Lisp Quickstart

Lisp is a big and deep language. This quickstart is only intended to get you introduced to very basic concepts in Lisp, not
any of the really cool stuff Lisp does. As such it's geared to how to do C in Lisp, not good functional style (no closures, no
macros). It's enough to get you up to speed so you can more easily understand a good book (ANSI Common Lisp, etc.) The
quickstart also does not teach many functions -- you'll need to root around in the ANSI Common Lisp index and play with

some of the functions there. The quickstart also shows you how to manipulate the command line, and to load and compile m

WARNING

files. -
This product
Don't be intimidated by the size of this file. Just go through it at your own pace. We'll be teaching this stuff on the board may contain
anyway. trace amounts
of Lisp
If you're done with this tutorial, go on to Tutorial 2 and Tutorial 3.
Legend
The table cell to the right shows what you type, and the output, for this This text is being printed out. o
You would type this text [This is a remark]

you. Text shown in red are remarks -- do not type them.

different examples.

tutorial. Text shown in blue you are responsible for typing, with a Return at
the end of the line. Text shown in black indicates stuff that is printed back to

If the cell is divided by a line, as is shown at right, then this indicates two

Here is another example.

Running, Breaking, and Quitting Lisp

On osfl or mason2, you start lisp by typing lisp at the
command line. This fires up an implementation of lisp by
Xanalys called LispWorks.

If you've downloaded clisp or are using clisp on the ITE
cluster, you typically start it by typing clisp and this is
what you see:

[On osf1...]

osf1.gmu.edu> lisp

LispWorks(R): The Common Lisp Programming Environment

Copyright (C) 1987-1998 Xanalys Incorporated. All rights reserved.

Version 4.1.20

Saved by root as lispworks, at 29 May 2001 16:35

User sluke on osf1.gmu.edu

; Loading text file /usr/local/lispworks_4.1/hcl/4-1-0-0/
config/siteinit.lisp

CL-USER 4 >

[On chrono...]
chrono[~]> clisp

iiiiiii 00000 o] 0000000 00000 00000
ITIIITITI 8 8 8 8 8 o 8 8
I \ "+ / I 8 8 8 8 8 8
\ -+ 8 8 8 00000 80000
I 8 8 8 8 8
| 8 o 8 8 o 8 8
------ LEEEEEE 00000 8000000 0008000 00000 8

Copyright (c) Bruno Haible, Michael Stoll 1992, 1993
Copyright (c) Bruno Haible, Marcus Daniels 1994-1997
Copyright (c) Bruno Haible, Pierpaolo Bernardi, Sam Steingold 1998
Copyright (c) Bruno Haible, Sam Steingold 1999-2001

(11>

In the previous examples, the very last line is the
command line. Lisp has a command line where you
type in things to execute. Here are the command lines in
Lispworks and in clisp.

[On osf1...]
CL-USER 4 >

[On chrono...]

(11>

http://cs.gmu.edu/~sean/lisp/LispTutorial2.html
http://cs.gmu.edu/~sean/lisp/LispTutorial3.html

Think of the Lisp command line like the command line
in a Unix shell or at a DOS prompt. Pressing Control-C
in a Unix shell or at a DOS prompt halts the current
running process and returns you to the command line.
Similarly, pressing Control-C in Lisp halts whatever is
presently running and returns you to the command line.

After you press Control-C, the command line changes to
a "subsidiary" command line to reflect that you are in a
break condition. Kinda like pressing Control-C in a
debugger. In LispWorks, the break condition is signified
by a colon in the command line. In clisp, the break
condition is signified by the word "Break" in the
command line.

You don't have to escape out of a break condition -- you
can just keep on working from there. But it's probably
best to escape out. On LispWorks, this is done by typing
:top (including the colon). On clisp, this is done by
repeatedly typing :a (including the colon) until you get
out of the "Break" command line. In this example (and
usuallly) you only need to type it once.

[On osf1...]
CL-USER 4 > (loop) [Press Return at this point,

and you go into an infinite loop]
[Now press Control-C, and you get...]

Break.
1 (continue) Return from break.
2 (abort) Return to level 0.
3 Restart top-level loop.

Type :b for backtrace,
or :? for other options

:c <option number> to proceed,

CL-USER 5 : 1 > :top

CL-USER 6 >

[On chrono...]
[11> (loop) [Press Return at this point,

and you go into an infinite loop]
[Now press Control-C, and you get...]
**% - Continuable Error
EVAL: User break
If you continue (by typing 'continue'): Continue execution

1. Break [2]> :a

[31>

You can quit your lisp session by getting to the
command line (possibly through pressing Control-C),
then typing (quit) and pressing return. Here are
examples using Lispworks or using clisp.

[On osf1...]
CL-USER 4 > (quit)
osf1.gmu.edu>

[On chrono...]
[11> (quit)
Bye.
chrono[~]>

Evaluating Simple Expressions

From now on, we will only use examples in clisp. But it works basicallly the same on all Lisp systems.

An expression is something that is evaluated, by
which we mean, submitted to Lisp and executed. All
things that are evaluated will return a value. If you type
in an expression at the command line, Lisp will print its
value before it returns the command line to you.

[31> -3

[4]> 2.43

2.43

[5]> 1233423039234123234113232340129234923412312302349234102392344123
1233423039234123234113232340129234923412312302349234102392344123

[6]> #C(3.2 2) [the complex number 3.2 + 2i]

Numbers are expressions. The value of a number is #C(3.2 2)
itself. Lisp can represent a great many kind of numbers: 53; 2/3 [the fraction 2/3. NOT "divide 2 by 3"]
integers, floating-point expressions, fractions, giant [8]> -3.2e25 [the number -3.2 x 10A25]
numbers, complex numbers, etc. -3.2E25
[91>
A fraction is straightforwardly represented with the
form x/y Note that here the / does not mean "divide".
A complex number a+bi takes the form #C(a b)
Individual characters are expressions. Like a number,
the value of a character is itself. A character is R; #\8
represented using the #\ syntax. For example, #\A is the | [4]> #\{
character 'A'". #\% is the character '%'. #\{
[5]> #\space
#\Space

Control characters have very straightforward formats:

[6]1> #\newline

#\tab
#\newline
#\space
#\backspace
#\escape

(etc.)

#\Newline
[71> #\\
#\\
[81>

[The character '\']

Strings are expressions. Just like a numbers and
characters, the value of a string is itself.

A Lisp string is a sequence of characters. Lisp strings
begin and end with double-quotes. Unlike in C++ (but
like Java) a Lisp string does not terminate with a \0.

Like C++ and Java, Lisp strings have an escape
sequence to put special characters in the string. The
escape sequence begins with the backslash \. To put a
double-quote in the middle of a string, the sequence is
\" To put a backslash in the middle of a string, the
sequence is \\ Lisp tries to return values in a format that
could be typed right back in again. Thus, it will also
print return values with the escape sequences shown.

Unlike C++, you do not normally add returns and tabs
to strings using an escape sequence. Instead, you just
type the tab or the return right in the string itself.

[14]> "Hello, World!"
"Hello, World!"

[15]> "It's a glorious day."
"It's a glorious day."

[16]> "He said \"No Way!\" and then he left."
"He said \"No Way!\" and then he left."
[17]> "I think I need a backslash here:
"I think I need a backslash here: \\
[18]> "Look, here are tabs

\\ Ah, that was better."
Ah, that was better."
and some

returns!

Cool, huh?"

"Look, here are tabs and some

returns!

Cool, huh?"
[19]>

In Lisp, the special constant nil (case insensitive) all by
itself represents "false". nil evaluates to itself.

Every other expression but nil is considered to be
"true". However, Lisp also provides an "official"
constant which represents "true", for your convenience.
This is t (also case-insensitive). t also evaluates to itself.

[3]> t
T

[4]> nil
NIL
[51>

Evaluating Lists as Functions

Lisp program code takes the form of lists. A list
begins with a parenthesis, then immediately contains

[14]> (+ 327 9) [add 3+2+7+9 and return the result]

boolean values are atoms.

When Lisp evaluates a list, it first examines (but does
not evaluate) the symbol at the beginning of the list.
Usually this symbol is associated with a function.
Lisp looks up this function.

Then each expression in the list (except the
beginning symbol) is evaluated exactly once,
usually (but not necessarily) left-to-right.

The values of these expressions are then passed in as

21
a symbol, then zero or more expressions separated [15]> (* 4 2.3) [multiply 4 by 2.3 and return the result]
with whitespace, then a closing parenthesis. 9.2
We'll discuss the format of symbols further down. In
the examples at right, + and * are symbols, and
denote the addition and multiplication functions
respectively.
Like everything else in Lisp, lists are expressions. (141> (+ 3 2) [Look h functi Luat
. . > (+ ook up the + function, evaluate
This means that lists return a value when evaluated. 3 and 2 (numbers evaluate to themselves),
) then pass their values (3 and 2) into the
An atom is every expression that is not a list. + function, which returns 5,
Among other things, strings and numbers and s which is then returned].

[15]> (subseq "Hello, World" 2 9) [Look up the subseq function,
evaluate "Hello, World", 2,

and 9 (they evaluate to
themselves), then pass their
values in as arguments. The
subseq function will return

the substring in "Hello, World"
starting at character #2 and
ending just before character #9.
"1llo, Wo"

parameters to the function, and the function is called.
The list's return value is then the value returned by
the function.

A symbol is a series of characters which typically do
not contain whitespace, parentheses (), pound (#),
quote ("), double-quote ("), period (.), or
backquote ('), among a few others. Symbols
generally don't take the form of numbers. It's very
common for symbols to have hyphens (-) or
asterisks (*) in them -- that's perfectly fine. Symbols
are case-INSENSITIVE. Here are some interesting
symbols:

+ * 1+ / string-upcase
reverse length sqrt

Guess what function is associated with each of these
symbols.

In C++ and in Java, there are operators like +, <<,
&&, etc. But in Lisp, there are no operators: instead,
there are only functions. For example, + is a function.

[23]> (+ 27/32 32/57)

2563/1824

[24]1> (* 2.342 3.2e4)

74944 .0

[25]> (* 2.342 9.212 -9.23 3/4)
-149.34949

[26]1> (/ 3 5)

3/5 [The return type stays as general as possible]
[27]> (/ 3.0 5)
0.6

[You can mix number types]

. [Here Lisp had no choice: convert to a float]
[28]> (1+ 3)
4

[29]> (string-upcase "How about that!")

"HOW ABOUT THAT!"

[30]> (reverse "Four score and seven years ago")
"oga sraey neves dna erocs ruoF"

[31]> (length "Four score and seven years ago")
30

[32]> (sqrt 2)
1.4142135

[33]> (sqrt -1.0)
#C(0 1.0)

[34]> (SqRt -1.0)
#C(0 1.0)

[Lisp symbols are case-insensitive]

While some functions require a fixed number of
arguments, other ones (like + or *) can have any
number of arguments.

[23]> (+ 100 231 201 921 221 231
1994

-23 12 -34 134)

Other functions have a fixed number of arguments,
plus an optional argument at the end.

For example, subseq takes a string followed by one
or two numbers. If only one number i is provided,
then subseq returns the substring starting a position #
in the string and ending at the end of the string.

If two numbers i and j are provided, then subseq
returns the substring starting a position 7 in the string
and ending at position ;.

[23]> (subseq "Four score and seven years ago" 9)
"e and seven years ago"

[24]> (subseq "Four score and seven years ago" 9 23)
"e and seven ye"

Lisp has a special name for functions which return
"true" (usually t) or "false" (nil). These functions are
called predicates. Traditionally, many Lisp predicate
names end with a p. Here are some predicates.

[5]> (= 4 3)
NIL

[6]> (< 39)
T

[is 4 == 3 ?]
[is 3 <9 7]

[7]1> (numberp "hello") [is "foo" a number?]
NIL

[8]> (oddp 9) [is 9 an odd number?]
T

[91>

When an expression is evaluated which generates an
error, Lisp breaks and returns to the command
prompt with a break sequence, just like what
happens when you press Control-C.

[26]1> (/ 1 0)

%% _ division by zero
1. Break [27]> :a
[28]1>

[clisp's way of exiting a break sequence]

Errors can also occur if there is no function
associated with a given symbol in a list.

[26]> (blah-blah-blah 1 0 "foo")

*%% - EVAL: the function BLAH-BLAH-BLAH is undefined
1. Break [27]> :a
[28]>

When a list contains another list among its
expressions, the evaluation procedure is recursive.
The example at left thus does the following things:

1. The + function is looked up.
2. 33 is evaluated (its value is 33).

[441> (+ 33 (* 2.3 4) 9)
51.2
[451>

3. (* 2.3 4)isevaluated:

The * function is looked up.

2.3 is evaluated (its value is 2.3)

4 is evaluated (its value is 4)

2.3 and 4 are passed to the * function.

The * function returns 9.2. This is the

value of (* 2.3 4).

4. 9 is evaluated (its value is 9).

33, 9.2, and 9 are passed to the + function.

6. The + function returns 51.2. This is the value
of (+ 33 (* 2.3 4) 9).

7. The Lisp system returns 51.2.

SR W=

b

Here are some more examples.
[44]> (+ (length "Hello World") 44)

. . 55
Now you see how easy it is to get lost in the [45]> (* (+ 3 2.3) (/ 3 (- 9 4))) [in C++: (3+2.3) * (3 / (9-4))]
parentheses! 3.1800003
[46]> (log (log (log 234231232234234123)))
1.3052895
[47]1> (+ (* (sin 0.3)
(sin 0.3)) [expressions may use multiple lines]
(* (cos 0.3)
(cos 0.3))) [sin(0.3)A2 + cos(0.3)"2]
1.0000001 [= 1. Rounding inaccuracy]
[48]> (and (< 3 (* 2 5))
(not (>= 2 6))) [(3 <2%*5) & !1(2>=6)]
T
[491>

One particularly useful function is print, which takes i
[41]> (print (+ 2 3 4 1))

the form (print expression-to-print). This function 10
evaluates its argument, then prints it, then returns 10
the argument. [42]> (print "hello")
"hello"
Ascanb t right, if you just use print all b (hello”
As can be seen at right, if you just use print all by [43]> (+ (* 2 3) (/ 3 2) 9)
itself, the screen will appear to print the element 33/2
twice. Why is that? It's because print printed its £44]> (+ (print (* 2 3)) (print (/ 3 2)) 9)
argument, then returned it, and Lisp always prints 3/2
[again] the final return value of the expression. 33/2
[45]1>

One nice use of print is to stick it in the middle of an
expression, where it will print elements without
effecting the final return value of the whole
expression.

