
this print for content only—size & color not accurate

US $49.99

www.apress.com
SOURCE CODE ONLINE

P
ra

ctica
l C

lo
ju

re

Practical

Clojure

7.5 x 9.25 spine = 0.65625" 232 page count

THE EXPERT’S VOICE® OPEN SOURCE

Luke VanderHart and Stuart Sierra

Full Introduction to Clojure,

a full Lisp variant for the JVM

Practical Clojure

̈ ̈ ̈

Luke VanderHart

Stuart Sierra

Practical Clojure

Copyright © 2010 by Luke VanderHart and Stuart Sierra

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system, without the prior written permission of the copyright
owner and the publisher.

ISBN-13 (pbk): 978-1-4302-7231-1

ISBN-13 (electronic): 978-1-4302-7230-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning
Lead Editor: Michelle Lowman
Technical Reviewer: Christophe Grand
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary

Cornell, Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie,
Duncan Parkes, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editors: Jim Markham, Tracy Brown
Copy Editor: Katie Stence
Compositor: Bytheway Compositors
Indexer: Julie Grady
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-
ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although
every precaution has been taken in the preparation of this work, neither the author(s) nor
Apress shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

To my lovely and supportive wife

—Luke

To Mollie

—Stuart

̈ CONTENTS

iv

Contents at a Glance

̈ About the Authors.. xiv

̈ About the Technical Reviewer .. xv

̈ Acknowledgments ... xvi

̈ Chapter 1: The Clojure Way...1

̈ Chapter 2: The Clojure Environment ...17

̈ Chapter 3: Controlling Program Flow ...29

̈ Chapter 4: Data in Clojure...51

̈ Chapter 5: Sequences ...73

̈ Chapter 6: State Management ..95

̈ Chapter 7: Namespaces and Libraries..115

̈ Chapter 8: Metadata ...127

̈ Chapter 9: Multimethods and Hierarchies ..133

̈ Chapter 10: Java Interoperability ...143

̈ Chapter 11: Parallel Programming ...159

̈ Chapter 12: Macros and Metaprogramming...167

̈ Chapter 13: Datatypes and Protocols ...179

̈ Chapter 14: Performance..189

̈ Index...199

S

v

Contents

̈ About the Authors.. xiv

̈ About the Technical Reviewer .. xv

̈ Acknowledgments ... xvi

̈ Chapter 1: The Clojure Way...1

Clojure’s Philosophy and Special Features..1

A Next-Generation Language.. 1

Dynamic and Powerful (Yes, It’s a Lisp) ... 1

The Java Platform... 2

Functional Programming ...2

Purely Functional Programming ... 4

Clojure’s Compromise .. 6

Immutability.. 7

What about Object-Oriented Programming? .. 9

State Management ... 11

State and Identity ... 12

Software Transactional Memory .. 13

Summary ...15

̈ Chapter 2: The Clojure Environment ...17

"Hello World" in Clojure...17

Clojure Forms ..18

Literals.. 18

Symbols.. 19

̈ CONTENTS

vi

Composite Forms.. 19

Special Forms... 19

Writing and Running Source Files ...20

Vars, Namespaces, and the Environment..21

Symbols and Symbol Resolution ...23

Symbol Names.. 23

Symbol Resolution and Scope .. 24

Namespaces ..24

Declaring Namespaces... 25

Referencing Namespaces... 25

Structuring Source Files ... 26

Summary ...26

̈ Chapter 3: Controlling Program Flow ...29

Functions ...29

First-Class Functions.. 29

Defining Functions with fn ... 29

Defining Functions with defn.. 31

Functions of Multiple Arities... 31

Functions with Variable Arguments.. 32

Shorthand Function Declaration ... 33

Conditional Expressions...34

Local Bindings ...35

Looping and Recursion ..36

Tail Recursion... 39

Deliberate Side Effects ..42

Using do.. 42

Side Effects in Function Definitions.. 43

Functional Programming Techniques ..43

̈ CONTENTS

vii

First-Class Functions.. 43

Closures.. 46

Currying and Composing Functions.. 46

Putting It All Together... 48

̈ Chapter 4: Data in Clojure...51

How to Represent and Manipulate Data ..51

Nil ... 52

Primitive Types ..52

Numbers ... 52

Strings .. 57

Boolean... 60

Characters .. 61

Keywords.. 61

Collections ...62

Lists .. 63

Vectors.. 64

Maps... 66

Sets .. 71

Summary ...72

̈ Chapter 5: Sequences ...73

What Are Sequences?..73

Sequenceable Types... 75

Anatomy of a Sequence...75

Constructing Sequences..76

Lazy Sequences...77

An Example of Laziness.. 78

Constructing Lazy Sequences .. 80

Lazy Sequences and Memory Management... 82

̈ CONTENTS

viii

The Sequence API..83

Sequence Creation ... 83

Summary ...95

̈ Chapter 6: State Management ..95

State in an Immutable World ...95

The Old Way.. 95

State and Identity ... 96

State and Identity in Clojure ... 96

Refs and Transactions ...97

Creating and Accessing refs... 98

Updating refs .. 98

Atoms...104

Using Atoms ... 104

When to Use Atoms .. 105

Asynchronous Agents ..105

Creating and Updating Agents.. 105

Errors and Agents... 107

Waiting for Agents .. 108

Shutting Down Agents .. 108

When to Use Agents ... 109

Vars and Thread-Local State ...109

When to Use Thread-Local Vars ... 110

Keeping Track of Identities ..111

Validators.. 111

Watches.. 112

Summary ...113

̈ CONTENTS

ix

̈ Chapter 7: Namespaces and Libraries..115

Organizing Clojure Code ..115

Namespace Basics ..115

Switching Namespaces with in-ns... 115

Referring to Other Namespaces ... 116

Loading Other Namespaces...117

Loading from a File or Stream.. 117

Loading from the Classpath.. 118

Loading and Referring Namespaces in One Step ... 120

Importing Java Classes .. 120

Bringing It All Together: Namespace Declarations ..121

Symbols and Namespaces...121

Namespace Metadata... 122

Forward Declarations ... 122

Namespace-Qualified Symbols and Keywords... 122

Constructing Symbols and Keywords... 123

Public and Private Vars... 123

Advanced Namespace Operations...124

Querying Namespaces.. 124

Manipulating Namespaces ... 125

Namespaces As References ..126

Summary ...126

̈ Chapter 8: Metadata ...127

Reading and Writing Metadata ..127

Metadata-Preserving Operations...128

Read-Time Metadata ...129

Metadata on Vars...129

̈ CONTENTS

x

Type Tags ... 131

Private Vars .. 131

Metadata on Reference Types ...131

Summary ...131

̈ Chapter 9: Multimethods and Hierarchies ..133

Multimethods...133

Multiple Dispatch.. 135

Default Dispatch Values.. 135

Hierarchies ..136

Querying Hierarchies .. 137

Hierarchies with Multimethods..137

Hierarchies with Java Classes.. 138

More Hierarchy Queries.. 139

Resolving Conflicts ... 139

Type Tags ... 141

User-Defined Hierarchies ..141

Summary ...142

̈ Chapter 10: Java Interoperability ...143

Calling Java from Clojure...143

Java Interop Special Forms .. 143

Java Interop Preferred Forms... 144

Clojure Types and Java Interfaces.. 145

Java Arrays... 146

Calling Clojure from Java...148

Loading and Evaluating Clojure Code ... 149

Using Clojure Functions and Vars... 149

Creating Java Classes ...150

Proxying Java Classes .. 150

̈ CONTENTS

xi

Generating Java Classes .. 151

Summary ...157

̈ Chapter 11: Parallel Programming ...159

Parallelism in Clojure...159

Agents..159

Agent Thread Pools... 159

Agent Example.. 160

Concurrent Agent Performance .. 161

Concurrency Functions ..161

Overhead and Performance.. 162

Futures and Promises..163

Futures ... 163

Promises... 164

Java-based Threading ...165

Creating a Thread ... 165

Summary ...166

̈ Chapter 12: Macros and Metaprogramming...167

What Is Metaprogramming? ..167

Code vs. Data.. 167

Homoiconicity ... 167

Macros...168

Working with Macros.. 169

Code Templating... 171

Generating Symbols ... 172

When to Use Macros... 173

Using Macros.. 173

Using Macros to Create DSLs ... 177

Summary ...178

̈ CONTENTS

xii

̈ Chapter 13: Datatypes and Protocols ...179

Protocols..179

Protocols As Interfaces... 180

Datatypes...180

Implementing Protocols and Interfaces...181

In-Line Methods.. 181

Extending Java Interfaces .. 182

Datatypes As Classes ... 183

Extending Protocols to Pre-Existing Types ..183

Extending Java Classes and Interfaces .. 184

Reifying Anonymous Datatypes ...184

Working with Datatypes and Protocols..185

A Complete Example... 186

Advanced Datatypes ..186

Summary ...187

̈ Chapter 14: Performance..189

Profiling on the JVM...189

General Tips for Java Performance .. 189

Simple Profiling with Time ... 190

Using Java Profiling Tools .. 190

Memoization ..191

Reflection and Type Hints..191

Working with Primitives...193

Loop Primitives... 193

Unchecked Integer Arithmetic .. 194

Primitive Arrays .. 195

Transients ..195

̈ CONTENTS

xiii

Var Lookups ...196

Inlining ...197

Macros and definline .. 197

Summary ...197

̈ Index...199

xiv

 About the Authors

̈ Luke VanderHart is an experienced software developer,
currently working as a consultant with NuWave Solutions in the
Washington, D.C. area. He has extensive experience with the Java
platform, ranging from heavy data-processing applications to web
development, including several different JVM languages. In
addition to Clojure and functional programming, his interests are
computational linguistics, the semantic web, and data
visualization.

̈ Stuart Sierra is an actor, writer, musician, and programmer in New York
City. As assistant director of the Program on Law and Technology at Columbia
University, he was the lead developer of the groundbreaking legal search
engine AltLaw.org, one of the first production web sites using Clojure. He is
the author of many popular open-source Clojure libraries, including a testing
framework, I/O utilities and an HTTP client. Sometimes he blogs at
stuartsierra.com.

xv

About the Technical Reviewer

̈ Christophe Grand is an independent software developer specializing in Clojure, Java, jQuery, web
development, and all things Open Source. He is a Clojure contributor and conducts training sessions on
Clojure and other languages. Christophe discovered Clojure in early 2008 while searching for a strong
functional language that runs on the JVM. Clojure fit the bill perfectly. Christophe lives near Lyon,
France.

̈ ABOUT THE TECHNICAL REVIEWERS

xvi

Acknowledgments

Rich Hickey, for creating a brilliant new language and maintaining it with wisdom. Todd Tillinghast, who
long ago taught me the beginnings of everything I know about programming. Howard Block, Rob Castle,
Brad Hubbard, and Mark Keyser for being excellent, supportive employers.

Luke VanderHart

Rich Hickey, Chris Houser, Christophe Grande, and all the other brilliant people working with Clojure.

Stuart Sierra

C H A P T E R 1
 ̈ ̈ ̈

The Clojure Way

Clojure’s Philosophy and Special Features
What is Clojure and why would someone want to learn it? At first glance, some may vote Clojure the least
likely to succeed among modern programming languages, because it is new and complicated. Worst of
all, it is just flat-out strange, a bewildering soup of parentheses and brackets to anyone not already
familiar with the Lisp family of languages.

And yet, it is gaining popularity and momentum faster than any other new language on the market.
First released to the public in fall 2007, and reaching its first stable release in May 2009, it already fosters
an active, passionate community, a thriving ecosystem of libraries and tools, and is used in an increasing
number of serious professional applications.

One way or another, Clojure seems to push all the right buttons. But, what are they and what makes
Clojure a good choice for your project?

A Next-Generation Language

Every year, brilliant computer scientists in academic institutions around the world publish hundreds,
even thousands of papers filled with new and interesting ideas. These new concepts undergo natural
selection and slowly, eventually, the best and most useful of them matriculate into real-world use.

Clojure includes many of the latest and greatest of these ideas that have not yet found good (or any)
implementations in other languages. The most obvious are those relating to parallel processing:
Software Transactional Memory and agent-based processing are baked into the language at a
fundamental level. Others (for example, persistent immutability) are more subtle design philosophies
that are a synthesis of modern academic research and decades of real-world lessons.

Despite its academic credentials, Clojure's primary design goal is to remain useful and above all
usable. Its advanced features are carefully selected to actually deliver to developers robust, clean code
that is easy to reason and fast to write. Clojure is not an ivory tower language, but one written by a
developer intended to be used in the field, every day.

Dynamic and Powerful (Yes, It’s a Lisp)

Depending on your programming background, the following statement could cause either enthusiasm
or mild revulsion: Clojure is a full-fledged, bona fide dialect of the venerable Lisp programming
language.

Lisp has a reputation for being exceedingly powerful and expressive, and Clojure is no exception. Its
functional and metaprogramming facilities make it an extremely tractable medium, malleable clay to C's
stone or Java's wood. You can replace thousands of lines of code in a static language with hundreds or
even dozens of lines of Clojure, with corresponding improvements in bug count and development time.

1

CHAPTER 1 ̈ THE CLOJURE WAY

Boilerplate code is all but eliminated. Domain Specific Languages (DSLs) become not only easy, but the
norm—Lisp programs are often written “from the ground up,” evolving constructs and syntax that are
most suited to the problem domain

1
. You can modify programs on the fly without recompilation or

restarting.
Historically, however, Lisp also has its detractors, and many of the complaints are more than

justified
2
. Lisp has suffered greatly from incomplete specifications, idiosyncratic implementations,

archaic limitations, and cruft accumulated over its five decades of existence. And to many, its syntax is
just too, too strange.

Clojure fixes most of these problems. It maintains Lisp's ideals and philosophy while making a clean
break with the limitations of the past. It is fast, clean, and prioritizes power and elegance. Without
altering Lisp's code-as-data philosophy, it provides intuitive and visually distinctive syntax that makes it
much more pleasant to read than historical Lisps. After the initial learning phase, it is remarkably easy to
read and write, parentheses notwithstanding.

Those who already know Lisp will immediately find themselves extremely comfortable with Clojure.
To those who don't, there is no reason to be intimidated. Clojure is a clean, painless way to learn what
makes people so passionate about Lisp, without having to suffer through the bad stuff. Stick with it, and
it's highly probable you'll find yourself loving it, even the parenthesis, after just a few weeks of playing
with the code.

The Java Platform

Whether or not you like Java as a language, the Java Virtual Machine is a superb piece of software that
deserves respect. It is mature, stable, and fast. As an industry standard, there are thousands of well-
tested libraries for just about any purpose. Many companies already have heavy investments in the Java
platform.

By running on the JVM, Clojure immediately gains access to all of this. It is not just a port of another
language to the JVM: Clojure is designed from the ground up to run within the Java environment and to
easily integrate with Java. For application development, it functions equally well as a complete, stand-
alone language or as an embeddable scripting tool within a larger Java program. It can be used anywhere
Java can, and in most cases is much easier to write.

Functional Programming
A key characteristic of Clojure is that it is a functional language, which means that functions are the
fundamental building-block for programs rather than instructions, as is the case in most other
programming languages (known as imperative languages). Functional programming provides some
substantial advantages over imperative programming, which will be discussed in this section.
Functional style is inherent to Clojure and central to its philosophy.

1
 For an excellent book on the unique power of Lisp in general, read Paul Graham's On Lisp,

, (New Jersey: Prentice Hall, 2003). http://www.paulgraham.com/onlisp.html
2
 See Steve Yegge's “Lisp is Not an Acceptable Lisp,”

, 2003.
http://steve-yegge.blogspot.com/2006/04/lisp-is-

not-acceptable-lisp.html

2

 CHAPTER 1 ̈ THE CLOJURE WAY

̈ Note Nearly all programming languages have some construct called a function. In most programming

languages, the best way to think of a function is as a subroutine, a series of instructions that are grouped together

for convenience. In Clojure and other functional languages, functions are best thought of as more like their

counterparts in mathematics—a function is simply an operation that takes a number of parameters (also called

arguments) and returns a value.

Imperative languages perform complex tasks by executing large numbers of instructions, which
sequentially modify a program state until a desired result is achieved. Functional languages achieve the
same goal through nested function composition—passing the result of one function as a parameter to
the next. By composing and chaining function calls, along with recursion (a function calling itself), a
functional program can express any possible task that a computer is capable of performing. An entire
program can itself be viewed as a single function, defined in terms of smaller functions. The nesting
structure determines the computational flow, and all the data is handled through function parameters
and return values (see Figures 1-1 and 1-2).

Write Variable

Variable

Variable

Variable

Program State

Program Flow

Read & Modify Variable

Read Variable &

Control Flow

Read & Modify Variables

Modify Variable

Write Variable

Figure 1-1. Imperative program structure

3

CHAPTER 1 ̈ THE CLOJURE WAY

Function

Input

Output

FunctionArguments

Return value

Arguments
Return value

Arguments
Return value

Function
Recursive Call

Arguments

Return value

Function

Function

Figure 1-2. Functional program structure

Incidentally, this is the reason that Clojure code can look so strange to those unfamiliar with functional
programming. It is optimized to make it easy to express function composition rather than blocks of
instructions. As your experience and understanding of functional programming grows, the more natural
Clojure's syntax will feel.

Equivalency of Functional and Imperative Styles

It is an important fact of computer science that the functional and imperative models of computation are

formally equivalent, and therefore equally capable of expressing any computational task.

This notion dates back to the earliest days of computer science. Alan Turing's seminal paper, On
Computable Numbers (1936) describes the abstract workings of an imperative computer, which became

known as the Turing Machine. It was to become the conceptual model upon which modern computer

architectures are based. Earlier that year, Alonzo Church had independently written another paper called,
An Unsolvable Problem of Elementary Number Theory. In this paper, he created a formal system known as

the lambda calculus—the formal system upon which functional languages are based.

These two ways of expressing computability were quickly recognized to be mathematically equivalent, and
became known collectively as the Church-Turing thesis. This thesis, in addition to being extremely

important to several fields of mathematics, became the starting point for the fledgling field of computer

science.

Purely Functional Programming

Pure functions are an important concept in functional programming, as shown in Figure 1-3. Stated
simply, a pure function is one that depends upon nothing but its parameters, and does nothing but
return a value. If a function reads from anywhere except its parameters, it is not pure. If it changes
anything in the program state (known as a side effect), it is not pure either.

Functional programming is largely concerned with the careful management (or elimination) of state
and side effects. Both are necessary for programs to do anything useful, but are regarded as necessary
evils, and functional programmers do their best to use them as little as possible.

4

 CHAPTER 1 ̈ THE CLOJURE WAY

State is any data the program stores that can possibly be changed by more than one piece of code. It
is dangerous because if the code’s behavior is dependent on a piece of state, it is impossible to analyze
what it might do without taking into account all the possible values of that state, as well as every other
part of the program that might modify that state. This problem is exponentially magnified in parallel
programs, where it is not always easy to tell even what order code will execute in. It becomes nearly
impossible to predict what a given state might be.

Side effects are anything a function does when it is executed, besides just returning a value. If it
changes program state, writes to a hard disk, or performs any kind of IO, it has executed a side effect. Of
course, side effects are necessary for a program to interact with anything, including the user. But they
also make a function much more difficult to understand and to reuse in different contexts.

(performs calculations,

may call for other

pure functions)

A pure function

Arguments

Return Value

(performs calculations)

A non-pure function

Arguments

Return Value

Reads external state

Writes external state

(side effect)

Figure 1-3. Pure and non-pure functions

Purely functions have a number of advantages:

• They are remarkably easy to parallelize. Since each function is a distinct,
encapsulated unit, it does not matter if functions are run in the same process or
even on the same machine.

• Pure functions lead to a high degree of code encapsulation and reusability. Each
function is effectively a black box. Therefore, understand the inputs and the
outputs, and you understand the function. There's no need to know or care about
the implementation. Object-oriented languages try to achieve this with objects,
but actually it is impossible to guarantee, because objects have their own state. An
object’s type and method signatures can never tell the whole story; programmers
also have to account for how it manages its state and how its methods impact that
state. In a complex system, this quickly grows in complexity and often the
advantages of class encapsulation quickly disappear. A pure function, however, is
guaranteed to be entirely described by its interface—no extra knowledge required.

5

CHAPTER 1 ̈ THE CLOJURE WAY

• They are easier to reason about. In a purely functional program, the execution tree
is very straightforward. By tracing the function call structure, you can tell exactly
and entirely what the program is doing. In order to understand an imperative,
stateful program you need not only to understand the code, but all of the possible
permutations of state that may exist at any point in time. Purely functional code is
much more transparent. In some cases, it is even possible to write tools that do
automated analysis and transformations of source code, something that is next to
impossible in an imperative language.

• Pure functions are very easy to write unit tests for. One of the most difficult
aspects of unit testing is anticipating and accounting for all the possible
combinations of state and execution paths. Pure functions have well-defined,
stateless behavior that is extremely simple to test.

Clojure’s Compromise

Of course, most programs can't be programmed entirely in pure functions. Side effects are inevitable.
Displaying something to the screen, reading from a file on a hard disk, or sending a message over a
network are all examples of side effects that cannot be dispensed with. Similarly, programs can't do
entirely without state. The real world is stateful, and real-world programs need to store and manipulate
data that can change over time.

In effect, Clojure does not enforce functional purity. A few languages do, such as Haskell, but they
are (rightly or wrongly) considered to be academic, difficult to learn, and difficult to apply to problems
found in the real world. Clojure's goal is not to prevent programmers from using state or side effects, but to
make it safe and straightforward.

Clojure has two ways of maintaining functional purity as much as possible while still allowing a
developer to easily do everything they need.

• Side effects are explicit, and the exception rather than the rule. They are simple to
add, when necessary, but they stand out from the natural flow of the language.
This ensures that developers are precisely aware of when and why they occur and
what their precise effects are.

