8. We will start by defining
three vectors v1, v2, and v3:

> (setq v1 (make-array '(3)))
#(NIL NIL NIL)
> (setq v2 (make-array '(4) :initial-element "lisp is good"))
#("lisp is good" "lisp is good" "lisp is good" "lisp is good")
> (setq v3 #(1 2 3 4 "cat" '(99 100)))
#(1 2 3 4 "cat" '(99 100))

The function aref can be used to access any element in an array:

> (aref v3 3)
4
> (aref v3 5)
'(99 100)
>

Notice how indexing of arrays is zero-based; that is, indices start at zero for the first
element of a sequence. Also notice that array elements can be any Lisp data type. So far,
we have used the special operator setq to set the value of a variable. Common Lisp has a
generalized version of setq called setf that can set any value in a list, array, hash table,

Page 15

Copyright 2002, Mark Watson. All rights reserved.

etc. You can use setf instead of setq in all cases, but not vice-versa. Here is a simple
example:

> v1
#(NIL NIL NIL)
> (setf (aref v1 1) "this is a test")
"this is a test"
> v1
#(NIL "this is a test" NIL)
>

When writing new code or doing quick programming experiments, it is often easiest (i.e.,
quickest to program) to use lists to build interesting data structures. However, as
programs mature, it is common to modify them to use more efficient (at runtime) data
structures like arrays and hash tables.

2.1 Symbols

We will discuss symbols in more detail in Chapter 7 when we cover Common Lisp
Packages. For now, it is enough for you to understand that symbols can be names that
refer to variables. For example:

> (defvar *cat* "bowser")
CAT
> *cat*
"bowser"
> (defvar *l* (list cat))
L
> *l*
("bowser")
>

Note that the first defvar returns the defined symbol as its value. Symbols are almost
always converted to upper case. An exception to this "upper case rule" is when we define
symbols that may contain white space using vertical bar characters:

> (defvar |a symbol with Space Characters| 3.14159)
|a symbol with Space Characters|
> |a symbol with Space Characters|
3.14159
>

2.2 Operations on Lists

Lists are a fundamental data structure of Lisp. In this section, we will look at some of the
more commonly used functions that operate on lists. All of the functions described in this
section have something in common: they do not modify their arguments.

Page 16

Copyright 2002, Mark Watson. All rights reserved.

In Lisp, a cons cell is a data structure containing two pointers. Usually, the first pointer in
a cons cell will point to the first element in a list and the second pointer will point to
another cons representing the start of the rest of the original list.

The function cons takes two arguments that it stores in the two pointers of a new cons
data structure. For example:

> (cons 1 2)
(1 . 2)
> (cons 1 '(2 3 4))
(1 2 3 4)
>

The first form evaluates to a cons data structure while the second evaluates to a cons data
structure that is also a proper list. The difference is that in the second case the second
pointer of the freshly created cons data structure points to another cons cell.

First, we will declare two global variables l1 and l2 that we will use in our examples. The
list l1 contains three elements and the list l2 contains four elements:

> (defvar l1 '(1 2 (3 4 (5 6))))
L1
> (defvar l2 '(the "dog" calculated 3.14159))
L2
> l1
(1 2 (3 4 (5 6)))
> l2
(THE "dog" CALCULATED 3.14159)
>

The list referenced by the special global variable l1 is seen in Figure 2.1 that shows the
cons cells used to construct the list. You can also use the function list to create a new list;
the arguments passed to function list are the elements of the created list:

> (list 1 2 3 'cat "dog")
(1 2 3 CAT "dog")
>

The function car returns the first element of a list and the function cdr returns a list with
its first element removed (but does not modify its argument):

> (car l1)
1
> (cdr l1)
(2 (3 4 (5 6)))
>

Using combinations of car and cdr calls can be used to extract any element of a list:

> (car (cdr l1))
2

Page 17

Copyright 2002, Mark Watson. All rights reserved.

> (cadr l1)
2
>

Notice that we can combine calls to car and cdr into a single function call, in this case
the function cadr. Common Lisp defines all functions of the form cXXr, cXXXr, and
cXXXXr where X can be either "a" or "d".

Figure 2.1: The cons cells used to construct the list ‘(1 2 (3 4 (5 6)))

Suppose that we want to extract the value 5 from the nested list l1. Some experimentation
with using combinations of car and cdr gets the job done:

> l1
(1 2 (3 4 (5 6)))
> (cadr l1)
2
> (caddr l1)
(3 4 (5 6))
> (caddr (caddr l1))

Page 18

Copyright 2002, Mark Watson. All rights reserved.

(5 6)
> (car (caddr (caddr l1)))
5
>

The function last returns the last cdr of a list (this is the last element, in a list):

> (last l1)
((3 4 (5 6)))
>

The function nth takes two arguments: an index of a top-level list element and a list. The
first index argument is zero based:

> l1
(1 2 (3 4 (5 6)))
> (nth 0 l1)
1
> (nth 1 l1)
2
> (nth 2 l1)
(3 4 (5 6))
>

The function cons adds an element to the beginning of a list and returns as its value a new
list (it does not modify its arguments). An element added to the beginning of a list can be
any Lisp data type, including another list:

> (cons 'first l1)
(FIRST 1 2 (3 4 (5 6)))
> (cons '(1 2 3) '(11 22 33))
((1 2 3) 11 22 33)
>

The function append takes two lists as arguments and returns as its value the two lists
appended together:

> l1
(1 2 (3 4 (5 6)))
> l2
('THE "dog" 'CALCULATED 3.14159)
> (append l1 l2)
(1 2 (3 4 (5 6)) 'THE "dog" 'CALCULATED 3.14159)
> (append '(first) l1)
(FIRST 1 2 (3 4 (5 6)))
>

A frequent error that beginning Lisp programmers make is not understanding shared
structures in lists. Consider the following example where we generate a list y by reusing
three copies of the list x:

> (setq x '(0 0 0 0))
(0 0 0 0)

Page 19

Copyright 2002, Mark Watson. All rights reserved.

> (setq y (list x x x))
((0 0 0 0) (0 0 0 0) (0 0 0 0))
> (setf (nth 2 (nth 1 y)) 'x)
X
> x
(0 0 X 0)
> y
((0 0 X 0) (0 0 X 0) (0 0 X 0))
> (setq z '((0 0 0 0) (0 0 0 0) (0 0 0 0)))
((0 0 0 0) (0 0 0 0) (0 0 0 0))
> (setf (nth 2 (nth 1 z)) 'x)
X
> z
((0 0 0 0) (0 0 X 0) (0 0 0 0))
>

When we change the shared structure referenced by the variable x that change is reflected
three times in the list y. When we create the list stored in the variable z we are not using a
shared structure.

2.3 Using arrays and vectors

Using lists is easy but the time spent accessing a list element is proportional to the length
of the list. Arrays and vectors are more efficient at runtime than long lists because list
elements are kept on a linked-list that must be searched. Accessing any element of a short
list is fast, but for sequences with thousands of elements, it is faster to use vectors and
arrays.

By default, elements of arrays and vectors can be any Lisp data type. There are options
when creating arrays to tell the Common Lisp compiler that a given array or vector will
only contain a single data type (e.g., floating point numbers) but we will not use these
options in this book.

Vectors are a specialization of arrays; vectors are arrays that only have one dimension.
For efficiency, there are functions that only operate on vectors, but since array functions
also work on vectors, we will concentrate on arrays. In the next section, we will look at
character strings that are a specialization of vectors.

Since arrays are sequences, we could use the generalized make-sequence function to
make a singularly dimensioned array (i.e., a vector):

> (defvar x (make-sequence 'vector 5 :initial-element 0))
X
> x
#(0 0 0 0 0)
>

In this example, notice the print format for vectors that looks like a list with a proceeding
character. We use the function make-array to create arrays:

Page 20

Copyright 2002, Mark Watson. All rights reserved.

> (defvar y (make-array '(2 3) :initial-element 1))
Y
> y
#2A((1 1 1) (1 1 1))
>

Notice the print format of an array: it looks like a list proceeded by a # character and the
integer number of dimensions.