Control Structures and Variables

There are some evaluatable lists which are not

functions because they do not obey the [44]> (if (<=3 2) (* 3 9) (+ 4 23)) [if 3<=2 then return 3*9

else return 4+2+3]

function rule ("evaluate each argument exactly 9

one time each"). These lists are known as [45]> (if (> 2 3) 9) [if 2>3 then return 9 else return nil]
. . NIL

n.naFros_orspecmlforms.Fornowwewﬂlnot [461> (if (= 2 2) (if (> 3 2) 4 6) 9) [if 2==2,

distinguish between these two terms, though then if 3>2,

there is a massive difference underneath. then return 4

else return 6

. 1

Macros and special forms are mostly used as 4 else return 9]

control structures. For example, the control [471> (+ 4 (if (=2 2) (* 9 2) 7)) [NOTE: the 'if' evaluates to 18!]

structure if is a special form. if takes the form: 22

(if test-expression
then-expression
optional-else-expression)

if evaluates test-expression. If this returns true,
then if evaluates and returns then-expression,
else it evaluates and returns optional-else-
expression (or if optional-else-expression is

missing, returns nil).

Because if is an expression, unlike most
languages it's quite common to see it embedded
inside other expressions (like the last expression
at right). This is roughly equivalent to C's i?

J: k expression form.

Why can't if be a function? Because it may not
necessarily evaluate the then-expression, or if it
does, it will not evaluate the optional-else-
expression. Thus it violates the function rule.

if only allows one test-expression, one then-
expression, and one optional-else-expression.
What if you want to do three things in the then-
expression? You need to make a block (a group
of expressions executed one-by-one). Blocks
are made with the special form progn, which
takes the form:

(progn expri1 expr2 expr3 ...)

progn can take any number of expressions, and
evaluates each of its expressions in order.
progn then returns the value of the last
expression.

[44]1> (if (> 3 2)
(progn (print "hello") (print "yo")
(print "whassup?") 9)
(+ 4 2 3))
"hello"
"yor
"whassup?"
9

Except when they're at the head of a list,
symbols are also expressions. When it's not
the head of a list, a symbol represents a
variable. When evaluated, a symbol will return
the value of a variable.

The value of a symbol's variable has nothing to
do with the function, special form, or macro
associated with the symbol. You can thus have
variables called print, if, etc.

Variables are set with the macro setf. For now,
as far as you're concerned, this macro looks like
this:

(setf variable-symbol expression)

setf is a macro and not a function because it
does not evaluate variable-symbol. Instead, it
just evaluates expression, and stores its value in
the variable associated with variable-symbol.
Then it returns the value of expression.

If a symbol is evaluated before anything has
been stored in its variable, it will generate an
error.

Be careful with setf. Lisp doesn't need to
declare variables before they are used.
Therefore, unless variables are declared to be
local (discussed later), setf will make global
variables. And setf is the first operation we've
seen with side effects -- so the order of
operations will matter! See the example at right.

[27]> (setf x (* 3 2))
6

[28]> x

6

[29]> (setf y (+ x 3))
9

[30]> (* x y)

54

[31]> (setf sin 9) [you really can do this!]

9

[32]> (sin sin) [huh! 1]
0.4121185

[33]> 2z [z not set yet]
*%% - EVAL: variable Z has no value

1. Break [34]> :a

[Keep in mind that + is a function, so in most lisp systems it evaluates its

arguments left-to-right. So x is evaluated -- returning 6; then
(setf x 3) is evaluated, which sets x to 3 and returns 3; then
x is evaluated -- and now it returns 3. So + will return 6+3+3]
[35]> (+ x (setf x 3) x)

12

[Just like in C++/Java: X + (x =3) +x 1]

Because special forms and macros don't obey
the function rule, they can take whatever syntax
they like. Here is let, a special form which
declares local variables:

(let (declaration? declaration2 ...)
expri1
expr2

[1]1> (setf x 4) [x set globally]
4
[2]> (let ((x 3))
(print x)
(setf x 9)
(print x)
(print "hello"))

[x declared locall]
[the local x is set]

[Why does "hello" print twice? Think.]

o w

<)

let declares local variables with each
declaration. Then it evaluates the expressions in
order (as a block). These expressions are
evaluated in the context of these local variables
(the expressions can see them). let then gets rid
of the local variables and returns the value of
the last expression. Thus the local variables are
only declared within the scope of the let
expression.

A declaration takes one of two forms:
var

A symbol representing the
variable. It is initialized to nil.

(var expr) A list consisting of the variable
symbol followed by an
expression. The expression is
evaluated and the variable is
initialized to that value.

You can use setf to change the value of a local
variable inside a let statement. You can also
nest let statements within other let statements.
Locally declared variables may shadow outer
local and global variables with the same name,
just as is the case in C++ and in Java.

"hello"

"hello"
[3]> x
4
[4]1> (let ((x 3) (y (+ 4 9)))
* xy))
39
[5]1> (let ((x 3))
(print x)
(let (x)
(print x)
(let ((x "hello"))
(print x))
(print x))
(print x)
(print "yo"))
3
NIL
"hello"
NIL
3
"yo"
"yo"

[outside the let, we're back to global again]

[declare x and y locally]

[declare x locally]
[declare x locally again (nested)]

[declare x locally again! (nested)]

[Why does "yo" print twice?]

Another reason a list might be a special form or
macro is because it repeatedly evaluates its
arguments. One example is dotimes. This
macro is an iterator (a looping control structure).
Like most iterators in Lisp, dotimes requires a
variable. Here's the format:

(dotimes (var high-val
optional-return-val)
expri
expr2

o)

Here, dotimes first evaluates the expression
high-val, which should return a positive integer.
Then it sets the variable var (which is a symbol,
and is not evaluated) to 0. Then it evaluates the
zero or more expressions one by one. Then it
increments var by 1 and reevaluates the
expressions one by one. It does this until var
reaches high-val. At this time, optional-return-

optional-return-val is missing.

You don't need to declare the dotimes variable
in an enclosing let -- dotimes declares the
variable locally for you. The dotimes variable is
local only to the dotimes scope -- when dotimes
exits, the variable's value resumes its previous
setting (or none at all).

val is evaluated and returned, or nil is returned if

[26]> (setf x 3)
3

[27]> (dotimes (x 4 "yo") (print "hello"))

"hello"
"hello"
"hello"
"hello"
"yo"
[28]> x
3
[29]> (setf bag 2)
2

[30]>
NIL
[31]> bag
18446744073709551616

[x was local in dotimes]

(dotimes (x 6) (setf bag (* bag bag)))

[No return expression was given]

[Understand why?]

Writing Functions

macro. This macro is called defun.

In Lisp, functions are created by calling a function-making

A simple version of defun takes the following general form:

DO-HELLO-WORLD

"Hello, World!"

[45]> (do-hello-world)

[44]1> (defun do-hello-world ()
"Hello, World!")

[No arguments]

["Hello, World!" is last expression]

(defun function-name-symbol
(parami1 param2 param3 ...)

expri

expr2

expr3

vee)
defun builds a function of zero or more arguments of the
local-variable names given by the parameter symbols, then
evaluates the expressions one by one, then returns the value
of the last expression. The name of the function is the
function-name-symbol. defun defines the function, sets it to
this symbol, then returns the symbol -- you rarely use the
return value of defun.

Atright is a really simple example: a function of no
arguments which simply returns the string "Hello, World!".

Here are some examples with one, two, and three arguments
but just one expression.

[44]1> (defun add-four (x)

(+ x 4))
ADD-FOUR
[45]> (add-four 7)
11

[46] (defun hypoteneuse (length width)

(sqrt (+ (* length length)
(* width width))))

HYPOTENEUSE

[47]1> (hypoteneuse 7 9)

11.401754

[48]> (defun first-n-chars (string n
(if reverse-first [if

reverse-first)

reverse-first is "true"

(subseq (reverse string) 0 n)
(subseq string 0 n)))
FIRST-N-CHARS
[49]> (first-n-chars "hello world" 5 nil)
"hello"
[50]> (first-n-chars "hello world" 5 t)
"dlrow"
[51]1> (first-n-chars "hello world" 5 18) [18 is "true"!
"dlrow"

]

]

Here are some examples with several expressions in the
function Remember, the function returns the value of the last
expression.

[44]1> (defun print-string-stuff (string-1)
(print string-1)
(print (reverse string-1))
(print (length string-1))
string-1) [string-1 is returned]
PRINT-STRING-STUFF
[45]> (print-string-stuff "Hello, World!")
"Hello, World!"
"ldlroW ,olleH"
13
"Hello, World!"
[46] (setf my-global-counter 0)
0
[47] (defun increment-global-and-multiply (by-me)
(setf my-global-counter (1+ my-global-counter))
(* my-global-counter by-me))
INCREMENT-GLOBAL -AND-MULTIPLY
[48]> (increment-global-and-multiply 3)
3

[49]1> (increment-global-and-multiply 5)
10
[50]> (increment-global-and-multiply 4)
12
[51]> (increment-global-and-multiply 7)
28

Lisp functions can have local variables, control structures,
whatnot. Try to use local variables rather than global
variables! Declare local variables with let.

[In C++: long factorial (long n) {
long sum = 1;
for (int x=0;x<n;x++)
sum = sum * (1 + Xx);
return sum; } 1
[44]> (defun factorial (n)
(let ((sum 1))
(dotimes (x n)
(setf sum (* sum (1+ x))))
sum))
FACTORIAL

[... but try doing *this* with C++ :-) 1]

[45]> (factorial 1000)
4023872600770937735437024339230039857193748642107146325437999
1042993851239862902059204420848696940480047998861019719605863
1666872994808558901323829669944590997424504087073759918823627
7271887325197795059509952761208749754624970436014182780946464
9629105639388743788648733711918104582578364784997701247663288
9835955735432513185323958463075557409114262417474349347553428
6465766116677973966688202912073791438537195882498081268678383
7455973174613608537953452422158659320192809087829730843139284
4403281231558611036976801357304216168747609675871348312025478
5893207671691324484262361314125087802080002616831510273418279
7770478463586817016436502415369139828126481021309276124489635
9928705114964975419909342221566832572080821333186116811553615
8365469840467089756029009505376164758477284218896796462449451
6076535340819890138544248798495995331910172335555660213945039
9736280750137837615307127761926849034352625200015888535147331
6117021039681759215109077880193931781141945452572238655414610
6289218796022383897147608850627686296714667469756291123408243
9208160153780889893964518263243671616762179168909779911903754
0312746222899880051954444142820121873617459926429565817466283
0295557029902432415318161721046583203678690611726015878352075
1516284225540265170483304226143974286933061690897968482590125
4583271682264580665267699586526822728070757813918581788896522
0816434834482599326604336766017699961283186078838615027946595
5131156552036093988180612138558600301435694527224206344631797
4605946825731037900840244324384656572450144028218852524709351
9062092902313649327349756551395872055965422874977401141334696
2715422845862377387538230483865688976461927383814900140767310
4466402598994902222217659043399018860185665264850617997023561
9389701786004081188972991831102117122984590164192106888438712
1855646124960798722908519296819372388642614839657382291123125
0241866493531439701374285319266498753372189406942814341185201
5801412334482801505139969429015348307764456909907315243327828
8269864602789864321139083506217095002597389863554277196742822
2487575867657523442202075736305694988250879689281627538488633
9690995982628095612145099487170124451646126037902930912088908
6942028510640182154399457156805941872748998094254742173582401
0636774045957417851608292301353580818400969963725242305608559
0370062427124341690900415369010593398383577793941097002775347
200
000
000
000
000000

Actually, it is surprisingly rare in Lisp to have more than one
expression in a function. Instead, expressions tend to get
nested together. Lisp functions tend to take on functional
form rather than declarative form. In C++ or Java, usually
you set local variables a lot. In Lisp you don't -- you nest
functions.

[a declarative style -- yuck]
[44]1> (defun my-equation (n)
(let (x y z)

(setf x (sin n))

(setf y (cos n))

(setf z (* x y))

(+n z)))
MY -EQUATION
[... a functional style]
[45]> (defun my-equation (n)

(+ n (* (sin n) (cos n))))

MY -EQUATION

Like Java, Lisp is pass-by-value. The parameters of a
function are considered to be local variables to that function,
and can be set with setf. This does not change the values of
things passed in.

[44]1> (defun weird-function (n)
(setf n 4)
n)

WEIRD-FUNCTION

[45]> (setf abc 17)

17

[46]> (weird-function abc)
4

[47]> abc

17

You can also make recursive functions. Lisp style often
makes heavy use of recursion.

You'll find that functional style and recursion together result
in a need for very few local variables.

Here's the factorial function again, only done recursively.

[44]1> (defun factorial (n)
(if (<= n 0)
1

(* n (factorial (- n 1)))))

FACTORIAL

You can make functions with an optional argument using the
special term &optional, followed by the optional parameter
name, at the end of your parameter list.

If the optional parameter isn't provided when the function is
called, then the parameter is set to nil.

[48]> (defun first-n-chars (string n &optional reverse-first)
(if reverse-first
(subseq (reverse string) 0 n)
(subseq string 0 n)))

REVERSE-FIRST

Alternatively you can provide the default value to set the
parameter to when it's not provided when the function is
called. You can do this by following &optional not by a

parameter name but by a list of the form (param-name
default-value)

You can have only one optional parameter.

[49]> (first-n-chars "hello world" 5 nil)

"hello"

[50]> (first-n-chars "hello world" 5) [nil is default]
"hello"

[51]1> (first-n-chars "hello world" 5 t)

"dlrow"

[52]> (defun multiply-then-maybe-add (x y &optional (z 0))
(+ (* xy) z2))

MULTIPLY-THEN-MAYBE-ADD

[53]> (multiply-then-maybe-add 9 2)

18

[54]> (multiply-then-maybe-add 9 2 7)

25

Lisp can also have keyword parameters. These are
parameters which can appear or not appear, or be in any
order, because they're given names. Keyword parameters are
very much like the <foo argl=val arg2=val ... > arguments
in the "foo" html tag.

Keyword parameters appear at the end of a parameter list,
after the term &Kkey. Similarly to optional arguments, each
keyword parameter is either a parameter name (whose value
defaults to nil if not passed in when the function is called) or
is a list of the form (param-name default-value)

Keyword parameters may appear only at the end of the
parameter list.

You pass a keyword parameter whose name is foo into a
function by using the term :foo followed by the value to set
foo to. Keyword parameters can be passed in in any order,
but must appear at the end of the parameter list.

