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The Clojure Way 

Clojure’s Philosophy and Special Features 
What is Clojure and why would someone want to learn it? At first glance, some may vote Clojure the least 
likely to succeed among modern programming languages, because it is new and complicated. Worst of 
all, it is just flat-out strange, a bewildering soup of parentheses and brackets to anyone not already 
familiar with the Lisp family of languages. 

And yet, it is gaining popularity and momentum faster than any other new language on the market. 
First released to the public in fall 2007, and reaching its first stable release in May 2009, it already fosters 
an active, passionate community, a thriving ecosystem of libraries and tools, and is used in an increasing 
number of serious professional applications. 

One way or another, Clojure seems to push all the right buttons. But, what are they and what makes 
Clojure a good choice for your project? 

A Next-Generation Language 

Every year, brilliant computer scientists in academic institutions around the world publish hundreds, 
even thousands of papers filled with new and interesting ideas. These new concepts undergo natural 
selection and slowly, eventually, the best and most useful of them matriculate into real-world use. 

Clojure includes many of the latest and greatest of these ideas that have not yet found good (or any) 
implementations in other languages. The most obvious are those relating to parallel processing: 
Software Transactional Memory and agent-based processing are baked into the language at a 
fundamental level. Others (for example, persistent immutability) are more subtle design philosophies 
that are a synthesis of modern academic research and decades of real-world lessons. 

Despite its academic credentials, Clojure's primary design goal is to remain useful and above all 
usable. Its advanced features are carefully selected to actually deliver to developers robust, clean code 
that is easy to reason and fast to write. Clojure is not an ivory tower language, but one written by a 
developer intended to be used in the field, every day. 

Dynamic and Powerful (Yes, It’s a Lisp) 

Depending on your programming background, the following statement could cause either enthusiasm 
or mild revulsion: Clojure is a full-fledged, bona fide dialect of the venerable Lisp programming 
language. 

Lisp has a reputation for being exceedingly powerful and expressive, and Clojure is no exception. Its 
functional and metaprogramming facilities make it an extremely tractable medium, malleable clay to C's 
stone or Java's wood. You can replace thousands of lines of code in a static language with hundreds or 
even dozens of lines of Clojure, with corresponding improvements in bug count and development time. 

1 
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Boilerplate code is all but eliminated. Domain Specific Languages (DSLs) become not only easy, but the 
norm—Lisp programs are often written “from the ground up,” evolving constructs and syntax that are 
most suited to the problem domain

1
. You can modify programs on the fly without recompilation or 

restarting. 
Historically, however, Lisp also has its detractors, and many of the complaints are more than 

justified
2
. Lisp has suffered greatly from incomplete specifications, idiosyncratic implementations, 

archaic limitations, and cruft accumulated over its five decades of existence. And to many, its syntax is 
just too, too strange. 

Clojure fixes most of these problems. It maintains Lisp's ideals and philosophy while making a clean 
break with the limitations of the past. It is fast, clean, and prioritizes power and elegance. Without 
altering Lisp's code-as-data philosophy, it provides intuitive and visually distinctive syntax that makes it 
much more pleasant to read than historical Lisps. After the initial learning phase, it is remarkably easy to 
read and write, parentheses notwithstanding. 

Those who already know Lisp will immediately find themselves extremely comfortable with Clojure. 
To those who don't, there is no reason to be intimidated. Clojure is a clean, painless way to learn what 
makes people so passionate about Lisp, without having to suffer through the bad stuff. Stick with it, and 
it's highly probable you'll find yourself loving it, even the parenthesis, after just a few weeks of playing 
with the code. 

The Java Platform 

Whether or not you like Java as a language, the Java Virtual Machine is a superb piece of software that 
deserves respect. It is mature, stable, and fast. As an industry standard, there are thousands of well-
tested libraries for just about any purpose. Many companies already have heavy investments in the Java 
platform. 

By running on the JVM, Clojure immediately gains access to all of this. It is not just a port of another 
language to the JVM: Clojure is designed from the ground up to run within the Java environment and to 
easily integrate with Java. For application development, it functions equally well as a complete, stand-
alone language or as an embeddable scripting tool within a larger Java program. It can be used anywhere 
Java can, and in most cases is much easier to write. 

Functional Programming 
A key characteristic of Clojure is that it is a functional language, which means that functions are the 
fundamental building-block for programs rather than instructions, as is the case in most other 
programming languages (known as imperative languages). Functional programming provides some 
substantial advantages over imperative programming, which will be discussed in this section. 
Functional style is inherent to Clojure and central to its philosophy. 

                                                 
1
 For an excellent book on the unique power of Lisp in general, read Paul Graham's On Lisp, 

, (New Jersey: Prentice Hall, 2003). http://www.paulgraham.com/onlisp.html
2
 See Steve Yegge's “Lisp is Not an Acceptable Lisp,” 

, 2003. 
http://steve-yegge.blogspot.com/2006/04/lisp-is-

not-acceptable-lisp.html
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 CHAPTER 1 ̈ THE CLOJURE WAY 

̈ Note  Nearly all programming languages have some construct called a function. In most programming 

languages, the best way to think of a function is as a subroutine, a series of instructions that are grouped together 

for convenience. In Clojure and other functional languages, functions are best thought of as more like their 

counterparts in mathematics—a function is simply an operation that takes a number of parameters (also called 

arguments) and returns a value. 

Imperative languages perform complex tasks by executing large numbers of instructions, which 
sequentially modify a program state until a desired result is achieved. Functional languages achieve the 
same goal through nested function composition—passing the result of one function as a parameter to 
the next. By composing and chaining function calls, along with recursion (a function calling itself), a 
functional program can express any possible task that a computer is capable of performing. An entire 
program can itself be viewed as a single function, defined in terms of smaller functions. The nesting 
structure determines the computational flow, and all the data is handled through function parameters 
and return values (see Figures 1-1 and 1-2). 
 

Write Variable

Variable

Variable

Variable

Program State

Program Flow

Read & Modify Variable

Read Variable &

Control Flow

Read & Modify Variables

Modify Variable

Write Variable
 

Figure 1-1. Imperative program structure 
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Function

Input

Output

FunctionArguments

Return value

Arguments
Return value

Arguments
Return value

Function
Recursive Call

Arguments

Return value

Function

Function

 

Figure 1-2. Functional program structure 

Incidentally, this is the reason that Clojure code can look so strange to those unfamiliar with functional 
programming. It is optimized to make it easy to express function composition rather than blocks of 
instructions. As your experience and understanding of functional programming grows, the more natural 
Clojure's syntax will feel.  

Equivalency of Functional and Imperative Styles 

It is an important fact of computer science that the functional and imperative models of computation are 

formally equivalent, and therefore equally capable of expressing any computational task. 

This notion dates back to the earliest days of computer science. Alan Turing's seminal paper, On 
Computable Numbers (1936) describes the abstract workings of an imperative computer, which became 

known as the Turing Machine. It was to become the conceptual model upon which modern computer 

architectures are based. Earlier that year, Alonzo Church had independently written another paper called, 
An Unsolvable Problem of Elementary Number Theory. In this paper, he created a formal system known as 

the lambda calculus—the formal system upon which functional languages are based.  

These two ways of expressing computability were quickly recognized to be mathematically equivalent, and 
became known collectively as the Church-Turing thesis. This thesis, in addition to being extremely 

important to several fields of mathematics, became the starting point for the fledgling field of computer 

science. 

Purely Functional Programming 

Pure functions are an important concept in functional programming, as shown in Figure 1-3. Stated 
simply, a pure function is one that depends upon nothing but its parameters, and does nothing but 
return a value. If a function reads from anywhere except its parameters, it is not pure. If it changes 
anything in the program state (known as a side effect), it is not pure either. 

Functional programming is largely concerned with the careful management (or elimination) of state 
and side effects. Both are necessary for programs to do anything useful, but are regarded as necessary 
evils, and functional programmers do their best to use them as little as possible.  

4 
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State is any data the program stores that can possibly be changed by more than one piece of code. It 
is dangerous because if the code’s behavior is dependent on a piece of state, it is impossible to analyze 
what it might do without taking into account all the possible values of that state, as well as every other 
part of the program that might modify that state. This problem is exponentially magnified in parallel 
programs, where it is not always easy to tell even what order code will execute in. It becomes nearly 
impossible to predict what a given state might be.  

Side effects are anything a function does when it is executed, besides just returning a value. If it 
changes program state, writes to a hard disk, or performs any kind of IO, it has executed a side effect. Of 
course, side effects are necessary for a program to interact with anything, including the user. But they 
also make a function much more difficult to understand and to reuse in different contexts. 

 

(performs calculations,

may call for other

pure functions)

A pure function

Arguments

Return Value

(performs calculations)

A non-pure function

Arguments

Return Value

Reads external state

Writes external state

(side effect)
 

Figure 1-3. Pure and non-pure functions 

Purely functions have a number of advantages: 

• They are remarkably easy to parallelize. Since each function is a distinct, 
encapsulated unit, it does not matter if functions are run in the same process or 
even on the same machine. 

• Pure functions lead to a high degree of code encapsulation and reusability. Each 
function is effectively a black box. Therefore, understand the inputs and the 
outputs, and you understand the function. There's no need to know or care about 
the implementation. Object-oriented languages try to achieve this with objects, 
but actually it is impossible to guarantee, because objects have their own state. An 
object’s type and method signatures can never tell the whole story; programmers 
also have to account for how it manages its state and how its methods impact that 
state. In a complex system, this quickly grows in complexity and often the 
advantages of class encapsulation quickly disappear. A pure function, however, is 
guaranteed to be entirely described by its interface—no extra knowledge required. 

5 
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• They are easier to reason about. In a purely functional program, the execution tree 
is very straightforward. By tracing the function call structure, you can tell exactly 
and entirely what the program is doing. In order to understand an imperative, 
stateful program you need not only to understand the code, but all of the possible 
permutations of state that may exist at any point in time. Purely functional code is 
much more transparent. In some cases, it is even possible to write tools that do 
automated analysis and transformations of source code, something that is next to 
impossible in an imperative language. 

• Pure functions are very easy to write unit tests for. One of the most difficult 
aspects of unit testing is anticipating and accounting for all the possible 
combinations of state and execution paths. Pure functions have well-defined, 
stateless behavior that is extremely simple to test. 

Clojure’s Compromise 

Of course, most programs can't be programmed entirely in pure functions. Side effects are inevitable. 
Displaying something to the screen, reading from a file on a hard disk, or sending a message over a 
network are all examples of side effects that cannot be dispensed with. Similarly, programs can't do 
entirely without state. The real world is stateful, and real-world programs need to store and manipulate 
data that can change over time. 

In effect, Clojure does not enforce functional purity. A few languages do, such as Haskell, but they 
are (rightly or wrongly) considered to be academic, difficult to learn, and difficult to apply to problems 
found in the real world. Clojure's goal is not to prevent programmers from using state or side effects, but to 
make it safe and straightforward. 

Clojure has two ways of maintaining functional purity as much as possible while still allowing a 
developer to easily do everything they need. 

• Side effects are explicit, and the exception rather than the rule. They are simple to 
add, when necessary, but they stand out from the natural flow of the language. 
This ensures that developers are precisely aware of when and why they occur and 
what their precise effects are. 

• All program state is contained in thread-safe structures, backed by Clojure’s 
thoughtfully planned inventory of concurrency-mangement features. This ensures 
that with an absolute minimum of effort, program state is always safe and 
consistent. Updates to state are explicit and atomic and clearly identifiable. 

Most of Clojure's unique style is emergent from these two characteristics. Very naturally, Clojure code 
tends to segregate itself into purely-functional and effect-producing areas, with a single function that 
contains side effects of manipulating state relying on other, pure functions for most of the actual 
processing and program logic. 

This not only preserves the benefits of purely functional programming throughout most of a Clojure 
application, but also encourages good style. Of course, as with any other language, it is possible to write 
messy, obfuscated code. But more than most other languages, Clojure by its nature encourages users to 
write code that is easy to read and debug. Explicit state and side effects mean that it is extremely easy to 
read over a program and see what it is doing, without even needing to always understand how. 
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̈ Caution  There is a major exception to Clojure’s rules about state management and side effects: Java objects. 

Clojure allows you to work with Java object as well as native Clojure structures, but Java objects are still Java 

objects and full of umanaged state. It cannot be helped. A good Clojure program will use Java objects only for 

interfacing with Java libraries, and therefore restrict the use of mutable state. 

Immutability 

One of the most important ways in which Clojure encourages purely functional style where possible is to 
provide a capable, high-performance set of immutable data structures. 

Immutable data structures are, as their name suggests, data structures that cannot change. They are 
created with a specific value or contents, which remain constant over the entire life cycle of the object. 
This ensures that the object can be freely used in multiple places, from multiple threads, without any 
fear of race conditions or other conflicts. If an object is read-only, it can always be safely and 
immediately read from any point in the program.  

This begs the obvious question: What if the program logic requires that the value of a data structure 
change? The answer is simple—rather than modifying the existing data structure (causing all kinds of 
potentially bad effects for other parts of the program that use it), the structure is copied with the changes 
in place (see Figures 1-4 and 1-5). The old object remains exactly as it was, and other threads or portions 
of code currently operating on it will continue to function without problems, unaware that there is a new 
version. Meanwhile, the code that “changed” the object uses the new object, identical to the old one 
except for the modifications. 

This sounds as if it might be extremely inefficient, but it isn't. Because the base object is immutable, 
the “modified” object can share its structure except for the actual point of change. The system only 
needs to store the differential, not an entire copy. This property is called persistence—a data structure 
shares memory with the previous version of itself. There is a small computational time overhead when 
making a change, but the memory usage can often actually be lower. In many scenarios, objects can 
share large parts of their structure, increasing efficiency. Old versions of objects are maintained as long 
as they are used as part of a newer version (or referenced from elsewhere), and are silently garbage 
collected when they are no longer useful. 
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Figure 1-4. Immutable Linked List 
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Figure 1-5. Immutable binary tree 

Another interesting effect of immutable, persistent data objects is that it is easy to maintain previous 
versions and roll back through them as necessary. This makes it extremely easy and efficient to 
implement things like undo histories or backtracking algorithms. 

Clojure provides the following common immutable data structures: 

• Linked lists: These are simple, singly-linked lists that support fast traversal and 
insertion. 

• Vectors: Similar to an array, vectors are indexed by integer values and support 
extremely fast lookup by index. 

• Hash maps: Hash maps use hash trie datastructures to provide unordered storage 
for key/value pairs and support extremely fast lookups. 

• Sorted maps: Sorted maps also provide key/value lookups, using a balanced binary 
tree as the underlying implementation. They are also, unsurprisingly, sorted, and 
provide operations for range-based access at the cost of being slightly slower than 
hash maps. 

• Hash and sorted sets: Sets are groups of distinct items, similar to the mathematical 
concept. They support operations such as finding the union, difference, and 
intersection. They can be implemented as hash tries or using a binary tree with 
similar performance tradeoffs as the map implementations. 

These objects all provide a number of other interesting features, besides immutability: 

• They support fast value-based equality semantics—two data structures are equal if 
and only if they contain the same items. 

• They implement the non-optional, read-only portion of the java.util.* 
collection interfaces (namely Collection, List and, Map) and 
java.lang.Iterable APIs. This means that they can be used as drop-in 
replacements for most of Java's collections, making it much easier to interface 
with Java libraries. 

• They fully implement the sequence abstraction, as discussed in Chapter 5. 
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Clojure makes it extremely easy to work with all these data structures, and together with primitive types 
they provide everything a program needs for internal data storage. 

What about Object-Oriented Programming? 

Very clearly, Clojure is not object-oriented. Given how the programming world is dominated by OO 
paradigms and languages, many programmers will no doubt be at a loss about how to program in any 
other way.  However, Clojure's rejection of the object-oriented philosophy is not a weakness, but rather 
can be a great strength, and can be leveraged to provide complex functionality while keeping code 
extremely simple. 

For the last decade, at least, the object-oriented style has dominated computer programming 
through its promises of data abstraction, code reuse, encapsulation, and modularity. It has delivered on 
these with varying levels of success, and is no doubt an improvement over the sequential or procedural 
styles that preceded it. But a number of problems have also become apparent: 

• An object’s mutable state is unmanageable and dangerous in a highly concurrent 
environment. 

• It doesn't really solve the problems of code abstraction and modularization. It is 
just as easy to write over-dependent “spaghetti” code in an object-oriented 
language as any other. It still takes skill and special effort to write code that can 
truly be used without problems in a variety of environments. 

• Inheritance is fragile and can be dangerous. Increasingly, even experts in object-
oriented languages are discouraging its use. 

• It encourages a high degree of ceremony and code bloat. Simple functionality in 
Java can require several interdependent classes. Efforts to reduce close coupling 
through techniques like dependency injection involve even more unnecessary 
interfaces, configuration files, and code generation. Most of the bulk of a program 
is not actual program code, but defining elaborate structures to support it. 

Clojure is the next evolutionary step in programming languages. It builds upon the good parts of object-
oriented design, while eliminating the constraints and misfeatures that cause problems. 

The notion of object orientation is not itself well defined. While usually considered a single 
paradigm, the object-oriented style uses a single concept—classes—to conflate a variety of actual, 
distinct features. Clojure isolates each of these desirable functionalities and provides separate, simpler, 
more powerful features to provide them separately, allowing developers to use only the features that 
make sense in a particular context. 

• Modularity: Classes and packages provide a way to group code that naturally goes 
together and is interdependent. Clojure accomplishes this with its namespacing 
mechanism. 

• Polymorphism: Inheritance and interface implementation allows common code to 
process objects differently depending on their type, without knowing the type or 
even all possible types ahead of time. Clojure multimethods provide this 
functionality and more—it is possible to dispatch different code based not only on 
type, but also on arbitrary properties. 
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• Encapsulation: Classes can be used to hide implementation details behind a 
common interface. As discussed, this concept is alive and well in Clojure—
functions are best thought of not by what they do, but what parameters they take 
and what they return. 

• Reusablity: Classes can, theoretically, be reused in different environments, put 
together like bricks to build up larger programs. While this usually isn't possible, it 
is still a worthwhile goal. Clojure also pursues this goal of modular reusability, 
only by composing functions instead of classes. But unlike classes, pure functions 
are guaranteed not to have side effects which hamper reuse. 

Another major philosophical difference between Clojure and object-oriented languages is that OO 
languages try to unify data and behavior within classes, in some cases blurring the line between what is 
data and what is code structure. Properties and methods are littered throughout the code together, and 
completely interdependent and inseparable. 

Clojure strives for a separation between data and behavior. The Clojure web site quotes Alan Perlis 
who says, “It is better to have 100 functions operate on one data structure than to have 10 functions 
operate on 10 data structures.” Clojure tries to avoid interdependence of data on code, but instead 
provides a large library of functions that operate on the simple, basic data types. The important, 
emphasized part of a Clojure program is not the data classes and structures, but the functional code 
which operates upon them. 

Structure of a Clojure Program 

An object-oriented program consists of a set of class definitions, each of which probably contains some 
state, some code, and references to other classes. Programs look something like Figure 1-6. 
 

Object Object

Data

Behavior

Data

Behavior

Object

Data

Behavior

 

Figure 1-6. Typical structure and data flow of an object-oriented program 

Clojure programs, on the other hand, are best thought of as a collection of functions (as befits a 
functional language). They are understood not by grasping the relationships between data or objects, 
but by understanding the flow from function to function, and the limited points where the code touches 
the program state. They look more like Figure 1-7. 
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State

Behavior

State

Behavior
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BehaviorBehavior
 

Figure 1-7. Typical structure and state flow of a Clojure program 

It is worth noting that there are some problem domains, such as simulations, where an object-
oriented approach is extremely natural. Clojure understands that, which is why as a language, it places 
more emphasis on flexibility and extensibility than any particular philosophy. 

Thus, it should come as no surprise that Clojure is flexible and powerful enough to build up a 
custom object-oriented solution that fits the problem. It is entirely possible to use Clojure's macros and 
metaprogramming facilities to build an object system, completely within Clojure, and use it where 
appropriate. Common Lisp has something similar: CLOS, the Common Lisp Object System, built on top 
of Lisp macros from within Lisp. There is no reason a Clojure user could not do the same; indeed, there 
are several fledgling projects within the Clojure community designed to provide exactly these features. 

The important fact is that Clojure frees you to use whatever style and structure makes sense for your 
project. Object-oriented systems are powerful, but they are only one tool, and the only mechanism most 
languages provide for abstraction and reuse. Clojure gives many different tools for abstraction and reuse 
to use where they make sense, along with the ability to build your own tools. 

State Management 

Nearly every program needs to maintain a working state of some kind. There will always be a need for a 
program to store facts and data, and update or manipulate them, from time to time. 

Traditionally, programming languages deal with this problem by allowing programs direct access to 
memory at various levels of abstraction. Whether manipulating bytes of RAM directly in low-level 
languages like C or assembly or allocating objects to a garbage-collected heap as in Java or Microsoft's 
.NET, most programming languages are built around the concept of directly using sequential 
instructions to modify a shared memory space. 

In this paradigm, it is entirely the responsibility of the programmer to ensure that state 
manipulation and access is done in a reasonable way that does not cause problems. It was never easy. 
Even in the simplest case, extensive use of mutable state makes programs difficult to reason about—any 
part of the program can change state, and it's not easy to tell where it's happening. Rich Hickey, 
Clojure's inventor, calls mutable, stateful objects “the new spaghetti code.” 

Unfortunately, with the advent of multithreaded programs, the difficult of managing state increases 
exponentially. Not only must a programmer understand possible program states, but they must go to 
great lengths to ensure that state is protected and modified in an orderly way to prevent corrupted data 
and race conditions. This, in turn, requires complicated locking policies—policies which there is no way 
of enforcing. Failure to comply with these policies does not cause obvious problems, but rather insidious 
bugs that often do not surface until the application is under load in a production setting, and can be 
nearly impossible to track down. 
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In general, enabling concurrency in a traditional language requires thoughtful planning, an 
extremely thorough grasp of execution paths and program structure, and extreme care in 
implementation. 

Clojure provides an alternative: a fast, easy way for programmers to use as much state as they need 
without any extra effort to manage it, even in a highly concurrent setting. It accomplishes this through 
its particular philosophy of state and identity, its immutable objects, and software transactional memory 
(STM). 

State and Identity 

In order to understand Clojure's treatment of state, it is useful to step back and consider from an 
extremely high-level philosophical standpoint, what, exactly, the terms “state” and “change” even mean 
in the context of a running software program. 

Traditionally, most programmers would say that “change” means that, given an object or data 
structure O, its value at a given time—call it T

1
—is different from that at a later time, T

2
. O is still O, 

whether we are looking at it, T
1
, or T

2
. However, some of its properties or values may be different, 

depending on when asked. Traditional concurrent programming is concerned with using locks and 
semaphores to ensure that inquires or updates regarding O's properties or values from different threads 
occur in an orderly way that won't cause problems. 

Clojure provides a different point of view. In Clojure's world, O at T
1
 and O at T

2 
are not even 

conceptually the same object O, but two different ones:  O
1
 and O

2
. They may have similarities in their 

values or properties or they may not, but the key point is that they are different system objects. What's 
more, they are immutable, in the strict sense of functional programming. If an additional “change” is 
made to O

2
, for example, it doesn't result a change to the properties or values of O

2 
but the creation of an 

entirely new object, O
3
. An object itself never changes. 

To help get a grasp on this, consider the following example. In all programming languages (as well 
as common sense) the number 3 is the number 3, and never any other number. If I increment 3, I get a 
new number, 4. I have not changed the value of 3, only the value of whatever variable or storage register 
was containing it. The notion of changing the value of “the number 3” to something other than 3 is 
absurd—it is hard to even imagine what it might mean, let alone the havoc it might wreak on the rest of 
the program which relies on the value of 3 being 3. 

Clojure merely takes this intuitive notion regarding value, and extends it to larger composite values. 
Take, for example, a set, say “people who owe me money.” Initially, the set might consist of S

1
  = {Joe, 

Steve, Sarah}. But then I get a letter from Steve, and it has a check. He's finally paid up.  People who owe 
me money is now S

2
 = {Joe, Sarah}. These two sets are not the same by the definition of set equality: One 

contains Steve, one doesn't. S
1
 is not equal to S

2
 any more than 3 = 4. 

Most programming languages would handle the preceding scenario by mutating the value of the set, 
S. In a concurrent scenario, this could cause all sorts of problems. If one thread is iterating through S 
while Steve is removed, it will inevitably throw an error, probably some variation of “Index out of 
bounds.” To compensate, the programmer must manually add a system of locks to ensure that the 
iteration and the update occur sequentially, not at the same time, even if the code is running in different 
threads. 

Clojure has a different philosophy. The solution is not to restrict access to S to sequential 
operations: that is merely a Band-Aid that does not address the real issue. The real conceptual problem 
is that, for a moment in time as it iterates through the set, the program assumes that {Joe, Sarah} = {Joe, 
Steve, Sarah}. This is obviously not true, and it is this disconnect that causes the problem. Normally, it is 
a reasonable expectation that an object equals itself, but not in a concurrent system that allows 
mutation. 

By using only immutable objects, Clojure restores the guarantee that objects always equal 
themselves. In Clojure's system, S

1
 and S

2
 are different to the program, just as they are semantically and 
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conceptually. An operation taking place on S
1
 remains unaffected by the creation of S

2
 and will finish 

without errors. 
Obviously there is some relationship between S

1
 and S

2
.From a human perspective, they both 

represent the same concept, “the set of people who owe me money.” Clojure tracks this by introducing 
the concept of identity, as distinct from value. Identity, in Clojure, is a named reference that points to an 
object. In the above example, there would be one identity, for example, debtors. At one point in time, 
debtors refers to S

1
, and, at another time, is updated to refer to S

2
. But this update is atomic, and 

therefore avoids concurrency effects like race conditions. There is no point at which the value of debtors 
is in an ambiguous state—it always refers to either S

1
 or S

2
, never something halfway. It is always safe to 

retrieve the current value of debtors, and it is always safe to swap its value for a new one. This is shown 
in Figure 1-8. 
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Program
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Past FuturePresent

Sarah
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?

 

Figure 1-8. State and identity 

Software Transactional Memory 

A proper view of state and identity isn't the whole answer, however. Often, in a program changes to 
one identity depend on the state of another or a new value of an identity needs to be calculated based on 
the existing value without worrying that another thread will update the identity in the middle of the 
operation. That wouldn't cause an error, as discussed, but it might result in the results of the other 
calculation being inappropriately overwritten. 

To accommodate these scenarios, Clojure provides software transactional memory (STM). STM 
works by providing an extra management layer between the program and the computer's memory. 
Whenever a program needs to coordinate changes to one or more identities, it wraps the exchange in a 
transaction, similar in concept to those used to ensure integrity in database systems. Within a 
transaction, the programmer can perform multiple calculations based on identities, assign them new 
values and then commit the changes. From the perspective of the rest of the program, transactions 
happen instantaneously and atomically: First the identities have one value, and then another, with no 
need to worry about intermediate states or inconsistent data. If two transactions conflict, one is forced to 
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retry, starting over with new values of the identities involved. This happens automatically; the 
programmer just writes the code, the transaction logic is handled automatically by the STM engine. 

Clojure makes the following guarantees. Transactions are always: 

• Atomic. Either all the changes made in a transaction are committed to an identity 
or none are. The program will never commit some changes and not others. This 
provides guaranteed protection from corrupting data or creating any kind of 
inconsistent state. 

• Consistent. Transactions can be validated before they are committed. Clojure 
provides an easy mechanism for adding run-time checks to make sure that the 
new value is always what it ought to be, and that there are no problems with the 
new value before it is assigned to an identity. 

• Isolated. No transaction “sees” the effects of any other transaction while it is 
running. At the beginning of the transaction, the program takes a “snapshot” of all 
identities involved, which it uses for all its operations. This ensures code within 
transactions can be written freely, without any worry that the identities might 
have changed and, so to speak, swept the rug out from under the executing code. 

This system ensures that there is never any blocking, and therefore, never any deadlocks. Read 
operations always execute immediately, returning the current value of an identity. Because the objects 
stored in the STM system are immutable, read operations never block a writing operation. If the read 
takes place and the program state changes just afterward, the object returned from the read operation 
does not (cannot) change, so any code using it can continue without errors. The next time the identity is 
read in another transaction or outside of any transaction, however, it will of course return the new value. 

If one writing transaction completes while another is still underway, the STM system manages the 
conflict. If the two updates are on separate identities, both are committed immediately without any 
trouble or waiting. However, if two updating transactions conflict, they will be prioritized by the STM 
system, and one may be required to restart and retry. All of this occurs automatically, and without any 
need for special treatment by the developer. 

Clojure also provides a commute operation—a writing operation which specifies that it may be 
performed in any order relative to other transactions. Commutative operations never block or cause 
retries. 

The result is that the only scenario where the program cannot proceed immediately is when two 
write operations conflict. In all scenarios, however, data integrity is guaranteed—one of the transactions 
is restarted, from the beginning. Even in high-contention environments, the STM system is able to 
prioritize and ensure that a given transaction will almost always complete in a timely manner.  

STM and Performance 

No doubt, some readers will wonder to what extent this extra management layer between the program and 
memory impacts performance. 

The answer is: very little. Because Clojure's data structures in memory are immutable, read operations 

have almost no overhead—they can simply pull the current value without any concern for locks or 
synchronization. Similarly, uncontested write operations are very fast, and only suffer a slight overhead 

from the STM system. 
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In high write-contention scenarios, Clojure's STM is probably slower than an extremely well-designed 

system of custom, fine-grained locks. This is an inevitable drawback of STM in general: managing 
transaction committal and retries adds an overhead by its very nature, and a custom concurrency solution 

has an advantage over a generalized one (such as STM). 

Clojure's philosophy is that this slight, potential performance cost is well worth it in increased readability 
and conceptual purity. That efficient system of fine-grained locks is extremely difficult to get right, 

whereas the Clojure version can be written with almost no thought to concurrency at all. 

An interesting analogy is to compare STM (managed state) with garbage collection (managed memory). It 
faces many of the same tradeoffs: hand-crafted, low-level code can be more efficient, but by allowing the 

runtime system to manage more things, the programmer’s life is made so much easier. And, as technology 

gets better, garbage collectors have improved immensely, to the point where worrying about the few 
nanoseconds saved by manual memory allocation are scarcely worth worrying about. All of these 

comparisons hold true with STM as well. It is a tool that allows the programmer to work at a much higher 

level, making their job immeasurably easier. Research into STM systems is ongoing, and there is no doubt 

they will continue to improve and that these changes will be incorporated into Clojure. 

Summary 
This chapter contains a lot of dense material, and the rest of the book will be spent in unpacking it as 
well as showing how to actually use it in a real-world program. But the features previously outlined are 
truly the heart and soul of Clojure. 

Understanding that Clojure is a highly dynamic, metaprogrammable dialect of Lisp will allow you to 
play off of Clojure’s strengths, using powerful abstractions to avoid redundancy and drudgery in code. 

Knowing that Clojure is a functional language that encourages functional purity when possible will 
help you structure your program flow in simple, elegant ways. Keeping this in mind will help you break 
down your tasks into discrete, small units of code, and orchestrate the flow of data between functions. 
You will soon come to love its immutable data structures, and the liberating experience they provide, 
knowing that they always safe to use. 

Most of all, realizing Clojure’s special relationship with persistent data structures will allow you to 
write robust, scalable applications with high levels of concurrency. Updating and managing data 
structures will become simple, allowing you to focus on the code that really matters and is fun to write, 
the code that gets stuff done. 
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The Clojure Environment  

"Hello World" in Clojure 
To start programming in Clojure immediately, simply open a Clojure REPL, which stands for Read 
Evaluate Print Loop. The REPL is a simple yet powerful way to create programs interactively as well as 
interact with already running programs. 

The simplest way to start the REPL is to start it directly from the system command line
1
. To do this, 

navigate to the system directory where you have installed Clojure, the one that contains the “clojure-
1.0.0.jar” file. Then type the following to start Clojure: 

java -jar clojure-1.0.0.jar  

This starts up the Java virtual machine and loads the Clojure environment. As soon as the REPL 
comes up, you should see the following prompt: 

user=> 

This indicates that the REPL is ready to accept input. To write your first program, just type the 
following at the prompt: 

user=> (println "Hello World") 

Press the enter key, and the REPL should display the following: 

Hello World 
nil 

user=> 

What exactly is happening here?  The acronym REPL itself gives a clue. 

• Read: Clojure reads what you typed, (println "Hello World"), and parses it as a 
Clojure form, making sure it is valid Clojure syntax.  

                                                 
1 This is the simplest way to use Clojure, but it is by no means the best.  As your programs grow in size 
and complexity, you will almost certainly need to move to a more complete Clojure development 
environment that will provide help with file and classpath management, syntax highlighting, debugging, 
and other essential features. Plugins exist for Emacs, VI, Netbeans, Eclipse, Intellij IDEA and other 
editors, which provide these and a variety of other capabilities. 
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• Evaluate: Clojure compiles the provided form and evaluates it. In this case, it is a 
call to a build in function, println, with one literal parameter, "Hello World". 
Clojure executes the function, which prints "Hello World" to the standard system 
output. 

• Print: Clojure prints the value returned from the println function. In this case, it is 
nil, (the same as Java's null, meaning the absence of any value, or “nothing”), 
because println is not a function which returns a value. 

• Loop: Clojure returns back to the input prompt, ready for you to type in another 
form. 

This is different from how most other programming languages work. In most languages, writing, 
compiling, and running programs are very distinct steps. Clojure does allow you to separate these steps, 
should you want to, but most Clojure programmers prefer to use the REPL to do integrated 
development, writing, and running their code at the same time. This can greatly speed development 
time. It allows developers to see what their code does instantly in the context of an already-running 
program without any of the overhead of the time needed to stop the program, edit the code, recompile, 
and start it up again. This organic, bottom-up style of coding soon starts to feel extremely natural, and 
returning to a static development environment soon feels slow and cumbersome. 

Compared to other “scripting” languages which also provide real-time evaluation, however, 
Clojure's on-the-fly capabilities are much more robust. When evaluating a line in the REPL, it is not just 
evaluated, but actually compiled, and added to the program state of a running program on an equal 
footing with its pre-existing code. Nor is the REPL only a special debug feature:  dynamic code is always 
inherent to the language. It is entirely possible, and not uncommon, to connect to a remote, production 
instance of Clojure, open a REPL, inspect the application state, diagnose a problem, and tweak the 
source code to fix a bug while the program is running for a zero-downtime code fix. 

In theory, it is possible to open a REPL from scratch, and write an entire, sophisticated program 
from the ground up as it runs without ever stopping or restarting it. 

Clojure Forms 
The fundamental unit of a Clojure program is not the line, the keyword, or the class, but the form. In 
Clojure, a form is any unit of code that is can be evaluated to return a value. When you type something in 
the REPL, it must be a valid form and Clojure source files contain a series of forms. There are four basic 
varieties of forms. 

Literals 

Literals are forms which resolve to themselves. Examples of literals are strings, numbers, and characters 
that you enter directly into the code. You can verify that literals resolve to themselves by trying it out in 
the REPL: 

user=> "I'm a string! " 

"I'm a string!" 

When you type a simple, double quoted string to evaluate it, the value returned is simply the string 
itself. The same thing is true for numbers. 
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user=> 3 

3 

Symbols 

Symbols are forms which resolve to a value. They may be thought of as roughly similar to variables, 
although this is not technically accurate since they are not actually variable in the same way variables in 
most languages are. In Clojure, symbols are used to identify function arguments, and globally or locally 
defined values. Symbols and their resolution are discussed in more detail in the following sections. 

Composite Forms 

Composite forms use symmetrical parenthesis, brackets, or braces to make groups of other forms. When 
evaluated, their value depends on what type of form they are—brackets evaluate to a vector and braces 
to a map. Chapter 4 discusses these types in detail. 

Of special interest here, however, are composite forms which use parenthesis. These indicate a list, 
and lists in Clojure, have a special meaning. It is, after all, a dialect of Lisp, which derives its name from 
“LIST Processing.” 

In Clojure (and all Lisps), lists are evaluated as function calls. When a list is evaluated, it is the same 
as calling a function, and the evaluated value of the form is the return value from that function. The first 
item in the list is the function to call, and the rest of the items are arguments to pass to the function. For 
example, the Clojure form (A B C), when evaluated, means “call A, with B and C as its arguments.” In 
other programming languages, this might be written A(B, C) . 

This may seem very foreign to programmers without a Lisp background. However, within the 
context of Clojure’s capabilities, the benefits are considerable. Entire programs are just lists, and lists of 
lists, and so on. Code is data, and data can be code. In Chapter 12, you will see how this can be leveraged 
to very easily create code that writes code. 

Special Forms  

Special forms are a particular type of composite form. For most purposes, they are used very similarly to 
a function call. The difference is that the first form of a special form is not a function defined 
somewhere, but a special system form that’s built into Clojure.  

Special forms are the most basic building blocks of a Clojure program, and are used to control 
program flow, bind vars, and define functions among other things. The important thing to remember is 
that, like function calls, the first form in the list identifies the special form being used and the other 
forms in the list are like arguments to the special form. In order to see examples each these types of 
forms, let's make the Hello World program a bit more complicated; you'll use two forms, instead of just 
one.  At the REPL, type the following, and press enter: 

user=> (def message "Hello, World!") 

At the next prompt, type the following: 

user=> (println message) 

You should see the same output as the first Hello World program: 
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Hello, World 

nil 

This simple program, only two forms, contains each type of the forms previously discussed. 
Analyzing the first form, (def message "Hello, World!") , you see first that it is enclosed in 

parenthesis. Therefore, it is a list, and will be evaluated as a function application or a special form. There 
are three items in the list: def, message and "Hello, World!". The first item on the list, def, will be the 
function or special form that is called. In this case, it's a special form. But like a function, it takes two 
parameters—the var to define, and the value to which to bind it. Evaluating this form creates a var which 
establishes a binding of the value "Hello, World!" to the symbol message. 

The second form (println message) is also a list and this time it’s a normal function application. It 
has two component forms—each of them is a symbol. The symbol println resolves to the println 
function, and the symbol message resolves to the string "Hello, World!", because of the var binding 
established in the previous form. 

The net result, then, is the same as in the first Hello World program: the println function is called 
with an argument of "Hello, World!" 

Writing and Running Source Files 
As handy as the REPL is, in order to do any real development there is also the need to save source code 
and be able to run it multiple times without retyping it. Clojure, of course, provides this facility. 

By convention, Clojure source code files have the extension *.clj. In a normal Clojure program, there 
is no need to explicitly compile your source files—they are automatically compiled as they are loaded, 
just like individual forms entered into the REPL. If you need to pre-compile your Clojure to standard Java 
*.class files, (for example, to run on a nonstandard Java environment like a mobile phone), it is entirely 
possible, and handled by Clojures AOT (Ahead Of Time) compilation features. These are discussed in 
Chapter 10. 

To run the example Hello World program from a *.clj file, create a new file called "hello-world.clj" in 
any plain-text editor, containing the following code in Listing 2-1. 

Listing 2-1. hello-world.clj 

(def message1 "Hello, World!") 
(def message2 "I'm running Clojure code from a file.") 
(println message1) 

(println message2) 

There are two ways to run this file. The simplest, most often used for development, is to open up a 
REPL and type the following, (substituting the actual path of your *.clj file, and using forward slashes in 
accordance with the Java convention): 

user=> (load-file "c:/hello-world.clj") 

You should see the following output: 

Hello, World! 
I'm running Clojure code from a file. 

nil 
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The load-file function takes a single parameter: a string representation of a file-system path. It then 
loads the file found at the path, and executes each form in the file sequentially, just as if it had been 
typed it in the REPL, and returns the return value of the last form in the file. You can see nil, the return 
value of println as the last line of the output. All the symbols defined in the file are still available. Try 
typing a symbol defined in the file at the REPL and it will resolve to the value which was bound to it: 

user=> message1 

"Hello, World!" 

Another way to execute a Clojure file is directly from the system command line. This approach 
spawns a new Clojure runtime in a new instance of the Java virtual machine and then immediately loads 
the selected file. It is the normal method of running a Clojure program outside of development (unless 
you’ve packaged the Clojure into *.class files or a Jar package). To run a Clojure file this way, just enter 
the following at the command line: 

java –jar c:/clojure-1.0.0.jar c:/hello-world.clj 

Those familiar with Java will recognize this as a standard Java invocation. The –jar c:/clojure-
1.0.0.jar parameter ensures that the Clojure runtime library is in the current classpath. Modify the path 
to reflect the actual location of your Clojure jar file that came with your Clojure installation. The last 
parameter is the path to the script you want to run. 

This command starts the Clojure runtime, loads the hello-world.clj file, and sequentially 
evaluates each of its forms. In this case, the only results you see in the system console are those printed 
to the standard system output: 

Hello, World! 

I'm running Clojure code from a file. 

Vars, Namespaces, and the Environment 
As alluded to in the first chapter, a Clojure program is a living, organic entity that can evolve without 
needing to be shut down and rerun. This is due primarily to the existence of the REPL, and the capability 
it provides to evaluate forms in the context of an existing program. But how exactly does this work? 

When you start a Clojure program, either by opening up a new REPL or running a source file 
directly, you are creating a new global environment. This environment lasts until the program is 
terminated, and contains all the information the program needs to run, including global Vars, (names 
bound to values). See Figure 2-1 for a diagram of what the environment looks like. Whenever you use def 
to define a Var, or define a function (covered in Chapter 3), it is added (or interned) to the global 
environment. After it is interned, it is available for reference from anywhere within the same 
environment. You can see this at work in the Hello World example, where you created a var binding the 
symbol message to a string value, and used it in a subsequent form.  

Vars can be defined and bound to symbols using the def special form. It has the following syntax: 

(def var-name var-value) 

var-name is the name of the var to create, and var-value is its value. var-value can be any Clojure 
form, which will be evaluated and the resulting value bound to the var. Then, whenever the var-name 
symbol is used within the global Clojure environment, it will resolve to the var value. 
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̈ Caution  Be sure to define your dependencies in the proper order. Because of the way Clojure references Vars, 

a var must be defined before a symbol referring to it can be evaluated. Normally this isn’t an issue, but it can 

result in some “gotchas” if you do a lot of work in the REPL. Because you will often define things in the REPL in a 

different order from how you order them in a source file, and because once they are entered in the REPL they 

remain available for the life of the program. As you work, you may not notice until you stop and rerun the program 

that you’ve defined a dependency out of order. It’s an easy problem to fix, and, easy to avoid once you’re aware of 

it, but it does give most beginning Clojure programmers several moments of confusion as they get errors trying to 

run a program that previously seemed to run just fine.  

1. Var definition in REPL Var Binding

Var Binding

Var Binding

Var Binding

Var Binding

Var Binding

Namespace

Namespace

Sequential Definitions

(example)

Clojure Global Environment

2. Var definition in REPL

3. Var definition in runtime code

4. Var definition in Source File

 

Figure 2-1. The Clojure environment 
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Are Vars Variables? 

Although they have many similarities, Vars are not exactly like variables in other programming languages. 

Most importantly, once defined, they are not intended to be changed—at least, not as part of the normal 
running of a program. It is true, if you use def on a var that is already bound, its value will be changed and 

subsequent evaluations will resolve to the new value. However, this is not thread-safe, and def can only 

be used to define global symbols anyway. Mutable, global symbols as part of how your program works are 
bad news, even though you might be able to get it to run. If you need changeable values as part of your 

program, global or otherwise, you should always use Clojure’s thread-safe reference types, never 

redefinition of symbols. 

That said, there is a very good, appropriate use for redefining existing values: manually updating or 

changing a program while it is running. It is Clojure’s ability to rebind a symbol that allows you to build or 

change a program without restarting it. It’s fine to rebind symbols in the REPL, as you do exploratory 
programming. Another example might be that your server-based program uses a symbol to store a 

particular constant, say, *max-users*, and you later decide that the system can handle more users and 

you ought to bump it up. In this case, it is perfectly appropriate to redefine the symbol’s value without 
restarting the program. The key point is to not to rely on programmatic redefining of symbols to use them 

as mutable state. It is extremely unsafe in any scenario with multiple threads, it could be very bad for 

performance, and is bad Clojure practice in any case. 

Symbols and Symbol Resolution 
Symbols are ubiquitous in Clojure, and it is worth taking some time to understand what they really are 
and how they work. Broadly stated, a symbol is an identifier that resolves to a value. They can be defined 
either on the local level (for example, function arguments or local bindings), or globally (using Vars). Just 
about anything you see in Clojure code that is not either a literal or a basic syntactic character (quotes, 
parenthesis, braces, brackets, etc.) is probably a symbol. This covers what are often thought of as 
variables in other languages, but also a good deal more: 

• All function names in Clojure are symbols. When a function is called as part of a 
composite form, it first resolves the symbol to get the function and then applies it. 

• Most operators (comparison, mathematic, etc.) are symbols, which resolve to a 
special, built-in, optimized function. They are resolved and applied in the same 
way as functions with additional performance optimizations. 

• Macro names are symbols. Without going into detail at this time, macros are like 
functions, only applied at compile-time rather than run-time. See Chapter 12 for 
an in-depth discussion of macros. 

Symbol Names 

Symbol names are case sensitive, and user-defined symbols have the following restrictions: 

• May contain any alphanumeric character, and the characters *, +, !, -, _, and ?. 
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• May not start with a number. 

• May contain the colon character :, but not at the beginning or end of the symbol 
name, and may not repeat. 

According to these rules, examples of legal symbol names include symbol-name, symbol_name, 
symbol123, *symbol*, symbol! , symbol? , and name+symbol. Examples of illegal symbol names would be 
123symbol, :symbol: , symbol//name, etc. 

By convention, symbol names in Clojure are usually lower-case, with words separated by the dash 
character (-). If a symbol is a constant or global program setting, it often begins and ends with the star 
character (*). For example, a program might define (def *pi* 3.14159). 

Symbol Resolution and Scope 

When you use a symbol name as a form in your code, Clojure evaluates the symbol and returns the value 
bound to it. How this resolution happens depends on the scope of a symbol, and whether it is user-
defined or refers to a special or built-in form. 

Clojure uses the following steps in resolving symbols: 

1. Clojure determines if the symbol refers to a special form. If so, it uses it 
accordingly. 

2. Next, Clojure checks if the symbol is locally bound. Typically, local binding 
means it is a function argument or defined with let (discussed in Chapter 3). 
If it finds a local value, it uses it. Note that this implies that if there is a locally 
defined symbol and a var with the same name, evaluating the symbol name 
will return the value of the local symbol. Local symbols override Vars of the 
same name. 

3. Clojure searches the global environment for a var with the name of the symbol, 
and returns the value of the var if it finds one. 

4. If no value for the symbol name was found in the previous steps, Clojure 
returns an error: java.lang.Exception: unable to resolve symbol <symbol> 
in this context (NO_SOURCE_FILE:0). The NO_SOURCE_FILE part will be 
replaced with an actual file name, unless you are running from the REPL. 

Namespaces 
When you define a var using def, you are establishing a global binding for that symbol name to that 
value. However, truly global variables and symbols have long been known to be a bad idea. In a large 
program, it is far too easy for definitions in one part of a program to inadvertently collide with those in 
another, leading to difficult, extremely hard-to-find bugs. 

For this reason, Vars in Clojure are all scoped by namespace. Every Var has a namespace as a 
(sometimes implicit) part of its name. When using a symbol to refer to a var, you can use a forward slash 
before the symbol name itself to specify the namespace. 

To see this, look closely at a symbol definition in the REPL.   

user=> (def first-name "Luke") 
#'user/first-name 
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user=> user/first-name 

"Luke" 

Notice the prompt itself:  user=>. The string user in the prompt actually refers to the current 
namespace. If you were working in a different namespace, it would say something different. There’s 
nothing special about the user namespace—it’s just the default. You haven’t actually just defined first-
name, you’ve defined user/first-name which you can then use to evaluate the symbol. Since you’re 
already in the user namespace, using just first-name will also work. 