Instead of using make-sequence to create vectors, we can pass an integer as the first
argument of make-array instead of a list of dimension values. We can also create a vector
by using the function vector and providing the vector contents as arguments:

> (make-array 10)
#(NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL)
> (vector 1 2 3 'cat)
#(1 2 3 CAT)
>

The function aref is used to access array elements. The first argument is an array and the
remaining argument(s) are array indices. For example:

> x
#(0 0 0 0 0)
> (aref x 2)
0
> (setf (aref x 2) "parrot")
"parrot"
> x
#(0 0 "parrot" 0 0)
> (aref x 2)
"parrot"
> (setf (aref y 1 2) 3.14159)
3.14159
> y
#2A((1 1 1) (1 1 3.14159))
> y
#2A((1 1 1) (1 1 1))
>

2.4 Using Strings

It is likely that even your first Lisp programs will involve the use of character strings. In
this section, we will cover the basics: creating strings, concatenating strings to create new
strings, CLISP for substrings in a string, and extracting substrings from longer strings.
The string functions that we will look at here do not modify their arguments; rather, they
return new strings as values. For efficiency, Common Lisp does include destructive string
functions that do modify their arguments but we will not discuss these destructive
functions here.

Page 21

Copyright 2002, Mark Watson. All rights reserved.

We saw earlier that a string is a type of vector, which in turn is a type of array (which in
turn is a type of sequence). A full coverage of the Common Lisp type system is outside
the scope of this tutorial web book; a very good treatment of Common Lisp types is in
Guy Steele's "Common Lisp, The Language" which is available both in print and for free
on the web. Many of the built in functions for handling strings are actually more general
because they are defined for the type sequence. The Common Lisp Hyperspec is another
great free resource that you can find on the web. I suggest that you download an HTML
version of Guy Steele's excellent reference book and the Common Lisp Hyperspec and
keep both on your computer. If you continue using Common Lisp, eventually you will
want to read all of Steele's book and use the Hyperspec for reference.

The following text was captured from input and output from a Common Lisp listener.
First, we will declare two global variables s1 and space that contain string values:

> (defvar s1 "the cat ran up the tree")
S1
> (defvar space " ")
SPACE
>

One of the most common operations on strings is to concatenate two or more strings into
a new string:

> (concatenate 'string s1 space "up the tree")
"the cat ran up the tree up the tree"
>

Notice that the first argument of the function concatenate is the type of the sequence that
the function should return; in this case, we want a string. Another common string
operation is search for a substring:

> (search "ran" s1)
8
> (search "zzzz" s1)
NIL
>

If the search string (first argument to function search) is not found, function search
returns nil, otherwise search returns an index into the second argument string. Function
search takes several optional keyword arguments (see Chapter 3 for a discussion of
keyword arguments):

 (search search-string a-longer-string :from-end :test
 :test-not :key
 :start1 :start2
 :end1 :end2)

For our discussion, we will just use the keyword argument :start2 for specifying the
starting search index in the second argument string and the :from-end flag to specify that

Page 22

Copyright 2002, Mark Watson. All rights reserved.

search should start at the end of the second argument string and proceed backwards to the
beginning of the string:

> (search " " s1)
3
> (search " " s1 :start2 5)
7
> (search " " s1 :from-end t)
18
>

The sequence function subseq can be used for strings to extract a substring from a longer
string:

> (subseq s1 8)
"ran up the tree"
>

Here, the second argument specifies the starting index; the substring from the starting
index to the end of the string is returned. An optional third index argument specifies one
greater than the last character index that you want to extract:

> (subseq s1 8 11)
"ran"
>

It is frequently useful remove white space (or other) characters from the beginning or end
of a string:

> (string-trim '(#\space #\z #\a) " a boy said pez")
"boy said pe"
>

The character #\space is the space character. There are also utility functions for making
strings upper or lower case:

> (string-upcase "The dog bit the cat.")
"THE DOG BIT THE CAT."
> (string-downcase "The boy said WOW!")
"the boy said wow!"
>

We have not yet discussed equality of variables. The function eq returns true if two
variables refer to the same data in memory. The function eql returns true if the arguments
refer to the same data in memory or if they are equal numbers or characters. The function
equal is more lenient: it returns true if two variables print the same when evaluated. More
formally, function equal returns true if the car and cdr recursively equal to each other.
An example will make this clearer:

> (defvar x '(1 2 3))
X

Page 23

Copyright 2002, Mark Watson. All rights reserved.

> (defvar y '(1 2 3))
Y
> (eql x y)
NIL
> (equal x y)
T
> x
(1 2 3)
> y
(1 2 3)
>

For strings, the function string= is slightly more efficient than using the function equal:

> (eql "cat" "cat")
NIL
> (equal "cat" "cat")
T
> (string= "cat" "cat")
T
>

Common Lisp strings are sequences of characters. The function char is used to extract
individual characters from a string:

> s1
"the cat ran up the tree"
> (char s1 0)
#\t
> (char s1 1)
#\h
>

2.5 Using hash tables

Hash tables are an extremely useful data type. While it is true that you can get the same
effect by using lists and the assoc function, hash tables are much more efficient than lists
if the lists contain many elements. For example:

> (defvar x '((1 2) ("animal" "dog")))
X
> (assoc 1 x)
(1 2)
> (assoc "animal" x)
NIL
> (assoc "animal" x :test #'equal)
("animal" "dog")
>

The second argument to function assoc is a list of cons cells. Function assoc searches for
a sub-list (in the second argument) that has its car (i.e., first element) equal to the first
argument to function assoc. The (perhaps) surprising thing about this example is that

Page 24

Copyright 2002, Mark Watson. All rights reserved.

assoc seems to work with an integer as the first argument but not with a string. The
reason for this is that by default the test for equality is done with eql that tests two
variables to see if they refer to the same memory location or if they are identical if they
are numbers. In the last call to assoc we used ":test #'equal" to make assoc use the
function equal to test for equality.

The problem with using lists and assoc is that they are very inefficient for large lists. We
will see that it is no more difficult to code with hash tables.

A hash table stores associations between key and value pairs, much like our last example
using the assoc function. By default, hash tables use eql to test for equality when looking
for a key match. We will duplicate the previous example using hash tables:

> (defvar h (make-hash-table))
H
> (setf (gethash 1 h) 2)
2
> (setf (gethash "animal" h) "dog")
"dog"
> (gethash 1 h)
2 ;
T
> (gethash "animal" h)
NIL ;
NIL
>

Notice that gethash returns multiple values: the first value is the value matching the key
passed as the first argument to function gethash and the second returned value is true if
the key was found and nil otherwise. The second returned value could be useful if hash
values are nil.

Since we have not yet seen how to handle multiple returned values from a function, we
will digress and do so here (there are many ways to handle multiple return values and we
are just covering one of them):

> (multiple-value-setq (a b) (gethash 1 h))
2
> a
2
> b
T
>

Assuming that variables a and b are already declared, the variable a will be set to the first
returned value from gethash and the variable b will be set to the second returned value.

If we use symbols as hash table keys, then using eql for testing for equality with hash
table keys is fine:

Page 25

Copyright 2002, Mark Watson. All rights reserved.

> (setf (gethash 'bb h) 'aa)
AA
> (gethash 'bb h)
AA ;
T
>

However, we saw that eql will not match keys with character string values. The function
make-hash-table has optional key arguments and one of them will allow us to use strings
as hash key values:

 (make-hash-table &key :test :size :rehash-size :rehash-threshold)

Here, we are only interested in the first optional key argument :test that allows us to use
the function equal to test for equality when matching hash table keys. For example:

> (defvar h2 (make-hash-table :test #'equal))
H2
> (setf (gethash "animal" h2) "dog")
"dog"
> (setf (gethash "parrot" h2) "Brady")
"Brady"
> (gethash "parrot" h2)
"Brady" ;
T
>

It is often useful to be able to enumerate all the key and value pairs in a hash table. Here
is a simple example of doing this by first defining a function my-print that takes two
arguments, a key and a value. We can then use the maphash function to call our new
function my-print with every key and value pair in a hash table:

> (defun my-print (a-key a-value)
 (format t "key: ~A value: ~A~\%" a-key a-value))
MY-PRINT
> (maphash #'my-print h2)
key: parrot value: Brady
key: animal value: dog
NIL
>

There are a few other useful hash table functions that we demonstrate here:

> (hash-table-count h2)
2
> (remhash "animal" h2)
T
> (hash-table-count h2)
1
> (clrhash h2)
#S(HASH-TABLE EQUAL)
> (hash-table-count h2)

Page 26

Copyright 2002, Mark Watson. All rights reserved.

0
>

The function hash-table-count returns the number of key and value pairs in a hash table.
The function remhash can be used to remove a single key and value pair from a hash
table. The function clrhash clears out a hash table by removing all key and value pairs in
a hash table.