• All program state is contained in thread-safe structures, backed by Clojure’s
thoughtfully planned inventory of concurrency-mangement features. This ensures
that with an absolute minimum of effort, program state is always safe and
consistent. Updates to state are explicit and atomic and clearly identifiable.

Most of Clojure's unique style is emergent from these two characteristics. Very naturally, Clojure code
tends to segregate itself into purely-functional and effect-producing areas, with a single function that
contains side effects of manipulating state relying on other, pure functions for most of the actual
processing and program logic.

This not only preserves the benefits of purely functional programming throughout most of a Clojure
application, but also encourages good style. Of course, as with any other language, it is possible to write
messy, obfuscated code. But more than most other languages, Clojure by its nature encourages users to
write code that is easy to read and debug. Explicit state and side effects mean that it is extremely easy to
read over a program and see what it is doing, without even needing to always understand how.

6

 CHAPTER 1 ̈ THE CLOJURE WAY

̈ Caution There is a major exception to Clojure’s rules about state management and side effects: Java objects.

Clojure allows you to work with Java object as well as native Clojure structures, but Java objects are still Java

objects and full of umanaged state. It cannot be helped. A good Clojure program will use Java objects only for

interfacing with Java libraries, and therefore restrict the use of mutable state.

Immutability

One of the most important ways in which Clojure encourages purely functional style where possible is to
provide a capable, high-performance set of immutable data structures.

Immutable data structures are, as their name suggests, data structures that cannot change. They are
created with a specific value or contents, which remain constant over the entire life cycle of the object.
This ensures that the object can be freely used in multiple places, from multiple threads, without any
fear of race conditions or other conflicts. If an object is read-only, it can always be safely and
immediately read from any point in the program.

This begs the obvious question: What if the program logic requires that the value of a data structure
change? The answer is simple—rather than modifying the existing data structure (causing all kinds of
potentially bad effects for other parts of the program that use it), the structure is copied with the changes
in place (see Figures 1-4 and 1-5). The old object remains exactly as it was, and other threads or portions
of code currently operating on it will continue to function without problems, unaware that there is a new
version. Meanwhile, the code that “changed” the object uses the new object, identical to the old one
except for the modifications.

This sounds as if it might be extremely inefficient, but it isn't. Because the base object is immutable,
the “modified” object can share its structure except for the actual point of change. The system only
needs to store the differential, not an entire copy. This property is called persistence—a data structure
shares memory with the previous version of itself. There is a small computational time overhead when
making a change, but the memory usage can often actually be lower. In many scenarios, objects can
share large parts of their structure, increasing efficiency. Old versions of objects are maintained as long
as they are used as part of a newer version (or referenced from elsewhere), and are silently garbage
collected when they are no longer useful.

X

Original Linked List

A B C D

Original Linked List

New Linked List with node inserted at head

A B C D

Figure 1-4. Immutable Linked List

7

CHAPTER 1 ̈ THE CLOJURE WAY

Original tree

A

B

D E F G

C

New tree with

“E” node removed

Shared structure with original tree

A

B

D F G

C

Figure 1-5. Immutable binary tree

Another interesting effect of immutable, persistent data objects is that it is easy to maintain previous
versions and roll back through them as necessary. This makes it extremely easy and efficient to
implement things like undo histories or backtracking algorithms.

Clojure provides the following common immutable data structures:

• Linked lists: These are simple, singly-linked lists that support fast traversal and
insertion.

• Vectors: Similar to an array, vectors are indexed by integer values and support
extremely fast lookup by index.

• Hash maps: Hash maps use hash trie datastructures to provide unordered storage
for key/value pairs and support extremely fast lookups.

• Sorted maps: Sorted maps also provide key/value lookups, using a balanced binary
tree as the underlying implementation. They are also, unsurprisingly, sorted, and
provide operations for range-based access at the cost of being slightly slower than
hash maps.

• Hash and sorted sets: Sets are groups of distinct items, similar to the mathematical
concept. They support operations such as finding the union, difference, and
intersection. They can be implemented as hash tries or using a binary tree with
similar performance tradeoffs as the map implementations.

These objects all provide a number of other interesting features, besides immutability:

• They support fast value-based equality semantics—two data structures are equal if
and only if they contain the same items.

• They implement the non-optional, read-only portion of the java.util.*
collection interfaces (namely Collection, List and, Map) and
java.lang.Iterable APIs. This means that they can be used as drop-in
replacements for most of Java's collections, making it much easier to interface
with Java libraries.

• They fully implement the sequence abstraction, as discussed in Chapter 5.

8

 CHAPTER 1 ̈ THE CLOJURE WAY

Clojure makes it extremely easy to work with all these data structures, and together with primitive types
they provide everything a program needs for internal data storage.

What about Object-Oriented Programming?

Very clearly, Clojure is not object-oriented. Given how the programming world is dominated by OO
paradigms and languages, many programmers will no doubt be at a loss about how to program in any
other way. However, Clojure's rejection of the object-oriented philosophy is not a weakness, but rather
can be a great strength, and can be leveraged to provide complex functionality while keeping code
extremely simple.

For the last decade, at least, the object-oriented style has dominated computer programming
through its promises of data abstraction, code reuse, encapsulation, and modularity. It has delivered on
these with varying levels of success, and is no doubt an improvement over the sequential or procedural
styles that preceded it. But a number of problems have also become apparent:

• An object’s mutable state is unmanageable and dangerous in a highly concurrent
environment.

• It doesn't really solve the problems of code abstraction and modularization. It is
just as easy to write over-dependent “spaghetti” code in an object-oriented
language as any other. It still takes skill and special effort to write code that can
truly be used without problems in a variety of environments.

• Inheritance is fragile and can be dangerous. Increasingly, even experts in object-
oriented languages are discouraging its use.

• It encourages a high degree of ceremony and code bloat. Simple functionality in
Java can require several interdependent classes. Efforts to reduce close coupling
through techniques like dependency injection involve even more unnecessary
interfaces, configuration files, and code generation. Most of the bulk of a program
is not actual program code, but defining elaborate structures to support it.

Clojure is the next evolutionary step in programming languages. It builds upon the good parts of object-
oriented design, while eliminating the constraints and misfeatures that cause problems.

The notion of object orientation is not itself well defined. While usually considered a single
paradigm, the object-oriented style uses a single concept—classes—to conflate a variety of actual,
distinct features. Clojure isolates each of these desirable functionalities and provides separate, simpler,
more powerful features to provide them separately, allowing developers to use only the features that
make sense in a particular context.

• Modularity: Classes and packages provide a way to group code that naturally goes
together and is interdependent. Clojure accomplishes this with its namespacing
mechanism.

• Polymorphism: Inheritance and interface implementation allows common code to
process objects differently depending on their type, without knowing the type or
even all possible types ahead of time. Clojure multimethods provide this
functionality and more—it is possible to dispatch different code based not only on
type, but also on arbitrary properties.

9

CHAPTER 1 ̈ THE CLOJURE WAY

• Encapsulation: Classes can be used to hide implementation details behind a
common interface. As discussed, this concept is alive and well in Clojure—
functions are best thought of not by what they do, but what parameters they take
and what they return.

• Reusablity: Classes can, theoretically, be reused in different environments, put
together like bricks to build up larger programs. While this usually isn't possible, it
is still a worthwhile goal. Clojure also pursues this goal of modular reusability,
only by composing functions instead of classes. But unlike classes, pure functions
are guaranteed not to have side effects which hamper reuse.

Another major philosophical difference between Clojure and object-oriented languages is that OO
languages try to unify data and behavior within classes, in some cases blurring the line between what is
data and what is code structure. Properties and methods are littered throughout the code together, and
completely interdependent and inseparable.

Clojure strives for a separation between data and behavior. The Clojure web site quotes Alan Perlis
who says, “It is better to have 100 functions operate on one data structure than to have 10 functions
operate on 10 data structures.” Clojure tries to avoid interdependence of data on code, but instead
provides a large library of functions that operate on the simple, basic data types. The important,
emphasized part of a Clojure program is not the data classes and structures, but the functional code
which operates upon them.

Structure of a Clojure Program

An object-oriented program consists of a set of class definitions, each of which probably contains some
state, some code, and references to other classes. Programs look something like Figure 1-6.

Object Object

Data

Behavior

Data

Behavior

Object

Data

Behavior

Figure 1-6. Typical structure and data flow of an object-oriented program

Clojure programs, on the other hand, are best thought of as a collection of functions (as befits a
functional language). They are understood not by grasping the relationships between data or objects,
but by understanding the flow from function to function, and the limited points where the code touches
the program state. They look more like Figure 1-7.

10

 CHAPTER 1 ̈ THE CLOJURE WAY

State

Behavior

State

Behavior

STM STM

BehaviorBehavior

Figure 1-7. Typical structure and state flow of a Clojure program

It is worth noting that there are some problem domains, such as simulations, where an object-
oriented approach is extremely natural. Clojure understands that, which is why as a language, it places
more emphasis on flexibility and extensibility than any particular philosophy.

Thus, it should come as no surprise that Clojure is flexible and powerful enough to build up a
custom object-oriented solution that fits the problem. It is entirely possible to use Clojure's macros and
metaprogramming facilities to build an object system, completely within Clojure, and use it where
appropriate. Common Lisp has something similar: CLOS, the Common Lisp Object System, built on top
of Lisp macros from within Lisp. There is no reason a Clojure user could not do the same; indeed, there
are several fledgling projects within the Clojure community designed to provide exactly these features.

The important fact is that Clojure frees you to use whatever style and structure makes sense for your
project. Object-oriented systems are powerful, but they are only one tool, and the only mechanism most
languages provide for abstraction and reuse. Clojure gives many different tools for abstraction and reuse
to use where they make sense, along with the ability to build your own tools.

State Management

Nearly every program needs to maintain a working state of some kind. There will always be a need for a
program to store facts and data, and update or manipulate them, from time to time.

Traditionally, programming languages deal with this problem by allowing programs direct access to
memory at various levels of abstraction. Whether manipulating bytes of RAM directly in low-level
languages like C or assembly or allocating objects to a garbage-collected heap as in Java or Microsoft's
.NET, most programming languages are built around the concept of directly using sequential
instructions to modify a shared memory space.

In this paradigm, it is entirely the responsibility of the programmer to ensure that state
manipulation and access is done in a reasonable way that does not cause problems. It was never easy.
Even in the simplest case, extensive use of mutable state makes programs difficult to reason about—any
part of the program can change state, and it's not easy to tell where it's happening. Rich Hickey,
Clojure's inventor, calls mutable, stateful objects “the new spaghetti code.”

Unfortunately, with the advent of multithreaded programs, the difficult of managing state increases
exponentially. Not only must a programmer understand possible program states, but they must go to
great lengths to ensure that state is protected and modified in an orderly way to prevent corrupted data
and race conditions. This, in turn, requires complicated locking policies—policies which there is no way
of enforcing. Failure to comply with these policies does not cause obvious problems, but rather insidious
bugs that often do not surface until the application is under load in a production setting, and can be
nearly impossible to track down.

11

CHAPTER 1 ̈ THE CLOJURE WAY

In general, enabling concurrency in a traditional language requires thoughtful planning, an
extremely thorough grasp of execution paths and program structure, and extreme care in
implementation.

Clojure provides an alternative: a fast, easy way for programmers to use as much state as they need
without any extra effort to manage it, even in a highly concurrent setting. It accomplishes this through
its particular philosophy of state and identity, its immutable objects, and software transactional memory
(STM).

State and Identity

In order to understand Clojure's treatment of state, it is useful to step back and consider from an
extremely high-level philosophical standpoint, what, exactly, the terms “state” and “change” even mean
in the context of a running software program.

Traditionally, most programmers would say that “change” means that, given an object or data
structure O, its value at a given time—call it T

1
—is different from that at a later time, T

2
. O is still O,

whether we are looking at it, T
1
, or T

2
. However, some of its properties or values may be different,

depending on when asked. Traditional concurrent programming is concerned with using locks and
semaphores to ensure that inquires or updates regarding O's properties or values from different threads
occur in an orderly way that won't cause problems.

Clojure provides a different point of view. In Clojure's world, O at T
1
 and O at T

2
are not even

conceptually the same object O, but two different ones: O
1
 and O

2
. They may have similarities in their

values or properties or they may not, but the key point is that they are different system objects. What's
more, they are immutable, in the strict sense of functional programming. If an additional “change” is
made to O

2
, for example, it doesn't result a change to the properties or values of O

2
but the creation of an

entirely new object, O
3
. An object itself never changes.

To help get a grasp on this, consider the following example. In all programming languages (as well
as common sense) the number 3 is the number 3, and never any other number. If I increment 3, I get a
new number, 4. I have not changed the value of 3, only the value of whatever variable or storage register
was containing it. The notion of changing the value of “the number 3” to something other than 3 is
absurd—it is hard to even imagine what it might mean, let alone the havoc it might wreak on the rest of
the program which relies on the value of 3 being 3.

Clojure merely takes this intuitive notion regarding value, and extends it to larger composite values.
Take, for example, a set, say “people who owe me money.” Initially, the set might consist of S

1
 = {Joe,

Steve, Sarah}. But then I get a letter from Steve, and it has a check. He's finally paid up. People who owe
me money is now S

2
 = {Joe, Sarah}. These two sets are not the same by the definition of set equality: One

contains Steve, one doesn't. S
1
 is not equal to S

2
 any more than 3 = 4.

Most programming languages would handle the preceding scenario by mutating the value of the set,
S. In a concurrent scenario, this could cause all sorts of problems. If one thread is iterating through S
while Steve is removed, it will inevitably throw an error, probably some variation of “Index out of
bounds.” To compensate, the programmer must manually add a system of locks to ensure that the
iteration and the update occur sequentially, not at the same time, even if the code is running in different
threads.

Clojure has a different philosophy. The solution is not to restrict access to S to sequential
operations: that is merely a Band-Aid that does not address the real issue. The real conceptual problem
is that, for a moment in time as it iterates through the set, the program assumes that {Joe, Sarah} = {Joe,
Steve, Sarah}. This is obviously not true, and it is this disconnect that causes the problem. Normally, it is
a reasonable expectation that an object equals itself, but not in a concurrent system that allows
mutation.

By using only immutable objects, Clojure restores the guarantee that objects always equal
themselves. In Clojure's system, S

1
 and S

2
 are different to the program, just as they are semantically and

12

 CHAPTER 1 ̈ THE CLOJURE WAY

conceptually. An operation taking place on S
1
 remains unaffected by the creation of S

2
 and will finish

without errors.
Obviously there is some relationship between S

1
 and S

2
.From a human perspective, they both

represent the same concept, “the set of people who owe me money.” Clojure tracks this by introducing
the concept of identity, as distinct from value. Identity, in Clojure, is a named reference that points to an
object. In the above example, there would be one identity, for example, debtors. At one point in time,
debtors refers to S

1
, and, at another time, is updated to refer to S

2
. But this update is atomic, and

therefore avoids concurrency effects like race conditions. There is no point at which the value of debtors
is in an ambiguous state—it always refers to either S

1
 or S

2
, never something halfway. It is always safe to

retrieve the current value of debtors, and it is always safe to swap its value for a new one. This is shown
in Figure 1-8.

Running

Program

State: S1

Joe

Steve

Sarah

State: S2

Joe

Identity: Debtors

Gets/Sets Reference

Reads Data

Past FuturePresent

Sarah

State: S3

?

Figure 1-8. State and identity

Software Transactional Memory

A proper view of state and identity isn't the whole answer, however. Often, in a program changes to
one identity depend on the state of another or a new value of an identity needs to be calculated based on
the existing value without worrying that another thread will update the identity in the middle of the
operation. That wouldn't cause an error, as discussed, but it might result in the results of the other
calculation being inappropriately overwritten.

To accommodate these scenarios, Clojure provides software transactional memory (STM). STM
works by providing an extra management layer between the program and the computer's memory.
Whenever a program needs to coordinate changes to one or more identities, it wraps the exchange in a
transaction, similar in concept to those used to ensure integrity in database systems. Within a
transaction, the programmer can perform multiple calculations based on identities, assign them new
values and then commit the changes. From the perspective of the rest of the program, transactions
happen instantaneously and atomically: First the identities have one value, and then another, with no
need to worry about intermediate states or inconsistent data. If two transactions conflict, one is forced to

13

CHAPTER 1 ̈ THE CLOJURE WAY

retry, starting over with new values of the identities involved. This happens automatically; the
programmer just writes the code, the transaction logic is handled automatically by the STM engine.

Clojure makes the following guarantees. Transactions are always:

• Atomic. Either all the changes made in a transaction are committed to an identity
or none are. The program will never commit some changes and not others. This
provides guaranteed protection from corrupting data or creating any kind of
inconsistent state.

• Consistent. Transactions can be validated before they are committed. Clojure
provides an easy mechanism for adding run-time checks to make sure that the
new value is always what it ought to be, and that there are no problems with the
new value before it is assigned to an identity.

• Isolated. No transaction “sees” the effects of any other transaction while it is
running. At the beginning of the transaction, the program takes a “snapshot” of all
identities involved, which it uses for all its operations. This ensures code within
transactions can be written freely, without any worry that the identities might
have changed and, so to speak, swept the rug out from under the executing code.

This system ensures that there is never any blocking, and therefore, never any deadlocks. Read
operations always execute immediately, returning the current value of an identity. Because the objects
stored in the STM system are immutable, read operations never block a writing operation. If the read
takes place and the program state changes just afterward, the object returned from the read operation
does not (cannot) change, so any code using it can continue without errors. The next time the identity is
read in another transaction or outside of any transaction, however, it will of course return the new value.

If one writing transaction completes while another is still underway, the STM system manages the
conflict. If the two updates are on separate identities, both are committed immediately without any
trouble or waiting. However, if two updating transactions conflict, they will be prioritized by the STM
system, and one may be required to restart and retry. All of this occurs automatically, and without any
need for special treatment by the developer.

Clojure also provides a commute operation—a writing operation which specifies that it may be
performed in any order relative to other transactions. Commutative operations never block or cause
retries.

The result is that the only scenario where the program cannot proceed immediately is when two
write operations conflict. In all scenarios, however, data integrity is guaranteed—one of the transactions
is restarted, from the beginning. Even in high-contention environments, the STM system is able to
prioritize and ensure that a given transaction will almost always complete in a timely manner.

STM and Performance

No doubt, some readers will wonder to what extent this extra management layer between the program and
memory impacts performance.

The answer is: very little. Because Clojure's data structures in memory are immutable, read operations

have almost no overhead—they can simply pull the current value without any concern for locks or
synchronization. Similarly, uncontested write operations are very fast, and only suffer a slight overhead

from the STM system.

14

 CHAPTER 1 ̈ THE CLOJURE WAY

In high write-contention scenarios, Clojure's STM is probably slower than an extremely well-designed

system of custom, fine-grained locks. This is an inevitable drawback of STM in general: managing
transaction committal and retries adds an overhead by its very nature, and a custom concurrency solution

has an advantage over a generalized one (such as STM).

Clojure's philosophy is that this slight, potential performance cost is well worth it in increased readability
and conceptual purity. That efficient system of fine-grained locks is extremely difficult to get right,

whereas the Clojure version can be written with almost no thought to concurrency at all.

An interesting analogy is to compare STM (managed state) with garbage collection (managed memory). It
faces many of the same tradeoffs: hand-crafted, low-level code can be more efficient, but by allowing the

runtime system to manage more things, the programmer’s life is made so much easier. And, as technology

gets better, garbage collectors have improved immensely, to the point where worrying about the few
nanoseconds saved by manual memory allocation are scarcely worth worrying about. All of these

comparisons hold true with STM as well. It is a tool that allows the programmer to work at a much higher

level, making their job immeasurably easier. Research into STM systems is ongoing, and there is no doubt

they will continue to improve and that these changes will be incorporated into Clojure.

Summary
This chapter contains a lot of dense material, and the rest of the book will be spent in unpacking it as
well as showing how to actually use it in a real-world program. But the features previously outlined are
truly the heart and soul of Clojure.

Understanding that Clojure is a highly dynamic, metaprogrammable dialect of Lisp will allow you to
play off of Clojure’s strengths, using powerful abstractions to avoid redundancy and drudgery in code.

Knowing that Clojure is a functional language that encourages functional purity when possible will
help you structure your program flow in simple, elegant ways. Keeping this in mind will help you break
down your tasks into discrete, small units of code, and orchestrate the flow of data between functions.
You will soon come to love its immutable data structures, and the liberating experience they provide,
knowing that they always safe to use.

Most of all, realizing Clojure’s special relationship with persistent data structures will allow you to
write robust, scalable applications with high levels of concurrency. Updating and managing data
structures will become simple, allowing you to focus on the code that really matters and is fun to write,
the code that gets stuff done.

15

C H A P T E R 2

 ̈ ̈ ̈

The Clojure Environment

"Hello World" in Clojure
To start programming in Clojure immediately, simply open a Clojure REPL, which stands for Read
Evaluate Print Loop. The REPL is a simple yet powerful way to create programs interactively as well as
interact with already running programs.

The simplest way to start the REPL is to start it directly from the system command line
1
. To do this,

navigate to the system directory where you have installed Clojure, the one that contains the “clojure-
1.0.0.jar” file. Then type the following to start Clojure:

java -jar clojure-1.0.0.jar

This starts up the Java virtual machine and loads the Clojure environment. As soon as the REPL
comes up, you should see the following prompt:

user=>

This indicates that the REPL is ready to accept input. To write your first program, just type the
following at the prompt:

user=> (println "Hello World")

Press the enter key, and the REPL should display the following:

Hello World
nil

user=>

What exactly is happening here? The acronym REPL itself gives a clue.

• Read: Clojure reads what you typed, (println "Hello World"), and parses it as a
Clojure form, making sure it is valid Clojure syntax.