Declaring Namespaces 

To declare a namespace, use the ns form. ns takes a number of parameters, some of them quite 
advanced. In its simplest form, you can pass it one parameter, a namespace name. If the namespaces 
doesn’t already exist, it will create it, and set it as the current namespace. If there is already a namespace 
of that name, it will just switch to it as the current namespace. 

user=> (ns new-namespace) 
nil 

new-namespace=> 

Now, when you define a Var, it will be put into the new-namespace namespace, instead of user. 

Referencing Namespaces 

To reference a var in a different namespace, simply use its fully-qualified name. Observe the following 
REPL session: 

user=> (def my-number 5) 
#'user/my-number 
user=> (ns other-namespace) 
nil 
other-namespace=> my-number 
java.lang.Exception: Unable to resolve symbol: my-number in this context... 
other-namespace=> user/my-number 

5 

Here you first define a var in the default user namespace. Then, you create a new namespace and 
switch to it. When you try to evaluate my-number, it causes an error—it can’t find it in the current 
namespace. When you use the fully qualified name, however, it resolves the var and returns the value 
you originally bound to it. You can only evaluate Vars using fully-qualified names, though. To define a 
symbol within a namespace, you actually have to be in the namespace you want to create it in. 

Sometimes, if you’re depending heavily on another namespace, it’s too much trouble to fully qualify 
every reference you need to make to a var in that namespace. For this scenario, Clojure provides the 
capability to make a namespace “include” another, using the :use parameter of ns. For example, to 
declare a namespace that imports all the symbols in Clojure’s built-in XML library, you could do this: 

user=> (ns my-namespace 
    (:use clojure.xml)) 

my-namespace=> 
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Now, all the XML-related symbols are available in my-namespace. The (:use clojure.xml) form 
specifies that the clojure.xml namespace is to be loaded, and the symbols defined in it also imported 
into my-namespace. This is also very useful for dependency management: rather than requiring that you 
manually load clojure.xml before using it, you can use :use to specify it as a dependency on a 
namespace you declare. Clojure then loads it as part of the namespace declaration, if it wasn’t already 
loaded, ensuring it is always available within your new namespace. 

In addition to :use, Clojure provides another keyword you can use in ns, :require. The usage is 
identical to :use, the difference being that it only ensures the required namespaces is loaded and 
available—it doesn’t actually import the symbols. You can also use :require to specify a list of 
namespaces to include. Here you include both Clojure’s XML library and its set library at once: 

user=> (ns my-namespace 
    (:require clojure.xml 
        clojure.set)) 

my-namespace=> 

Additionally, you can enclose the namespace in square brackets and use the :as keyword to specify 
a shorter alias for the namespace: 

user=> (ns my-namespace 
    (:require [clojure.xml :as xml])) 

my-namespace=> xml/parse 

my-namespace=> #<xml$parse_7630 clojure.xml$parse_7630@1484105> 

Don’t worry about the messy value; it’s Clojure’s string representation of a function, and indicates 
that Clojure was able to resolve the xml/parse symbol. 

Structuring Source Files 

How can you use namespaces to structure your source code and keep it organized? It is not difficult. By 
convention, each Clojure source file has its own namespace—a ns declaration ought to be the first form 
within any Clojure file. This makes it easy to manage namespaces and files. It is also similar to the Java 
convention of one class per file. In fact, it may be helpful for Java programmers to think of namespaces 
as classes. They certainly do provide ability to group relevant code together the same way classes do. 

To help Clojure find namespaces when they are referenced with :use or :require, there is a 
particular naming convention to follow. The namespace declared in a file must match the name and 
location of a file within the class path. So, for example, if you have a Clojure source file at “x/y/z.clj”, it 
ought to contain the declaration for the namespace x.y.z. When you reference x.y.z, it will know in 
which path and file to search for that namespace. Again, this is very similar to the Java package scheme. 

Summary 
This is all the knowledge that is really needed to run Clojure programs. Of course, you will want to learn 
some tools to help make it easier to manage and run source files. Particularly, classpaths can be painful 
to manage, and tools like Eclipse or Netbeans ease this burden. Another useful feature provided by most 
Clojure environments is the ability to open up a file, and selectively evaluate individual forms, rather 
than always loading the entire file. This is remarkably valuable for rapid development, testing, and 
debugging of existing applications. 

26 



 CHAPTER 2 ̈ THE CLOJURE ENVIRONMENT 

The important fact to remember, no matter which tool you use, is that Clojure programs consist 
entirely of a set of forms, which are themselves either literals, special forms, symbols, or composited of 
other forms. Keeping this in mind is a big step towards understanding Clojure program structure. 

Also, it is important to understand symbols. Symbols are the means by which identifiers in source 
code are linked to actual values, and it is helpful to have a clear grasp of how they are assigned and are 
resolved. 

Vars are frequently used in conjunction with Symbols. Vars represent a binding of a name to a value 
in the Clojure environment, and are scoped by namespace. 

Finally, on a high level, when a program gets too big for one source file break it into multiple files 
and give each one a separate namespace. You can then use the namespace dependency features to 
ensure that symbols are always defined where they are needed. 
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Controlling Program Flow 

Functions 
As a functional language, functions are the beginning and end of every Clojure program. The “shape” of 
any Clojure program is like a tree, each function branching out and calling other functions. 
Understanding a Clojure program means understanding its functions and the patterns in which they are 
called. Use functions carelessly and your Clojure programs will be incomprehensible spaghetti. Use 
them thoughtfully and your Clojure programs will be fast, elegant, and a genuine joy both to write and to 
read. 

First-Class Functions 

In Clojure, all functions are first-class objects. This means the following: 

• They can be dynamically created at any point during the execution of the 

program. 

• They aren’t intrinsically named, but can be bound to symbols or to more than one 

symbol.  

• They can be stored as values in any data structure. 

• They can be passed to, and returned from, other functions. 

 Contrast this with functions in more static languages, such as Java or C. In these languages, 
functions must always be defined and named up-front, before compilation. It is a tremendous 
advantage of Clojure (and other functional languages) to be able to define new functions on-the-fly and 
to store them in arbitrary data structures. 

Defining Functions with fn 

The most basic way to define a function is with the fn special form, which returns a new first-class 
function when evaluated. In its simplest form, it takes two arguments: a vector (a bracketed list) of 
argument symbols and an expression which will be evaluated when the function is called. 
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̈ Note  Vectors, delimited by left and right square brackets, have not yet been discussed. For a detailed 

explanation of their characteristics, see Chapter 4. For now, you can think of them as an alternate way of 

expressing a list. Unlike lists delimited by parentheses, they don’t denote a function call when evaluated, so they 

are suitable for quickly and easily expressing literal data structures in code. 

For example, at the REPL, you can define an extremely simple function which takes two arguments 
and multiplies them. 

user=> (fn [x y] (* x y)) 

This form may look slightly complicated, but it is really very simple: it is a form consisting of just 
three other forms:  fn , [x y] and (* x y). fn is called with the other two as arguments—the vector [x 
y] defines that the new function has two arguments, x and y, while (* x y) is the body of the function, 
with x and y bound to their respective arguments. There is no need to use any kind of explicit return 
statement—the function always returns the evaluation of the provided expression. 

However, this isn’t much use on its own. It just returns the function, which then gets translated to a 
string to be printed by the REPL. The string view of a function isn’t particularly pretty or useful: 

#<user$eval__43$fn__45 user$eval__43$fn__45@ac06d4> 

What’s more, you now can’t use this function, because you didn’t bind it to any symbol or put it in 
any data structure. The JVM might have garbage collected it right away, because it was of no more use. 
Typically, it’s more useful to bind a function to a var, like this:  

user=> (def my-mult (fn [x y] (* x y))) 

You can now use the new function in any context where you have access to that var:  

user=> (my-mult 3 4) 

12 

And, it works as advertised. The expression (fn [x y] (* x y)) is evaluated to a first-class function, 
which is then bound to the symbol my-mult. To call my-mult, you evaluate a list with a function as the first 
element. my-mult resolves to the new function, which is then called with 3 and 4 as arguments. 

Note, however, that the assignment of the function to the symbol is only one way to use it, as long as 
something which resolves to a function is used as the first element of a form it will be called, whether it is 
a symbol or not. For example, it is entirely possible to define a function and use it within the same form: 

user=> ((fn [x y] (* x y)) 3 4) 

12 

In this form, notice that the entire function definition, (fn [x y] (* x y)), is used as the first item 
in the form. When it is evaluated, it resolves to a function and is passed 3 and 4 as arguments, the same 
as when it was bound to a symbol and the symbol was evaluated. 

The important thing to remember is that functions are not the same as the symbols to which they 
are bound. In the previous example, my-mult is not the function, it is only a symbol bound to the 
function. When it is called, it is not calling my-mult, it is resolving my-mult to obtain a function and calling 
that in turn. 
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Defining Functions with defn 

Although functions are distinct from the symbols to which they may be bound, it is by far the most 
common case that functions are named and bound to particular symbols for later use. For this purpose, 
Clojure provides the defn form as a shortcut for defining a function and binding it to a symbol. defn is 
semantically equivalent to using def and fn together, but shorter and more convenient. It also offers 
the ability to add a documentation string to a function, explaining how it is used. 

The defn form takes the following arguments: a symbol name, a documentation string (optional), a 
vector of arguments, and an expression for the function body. For example, the following code defines a 
function which squares a single argument:  

user=> (defn sq 
  "Squares the provided argument" 
  [x] 

         (* x x)) 

You can then call the function using the assigned name:  

user=> (sq 5) 

25 

You can check the doc-string of any function using the built-in doc function, which prints 
information on a function (including its doc-string) to the standard system output. 

user=> (doc sq) 
--------------------- 
user/sq 
([x]) 
   Squares the provided argument 

nil 

̈ Tip  The doc function is very useful for exploratory programming. All the built-in Clojure functions (as well as 

practically all libraries) provide good documentation, and using doc it is all easily accessible from the REPL. Make 

it your practice to document your functions with doc-strings as well, even if nobody else ever reads your code. You 

will be surprised how much of an aid it is to your own memory after a week or two. Making it easy to remember 

exactly what your functions do is very helpful. 

Functions of Multiple Arities 

Arity refers to the number of arguments that a function accepts. In Clojure, it is possible to define 
alternate implementation for functions based on arity.   

This uses the same fn or defn forms previously discussed, but with a slight modification in the 
arguments. Instead of passing a single vector for arguments and expression for the implementation, you 
can pass multiple vector/expression pairs, each enclosed in parentheses. This is easier to demonstrate 
rather than explain: 
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user=> (defn square-or-multiply 
         "squares a single argument, multiplies two arguments" 
        ([] 0) 
  ([x] (* x x)) 

        ([x y] (* x y))) 

This defines a function with three alternate implementations. The first is an empty vector and will 
be applied when the function is called with no arguments. The implementation just returns the constant 
0. The second implementation takes a single argument, and returns that argument multiplied by itself. 
The third implementation takes two arguments, and returns their product. This can be verified in the 
REPL: 

user=> (square-or-multiply) 
0 
user=>(square-or-multiply 5) 
25 
user=>(square-or-multiply 5 2) 

10 

Functions with Variable Arguments 

Often, it is necessary to have a function that takes any number of arguments. This is referred to as 
variable arity. Clojure accommodates this requirement by providing the special symbol & in the 
argument definition vector for function definitions. It works in both fn and defn. 

To use it, just add a & and a symbol name after any normal argument definitions in your argument 
definition vector. When the function is called, any additional arguments will be added to a seq (similar to 
a list), and the seq will be bound to the provided symbol. For example, the following code: 

user=> (defn add-arg-count 
         "Returns the first argument + the number of additional arguments" 
        [first & more] 

        (+ first (count more))) 

count is simply a built-in function which returns the length of a list. Try it out, using the following 
code: 

user=> (add-arg-count 5) 
5 
user=> (add-arg-count 5 5) 
6 
user=> (add-arg-count 5 5 5 5 5 5) 

10 

In the first call, the single argument 5 is bound to first, and the empty list is bound to more since 
there are no additional arguments. (count more) returns 0, and so the result is simply the first argument. 
In the second and third calls, however, more is bound to the lists (5) and (5 5 5 5 5), the lengths of 
which are 1 and 5, respectively. These are added to 5 and returned. 

Chapter 4 discusses lists and some common functions for reading and extracting values from them. 
These will all work on the list bound to the more argument. 
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Shorthand Function Declaration 

As succinct as fn can be when defining functions, there are still cases where it can be cumbersome to 
type it out in its entirety. Typically, these are cases where a function is declared and used inline, rather 
than bound to a top-level symbol.  

Clojure provides a shorthand form for declaring a function, in the form of a reader macro. To 
declare a function in shorthand, use the pound sign, followed by an expression. The expression becomes 
the body of the function, and any percent signs in the body are interpreted as arguments to the function. 

̈ Note  Reader macros are specialized, shorthand syntax and can usually be identified because they are just 

about the only forms in Clojure that are not contained by matched parenthesis, brackets, or braces. They are 

resolved as the first step when parsing Clojure code and are transformed into their long form before the code is 

actually compiled. The shorthand function form #(* %1 %2) is actually identical to the longer form (fn [x y] (* 

x y)) before it is even seen by the compiler. Reader macros are provided for a few extremely common tasks, and 

they can’t be defined by users. The rationale behind this limitation is that overuse of reader macros makes code 

impossible to read unless the reader is very familiar with the macro in question. Preventing users from creating 

custom reader macros lowers the barriers to sharing code and helps to keep Clojure consistent as a language. 

Still, they can be very useful for certain extremely common forms, so Clojure provides a small set that are available 

by default. 

 
For example, here is the square function implemented in shorthand: 

user=> (def sq #(* % %)) 
#'user/sq 
user=> (sq 5) 

25 

The percent sign implies that the function takes a single argument and is bound to the argument 
within the function body. To declare shorthand functions with multiple arguments, use the percent sign 
followed by a numeral 1 through 20: 

user=> (def multiply #(* %1 %2)) 
'#user/multiply 
user=> (multiply 5 3) 

15 

%1 or % refers to the first argument, %2 to the second, etc. It can be readily seen that the shorthand 
function is much more compact, especially for functions declared inline: 

user=> (#(* % %) 5) 

25 
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The only downside to shorthand functions is that they can be difficult to read, so use them 
judiciously and only when they are very short. Also, be aware that shorthand function declarations 
cannot be nested. 

Conditional Expressions 
It is an essential characteristic of any program that it must be able to alter its behavior depending on the 
situation. Clojure, of course, provides a full set of simple conditional forms. 

The most basic conditional form is the if form. It takes a test expression as its first argument. If the 
test expression evaluates to true, it returns the result of evaluating the second argument (the “then” 
clause). If the test expression evaluates to logical false (including nil), it evaluates and returns the third 
argument (the “else” clause), if one is provided, and nil if it is not. For example, the following code: 

user=> (if (= 1 1) 
    "Math still works.") 

"Math still works." 

Another example with an “else” expression: 
 

user=> (if (= 1 2) 
    "Math is broken!" 
    "Math still works.") 

"Math still works." 

Clojure also provides an if-not form. This functions exactly the same way as if, except its behavior 
is reversed. It evaluates the second argument if the test expression is logically false, and the third only 
when logically true. 

user=> (if-not (= 1 1) 
    "Math is broken!" 

   "Math still works.") 

"Math still works." 

Sometimes, it is useful to choose not just between true and false but between several different 
options. You could do this with nested if’s, but it’s much cleaner to use the cond form. cond takes as its 
arguments any number of test/expression pairs. It evaluates the first test, and, if true, returns the result 
of the first expression. If the first test evaluates to false, it tries the next test expression, and so on. If none 
of the test expressions evaluate to true, it returns nil, unless you provide an :else keyword as the last 
expression, which serves as a catch-all. For an example, let’s define a function that uses cond to 
comment on the weather: 

(defn weather-judge 
"Given a temperature in degrees centigrade, comments on the weather." 
[temp] 
(cond 

  (< temp 20) "It's cold" 
  (> temp 25) "It's hot" 

:else  "It's comfortable")) 
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Try it out with the following code: 

user=> (weather-judge 15) 
"It's cold" 
user=> (weather-judge 22) 
"It's comfortable" 
user=> (weather-judge 30) 

"It's hot" 

̈ Tip  cond can be useful, but be careful—large cond statements are be difficult to maintain, especially as the 

range of possible behaviors in your program grows. Instead, consider using polymorphic dispatch by means of 

multimethods, discussed in Chapter 9. Multimethods allow conditional logic, similar to cond, but are much more 

extensible. 

Local Bindings 
In a functional language, new values are obtained by function composition—nesting multiple function 
calls. Sometimes, however, it is necessary to assign a name to the result of a computation, both for 
clarity and, if the value might be used more than once, for efficiency. 

Clojure provides the let form for this purpose. let allows you to specify bindings for multiple 
symbols, and a body expression within which those symbols will be bound. The symbols are local in 
scope—they are only bound within the body of the let. They are also immutable; once they are bound, 
they are guaranteed to refer to the same value throughout the body of the let and cannot be changed. 

The let form consists of a vector of bindings and a body expression. The binding vector consists of a 
number of name-value pairs. For example, the following let-expression binds a to 2, b to 3, and then 
adds them: 

user=> (let [a 2 b 3] (+ a b)) 

5 

This is the simplest possible way to use let. However, it is fairly trivial and let adds more 
complexity than it provides value. For a more compelling example of when to use let, consider the 
following function: 

(defn seconds-to-weeks 
"Converts seconds to weeks" 
[seconds] 

 (/ (/ (/ (/ seconds 60) 60) 24) 7)) 

It works fine, but it’s not very clear. The nested calls to the division function are a bit confusing, and 
although most people would be able to figure out the code without too much trouble, it is more work 
than it should be for this seemingly simple functionality. Also, one can easily imagine a similar function, 
with values and operations that are much less familiar. Such a function, written like this, might never be 
deciphered. 

We can use let to clean up this definition: 
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(defn seconds-to-weeks 
"Converts seconds to weeks" 
[seconds] 
(let [minutes (/ seconds 60) 
       hours (/ minutes 60) 
       days (/ hours 24) 
       weeks (/ days 7)] 

 weeks)) 

This is longer, but you can see what’s going on at each step of the calculation. You bind 
intermediary symbols to minutes, hours, days, and weeks, and then return weeks rather than doing the 
calculation all in one go. This example demonstrates mostly a stylistic choice. It makes the code clearer, 
but also longer. When and how to use it is up to you, but the bottom line is simple: use let to make your 
code clearer and to store the results of calculations, so you don’t have to perform them multiple times. 

Looping and Recursion 
It will probably come as a minor shock to users of imperative programming languages that Clojure 
provides no direct looping syntax. Instead, like other functional languages, it uses recursion in scenarios 
where it is necessary to execute the same code multiple times. Because Clojure encourages the use of 
immutable data structures, recursion provides a much better conceptual fit than typical, imperative 
iteration.  

Thinking recursively is one of the largest challenges coming from imperative to functional 
languages, but it is surprisingly powerful and elegant, and you will soon learn how to easily express any 
repeated computation using recursion. 

Most programmers have some notion of recursion in its simplest form—a function calling itself. 
This is accurate, but does not carry any idea of how useful recursion can actually be or how to use it 
effectively and understand how it works in a variety of scenarios.  

For effective recursion in Clojure (or any other functional language, for that matter), you only need 
to keep these guidelines in mind: 

• Use a recursive function’s arguments to store and modify the progress of a 

computation. In imperative programming languages, loops usually work by 

repeatedly modifying a single variable. In Clojure, there are no variables to 

modify. Instead, make full use of a function’s arguments. Don’t think about 

recursion as repeatedly modifying anything, but as a chain of function calls. Each 

call needs to contain all the information required for the computation to continue. 

Any values or results that are modified in the course of a recursive computation 

should be passed as arguments to the next invocation of the recursive function, so 

it can continue operating on them. 

• Make sure the recursion has a base case or base condition. Within every recursive 

function, there needs to be a test to see if some goal or condition has been 

reached, and if it has, to finish recurring and return a value. This is similar to 

protecting against infinite loops in an imperative language. If there isn’t a case 

where the code is directed to stop recurring, it never will. Obviously, this causes 

problems. 
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• With every iteration, the recursion must make at least some progress towards the 

base condition. Otherwise, there is no guarantee that it would ever end. Typically, 

this is achieved by making some numeric value larger or smaller, and testing that 

it has reached a certain threshold as the base condition. 

As an example, the following Clojure program uses Newton’s algorithm to recursively calculate the 
square root of any number. It is a full, albeit small Clojure program with one main function and several 
helper functions that demonstrate all these features of recursion (see Listing 3-1). 

Listing 3-1. Calculating Square Roots 

(defn abs 
    "Calculates the absolute value of a number" 
    [n] 
    (if (< n 0) 
        (* -1 n) 
        n)) 
 
(defn avg 
    "returns the average of two arguments" 
    [a b] 
    (/ (+ a b) 2)) 
 
(defn good-enough? 
    "Tests if a guess is close enough to the real square root" 
    [number guess] 
    (let [diff (- (* guess guess) number)] 
        (if (< (abs diff) 0.001) 
            true 
            false))) 
 
(defn sqrt 
    "returns the square root of the supplied number" 
    ([number] (sqrt number 1.0)) 
    ([number guess] 
    (if (good-enough? number guess) 
        guess 

        (sqrt number (avg guess (/ number guess)))))) 

Let’s try it out. After loading this file into the Clojure runtime, execute try the following at the REPL: 

user=> (sqrt 25) 
5.000023178253949 
user=> (sqrt 10000) 

100.00000025490743 

As advertised, this code returns a number within .001 of the exact square root. 
The first three methods defined in this file, abs, avg, and good-enough?, are straightforward helper 

functions. You don’t need to observe them too closely at this point, unless you want to. The meat of the 
algorithm happens in the fourth, the sqrt function. 
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The most obvious thing about the sqrt function is that it has two implementations. The first can be 
thought of as the “public” interface. It’s easy to call, and takes only a single argument: the number for 
which you are trying to find the square root. The second is the recursive implementation, which takes 
both the number and your best guess so far. The first implementation merely calls the second, with an 
initial guess of 1.0. 

The recursive implementation itself is simple. It first checks the base condition, defined by the good-
enough? function, which returns true if your guess is close enough to the actual square root. If the base 
condition is met, the function doesn’t recur any more, but simply returns the guess as the answer. 

If the base condition is not met, however, it continues the recursion by calling itself. It passes the 
guess and the number to itself as arguments, as those are all it needs to continue the calculation. This 
fulfills the first characteristic of recursive functions defined above.  

Finally, note the expression provided as the value of guess for the next iteration: (avg guess (/ 
number guess)). It always passes the average of the current guess and the number divided by the current 
guess. The mathematical properties of square roots guarantee that this number will always be closer to 
the square root of the number than the previous guess. This fulfills the last requirement for a good 
recursive function. With each iteration, it makes progress and gets closer to the result. Each time the 
function is run, guess gets a little closer to the actual square root, and eventually it is guaranteed to get 
close enough that good-enough? can return true and the calculation will end. 

As another example, Listing 3-2 is a function that uses recursion to calculate exponents. 

Listing 3-2. Calculating Exponents 

(defn power 
    "Calculates a number to the power of a provided exponent." 
    [number exponent] 
    (if (zero? exponent) 
        1 

        (* number (power number (- exponent 1))))) 

Trying it out with the following code: 

user=> (pow 5 3) 

125 

This function uses recursion differently than the square root function. Here, you use the 
mathematical observation that x

n
 = x * x

(n-1)
. This can be seen in the recursive call: the function returns the 

number, multiplied by the number raised to one less than the initial power. You have a base case: it 
checks if the exponent is zero, and if so, returns 1, since x

0
 is always 1. Since you subtract 1 from the 

exponent on each iteration, you can be sure that you will eventually reach it (as long as you don’t give 
the function a negative exponent). The function always makes progress towards the base condition.  

̈ Note  Of course, there are easier ways to get square roots and powers than implementing these functions. Both 

exist in Java’s standard math library, which is extremely easy to call from Clojure. These are merely presented as 

clean examples of recursive logic. See the chapter on Java Interoperability for instructions on how to call Java 

library functions. 
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Tail Recursion 

One practical problem with recursion is that, due to the hardware limitations of physical computers, 
there is a limit on the number of nested functions (the size of the stack). On the JVM, this varies and can 
be quite large. On the machine on which I write this, it’s about 5000. Nevertheless, no matter how large 
the stack size is, it does force a major issue: there is a strict limit on the number of times a function can 
recur. For small functions, this rarely matters. But if recursion is a generic and complete replacement for 
loops, it becomes an issue. There are many situations in which it is necessary to iterate or recur 
indefinitely. 

Historically, functional languages resolve this issue through tail-call optimization. Tail-call 
optimization means that, if certain conditions are met, the compiler can optimize the recursive calls in 
such a way that they do not consume stack. Under the covers, they’re implemented as iterations in the 
compiled machine code.  

The only requirement for a recursive call to be optimized in most functional languages is that the 
call occurs in tail position. There are several formal definitions of tail position, but the easiest to 
remember, and the most important, is that it is the last thing a function does before returning. If the 
return value of the “outer” function is wholly delegated to the “inner” function, the call is in tail position. 
If the “outer” function does anything with the value returned from the inner function except just return 
it, it is not tail recursive and cannot be optimized. This makes sense when the nature of the call stack is 
considered; if a call is in tail position, then the program can effectively “forget” that it was called 
recursively at all and delegate the entire program flow to the result of the inner function. If there is 
additional processing to do, the compiler can’t throw away the outer function. It has to keep it around in 
order to finish computing its result. 

For example, in the preceding examples, the recursive power function is not in tail position, because 
it doesn’t simply return the value of the recursive call, but takes it and does additional math on it before 
returning. This cannot be optimized.  

On the other hand, the recursive call in sqrt is in tail position, because all the function does with the 
call is to return the value—no extra processing required. 

Clojure’s recur 

In some functional languages, such as Scheme, tail call optimization happens automatically whenever a 
recursive call is in tail position. Clojure does not do this. In order to have tail recursion in Clojure, it is 
necessary to indicate it explicitly using the recur form. 

To use recur, just call it instead of the function name whenever you want to make a recursive call. It 
will automatically call the containing function with tail-call optimization enabled.  

For example, Listing 3-3 is non-recursive function which adds up all the numbers to a given limit, 
e.g., (add-up 3) = 1 + 2 + 3 = 6. 

Listing 3-3. Adding Up Numbers without Tail Recursion 

(defn add-up 
    "adds all the numbers below a given limit" 
    ([limit] (add-up limit 0 0 )) 
    ([limit current sum] 
        (if (< limit current) 
         sum 

         (add-up limit (+ 1 current) (+ current sum))))) 
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This works fine and is valid according to the rules of recursion. It passes the current number, the 
sum so far, and the limit as arguments. It checks for a base case (when the current number is greater 
than the limit), and each iteration gets closer to the base case. It works great for small and moderate 
values: 

user=> (add-up 3) 
6 
user=> (add-up 500) 

125250 

But if you try to use it on a really large number, it chokes: 

user=> (add-up 5000) 

java.lang.StackOverflowError 

This is where you need tail call optimization. Just redefine it, replacing the call to adds-up with a call 
to recur, as shown in Listing 3-4. 

Listing 3-4. Adding up Numbers Correctly with Tail-recursion 

(defn add-up 
    "adds all the numbers up to a limit" 
    ([limit] (add-up limit 0 0 )) 
    ([limit current sum] 
        (if (< limit current) 
         sum 

         (recur limit (+ 1 current) (+ current sum))))) 

Now you can give it a try: 

user=> (add-up 5000) 

12502500 

It works with no problems. Using recur, the only limit to how much recursion you can use is how 
long you are willing to wait for the processing to finish. 

̈ Note  Clojure has come under fire from some quarters for not doing tail-call optimization by default, whenever 

possible, without the need for the recur special form. Although the invention of recur was spurred by the 

limitations of the JVM that make it difficult to do automatic tail optimization, many members of the Clojure 

community find that having explicit tail recursion is much clearer and more convenient than having it implicitly 

assumed. With Clojure, you can tell at a glance if a function is tail recursive or not, and it’s impossible to make a 

mistake. If something uses recur, it’s guaranteed never to run out of stack space due to recursion. And if you try 

to use recur somewhere other than in correct tail position, the compiler will complain. You are never left 

wondering whether a call is actually in tail position or not. 
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Using loop 

The loop special form, used in conjunction with recur, provides the capability to make tail recursion 
even simpler by providing the means to declare and call a function at the same time. Logically, loop is 
no different from defining and then immediately calling an anonymous recursive function, but it makes 
it much easier to “read” the logical flow and see how iterative looping and tail-recursion are actually the 
same thing. 

To define a loop construct, use the loop form. It in turn takes two forms: first, a vector of initial 
argument bindings (in name/value pairs) and an expression for the body. Whenever recur is used within 
the body of the loop, it will recursively “call” the loop again with any passed arguments rebound to the 
same names as in the loop definition.  

For example, the following is a very simple loop that establishes an initial binding of the symbol i to 
0, recursively increments it up to ten and then returns: 

(loop [i 0] 
    (if (= i 10) 
        i 

        (recur (+ i 1)))) 

Note that, like any recursive function, the loop body has a base case (when i = 10) and makes 
progress towards the base case with every iteration. Unlike a recursive function, however, there isn’t any 
need to define a function by itself. loop sets up your functions and assigns initial values, and then 
provides the point that the program execution “comes back” to when recur is called. You can look at it 
equally well as a recursive call, or an iterative loop with a set of values that changes each time around.  

This is extremely useful, to the point where almost all uses of recur in practice are coupled with a 
loop. One extremely common idiom when writing recursive functions in other functional languages is to 
have two versions of the function—one recursive, one not. Typically, the non-recursive version sets up 
some initial values and then calls the recursive function. This is a natural outcome of good recursive 
style—the recursive function may need a lot of arguments to keep track of its computational state, but 
those don’t always need to be exposed to the end caller of the function. loop provides the capability to 
do this much more compactly. To see an example of this, look at the square root function introduced 
earlier in this chapter (modified to use recur instead of direct recursion). 

(defn sqrt 
    "returns the square root of the supplied number" 
    ([number] (sqrt number 1.0)) 
    ([number guess] 
    (if (good-enough? number guess) 
        guess 

        (recur number (avg guess (/ number guess)))))) 

Notice the two implementations of the function—the non-recursive version sets the initial value of 
guess, and then kicks off the recursion. You can refactor this to use loop and to do both of these things in 
a single step: 

(defn loop-sqrt 
    "returns the square root of the supplied number" 
    [number] 
    (loop [guess 1.0] 
        (if (good-enough? number guess) 
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            guess 

            (recur (avg guess (/ number guess)))))) 

This version only has one function implementation. The loop sets the initial value of guess and 
immediately executes its body. When recur is called, it “calls” the loop statement again, not the top-level 
function. The argument to recur is matched up with the binding in the loop, so with each iteration the 
new guess value is bound to guess. The code meant to repeat is neatly packaged between loop and recur. 

Deliberate Side Effects 

As discussed in Chapter2, Clojure avoids side effects wherever possible, preferring a purely functional 
style. Some tasks, however, such as IO, explicit state management and Java interaction are, by their very 
nature, side effects. These cannot be incorporated into a fully functional program and so Clojure 
provides constructs to explicitly run side effects.  

Using do 

The most important and basic way to run a side effect is to use the do special form. do is very simple. It 
takes multiple expressions, evaluates them all and returns the value of the last one. This means that from 
a functional standpoint, all expressions but the last are ignored; they are present only as a means to 
execute side effects. 

For example, take the println function. println is a side effect, since it performs output. It returns 
nil, so it doesn’t fit well in a functional program (which rely heavily on meaningful return values). The 
following code entered at the REPL uses do to call several println functions as side effects then returns a 
distinct value. 

user=> (do 
        (println "hello") 
        (println "from") 
    (println "side effects") 

            (+ 5 5)) 

The following output is produced: 

hello 
from 
side effects 

10 

The first three lines are output produced as a result of calling println: the final value, 10, is the 
return value of the do form itself printed to the REPL as output, not a side effect. Side effects will be 
called whenever the do form is evaluated, whether at the REPL or not. 
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Side Effects in Function Definitions 

If you have a function that needs to perform side effects, Clojure also provides a way to run side effects 
directly from a function definition, using either fn or defn, or directly inside the body of a loop without 
needing to explicitly use a do form. This is accomplished quite simply by providing multiple expressions, 
instead of just one, as the body of a function or loop. The last expression will be evaluated, as usual, for 
the return value of the function. All the other expressions are evaluated solely for side effects. 

For example, here is a function definition for a function which squares a number. From a functional 
standpoint, it is identical to the one at the beginning of this chapter. However, it runs two side effects 
(specifically, calls to println) in addition to returning the value. 

(defn square 
    "Squares a number, with side effects." 
    [x] 
    (println "Squaring" x) 
    (println "The return value will be" (* x x)) 

    (* x x)) 

As with do, only the last line of the function definition actually returns the value. But running the 
function at the REPL, you see: 

user=> (square 5) 
Squaring 5 
The return value will be 25 

25 

The same construct also works for fn: just add additional expressions before the one that returns the 
value. This can be very useful, for example, for adding logging to track when functions are called. 
 

Functional Programming Techniques 

As previously described, the mechanical basics of how to declare functions and control program flow 
within a Clojure program. These are the basic, most fundamental components from which Clojure 
programs are built. Most of the rest of Clojure’s standard library is expressible in terms of these basic 
constructs (with the exception of macro-based forms, discussed in Chapter 12). 

However, to write a good Clojure program, you must not only know these forms but some of the 
techniques for using them effectively and understand everything that Clojure allows you to do. Most of 
these techniques are by no means exclusive to Clojure, but are common to all functional languages. 

First-Class Functions 

Functions can themselves be values and passed to and returned from other functions. This is an 
important feature of functional programming. It isn’t just a way of doing clever tricks with code, but a 
key way to structure programs. By passing blocks of functionality around as functions, it is possible to 
write code that can be extremely generic and nearly eliminate code duplication. 
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There are two aspects to using first-class functions: taking them as arguments and calling them and 
creating and returning them. The former is somewhat more common, as it is conceptually “easier,” 
although the latter can be extremely powerful as well. 

Consuming First-Class Functions 

Functions that take other functions as arguments are extremely common. These are known as higher-
order functions. Most of the sequence manipulation library (see Chapter 5) is based around this 
technique. 

The primary motivation for allowing a function to take other functions as arguments is to make it 
more generic. By delegating specific behaviors to the provided functions, the outer function can be 
much more general, and therefore, suitable for use in a much wider range of scenarios. 

For example, the following example is a function which calculates the result of a function applied to 
two arguments, and also the result when the order of the arguments is reversed. The key point to notice 
is that it works for any function that takes two arguments. Perhaps you designed this function with one 
function in mind, but it works equally well for anything else.  

(defn arg-switch 
    "Applies the supplied function to the arguments in both possible orders. " 
    [fun arg1 arg2] 

    (list (fun arg1 arg2) (fun arg2 arg1))) 

The function constructs a list of two items. The first is the result of calling the function with the 
parameters in the original order and the second is the result of calling them in reverse order. Test it at 
the REPL: 

user=> (arg-switch / 2 3) 

(2/3 3/2) 

Here, you pass arg-switch three distinct parameters: the division function, the number two, and the 
number three. It returns a list with two items: the first is two divided by three and the second is three 
divided by two. Both are presented as fractions, because that is Clojure’s default numerical 
representation for rational numbers. 

arg-switch works equally well when passed other functions: 

user=> (arg-switch > 2 3) 

(false true) 

When passed the greater-than function, it returns (false true), the respective results of (> 2 3) 
and (> 3 2). It works for non-numeric functions. Here you try it with the string concatenation function 
str: 

user=> (arg-switch str "Hello" "World") 

("HelloWorld" "WorldHello") 

You can even pass it a custom function, defined inline: 

user=> (arg-switch (fn [a b] 
                                   (/ a (* b b))) 
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                               2 3) 

(2/9 3/4) 

As you can see, by allowing your function to take another function as an argument, you have with 
no extra work created an extremely generic, flexible function that can be used in a wide variety of 
scenarios (assuming you needed this sort of function to begin with). Defining it using a first-class 
function is infinitely preferable to having to write it again and again for each type of operation. When 
programs become more complex, this is even more of an advantage. Functions can concentrate entirely 
on their own logic and delegate all other operations. 

Producing First-Class Functions 

Not only can functions take other functions as arguments, but they can construct them and return them 
as values. This has the potential to be rather mind-bending, if not kept clean and understandable, but is 
also an extraordinarily powerful feature.  

This is one of the main reasons Lisp has historically been associated with artificial intelligence. It 
was thought that functions creating other functions would allow a machine to evolve and define its own 
behavior. Although self-modifying programs never quite lived up to expectations, the ability to define 
functions on-the-fly is nevertheless extremely powerful and useful for many everyday programming 
tasks. 

As one example, here is a very simple function that creates and returns another function which 
checks that a number is in a given range: 

(defn rangechecker 
    "Returns a function that determines if a number is in a provided range." 
    [min max] 
    (fn [num] 
        (and (<= num max) 

         (<= min num)))) 

To use this function, you can call it and save the result in the REPL: 

user=> (def myrange (rangechecker 5 10)) 

#’user/myrange 

Then call your new function, myrange, like any other function: 

user=> (myrange 7) 
true 
user=> (myrange 11) 

false 

If you only needed one range check, it would probably be easier just to write it directly. But in a 
program where there may be dynamically generated ranges or thousands of different ranges required, 
creating a “function factory” function like rangechecker is very useful. For functions that are more 
complicated than just checking a range, it is a huge win, since any functions that can be generated 
dynamically are functions that don’t have to be written manually with lots of complicated logic. 
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Closures 

As might be gathered from its very name, closures are a central feature in Clojure. But what, exactly, is a 
closure? And why do they matter so much? 

Briefly stated, closures are first-class functions that contain values as well as code. These values are 
those in scope at function declaration, preserved along with the function. Whenever a function is 
declared, the values locally bound to symbols it references are stored along with it. They are “closed 
over” (hence the name) and maintained along with the function itself. This means that they are then 
available for the function’s entire lifespan and the function can be referred to as a closure. 

 For example, the -rangechecker function defined previously is actually a closure. The inner 
function definition refers to the min and max symbols. If these values were not closed over and made 
available as part of the function, they would be well out of scope by the time the function was called. 
Instead, the generated function carries them with it, so they are available wherever and whenever it is 
called. 

The value of a closed-over value can’t change after the function is created, so it becomes in essence 
a constant for that function.  

One interesting property of closures is that due to their dual nature—both behavior and data—they 
can fulfill some roles that are assumed by objects in object-oriented languages. Just as anonymous 
classes with one method are used to simulate first-class functions in Java, closures can be viewed as an 
object with a single method. If you implement this method as a generic dispatcher for “messages” sent 
to the closure, it can have the beginnings of a full object system (although this is overkill for most 
programs). It is very common to create closures in which the data they hold is just as important as the 
behavior they embody.  

Currying and Composing Functions 

Currying, first invented by Moses Schönfinkel but named after Haskell Curry, refers to the process of 
transforming a function into a function with fewer arguments by wrapping it in a closure. Manipulating 
functions in this way is extremely useful, as it allows for the creation of new, customized functions 
without having to write explicit definitions for each one. 

Using partial to Curry Functions 

In Clojure, any function can be curried using the partial function. partial takes a function as its first 
argument and any number of additional arguments. It returns a function that is similar to the provided 
function, but with fewer arguments; it uses the additional arguments to partial instead. 

For example, the multiplication function * normally takes at least two arguments to be useful. But if 
you need a single-argument version, you can use partial to curry it, combining it with a specific value to 
create a single-argument function that suits your needs: 

user=> (def times-pi (partial * 3.14159)) 

#’user/times-pi 

Now, you can call times-pi with a single argument, which it will multiply by PI: 

user=> (times-pi 2) 

6.28318 

46 



 CHAPTER 3 ̈ CONTROLLING PROGRAM FLOW 

Notice that (times-pi 2) is exactly equivalent to (* 3.14159 2). All you’ve done is to create a 
version of * with some of its parameters already defined. You could have done the same thing by 
manually defining a function: 

(defn times-pi 
    “Multiplies a number by PI” 
    [n] 

    (* 3.14159 n)) 

Although this is quite cumbersome, the entire function definition is basically a wrapper for the 
multiplication function, supplying specific values. This is where currying shines: it eliminates the need 
to explicitly write this type of simple wrapper function. The function returned by partial is identical to 
the manually defined version of times-pi, but by using partial you can leverage the fact that times-pi is 
defined exclusively in terms of the multiplication function and a particular value. This makes the code 
much easier to keep track of, and it mirrors the abstract logic of what is happening more accurately. 

Using comp to Compose Functions 

Another powerful tool to use in conjunction with currying is function composition. In one sense, every 
function is a composition, since all functions must use other functions in their definitions. However, it is 
also possible to succinctly create new functions by combining existing functions, using the comp function 
instead of specifying an actual function body. 

comp takes any number of parameters: each parameter is a function. It returns a function that is the 
result of calling all of its argument functions, from right to left. Starting with the rightmost, it calls the 
function and passes the result as the argument to the next function and so on. Therefore, the function 
returned by comp will have the same arity as the rightmost argument to comp, and all the functions passed 
to comp except for the rightmost must take a single argument. The final return value is the return value of 
the leftmost function. 

To see this in action, consider the following example entered at the REPL:  

user=> (def my-fn (comp - *)) 

#'user/my-fn 

This defines my-fn as a function which takes any number of arguments, multiplies them, negates 
them, and returns the result. Try it out using the following code: 

user=> (my-fn 5 3) 

-15 

As expected, the result is –(5 * 3), or –15. First, the rightmost argument function is called on the 
parameters. In this case, it is multiplication, which returns 15. Fifteen is passed to the negation function, 
giving –15. Since this is the leftmost argument function, this is the return value as a whole. You can use 
comp, in this case, because the logic of my-fn can be expressed solely in terms of the multiplication and 
negation functions. Of course, it is possible to write my-fn out longhand: 

(defn my-fn 
    “Returns –(x * y)” 
    [x y] 

    (- (* x y))) 
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However, since it does nothing but compose the multiplication and negation functions anyway, it is 
much simpler as well as more expressive to use comp. 

Because the functions passed to comp are required to take a single argument, it makes them 
particularly good candidates for using currying with partial. Say, for example, that you need a function 
similar to the one defined above, but that carries out an additional step: multiplying the final product by 
ten. In conventional mathematical notation, you want to write a function that calculates 10 * -(x * y). 

Normally, this could not be expressed using comp alone—each argument to comp (excepting the 
rightmost) must take a single argument, and multiplication requires multiple arguments. But by passing 
the result of partial as one of the arguments to comp, you can get around this restriction: 

user=> (def my-fn (comp (partial * 10) - *)) 
#'user/my-fn 
user=> (my-fn 5 3) 

-150 

It works as expected. First, 3 and 5 are multiplied. That result, 15, is passed to the negation function. 
That result, –15, is passed to the function created by partial, which multiplies it by 10 and returns the 
final value as the result: –150. 

This example should demonstrate how it is possible to use function composition and currying to 
create arbitrarily complex functions, as long as they are definable in terms of existing functions. Using 
currying and composition will make the intent of your code clear and keep things very succinct. Often, 
complex multiline function definitions can be replaced with a single line of composed or curried 
functions.  

Putting It All Together 

This chapter has covered the most basic elements of a Clojure program: functions, recursion, and 
conditional logic. To use Clojure effectively, it is very important to be completely comfortable with these 
constructs. 

However, unlike most other languages, Clojure doesn’t stop with these basic control structures. 
They are intended to be built upon as well as used directly. It is certainly possible to write a program of 
any size or complexity using just basic structures. Conditionals, loops, and function calls go a long way, 
and, indeed, they are the only tools available in some languages. But this can be seen as growing a 
program “horizontally”—piling on more and more conditions, more functions, more complex looping, 
or recursion. The cost of modifying or extending the program is linear; small changes or additions take a 
little bit of work, and big changes or additions require lots of work. 

Clojure encourages you to program “vertically” by building up your own control structures on top of 
the provided primitives, rather than using them directly. First-class functions and closures are extremely 
powerful ways to do this. By recognizing patterns particular to your program or problem domain, it is 
possible to build your own controls that are far more powerful than the primitive structures could ever 
be. Your program can be expanded and modified with sub-linear effort—making small changes is still 
easy, but making larger changes can be easy too, since the language itself is now customized to the 
problem domain. 

For example, it is entirely possible to do processing on a collection by recursing through it manually. 
But this is such a common task that Clojure has provided a powerful suite of higher-order collection-
processing functions: map, reduce, filter, etc. These are all discussed in Chapter 5 and allow operations 
on collections to be expressed often with a single line rather than coding entirely new recursive 
functions for each occasion. The same principle applies to any domain problem. Clojure includes 
functions for collections, since they are used in almost every program, but you can take the same 
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approach with problems and structures specific to any problem domain. Don’t just build out 
functionality, but use higher-order functions (and later on, macros) to build up the tools that will help 
deal with that type of problem.  

By the time any Clojure program reaches a certain level of complexity, if it’s well designed, you 
should find that it looks very much like a highly customized domain specific language (DSL). This is no 
extra work—it comes naturally, and will actually make the program much smaller and more lightweight 
than using the primitive structures repeatedly. loop, recur, and cond are useful, but they should be the 
building blocks, not the substance of a program. Once a project is underway, it can be very surprising 
how little they are needed. 
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Data in Clojure 

How to Represent and Manipulate Data 
Clojure is a dynamically typed language, which means that you never need to explicitly define the data 
type of symbols, functions, or arguments in your programs. However, all values still have a type. Strings 
are strings, numbers are numbers, lists are lists, etc. If you try to perform an unsupported operation on a 
type, it will cause an error at runtime. It is the programmer’s responsibility to write code in such a way 
that this does not happen. This should be very natural to those with a dynamic language background, 
while it will no doubt take some getting used to for those who have only used static languages in the 
past. 

Clojure types are at the same time very simple and fairly complicated. Clojure itself has only a 
handful of different types and as Clojure is not object-oriented it does not natively support the creation 
of new user-defined types. Generally, this keeps things very simple. However, Clojure does run on the 
Java Virtual Machine, so internally every Clojure type is also represented by a Java class or interface. 
Also, if you are interfacing with a Java library, you might have to pay attention to Java classes and types. 
Fortunately, typically the only time you need to worry about Java types in Clojure is when interacting 
with Java code. 

Table 4-1. Clojure’s Built-in Types 

Type Literal Representation Example Underlying Java Class/Interface 

Number The number itself 16 java.lang.Number 

String Enclose in double 
quotes 

"Hello!" java.lang.String 

Boolean  true or false true java.lang.Boolean 

Character Prefix with a backslash \a java.lang.Character 

Keyword Prefix with a colon :key clojure.lang.Keyword 

List Parenthesis '(1 2 3)  

Vector Square brackets [1 2 3]  
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Map Curly braces  {:key val :key 
val} 

java.util.Map 

Set Curly braces prefixed 
by pound sign 

#{1 2 3} java.util.Set 

Nil 
The reserved symbol nil has a special meaning within a Clojure program: it means “nothing” or “no 
value.” nil always evaluates to false when used in boolean expressions and is equal to nothing but 
itself. It may be used in place of any data type, including primitives. However, passing nil to most 
functions or operations will cause an error, since it is not a true value of any type. If it is at all possible 
that a value might be nil, you should always account for that possibility as a special case in your code to 
avoid performing an operation on it and seeing a java.lang.NullPointerException error. 

nil is identical to null in Java. 

Primitive Types 
Clojure provides a number of primitive types representing basic programming language constructs such 
as number, strings, and Boolean values. 