It is interesting to note that clrhash and remhash are the first Common Lisp functions
that we have seen (so far) that modify any of its arguments, except for setq and setf that
are macros and not functions.

2.6 Using Eval to evaluate Lisp Forms

We have seen how we can type arbitrary Lisp expressions in the Lisp listener and then
they are evaluated. We will see in Chapter 6 that the Lisp function "read" evaluates lists
(or forms) and indeed the Lisp listener uses function read.

In this section, we will use the function eval to evaluate arbitrary Lisp expressions inside
a program. As a simple example:

> (defvar x '(+ 1 2 3 4 5))
X
> x
(+ 1 2 3 4 5)
> (eval x)
15
>

Using the function eval, we can build lists containing Lisp code and evaluate generated
code inside our own programs. We get the effect of "data is code". A classic Lisp
program, the OPS5 expert system tool, stored snippets of Lisp code in a network data
structure and used the function eval to execute Lisp code stored in the network. A
warning: the use of eval is likely to be inefficient. For efficiency, the OPS5 program
contained its own version of eval that only interpreted a subset of Lisp used in the
network.

2.7 Using a text editor to edit Lisp source files

I usually use Emacs, but we will briefly discuss the editor vi also. If you use vi (e.g.,
enter “vi nested.lisp”) the first thing that you should do is to configure vi to indicate
matching opening parentheses whenever a closing parentheses is typed; you do this by
typing “:set sm” after vi is running.

If you choose to learn Emacs, enter the following in your .emacs file (or your _emacs file

Page 27

Copyright 2002, Mark Watson. All rights reserved.

in your home directory if you are running Windows):

 (set-default 'auto-mode-alist
 (append '(("\\.lisp$" . lisp-mode)
 ("\\.lsp$" . lisp-mode)
 ("\\.cl$" . lisp-mode))
 auto-mode-alist))

Now, whenever you open a file with the extension of “lisp”, “lsp”, or “cl” (for “Common
Lisp”) then Emacs will automatically use a Lisp editing mode. I recommend searching
the web using keywords “Emacs tutorial” to learn how to use the basic Emacs editing
commands - we will not repeat this information here.

I do my professional Lisp programming using free software tools: Emacs, CLISP, and
ILISP (although I distribute my commercial Lisp applications using the excellent Xanalys
LispWorks product for Linux and Windows). ILISP is an excellent extension to Emacs to
facilitate Lisp development. After you have used CLISP and Emacs for a while, you
might consider spending an evening learning how to install ILISP and how to use it.
Note: Emacs, CLISP, and ILISP are portable software tools: I run them on Linux, Mac
OS X, and Windows 2000.

2.8 Recovering from Errors

When you enter forms (or expressions) in a Lisp listener, you will occasionally make a
mistake and an error will be thrown. For example:

> (defun my-add-one (x) (+ x 1))
MY-ADD-ONE
> (my-add-one 10)
11
> (my-add-one 3.14159)
4.14159
> (my-add-one "cat")

*** - argument to + should be a number: "cat"
1. Break > :bt

EVAL frame for form (+ X 1)
APPLY frame for call (MY-ADD-ONE '"cat")
EVAL frame for form (MY-ADD-ONE "cat")

1. Break > :a

>

Here, I first used the backtrace command “:bt” to print the sequence of function calls
that caused the error. If it is obvious where the error is in the code that I am working on
then I do not bother using the backtrace command. I then used the abort command “:a”
to recover back to the top level Lisp listener (i.e., back to the greater than prompt).

Page 28

Copyright 2002, Mark Watson. All rights reserved.

Sometimes, you must type “:a” more than once to fully recover to the top level greater
than prompt.

2.9 Garbage collection

Like other languages like Java and Python, Common Lisp provides garbage collection
(GC) or automatic memory management.

In simple terms, GC occurs to free memory in a Lisp environment that is no longer
accessible by any global variable (or function closure, which we will cover in the next
chapter). If a global variable *variable-1* is first set to a list and then if we later then set
variable-1 to, for example nil, and if the data referenced in the original list is not
referenced by any other accessible data, then this now unused data is subject to GC.

In practice, memory for Lisp data is allocated in time ordered batches and ephemeral or
generational garbage collectors garbage collect recent memory allocations far more often
than memory that has been allocated for a longer period of time.

2.10 Loading your Working Environment Quickly

When you start using Common Lisp for large projects, you will likely have both many
files to load into your Lisp environment when you start working. Most Common Lisp
implementations have a system called defsystem that works somewhat like the Unix
make utility. While I strongly recommend defsystem for large multi-person projects, I
usually use a simpler scheme when working on my own: I place a file loadit.lisp in the
top directory of each project that I work on. For any project, its loadit.lisp file loads all
source files and initializes any global data for the project. Since I work in Emacs with
ILisp, after a project is loaded, I just need to recompile individual functions as I modify
them, or I can always re-load the file loadit.lisp if I have changed many files.

Another good technique is to create a Lisp image containing all the code and data for all
your projects. In CLisp, after you load data and Lisp code into a working image, you can
evaluate (saveinitimage) to create a file called lispinit.mem in the current directory. For
work on my KnowledgeBooks.com products, I need to load in a large amount of data for
my work so I save a working image, change the file name to all-data.mem, and start
CLisp using:

/usr/local/bin/clisp -M /Users/markw/bin/all-data.mem

This saves me a lot of time since it takes over a minute to load all of the data that I need
into an original CLisp image but it only takes a few seconds to start CLisp using the all-
data.mem image.

Page 29

Copyright 2002, Mark Watson. All rights reserved.

All Common Lisp implementations have a mechanism for dumping a working image
containing code and data.

Page 30

Copyright 2002, Mark Watson. All rights reserved.

3. Defining Lisp Functions

In the last chapter, we defined a few simple functions. In this chapter, we will discuss
how to write functions that take a variable number of arguments, optional arguments, and
keyword arguments.

The special form defun is used to define new functions either in Lisp source files or at
the top level Lisp listener prompt. Usually, it is most convenient to place function
definitions in a source file and use the function load to load them into our Lisp working
environment.

In general, it is bad form to use global variables inside Lisp functions. Rather, we prefer
to pass all required data into a function via its argument list and to get the results of the
function as the value (or values) returned from a function. Note that if we do require
global variables, it is customary to name them with beginning and ending “*” characters;
for example:

(defvar *lexical-hash-table*
 (make-hash-table :test #’equal :size 5000))

Then, in this example, if you see the variable *lexical-hash-table* inside a function
definition, then you will know that at least by naming convention, that this is a global
variable.

In Chapter 1, we already saw an example of using lexically scoped local variables
lexically scoped local variables inside a function definition (in the example file
nested.lisp).

There are several options for defining the arguments that a function can take. The fastest
way to introduce the various options is with a few examples.

First, we can use the &aux keyword to declare local variables for use in a function
definition:

> (defun test (x &aux y)
 (setq y (list x x))
 y)
TEST
> (test 'cat)
(CAT CAT)
> (test 3.14159)
(3.14159 3.14159)

It is considered better coding style to use the let special operator for defining auxiliary local variables; for
example:

> (defun test (x)
 (let ((y (list x x)))

Page 31

Copyright 2002, Mark Watson. All rights reserved.

 y))
TEST
> (test "the dog bit the cat")
("the dog bit the cat" "the dog bit the cat")
>

You will probably not use &aux very often, but there are two other options for specifying
function arguments: &optional and &key.

The following code example shows how to use optional function arguments. Note that
optional arguments must occur after required arguments.

> (defun test (a &optional b (c 123))
 (format t "a=~A b=~A c=~A~%" a b c))
TEST
> (test 1)
a=1 b=NIL c=123
NIL
> (test 1 2)
a=1 b=2 c=123
NIL
> (test 1 2 3)
a=1 b=2 c=3
NIL
> (test 1 2 "Italian Greyhound")
a=1 b=2 c=Italian Greyhound
NIL
>

In this example, the optional argument b was not given a default value so if unspecified it
will default to nil. The optional argument c is given a default value of 123.

We have already seen the use of keyword arguments in built-in Lisp functions. Here is an
example of how to specify key word arguments in your functions:

> (defun test (a &key b c)
 (format t "a=~A b=~A c=~A~%" a b c))
TEST
> (test 1)
a=1 b=NIL c=NIL
NIL
> (test 1 :c 3.14159)
a=1 b=NIL c=3.14159
NIL
> (test "cat" :b "dog")
a=cat b=dog c=NIL
NIL
>

3.1 Using lambda forms

Page 32

Copyright 2002, Mark Watson. All rights reserved.