Though it's possible to have both keyword parameters and
optional parameters in the same function, don't do it. Gets
confusing.

Many built-in Lisp functions use lots of keyword
parameters to "extend' them!

[48]1> (defun first-n-chars (string n
&key reverse-first
(capitalize-first t))
(let ((val (if capitalize-first
(string-upcase string)
string)))
(if reverse-first
(subseq (reverse val) 0 n)
(subseq val 0 n))))
[take a while to understand the LET before going on...]

nil by default
t by default

FIRST-N-CHARS
[49]> (first-n-chars "hello world" 5 :reverse-first t)
"DLROW"
[50]> (first-n-chars "hello world" 5

:reverse-first t :capitalize-first nil)
"dlrow"
[51]> (first-n-chars "hello world" 5

:capitalize-first nil :reverse-first t)
"dlrow"
[52]> (first-n-chars "hello world" 5)
"HELLO"
[53]> (first-n-chars "hello world" 5 :capitalize-first nil)
"hello"

Lists and Symbols as Data

Lists and symbols are data as well!

as data!

Lists are normally evaluated as function or macro calls. Symbols are
normally evaluated as variable references. But they don't have to be.

The special form quote can be used to bypass the evaluation of its
argument. quote takes a single argument, and instead of evaluating
that argument, it simply returns the argument as you had typed it ...

[48]1> (quote (hello world 1 2 3))

(HELLO WORLD 1 2 3)

[49]> (quote (what is (going on) here?))
(WHAT IS (GOING ON) HERE?)

[50]> (quote my-symbol)

MY -SYMBOL

[51]1> (quote (+ 4 (* 3 2 9)))
(+4(*329)

What is a symbol when used in data form? It's just itself. The

a great many functions which operate on lists as well.

not damage the original list. The old name of rest is cdr.

append hooks multiple lists together.

symbol foo is just a thing that looks like foo (case insensitive of
course). It is a data type like any other. You can set variables to it.

What is a list when used in data form? A list is a singly-linked list.
It is a data type like any other. You can set variables to it. There are

first returns the first item in a list. The old name of first is car.

rest returns a list consisting of everything but the first item. It does

cons takes an item and a list, and returns a new list consisting of the

[48]> (setf my-variable (quote hello))

HELLO

[49]> my-variable [stores the symbol HELLO]
HELLO

[50]> (setf my-variable (quote (hey yo yo)))
(HEY YO YO)

[51]> my-variable

(HEY YO YO)

[52]> (setf var2 (first my-variable))

HEY

[53]> (setf var3 (rest my-variable))

(YO YO)

[54]> (cons 4 (rest my-variable))

(4 YO YO)

[55]> (append my-variable (quote (a b c)) my-variable)
(HEY YO YO A B C HEY YO Y0)

[56]> my-variable

(HEY YO YO) [See?
[57]> (quote "hello")

No damage]

old list with the item tacked on the front.

"hello" [makes no difference]
[58]> (quote 4.3)
4.3 [makes no difference]

quote is so common that there is a special abbreviation for it...a
single quote at the beginning of the item:

'hello-there

...1s the same as...

(quote hello-there)
Here's how it's done for lists:
'@bcde)

...is the same as...

(quote (a b c d e))

Here's a repeat of some the previous code, but with the abbreviation.

[48]> (setf my-variable 'hello)

HELLO

[50]> (setf my-variable '(hey yo yo))

(HEY YO YO)

[55]> (append my-variable '(a b c) my-variable)
(HEY YO YO A B C HEY YO YO)

[571> '"hello"

"hello" [makes no difference]
[58]> '4.3

4.3 [makes no difference]

Lists as data can of course contain sublists.

In data form, the first item of a list can be anything -- it's not
restricted to be just a symbol.

[48]> '(123.32 "hello" (how are (you there)) a)
(123.32 "hello" (HOW ARE (YOU THERE)) A)

[49]> '(((wow)) a list consisting of a list of a list!)
(((WOW)) A LIST CONSISTING OF A LIST OF A LIST!)

nil isn't just "false". It's also the empty list, '()

[481> ')

NIL

[49]> (rest '(list-of-one-thing))
NIL

[50]> (append '(list-of-one-thing) nil)
(LIST-OF-ONE-THING)

[51]> "(abc () ghil)

(A B CNIL GHTI)

Lists have a common control structure, dolist, which iterates over a
list. The format of dolist is very similar to dotimes:

(dolist (var list-to-iterate-over
optional-return-val)
expri1
expr2
)

dolist evaluates the list-to-iterate-over, then one by one sets var to
each element in the list, and evaluates the expressions. dolist then
returns the optional return value, else nil if none is provided.

[48]> (dolist (x '(a b c d e))
(print x))

moMNW>

NIL
[49]> (defun my-reverse (list)
(let (new-list) [initially nil, or empty list]
(dolist (x list)
(setf new-list (cons x new-list)))
new-1list))
MY -REVERSE
[50]> (my-reverse '(abcdef g))
(GFEDCBA)

Lists and strings share a common supertype, sequences.

There are a great many sequence functions. All sequence functions
work on any kind of sequence (including strings and lists). Here are
two sequence functions we've seen so far.

[48]> (reverse '(a b c d e))
(ED CBA)

[49]> (reverse "abcde")

"edcba"

[50]> (subseq "Hello World" 2 9)
"1llo Wor"

[51]> (subseq '(yo hello there how are you) 2 4)
(THERE HOW)

Loading and Compiling Lisp

Lisp is both an interpreter and a compiler.

If you type in code at the command line, it is (on most Lisp systems)

[48]> (defun slow-function (a)
(dotimes (x 100000)
(setf a (+ a 1)))

interpreted.

You can compile a function by passing its symbol name (quoted!) to
the compile function.

You can time the speed of any expression, and its garbage collection,
with the time function.

a)

SLOW-FUNCTION
[49]> (time (slow-function 0))

Real time: 1.197806 sec.
Run time: 1.15 sec.
Space: 0 Bytes

100000

[50]> (compile 'slow-function)
SLOW-FUNCTION ;

NIL ;

NIL

[51]> (time (slow-function 0))

Real time: 0.066849 sec.
Run time: 0.07 sec.
Space: 0 Bytes

100000

You don't have to type all your code in on the command line. Instead,
put it in a file named "myfile.lisp" (or whatever, so long as it ends in
"lisp"). Then load it with the load command.

load works exactly as if you had typed in the code directly at the
command line.

By default, load is fairly silent -- it doesn't print out all the return
values to the screen like you'd get if you typed the code in at the
command line. If you'd like to see these return values printed out, you
can add the :print t keyword parameter.

You can load and reload files to your heart's content.

[Make a file called "myfile.lisp", containing this:
(setf foo 3)
(defun my-func ()

(print 'hello))

foo
(sin foo)
(my-func)

[At the command line, you type: 1]

[49]> (load "myfile.lisp")

;7 Loading file myfile.lisp ...
HELLO
;7 Loading of file myfile.lisp is finished.
T [load returns t]

[To get the return values for each item entered in:

[50]> (load "myfile.lisp" :print t)

;7 Loading file myfile.lisp ...

3

MYFUNC

3

0.14112

HELLO

HELLO

;7 Loading of file myfile.lisp is finished.
T

1

[because we called (my-func), which printed]

]

You can also compile a whole file with the compile-file function.

When a file is compiled, the object file created has a .fas or .fsl or .fasl
or .afasl extension. Depends on the Lisp compiler.

You load object files with the load function as well.

non

You can omit the extension (".lisp", ".afasl", etc.) from the filename,
but what happens as a result is implementation-dependent. Some
systems load the most recent version (either the source or the .afasl
file); others may load the .afasl file always but warn you if there's a
more recent .lisp file, etc. In general, to be safe, always load the full
name of the file including the extension.

When the compiler compiles the file, one common thing it will
complain of is special variables. For all intents and purposes, a special
variable is a global variable. With very few exceptions, you should
never use global variables when you can use local variables instead.

In our file we had declared a global variable (foo). Look at the
warnings when we compile!

[18]> (compile-file "myfile.lisp")

Compiling file myfile.lisp ...

WARNING in function #:TOP-LEVEL-FORM-1 in
FOO is neither declared nor bound,

it will be treated as if it were declared
WARNING in function #:TOP-LEVEL-FORM-3 in
FOO is neither declared nor bound,

it will be treated as if it were declared
WARNING in function #:TOP-LEVEL-FORM-4 in
FOO is neither declared nor bound,

it will be treated as if it were declared

line 1

SPECIAL.

SPECIAL.
line 5 :

SPECIAL.

Compilation of file myfile.lisp is finished.

The following special variables were not defined:
FOO

0 errors, 3 warnings

#P"myfile.fas"

3

3

[19]> (load "myfile.fas")

;7 Loading file myfile.fas ...

HELLO

;7 Loading of file myfile.fas is finished.
T

lines 4..5 :

Lisp Style

As you can see, Lisp can get quite confusing because of the
parentheses. How tedious it is reading code based on
parentheses! That's why Lisp programmers don't do it.

Lisp programmers don't rely much on the parentheses when
reading code. Instead, they rely heavily on breaking
expressions into multiple lines and indenting them in a very
peculiar way. There is a "cannonical" indent format and style
for Lisp. Code which adheres to the standard format can be
read very rapidly by Lisp programmers who have developed a
"batting eye" for this format.

Important formatting rules:

* Put a single space between each item in a list.

e Do NOT put space between the opening parenthesis
and the first item in a list. Similarly, do NOT put space
between the closing parenthesis and the last item.

e Never put parentheses all by themselves on lines like a
C++/Java brace. Do not be afraid to pile up parentheses
at the end of a line.

Do NOT use simplistic editors like pico or Windows
Notepad. You will regret it. Deeply. Use an editor designed
for Lisp. Integrated Lisp systems (the big three are Franz
Allegro Common Lisp, Xanalys Harlequin Common Lisp,
and Macintosh Common Lisp) with graphical interfaces have
built-in editors which will automatically indent text for you in
the official style, will colorize your text, will tell you whether
your syntax is right or not, and will match parentheses for
you.

Another good choice, indeed the classic option in Lisp
systems, is the editor emacs. It is written in its own version of
Lisp, and is very good at editing Lisp code and working with
Lisp systems, especially with an add-on Lisp-editing plug-in
called slime. emacs is the program whose auto-indent facilities
established the "cannonical" style of Lisp formatting.

If you can't find an editor which can do the cannonical style,
there are still plenty of choices which do a reasonable job.
Any professional-grade code editor will do in a pinch.
Without a good editor, writing large Lisp programs is painful.
GET A CODE EDITOR. You are an adult now, and will
soon be a professional. Use real tools to get your job done.

[BAD Lisp Style Formatting Examples]

(if(< (* 3 4)5)(sin(+ 3 x)) (- xy))

(If
(<
(* 3 4)
5
)
(SIN
(+ 3 x)
)
(- xy)
)

[A reasonably GOOD Lisp Style Formatting Example]

(if (< (* 3 4) 5)
(sin (+ 3 x))
(- xy))

[A more canonical Lisp Indent Format]
(if (< (* 3 4) 5)

(sin (+ 3 x))
(- xy))

Comments in Lisp are of three forms.

Winged comments (the equivalent of /* and */ in C++ or
Java) begin with a #| and end with a |# They are not
commonly used in Lisp except to temporarily eliminate
chunks of code, because it's hard to tell they exist by
examining your code.

Inline comments (the equivalent of // in C++ or Java) begin
with a semicolon ; and end with a return.

Many Lisp structures have built-in documentation comments.
For example, if the first expression in a defun statement is a
string, that string is not part of the code but instead is
considered to be the "documentation" for the function. You
can access the documentation for an object with the
documentation function.

It is common in Lisp to pile up several semicolons 3; or 535 to
make the comment more visible.

Here is a common approach:

e Use one semicolon for inline code.
e Use two semicolons to comment the head of a function.

[A well-commented file]
;.. pi-estimation package
;1 Sean Luke

;71 Wednesday, 8/21/2002

;7 ESTIMATE-PI will compute the value of pi to

;7 the degree given, maintaining the value as a giant
;; fraction. It uses the Leibniz (1674)

;; formula of pi =4 * (1/1 - 1/3 +1/5 - 1/7 + ...)
;; degree must be an integer > 0.

(defun estimate-pi (degree)
"Estimates pi using Leibniz's formula.
degree must be an integer greater than 0."
(let ((sum 0) (inc 1)) ; inc goes 1, 5, 7,
(dotimes (x degree (* 4 sum)) ; we return 4*sum
#| (setf sum (+ sum (/ 1 inc))
(- 0 (/1 (+ inc 2)))) |# ; yucky
(setf sum (+ sum (/ 1 inc) (/ -1 (+ inc 2))))
(setf inc (+ 4 inc)))))

[...after estimate-pi has been entered into Lisp...]

[13]> (documentation 'estimate-pi 'function)
"Estimates pi using Leibniz's formula.
degree must be an integer greater than 0."

Use three semicolons to comment the head of a file or
other big region.

e Use winged comments only to comment-out a region

temporarily.

[14]> (describe 'estimate-pi)
[Get ready for more information than you really need!]

ESTIMATE-PI is the symbol ESTIMATE-PI, lies in
#<PACKAGE COMMON-LISP-USER>, is accessible in
the package COMMON-LISP-USER, names a function,
has the properties SYSTEM::DOCUMENTATION-STRINGS,
SYSTEM: :DEFINITION.

Documentation as a FUNCTION:

Estimates pi using Leibniz's formula.

degree must be an integer greater than 0.

For more information, evaluate (SYMBOL-PLIST 'ESTIMATE-PI).

#<PACKAGE COMMON-LISP-USER> is the package

named COMMON-LISP-USER. It has the nicknames CL-USER,
USER.It imports the external symbols of the packages
COMMON-LISP, EXT and exports no symbols, but no
package uses these exports.

#<CLOSURE ESTIMATE-PI (DEGREE) (DECLARE #)
(BLOCK ESTIMATE-PI #)> is an interpreted function.
argument list: (DEGREE)

Lisp has important style rules about symbols, used for both
variables and function names.

Although Lisp symbols are case-insensitive,
ALWAYS use lower-case. There is a good reason for
this. Keep in mind that Lisp is an interactive system:
both you and the system are producing text on the
screen. Lisp systems spit out symbols in UPPER-
CASE. By sticking with lower-case yourself, you can
distinguish between the text you typed and the text the
Lisp system generated.

Do NOT use underscores in symbols. Use hyphens.
Although the previous examples above didn't do it to
avoid confusing you, you should always denote global
variables by wrapping them with *asterisks*.
Global variable names should also be self-explanatory.
Variable names should be nouns.