1 This is the simplest way to use Clojure, but it is by no means the best. As your programs grow in size
and complexity, you will almost certainly need to move to a more complete Clojure development
environment that will provide help with file and classpath management, syntax highlighting, debugging,
and other essential features. Plugins exist for Emacs, VI, Netbeans, Eclipse, Intellij IDEA and other
editors, which provide these and a variety of other capabilities.

17

CHAPTER 2 ̈ THE CLOJURE ENVIRONMENT

• Evaluate: Clojure compiles the provided form and evaluates it. In this case, it is a
call to a build in function, println, with one literal parameter, "Hello World".
Clojure executes the function, which prints "Hello World" to the standard system
output.

• Print: Clojure prints the value returned from the println function. In this case, it is
nil, (the same as Java's null, meaning the absence of any value, or “nothing”),
because println is not a function which returns a value.

• Loop: Clojure returns back to the input prompt, ready for you to type in another
form.

This is different from how most other programming languages work. In most languages, writing,
compiling, and running programs are very distinct steps. Clojure does allow you to separate these steps,
should you want to, but most Clojure programmers prefer to use the REPL to do integrated
development, writing, and running their code at the same time. This can greatly speed development
time. It allows developers to see what their code does instantly in the context of an already-running
program without any of the overhead of the time needed to stop the program, edit the code, recompile,
and start it up again. This organic, bottom-up style of coding soon starts to feel extremely natural, and
returning to a static development environment soon feels slow and cumbersome.

Compared to other “scripting” languages which also provide real-time evaluation, however,
Clojure's on-the-fly capabilities are much more robust. When evaluating a line in the REPL, it is not just
evaluated, but actually compiled, and added to the program state of a running program on an equal
footing with its pre-existing code. Nor is the REPL only a special debug feature: dynamic code is always
inherent to the language. It is entirely possible, and not uncommon, to connect to a remote, production
instance of Clojure, open a REPL, inspect the application state, diagnose a problem, and tweak the
source code to fix a bug while the program is running for a zero-downtime code fix.

In theory, it is possible to open a REPL from scratch, and write an entire, sophisticated program
from the ground up as it runs without ever stopping or restarting it.

Clojure Forms
The fundamental unit of a Clojure program is not the line, the keyword, or the class, but the form. In
Clojure, a form is any unit of code that is can be evaluated to return a value. When you type something in
the REPL, it must be a valid form and Clojure source files contain a series of forms. There are four basic
varieties of forms.

Literals

Literals are forms which resolve to themselves. Examples of literals are strings, numbers, and characters
that you enter directly into the code. You can verify that literals resolve to themselves by trying it out in
the REPL:

user=> "I'm a string! "

"I'm a string!"

When you type a simple, double quoted string to evaluate it, the value returned is simply the string
itself. The same thing is true for numbers.

18

 CHAPTER 2 ̈ THE CLOJURE ENVIRONMENT

user=> 3

3

Symbols

Symbols are forms which resolve to a value. They may be thought of as roughly similar to variables,
although this is not technically accurate since they are not actually variable in the same way variables in
most languages are. In Clojure, symbols are used to identify function arguments, and globally or locally
defined values. Symbols and their resolution are discussed in more detail in the following sections.

Composite Forms

Composite forms use symmetrical parenthesis, brackets, or braces to make groups of other forms. When
evaluated, their value depends on what type of form they are—brackets evaluate to a vector and braces
to a map. Chapter 4 discusses these types in detail.

Of special interest here, however, are composite forms which use parenthesis. These indicate a list,
and lists in Clojure, have a special meaning. It is, after all, a dialect of Lisp, which derives its name from
“LIST Processing.”

In Clojure (and all Lisps), lists are evaluated as function calls. When a list is evaluated, it is the same
as calling a function, and the evaluated value of the form is the return value from that function. The first
item in the list is the function to call, and the rest of the items are arguments to pass to the function. For
example, the Clojure form (A B C), when evaluated, means “call A, with B and C as its arguments.” In
other programming languages, this might be written A(B, C) .

This may seem very foreign to programmers without a Lisp background. However, within the
context of Clojure’s capabilities, the benefits are considerable. Entire programs are just lists, and lists of
lists, and so on. Code is data, and data can be code. In Chapter 12, you will see how this can be leveraged
to very easily create code that writes code.

Special Forms

Special forms are a particular type of composite form. For most purposes, they are used very similarly to
a function call. The difference is that the first form of a special form is not a function defined
somewhere, but a special system form that’s built into Clojure.

Special forms are the most basic building blocks of a Clojure program, and are used to control
program flow, bind vars, and define functions among other things. The important thing to remember is
that, like function calls, the first form in the list identifies the special form being used and the other
forms in the list are like arguments to the special form. In order to see examples each these types of
forms, let's make the Hello World program a bit more complicated; you'll use two forms, instead of just
one. At the REPL, type the following, and press enter:

user=> (def message "Hello, World!")

At the next prompt, type the following:

user=> (println message)

You should see the same output as the first Hello World program:

19

CHAPTER 2 ̈ THE CLOJURE ENVIRONMENT

Hello, World

nil

This simple program, only two forms, contains each type of the forms previously discussed.
Analyzing the first form, (def message "Hello, World!") , you see first that it is enclosed in

parenthesis. Therefore, it is a list, and will be evaluated as a function application or a special form. There
are three items in the list: def, message and "Hello, World!". The first item on the list, def, will be the
function or special form that is called. In this case, it's a special form. But like a function, it takes two
parameters—the var to define, and the value to which to bind it. Evaluating this form creates a var which
establishes a binding of the value "Hello, World!" to the symbol message.

The second form (println message) is also a list and this time it’s a normal function application. It
has two component forms—each of them is a symbol. The symbol println resolves to the println
function, and the symbol message resolves to the string "Hello, World!", because of the var binding
established in the previous form.

The net result, then, is the same as in the first Hello World program: the println function is called
with an argument of "Hello, World!"

Writing and Running Source Files
As handy as the REPL is, in order to do any real development there is also the need to save source code
and be able to run it multiple times without retyping it. Clojure, of course, provides this facility.

By convention, Clojure source code files have the extension *.clj. In a normal Clojure program, there
is no need to explicitly compile your source files—they are automatically compiled as they are loaded,
just like individual forms entered into the REPL. If you need to pre-compile your Clojure to standard Java
*.class files, (for example, to run on a nonstandard Java environment like a mobile phone), it is entirely
possible, and handled by Clojures AOT (Ahead Of Time) compilation features. These are discussed in
Chapter 10.

To run the example Hello World program from a *.clj file, create a new file called "hello-world.clj" in
any plain-text editor, containing the following code in Listing 2-1.

Listing 2-1. hello-world.clj

(def message1 "Hello, World!")
(def message2 "I'm running Clojure code from a file.")
(println message1)

(println message2)

There are two ways to run this file. The simplest, most often used for development, is to open up a
REPL and type the following, (substituting the actual path of your *.clj file, and using forward slashes in
accordance with the Java convention):

user=> (load-file "c:/hello-world.clj")

You should see the following output:

Hello, World!
I'm running Clojure code from a file.

nil

20

 CHAPTER 2 ̈ THE CLOJURE ENVIRONMENT

The load-file function takes a single parameter: a string representation of a file-system path. It then
loads the file found at the path, and executes each form in the file sequentially, just as if it had been
typed it in the REPL, and returns the return value of the last form in the file. You can see nil, the return
value of println as the last line of the output. All the symbols defined in the file are still available. Try
typing a symbol defined in the file at the REPL and it will resolve to the value which was bound to it:

user=> message1

"Hello, World!"

Another way to execute a Clojure file is directly from the system command line. This approach
spawns a new Clojure runtime in a new instance of the Java virtual machine and then immediately loads
the selected file. It is the normal method of running a Clojure program outside of development (unless
you’ve packaged the Clojure into *.class files or a Jar package). To run a Clojure file this way, just enter
the following at the command line:

java –jar c:/clojure-1.0.0.jar c:/hello-world.clj

Those familiar with Java will recognize this as a standard Java invocation. The –jar c:/clojure-
1.0.0.jar parameter ensures that the Clojure runtime library is in the current classpath. Modify the path
to reflect the actual location of your Clojure jar file that came with your Clojure installation. The last
parameter is the path to the script you want to run.

This command starts the Clojure runtime, loads the hello-world.clj file, and sequentially
evaluates each of its forms. In this case, the only results you see in the system console are those printed
to the standard system output:

Hello, World!

I'm running Clojure code from a file.

Vars, Namespaces, and the Environment
As alluded to in the first chapter, a Clojure program is a living, organic entity that can evolve without
needing to be shut down and rerun. This is due primarily to the existence of the REPL, and the capability
it provides to evaluate forms in the context of an existing program. But how exactly does this work?

When you start a Clojure program, either by opening up a new REPL or running a source file
directly, you are creating a new global environment. This environment lasts until the program is
terminated, and contains all the information the program needs to run, including global Vars, (names
bound to values). See Figure 2-1 for a diagram of what the environment looks like. Whenever you use def
to define a Var, or define a function (covered in Chapter 3), it is added (or interned) to the global
environment. After it is interned, it is available for reference from anywhere within the same
environment. You can see this at work in the Hello World example, where you created a var binding the
symbol message to a string value, and used it in a subsequent form.

Vars can be defined and bound to symbols using the def special form. It has the following syntax:

(def var-name var-value)

var-name is the name of the var to create, and var-value is its value. var-value can be any Clojure
form, which will be evaluated and the resulting value bound to the var. Then, whenever the var-name
symbol is used within the global Clojure environment, it will resolve to the var value.

21

CHAPTER 2 ̈ THE CLOJURE ENVIRONMENT

̈ Caution Be sure to define your dependencies in the proper order. Because of the way Clojure references Vars,

a var must be defined before a symbol referring to it can be evaluated. Normally this isn’t an issue, but it can

result in some “gotchas” if you do a lot of work in the REPL. Because you will often define things in the REPL in a

different order from how you order them in a source file, and because once they are entered in the REPL they

remain available for the life of the program. As you work, you may not notice until you stop and rerun the program

that you’ve defined a dependency out of order. It’s an easy problem to fix, and, easy to avoid once you’re aware of

it, but it does give most beginning Clojure programmers several moments of confusion as they get errors trying to

run a program that previously seemed to run just fine.

1. Var definition in REPL Var Binding

Var Binding

Var Binding

Var Binding

Var Binding

Var Binding

Namespace

Namespace

Sequential Definitions

(example)

Clojure Global Environment

2. Var definition in REPL

3. Var definition in runtime code

4. Var definition in Source File

Figure 2-1. The Clojure environment

22

 CHAPTER 2 ̈ THE CLOJURE ENVIRONMENT

Are Vars Variables?

Although they have many similarities, Vars are not exactly like variables in other programming languages.

Most importantly, once defined, they are not intended to be changed—at least, not as part of the normal
running of a program. It is true, if you use def on a var that is already bound, its value will be changed and

subsequent evaluations will resolve to the new value. However, this is not thread-safe, and def can only

be used to define global symbols anyway. Mutable, global symbols as part of how your program works are
bad news, even though you might be able to get it to run. If you need changeable values as part of your

program, global or otherwise, you should always use Clojure’s thread-safe reference types, never

redefinition of symbols.

That said, there is a very good, appropriate use for redefining existing values: manually updating or

changing a program while it is running. It is Clojure’s ability to rebind a symbol that allows you to build or

change a program without restarting it. It’s fine to rebind symbols in the REPL, as you do exploratory
programming. Another example might be that your server-based program uses a symbol to store a

particular constant, say, *max-users*, and you later decide that the system can handle more users and

you ought to bump it up. In this case, it is perfectly appropriate to redefine the symbol’s value without
restarting the program. The key point is to not to rely on programmatic redefining of symbols to use them

as mutable state. It is extremely unsafe in any scenario with multiple threads, it could be very bad for

performance, and is bad Clojure practice in any case.

Symbols and Symbol Resolution
Symbols are ubiquitous in Clojure, and it is worth taking some time to understand what they really are
and how they work. Broadly stated, a symbol is an identifier that resolves to a value. They can be defined
either on the local level (for example, function arguments or local bindings), or globally (using Vars). Just
about anything you see in Clojure code that is not either a literal or a basic syntactic character (quotes,
parenthesis, braces, brackets, etc.) is probably a symbol. This covers what are often thought of as
variables in other languages, but also a good deal more:

• All function names in Clojure are symbols. When a function is called as part of a
composite form, it first resolves the symbol to get the function and then applies it.

• Most operators (comparison, mathematic, etc.) are symbols, which resolve to a
special, built-in, optimized function. They are resolved and applied in the same
way as functions with additional performance optimizations.

• Macro names are symbols. Without going into detail at this time, macros are like
functions, only applied at compile-time rather than run-time. See Chapter 12 for
an in-depth discussion of macros.

Symbol Names

Symbol names are case sensitive, and user-defined symbols have the following restrictions:

• May contain any alphanumeric character, and the characters *, +, !, -, _, and ?.

23

CHAPTER 2 ̈ THE CLOJURE ENVIRONMENT

• May not start with a number.

• May contain the colon character :, but not at the beginning or end of the symbol
name, and may not repeat.

According to these rules, examples of legal symbol names include symbol-name, symbol_name,
symbol123, *symbol*, symbol! , symbol? , and name+symbol. Examples of illegal symbol names would be
123symbol, :symbol: , symbol//name, etc.

By convention, symbol names in Clojure are usually lower-case, with words separated by the dash
character (-). If a symbol is a constant or global program setting, it often begins and ends with the star
character (*). For example, a program might define (def *pi* 3.14159).

Symbol Resolution and Scope

When you use a symbol name as a form in your code, Clojure evaluates the symbol and returns the value
bound to it. How this resolution happens depends on the scope of a symbol, and whether it is user-
defined or refers to a special or built-in form.

Clojure uses the following steps in resolving symbols:

1. Clojure determines if the symbol refers to a special form. If so, it uses it
accordingly.

2. Next, Clojure checks if the symbol is locally bound. Typically, local binding
means it is a function argument or defined with let (discussed in Chapter 3).
If it finds a local value, it uses it. Note that this implies that if there is a locally
defined symbol and a var with the same name, evaluating the symbol name
will return the value of the local symbol. Local symbols override Vars of the
same name.

3. Clojure searches the global environment for a var with the name of the symbol,
and returns the value of the var if it finds one.

4. If no value for the symbol name was found in the previous steps, Clojure
returns an error: java.lang.Exception: unable to resolve symbol <symbol>
in this context (NO_SOURCE_FILE:0). The NO_SOURCE_FILE part will be
replaced with an actual file name, unless you are running from the REPL.

Namespaces
When you define a var using def, you are establishing a global binding for that symbol name to that
value. However, truly global variables and symbols have long been known to be a bad idea. In a large
program, it is far too easy for definitions in one part of a program to inadvertently collide with those in
another, leading to difficult, extremely hard-to-find bugs.

For this reason, Vars in Clojure are all scoped by namespace. Every Var has a namespace as a
(sometimes implicit) part of its name. When using a symbol to refer to a var, you can use a forward slash
before the symbol name itself to specify the namespace.

To see this, look closely at a symbol definition in the REPL.

user=> (def first-name "Luke")
#'user/first-name

24

 CHAPTER 2 ̈ THE CLOJURE ENVIRONMENT

user=> user/first-name

"Luke"

Notice the prompt itself: user=>. The string user in the prompt actually refers to the current
namespace. If you were working in a different namespace, it would say something different. There’s
nothing special about the user namespace—it’s just the default. You haven’t actually just defined first-
name, you’ve defined user/first-name which you can then use to evaluate the symbol. Since you’re
already in the user namespace, using just first-name will also work.

Declaring Namespaces

To declare a namespace, use the ns form. ns takes a number of parameters, some of them quite
advanced. In its simplest form, you can pass it one parameter, a namespace name. If the namespaces
doesn’t already exist, it will create it, and set it as the current namespace. If there is already a namespace
of that name, it will just switch to it as the current namespace.

user=> (ns new-namespace)
nil

new-namespace=>

Now, when you define a Var, it will be put into the new-namespace namespace, instead of user.

Referencing Namespaces

To reference a var in a different namespace, simply use its fully-qualified name. Observe the following
REPL session:

user=> (def my-number 5)
#'user/my-number
user=> (ns other-namespace)
nil
other-namespace=> my-number
java.lang.Exception: Unable to resolve symbol: my-number in this context...
other-namespace=> user/my-number

5

Here you first define a var in the default user namespace. Then, you create a new namespace and
switch to it. When you try to evaluate my-number, it causes an error—it can’t find it in the current
namespace. When you use the fully qualified name, however, it resolves the var and returns the value
you originally bound to it. You can only evaluate Vars using fully-qualified names, though. To define a
symbol within a namespace, you actually have to be in the namespace you want to create it in.

Sometimes, if you’re depending heavily on another namespace, it’s too much trouble to fully qualify
every reference you need to make to a var in that namespace. For this scenario, Clojure provides the
capability to make a namespace “include” another, using the :use parameter of ns. For example, to
declare a namespace that imports all the symbols in Clojure’s built-in XML library, you could do this:

user=> (ns my-namespace
 (:use clojure.xml))

my-namespace=>

25

CHAPTER 2 ̈ THE CLOJURE ENVIRONMENT

Now, all the XML-related symbols are available in my-namespace. The (:use clojure.xml) form
specifies that the clojure.xml namespace is to be loaded, and the symbols defined in it also imported
into my-namespace. This is also very useful for dependency management: rather than requiring that you
manually load clojure.xml before using it, you can use :use to specify it as a dependency on a
namespace you declare. Clojure then loads it as part of the namespace declaration, if it wasn’t already
loaded, ensuring it is always available within your new namespace.

In addition to :use, Clojure provides another keyword you can use in ns, :require. The usage is
identical to :use, the difference being that it only ensures the required namespaces is loaded and
available—it doesn’t actually import the symbols. You can also use :require to specify a list of
namespaces to include. Here you include both Clojure’s XML library and its set library at once:

user=> (ns my-namespace
 (:require clojure.xml
 clojure.set))

my-namespace=>

Additionally, you can enclose the namespace in square brackets and use the :as keyword to specify
a shorter alias for the namespace:

user=> (ns my-namespace
 (:require [clojure.xml :as xml]))

my-namespace=> xml/parse

my-namespace=> #<xml$parse_7630 clojure.xml$parse_7630@1484105>

Don’t worry about the messy value; it’s Clojure’s string representation of a function, and indicates
that Clojure was able to resolve the xml/parse symbol.

Structuring Source Files

How can you use namespaces to structure your source code and keep it organized? It is not difficult. By
convention, each Clojure source file has its own namespace—a ns declaration ought to be the first form
within any Clojure file. This makes it easy to manage namespaces and files. It is also similar to the Java
convention of one class per file. In fact, it may be helpful for Java programmers to think of namespaces
as classes. They certainly do provide ability to group relevant code together the same way classes do.

To help Clojure find namespaces when they are referenced with :use or :require, there is a
particular naming convention to follow. The namespace declared in a file must match the name and
location of a file within the class path. So, for example, if you have a Clojure source file at “x/y/z.clj”, it
ought to contain the declaration for the namespace x.y.z. When you reference x.y.z, it will know in
which path and file to search for that namespace. Again, this is very similar to the Java package scheme.

Summary
This is all the knowledge that is really needed to run Clojure programs. Of course, you will want to learn
some tools to help make it easier to manage and run source files. Particularly, classpaths can be painful
to manage, and tools like Eclipse or Netbeans ease this burden. Another useful feature provided by most
Clojure environments is the ability to open up a file, and selectively evaluate individual forms, rather
than always loading the entire file. This is remarkably valuable for rapid development, testing, and
debugging of existing applications.

26

 CHAPTER 2 ̈ THE CLOJURE ENVIRONMENT

The important fact to remember, no matter which tool you use, is that Clojure programs consist
entirely of a set of forms, which are themselves either literals, special forms, symbols, or composited of
other forms. Keeping this in mind is a big step towards understanding Clojure program structure.

Also, it is important to understand symbols. Symbols are the means by which identifiers in source
code are linked to actual values, and it is helpful to have a clear grasp of how they are assigned and are
resolved.

Vars are frequently used in conjunction with Symbols. Vars represent a binding of a name to a value
in the Clojure environment, and are scoped by namespace.

Finally, on a high level, when a program gets too big for one source file break it into multiple files
and give each one a separate namespace. You can then use the namespace dependency features to
ensure that symbols are always defined where they are needed.

27

C H A P T E R 3

 ̈ ̈ ̈

Controlling Program Flow

Functions
As a functional language, functions are the beginning and end of every Clojure program. The “shape” of
any Clojure program is like a tree, each function branching out and calling other functions.
Understanding a Clojure program means understanding its functions and the patterns in which they are
called. Use functions carelessly and your Clojure programs will be incomprehensible spaghetti. Use
them thoughtfully and your Clojure programs will be fast, elegant, and a genuine joy both to write and to
read.

First-Class Functions

In Clojure, all functions are first-class objects. This means the following:

• They can be dynamically created at any point during the execution of the

program.

• They aren’t intrinsically named, but can be bound to symbols or to more than one

symbol.

• They can be stored as values in any data structure.

• They can be passed to, and returned from, other functions.

 Contrast this with functions in more static languages, such as Java or C. In these languages,
functions must always be defined and named up-front, before compilation. It is a tremendous
advantage of Clojure (and other functional languages) to be able to define new functions on-the-fly and
to store them in arbitrary data structures.

Defining Functions with fn

The most basic way to define a function is with the fn special form, which returns a new first-class
function when evaluated. In its simplest form, it takes two arguments: a vector (a bracketed list) of
argument symbols and an expression which will be evaluated when the function is called.

29

CHAPTER 3 ̈ CONTROLLING PROGRAM FLOW

̈ Note Vectors, delimited by left and right square brackets, have not yet been discussed. For a detailed

explanation of their characteristics, see Chapter 4. For now, you can think of them as an alternate way of

expressing a list. Unlike lists delimited by parentheses, they don’t denote a function call when evaluated, so they

are suitable for quickly and easily expressing literal data structures in code.