It is often useful to define unnamed functions. We can define an unnamed function using
lambda; for example, let's look at the example file src/lambda1.lisp. But first, we will
introduce the Common Lisp function funcall that takes one or more arguments; the first
argument is a function and any remaining arguments are passed to the function bound to
the first argument. For example:

> (funcall 'print 'cat)
CAT
CAT
> (funcall '+ 1 2)
3
> (funcall #'- 2 3)
-1
>

In the first two calls to funcall here, we simply quote the function name that we want to
call. In the third example, we use a better notation by quoting with #'. We use the #'
characters to quote a function name. Here is the example file src/lambda1.lisp:

(defun test ()
 (let ((my-func
 (lambda (x) (+ x 1))))
 (funcall my-func 1)))

Here, we define a function using lambda and set the value of the local variable my-func
to the unnamed function's value. Here is output from the function test:

> (test)
2

>

The ability to use functions as data is surprisingly useful. For now, we will look at a
simple example:

> (testfn #'+ 100)
101
> (testfn #'print 100)

100
100
>

Notice that the second call to function testfn prints "100" twice: the first time as a side
effect of calling the function print and the second time as the returned value of testfn
(the function print returns what it is printing as its value).

3.2 Using recursion

Page 33

Copyright 2002, Mark Watson. All rights reserved.

In Chapter 5, we will see how to use special Common Lisp macros for programming
repetitive loops. In this section, we will use recursion for both coding simple loops and as
an effective way to solve a variety of problems that can be expressed naturally using
recursion.

As usual, the example programs for this section are found in the src directory. In the file
src/recursion1.lisp, we see our first example of recursion:

;; a simple loop using recursion

(defun recursion1 (value)
 (format t "entering recursion1(~A)~\%" value)
 (if (< value 5)
 (recursion1 (1+ value))))

This example is more than a little sloppy, but it is useful for discussing a few points.
First, notice how the function recursion1 calls itself with an argument value of one
greater than its own input argument only if the input argument "value" is less than 5. This
test keeps the function from getting in an infinite loop. Here is some sample output:

> (load "recursion1.lisp")
;; Loading file recursion1.lisp ...
;; Loading of file recursion1.lisp is finished.
T
> (recursion1 0)
entering recursion1(0)
entering recursion1(1)
entering recursion1(2)
entering recursion1(3)
entering recursion1(4)
entering recursion1(5)
NIL
> (recursion1 -3)
entering recursion1(-3)
entering recursion1(-2)
entering recursion1(-1)
entering recursion1(0)
entering recursion1(1)
entering recursion1(2)
entering recursion1(3)
entering recursion1(4)
entering recursion1(5)
NIL
> (recursion1 20)
entering recursion1(20)
NIL
>

3.3 Closures

Page 34

Copyright 2002, Mark Watson. All rights reserved.

We have seen that functions can both take other functions as arguments and return new
functions as values. A function that references an outer lexically scoped variable is called
a closure. The example file src/closure1.lisp contains a simple example:

(let* ((fortunes
 '("You will become a great Lisp Programmer"
 "The force will not be with you"
 "Take time for meditation"))
 (len (length fortunes))
 (index 0))
 (defun fortune ()
 (let ((new-fortune (nth index fortunes)))
 (setq index (1+ index))
 (if (>= index len) (setq index 0))
 new-fortune)))

Here the function fortune is defined inside a let form. Because the local variable
fortunes is referenced inside the function fortune, the variable fortunes exists after the
let form is evaluated. It is important to understand that usually a local variable defined
inside a let form "goes out of scope" and can no longer be referenced after the let form is
evaluated.

However, in this example, there is no way to access the contents of the variable fortunes
except by calling the function fortune. At a minimum, closures are a great way to hide
variables. Here is some output from loading the src/closure1.lisp file and calling the
function fortune several times:

> (load "closure1.lisp")
;; Loading file closure1.lisp ...
;; Loading of file closure1.lisp is finished.
T
> (fortune)
"You will become a great Lisp Programmer"
> (fortune)
"The force will not be with you"
[4]> (fortune)
"Take time for meditation"
> (fortune)
"You will become a great Lisp Programmer"
>

Page 35

Copyright 2002, Mark Watson. All rights reserved.

4. Defining Common Lisp Macros

We saw in Chapter 2 how the Lisp function eval could be used to evaluate arbitrary Lisp
code stored in lists. Because eval is inefficient, a better way to generate Lisp code
automatically is to define macro expressions that are expanded inline when they are used.
In most Common Lisp systems, using eval requires the Lisp compiler to compile a form
on-the-fly which is not very efficient. Some Lisp implementations use an interpreter for
eval which is likely to be faster but might lead to obscure bugs if the interpreter and
compiled code do not function identically.

4.1 Example macro

The file src/macro1.lisp contains both a simple macro and a function that uses the
macro:

;; first simple macro example:

(defmacro double-list (a-list)
 `(let ((ret nil))
 (dolist (x ,a-list)
 (setq ret (append ret (list x x))))
 ret))

;; use the macro:

(defun test (x)
 (double-list x))

The character ` is used to quote a list in a special way: nothing in the list is evaluated
during macro expansion unless it is immediately preceded by a comma character. In this
case, we specify ,a-list because we want the value of the macro's argument a-list to be
substituted into the specially quoted list. We will look at dolist in some detail in Chapter
5 but for now it is sufficient to understand that dolist is used to iterate through the top-
level elements of a list, for example:

> (dolist (x '("the" "cat" "bit" "the" "rat"))
 (print x))
"the"
"cat"
"bit"
"the"
"rat"
NIL
>

Returning to our macro example in the file src/macro1.lisp, we will try the function test
that uses the macro double-list:

Page 36

Copyright 2002, Mark Watson. All rights reserved.

[6]> (load "macro1.lisp")
;; Loading file macro1.lisp ...
;; Loading of file macro1.lisp is finished.
T
[7]> (test '(1 2 3))
(1 1 2 2 3 3)
[8]>

4.2 Using the splicing operator

Another similar example is in the file src/macro2.lisp:

;; another macro example that uses ,@:

(defmacro double-args (&rest args)
 `(let ((ret nil))
 (dolist (x ,@args)
 (setq ret (append ret (list x x))))
 ret))

;; use the macro:

(defun test (&rest x)
 (double-args x))

Here, the splicing operator ,@ is used to substitute in the list args in the macro double-
args.

4.3 Using macroexpand-1

The function macroexpand-1 is used to transform macros with arguments into new Lisp
expressions. For example:

> (defmacro double (a-number)
 (list '+ a-number a-number))
DOUBLE
> (macroexpand-1 '(double n))
(+ N N) ;
T
>

Writing macros is an effective way to extend the Lisp language because you can control
the code passed to the Common Lisp compiler. In both macro example files, when the
function test was defined, the macro expansion is done before the compiler processes the
code. We will see in the next chapter several useful macros included in Common Lisp.

We have only "scratched the surface" looking at macros; the interested reader is
encouraged to search the web using, for example, "Common Lisp macros".

Page 37

Copyright 2002, Mark Watson. All rights reserved.

5. Using Common Lisp Loop Macros

In this chapter, we will discuss several useful macros for performing iteration (we saw
how to use recursion for iteration in Chapter 2):

• dolist - a simple way to process the elements of a list
• dotimes - a simple way to iterate with an integer valued loop variable
• do - the most general looping macro
• loop – a complex looping macro (we will only look at a few simple examples)

5.1 dolist

We saw a quick example of dolist in the last chapter. The arguments of the dolist macro
are:

 (dolist (a-variable a-list [optional-result-value]) ...body...)

Usually, the dolist macro returns nil as its value, but we can add a third optional
argument which will be returned as the generated expression's value; for example:

> (dolist (a '(1 2) 'done) (print a))
1
2
DONE
> (dolist (a '(1 2)) (print a))
1
2
NIL
>

The first argument to the dolist macro is a local lexically scoped variable; once the code
generated by the dolist macro finishes executing, this variable is undefined.

5.2 dotimes

The dotimes macro is used when you need a loop with an integer loop index. The
arguments of the dolist macro are:

 (dotimes (an-index-variable max-index-plus-one [optional-result-
value])
 ...body...)

Usually, the dotimes macro returns nil as its value, but we can add a third optional
argument that will be returned as the generated expression's value; for example:

Page 38

Copyright 2002, Mark Watson. All rights reserved.