Numbers 
Clojure has very good support for numbers and numerical operations. Numeric literals can be 
represented in a variety of ways: 

• As integers or floating-point decimals in standard notation, just type the number. 
For example, 42 or 3.14159. 

• Clojure also supports entering literals directly as ratios using the / symbol. For 
example, 5/8   or 3/4. Ratios entered as literals will automatically be reduced. If 
you enter 4/2, it will be stored simply as 2.  

• You can enter integer literals of any base by using the form base+r+value. For 
example, 2r10 is 2 in binary, 16rFF is 255 in hexadecimal, and you can even do 
things like 36r0Z is 35 in base-36. All bases between 2 and 36 are supported. 

• Clojure also supports traditional java hexadecimal and octal notation. Prefix a 
number with 0x to signal a hexadecimal representation: for example, 0xFF is also 
255. Numbers which begin with a leading zero are assumed to be in octal notation.  

• There are actually two ways of representing a decimal number in any computer: as 
a floating point and as an exact decimal value. Clojure, like Java, defaults to 
floating point representation, but does support exact values as well, internally 
using Java’s java.math.BigDecimal class. To specify that a literal value be 
internally represented in exact form, append an M to the number. For example, 
1.25M. Unlike floating points, these numbers will not be rounded in operations. 
This makes them most appropriate for representing currencies. 
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̈ Caution  Because Clojure uses Java’s convention that integer literals with a leading zero are parsed as numbers 

in base-8 (octal) notation, it will result in an error if you try to enter a literal such as 09 since it is not valid octal. 

Leading zeros, although mathematically insignificant, are important to indicate the way numbers are parsed.  

In operations that involve different types of numbers, Clojure automatically converts the result to 
the most precise type involved. For example, when multiplying an integer and a floating-point number, 
the result will be a floating point. Division operations always return a ratio, unless one of the terms is a 
decimal, and then the result is converted to floating point. 

There is no maximum size for numbers. Clojure automatically uses different internal 
representations for numbers as they get bigger and has no problem handling numbers of any size. 
However, be aware that in high-performance applications, you may notice a slowdown when operating 
on numbers larger than can be stored in the java Long datatype, i.e, numbers larger than 
9,223,372,036,854,775,807. This requires a different internal representation that is not as efficient for 
high-speed mathematical operations, even though it is more than sufficient for most tasks. 

Common Numeric Functions 

These functions are provided for mathematic operations on numbers. 

̈ Note  For simplicity, Clojure in its API makes no real distinction between functions and what would usually be 

thought of as operators in other languages. But don’t worry: when the expressions are evaluated and compiled, 

they are replaced with optimized Java bytecode using primitive operators whenever possible. There isn’t any 

speed lost by treating math operators as functions for simplicity. 

Addition (+) 

The addition function (+) takes any number of numeric arguments and returns their sum. 

(+ 2 2) 

-> 4 

(+ 1 2 3) 

-> 6 

Subtraction (–) 

The subtraction function (–) takes any number of numeric arguments. When given a single argument, it 
returns its negation. When given multiple arguments, it returns the result of subtracting all subsequent 
arguments from the first. 
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(- 5) 

-> -5 

(- 5 1) 

-> 4 

(- 5 2 1) 

-> 2 

Multiplication (*) 

The multiplication function (*) takes any number of numeric arguments and returns their product. 

(* 5 5) 

-> 25 

(* 5 5 2) 

-> 50 

Division (/) 

The division function (/) takes any number of numeric arguments. The first argument is considered the 
numerator and any number of additional argument denominators. If no denominators are supplied, the 
function returns 1/numerator, otherwise it returns the numerator divided by all of the denominators. 

(/ 10) 

-> 1/10 

(/ 1.0 10) 

-> 0.1 

(/ 10 2) 

-> 5 

(/ 10 2 2) 

-> 5/2 

inc 

The increment function (inc) takes a single numeric argument and returns its value + 1. 

(inc 5) 

-> 6 

dec 

The decrement function (dec) takes a single numeric argument and returns its value - 1. 
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(dec 5)  

-> 4 

quot 

The quotient function (quot) takes two numeric arguments and returns the integer quotient obtained by 
dividing the first by the second. 

(quot 5 2) 

-> 2 

rem 

The remainder, or modulus, function (rem) takes two numeric arguments and returns the remainder 
obtained by dividing the first by the second. 

(rem 5 2) 

-> 1 

min 

The minimum function (min) takes any number of numeric arguments and returns the smallest. 

(min 5 10 2) 

-> 2 

max 

The maximum function (max) takes any number of numeric arguments and returns the largest. 

(max 5 10 2)  

-> 10 

Equals Function (==) 

The equals function (==) takes any number of numeric arguments and returns true if they are equal, else 
false. 

(== 5 5.0) 

-> true 

Greater-Than Function (<) 

The greater-than function (<) takes any number of numeric arguments and returns true if they are in 
ascending order, else false. 
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(< 5 10) 

-> true 

(< 5 10 9) 

-> false 

Greater-Than-or-Equals Function (<=) 

The greater-than-or-equals function (<=) takes any number of numeric arguments and returns true if 
they are in ascending order or sequentially equal, else false. 

(<= 5 5 10) 

-> true 

Less-Than (>) 

The less-than function (>) takes any number of numeric arguments and returns true if they are in 
descending order, else false. 

(> 10 5) 

-> true 

The Less-Than-or-Equals (>=) 

The less-than-or-equals function (>=) takes any number of numeric arguments and returns true if they 
are in descending order or sequentially equal, else false. 

(>= 10 5 5) 

-> true 

zero? 

The zero test function (zero?) takes a single numeric argument and returns true if it is zero, else false. 

(zero? 0.0) 

-> true 

pos? 

The positive test function (pos?) takes a single numeric argument and returns true if it is > 0, else false. 

(pos? 5) 

-> true 
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neg? 

The negative test function (neg?) takes a single numeric argument and returns true if it is > 0, else false. 

(neg? -5) 

-> true 

number? 

The number test function (number?) takes a single argument and returns true if it is a number, else false. 

(number? 5) 

-> true 

(number? "hello") 

-> false 

Strings 
Clojure strings are identical to Java strings, and are instances of the same java.lang.String class. They are 
entered as literals by enclosing them in double-quotes. If you need a double-quote character within the 
string, you can escape it using the backslash character, \.  For example, the following is a valid string: 

"Most programmers write a \"Hello World\" program when they learn a new language" 

To enter a backslash character in a String, simply use two backslashes. 

Common String Functions 

Clojure provides some very limited string functions for convenience. For more advanced string 
operations, you can either use the Java string API directly (see the chapter on Java Interoperability), or 
the wide variety of string utility functions defined in the str-utils namespace of the clojure.contrib user 
library.  

str 

The string concatenation function (str) takes any number of arguments. It converts them to strings if 
they are not already and returns the string created by concatenating them. If passed no arguments or nil, 
it returns the empty string, ““. 

(str "I have " 5 " books.") 

-> "I have 5 books." 

subs 

The substring function (subs) takes two or three arguments, the first always being a string, the second an 
integer offset, and the third (optional) another integer offset. It returns the substring from the first offset 
(inclusive) to the second (exclusive) or to the end of the string if a second offset is not supplied. 
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(subs "Hello World" 6) 

-> "World" 

(subs "Hello World" 0 5) 

-> "Hello" 

string? 

The string test function (string?) takes a single argument and returns true if it is a string, else false. 

(string? "test") 

-> true 

(string? 5) 

-> false 

print & println 
The string printing functions (print & println) take any number of arguments, converts them to strings if they 

are not already, and prints them to the standard system output. println appends a newline character to the 

end. Both return nil. 

Regular Expression Functions 

Clojure includes several functions for dealing with regular expressions, which wrap the Java regex 
implementation.  

re-pattern 

This function (re-pattern) takes a single string argument and returns a regular expression pattern (an 
instance of java.util.regex.Pattern). The pattern can then be used for subsequent regular expression 
matches. 

(re-pattern " [a-zA-Z]*") 

-> #"[a-zA-Z]*" 

There is also a reader macro that allows you to enter a regex pattern as a literal: just use the # symbol 
before a string. The resulting value is a pattern, just as if you used the re-pattern function. For example, 
the following form is identical to the preceding example: 

#" [a-zA-Z]* " 

-> #"[a-zA-Z]*" 
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re-matches 

re-matches takes two arguments: a regular expression pattern and a string. It returns any regular 
expression matches of the pattern in the string, or nil if no matches were found. For example, the 
following code: 

(re-matches #"[a-zA-Z]* " "test") 

-> "test" 

(re-matches #"[a-zA-Z]* " "test123") 

-> nil 

re-matcher 

re-matcher takes two arguments: a regular expression pattern and a string. It returns a stateful 
“matcher” object, which can be supplied to most other regex functions instead of a pattern directly. 
Matchers are instances of java.util.regex.Matcher. 

(def my-matcher (re-matcher #" [a-zA-Z]* " "test") 

-> #'user/my-matcher 

re-find 

re-find takes either a pattern and a string or a single matcher. Each call returns the next regex match for 
the matcher, if any. 

(re-find my-matcher)  

-> "test" 

(re-find my-matcher) 

-> "" 

(re-find my-matcher) 

-> nil 

re-groups 
re-groups takes a single matcher, and returns the groups from the most recent find/match. If there are no 
nested groups, it returns a string of the entire match. If there are nested groups, it returns a vector of groups, with 
the first element being the entire (non-nested) match. 

re-seq 

re-seq takes a pattern and a string. It returns a lazy sequence (see Chapter 5) of successive matches of 
the pattern on the string, using an internal matcher.   

(re-seq #" [a-z] " "test") 

-> ("t" "e” "s" "t") 
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Boolean 
Boolean values in Clojure are very simple. They use the reserved symbols true and false for literal 
values and implement java.lang.Boolean as their underlying class. 

When evaluating other data types within a boolean expression, all data types (including empty 
strings, empty collections, and numeric zero) evaluate as true. The only thing besides actual boolean 
false values that evaluates as false is the non-value nil. 

Common Boolean Functions 

Clojure provides some Boolean functions for convenience. 

not 

The not function (not) takes a single argument. It resolves to true if it is logically false and false if it is 
logically true. 

(not (== 5 5)) 

-> false 

and 

The and macro takes any number of arguments, and resolves to true if they are each logically true, else 
false. It is efficient in that if the first argument is false, it returns false immediately without bothering to 
evaluate the others. 

(and (== 5 5) (< 1 2)) 

-> true 

or 

The or macro takes any number of arguments and resolves to true if one or more of them are logically 
true, else false. It is efficient in that it returns true as soon as it encounters a true argument, without 
bothering to evaluate the others. 

(or (== 5 5) (== 5 4)) 

-> true 

Characters 
Characters are used to represent a single Unicode character. To enter a character literal, prefix with a 
backslash, for example, \i is the character “i”. Any Unicode character can be entered by using a 
backslash, plus a ‘u’ character and the four-digit hexadecimal code of the Unicode character. For 
example, \u00A3 is the £ symbol. Clojure also supports the following special values to make it easy to 
enter whitespace characters as literals: \newline, \space and \tab.  
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char 

The character coercion function (char) takes a single integer argument and returns the corresponding 
ASCII / Unicode character. 

(char 97) 

-> \a 

Keywords 
Keywords are a special primitive data type unique to Clojure. Their primary purpose is to provide very 
efficient storage and equality tests. For this reason, their ideal usage is as the keys in a map data 
structure or other simple “tagging” functionality. As literals, they begin with a colon, for 
example,:keyword. Beyond the initial colon, they follow all the same naming rules as Symbols (see 
Chapter 2).   

Optionally, keywords can be namespaced. The keyword :user/foo, for example, refers to a keyword 
called foo in the user namespace. Namespaced keywords can be referenced either by their fully qualified 
name or prefixed with two colons to look up a keyword in the current namespace (e.g., ::foo is the same 
as :user/foo if the current namespace is user). 

keyword 

The keyword function (keyword) takes a single string argument, and returns a keyword of the same name. 
If two arguments are used, it returns a namespaced keyword. 

(keyword "hello") 

-> :hello 

(keyword "foo" "bar") 

-> :foo/bar 

keyword? 

The keyword test function takes a single argument and returns true if it is a keyword, else false. 

(keyword? :hello) 

-> true 

 namespace 

….... 

Collections 
Clojure’s collections data types are designed to efficiently fulfill nearly any need for aggregate data 
structures. They are optimized for efficiency and compatibility with the rest of Clojure and Java and 
adhere strictly to Clojure’s philosophy of immutability. If any one of them is inadequate to represent a 
data structure, they can be combined in nearly any combination. 
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They all share the following properties: 

• They are immutable. Once created, they can never be changed, and are therefore 
safe to access from any thread at any time. Operations which could be considered 
to “change” them actually return an entirely new immutable object with the 
changes in place. 

• They are persistent. As far as possible, they share data structure with previous 
versions of themselves to conserve memory and processing time. For this reason, 
they are actually surprisingly fast and efficient, in some cases much more so than 
their mutable counterparts in other programming languages. 

• They support proper equality semantics. This means that given two collections of 
the same type which contain the same items, they will always be evaluated as 
equal regardless of their instantiation or implementation details.  Therefore, two 
collections, even if they were created at different times and different places, can 
still be compared meaningfully.  

• They are easy to use from within Clojure. Each of them has a convenient literal 
representation and rich set of supporting functions that make working with them 
straightforward and hassle-free. 

• They support interaction with Java. Each of them implements the appropriate 
read-only portion of the standard java.util.Collections framework. This means 
that, in most cases, they can be passed as-is to Java object and methods that 
require collections objects. Lists implement java.util.List, Maps implement 
java.util.Map, and Sets implement java.util.Set. Note, however, that they will 
throw an UnsupportedOperationException if you invoke methods which might 
modify them, since they remain immutable. This is in accordance with the 
documentation specified for the java.util.Collections interface, for collections 
which do not support “destructive” modifications. 

• They all support the powerful Sequence abstraction for easy manipulation via 
functional paradigms. This capability is discussed in detail in Chapter 5. 

Lists 
Linked lists are important for Clojure, if only for the fact that a Clojure program itself is many nested 
lists. At its most basic level, a list is just a collection of items in a predefined order.  

Lists can be entered in literal form by using parenthesis, and this is why Clojure code itself uses so 
many of them. For example, take a standard function call. 

 (println "Hello World!") 

This is simultaneously executable code and a definition of a list. First, the Clojure reader parses it as 
a list, and then evaluates the list by invoking its first item (in this case println) as a function, and passing 
the rest of the parameters ("Hello World!") as arguments. 

To use a list literal as a data structure rather than having it be evaluated as code, just prefix it with a 
single quote character. This signals Clojure to parse it as a data structure, but not evaluate it as a Clojure 
form. For example, to define a literal list of the numbers 1 through 5 and bind it to a symbol, you could 
do something like this: 

(def nums '(1 2 3 4 5)) 
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̈ Note  The single quote character is actually shorthand for another form, called quote.  '(1 2 3) and (quote 

(1 2 3)) are just alternate ways of typing the same thing. quote (or the single quote character) can be used 

anywhere to prevent the Clojure parser from immediately interpreting a form.  It is actually useful for a lot more 

than just declaring list literals, and becomes indispensable when you really start getting into metaprogramming. 

See Chapter 12 for a more detailed discussion of using quote in macros to do complex metaprogramming. 

Lists are implemented as singly-linked lists and have the same performance advantages and 
disadvantages. Reading the first item in the list and appending an item to the head of a list are both 
constant-time operations, whereas accessing the Nth item of a list requires N operations. In most 
situations, vectors are a better choice than lists for this reason, although lists can still be useful in 
particular circumstances, especially when constructing Clojure code on the fly. 

list 

The list function (list) takes any number of arguments and constructs a list using them as values. 

(list 1 2 3) 

-> (1 2 3) 

peek 

The peek function (peek) operating on a list takes a single list as an argument and returns the first value 
in the list.  

(peek '(1 2 3)) 

-> 1 

pop 

The pop function (pop) operating on a list takes a single list as an argument and returns a new list with 
the first item removed. 

(pop ‘(1 2 3)) 

-> (2 3) 

list? 

The list test function (list?) returns true if its argument is a list, else false 

(list? ‘(1 2 3)) 

-> true 
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Vectors 

Vectors are similar to lists in that they store an ordered sequence of items. However, they differ in one 
important way: they support efficient, nearly constant-time access by item index. In this way, they are 
more like arrays than linked lists. In general, they should be preferred to lists for most applications as 
they have no disadvantages compared to lists and are much faster. 

Vectors are represented as literals in Clojure programs by using square brackets. For example, a 
vector of the numbers one through five could be defined and bound to a symbol with the following code:  

(def nums [1 2 3 4 5]) 

Vectors are functions of their indexes. This is not only a mathematical description—they are actually 
implemented as functions, and you can call them like a function to retrieve values. This is the easiest 
way to get the value at a given index: call the vector like a function, and pass the index you want to 
retrieve. Indexes start at 0, so to get the first item in the vector defined previously, you could do 
something like the following: 

user=> (nums 0) 

1 

Attempting to access an index greater than the size of the vector will cause an error, specifically, a 
java.lang.IndexOutOfBounds exception. 

vector 

The vector creation function (vector) takes any number of arguments and constructs a new vector 
containing them as values. 

(vector 1 2 3) 

-> [1 2 3] 

vec 

The vector conversion function (vec) takes a single argument, which may be any Clojure or Java 
collection, and constructs a new vector containing the same items as the argument. 

(vec '(1 2 3)) 

-> [1 2 3] 

get 

The get function (get) applied to a vector takes two arguments. The first is a vector, the second an 
integer index. It returns the value at the specified index or nil if there is no value at that index. 

(get ["first" "second" "third"] 1) 

-> "second" 
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peek 

The peek function (peek) operating on a vector takes a single vector as an argument and returns the last 
value in the vector. This differs from peek operating on lists because of the implementation difference 
between lists and vectors: peek always accesses the value at the most efficient location. 

 (peek [1 2 3]) 

-> 3 

vector? 

The vector test function (vector?) takes a single argument and returns true if it is a vector, else false. 

(vector? [1 2 3]) 

-> true 

conj 

The conjoin function (conj) takes a collection (such as a vector) as its first argument and any number of 
additional arguments. It returns a new vector formed by appending all additional arguments to the end 
of the original vector. It also works for maps and sets. 

(conj [1 2 3] 4 5) 

-> [1 2 3 4 5] 

assoc 

The vector association function (assoc) takes three arguments: the first a vector, the second an integer 
index, and the third a value. It returns a new vector with the provided value inserted at the specified 
index. An error is caused if the index is greater than the size of the vector. 

(assoc [1 2 3] 1 "new value") 

-> [1 "new value" 3] 

pop 

The pop function (pop) operating on a vector takes a single vector as an argument and returns a new 
vector with the last item removed. This differs from pop operating on lists because of the 
implementation difference between lists and vectors: pop always removes the value at the most efficient 
location. 

(pop [1 2 3]) 

-> [1 2] 
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subvec 

The sub-vector function (subvec) takes two or three arguments. The first is a vector, the second and third 
(if present) are indexes. It returns a new vector containing only the items in the original vector that were 
between the indexes or between the first index and the end of the vector if no second index is provided. 

(subvec [1 2 3 4 5] 2) 

-> [3 4 5] 

(subvec [1 2 3 4 5] 2 4) 

-> [3 4] 

Maps 

Maps are probably the most useful and versatile of Clojure’s built-in collections. At heart, maps are very 
simple. They store a set of key-value pairs. Both keys and values can be any possible type of object, from 
primitives to other maps. However, keywords are particularly well suited to be map keys, and that is how 
they are used in most map applications. 

Maps in literal form are represented by curly braces, enclosing an even number of forms. The forms 
are interpreted as key/value pairs. For example, the following: 

(def my-map {:a 1 :b 2 :c 3}) 

This map definition defines a map with three keys, the keywords :a, :b and :c. The key :a, is bound 
to 1, :b is bound to 2, and :c to 3. Because the comma character is equivalent to whitespace in Clojure, 
it is often used to clarify key-value groupings without any change to the actual meaning of the map 
definition. The line below is exactly equivalent to the preceding one: 

(def my-map {:a 1, :b 2, :c 3}) 

Although keywords make excellent keys for maps, there is no rule specifying that you have to use 
them: any value, even another collection, can be used as a key. Keywords, strings, and numbers are all 
commonly used as map keys. 

Similarly to vectors, maps are functions of their keys (although they don’t throw an exception if a 
key isn’t found). To retrieve the value associated with a particular key, use the map as a function and 
pass the key as its parameter. For example, to retrieve the value associated with :b in the example 
above, just do the following: 

user=> (my-map :b) 

2 

There are three different possible implementations of normal maps: array maps, hash maps, and 
sorted maps. They respectively use arrays, hashtables, and binary trees as their underlying 
implementations. Array maps are best for very small maps, and the comparative value of hash maps and 
sorted maps depends on the exact performance characteristics required.  

By default, maps defined as literals are instantiated as array maps if they are very short and hash 
maps if they are larger. To explicitly create a map of a given type, use the hash-map or sorted-map 
functions: 
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user=> (hash-map :a 1, :b 2, :c 3) 

{:a 1, :c 3, :b 2} 

user=> (sorted-map :a 1, :b 2, :c 3) 

{:a 1, :b 2, :c 3} 

Note that the hash map does not preserve any particular key order while the sorted map sorts the 
values according to key value. By default, sorted-map uses the natural comparison value of the key: 
numeric or alphabetical, whichever is applicable. 

Struct Maps 

When using maps, it is frequently the case that it is necessary to generate quantities of maps which use 
the same set of keys. Because a normal map necessarily allocates memory for its keys as well as its 
values, this can lead to wasted memory when creating large numbers of similar maps. 

Creating large numbers of maps is often a very useful thing to do, however, so Clojure provides 
Struct maps. Struct maps allow you to predefine a specific key structure, and then use it to instantiate 
multiple maps which conserve memory by sharing their key and lookup information. They are 
semantically identical to normal maps: the only difference is performance. 

To define a structure, use defstruct: it takes a name and a number of keys. For example, the 
following code: 

(defstruct person :first-name :last-name) 

This defines a structure named person, with the keys :first-name and :last-name. Use the struct-
map function to create instances of person: 

(def person1 (struct-map person :first-name "Luke" :last-name "VanderHart")) 

(def person2 (struct-map person :first-name "John" :last-name "Smith")) 

person1 and person2 are now two maps which efficiently share the same key information. But they 
are still maps, in all ways thus you retrieve their values in the same way and can even associate them 
with additional keys. Of course, additional keys don’t get the same performance benefits as keys defined 
in the struct. The only limitation on struct maps as compared with normal maps is that you can’t 
disassociate a struct map from one of its base keys defined in the structure. Doing so will cause an error. 

Struct maps also allow you to create extremely efficient functions to access key values. Normal map 
key lookup is by no means slow, but by using struct accessors you can shortcut the normal key lookup 
process for even greater speed, appropriate for the even the most performance-intensive areas of your 
application. 

To create a high-performance accessor to a struct map, use the accessor function, which takes a 
struct definition and a key, and returns a first class function that takes a struct-map and returns a value.  

(def get-first-name (accessor person :first-name)) 

You can then use the newly defined get-first-name function to efficiently retrieve :first-name 
from a struct map. The following two statements are exactly equivalent, but the version using the 
accessor is faster. 

(get-first-name person1) 

(person1 :first-name)  
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In general, you shouldn’t worry about using struct-maps except for performance reasons. Normal 
maps are fast enough for most applications and struct maps add a fair amount of complexity with no 
benefit except for performance. You should know about them since they will help some programs be 
much more efficient, but typically it is best to use normal maps first and refactor your program to use 
struct-maps only as an optimization. 

Maps As Objects 

Obviously, maps are useful in a variety of scenarios. Linking keys to values is a common task in 
programming. However, the usefulness of maps goes far beyond what are traditionally thought of as 
data structures. 

The most important example is that maps can do 90 percent of what objects do in an object-
oriented program. What real difference is there between named properties of an object and a key/value 
pair in a map? As languages like Javascript (where objects are implemented as maps) demonstrate, very 
little.  

Good Clojure programs make heavy use of this idea of maps-as-objects. Although Clojure eschews 
the object-oriented mindset in general, decades of research into object- oriented design do reveal some 
good principles of data encapsulation and organization. By utilizing Clojure’s maps in this way, it 
becomes possible to reap many of the benefits and lessons learned from object-oriented data 
structuring while avoiding its pitfalls. In the context of a Clojure program, using maps is far better, 
because they can be operated on in a common way without needing to define handlers for each different 
class of object. 

assoc 

The map association function (assoc) takes as its arguments a map and a number of sequential key-
value pairs. It returns a new map with the provided values associated with their respective keys, 
replacing any existing values with those keys. 

(assoc {:a 1 :b 2} :c 3) 

-> {:c 3, :a 1, :b 2} 

(assoc {:a 1 :b 2} :c 3 :d 4) 

-> {:d 4, :c 3, :a 1, :b 2} 

dissoc 

The map disassociation function (dissoc) takes as its arguments a map and a number of keys. It returns 
a new map formed by removing the provided keys from the supplied map. 

(dissoc {:a 1 :b 2 :c 3} :c) 

-> {:a 1, :b 2} 

(dissoc {:a 1 :b 2 :c 3 :d 4} :a :c) 

-> {:b 2, :d 4} 
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conj 

The conj function (conj) works with maps the same way as it does with vectors, only instead of being 
given individual items to append it must be given a key-value pair.  

(conj {:a 1 :b 2 :c 3} {:d 4}) 

-> {:d 4, :a 1, :b 2, :c 3} 

A vector pair as an item also works, as shown in the following code: 

(conj {:a 1 :b 2 :c 3} [:d 4]) 

-> {:d 4, :a 1, :b 2, :c 3} 

merge 

The map merge function (merge) takes any number of arguments, each of which is a map. It returns a 
new map formed by combining all the keys and values of its arguments. If a key is present in more than 
one map, the final value will be that of the last map provided containing that key. 

(merge {:a 1 :b 2} {:c 3 :d 4}) 

-> {:d 4, :c 3, :a 1, :b 2} 

merge-with 

The map merge-with function (merge-with) takes a first-class function as its first argument and any 
number of additional arguments, each of which is a map. It returns a new map formed by combining all 
the keys and values of the map arguments. If a key is present in more than one map, the value in the 
result map is the result of calling the supplied function with the values of the conflicting key as 
parameters. 

(merge-with + {:a 1 :b 2} {:b 2 :c 4}) 

-> {:c 4, :a 1, :b 4} 

get 

The map get function (get) takes a map and a key as its first and second arguments, and an optional 
third argument specifying the value if the key is not found. It returns the value of the specified key in the 
map, returning nil if it is not found and there is no third argument. 

(get {:a 1 :b 2 :c 3} :a) 

-> 1 

(get {:a 1 :b 2 :c 3} :d 0) 

-> 0 
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contains? 

The map contains function (contains?) takes a map and a key as arguments. It returns true if the 
provided key is present in the map, otherwise false. In addition to maps, it also works on vectors and 
sets. 

(contains? {:a 1 :b 2 :c 3} :a) 

-> true 

map? 

The map test function (map?) takes a single argument and returns true if it is a map, otherwise false. 

(map? {:a 1 :b 2 :c 3}) 

-> true 

keys 

The map keys function (keys) takes a single argument, a map. It returns a list of all the keys present in 
the map. 

(keys {:a 1 :b 2 :c 3}) 

-> (:a :b :c) 

vals 

The map vals function (vals) takes a single argument, a map. It returns a list of all the values in the map. 

(vals {:a 1 :b 2 :c 3}) 

-> (1 2 3) 

Sets 
Sets in Clojure are closely related to the mathematical concept: they are collections of unique values and 
support efficient membership tests as well as common set operations such as union, intersection, and 
difference. 

The literal syntax for a set is the pound sign accompanied by the members of the set enclosed in 
curly braces. For example, the following code: 

(def languages #{:java :lisp :c++}) 

Like maps, they support any kind of object as members. For example, a similar set using strings: 

(def languages-names #{"Java" "Lisp" "C++"}) 

The implementation of sets is very similar to maps. They can be created in both hashtable and 
binary tree implementations, using the hash-set and sorted-set functions: 

(def set1 (hash-set :a :b :c)) 

(def set2 (sorted-set :a :b :c)) 
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Also like maps, sets are functions of their members. Calling a set as a function and passing it a value 
will return the value if the set contains the value and nil if it doesn’t. 

(set1 :a) ;returns :a 

(set1 :z) ;returns nil 

Common Set Functions 

Note that the relational set functions are not part of the default clojure.core namespace, but rather the 
clojure.set namespace. You will need to either reference this explicitly or else include it into your 
namespace using the :use clause in your ns form. See Chapter 2. 

clojure.set/union 

The set union function takes any number of arguments, each a set. It returns a new set containing the 
union of the members of the argument sets. 

(clojure.set/union #{:a :b} #{:c :d}) 

-> #{:a, :c, :b, :d} 

clojure.set/intersection 

The set intersection function takes any number of arguments, each a set. It returns a new set containing 
the intersection of the members of the argument sets or the empty set if there is no intersection. 

(clojure.set/intersection #{:a :b :c :d} #{:c :d :f :g}) 

-> #{:c, :d} 

clojure.set/difference 

The set difference function takes any number of arguments, each a set. It returns a new set containing 
the members of the first set without the members of the remaining sets.  

(clojure.set/difference #{:a :b :c :d} #{:c :d}) 

-> #{:a, :b} 

Summary 
Clojure provides a very complete and capable set of data types which in combination should be able to 
meet just about any programming need. Its primitive types provide the basic building blocks of any 
program, including very rich, worry-free numeric and string support. 

The true strength of Clojure’s data system, however, lies in its collections library. Collections are 
important not just convenient things to use, but are integral to Clojure’s philosophy on data and 
immutability. They strictly adhere to the principles of immutability, meaning they cannot be changed, 
and persistence, meaning they share their structure for maximum efficiency. Relying on Clojure’s built-
in data structures and being familiar with the methods available for them will go a long way towards 
making your code efficient, readable, and idiomatic. 
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Sequences 

What Are Sequences? 
In Clojure, sequences are a unified way to read, write, and modify any data structure that is logically a 
collection of items. They are built into Clojure at a very basic level, and are by far the most convenient 
and idiomatic way to handle collections. They fill the role occupied by lists in other Lisp dialects. More 
than just a collection API, they are the framework around which program flow and logic are often 
constructed, and are designed to be as easy-to-use as the basis for recursion and higher-order function 
application. 

Fundamentally, sequences are an abstraction, a common programming interface that generalizes 
behavior common to all collections and exposes it via a library of sequence functions. Sequences are a 
result of the observation that the classic operations on linked lists, such as “first” and “rest” (or “car” and 
“cdr”, for those with a lisp background) and work equally well on just about any data type. For example, 
the first function returns the first item in a sequence. Whether the sequence is actually a list, vector,  
set, or even a map doesn’t matter. 

user=> (def mylist '(1 2 3)) 
user=> (first mylist) 

1 

user=> (def myvec [1 2 3]) 
user=> (first myvec) 

1 

user=> (def myset #{1 2 3}) 
user=> (first myset) 

1 

user=> (def mymap {:a 1 :b 2 :c 3}) 
user=> (first mymap) 

[:a 1] 

Similarly, the rest function operates on any sequence, returning a sequence of everything except 
the first item: 

user=> (def mylist ‘(1 2 3)) 
user=> (rest mylist) 

(2 3) 
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Sequence functions are extremely useful. For example, with just first and rest (and another 
function, empty?, which returns true if a sequence is empty) it is possible to implement a very common 
Lisp idiom: a function that recurses over a list. However, because you’re using sequences, it doesn’t have 
to be a list—it can be any collection. 

(defn printall [s] 
    (if (not (empty? s)) 
        (do 
            (println (str "Item: " (first s))) 

            (recur (rest s))))) 

This function takes a sequence, and checks that it is not empty. If it is empty, it does nothing 
(implicitly returns nil). If it has items, it prints a string as a side effect, printing “Item:” concatenated 
with the first item in the sequence. It then recurses, passing the rest of the sequence to the next 
iteration. It works on lists: 

user=> (printall '(1 2 3)) 
Item: 1 
Item: 2 
Item: 3 

nil 

And on vectors: 

user=> (printall ["vector" "of" "strings"]) 
Item: vector 
Item: of 
Item: strings 

nil 

And even on strings, which happen to be sequences of characters: 

user=> (printall " Hello") 
Item: H 
Item: e 
Item: l 
Item: l 
Item: o 

nil 

Because sequences are so generic, the same function works perfectly well for all these disparate 
collection types. 
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̈ Caution  Technically, the various types of data structure are not sequences themselves, but rather can be 

turned into sequences with the seq function. seq takes a single argument and creates a sequence view of it. For 

example, a vector is not a sequence, but the result of (seq any-vector) is. Since almost all the sequence 

functions call seq on their arguments internally, there isn’t much distinction in practice most of the time. Be aware 

of this, however, in case you run across a function that actually requires a sequence, not a collection that is 

sequence-able: there is a difference. You can just call seq on any collection to efficiently retrieve a sequence view 

of it. 

Sequenceable Types 

Sequences can be created from nearly any backing collection type. 

• Clojure’s persistent collections: Maps, sets, lists, and vectors all work nicely as 

sequences. 

• Strings: All strings are sequences of characters.  

• Java arrays: This can result in a mismatch, however, since Java arrays are mutable 

and sequences are not to avoid difficult bugs, avoid modifying arrays while you 

are using a sequence based on them.  

• Any Java collection which implements the java.lang.Iterable interface: Again, 

however, Java collections are mutable whereas sequences are not, so avoid 

modifying a collection while using a sequence view of it. 

• Natively: Sequences can also be constructed directly without being backed by 

another collection type.  

Anatomy of a Sequence 
It is important to understand the underlying logical structure of a sequence. Sequences that were 
created in different ways have widely differing implementations. A sequence representation of a vector, 
for example, is still a vector under the hood, with the same performance characteristics. But all 
sequences share the same conceptual model: a singly-linked list implemented in terms of first and 
rest. first and rest, incidentally, are identical to car and cdr in traditional Lisps. They were renamed 
to more accurately reflect their intent in terms familiar to modern programmers. 

 Every sequence, conceptually, consists of these two parts: the first item in the sequence, accessed 
by the first function, and another sequence representing all the rest of the items, accessed by the rest 
function. Each sequence of n items is actually comprised of n-1 component sequences. The sequence 
ends when rest returns empty. All other sequence functions can be defined in terms of first and rest, 
although sequences created from collection types implement them directly for better performance. 
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Figure 5-1. Sequence illustration, showing component sequences 

Constructing Sequences 
Using this model of sequences, it is easy to construct them directly using either the cons or conj 
functions. The cons function stands for “construct” and takes two arguments, an item and a sequence. It 
returns a new sequence created using the item as its first and the sequence as its rest. A sequence 
created by cons is known as a “cons cell”—a simple first/rest pair. Sequences of any length can be 
constructed by chaining together multiple cons cells. 

user=> (cons 4 '(1 2 3)) 

(4 1 2 3) 

The conj function is similar to cons and stands for “conjoin.” The main difference from cons is that 
(if possible) it reuses the underlying implementation of the sequence instead of always creating a cons 
cell. This usually results in sequences that are more efficient. Whether the new item is appended to the 
beginning or end depends on the underlying representation of the sequence. Unlike cons, conj takes a 
sequence as its first parameter, and the item to append as the second: 

user=> (conj '(1 2 3) 4) 

(4 1 2 3) 

conj also supports adding any number of items at once: just use additional parameters. The 
parameters are appended to the front of the sequence in the order they are provided. 

user=> (conj ‘(1 2 3) 4 5 6) 

(6 5 4 1 2 3) 
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̈ Caution  A feature of conj you should take note of is that it doesn’t call seq on its argument. It can work on 

data structures directly as well as sequences. In this case, it adds the new item wherever it’s most efficient, not 

necessarily at the front (as it does with sequences). With vectors, for example, the most efficient place to add 

items is the end. So (conj [1 2] 3) yields [1 2 3], not [3 1 2]. If you know you want a sequence, and you 

want the added item at the front, call seq on the vector first: (conj (seq [1 2]) 3) yields (3 1 2) as expected. 

You could also just use cons instead. Use conj when you don’t want to convert your collection to a sequence. 

For both conj and cons, if you supply nil in place of the sequence, it constructs a sequence 
containing only one item, the one you specified. 

user=> (cons 1 nil) 

(1) 

This is used in another common Lisp idiom, constructing a list recursively using cons or conj. The 
following function demonstrates recursively constructing a sequence of all the integers from 1 to the 
provided parameter: 

(defn make-int-seq [max] 
    (loop [acc nil n max] 
        (if (zero? n) 
            acc 

            (recur (cons n acc) (dec n))))) 

With each iteration, this function conses the value of n (initially the maximum value) to an 
accumulator sequence argument (initially nil), and then recurses, passing the new accumulator and the 
new decremented value of n. When n reaches zero, the function simply returns the accumulator, which 
at that point contains all the integers from 1 to the maximum. 

user=> (make-int-seq 5) 

(1 2 3 4 5) 

Lazy Sequences 
The first/rest architecture of sequences is the basis for another extremely important aspect of Clojure 
sequences: laziness. Lazy sequences provide a conceptually simple and highly efficient way to operate 
on amounts of data too large to fit in system memory at once. They can be infinitely long, but still can be 
utilized efficiently by any standard sequence function. As a high-level abstraction, they allow the 
developer to focus on the computation being performed, rather than managing the ins and outs of 
loading or creating data. 

Laziness is made possible by the observation that logically, the rest of a sequence doesn’t need to 
actually exist, provided it can be created when necessary. Rather than containing an actual, concrete 
series of values, the rest of a lazy sequence can be implemented as a function which returns a sequence. 
From the perspective of functions using the sequence, there is no difference; when they call the rest 
function, they get a sequence. The difference is that in the case of a normal sequence, it is returning a 
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data structure that already existed in memory. In a lazy sequence, calling rest actually calculates and 
instantiates the new sequence, with a freshly calculated value for its first and updated instructions on 
how to generate still more values as its rest. 

For efficiency, once a lazy sequence is realized, the value is cached as a normal, non-lazy 
sequence—subsequent accesses to the sequence are handled normally, rather than being lazily 
generated. This ensures that the calculation needed to generate it is only called once: using large, 
“heavyweight” calculations as generators in lazy sequences pose no problem, since they are guaranteed 
not to be executed more than once. The cached values are stored as long as there is code using them.  
When no references remain, the cached sequence is garbage collected like any other object. 

 

rest

Item Instructions to generate the next component sequence

first

 

Figure 5-2. Lazy sequences 

An Example of Laziness 

To see a lazy sequence at work, consider the map function. The map function is an extremely important 
sequence manipulation tool in Clojure. It works by taking a sequence and a function as arguments, and 
returns a new sequence which is the result of applying the supplied function to each of the values in the 
original sequence. For example, if you run map with the sequence '(1 2 3 4 5 6 7) and a function which 
squares its parameter, (fn [x] (*x x)), the return value of map will be '(1 4 9 16 25 36 49). This is the 
sequence formed by squaring each of the values in the original sequence. 

user => (map 
     (fn [x] (* x x)) 
                 '(1 2 3 4 5 6 7)) 

 (1 4 9 16 25 36 49) 

What is not immediately apparent is that the return value of map is actually always a lazy sequence. 
Since the return value is immediately printed to the REPL anyway, the difference is transparent—the 
actual values are immediately realized. 

To see the internal workings of the lazy sequence, let’s add a side effect to your square function, so 
you can see when it’s being executed (normally, side effects in functions provided to map are not a great 
design practice, but here they will provide insight into how lazy sequences work). In your new square 
function, you will now print out the value of each parameter as it is processed. To make things simpler, 
you’ll use defn to define it rather than inlining it in the call to map: 

(defn square [x] 
    (do 
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        (println (str "Processing: " x)) 

        (* x x))) 

This function is exactly the same as the previous version, except that it uses do to run an explicit side 
effect, printing out the value of each parameter as it is processed. Running it returns this rather 
surprising and somewhat messy result: 

user => (map square '(1 2 3 4 5) 
(Processing:1 
Processing:2 
1 Processing:3 
4 Processing:4 
9 Processing:5 

16 25) 

The reason why the code is so ugly is that the println calls are being called in the middle of printing 
out the results. The square function (containing println call) is not being called until it is absolutely 
required—until the system is actually ready to realize the lazy values. So your tracing statements from 
println and the actual output of the function, “(1 4 9 16 25)”, are all mixed up. 

To make this even clearer, let’s bind the result of the map call to a symbol: 

user =>(def map-result (map square '(1 2 3 4 5)) 

#'user/map-result 

You now have a symbol map-result which is, supposedly, bound to a sequence of the squares. 
However, you didn’t see the trace statement. square was never actually called! map-result is a lazy 
sequence. Logically, it does contain the squares you expected, but they haven’t been realized yet. It’s not 
a sequence of squares, but a promise of a sequence of squares. You can pass it all around the program, or 
store it, and the actual work of calculating the squares is deferred until it is required. 

Now, let’s retrieve some of its values using the nth function, which retrieves the value at a certain 
index of a sequence. Calling (nth map-result 2) should return 9, since 3 squared is 9, and 3 was the 2

nd
  

item in the original sequence (counting from 0 becauseall indexes in Clojure start at 0).  

user => (nth map-result 2) 
Processing:1 
Processing:2 
Processing:3 

9 

You can see from the trace statements that the square function was called three times—just enough 
to calculate the third value in the sequence. Making the exact same call again, however, does not call the 
square function: 

user => (nth map-result 2) 

9 

The values were already cached, so there was no need to call square to calculate them again. Now, 
printing the value of the whole sequence: 

user => (println map-result) 
(1 4 Processing:4 
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9 Processing:5 

16 25) 

It only calls square twice, for the two remaining unrealized values in the lazy sequence. The cached 
values are not recalculated.  

This example shows how the lazy sequence returned by map defers the actual calculation of its values 
until they are absolutely required. 

Constructing Lazy Sequences 

Obtaining a lazy sequence is easy. Most of Clojure’s built-in sequence functions such as map and filter 
return lazy sequences by default. If you want to generate your own lazy sequences, there are two ways to 
do so: constructing it directly or using a function that generates a lazy sequence for you.  

Constructing Lazy Sequences Directly 

To build a lazy sequence manually, use the built-in lazy-seq macro to wrap code that would otherwise 
return a normal sequence. lazy-seq builds a lazy sequence with any code it contains as a deferred value. 
Code wrapped in lazy-seq is not executed immediately, but “saved for later” within the context of a lazy 
sequence.  

For example, the following function generates an infinite lazy sequence formed by taking a base, 
and then successively adding a number to it. 

(defn lazy-counter [base increment] 
    (lazy-seq 

        (cons base (lazy-counter (+ base increment) increment)))) 

Then, you can call the function, and use the take function to get the first several values of the lazy 
sequence. (take has two arguments, a number and a collection. It returns a sequence obtained by taking 
the number of elements from the collection.) 

user=> (take 10 (lazy-counter 0 2)) 

(0 2 4 6 8 10 12 14 16 18) 

The sequence, logically, is truly infinite. For example, to get the millionth number, counting by 3 
starting from 2, just use nth: 

user=> (nth (lazy-counter 2 3) 1000000) 

3000002 

Because it is infinite, you can use lazy-counter to get a sequence of any length—the only limitation 
will be how long it takes the computer to count up to a million, a billion, or whatever number you 
choose. 

Compare this to a non-lazy version:  

(defn counter [base increment] 

        (cons base (counter (+ base increment) increment))) 
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This function doesn’t even make it off the ground. It crashes with a StackOverflowError almost 
immediately. Because it doesn’t defer any execution, it immediately recurses until it uses up all the stack 
space in the JVM. The lazy version doesn’t have this problem. Although it is defined recursively, the 
contents of lazy-seq are only called when the internal code that processes lazy sequences is ready to 
unfold the next value. This is done in a way which does not consume stack space, and so lazy sequences 
are effective as well as logically infinite. 

̈ Caution  Be careful with infinite sequences. They are logically infinite, but care is required not to attempt to 

realize an infinite number of values. Trying to print an infinite lazy sequence in the REPL directly, for example, 

without using take or an equivalent can lock the program as it churns through the lazy sequence, on to infinity, 

without stopping. In this and other common scenarios, it is still possible to write code that will continue processing 

an infinite sequence forever, locking up the thread in which it is running. Infinite sequences can be very useful, but 

make sure code that utilizes them has proper exit conditions and doesn’t depend on hitting the end of the 

sequence. Just because the sequence is infinite doesn’t mean you want to take an infinite amount of time to 

process it, or try to load the whole thing into memory at once. Sadly, computers are finite machines. 

Constructing Lazy Sequences Using Sequence Generator Functions 

For many common cases where a lazy sequence is required, it’s often easier to use a sequence generator 
function than lazy-seq directly. In particular, iterate is useful. It generates an infinite sequence of items 
by calling a supplied function, passing the previous item as an argument. It takes two arguments:  the 
function to call and an initial value for the first item in the sequence. 

For example, to generate an infinite lazy sequence of all the integers use iterate with the built-in 
increment function, inc: 

user=> (def integers (iterate inc 0)) 
#'user/integers 
user=> (take 10 integers) 

(0 1 2 3 4 5 6 7 8 9) 

By providing a custom function, iterate can also be used to provide functionality identical to the 
lazy-counter function defined above: 

(defn lazy-counter-iterate [base increment] 

        (iterate (fn [n] (+ n increment)) base)) 

user=> (nth (lazy-counter-iterate 2 3) 1000000) 

3000002 

There are several other functions that generate sequences similarly to iterate: see the section “The 
Sequence API.” 
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Lazy Sequences and Memory Management 

It is important to understand how lazy sequences consume memory. It is possible to use large, even 
infinite sequences in a memory-efficient way, but unfortunately it is also possible to inadvertently 
consume large amounts of memory, even resulting in a Java OutOfMemoryError if they exceed the 
available heap space in the JVM instance. 

Use the following guidelines to reason about how lazy sequences consume memory: 

• Lazy sequences which have not yet been realized consume no appreciable 

memory (other than the few bytes used to contain their definition). 

• Once a lazy sequence is realized, it will consume memory for all the values it 

contains, provided there is a reference to the realized sequence, until the reference 

to the realized sequence is discarded and the sequence is garbage collected. 

The final distinction is key. To illustrate the difference, consider the following two code snippets 
entered at the REPL. 

user=> (def integers (iterate inc 0)) 
#'user/integers 
user=> (nth integers 1000000) 

1000000 

And: 

user=> (nth (iterate inc 0) 1000000) 

1000000 

Although these two code snippets are identical in respect to what they do, profiling the JVM 
indicates that the former statement results in ~60 megabytes of heap space being utilized after the call to 
nth, while the latter results in no appreciable increase. Why? 

In the first sample, the lazy sequence is referenced by a symbol. The sequence is initially unrealized, 
and takes up very little memory. However, in order to retrieve the selected value, nth must realize the 
sequence up to the value selected. All values from 0 to 1000000 are now cached in the sequence bound to 
the integers symbol, and it is this that utilizes the memory. 

So why doesn’t using nth in the second example use up memory as well? The answer is that nth itself 
does not maintain any references. As it goes through a sequence, it retrieves the rest from each entry, 
and drops any references to the sequence itself. The sequence created by (iterate inc 0) is supplied as 
an initial argument, but unlike the first example, no permanent reference to it is maintained, and nth 
“forgets” it almost immediately as it progresses. No cached values are ever saved, and so no memory is 
used. 

All the built in-sequence functions, such as nth, are careful not to maintain any memory-consuming 
references, so ensuring proper memory usage is a responsibility of the developer. Keeping track of 
memory usage means, primarily, keeping track of references to lazy sequences. 