For example, at the REPL, you can define an extremely simple function which takes two arguments
and multiplies them.

user=> (fn [x y] (* x y))

This form may look slightly complicated, but it is really very simple: it is a form consisting of just
three other forms: fn , [x y] and (* x y). fn is called with the other two as arguments—the vector [x
y] defines that the new function has two arguments, x and y, while (* x y) is the body of the function,
with x and y bound to their respective arguments. There is no need to use any kind of explicit return
statement—the function always returns the evaluation of the provided expression.

However, this isn’t much use on its own. It just returns the function, which then gets translated to a
string to be printed by the REPL. The string view of a function isn’t particularly pretty or useful:

#<user$eval__43$fn__45 user$eval__43$fn__45@ac06d4>

What’s more, you now can’t use this function, because you didn’t bind it to any symbol or put it in
any data structure. The JVM might have garbage collected it right away, because it was of no more use.
Typically, it’s more useful to bind a function to a var, like this:

user=> (def my-mult (fn [x y] (* x y)))

You can now use the new function in any context where you have access to that var:

user=> (my-mult 3 4)

12

And, it works as advertised. The expression (fn [x y] (* x y)) is evaluated to a first-class function,
which is then bound to the symbol my-mult. To call my-mult, you evaluate a list with a function as the first
element. my-mult resolves to the new function, which is then called with 3 and 4 as arguments.

Note, however, that the assignment of the function to the symbol is only one way to use it, as long as
something which resolves to a function is used as the first element of a form it will be called, whether it is
a symbol or not. For example, it is entirely possible to define a function and use it within the same form:

user=> ((fn [x y] (* x y)) 3 4)

12

In this form, notice that the entire function definition, (fn [x y] (* x y)), is used as the first item
in the form. When it is evaluated, it resolves to a function and is passed 3 and 4 as arguments, the same
as when it was bound to a symbol and the symbol was evaluated.

The important thing to remember is that functions are not the same as the symbols to which they
are bound. In the previous example, my-mult is not the function, it is only a symbol bound to the
function. When it is called, it is not calling my-mult, it is resolving my-mult to obtain a function and calling
that in turn.

30

 CHAPTER 3 ̈ CONTROLLING PROGRAM FLOW

Defining Functions with defn

Although functions are distinct from the symbols to which they may be bound, it is by far the most
common case that functions are named and bound to particular symbols for later use. For this purpose,
Clojure provides the defn form as a shortcut for defining a function and binding it to a symbol. defn is
semantically equivalent to using def and fn together, but shorter and more convenient. It also offers
the ability to add a documentation string to a function, explaining how it is used.

The defn form takes the following arguments: a symbol name, a documentation string (optional), a
vector of arguments, and an expression for the function body. For example, the following code defines a
function which squares a single argument:

user=> (defn sq
 "Squares the provided argument"
 [x]

 (* x x))

You can then call the function using the assigned name:

user=> (sq 5)

25

You can check the doc-string of any function using the built-in doc function, which prints
information on a function (including its doc-string) to the standard system output.

user=> (doc sq)

user/sq
([x])
 Squares the provided argument

nil

̈ Tip The doc function is very useful for exploratory programming. All the built-in Clojure functions (as well as

practically all libraries) provide good documentation, and using doc it is all easily accessible from the REPL. Make

it your practice to document your functions with doc-strings as well, even if nobody else ever reads your code. You

will be surprised how much of an aid it is to your own memory after a week or two. Making it easy to remember

exactly what your functions do is very helpful.

Functions of Multiple Arities

Arity refers to the number of arguments that a function accepts. In Clojure, it is possible to define
alternate implementation for functions based on arity.

This uses the same fn or defn forms previously discussed, but with a slight modification in the
arguments. Instead of passing a single vector for arguments and expression for the implementation, you
can pass multiple vector/expression pairs, each enclosed in parentheses. This is easier to demonstrate
rather than explain:

31

CHAPTER 3 ̈ CONTROLLING PROGRAM FLOW

user=> (defn square-or-multiply
 "squares a single argument, multiplies two arguments"
 ([] 0)
 ([x] (* x x))

 ([x y] (* x y)))

This defines a function with three alternate implementations. The first is an empty vector and will
be applied when the function is called with no arguments. The implementation just returns the constant
0. The second implementation takes a single argument, and returns that argument multiplied by itself.
The third implementation takes two arguments, and returns their product. This can be verified in the
REPL:

user=> (square-or-multiply)
0
user=>(square-or-multiply 5)
25
user=>(square-or-multiply 5 2)

10

Functions with Variable Arguments

Often, it is necessary to have a function that takes any number of arguments. This is referred to as
variable arity. Clojure accommodates this requirement by providing the special symbol & in the
argument definition vector for function definitions. It works in both fn and defn.

To use it, just add a & and a symbol name after any normal argument definitions in your argument
definition vector. When the function is called, any additional arguments will be added to a seq (similar to
a list), and the seq will be bound to the provided symbol. For example, the following code:

user=> (defn add-arg-count
 "Returns the first argument + the number of additional arguments"
 [first & more]

 (+ first (count more)))

count is simply a built-in function which returns the length of a list. Try it out, using the following
code:

user=> (add-arg-count 5)
5
user=> (add-arg-count 5 5)
6
user=> (add-arg-count 5 5 5 5 5 5)

10

In the first call, the single argument 5 is bound to first, and the empty list is bound to more since
there are no additional arguments. (count more) returns 0, and so the result is simply the first argument.
In the second and third calls, however, more is bound to the lists (5) and (5 5 5 5 5), the lengths of
which are 1 and 5, respectively. These are added to 5 and returned.

Chapter 4 discusses lists and some common functions for reading and extracting values from them.
These will all work on the list bound to the more argument.

32

 CHAPTER 3 ̈ CONTROLLING PROGRAM FLOW

Shorthand Function Declaration

As succinct as fn can be when defining functions, there are still cases where it can be cumbersome to
type it out in its entirety. Typically, these are cases where a function is declared and used inline, rather
than bound to a top-level symbol.

Clojure provides a shorthand form for declaring a function, in the form of a reader macro. To
declare a function in shorthand, use the pound sign, followed by an expression. The expression becomes
the body of the function, and any percent signs in the body are interpreted as arguments to the function.

̈ Note Reader macros are specialized, shorthand syntax and can usually be identified because they are just

about the only forms in Clojure that are not contained by matched parenthesis, brackets, or braces. They are

resolved as the first step when parsing Clojure code and are transformed into their long form before the code is

actually compiled. The shorthand function form #(* %1 %2) is actually identical to the longer form (fn [x y] (*

x y)) before it is even seen by the compiler. Reader macros are provided for a few extremely common tasks, and

they can’t be defined by users. The rationale behind this limitation is that overuse of reader macros makes code

impossible to read unless the reader is very familiar with the macro in question. Preventing users from creating

custom reader macros lowers the barriers to sharing code and helps to keep Clojure consistent as a language.

Still, they can be very useful for certain extremely common forms, so Clojure provides a small set that are available

by default.

For example, here is the square function implemented in shorthand:

user=> (def sq #(* % %))
#'user/sq
user=> (sq 5)

25

The percent sign implies that the function takes a single argument and is bound to the argument
within the function body. To declare shorthand functions with multiple arguments, use the percent sign
followed by a numeral 1 through 20:

user=> (def multiply #(* %1 %2))
'#user/multiply
user=> (multiply 5 3)

15

%1 or % refers to the first argument, %2 to the second, etc. It can be readily seen that the shorthand
function is much more compact, especially for functions declared inline:

user=> (#(* % %) 5)

25

33

CHAPTER 3 ̈ CONTROLLING PROGRAM FLOW

The only downside to shorthand functions is that they can be difficult to read, so use them
judiciously and only when they are very short. Also, be aware that shorthand function declarations
cannot be nested.

Conditional Expressions
It is an essential characteristic of any program that it must be able to alter its behavior depending on the
situation. Clojure, of course, provides a full set of simple conditional forms.

The most basic conditional form is the if form. It takes a test expression as its first argument. If the
test expression evaluates to true, it returns the result of evaluating the second argument (the “then”
clause). If the test expression evaluates to logical false (including nil), it evaluates and returns the third
argument (the “else” clause), if one is provided, and nil if it is not. For example, the following code:

user=> (if (= 1 1)
 "Math still works.")

"Math still works."

Another example with an “else” expression:

user=> (if (= 1 2)
 "Math is broken!"
 "Math still works.")

"Math still works."

Clojure also provides an if-not form. This functions exactly the same way as if, except its behavior
is reversed. It evaluates the second argument if the test expression is logically false, and the third only
when logically true.

user=> (if-not (= 1 1)
 "Math is broken!"

 "Math still works.")

"Math still works."

Sometimes, it is useful to choose not just between true and false but between several different
options. You could do this with nested if’s, but it’s much cleaner to use the cond form. cond takes as its
arguments any number of test/expression pairs. It evaluates the first test, and, if true, returns the result
of the first expression. If the first test evaluates to false, it tries the next test expression, and so on. If none
of the test expressions evaluate to true, it returns nil, unless you provide an :else keyword as the last
expression, which serves as a catch-all. For an example, let’s define a function that uses cond to
comment on the weather:

(defn weather-judge
"Given a temperature in degrees centigrade, comments on the weather."
[temp]
(cond

 (< temp 20) "It's cold"
 (> temp 25) "It's hot"

:else "It's comfortable"))

34

 CHAPTER 3 ̈ CONTROLLING PROGRAM FLOW

Try it out with the following code:

user=> (weather-judge 15)
"It's cold"
user=> (weather-judge 22)
"It's comfortable"
user=> (weather-judge 30)

"It's hot"

̈ Tip cond can be useful, but be careful—large cond statements are be difficult to maintain, especially as the

range of possible behaviors in your program grows. Instead, consider using polymorphic dispatch by means of

multimethods, discussed in Chapter 9. Multimethods allow conditional logic, similar to cond, but are much more

extensible.

Local Bindings
In a functional language, new values are obtained by function composition—nesting multiple function
calls. Sometimes, however, it is necessary to assign a name to the result of a computation, both for
clarity and, if the value might be used more than once, for efficiency.

Clojure provides the let form for this purpose. let allows you to specify bindings for multiple
symbols, and a body expression within which those symbols will be bound. The symbols are local in
scope—they are only bound within the body of the let. They are also immutable; once they are bound,
they are guaranteed to refer to the same value throughout the body of the let and cannot be changed.

The let form consists of a vector of bindings and a body expression. The binding vector consists of a
number of name-value pairs. For example, the following let-expression binds a to 2, b to 3, and then
adds them:

user=> (let [a 2 b 3] (+ a b))

5

This is the simplest possible way to use let. However, it is fairly trivial and let adds more
complexity than it provides value. For a more compelling example of when to use let, consider the
following function:

(defn seconds-to-weeks
"Converts seconds to weeks"
[seconds]

 (/ (/ (/ (/ seconds 60) 60) 24) 7))

It works fine, but it’s not very clear. The nested calls to the division function are a bit confusing, and
although most people would be able to figure out the code without too much trouble, it is more work
than it should be for this seemingly simple functionality. Also, one can easily imagine a similar function,
with values and operations that are much less familiar. Such a function, written like this, might never be
deciphered.

We can use let to clean up this definition:

35

CHAPTER 3 ̈ CONTROLLING PROGRAM FLOW

(defn seconds-to-weeks
"Converts seconds to weeks"
[seconds]
(let [minutes (/ seconds 60)
 hours (/ minutes 60)
 days (/ hours 24)
 weeks (/ days 7)]

 weeks))

This is longer, but you can see what’s going on at each step of the calculation. You bind
intermediary symbols to minutes, hours, days, and weeks, and then return weeks rather than doing the
calculation all in one go. This example demonstrates mostly a stylistic choice. It makes the code clearer,
but also longer. When and how to use it is up to you, but the bottom line is simple: use let to make your
code clearer and to store the results of calculations, so you don’t have to perform them multiple times.

Looping and Recursion
It will probably come as a minor shock to users of imperative programming languages that Clojure
provides no direct looping syntax. Instead, like other functional languages, it uses recursion in scenarios
where it is necessary to execute the same code multiple times. Because Clojure encourages the use of
immutable data structures, recursion provides a much better conceptual fit than typical, imperative
iteration.

Thinking recursively is one of the largest challenges coming from imperative to functional
languages, but it is surprisingly powerful and elegant, and you will soon learn how to easily express any
repeated computation using recursion.

Most programmers have some notion of recursion in its simplest form—a function calling itself.
This is accurate, but does not carry any idea of how useful recursion can actually be or how to use it
effectively and understand how it works in a variety of scenarios.

For effective recursion in Clojure (or any other functional language, for that matter), you only need
to keep these guidelines in mind:

• Use a recursive function’s arguments to store and modify the progress of a

computation. In imperative programming languages, loops usually work by

repeatedly modifying a single variable. In Clojure, there are no variables to

modify. Instead, make full use of a function’s arguments. Don’t think about

recursion as repeatedly modifying anything, but as a chain of function calls. Each

call needs to contain all the information required for the computation to continue.

Any values or results that are modified in the course of a recursive computation

should be passed as arguments to the next invocation of the recursive function, so

it can continue operating on them.

• Make sure the recursion has a base case or base condition. Within every recursive

function, there needs to be a test to see if some goal or condition has been

reached, and if it has, to finish recurring and return a value. This is similar to

protecting against infinite loops in an imperative language. If there isn’t a case

where the code is directed to stop recurring, it never will. Obviously, this causes

problems.

36

 CHAPTER 3 ̈ CONTROLLING PROGRAM FLOW

• With every iteration, the recursion must make at least some progress towards the

base condition. Otherwise, there is no guarantee that it would ever end. Typically,

this is achieved by making some numeric value larger or smaller, and testing that

it has reached a certain threshold as the base condition.

As an example, the following Clojure program uses Newton’s algorithm to recursively calculate the
square root of any number. It is a full, albeit small Clojure program with one main function and several
helper functions that demonstrate all these features of recursion (see Listing 3-1).

Listing 3-1. Calculating Square Roots

(defn abs
 "Calculates the absolute value of a number"
 [n]
 (if (< n 0)
 (* -1 n)
 n))

(defn avg
 "returns the average of two arguments"
 [a b]
 (/ (+ a b) 2))

(defn good-enough?
 "Tests if a guess is close enough to the real square root"
 [number guess]
 (let [diff (- (* guess guess) number)]
 (if (< (abs diff) 0.001)
 true
 false)))

(defn sqrt
 "returns the square root of the supplied number"
 ([number] (sqrt number 1.0))
 ([number guess]
 (if (good-enough? number guess)
 guess

 (sqrt number (avg guess (/ number guess))))))

Let’s try it out. After loading this file into the Clojure runtime, execute try the following at the REPL:

user=> (sqrt 25)
5.000023178253949
user=> (sqrt 10000)

100.00000025490743

As advertised, this code returns a number within .001 of the exact square root.
The first three methods defined in this file, abs, avg, and good-enough?, are straightforward helper

functions. You don’t need to observe them too closely at this point, unless you want to. The meat of the
algorithm happens in the fourth, the sqrt function.

37

CHAPTER 3 ̈ CONTROLLING PROGRAM FLOW

The most obvious thing about the sqrt function is that it has two implementations. The first can be
thought of as the “public” interface. It’s easy to call, and takes only a single argument: the number for
which you are trying to find the square root. The second is the recursive implementation, which takes
both the number and your best guess so far. The first implementation merely calls the second, with an
initial guess of 1.0.

The recursive implementation itself is simple. It first checks the base condition, defined by the good-
enough? function, which returns true if your guess is close enough to the actual square root. If the base
condition is met, the function doesn’t recur any more, but simply returns the guess as the answer.

If the base condition is not met, however, it continues the recursion by calling itself. It passes the
guess and the number to itself as arguments, as those are all it needs to continue the calculation. This
fulfills the first characteristic of recursive functions defined above.

Finally, note the expression provided as the value of guess for the next iteration: (avg guess (/
number guess)). It always passes the average of the current guess and the number divided by the current
guess. The mathematical properties of square roots guarantee that this number will always be closer to
the square root of the number than the previous guess. This fulfills the last requirement for a good
recursive function. With each iteration, it makes progress and gets closer to the result. Each time the
function is run, guess gets a little closer to the actual square root, and eventually it is guaranteed to get
close enough that good-enough? can return true and the calculation will end.

As another example, Listing 3-2 is a function that uses recursion to calculate exponents.

Listing 3-2. Calculating Exponents

(defn power
 "Calculates a number to the power of a provided exponent."
 [number exponent]
 (if (zero? exponent)
 1

 (* number (power number (- exponent 1)))))

Trying it out with the following code:

user=> (pow 5 3)

125

This function uses recursion differently than the square root function. Here, you use the
mathematical observation that x

n
 = x * x

(n-1)
. This can be seen in the recursive call: the function returns the

number, multiplied by the number raised to one less than the initial power. You have a base case: it
checks if the exponent is zero, and if so, returns 1, since x

0
 is always 1. Since you subtract 1 from the

exponent on each iteration, you can be sure that you will eventually reach it (as long as you don’t give
the function a negative exponent). The function always makes progress towards the base condition.

̈ Note Of course, there are easier ways to get square roots and powers than implementing these functions. Both

exist in Java’s standard math library, which is extremely easy to call from Clojure. These are merely presented as

clean examples of recursive logic. See the chapter on Java Interoperability for instructions on how to call Java

library functions.

38

 CHAPTER 3 ̈ CONTROLLING PROGRAM FLOW

Tail Recursion

One practical problem with recursion is that, due to the hardware limitations of physical computers,
there is a limit on the number of nested functions (the size of the stack). On the JVM, this varies and can
be quite large. On the machine on which I write this, it’s about 5000. Nevertheless, no matter how large
the stack size is, it does force a major issue: there is a strict limit on the number of times a function can
recur. For small functions, this rarely matters. But if recursion is a generic and complete replacement for
loops, it becomes an issue. There are many situations in which it is necessary to iterate or recur
indefinitely.

Historically, functional languages resolve this issue through tail-call optimization. Tail-call
optimization means that, if certain conditions are met, the compiler can optimize the recursive calls in
such a way that they do not consume stack. Under the covers, they’re implemented as iterations in the
compiled machine code.

The only requirement for a recursive call to be optimized in most functional languages is that the
call occurs in tail position. There are several formal definitions of tail position, but the easiest to
remember, and the most important, is that it is the last thing a function does before returning. If the
return value of the “outer” function is wholly delegated to the “inner” function, the call is in tail position.
If the “outer” function does anything with the value returned from the inner function except just return
it, it is not tail recursive and cannot be optimized. This makes sense when the nature of the call stack is
considered; if a call is in tail position, then the program can effectively “forget” that it was called
recursively at all and delegate the entire program flow to the result of the inner function. If there is
additional processing to do, the compiler can’t throw away the outer function. It has to keep it around in
order to finish computing its result.

For example, in the preceding examples, the recursive power function is not in tail position, because
it doesn’t simply return the value of the recursive call, but takes it and does additional math on it before
returning. This cannot be optimized.

On the other hand, the recursive call in sqrt is in tail position, because all the function does with the
call is to return the value—no extra processing required.

Clojure’s recur

In some functional languages, such as Scheme, tail call optimization happens automatically whenever a
recursive call is in tail position. Clojure does not do this. In order to have tail recursion in Clojure, it is
necessary to indicate it explicitly using the recur form.

To use recur, just call it instead of the function name whenever you want to make a recursive call. It
will automatically call the containing function with tail-call optimization enabled.

For example, Listing 3-3 is non-recursive function which adds up all the numbers to a given limit,
e.g., (add-up 3) = 1 + 2 + 3 = 6.

Listing 3-3. Adding Up Numbers without Tail Recursion

(defn add-up
 "adds all the numbers below a given limit"
 ([limit] (add-up limit 0 0))
 ([limit current sum]
 (if (< limit current)
 sum

 (add-up limit (+ 1 current) (+ current sum)))))

39

CHAPTER 3 ̈ CONTROLLING PROGRAM FLOW

This works fine and is valid according to the rules of recursion. It passes the current number, the
sum so far, and the limit as arguments. It checks for a base case (when the current number is greater
than the limit), and each iteration gets closer to the base case. It works great for small and moderate
values:

user=> (add-up 3)
6
user=> (add-up 500)

125250

But if you try to use it on a really large number, it chokes:

user=> (add-up 5000)

java.lang.StackOverflowError

This is where you need tail call optimization. Just redefine it, replacing the call to adds-up with a call
to recur, as shown in Listing 3-4.

Listing 3-4. Adding up Numbers Correctly with Tail-recursion

(defn add-up
 "adds all the numbers up to a limit"
 ([limit] (add-up limit 0 0))
 ([limit current sum]
 (if (< limit current)
 sum

 (recur limit (+ 1 current) (+ current sum)))))

Now you can give it a try:

user=> (add-up 5000)

12502500

It works with no problems. Using recur, the only limit to how much recursion you can use is how
long you are willing to wait for the processing to finish.

̈ Note Clojure has come under fire from some quarters for not doing tail-call optimization by default, whenever

possible, without the need for the recur special form. Although the invention of recur was spurred by the

limitations of the JVM that make it difficult to do automatic tail optimization, many members of the Clojure

community find that having explicit tail recursion is much clearer and more convenient than having it implicitly

assumed. With Clojure, you can tell at a glance if a function is tail recursive or not, and it’s impossible to make a

mistake. If something uses recur, it’s guaranteed never to run out of stack space due to recursion. And if you try

to use recur somewhere other than in correct tail position, the compiler will complain. You are never left

wondering whether a call is actually in tail position or not.

40

 CHAPTER 3 ̈ CONTROLLING PROGRAM FLOW

Using loop

The loop special form, used in conjunction with recur, provides the capability to make tail recursion
even simpler by providing the means to declare and call a function at the same time. Logically, loop is
no different from defining and then immediately calling an anonymous recursive function, but it makes
it much easier to “read” the logical flow and see how iterative looping and tail-recursion are actually the
same thing.