> (dotimes (i 3 "all-done-with-test-dotimes-loop") (print i))

0
1
2
"all-done-with-test-dotimes-loop"
>

As with the dolist macro, you will often use a let form inside a dotimes macro to declare
additional temporary (lexical) variables.

5.3 do

The do macro is more general purpose than either dotimes or dolist but it is more
complicated to use. Here is the general form for using the do looping macro:

 (do ((variable-1 variable-1-init-value variable-1-update-expression)
 (variable-2 variable-2-init-value variable-2-update-
expression)
 .
 .
 (variable-N variable-N-init-value variable-N-update-
expression))
 (loop-termination-test loop-return-value)
 optional-variable-declarations
 expressions-to-be-executed-inside-the-loop)

There is a similar macro do* that is analogous to let* in that loop variable values can
depend on the values or previously declared loop variable values.

As a simple example, here is a loop to print out the integers from 0 to 3. This example is
in the file src/do1.lisp:

;; example do macro use

(do ((i 0 (1+ i)))
 ((> i 3) "value-of-do-loop")
 (print i))

In this example, we only declare one loop variable so we might as well as used the
simpler dotimes macro.

Here we load the file src/do1.lisp:

> (load "do1.lisp")
;; Loading file do1.lisp ...
0
1

Page 39

Copyright 2002, Mark Watson. All rights reserved.

2
3
;; Loading of file do1.lisp is finished.
T
>

You will notice that we do not see the return value of the do loop (i.e., the string "value-
of-do-loop") because the top-level form that we are evaluating is a call to the function
load; we do see the return value of load printed. If we had manually typed this example
loop in the Lisp listener, then you would see the final value value-of-do-loop printed.

5.4 loop

The loop macro is complex to use and we will only look at a few very simple examples of
its use here. Later, in Section 9.4 we will use it when writing an email client.

<< to be done >>

Page 40

Copyright 2002, Mark Watson. All rights reserved.

6. Input and Output

We will see the input and output of Lisp data is handled using streams. Streams are
powerful abstractions that support common libraries of functions for writing to the
terminal, to files, to sockets (covered separately in Chapter 9), and to strings.

In all cases, if an input or output function is called without specifying a stream, the
default for input stream is *standard-input* and the default for output stream is
standard-output. These defaults streams are connected to the Lisp listener that we
discussed in Chapter 2.

6.1 The Lisp read and read-line functions

The function read is used to read one Lisp expression. Function read stops reading after
reading one expression and ignores new line characters. We will look at a simple
example of reading a file test.dat using the example Lisp program in the file read-test-
1.lisp. Both of these files, as usual, can be found in the directory src that came bundled
with this web book. Start your Lisp program in the src directory. The contents of the file
test.dat is:

1 2 3
4 "the cat bit the rat"

Read with-open-file

In the function read-test-1, we use the macro with-open-file to read from a file. To write
to a file (which we will do later), we out use the keyword arguments :direction :output.
The first argument to the macro with-open-file is a symbol that is bound to a newly
created input stream (or an output stream if we are writing a file); this symbol can then be
used in calling any function that expects a stream argument.

Notice that we call the function read with three arguments: an input stream, a flag to
indicate if an error should be thrown if there is an I/O error (e.g., reaching the end of a
file), and the third argument is the value that read should return if the end of the file (or
stream) is reached. When calling read with these three arguments, either the next
expression from the file test.dat will be returned, or the value nil will be returned when
the end of the file is reached. If we do reach the end of the file, the local variable x will
be assigned the value nil and the function return will break out of the dotimes loop. One
big advantage of using the macro with-open-file over using the open function (which we
will not cover) is that the file stream is automatically closed when leaving the code
generated by the with-open-file macro. The contents of file read-test-1.lisp is:

(defun read-test-1 ()
 "read a maximum of 1000 expressions from the file 'test.dat'"
 (with-open-file

Page 41

Copyright 2002, Mark Watson. All rights reserved.

 (input-stream "test.dat" :direction :input)
 (dotimes (i 1000)
 (let ((x (read input-stream nil nil)))
 (if (null x) (return)) ;; break out of the 'dotimes' loop
 (format t "next expression in file: ~S~%" x)))))

Here is the output that you will see if you load the file read-test-1.lisp and execute the
expression (read-test-1):

> (load "read-test-1.lisp")
;; Loading file read-test-1.lisp ...
;; Loading of file read-test-1.lisp is finished.
T
> (read-test-1)
next expression in file: 1
next expression in file: 2
next expression in file: 3
next expression in file: 4
next expression in file: "the cat bit the rat"
NIL

Note: the string "the cat bit the rat" prints as a string (with quotes) because we used a ~S
instead of a ~A in the format string in the call to function format.

In this last example, we passed the file name as a string to the macro with-open-file. This
is not in general portable across all operating systems. Instead, we could have created a
pathname object and passed that instead. The pathname function can take 8 different
keyword arguments, but we will use only the two most common in the example in the file
read-test-2.lisp in the src directory. The following listing shows just the differences
between this example and the last:

 (let ((a-path-name (make-pathname :directory "testdata" :name
"test.dat")))
 (with-open-file
 (input-stream a-path-name :direction :input)

Here, we are specifying that we should look for the for the file test.dat in the
subdirectory testdata. Note: I almost never use pathnames. Instead, I specify files using a
string and the character / as a directory delimiter. I find this to be portable for the
Macintosh, Windows, and Linux operating systems using CLisp, OpenMCL, and
LispWorks.

The file readline-test.lisp is identical to the file read-test-1.lisp except that we call
function readline instead of the function read and we change the output format message
to indicate that an entire line of text has been read

(defun readline-test ()
 "read a maximum of 1000 expressions from the file 'test.dat'"
 (with-open-file
 (input-stream "test.dat" :direction :input)
 (dotimes (i 1000)
 (let ((x (read-line input-stream nil nil)))

Page 42

Copyright 2002, Mark Watson. All rights reserved.

 (if (null x) (return)) ;; break out of the 'dotimes' loop
 (format t "next line in file: ~S~%" x)))))

When we execute the expression (readline-test), notice that the string contained in the
second line of the input file has the quote characters escaped:

> (load "readline-test.lisp")
;; Loading file readline-test.lisp ...
;; Loading of file readline-test.lisp is finished.
T
> (readline-test)
next line in file: "1 2 3"
next line in file: "4 \"the cat bit the rat\""
NIL
>

We can also create an input stream from the contents of a string. The file read-from-
string-test.lisp is very similar to the example file read-test-1.lisp except that we use the
macro with-input-from-string (notice how I escaped the quote characters used inside the
test string):

(defun read-from-string-test ()
 "read a maximum of 1000 expressions from a string"
 (let ((str "1 2 \"My parrot is named Brady.\" (11 22)"))
 (with-input-from-string
 (input-stream str)
 (dotimes (i 1000)
 (let ((x (read input-stream nil nil)))
 (if (null x) (return)) ;; break out of the 'dotimes' loop
 (format t "next expression in string: ~S~%" x))))))

We see the following output when we load the file read-from-string-test.lisp:

> (load "read-from-string-test.lisp")
;; Loading file read-from-string-test.lisp ...
;; Loading of file read-from-string-test.lisp is finished.
T
> (read-from-string-test)
next expression in string: 1
next expression in string: 2
next expression in string: "My parrot is named Brady."
next expression in string: (11 22)
NIL
>

We have seen how the stream abstraction is useful for allowing the same operations on a
variety of stream data. In the next section, we will see that this generality also applies to
the Lisp printing functions.

6.2 Lisp printing functions

Page 43

Copyright 2002, Mark Watson. All rights reserved.

All of the printing functions that we will look at in this section take an optional last
argument that is an output stream. The exception is the format function that can take a
stream value as its first argument (or t to indicate *standard-output*, or a nil value to
indicate that format should return a string value).

Here is an example of specifying the optional stream argument:

> (print "testing")

"testing"
"testing"
> (print "testing" *standard-output*)

"testing"
"testing"
>

The function print prints Lisp objects so that they can (usually) be read back using
function read. The corresponding function princ is used to print for "human
consumption". For example:

> (print "testing")

"testing"
"testing"
> (princ "testing")
testing
"testing"
>

Both print and princ return their first argument as their return value, which you see in
the previous output. Notice that princ also does not print a new line character, so princ is
often used with terpri (which also takes an optional stream argument).