Function names should be verbs.

Though you can always name variables the same
names as functions, it's more readable not to do so.

[BAD Lisp Style Symbols:]
my_symbol_name
mySymbolName
MySymbolName
MY_SYMBOL_NAME

[A GOOD Lisp Style Symbol]
my-symbol-name

[A BAD Global Variable Name]
aprintf

[A GOOD Global Variable Name]
alpha-print-format

Lisp is a functional language. Learn to use functional style.
One way you can tell you're using functional style is if you
have very few (or even no) local variables, and rarely if ever
use a global variable.

As Paul Graham says, "treat setf as if there were a tax on its

use

n

[HORRIBLE Lisp Style]

(defun do-the-math (x y
(setf w (+ x y)
(setf n (* z w)
(+ x n))

z)
)
)

[MERELY BAD Lisp Style -- no global variables]

(defun do-the-math (x y z)
(let (w n)
(setf w (+ x y))
(setf n (* z w))
(+ x n)))

[BETTER Lisp Style -- functional style]

(defun do-the-math (x y z)
(+x (* z (+ xYy))))

Declare your global variables once with defparameter before
you start using them in setf statements.

(defparameter var-symbol initial-value

[13]> (defparameter *tuning-value* 4.0
"The tuning value of the amplitude dial")
TUNING-VALUE

optional-documentation-string)
Declare global constants with defconstant.

(defconstant var-symbol value
optional-documentation-string)

The documentation strings can be accessed via
documentation, and of course, describe.

[14]> (defconstant *low-quality-pi* 3.14159
"Pi to only six digits")

LOW-QUALITY-PI

[15]> (documentation '*tuning-value* 'variable)

"The tuning value of the amplitude dial"

[16]> (describe '*low-quality-pi*)

LOW-QUALITY-PI is the symbol *LOW-QUALITY-PI*,

lies in #<PACKAGE COMMON-LISP-USER>, is accessible

in the package COMMON-LISP-USER, a constant,

value: 3.14159, has the property SYSTEM::DOCUMENTATION-STRINGS.
Documentation as a VARIABLE:

Pi to only six digits

For more information, evaluate (SYMBOL-PLIST '*LOW-QUALITY-PI¥*).

#<PACKAGE COMMON-LISP-USER> is the package named
COMMON-LISP-USER. It has the nicknames CL-USER, USER.
It imports the external symbols of the packages
COMMON-LISP, EXT and exports no symbols, but no
package uses these exports.

3.14159 is a float with 24 bits of mantissa (single-float).

Lisp II CAUTION:

This tutorial will introduce you to more concepts in Lisp that weren't covered in the Quickstart.
In addition to more data structures and control concepts, we'll get into basic concepts that
really make Lisp different from other languages.

As before, the examples we give will be based on CLISP, but they work basically the same in

all lisp systems.
Made with secret

You can go back to Tutorial 1 (QuickStart) or forward to Tutorial 3. alien technology

Legend

As before, the table cell to the right shows what you type, and | This text is being printed out. o

the output, for this tutorial. Text shown in blue you are You would type this text [This is a remark]
responsible for typing, with a Return at the end of the line. Text
shown in black indicate stuff that is printed back to you. Text Here is another example.
shown in red are remarks -- do not type them.

If the cell is divided by a line, as is shown at right, then this
indicates two different examples.

Arrays and Vectors

Lisp has many kinds of arrays: multidimensional
[1]> (make-array 4)

arrays, variable-length arrays, fixed-length simple #(NIL NIL NIL NIL)
arrays, arrays guaranteed to have certain types in [2]> #(a b ¢)
them, arrays which can hold anything, etc. Tg? B O

>

Lisp arrays are created with the function make-
array. The simplest form of this function is:

(make-array length)

This form makes a one-dimensional fixed-length
array length elements long. The elements are each
initialized to nil.

An array of this form is called a simple-vector. You
don't just have to use make-array to build a
simple-vector. Just as you can make a list of the
symbols a b ¢ by typing *(a b c), you can make a
simple vector of the symbols a b ¢ by typing #(a b
©)

A multidimensional array is created as follows: i
[1]> (make-array '(4 3 8)) [it has to be quoted]

#3A(((NIL NIL NIL NIL NIL NIL NIL NIL)
(NIL NIL NIL NIL NIL NIL NIL NIL)
(NIL NIL NIL NIL NIL NIL NIL NIL))

(make-array dimension-1list)

ThlS fOHIl makes anN-dimensional ﬁxed—length ((NIL NIL NIL NIL NIL NIL NIL NIL)
array of the dimensions given by elements in the (NIL NIL NIL NIL NIL NIL NIL NIL)
list. The elements are each initialized to nil. (NIL NIL NTIL NIL NIL NIL NIL NIL))

((NIL NIL NIL NIL NIL NIL NIL NIL)
. .. NIL NIL NIL NIL NIL NIL NIL NIL
You can spe01fythe initial value of the elements ENIL NIL NIL NIL NIL NIL NIL NIL;)
with the keyword :initial-element. ((NIL NIL NIL NIL NIL NIL NIL NIL)
(NIL NIL NIL NIL NIL NIL NIL NIL)
(NIL NIL NIL NIL NIL NIL NIL NIL)))

The general function for extracting the element of [2]> (make-array '(2 2) :initial-element 0)

http://cs.gmu.edu/~sean/lisp/LispTutorial.html
http://cs.gmu.edu/~sean/lisp/LispTutorial3.html

any array is aref. It takes the form:
(aref array index1 index2 ...)

Simple vectors have a special version, svref, which
is slightly faster than aref (in fact, aref just calls
svref for simple vectors):

(svref simple-vector index)

Lisp arrays are zero-indexed. This is just like saying
(in C++/Java): array[index1][index2]...

Multidimensional arrays can also be specified with
#nA(...), where n is the number of dimensions. See
the example at right.

#2A((0 0) (0 0))

[3]> (setf *j* #2A((1 2 3) (4 5 6)))
#2A((1 2 3) (4 5 6))

[4]> (aref *j* 1 1)

5

[5]> (aref #(a b c d e) 3)

D

[6]1> (svref #(a b c d e) 3) [faster]
D

Vectors are one-dimensional arrays. You've already
seen fixed-length vectors (known in Lisp as simple-
vectors). Lisp also has variable-length vectors.

Variable-length vectors are created with the
keywords :adjustable and :fill-pointer in the
following fashion:

(make-array length :fill-pointer t
:adjustable t)

Y ou can have a zero-length vector. It's very
common to start a variable-length array at length 0.

You can tack new stuff onto the end of a variable-
length vector with the command vector-push-
extend. You can "pop" elements off the end of the
variable-length vector with vector-pop.

To use these functions, the vector must be variable-
length. You cannot push and pop to a simple
vector.

Multidimensional arrays can also have their sizes
adjusted. We'll just leave it at that -- look it up if
you're interested.

[1]1> (setf *j* (make-array 0 :fill-pointer t :adjustable t))
#()

[2]> (vector-push-extend 10 *j¥*)

0

[3]> (vector-push-extend 'hello *j*)

1

[3]> *j*

#(10 HELLO)

[3]> (aref *j* 1)
HELLO

[4]> (vector-pop *j*)
HELLO

[5]1> *j*

#(10)

A string is, more or less, a vector of characters. You
can access elements with aref. But because a string
is not a simple vector (oddly enough), you cannot
use svref. [have no idea why.

Although string elements can be accessed via aref,
strings have their own special function which does
the same thing: char, which takes the form:

(char string index)

In most systems, the two functions are about the
same speed.

[1]> (aref "hello world" 3)
#\1
[2]> (char "hello world" 6)
#\w

Setf and Friends

setf doesn't just set variables. In general,
(setf foo bar) "sees to it" that foo will
evaluate to bar. setf can "see to" an
amazing number of things.

To set the value of an element in an array
(I bet you were wondering about that!) you
say

(setf (aref array indices...)
val)

You can do the same trick with svref and
char.

You can also use setf to modify lists.
However, this is dangerous if you don't
know what you're doing. For now, don't
do it. Stick with modifying arrays and
strings.

[1]> (setf *j* #(a b c d e))

#(A B C D E)

[2]> (setf (svref *j* 3) 'hello)
HELLO

[3]> *j*

#(A B C HELLO E)

[4]> (setf *k* (make-array '(3 3 3)

#3A(((4 4 4) (4 4 4) (4 4 4))
((444) (444) (444))
((444) (444) (44 4)))[4]> (vector-pop *j*)

HELLO

[5]> (setf (aref *k* 2 1 1) 'yo)

YO

;initial-element 4))

[6]> -kk*

#3A(((4 4 4) (4 4 4) (4 4 4))
((4 4 4) (444) (444))
((4 4 4) (4Y04) (44 4))))

[7]1> (setf *1* "hello world")

"hello world"

[8]1> (setf (char *1* 4) #\B)

#\B

[9]> *1*

"hellB world"

A variant of setf called incf does more or
less the same thing as the ++ operator in
C++ or Java, except that it works on all
sorts of things (array slots, etc.) in addition
to just variables. The form:

(incf expression 4)

...will see to it that expression evaluates to
4 more than it used to (by adding 4 to it). If
you just say:

(incf expression)

...this by default sees to it that expression
evaluates to 1 more than it used to.

The macro decf does the opposite.

[1]> (setf *j* #(1 2 3 4 5))
#(1 23 45)

[2]> (incf (svref *j* 3) 4)
8

[3]> -kj*

#(1 2 3 85)

[4]> (setf *k* 4)
4

[5]> (incf *k*)
5

[6]> *k*

5

[7]> (decf *k* 100)
-95

Another variant of setf called push can be
used to "see to it" that an expression
(which must evaluate to a list) now
evaluates to a list with an element tacked
onto the front of it. If you say:

(push val expression)
...this is roughly the same as saying

(setf expression (cons val
expression))

You can also "see to it" that a list has an
element removed from the front of it with

pop:

(pop expression)

[1]> (setf *j* #((a b) (c d) (e f)))
#((A B) (C D) (EF))

[2]> (push 'hello (svref *j* 1))
(HELLO C D)

[3]> -kj*

#((A B) (HELLO C D) (E F))

[4]> (setf *k* '(yo yo ma))

(YO YO MA)

[51> (pop *k*)

YO

[6]1> *k*
(YO MA)

[a simple-vector of lists]

Another useful variant, rotatef, can be
used to swap several elements.

(rotatef expresionl expression2
. expressionN)

...this is roughly the same as saying

[1]1> (setf *j* #(gracias senor))
#(GRACIAS SENOR)

[2]> (setf *k* 'hello)

HELLO

[3]1> (rotatef (elt *j* 0) (elt *j* 1) *k*)
NIL

[4]> *j*

#(SENOR HELLO)

(setf tempvar expressiont) [5]> *k*
(setf expression! expression2) GRACIAS
‘e [6]> (setf *z* #(1 2 3 4 5))
(setf expressionN-1 expressionN) #(1 2 3 45)
(setf expressionN tempvar) [7]> (rotatef (elt *z* 1) (elt *z* 4)) [swap 'em]
NIL
A simple use of this is simply (rotatef £?1>5*§*4 2
expression1 expression2) which sees
to it that the values of expressionl and
expression2 are swapped.
Function, Funcall, and Apply

In Lisp, pointers to functions are first-class data (11> (functi int)

. . . . > (function prin
objects. They can be stored in Varlables., passed into #<SYSTEM-FUNCTION PRINT>
arguments, and returned by other functions. [2]> (function if) ["if" isn't a function -- it's a macro]
The special form function will return a pointer to a T**B_ FENC§ION3 undefined function IF

. . >

function. It takes the form (function function- reak [3] a
symbol). Notice that just like quote, function [4]> (setf *temp* (function *)) [the "*" function]

doesn't evaluate its argument -- instead it just looks #<SYSTEM-FUNCTION *>
. . [5]> *temp*
up the function by that name and returns a pointer 0 | 4 SySTEM-FUNCTION *>

1it. [6]> #'print
#<SYSTEM-FUNCTION PRINT>
Also like quote, function is so common that there is | [71> (setf *temp* #'*)

. . #<SYSTEM-FUNCTION *>
a shorthand for it: a pound sign followed by a quote [8]> *temp*

at the beginning of the function name: #<SYSTEM-FUNCTION *>
#'print

...Is the same as...
(function print)

Keep in mind that you can only get pointers to
functions, not macros or special forms.

A common mistake among Lisp newbies is to think [6]> (setf * int* (functi int))
. > (se new-prin unction prin

that variables with ﬁmc‘uoq pomters st(?red in them #<SYSTEM-FUNCTION PRINT>

can be used to make a traditional function call by [71> (*new-print* "hello world")>

sticking the variable at the beginning of a list.)]]
**% _ EVAL: the function *NEW-PRINT* is undefined

Remember that the first item in an evaluated list must 1. Break [8]> :a

be a symbol which is not evaluated. If a variable [91>
could be put as the first item, it would have to be
evaluated first (to extract the function pointer).

Thus, Common Lisp can associate a finction with a
symbol (by using defun) and it can also associate a
value with the same symbol as a variable (by using
setf). A Lisp which can associate two or more
different kinds of things at the same time with a
symbol is called a Lisp 2. Common Lisp is a Lisp 2.
Emacs Lisp is also a Lisp 2.

Scheme, another popular Lisp dialect, evaluates the
first item in the list as a variable, looking up its
function-pointer value. Scheme associates only one
thing with a symbol: the item stored in its variable.
Thus Scheme is a Lisp 1.

Lisp 1's are simpler and more intuitive than Lisp 2's.
But it is more difficult to do certain kinds of powerful
things with them, like macros. We'll get to that later
on.

If you can't just call a function pointer by sticking it
in the first spot in a list, how do you call it?

There are a great many functions and macros which
use function pointers. One basic one is funcall. This
function takes the form

(funcall function-pointer argl arg2 ...)

funcall is a function which evaluates function-
pointer, which returns a pointer to a function, then it
evaluates each of the arguments, then passes the
argument values into the function. funcall returns the
value of the function.

[6]> (setf *new-print* (function print))
#<SYSTEM-FUNCTION PRINT>
[71> (funcall *new-print* "hello world")>

"hello world"

"hello world"

[8]> (funcall #'+ 1 2 3 45 6 7)

28

[91> (funcall #'funcall #'+ 1 2 3 4 5 6 7) [hee hee!]
28

(101>

Another useful function which takes function
pointers is apply. The simple version of this function
takes the form

(apply function-pointer list-arg)

apply takes a function pointer, plus one more
argument which must evaluate to a list. It then takes
each element in this list and passes them as
arguments to the function pointed to by function-
pointer. apply then returns the value the that the
function returned.