To define a loop construct, use the loop form. It in turn takes two forms: first, a vector of initial
argument bindings (in name/value pairs) and an expression for the body. Whenever recur is used within
the body of the loop, it will recursively “call” the loop again with any passed arguments rebound to the
same names as in the loop definition.

For example, the following is a very simple loop that establishes an initial binding of the symbol i to
0, recursively increments it up to ten and then returns:

(loop [i 0]
 (if (= i 10)
 i

 (recur (+ i 1))))

Note that, like any recursive function, the loop body has a base case (when i = 10) and makes
progress towards the base case with every iteration. Unlike a recursive function, however, there isn’t any
need to define a function by itself. loop sets up your functions and assigns initial values, and then
provides the point that the program execution “comes back” to when recur is called. You can look at it
equally well as a recursive call, or an iterative loop with a set of values that changes each time around.

This is extremely useful, to the point where almost all uses of recur in practice are coupled with a
loop. One extremely common idiom when writing recursive functions in other functional languages is to
have two versions of the function—one recursive, one not. Typically, the non-recursive version sets up
some initial values and then calls the recursive function. This is a natural outcome of good recursive
style—the recursive function may need a lot of arguments to keep track of its computational state, but
those don’t always need to be exposed to the end caller of the function. loop provides the capability to
do this much more compactly. To see an example of this, look at the square root function introduced
earlier in this chapter (modified to use recur instead of direct recursion).

(defn sqrt
 "returns the square root of the supplied number"
 ([number] (sqrt number 1.0))
 ([number guess]
 (if (good-enough? number guess)
 guess

 (recur number (avg guess (/ number guess))))))

Notice the two implementations of the function—the non-recursive version sets the initial value of
guess, and then kicks off the recursion. You can refactor this to use loop and to do both of these things in
a single step:

(defn loop-sqrt
 "returns the square root of the supplied number"
 [number]
 (loop [guess 1.0]
 (if (good-enough? number guess)

41

CHAPTER 3 ̈ CONTROLLING PROGRAM FLOW

 guess

 (recur (avg guess (/ number guess))))))

This version only has one function implementation. The loop sets the initial value of guess and
immediately executes its body. When recur is called, it “calls” the loop statement again, not the top-level
function. The argument to recur is matched up with the binding in the loop, so with each iteration the
new guess value is bound to guess. The code meant to repeat is neatly packaged between loop and recur.

Deliberate Side Effects

As discussed in Chapter2, Clojure avoids side effects wherever possible, preferring a purely functional
style. Some tasks, however, such as IO, explicit state management and Java interaction are, by their very
nature, side effects. These cannot be incorporated into a fully functional program and so Clojure
provides constructs to explicitly run side effects.

Using do

The most important and basic way to run a side effect is to use the do special form. do is very simple. It
takes multiple expressions, evaluates them all and returns the value of the last one. This means that from
a functional standpoint, all expressions but the last are ignored; they are present only as a means to
execute side effects.

For example, take the println function. println is a side effect, since it performs output. It returns
nil, so it doesn’t fit well in a functional program (which rely heavily on meaningful return values). The
following code entered at the REPL uses do to call several println functions as side effects then returns a
distinct value.

user=> (do
 (println "hello")
 (println "from")
 (println "side effects")

 (+ 5 5))

The following output is produced:

hello
from
side effects

10

The first three lines are output produced as a result of calling println: the final value, 10, is the
return value of the do form itself printed to the REPL as output, not a side effect. Side effects will be
called whenever the do form is evaluated, whether at the REPL or not.

42

 CHAPTER 3 ̈ CONTROLLING PROGRAM FLOW

Side Effects in Function Definitions

If you have a function that needs to perform side effects, Clojure also provides a way to run side effects
directly from a function definition, using either fn or defn, or directly inside the body of a loop without
needing to explicitly use a do form. This is accomplished quite simply by providing multiple expressions,
instead of just one, as the body of a function or loop. The last expression will be evaluated, as usual, for
the return value of the function. All the other expressions are evaluated solely for side effects.

For example, here is a function definition for a function which squares a number. From a functional
standpoint, it is identical to the one at the beginning of this chapter. However, it runs two side effects
(specifically, calls to println) in addition to returning the value.

(defn square
 "Squares a number, with side effects."
 [x]
 (println "Squaring" x)
 (println "The return value will be" (* x x))

 (* x x))

As with do, only the last line of the function definition actually returns the value. But running the
function at the REPL, you see:

user=> (square 5)
Squaring 5
The return value will be 25

25

The same construct also works for fn: just add additional expressions before the one that returns the
value. This can be very useful, for example, for adding logging to track when functions are called.

Functional Programming Techniques

As previously described, the mechanical basics of how to declare functions and control program flow
within a Clojure program. These are the basic, most fundamental components from which Clojure
programs are built. Most of the rest of Clojure’s standard library is expressible in terms of these basic
constructs (with the exception of macro-based forms, discussed in Chapter 12).

However, to write a good Clojure program, you must not only know these forms but some of the
techniques for using them effectively and understand everything that Clojure allows you to do. Most of
these techniques are by no means exclusive to Clojure, but are common to all functional languages.

First-Class Functions

Functions can themselves be values and passed to and returned from other functions. This is an
important feature of functional programming. It isn’t just a way of doing clever tricks with code, but a
key way to structure programs. By passing blocks of functionality around as functions, it is possible to
write code that can be extremely generic and nearly eliminate code duplication.

43

CHAPTER 3 ̈ CONTROLLING PROGRAM FLOW

There are two aspects to using first-class functions: taking them as arguments and calling them and
creating and returning them. The former is somewhat more common, as it is conceptually “easier,”
although the latter can be extremely powerful as well.

Consuming First-Class Functions

Functions that take other functions as arguments are extremely common. These are known as higher-
order functions. Most of the sequence manipulation library (see Chapter 5) is based around this
technique.

The primary motivation for allowing a function to take other functions as arguments is to make it
more generic. By delegating specific behaviors to the provided functions, the outer function can be
much more general, and therefore, suitable for use in a much wider range of scenarios.

For example, the following example is a function which calculates the result of a function applied to
two arguments, and also the result when the order of the arguments is reversed. The key point to notice
is that it works for any function that takes two arguments. Perhaps you designed this function with one
function in mind, but it works equally well for anything else.

(defn arg-switch
 "Applies the supplied function to the arguments in both possible orders. "
 [fun arg1 arg2]

 (list (fun arg1 arg2) (fun arg2 arg1)))

The function constructs a list of two items. The first is the result of calling the function with the
parameters in the original order and the second is the result of calling them in reverse order. Test it at
the REPL:

user=> (arg-switch / 2 3)

(2/3 3/2)

Here, you pass arg-switch three distinct parameters: the division function, the number two, and the
number three. It returns a list with two items: the first is two divided by three and the second is three
divided by two. Both are presented as fractions, because that is Clojure’s default numerical
representation for rational numbers.

arg-switch works equally well when passed other functions:

user=> (arg-switch > 2 3)

(false true)

When passed the greater-than function, it returns (false true), the respective results of (> 2 3)
and (> 3 2). It works for non-numeric functions. Here you try it with the string concatenation function
str:

user=> (arg-switch str "Hello" "World")

("HelloWorld" "WorldHello")

You can even pass it a custom function, defined inline:

user=> (arg-switch (fn [a b]
 (/ a (* b b)))

44

 CHAPTER 3 ̈ CONTROLLING PROGRAM FLOW

 2 3)

(2/9 3/4)

As you can see, by allowing your function to take another function as an argument, you have with
no extra work created an extremely generic, flexible function that can be used in a wide variety of
scenarios (assuming you needed this sort of function to begin with). Defining it using a first-class
function is infinitely preferable to having to write it again and again for each type of operation. When
programs become more complex, this is even more of an advantage. Functions can concentrate entirely
on their own logic and delegate all other operations.

Producing First-Class Functions

Not only can functions take other functions as arguments, but they can construct them and return them
as values. This has the potential to be rather mind-bending, if not kept clean and understandable, but is
also an extraordinarily powerful feature.

This is one of the main reasons Lisp has historically been associated with artificial intelligence. It
was thought that functions creating other functions would allow a machine to evolve and define its own
behavior. Although self-modifying programs never quite lived up to expectations, the ability to define
functions on-the-fly is nevertheless extremely powerful and useful for many everyday programming
tasks.

As one example, here is a very simple function that creates and returns another function which
checks that a number is in a given range:

(defn rangechecker
 "Returns a function that determines if a number is in a provided range."
 [min max]
 (fn [num]
 (and (<= num max)

 (<= min num))))

To use this function, you can call it and save the result in the REPL:

user=> (def myrange (rangechecker 5 10))

#’user/myrange

Then call your new function, myrange, like any other function:

user=> (myrange 7)
true
user=> (myrange 11)

false

If you only needed one range check, it would probably be easier just to write it directly. But in a
program where there may be dynamically generated ranges or thousands of different ranges required,
creating a “function factory” function like rangechecker is very useful. For functions that are more
complicated than just checking a range, it is a huge win, since any functions that can be generated
dynamically are functions that don’t have to be written manually with lots of complicated logic.

45

CHAPTER 3 ̈ CONTROLLING PROGRAM FLOW

Closures

As might be gathered from its very name, closures are a central feature in Clojure. But what, exactly, is a
closure? And why do they matter so much?

Briefly stated, closures are first-class functions that contain values as well as code. These values are
those in scope at function declaration, preserved along with the function. Whenever a function is
declared, the values locally bound to symbols it references are stored along with it. They are “closed
over” (hence the name) and maintained along with the function itself. This means that they are then
available for the function’s entire lifespan and the function can be referred to as a closure.

 For example, the -rangechecker function defined previously is actually a closure. The inner
function definition refers to the min and max symbols. If these values were not closed over and made
available as part of the function, they would be well out of scope by the time the function was called.
Instead, the generated function carries them with it, so they are available wherever and whenever it is
called.

The value of a closed-over value can’t change after the function is created, so it becomes in essence
a constant for that function.

One interesting property of closures is that due to their dual nature—both behavior and data—they
can fulfill some roles that are assumed by objects in object-oriented languages. Just as anonymous
classes with one method are used to simulate first-class functions in Java, closures can be viewed as an
object with a single method. If you implement this method as a generic dispatcher for “messages” sent
to the closure, it can have the beginnings of a full object system (although this is overkill for most
programs). It is very common to create closures in which the data they hold is just as important as the
behavior they embody.

Currying and Composing Functions

Currying, first invented by Moses Schönfinkel but named after Haskell Curry, refers to the process of
transforming a function into a function with fewer arguments by wrapping it in a closure. Manipulating
functions in this way is extremely useful, as it allows for the creation of new, customized functions
without having to write explicit definitions for each one.

Using partial to Curry Functions

In Clojure, any function can be curried using the partial function. partial takes a function as its first
argument and any number of additional arguments. It returns a function that is similar to the provided
function, but with fewer arguments; it uses the additional arguments to partial instead.

For example, the multiplication function * normally takes at least two arguments to be useful. But if
you need a single-argument version, you can use partial to curry it, combining it with a specific value to
create a single-argument function that suits your needs:

user=> (def times-pi (partial * 3.14159))

#’user/times-pi

Now, you can call times-pi with a single argument, which it will multiply by PI:

user=> (times-pi 2)

6.28318

46

 CHAPTER 3 ̈ CONTROLLING PROGRAM FLOW

Notice that (times-pi 2) is exactly equivalent to (* 3.14159 2). All you’ve done is to create a
version of * with some of its parameters already defined. You could have done the same thing by
manually defining a function:

(defn times-pi
 “Multiplies a number by PI”
 [n]

 (* 3.14159 n))

Although this is quite cumbersome, the entire function definition is basically a wrapper for the
multiplication function, supplying specific values. This is where currying shines: it eliminates the need
to explicitly write this type of simple wrapper function. The function returned by partial is identical to
the manually defined version of times-pi, but by using partial you can leverage the fact that times-pi is
defined exclusively in terms of the multiplication function and a particular value. This makes the code
much easier to keep track of, and it mirrors the abstract logic of what is happening more accurately.

Using comp to Compose Functions

Another powerful tool to use in conjunction with currying is function composition. In one sense, every
function is a composition, since all functions must use other functions in their definitions. However, it is
also possible to succinctly create new functions by combining existing functions, using the comp function
instead of specifying an actual function body.

comp takes any number of parameters: each parameter is a function. It returns a function that is the
result of calling all of its argument functions, from right to left. Starting with the rightmost, it calls the
function and passes the result as the argument to the next function and so on. Therefore, the function
returned by comp will have the same arity as the rightmost argument to comp, and all the functions passed
to comp except for the rightmost must take a single argument. The final return value is the return value of
the leftmost function.

To see this in action, consider the following example entered at the REPL:

user=> (def my-fn (comp - *))

#'user/my-fn

This defines my-fn as a function which takes any number of arguments, multiplies them, negates
them, and returns the result. Try it out using the following code:

user=> (my-fn 5 3)

-15

As expected, the result is –(5 * 3), or –15. First, the rightmost argument function is called on the
parameters. In this case, it is multiplication, which returns 15. Fifteen is passed to the negation function,
giving –15. Since this is the leftmost argument function, this is the return value as a whole. You can use
comp, in this case, because the logic of my-fn can be expressed solely in terms of the multiplication and
negation functions. Of course, it is possible to write my-fn out longhand:

(defn my-fn
 “Returns –(x * y)”
 [x y]

 (- (* x y)))

47

CHAPTER 3 ̈ CONTROLLING PROGRAM FLOW

However, since it does nothing but compose the multiplication and negation functions anyway, it is
much simpler as well as more expressive to use comp.

Because the functions passed to comp are required to take a single argument, it makes them
particularly good candidates for using currying with partial. Say, for example, that you need a function
similar to the one defined above, but that carries out an additional step: multiplying the final product by
ten. In conventional mathematical notation, you want to write a function that calculates 10 * -(x * y).

Normally, this could not be expressed using comp alone—each argument to comp (excepting the
rightmost) must take a single argument, and multiplication requires multiple arguments. But by passing
the result of partial as one of the arguments to comp, you can get around this restriction:

user=> (def my-fn (comp (partial * 10) - *))
#'user/my-fn
user=> (my-fn 5 3)

-150

It works as expected. First, 3 and 5 are multiplied. That result, 15, is passed to the negation function.
That result, –15, is passed to the function created by partial, which multiplies it by 10 and returns the
final value as the result: –150.

This example should demonstrate how it is possible to use function composition and currying to
create arbitrarily complex functions, as long as they are definable in terms of existing functions. Using
currying and composition will make the intent of your code clear and keep things very succinct. Often,
complex multiline function definitions can be replaced with a single line of composed or curried
functions.

Putting It All Together

This chapter has covered the most basic elements of a Clojure program: functions, recursion, and
conditional logic. To use Clojure effectively, it is very important to be completely comfortable with these
constructs.

However, unlike most other languages, Clojure doesn’t stop with these basic control structures.
They are intended to be built upon as well as used directly. It is certainly possible to write a program of
any size or complexity using just basic structures. Conditionals, loops, and function calls go a long way,
and, indeed, they are the only tools available in some languages. But this can be seen as growing a
program “horizontally”—piling on more and more conditions, more functions, more complex looping,
or recursion. The cost of modifying or extending the program is linear; small changes or additions take a
little bit of work, and big changes or additions require lots of work.

Clojure encourages you to program “vertically” by building up your own control structures on top of
the provided primitives, rather than using them directly. First-class functions and closures are extremely
powerful ways to do this. By recognizing patterns particular to your program or problem domain, it is
possible to build your own controls that are far more powerful than the primitive structures could ever
be. Your program can be expanded and modified with sub-linear effort—making small changes is still
easy, but making larger changes can be easy too, since the language itself is now customized to the
problem domain.

For example, it is entirely possible to do processing on a collection by recursing through it manually.
But this is such a common task that Clojure has provided a powerful suite of higher-order collection-
processing functions: map, reduce, filter, etc. These are all discussed in Chapter 5 and allow operations
on collections to be expressed often with a single line rather than coding entirely new recursive
functions for each occasion. The same principle applies to any domain problem. Clojure includes
functions for collections, since they are used in almost every program, but you can take the same

48

 CHAPTER 3 ̈ CONTROLLING PROGRAM FLOW

approach with problems and structures specific to any problem domain. Don’t just build out
functionality, but use higher-order functions (and later on, macros) to build up the tools that will help
deal with that type of problem.

By the time any Clojure program reaches a certain level of complexity, if it’s well designed, you
should find that it looks very much like a highly customized domain specific language (DSL). This is no
extra work—it comes naturally, and will actually make the program much smaller and more lightweight
than using the primitive structures repeatedly. loop, recur, and cond are useful, but they should be the
building blocks, not the substance of a program. Once a project is underway, it can be very surprising
how little they are needed.

49

C H A P T E R 4

 ̈ ̈ ̈

Data in Clojure

How to Represent and Manipulate Data
Clojure is a dynamically typed language, which means that you never need to explicitly define the data
type of symbols, functions, or arguments in your programs. However, all values still have a type. Strings
are strings, numbers are numbers, lists are lists, etc. If you try to perform an unsupported operation on a
type, it will cause an error at runtime. It is the programmer’s responsibility to write code in such a way
that this does not happen. This should be very natural to those with a dynamic language background,
while it will no doubt take some getting used to for those who have only used static languages in the
past.

Clojure types are at the same time very simple and fairly complicated. Clojure itself has only a
handful of different types and as Clojure is not object-oriented it does not natively support the creation
of new user-defined types. Generally, this keeps things very simple. However, Clojure does run on the
Java Virtual Machine, so internally every Clojure type is also represented by a Java class or interface.
Also, if you are interfacing with a Java library, you might have to pay attention to Java classes and types.
Fortunately, typically the only time you need to worry about Java types in Clojure is when interacting
with Java code.

Table 4-1. Clojure’s Built-in Types

Type Literal Representation Example Underlying Java Class/Interface

Number The number itself 16 java.lang.Number

String Enclose in double
quotes

"Hello!" java.lang.String

Boolean true or false true java.lang.Boolean

Character Prefix with a backslash \a java.lang.Character

Keyword Prefix with a colon :key clojure.lang.Keyword

List Parenthesis '(1 2 3)

Vector Square brackets [1 2 3]

51

CHAPTER 4 ̈ DATA IN CLOJURE

Map Curly braces {:key val :key
val}

java.util.Map

Set Curly braces prefixed
by pound sign

#{1 2 3} java.util.Set

Nil
The reserved symbol nil has a special meaning within a Clojure program: it means “nothing” or “no
value.” nil always evaluates to false when used in boolean expressions and is equal to nothing but
itself. It may be used in place of any data type, including primitives. However, passing nil to most
functions or operations will cause an error, since it is not a true value of any type. If it is at all possible
that a value might be nil, you should always account for that possibility as a special case in your code to
avoid performing an operation on it and seeing a java.lang.NullPointerException error.

nil is identical to null in Java.

Primitive Types
Clojure provides a number of primitive types representing basic programming language constructs such
as number, strings, and Boolean values.

Numbers
Clojure has very good support for numbers and numerical operations. Numeric literals can be
represented in a variety of ways:

• As integers or floating-point decimals in standard notation, just type the number.
For example, 42 or 3.14159.

• Clojure also supports entering literals directly as ratios using the / symbol. For
example, 5/8 or 3/4. Ratios entered as literals will automatically be reduced. If
you enter 4/2, it will be stored simply as 2.

• You can enter integer literals of any base by using the form base+r+value. For
example, 2r10 is 2 in binary, 16rFF is 255 in hexadecimal, and you can even do
things like 36r0Z is 35 in base-36. All bases between 2 and 36 are supported.

• Clojure also supports traditional java hexadecimal and octal notation. Prefix a
number with 0x to signal a hexadecimal representation: for example, 0xFF is also
255. Numbers which begin with a leading zero are assumed to be in octal notation.

• There are actually two ways of representing a decimal number in any computer: as
a floating point and as an exact decimal value. Clojure, like Java, defaults to
floating point representation, but does support exact values as well, internally
using Java’s java.math.BigDecimal class. To specify that a literal value be
internally represented in exact form, append an M to the number. For example,
1.25M. Unlike floating points, these numbers will not be rounded in operations.
This makes them most appropriate for representing currencies.

52

 CHAPTER 4 ̈ DATA IN CLOJURE

̈ Caution Because Clojure uses Java’s convention that integer literals with a leading zero are parsed as numbers

in base-8 (octal) notation, it will result in an error if you try to enter a literal such as 09 since it is not valid octal.

Leading zeros, although mathematically insignificant, are important to indicate the way numbers are parsed.

In operations that involve different types of numbers, Clojure automatically converts the result to
the most precise type involved. For example, when multiplying an integer and a floating-point number,
the result will be a floating point. Division operations always return a ratio, unless one of the terms is a
decimal, and then the result is converted to floating point.

There is no maximum size for numbers. Clojure automatically uses different internal
representations for numbers as they get bigger and has no problem handling numbers of any size.
However, be aware that in high-performance applications, you may notice a slowdown when operating
on numbers larger than can be stored in the java Long datatype, i.e, numbers larger than
9,223,372,036,854,775,807. This requires a different internal representation that is not as efficient for
high-speed mathematical operations, even though it is more than sufficient for most tasks.

Common Numeric Functions

These functions are provided for mathematic operations on numbers.

̈ Note For simplicity, Clojure in its API makes no real distinction between functions and what would usually be

thought of as operators in other languages. But don’t worry: when the expressions are evaluated and compiled,

they are replaced with optimized Java bytecode using primitive operators whenever possible. There isn’t any

speed lost by treating math operators as functions for simplicity.

Addition (+)

The addition function (+) takes any number of numeric arguments and returns their sum.