We have also seen many examples in this web book of using the format function. Here is
a different use of format, building a string by specifying the value nil for the first
argument:

> (let ((l1 '(1 2))
 (x 3.14159))
 (format nil "~A~A" l1 x))
"(1 2)3.14159"
>

We have not yet seen an example of writing to a file. Here, we will use the with-open-
file macro with options to write a file and to delete any existing file with the same name:

(with-open-file (out-stream "test1.dat"
 :direction :output
 :if-exists :supersede)
 (print "the cat ran down the road" out-stream)
 (format out-stream "1 + 2 is: ~A~%" (+ 1 2))

Page 44

Copyright 2002, Mark Watson. All rights reserved.

 (princ "Stoking!!" out-stream)
 (terpri out-stream))

Here is the result of evaluating this expression (i.e., the contents of the newly created file
test1.dat):

[localhost:~/Content/Loving-Lisp/src] markw% cat test1.dat

"the cat ran down the road" 1 + 2 is: 3
Stoking!!
[localhost:~/Content/Loving-Lisp/src] markw%

Notice that print generates a new line character before printing its argument.

Page 45

Copyright 2002, Mark Watson. All rights reserved.

7. Common Lisp Package System

In the simple examples that we have seen so far, all newly created Lisp symbols have
been placed in the default package. You can always check the current package by
evaluating the expression *package*:

> *package*
#<PACKAGE COMMON-LISP-USER>
>

We can always start a symbol name with a package name and two colon characters if we
want to use a symbol defined in another package.

We can define new packages using defpackage. The following example output is long,
but demonstrates the key features of using packages to partition the namespaces used to
store symbols. Note: usually in this web book, I show CLISP output without the
expression counter before the > character in the expression prompt; here I show the
expression counter because I also want to show how CLISP prints the current package in
the expression prompt if the current package is not the default COMMON-LISP-USER:

[1]> (defun foo1 () "foo1")
FOO1
[2]> (defpackage "MY-NEW-PACKAGE"
 (:use "COMMON-LISP-USER")
 (:nicknames "P1")
 (:export "FOO2"))
#<PACKAGE MY-NEW-PACKAGE>
[3]> (in-package my-new-package)
#<PACKAGE MY-NEW-PACKAGE>
P1[4]> (foo1)

*** - COMMON-LISP:EVAL: the function FOO1 is undefined
1. Break P1[5]> :a

P1[6]> (common-lisp-user::foo1)
"foo1"
P1[7]> (system::defun foo2 () "foo2")
FOO2
P1[8]> (system::in-package common-lisp-user)
#<PACKAGE COMMON-LISP-USER>
[9]> (foo2)

*** - EVAL: the function FOO2 is undefined
1. Break [10]> :a

[11]> (my-new-package::foo2)
"foo2"
[12]> (p1::foo2)
"foo2"
[13]>

Page 46

Copyright 2002, Mark Watson. All rights reserved.

Since we specified a nickname in the defpackage expression, CLISP uses the nickname
(in this case P1 at the beginning of the expression prompt when we switch to the package
MY-NEW-PACKAGE. Note also that we had to specify the package name when using
the symbols system::defun and system::in-package to refer to these macros while in the
package MY-NEW-PACKAGE.

Near the end of the last example, we switched back to the default package COMMON-
LISP-USER so we had to specify the package name for the function foo2.

When you are writing very large Common Lisp programs, it is very useful to be able to
break up the program into different modules and place each module and all its required
data in different name spaces by creating new packages. Remember that all symbols,
including variables, generated symbols, CLOS methods, functions, and macros are in
some package.

Usually, when I use a package, I place everything in the package in a single source file. I
put a defpackage expression at the top of the file immediately followed by an in-
package expression to switch to the new package. Note that whenever a new file is
loaded into a Lisp environment that the current package is set back to the default package
COMMON-LISP-USER.

Since the use of packages is a common source of problems for new users, you might want
to "put off" using packages until your Common Lisp programs become large enough to
make the use of packages effective.

Page 47

Copyright 2002, Mark Watson. All rights reserved.

8. Common Lisp Object System - CLOS

CLOS was the first ANSI standardized object oriented programming facility. While I do
not use classes and objects as often in my Common Lisp programs as I do when using
Java and Smalltalk, it is difficult to imagine a Common Lisp program of any size that did
not define and use at least a few CLOS classes.

The example program for this chapter in the file src/HTMLstream.lisp. I use this CLOS
class in a demo for my commercial natural language processing product to automatically
generate demo web pages (see www.knowledgebooks.com if you are curious). We will
also use this CLOS class in Chapter 10.

We are going to start our discussion of CLOS somewhat backwards by first looking at a
short test function that uses the HTMLstream class. Once we understand how to use an
existing class, we will introduce a small subset of CLOS by discussing in some detail the
implementation of the HTMLstream class and finally, at the end of the chapter, see a
few more CLOS programming techniques. This web book only provides a brief
introduction to CLOS; the interested reader is encouraged to do a web search for “CLOS
tutorial”.

The macros and functions defined to implement CLOS are a standard part of Common
Lisp. Common Lisp supports generic functions, that is, different functions with the same
name that are distinguished by different argument types.

8.1 Example of using a CLOS class

The file src/HTMLstream.lisp contains a short test program at the end of the file:

(defun test (&aux x)
 (setq x (make-instance 'HTMLstream))
 (set-header x "test page")
 (add-element x "test text - this could be any element")
 (add-table
 x
 '(("Key phrase" "Ranking value")
 ("this is a test" 3.3)))
 (get-html-string x))

The generic function make-instance takes the following arguments:

 make-instance class-name &rest initial-arguments &key ...

There are four generic functions used in the function test:

• set-header - required to initialize class and also defines the page title
• add-element - used to insert a string that defines any type of HTML element

Page 48

Copyright 2002, Mark Watson. All rights reserved.

• add-table - takes a list of lists and uses the list data to construct an HTML table
• get-html-string - closes the stream and returns all generated HTML data as a

string

The first thing to notice in the function test is that the first argument for calling each of
these generic functions is an instance of the class HTMLstream. You are free to also
define a function, for example, add-element that does not take an instance of the class
HTMLstream as the first function argument and calls to add-element will be routed
correctly to the correct function definition.

We will see that the macro defmethod acts similarly to defun except that it also allows
us to define many methods (i.e., functions for a class) with the same function name that
are differentiated by different argument types and possibly different numbers of
arguments.

8.2 Implementation of the HTMLstream class

The class HTMLstream is very simple and will serve as a reasonable introduction to
CLOS programming. Later we will see more complicated class examples that use
multiple inheritance. Still, this is a good example because the code is simple and the
author uses this class frequently (some proof that it is useful!). The code fragments listed
in this section are all contained in the file src/HTMLstream.lisp. We start defining a
new class using the macro defclass that takes the following arguments:

 defclass class-name list-of-super-classes
 list-of-slot-specifications class-specifications

The class definition for HTMLstream is fairly simple:

(defclass HTMLstream ()
 ((out :accessor out))
 (:documentation "Provide HTML generation services"))

Here, the class name is HTMLstream, the list of super classes is an empty list (), the list
of slot specifications contains only one slot specification for the slot out and there is only
one class specification: a documentation string. Most CLOS classes inherit from at least
one super class but we will wait until the next section to see examples of inheritance.
There is only one slot (or instance variable) and we define an accessor variable with the
same name as the slot name (this is a personal preference of mine to name read/write
accessor variables with the same name as the slot).

The method set-header initializes the string output stream used internally by an instance
of this class. This method uses convenience macro with-accessors that binds a local set-
able local variable to one or more class slot accessors. We will list the entire method then
discuss it:

Page 49

Copyright 2002, Mark Watson. All rights reserved.

(defmethod set-header ((ho HTMLstream) title)
 (with-accessors
 ((out out))
 ho
 (setf out (make-string-output-stream))
 (princ "<HTML><head><title>" out)
 (princ title out)
 (princ "</title></head><BODY>" out)
 (terpri out)))

The first interesting thing to notice about the defmethod is the argument list: there are
two arguments ho and title but we are constraining the argument ho to be either a
member of the class HTMLstream or a subclass of HTMLstream. Now, it makes sense
that since we are passing an instance of the class HTMLstream to this generic function
(or method – I use the terms “generic function” and “method” interchangeably) that we
would want access to the slot defined for this class. The convenience macro with-
accessors is exactly what we need to get read and write access to the slot inside a generic
function (or method) for this class. In the term ((out out)), the first out is local variable
bound to the value of the slot named out for this instance ho of class HTMLstream.
Inside the with-accessors macro, we can now use setf to set the slot value to a new string
output stream. Note: we have not covered the Common Lisp type string-output-stream
yet in this web book, but we will explain its use on the next page.