It may sound complicated at first, but in time, once you’re used to working with Clojure, eliminating 
extraneous references comes fairly easily. Clojure’s own emphasis on pure functions itself greatly helps 
to discourage indiscriminate reference-making. The only area where it is easy to make a mistake is when 
writing your own sequence-consuming functions, and as long as you maintain a clear idea of which 
symbols reference potentially infinite sequences, it should provide no great difficulty. The important 
thing is to know what to look for when presented with an OutOfMemoryError. 
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The Sequence API 
Clojure provides a complete set of sequence manipulation functions. Being familiar with them and their 
capabilities will save a great deal of effort, as it is often possible to eliminate a surprising amount of code 
with a single call to one of these functions. 

Sequence Creation 

The functions in this section provide various means for creating sequences, either directly or from 
existing data structures. 

seq 

The seq function takes a single argument, a collection, and returns a sequence representation of the 
collection. Most sequence manipulation functions automatically call seq on their arguments, so they can 
accept collections without requiring a manual call to seq. 

user=> (seq [1 2 3 4 5]) 

(1 2 3 4 5) 

user=> (seq {:a 1 :b 2 :c 3}) 

([:a 1] [:b 2] [:c 3]) 

vals 

vals takes a single argument, a map, and returns a sequence of the values in the map. 

user=> (vals {:key1 "value1" :key2 "value2" :key3 "value3"}) 

(" value1" "value2" "value3") 

keys 

keys takes a single argument, a map, and returns a sequence of the keys in the map. 

user=> (keys {:key1 "value1" :key2 "value2" :key3 "value3"}) 

(:key1 :key2 :key3) 

rseq 

rseq takes a single argument, which must be a vector or a sorted map. It returns a sequence of its values 
in reversed order; operation returns in constant time. 

user=> (rseq [1 2 3 4]) 

(4 3 2 1) 
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lazy-seq 

lazy-seq is a macro which wraps a form that returns a sequence. It produces a lazy sequence, which is 
discussed in detail in the previous section “Constructing Lazy Sequences Directly.” 

repeatedly 

repeatedly takes a single argument, a function with no arguments, and returns an infinite lazy sequence 
obtained by calling the function repeatedly. Note that if the function is a pure function, it will simply 
return the same value every time, since it has no arguments. 

user=> (take 5 (repeatedly (fn []"hello"))) 

("hello" "hello" "hello" "hello" "hello") 

Usually, repeatedly is more useful with an impure function, such as one based on rand-int, which 
returns a random integer between 0 and its argument.  

user=> (take 5 (repeatedly (fn [] (rand-int 5)))) 

(3 0 4 3 2) 

iterate 

iterate takes two arguments: a function with a single argument and a value. It returns an infinite lazy 
sequence obtained by starting with the supplied value, and then by calling the supplied function passing 
the previous item in the sequence as its argument.  

user=> (take 10 (iterate inc 5)) 

(5 6 7 8 9 10 11 12 13 14) 

This example uses the increment function inc to generate an infinite sequence of integers, starting 
at 5. For a more detailed discussion, see the previous section, “Constructing Lazy Sequences Using 
Sequence Generator Functions.” 

repeat 

repeat takes one or two arguments. The single-argument version returns an infinite lazy sequence 
consisting of the argument value repeated endlessly.  

user=> (take 5 (repeat "hi")) 

("hi" "hi" "hi" "hi" "hi") 

The two-argument version takes a number as its first argument and a value as its second. It returns a 
lazy sequence the length of the first argument, consisting of repetitions of the second argument. 

user=> (repeat 5 "hi") 

("hi" "hi" "hi" "hi" "hi") 
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range 

range takes one, two, or three arguments. The one-argument version takes a number as its argument and 
returns a lazy sequence of numbers from 0 to the argument (exclusive). 

user=> (range 5) 

(0 1 2 3 4) 

The two-argument version takes two numbers as its arguments and returns a lazy sequence of 
numbers from the first argument (inclusive) to the second argument (exclusive). 

user=> (range 5 10) 

(5 6 7 8 9) 

The three-argument version takes three numbers as its arguments and returns a lazy sequence of 
numbers from the first argument (inclusive) to the second argument (exclusive) incremented by the 
third argument. 

user=> (range 4 16 2) 

(4 6 8 10 12 14) 

distinct 

distinct takes a single argument, a sequence or collection. It returns a sequence obtained by removing 
all duplicates from the argument. 

user=> (distinct [1 2 2 3 3 4 1]) 

(1 2 3 4) 

filter 

filter takes two arguments: a predicate function which takes a single argument and returns a boolean 
value, and a sequence/collection. Returns a lazy sequence consisting only of items in the second 
argument for which the predicate function returns true. 

user=> (filter (fn [s] (= \a (first s))) ["ant" "bee" "ape" "cat" "dog"]) 

("ant" "ape") 

In this example, the predicate function tests whether the first letter of its argument is an “a” 
character. 

remove 

remove is similar to filter, except that the resulting sequence contains only items for which the predicate 
function returns false. 
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user=> (remove (fn [s] (= \a (first s))) ["ant" "bee" "ape" "cat" "dog"]) 

("bee" "cat" "dog") 

cons 

cons takes two arguments, a value and a sequence/collection. It returns a sequence formed by 
appending the value to the sequence. 

user=> (cons 1 [ 2 3 4]) 

(1 2 3 4) 

concat 

concat takes any number of arguments, all sequences/collections. It returns a lazy sequence formed by 
concatenating the provided sequences. 

user=> (concat [1 2 3] '(4 5 6) [7 8 9]) 

(1 2 3 4 5 6 7 8 9) 

lazy-cat 

lazy-cat is a macro that takes any number of forms as arguments, all sequences/collections. It resolves 
to a lazy sequence formed by concatenating the provided sequences. lazy-cat differs from concat in that 
the expressions provided are not even evaluated until they are required. lazy-cat is, as the name 
suggests, like concat, but lazier. Use lazy-cat when the result might not be entirely consumed, and so 
the cost of even evaluating the provided forms might be avoided. 

user=> (lazy-cat [1 2 3] ‘(4 5 6) [7 8 9]) 

(1 2 3 4 5 6 7 8 9) 

mapcat 

mapcat takes a function as its first argument and any number of sequences/collections as additional 
arguments. It applies the map function with the provided function to the sequence arguments, and then 
concatenates all the results. mapcat assumes that the supplied function returns a collection or sequence, 
as it applies concat to its results. 

user=> (mapcat (fn [x] (repeat 3 x)) [1 2 3]) 

(1 1 1 2 2 2 3 3 3) 

In this example, the supplied function returns a sequence of its argument repeated 3 times. mapcat 
concatenates the result of applying the function to each of the supplied sequences/collections. 



 CHAPTER 5 ̈ SEQUENCES 

87 

cycle 

cycle takes a single argument, a sequence/collection. It returns a lazy infinite sequence obtained by 
successively repeating the values in the supplied sequence/collection. 

user=> (take 10 (cycle [:a :b :c])) 

(:a :b :c :a :b :c :a) 

interleave 

interleave takes any number of sequences/collections as arguments. It returns a lazy sequence 
obtained by taking the first value from each argument sequence, then the second, then the third, etc. It 
stops when one of the argument sequences runs out of values. 

user=> (interleave [:a :b :c] [1 2 3]) 

(:a 1 :b 2 :c 3) 

user=> (interleave [:a :b :c] (iterate inc 1)] 

(:a 1 :b 2 :c 3) 

user=> (interleave [:a :b :c] [1 2 3] [\A \B \C]) 

(:a 1 \A :b 2 \B :c 3 \C) 

interpose 

interpose takes two arguments, a value and a sequence/collection. It returns a lazy sequence obtained 
by inserting the supplied value between the values in the sequence. 

user=> (interpose :a [1 2 3 4]) 

(1 :a 2 :a 3 :a 4 :a 5) 

rest 

rest takes a single sequence/collection as an argument. It returns a sequence of all items in the passed 
sequence except the first. If there are no more items, it returns an empty sequence. 

user=> (rest [1 2 3 4]) 

(2 3 4) 

user=> (rest []) 

() 

next 

next takes a single sequence/collection as an argument. It returns a sequence of all items in the passed 
sequence, except the first.  If there are no more items, it returns nil. 
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user=> (next [1 2 3 4]) 

(2 3 4) 

user=> (next []) 

nil 

drop 

drop takes two arguments, a number and a sequence/collection. It returns a sequence of all items after 
the provided number of items. If there are no more items, drop returns an empty sequence. 

user=> (drop 2 [:a :b :c :d :e]) 

(:c :d :e) 

drop-while 

drop-while takes two arguments, a predicate function taking a single argument and a 
sequence/collection. It returns a sequence of all items in the original sequence, starting from the first 
item for which the predicate function returns false. 

user=> (drop-while pos? [2 1 5 -3 6 -2 -1]) 

(-3 6 -2 -1) 

This example uses the pos? function as a predicate. pos? returns true for all numbers greater than 
zero, otherwise false. 

take 

take takes two arguments, a number and a sequence/collection. It returns a sequence consisting of the 
first items in the provided sequence. The returned sequence will be limited in length to the provided 
number. 

user=> (take 2 [1 2 3 4 5]) 

(1 2) 

take-nth 

take-nth takes two arguments, a number and a sequence/collection. It returns a sequence of items from 
the supplied sequence, taking the first item and every Nth item, where N is the supplied number. 

user=> (take-nth 3 [1 2 3 4 5 6 7 8 9 10]) 
(1 4 7 10) 
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take-while 

take-while takes two arguments, a predicate function taking a single argument and a 
sequence/collection. It returns a sequence of all items in the original sequence, up until the first item for 
which the predicate function returns false. 

user=> (take-while pos? [2 1 5 -3 6 -2 -1]) 
(2 1 5) 

drop-last 

drop-last takes one or two arguments. The one argument version takes a sequence/collection. It returns 
a sequence containing all but the last item in the provided sequence 

user=> (drop-last [1 2 3 4 5]) 
(1 2 3 4) 
 

The two-argument version takes a number and a sequence/collection. It returns a sequence 
containing all but the last N items in the provided sequence, where N is the provided number. 

user=> (drop-last  2 [1 2 3 4 5]) 
(1 2 3) 

reverse 

reverse takes a single argument, a sequence/collection. It returns a sequence of the items in reverse 
order. reverse is not lazy. 

user=> (reverse [1 2 3 4 5]) 
(5 4 3 2 1) 

sort 

sort takes one or two arguments. The one-argument version takes a sequence/collection and returns a 
sequence of the items sorted according to their natural ordering. 

user=> (sort [2 3 5 4 1]) 
(1 2 3 4 5) 
 

The two-argument version takes an object implementing java.util.Comparator and a sequence 
collection. It returns a sequence of items sorted according to the comparator. 

sort-by 

sort-by takes two or three arguments. The two-argument version takes a key function which takes a 
single argument, and a sequence/collection. It returns a sequence of the items sorted by the values 
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returned by applying they key function to the item. The key function should then return a naturally 
sortable value, such as a string or a number. 

user=> (sort-by (fn [n] (/ 1 n)) [2 3 5 4 1]) 
(5 4 3 2 1) 
 

This example supplies a function that returns the reciprocal of its argument as a key function. The 
result sequence is ordered not by the values themselves, but by the result of applying the key function to 
them. That is, they are ordered by their reciprocals. 

The two-argument version takes a key function, an object implementing java.util.Comparator and 
a sequence collection. It functions the same as the two argument version, except it uses the supplied 
comparator to sort the results of the key function. 

split-at 

split-at takes two arguments: a number and a sequence/collection. It returns a vector of two items. The 
first item in the result vector is a sequence obtained by taking the first N items from the supplied 
sequence, where N is the supplied number. The second item in the result vector is the rest of the items in 
the supplied sequence. 

user=> (split-at 2 [:a :b :c :d :e :f]) 
[(:a :b) (:c :d :e :f)] 

split-with 

split-with takes two arguments: a predicate function taking a single argument and a 
sequence/collection. It returns a vector of two items. The first item in the result vector is a sequence 
obtained by taking items from the supplied sequence until the first item where applying the supplied 
predicate returns false. The second item in the result vector contains the rest of the items in the supplied 
sequence. 

user=> (split-with pos? [2 1 5 -3 6 -2 -1]) 
[(2 1 5) (-3 6 -2 -1)] 

partition 

partition takes two or three arguments. The two argument version takes a number and a 
sequence/collection and returns a lazy sequence of lazy sequences. Each child sequence is N items long 
and populated by every N items from the provided sequence, where N is the provided number. 

user=> (partition 2 [:a :b :c :d :e :f]) 
((:a :b) (:c :d) (:e :f)) 
 

The three-argument version takes two numbers, and a sequence/collection. It works the same way 
as the two argument version, with the exception that the child sequences are populated at offsets given 
by the second number provided. This allows overlap of items between the child sequences. 
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user=> (partition 2 1 [:a :b :c :d :e :f]) 
((:a :b) (:b :c) (:c :d) (:d :e) (:e :f)) 

map 

map takes a function as its first argument and any number of collections/sequences as additional 
arguments. The provided function should take the same number of arguments as there are additional 
sequences. It returns a lazy sequence obtained by applying the provided function to each item in the 
provided sequence(s). 

user=> (map pos? [2 1 5 -3 6 -2 -1]) 
(true true true false true false false) 

user=> (map + [2 4 8] [1 3 5]) 
(3 7 13) 

first 

first takes a single sequence/collection as an argument. It returns the first item in the sequence, or nil 
if the sequence is empty. 

user=> (first [1 2 3 4]) 
1 

second 

second takes a single sequence/collection as an argument. It returns the second item in the sequence, or 
nil if the sequence is empty. 

user=> (second [1 2 3 4]) 
2 

nth 

nth takes two arguments: a sequence/collection and a number. It returns the Nth item of the provided 
sequence, where N is the provided number. Sequences are indexed from zero, so (nth sequence 0) is 
equivalent to (first sequence). It throws an error if the sequence has fewer than N items. 

user=> (nth [:a :b :c :d] 2) 
:c 

last 

last takes a single sequence/collection as an argument. It returns the last item in the sequence. If the 
sequence is empty, returns nil. 

user=> (last [1 2 3 4]) 
4 
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reduce 

reduce takes two or three arguments. In the two argument version, the first argument is a function which 
must take two arguments and the second argument is a sequence/collection. reduce applies the 
supplied function to the first two items in the supplied sequence, then calls the supplied function again 
with the result of the first call and the next item, and so on for each item in the sequence. 

user=> (reduce + [1 2 3 4 5]) 
15 
 

In this example, reduce applies the addition function to a list of integers, resulting in their sum total. 
The three argument version is similar, except that it takes a function, an initial value, and a 

sequence/collection. The function is applied to the initial value and the first item of the sequence, 
instead of the first two items of the collection. The following example illustrates this by building a map 
from a sequence, using each item as a key and its reciprocal as a value. An empty map is provided as the 
initial value: 

user=> (reduce (fn [my-map value] 
                               (assoc my-map value (/ 1 value))) 
                          {} 
                          [1 2 3 4 5]) 

{5 1/5, 4 1/4, 3 1/3, 2 1/2, 1 1} 

apply 

apply takes two or more arguments. The first argument is a function and the last argument is a 
sequence/collection. Other arguments may be any values. It returns the result of calling the supplied 
function with the supplied values, and the values of the supplied sequence, as arguments. Calling (apply 
f a b [c d e]) is identical to calling (f a b c d e). The advantage of apply is that it is possible to build 
dynamic sequences of arguments. 

user=> (apply + 1 [2 3]) 
6 
 

An example using apply on a dynamic list of arguments: calling + with the integers 0–5 as 
arguments. This call is equivalent to (+ 1 2 3 4 5), except the argument list is generated dynamically. 

user=> (apply + (range 1 6)) 
15 

empty? 

empty?  takes a single sequence/collection as an argument. It returns true if the sequence has no items, 
otherwise false. 

user=> (empty? [1 2 3 4]) 
false 

user=> (empty? []) 
true 
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some 

some takes two arguments: a predicate function taking a single argument and a sequence/collection. It 
returns the value of the predicate function if there is at least one item in the provided sequence for 
which it does not return false or nil, else nil. 

user=> (some (fn [n] (< n 5)) [6 9 7 3]) 
true 

user=> (some (fn [n] (< n 5)) [6 9 7 5]) 
nil 

every? 

every? takes two arguments: a predicate function taking a single argument and a sequence/collection. It 
returns true if the predicate function is true for every value in the sequence, otherwise false. 

user=> (every? (fn [n] (< n 5)) [2 1 4 3]) 
true 

user=> (every? (fn [n] (< n 5)) [2 1 5 3]) 
false 

dorun 

dorun takes one or two arguments: a lazy sequence or optionally a number and a lazy sequence. It causes 
the lazy sequence to be realized, solely for side effects. dorun always returns nil and does not retain the 
head of the list, so it will not consume memory.  

To demonstrate, the following example applies the map function to a lazy sequence, supplying the 
println function to map. Normally, println is not a good candidate for an argument to map, since it 
executes only for side effects and always returns nil. 

user=> (def result (map println (range 1 5))) 
#'user/result 
user=> (dorun result) 
1 
2 
3 
4 

nil 

In this example, the result symbol is bound to a lazy sequence, the product of map. The actual values 
of this sequence are all nil, since they are the result of calling println. They are unused in this example. 
However, whenever the generator function (println) for the sequence is called, it results in a side effect. 
Since the sequence returned by map is lazy, the generator function is not called until the call to dorun, 
which forces the sequence to be sequentially evaluated.  

If a numeric parameter is provided, dorun evaluates the sequence only as far as that index. 

user=> (def result (map println (range 1 10))) 
#’user/result 
user=> (dorun 2 result) 
1 
2 
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3 

nil 

Be very careful to always use a numeric parameter to dorun when calling it with an infinite sequence 
or else the execution will never terminate. 

doall 

doall, rdentical to dorun, with the exception that as the sequence is evaluated, it is saved and returned by 
the function. In essence, doall returns a non-lazy version of a lazy sequence. As such, it will result in 
memory consumption proportional to the size of the sequence. Invoking on an infinite sequence 
without a numeric parameter will result in an OutOfMemoryError as the system attempts to cache a 
sequence of infinite length. 

user=> (def result (map println (range 1 5))) 
#’user/result 
user=> (doall result) 
1 
2 
3 
4 

(nil nil nil nil) 

Note how the function, after executing the generator function for side effects, also returns the actual 
sequence of values resulting from the call to map. In this case, they are all nil, the return value of println. 

Summary 
The more you use sequences, the more you will come to appreciate them. Having a highly integrated, 
extremely powerful generic collection management library at your fingertips is hard to do without when 
you go back to a language without it. 

When writing idiomatic Clojure, one cannot use sequences too much. Any point in code where 
there is more than one object is a candidate for using a sequence to manage the collection. Doing so 
provides for free all the sequence functions, both built-in and user generated. They will greatly aid in 
writing expressive, succinct programs. 
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State Management 

State in an Immutable World 
As much as possible, Clojure advocates eliminating state from programs. In general, data should be 
passed and returned from functions in a purely functional way. It keeps things clean, protected, and 
parallelizable. 

Often, however, that’s simply not possible. The real world is full of changing concepts and so real 
programs are full of state. If you’re writing a word processor, the current document has a state. If you’re 
writing a game, the objects in the game world exist have state. If you’re writing financial software, the 
amount of money in an account is state. This is a fact of the way the world is and the way humans think, 
and programs need to be able to model it effectively. 

With today’s concurrent environments, effective modeling of state is not just something nice to 
have, but absolutely necessary to get anything done. Even aside from the concurrency issues, however, 
there are many benefits of languages which have a clear conceptualization of state. Even in a single 
threaded program, explicit managed state is preferable to having state smeared across the entire 
application, and Clojure provides just that: efficient explicitly managed state. 

The Old Way 

Most programming languages model state via a fairly naive process. There are things, represented by 
variables or objects, and these things can change. But how and when they change is not well defined. 
Usually, programs “bash objects in place”—each line of code is free to reach in and push arbitrary 
changes to any part of any thing as it executes. The only way to preserve consistency and prevent bugs 
caused by two changes happening at once is to place safeguards around each and every thing, ensuring 
that only one process can interact with a given thing at once. These are known as locks. 

The problem with locks is that they’re hard to get right. In order to make them correct, the first 
reaction is to use more of them, which only causes another problem: extensive use of locks solves the 
problems introduced by concurrency by, effectively, reducing the level of concurrency that is actually 
possible. It doesn’t matter how many threads a program has running, if they all must queue up to access 
an object one at a time, then at that point they might as well be running in a single thread. 

However, with the view that there are only mutable, changeable things, and without having well-
defined semantics for how they change, locks are the only option. For a more effective approach to state, 
it is necessary to reevaluate and find better definitions for what things are, and establish clear rules for 
how they change.  
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State and Identity 

Clojure introduces a philosophical and conceptual paradigm shift in its treatment of things. It takes the 
standard notion of a thing (an object or a variable) and decomposes it into two separate concepts—state 
and identity.

1
 Every thing has both a state and an identity. State is a value associated with an identity at a 

particular moment in time, whereas identity is the part of a thing that does not change, and creates the 
link between many different states at many different times. The value of each state is immutable and 
cannot change. Rather, change is modeled by the identity being updated to refer to a different state 
entirely. 

 For example, when I was a child, in 1990, I was a very, very different person than I am now in 2010, 
and it is very probable that I will be a different person still when I am much older in 2050. Luke

1990
, 

Luke
2010

 and Luke
2050

 are quite different people—you could go as far as to say that they don’t have that 
many similarities at all. And yet, they do have a relationship, a constant identity—they are all me, Luke 
VanderHart. 

In Clojure’s logical terminology, Luke
1990

, Luke
2010

 and Luke
2050

 are all distinct values—distinct states. 
My name, Luke VanderHart, is the identity that links them all together.  Like Clojure’s values, these 
states are immutable. I may be able to change future versions of myself, but Luke

1990 
is set in stone.  I can 

no longer do anything to change who that person was or is. Currently, the identity Luke VanderHart has 
Luke

2010
 as its state. Next year, it will have a new state: Luke

2011
, which will likely be very similar to Luke

2010
 

but with subtle differences. Actually, in Clojure’s model, every time I change at all, it generates a new 
state: millisecond by millisecond, I have new values associated with my identity as I have different 
thoughts, feelings, and motions. I am a near infinity of distinct, unchangeable persons, all slightly 
different, all linked by a common identity. 

Another example is my bank account, a much less philosophical example and one more likely to be 
modeled in an actual program. As I spend money and receive paychecks, the balance of my bank 
account fluctuates. Clearly, it is something that needs to be modeled as changeable state. In this case, 
the identity which remains constant throughout the program is “my account”—call the identity account-
balance. The state, then, is the amount of money in the account at a given time. For example, it might 
start at $1000. If I deposit a check for $100, then the account-balance identity is updated to point to a 
new state, $1100. Note that I have not changed the value of the state—changing the integer 1000 to 1100 
is a clear impossibility: 1000 and 1100 are distinct mathematical values. The state has not changed, 
rather, the identity of account-balance now points to a new state. The update takes place atomically; 
there is no intermediate state where the value of account-balance is half-set. At any point in the 
program, it is safe to query the current state of account-balance. 

State and Identity in Clojure 
In Clojure code, states are simply any of Clojure’s data types. They can be primitives, such as numbers or 
strings, or more complex structures built out of lists, maps, and sets. The only limitation on values that 
can be used as states is that they ought to be immutable. If you use a mutable structure (such as a Java 
object) as a state, you haven’t actually accomplished anything: Clojure’s state management system is 
founded on the premise that values themselves are immutable, and it can provide no guarantees of 
consistency or isolation for mutable objects. 

Identities are modeled using one of the three reference types: refs, agents, atoms and vars. Each 
implements the conceptual model outlined previously; each represents an identity and points to a state.  
 

                                                 
1 For the definitive discussion of state and identity, see Rich Hickey’s essay “On State and Identity” at 
http://clojure.org/state. 
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They differ in the semantics of how they can be updated to refer to new state values and are useful in 
different situations. Between them, they can handle just about any state management task: 

•  Use refs to manage synchronous, coordinated state 

•  Use agents to manage asynchronous, independent state  

• Use atoms to manage synchronous, independent state  

Coordinated vs. Independent State 

One requirement common to many systems is that updates to certain identities be coordinated to 
ensure data integrity. Coordinated updates can’t just take one identity into account—they have to 
manage the states of several interdependent identities to ensure that they are all updated at the same 
time and that none are left out. The most common example of coordinated state is a transfer of funds 
between two bank accounts: money deposited into one account must also be subtracted from the other, 
and these two actions must occur as a single, coordinated event, or not at all. Clojure uses refs to provide 
coordinated state. 

The alternative to coordinated state is independent state. Independent identities stand on their own 
and can have their state updated without concern for other identities. This still needs to be controlled in 
some way, but internally, this is usually a more efficient process than coordinating changes to multiple 
identities. Therefore, updates to independent identities are usually faster than updates to coordinated 
identities; use them in preference to refs unless coordinated access is required. Clojure provides agents 
and atoms as independent identity reference types. 

Synchronous vs. Asynchronous Updates 

Synchronous updates to the values identities occur immediately, in the same thread from which they are 
invoked. The execution of the code does not continue until the update has taken place, as most 
programmers would expect. This is the default way instructions execute in most programming 
languages. Updates to the values of refs and atoms are both handled synchronously in Clojure. 

Asynchronous updates do not occur immediately, but at some unspecified point in the (near) 
future, usually in another thread. The code execution continues immediately from the point at which the 
update was invoked, without waiting for it to complete. Extensive use of asynchronous updates is useful 
for introducing concurrency into programs, and for more flexible event-based programming models. 
However, there is no guarantee when the effect of an asynchronous update will actually be in place. It 
will nearly always be instantaneous from a human scale, but from a code perspective, it might not be. 
For example, if one line of code updates an asynchronous identity, and the very next line of code in the 
same thread reads its state, it will probably get the old state. Don’t use asynchronous identities where 
your code depends on the update happening right away. Agents are Clojure’s implementation of 
asynchronously updated identities. 

Refs and Transactions 
Refs are Clojure’s implementation of synchronous, coordinated identities. Each is a distinct identity, but 
operations on them can be run inside a transaction, guaranteeing that multiple identities whose values 
depend on each other are always in a consistent state. Refs provide access to Clojure’s state-of-the-art 
Software Transactional Memory (STM) system. 
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Creating and Accessing refs 
To create a ref, use the built-in ref function, which takes a single argument: the initial value of the ref: 

user=> (def my-ref (ref 5)) 

#'user/my-ref 

This code does two things: creates a ref with an initial state of the integer 5 and binds the ref to a var, 
my-ref. It is an important distinction: the var is not the ref itself, it is just bound to the ref. If you try to get 
the value of the var, you get the following: 

user=> my-ref 

#<Ref@1010058: 5> 

my-ref is a var like any other. It just has a ref as its bound value, which is seen here. "#<Ref@1010058: 
5>" is the string debugging representation of a ref. To actually get the current state of the ref, it is 
necessary to use the dereference function deref: 

user=> (deref my-ref) 

5 

The deref function always takes a single argument, which must resolve to a ref and returns the 
current state of the ref. Because the deref function is used so frequently, there is a shorthand for it: the @ 
symbol. Prefixing an expression with @ is identical to calling deref on it: 

user=> (deref my-ref) 
5 
user=> @my-ref 

5 

The shorthand form makes it easier to dereference symbols within expressions: 

user=> (+ 1 @my-ref) 

6 

Dereferencing a ref always returns its state, immediately. Refs are never locked (at least, not in a 
traditional sense) and deref does not block while waiting for a transaction to complete. It always just 
returns a snapshot of the ref’s current state. This means that if you call deref twice, outside of a 
transaction, it is possible that you will get two different values.  

Updating refs 

There are several different functions which can be used to update the values of refs. They differ in their 
performance implications, and are explained in detail in the following sections, but they have one thing 
in common: they are designed exclusively for use within transactions. Executing any of them outside a 
transaction always throws an error. 
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Transactions 

For anyone who has worked with relational databases, Clojure’s transactions will be a familiar concept: 
they operate in almost exactly the same way as their database counterparts. Essentially, all updates 
contained within a single transaction are committed to the application state atomically, at the same 
time. Either all the updates occur at the same time, or none do. Consistency across ref values is 
guaranteed. 

Transactions are also isolated, which means that no transaction can see the effects of any other 
transaction while it is running. When a transaction begins, it takes a snapshot of all the ref values 
involved. Subsequent updates to those values from outside the transaction are invisible to code within 
the transaction, just as changes made within the transaction are invisible to the outside world until it is 
finished and committed. Of course, changes made within a transaction are visible within the same 
transaction. Dereferencing a ref within a transaction always returns the “in-transaction” value of the ref, 
which reflects any updates that have been made since the beginning of the transaction. 

Additionally, transactions nest. If a transaction is initiated while already inside a transaction, the 
inner transaction simply becomes part of the outer transaction and will not commit until the outer 
transaction commits. 

Transactions are conceptually lock-free and optimistic. This means that transactions don’t wait for 
other transactions to complete before they begin. Transactions will never block a thread while waiting 
for another update. However, it doesn’t remove the possibility that multiple transactions updating the 
same ref can conflict. A transaction might complete, only to find that the refs it is trying to update are 
stale and have already been updated by another transaction. In this case, the transaction simply retries, 
taking a snapshot of the new values and running itself again. The system prioritizes commits, insuring 
that no matter how much contention there is for a particular ref, each transaction is guaranteed to 
complete eventually.  

High-concurrency, high-contention scenarios will result in a slowdown of the STM system as many 
transactions are retried. However, in most cases it will still end up faster than the equivalent system 
using locks. Even in the worst case, where a perfectly designed system of locks is provably faster than 
STM, Clojure argues that STM is still worthwhile due to the decreased cognitive load and simplicity of 
the solutions. 

Many consider the benefits of STM to be roughly analogous to managed memory and garbage 
collection: most the time they are more than fast enough, and they save so much effort from 
programmers and software architects that the occasional scenario where they underperform the 
meticulously, complicated manual solution can be accepted. 

Tools for Updating refs 

The most important form when working with refs is the dosync macro. dosync initiates a transaction and 
takes any number of additional forms. Each provided form is evaluated sequentially within a 
transaction. The value of the final form is returned after committing the transaction. If an exception is 
thrown from any of the provided forms, the transaction is terminated without committing. 

For actually updating the state of a ref, the most basic function is ref-set. ref-set takes two 
arguments: a ref and a value. It sets the state of the reference to be the value, and then returns the value. 
Of course, it must be run within a transaction established by dosync. 

For example, the following code: 

user=> (def my-ref (ref 5)) 
#’user/my-ref 
user=> @my-ref 
5 
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user=> (dosync (ref-set my-ref 6)) 
6 
user=> @my-ref 

6 

To emphasize, ref-set and all other ref functions may only be called from within a transaction. 
Trying to call ref-set outside of a transaction throws the following error: 

user=> (ref-set my-ref 7) 

java.lang.IllegalStateException: No transaction running 

Another common function for updating refs is alter. alter takes a ref, a function, and any number 
of additional arguments. It calls the provided function with the in-transaction value of the ref as its first 
argument and the other provided arguments as additional arguments. It sets the value of the ref to the 
return value of the function and returns the same value. 

user=> (def my-ref (ref 5)) 
#’user/my-ref 
user=> @my-ref 
5 
user=> (dosync (alter my-ref + 3)) 
8 
user=> @my-ref 

8 

̈ Note  The function provided to alter must be free of side effects and return a purely functional transformation 

of the ref value. This is because the function may be executed multiple times as the STM retries the transaction. If 

the function has side effects, including updates to other identities, they will be executed at least once, but 

potentially an arbitrary number of times if the update is highly contentious., Almost always, this will have 

unexpected and undesired results. Double check that all functions passed to alter are pure. 

Some might wonder why both ref-set and alter are provided, given that they’re essentially just 
different ways of doing the same thing—setting the state of a ref. The distinction is not so much in their 
actual functionality as in what they imply to someone reading the code. alter usually indicates that the 
new value of the ref is a function of the old, that it is an update that is related to it in some way. ref-set 
implies that the old value is being obliterated and replaced with the new. Under the hood, there isn’t any 
difference, but when trying to understand a program, it can be a great help to see at a glance whether the 
value being set is tied to the old value or not. 

The final function used to update refs is commute. commute has the same signature and basic 
functionality of alter, but with one important difference:  in a contended transaction, rather than 
restarting the whole transaction as it normally would, it  goes ahead and uses the new value instead of 
the in-transaction value when performing its calculation. This means that commute operations are less 
contentious, and will achieve much better performance in high-contention scenarios. 

It also means that commute operations are not perfectly isolated within a transaction. However, if the 
function passed to commute is logically or mathematically commutative, it makes no difference. 
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Commutative functions are those which may be applied in any order without impacting the end result. 
In contentious transactions which use commute, that is exactly what happens. commute buys efficiency 
by making the assumption that it can apply the update in any order relative to other updates. Therefore, 
you should only use commute if the provided function can be applied in any order without affecting the 
outcome (or if you don’t care whether it does). If you use commute with a function that isn’t guaranteed to 
be logically commutative, you will likely see inconsistent, unpredictable behavior. 

An example of using commute appropriately (since +  is a naturally commutative operation): 

user=> (def my-ref (ref 5)) 
#’user/my-ref 
user=> @my-ref 
5 
user=> (dosync (commute my-ref + 3)) 
8 
user=> @my-ref 

8 

There is one more function that operates on refs: ensure. It takes a single argument, a ref. Like the 
other ref functions, it can only be used inside a transaction. Unlike other ref functions, it doesn’t actually 
change the state of a ref. What it does do is to force a transaction retry if the ensured ref changes during 
the transaction, just as it would if it were a ref you updated. Of course, you wouldn’t see such changes 
inside the transaction in any case, due to transaction isolation. But normally, if you don’t update a ref in 
a transaction, that ref is not included in the consistency guarantees of the final commit. If you want to 
ensure that a ref you don’t update is nevertheless unchanged after a transaction for coordination 
reasons, use ensure on it within the transaction. 

Examples 

Listing 6-1 illustrates the classic example of transactional behavior previously mentioned, transferring 
money from one bank account to another. This is a scenario in which coordination between the two 
pieces of state—the two accounts—is vitally important. If the values were not coordinated, it would be 
possible, however briefly, to be in a state in which the money was added to one account but not yet 
subtracted from the other (or vice versa). Using refs and transactions ensures that the account addition 
and subtraction occur atomically. 

Listing 6-1. Bank Accounts in STM 

(def account1 (ref 1000)) 
(def account2 (ref 1500)) 
 
(defn transfer 
    "transfers amount of money from a to b" 
    [a b amount] 
    (dosync 
        (alter a - amount) 
        (alter b + amount))) 
 
(transfer account1 account2 300) 
(transfer account2 account1 50) 
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(println “Account #1:” @account1) 

(println “Account #2:” @account2) 

Running this code yields the expected output after the two transactions. Because the transaction is 
guaranteed by Clojure’s STM, the results would be the consistent no matter how many threads were 
concurrently updating the accounts. In this case, the output is: 

Account #1: 750 

Account #2: 1750 

The following example is much more complex, and demonstrates how refs can be stored in any data 
structure (not just def’d at the top level), how they can have any data structure as their value, not just 
integers, and how even refs can be part of the value of another ref. It is just a basic example of using refs: 
you will probably want to approach the ref structure in an actual program with a great deal more 
thought. In general, it’s better to be judicious and use as few refs as will meet your needs. 

The program represents a rudimentary address book. The main data structure is a vector of 
contacts. It is contained in a ref, since you need to be able to update it and it starts out empty. Each 
contact is a map containing first name and last name. Rather than storing the entries directly, though, 
they are each stored as a ref themselves, since each is an individually updateable piece of state (see 
Listing 6-2). 

Lilsting 6-2. An Address Book in STM 

(def my-contacts (ref [])) 
 
(defn add-contact 
    "adds a contact to the provided contact list" 
    [contacts contact] 
    (dosync 
        (alter contacts conj (ref contact)))) 
 
(defn print-contacts 
    "prints a list of contacts" 
    [contacts] 
    (doseq [c @contacts] 
                             (println (str "Name: " (@c :lname) ", " (@c :fname))) 
                         )) 
 
 
(add-contact my-contacts {:fname "Luke" :lname "VanderHart"}) 
(add-contact my-contacts {:fname "Stuart" :lname "Sierra"}) 
(add-contact my-contacts {:fname "John" :lname "Doe"}) 
 

(print-contacts my-contacts) 

Running the scripts creates a list of contacts, adds several contacts to it (as refs), and then prints the 
list, yielding: 

Name: VanderHart , Luke 
Name: Sierra, Stuart 

Name: Doe, John 
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Note how the print-contacts function needs to dereference the contacts list and also each contact 
before it can use it, since both are references. 

Now, as an example of coordinated access to multiple refs, consider the task of adding an “initials” 
field to each contact, but doing it in a coordinated way so there is no chance that any contact might be 
left out. This is slightly contrived, but is similar to many real-world tasks: the goal is to make it 
impossible for there to be a state in which some contacts have initials and not others. This can be done 
with Listing 6-3’s code added after the previous code. It is split into multiple functions for greater clarity. 

Listing 6-3. Adding Initials to the Address Book 

(defn add-initials 
    "adds initials to a single contact and returns it" 
    [contact] 
    (assoc contact :initials 
        (str (first (contact :fname)) (first (contact :lname))))) 
 
(defn add-all-initials 
    "adds initials to each of the contacts in a list of contacts" 
    [contacts] 
    (dosync 
        (doseq [contact (ensure contacts)] 
          (alter contact add-initials)))) 
(defn print-contacts-and-initials 
    "prints a list of contacts, with initials" 
    [contacts] 
    (dorun (map (fn [c] 
                             (println (str "Name: " (@c :lname) ", " (@c :fname) " (" (@c 
:initials) ")"))) 
                         @contacts))) 
 
(defn print-contacts-and-initials 
    "prints a list of contacts, with initials" 
    [contacts] 
    (doseq [c @contacts] 
      (println (str "Name: " (@c :lname) ", " (@c :fname) " (" (@c :initials) ")")))) 
 
 
(add-all-initials my-contacts) 

(print-contacts-and-initials my-contacts) 

When executed the code prints off the same names as before, with their initials added: 

Name: VanderHart , Luke (LV) 
Name: Sierra, Stuart (SS) 

Name: Doe, John (JD) 

The key function which actually deals with the refs is add-all-initials. It first opens a transaction, 
and then calls ensure on the contacts ref. This is to make sure that if contacts is updated while the 
transaction is running, it will be restarted. I want to include all of the contacts, and without the ensure, if 
contacts were updated with a new contact after the transaction had begun it would not be included. 



CHAPTER 6 ̈ STATE MANAGEMENT 

104 

Then, for each contact (using doseq), it alters it using the add-initials function, setting it to a map 
containing an initials key. Because all the alter statements are run in the same transaction, the update 
to all the contacts is atomic: from outside the transaction, all the contacts are updated to a value with the 
new field instantaneously. 

 Because the whole operation never blocks, other threads involved in reading the contacts list 
continue to do so at full speed. If another transaction in another thread tries to write to a contact at the 
same time, one transaction or the other might have to retry, but in the end, it’s still guaranteed that 
everything that needs to happen will eventually happen to each contact, and that they will remain in a 
coordinated state. 

Atoms 
Atoms are Clojure’s implementation of synchronous, uncoordinated identities. When updated the 
change is applied before proceeding with the current thread and the update occurs atomically. All future 
dereferences to the atom from all threads will resolve to the new value. 

 Atoms are based on the atomic classes in the Java java.util.concurrent.atomic package. They 
provide a way to update values atomically with no chance of race conditions corrupting the update. 
Unlike the Java atomic package, however, they are lock-free. Therefore, reads of atoms are guaranteed 
never to block and updates will retry if the atom’s value is updated while they are in progress, just like 
refs. 

In practice, atoms are used almost exactly like refs, except that since they are uncoordinated they do 
not need to participate in transactions.  

Using Atoms 

To create an atom, use the atom function, which takes a single argument and returns an atom with the 
argument as its initial state. To retrieve the value of an atom, use the deref function (the same one used 
for refs) or the @ shorthand. 

user=> (def my-atom (atom 5)) 
#'user/my-atom 
user=> @my-atom 

5 

As with refs, there are two ways to update the value of an atom: swap! and reset!.The swap! 
function takes an atom, a function, and any number of additional arguments. It updates (swaps) the 
value of the atom for the value obtained by calling the supplied function with the current value of the 
atom as the first argument, and the other provided arguments as additional arguments. It returns the 
new value of the atom. Like the function provided to alter the function passed to swap! may be 
executed multiple times and should therefore be free of side effects. 

The following example uses the atom set up in the previous snippet and passes the addition 
function, along with an additional argument of 3. 

user=> (swap! my-atom + 3) 
8 
user=> @my-atom 

8 
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The reset! function sets the value of an atom regardless of the current value. It takes two arguments 
(the atom and a value) and returns the new value of the atom. 

user=> (reset! my-atom  1) 
1 
user=> @my-atom 

1 

When to Use Atoms 

In practice, atoms aren’t used as frequently as refs in programs. Since they can’t coordinate with other 
pieces of state, their usefulness is limited to scenarios in which an identity is truly, logically independent 
from other identities in the system. 

For cases where an identity is independent, however, atoms are the right choice. They avoid much 
of the overhead associated with refs and are very fast, particularly to read. They don’t have the 
parallelism implications of agents (discussed in the next section), and overall are the most lightweight of 
Clojure’s identity types.  

One example of a case where atoms are very useful is for caching values. Cached values need to be 
accessible quickly, but aren’t dependent on the rest of the system’s state. Clojure’s memoize function 
(which caches the results of calling a function and is described more fully in Chapter 14 uses atoms 
internally to maintain its cache. 

Asynchronous Agents 
Agents are one of Clojure’s more unique and powerful features. Like refs and atoms, they are identities 
and adhere to Clojure’s philosophy of identity and state. Unlike refs and atoms, however, updates to 
their values occur asynchronously in a separate system managed thread pool dedicated to managing 
agent state. 

This implies that agents are not only a means of storing and managing state in a concurrent 
environment (although they certainly are that), but are also a tool for introducing concurrency into a 
program. Using agents, there is no need to manually spawn threads, manage thread pools, or explicitly 
cause any other kind of concurrency. Agents are identity types, and just as easy to use and update as refs 
or atoms, but have concurrency thrown in “for free.” 

Creating and Updating Agents 
Agents can be created by using the agent function, which takes a single value as the initial value of the 
agent. Like other Clojure identities, the value ought to be immutable. 

user=> (def my-agent (agent 5)) 

#'user/my-agent 

Also, like the other Clojure identities, the current value of an agent can always be obtained 
immediately without blocking by dereferencing it using the deref (or @ ) function. 

user=> @my-agent 

5 
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The value of an agent can be updated by dispatching an action function using the send or send-off 
function. The call to send returns immediately in the current thread (returning the agent itself). At some 
undetermined point in the future, in another thread, the action function provided to send will be applied 
to the agent and its return value will be used as new the value of the agent. 

send takes any number of arguments. The first two are the agent and the action function, the rest 
are additional arguments to be passed to the update function whenever it executes. For example, to send 
an update to the agent previously defined: 

user=> (send my-agent + 3) 

#'user/my-agent 

Then, at some point in the future, the new value of the agent can be retrieved: 

user=> @my-agent 

8 

There is no hard guarantee about when the update action will be applied, although usually it is 
nearly immediate from a human perspective. Don’t write code that depends on an agent’s value being 
updated at any given time: agents are asynchronous and can’t provide guarantees about exactly when 
their actions will occur. 

send-off has an identical signature and behavior as send. The only difference is that the two 
functions hint at different performance implications to the underlying agent runtime. Use send for 
actions that are mostly CPU-intensive, and send-off for actions that are expected to spend time blocking 
on IO. This allows the agent runtime to optimize appropriately. If you use the “wrong” method, 
everything will still work, but the overall throughput of the agent system will be lower, since it will be 
optimizing for the wrong type of action. 

Update Semantics 

Although agents provide no guarantee as to when an action will take effect, update dispatches do follow 
certain rules that can be relied upon:   

•  Actions to any individual agent are applied serially, not concurrently. Multiple 
updates to the same agent won’t overwrite each other or encounter race 
conditions. 

• Multiple actions sent to an agent from the same thread will be applied in the order 
in which they were sent. Obviously, no such guarantees can be made about 
actions sent from different threads. 

• If an action function contains additional dispatches to agents, either to itself or 
other agents, dispatches are saved and are not actually called until after the action 
function returns and the agent’s value has been updated. This allows actions on 
an agent to trigger further actions without having the updates conflict. 

• If an update is dispatched to an agent within a STM transaction (for example, a 
dosync expression), the dispatch is not sent until the transaction is committed. 
This means that it is safe to dispatch updates to atoms from within STM 
transactions. 
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Errors and Agents 

Because action functions dispatched to agents occur asynchronously in a separate thread, they need a 
special error-handling mechanism. Normally, exceptions are thrown from the location in the thread in 
which they occur, but if an action function throws an exception, there’s no way of determining that it 
occurred, except for the built-in agent error handling. 

Agents have one of two possible failure modes :fail or :continue. If an exception is thrown while 
processing an action, and the agent’s failure mode is :continue, the agent continues as if the action 
which caused the error had never happened, after calling an optional error-handler function. If, on the 
other hand, its failure mode is :fail, the agent is put into a failed state, and will not accept any more 
actions until it is restarted (although it saves its current action queue). 

By default, agents with an error handler defined have a failure mode of :continue. If they don’t, then 
the default is :fail. The failure mode of an agent can also be set explicitly using the set-error-mode! 
function, which takes two arguments: an agent and a mode keyword. For example, the following code: 

user=> (set-error-mode! my-agent :continue) 

nil 

You can check the current failure mode of an agent using the error-mode function: 

user=> (error-mode my-agent) 

:continue 

Agents can be assigned an error handler using the set-error-handler! function, which takes an 
agent and an error function as arguments. The error function will be called whenever an action causes 
an exception to be thrown or sets the agent to an invalid value. It must itself take two arguments: an 
agent and the exception. For example, the code that follows: 

user=> (set-error-handler! my-agent (fn [agt ex] ( … )) 

nil 

Typically, the error handler is used to log an error, or implement some correction to ensure that it 
doesn’t happen again. You can also retrieve the current error handler for an agent using the error-
handler function, which takes a single agent as an argument and returns its error handler function. 

Dealing with Agents in a Failed State 

Agents currently in a failure state throw an exception on any attempt to call send or send-off on them 
(although dereferencing will still return the last good value of the agent). For example, dividing by zero 
throws the agent into a failed state in the following example: 

user=> (def an-agent (agent 10)) 
#'user/an-agent 
user=> (send an-agent / 0) 
#<Agent@1afa486: 10> 
user=> (send an-agent + 1) 

java.lang.RuntimeException: Agent is failed, needs restart 

To inspect the current errors on an agent, use the agent-error function and pass it the agent as a 
single argument: 
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user=> (agent-error an-agent) 

#<ArithmeticException java.langArithmeticException: Divide by zero> 

In order to put the agent back into a working state, you must call the restart-agent function. 
restart-agent takes as its arguments an agent, a new state, and any number of additional keyword 
option/value pairs. The only currently implemented option is :clear-actions  with a boolean value. 

When restart-agent is called, it resets the value of the agent to the provided state and takes away 
the agent’s failure state so the agent can accept new actions. If the :clear-actions true option is 
provided, the agent’s action queue is cleared; otherwise, pending actions will be called sequentially. 
restart-agent returns the new state of the agent. 