(+ 2 2)

-> 4

(+ 1 2 3)

-> 6

Subtraction (–)

The subtraction function (–) takes any number of numeric arguments. When given a single argument, it
returns its negation. When given multiple arguments, it returns the result of subtracting all subsequent
arguments from the first.

53

CHAPTER 4 ̈ DATA IN CLOJURE

(- 5)

-> -5

(- 5 1)

-> 4

(- 5 2 1)

-> 2

Multiplication (*)

The multiplication function (*) takes any number of numeric arguments and returns their product.

(* 5 5)

-> 25

(* 5 5 2)

-> 50

Division (/)

The division function (/) takes any number of numeric arguments. The first argument is considered the
numerator and any number of additional argument denominators. If no denominators are supplied, the
function returns 1/numerator, otherwise it returns the numerator divided by all of the denominators.

(/ 10)

-> 1/10

(/ 1.0 10)

-> 0.1

(/ 10 2)

-> 5

(/ 10 2 2)

-> 5/2

inc

The increment function (inc) takes a single numeric argument and returns its value + 1.

(inc 5)

-> 6

dec

The decrement function (dec) takes a single numeric argument and returns its value - 1.

54

 CHAPTER 4 ̈ DATA IN CLOJURE

(dec 5)

-> 4

quot

The quotient function (quot) takes two numeric arguments and returns the integer quotient obtained by
dividing the first by the second.

(quot 5 2)

-> 2

rem

The remainder, or modulus, function (rem) takes two numeric arguments and returns the remainder
obtained by dividing the first by the second.

(rem 5 2)

-> 1

min

The minimum function (min) takes any number of numeric arguments and returns the smallest.

(min 5 10 2)

-> 2

max

The maximum function (max) takes any number of numeric arguments and returns the largest.

(max 5 10 2)

-> 10

Equals Function (==)

The equals function (==) takes any number of numeric arguments and returns true if they are equal, else
false.

(== 5 5.0)

-> true

Greater-Than Function (<)

The greater-than function (<) takes any number of numeric arguments and returns true if they are in
ascending order, else false.

55

CHAPTER 4 ̈ DATA IN CLOJURE

(< 5 10)

-> true

(< 5 10 9)

-> false

Greater-Than-or-Equals Function (<=)

The greater-than-or-equals function (<=) takes any number of numeric arguments and returns true if
they are in ascending order or sequentially equal, else false.

(<= 5 5 10)

-> true

Less-Than (>)

The less-than function (>) takes any number of numeric arguments and returns true if they are in
descending order, else false.

(> 10 5)

-> true

The Less-Than-or-Equals (>=)

The less-than-or-equals function (>=) takes any number of numeric arguments and returns true if they
are in descending order or sequentially equal, else false.

(>= 10 5 5)

-> true

zero?

The zero test function (zero?) takes a single numeric argument and returns true if it is zero, else false.

(zero? 0.0)

-> true

pos?

The positive test function (pos?) takes a single numeric argument and returns true if it is > 0, else false.

(pos? 5)

-> true

56

 CHAPTER 4 ̈ DATA IN CLOJURE

neg?

The negative test function (neg?) takes a single numeric argument and returns true if it is > 0, else false.

(neg? -5)

-> true

number?

The number test function (number?) takes a single argument and returns true if it is a number, else false.

(number? 5)

-> true

(number? "hello")

-> false

Strings
Clojure strings are identical to Java strings, and are instances of the same java.lang.String class. They are
entered as literals by enclosing them in double-quotes. If you need a double-quote character within the
string, you can escape it using the backslash character, \. For example, the following is a valid string:

"Most programmers write a \"Hello World\" program when they learn a new language"

To enter a backslash character in a String, simply use two backslashes.

Common String Functions

Clojure provides some very limited string functions for convenience. For more advanced string
operations, you can either use the Java string API directly (see the chapter on Java Interoperability), or
the wide variety of string utility functions defined in the str-utils namespace of the clojure.contrib user
library.

str

The string concatenation function (str) takes any number of arguments. It converts them to strings if
they are not already and returns the string created by concatenating them. If passed no arguments or nil,
it returns the empty string, ““.

(str "I have " 5 " books.")

-> "I have 5 books."

subs

The substring function (subs) takes two or three arguments, the first always being a string, the second an
integer offset, and the third (optional) another integer offset. It returns the substring from the first offset
(inclusive) to the second (exclusive) or to the end of the string if a second offset is not supplied.

57

CHAPTER 4 ̈ DATA IN CLOJURE

(subs "Hello World" 6)

-> "World"

(subs "Hello World" 0 5)

-> "Hello"

string?

The string test function (string?) takes a single argument and returns true if it is a string, else false.

(string? "test")

-> true

(string? 5)

-> false

print & println
The string printing functions (print & println) take any number of arguments, converts them to strings if they

are not already, and prints them to the standard system output. println appends a newline character to the

end. Both return nil.

Regular Expression Functions

Clojure includes several functions for dealing with regular expressions, which wrap the Java regex
implementation.

re-pattern

This function (re-pattern) takes a single string argument and returns a regular expression pattern (an
instance of java.util.regex.Pattern). The pattern can then be used for subsequent regular expression
matches.

(re-pattern " [a-zA-Z]*")

-> #"[a-zA-Z]*"

There is also a reader macro that allows you to enter a regex pattern as a literal: just use the # symbol
before a string. The resulting value is a pattern, just as if you used the re-pattern function. For example,
the following form is identical to the preceding example:

#" [a-zA-Z]* "

-> #"[a-zA-Z]*"

58

 CHAPTER 4 ̈ DATA IN CLOJURE

re-matches

re-matches takes two arguments: a regular expression pattern and a string. It returns any regular
expression matches of the pattern in the string, or nil if no matches were found. For example, the
following code:

(re-matches #"[a-zA-Z]* " "test")

-> "test"

(re-matches #"[a-zA-Z]* " "test123")

-> nil

re-matcher

re-matcher takes two arguments: a regular expression pattern and a string. It returns a stateful
“matcher” object, which can be supplied to most other regex functions instead of a pattern directly.
Matchers are instances of java.util.regex.Matcher.

(def my-matcher (re-matcher #" [a-zA-Z]* " "test")

-> #'user/my-matcher

re-find

re-find takes either a pattern and a string or a single matcher. Each call returns the next regex match for
the matcher, if any.

(re-find my-matcher)

-> "test"

(re-find my-matcher)

-> ""

(re-find my-matcher)

-> nil

re-groups
re-groups takes a single matcher, and returns the groups from the most recent find/match. If there are no
nested groups, it returns a string of the entire match. If there are nested groups, it returns a vector of groups, with
the first element being the entire (non-nested) match.

re-seq

re-seq takes a pattern and a string. It returns a lazy sequence (see Chapter 5) of successive matches of
the pattern on the string, using an internal matcher.

(re-seq #" [a-z] " "test")

-> ("t" "e” "s" "t")

59

CHAPTER 4 ̈ DATA IN CLOJURE

Boolean
Boolean values in Clojure are very simple. They use the reserved symbols true and false for literal
values and implement java.lang.Boolean as their underlying class.

When evaluating other data types within a boolean expression, all data types (including empty
strings, empty collections, and numeric zero) evaluate as true. The only thing besides actual boolean
false values that evaluates as false is the non-value nil.

Common Boolean Functions

Clojure provides some Boolean functions for convenience.

not

The not function (not) takes a single argument. It resolves to true if it is logically false and false if it is
logically true.

(not (== 5 5))

-> false

and

The and macro takes any number of arguments, and resolves to true if they are each logically true, else
false. It is efficient in that if the first argument is false, it returns false immediately without bothering to
evaluate the others.

(and (== 5 5) (< 1 2))

-> true

or

The or macro takes any number of arguments and resolves to true if one or more of them are logically
true, else false. It is efficient in that it returns true as soon as it encounters a true argument, without
bothering to evaluate the others.

(or (== 5 5) (== 5 4))

-> true

Characters
Characters are used to represent a single Unicode character. To enter a character literal, prefix with a
backslash, for example, \i is the character “i”. Any Unicode character can be entered by using a
backslash, plus a ‘u’ character and the four-digit hexadecimal code of the Unicode character. For
example, \u00A3 is the £ symbol. Clojure also supports the following special values to make it easy to
enter whitespace characters as literals: \newline, \space and \tab.

60

 CHAPTER 4 ̈ DATA IN CLOJURE

char

The character coercion function (char) takes a single integer argument and returns the corresponding
ASCII / Unicode character.

(char 97)

-> \a

Keywords
Keywords are a special primitive data type unique to Clojure. Their primary purpose is to provide very
efficient storage and equality tests. For this reason, their ideal usage is as the keys in a map data
structure or other simple “tagging” functionality. As literals, they begin with a colon, for
example,:keyword. Beyond the initial colon, they follow all the same naming rules as Symbols (see
Chapter 2).

Optionally, keywords can be namespaced. The keyword :user/foo, for example, refers to a keyword
called foo in the user namespace. Namespaced keywords can be referenced either by their fully qualified
name or prefixed with two colons to look up a keyword in the current namespace (e.g., ::foo is the same
as :user/foo if the current namespace is user).

keyword

The keyword function (keyword) takes a single string argument, and returns a keyword of the same name.
If two arguments are used, it returns a namespaced keyword.

(keyword "hello")

-> :hello

(keyword "foo" "bar")

-> :foo/bar

keyword?

The keyword test function takes a single argument and returns true if it is a keyword, else false.

(keyword? :hello)

-> true

 namespace

…....

Collections
Clojure’s collections data types are designed to efficiently fulfill nearly any need for aggregate data
structures. They are optimized for efficiency and compatibility with the rest of Clojure and Java and
adhere strictly to Clojure’s philosophy of immutability. If any one of them is inadequate to represent a
data structure, they can be combined in nearly any combination.

61

CHAPTER 4 ̈ DATA IN CLOJURE

They all share the following properties:

• They are immutable. Once created, they can never be changed, and are therefore
safe to access from any thread at any time. Operations which could be considered
to “change” them actually return an entirely new immutable object with the
changes in place.

• They are persistent. As far as possible, they share data structure with previous
versions of themselves to conserve memory and processing time. For this reason,
they are actually surprisingly fast and efficient, in some cases much more so than
their mutable counterparts in other programming languages.

• They support proper equality semantics. This means that given two collections of
the same type which contain the same items, they will always be evaluated as
equal regardless of their instantiation or implementation details. Therefore, two
collections, even if they were created at different times and different places, can
still be compared meaningfully.

• They are easy to use from within Clojure. Each of them has a convenient literal
representation and rich set of supporting functions that make working with them
straightforward and hassle-free.

• They support interaction with Java. Each of them implements the appropriate
read-only portion of the standard java.util.Collections framework. This means
that, in most cases, they can be passed as-is to Java object and methods that
require collections objects. Lists implement java.util.List, Maps implement
java.util.Map, and Sets implement java.util.Set. Note, however, that they will
throw an UnsupportedOperationException if you invoke methods which might
modify them, since they remain immutable. This is in accordance with the
documentation specified for the java.util.Collections interface, for collections
which do not support “destructive” modifications.

• They all support the powerful Sequence abstraction for easy manipulation via
functional paradigms. This capability is discussed in detail in Chapter 5.

Lists
Linked lists are important for Clojure, if only for the fact that a Clojure program itself is many nested
lists. At its most basic level, a list is just a collection of items in a predefined order.

Lists can be entered in literal form by using parenthesis, and this is why Clojure code itself uses so
many of them. For example, take a standard function call.

 (println "Hello World!")

This is simultaneously executable code and a definition of a list. First, the Clojure reader parses it as
a list, and then evaluates the list by invoking its first item (in this case println) as a function, and passing
the rest of the parameters ("Hello World!") as arguments.

To use a list literal as a data structure rather than having it be evaluated as code, just prefix it with a
single quote character. This signals Clojure to parse it as a data structure, but not evaluate it as a Clojure
form. For example, to define a literal list of the numbers 1 through 5 and bind it to a symbol, you could
do something like this:

(def nums '(1 2 3 4 5))

62

 CHAPTER 4 ̈ DATA IN CLOJURE

̈ Note The single quote character is actually shorthand for another form, called quote. '(1 2 3) and (quote

(1 2 3)) are just alternate ways of typing the same thing. quote (or the single quote character) can be used

anywhere to prevent the Clojure parser from immediately interpreting a form. It is actually useful for a lot more

than just declaring list literals, and becomes indispensable when you really start getting into metaprogramming.

See Chapter 12 for a more detailed discussion of using quote in macros to do complex metaprogramming.

Lists are implemented as singly-linked lists and have the same performance advantages and
disadvantages. Reading the first item in the list and appending an item to the head of a list are both
constant-time operations, whereas accessing the Nth item of a list requires N operations. In most
situations, vectors are a better choice than lists for this reason, although lists can still be useful in
particular circumstances, especially when constructing Clojure code on the fly.

list

The list function (list) takes any number of arguments and constructs a list using them as values.

(list 1 2 3)

-> (1 2 3)

peek

The peek function (peek) operating on a list takes a single list as an argument and returns the first value
in the list.

(peek '(1 2 3))

-> 1

pop

The pop function (pop) operating on a list takes a single list as an argument and returns a new list with
the first item removed.

(pop ‘(1 2 3))

-> (2 3)

list?

The list test function (list?) returns true if its argument is a list, else false

(list? ‘(1 2 3))

-> true

63

CHAPTER 4 ̈ DATA IN CLOJURE

Vectors

Vectors are similar to lists in that they store an ordered sequence of items. However, they differ in one
important way: they support efficient, nearly constant-time access by item index. In this way, they are
more like arrays than linked lists. In general, they should be preferred to lists for most applications as
they have no disadvantages compared to lists and are much faster.

Vectors are represented as literals in Clojure programs by using square brackets. For example, a
vector of the numbers one through five could be defined and bound to a symbol with the following code:

(def nums [1 2 3 4 5])

Vectors are functions of their indexes. This is not only a mathematical description—they are actually
implemented as functions, and you can call them like a function to retrieve values. This is the easiest
way to get the value at a given index: call the vector like a function, and pass the index you want to
retrieve. Indexes start at 0, so to get the first item in the vector defined previously, you could do
something like the following:

user=> (nums 0)

1

Attempting to access an index greater than the size of the vector will cause an error, specifically, a
java.lang.IndexOutOfBounds exception.

vector

The vector creation function (vector) takes any number of arguments and constructs a new vector
containing them as values.

(vector 1 2 3)

-> [1 2 3]

vec

The vector conversion function (vec) takes a single argument, which may be any Clojure or Java
collection, and constructs a new vector containing the same items as the argument.

(vec '(1 2 3))

-> [1 2 3]

get

The get function (get) applied to a vector takes two arguments. The first is a vector, the second an
integer index. It returns the value at the specified index or nil if there is no value at that index.

(get ["first" "second" "third"] 1)

-> "second"

64

 CHAPTER 4 ̈ DATA IN CLOJURE

peek

The peek function (peek) operating on a vector takes a single vector as an argument and returns the last
value in the vector. This differs from peek operating on lists because of the implementation difference
between lists and vectors: peek always accesses the value at the most efficient location.

 (peek [1 2 3])

-> 3

vector?

The vector test function (vector?) takes a single argument and returns true if it is a vector, else false.

(vector? [1 2 3])

-> true

conj

The conjoin function (conj) takes a collection (such as a vector) as its first argument and any number of
additional arguments. It returns a new vector formed by appending all additional arguments to the end
of the original vector. It also works for maps and sets.

(conj [1 2 3] 4 5)

-> [1 2 3 4 5]

assoc

The vector association function (assoc) takes three arguments: the first a vector, the second an integer
index, and the third a value. It returns a new vector with the provided value inserted at the specified
index. An error is caused if the index is greater than the size of the vector.

(assoc [1 2 3] 1 "new value")

-> [1 "new value" 3]

pop

The pop function (pop) operating on a vector takes a single vector as an argument and returns a new
vector with the last item removed. This differs from pop operating on lists because of the
implementation difference between lists and vectors: pop always removes the value at the most efficient
location.

(pop [1 2 3])

-> [1 2]

65

CHAPTER 4 ̈ DATA IN CLOJURE

subvec

The sub-vector function (subvec) takes two or three arguments. The first is a vector, the second and third
(if present) are indexes. It returns a new vector containing only the items in the original vector that were
between the indexes or between the first index and the end of the vector if no second index is provided.

(subvec [1 2 3 4 5] 2)

-> [3 4 5]

(subvec [1 2 3 4 5] 2 4)

-> [3 4]

Maps

Maps are probably the most useful and versatile of Clojure’s built-in collections. At heart, maps are very
simple. They store a set of key-value pairs. Both keys and values can be any possible type of object, from
primitives to other maps. However, keywords are particularly well suited to be map keys, and that is how
they are used in most map applications.

Maps in literal form are represented by curly braces, enclosing an even number of forms. The forms
are interpreted as key/value pairs. For example, the following:

(def my-map {:a 1 :b 2 :c 3})

This map definition defines a map with three keys, the keywords :a, :b and :c. The key :a, is bound
to 1, :b is bound to 2, and :c to 3. Because the comma character is equivalent to whitespace in Clojure,
it is often used to clarify key-value groupings without any change to the actual meaning of the map
definition. The line below is exactly equivalent to the preceding one:

(def my-map {:a 1, :b 2, :c 3})

Although keywords make excellent keys for maps, there is no rule specifying that you have to use
them: any value, even another collection, can be used as a key. Keywords, strings, and numbers are all
commonly used as map keys.

Similarly to vectors, maps are functions of their keys (although they don’t throw an exception if a
key isn’t found). To retrieve the value associated with a particular key, use the map as a function and
pass the key as its parameter. For example, to retrieve the value associated with :b in the example
above, just do the following:

user=> (my-map :b)

2

There are three different possible implementations of normal maps: array maps, hash maps, and
sorted maps. They respectively use arrays, hashtables, and binary trees as their underlying
implementations. Array maps are best for very small maps, and the comparative value of hash maps and
sorted maps depends on the exact performance characteristics required.

By default, maps defined as literals are instantiated as array maps if they are very short and hash
maps if they are larger. To explicitly create a map of a given type, use the hash-map or sorted-map
functions:

66

 CHAPTER 4 ̈ DATA IN CLOJURE

user=> (hash-map :a 1, :b 2, :c 3)

{:a 1, :c 3, :b 2}

user=> (sorted-map :a 1, :b 2, :c 3)

{:a 1, :b 2, :c 3}

Note that the hash map does not preserve any particular key order while the sorted map sorts the
values according to key value. By default, sorted-map uses the natural comparison value of the key:
numeric or alphabetical, whichever is applicable.

Struct Maps

When using maps, it is frequently the case that it is necessary to generate quantities of maps which use
the same set of keys. Because a normal map necessarily allocates memory for its keys as well as its
values, this can lead to wasted memory when creating large numbers of similar maps.

Creating large numbers of maps is often a very useful thing to do, however, so Clojure provides
Struct maps. Struct maps allow you to predefine a specific key structure, and then use it to instantiate
multiple maps which conserve memory by sharing their key and lookup information. They are
semantically identical to normal maps: the only difference is performance.

To define a structure, use defstruct: it takes a name and a number of keys. For example, the
following code:

(defstruct person :first-name :last-name)

This defines a structure named person, with the keys :first-name and :last-name. Use the struct-
map function to create instances of person:

(def person1 (struct-map person :first-name "Luke" :last-name "VanderHart"))

(def person2 (struct-map person :first-name "John" :last-name "Smith"))

person1 and person2 are now two maps which efficiently share the same key information. But they
are still maps, in all ways thus you retrieve their values in the same way and can even associate them
with additional keys. Of course, additional keys don’t get the same performance benefits as keys defined
in the struct. The only limitation on struct maps as compared with normal maps is that you can’t
disassociate a struct map from one of its base keys defined in the structure. Doing so will cause an error.

Struct maps also allow you to create extremely efficient functions to access key values. Normal map
key lookup is by no means slow, but by using struct accessors you can shortcut the normal key lookup
process for even greater speed, appropriate for the even the most performance-intensive areas of your
application.

To create a high-performance accessor to a struct map, use the accessor function, which takes a
struct definition and a key, and returns a first class function that takes a struct-map and returns a value.

(def get-first-name (accessor person :first-name))

You can then use the newly defined get-first-name function to efficiently retrieve :first-name
from a struct map. The following two statements are exactly equivalent, but the version using the
accessor is faster.

(get-first-name person1)

(person1 :first-name)

67

CHAPTER 4 ̈ DATA IN CLOJURE

In general, you shouldn’t worry about using struct-maps except for performance reasons. Normal
maps are fast enough for most applications and struct maps add a fair amount of complexity with no
benefit except for performance. You should know about them since they will help some programs be
much more efficient, but typically it is best to use normal maps first and refactor your program to use
struct-maps only as an optimization.

Maps As Objects

Obviously, maps are useful in a variety of scenarios. Linking keys to values is a common task in
programming. However, the usefulness of maps goes far beyond what are traditionally thought of as
data structures.

The most important example is that maps can do 90 percent of what objects do in an object-
oriented program. What real difference is there between named properties of an object and a key/value
pair in a map? As languages like Javascript (where objects are implemented as maps) demonstrate, very
little.

Good Clojure programs make heavy use of this idea of maps-as-objects. Although Clojure eschews
the object-oriented mindset in general, decades of research into object- oriented design do reveal some
good principles of data encapsulation and organization. By utilizing Clojure’s maps in this way, it
becomes possible to reap many of the benefits and lessons learned from object-oriented data
structuring while avoiding its pitfalls. In the context of a Clojure program, using maps is far better,
because they can be operated on in a common way without needing to define handlers for each different
class of object.

assoc

The map association function (assoc) takes as its arguments a map and a number of sequential key-
value pairs. It returns a new map with the provided values associated with their respective keys,
replacing any existing values with those keys.