By the time a call to the method set-header (with arguments of an HTMLstream
instance and a string title) finishes, the instance has its slot set to a new string-output-
stream and HTML header information is written to the newly created string output
stream. Note: this string output stream is now available for use by any class methods
called after set-header.

There are several methods defined in the file src/HTMLstream.lisp, but we will just
look at four of them: add-H1, add-element, add-table, and get-html-string. The
remaining methods are very similar to add-H1 and the reader can read the code in the
source file.

As in the method set-header, the method add-H1 uses the macro with-accessors to
access the stream output stream slot as a local variable out. In add-H1 we use the
function princ that we discussed in Chapter 6 to write HTML text to the string output
stream:

(defmethod add-H1 ((ho HTMLstream) some-text)
 (with-accessors
 ((out out))
 ho
 (princ "<H1>" out)
 (princ some-text out)
 (princ "</H1>" out)

Page 50

Copyright 2002, Mark Watson. All rights reserved.

 (terpri out)))

The method add-element is very similar to add-H1 except the string passed as the
second argument element is written directly to the stream output stream slot:

(defmethod add-element ((ho HTMLstream) element)
 (with-accessors
 ((out out))
 ho
 (princ element out)
 (terpri out)))

The method add-table is a utility for converting a list of lists into an HTML table. The
Common Lisp function princ-to-string is a useful utility function for writing the value of
any variable to a string. The functions string-left-trim and string-right-trim are string
utility functions that take two arguments: a list of characters and a string and respectively
remove these characters from either the left or right side of a string. Note: another similar
function that takes the same arguments is string-trim that removes characters from both
the front (left) and end (right) of a string. All three of these functions do not modify the
second string argument; they return a new string value. Here is the definition of the add-
table method:

(defmethod add-table ((ho HTMLstream) table-data)
 (with-accessors
 ((out out))
 ho
 (princ "<TABLE BORDER=\"1\" WIDTH=\"100\%\"\>" out)
 (dolist (d table-data)
 (terpri out)
 (princ " <TR>" out)
 (terpri out)
 (dolist (w d)
 (princ " <TD>" out)
 (let ((str (princ-to-string w)))
 (setq str (string-left-trim '(#\() str))
 (setq str (string-right-trim '(#\)) str))
 (princ str out))
 (princ "</TD>" out)
 (terpri out))
 (princ " </TR>" out)
 (terpri out))
 (princ "</TABLE>" out)
 (terpri out)))

The method get-html-string gets the string stored in the string output stream slot by
using the function get-output-stream-string:

(defmethod get-html-string ((ho HTMLstream))
 (with-accessors
 ((out out))
 ho
 (princ "</BODY></HTML>" out)
 (terpri out)

Page 51

Copyright 2002, Mark Watson. All rights reserved.

 (get-output-stream-string out)))

8.3 Other useful CLOS features

TBD

Page 52

Copyright 2002, Mark Watson. All rights reserved.

9. Network Programming

Distributed computing is pervasive – look no further that the World Wide Web, Internet
chat, etc. Of course, as a Lisp programmer, you will want to do at least some of your
network programming in Lisp!

Unfortunately, different Common Lisp implementations tend to have different libraries
for network programming. One common toolkit, CLOCC (see clocc.sourceforge.net) has
a portable library for network programming that supports CLISP, LispWorks, CMU
Common Lisp, etc. Since this book focuses on using CLISP, instead of using CLOCC, all
the examples will be using the socket support built in to CLISP. Even if you are using a
different Common Lisp implementation, I recommend that you do use CLISP for
working through both this chapter and Chapter 10. Once you are comfortable doing
network programming in CLISP, you should hopefully find it easy to use the socket
libraries for other Common Lisp implementations or using CLOCC.

The examples in this chapter will be simple: client and server socket examples and an
example for reading email from a POP3 server. In Chapter 10 we will have even more
fun with an example program that retrieves Usenet news stories from a list of Usenet
news groups, removes SPAM, and generates an HTML web document for reading the
articles.

9.1 An introduction to sockets

We covered I/O and streams in Chapter 6. Socket programming is similar to reading and
writing to local disk files but with a few complications. Network communications
frequently fail so in the general case, we have to be careful to handle errors due to broken
network connections busy or crashed remote servers, etc. You have experienced network
failures many times: how often do you try to visit a web site, get a server not found or
available error message, but 30 seconds later you can view the same web site without any
problems.

We will use a common pattern in our client side socket programming examples: we use
the CLISP function socket-connect to create a socket connection to any server and then
use the macro unwind-protect to trap any errors and be sure that we close a socket
connection when we are done with it. We will wrap calls to socket-connect in a function
open-socket so that if we switch Common Lisp environments, our network programs will
likely work after changing a line or two in the wrapper function open-socket.

Portability note: once a socket stream is opened, the code for using the socket is
portable, usually combinations of the functions princ, terpri, format, read, read-line,
close, and force-output. For example, with LispWorks, use the function open-tcp-stream
instead of socket-connect. In my projects, I like to place all operating system and

Page 53

Copyright 2002, Mark Watson. All rights reserved.

Common Lisp implementation specific code in a special directory system-dependent so it
usually only takes a minute or two to switch operating systems or Lisp environments.

Server side socket programming is slightly more complicated than client side
programming. In our examples, we will assume that server side code responds quickly to
client requests so that it is OK to handle one client connection at a time; waiting client
connection requests are queued up and handled in order or arrival. We will start in the
next section with a simple server side socket example program and then present a client
example program in Section 9.3.

9.2 A server example

The file src/server.lisp shows the implementation of a very simple socket server:

(defun server ()
 (let ((a-server-socket (socket-server 8000)))
 (dotimes (i 2) ;; accept 2 connections, then quit
 (let ((connection (socket-accept a-server-socket)))
 (let ((line (read-line connection)))
 (format t "Line from client: ~A~%" line)
 ;; send something back to the server:
 (format connection "response from server~%"))
 (close connection)))
 (socket-server-close a-server-socket)))

This simple example reads a line of text from a test client, prints the input text, and then
sends the string “response from server” back to the client. The dotimes loop terminates
after 2 iterations for easy testing.

In a real server application, the dotimes loop would loop “forever” and the server would
do something practical with the input text and send back something meaningful to the
client. Still, this 10 line example shows how easy socket server programming can be with
CLISP. Remember, the functions socket-server, socket-accept, and socket-server-close
are specific to CLISP. Other Common Lisp systems have similar functions for handling
server side sockets.

We will write a simple client for this server in Section 9.3, but assuming that we have a
test client, here is the output from our server example when we run the test client two
times:

> (load "server")
;; Loading file /Users/markw/Content/Loving-Lisp/src/server.lisp ...
;; Loading of file /Users/markw/Content/Loving-Lisp/src/server.lisp is
finished.
T
> (server)
Line from client: test string to send to server
Line from client: test string to send to server
NIL

Page 54

Copyright 2002, Mark Watson. All rights reserved.

>

In the server.lisp example, we used read-line to read a single line from a client. Another
good alternative would be to substitute (read connection) for (read-line connection) in
this example so that the server would read an entire list expression and after processing
return another list to the client. Note that before sending a string we would use the princ-
to-string function to convert an arbitrary Lisp list to a string. In this case, the client
example shown in the next section would also use read instead of read-line.

9.3 A client example

We saw how simple it was to write a socket-based server in Section 9.2. In this section,
we will see an equally simple client example. The client program is in the file
src/client.lisp:

(defun open-socket (host port)
 (socket-connect port host))

(defun client (server port a-string)
 ;; Open connection
 (let ((socket (open-socket server port)))
 (unwind-protect
 (progn
 (format socket "~A~%" a-string)
 (force-output socket)
 (let ((response (read-line socket)))
 (format t "Response from server: ~A~%" response))))
 ;; Close socket before exiting.
 (close socket)))

(defun test ()
 (client "localhost" 8000 "test string to send to server"))

Here, the wrapper function open-socket calls the CLISP specific function socket-
connect. If you need to run this client under a different Common Lisp system, you will
have to rewrite this two-line function.

Once we have created a socket we can use it like any other Common Lisp stream for both
input and output. We start by using the format function to send a single line of text to the
remote (well, in this case localhost) server. We then call the read-line function that waits
for input from the remote server over the open socket connection.

We could have skipped the use of unwind-protect in this example but its use is good
form. With unwind-protect, no matter what errors occur the socket connection to the
server should get closed OK.