To reset the agent in the preceding example: 

user=> (restart-agent my-agent 5 :clear-actions true) 

5 

And now, the agent can be sent more actions: 

user=> (send my-agent + 1) 
#<Agent@1365360: 5> 
user=> @my-agent 

6 

Waiting for Agents 

Although agents are by their nature asynchronous, it is occasionally necessary to force a certain degree 
of synchronicity. For example, if a long-running action is being performed on an agent, a result might be 
required in the original thread before computation can continue. For this purpose, Clojure provides the 
await and await-for functions, both of which block a thread until an agent has finished processing its 
actions. 

await takes any number of agents as its arguments and blocks the current thread indefinitely until 
all actions to the provided agent(s) which were dispatched from the current thread)  are complete. It 
always returns nil. 

await-for is nearly identical, except that it takes a timeout (in milliseconds) as its first argument and 
any number of agents as additional arguments. If the timeout expires before all the agents are finished, 
await-for returns nil. If the agents did finish before the timeout, it returns a non-nil value. 

Shutting Down Agents 

Whenever agents are used in a Clojure program, the Clojure runtime creates a thread pool in which to 
run agent actions behind the scenes. Normally, it isn’t necessary to concern yourself about this, except 
that a Java/Clojure program will not gracefully terminate while there is still an active thread pool. To 
deactivate the agent thread pool, call the shutdown-agents function with no arguments. All currently 
running actions will complete, but no more will actions to agents will be accepted, and when all actions 
are complete the pool will shut down, allowing the program to terminate.   

Never call shutdown-agents unless you intend to terminate the running program. shutdown-agents is 
irreversible without restarting your application, and after calling it agents can no longer be updated: all 
calls to send or send-off will throw exceptions. 
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When to Use Agents 

When deciding when to use agents, it is very important to realize that agents are not only a means of 
managing state, but also managing program execution. Using agents doesn’t just imply managed state 
with identities, but also splitting up computational processes across multiple threads.  

As state management tools, agents are effective although they don’t have all the features that refs 
do, such as transactions and ensuring data consistency. They are an uncoordinated identity type. For 
data that really needs these things, definitely consider using refs. Likewise, agents don’t offer much more 
than atoms for simple uncoordinated state management. If all you need to do is ensure the integrity of 
individual pieces of state, atoms are probably a better choice than agents. 

The important feature of agents is not only that they protect state, but that updates to that state 
occur concurrently with the thread that initiated the update. If, as in the previous examples, the only 
action functions being passed to agents are simple and blindingly fast, like +, there isn’t much benefit to 
using an agent. But when the functions are more processing intensive, or when they perform IO 
(something that isn’t even possible within transactions), there can be huge benefit to having it occur 
out-of-band. Every action function passed to an agent is offloaded from the calling thread, freeing it up 
for other important tasks. 

This concurrency is the most important feature of agents. Their state management is convenient 
and works very well in concert with the concurrency features, but concurrency is the primary motivation 
behind choosing agents as opposed to one of Clojure’s other identity types. 

Vars and Thread-Local State 
In addition to refs, atoms, and agents, Clojure has a fourth way of “changing” state: thread local var 
bindings. Since they are thread-local, they’re not useful for shared access to state from different threads. 

Rather, vars are ordinary bindings (the same ones discussed in Chapter 1, those created by def) 
which can be rebound on a per-thread basis and obey stack discipline. This allows for some level of 
imperative-style coding. I=It’s the only way in Clojure to “change” a variable other than using a full-
blown reference type.  

To establish a thread-local binding for a var, use the binding form. binding takes a vector of bindings 
and one or more body expressions. The binding vector consists of a series of pairs of symbols and values. 
Then, the body expressions are evaluated within an implicit do, using the provided values whenever their 
matching symbols are encountered. binding may only be used on vars which are already defined by def 
on the top level. For example, the following code: 

user=> (def x 5) 
#’user/x 
user=> (def y 3) 
#’user/y 
user=> (binding [x 2 y 1] (+ x y)) 
3 
user=> (+ x y) 

8 

Within the context of the binding expression, (+ x y) yields 3. Outside the binding expression, (+ x 
y) uses the original values of the vars, yielding 8.  

So far, binding might just look similar to let. The difference is, rather than establishing a local 
symbol, it actually rebinds it for all uses, so long as it’s used at a lower position within the same call 
stack. For example, consider the following REPL session: 
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user=> (def x 5) 
#’user/x 
user=> (def y 3) 
#’user/y 
user=> (defn get-val [] (+ x y)) 
#’user/get-val 
user=> (get-val) 
8 
user=> (binding [x 1 y 2] (get-val)) 

3 

Binding actually reestablishes the values of x and y for all uses. When the get-val function is used 
within the stack context of the binding form, it picks up on the thread-local bindings of x and y 
established by binding and uses them. 

Additionally, symbol bindings established by binding can be updated using the set! function, 
similar to imperative variables in most other programming languages. The following example is lengthy, 
but it demonstrates how independent code can update the same binding: 

user=> (def x 5) 
#'user/x 
user=> (def y 3) 
#'user/y 
user=> (defn set-val [] (set! x 10)) 
#'user/set-val 
user=> (defn get-val [] (+ x y)) 
#'user/get-val 
 user=> (binding [x 1 y 2] (set-val) (get-val)) 

12 

Notice how set-val was called first, and resets the value of x to 10, so that when get-val comes 
along later, it uses the updated value. Within the binding form, all references to bound symbols will see 
changes made by set!, just as if, for that limited context, they were ordinary, imperative, mutable 
variables. 

When to Use Thread-Local Vars 

There are very few cases where it is appropriate to use thread-local state in Clojure. Extensive use of it 
goes against the spirit of functional programming, and is it only provided as a concession to the very few 
cases where it is necessary for performance or practicality. 

Scenarios where thread-local vars are useful tend to fall into two categories: 

• Algorithms where it is much more logical and convenient to keep track of some 
state as a mutable variable. Examples include some parsers and state machines. 
Usually, however, an equivalent, purely functional algorithm does exist, even if it’s 
not apparent to a programmer from an imperative background. 

• Places where the semantics truly indicate a thread-local, context-based value that 
can be changed, such as a settings toggle. For example, many of Clojure’s runtime 
settings are stored in var bindings, where they are easily accessible from all code 
and can be set! to new values conveniently. One example is *out*, which points 
to the standard output stream. 
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Keeping Track of Identities 
There is more to managing state than just updating it, and so Clojure provides two very useful “hooks” 
into its state management system, which make it easy to write code that keeps track of states and 
identities.  

Validators 

Validators are functions that can be attached to any state type (refs, atoms, agents, and vars) and which 
validate any update before it is committed as the new value of the identity. If a new value is not approved 
by the validator function, the state of the identity is not changed. 

To add a validator to an identity, use the set-validator! function. It takes two arguments: an 
identity and a function. The function must not have side effects, must take a single argument, and must 
return a boolean. 

Then, whenever the state of the identity is about to be updated, the provided validator function will 
be passed the new value of the identity. If it returns true, the identity is updated normally. If it returns 
false or throws an exception, an exception is thrown from the identity update function. 

For example, the following code sets a validator on a ref, ensuring that all values must be greater 
than zero: 

  

user=> (def my-ref (ref 5)) 
#'user/my-ref 
user=> (set-validator! my-ref (fn [x] (< 0 x)))  
nil 
user=> (dosync (alter my-ref – 10)) 
#<CompilerException java.lang.IllegalStateException: Invalid Reference State> 
user=> (dosync (alter my-ref – 10) (alter my-ref + 15)) 
10 
user=> @my-ref 

5 

And on an agent: 

user=> (def my-agent (agent 5)) 
#'user/my-agent 
user=> (set-validator! my-agent (fn [x] (< 0 x)))  
nil 
user=> (send my-agent – 10) 
#<Agent 5> 
user=> (agent-errors my-agent) 

(#<CompilerException java.lang.IllegalStateException: Invalid Reference State>) 

Note that on agents, the error is trapped and logged using the agent error-handling system, rather 
than being thrown immediately as it is with refs. 

If the value of an identity is already invalid according to the given validator function when setting a 
validator, an exception is thrown and the validator is not set: 

user=> (def my-atom (atom -5)) 
#'user/my-atom 
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user=> (set-validator! my-atom (fn [x] (< 0 x)))  

 #<CompilerException java.lang.RuntimeException java.lang.IllegalStateException: Invalid 

Reference State> 

The current validator function for an identity may be retrieved using the get-validator function, 
which takes a single identity as an argument: 

user=> (def my-agent (agent 5)) 
#'user/my-agent 
user=> (get-validator my-agent)  

 #<user$eval__4868$fn__4870 user$eval__4868$fn_4870@1dc518b> 

As can be seen, the string representation of a function isn’t very useful. However, since functions are 
first-class entities in Clojure, you can use the returned function however you wish—use it as a validator 
on another identity, call it with a value to see what it returns, or anything. 

To remove a validator, just pass nil instead of a validator function to set-validator! 

Watches 

Watches are functions which are called whenever a state changes. They work on refs, atoms, agents, and 
vars (although with vars, they are only called with root binding changes, not when updated with set!).  

Unlike validators, they are called immediately after the state has changed (for agents, this is in the 
same thread). Each identity may have multiple watches: each watch has an arbitrary key that can be 
used to identify it later. Watches are useful for structuring program flow that logically depends on the 
value of an identity—they easily provide a form of event-based or reactive programming. 

To add a watch, use the add-watch function. It takes three arguments: an identity, a key, and a 
function. The key may be any value, provided it is unique among an identity’s watchers. 

The watch function itself takes four arguments: the key, the identity, the old state of the identity, and 
the new state. 

For example, the following code uses watches to print the old and new values of a ref whenever it is 
updated: 

user=> (defn my-watch [key identity old-val new-val] 
                  (println (str "Old: " old-val)) 
                  (println (str "New: " new-val))) 
#'user/my-watch 
user=> (def my-ref (ref 5)) 
#'user/my-ref 
user=> (add-watch my-ref "watch1" my-watch) 
#<Ref 5> 
user=> (dosync (alter my-ref inc)) 
Old: 5 
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New: 6 

6 

Note that if an identity is being updated in rapid succession, it may have been updated again by the 
time the first watch function is called. This is why watch functions are passed the old and new value of 
the identity: they reflect the state change from the update that actually triggered the watch. 
Dereferencing the identity within the watch function may yield a different value than the new value 
passed in if there are a lot of updates occurring. 

  To remove a watch, use the remove-watch function. It is very simple: it just takes an identity and a 
key, and removes watchers associated with that key from the identity. 

user=> (remove-watch my-ref "watch1") 

#<Ref 6> 

Summary 
Clojure’s state management systems provide an array of effective ways to manage state. They combine a 
more sophisticated philosophical approach to state with state-of-the-art Software Transactional 
Memory and agent-based systems to make state management clean and effective to use. Managing state 
in Clojure is usually much less error prone than in other languages and works the same in single or 
multithreaded programs. With four distinct tools state management strategies, there should always be 
something that meets your needs: 

• Use refs provide synchronous, coordinated updates, and allow direct access to the 
STM system. 

• Use atoms to manage synchronous, independent state (such as cached or 
memorized values) with maximum efficiency.  

• Use agents to manage asynchronous state as well as introduce concurrency into 
your program.  

• Use vars to maintain state within a stack discipline to efficiently simulate mutable 
variables for algorithms that require it. 

• Use validator functions to maintain data integrity. 

• Use watches to trigger events dependent on an identity’s values. 
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Namespaces and Libraries 

Organizing Clojure Code 
Namespaces are the means by which you divide your Clojure code into logical groups, similar to 
packages in Java or modules in other languages. Almost every Clojure source file begins with a 
namespace declaration using the ns macro. The following code is an example of a namespace 
declaration: 

(ns clojure.contrib.gen-html-docs 
  (:require [clojure.contrib.duck-streams :as duck-streams]) 
  (:use (clojure.contrib seq-utils str-utils repl-utils def prxml)) 
  (:import (java.lang Exception) 

            (java.util.regex Pattern))) 

Fundamentally, a namespace is just a Clojure map.  The keys of the map are Clojure symbols and 
the values are either Clojure Vars or Java classes. The Clojure compiler uses that map to figure out the 
meaning of each symbol in your source code. Special functions allow you to add, remove, or change 
entries in the namespace map.  

Namespace Basics 
The ns macro has dozens of options for configuring a namespace, so before tackling it you should 
understand the lower level functions on which it is based. 

Switching Namespaces with in-ns 

Whenever you are working at the Clojure REPL, the REPL prompt tells you that you are “in” a particular 
namespace. Clojure always starts in the user namespace: 

user=> 

Any symbols you define will be created in the user namespace. You can switch to a different namespace 
with the in-ns function: 

user=> (in-ns 'greetings) 
#<Namespace greetings> 

greetings=> 
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in-ns takes a symbol argument, and switches to the namespace named by the symbol, creating it if 
it does not already exist. Please notice in the example that the symbol greetings was quoted to prevent 
Clojure from trying to evaluate it. 

Referring to Other Namespaces 

A newly-created namespace does not have any symbols in it, not even the core language functions.  If 
you try to call a built-in Clojure function, you will get an error: 

greetings=> (println "Hello, World!") 

java.lang.Exception: Unable to resolve symbol: println in this context 

Clojure's built-in functions are defined in the namespace clojure.core, and you can refer to them 
from your new namespace by qualifying the symbols with their namespace: 

greetings=> (clojure.core/println "Hello, World!") 
Hello, World! 

nil 

To avoid having to qualify all the symbols you use, you can refer another namespace with the refer 
function, which is also defined in clojure.core: 

greetings=> (clojure.core/refer 'clojure.core) 

nil 

Now you can call functions in clojure.core directly, without qualification: 

greetings=> (println "Hello, World!") 
Hello, World! 

nil 

refer takes a symbol argument and maps all the public symbols from that namespace into the 
current namespace. (We will cover the difference between public and private symbols later in the 
section “Public and Private Vars.”) The symbols are still mapped to the values in their original 
namespace. By calling refer in the example, you created a namespace mapping from the symbol 
greetings/println to the Var #'clojure.core/println. 

refer takes additional options that specify filters for the symbols to be referred. The options take the 
form of a keyword followed by a list or map of symbols. The :exclude option is followed by a (quoted) list 
of symbols that should not be referred into the current namespace. For example, the following code: 

(refer 'clojure.core :exclude '(map set)) 

This refers all the symbols in the clojure.core namespace, except map and set.  You can then define your 
own versions of map and set that do not clash with the original definitions in clojure.core. 

The :only option is also followed by a list of symbols, but it specifies that only the symbols in the list 
you specify should be referred into the current namespace. For example, the following code: 

(refer 'clojure.core :only '(println prn)) 

This refers only the two symbols println and prn from clojure.core; other symbols in clojure.core 
must still be namespace-qualified, like clojure.core/def. 
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Lastly, refer allows you to rename some symbols when referring them, by including the :rename 
keyword followed by a map from symbols in the original namespace to symbols in the current 
namespace.  

(refer 'clojure.core :rename {'map 'core-map, 'set 'core-set}) 

This refers all symbols from clojure.core, but makes the symbol clojure.core/map available in the 
current namespace as core-map and clojure.core/set available as core-set.  This might be useful if you 
want to define your own version of a built-in function that calls the original version. 

As an alternative to copying the mappings from one namespace, you can create a local alias to 
another namespace, so you can refer to it by a shorter name. Namespace aliases are created with the 
alias function: 

(alias local-name namespace-name) 

The arguments local-name and namespace-name are both (quoted) symbols. alias creates an alias in the 
current namespace to the named namespace. After calling alias, you can reference symbols in the other 
namespace using local-name, instead of the full namespace name.  For example, the following code: 

greetings> (alias 'set 'clojure.set) 
nil 
greetings> (set/union #{1 3 5} #{2 3 4})  

#{1 2 3 4 5} 

Loading Other Namespaces 
refer and alias allow you to reference symbols in namespaces that already exist.  But what about 
namespaces defined in other files, including files that haven’t been loaded yet? Clojure provides a variety 
of functions for loading code from files. 

Loading from a File or Stream 

The simplest load function is load-file: 

(load-file name) 

load-file takes one argument, a file name, and attempts to read and evaluate every Clojure form in the 
file.  The file name is given as a String, including any directories, and is interpreted in the context of the 
current working directory (the directory in which you started Clojure). On a Unix-like system, it might 
look like the following: 

(load-file "path/to/file.clj") 

On Windows, back-slashes must be escaped, because the file name is a String: 

(load-file "C:\\Documents\\file.clj") 

If you want to load code from some other source, such as a network connection, you can use the 
load-reader function, which takes a java.io.Reader as its argument, and reads and evaluates code from 
the Reader. 
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Loading from the Classpath 

The Java Virtual Machine uses a special variable called the classpath, a list of directories from which to 
load executable code. Clojure programs also use the classpath to search for source files. 

The classpath is normally specified on the Java command line as a set of directories and JAR files.  
The following example, for Unix-like systems, creates a classpath consisting of the Clojure JAR and the 
/code/sources directory. 

java -cp clojure.jar:/code/sources clojure.main 

Java development environments and build-management tools usually have their own methods for 
configuring the classpath; consult your tools' documentation for more information. 

Namespace Names vs. File Names 

Clojure namespaces follow similar naming conventions to Java packages: they are organized 
hierarchically with parts separated by periods. A popular convention is to name your libraries using the 
reversed form of an Internet domain name that you control. So if you work for www.example.com, your 
namespaces might be named com.example.one, com.example.two, and so on.   

When translating between namespace names and file names, periods become directory separators 
and hyphens become underscores. So, on Unix-like systems, the Clojure namespace com.example.my-
cool-library would be defined in the file com/example/my_cool_library.clj. In order to load the 
namespace, the directory containing com must be on the classpath. 

Loading Resources from the Classpath 

The load function takes any number of String arguments, each of which names a resource on the 
classpath.  A resource name is like a file name, but without the .clj extension. If the resource name 
begins with a forward slash (/), it is interpreted as being in some directory on the classpath. For example, 
the following code: 

(load "/com/example/my_library") 

This call will search each location on the classpath for the file com/example/my_library.clj. (It will also 
search for the precompiled class file com/example/my_library.class. Compilation will be covered in 
Chapter 10.) 

If an argument to load does not begin with a slash, it is interpreted as being relative to the directory 
of the current namespace.  

greetings=> (load "hello") 

This call to load, from within the greetings namespace, will search the classpath for the file 
greetings/hello.clj. 

Loading Namespaces from the Classpath 

You will rarely use the load function in normal code.  Instead, Clojure provides two higher level 
functions, require and use, to load namespaces. 
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The require function takes any number of arguments, each of which is a symbol, a vector libspec, a 
prefix list, or a flag. Arguments are typically quoted to prevent evaluation. The simplest case, a symbol, 
converts the symbol to a file name, searches the classpath for that file, loads it, and verifies that a 
namespace with the given name was, in fact, created.  

(require 'com.example.lib) 

This loads the file com/example/lib.clj from the classpath. After loading the file, if the namespace 
com.example.lib does not exist, require will throw an exception. If the namespace has already been 
loaded, require will ignore it. 

A libspec argument to require allows you to specify options for loading the namespace. It takes the 
form of a vector, starting with a symbol, followed by keyword options. The only option it accepts (for 
now) is :as, which creates a local alias to the namespace.  

(require '[com.example.lib :as lib]) 

This loads the namespace com.example.lib and aliases it as lib in the current namespace. 
Often several namespaces share a common prefix.  In that case, you can use prefix lists to load 

several namespaces. A prefix list is a list starting with the symbol shared by all the namespaces, followed 
by the remaining parts of each namespace name.  For example, instead of writing: 

(require 'com.example.one 'com.example.two 'com.example.three) 

You can write this equivalent: 

(require '(com.example one two three)) 

Prefix lists and libspecs can be combined, as in this example: 

(require '(com.example one [two :as t])) 

This loads the namespaces com.example.one and com.example.two, and creates an alias t for 
com.example.two. 

Lastly, the require function accepts any number of flags, given as keywords anywhere in its 
arguments. The :reload flag causes require to load all namespaces in the arguments, even if they have 
already been loaded. For example, the following code: 

(require 'com.example.one 'com.example.two :reload) 

Another flag, :reload-all, will reload the listed namespaces and all dependent namespaces 
require'd by those namespaces. The :reload and :reload-all flags are useful when you are 
experimenting at the REPL and want to load changes you have made in your source files. 

The :verbose flag prints debugging information about the lower-level function calls being made by 
require.   

user=> (require '(clojure zip [set :as s]) :verbose)  
(clojure.core/load "/clojure/zip") 
(clojure.core/load "/clojure/set") 
(clojure.core/in-ns 'user) 
(clojure.core/alias 's 'clojure.set) 

nil 
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Loading and Referring Namespaces in One Step 

Frequently, you may want to require a namespace and also refer certain symbols in it. The use function 
makes this a one-step operation. Calling use is equivalent to calling require and then refer.  use accepts 
the :reload, :reload-all, and :verbose flags of require; and also the :exclude, :only, and :rename 
options of refer, grouped in a vector with the namespace they affect. For example, see the following line 
of code: 

(use '[com.example.library :only (a b c)] :reload-all :verbose) 

This (re)loads the namespace com.example.library and refers the three symbols a, b, and c into the 
current namespace.  Note that you do not need to quote the list (a b c) because the entire vector is 
already quoted. 

̈ Caution  Except when experimenting at the REPL, it is almost always a bad idea to use a namespace without 

limiting the symbols it refers with :only. Calling use without :only makes it impossible for readers of your code 

to know where a particular symbol comes from and can also lead to unexpected name clashes if the use'd 

namespace changes. 

Importing Java Classes 

The last namespace function deals with Java classes. You can always refer to a Java class by its fully-
qualified name, such as java.util.Date. To refer to a class without its package, you can import it.   

user=> (import 'java.util.Date) nil 
user=> (new Date) 

#<Date Fri Oct 23 16:31:28 EDT 2009> 

In Clojure 1.0, import is a function, so you must quote its arguments, as in the example. Starting 
with Clojure 1.1, import is a macro, and its arguments do not need to be quoted. import also accepts 
prefix lists similar to require and use.  The prefix must be a complete Java package name; the class name 
may not contain periods.  

(import '(java.util.regex Pattern Matcher)) 

As a special case, nested Java classes (sometimes called “inner classes”) must be imported using 
their binary class name, which the JVM uses internally.  The binary class name of an inner class consists 
of the outer class name, followed by a $ sign, followed by the inner class name. For example, the binary 
name of a class Wheel nested inside a class Truck is Truck$Wheel. 

In Clojure, a nested Java class cannot be named without its enclosing class. For example, to import 
the nested class javax.swing.Box.Filler, you must do this: 

(import '(javax.swing Box$Filler)) 

After that import, you can refer to the class as Box$Filler. 
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Bringing It All Together: Namespace Declarations 
When writing normal Clojure code, you will not call the in-ns, refer, alias, load, require, use, and 
import functions directly. Instead, you will typically start your Clojure source file with a namespace 
declaration using the ns macro, like the example at the start of this chapter. 

(ns name & references) 

The ns macro takes a symbol as its first argument; it creates a new namespace with that name and sets it 
to be the current namespace.  Because ns is a macro that does not evaluate its arguments, the name does 
not need to be quoted. 

The remaining arguments to the ns macro take the same form as the refer, load, require, use, and 
import functions, with two differences: 

• Arguments are never quoted. 

• The function name is given as a keyword. 

Here's an example. 

(ns com.example.library 
  (:require [clojure.contrib.sql :as sql]) 
  (:use (com.example one two)) 
  (:import (java.util Date Calendar) 

           (java.io File FileInputStream))) 

This creates a new namespace, com.example.library, and automatically refers the clojure.core 
namespace. It loads the clojure.contrib.sql namespace and aliases it as sql. It loads the namespaces 
com.example.one and com.example.two and refers all the symbols from them into the current namespace.  
Finally, it imports the Java classes Date, Calendar, File, and FileInputStream. 

Unlike the in-ns function, the ns macro automatically refers the clojure.core namespace, as 
previously mentioned. If you want to control which core symbols get referred in your namespace, use 
the :refer-clojure argument to ns, like this: 

(ns com.example.library 

  (:refer-clojure :exclude (map set))) 

The :refer-clojure form takes the same arguments that you would use with (refer 'clojure.core). If 
you don't want any symbols referred from clojure.core, you can pass an empty list to :only, like 
(:refer-clojure :only ()). 

Symbols and Namespaces 
As previously mentioned, namespaces are essentially maps from symbols to Vars, but they have a few 
unique properties. Symbols can have properties that tie them to specific namespaces. 
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Namespace Metadata 

Like most Clojure objects, namespaces can have metadata (see Chapter 8) attached to them. You can 
add metadata to the namespace by placing read-time metadata on the symbol in the ns macro, like this: 

(ns #^{:doc "This is my great library." 
      :author "Mr. Quux <quux@example.com>" 

   com.example.my-great-library) 

While Clojure does not specify any “official” metadata keys for namespaces (like :tag and :arglists 
for functions) many Clojure library developers have adopted the convention of using :doc metadata to 
describe the general purpose of a namespace and :author metadata for the author's name and e-mail 
address. 

Forward Declarations 

The Clojure compiler requires that symbols be defined before they are used. Usually this leads to 
organizing your source files with simple, low-level functions at the top and more complex functions at 
the bottom. But sometimes, you need to use a symbol before it can be defined. To prevent the compiler 
from throwing an Exception, you must use a forward declaration. 

(declare & symbols) 

A forward declaration is created with the declare macro, which simply tells the compiler, "This symbol 
exists, it will be defined later." Here is a contrived, and very inefficient, example: 

(declare is-even? is-odd?) 
 
(defn is-even? [n] 
  (if (= n 2) true 
     (is-odd? (dec n)))) 
 
(defn is-odd? [n] 
  (if (= n 3) true 
     (is-even? (dec n)))) 

Namespace-Qualified Symbols and Keywords 

As you saw earlier, symbols can be qualified with a namespace. The functions name and namespace return 
the strings representing each part of the symbol: 

user=> (name 'com.example/thing) 
"thing" 
user=> (namespace 'com.example/thing) 

"com.example" 

Notice that the symbol is quoted to prevent Clojure from trying to resolve it as a class or Var. 
The namespace function returns nil for unqualified symbols, which have no namespace: 
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user=> (namespace 'stuff) 

nil 

Keywords, too, can be namespace-qualified; the name and namespace functions work as on symbols: 

user=> (name :com.example/mykey) 
"mykey" 
user=> (namespace :com.example/mykey) 
"com.example" 
user=> (namespace :unqualified) 

nil 

As a syntactic convenience, you can create keywords in the current namespace by preceding their 
names with two colons instead of one. In the "user" namespace, the keyword ::thing expands to 
:user/thing. 

user=> (namespace ::keyword) 

"user" 

Although not explicitly for this purpose, the backquote ` reader macro can be used to create 
qualified symbols in the current namespace: 

user=> `sym 

user/sym 

Constructing Symbols and Keywords 

The name and namespace functions convert from symbols or keywords to strings. The symbol and keyword 
functions go the other way: given Strings for the name and, optionally, a namespace, they construct a 
symbol or keyword.  

user=> (symbol "hello") 
hello 
user=> (symbol "com.example" "hello") 
com.example/hello 
user=> (keyword "thing") 
:thing 
user=> (keyword "user" "goodbye") 

:user/goodbye 

Note that the name given to the keyword function does not include the leading colon. 

Public and Private Vars 

By default, all definitions in a namespace are public, meaning they can be referenced from other 
namespaces and copied with refer or use. But many namespaces can be divided into two parts: one set 
of “internal” functions that should never be called from any other namespace and another set of 
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“public” functions meant for use by other namespaces. These correspond, loosely, to the private and 
public methods of object-oriented languages like Java.  

Private Vars in Clojure will never be copied by refer or use, and they cannot be referenced with a 
namespace-qualified symbol.  In effect, they can only be used in the namespace in which they were 
defined. 

There are two ways to create a private Var. The first is the defn- macro, which works exactly like defn 
but creates a private function definition. The second, which works for any definition, is to add :private 
metadata to the symbol you are defining.   

(def #^{:private true} *my-private-value* 123) 

Note that private Vars are never truly hidden; any code can get the value of the Var with 
(deref (var namespace/name)). But private Vars prevent you from inadvertently calling a function that 
you did not mean to be used by other parts of your application. 

Advanced Namespace Operations 
Unlike Java packages, which are simply a naming device, Clojure namespaces are first-class objects, with 
dedicated functions to query and manipulate them. 

Querying Namespaces 

The special Var *ns* is always bound to the current namespace. It is changed with in-ns. 
The function all-ns takes no arguments and returns a sequence of all namespaces currently defined. 

̈ Note  The set of namespaces is global; you cannot have multiple “instances” of Clojure loading different 

namespaces in the same JVM.  It doesn't really make sense to talk about an “instance” of Clojure, since Clojure is 

just a compiler, not an interpreter like Jython or JRuby. You can create independent execution contexts using Java 

classloaders, an advanced Java topic outside the scope of this book. 

Two functions help you get from a symbol naming a namespace to the namespace object itself.  The 
find-ns function takes a symbol argument and returns the namespace with that name; or nil if no such 
namespace exists. 

Often, you don’t care if you’re dealing with a namespace object directly or just the symbol naming 
it.  For this purpose, a function called the-ns will accept either a namespace object, in which case it just 
returns the namespace; or a symbol, in which case it calls find-ns. Unlike find-ns, the-ns throws an 
Exception if the namespace does not exist. Most of the functions in this section call the-ns on their 
argument, so they may be called with either a namespace object (such as *ns*) or a quoted symbol. 

The ns-name function returns the name of a namespace as a symbol. 
The ns-aliases function returns a map, from symbols to namespaces, representing all the 

namespace aliases defined in a namespace. 
The ns-map function returns a map, from symbols to objects (Vars or classes), representing all the 

mappings in a namespace. Usually, this is more information than you want, so Clojure provides several 
auxiliary functions that return a subset of the mappings for a namespace. ns-publics returns mappings 
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for all public Vars; ns-interns returns mappings for all Vars (both public and private); ns-refers returns 
mappings for all symbols referred from other namespaces; and ns-imports returns mappings for all Java 
classes. 

For example, to get a list of all the public symbols in the clojure.core namespace, you can run: 

(keys (ns-publics 'clojure.core)) 

Finally, you may want to find out what a symbol will resolve to when it is encountered in a particular 
context.  The ns-resolve function takes a namespace and a symbol, and returns the Var or class to which 
that symbol is mapped in the namespace. For example, clojure.core imports the java.math.BigDecimal 
class, which you can discover by calling: 

user> (ns-resolve 'clojure.core 'BigDecimal)  

java.math.BigDecimal 

As a shortcut, the resolve function is equivalent to ns-resolve for the current namespace. 

Manipulating Namespaces 

The in-ns function and ns macro both create a namespace and make it the current namespace. 
Likewise, def and its relatives all operate in the current namespace. There are some special cases, like 
code generation, where you want to create a namespace and define things in it without switching to it.  
You may be tempted to write something like this: 

;; Bad code! 
(let [original (ns-name *ns*)] 
  (ns other) 
  (defn f [] (println "Function f") 

  (in-ns original))) 

That won't work, because Clojure reads the symbol f in the current namespace before evaluating the 
ns form. You'll end up with f defined in the current namespace, not the other namespace. 

Instead, you can use the create-ns function, which takes a symbol argument and returns a new 
namespace with that name (or returns an existing namespace with that name). Then you can use the 
intern function to define Vars in that namespace. Here's a version of the previous example that actually 
works: 

(let [other-ns (create-ns 'other)] 
  (intern other-ns 'f 

          (fn [] (println "Function f")))) 

The act of creating a Var and mapping it to a symbol in a namespace is called interning the Var, and 
that's exactly what the intern function does. 

(intern namespace symbol value) 

The value is optional; if it is omitted, the Var is created with no root value, similar to a forward 
declaration.  The symbol must be a bare symbol, that is, without a namespace-qualifying prefix. The 
namespace argument may be either a symbol or a namespace. 

The ns-unmap function is the opposite of intern; it removes a mapping from a namespace. For 
example, every Clojure namespace, regardless of how it is created, starts with mappings for all the 
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classes in the java.lang package. If you wanted a completely empty namespace, you could create one 
like this: 

(let [empty-ns (create-ns 'empty)] 
  (doseq [sym (keys (ns-map empty-ns))] 
    (ns-unmap empty-ns sym)) 

  empty-ns) 

Finally, the remove-ns function will delete a namespace entirely, including all the Vars interned in it.  
Note that code in other namespaces may still hold references to those Vars in closures, but the Vars 
themselves are cleared, so any attempt to use them will throw an “unbound Var” Exception. 

Namespaces As References 
As I said at the beginning of the chapter, a namespace is basically a map from symbols to Vars or classes.  
It would be more accurate to say it is a reference to a map, because namespaces are mutable. All 
operations on namespaces are atomic, like Clojure Atoms. For example, if you redefine an existing 
function with defn, Clojure guarantees that the old and new definitions will never “overlap.” 

However, Clojure does not provide a way to coordinate namespace operations the way you can with 
Refs. If you redefine several functions, Clojure cannot guarantee that the “new” functions will all be 
updated at the same time. There may be a short time in which both old and new definitions are present. 

In general, the problem of “hot-swapping” entire modules in a running program is very difficult, 
and requires support at the deepest levels of the language. Erlang, for example, is designed to support 
hot-swapping of modules.  Java does not have built-in support for hot-swapping, although some Java 
application servers attempt to provide it. 

Summary  
There's a lot you can do with namespaces, and they may seem overwhelming at first. But in normal, day-
to-day coding you only need a few features and conventions. 

First, start every source file with a namespace declaration using ns, using :import and :use 
expressions to describe the classes and namespaces it depends on. Always use the :only option of :use 
to make it clear which symbols you need from the other namespace. Here is a complete example: 

(ns com.example.apps.awesome 
  (:use [clojure.set :only (union intersection)] 
        [com.example.library :only (foo bar baz)] 
        [com.example.logger :only (log)]) 
  (:import (java.io File InputStream OutputStream) 

           (java.util Date))) 

Don’t be afraid to reuse good names just because they are part of clojure.core. Add the :refer-
clojure expression to ns if needed. 

Structure your source files to avoid the need for forward declarations. This usually means placing 
“primitive” definitions near the top and the “composite” definitions that depend on them toward the 
bottom. 
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Metadata 

Describing Your Code, in Code 

Programmers often talk about metadata, or data about data. The definition of metadata varies in 
different contexts. Clojure provides mechanisms to attach metadata to objects, but it has a very specific 
definition: metadata is a map of data attached to an object that does not affect the value of the object. 

Two objects with the same value and different metadata are considered equal (and have the same 
hash code). However, metadata has the same immutable semantics as Clojure's other data structures; 
modifying an object's metadata yields a new object, with the same value (and the same hash code) as the 
original object. 

When updating a value, some operations preserve metadata and some do not, which this chapter 
discusses. 

Reading and Writing Metadata 
By default, metadata is not printed at the REPL. You can change this by setting *print-meta* to true, as 
we did for all the examples in this chapter. 

(set! *print-meta* true) 

You can attach metadata to a symbol or any of Clojure's built-in data structures with the with-meta 
function, and retrieve it using the meta function: 

(with-meta obj meta-map) 

(meta obj) 

with-meta returns a new object, with the same value as obj, that has meta-map as its metadata. meta 
returns the metadata map of obj.  For example, the following code: 

user=> (with-meta [1 2] {:about "A vector"}) 

#^{:about "A vector"} [1 2] 

You can also modify the metadata map of an object with the vary-meta function: 

(vary-meta obj function & args) 

vary-meta takes a function and applies it to the current metadata map of the object plus any 
arguments. It returns a new object with the updated metadata. For example, the following code: 

127 



CHAPTER 8 ̈ METADATA 

user=> (def x (with-meta [3 4] {:help "Small vector"})) 
user=> x 
#^{:help "Small vector"} [3 4] 
user=> (vary-meta x assoc :help "Tiny vector") 

#^{:help "Tiny vector"} [3 4] 

Notice that two objects with the same value and different metadata are equal (tested with Clojure's = 
function), but they are not the same object in memory (tested with Clojure's identical? function): 

user=> (def v [1 2 3]) 
user=> (= v (with-meta v {:x 1})) 
true 
user=> (identical? v (with-meta v {:x 1})) 

false 

Also, note that you can only add metadata to Clojure-specific types such as lists, vectors, maps, and 
symbols (and functions in Clojure 1.2). Java classes, such as String and Number, do not support 
metadata.

1
 

Metadata-Preserving Operations 
Some operations that “modify” an immutable data structure preserve its metadata, others do not. For 
example, conj on a list preserves its metadata, but cons does not: 

user=> (def x (with-meta (list 1 2) {:m 1})) 
user=> x 
#^{:m 1} (1 2) 
user=> (conj x 3) 
#^{:m 1} (3 1 2) 
user=> (cons 3 x) 

(3 1 2)  ;; no metadata! 

In general, collection functions (conj, assoc, dissoc, and so on) are supposed to preserve metadata, 
while sequence functions (cons, take, drop, etc.) are not. But there are exceptions. In Clojure 1.0, conj on 
a vector does not preserve metadata (this is a bug) but in Clojure 1.1 it does. The moral is this: be careful 
with operations on data structures that have metadata, and don't assume that metadata will be 
preserved. Always test first. 

 
 

                                                 
1
 Why not?  Conceivably, metadata could be stored in a global hash table, allowing metadata to be 

attached to arbitrary Java objects. However, this design has serious drawbacks with regard to 
performance and memory usage, so it is not supported. 
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̈ Caution  Metadata is quite an unusual feature of Clojure; few programming languages have anything like it.  

Whenever you consider using metadata, think very carefully about its semantics: metadata is not part of the value 

of an object. In general, any data that is relevant to users of your application should not be considered metadata.  

Metadata is information that only you, the programmer, care about. 

Read-Time Metadata 
The Clojure reader (described in Chapter 2) allows you to attach metadata to forms as they are read 
using the #^ reader macro.  #^ is followed by a map of metadata, which will be attached to the next form 
read.  When *print-meta* is true, Clojure prints metadata using the same syntax. For example, you can 
attach metadata to a literal vector like this: 

user=> #^{:m 1} [1 2] 

#^{:m 1} [1 2] 

However, be very careful: #^ is not a substitute for with-meta!  #^ attaches metadata to literal forms.  
Consider the following: 

user=> #^{:m 1} (list 1 2) 

(1 2)   ;; no metadata! 

In this example, the #^ reader macro attaches the metadata map {:m 1} to the literal form (list 1 2). 
When that form is evaluated, it returns the list (1 2) with no metadata. 

The #^ reader macro is normally used to attach metadata to symbols, not data structures. Special 
forms such as def can make use of this read-time metadata (see the following section). 

̈ Note  Clojure 1.0 provided the ^ reader macro as a shortcut for meta. However, this shortcut was not very 

useful and is deprecated in Clojure 1.1. Clojure 1.2 uses ^ in place of #^ for setting read-time metadata. 

Metadata on Vars 
The most common use of metadata in Clojure is to attach descriptive information to Vars. The def, defn, 
and defmacro forms attach some default metadata to every Var. For example, the following code: 

user=> (meta (var or)) 
{:ns #<Namespace clojure.core> 
 :name or 
 :file "clojure/core.clj" 
 :line 504 
 :doc "Evaluates exprs one at a time..." 
 :arglists ([] [x] [x & next]) 

 :macro true} 
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In addition, def and its kin will copy metadata from the symbol used to name the Var onto the Var 
itself. Combined with the #^ reader macro, this provides a convenient way to attach metadata to Vars 
when they are created: 

user=> (def #^{:doc "My cool thing"} *thing*) 
#'user/*thing* 
user=> (:doc (meta (var *thing*))) 

"My cool thing" 

Clojure's doc macro uses a Var's :doc and :arglists metadata to print a description of it: 

user=> (doc *thing*) 
------------------------- 
user/*thing* 
nil 

  My cool thing 

The documentation string in the defn and defmacro forms is automatically set as :doc metadata on 
the Var being defined. defn and defmacro also accept an optional metadata map between the 
documentation string and the parameter list: 

(defn name doc-string meta-map [params] ...) 

(defmacro name doc-string meta-map [params] ...) 

Clojure uses several standard metadata keys for global Vars. These are described in Table 8-1. If you 
are adding application-specific metadata, it is recommended that you use namespace-qualified 
keywords, such as :my-app/meta, as keys to avoid potential name clashes. 

Table 8-1. Standard Var Metadata 

Metadata Key Value Type 

:name The Var's name Symbol 

:ns The Var's namespace Namespace 

:file File from which it was loaded String 

:line Line on which it was defined Integer 

:doc Documentation string String 

:arglists Function/macro arguments List of Vectors of Symbols 

:macro True for macros; false by default Boolean 

:private True for private Vars, false by default Boolean 

:tag Type of the value or function return value Class or Symbol 
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Type Tags 

The :tag metadata key is used to attach type “hints” to symbols and Vars. This helps the Clojure 
compiler optimize the bytecode it generates. Type hints are described in detail in Chapter 15. 

Private Vars 

As described in Chapter 7, Vars with :private true in their metadata are private. Private Vars cannot be 
referred from namespaces other than the one in which they were defined. The defn- macro creates 
private functions; to create private macros or other Vars, add metadata to the Var like this: 

(def #^{:private true} *my-private-var*)  ;; for Vars 

(defmacro my-private-macro {:private true} [args] ...)  ;; for macros 

Metadata on Reference Types 
Clojure's mutable reference types—Var, Ref, Agent, Atom, and also Namespaces—all support metadata.  
You can change the metadata map for any reference type with the alter-meta! function: 

(alter-meta! iref f & args) 

alter-meta! works like alter does for Refs; it calls function f on the current metadata map of iref, with 
addition arguments args. For example, you can add metadata to an existing Var like this: 

user=> (alter-meta! (var for) assoc :note "Not a loop!") 
{:note "Not a loop!", :macro true, ... 
user=> (:note (meta (var for))) 

"Not a loop!" 

alter-meta! is an atomic operation, but it does not require a transaction like alter. 
The ref, agent, and atom functions accept a :meta option specifying an initial metadata map. For 

example, the following code: 

user=> (def r (ref nil :meta {:about "This is my ref"})) 
user=> (meta r) 

{:about "This is my ref"} 

Summary 
Metadata is an unusual feature, not something you will make frequent use of in day-to-day 
programming. Many things that might be reasonably described as "metadata" within in application, 
such as timestamps or user names, turn out to be a bad fit for Clojure metadata. Metadata is most useful 
for metaprogramming, where it can describe one piece of code for use by another piece of code.  In that 
sense, it fills a role similar to Java's annotations. The full capabilities of metadata are still being explored 
by Clojure programmers. Metadata already plays a role in the Clojure compiler (for type hinting) and 
that role will likely be expanded in future Clojure releases.  
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Multimethods and Hierarchies 

Runtime Polymorphism Without Classes 

Clojure is not an object-oriented language in the traditional sense of classes and methods, although it is 
built on Java's object-oriented foundation. 

Most mainstream object-oriented languages, such as Java and C++, use classes to define a tree-like 
hierarchy of types and to provide implementations of the methods supported by those types. 

Clojure separates type hierarchies from method implementations, which greatly simplifies thorny 
issues such as multiple inheritance. In addition, it permits you to define multiple, independent 
hierarchies over the same types. This makes it possible to define IS-A relationships that more closely 
model the real world. 

Multimethods 
Clojure multimethods provide runtime polymorphic dispatch. That is, they permit you to define a 
function with multiple implementations. At runtime, the implementation that executes is determined 
based on the arguments to the function. 

Most object-oriented languages have single-argument, type-based dispatch, meaning that the 
method to be run is determined solely by the type, or class, of the first argument. The method is called 
“on” that first argument. Both Java and C++ place that first argument before the method name to denote 
its special significance. 

Clojure multimethods are more flexible. They support multiple dispatch, meaning the 
implementation can be determined by any and all arguments to the function. Also, the dispatch can be 
based on any feature of the arguments, not just type. 

Multimethods are created with defmulti and implemented with defmethod. 

(defmulti name dispatch-fn) 

(defmethod multifn dispatch-value [args...] & body) 

You call a multimethod like an ordinary function. When you call it, the dispatch function is 
immediately called with the same arguments that you gave to the multimethod. The value returned by 
the dispatch function is called the dispatch value. Clojure then searches for a method (defined with 
defmethod) with a matching dispatch value. 

Suppose you are writing a fantasy role-playing game populated with different species of creatures: 
humans, elves, orcs, and so on. Each creature could be represented by a map, like the following: 

(def a {:name "Arthur", :species ::human, :strength 8}) 
(def b {:name "Balfor", :species ::elf, :strength 7}) 
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(def c {:name "Calis", :species ::elf, :strength 5}) 

(def d {:name "Drung", :species ::orc, :strength 6}) 

I used namespace-qualified keywords for species (::human instead of :human) for reasons that will be 
important later. (See Chapter 7 for an explanation of qualified keywords.) 

Now you can define a multimethod that dispatches on the particular species of creature. For 
example, you can give each species a different style of movement: 

(defmulti move :species) 
 
(defmethod move ::elf [creature] 
  (str (:name creature) " runs swiftly.")) 
 
(defmethod move ::human [creature] 
  (str (:name creature) " walks steadily.")) 
 
(defmethod move ::orc [creature] 

  (str (:name creature) " stomps heavily.")) 

When you call move, the appropriate method is invoked: 

user=> (move a) 
"Arthur walks steadily." 
user=> (move b) 
"Balfor runs swiftly." 
user=> (move c) 

"Calis runs swiftly." 

What's happening here? When you call (move a), Clojure first calls the dispatch function for the move 
multimethod, which you have defined to be the keyword :species. Remember that a keyword, called on 
a map, returns the value of that key in the map. So (move a) calls (:species a), which returns ::human. 
Clojure then searches for a method of move with the dispatch value ::human, and invokes that method. 

The same behavior could be implemented with a conditional. The advantage of the multimethod is 
that you can add new methods at any time. If you were to add a new species of creature, you could 
simply define another move method without changing any existing code. 

The dispatch function doesn't have to be a simple keyword; it can be any arbitrary function. For 
example, you could use a dispatch function that categorizes creatures based on their strength: 

(defmulti attack (fn [creature]  
                   (if (> (:strength creature) 5) 
                     :strong 
                     :weak))) 
 
(defmethod attack :strong [creature] 
  (str (:name creature) " attacks mightily.")) 
 
(defmethod attack :weak [creature] 

  (str (:name creature) " attacks feebly.")) 

When you call the attack multimethod, it first calls the anonymous fn, which returns either :strong 
or :weak. That keyword (the dispatch value) determines which attack method gets called: 
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user=> (attack c) 
"Calis attacks feebly." 
user=> (attack d) 

"Drung attacks mightily." 

Multiple Dispatch 

As I said at the beginning of this chapter, multimethods support dispatching on multiple arguments. To 
do this, the dispatch function returns a vector. For example, in this game, you can define a multimethod 
that describes how two different creatures react when they meet. Let's say elves and orcs are enemies, 
but elves are friendly to one another: 

(defmulti encounter (fn [x y] 
                      [(:species x) (:species y)])) 
(defmethod encounter [::elf ::orc] [elf orc] 
  (str "Brave elf " (:name elf) 
       " attacks evil orc " (:name orc))) 
(defmethod encounter [::orc ::elf] [orc elf] 
  (str "Evil orc " (:name orc) 
       " attacks innocent elf " (:name elf))) 
(defmethod encounter [::elf ::elf] [orc1 orc2] 
  (str "Two elves, " (:name orc1) 
       " and " (:name orc2) 

       ", greet each other.")) 

Notice that the the method arguments do not have to have the same names as the multimethod's 
arguments, but the dispatch function and the methods must all accept the same number of arguments. 

Now you can call the encounter multimethod on two creatures and see what happens: 

user=> (encounter b c) 
"Two elves, Balfor and Calis, greet each other." 
user=> (encounter d b) 

"Evil orc Drung attacks innocent elf Balfor" 

Default Dispatch Values 

Notice that you haven't defined encounter methods for all possible combinations of creatures. If you try 
to call encounter on an undefined combination, you get an error: 

user=> (encounter a c) 
java.lang.IllegalArgumentException: 
No method in multimethod 'encounter' 

for dispatch value: [:user/human :user/elf] 

You could keep defining methods for each possible combination, but instead you can provide a 
default method implementation, which uses the keyword :default as the dispatch value. 
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(defmethod encounter :default [x y] 
  (str (:name x) " and " (:name y) 

       " ignore each other.")) 