(assoc {:a 1 :b 2} :c 3)

-> {:c 3, :a 1, :b 2}

(assoc {:a 1 :b 2} :c 3 :d 4)

-> {:d 4, :c 3, :a 1, :b 2}

dissoc

The map disassociation function (dissoc) takes as its arguments a map and a number of keys. It returns
a new map formed by removing the provided keys from the supplied map.

(dissoc {:a 1 :b 2 :c 3} :c)

-> {:a 1, :b 2}

(dissoc {:a 1 :b 2 :c 3 :d 4} :a :c)

-> {:b 2, :d 4}

68

 CHAPTER 4 ̈ DATA IN CLOJURE

conj

The conj function (conj) works with maps the same way as it does with vectors, only instead of being
given individual items to append it must be given a key-value pair.

(conj {:a 1 :b 2 :c 3} {:d 4})

-> {:d 4, :a 1, :b 2, :c 3}

A vector pair as an item also works, as shown in the following code:

(conj {:a 1 :b 2 :c 3} [:d 4])

-> {:d 4, :a 1, :b 2, :c 3}

merge

The map merge function (merge) takes any number of arguments, each of which is a map. It returns a
new map formed by combining all the keys and values of its arguments. If a key is present in more than
one map, the final value will be that of the last map provided containing that key.

(merge {:a 1 :b 2} {:c 3 :d 4})

-> {:d 4, :c 3, :a 1, :b 2}

merge-with

The map merge-with function (merge-with) takes a first-class function as its first argument and any
number of additional arguments, each of which is a map. It returns a new map formed by combining all
the keys and values of the map arguments. If a key is present in more than one map, the value in the
result map is the result of calling the supplied function with the values of the conflicting key as
parameters.

(merge-with + {:a 1 :b 2} {:b 2 :c 4})

-> {:c 4, :a 1, :b 4}

get

The map get function (get) takes a map and a key as its first and second arguments, and an optional
third argument specifying the value if the key is not found. It returns the value of the specified key in the
map, returning nil if it is not found and there is no third argument.

(get {:a 1 :b 2 :c 3} :a)

-> 1

(get {:a 1 :b 2 :c 3} :d 0)

-> 0

69

CHAPTER 4 ̈ DATA IN CLOJURE

contains?

The map contains function (contains?) takes a map and a key as arguments. It returns true if the
provided key is present in the map, otherwise false. In addition to maps, it also works on vectors and
sets.

(contains? {:a 1 :b 2 :c 3} :a)

-> true

map?

The map test function (map?) takes a single argument and returns true if it is a map, otherwise false.

(map? {:a 1 :b 2 :c 3})

-> true

keys

The map keys function (keys) takes a single argument, a map. It returns a list of all the keys present in
the map.

(keys {:a 1 :b 2 :c 3})

-> (:a :b :c)

vals

The map vals function (vals) takes a single argument, a map. It returns a list of all the values in the map.

(vals {:a 1 :b 2 :c 3})

-> (1 2 3)

Sets
Sets in Clojure are closely related to the mathematical concept: they are collections of unique values and
support efficient membership tests as well as common set operations such as union, intersection, and
difference.

The literal syntax for a set is the pound sign accompanied by the members of the set enclosed in
curly braces. For example, the following code:

(def languages #{:java :lisp :c++})

Like maps, they support any kind of object as members. For example, a similar set using strings:

(def languages-names #{"Java" "Lisp" "C++"})

The implementation of sets is very similar to maps. They can be created in both hashtable and
binary tree implementations, using the hash-set and sorted-set functions:

(def set1 (hash-set :a :b :c))

(def set2 (sorted-set :a :b :c))

70

 CHAPTER 4 ̈ DATA IN CLOJURE

Also like maps, sets are functions of their members. Calling a set as a function and passing it a value
will return the value if the set contains the value and nil if it doesn’t.

(set1 :a) ;returns :a

(set1 :z) ;returns nil

Common Set Functions

Note that the relational set functions are not part of the default clojure.core namespace, but rather the
clojure.set namespace. You will need to either reference this explicitly or else include it into your
namespace using the :use clause in your ns form. See Chapter 2.

clojure.set/union

The set union function takes any number of arguments, each a set. It returns a new set containing the
union of the members of the argument sets.

(clojure.set/union #{:a :b} #{:c :d})

-> #{:a, :c, :b, :d}

clojure.set/intersection

The set intersection function takes any number of arguments, each a set. It returns a new set containing
the intersection of the members of the argument sets or the empty set if there is no intersection.

(clojure.set/intersection #{:a :b :c :d} #{:c :d :f :g})

-> #{:c, :d}

clojure.set/difference

The set difference function takes any number of arguments, each a set. It returns a new set containing
the members of the first set without the members of the remaining sets.

(clojure.set/difference #{:a :b :c :d} #{:c :d})

-> #{:a, :b}

Summary
Clojure provides a very complete and capable set of data types which in combination should be able to
meet just about any programming need. Its primitive types provide the basic building blocks of any
program, including very rich, worry-free numeric and string support.

The true strength of Clojure’s data system, however, lies in its collections library. Collections are
important not just convenient things to use, but are integral to Clojure’s philosophy on data and
immutability. They strictly adhere to the principles of immutability, meaning they cannot be changed,
and persistence, meaning they share their structure for maximum efficiency. Relying on Clojure’s built-
in data structures and being familiar with the methods available for them will go a long way towards
making your code efficient, readable, and idiomatic.

71

C H A P T E R 5

 ̈ ̈ ̈

73

Sequences

What Are Sequences?
In Clojure, sequences are a unified way to read, write, and modify any data structure that is logically a
collection of items. They are built into Clojure at a very basic level, and are by far the most convenient
and idiomatic way to handle collections. They fill the role occupied by lists in other Lisp dialects. More
than just a collection API, they are the framework around which program flow and logic are often
constructed, and are designed to be as easy-to-use as the basis for recursion and higher-order function
application.

Fundamentally, sequences are an abstraction, a common programming interface that generalizes
behavior common to all collections and exposes it via a library of sequence functions. Sequences are a
result of the observation that the classic operations on linked lists, such as “first” and “rest” (or “car” and
“cdr”, for those with a lisp background) and work equally well on just about any data type. For example,
the first function returns the first item in a sequence. Whether the sequence is actually a list, vector,
set, or even a map doesn’t matter.

user=> (def mylist '(1 2 3))
user=> (first mylist)

1

user=> (def myvec [1 2 3])
user=> (first myvec)

1

user=> (def myset #{1 2 3})
user=> (first myset)

1

user=> (def mymap {:a 1 :b 2 :c 3})
user=> (first mymap)

[:a 1]

Similarly, the rest function operates on any sequence, returning a sequence of everything except
the first item:

user=> (def mylist ‘(1 2 3))
user=> (rest mylist)

(2 3)

CHAPTER 5 ̈ SEQUENCES

74

Sequence functions are extremely useful. For example, with just first and rest (and another
function, empty?, which returns true if a sequence is empty) it is possible to implement a very common
Lisp idiom: a function that recurses over a list. However, because you’re using sequences, it doesn’t have
to be a list—it can be any collection.

(defn printall [s]
 (if (not (empty? s))
 (do
 (println (str "Item: " (first s)))

 (recur (rest s)))))

This function takes a sequence, and checks that it is not empty. If it is empty, it does nothing
(implicitly returns nil). If it has items, it prints a string as a side effect, printing “Item:” concatenated
with the first item in the sequence. It then recurses, passing the rest of the sequence to the next
iteration. It works on lists:

user=> (printall '(1 2 3))
Item: 1
Item: 2
Item: 3

nil

And on vectors:

user=> (printall ["vector" "of" "strings"])
Item: vector
Item: of
Item: strings

nil

And even on strings, which happen to be sequences of characters:

user=> (printall " Hello")
Item: H
Item: e
Item: l
Item: l
Item: o

nil

Because sequences are so generic, the same function works perfectly well for all these disparate
collection types.

 CHAPTER 5 ̈ SEQUENCES

75

̈ Caution Technically, the various types of data structure are not sequences themselves, but rather can be

turned into sequences with the seq function. seq takes a single argument and creates a sequence view of it. For

example, a vector is not a sequence, but the result of (seq any-vector) is. Since almost all the sequence

functions call seq on their arguments internally, there isn’t much distinction in practice most of the time. Be aware

of this, however, in case you run across a function that actually requires a sequence, not a collection that is

sequence-able: there is a difference. You can just call seq on any collection to efficiently retrieve a sequence view

of it.

Sequenceable Types

Sequences can be created from nearly any backing collection type.

• Clojure’s persistent collections: Maps, sets, lists, and vectors all work nicely as

sequences.

• Strings: All strings are sequences of characters.

• Java arrays: This can result in a mismatch, however, since Java arrays are mutable

and sequences are not to avoid difficult bugs, avoid modifying arrays while you

are using a sequence based on them.

• Any Java collection which implements the java.lang.Iterable interface: Again,

however, Java collections are mutable whereas sequences are not, so avoid

modifying a collection while using a sequence view of it.

• Natively: Sequences can also be constructed directly without being backed by

another collection type.

Anatomy of a Sequence
It is important to understand the underlying logical structure of a sequence. Sequences that were
created in different ways have widely differing implementations. A sequence representation of a vector,
for example, is still a vector under the hood, with the same performance characteristics. But all
sequences share the same conceptual model: a singly-linked list implemented in terms of first and
rest. first and rest, incidentally, are identical to car and cdr in traditional Lisps. They were renamed
to more accurately reflect their intent in terms familiar to modern programmers.

 Every sequence, conceptually, consists of these two parts: the first item in the sequence, accessed
by the first function, and another sequence representing all the rest of the items, accessed by the rest
function. Each sequence of n items is actually comprised of n-1 component sequences. The sequence
ends when rest returns empty. All other sequence functions can be defined in terms of first and rest,
although sequences created from collection types implement them directly for better performance.

CHAPTER 5 ̈ SEQUENCES

76

ItemItem (empty)

first rest

rest

rest

rest

first

Item

first

Item

first

Figure 5-1. Sequence illustration, showing component sequences

Constructing Sequences
Using this model of sequences, it is easy to construct them directly using either the cons or conj
functions. The cons function stands for “construct” and takes two arguments, an item and a sequence. It
returns a new sequence created using the item as its first and the sequence as its rest. A sequence
created by cons is known as a “cons cell”—a simple first/rest pair. Sequences of any length can be
constructed by chaining together multiple cons cells.

user=> (cons 4 '(1 2 3))

(4 1 2 3)

The conj function is similar to cons and stands for “conjoin.” The main difference from cons is that
(if possible) it reuses the underlying implementation of the sequence instead of always creating a cons
cell. This usually results in sequences that are more efficient. Whether the new item is appended to the
beginning or end depends on the underlying representation of the sequence. Unlike cons, conj takes a
sequence as its first parameter, and the item to append as the second:

user=> (conj '(1 2 3) 4)

(4 1 2 3)

conj also supports adding any number of items at once: just use additional parameters. The
parameters are appended to the front of the sequence in the order they are provided.

user=> (conj ‘(1 2 3) 4 5 6)

(6 5 4 1 2 3)

 CHAPTER 5 ̈ SEQUENCES

77

̈ Caution A feature of conj you should take note of is that it doesn’t call seq on its argument. It can work on

data structures directly as well as sequences. In this case, it adds the new item wherever it’s most efficient, not

necessarily at the front (as it does with sequences). With vectors, for example, the most efficient place to add

items is the end. So (conj [1 2] 3) yields [1 2 3], not [3 1 2]. If you know you want a sequence, and you

want the added item at the front, call seq on the vector first: (conj (seq [1 2]) 3) yields (3 1 2) as expected.

You could also just use cons instead. Use conj when you don’t want to convert your collection to a sequence.

For both conj and cons, if you supply nil in place of the sequence, it constructs a sequence
containing only one item, the one you specified.

user=> (cons 1 nil)

(1)

This is used in another common Lisp idiom, constructing a list recursively using cons or conj. The
following function demonstrates recursively constructing a sequence of all the integers from 1 to the
provided parameter:

(defn make-int-seq [max]
 (loop [acc nil n max]
 (if (zero? n)
 acc

 (recur (cons n acc) (dec n)))))

With each iteration, this function conses the value of n (initially the maximum value) to an
accumulator sequence argument (initially nil), and then recurses, passing the new accumulator and the
new decremented value of n. When n reaches zero, the function simply returns the accumulator, which
at that point contains all the integers from 1 to the maximum.

user=> (make-int-seq 5)

(1 2 3 4 5)

Lazy Sequences
The first/rest architecture of sequences is the basis for another extremely important aspect of Clojure
sequences: laziness. Lazy sequences provide a conceptually simple and highly efficient way to operate
on amounts of data too large to fit in system memory at once. They can be infinitely long, but still can be
utilized efficiently by any standard sequence function. As a high-level abstraction, they allow the
developer to focus on the computation being performed, rather than managing the ins and outs of
loading or creating data.

Laziness is made possible by the observation that logically, the rest of a sequence doesn’t need to
actually exist, provided it can be created when necessary. Rather than containing an actual, concrete
series of values, the rest of a lazy sequence can be implemented as a function which returns a sequence.
From the perspective of functions using the sequence, there is no difference; when they call the rest
function, they get a sequence. The difference is that in the case of a normal sequence, it is returning a

CHAPTER 5 ̈ SEQUENCES

78

data structure that already existed in memory. In a lazy sequence, calling rest actually calculates and
instantiates the new sequence, with a freshly calculated value for its first and updated instructions on
how to generate still more values as its rest.

For efficiency, once a lazy sequence is realized, the value is cached as a normal, non-lazy
sequence—subsequent accesses to the sequence are handled normally, rather than being lazily
generated. This ensures that the calculation needed to generate it is only called once: using large,
“heavyweight” calculations as generators in lazy sequences pose no problem, since they are guaranteed
not to be executed more than once. The cached values are stored as long as there is code using them.
When no references remain, the cached sequence is garbage collected like any other object.

rest

Item Instructions to generate the next component sequence

first

Figure 5-2. Lazy sequences

An Example of Laziness

To see a lazy sequence at work, consider the map function. The map function is an extremely important
sequence manipulation tool in Clojure. It works by taking a sequence and a function as arguments, and
returns a new sequence which is the result of applying the supplied function to each of the values in the
original sequence. For example, if you run map with the sequence '(1 2 3 4 5 6 7) and a function which
squares its parameter, (fn [x] (*x x)), the return value of map will be '(1 4 9 16 25 36 49). This is the
sequence formed by squaring each of the values in the original sequence.

user => (map
 (fn [x] (* x x))
 '(1 2 3 4 5 6 7))

 (1 4 9 16 25 36 49)

What is not immediately apparent is that the return value of map is actually always a lazy sequence.
Since the return value is immediately printed to the REPL anyway, the difference is transparent—the
actual values are immediately realized.

To see the internal workings of the lazy sequence, let’s add a side effect to your square function, so
you can see when it’s being executed (normally, side effects in functions provided to map are not a great
design practice, but here they will provide insight into how lazy sequences work). In your new square
function, you will now print out the value of each parameter as it is processed. To make things simpler,
you’ll use defn to define it rather than inlining it in the call to map:

(defn square [x]
 (do

 CHAPTER 5 ̈ SEQUENCES

79

 (println (str "Processing: " x))

 (* x x)))

This function is exactly the same as the previous version, except that it uses do to run an explicit side
effect, printing out the value of each parameter as it is processed. Running it returns this rather
surprising and somewhat messy result:

user => (map square '(1 2 3 4 5)
(Processing:1
Processing:2
1 Processing:3
4 Processing:4
9 Processing:5

16 25)

The reason why the code is so ugly is that the println calls are being called in the middle of printing
out the results. The square function (containing println call) is not being called until it is absolutely
required—until the system is actually ready to realize the lazy values. So your tracing statements from
println and the actual output of the function, “(1 4 9 16 25)”, are all mixed up.

To make this even clearer, let’s bind the result of the map call to a symbol:

user =>(def map-result (map square '(1 2 3 4 5))

#'user/map-result

You now have a symbol map-result which is, supposedly, bound to a sequence of the squares.
However, you didn’t see the trace statement. square was never actually called! map-result is a lazy
sequence. Logically, it does contain the squares you expected, but they haven’t been realized yet. It’s not
a sequence of squares, but a promise of a sequence of squares. You can pass it all around the program, or
store it, and the actual work of calculating the squares is deferred until it is required.

Now, let’s retrieve some of its values using the nth function, which retrieves the value at a certain
index of a sequence. Calling (nth map-result 2) should return 9, since 3 squared is 9, and 3 was the 2

nd

item in the original sequence (counting from 0 becauseall indexes in Clojure start at 0).

user => (nth map-result 2)
Processing:1
Processing:2
Processing:3

9

You can see from the trace statements that the square function was called three times—just enough
to calculate the third value in the sequence. Making the exact same call again, however, does not call the
square function:

user => (nth map-result 2)

9

The values were already cached, so there was no need to call square to calculate them again. Now,
printing the value of the whole sequence:

user => (println map-result)
(1 4 Processing:4

CHAPTER 5 ̈ SEQUENCES

80

9 Processing:5

16 25)

It only calls square twice, for the two remaining unrealized values in the lazy sequence. The cached
values are not recalculated.

This example shows how the lazy sequence returned by map defers the actual calculation of its values
until they are absolutely required.

Constructing Lazy Sequences

Obtaining a lazy sequence is easy. Most of Clojure’s built-in sequence functions such as map and filter
return lazy sequences by default. If you want to generate your own lazy sequences, there are two ways to
do so: constructing it directly or using a function that generates a lazy sequence for you.

Constructing Lazy Sequences Directly

To build a lazy sequence manually, use the built-in lazy-seq macro to wrap code that would otherwise
return a normal sequence. lazy-seq builds a lazy sequence with any code it contains as a deferred value.
Code wrapped in lazy-seq is not executed immediately, but “saved for later” within the context of a lazy
sequence.

For example, the following function generates an infinite lazy sequence formed by taking a base,
and then successively adding a number to it.

(defn lazy-counter [base increment]
 (lazy-seq

 (cons base (lazy-counter (+ base increment) increment))))

Then, you can call the function, and use the take function to get the first several values of the lazy
sequence. (take has two arguments, a number and a collection. It returns a sequence obtained by taking
the number of elements from the collection.)

user=> (take 10 (lazy-counter 0 2))

(0 2 4 6 8 10 12 14 16 18)

The sequence, logically, is truly infinite. For example, to get the millionth number, counting by 3
starting from 2, just use nth:

user=> (nth (lazy-counter 2 3) 1000000)

3000002

Because it is infinite, you can use lazy-counter to get a sequence of any length—the only limitation
will be how long it takes the computer to count up to a million, a billion, or whatever number you
choose.

Compare this to a non-lazy version:

(defn counter [base increment]

 (cons base (counter (+ base increment) increment)))

 CHAPTER 5 ̈ SEQUENCES

81

This function doesn’t even make it off the ground. It crashes with a StackOverflowError almost
immediately. Because it doesn’t defer any execution, it immediately recurses until it uses up all the stack
space in the JVM. The lazy version doesn’t have this problem. Although it is defined recursively, the
contents of lazy-seq are only called when the internal code that processes lazy sequences is ready to
unfold the next value. This is done in a way which does not consume stack space, and so lazy sequences
are effective as well as logically infinite.

̈ Caution Be careful with infinite sequences. They are logically infinite, but care is required not to attempt to

realize an infinite number of values. Trying to print an infinite lazy sequence in the REPL directly, for example,

without using take or an equivalent can lock the program as it churns through the lazy sequence, on to infinity,

without stopping. In this and other common scenarios, it is still possible to write code that will continue processing

an infinite sequence forever, locking up the thread in which it is running. Infinite sequences can be very useful, but

make sure code that utilizes them has proper exit conditions and doesn’t depend on hitting the end of the

sequence. Just because the sequence is infinite doesn’t mean you want to take an infinite amount of time to

process it, or try to load the whole thing into memory at once. Sadly, computers are finite machines.

Constructing Lazy Sequences Using Sequence Generator Functions

For many common cases where a lazy sequence is required, it’s often easier to use a sequence generator
function than lazy-seq directly. In particular, iterate is useful. It generates an infinite sequence of items
by calling a supplied function, passing the previous item as an argument. It takes two arguments: the
function to call and an initial value for the first item in the sequence.

For example, to generate an infinite lazy sequence of all the integers use iterate with the built-in
increment function, inc:

user=> (def integers (iterate inc 0))
#'user/integers
user=> (take 10 integers)

(0 1 2 3 4 5 6 7 8 9)

By providing a custom function, iterate can also be used to provide functionality identical to the
lazy-counter function defined above:

(defn lazy-counter-iterate [base increment]

 (iterate (fn [n] (+ n increment)) base))

user=> (nth (lazy-counter-iterate 2 3) 1000000)

3000002

There are several other functions that generate sequences similarly to iterate: see the section “The
Sequence API.”

CHAPTER 5 ̈ SEQUENCES

82

Lazy Sequences and Memory Management

It is important to understand how lazy sequences consume memory. It is possible to use large, even
infinite sequences in a memory-efficient way, but unfortunately it is also possible to inadvertently
consume large amounts of memory, even resulting in a Java OutOfMemoryError if they exceed the
available heap space in the JVM instance.

Use the following guidelines to reason about how lazy sequences consume memory:

• Lazy sequences which have not yet been realized consume no appreciable

memory (other than the few bytes used to contain their definition).

• Once a lazy sequence is realized, it will consume memory for all the values it

contains, provided there is a reference to the realized sequence, until the reference

to the realized sequence is discarded and the sequence is garbage collected.

The final distinction is key. To illustrate the difference, consider the following two code snippets
entered at the REPL.

user=> (def integers (iterate inc 0))
#'user/integers
user=> (nth integers 1000000)

1000000

And:

user=> (nth (iterate inc 0) 1000000)

1000000

Although these two code snippets are identical in respect to what they do, profiling the JVM
indicates that the former statement results in ~60 megabytes of heap space being utilized after the call to
nth, while the latter results in no appreciable increase. Why?