Here is the output of running the test client two times:

> (load "client")

Page 55

Copyright 2002, Mark Watson. All rights reserved.

;; Loading file /Users/markw/Content/Loving-Lisp/src/client.lisp ...
;; Loading of file /Users/markw/Content/Loving-Lisp/src/client.lisp is
finished.
T
> (test)
Response from server: response from server
T
> (test)
Response from server: response from server
T
>

9.4 An Email Client

The POP3 protocol for accessing remote email servers is text based and very simple. For
an overview, tutorial, and example session using POP3 look at the web site
http://www.faqs.org/rfcs/rfc1939.html. The example email client src/pop3.lisp is fairly
simple and is similar to the src/client.lisp example in Section 9.3 except that we have to
handle a variable number of lines from a POP3 email server.

We see something new in this example: the use of the loop macro (discussed in Chapter
5) and the function unless. Function unless is like a “negative if statement”:

> (unless t t)
NIL
> (unless nil t)
T
>

If you took a few minutes to look over the POP3 specification, you will have an easier
time following the example code in this section. In any case, we will list pop3.lisp, and
then discuss the example code:

(defun open-socket (host port)
 (socket-connect port host))

(defun send-line (stream line)
 "Send a line of text to the socket stream, terminating it with
CR+LF."
 (princ line stream)
 (princ #\Return stream)
 (princ #\Newline stream)
 (force-output stream))

;; a string containing a new line character:
(defvar *nl* (make-string 1 :initial-element #\newline))

;; collect all input from a socket connection into a string, stopping
;; when a line from the server just contains a single period:
(defun collect-input (socket period-flag)
 (let ((ret "")
 temp)

Page 56

Copyright 2002, Mark Watson. All rights reserved.

 (loop
 (let ((line (read-line socket nil nil)))
 (unless line (return))
 ;;(princ "Line: ") (princ line) (terpri)
 (if (equal line ".") (return)) ;; nntp server terminates
 ;; response with a period crlf
 (if (null period-flag) (return))
 (setq ret (concatenate 'string ret line *nl*))
 (if (search "-ERR" line) (return))))
 ret))

(defun send-command-print-response (stream command period-flag)
 (terpri)
 (princ "Sending: ")
 (princ command)
 (terpri)
 (send-line stream command)
 (terpri)
 (collect-input stream period-flag))

(defun test (server user passwd &aux (ret nil))
 ;; Open connection
 (let ((socket (open-socket server 110)))
 (unwind-protect
 (progn
 (send-command-print-response socket
 (concatenate 'string "USER " user) nil)
 (send-command-print-response socket
 (concatenate 'string "PASS " passwd) nil)
 (send-command-print-response socket "STAT" nil)
 (let* ((response
 (send-command-print-response socket "LIST" t))
 (index1 (search "+OK " response)))
 ;;(print (list "**** response = " response
 ;; " index1 = " index1))

 ;; the string between index1 and index2 will contain the
 ;; number of email messages available to be read:
 (if index1
 (let ((index2
 (search " " response :start2 (+ index1 4))))
 ;;(print (list "**** index2 = " index2))
 (if index2
 (let ((count
 (read-from-string
 (subseq response (+ index1 4)
index2))))
 ;;(print (list "**** count = " count))
 (dotimes (i count)
 (setq ret
 (cons
 (send-command-print-response
 socket
 (concatenate 'string "RETR "
 (princ-to-string (1+ i))) t)
 ret))
 ;; uncomment the following 2 lines if you
 ;; want to delete the messages on the server:

Page 57

Copyright 2002, Mark Watson. All rights reserved.

 ;;(send-command-print-response socket
 ;; "DELE 1" nil)
))))))
 (send-command-print-response socket "QUIT" nil))
 ;; Close socket before exiting.
 (close socket)))
 (reverse ret))

The POP3 utility code is fairly simple because the POP3 protocol is simple and text
based. If you are interested in automating email processing (hopefully, not to send SPAM
to people!), you should start by reading the POP3 specification and try to manually telnet
to your email server and manually check for email messages. The simple code in
pop3.lisp automates this process.

Here is some sample output from running the POP3 test function (Note that I removed
my email server name, username, and password from the following text):

> (test "EMAIL_SERVER.com" "USER_NAME" "A_PASSWORD")

Sending: USER USER_NAME

Line: +OK NGPopper vEL_4_16 at EMAIL_SERVER.com ready
<1120.1026120886@hawk>

Sending: PASS A_PASSWORD

Line: +OK

Sending: STAT

Line: +OK USER_NAME has 1 messages (1010 octets).

Sending: LIST

Line: +OK 1 1010
Line: +OK
Line: 1 1010
Line: .

("**** count = " 1)
Sending: RETR 1

Line: +OK 1010 octets
Line: Status: U
Line: Return-Path: <markw@markwatson.com>
Line: Received: from aaaaa.com ([121.22.44.112])
Line: for markw@markwatson.com; Thu, 11 Jul 2002 11:08:00 -0700
Line: User-Agent: Microsoft-Entourage/10.0.0.1309
Line: Date: Thu, 11 Jul 2002 11:08:03 -0700
Line: Subject: Test
Line: From: Mark Watson <markw@markwatson.com>
Line: To: Mark Watson <markw@markwatson.com>
Line: Message-ID: <B9531793.AF8%markw@markwatson.com>
Line: Mime-version: 1.0

Page 58

Copyright 2002, Mark Watson. All rights reserved.

Line: Content-type: text/plain; charset="US-ASCII"
Line: Content-transfer-encoding: 7bit
Line:
Line: A test message
Line:
Line:
Line:
Line: .

Sending: QUIT

Line: +OK
("+OK 1010 octets
Status: U
Return-Path: <markw@markwatson.com>
User-Agent: Microsoft-Entourage/10.0.0.1309
Date: Thu, 11 Jul 2002 11:08:03 -0700
Subject: Test
From: Mark Watson <markw@markwatson.com>
To: Mark Watson <markw@markwatson.com>
Message-ID: <B9531793.AF8%markw@markwatson.com>
Mime-version: 1.0
Content-type: text/plain; charset=\"US-ASCII\"
Content-transfer-encoding: 7bit

A test message

")
>

 Here, I only had one short email message. The function test returns a list of strings, one
string for each fetched email message. To process each email message, you could use the
read-from-string macro (see Section 6.1) and the readline function to easily get each
line of an email message.

Page 59

Copyright 2002, Mark Watson. All rights reserved.

Index

&
&aux, 30
&key, 31
&optional, 31

A
accessor variable, 48
append (function), 18
aref (function), 20
arrays, 19
assoc (function), 23

C
C++, 5
car (function), 16
cdr (function), 16
char (function), 23
CLISP, 8
CLOS, 47
closure, 34
clrhash (function), 26
concatenate (function), 21
cons, 16

D
defclass, 48
defmethod, 48
defpackage, 45
defun (defines functions), 30
defvar, 9, 11, 15
do (loop macro), 38
dolist (loop macro), 37
dotimes (loop macro), 37

E
Emacs, 26
eq (function), 22
eql (function), 22
equal (function), 22
error recovery, 27
eval (function), 26

F
format (function), 43
funcall (function), 32
functions as data, 32

G
garbage collection, 28
gethash (function), 24
global variables, 11, 30

H
hash tables, 23
hash-table-count (function), 26

I
ILISP, 8
in-package, 46
input stream, 40

J
Java, 5, 6

L
lambda (special form), 32
last (function), 18
list (function), 16
lists, 15
loop macro, 39
loop macros. See dolist, dotimes, do

M
macro, 35
macroexpand-1 (function), 36
make-array, 19
make-hash-table (function), 25
make-instance (function), 47
make-sequence, 19
maphash (function), 25

N
natural language processing, 7
NLP, 7
nth (function), 18

O
output stream, 43

P
package, 45

Page 60

Copyright 2002, Mark Watson. All rights reserved.

pathname, 41
princ (function), 43
print (function), 43
Prolog, 5

R
read (function), 40
readline (function), 41
recursion, 33
remhash (function), 26

S
search (function), 21
setf, 15
setq, 9
shared structure, 19
slot, 48
splicing operator, 36
streams, 40
string= (function), 23
strings, 20

subseq (function), 22
symbols, 15

T
terpri (function), 43
top-level Lisp prompt, 11
typep, 12

V
vi, 26

W
with-accessors (macro), 48
with-input-from-string, 42
with-open-file (macro), 43

X
Xanalys LispWorks, 27