It so happens that apply can do one additional trick.

Alternatively, apply can look like this: (apply
function-pointer argl arg2 ... list-arg)

The last argument must evaluate to a list. Here,
apply builds a list before passing it to the function.
This list is built by taking each of the argl, arg2,
arguments and concatenating their values to the front
of the list returned by /ist-arg. For example, in
(apply #'+ 1 2 3 '(4 5 6)), the concatenation
results in the list '(1 2 3 4 5 6). Thus

(apply #'+ 1 2 3 '(4 5 6)) is the same thing as

(apply #'+ '(1 2 3 4 5 6)) which is the same
thing as

(apply #'+ 1 2 3 4 5 6 '()) which of course is
the same thing as

(apply #'+ 1 2 3 45 6 nil)

[6]> (apply #'+ '(1 2 3 45 6))
21
[71> (apply #'+ 1 2 3 4 5 6 nil)
21
[81> (apply #'+ 1 23 '(4 5 6))
21

[91> (apply #'apply #'+ '"(1 2 3 (4 56))) [woo hoo!]
21

[10]> (apply #'funcall #'+ '(1 2 3 45 6)) [yee haw!]
21

[11]> (funcall #'apply #'+ '(1 2 3 45 6))
21

[hmmmm. . .]

Mapping

Lisp uses pointers to functions everywhere. It's
what makes Lisp's built-in functions so powerful:

[1]> (mapcar #'sqrt '(3 456 7))
(1.7320508 2 2.236068 2.4494898 2.6457512)

they take optional functions which let you
customize the built-in ones in special ways.

One very common use of pointers to functions is
mapping. Mapping applies a function repeatedly
over one or more lists, resulting in a new list. The
most common mapping function is mapcar,
which in a basic form looks like this:

(mapcar function-pointer 1ist)

Since we're providing just one list, function-
pointer must be a pointer to a function which can
take just one argument, for example, sqrt.

In this form, mapcar repeatedly applies the
function to each element in the list. The return
values are then put into a list and returned.

[2]> (mapcar (function print) '(hello there how are you))

HELLO

THERE

HOW

ARE

YOuU

(HELLO THERE HOW ARE YOU)
[31>

mapcar more generally looks like this:

(mapcar function-pointer list1 list2
.e)

If function-pointer points to a function which
takes NV arguments, then we must provide N lists.

mapcar takes the first element out of each list
and passes them as arguments to the function.
mapcar then takes the second element out of
each list and passes them as arguments to the
function. And so on. mapcar then returns a list
of the return values of the function.

If any list is shorter than the others, mapcar
operates only up to the shortest list and then
stops.

Lisp provides a number of other useful mapping
functions: map, mapc¢, mapcan, mapcon ...

[1]> (mapcar #'/ '"(1 2 3 45)

(1/7 1/4 1/3 2/5 5/11)

[2]> (mapcar #'* '(1 2 3 4)
"(56) '(789))

'(7 8 910 11))

[one list is only 2 long]
(35 96)
[31>

A related feature is reduction: composing a
function in on itself. The basic reduce function
looks similar to mapcar:

(reduce function-pointer 1list)

Junction-pointer must point to a function which
takes exactly two arguments. If the elements in
list are a b ¢ d, and the function func is stored in
the function pointer, this is the same thing as
doing:

(func (func (func a b) c) d)

You can also change the order of operations with
the :from-end t keyword argument, resulting in
the ordering:

(func a (func b (func c d)))

reduce has other gizmos available. Check 'em
out.

[Note: (expt a b) computes a A b
[1]> (reduce #'expt '(2 3 4 5))
1152921504606846976

[2]> (reduce #'expt '(2 3 4) :from-end t)
2417851639229258349412352

[31>

(a to the power of b)]
[((27A3)7M4)N5)]

[27(374)]

Lambda and Closures

A lambda expression is one of the more powerful concepts
in Lisp. A lambda expression is an anonymous function, that
is one that doesn't have a name -- just a pointer to it.

Lambda expressions are created using the form:
(function (lambda (args...) body...))
Note how similar this is to defun:

(defun function-name (args...) body...)

A lambda expression builds a function just like defun would,
except that there's no name associated with it. Instead, the
lambda expression returns a pointer to the function.

Remember that function has a shorthand of #' so the lambda
expression is usually written like this:

#'(lambda (args...) body...)

To make things even more confusing, Common Lisp has
provided for you an actual macro called lamda, which does
exactly the same thing. Thus if you really want to (but it's not
good style) you can write it as just:

(lambda (args...) body...)

[1]> (mapcar #'(lambda (x) (print (* x 2)))
'(123456))

cooh N

10
12
(246810 12)
[2]> (reduce #'(lambda (a b) (/ a (* b b)))

'(2 3 4)) [(2 / 37h2) / 472]
1/72
[31> (funcall #'(lambda (a b) (/ a (* b b))) 9 7)
9/49

Lambda expressions are useful when you need to pass in a
quick, short, temporary function. But there is another very
powerful use of lambda expressions: making closures.

A closure is a function bundled together with its own lexical
scope. Usually you can think of this as a closure being a
function plus its own personal, private global variables.

When a function is built from a lambda expression, it is
usually created in the context of some outer local variables.
After the function is built, these variables are "trapped" with
the lambda expression if anything in the lambda expression
referred to them. Since the lambda expression is hanging on to
these variables, they're not garbage collected when the local
scope is exited. Instead they become private variables that
only the function can see.

We can use this concept to make function-building
functions. Consider:

(defun build-a-function (x)
#'(lambda (y) (+ x y)))

...examine this function carefully. build-a-function takes a
value x and then returns a function which adds that amount x
to things!

[1]> (defun build-a-function (x)
#'(lambda (y) (+ x y)))

BUILD-A-FUNCTION

[2]> (setf *+3* (build-a-function 3))

#<CLOSURE :LAMBDA (Y) (+ X Y)>

[3]> (funcall *+3* 9)

12

[4]> (funcall *+3* 2)

5

[5]> (setf *-6* (build-a-function -6))
#<CLOSURE :LAMBDA (Y) (+ X Y)>

[61> (funcall *-6* 21)

15

[7]1 (funcall *-6* (funcall *+3* 38))
35

Closures are also common when we need to make a quick
custom function based on information the user provided.
Consider:

(defun add-to-1list (val list-of-numbers)
(mapcar #'(lambda (num) (+ val num))
list-of-numbers))

[1]> (defun add-to-list (val list-of-numbers)
(mapcar #'(lambda (num) (+ val num))
list-of-numbers))

ADD-TO-LIST

[2]> (add-to-1list 4 '(1 2 3 4 5))

(56 7 809)

[Here's the more C++ way to do it...]

[Not too useful this one, just an example...

...examine this function carefully as well. add-to-list takes a
number val and a list of numbers. It then maps a custom
function on the list of numbers. This custom function adds val
to each one. The new list is then returned.

Notice that the lambda expression is converted into a function
even though it refers to va/ inside the lambda expression.

Closures are examples of powerful things which C++ simply
cannot do. Java gets there part-way. Java can do lambda
expressions in the form of "anonymous classes". But it too
cannot do real closures, though there are nasty hacks to work
around the issue.

[3]1> (defun icky-add-to-list (val list-of-numbers)
(let (bag)
(dolist (x list-of-numbers)
(push (+ val x) bag))

(reverse bag)))
ICKY-ADD-TO-LIST
[4]> (icky-add-to-list 4 '(1 2 3 4 5))
(56 7 809)

Closures also occur with defun. Imagine if defun were called
inside a let statement:

(let ((seed 1234))
(defun rand ()
(setf seed (mod (* seed 16807) 2147483647))))

Here we defined a local variable called seed. Inside this local
environment, we defined a function called rand which uses
seed. When we leave the let, what happens to seed?
Normally it would get garbage collected. But it can't here --
because rand is holding on to it. seed becomes a private
global variable of the function rand. No one else can see it
but rand.

You can use this for other interesting purposes. Imagine that
you want to make a private bank account:

(let ((account 0))
(defun deposit ($$%)
(setf account (+ account $$%$)))
(defun withdraw ($$%$)
(setf account (- account $%$%$)))
(defun amount ()
account))

The functions deposit, withdraw, and amount share a
common private variable called account that no one else can
see.

This isn't much different from a Java or C++ object with a
private instance variable and three methods. Where did you
think object-oriented programming came from? You got it.

In fact, Lisp can be easily modified to do rather OOP built on
top of closures. It comes with an OOP system, CLOS, as part
of the language (though I think CLOS is too mammoth, so I
usually make my own little OOP language in Lisp instead).

[1]1> (let ((seed 1234))
(defun rand ()
(setf seed (mod (* seed 16807) 2147483647))))
RAND
[2]> (rand)
20739838
[3]> (rand)
682106452
[4]> (rand)
895431078
[5]> seed

**% _ EVAL: variable SEED has no value
1. Break [6]> :a
[7]1> (let ((account 0))
(defun deposit ($$%)
(setf account (+ account $$%$)))
(defun withdraw ($$$)
(setf account (- account $$%$)))
(defun amount ()
account))
AMOUNT
[8]> (deposit 42)
42

[9]> (withdraw 5)
37

[10]> (amount)
37

[11]> account

- EVAL: variable ACCOUNT has no value

Sequence Functions

Vectors (both simple and variable-length),

lists, and strings are all sequences. #1(]; (elt
Multidimensional arrays are not sequences. [2]> (elt
up?

A function which works with any kind of

"hello world" 4)

"(yo yo yo whats up?) 4)

[3]> (elt #(yo yo yo whats up?) 4)

sequence is a sequence function (duh). We've
seen some examples of sequence functions
before: length, reverse, subseq.

Another common sequence function is elt, of
the form:

(elt sequence index)

elt returns element #index in the sequence.
You can use elt inside setf to set the element
(again, don't change elements in lists unless
you know what you're doing. Strings and
vectors are fine).

elt is an example of a general function: it
works with a variety of data types, butas a
result is slower than custom-made functions
for each data type. For example, if you know
your sequence is a string, aref is probably
faster. If you know your sequence is a simple-
vector, svref is much faster. Lists also have a
faster function: nth.

up?

copy-seq makes a duplicate copy of a
sequence. It does not copy the elements (both
sequences will point to the same elements).

concatenate concatenates copies of sequences
together, producing a new sequence of a given
type. The original sequences can be different
types. concatenate looks like this:

(concatenate new-sequence-type
sequences...)

new-sequence-type is a quoted symbol
representing the #ype of the new sequence. For
example, simple vectors use 'simple-vector
and lists use '1ist and strings use 'string.

make-sequence builds a sequence of a given
type and length. Like elt, it is a general
function (it calls faster, more type-specific
functions underneath). It looks like this:

(make-sequence sequence-type length)

make-sequence has a keyword argument
:initial-element which can be used to set the
initial element of the sequence.

concatenate and make-sequence show the
first examples of type symbols. We'll talk
about types more later.

[1]1> (copy-seq "hello world")

"hello world" [the copied string]

[2]> (concatenate 'string '(#\y #\o) #(#\space) "what's up?")
"yo what's up?"

[3]> (make-sequence 'string 4 :initial-element #\e)

"eeee"

A host of sequence-manipulative functions
have very similar forms.

First off, most sequence-manipulative
functions are either destructive or non-
destructive. That is, either they modify or
destroy the original sequence to achieve their
goals (faster), or they make a copy of the
sequence first. We'll show the non-destructive

[1]1> (count #\1 "hello world")
3

[count the number of vowels in "hello world"]
[2]> (count-if #'(lambda (i) (find i "aeiou")) "hello world")
3

[count the number of non-alpha-chars in "hello world4"]
[3]1> (count-if-not #'alpha-char-p "hello world4")
2

[remove the alpha chars from "hello world4"]
[4]> (remove-if #'alpha-char-p "hello world4")
wogn

versions first.

Second, a great many sequence functions have
three versions, the function, the -if version, and
the -if-not version. For example, the count
function also has count-if and count-if-not.
The forms look like this:

(count object sequence keywords...)
counts the number of times object appears in

sequence.

(count-if test-predicate sequence
keywords. . .) counts the number of times in

which fest-predicate (a function pointer)
returns true for elements in sequence.

(count-if-not test-predicate sequence
keywords. . .) counts the number of times in

which test-predicate (a function pointer)
returns false (nil) for elements in sequence.

Third, many such functions take a lof of
optional keyword arguments. Before testing to
see if an element is the one we're looking for,
these functions give you a chance to "extract"
the relevant item out of the element with an
optional function passed in with the keyword
argument :key. You can tell the system to scan
backwards with :from-end t. You can tell the
system to only scan from a certain location to
another location in the sequence with the
keywords :start and :end. There are other
keywords as well.

Other functions which follow this pattern
include: find (returns the first element
matching the pattern) else nil, position (returns
the index of the first element matching the
pattern) else nil, remove (removes all the
elements matching the pattern from a copy of
the sequence), and substitute (replaces all the
elements matching the pattern with some other
element). substitute has an additional
argument indicating the item to replace stuff
with, thus its three versions substitute,
substitute-if, and substitute-if-not start like
this:

(substitute[-if[-not]] thing-to-
replace-with rest-of-arguments-as-
before...)

[find the first element < 4 in #(4 9 7 2 1 0 3)]
[5]1> (find-if #'(lambda (x) (< x 4)) #(4 97 2 1 0 3))
2

[give the index of the first element < 4 in #(4

97210 3)]
[6]> (position-if #'(lambda (x) (< x 4)) #(4 97 2 1 0 3))
3
[replace with NUMBER all the numbers in the list]

[7]1> (substitute-if 'number #'numberp '(a b 3 d "yo" 4.2 e))
(A B NUMBER D "yo" NUMBER E)
[replace PI with 3.14159 for elements #4 through #9]
[8]> (substitute 3.14159 'pi
'(piabpicdepifpipighpi)
:start 4 :end 10)
(PI ABPI CDE 3.14159 F 3.14159 PI G H PI)

Another useful function, search, searches for
the first index where one subsequence appears
in another sequence. It takes the form:

(search subsequence sequence
keywords...)

Keywords include :keys, :test, :test-not,
:from-end, :startl, :endl, :start2, :end2. Try
them out and see what they do.

[1]1> (search "wor" "hello world")
6

Many sequence functions have destructive

[1]> (setf *j* "hello world")

counterparts which are faster but may modify
the original sequence rather than making a
copy first and modifying the copy.