The default method will be called when no other method matches: 

user=> (encounter a c) 

"Arthur and Calis ignore each other." 

You can specify an alternate default dispatch value by adding the :default option to defmulti, like 
this: 

(defmulti talk :species :default "other") 
(defmethod talk ::orc [creature] 
  (str (:name creature) " grunts.")) 
(defmethod talk "other" [creature] 

  (str (:name creature) " speaks.")) 

Hierarchies 
In most object-oriented languages, type hierarchies are implicitly defined by the inheritance 
relationships of classes and subclasses. Since classes also define method implementations, the 
relationships can get tricky rather quickly, especially in languages that permit multiple inheritance, such 
as C++. Java avoids that problem by disallowing multiple inheritance, but that in turn makes it harder to 
model some real-world problems. 

In Clojure, type hierarchies are completely independent from method implementations, so they are 
more flexible than class-based inheritance. They can support almost any combination of relationships, 
including multiple inheritance and multiple roots. 

Clojure defines one “global” hierarchy, which we will describe first. You can also create independent 
hierarchies, which will be covered at the end of this section. 

(derive child parent) 

derive creates an IS-A relationship between child and parent. The child and parent are referred to 
as tags, because they are used to identify a type or category. Tags may be either keywords or symbols, 
and (in the global hierarchy) must be namespace-qualified (see Chapter 7). 

Continuing with your fantasy game, you can define “types” of creatures that share certain attributes. 
For example, you could say that humans and elves are “good” whereas orcs are “evil”: 

user=> (derive ::human ::good) 
user=> (derive ::elf ::good) 

user=> (derive ::orc ::evil)   

You might further say that elves and orcs are “magical” creatures: 

user=> (derive ::elf ::magical) 

user=> (derive ::orc ::magical) 

Just to make things interesting, let's add a special kind of human, a “hero”: 
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user=> (derive ::hero ::human) 

We have created the graph of relationships shown in Figure 9-1. 

 

Figure 9-1. Example hierarchy with arrows pointing from children to parents 

Querying Hierarchies 

Once you have defined these relationships, you can query them with the isa? function: 

(isa? child parent) 

isa? returns true if the child is derived (directly or indirectly) from the parent. For example, the following 
code: 

user=> (isa? ::orc ::good) 
false 
user=> (isa? ::hero ::good) 
true 
user=> (isa? ::hero ::magical) 

false 

isa? also returns true if the parent and child are the same (as defined by Clojure's = function): 

user=> (isa? ::human ::human) 

true 

Hierarchies with Multimethods 
When a multimethod is searching for the correct method to invoke, it uses the isa? function to compare 
dispatch values. This means that multimethods can dispatch not only on explicit types, but on derived 
types as well. Here's a multimethod that only works on “magical” creatures: 

(defmulti cast-spell :species) 
 
(defmethod cast-spell ::magical [creature] 
  (str (:name creature) " casts a spell.")) 
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(defmethod cast-spell :default [creature] 
  (str "No, " (:name creature) " is not magical!")) 
 
user=> (cast-spell c) 
"Calis casts a spell." 
user=> (cast-spell a) 

"No, Arthur is not magical!" 

When the dispatch value is a vector, the multimethod compares each vector element, from left to 
right, using isa?. This combines multiple-argument dispatch with hierarchies. For example, you could 
redefine your encounter multimethod based on “good” and “evil” creatures. 

(defmulti encounter (fn [x y] 
                      [(:species x) (:species y)])) 
 
(defmethod encounter [::good ::good] [x y] 
  (str (:name x) " and " (:name y) " say hello.")) 
 
(defmethod encounter [::good ::evil] [x y] 
  (str (:name x) " is attacked by " (:name y))) 
 
(defmethod encounter [::evil ::good] [x y] 
  (str (:name x) " attacks " (:name y))) 
 
(defmethod encounter :default [x y] 
  (str (:name x) " and " (:name y) 
       " ignore one another.")) 
 
user=> (encounter c a) 
"Calis and Arthur say hello." 
user=> (encounter a d) 

"Arthur is attacked by Drung" 

Hierarchies with Java Classes 

Clojure's hierarchies can integrate with and extend Java's class hierarchy. In addition to symbols and 
keywords, the child argument to derive can also be a Java class. There aren't really any classes in the JDK 
that fit into your fantasy world, but you could make the (plausible) assertion that the Java Date class is 
evil: 

user=> (derive java.util.Date ::evil) 

The isa? function understands both hierarchies and Java class relationships: 

user=> (isa? java.util.Date ::evil) 
true 
user=> (isa? Float Number) 

true 
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As a result, you can define multimethods that dispatch on class, just like Java methods. This 
example, the invert multimethod, is defined to work on both Numbers (by negating them) and Strings 
(by reversing them): 

(defmulti invert class) 
(defmethod invert Number [x] 
  (- x)) 
(defmethod invert String [x] 
  (apply str (reverse x))) 
user=> (invert 3.14) 
-3.14 
user=> (invert "hello") 

"olleh" 

More Hierarchy Queries 

Three functions provide additional information about hierarchies. 

(parents tag) 
(ancestors tag) 

(descendants tag) 

All three return sets. parents returns the immediate parents of tag, ancestors returns all immediate and 
indirect parents. descendants returns all immediate and indirect children of tag. 

parents and ancestors work on Java classes; descendants does not (this is a limitation of the Java 
type system). 

user=> (parents ::orc) 
#{:user/magical :user/evil} 
user=> (descendants ::good) 
#{:user/elf :user/hero :user/human} 
user=> (parents ::hero) 
#{:user/human} 
user=> (ancestors ::hero) 
#{:user/good :user/human} 
user=> (parents java.util.Date) 
#{java.lang.Object java.lang.Cloneable 
  java.io.Serializable java.lang.Comparable 

  :user/evil} 

Note that the parents of java.util.Date include both the relationships defined by the Java class hierarchy 
and those you created with derive. 

Resolving Conflicts 

Since Clojure's hierarchies permit multiple inheritance, situations may arise in which there is more than 
one valid choice for a multimethod. Clojure does not know which one to choose, so it throws an 
exception. 
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As an example, consider a multimethod in your fantasy game that has dispatch values for both 
::good and ::magical creatures: 

(defmulti slay :species) 
 
(defmethod slay ::good [creature] 
  (str "Oh no!  A good creature was slain!")) 
 
(defmethod slay ::magical [creature] 

  (str "A magical creature was slain!")) 

If you slay a human or an orc, you know what happens: 

user=> (slay a)  ;; human 
"Oh no!  A good creature was slain!" 
user=> (slay d)  ;; orc 

"A magical creature was slain!" 

But what happens if you slay an elf? 

user=> (slay b) 
java.lang.IllegalArgumentException: 
Multiple methods in multimethod 'slay' match 
dispatch value: :user/elf -> :user/magical 

and :user/good, and neither is preferred 

The exception tells us that ::elf is derived from both ::magical and ::good and that there are methods 
for both. 

To deal with this problem, you must specify the order in which dispatch values should be tried. The 
prefer-method function takes a multimethod and specifies that one dispatch value is preferred over 
another: 

(prefer-method multimethod preferred-value other-value) 

In this example, you would say: 

user=> (prefer-method slay ::good ::magical) 
user=> (slay b) 

"Oh no!  A good creature was slain!" 

The second solution (which isn't really a solution at all) is simply to remove one of the offending 
methods. The remove-method function takes a multimethod and a dispatch value then deletes the 
method with that dispatch value. 

(remove-method multimethod dispatch-value) 

In this example, it might be: 

user=> (remove-method slay ::magical) 
user=> (slay b) 

"Oh no!  A good creature was slain!" 
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Type Tags 

The type function is a more general version of class. First, type looks for :type metadata (see Chapter 8) 
on its argument, and returns that. If the object has no :type metadata, or if it does not support metadata, 
type returns the object's class: 

user=> (type (with-meta {:name "Bob"} {:type ::person})) 
:user/person 
user=> (type 42) 
java.lang.Integer 
user=> (type {:name "Alice"}) 

clojure.lang.PersistentArrayMap 

If you were to redefine your game creatures using :type metadata for the species: 

(def a (with-meta {:name "Arthur", :strength 8} 
                  {:type ::human})) 
(def b (with-meta {:name "Balfor", :strength 7} 

                  {:type ::elf})) 

You could redefine the move multimethod to dispatch on type: 

(defmulti move type) 
 
(defmethod move ::elf [creature] 
  (str (:name creature) " runs swiftly.")) 
 
(defmethod move ::human [creature] 

  (str (:name creature) " walks steadily.")) 

This would permit the move multimethod to work with both metadata-enabled Clojure data structures 
and ordinary Java objects: 

(defmethod move Number [n] 
  (str "What?! Numbers don't move!")) 
 
user=> (move a) 
"Arthur walks steadily." 
user=> (move b) 
"Balfor runs swiftly." 
user=> (move 6.022) 

"What?! Numbers don't move!" 

User-Defined Hierarchies 
In addition to the global hierarchy, you can create your own independent hierarchies. The make-
hierarchy function returns a new hierarchy (essentially a map of parent/child relationships). The derive, 
isa?, parents, ancestors, and descendants functions all accept an extra first argument that specifies the 
hierarchy to use. 
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Unlike the global hierarchy, user-defined hierarchies allow unqualified (no namespace) keywords or 
symbols as tags. 

Be careful when creating user-defined hierarchies with derive, because its behavior is slightly 
different. When called with two arguments, derive modifies the global hierarchy. But user-defined 
hierarchies are immutable, like Clojure's other data structures, so the three-argument version of derive 
returns the modified hierarchy. This can be seen in the following example: 

user=> (def h (make-hierarchy)) 
user=> (derive h :child :parent) 
user=> (isa? h :child :parent) 

false 

Therefore, to construct a user-defined hierarchy, you must thread it through the derive statements, as in 
this example: 

user=> (def h (-> (make-hierarchy) 
                  (derive :one :base) 
                  (derive :two :base) 
                  (derive :three :two))) 
user=> (isa? h :three :base) 

true 

Another alternative is to use one of Clojure's mutable reference types, such as a Var: 

user=> (def h (make-hierarchy)) 
user=> (isa? h :child :parent) 
false 
user=> (alter-var-root (var h) derive :child :parent) 
user=> (isa? h :child :parent) 

true 

By default, multimethods use the global hierarchy. The defmulti form accepts an optional 
argument, :hierarchy, followed by a different hierarchy to use. 

Summary 
Multimethods are very flexible, but that flexibility comes at a cost: they are not very efficient. Consider 
what happens every time you invoke a multimethod: it has to call the dispatch function, look up the 
dispatch value in a hash table, then perform one or more isa? comparisons to find the correct method. 
Even a smart compiler like Hotspot has trouble optimizing that sequence. 

As a result, multimethods are probably not suitable for “low-level” functions that get called very 
frequently. That's why none of Clojure's built-in functions are multimethods. They are, however, an 
excellent tool for building extensible “high-level” APIs. Protocols, introduced in Clojure 1.2 and 
described in Chapter 13, offer a more restricted form of method dispatch with better performance. 
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Java Interoperability 

Calling Java from Clojure 
Clojure is built on Java not only because it is a portable, feature-rich platform, but because thousands of 
libraries, both open-source and commercial, are written in Java. Clojure can leverage all this existing 
code to get past the “library problem” that plagues most new programming languages. 

Clojure does not come packaged with libraries to handle common tasks like file I/O, networking, 
and database connections. While the number of extant Clojure libraries is growing rapidly, it is still quite 
small. Fortunately, for any task you might have in mind, there almost certainly exists a Java library to 
help you with it. The JVM itself comes with over 4000 classes covering everything from networking to 
GUIs. Clojure is designed to make working with Java libraries as seamless as possible. 

Java Interop Special Forms 

Clojure uses just three special forms to handle all interactions with Java classes. The new special form 
creates an instance of a class. 

(new classname & constructor-arguments) 

new takes the name of a class (a symbol, which will not be evaluated) as its first argument, followed by 
any arguments for the class's constructor function. The following are some examples: 

user> (new String) 
"" 
user> (new java.util.Date) 
#<Date Thu Oct 29 17:04:19 EDT 2009> 
user> (new java.util.Date 55 10 12) 

#<Date Sat Nov 12 00:00:00 EST 1955> 

The . (dot) special form calls Java methods or fields. 

(. target name & arguments) 

The target argument may be either a class name or an arbitrary expression. If the target argument is a 
class name, then the name should be a symbol (which is not evaluated) naming a public static method or 
field of that class. For example, the following code: 

user=> (. Integer valueOf "42") 
42 
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user=> (. Integer MAX_VALUE) 

2147483647 

These are equivalent to this Java code: 

Integer.valueOf(42); 

Integer.MAX_VALUE; 

If target is not a class name, then it will be evaluated normally, and name should be the name of a 
public instance method or field of the resulting object.  Here are some examples: 

user=> (def s "Hello, World!") 
#'user/s 
user=> (. s substring 0 5) 

"Hello" 

The second expression is equivalent to the Java code: 

s.substring(0, 5); 

To set the value of public fields, you can use the set! special form like this: 

(set! (. target name) value) 

As shown, target is an object or symbol naming a class, name is a symbol naming a public field of that 
class or object, and value is any expression. This is equivalent to the Java code: 

target.name = value; 

The new, . (dot), and set! special forms are just that, special. They do not obey the same rules for 
evaluation as normal Clojure functions and macros. In particular, the name argument is never evaluated, 
so it cannot be determined at run-time. You cannot, for example, do the following: 

;; bad code! 
(defn call-method [object method-name] 

  (. object method-name)) 

That will try to call a method named “method-name” on the object—probably not what you wanted. If 
you need to determine the name of a method at run-time, there are two ways to achieve it: the Java 
Reflection API and Clojure's eval function. The former is preferred, but consult the Reflection API 
documentation for details.

1
 

Java Interop Preferred Forms 

While the new  and . (dot) special forms are sufficient for Java interop, some additional syntax helps Java 
fit better with Clojure's Lisp-based syntax. 

First, Java method calls can be made to look more like Clojure function calls by putting the method 
name at the head of a list, prefixed by a period: 

                                                 
1 http://java.sun.com/docs/books/tutorial/reflect/ 
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(.method object arguments) 

The .method form will be processed by the Clojure compiler as if it were a macro that expands to: 

(. object method arguments) 

By “as if it were a macro,” I mean that this feature is a purely syntactic abstraction or “syntactic sugar.” It 
does not magically transform Java methods into first-class functions.

2
  For example, you cannot use 

.method as a function argument to map. Instead, you must wrap the method in a Clojure function: 

user=> (map #(.toUpperCase %) ["one" "two" "three"]) 

("ONE" "TWO" "THREE") 

The Clojure macro memfn was created for this purpose before the anonymous function syntax #() 
existed. memfn takes a symbol and expands to an anonymous function that calls the method named by 
that symbol. The anonymous function in the preceding example could have been written 
(memfn toUpperCase), but the #() form is shorter and preferred. 

New instances of Java classes can be constructed by placing the class name at the head of a list, 
followed by a period: 

user=> (java.util.Date. 110 3 12) 
#<Date Mon Apr 12 00:00:00 EDT 2010> 
user=> (StringBuilder. "Hello") 

#<StringBuilder Hello> 

You can call static methods with the syntax (ClassName/method arguments) and retrieve the value of 
a static field with ClassName/field. For example, the following code: 

user=> (Integer/parseInt "101") 
101 
user=> Integer/MIN_VALUE 

-2147483648 

Since these “syntactic sugar” expansions happen in the same compilation phase as macro-
expansion, macros that do complex code-generation may need to avoid them and use the new and . (dot) 
special forms directly. In all other cases, the “syntactic sugar” forms are preferred. 

Clojure Types and Java Interfaces 

One of Java's strengths as a platform is the provision of generic interfaces for common datatypes such as 
lists and sets. Clojure's data structures implement these interfaces where appropriate, so if you need to 
call a Java method that expects, for example, a java.util.List, you can pass it a Clojure data structure 
without any conversion. Table 10-1 shows which interfaces are implemented by each of the built-in 
Clojure types. 

                                                 
2
 Method names as first-class functions has been suggested for a future version of Clojure. 
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Table 10-1.Standard Java Interfaces Implemented by Clojure Types 

Java interface list vector map set function 

java.util.Collection X X -- X -- 

java.util.List X X -- -- -- 

java.util.Map -- -- X -- -- 

java.util.Set -- -- -- X -- 

java.util.RandomAccess -- X -- -- -- 

java.lang.Iterable X X X X -- 

java.lang.Comparable -- X -- -- -- 

java.lang.Runnable -- X X X X 

java.util.concurrent.Callable -- X X X X 

java.util.Comparator -- -- -- -- X 

 
Be aware that Clojure's collection types (list, vector, map, and set) are still immutable, so they only 

implement the read-only portions of the java.util.Collection interfaces. Calling a mutating method (such 
as List.add or Map.put) on an immutable object will throw an UnsupportedOperationException. 

What about Java generics like List<String> or Map<Integer,Object>?  Fortunately, Clojure code 
never needs to worry about generics due to the way they are implemented in the JVM. Generic types are 
ignored in Java bytecode; they exist only as hints to the Java language compiler.

3
 The Java type 

List<String>, when compiled, is just plain List.  What this means for Clojure is that you can call a Java 
method expecting a generic type (e.g., List<String>) with an instance of the base collection type (List).  
As long as the collection contains objects of the correct type (String), it just works. 

Java Arrays 

Java arrays lack the concurrency safety of Clojure's collection types; they are mutable and non-thread-
safe. However, some Java APIs use arrays for function arguments or return values, so it is necessary to 
work with them.   

                                                 
3
 In contrast, the .NET Common Language Runtime has strongly-typed generics, which are more difficult 

to implement in a dynamically-typed language like Clojure. This was one reason for the choice of Java as 
the primary platform for Clojure. 
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In addition, some algorithms can be implemented more efficiently with primitive arrays, especially 
algorithms that deal with very large collections of primitive types. Using primitive arrays for 
performance will be discussed in Chapter 14. 

Creating Arrays 

You can create a Java array with the make-array function: 

(make-array type & dimensions) 

The type argument must be a class. If you want an array of a Java primitive type, such as int or 
double, you can use the TYPE field of the corresponding class: 

(make-array Double/TYPE 40)   ;; creates a double[40] array 

If you give only one dimension to make-array, you get a normal Java array of that length. If you give 
multiple dimensions, you get a multidimensional array, which is implemented in Java as an array of 
pointers to other arrays. 

In addition to make-array, there are convenience functions for creating arrays of Java primitive 
types: int-array, long-array, float-array, and double-array. Each can be called in several argument 
forms: 

• (int-array size) creates an int[] array of size elements. 

• (int-array size initial-value) does the same and also sets every element to 
initial-value. 

• (int-array collection) creates an int[] array of the same size as collection, 
filled with the elements of collection converted to ints. 

• (int-array size collection) creates an int[] array of size elements and fills it 
with elements from collection; any unused array elements will be initialized to 
zero. 

The Clojure function to-array takes any Clojure collection type and returns a Java Object[] array. If 
you have a two-dimensional matrix represented as a collection of collections, you can use the to-array-
2d function to produce a 2-dimensional Java array. For example, the following code: 

user=> (def matrix [[1 0 0] [0 1 0] [0 0 1]]) 
#'user/matrix 
user=> (to-array-2d matrix) 

#<Object[][] [[Ljava.lang.Object;@540984b> 

If you need to convert a collection into an array of a specific type, you can use the into-array 
function: 

(into-array collection) 

(into-array type collection) 

Called with one argument, a collection, into-array returns an array of the same type as the first item in 
the collection. Called with two arguments, the first argument is a class specifying the type of the array.  
For example, the following code: 
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user=> (into-array Comparable ["aa" "bb" "cc"]) 

#<Comparable[] [Ljava.lang.Comparable;@a00185> 

Manipulating Arrays 

You can retrieve a single value from an array (of any dimensionality) with the aget function: 

(aget array & indices) 

Setting elements in an array is complicated by the need for special functions for primitive arrays.  The 
aset function works on any arrays of any Object type: 

(aset array index value) 

(aset array & indices value) 

The setter functions for arrays of primitive types work the same way: aset-boolean, aset-byte, aset-
char, aset-short, aset-int, aset-long, aset-float, and aset-double. Note that these functions are not 
very efficient; in fact, they are slower than aset on type-hinted arrays (see Chapter 14). Use them only 
when you need to deal with small arrays for Java interop purposes, not for performance. 

You can copy an array with the aclone function, and get its length with the alength function 
(although count also works). 

Iterating Over Arrays 

The map and reduce functions will work on Java arrays, but they work by converting the arrays to 
sequences. For slightly greater efficiency, you can iterate over arrays directly using array-specific 
macros. 

(amap a idx ret expr) 

The amap macro initializes ret (a symbol) as a clone of the array a, then evaluates expr repeatedly with 
idx bound to successive indexes of a.  Whatever value is returned by expr, it will be assigned to the same 
index of ret. Finally, amap returns ret. 

(areduce a idx ret init expr) 

The areduce macro assigns ret (a symbol) the value of init, then evaluates expr repeatedly with idx 
bound to successive indexes of the array a.  Whatever value is returned by expr becomes the new value of 
ret. Finally, areduce returns the last value of ret. 

Note that both amap and areduce are macros implemented in terms of loop/recur, so they take 
expressions as arguments instead of the functions used by map and reduce. 

Calling Clojure from Java 
Clojure code can generate real Java classes and methods that can be called like any other Java class. 
However, if you need to call just a few Clojure functions from your Java code, it may be simpler to user 
Clojure's Java API, which consists of static methods of the classes clojure.lang.RT, clojure.lang.Compiler, 
and clojure.lang.Var. 
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Loading and Evaluating Clojure Code 

clojure.lang.RT is the Clojure “runtime” class.  Remember, Clojure has no interpreter; there cannot be 
multiple “instances” of Clojure in a single JVM.

4
  As a result, most methods of RT are static. 

class RT { 
    ... 
    public static void load(String name); 
    public static void loadResourceScript(String filename); 
    public static void maybeLoadResourceScript(String filename); 
    ... 

} 

The RT.load method behaves just like the Clojure load function described in Chapter 7.  The name 
argument is the name of a file on the classpath, minus the ".clj" or ".class" extension. 

The RT.loadResourceScript method is similar to load, except that filename must include the ".clj" 
extension. RT.maybeLoadResourceScript is the same, but will not throw an exception if the file does not 
exist. 

class RT { 
    ... 
    public static Object readString(String code); 
    ... 
} 
class Compiler { 
    ... 
    public static Object eval(Object obj); 
    ... 

} 

The RT.readString method is equivalent to the Clojure read-string function; it takes a string of 
Clojure source code and returns the data structure represented by that string. The Compiler.eval 
method will evaluate that data structure just like the Clojure eval function and return the result. 

Using Clojure Functions and Vars 

class RT { 
    ... 
    public static Var var(String ns, String name); 
    public static Var var(String ns, String name, Object value); 
    ... 

} 

The RT.var method returns the Clojure Var with the given namespace and name, creating the 
namespace and interning the Var (see Chapter 7) as needed. The optional third argument sets the initial 
value, or root binding, of the Var. 

                                                 
4
 Java Classloaders, however, permit you to create multiple, independent execution contexts within a 

single JVM. Classloaders are an advanced Java topic outside the scope of this book. 
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Once you have a Var object, you can retrieve its value with Var.get, or call it as a function with 
Var.invoke: 

class Var { 
    ... 
    public Object get(); 
    public Object invoke(Object args...); 
    ... 

} 

Creating Java Classes 
Often, Clojure's Java API will not be sufficient for integrating Java code with Clojure code. Many Java 
libraries require you to implement a particular interface or extend a particular base class. Fortunately, 
Clojure can create real Java classes, with methods that can be called like any other Java method, without 
requiring you to write any “wrapper” code in Java. 

Proxying Java Classes 

If you need to implement a Java interface or extend a base class for Java interop purposes, the proxy 
macro should be the first place you look. Each time proxy is evaluated, it creates a new instance of a 
proxy class, an anonymous class that inherits from the base class and/or interfaces you specify. 

(proxy [base-class-and-interfaces...] [constructor-args...]  
  (methodName [params...]  method-body...) 

  (methodName ...)) 

The first argument to proxy is a vector of class and interface names. There may be at most one class 
(because Java only allows single-class inheritance) and any number of interfaces. If no base class is 
specified, the proxy class will extend java.lang.Object. 

The second argument is a vector of values that should be passed as arguments to the base-class 
constructor. If the constructor takes no arguments, the vector will be empty, but it must be supplied. 

The remaining arguments to proxy are lists of the form (method [args] body), where method is the 
name of a public or protected member of one of the base classes, args are the arguments to that method, 
and body is the Clojure code that you want to use to implement the method. In effect, you're defining a 
Clojure function that will be called by the proxy class whenever the named method is invoked. 

Multiple-arity methods (methods that take different numbers of arguments) may be implemented 
like multiple-arity Clojure functions: 

  (method ([arg] body...) ([arg1 arg2] body...)) 

All of this sounds complicated, but it's really not. Let's look at a real example. The Java SAX classes 
implement stream-based XML processing with a “push” interface. To use them, you must provide an 
instance of a class that implements the org.xml.sax.ContentHandler interface. Clojure's own XML 
libraries use proxy for this. Here's a simpler example, a proxy ContentHandler that prints out all the text 
nodes in the XML document, one per line. 

(import '(javax.xml.parsers SAXParserFactory) 
        '(org.xml.sax ContentHandler) 
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        '(org.xml.sax.ext DefaultHandler2) 
        '(java.io File)) 
 
(defn proxy-handler [] 
  (proxy [DefaultHandler2] 
    []  ;; DefaultHandler2 constructor takes no args 
    (characters [ch start length] 
       (println (String. ch start length))))) 
 
(defn extract-text [filename] 
  (let [parser (.newSAXParser (SAXParserFactory/newInstance))] 

    (.parse parser (File. filename) (proxy-handler)))) 

The proxy-handler function returns an instance of a proxy for the class 
org.xml.sax.ext.DefaultHandler2, which provides no-op implementations of all the 
org.xml.sax.ContentHandler methods. The proxy class overrides the characters method, which receives 
a char array, and prints the String form of that array. The extract-text function creates a new instance 
of SAXParser using the SAXParserFactory class, then calls the parse method with the input file and the 
proxy handler. After loading this code, you can run it like this: 

user=> (extract-text "path/to/some/file.xml") 

This will print all the text in the XML file. There will be a lot of blank lines, because your implementation 
does not ignore text elements consisting entirely of whitespace. 

Proxy methods can access the object on which they were called as the special local variable this.  
For example, to access the value of a public instance field named foo in the current object, a proxy 
method could call (.foo this). 

It is important to remember that proxies are not true subclasses. Although proxies can override 
protected methods, they cannot access private or protected fields of their “parent” class. They cannot 
provide their own constructor functions, and they cannot add new methods that are not defined in a 
parent class or interface. Proxy instances have generated class names like 
clojure.proxy.org.xml.sax.ext.DefaultHandler2. 

Proxy methods do not have direct access to the superclass object as with Java's super keyword. 
However, proxies can call superclass methods with the proxy-super macro: 

(proxy-super method & args) 

method is a symbol (unevaluated) naming a superclass method, args are the arguments to that method. 
The corresponding method in the proxied superclass will be invoked on the current object (this). 

Generating Java Classes 

While proxy is usually sufficient for dealing with Java APIs, there are occasions when nothing but a real, 
concrete Java class will do. You can create such classes in Clojure with the gen-class macro, which takes 
a series of key-value pairs as arguments: 

(gen-class 
  :name            generated-name 
  :extends         base-class-name 
  :implements      [interfaces ...] 
  :init            initialization-function  
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  :constructors    {[types ...] [super-types ...], ...} 
  :post-init       post-initialization-function 
  :methods         [[name [types ...] return-type], ...] 
  :main            boolean 
  :factory         factory-name 
  :state           state-field-name 
  :exposes         {field {:get name, :set name}, ...} 
  :exposes-methods {method exposed, ...} 
  :prefix          string 
  :impl-ns         namespace 

  :load-impl-ns    boolean) 

No way around it, gen-class has a ton of parameters. Fortunately, they're all optional except :name, 
and you rarely need more than a few of them. Before you get into the options, let's look at how gen-class 
works with Java. 

When you compile a Java source file with javac, you get a Java .class file containing Java bytecode. 
The bytecode defines the fields and methods of that class and their implementations. When you run 
java, the Java Virtual Machine loads the .class file and executes the bytecode it contains.

5
 

Clojure, by contrast, generates bytecode at run time. You can type an expression at the Clojure 
REPL, or load a .clj file, and Clojure will compile it on-the-fly into Java bytecode, then pass that bytecode 
to the Java Virtual Machine for execution. This is fine when all your code is in Clojure, but becomes a 
problem when you want Java code to be able to call Clojure code, because the executable bytecode for 
Clojure functions doesn't exist until runtime! 

Conceivably, you could write a small “wrapper” class in Java, whose methods invoke Clojure 
functions through Clojure's API, like this: 

import clojure.lang.RT; 
 
class MyWrapper { 
    public static Object doStuff() { 
        return RT.var("my-namespace", "do-stuff").invoke(); 
    } 

} 

Then, your Java code could call the method MyWrapper.doStuff(), which invokes the Clojure function 
my-namespace/do-stuff. 

Essentially, gen-class does the same thing, without you having to write any Java code. It generates a 
Java .class file containing “stub” methods that call Clojure functions. 

Because gen-class needs to generate a .class file, which will presumably be used by other statically-
compiled Java classes, it cannot be used at runtime. Instead, it must be invoked in a separate 
compilation step. Clojure normally compiles code at runtime, so compiling Clojure code before it is run 
is called ahead-of-time, or AOT, compilation. 

Ahead-of-Time Compilation 

Any Clojure namespace can be AOT-compiled. There is usually little reason to do so unless gen-class is 
involved. AOT-compiled Clojure code is not faster than dynamically-compiled code, and it still requires 

                                                 
5
 Early JVMs were implemented as bytecode interpreters. Modern JVM implementations use just-in-time 

compilation to convert the platform-independent Java bytecode into optimized machine code. 
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the Clojure runtime libraries (clojure.jar). However, AOT-compiled code will start up slightly faster, 
because the Clojure compiler does not need to compile all the source code when it is loaded, which may 
be beneficial for large programs. 

To compile a namespace, use the compile function: 

(compile name) 

The name argument is a quoted symbol naming the namespace you want to compile. Clojure will load the 
source file for that namespace, using the same rules as require for converting namespace names to file 
names (see Chapter 7); compile it to Java bytecode and write the bytecode out to .class files in a target 
directory. One namespace will produce many .class files, one for each function. 

The tricky part of AOT-compilation is getting the classpath configured correctly. The target directory 
where compile writes .class files is stored in the Var *compile-path*.  When you call compile, both this 
directory and the source .clj file must be available on the Java classpath. The default *compile-path* is 
“classes”, assumed to be a directory within the current working directory. You can change it on the Java 
command line by setting the Java system property “clojure.compile.path”. 

Here's an example. Suppose you have a project containing three directories: source code in 
“source”, compiled code in “target”, and libraries in “lib”. Your Clojure code is in the file 
“source/com/example/my_library.clj”, with the following namespace declaration: 

(ns com.example.my-library) 

To compile this namespace, you can start Clojure from the root directory of your project like this (all 
on one line): 

java -cp lib/clojure.jar:sources:target    È 

  -Dclojure.compile.path=target  clojure.main 

Note that the classpath contains three elements: the Clojure JAR file, the "sources" directory, and 
the "target" directory. (You would add JAR files for any other libraries your project uses.) In addition, the 
system property clojure.compile.path is set to “target”.  The “target” directory must exist! Then, at the 
Clojure REPL, you can run: 

user=> (compile 'com.example.my-library) 

This will load the source file from “source/com/example/my_library.clj”, compile it, and write a bunch 
of .class files in the directory “target/com/example/”. 

Once this is done, you can load and use the namespace com.example.my-library without the 
original source files. All you need are the .class files and clojure.jar. Obviously, you shouldn't delete your 
source files, because you might want to change them and recompile later. 

To make it easier to integrate AOT-compilation into build scripts, you can start Java with the class 
clojure.lang.Compile instead of clojure.main, setting up the classpath and system property as before, 
passing the namespaces to be compiled as arguments on the command line. In the Apache Ant build 
system, for example, the XML configuration would contain something like the following snippet: 

<java classname="clojure.lang.Compile" 
      classpath="clojure.jar:target:source"> 
  <sysproperty key="clojure.compile.path" 
               value="target"/> 
  <arg value="my.first.namespace"/> 
  <arg value="my.second.namespace"/> 

</java> 
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How does gen-class fit into this? When compile is compiling a file that calls gen-class, it generates 
the additional .class files described by the gen-class configuration options. At any other time, i.e., when 
not AOT compiling, gen-class does nothing. 

Basic gen-class Options 

Now you're ready to tackle the options to gen-class. You will usually only need the first three options, 
:name, :extends, and :implements, but we cover them all here. Wherever the arguments call for a class or 
interface name, that name may be given as either a symbol (which will not be evaluated) or a String, and 
must be fully-qualified with the Java package name. 

The :name argument is the name of the class to be generated. Remember that this is a Java-style 
package + class name, so you must use underscores or CamelCase instead of hyphens. 

The :extends argument is the fully-qualified name of a Java class (not an interface) as either a String 
or a symbol. The generated class will be a subclass of that class. 

The :implements argument is a vector of Java interface names. The generated class will be declared 
to implement those interfaces and will include stub methods for all the methods defined in those 
interfaces. 

Defining Methods for the Generated Class 

As explained earlier, the class generated by gen-class will only contain stub methods. The 
implementations of those methods are normal Clojure functions in a namespace. Each Clojure function 
will have the same name as its corresponding method, with an added prefix.  The prefix defaults to “-“, 
and can be changed with the :prefix argument to gen-class.  The functions will be called with the 
object instance as their first argument. For example, if your generated class implements a Java interface 
with the methods doStuff(int i) and doMoreStuff(String s), your namespace should contain the 
following function definitions: 

(defn -doStuff [this i] ...) 

(defn -doMoreStuff [this s] ...) 

By default, gen-class uses the current namespace to look up method definitions; this can be changed 
with the :impl-ns argument to gen-class. 

Adding State to the Generated Class 

You may want to create a class that can be called by Java code but preserves Clojure's notions of 
immutable state. The :state argument names a public instance field (of type Object) that will be added 
to the generated class. Within your methods, you can access the value of this field just like any other Java 
field. Note that the :state field is declared final, so it may not be set outside of the object constructor. 
Typically, the value of the :state field will be one of Clojure's mutable reference types (Ref, Agent, or 
Atom). In this way, you can create stateful Java objects that take advantage of Clojure's transactional 
semantics. 

If your object has :state, you must provide a way to initialize it. The :init argument names an 
“initialization function” that is called before the superclass constructor, with the same arguments as the 
constructor. The initialization function must return a vector like [[args...] state], where state is the 
value of the :state field and args are the arguments that will be passed back to the superclass 
constructor. 
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To do additional computation after the superclass constructor, the :post-init argument names a 
function that will be called immediately after the superclass constructor(s), with the newly-constructed 
object as its argument. The :post-init function's return value is ignored. 

Adding Methods to the Generated Class 

By default, the generated class contains stub methods for all non-private methods of the parent class 
and interfaces. If you want to add to this set of methods, you can do so with the :methods option to 
gen-class. Its argument is a vector of method signatures, each of the form 
[name [arg-types...] return-type]. Those methods are then implemented by Clojure functions with 
prefixed names just like superclass methods. To create a static method, add :static true metadata to 
the signature vector. 

For example, suppose you want to add two methods to your class with the following Java signatures: 

public int add(int a, int b); 

public static String getNextID(); 

You would use gen-class like this: 

(gen-class ... 
  :methods [[add [int int] int]  
            #^{:static true} [getNextID [] String]]) 
... 
(defn -add [this a b] ...) 

(defn -getNextID [] ...) 

Remember that :methods is only used for adding methods that do not exist in the 
superclass/superinterfaces. You do not need to redefine the signatures of existing Java methods. 

Adding Constructors and Factories 

The generated class will automatically have public constructors with type signatures matching those of 
the superclass constructors. You can add additional constructors with the :constructors option to 
gen-class. The argument to :constructors is a map of the form {[types...] [super-types...], ...}. 
The keys of the map are vectors of argument types for the added constructors, which must map to an 
existing superclass constructor, identified by a vector of its argument types. For example, if your 
generated class :extends a class Foo with a constructor Foo(int, int), and you want to add a constructor 
that takes a single String argument, you can do so with the following gen-class form: 

(gen-class ...  

  :constructors {[String] [int int]} ...) 

You must also supply an :init function that accepts and returns the appropriate types. 
Some Java development styles encourage static factory methods instead of public constructors. You 

can add static factory methods to your generated class with the :factory option to gen-class. Its 
argument is the name of the generated factory method; this method will be overloaded to accept all the 
same argument types as the constructors. 
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Exposing Superclass Members 

Because your method implementations are Clojure functions, not true Java methods, they do not have 
access to protected fields of the superclass, nor can they call superclass methods.  To work around this, 
you can add the :exposes and :exposes-methods options to gen-class. 

:exposes takes a map of the form {field {:get getter, :set setter}, ...}. Each key is the name 
of a protected instance field of the superclass, the value specifies the names of public getter and setter 
methods that will be added to the generated class. You do not need to provide implementations for these 
methods; they are generated automatically. 

:exposes-methods takes a map of the form {super exposed, ...}, where super is the name of a 
superclass method, and exposed is the name of a public method that will be added to the generated 
class. The exposed method calls the super method. You can use this feature when, for example, your 
implementation of a method needs to call the superclass version of the same method. 

Generating Command-Line Programs 

Java allows any class to be run as command-line executable, provided it has a method declared public 
static void main(String[] args). You can specify :main true in gen-class to add the static main 
method to your generated class. The function implementing this method should be called -main (unless 
you changed the prefix). Rather than a single array argument, it will be called with however many 
arguments are present on the command line.  An easy way to handle this is to define the function to take 
a variable number of arguments: 

(gen-class ... 
  :main true ...) 

(defn -main [& args] ...) 

Once you have compiled a namespace with a :main method, you can execute it at the command line 
like this: 

java -cp ...  your.class.name  arguments... 

Remember that your compiled .class files and the Clojure JAR must be on the classpath. 

Loading the Implementation 

By default, any class generated with gen-class will automatically load its implementing namespace from 
the classpath the first time it is used, just as if you had require'd the namespace. If you are using some 
alternative code loading mechanism and you do not want the generated class to interfere, add the 
:load-impl-ns false option to gen-class. 

Namespace Declarations with gen-class 

gen-class can appear as part of a namespace declaration in the ns macro. In this case, it is written as 
(:gen-class options...). Within ns, the :name and :impl-ns options default to the namespace being 
declared and :main defaults to true.  Everything else is the same. However, remember that you need not 
limit yourself to one namespace per generated class. You could generate several classes, with different 
:prefix options, and put all the method implementations in the same Clojure namespace. 
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Simple Command-Line Program 

If all you need is a program that can be run at the command line, you only need a -main function and an 
ns declaration containing (:gen-class), as in this example: 

(ns com.example.app 
  (:gen-class)) 
 
(defn -main [& args] 

  (println "Hello, World!")) 

When AOT-compiled into a directory named classes, this example can be run with the command: 

java -cp classes:clojure.jar com.example.app 

Summary 
Clojure is not intended to replace the Java language. Rather, it is designed to augment the capabilities of 
the Java platform with a different style of programming. Newcomers to Clojure may dislike the intrusion 
of Java class and method names into their Clojure code, and rush to wrap every Java method call in a 
Clojure function. More experienced Clojure programmers appreciate the power offered by Java libraries 
and are comfortable mixing Java methods and Clojure functions. The world is too big to implement 
everything from scratch. Clojure takes advantage of the vast ecosystem of Java libraries and lives 
comfortably in a Java-based environment. 
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Parallel Programming 

Parallelism in Clojure 
Chapter 6 spends a lot of time discussing how Clojure manages state safely in a concurrent environment. 
State management is definitely the trickiest part of concurrent programming, and the attention Clojure 
pays to getting state management right is well spent. 

However, discussions of state management do not address how a program becomes parallel to 
begin with, and the best strategies for splitting the execution of a program among various threads. 
Although it’s not as sticky a problem, it’s still important to understand. Knowing how and when to 
distribute execution among multiple threads will allow you to maximize concurrency in your program, 
making it faster and guaranteeing scalability as it is run on machines with more and more processors. 

Clojure offers a variety of techniques for introducing concurrency, ranging in levels of abstraction 
from high-level concepts such as agents all the way down to JVM primitives, accessible through the Java 
interoperability features. Some techniques are more suitable for data-centric concurrency while others 
for a more hands-on approach to threading. 

This chapter will outline the various ways you can introduce concurrency into a Clojure program 
and the pros and cons of each.   

Agents 
Agents are discussed in Chapter 6, although primarily in their aspect as identities used for managing 
state. Agents are interesting because they bridge the gap between managing state and managing 
execution: they do both. Again, review Chapter 6 for a detailed discussion on how to create and send 
actions to agents. This section deals primarily with their concurrency characteristics and implications. 

Agent Thread Pools 
In their execution aspect, agents are run in thread pools managed by the Clojure runtime. Actions sent 
to agents will be queued and then executed in one of two thread pools, depending on whether the action 
was dispatched using the send or send-off function. 

The thread pool used by the send function is sized and tuned to match the number of physical 
processors available to the JVM. This optimizes throughput for CPU-intensive actions: the number of 
actions executing concurrently will be roughly equal to the number of physical CPUs. If an action is 
dispatched while all threads in the thread pool (and, therefore, CPUs) are busy, it is queued and will 
execute in turn. 

The thread pool used by the send-off function is not limited to the number of physical processes 
available, but can contain an arbitrarily larger number of processes. The reasoning behind this is that 
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high-latency tasks such as accessing a remote resource will spend most of their time waiting. As such, it’s 
more efficient to allow many processes to time-share on the same processor. 

If you send where send-off would be appropriate, or vice-versa, it’s not the end of the world. Your 
program will still be correct: the action will still execute, it just won’t be as efficient as possible. If a high-
latency action is dispatched with send, it will utilize one of the send-threads until the action completes 
without actually doing much work. If a CPU-intensive action is dispatched with send-off, it could be 
pre-empted by the operating system thread scheduler much more often than it would otherwise be, but 
will still eventually complete. 

Agent Example 
For an example of a processing-intensive agent, say you had an agent that maintained an average of a 
list of numbers. The value of the agent could be a map with two keys: the list of numbers, and the current 
average. 

user=> (def my-average (agent {:nums [] :avg 0})) 

#’user/my-average 

Now, let’s define a function which you’ll use as the action function for the agent. It takes two 
arguments: the current value of an agent, and the number to add, and returns a new agent value. 

(defn update-average [current n] 
    (let [new-nums (conj (:nums current) n)] 
        {:nums new-nums 

         :avg (/ (reduce + new-nums) (count new-nums))})) 

In this case, because the action is straightforward processing, with no IO, you’ll definitely want to 
use send and not send-off. Let’s send it a few values and see what happens. 

user=> (send my-average update-average 10) 

#<Agent @4cdac8 {:nums [], :avg 0}> 

user=> (send my-average update-average 20) 

#<Agent @4cdac8 {:nums [10], :avg 10}> 

user=> (send my-average update-average 10) 

#<Agent @4cdac8 {:nums [10 20], :avg 15}> 

user=> (send my-average update-average 20) 

#<Agent @4cdac8 {:nums [10 20 10], :avg 40/3}> 

Finally, let’s check the result: 

user=> @my-average 

{:nums [10 20 10 20], :avg 15} 

It seems to work. However, because you used send, and because the update-average involves just 
processing and waiting for IO, you can be sure that the agent processes its sends at full speed. 
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Concurrent Agent Performance 
Agents scale very well with the number of CPUs in a machine. If an algorithm or process consists of 
discrete “tasks” (or if it can be broken down that way), agents are an excellent choice. There are 
anecdotes of agent-based programs scaling nearly linearly to systems with hundreds of CPUs without 
any code modification. Of course, your mileage will vary based on exactly what the agents are doing. 

Concurrency Functions 
There are certain functions and macros in the Clojure standard library which initiate parallel processing. 
They are extremely convenient, because they require no work to set up and are often a drop-in 
replacement for their serial counterparts. 

There are three built-in concurrent tools: pmap, pvalues, and pcalls. They provide similar 
functionality: in fact, under the hood, the other two are defined in terms of pmap. From this simple basis, 
it is possible to build a wide array of very useful concurrency tools. 

To provide meaningful examples of concurrency, it is necessary to use a function that takes a non-
trivial amount of time to execute. It’s rarely worth it to parallelize a task which takes only a few processor 
instructions. To do this, you can create a function which takes another function as an argument, and 
returns a “heavy” version of it—a version which waits for one second then returns. This transformation 
function is defined as follows: 

(defn make-heavy [f] 
    (fn [& args] 
        (Thread/sleep 1000) 
        (apply f args))) 
 

You can verify that this works by using it instead of a normal function and using the built-in time 
macro to time how long an expression takes to evaluate. For example, a normal call to + takes almost no 
time at all: 

user=> (time (+ 5 5)) 
"Elapsed time: 2.0E-6 msecs" 

10 

As expected, wrapping the + function in make-heavy takes just about a second. 

user=> (time ((make-heavy +) 5 5)) 
"Elapsed time: 1001.128155 msecs" 

10 

You will use this technique to observe what kind of advantages using parallel functions can actually 
give. 

pmap 

pmaps’ signature and functionality are identical to the normal map function. The only difference is that the 
supplied function is applied to the supplied sequence in parallel, utilizing a number of threads 
corresponding to the number of CPUs on the system. 

pmap is partially lazy in that the entire result set is not realized unless required, but the parallel 
computation does run ahead of the consumption to some degree. 
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An example follows, demonstrating similarity to map:  

user=> (pmap inc [1 2 3 4]) 

(2 3 4 5) 

To see how this introduces parallelism, let’s use the heavy function, and first see how long it takes 
using the standard version of map. You’ll also use the doall function to force evaluation of the entire 
value. 

user=> (time (doall (map (make-heavy inc) [1 2 3 4 5]))) 
"Elapsed time: 5002.96291 msecs" 

(2 3 4 5 6) 

This shows that the normal map runs the heavy version of the inc function five times. Since it’s in 
the same thread, and each function call takes a full second, this adds up to just about five seconds. 

Now, using pmap instead of map: 

user=> (time (doall (pmap (make-heavy inc) [1 2 3 4 5]))) 
"Elapsed time: 1031.941815 msecs" 

(2 3 4 5 6) 

It takes only about a second, because although it is still calling the heavy version of inc five times, 
the calls are happening in parallel. The extra 30 milliseconds observed are the extra time required to set 
up the additional threads. 

pvalues 

pvalues takes any number of expressions and returns a lazy sequence of the values of each expression, 
evaluated in parallel. 

user=> (pvalues (+ 5 5) (- 5 3) (* 2 4)) 

(10 2 8) 

pcalls 

pcalls takes any number of no-argument functions and returns a lazy sequence of their return values, 
executing them in parallel. 

user=> (pcalls #(+ 5 2) #(* 2 5)) 

(7 10) 

Overhead and Performance 
For computationally expensive operations, these concurrency functions can provide huge speedups for 
almost no effort. However, for less expensive computations, they may not be appropriate. 

When concurrency functions run, they break the arguments into units of work and dispatch them 
for execution. This process carries its own computational load, and if the actual computations specified 
are faster than the overhead involved in setting up their execution, the net result will be slower than the 
non-parallel version. 