There are no promises with destructive
functions: they may or may not modify the
original. They may or may not modify the
original into the form you're hoping for. The
only guarantee they make is that the value they
return will be what you're hoping for. Thus
you should only use them on data that you
don't care about any more.

The destructive form of remove[-if[-not]] is
delete[-if[-not]].

The destructive form of substitute[-if[-not]] is
nsubstitute[-if[-not]].

The destructive form of reverse is nreverse.

sort is destructive. Its basic form looks like
this:

(sort sequence predicate)

"hello world"

[2]> (substitute #\Q #\1 *j*)
"heQQo worQd"

[3]> *J‘-k

"hello world"

[4]> (nsubstitute #\Q #\1 *j*)
"heQQo worQd"

[5]> *j*

"heQQo worQd"

[6]> (sort '(4 35231 3) #'>)
(5433321)

Functions With Variable Arguments

Now that we have enough
functions to extract the elements
of a list, we can talk about how
to make a function which takes a
variable number of arguments.
The special term &rest,
followed by an parameter name,
can appear at the end of a
parameter list in defun, musch
as &key and &optional can
appear.

MEAN
19/4

10

If a function call provides any
extra arguments beyond those
defined in the parameter list, the
additional arguments are all
placed in a /list, which the &rest
parameter is set to. Otherwise it
is set to nil.

[51>

Though it's possible to have rest-
parameters along with keyword
parameters and optional
parameters in the same function,
don't do it. Ick.

[4]> (mean)

[1]> (defun mean (first-num &rest others)

[others will be the list with remaining variable arguments]
"Returns the mean of a bunch of numbers.

There must be at least one number."

(let ((nums (cons first-num others)))

(/ (apply #'+ nums)

(length nums))))

[2]> (mean 10 2 3 4)

[3]> (mean 10)

; nums is list of the numbers

**% _ EVAL/APPLY: too few arguments given to MEAN

Lisp HII

Yet more Lisp!

Legend

As before, the table cell to the right shows what you type, and the
output, for this tutorial. Text shown in blue you are responsible
for typing, with a Return at the end of the line. Text shown in
black indicate stuff that is printed back to you. Text shown in red
are remarks -- do not type them.

If the cell is divided by a line, as is shown at right, then this
indicates two different examples.

You can go back to Tutorial 1 (QuickStart) or Tutorial 2.

This text is being printed out.
You would type this text

Here is another example.

[This is a remark]

List Functions

Lisp's primary data type is the list.
A list is a linked list elements. The linking structures are called cons

field points to the element the cons cell is holding. The edr field
points to the next cons cell, or to nil if the cons cell is at the end of
the list.

When you are storing a list, you are really storing a pointer to the
first cons cell in the list. Thus car (first) returns the thing that cons
cell is pointing to, and edr (rest) returns the next cons cell (what the
cdr is pointing to). Similarly, the cons function allocates a new cons

its car to the element you're tacking onto the list. Thus the original
list isn't modified at all! You've just made a new cons cell which
reuses the list to "extend" it by one.

last returns (as a list) the last » elements in the list. Really it just

to you. last's argument is optional -- if it's not there, it returns (as a
list) the last element in the list.

butlast returns (as a list) a copy of everything but the last # elements
in the list.

list takes some n arguments and makes a list out of them. It differs
from just quoting a list because the arguments are evaluated first (it's
a function).

cells. A cons cell is a structure with two fields: car and cdr. The car

cell, sets its cdr to the cons cell representing the original list, and sets

marches down the list and finds the appropriate cons and returns that

[1]> (last '"(a b c de))

(B)

[2]> (last '"(a b c de) 3)
(CDE)

[3]> (butlast '"(a b c d e))
(A BCD)

[4]> (butlast '(a b c de) 3)
(A B)

[5]> (list 1 2 (+ 3 2) "hello")
(1 2 5 "hello")

[6]> '(1 2 (+ 3 2) "hello")
(1 2 (+ 3 2) "hello™)

nth works on lists just like elt. You can use it in setf. For lists, it's a
tiny bit faster than (the more general function) elt. Note that nth's

[1]1> (listp '(4 3 8))
T

http://cs.gmu.edu/~sean/lisp/LispTutorial.html
http://cs.gmu.edu/~sean/lisp/LispTutorial2.html

arguments are not the same order as those for elt. This is historical.

listp is a predicate which returns true if its argument is a list.

[2]> (listp nil)

T

[3]1> (consp '(4 3 8))
T

[4]> (consp nil)
atom is a predicate which returns true if its argument is an atom. NIL
Note that nil is both a list and an atom. It's the only thing which is %5 1> (atom ‘'a)
both. [6]> (atom nil)
T
consp is a predicate which is true if its argument is a list but is not [71> (null nil)
- T
il [8]> (not nil)
T
null is a predicate which returns true if its argument is nil. [91> (nth 4 '(a b c d e))
E
If you think about it, the logical not function is identical to the null
function.
There are a great many more list functions. See "conses" in the text.
There are a great many permuations of edr and car.
[1]> (caar '"((a b c) ((d)) e f g h))
. A
caar is the same as (car (car ...)) [2]> (cdar '((a b c) ((d)) e f g h))
(B O
cdar is the same as (cdr (car ...)) [3]1> (caadr '((a b c) ((d)) e f g h))

caadr is the same as (car (car (cdr ...

)))
cddddr is the same as (cdr (cdr (cdr (cdr ...))))

second through tenth return the second through the tenth elements
of a list.

(D)

[41> (cddddr '((a b c) ((d)) e f g h))
(G H)

[51> (fourth "((a b ¢) ((d)) e f g h))
F

The cdr field of a cons cell doesn't have to point to a list (or to nil).

Technically, it can point to anything you like. For example, a single
cons cell can point to 45 car and "hello" in its edr. Such a cons cell
is called a dotted pair, because its printed form is (45 .

"hello"). Note the period.

You can construct long lists where the last item doesn't point to nil
but instead is a dotted pair.

If you think about it, the dotted pair can only be at the end of a list.

Dotted pairs qualify as lists as far as listp is concerned.

[1]1> (cons 45 "hello")

(45 "hello")

[2]> (cons 'a (cons 'b (cons 45 "hello")))
(A B 45 . "hello")

[31> (listp '(45 . "hello"))

T

Lists are constructed like beads of pearls. So far we've been careful
not to damage them.

setf can be used to do evil things to a list.

You can use setf to modify a list. Since we construct lists which
point to original lists, if we modify a list then it might modify other
lists which pointed to it.

One particular danger is to use setf to modify cons cells to have

[1]1> (setf *x* '"(a b c d e))
(AB CDE)

[2]> (setf *y* (rest *x*))

(B CDE)

[3]> (setf (rest *y*) '(1 2 3))
(12 3)

[4]> *y*

(B123)

[5]> *X*

(AB123) [hey, wait a minute!
[6]> (setf *x* '(a))

]

. A
circular references. For example, you could use setf to set the edr of E7§> (setf (cdr *x*) *x*)
a cell point to the same cell. (AAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAA
. . AAAAAAAAAAAAAAAAAAAAAAAA
Mo‘st L1§p §ystergs are smart enough to de'tect circular references AAAAAAAAAAAAAAAAAAAAARARRAA
while printing a list to the screen. Some (like CLISP) are not! AAAAAAAAAAAAAAAAAAAAARAAA
They'll go into an infinite loop trying to print such beasts. Try it out AAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAA
on osfl for some fun as well. AAAAAAAAAAAAAAAAAAAAAAA A
AAAAAAAAAAAAAAAAAAAAAAAA
[ad naseum]
There are a number of destructive versions of list functions. Just as
[1]> (setf *x* '(a b c d e))

in applying the destructive sequence functions to list, the same

(ABCDE)

warning applies: destructive functions are faster and use much less [2];
memory, but because lists are strung together like beads of pearls, E ; 1>
make sure you know what you're doing if you choose to use them! (A B
Here are two common ones: [41>
(A B

. . . [5]>

nconc is the destructive version of append. (A'B
[61>

nbutlast is the destructive version of butlast. (A B

(setf *y* '(1 2 3 45))
345)

(nconc *x* *y*)
CDE12345)

X

CDE12345) [what the ...]
(nbutlast 4 *x*)

CDET)

X

CDE1) [it keeps modifying *x*!]

Predicates and Types

Lisp has a number of predicates to
compare equality. Here are some type-
specific ones.

(= num1 num2) compares two numbers to
see if they are equal. 2.0 and 2 are
considered =. Also, -0 and 0 are =.

(char= char1 char2) compares two
characters. (can you guess what char>,
char<=, etc. do?)

(char-equal char1 char2) compares
two characters in a case-insensitive way.

(string= stri str2) compares two
strings.

(string-equal stri1 str2) compares
two strings in a case-insensitive way.

There are also general equality predicates.
These predicates vary in strength. Here are
some loose descriptions.

(eq obj1 obj2) is true if objl and obj2
are the exact same thing in memory.
Symbols and same-type numbers are the
same thing: (eq 'a 'a) is true for example.
But complex objects made separately aren't
the same thing: (eq '(12 3) '(1 2 3)) is
false. Neither are integers and floats eq
with one another: (eq 0 0.0) is false. eq is
fast (it's a pointer comparison).

(eql obj1 obj2) is is like eq but also
allows integers and floats to be the same
(as in (eq 0 0.0) is true). eql is the default
comparator for most stuff.

(equal obj1 obj2) says two objects are
equal if they are eql or if they "look equal"
and are lists, strings and pathnames, or bit-
vectors.

(equalp obj1 obj2) says two objects
are equal if they look equal. equalp
compares nearly every kind of Lisp thing,
including all sorts of numbers, symbols,

[11>
NIL
[2]>
[31>
T
[41>
[5]>

[6]>
NIL

(eql '(a b) '(a b))

(equalp '(a b) '(a b))

(= 0.25 1/4)

(eq (setf *q* '(a b)) *q*) [remember the function rule]

(string-equal "hello" "Hello")

(= 1/5 .2)

[what the ...

7]

characters, arrays, strings, lists, hash tables,
structures, files, you name it. equalp is the
slowest comparator predicate, but you will
generally find it to be the most useful.

Some numbers should be = but may not be
due to numeric precision.

Lisp also has predicates to determine the
type of objects. You've already seen some
such predicates: atom, null, listp.

(numberp obj) is true if 0bj is a number.
There are a number of useful numerical
predicates as well: oddp is true if the
number is odd (see also evenp). zerop is
true if the number is zero. plusp is true if
the number is > 0. Etc.

characterp is true if obj is a character.
There are a number of subpredicates, such
as alphanumericp which is true if the
character is a letter or a number.

symbolp is true if it's a symbol. stringp is
true if it's a string. arrayp is true if it's an
array. vectorp and simple-vector-p
are...well you get the idea. There's a lot of
this stuff.

[1]1> (numberp 'a)
NIL

[2]> (stringp "hello")
T

Lisp has a general type-determination
predicate called typep. It looks like this:

(typep expression type)

A type is (usually but not always) a
symbol representing the type (you have to
quote it -- it's evaluated). Example types
include number, list, simple-vector,
string, etc.

Types are organized into a hierarchy: thus
types can have subtypes (simple-vector is a
subtype of vector, which is a subtype of
array, for example). The root type is t. The
typep function returns true if the
expression has the type that as its base type
or as a supertype.

Numeric types in particular have quite a lot
of subtypes, such as fixnum (small
integers), bignum (massive integers),
float, double-float, rational, real,
complex, etc.

[1]> (typep 'a 'symbol)
T

[2]> (typep "hello" 'string)
T

[3]> (typep 23409812342341234134123434234 'bignum)
T

[4]> (typep 23409812342341234134123434234 'rational)
T

[5]1> (typep 1/9 'rational)

T

[6]1> (typep 1/9 'list)

NIL

[71> (typep 1/9 'foo)

*%% - TYPEP: invalid type specification FOO

You can get the type of any expression
with (type-of expr)

[1]1> (type-of 'float)

SYMBOL

[2]> (type-of 1/3)
RATIO

[3]1> (type-of -2)
FIXNUM

[4]> (type-of "hello")

(SIMPLE-BASE-STRING 5) [types can be lists starting with a symbol]
[51> (type-of (make-array '(3 3)))

(SIMPLE-ARRAY T (3 3))

[6]> (type-of nil)

NULL

Many objects may be coerced into another
type, using the coerce function:

(coerce expression type)

Vectors and lists may be coerced into one
another.

[1]1> (coerce 4 'float)

4.0

[2]> (coerce "hello world" 'list)

(#\h #\e #\1 #\1 #\o #\Space #\w #\o #\r #\1 #\d)

[3]1> (coerce '(#\h #\e #\1 #\1 #\o #\Space #\w #\o #\r #\1 #\d)
'string)

"hello world"

[4]> (floor -4.3)

integer division. Each function takes an
optional argument, and divides the first
argument by the second, then returns the
appropriate rounding as an integer.

If you're used to C++ or Java's integer
division, probably the most obvious choice
is truncate.

Lisp functions can actually return more
than one item. For example, integer
division functions return both the divided
value and the remainder. Both are printed
to the screen. The primary return value (in
this case, the divided value) is returned as
normal. To access the "alternate" return
value (in this case, the remainder), you
need to use a macro such as multiple-
value-bind or multiple-value-list (among
others).

. . -5
Strings may be coerced into other [5]> (coerce '(a b c) 'simple-vector)
sequences, and lists or vectors of #(A B C) '
characters can be coerced into strings. [6]> (coerce "(a b c) 'string)
. *%%* _ SYSTEM::STORE: A does not fit into "", bad type
Integers may be coerced into floats. To
convert a float or other rational into an
integer, use one of the functions floor,
round, truncate (round towards zero), or
ceiling.
While we're on the subject of the four I 5 4)
. . > oor
rounding fun.c.tlons (floor, round, 2: [the primary return value]
truncate, ceiling), these are how you do 1 [the alternative return value]

[2]> (floor -9 4)

3

[3]1> (truncate -9 4)

-1

[4]> (* 4 (truncate -9 4))

’

v

-8 [4 mulplied against the primary return value]
[5]> (multiple-value-list (truncate -9 4))
(-2 -1)
[6]> (multiple-value-bind (x y) (truncate -9 4)
(* xy))
2

Hash Tables

Hash tables are created with make-hash-
table. You can hash with anything as a
key. Hash tables by default use eql as a
comparison predicate. This is almost
always the wrong predicate to use: you
usually would want to use equal or
equalp. To do this for example, you type:

(make-hash-table :test #'equalp)

Elements are accessed with gethash. If
the element doesn't exist, nil is returned.
An alternative return value indicates
whether or not the element exists

[1]> (setf *hash* (make-hash-table :test #'equalp))
#S(HASH-TABLE EQUALP)

[2]> (setf (gethash "hello" *hash*) '(a b c))

(A B Q)

[3]1> (setf (gethash 2 *hash*) 1/2)

1/2

[4]> (setf (gethash 2.0 *hash*) 9.2) [2.0 is equalp to 2]
9.2

[5]> (gethash 2 *hash*)

9.2 [because we're using equalp as a test]

T [T because the slot exists in the hashtable]

[6]1> (setf (gethash #\a *hash*) nil) [store NIL as the value]
NIL
[71>
NIL;
NIL
[81>

(gethash #\b *hash*)
[No such key #\b in *hash*]

(gethash #\a *hash*)

(returning T or NIL). If you stored nil as
the value, then we have a problem!
Instead of having to look up the alternate
return value, you can supply an optional
return value (instead of nil) to return if the
slot really is empty.

(gethash key hashtable &optional
return-if-empty)

Use setf to set hashed values.

(setf (gethash key hashtable)
value)

Remove elements with remhash.
(remhash key hashtable)

Although it's not very efficient, you can
map over a hashtable with maphash.

(maphash function hashtable)

function must take two arguments (the
key and the value).

NIL;
T
[9]> (gethash #\b *hash* 'my-empty-symbol)
MY-EMPTY-SYMBOL ;

NIL

[10]> (gethash #\a *hash* 'my-empty-symbol)
NIL; [that's better!]

[uh... wait a minute... -- NIL is returned!]

T
[11]> (maphash #'(lambda (key val) (print key)) *hash¥*)

2
"hello"
NIL

Printing and Reading

(tepri) prints a linefeed.

(print obj) of course prints a linefeed
followed by 0bj (in a computer readable
fashion). Unlike Java's
System.println(''foo'") or C's
printf("'foo\n"), in Lisp it's traditional to
print the newline first.

(prin1 obj) prints obj (in a computer
readable fashion) -- no prior linefeed.

(princ obj) prints obj in a human
readable fashion -- no prior linefeed.
Strings are printed without "quotes", for
example. Such printed elements aren't
guaranteed to be readable back into the
intepreter.

[1]1> (progn (terpri) (terpri) (terpri) (print 'hello))

HELLO

HELLO

[2]> (progn (prin1 2) (prini
2(A B C)"hello"

"hello"

[3]1> (progn (princ 2) (princ '(a b c)) (princ "hello"))
2(A B QO)hello

"hello"

'"(a b c)) (prin1 "hello"))

(prini-to-string obj) is like prinl,
but the output is into a string.

(princ-to-string obj) is like princ,
but the output is into a string.

[1]1> (prin1-to-string 4.324)

"4.324"

[2]> (prin1-to-string "hello world")
"\"hello world\""

[31> (princ-to-string "hello world")
"hello world"

[4]> (prin1-to-string '(a b "hello" c))
"(A B \"hello\" C)"

[5]> (princ-to-string '(a b "hello" c))
"(A B hello C)"

(read) reads in an expression from the
command line.

read is a complete Lisp parser: it will read

[1]> (read)
(@b cd)
(A B CD)

[2]> (read-from-string "'(a b c d)")

[Lisp waits for you to type an expression]

any expression.

(read-from-string string) reads in an
expression from a string, and returns the
expression plus an integer indicating at
what point reading was completed.

(y-or-no-p) waits for the user to type in
a yes or a no somehow, then returns it. The
way the question is presented the user
(graphical interface, printed on screen, etc.)
is up to the Lisp system. y-or-no-p is a
predicate.

'(AB CD) ; [Or equivalently (QUOTE (A B C D)) 1]

10 [Reading the expression finished before the tenth character]
[3]1> (y-or-n-p) [clisp waits for you to type y or n]

TRUE [I tried to type in TRUE]

Please answer with y or n : vy
T

[oh, okay!]

format is a much more sophisticated
printing facility. It is somewhat similar to
C's printf command plus formating string.
But format's formatting string is much
more capable. Generally, format looks
like:

(format print-to-where format-
string obj1 obj2 ...)

print-to-where can be t (print to the screen)
or nil (print to a string).

[1]1> (format t "~%My name is ~a and my ID is ~a" "Sean" 1231)

My name is Sean and my ID is 1231

NIL

[2]1> (format nil "~%~%~%~a~a~s ~a" '"(a b o)
#(1 2 3) "yo" 'whatever)

(A B O)#(1 2 3)\"yo\" WHATEVER"

[3]1> (format t "~% ~a ~R ~:R ~@R ~:@R ~$ ~E" 4 4 4 4 4 4 4)

4 four fourth IV IIII 4.00 4.0E+0
NIL

[hee hee hee!]

Formatting sequences begin with a tilde
(~). The simplest sequences include: ~a
(princ an element); ~% (print a linefeed);
~s (prinl an element). Much more complex
formatting includes very complex
numerical printing, adding spaces and
buffers, printing through lists, even
printing in roman numerals! format has its
own little programming language. It's
astounding what format can do.

More Control Structures

(when test expri1 expr2 ...) evaluates the
expressions (and returns the last) only if zest is true,
else it returns nil.

(unless test expri1 expr2 ...) evaluatesthe
expressions (and returns the last) only if zest is nil,
else it returns nil.

(case test-object casel case2 ...) goes
through the cases one by one and returns the one
which "matches" the test-object. A case looks like
this:

(obj exprt expr2 ...)

If 0bj (not evaluated, so you shouldn't quote it) is an
object which is eql to fest-object, or is a list in
which test-object appears, then the case "matches"
test-object. In this case, the expressions are
evaluated left-to-right, and the last one is returned.
obj can also be t, which matches anything. This is

[1]> (unless (y-or-n-p) (print "you picked no!")
(print "good for you!"))
n

"you picked no!"
"good for you!"
"good for you!"
[2]> (defun type-discriminator (obj)
"Prints out a guess at the type"
(let ((typ (type-of obj)))
(when (consp typ) (setf typ (first typ)))
(case typ
((fixnum rational ratio complex real bignum)
(print "a number perhaps?"))
((simple-vector vector string list)
(print "some kind of sequence?"))
(hash-table (print "hey, a hash table..."))
(nil (print "it's nil!"))
(t (print "beats me what this thing is.
(print (type-of 0bj))))))

It says:")
TYPE-DISCRIMINATOR
[3]1> (type-discriminator 42)

"a number perhaps?"
"a number perhaps?"

the "default" case.
If no case matches, then case returns nil.

case is a lot like the Java/C++ switch statement.
There are other versions: ecase, ccase.

[4]> (type-discriminator "hello")

"beats me what this thing is.
(SIMPLE-BASE-STRING 5)
(SIMPLE-BASE-STRING 5)

It says:"

cond is a powerful generalization of case. It takes
the form:

(cond (test? expr expr ...)
(test2 expr expr ...)
(test3 expr expr ...)
s)

cond works like this. First, test/ is evaluated. If this
is true, the following expressions are evaluated and
the last one is returned. If not, then fest2 is
evaluated. If this is true, its following expressions
are evaluated and the last one is true. And so on. If
no test evaluates to true, then nil is returned.

[Previously, type-discriminator didn't work for string.
let's get it working right.]
[2]> (defun type-discriminator (obj)
"Prints out a guess at the type"
(cond
((find-if #'(lambda (x) (typep obj x))
"(fixnum rational ratio complex real bignum))
(print "a number perhaps?"))
((find-if #'(lambda (x) (typep obj x))
'(simple-vector vector string list))
(print "some kind of sequence?"))
((typep obj ‘'hash-table) (print "hey, a hash table.
((typep obj null) (print "it's nil!"))
(t (print "beats me what this thing is.
(print (type-of obj)))))

It says:")
TYPE-DISCRIMINATOR
[3]> (type-discriminator "hello")

"some kind of sequence?"
"some kind of sequence?"

"))

do is a general iterator. It takes the form:

(do (initial-variable-declarations)
(test res-expri1 res-expr2 ...)
expri
expr2
cee)

do works like this. First, local variables are declared

in a way somwhat similarly to let (we'll get to that).

Then test is evaluated. If it is true, then the res-

expr's are evaluated and the last one is returned (if

there are none, then nil is returned).

If test returned false, then expr's in the body are
evaluated. Then do iterates again, starting with
trying fest again. And so on.

A variable declaration is either a variable name (a
symbol), just as in let, or it is a list of the form (var
optional-init optional-update) The
optional-init expression initializes the variable (else
it's nil). The optional-update expression specifies
the new value of var each iteration. optional-update
is evaluated in the context of the variables of the
previous iteration.

[generate some random numbers]
[2]> (defun generate (num)
(do ((y 0 (1+ y))
(x 234567 (mod (* x 16807) 2147483647)))

((>=y num) "the end!")

(print x)))
GENERATE
[3]1> (generate 20)

234567
1794883922
911287645
158079111
398347238
1315501367
1287329304
245868803
558435193
1116751361
233049547
2001047948
2018950016
103812665
1022739291
720153249
397821451
1068533846
1590093508
1415085688
"the end!"

loop is a very powerful, complex iteration macro
which can do nearly anything. Literally. It has its
own language built into it. loop is one of the few
things in Lisp more complex than format.

loop has an idiosyncratic syntax that is very un-lisp-
like. It is also so complex that few people
understand it, and it is not recommended for use.
We will not discuss loop except to mention that its
very simplest form: (Loop expressions ...)
makes a very nice infinite loop.

[2]> (loop (print 'hello) (print 'yo))
HELLO

[... ad nauseum until you press Control-C]

A block is a sequence of expressions. Blocks

appear in lots of control structures, such as let, all
iterators (do, dotimes, dolist, loop, etc.), many
conditional statements (cond, case, when, etc.),
progn, etc.

Blocks have labels (names). In control structures,
the implicit blocks are all named nil.

Functions created with defun have an implicit
block whose label is the same name as the function.
Functions created with lambda have an implicit
block whose label is nil.

(return-from label optional-value) will exit
prematurely from a block whose label is label (not
evaluated -- don't quote it). This is somewhat like
Java/C++'s break statement. The return value of
the block is optional-value (or nil if no value
provided).

Because so many blocks are named nil, the simpler

(return optional-value) is the same thing as
(return-from nil optional-value)

Use return and return-from sparingly. They
should be rare.

[1]> (dotimes (x 100)
(print x)

(if (> x 10) (return 'hello)))

ooNoOOUThWN=—=O

10
11
HELLO
[2]> (defun differents (list &key (test #'eql))

"Returns the first different pair in list"

(dolist (x list)

(dolist (y list)
(unless (funcall test x y)
(return-from differents (list x y))))))

DIFFERENTS

[3]> (differents '(a a a b c d))
(A B)

[4]> (differents '(a a a a a a))
NIL

Another way to escape is with catch and throw.
catch looks like this:

(catch catch-symbol expressions ...)
throw looks like:
(throw catch-symbol return-value)

Normally, catch works just like progn. But if there
is a throw statement inside the catch whose catch-
symbol matches the catch's, then we prematurely
drop out of the catch and the catch returns the
return value of the throw.

This works even if the throw appears in a
subfunction called inside the catch.

In C++ such a thing is done with longjump. In
Java such a thing is done with an exception.

[another way to do the differents function]
[2]> (defun differents (list &key (test #'eql))

"Returns the first different pair in list"

(catch 'my-return-value

(dolist (x list)
(dolist (y list)
(unless (funcall test x y)
(throw 'my-return-value (list x y)))))))

DIFFERENTS

[3]1> (differents '(a a a b c d))
(A B)

[4]> (differents '(a a a a a a))
NIL

Writing Lisp in Lisp

Lisp has a built-in interpreter. It is called eval, and looks like this:

(eval data)

eval takes data and submits it to the Lisp interpreter to be executed.

The data submitted to the interpeter is not evaluated in the context of any

current local variables.

eval is powerful. You can assemble lists and then have them executed as code.
Thus eval allows you to make lisp programs which generate lisp code on-the-
fly. C++ and Java can only do this in truly evil ways (like writing machine code

[1]> (list '+ 4 7 9)

(+ 4709)

[2]> (eval (list '+ 4 7 9))
20

to an array, then casting it into a function, yikes!).

Lisp has an interpeter eval, a full-featured printer print, and a full-featured
parser read. Using these tools, we can create our own Lisp command line!

[11> (loop (format t "~%my-lisp --> ")
(print (eval (read))))

my-lisp --> (dotimes (x 10) (print 'hi))

NIL
my-lisp -->

More Debugging

(break) signals an error, just as if
the user pressed Control-C.

You can continue from a break.

[1]> (defun foo (x)
(print (+ x 3))
(break)

(print (+ x 4)))

FOO
[2]> (foo 7)

10

% - Continuable Error

Break

If you continue (by typing 'continue'): Return from BREAK loop
2. Break [4]> continue [in clisp, anyway]

11
11

(trace function-symbol) turns
on tracing of a function. function-
symbol is not evaluated (don't quote
it or sharp-quote it).

When a trace function is entered, the
function and its arguments are
printed to the screen. When the trace
function exits, its return value is
printed to the screen.

Y ou can trace multiple functions at
the same time.

You turn off tracing of a function
with (untrace function-symbol)

[1]> (defun factorial (n)

(if (<= n 0)

1

(* n (factorial (- n 1)))))
FACTORIAL
[2]> (trace factorial)
(FACTORIAL)
[3]1> (factorial 15)
1. Trace: (FACTORIAL '15)
2. Trace: (FACTORIAL '14)
3. Trace: (FACTORIAL '13)
4. Trace: (FACTORIAL '12)
5. Trace: (FACTORIAL '11)
6. Trace: (FACTORIAL '10)
7. Trace: (FACTORIAL '9)
8. Trace: (FACTORIAL '8)
9. Trace: (FACTORIAL '7)
10. Trace: (FACTORIAL '6)
11. Trace: (FACTORIAL '5)
12. Trace: (FACTORIAL '4)
13. Trace: (FACTORIAL '3)
14. Trace: (FACTORIAL '2)
15. Trace: (FACTORIAL '1)
16. Trace: (FACTORIAL '0)
16. Trace: FACTORIAL ==> 1
15. Trace: FACTORIAL ==> 1
14. Trace: FACTORIAL ==> 2
13. Trace: FACTORIAL ==> 6
12. Trace: FACTORIAL ==> 24
11. Trace: FACTORIAL ==> 120
10. Trace: FACTORIAL ==> 720

9. Trace: FACTORIAL ==> 5040

8. Trace: FACTORIAL ==> 40320

7. Trace: FACTORIAL ==> 362880

6. Trace: FACTORIAL ==> 3628800

5. Trace: FACTORIAL ==> 39916800

4. Trace: FACTORIAL ==> 479001600
3. Trace: FACTORIAL ==> 6227020800
2. Trace: FACTORIAL ==> 87178291200
1. Trace: FACTORIAL ==> 1307674368000
1307674368000

[4]> (untrace factorial)
(FACTORIAL)

[5]1> (factorial 15)

1307674368000

Y ou can step through an
expression's evaluation, just as in a
debugger, using (step
expression). The features
available within the step
environment are implementation-
dependent.