This means that whether using a concurrency function is beneficial depends on the “weight” of the 
execution involved. If it’s lightweight, such as a basic math operation (as in the preceding examples), 
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don’t bother. The cost of setting up the parallel execution exceeds the benefit. If it’s very heavyweight, 
with each computation performing a significant amount of work, parallelizing is a no-brainer and will 
almost always provide great gains. For the middle ground, experimentation is sometimes necessary to 
determine whether using the parallel version of a function is worthwhile. You can try increasing the size 
of each parallel execution, for example, by grouping multiple items together and distributing the 
processing across the groups, rather than across each item. 

To demonstrate, compare the time required to use pmap as opposed to map on a lightweight 
operation: for example, the normal, light version of inc. 

user=> (time (dorun (map inc (range 1 1000)))) 

"Elapsed time: 9.150946 msecs" 

user=> (time (dorun (pmap inc (range 1 1000)))) 

"Elapsed time: 182.349073 msecs" 

This shows clearly how the extra cost of assigning threads and farming out work cost vastly more 
than the benefits of performing the work in parallel. 

Futures and Promises 
Futures and promises are two slightly more low-level threading constructs, inspired by the similar 
features available in the Java 6 concurrency API. They are simple to understand, simple to use, and 
provide a very direct way to spawn threads using native Clojure syntax. 

Futures 
A Clojure future represents a computation, running in a single thread. As soon as the future is created, a 
new thread is created and starts executing the computation. When the computation finishes, the thread 
is recycled and the resulting value can be retrieved from the future by dereferencing it. Alternatively, if 
the computation is not yet finished when the future is dereferenced, the dereferencing thread will block 
until the computation is complete. 

To create a future, use the future macro, which takes any number of expressions, and yields a future 
which will evaluate all the expressions and return the last value. For example, the following code: 

user=> (def my-future (future (* 100 100))) 
#'user/my-future 
user=> @my-future 

10000 

In this example, the actual value of (* 100 100) is calculated in a separate thread. In a real program, 
such a trivial expression probably wouldn’t be worth putting in a future. To create a simulation of a long-
running process, use Java’s Thread.sleep() method, which can be invoked from Clojure by 
Thread/sleep. It pauses execution of the current thread for the specified number of milliseconds. 

user=> (def my-future (future (Thread/sleep 10000))) 

'#user/my-future 
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This future will take ten seconds to complete. If you enter the following at the REPL within ten 
seconds of the previous statement, you can witness how dereferencing a future blocks the dereferencing 
thread if it isn’t yet complete. 

user=> @my-future 

nil 

The system will pause visibly for the remainder of the ten seconds of the future’s execution before 
returning the future’s result. In this case, nil. 

You can also create a future using the future-call function. It works similarly to the future macro, 
only instead of taking expressions as parameters, it takes a single no-argument function and calls the 
function in a separate thread while returning a future. You can dereference and inspect the future in 
exactly the same way as futures created by the basic future macro. 

Controlling Futures 

Clojure includes several functions that can be used to inspect and control futures. 

future-cancel 

It is possible to attempt to cancel a future that hasn’t yet finished executing. This only works under 
certain circumstances, because the cancellation uses Java’s thread interruption mechanism. In order for 
a computation to be canceled, it needs to internally check the thread’s interruption status from time to 
time or call a method that does (for example, Thread/sleep). For details on how to do this, see the Java 
threading documentation. 

future-cancel takes a single argument, the future itself. If the future is already complete, cancelling 
has no effect. If a future has been cancelled before it completed, attempting to dereference the future 
will cause a CancellationException error. 

future-cancelled? 

future-cancelled? takes a single future as an argument and returns true if it has been cancelled. It may be 
used to check if a call to future-cancel succeeded, and therefore if a future is safe to dereference or not. 

future-done? 

future-done? takes a single future as an argument and returns true if the future’s execution is complete, 
otherwise false. This function is useful for determining if dereferencing a future will cause blocking or 
not. 

future? 

future? takes a single value as an argument and returns true if it is a future, otherwise false. 

Promises 
A promise is a value that may not yet exist. If a promise is dereferenced before its value is set, the 
dereferencing thread blocks until a value is delivered to the promise. Unlike the other features described 
in this chapter, promises do not actually cause concurrent execution, but they are often useful to 
manage execution flow (particularly in concert with futures) and so they are covered here. 

When a promise’s value is set, all threads waiting for a promise get the value and are released. Any 
dereferences of the promise after its value is delivered. 
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To create a promise, simply call the promise function with no arguments. 

user=> (def my-promise (promise)) 

'#user/my-promise 

To deliver a value to a promise, use the deliver function, which takes two arguments, a promise and 
a value, and returns the promise. The deliver function may only be called once per promise: it throws 
an exception if called a second time on for the same promise. 

user=> (deliver my-promise 5) 

#<AFn$IDeref&db53459f@1465272: 5> 

The promise can then be dereferenced as follows: 

user=> @my-promise 

5 

̈ Caution  Be careful! It is entirely possible to throw your program into a deadlock with promises. Make sure that 

promises eventually do get a value delivered to them, otherwise, they will block forever. In the preceding example, 

if you were to dereference my-promise at the REPL before you call deliver, the REPL thread would block, 

preventing you from ever giving the promise a value. You’d be forced to restart the whole program. 

Promises have limited usefulness within a Clojure program: usually, it’s better to use a higher level 
concurrency construct. But for scenarios where it’s desirable to manually cause threads to wait, or to 
hand off execution between threads, promises provide an easy mechanism for doing so. 

Java-based Threading 
If none of Clojure’s other concurrency tools meet your needs for any reason, there’s always the option of 
falling back to Java’s native threading capabilities. Through Clojure’s Java interoperability features, these 
work just as well as they do in Java. In some ways, they’re even easier to use due to the fact that all 
Clojure functions implement the java.lang.Runnable interface, so they can be passed directly to threads. 
Also, Clojure’s macros can be used to eliminate a lot of Java’s boilerplate code. 

A complete discussion of Java concurrency is beyond the scope of this chapter (or this book). 
However, this section will demonstrate a common task: creating a single thread. The same methods can 
be applied to the rest of Java’s concurrency API. For information and a tutorial on Java’s concurrency 
API, see http://java.sun.com/docs/books/tutorial/essential/concurrency/. 

Creating a Thread 
The most basic way to create a thread in Java is by instantiating a new java.lang.Thread object, passing 
it a runnable in its constructor, and calling its start() method. The same can be accomplished in 
Clojure. The following code demonstrates: 
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user=> (def value (atom 0)) 

#’user/value 

First, you create an atom that stores a value. This isn’t actually part of the thread code, but you need 
some way to obtain evidence that the thread actually ran, and you can do that by updating the value of 
an atom. 

user=> (def my-thread (Thread. #(swap! value inc))) 

#'user/my-thread 

This creates a thread object by invoking the java.lang.Thread constructor, which takes a single 
runnable as its argument. In this case, you provide a simple inline function—all functions are runnables 
in Clojure. Then, to start the thread, simply call the start() method: 

user=> (.start my-thread) 

nil 

And, to verify that the thread actually ran: 

user=> @value 

1 

It’s worth mentioning that this is far from the best way to create a thread in Java. Usually, you’ll want 
to use the executor framework, explained in the previous URL link. However, the same techniques of 
creating threads and passing them Clojure functions as Runnables apply. 

Summary 
Clojure has a variety of mechanisms for introducing concurrency, and they follow a rough hierarchy of 
abstraction: 

• The lowest level concurrency feature set in Clojure is Java’s built-in concurrency 
library. It can do everything Java can, but lacks the ease of use of some of Clojure’s 
more advanced features. 

• For very simple control of spawning threads, use Clojure’s Futures. If you 
need to force threads to wait for each other in a certain pattern, you can force 
threads to block using Promises. 

• For executing the same action on multiple pieces of data in parallel, it’s hard 
to beat Clojure’s parallel functions. If an algorithm uses the map function, 
then it can often be made parallel simply by replacing map with pmap. 

• For a high-level, pool-based thread management system that handles both state 
and execution, use Clojure’s Agents.  

Successfully writing a highly parallel Clojure program consists of choosing the correct threading model, 
using the methods previously listed, and managing state safely (as described in Chapter 10). Clojure 
provides the tools, making it as easy as possible to do both. 
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Macros and Metaprogramming 

What Is Metaprogramming?  
Metaprogramming is the use of code to modify or create other code. It is primarily a developer tool and 
acts as a force multiplier, allowing large amounts of predictable code to be generated from just a few 
statements in the host language (or “metalanguage”). It is extremely useful for automating repetitive, 
boilerplate code.  

Most programming languages support some form of metaprogramming. C has a preprocessor and 
C++ has templates. Java has annotations and aspect-oriented programming extensions. Scripting 
languages have “eval” statements. Most languages have some sort of API that can be used to introspect 
or modify the core language features (such as classes and methods). As a last resort, any language can be 
used to build source code using string manipulation and then feed it to a compiler. 

Code vs. Data 
Whatever the implementation, metaprogramming systems have one feature in common: they 
manipulate code as data. Conceptually, programs execute code and consume or produce data as input 
and output. By definition, metaprogramming inverts this relationship. Programs consume or produce 
code (as their data), so when the generated program runs, it is executing data (as its code). 

For most languages, treating code as data or data as code is a more or less a cumbersome process, 
depending on the type of data which represents the code.  

One common strategy is to treat code as a textual string. Code can be created by concatenating 
keywords, variable names, and textual symbols, witht4 the resulting text fed back to the languages parser 
or evaluator. Needless to say, this can be quite messy and confusing for all but the simplest 
metaprogramming tasks. 

Another strategy is to provide a set of APIs that expose the concepts of a programming language as 
objects within the language, allowing the programmer to make calls such as createClass() or 
addMethod(), to build code structures programmatically. This is much more effective than writing and 
parsing strings, and is used extensively in many object-oriented languages. In this case, the data is 
objects, which have a special relationship with the language runtime.  

Homoiconicity 
Clojure (and other Lisps) provide a third way of handling the code/data distinction: there is no 
distinction. In Clojure, all code is data and all data is code. 

This property is called homoiconicity, which means that the language’s code is represented in terms 
of the language’s data structures. For example, this is a line of code in Clojure: 

(println "Hello, world") 
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And this is a sequence (data): 

'(println "Hello, world") 

There is only one slight difference—the leading single quote. This is simply an instruction to Clojure 
that itshould only read the list, instead of reading it and immediately evaluating it, as it would in the first 
snippet. Forms like this (called quoted forms) stop after reading, rather than going on to be evaluated. 

Clojure Reader (parser)

(println “Hello World”)

String Representation

110101010110101

Executable Bytecode

println

(symbol)

“Hello World”

(string literal)

List Representation

(abstract syntax tree)

Clojure Compiler
 

Figure 12-1. How Clojure code is loaded 

The key point is that Clojure source code isn't fundamentally comprised of strings: Clojure source 
code is comprised of data structure literals—vectors, maps, and sequences of symbols, literals, and other 
sequences. In Clojure, data structures are very, very easy to work with, thanks to the sequence 
abstraction. Metaprogramming is no more difficult than creating a list. 

Macros 
Macros are the primary means of metaprogramming in Clojure. A Clojure macro is a construct which 
can be used to transform or replace code before it is compiled. Syntactically, they look a lot like 
functions, but with several crucial distinctions: 

• Macros shouldn't return values directly, but a form.  

• Arguments to macros are passed in without being evaluated. They can then be 
altered, ignored, or added to the macro's output. 

• Macros are evaluated only at compile-time.    

When you use a macro in your code, what you are really telling Clojure to do is to replace your 
macro expression with the expression returned by the macro. This is a powerful means of abstraction, 
and is very useful for implementing control structures or eliminating boilerplate or "wrapper" code. 

For example, it is possible to define a macro called triple-do which takes one expression as an 
argument, and replaced it with a do form which evaluates the expression three times. The programmer 
would only type the following expression: 

(triple-do (println "Hello")) 

However, this would actually be compiled as this expression:  

(do (println "Hello") (println "Hello") (println "Hello")) 
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Aside from debugging it, there's no need for the programmer ever to need to see or worry about this 
intermediate form. They can use it directly in their programs, and not worry about the complexity 
tucked underneath: 

user=> (triple-do (println "Hello")) 
Hello 
Hello 
Hello 

nil 

Working with Macros 
To create a macro, use the defmacro macro. This defines a function and registers it as a macro with the 
Clojure compiler. From then on, when the compiler encounters the macro, it will call the function and 
use the return value instead of the original expression. 

defmacro takes basically the same arguments as defn: a name, an optional documentation string, a 
vector of arguments, and a body. As previously mentioned, the body should evaluate to a valid Clojure 
form. If the form returned by the macro function is syntactically invalid, it will cause an error wherever it 
is used. 

For example, the following code defines the very simple triple-do macro already mentioned: 

(defmacro triple-do [form] 

    (list 'do form form form)) 

This simply uses the built-in list function to create a list of four items: the do special form and three 
repetitions of the provided form. Note that do is quoted, so it is added to the resultant list as a symbol, 
rather than being evaluated in place in the body of the macro. If the provided form is (println "test"), 
this list will be (do (println "test") (println "test") (println "test")). This list is valid Clojure 
syntax, and so the macro works: 

user=> (triple-do (println "test")) 
test 
test 
test 

nil 

As another example of the possibilities of macros, it is possible write a macro that rewrites an infixed 
mathematical expression as a standard Clojure prefixed expression, so it can be evaluated. For example, 
it might transform (1 + 1) to the more standard (in Clojure) (+ 1 1). Prefix notation is the Lisp standard 
and is preferable for all programming tasks. Don't use something like this in your main Clojure code. 
However, this type of functionality could be useful for writing Domain Specific Languages (DSLs) for 
people who didn't know Lisp. 

When developing, it's first helpful to have a clear idea of what you want the input and output 
expression to be. For this macro, you want to convert expressions like: 

(infix (2 + 3)) 

to: 

 (+ 2 3) 

The macro definition is: 
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 (defmacro infix [form] 

    (cons (second form) (cons (first form) (nnext form)))) 

It introspects the provided form, and uses cons to build a new expression, starting with the second 
item (the operator), then the first item (the first number), then any additional items. You can verify that 
it works using the following code: 

user=> (infix (2 + 3)) 

5 

Again, in general, it's bad form to go around redefining the standard way forms are evaluated. 
Typically, users should get consistent behavior whether their expression is within a macro or not. Still, 
this example demonstrates the power of macros, and occasionally there are good reasons to do such 
drastic transformations on expressions.  

Debugging Macros 

Using macros can be somewhat mind-bending, since you have to keep in mind not only the code you're 
writing, but the code you're generating. Clojure provides two functions that help debug macros as you 
write them: macroexpand and macroexpand-1. They both take a single quoted form as an argument. If the 
form is a macro expression, they return the expanded result of the macro without evaluating it, making it 
possible to inspect and see exactly what a macro is doing. macroexpand expands the given form 
repeatedly until it is no longer a macro expression. macroexpand-1 expands the expression only once. 
Both of them expand only the macro forms present in the original expression; they don't recursively 
expand additional macros present in the output. 

The following example shows macroexpand applied to the macros defined in the previous section: 

user=> (macroexpand '(triple-do (println "test"))) 

 (do (println "test") (println "test") (println "test"))) 

user=> (macroexpand '(infix (2 + 3))) 

 (+ 2 3) 

You can use different expressions with macroexpand, to see what the output for any arguments to 
your macro looks like, even though it can quickly become complicated: 

user=> (macroexpand '(triple-do (do (println "a") (println "b")))) 

 (do (do (println "a") (println "b")) (do (println "a") (println "b")) (do (println "a") 

(println "b"))) 

Sometimes, you can see errors before they occur. For example, if you pass an expression to the 
infix macro that is already prefixed, it will actually reverse the process and infix the result, which is: 

user=> (macroexpand '(infix (+ 1 2))) 

 (1 + 2) 

Using macroexpand gives an opportunity to see potential problems before you actually try evaluating 
them. You can also run unit tests against the output of macroexpand to verify that your macros are 
behaving as expected. 
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Code Templating 
Manually creating forms to return from macro functions can sometimes be tedious. Worse, with 
complex macros it can be difficult to determine what the output form will actually be. 

To alleviate this problem, Clojure provides a code templating system. Effectively, it allows macro 
developers to enter the return forms of macros as literals, splicing in values where necessary. 

  The templating system is based around the syntax-quote character, a backquote: `. Syntax quoting 
works almost exactly the same as regular quoting with single-quote, with one major exception: you can 
use the unquote symbol (the tilde, ~) to insert a value at any point within the syntax-quoted expression. 
Also, symbols directly referenced within a syntax quote are assumed to be top level, namespace-
qualified symbols and will be expanded as such. 

For example, take the macro body of triple-do. It explicitly uses the list function to construct a list 
for return. Of course, the easier way to represent a list in code is to enter it as a literal, using the single 
quote. However, it’s then impossible to modify it. By using syntax-quote, and by using unquote within it 
to insert values, it is possible. 

The templated version of the triple-do macro looks like the following: 

(defmacro template-triple-do [form] 

    `(do ~form ~form ~form)) 

The do expression is represented as a list literal, and the return value of the macro function. It uses 
the syntax-quote character to ensure that it is treated as a literal and not evaluated right away. Inside the 
syntax-quote are three unquotes; they actually insert the value of the form parameter at that point inside 
the literal value.  

The expansion of template-triple-do is identical to the original version: 

user=> (macroexpand '(template-triple-do (println "test"))) 

 (do (println "test") (println "test") (println "test")) 

Splicing Unquotes 

Unquoting sequences within a syntax-quote doesn't always work out quite as intended. Sometimes, it is 
desirable to insert the contents of a sequence the templated list, rather than the list itself. To see why, try 
implementing the infix macro described previously, using templating: 

(defmacro template-infix [form] 

    `(~(second form) ~(first form) ~(nnext form))) 

It looks like it should work fine. But try expanding it: 

user=> (macroexpand '(template-infix (1 + 3))) 

 (+ 1 (3)) 

There's an extra set of parenthesis around the 3, which will cause problems. The reason is that the 
~(nnext form) expression resolves to a list, not an individual symbol. In this case, you want to insert the 
contents of the sequence returned by (nnext form), not the sequence itself. 

To insert the contents of a list, use the splicing unquote, denoted by ~@. ~@ inserts the values of a 
sequence consecutively into a parent sequence. Using it instead of the normal unquote in the template-
infix macro yields the correct results: 
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(defmacro template-infix [form] 

    `(~(second form) ~(first form) ~@(nnext form))) 

user=> (macroexpand '(template-infix (1 + 3))) 

 (+ 1 3) 

Generating Symbols 
One very important rule of Clojure macros is that while it is possible to create and bind local symbols in 
macro-generated code, the names of such locals may not conflict with any existing symbols. But this is 
problematic: when writing a macro, it is impossible to know all of the potential contexts in which a 
macro might later be run. So Clojure enforces the rule: don't bind named symbols in macros. 

Still, sometimes it's necessary to define local symbols in a macro. To get around this restriction, 
Clojure provides a feature called auto gensym within syntax quoted forms. Within any syntax-quoted 
form (forms using the back-tick, `), you can append the # character to the end of any local symbol name, 
and when the macro is expanded, it will replace the symbol with a randomly generated symbol that is 
guaranteed not to conflict with anything, and which will match any other symbol created with auto 
gensym in the same syntax-quote template. As long as you use the auto gensym feature on them, you 
can define as many local symbols as you like within your macros. 

To see an example of this, consider a macro called debug-println which performs the same function 
as println, but instead of returning nil, it returns the value of the expression. This allows it to be used 
inside expressions and debug them. You want to be able to use it like this: 

(+ 5 (* 4 (debug-println (/ 4 3))) 

First, determine what you want the generated code to look like. In this case, it's as follows: 

(let [result (/ 4 3)] 
    (println (str "Value is: " result)) 

    result) 

Then build the macro definition. Note how the result symbol is using the auto gensym feature: 

(defmacro debug-println [expr] 
    `(let [result# ~expr] 
         (println (str "Value is: " result#)) 

         result#)) 

Calling macroexpand-1 shows the generated symbol name: 

user=> (macroexpand '(debug-println (/ 4 3))) 
(clojure.core/let [result_2349_auto (/ 4 3)] 
    (clojure.core/println (clojure.core/str "Value is: " result_2349_auto) 

    result_2349_auto) 

With the exception of the alternate name for the result symbol, and the fully qualified function 
names, it looks exactly like what we originally wanted. And it works! 

user=> (+ 5 (* 4 (debug-println (/ 4 3))) 
Value is: 4/3 

31/3 

172 



 CHAPTER 12 ̈ MACROS AND METAPROGRAMMING 

When to Use Macros 
Macros are extremely powerful and allow you to control and abstract code in ways that would not be 
otherwise possible. However, using them does come at a cost. They operate at a higher level of 
abstraction, and so they are significantly more difficult to reason about then normal code. If a problem 
occurs, it can be much trickier to debug, since there's an extra level of indirection between where the 
problem actually is, and where the error message originates. 

Therefore, the best way to use macros is to use them as little as possible. A few macros go a long 
way. Most things you need macros for (including some of the examples in this chapter) could also be 
accomplished with first-class functions. When you can, do that instead, and don't use macros. 

That said, there are certain situations where using a macro is the best, easiest, or the only way to 
accomplish a given task. Usually, they fall into one of the following categories: 

• Implement control structures: One of the main differences between macros and 
functions is that the arguments of macros are not evaluated. If you need to write a 
control structure that might not evaluate some of its parameters, it has to be a 
macro. 

• Wrap def or defn: Usually, you only want to call def or defn at compile time. 
Calling them programmatically while a program is running is usually a recipe for 
disaster. So, if you need to wrap their behavior in additional logic, the best place to 
do it is usually a macro. 

• Performance: Because they are expanded at compile time, using a macro can be 
faster than calling a function. Usually, this doesn't make much of a difference, but 
in extremely tight loops, you can sometimes eke out performance by eliminating a 
function call or two and using macros instead. 

•  Codify reoccurring patterns: Macros can be used to formalize any commonly 
occurring pattern in your code. In essence, macros are your means of modifying 
the language itself to suit your needs. Macros aren't the only way to do this, but 
they can sometimes do it in a way that is least invasive to other parts of your code. 

Using Macros 
Understanding macros and knowing when to use them can be a daunting proposition, so it is helpful to 
look at a range of examples to gain a sense of what macros can be used for. Unfortunately, no selection 
of examples can entirely cover the types of things you can do with macros: macros represent no less than 
an ability to change the language itself, and the potential ways one might want to do so are limitless. 
However, there are some common patterns that are often implemented with macros and being familiar 
with them can give you a head start in understanding when they can be useful. 

Implementing a Control Structure 

As mentioned, one of the important distinctions between macros and functions is that since macros are 
expanded before compilation, rather than at runtime, it is possible that their arguments might not be 
evaluated at all. This is an essential component of control structures, where it is necessary that only some 
of the provided expressions actually evaluate, not all of them.  

Consider a control form which takes two expressions and executes only one of them randomly. This 
might be used in a game, or in an artificial intelligence implementation. You want it to look something 
like the  following: 
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(rand-expr (println "A") (println "B") ) 

This cannot be implemented as a function, since both println statements are evaluated as 
arguments before rand-expr is even called. But you want only one of the expressions to evaluate at 
random. This can only be accomplished with a macro. 

The first thing to do is to plan out the form to which you want the macro to expand. In this case, it 
has to include the logic for picking an expression at random from those provided. The expansion should 
look something like this: 

(let [n (rand-int 2)] 

         (if (zero? n) (println "A") (println "B"))) 

First, the macro needs to pick a random number between 0 and 1. Then, if the number is 0, it 
executes the first expression, otherwise the second. 

The macro for this is fairly straightforward, given the syntax described: 

(defmacro rand-expr [form1 form2] 
    `(let [n# (rand-int 2)] 

         (if (zero? n#) ~form1 ~form2))) 

And, it works as expected, with the same expression sometimes evaluating (println "A") and 
sometimes (println "B"), never both. 

user=> (rand-expr (println "A") (println "B")) 
B 
nil 
user=> (rand-expr (println "A") (println "B")) 
B 
nil 
user=> (rand-expr (println "A") (println "B")) 
A 

nil 

Implementing a Macro with Variadic Arguments 

Macros can take variable numbers of arguments. An example of this would be the preceding macro, but 
with the requirement that it randomly evaluate one of any number of expressions, rather than just one of 
two. 

(rand-expr-multi (println "A") (println "B") (println "C")) 

Creating a macro which takes a variable number of forms as "arguments" is easily done, the same 
way as it is for a function: 

(defmacro rand-expr-multi [& forms] …) 

What about the macro body? How to handle the variable number of arguments? Obviously, since 
you don't know how many there are, you can't just reference them by name and slot them into place in 
an if expression as was done in the first draft of rand-expr. You might be tempted to use something like 
the nth function to select a random expression from the list, but consider: At macro-expansion time, 
when you're building the structure, you don't have access to the random value. It has to be generated 
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within the expansion at runtime. If you generate it at compile time, it will effectively become a constant. 
Without access to the random value at expansion-time, you need to list all the possible expressions as 
options in one of Clojure's more primitive control structures. Macro expansion is a process purely of 
code transformation—keeping that fact firmly in mind will help avoid a lot of confusion about what is 
available at expansion time as opposed to run time.  

One viable solution would be to try and generate an expansion of something along these lines: 

(let [ct (count <number of expressions>))] 
    (case (rand-int ct) 
        0 (println "A") 
        1 (println "B") 

        2 (println "C"))) 

The most succinct way is to use splicing unquote to splice in the list of forms that constitute the 
body of the case. Noticing that these forms are alternating indexes and expressions lets you use the 
interleave function to generate the list to splice in, which shortens the code considerably: 

(defmacro rand-expr-multi [& exprs] 
    `(let [ct# ~(count exprs)] 
         (case (rand-int ct#) 

             ~@(interleave (range (count exprs)) exprs)))) 

It generates the expected expansion: 

user=> (macroexpand-1 '(rand-expr-multi (println "A") (println "B") (println "C"))) 

(clojure.core/let [ct__2188__auto__ 3] 
    (clojure.core/case (clojure.core/rand-int ct__2188__auto__) 
         0 (println "A") 
         1 (println "B") 

         2 (println "C"))) 

Upon testing, it works as expected: 

user=> (rand-expr (println "A") (println "B")) 
B 
nil 
user=> (rand-expr (println "A") (println "B")) 
A 
Nil 
user=> (rand-expr (println "A") (println "B")) 
C 
nil 
user=> (rand-expr (println "A") (println "B")) 
B 
nil 
user=> (rand-expr (println "A") (println "B")) 
B 

nil 
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Implementing a Macro Using Recursion 

Macros can also be applied recursively. As an example, consider a custom macro, ++, which can be used 
instead of +, and which automatically replaces multiargument addition expressions with nested binary 
expressions which perform slightly better in Clojure (see Chapter 14 for a more comprehensive 
discussion of this issue). In other words, it takes easy-to-read expressions such as (++ 1 2 3 4 5) and 
transforms them to slightly better performing, but more complex expressions like (+ 1 (+ 2 (+ 3 (+ 4 
5)))). 

Like recursive functions, recursive macros must have a base case at which they no longer recur, or 
else they will continue recursing forever and cause a stack overflow error, though at compile time 
instead of runtime. For the ++ macro, the base case is when it is passed only one or two arguments. In 
that scenario, it merely emits a standard + expression. When given three or more arguments, it applies 
itself recursively to its argument list, emitting an additional nested expression with each level of 
recursion. 

It's easiest to look at the code: 

(defmacro ++ [& exprs] 
    (if (>= 2 (count exprs) 
        `(+ ~@exprs) 

        `(+ ~@(first exprs) (++ ~@(rest exprs))))) 

It is very straightforward. There is one if condition, which differentiates between the base and 
recursive case. In the base case, it simply splices the provided expressions into a straightforward 
application of the + function. In the recursive case, it also creates a + function application and splices in 
the first expression as the first argument. For the second argument, it recursively inserts ++, splicing in 
the rest of the expressions as its arguments. 

When the macro is expanded, the first layer is unwrapped and shows that it is correct, at least so far. 

user=> (macroexpand '(++ 1 2 3 4)) 

(clojure.core/+ 1 (user/++ 2 3 4)) 

To see the entire recursive expansion, you can use Stuart Sierra's clojure.walk library, which is 
packaged with Clojure. It includes a macroexpand-all which, unlike macroexpand or macroexpand-1, does 
recursively expand all the macros it can find until there are none left. Importing and running 
macroexpand-all gives the complete, final expansion: 

user=> (clojure.walk/macroexpand-all '(++ 1 2 3 4)) 

(clojure.core/+ 1 (clojure.core/+ 2 (clojure.core/+ 3 4))) 

Actually using the macro shows it has the same semantics as +. It should be ever so slightly faster, as 
well, although the difference isn't detectable without an elaborate benchmark. 

user=> (++ 1 2 3 4) 

10 

Using Macros to Create DSLs 
One common use of macros is to generate custom DSLs. Using macros, a few simple, intuitive 
expressions can generate much more bulky, complex code without exposing it to the user. 
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The potential use for DSLs in Clojure is unlimited. Enclojure (the web framework for Clojure 
currently in vogue) allows the user to define web application paths and restful APIs using a simple, 
immediately understandable DSL syntax. Another Clojure project, Incanter, provides a DSL based on the 
R programming language that is incredibly succinct and useful for doing statistics and building charts. 

Clojure's DSLs are particularly effective because there is no sharp distinction between an API and a 
DSL. Every well-designed Clojure API automatically ends up looking a lot like a DSL, and as Clojure 
programs get more complex they tend to evolve high-level functions and macros that are extremely easy 
to read. 

The following macro demonstrates a very rudimentary Clojure DSL, one that uses Clojure 
expressions to build something very similar to XML (minus complexities such as attributes and 
namespaces). 

The xml macro shown here is slightly different from the previous examples of macros; its expansion 
is a string, rather than a collection of forms. A macro is used instead of a function because the DSL works 
by overriding the normal processing of the provided forms, rendering them to a string instead of 
evaluating them. It isn't the best way to process XML in Clojure, by a long shot—for that, look at the 
clojure.xml, clojure.zip, and Stuart Sierra's clojure.contrib.prxml libraries. This is just a small, 
manageable example that will show some of the versatility that macros provide. 

The input of the macro is just a series of nested forms. The forms don't have to resolve: they will be 
transformed into a string by the macro without ever being evaluated. The macro transforms input like 
this: 

(xml 
    (book 
        (authors 
            (author "Luke") 

            (author "Stuart")))) 

Into output like this:  

 <book><authors><author>Luke</author><author>Stuart</author></authors></book> 

The code itself is as follows: 

(defn xml-helper [form] 
    (if (not (seq? form)) 
        (str form) 
        (let [name (first form) 
               children (rest form)] 
           (str "<" name ">" 
                 (apply str (map xml-helper children)) 

                 "</" name ">")))) 

(defmacro xml [form] 

    (xml-helper form)) 

 
The macro is very lightweight. It is passed a single form which it immediately passes off to a helper 

function. Macro helper functions are a common idiom. Often, as in this case, the macro itself doesn't do 
any work at all, but only serves to obtain the original form as a sequence. From there, functions can do 
all the actual work of transformation. When this is possible, it is usually desirable, since functions are 
often much easier to reason about than macros. Just remember, the function will be evaluated at 
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compile time, as the macro is expanded, so it will not have access to the full runtime state of your 
program. 

The helper function is a simple recursive function. The base case is when the provided form is a 
primitive (not a sequence). It simply returns it as a string. When the form is a sequence, it creates and 
returns an XML string, using the first item as the element name and the rest of the items as children 
which it processes recursively.  

Running the macro shows that it is working: 

user=> (xml (book (authors (author "Luke") (author "Stuart")))) 

"<book><authors><author>luke</author><author>Stuart</author></authors></book>" 

From an XML processing perspective, it is terribly primitive and should not be used for any real 
work. As a demonstration of the power of macros, it is beautiful. The conversion from nested 
expressions to XML string happens at compile time. Because xml is a macro which returns a string, a 
program using it will actually "see" the xml expression as a string literal! The mini-XML DSL shown here 
is now an extension of the Clojure compiler itself. 

Obviously such power can be abused, and it is possible to use macros to build incredibly obtuse and 
convoluted expressions. When used correctly, they provide nearly unlimited power to change the 
language to suit any need. 

Summary 
Through macros, Clojure provides powerful, elegant metaprogramming facilities. In Clojure, code and 
data are interchangeable, and macros are compile-time functions which emit data that becomes code. 

Macros can either build code directly, or use syntax-quoting to template their output. They are 
hygienic, in that symbols bound by macros must use the auto gensym feature to avoid potential 
collisions with existing symbols. 

Although they can add complexity to a program, when used judiciously macros provide the means 
to eliminate nearly all repeated and boilerplate code. They allow the developer to create language-level 
control structures and abstractions, extending the language exactly as needed to fit the problem domain. 
Tasteful and restrained use of macros, along with Clojure's other dynamic features such as first-class 
functions, allows developers to create custom DSLs, organically adapting their systems to fit a problem 
domain, rather than being forced to restate their problems just to meet the demands of an inflexible 
system. 
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Datatypes and Protocols 

Clojure is built on abstractions: sequences, references, macros, and so forth. However, most of those 
abstractions are implemented in Java, as classes and interfaces. It is difficult to add new abstractions to 
the language (for example, a queue data structure) without implementing them in Java. 

Clojure 1.2 introduces several new features to make it easier to implement new abstractions directly 
in Clojure, while still taking full advantage of the performance optimizations in the Java platform. 
Datatypes and protocols are roughly analogous to Java's classes and interfaces, but they are more 
flexible. 

̈ Note  As  of this writing, Clojure 1.2 has not yet been released. Although the concepts will remain the same, 

there may be minor changes in naming or syntax from what we describe in this chapter. 

Protocols 
A protocol is a set of methods. The protocol has a name and an optional documentation string. Each 
method has a name, one or more argument vectors, and an optional documentation string. That's it! 
There are no implementations, no actual code. 

Protocols are created with defprotocol: 

(defprotocol MyProtocol 
  "This is my new protocol" 
  (method-one [x] "This is the first method.") 

  (method-two ([x] [x y]) "The second method.")) 

If you were to execute this example in the namespace my.code, the following Vars would be created: 

• my.code/MyProtocol:  A protocol object. 

• my.code/method-one:  A function of one argument. 

• my.code/method-two:  A function of one or two arguments. 

method-one and method-two are polymorphic functions, meaning they can have different 
implementations for different types of objects. You can call method-one or method-two immediately after 
defprotocol, but they will throw an exception because no implementations have been defined. 
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What is a protocol? It's a contract, a set of capabilities. An object or a datatype (described in the next 
section) can declare that it supports a particular protocol, meaning that it has implementations for the 
methods in that protocol. 

Protocols As Interfaces 

Conceptually, a protocol is similar to a Java interface. In fact, defprotocol creates a Java interface with 
the same methods. You can AOT-compile the Clojure source file containing defprotocol and use the 
interface in Java code. The Java interface will be in a package matching the namespace in which the 
protocol was defined. The package, interface, and method names will be adjusted to obey Java naming 
rules, such as replacing hyphens with underscores. Each method in the interface will have one argument 
fewer than the protocol method: that argument is the this pointer in Java. The previous example would 
create an interface matching the following Java code: 

package my.code; 
 
public interface MyProtocol { 
    public Object method_one(); 
    public Object method_two(Object y); 

} 

There is one important difference between protocols and interfaces: protocols have no inheritance. 
You cannot create “subprotocols” like Java's subinterfaces. 

Protocols are also similar to “mix-in” facilities provided by languages such as Ruby, with another 
important difference: protocols have no implementation. As a result, protocols never conflict with one 
another, unlike mix-ins. 

Datatypes 
Although Clojure is not, strictly-speaking, an object-oriented language, sometimes it is tempting to think 
in object-oriented terms when dealing with the real world. Most applications have many “records” of the 
same “type” with similar “fields.” 

Prior to Clojure 1.2, the standard way to handle records was to use maps. This worked, but did not 
permit any performance optimizations from reusing the same keys in many maps. 

StructMaps were one solution, but they had several problems. StructMaps have a predefined set of 
keys, but no actual “type” that can be queried at runtime. They cannot be printed and read back as 
StructMaps. They cannot have primitive-typed fields, and they cannot match the performance of 
instance fields in plain old Java objects. 

Clojure 1.2 introduces datatypes as a replacement for StructMaps. A datatype is a named record 
type, with a set of named fields that can implement protocols and interfaces. Datatypes are created with 
defrecord: 

(defrecord name [fields...]) 

For example, a datatype might store an employee record with two fields, name and room number: 

user> (defrecord Employee [name room]) 
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In this example, defrecord creates a new class named Employee It has a default constructor that 
takes arguments matching the fields of the type, in the same order. You can construct an instance of the 
datatype by adding a dot to the end of its name. 

user> (def emp (Employee. "John Smith" 304)) 

Datatype instances behave like Clojure maps. You can retrieve the fields of a datatyped object by 
using keywords as accessor functions: 

user> (:name emp) 
"John Smith" 
user> (:room emp) 

304 

This is much faster than map lookups and even faster than StructMap accessor functions. Datatype 
instances also support the assoc and dissoc functions. 

user=> (defrecord Scientist [name iq]) 
user.Scientist 
user=> (def x (Scientist. "Albert Einstein" 190)) 
#'user/x 
user=> (assoc x :name "Stephen Hawking") 

#:user.Scientist{:name "Stephen Hawking", :iq 190} 

You can even assoc additional fields that were not part of the original datatype, without changing the 
object's type. 

user=> (assoc x :field "physics") 

#:user.Scientist{:name "Albert Einstein", :iq 190, :field "physics"} 

However, if you dissoc one of the original datatype keys, you get an ordinary map as the result. 

user=> (dissoc x :iq) 

{:name "Albert Einstein"} 

Implementing Protocols and Interfaces 
A datatype, by itself, just stores data. A protocol, by itself, doesn't do anything at all. Together they form a 
powerful abstraction. Once a protocol has been defined, it can be extended to support any datatype. We 
say the datatype implements the protocol. At that point, the protocol's methods can be called on 
instances of that datatype. 

In-Line Methods 

When creating a datatype with defrecord, you can supply method implementations for any number of 
protocols. The syntax is as follows: 

(defrecord name [fields...] 
  SomeProtocol 
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    (method-one [args] ... method body ...) 
    (method-two [args] ... method body ...) 
  AnotherProtocol 

    (method-three [args] ... method body ...)) 

You can chain any number of protocols and methods after the fields vector. Each method 
implementation has the same number of arguments as the corresponding protocol method. Fields of the 
instance are available as local variables in the method bodies, using the same names. 

(defrecord name [x y z] 
  SomeProtocol 
  (method-one [args]  

    ...do stuff with x, y, and z...)) 

These are the only locals available in the method bodies: defrecord does not close over its lexical scope 
like fn, proxy, or reify, which is described in the section “Reifying Anonymous Datatypes.” 

Extending Java Interfaces 

Datatypes can also implement methods from Java interfaces. For example, you could implement the 
java.lang.Comparable interface, allowing your new datatype to support the Clojure compare function: 

user> (defrecord Pair [x y] 
        java.lang.Comparable 
          (compareTo [this other] 
             (let [result (compare x (:x other))] 
               (if (zero? result) 
                 (compare y (:y other)) 
                 result)))) 
#'user/Pair 
user> (compare (Pair 1 2) (Pair 1 2)) 
0 
user> (compare (Pair 1 3) (Pair 1 100)) 

-1 

Note that the this argument, representing the object on which the method was called, must be explicitly 
included. This means that Clojure implementations of Java methods will have one more argument than 
appears in the Java method signature. 

Since most of Clojure's core functions are defined to operate on interfaces, they can be extended to 
support new datatypes. Clojure defines too many interfaces to list here, but they can be found in the 
Clojure source code. Some examples are clojure.lang.Seqable and clojure.lang.Reversible for the seq and 
rseq functions, respectively. In a future release (2.0 or later), these interfaces will likely be redefined as 
protocols. 

defrecord does not support Java class inheritance, so it cannot override methods of Java classes, 
even abstract classes. However, it does permit you to override methods of java.lang.Object such as 
hashCode, equals, and toString. Simply include java.lang.Object in the defrecord as if it were an 
interface. Clojure will generate good value-based implementations of the hashCode and equals methods, 
so it is rarely necessary to implement them yourself. 

Java interfaces sometimes define overloaded methods with the same name but different argument 
types. If the methods have different numbers of arguments (arities), just define each arity as if it were a 
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distinct method. (Do not use the multiple-arity syntax of fn.) If the methods have arguments of different 
types, add type tags (Chapter 8) to disambiguate them. 

Datatypes As Classes 

A datatype is equivalent to a Java class containing public final instance fields and implementing any 
number of interfaces. It does not extend any base class except java.lang.Object. 

Unlike Java classes, a datatype is not required to provide implementations for every method of its 
protocols or interfaces. Methods lacking an implementation will throw an AbstractMethodError when 
called on instances of that datatype. 

When AOT-compiled, defrecord will generate a Java class with the same name as the datatype and a 
package name matching the current namespace (subject to Java name rules, as with protocols). The 
generated class will have two constructors: one with just the fields as arguments and one with two extra 
arguments; a metadata map and a map of additional fields, either of which may be nil. 

You cannot add additional constructors to a datatype, nor can you add methods that are not defined 
in a protocol or interface. 

To optimize the memory usage of your datatype, you can add primitive type hints to the fields. You 
can also type-hint fields with class names; this will not affect memory usage (all pointers are the same 
size) but can prevent reflection warnings. 

user> (defrecord Point [#^double x #^double y]) 
#'user/Point 
user> (Point. 1 5) 

#:Point{:x 1.0, :y 5.0} 

Extending Protocols to Pre-Existing Types 
Sometimes you may want to create a new protocol that operates on an existing datatype.  Assume, for 
now, that you cannot modify the source code of the defrecord. You can still extend the protocol to 
support that datatype, using the extend function: 

(extend DatatypeName 
  SomeProtocol 
    {:method-one (fn [x y] ...) 
     :method-two existing-function} 
  AnotherProtocol 

    {...}) 

extend takes a datatype name followed by any number of protocol/method map pairs. A method 
map is an ordinary map from method names, given as keywords, to their implementations. The 
implementations can be anonymous functions created with fn or symbols naming existing functions. 

Because extend is an ordinary function, all its arguments are evaluated. This means you could store 
a method map in a Var and reuse it to extend several datatypes, providing functionality very similar to 
mix-ins. 

(def defaults 
     {:method-one (fn [x y] ...) 
      :method-two (fn [] ...)}) 
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(extend DefaultType 
  SomeProtocol 
    defaults) 
(extend AnotherType 
  SomeProtocol 

    (assoc defaults :method-two (fn ...))) 

There are two convenience macros that simplify the extension syntax, extend-type and 
extend-protocol. Use extend-type when you want to implement several protocols for the same datatype; 
use extend-protocol when you want to implement the same protocol for several datatypes. 

(extend-type DatatypeName 
  SomeProtocol 
    (method-one [x] ... method body ...) 
    (method-two [x] ...) 
  AnotherProtocol 
    (method-three [x] ...)) 
 
(extend-protocol SomeProtocol 
  SomeDatatype 
     (method-one [x] ...) 
     (method-two [x y] ...) 
  AnotherType 
     (method-one [x] ...) 

     (method-two [x y] ...)) 

Methods added using extend and its associated macros are attached to the protocol, not the 
datatype itself.  This makes them more flexible (they work on standard Java classes, described in the 
following section) but slightly less efficient than methods embedded directly within defrecord. 

Extending Java Classes and Interfaces 

Datatypes and protocols are a powerful abstraction, but often you have to deal with Java classes for 
which you do not have the source code. Java does not provide a way to add new interfaces to an existing 
class (known as interface injection), but Clojure protocols can be extended to support existing Java 
classes. 

extend, extend-type, and extend-protocol all accept Java classes as “types.” This works on 
interfaces, too. You can write (extend-type SomeInterface...) to extend a protocol to all classes that 
implement SomeInterface. This opens up the possibility of multiple inheritance of implementation, 
because a class can implement more than one interface; the result is currently undefined and should be 
avoided. 

Reifying Anonymous Datatypes 
Sometimes you need an object that implements certain protocols or interfaces, but you do not want to 
create a named datatype. Clojure 1.2 supports this with the reify macro: 

(reify 
  SomeProtocol 
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    (method-one [] ...) 
    (method-two [y] ...) 
  AnotherProtocol 

    (method-three [] ...)) 

reify's syntax is very similar to defrecord without the fields vector. Also, like defrecord, reify can 
extend methods of Java interfaces and java.lang.Object. 

Unlike defrecord, the method bodies of reify are lexical closures, like anonymous functions created 
with fn, so they can capture local variables: 

user> (def thing (let [s "Capture me!"] 
                    (reify java.lang.Object 
                       (toString [] s)))) 
#'user/thing 
user> (str thing) 

"Capture me!" 

Many situations that formerly required the use of proxy can be handled with reify.  In those cases, 
reify will be faster and simpler than proxy. However, reify is limited to implementing interfaces; it 
cannot override base class methods like proxy. 

Conceptually, reify fills the same role as anonymous inner classes in Java. 

Working with Datatypes and Protocols 
Datatypes and protocols are a significant new feature in Clojure, and they will have a major impact on 
how most Clojure programs are written. Standards and best practices are still developing, but a few 
guidelines have emerged: 

• Prefer reify to proxy unless you need to override base class methods. 

• Prefer defrecord to gen-class unless you need gen-class features for Java 
interoperability. 

• Prefer defrecord to defstruct in all cases. 

• Specify your abstractions as protocols, not interfaces. 

• Prefer protocols to multimethods for the case of single-argument type-based 
dispatch. 

• Add type hints only where necessary for disambiguation or performance (Chapter 
14); most types will be inferred automatically. 

Datatypes and protocols do not remove any existing features: defstruct, gen-class, proxy, and 
multimethods are all still there. Only defstruct is likely to be deprecated. 

The major difference between Java classes and protocols/datatypes is the lack of inheritance. The 
protocol extension mechanism is designed to enable method reuse without concrete inheritance and its 
associated problems. 
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A Complete Example 

Here's a version of the classic “payroll” example using protocols and datatypes. Your payroll system will 
have one method that calculates employees' monthly paychecks based on how many hours they work: 

(defprotocol Payroll 

  (paycheck [emp hrs])) 

Then there are two kinds of employees: “hourly” employees who are paid by the hour and “salaried” 
employees who are paid a fixed portion of their annual salary each month, regardless of how many 
hours they work: 

(defrecord HourlyEmployee [name rate] 
  Payroll 
  (paycheck [hrs] (* rate hrs))) 
 
(defrecord SalariedEmployee [name salary] 
  Payroll 

  (paycheck [hrs] (/ salary 12.0))) 

Notice that you have not defined an IS-A relationship. There is no “Employee” base type; none is 
needed.  All you have said is: these two types exist, and both support the paycheck method of Payroll. 

Now you can define a couple of employees and calculate their paychecks: 

user=> (def emp1 (HourlyEmployee. "Devin" 12)) 
user=> (def emp2 (SalariedEmployee. "Casey" 30000)) 
user=> (paycheck emp1 105) 
1260 
user=> (paycheck emp2 120) 

2500.0 

You might also need to send paychecks to contractors: in that case, the contractor's payment is 
specified before they start working. This could be another datatype, but you can also implement it using 
reify: 

(defn contract [amount] 

  (reify Payroll (paycheck [hrs] amount))) 

As shown in the following example: 

user=> (def con1 (contract 5000)) 
user=> (paycheck con1 80) 

5000 

Advanced Datatypes 
Datatypes defined with defrecord are useful for storing structured data, but fundamentally they always 
act like maps.  If you want to define a completely new type, one that doesn't behave like a map, use the 
deftype macro instead.  deftype is a “lower-level” version of defrecord. 
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(deftype name [fields...] 
  SomeProtocol 
    (some-method [this x y] ...) 
  SomeInterface 

    (aMethod [this] ...)) 

The syntax is the same as defrecord, but deftype will not create any default method 
implementations for you.  You must suppply all the method implementations, even standard Object 
methods such as equals and hashCode. deftype creates a “bare” Java class; it is intended to allow the 
redefinition of core data structures, such as vectors or maps, in Clojure itself. 

Summary 
Datatypes and protocols are two of the most exciting new features planned for Clojure 1.2. They provide 
a powerful solution to many of the same problems that object-oriented programming was intended to 
solve, but without the baggage of implementation inheritance. In fact, datatypes and protocols bear a 
remarkable similarity to early research in object-oriented design. They elegantly handle the problem of 
adding new functions to existing types, sometimes called the “expression problem.” Because they are 
built on the Java platform's heavily-optimized method dispatch, they also provide excellent 
performance. 
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Performance 

In principle, Clojure can be just as fast as Java: both are compiled to Java bytecode instructions, which 
are executed by a Java Virtual Machine.  Clojure's design is careful to avoid features—such as 
continuations or a Common Lisp-like condition system—that would severely compromise performance 
on the JVM. But Clojure is still a young language, and has not had the benefit of hundreds of thousands 
of programmer-hours spent optimizing the compiler. As a result, Clojure code will generally run slower 
than equivalent Java code. However, with some minor adjustments, Clojure performance can usually be 
brought near Java performance. Don't forget that Java is always available as a fallback for performance-
critical sections of code. 

Profiling on the JVM 
The number one rule when evaluating performance of any programming language or algorithm is: test! 
Do not assume that one technique will necessarily be faster because it appears to have fewer steps or use 
fewer variables. This is especially true on modern JVMs such as Hotspot, which constantly measure code 
performance and dynamically recompile critical sections while your application is running. 

So-called microbenchmarks that measure a single operation in isolation are meaningless in this 
environment. Also meaningless are benchmarks where the start-up time of the JVM dominates the 
measurement (this is a frequent error in comparisons between Java and C++). Modern JVMs are typically 
optimized for throughput, maximizing the total number of operations that can be performed over a long 
period of time. 

General Tips for Java Performance 

Java Virtual Machines have a number of options that affect performance. First, for JVMs that distinguish 
between “client” and “server” modes, the “server” mode will always offer better overall performance (at 
the expense of longer start-up time). 

Second, the size of the Java heap space and the choice of garbage collection strategy impact 
performance. This is especially true for Clojure, which because of its use of immutable data, tends to use 
more heap space and put more stress on the garbage collector than Java. 

There are many more tuning parameters in modern JVMs that can affect performance. Make sure 
you are familiar with the “knobs” offered by your VM and experiment to see how they affect your 
particular application. 
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Simple Profiling with Time 

Clojure has a very simple profiling tool built-in, the time macro. time takes a single expression, evaluates 
it, and prints how long it took in milliseconds: 

user=> (time (reduce + (range 100))) 
"Elapsed time: 1.005 msecs" 

4950 

As previously noted, such microbenchmarks are all but meaningless in the context of the JVM. A 
slightly better measurement can be obtained by repeating the same calculation thousands of times in a 
tight loop: 

user=> (time (dotimes [i 100000] 
               (reduce + (range 100)))) 
"Elapsed time: 252.594 msecs" 

nil 

However, this still does not present the whole picture, as the JVM might reoptimize the calculation 
between executions of the loop. A more accurate result can be obtained by repeating the loop several 
times: 

user=> (dotimes [j 5] 
         (time (dotimes [i 100000] 
                 (reduce + (range 100))))) 
"Elapsed time: 355.759 msecs" 
"Elapsed time: 239.404 msecs" 
"Elapsed time: 217.362 msecs" 
"Elapsed time: 221.168 msecs" 

"Elapsed time: 217.753 msecs" 

As you can see, in this example, the time bounces around for a couple of iterations before converging 
around 220 milliseconds. This pattern is typical of the JVM. 

However, even with this information, you cannot predict exactly how the calculation 
(reduce + (range 100)) will perform in the context of a large application. Only further testing will tell. 

Also, be aware of the impact of lazy sequences. If the expression you are testing uses lazy sequences 
(for example, using map), the time macro may only report the time to initialize the sequence. To measure 
the time to realize the entire sequence, you must use doall, which can be difficult to do in a complex 
data structure and is probably not representative of how the structure will actually be used. 

Using Java Profiling Tools 

Since Clojure compiles to Java bytecode, Java profiling tools will work on Clojure, but a discussion of 
such tools is outside the scope of this book. 

The best rule-of-thumb is this: write your code in the simplest, most direct way possible, then test to 
see if it meets your performance expectations. If it does not, use profiling tools to identify the critical 
sections that matter most to performance, and tweak or rewrite those sections until they meet your 
performance goals. The following pages describe some techniques for optimizing critical sections of 
Clojure code. 
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Memoization 
One simple technique for speeding up large, complex functions is memoization, which is a form of 
caching. Each time it is called, a memoized function will store its return value in a table, along with the 
input arguments. If that function is called again with the same arguments, it can return the value stored 
in the table without repeating the calculation. 

Clojure has built-in support for memoization with the memoize function, which takes a function as 
its argument and returns a memoized version of that function. 

(defn really-slow-function [x y z] ...) 

(def faster-function (memoize really-slow-function)) 

Memoization is a classic example of trading increased memory usage for faster execution time. If a 
function takes longer to calculate its result than a hash table lookup, and it will be called frequently with 
the same inputs, it is a good candidate for memoization. Only pure functions—that is, functions that 
always return the same output for a particular input—can be memoized. 

Reflection and Type Hints 
As you know, Java is a statically typed language: it knows the types of all objects at compile time. Clojure 
is dynamically typed, meaning the types of some objects may not be known until runtime. 

To implement dynamically-typed function calls on top of statically-typed Java, Clojure uses a Java 
feature called reflection. Reflection allows code to inspect Java classes at runtime and call methods by 
name. However, reflective method calls are much slower than compiled method calls. 

Clojure allows you to add type hints to symbols and expressions to help the compiler avoid reflective 
method calls. Type hints are indicated through read-time metadata (see Chapter 8) using the :tag 
keyword. A type-hinted symbol would be written as #^{:tag hint} symbol, this is usually abbreviated as 
#^hint symbol. The type hint is a Java class name. (The class name may also be a string, which is only 
rarely needed to handle obscure Java interoperability problems.) 

To find out whether a method call is reflective or not, set the compiler flag *warn-on-reflection* to 
true. After that, evaluating any code that contains a reflective call will cause the Clojure compiler to print 
a warning message. 

user=> (set! *warn-on-reflection* true) 
true 
user=> (defn nth-char [s n] 
         (.charAt s n)) 

Reflection warning - call to charAt can't be resolved. 

The warning can usually be eliminated by adding a type hint to the symbol on which you are calling the 
method. This works for both function parameters and locals bound with let. 

;; No reflection warnings: 
user=> (defn nth-char [#^String s n] 
         (.charAt s n)) 
#'user/nth-char 
user=> (defn nth-char [s n] 
         (let [#^String st s] 
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           (.charAt st n))) 

#'user/nth-char 

In the case of Java methods overloaded on different argument types, further type hints may be 
needed. For example, the String.replace method accepts either char or CharSequence arguments. You 
have to type hint all three arguments to avoid reflection. 

user=> (defn str-replace [#^String s a b] 
         (.replace s a b)) 
Reflection warning - call to replace can't be resolved. 
#'user/str-replace 
user=> (defn str-replace [#^String s 
                          #^CharSequence a 
                          #^CharSequence b] 
         (.replace s a b)) 

#'user/str-replace 

Note that type hints are not type coercions, they cannot convert one type into another. Calling a 
type-hinted method with the wrong types will result in a runtime error: 

user=> (str-replace "Hello" \H \J) 
java.lang.ClassCastException: java.lang.Character cannot 

be cast to java.lang.CharSequence 

Also, note that incorrect type hints will cause a reflection warning: 

user=> (defn str-replace [#^String s #^Integer a #^Integer b] 
         (.replace s a b)) 
Reflection warning - call to replace can't be resolved. 

#'user/str-replace 

You can type-hint the return value of a function by adding a type tag to its Var when it is defined. 
This works for any Var, such as those used as global values. 

user=> (defn greeting [] "Hello, World!")  ;; no type hint 
#'user/greeting 
user=> (.length (greeting)) 
Reflection warning - reference to field length can't be resolved. 
13 
user=> (defn #^String greeting [] "Hello, World!") 
#'user/greeting 
user=> (.length (greeting))  ;; no reflection warning 
13 

user=> (defn greeting {:tag String} [] "Hello, World!") ;; same as above 

In rare cases, type hinting symbols will not be sufficient to avoid reflection. In that case, you can 
type-hint an entire expression: 

user=> (.length (identity "Hello, World!")) 
Reflection warning - reference to field length can't be resolved. 
13 
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user=> (.length #^String (identity "Hello, World!")) 

13 

The Clojure compiler is pretty clever about tracking the types of objects. For example, the return 
types of Java methods are always known and never need to be hinted. Given just a few hints, the 
compiler can usually infer most of the other type information it needs. In general, you should write your 
code first without any type hints, then set *warn-on-reflection* and add them only where necessary for 
performance. 

Working with Primitives 
Java's type system is not 100% object-oriented; it supports the primitive types boolean, char, byte, short, 
int, long, float, and double. These primitive types do not fit into the standard Java class hierarchy. 
When used with methods that expect an Object, primitives must be boxed in the classes Boolean, 
Character, Byte, Short, Integer, Long, Float, and Double. Starting with Java 1.5, the Java compiler 
automatically boxes and unboxes primitives as needed. 

In Clojure, everything is an Object, so numbers are always boxed. This can be seen by inspecting the 
results of simple arithmetic: 

user=> (class (+ 1 1)) 

java.lang.Integer 

However, in the JVM, operations on boxed numbers are slower than operations on unboxed 
primitives. So for math-intensive applications, Clojure code with boxed numbers will be slower than 
Java code that works directly with primitives. 

Loop Primitives 

Clojure supports primitive types where it matters most: in the body of a loop. In the bindings vector of 
loop (or let) you can coerce values to primitive types with the functions boolean, char, byte, short, int, 
float, and double. Here is an example of Euclid's algorithm for computing the greatest common 
denominator of two integers: 

(defn gcd [a b] 
  (loop [a (int a), b (int b)] 
    (cond (zero? a) b 
          (zero? b) a 
          (> a b) (recur (- a b) b) 

          :else (recur a (- b a))))) 

The primitive coercions to int happen in the initialization vector of the loop. This version is about 
twelve times faster than the non-primitive version. But, be careful! Suppose you had chosen to 
implement the same algorithm using the mod (modulo) function. That code would be slower using 
primitives, because arguments to Clojure functions (except arithmetic) are always boxed. Therefore, 
when using loop primitives, you should only call the following primitive-aware functions: 

• Arithmetic functions +, -, *, and / 

• Comparison functions ==, <, >, <=, and >= 
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• Predicate functions pos?, neg?, and zero? 

• Java methods with primitive argument and return types 

• Unchecked arithmetic functions (described in the following section) 

Notice that the general-purpose = function is not on this list. Instead, use the == function, which 
only works on numbers. Full primitive support for all Clojure functions, including user-defined 
functions, is planned for a future release. 

Numeric literals must also be coerced to primitive types to use primitive operations. For example, 
the following code computes the sum of the integers from 1 to 100: 

(let [max (int 100)] 
  (loop [sum (int 0) 
         i (int 1)] 
    (if (> i max) 
      sum 

      (recur (+ sum i) (inc i))))) 

The initial values of the loop variables sum and i must be coerced into primitives with int. The primitive 
coercion of max is outside the loop because it only needs to be done once. If you used the literal number 
100 instead of the local variable max, the code would still work, but it would not be quite as fast. 

Unchecked Integer Arithmetic 

Clojure's primitive arithmetic operations are defined to be safe, meaning they will throw an error if the 
result of an operation is too big for the result type. For example, this loop, designed to calculate 2^64, 
throws an exception: 

user=> (let [max (int 64) 
             two (int 2)] 
         (loop [total (int 1), n (int 0)] 
           (if (== n max) 
               total 
             (recur (* total two) (inc n))))) 

java.lang.ArithmeticException: integer overflow 

However, there are certain algorithms (such as hashing) where the silent overflow behavior of 
integer arithmetic is desirable. For these cases, Clojure provides a set of functions that perform integer 
arithmetic exactly like Java's arithmetic operators. They all accept Integer or Long arguments, and are 
primitive-aware. 

The following functions are subject to integer overflow: unchecked-add, unchecked-subtract, 
unchecked-multiply, unchecked-negate, unchecked-inc, and unchecked-dec.  

user=> (unchecked-inc Integer/MAX_VALUE) 
-2147483648 
user=> (unchecked-negate Integer/MIN_VALUE) 

-2147483648 

The unchecked-divide and unchecked-remainder functions are subject to lossy truncation.   
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user=> (unchecked-divide 403 100) 

4 

The unchecked operations will be slightly faster than the standard arithmetic functions when used 
with loop primitives. However, make certain you can accept the loss of safety before switching to 
unchecked arithmetic. 

Primitive Arrays 

Starting with Clojure 1.1, you can type-hint arrays of primitives: Java boolean[], char[], byte[], short[], 
int[], long[], float[], and double[] can be hinted as #^booleans, #^chars, #^bytes, #^shorts, #^ints, 
#^longs, #^floats, and #^doubles, respectively. (There is also #^objects for Object[].) 

Type-hinted arrays support primitive operations using aget and aset. There is no need to use the 
type-specific setter functions such as aset-int and aset-double; in fact, those functions will be slower 
than aset for type-hinted primitive arrays. For aset, the new value must also be the correct primitive 
type. For both aget and aset, the array index must be a primitive int. The amap and areduce macros 
(described in Chapter 10) are an excellent way to perform fast operations on primitive arrays while 
retaining a functional style. 

Transients 
As you know by now, all of Clojure's built-in data structures are immutable and persistent to ensure safe 
concurrent access from multiple threads. But what if you have a data structure that you know will only 
be used by a single thread? Should you still have to pay the immutable/persistent performance penalty? 
Clojure's answer is: No! 

Clojure 1.1 introduced transients, temporary mutable data structures, as a performance 
optimization. They are useful when you are building up a large data structure through a series of steps. 

The key feature of transients is that they do not change the functional style of your code. 
Importantly, they do not give you a truly mutable data structure (like Java's collection classes) that you 
can bash at with imperative code. The mutable nature of transients is largely an implementation detail. 

Transients are best explained by an example. The following code creates a map from ASCII 
characters to their decimal values: 

(loop [m {}, i 0] 
  (if (> i 127) 
    m 

    (recur (assoc m (char i) i) (inc i)))) 

Here is the same loop using transients: 

(loop [m (transient {}), i 0] 
  (if (> i 127) 
    (persistent! m) 

    (recur (assoc! m (char i) i) (inc i)))) 

Notice that very little changes. This example shows the three code modifications required to use 
transients: 
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1. Initialize a transient version of the data structure with the transient function. 
Vectors, hash maps, and hash sets are supported. 

2. Replace all uses of conj, assoc, dissoc, disj, and pop with their transient 
versions: conj!, assoc!, dissoc!, disj!, and pop!. 

3. Call persistent! on the result to return a normal persistent data structure. 

One important feature of transients is that the transient and persistent! functions run in constant 
time, regardless of the size of the input. Therefore, it is very efficient to call transient on a large data 
structure, manipulate it using transient-specific functions, and then call persistent! before returning 
the structure. 

Remember, transients are not mutable data structures like Java collections. Just like persistent data 
structures, you must use the return value of any function that modifies the structure. The following 
imperative-style code will not work: 

;; bad code! 
(let [m (transient {})] 
  (dotimes [i 127] 
    (assoc! m (char i) i)) 

  (persistent! m)) 

The dotimes macro creates an imperative loop; on each iteration, the return value of assoc! is discarded. 
The exact results of this code are unpredictable, but always wrong. 

Generally, transients are used within a single function or loop/recur block. They can be passed 
around to other functions, but they impose several restrictions: 

• Thread isolation is enforced. Accessing the transient structure from another 
thread will throw an exception. 

• After calling persistent!, the transient version of the structure is gone. 
Attempts to access it will throw an exception. 

• Intermediate versions of the transient structure cannot be stored or used; 
only the latest version is available (unlike persistent data structures). 

The advantage to transients is that their modifying operations are much faster than those of 
persistent data structures. In general, anywhere you are building up a large data structure recursively, 
transients will offer a performance boost. But use of transients should almost always be limited to the 
body of a single function, not spread across different sections of code. 

Var Lookups 
Every time you use a Var, Clojure has to look up the Var's value. If you are repeatedly using the same Var 
in a loop, those lookups can slow down the code. To avoid this performance penalty, use let to bind the 
Var's value to a local for the duration of the loop, as in this example: 

(def *var* 100) 
(let [value *var*] 

  ... loop using value instead of *var* ...) 
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Use this technique with caution: it does not always yield a performance improvement and may 
become unnecessary in a future Clojure release. 

Inlining 
Inlining—replacing a function call with the compiled body of the function—is a common optimization 
technique in compilers. The Hotspot JVM does extensive inlining of performance-critical code. 

Clojure automatically inlines operations on primitives. However, arithmetic functions that take a 
variable number of arguments, such as +, will only be inlined in the two-argument case. That means this 
code: 

(+ a b c d) 

will be faster when written as: 

(+ a (+ b (+ c d))) 

especially when the values involved are primitives. This may also become unnecessary in a future 
release. 

Macros and definline 

In a sense, macros are a kind of inlining, because they are expanded at compile time. However, macros 
cannot be used as arguments to higher-order functions like map and reduce. 

As an alternative, Clojure offers the definline form.  definline looks, and works, like defmacro: its 
body should return a data structure representing the code to be compiled. Unlike defmacro, it creates a 
real function that can be used anywhere a normal function can. Here's an example. 

;; a normal function: 
(defn square [x] (* x x)) 
;; an inlined function: 

(definline square2 [x] `(* ~x ~x)) 

definline is labeled “experimental” in Clojure. It exists primarily to work around the problem that 
functions cannot receive primitive arguments or return primitive values. When that feature is added, the 
JVM will do the inlining for you and definline will be  unnecessary. 

Summary 
As Donald Knuth famously said, “Premature optimization is the root of all evil.” The key word is 
premature. Trying to optimize a function before you have tested it is pointless. Trying to optimize an 
application before you have identified the performance-critical sections is worse than useless. In a just-
in-time compiled, self-optimizing runtime such as the JVM, the situation is even more precarious, 
because it is difficult to look at a piece of code and predict how fast it will run. 

The best approach is to step back and consider performance from two different angles. First, high-
level performance considerations, such as avoiding bottlenecks or unnecessary I/O, should be  
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considered during the design phase of an application. Low-level performance optimizations should be 
postponed until after the first draft of the code, when performance-critical sections can be identified 
through profiling. 

Clojure provides many tools to optimize code without sacrificing its functional style. When those 
tools are insufficient, you can always fall back on imperative programming techniques, either in Clojure 
code (using arrays) or by writing Java code and calling it from Clojure. 

 



 

199 

Index 

̈ Symbols 

+ (addition) function, 53 
` (backquote) character, 171 
\ (backslash character), 57 
{} (curly braces), 66, 71 
[] (square brackets), 64 
# character, 33, 71, 172 
#() function syntac, 145 
#^ reader macro, 129–130 
. (dot) special form, 143, 145 
@ symbol, 98, 104 
^ reader macro, 129 
~@ (splicing unquote), 171 
= function, 194 
== function, 56, 194 

̈ A 

abstraction 
datatypes and, 181 
macros and, 168 
protocols and, 181 

AbstractMethodError, 183 
accessor function, 68 
aclone function, 148 
action functions, 106–107 
addition function (+), 53 
add-watch function, 112 
agent function, 105 
agent thread pools, 159–160 
agent-based processing, 1 
agent-error function, 107 
agents, 97, 159–161 

about, 105 
asynchronous, 105–109 
creating and updating, 105–106 
errors and, 107 
failure modes, 107 
in failed state, 107–108 

shutting down, 108 
update semantics, 106 
waiting for, 108 
when to use, 109 

aget function, 148, 195 
ahead-of-time (AOT) compilation, 152–154 
alength function, 148 
alias function, 117 
aliases, 117 
all-ns function, 124 
alter function, 100 
alter-meta! function, 131 
amap macro, 148 
ancestors function, 139 
and macro, 60 
anonymous inner classes, 185 
apply function, 93 
areduce macro, 148 
arguments 

functions with multiple, 31 
functions with variable, 32 

arithmetic functions, 193–195 
arities, 31–32, 182–183 
array maps, 67 
arrays 

Java, 146–148 
creating, 147 
iterating over, 148 
manipulating, 148 

primitive, 195 
artificial intelligence, 45 
aset function, 148, 195 
aset-boolean function, 148 
aset-byte function, 148 
aset-char function, 148 
aset-double function, 148, 195 
aset-float function, 148 
aset-int function, 148, 195 
aset-long function, 148 
aset-short function, 148 
:as keyword, 26 



̈ INDEX 

200 

association function (assoc), 66, 69, 181 
asynchronous agents, 105–109 
asynchronous updates, 97 
atom function, 104 
atoms, 97, 104–105 
attack multimethod, 134 
:author metadata, 122 
auto gensym, 172 
await function, 108 
await-for function, 108 

̈ B 

backquote (`) character, 171 
backquote ` reader macro, 123 
backslash character ( \), 57 
base case, 36 
base condition, 36 
binary class name, 120 
binding form, 109–110 
binding vector, 35 
Boolean functions, 60 
Boolean values, 60–61 
boxed numbers, 193 
built-in functions, 116, 142 
built-in types, 51, 145 
bytecode, 152 

̈ C 

cached values, 105 
char argument, 192 
char array, 151 
character coercion function (char), 61 
characters, 61 
characters method, 151 
CharSequence argument, 192 
Church, Alonzo, 4 
classes, 10 

anonymous inner, 185 
creating Java, 150–157 
datatypes as, 183 
extending Java, 184 
hierarchies and, 136–138 
in object-oriented languages, 133 
See also Java classes; specific classes 

Classloaders, 149 
classpaths, 26 

configuring, in AOT compulation, 153 
loading namespaces from, 118–119 

loading resources from, 118 
Clojure 

code, loading, 149, 168 
as dynamically typed language, 51 
environment, 17–27 
calling from Java, 148–150 
calling Java from, 143–148 
features, 1 
flexibility of, 11 
as functional language,  2–9 
immutable data structures and, 7–9 
JVM and, 2 
Lisp and, 1 
loading, 17 
as next-generation language, 1, 9 
object-oriented programming and, 9–10 
popularity of, 1 
program structure, 10–14 
starting, 17 

Clojure 1.2, 179 
Clojure source code, 168 
Clojure types. See datatypes 
clojure.core namespace, 116, 121 
clojure.lang.Compile class, 153 
clojure.lang.Reversible interface, 182 
clojure.lang.RT class, 149 
clojure.lang.Seqable interface, 182 
clojure.set/difference function, 72 
clojure.set/intersection function, 72 
clojure.set/union function, 72 
clojure.walk library, 176 
clojure.xml namespace, 26 
CLOS (Common Lisp Object System), 11 
closures, 46 
code 

dynamically compiled, 152 
functional, 5–6 
loading and evaluating Clojure, 149, 168 
vs. data, 167 

code abstraction, 9 
code compilation, 152 

ahead-of-time, 152–154 
just-in-time, 152 

code encapsulation, pure functions and, 5 
code templating, 171 
coercions, 192 
collection functions, metadata preservation 

and, 128 
collections datatypes, 62–72 

lists, 63–64 
maps, 66–71 



 ̈ INDEX 

201 

properties of, 62 
sets, 71–72 
vectors, 64,–66 

comma character, 66 
command-line programs, 156–157 
Common Lisp Object System (CLOS), 11 
commutative functions, 101 
commute function, 14, 100–101 
comp function, 47–48 
compare function, 182 
comparison functions, 193 
Compile class, 153 
compile function, 153 
*compile-path* Var, 153 
Compiler.eval method, 149 
composing functions, 47–48 
composite forms, 19 
concat function, 87 
concurrency, 12, 159–166 

agents and, 105, 109, 159, 161 
futures and, 163–164 
Java-based threading, 165–166 
promises and, 164–165 

concurrency functions, 161–163 
cond form, 34–35 
conditional expressions, 34–35 
conditional logic, 48 
conditionals, 134 
conjoin function (conj), 65, 70, 76–77 
cons function, 76–77, 87 
constructors, adding to generated classes, 

155 
:constructors option, gen-class marco, 155 
contains function (contains?), 71 
:continue mode, 107 
control structures, 173–174 
coordinated state, 97 
create-ns function, 125 
curly braces {}, 66, 71 
currying, 46–47 
cycle function, 88 

̈ D 

data, 51–72 
vs. code, 167 

data structures, 168 
immutable, 7–9 
Java interfaces and, 145–146 
persistence of, 7 

transients, 195–196 
datatypes, 51, 180–183 

advanced, 186 
built-in, 51 
as classes, 183 
collections, 62–72 

lists, 63–64 
maps, 66–71 
properties of, 62 
sets, 71–72 
vectors, 64–66 

extending protocols to preexisting, 183–184 
in-line methods, 181 
Java interfaces and, 145–146, 182–183 
Java types, 51 
reifying anonymous, 184–185 
primitive types, 52–62 

Boolean values, 60–61 
characters, 61 
keywords, 61 
numbers, 52–57 
strings, 57–60 

state and, 96 
working with, 185–186 

deadlocks, 14 
debugging, macros, 170 
decimal numbers, 53 
declare macro, 122 
decrement function (dec), 55 
:default keyword, 135 
def form, 21, 125, 129, 173 
definline form, 197 
defmacro form, 129–130, 169 
defmethod function, 133 
defmulti function, 133, 142 
defn form, 31, 129–130, 173 
defn- macro, 124, 131 
defprotocol function, 179–180 
defrecord function, 180,–185 
defstruct function, 68, 185 
deftype macro, 186 
deleting namespaces, 126 
deliver function, 165 
dependencies, order of, 22 
deref function, 98, 104 
dereferencing, 98–99 
derive function, 136, 142 
descendants function, 139 
difference function, 72 
disassociation function (dissoc), 69 
dispatch function, 133–134 



̈ INDEX 

202 

dispatch values, 133 
default, 135 
specifying order of, 140 

dissoc function, 181 
distinct function, 85 
division function (/), 54 
do special form, 42 
doall function, 95, 162, 190 
doc function, 31 
:doc metadata, 122 
doc-strings, 31 
Domain Specific Languages (DSLs), 2, 177–178 
dorun function, 94–95 
dosync macro, 99 
dotimes macro, 196 
dot (.) special form, 143, 145 
double-array function, 147 
double-quotes, 57 
drop function, 89 
drop-last function, 90 
drop-while function, 89 
dynamically typed languages, 51, 191 
dynamically-compiled code, 152 

̈ E 

Eclipse, 26 
else keyword, 34 
empty? function, 93 
encapsulation, 10 
Enclojure, 177 
encounter multimethod, 135, 138 
end function, 159 
ensure function, 101 
equality semantics, 62 
equals function (==), 56, 194 
error-handler function, 107 
error-mode function, 107 
errors, agents and, 107 
eval function, 144, 149 
every? function, 94 
:exclude option, 116 
execution tree, in functional programming, 6 
expansions, 175 
explicitly managed state, 95 
exponents, calculating, 38 
:exposes method, 156 
:exposes-methods options, gen-class macro, 

156 
extend function, 183–184 

extend-protocol function, 184 
extends argument, gen-class macro, 154 
extend-type function, 184 
extract-text function, 151 

̈ F 

factories, adding to generated classes, 155 
:factory option, gen-class macro, 155 
:fail mode, 107 
failure state, agents in, 107–108 
file names, vs. namespace names, 118 
filter function, 85 
filters, 116 
find-ns function, 124 
first function, 73, 92 
first-class functions, 29, 43–45 

consuming, 44– 45 
producing, 45 

flags, 119 
float-array function, 147 
floating-point decimals, 52–53 
fn special form, 29–30 
forms, 18–20 

composite, 19 
evaluating individual, 26 
literals, 18 
quoted, 168 
special, 19 
symbols, 19 
See also specific forms 

forward declarations, 122 
fully-qualified names, 25 
function calls, lists evaluated as, 19 
function composition, 3–4, 47–48 
function definitions, 43 
functional code, 5–6 
functional programming, 2–9 

closures, 46 
currying, 46–47 
first-class functions, 43–45 
function composition, 47–48 
immutability and, 7–9 
imperative programming and, 4 
program structure, 4 
pure functions, 4–6 
techniques, 43–48 

functions, 29–34 
binding to symbols, 31 
Boolean, 60 
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functions (cont.) 
built-in, 116, 142 
collection, 128 
communtative, 101 
comparison, 193 
composing, 47–48 
concurrency, 161–163 
currying, 46– 47 
defined, 3 
defining 

with defn, 31 
with fn, 29–30 

dynamically generating, 45 
first-class, 29, 43–45 
higher-order, 44 
list, 63 
map, 69–71 
of multiple arities, 31–32 
nested, 3 
non-pure, 5 
numeric, 53–57 
pure, 4–6 
regular expression, 58–60 
sequence, 73–95 
sequence generator, 81 
set, 72 
shorthand form of declaring, 33–34 
string, 57–58 
symbols and, 30 
with variable arguments, 32 
vector, 64–66 
See also specific functions 

future macro, 163–164 
future? function, 164 
future-call function, 164 
future-cancel function, 164 
future-cancelled function, 164 
future-done function, 164 
futures, 163–164 

̈ G 

garbage collection, 15 
gen-class macro, 151–156, 185 
generated classes 

adding contructors and factories,  
55 

adding methods to, 155 
adding state to, 154 
defining methods for, 154 

exposing superclass members, 156 
loading implementation, 156 

generic types, 146 
get function (get), 65, 70 
get-val function, 110 
global environment, 21–22 
global hierarchy, 136–137, 142 
global symbols, 23–24 
global variables, 24 
greater-than function (<), 56 
greater-than-or-equals function (<=), 56 

̈ H 

hash maps, 8, 67 
hashed sets, 8 
Haskell, 6 
Hello World program, 17–21 
hexadecimal notation, 52 
Hickey, Rich, 11 
hierarchies 

about, 136 
conflict resolution and, 139–140 
global hierarchy, 142 
independent, 141–142 
inheritance and, 136 
with Java classes, 138 
with multimethods, 137–141 
querying, 137–139 
user-defined, 141–142 

:hierarchy argument, 142 
higher-order functions, 44 
homoiconicity, 167–168 
Hotspot, 189 
hot-swapping, 126 
hyphens (-), 118 

̈ I 

identities 
independent, 97 
keeping track of, 111–113 
synchronous vs. asynchronous updates, 97 
state and, 96– 97 
updates to, 97 

if form, 34 
if-not form, 34 
immutability, 7–9 
immutable data structures, 7–9 
imperative languages, 2–3 
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imperative programming, 3–4 
:implements argument, gen-class macro, 154 
:impl-ns argument, gen-class macro, 154 
import function, 120 
Incanter, 177 
increment function (inc), 55, 162 
independent hierarchies, 141–142 
independent state, 97 
indexes, 64 
infinite sequences, 81 
infix macro, 171 
inheritance, 9 

hierarchies and, 136 
multiple, 133, 136 
protocols/datatypes and, 180, 185 

:init function, 155 
in-line methods, 181 
inlining, 197 
inner classes, 120 
in-ns function, 115–116, 121, 124–125 
int-array function, 147 
integers, 52–53 
interface injection, 184 
interfaces 

extending, 184 
protocols as, 180 

interleave function, 88 
intern function, 125 
interning Vars, 125 
interpose function, 88 
intersection function, 72 
into-array function, 147 
invert multimethod, 139 
IS-A relationships, 133 
isa? function, 137–138 
iterate function, 84 
iteration, over arrays, 148 

̈ J 

Java 
calling Clojure from, 148–150 
calling from Clojure, 143–148 
libraries, 38, 143 
objects, 7 
profiling tools, 190 
types, 51 

Java API, 148 
Java arrays, 146–148 

creating, 147 

iterating over, 148 
manipulating, 148 
as sequences, 75 

Java bytecode, 152 
Java classes 

creating, 150–157 
extending, 184 
generating command-line programs, 156 
hierarchies with, 138 
importing, 120 
loading implementation, 156 
proxying, 150–151 

Java Classloaders, 149 
Java collections, as sequences, 75 
Java generics, 146 
Java interfaces 

Clojure types and, 145–146 
extending, 182–184 

Java interoperability, 143–157 
calling Clojure from Java, 148–150 
calling Java from Clojure, 143–148 
convenience forms, 144–145 
special forms, 143–144 

Java Reflection API, 144 
Java Virtual Machine (JVM), 2, 152 

performance tips, 189 
profiling on, 189–190 

java.lang.IndexOutOfBounds exception, 64 
java.lang.Object, 182 
java.lang.Runnable interface, 165 
java.lang.String class, 57 
java.lang.Thread object, 165 
java.math.BigDecimal class, 53 
java.util.Collections framework, 62 
java.util.concurrent.atomic package, 104 
Java-based threading, 165–166 
just-in-time compilation, 152 

̈ K 

keys function (keys), 71, 83 
key-value pairs, 66 
keyword function (keyword), 61, 123 
keyword test function (keyword?), 62 
keywords, 61 

constructing, 123 
as map keys, 67 
namespaced, 61, 122–134 
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̈ L 

last function, 92 
lazy sequences, 77–83, 190 

constructing, 80–81 
example, 78–80 
memory management and, 82–83 

lazy-cat macro, 87 
lazy-seq macro, 80–81, 84 
less-than function (>), 56 
less-than-or-equals function (>=), 56 
let form, 35–36 
libraries, 143 
libspec argument, 119 
libspecs, 119 
linked lists, 8, 63 
Lisp programming language, 1, 19 
list function (list), 63, 169 
list literals, declaring, 63 
list test function (list?), 64 
lists, 19, 63–64 

as data structures, 63 
constructing recursively, 77 
linked, 63 

literal forms, 129 
literals, 18, 63 
load function, 118, 149 
load-file function, 117, 121 
:load-impl-ns false option, gen-class macro, 

156 
local bindings, 35–36 
local symbols, defining in macro, 172 
local-name argument, 117 
locking policies, 11 
locks, 95, 99 
long-array function, 147 
lookups, Var, 196 
loop primitives, 193–194 
loop special form, 41–42 
looping, 36–42 

̈ M 

macroexpand function, 170 
macroexpand-1 function, 170 
macros, 168–178 

about, 168–169 
code templating, 171 
creating, 169 
creating DSLs using, 177–178 

debugging, 170 
generating symbols, 172 
implementing control structures, 173–174 
implementing, using recursion, 176 
implementing, with variadic arguments, 

174–175 
inlining and, 197 
reader, 33 
splicing unquotes, 171 
using, 173–176 
when to use, 173 
working with, 169–170 

-main function, 157 
:main true option, gen-class macro, 156 
make-array function, 147 
make-hierarchy function, 141 
map association function (assoc), 69 
map disassociation function (dissoc), 69 
map functions, 69–71, 78–80, 92 
map keys, 67–68 
map keys function (keys), 71 
map merge function (merge), 70 
map test function (map?), 71 
mapcat function, 87 
mappings, removing from namespace, 125 
maps, 66–71, 180–181 

array, 67 
hash, 67 
key-value pairs, 66 
method, 183 
as objects, 69–71 
sorted, 67 
struct, 68–69 

mathematic operations, 53–57 
maximum function (max), 55 
memfn macro, 145 
memoization, 191 
memoize function, 105 
memory 

access to, 11 
management, 82–83 
software transactional memory (STM), 12–

15 
merge function (merge), 70 
merge-with function (merge-with), 70 
meta function, 127 
metadata, 127–131 

defined, 127 
metadata-perserving operations, 128 
namespace, 122 
reading and writing, 127–128 
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metadata (cont.) 
read-time, 129 
on reference types, 131 
on Vars, 129–131 

metalanguage, 167 
metaprogramming 

about, 167–168 
code vs. data, 167 
homoiconicity and, 167–168 

method implementations, 136 
method-one function, 179 
methods 

adding to generated classes, 155 
overloaded, 182 

methods maps, 183 
:methods option, gen-class macro, 155 
method-two function, 179 
microbenchmarks, 189 
minimum function (min), 55 
modularity, 9 
modularization, 9 
modulus function, 55 
move multimethod, 134, 141 
multimethods, 9, 35, 133–142, 185 

about, 133–136 
conflict resolution and, 139–140 
default dispatch values, 135–136 
global hierarchy and, 142 
hierarchies with, 137–141 
multiple dispatch, 135 

multiple dispatch, 133–135 
multiple inheritance, 133, 136 
multiple-arity methods, 150 
multiplication function (*), 46–47, 54 
multithreaded programs, 11 
my-ref Var, 98 

̈ N 

name argument, 144, 149 
:name argument, gen-class macro, 154 
name function, 123 
names 

fully-qualified, 25 
namespace names vs. file names, 118 

namespace function, 122–123 
namespace-name argument, 117 
namespace-qualified keywords, 61, 122–123, 

134 
namespace-qualified symbols, 122–123 

namespaces, 24–26 
about, 115 
advanced operations, 124–126 
basics of, 115–117 
common prefixes, 119 
declaring, 25–26, 115, 121, 156 
deleting, 126 
importing Java classes, 120 
loading, 117–120 

from file or stream, 117 
from the classpath, 118–119 
in one step, 120 

manipulating, 125–126 
metadata, 122 
names, vs. file names, 118 
naming conventions, 26 
querying, 124–125 
as references, 126 
referring 

in one step, 120 
to other, 116–117 

removing mapping from, 125 
switching, with in-ns, 115–116 
symbols and, 121–124 

namespacing mechanism, 9 
negative test function (neg?), 57 
nested Java classes, 120 
NET Common Language Runtime, 146 
Netbeans, 26 
new special form, 143–145 
next function, 88 
nil, 52 
non-pure functions, 5 
not function (not), 60 
ns macro, 121, 125–156 
ns-aliases function, 124 
ns-imports function, 125 
ns-map function, 124 
ns-name function, 124 
ns-publics function, 124 
ns-refers function, 125 
ns-resolve function, 125 
ns-unmap function, 125 
*ns* Var, 124 
nth function, 79, 92 
number test function (number?), 57 
numbers, 52–57 
numeric functions, 53–57 
numeric literals, 52, 194 
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̈ O 

object-oriented languages, 133, 180 
object-oriented programming (OOP), 9–10 
object-oriented programs, 10 
objects, 5 

first-class, 29 
maps as, 69–71 

octal notation, 52 
On Computable Numbers (Turing), 4 
:only option, 116, 120 
or macro, 61 
overloaded methods, 182 

̈ P 

parallel processing, 1, 5 
parallel programming, 159–166 
parallelism, 159, 162 
parents function, 139 
parse method, 151 
partial function, 46–47 
partition function, 91 
patterns, in code, 173 
pcalls function, 161–162 
peek function (peek), 63–65 
performance 

concurrency functions and, 162–163 
inlining and, 197 
macros and, 173 
memoization and, 191 
primitives and, 193 
reflection and, 191–193 
STM and, 14 
tips for Java, 189 
transients and, 195–196 
type hints and, 191–193 
Var lookups and, 196 

performance, 189–198 
periods (.), 118, 144 
Perlis, Alan, 10 
persistence, 7 
persistent collections, as sequences, 75 
persistent! function, 196 
pmap function, 161–163 
polymorphic functions, 179 
polymorphism, 9, 133 
pop function (pop), 64–66 
positive test function (pos?), 57, 89 
:post-init function, 155 

pound sign (#), 33, 71, 172 
predicate functions, 89, 194 
prefer-method function, 140 
:prefix argument, gen-class macro, 154 
prefix lists, 119 
primitive arrays, 195 
primitive types, 52–62 

Boolean values, 60–61 
characters, 61 
keywords, 61 
loop primitives, 193–194 
numbers, 52–57 
strings, 57–60 

primitive-aware functions, 193 
print-contacts function, 103 
printing functions (print & println), 42, 58 
*print-meta*, 127 
:private metadata, 124 
private Vars, 123–124, 131 
profiling, on JVM, 189–190 
program flow, controlling, 29–49 
program state. See state 
promise function, 165 
promises, 164–165 
protocols, 179–181 

for preexisting datatypes, 183–184 
working with, 185–186 

proxy classes, Java, 150–151 
proxy macro, 150–151, 185 
proxy methods, 151 
proxy-handler function, 151 
proxy-super macro, 151 
public symbols, 116, 125 
public Vars, 123–124 
pure functions, 4–6, 10 
pvalues function, 161–162 

̈ Q 

querying hierarchies, 137–139 
querying namespaces, 124–125 
quote form, 63 
quoted forms, 168 
quotient function (quot), 55 

̈ R 

range function, 85 
-rangechecker function, 46 
ratios, 52 
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reader macros, 33 
read-string function, 149 
read-time metadata, 129 
recur form, 39–40 
recursion, 3, 36–42 

guidelines for, 36 
implementing macros using, 176 
tail, 39–42 
using cons or conj functions, 77 
using loop, 41–42 

recursive macros, 176 
reduce function, 93 
ref function, 98 
:refer-clojure form, 121 
refer function, 116–117, 120 
reference types 

metadata on, 131 
of identities, 96 

references, namespaces as, 126 
re-find function, 59 
reflection, 191–193 
refs, 97 

coorindated access to multiple, 103 
creating and accessing, 98 
defined, 97 
updating, 98–104 

examples, 101–104 
tools for, 99–101 

ref-set function, 99– 100 
regex pattern, 59 
re-groups function, 60 
regular expression functions, 58– 60 
reify macro, 184–186 
:reload flag, 119 
:reload-all flag, 119 
remainder function (rem), 55 
re-matcher function, 59 
re-matches function, 59 
remove function, 86 
remove-method function, 140 
remove-ns function, 126 
remove-watch function, 113 
re-pattern function, 59 
repeat function, 84 
repeatedly function, 84 
REPL (Read Evaluate Print Loop), 17–18 
require function, 119 
:require keyword, 26 
re-seq function, 60 
reset! function, 105 
resolve function, 125 

rest function, 73, 88 
restart-agent function, 108 
return values, 196 
reusability, 5, 10 
reverse function, 90 
Reversible interface, 182 
root binding, 149 
rseq function, 83, 182 
RT class, 149 
RT.load method, 149 
RT.loadResourceScript method, 149 
RT.maybeLoadResourceScript method, 

149 
RT.readString method, 149 
RT.var method, 149 
running source files, 20–21 
runtime polymorphic dispatch, 133 

̈ S 

scope, symbol, 24 
second function, 92 
send function, 106, 160 
send-off function, 106, 159–160 
Seqable interface, 182 
seq function, 32, 75, 83, 182 
sequence API, 83–95 
sequence functions, 128 
sequence generator functions, 81 
sequences, 73–95 

constructing, 76–77 
creating, 83–95 
infinite, 81 
introduction to, 73– 75 
lazy, 77–83 
sequencable types, 75 
structure of, 75–76 

set difference function, 72 
set functions, 72 
set intersection function, 72 
set union function, 72 
set! function, 110, 144 
set-error-handler! function, 107 
sets, 8, 71–72 
setter functions, 148 
set-val function, 110 
set-validator! function, 111 
shorthand functions, 33–34 
shutdown-agents function, 108 
side effects, 4–6, 42–43 
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single quote character, 63, 168 
software transactional memory (STM), 1, 

12–15, 97 
some function, 94 
sort function, 90 
sort-by function, 90 
sorted maps, 8, 67 
sorted sets, 8 
source code, 168 
source files 

structuring, 26 
writing and running, 20–21 

special forms, 19 
splicing unquote, 171 
split-at function, 91 
split-wth function, 91 
sqrt function, 38 
square brackets [], 64 
square function, 79 
square roots, 37, 41 
stack size, 39 
StackOverflowError, 81 
start() method, 165 
state, 5– 6 

adding, to generated classes, 154 
coordinated vs. independent, 97 
eliminating, 95 
failure, 107–108 
identity and, 12–13, 96–97 
reality of, 95 
synchronous vs. asynchronous updates, 

97 
thread-local, 109–111 
vars, 109–111 

:state argument, 154 
state effects, 4 
state management, 11–12, 95–113, 159 

ansynchronous agents, 105–109 
atoms, 104–105 
explicit, 95 
refs, 97–104 
validators, 111–112 
watches, 112–113 

static methods, 145, 155 
statically types languages, 191 
string concatenation function (str), 58 
string functions, 57–58 
string printing functions (print & println), 

58 
string test function (string?), 58 
String.replace method, 192 

strings, 57–60, 75 
struct maps, 68–69 
struct-map function, 68 
StructMaps, 180 
stub methods, 154 
subroutines, 3 
substring function (subs), 58 
subtraction function (–), 54 
sub-vector function (subvec), 66 
superclass members, exposing, 156 
superclass methods, 151 
swap! function, 104 
symbol bindings, 110 
symbol function, 123 
symbol resolution, 23–24 
symbols, 19, 23–24, 27 

binding functions to, 31 
constructing, 123 
defining within namespace, 25 
forward declarations and, 122 
functions and, 30 
generating, 172 
global, 24 
names, 23 
namespaces and, 121–124 
public, 116, 125 
redefinition of, 23 
scope of, 24 
unqualified, 122 

synchronous updates, 97 
synchronous, coordinated identities, 97 
syntax quoting, 171 
syntax-quote character, 171 

̈ T 

:tag keyword, 191 
:tag metadata key, 131 
tags, 136 
tail position, 39 
tail recursion, 39–42 
tail-call optimization, 39–42 
take function, 89 
take-nth function, 89 
take-while function, 90 
target argument, 143 
the-ns function, 124 
this argument, 182 
thread pools, 108, 159–160 
threading, Java-based, 165–166 
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thread-local state, 109–111 
thread-local var bindings, 109 
threads, creating in Java, 165–166 
time macro, 161, 190 
to-array function, 147 
transactional behavior, 101–104 
transactions, 14, 97–100 
transient function, 196 
transients, 195–196 
Turing Machine, 4 
Turing, Alan, 4 
type argument, 147 
type coercions, 192 
type function, 141 
type hierarchies, 136 
type hints, 131, 185, 191–193 
:type metadata, 141 
type tags, 131, 141 

̈ U 

unchecked arithmetic functions, 194– 
195 

unchecked-add function, 194 
unchecked-dec function, 194 
unchecked-divide function, 194 
unchecked-inc function, 194 
unchecked-multiply function, 194 
unchecked-negate function, 194 
unchecked-remainder function, 194 
unchecked-subtract function, 194 
union funtion, 72 
unit testing, pure functions and, 6 
unqualified symbols, 122 
Unsolvable Problem of Elementary Number 

Theory, An (Church), 4 
updates, semantics of, 106 
use function, 120 
:use parameter, 25 
user namespace, 25 
user-defined hierarchies, 141–142 

̈ V 

validators, 111–112 
vals function (vals), 71, 83 
Var.invoke function, 150 
variable arity, 32 
variables, 23–24 
variadic arguments, 174–175 
var-name, 21 
Vars, 21–24, 27, 109–111 

evaluating, 25 
interning, 125 
Java and, 149 
lookups, 196 
metadata on, 129–131 
private, 123–124, 131 
public, 123–124 
root binding of, 149 

var-value, 21 
vary-meta function, 127 
vector association function (assoc), 66 
vector conversion function (vec), 65 
vector creation function (vector), 64 
vector functions, 64–66 
vector test function (vector?), 65 
vectors, 8, 30, 64–66 
:verbose flag, 119 

̈ W 

watches, 112–113 
with-meta function, 127 

̈ X 

xml macro, 177–178 

̈ Z 

zero test function (zero?), 56 
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