In clisp, the step function lets you
interactively type, among other
things, :s (to step into an
expression), :n (to complete the
evaluation of the expression and step
out), and :a (to abort stepping)

[1]> (defun factorial (n)
(if (<= n 0)
1

(* n (factorial (- n 1)))))
FACTORIAL
[2]> (step (factorial 4))
(step (factorial 4))

step 1 --> (FACTORIAL 4)

Step 1 [26]> :s

step 2 --> 4

Step 2 [27]> :s

step 2 ==> value: 4

step 2 --> (IF (<= N 0) 1 (* N (FACTORIAL #)))
Step 2 [28]> :s

step 3 --> (<= N 0)

Step 3 [29]> :n

step 3 ==> value: NIL

step 3 --> (* N (FACTORIAL (- N 1)))
Step 3 [30]> :s

step 4 --> N

Step 4 [31]> :s

step 4 ==> value: 4

step 4 --> (FACTORIAL (- N 1))

Step 4 [32]> :s

step 5 --> (- N 1)

Step 5 [33]> :n

step 5 ==> value: 3

step 5 --> (IF (<= N 0) 1 (* N (FACTORIAL #)))

Step 5 [34]> :n

step 5 ==> value: 6
step 4 ==> value: 6
step 3 ==> value: 24
step 2 ==> value: 24
step 1 ==> value: 24
24

The apropos function can be used
to find all the defined symbols in the
system which match a given string.
Ordinarily, apropos will return
everything, including private system
symbols. That's not what you'd
want. But the following will do the
trick:

(apropos matching-string 'cl-
user)

NOTE: A bug in CMUCL (CMU
Common Lisp) means that it doesn't
know to join the 'cl and 'cl-user
packages together into just 'cl-user
when responding to apropos. So if
you're using CMUCL, you need to

[in clisp]

[1]> (apropos "compile" 'cl-user)
COMPILE-FILE-PATHNAME
COMPILE-FILE-TRUENAME
COMPILE-PRINT
COMPILE-VERBOSE
COMPILE-WARNINGS
COMPILED-FILE-TYPES
COMPILE

COMPILE-FILE
COMPILE-FILE-PATHNAME
COMPILED-FUNCTION
COMPILED-FUNCTION-P
COMPILER-LET
COMPILER-MACRO
COMPILER-MACRO-FUNCTION
DEFINE-COMPILER-MACRO
UNCOMPILE

[in LispWorks]

variable
variable
variable
variable
variable
variable
function
function
function
type
function
special operator

function
macro
function

do something like:

(defun my-apropos (string)
(apropos string 'cl)
(apropos string 'cl-user))

...then you can call (my-apropos
"compile") and you'll get the right
stuff. Don't bother with this hack on
CLISP, LispWorks, or other
correctly-working Lisps with regard
to apropos.

[1]> (apropos "compile" 'cl-user)

COMPILER

COMPILED-FUNCTION

COMPILE-FILE-PATHNAME, value:

COMPILE-FILE (defined)
COMPILER-MACRO

COMPILE (defined)
COMPILED-FUNCTION-P (defined)

COMPILE-FILE-TRUENAME, value:

NIL

NIL

COMPILE-FILE-PATHNAME (defined)
COMPILER-MACRO-FUNCTION (defined)

COMPILE-PRINT, value:

1

COMPILE-VERBOSE, value: T
DEFINE-COMPILER-MACRO (defined macro)
COMPILER-MACROEXPAND (defined)
COMPILE-FILE-IF-NEEDED (defined)
COMPILER-BREAK-ON-ERROR, value: NIL
COMPILER-MACROEXPAND-1 (defined)

STEP-COMPILED, value:

NIL

EXIT-COMPILE-FILE (defined macro)

COMPILE-SYSTEM (defined)

COMPILER-LET (defined)

You can disassemble a function with

(disassemble function-
pointer)

You can use disassemble to assess
the quality of your function in terms
of machine code instructions.
Compiled and interpreted functions
may or may not appear to
disassemble differently. Disassembly
is implementation-dependent and
processor-dependent.

[in clisp

]

[1]> (defun factorial (n)

FACTORIAL

(if (<= n 0)
1

(* n (factorial (- n 1)))))

[3]1> (disassemble 'factorial)

Disassembly of function FACTORIAL
(CONST 0) =0

(CONST 1) =

1 required
0 optional

1
arguments
arguments

No rest parameter

No keyword
LO

parameters

(LOAD&PUSH 1)
(CONST&PUSH 0)

(LOAD&PUSH 1)

(LOAD&DEC&PUSH 2)

(JSR&PUSH LO)
11 (CALLSR 2 56)

14 (SKIP&RET 2)
16 L16

16 (CONST 1)

17 (SKIP&RET 2)

#<COMPILED-CLOSURE FACTORIAL>

[in Lispworks 1]

CL-USER 39

FACTORIAL

CL-USER 40

#x300F9158:
#x300F915C:
#x300F9160:
#x300F9164:
#x300F9168:
#x300F916C:
#x300F9170:
#x300F9174:
#x300F9178:
#x300F917C:
#x300F9180:
#x300F9184:
#x300F9188:
#x300F918C:
#x300F9190:
#x300F9194:

0
0
1
2 (CALLSR&JMPIF 1 50 L16)
6
7
9

[dunno

> (defun factorial (n)

(if (<= n 0)
1

(* n (factorial (- n 1)))))

> (disassemble #'factorial)

#xA0E20692
#x40FE0527
#xFCE00039
#x402035A6
#xE4C00037
#x23DEFFFO
#xB1FE0000
#x43C0100F
#xBO9E0004
#xA0830006
#xB19E0008
#x4610040C
#xB35E000C
#xA0C4001D
#x45807007
#x40C09006

1dl tmp3,nil, 1682
subq tmp3,sp,tmp3

bgt tmp3,#x300F9248
cmpeq arg/mv,1,tmp2
beq tmp2,#x300F9248

lda sp,sp,-16

stl fp,sp,0

addl sp,0,fp

stl constants,sp,4
1dl
stl
bis
stl
1dl
and r12,3,tmp3
addl tmp2,4,tmp2

ri12,sp,8
arg0,arg0,r12
ra,sp,12

v

why clisp says it's compiled]

constants, func,6

=]

1

tmp2,constants,29 ;;

"call-count"

#x300F9198:
#x300F919C:
#x300F91A0:
#x300F91A4:
#x300F91A8:
#x300F91AC:
#x300F91BO:
#x300F91B4:
#x300F91B8:
#x300F91BC:
#x300F91CO:
#x300F91C4:
#x300F91C8:
#x300F91CC:
#x300F91DO0:
#x300F91D4 :
#x300F91D8:
#x300F91DC:
#x300F91EO:
#x300F91E4:
#x300F91E8:
#x300F91EC:
#x300F91FO0:
#x300F91F4:
#x300F91F8:
#x300F91FC:
#x300F9200:
#x300F9204:
#x300F9208:
#x300F920C:
#x300F9210:
#x300F9214:
#x300F9218:
#x300F921C:
#x300F9220:
#x300F9224:
#x300F9228:
#x300F922C:
#x300F9230:
#x300F9234:
#x300F9238:
#x300F923C:
#x300F9240:
#x300F9244:
#x300F9248:
#x300F924C:
#x300F9250:
#x300F9254:
#x300F9258:
#x300F925C:
#x300F9260:
#x300F9264:
#x300F9268:
#x300F926C:
#x300F9270:
#x300F9274:
#x300F9278:
#x300F927C:
#x300F9280:
#x300F9284:
#x300F9288:
#x300F928C:

78
NIL

#xB0C4001D
#xF4E0000C
#xFD800011
#x47FF041F
#x47E03401
#x47E09400
#x45EF041E
#xA35E000C
#xA19E0008
#xA09E0004
#xA1TFE0000
#x23DE0010
#x6BFA8000
#x47FF041F
#x20A20B26
#x47FF0411
#x458C0410
#x6B454000
#x400205A5
#XE4BFFFFO
#x45807007
#xF4E00018
#x41809130
#x420C09A6
#xE4C00015
#x47FF041F
#xA064002D
#x47E03401
#xA0A30002
#x40A0B405
#x6B454000
#x44000411
#x4591041D
#x47A07007
#xF4E00011
#x4980579D
#x4FB10400
#x48041786
#x401F0000
#x4803F787
#x40E605A7
#XE4E0000A
#x47E03401
#xC3FFFFDA
#x20A20EF6
#x6BE50000
#x20A20C8E
#x47E09411
#x458C0410
#x6B454000
#x44000410
#xC3FFFFEG6
#x458C0410
#x45EF041E
#x20A20CD6
#xA19E0008
#xA09E0004
#xA1TFE0000
#xA35E000C
#x23DE0010
#x6BE50000
#x47FF041F

stl
bne
bgt
bis
bis
bis
bis
1d1
1d1
1d1
1d1
lda
ret
bis
lda
bis

tmp2,constants,29 ;;
tmp3,#x300F91D0
r12,#x300F91E8
zero,zero,zero
zero,1,arg/mv
zero,4,result
fp.fp.sp
ra,sp,12
ri2,sp,8
constants,sp,4
fp,sp,0

sp,sp,16
zero,(ra)
zero,zero,zero
tmp1,nil, 2854
zero,zero,argl
bis r12,r12,arg0

jsr ra,(tmp1)

cmpeq result,nil, tmp1
beq tmp1,#x300F91A8
and r12,3,tmp3

bne tmp3,#x300F9250
subl r12,4,arg0
cmplt arg0,r12,tmp2
beq tmp2,#x300F9250
bis zero,zero,zero
1dl func,constants,45 ;;
bis zero,1,arg/mv
1d1l tmp1,func,2

addq tmp1,5,tmp1

jsr ra,(tmp1)

bis result,result,arg
bis r12,arg1,r29

and r29,3,tmp3

bne tmp3,#x300F9268
sra r12,2,r29

mulq r29,argl,result
sra result,32,tmp2
addl result,zero,result
sra result,31,tmp3
cmpeq tmp3,tmp2,tmp3
beq tmp3,#x300F9268
bis zero,1,arg/mv

br zero,#x300F91B0
lda tmp1,nil, 3830
jmp zero, (tmp1)

lda tmp1,nil, 3214
bis zero,4,argl

bis r12,r12,arg0

jsr ra, (tmp1)

bis result,result,arg0
br zero,#x300F9200
bis r12,r12,arg0

bis fp,fp,sp

lda tmp1,nil, 3286
1dl r12,sp,8

1dl constants,sp,4
1dl fp,sp,0

1dl ra,sp,12

lda sp,sp,16

jmp zero, (tmp1)

bis zero,zero,zero

"call-count"

FACTORIAL

[In CMU Common Lisp (CMUCL), just for the heck of it!]

* (disassemble #'factorial)
Compiling LAMBDA (N):
Compiling Top-Level Form:

40134198

.ENTRY "LAMBDA (N)"(n)

1BO: ADD -18, %CODE
1B4: ADD %CFP, 32, %CSP
1B8: Ccmp %NARGS, 4

1BC: BPNE, PN %ICC, L2

1C0: NOP

1C4: ST %A0, [%CFP+12]
1C8: ST %0CFP, [%CFP]
1CC: ST %LRA, [%CFP+4]
1D0: LDUW [%CFP+12], %A0
1D4: ADD %ZERO, 0, %A1
1D8: ADD %CODE, 104, %LRA

1

’

’

’

; %NARGS

; %A0

(FUNCTION (T) NUMBER)

= #:G0

= #:G1

; No-arg-parsing entry point

1DC: SETHI %hi(#x10001000), %NLO
1EO: J %NLO+944 ; #x100013B0: GENERIC->
1E4: NOP
1E8: .LRA
1EC: mMov %0CFP, %CSP
1F0: NOP
1F4: ADD -104, %CODE
1F8: CMP %A0, %NULL
1FC: BPNE %ICC, L1
200: NOP
204: ADD %ZERO, 4, %A0
208: LO: LDUW [%CFP], %NLO
20C: LDUW [%CFP+4], %A1
770 [51 (<= N 0O)
210: mMov %CFP, %CSP
214: mMov %NLO, %CFP
218: J %AT+5
21C: Mov %A1, %CODE
220: L1: LDUW [%CFP+12], %A0
224 ADD %ZERO, 4, %A1
228: ADD %CODE, 184, %LRA
22C: SETHI %hi(#x10000000), %NLO
230: J %NLO+740 ; #x100002E4: GENERIC--
234: NOP
;o0 [4]1 (IF (<= N 0) 1 (* N (FACTORIAL #)))
238: .LRA
23C: Mov %O0CFP, %CSP
240: NOP
244 ADD -184, %CODE
248: LDUW [%CODE+13], %CNAME ; #
24C: ADD %ZERO, 4, %NARGS
250: LDUW [%CNAME+5], %A1
;55 [61 (* N (FACTORIAL (- N 1)))
254: ADD %CODE, 232, %LRA
258: MoV %CFP, %OCFP
25C: MoV %CSP, %CFP
7o [81 (- N T)
260: J %AT+23
264: mMov %A1, %CODE
268: .LRA
26C: mMov %O0CFP, %CSP
270: NOP
274 ADD -232, %CODE
278: MoV %A0, %A1
27C: LDUW [%CFP+12], %A0
280: ADD %CODE, 272, %LRA
284: SETHI %hi(#x10000000), %NLO
288: J %NLO+856 ; #x10000358: GENERIC-*
28C: NOP
290: .LRA
;o7 [71 (FACTORIAL (- N 1))
294: MoV %OCFP, %CSP
298: NOP
29C: ADD -272, %CODE
2A0: BP %ICC, LO
2A4: NOP
2A8: L2: ILLTRAP 10 , Error trap
2AC: BYTE #x04
2AD: BYTE #x19 ; INVALID-ARGUMENT-COUNT-ERROR
2AE: BYTE #XFE, #xED, #x01 ; NARGS
2B1: .ALIGN 4