In the first sample, the lazy sequence is referenced by a symbol. The sequence is initially unrealized,
and takes up very little memory. However, in order to retrieve the selected value, nth must realize the
sequence up to the value selected. All values from 0 to 1000000 are now cached in the sequence bound to
the integers symbol, and it is this that utilizes the memory.

So why doesn’t using nth in the second example use up memory as well? The answer is that nth itself
does not maintain any references. As it goes through a sequence, it retrieves the rest from each entry,
and drops any references to the sequence itself. The sequence created by (iterate inc 0) is supplied as
an initial argument, but unlike the first example, no permanent reference to it is maintained, and nth
“forgets” it almost immediately as it progresses. No cached values are ever saved, and so no memory is
used.

All the built in-sequence functions, such as nth, are careful not to maintain any memory-consuming
references, so ensuring proper memory usage is a responsibility of the developer. Keeping track of
memory usage means, primarily, keeping track of references to lazy sequences.

It may sound complicated at first, but in time, once you’re used to working with Clojure, eliminating
extraneous references comes fairly easily. Clojure’s own emphasis on pure functions itself greatly helps
to discourage indiscriminate reference-making. The only area where it is easy to make a mistake is when
writing your own sequence-consuming functions, and as long as you maintain a clear idea of which
symbols reference potentially infinite sequences, it should provide no great difficulty. The important
thing is to know what to look for when presented with an OutOfMemoryError.

 CHAPTER 5 ̈ SEQUENCES

83

The Sequence API
Clojure provides a complete set of sequence manipulation functions. Being familiar with them and their
capabilities will save a great deal of effort, as it is often possible to eliminate a surprising amount of code
with a single call to one of these functions.

Sequence Creation

The functions in this section provide various means for creating sequences, either directly or from
existing data structures.

seq

The seq function takes a single argument, a collection, and returns a sequence representation of the
collection. Most sequence manipulation functions automatically call seq on their arguments, so they can
accept collections without requiring a manual call to seq.

user=> (seq [1 2 3 4 5])

(1 2 3 4 5)

user=> (seq {:a 1 :b 2 :c 3})

([:a 1] [:b 2] [:c 3])

vals

vals takes a single argument, a map, and returns a sequence of the values in the map.

user=> (vals {:key1 "value1" :key2 "value2" :key3 "value3"})

(" value1" "value2" "value3")

keys

keys takes a single argument, a map, and returns a sequence of the keys in the map.

user=> (keys {:key1 "value1" :key2 "value2" :key3 "value3"})

(:key1 :key2 :key3)

rseq

rseq takes a single argument, which must be a vector or a sorted map. It returns a sequence of its values
in reversed order; operation returns in constant time.

user=> (rseq [1 2 3 4])

(4 3 2 1)

CHAPTER 5 ̈ SEQUENCES

84

lazy-seq

lazy-seq is a macro which wraps a form that returns a sequence. It produces a lazy sequence, which is
discussed in detail in the previous section “Constructing Lazy Sequences Directly.”

repeatedly

repeatedly takes a single argument, a function with no arguments, and returns an infinite lazy sequence
obtained by calling the function repeatedly. Note that if the function is a pure function, it will simply
return the same value every time, since it has no arguments.

user=> (take 5 (repeatedly (fn []"hello")))

("hello" "hello" "hello" "hello" "hello")

Usually, repeatedly is more useful with an impure function, such as one based on rand-int, which
returns a random integer between 0 and its argument.

user=> (take 5 (repeatedly (fn [] (rand-int 5))))

(3 0 4 3 2)

iterate

iterate takes two arguments: a function with a single argument and a value. It returns an infinite lazy
sequence obtained by starting with the supplied value, and then by calling the supplied function passing
the previous item in the sequence as its argument.

user=> (take 10 (iterate inc 5))

(5 6 7 8 9 10 11 12 13 14)

This example uses the increment function inc to generate an infinite sequence of integers, starting
at 5. For a more detailed discussion, see the previous section, “Constructing Lazy Sequences Using
Sequence Generator Functions.”

repeat

repeat takes one or two arguments. The single-argument version returns an infinite lazy sequence
consisting of the argument value repeated endlessly.

user=> (take 5 (repeat "hi"))

("hi" "hi" "hi" "hi" "hi")

The two-argument version takes a number as its first argument and a value as its second. It returns a
lazy sequence the length of the first argument, consisting of repetitions of the second argument.

user=> (repeat 5 "hi")

("hi" "hi" "hi" "hi" "hi")

 CHAPTER 5 ̈ SEQUENCES

85

range

range takes one, two, or three arguments. The one-argument version takes a number as its argument and
returns a lazy sequence of numbers from 0 to the argument (exclusive).

user=> (range 5)

(0 1 2 3 4)

The two-argument version takes two numbers as its arguments and returns a lazy sequence of
numbers from the first argument (inclusive) to the second argument (exclusive).

user=> (range 5 10)

(5 6 7 8 9)

The three-argument version takes three numbers as its arguments and returns a lazy sequence of
numbers from the first argument (inclusive) to the second argument (exclusive) incremented by the
third argument.

user=> (range 4 16 2)

(4 6 8 10 12 14)

distinct

distinct takes a single argument, a sequence or collection. It returns a sequence obtained by removing
all duplicates from the argument.

user=> (distinct [1 2 2 3 3 4 1])

(1 2 3 4)

filter

filter takes two arguments: a predicate function which takes a single argument and returns a boolean
value, and a sequence/collection. Returns a lazy sequence consisting only of items in the second
argument for which the predicate function returns true.

user=> (filter (fn [s] (= \a (first s))) ["ant" "bee" "ape" "cat" "dog"])

("ant" "ape")

In this example, the predicate function tests whether the first letter of its argument is an “a”
character.

remove

remove is similar to filter, except that the resulting sequence contains only items for which the predicate
function returns false.

CHAPTER 5 ̈ SEQUENCES

86

user=> (remove (fn [s] (= \a (first s))) ["ant" "bee" "ape" "cat" "dog"])

("bee" "cat" "dog")

cons

cons takes two arguments, a value and a sequence/collection. It returns a sequence formed by
appending the value to the sequence.

user=> (cons 1 [2 3 4])

(1 2 3 4)

concat

concat takes any number of arguments, all sequences/collections. It returns a lazy sequence formed by
concatenating the provided sequences.

user=> (concat [1 2 3] '(4 5 6) [7 8 9])

(1 2 3 4 5 6 7 8 9)

lazy-cat

lazy-cat is a macro that takes any number of forms as arguments, all sequences/collections. It resolves
to a lazy sequence formed by concatenating the provided sequences. lazy-cat differs from concat in that
the expressions provided are not even evaluated until they are required. lazy-cat is, as the name
suggests, like concat, but lazier. Use lazy-cat when the result might not be entirely consumed, and so
the cost of even evaluating the provided forms might be avoided.

user=> (lazy-cat [1 2 3] ‘(4 5 6) [7 8 9])

(1 2 3 4 5 6 7 8 9)

mapcat

mapcat takes a function as its first argument and any number of sequences/collections as additional
arguments. It applies the map function with the provided function to the sequence arguments, and then
concatenates all the results. mapcat assumes that the supplied function returns a collection or sequence,
as it applies concat to its results.

user=> (mapcat (fn [x] (repeat 3 x)) [1 2 3])

(1 1 1 2 2 2 3 3 3)

In this example, the supplied function returns a sequence of its argument repeated 3 times. mapcat
concatenates the result of applying the function to each of the supplied sequences/collections.

 CHAPTER 5 ̈ SEQUENCES

87

cycle

cycle takes a single argument, a sequence/collection. It returns a lazy infinite sequence obtained by
successively repeating the values in the supplied sequence/collection.

user=> (take 10 (cycle [:a :b :c]))

(:a :b :c :a :b :c :a)

interleave

interleave takes any number of sequences/collections as arguments. It returns a lazy sequence
obtained by taking the first value from each argument sequence, then the second, then the third, etc. It
stops when one of the argument sequences runs out of values.

user=> (interleave [:a :b :c] [1 2 3])

(:a 1 :b 2 :c 3)

user=> (interleave [:a :b :c] (iterate inc 1)]

(:a 1 :b 2 :c 3)

user=> (interleave [:a :b :c] [1 2 3] [\A \B \C])

(:a 1 \A :b 2 \B :c 3 \C)

interpose

interpose takes two arguments, a value and a sequence/collection. It returns a lazy sequence obtained
by inserting the supplied value between the values in the sequence.

user=> (interpose :a [1 2 3 4])

(1 :a 2 :a 3 :a 4 :a 5)

rest

rest takes a single sequence/collection as an argument. It returns a sequence of all items in the passed
sequence except the first. If there are no more items, it returns an empty sequence.

user=> (rest [1 2 3 4])

(2 3 4)

user=> (rest [])

()

next

next takes a single sequence/collection as an argument. It returns a sequence of all items in the passed
sequence, except the first. If there are no more items, it returns nil.

CHAPTER 5 ̈ SEQUENCES

88

user=> (next [1 2 3 4])

(2 3 4)

user=> (next [])

nil

drop

drop takes two arguments, a number and a sequence/collection. It returns a sequence of all items after
the provided number of items. If there are no more items, drop returns an empty sequence.

user=> (drop 2 [:a :b :c :d :e])

(:c :d :e)

drop-while

drop-while takes two arguments, a predicate function taking a single argument and a
sequence/collection. It returns a sequence of all items in the original sequence, starting from the first
item for which the predicate function returns false.

user=> (drop-while pos? [2 1 5 -3 6 -2 -1])

(-3 6 -2 -1)

This example uses the pos? function as a predicate. pos? returns true for all numbers greater than
zero, otherwise false.

take

take takes two arguments, a number and a sequence/collection. It returns a sequence consisting of the
first items in the provided sequence. The returned sequence will be limited in length to the provided
number.

user=> (take 2 [1 2 3 4 5])

(1 2)

take-nth

take-nth takes two arguments, a number and a sequence/collection. It returns a sequence of items from
the supplied sequence, taking the first item and every Nth item, where N is the supplied number.

user=> (take-nth 3 [1 2 3 4 5 6 7 8 9 10])
(1 4 7 10)

 CHAPTER 5 ̈ SEQUENCES

89

take-while

take-while takes two arguments, a predicate function taking a single argument and a
sequence/collection. It returns a sequence of all items in the original sequence, up until the first item for
which the predicate function returns false.

user=> (take-while pos? [2 1 5 -3 6 -2 -1])
(2 1 5)

drop-last

drop-last takes one or two arguments. The one argument version takes a sequence/collection. It returns
a sequence containing all but the last item in the provided sequence

user=> (drop-last [1 2 3 4 5])
(1 2 3 4)

The two-argument version takes a number and a sequence/collection. It returns a sequence
containing all but the last N items in the provided sequence, where N is the provided number.

user=> (drop-last 2 [1 2 3 4 5])
(1 2 3)

reverse

reverse takes a single argument, a sequence/collection. It returns a sequence of the items in reverse
order. reverse is not lazy.

user=> (reverse [1 2 3 4 5])
(5 4 3 2 1)

sort

sort takes one or two arguments. The one-argument version takes a sequence/collection and returns a
sequence of the items sorted according to their natural ordering.

user=> (sort [2 3 5 4 1])
(1 2 3 4 5)

The two-argument version takes an object implementing java.util.Comparator and a sequence
collection. It returns a sequence of items sorted according to the comparator.

sort-by

sort-by takes two or three arguments. The two-argument version takes a key function which takes a
single argument, and a sequence/collection. It returns a sequence of the items sorted by the values

CHAPTER 5 ̈ SEQUENCES

90

returned by applying they key function to the item. The key function should then return a naturally
sortable value, such as a string or a number.

user=> (sort-by (fn [n] (/ 1 n)) [2 3 5 4 1])
(5 4 3 2 1)

This example supplies a function that returns the reciprocal of its argument as a key function. The
result sequence is ordered not by the values themselves, but by the result of applying the key function to
them. That is, they are ordered by their reciprocals.

The two-argument version takes a key function, an object implementing java.util.Comparator and
a sequence collection. It functions the same as the two argument version, except it uses the supplied
comparator to sort the results of the key function.

split-at

split-at takes two arguments: a number and a sequence/collection. It returns a vector of two items. The
first item in the result vector is a sequence obtained by taking the first N items from the supplied
sequence, where N is the supplied number. The second item in the result vector is the rest of the items in
the supplied sequence.

user=> (split-at 2 [:a :b :c :d :e :f])
[(:a :b) (:c :d :e :f)]

split-with

split-with takes two arguments: a predicate function taking a single argument and a
sequence/collection. It returns a vector of two items. The first item in the result vector is a sequence
obtained by taking items from the supplied sequence until the first item where applying the supplied
predicate returns false. The second item in the result vector contains the rest of the items in the supplied
sequence.

user=> (split-with pos? [2 1 5 -3 6 -2 -1])
[(2 1 5) (-3 6 -2 -1)]

partition

partition takes two or three arguments. The two argument version takes a number and a
sequence/collection and returns a lazy sequence of lazy sequences. Each child sequence is N items long
and populated by every N items from the provided sequence, where N is the provided number.

user=> (partition 2 [:a :b :c :d :e :f])
((:a :b) (:c :d) (:e :f))

The three-argument version takes two numbers, and a sequence/collection. It works the same way
as the two argument version, with the exception that the child sequences are populated at offsets given
by the second number provided. This allows overlap of items between the child sequences.

 CHAPTER 5 ̈ SEQUENCES

91

user=> (partition 2 1 [:a :b :c :d :e :f])
((:a :b) (:b :c) (:c :d) (:d :e) (:e :f))

map

map takes a function as its first argument and any number of collections/sequences as additional
arguments. The provided function should take the same number of arguments as there are additional
sequences. It returns a lazy sequence obtained by applying the provided function to each item in the
provided sequence(s).

user=> (map pos? [2 1 5 -3 6 -2 -1])
(true true true false true false false)

user=> (map + [2 4 8] [1 3 5])
(3 7 13)

first

first takes a single sequence/collection as an argument. It returns the first item in the sequence, or nil
if the sequence is empty.

user=> (first [1 2 3 4])
1

second

second takes a single sequence/collection as an argument. It returns the second item in the sequence, or
nil if the sequence is empty.

user=> (second [1 2 3 4])
2

nth

nth takes two arguments: a sequence/collection and a number. It returns the Nth item of the provided
sequence, where N is the provided number. Sequences are indexed from zero, so (nth sequence 0) is
equivalent to (first sequence). It throws an error if the sequence has fewer than N items.

user=> (nth [:a :b :c :d] 2)
:c

last

last takes a single sequence/collection as an argument. It returns the last item in the sequence. If the
sequence is empty, returns nil.

user=> (last [1 2 3 4])
4

CHAPTER 5 ̈ SEQUENCES

92

reduce

reduce takes two or three arguments. In the two argument version, the first argument is a function which
must take two arguments and the second argument is a sequence/collection. reduce applies the
supplied function to the first two items in the supplied sequence, then calls the supplied function again
with the result of the first call and the next item, and so on for each item in the sequence.

user=> (reduce + [1 2 3 4 5])
15

In this example, reduce applies the addition function to a list of integers, resulting in their sum total.
The three argument version is similar, except that it takes a function, an initial value, and a

sequence/collection. The function is applied to the initial value and the first item of the sequence,
instead of the first two items of the collection. The following example illustrates this by building a map
from a sequence, using each item as a key and its reciprocal as a value. An empty map is provided as the
initial value:

user=> (reduce (fn [my-map value]
 (assoc my-map value (/ 1 value)))
 {}
 [1 2 3 4 5])

{5 1/5, 4 1/4, 3 1/3, 2 1/2, 1 1}

apply

apply takes two or more arguments. The first argument is a function and the last argument is a
sequence/collection. Other arguments may be any values. It returns the result of calling the supplied
function with the supplied values, and the values of the supplied sequence, as arguments. Calling (apply
f a b [c d e]) is identical to calling (f a b c d e). The advantage of apply is that it is possible to build
dynamic sequences of arguments.

user=> (apply + 1 [2 3])
6

An example using apply on a dynamic list of arguments: calling + with the integers 0–5 as
arguments. This call is equivalent to (+ 1 2 3 4 5), except the argument list is generated dynamically.

user=> (apply + (range 1 6))
15

empty?

empty? takes a single sequence/collection as an argument. It returns true if the sequence has no items,
otherwise false.

user=> (empty? [1 2 3 4])
false

user=> (empty? [])
true

 CHAPTER 5 ̈ SEQUENCES

93

some

some takes two arguments: a predicate function taking a single argument and a sequence/collection. It
returns the value of the predicate function if there is at least one item in the provided sequence for
which it does not return false or nil, else nil.

user=> (some (fn [n] (< n 5)) [6 9 7 3])
true

user=> (some (fn [n] (< n 5)) [6 9 7 5])
nil

every?

every? takes two arguments: a predicate function taking a single argument and a sequence/collection. It
returns true if the predicate function is true for every value in the sequence, otherwise false.

user=> (every? (fn [n] (< n 5)) [2 1 4 3])
true

user=> (every? (fn [n] (< n 5)) [2 1 5 3])
false

dorun

dorun takes one or two arguments: a lazy sequence or optionally a number and a lazy sequence. It causes
the lazy sequence to be realized, solely for side effects. dorun always returns nil and does not retain the
head of the list, so it will not consume memory.

To demonstrate, the following example applies the map function to a lazy sequence, supplying the
println function to map. Normally, println is not a good candidate for an argument to map, since it
executes only for side effects and always returns nil.

user=> (def result (map println (range 1 5)))
#'user/result
user=> (dorun result)
1
2
3
4

nil

In this example, the result symbol is bound to a lazy sequence, the product of map. The actual values
of this sequence are all nil, since they are the result of calling println. They are unused in this example.
However, whenever the generator function (println) for the sequence is called, it results in a side effect.
Since the sequence returned by map is lazy, the generator function is not called until the call to dorun,
which forces the sequence to be sequentially evaluated.

If a numeric parameter is provided, dorun evaluates the sequence only as far as that index.

user=> (def result (map println (range 1 10)))
#’user/result
user=> (dorun 2 result)
1
2

CHAPTER 5 ̈ SEQUENCES

94

3

nil

Be very careful to always use a numeric parameter to dorun when calling it with an infinite sequence
or else the execution will never terminate.

doall

doall, rdentical to dorun, with the exception that as the sequence is evaluated, it is saved and returned by
the function. In essence, doall returns a non-lazy version of a lazy sequence. As such, it will result in
memory consumption proportional to the size of the sequence. Invoking on an infinite sequence
without a numeric parameter will result in an OutOfMemoryError as the system attempts to cache a
sequence of infinite length.

user=> (def result (map println (range 1 5)))
#’user/result
user=> (doall result)
1
2
3
4

(nil nil nil nil)

Note how the function, after executing the generator function for side effects, also returns the actual
sequence of values resulting from the call to map. In this case, they are all nil, the return value of println.

Summary
The more you use sequences, the more you will come to appreciate them. Having a highly integrated,
extremely powerful generic collection management library at your fingertips is hard to do without when
you go back to a language without it.

When writing idiomatic Clojure, one cannot use sequences too much. Any point in code where
there is more than one object is a candidate for using a sequence to manage the collection. Doing so
provides for free all the sequence functions, both built-in and user generated. They will greatly aid in
writing expressive, succinct programs.

C H A P T E R 6

 ̈ ̈ ̈

95

State Management

State in an Immutable World
As much as possible, Clojure advocates eliminating state from programs. In general, data should be
passed and returned from functions in a purely functional way. It keeps things clean, protected, and
parallelizable.

Often, however, that’s simply not possible. The real world is full of changing concepts and so real
programs are full of state. If you’re writing a word processor, the current document has a state. If you’re
writing a game, the objects in the game world exist have state. If you’re writing financial software, the
amount of money in an account is state. This is a fact of the way the world is and the way humans think,
and programs need to be able to model it effectively.

With today’s concurrent environments, effective modeling of state is not just something nice to
have, but absolutely necessary to get anything done. Even aside from the concurrency issues, however,
there are many benefits of languages which have a clear conceptualization of state. Even in a single
threaded program, explicit managed state is preferable to having state smeared across the entire
application, and Clojure provides just that: efficient explicitly managed state.

The Old Way

Most programming languages model state via a fairly naive process. There are things, represented by
variables or objects, and these things can change. But how and when they change is not well defined.
Usually, programs “bash objects in place”—each line of code is free to reach in and push arbitrary
changes to any part of any thing as it executes. The only way to preserve consistency and prevent bugs
caused by two changes happening at once is to place safeguards around each and every thing, ensuring
that only one process can interact with a given thing at once. These are known as locks.

The problem with locks is that they’re hard to get right. In order to make them correct, the first
reaction is to use more of them, which only causes another problem: extensive use of locks solves the
problems introduced by concurrency by, effectively, reducing the level of concurrency that is actually
possible. It doesn’t matter how many threads a program has running, if they all must queue up to access
an object one at a time, then at that point they might as well be running in a single thread.

However, with the view that there are only mutable, changeable things, and without having well-
defined semantics for how they change, locks are the only option. For a more effective approach to state,
it is necessary to reevaluate and find better definitions for what things are, and establish clear rules for
how they change.

CHAPTER 6 ̈ STATE MANAGEMENT

96

State and Identity

Clojure introduces a philosophical and conceptual paradigm shift in its treatment of things. It takes the
standard notion of a thing (an object or a variable) and decomposes it into two separate concepts—state
and identity.

1
 Every thing has both a state and an identity. State is a value associated with an identity at a

particular moment in time, whereas identity is the part of a thing that does not change, and creates the
link between many different states at many different times. The value of each state is immutable and
cannot change. Rather, change is modeled by the identity being updated to refer to a different state
entirely.

 For example, when I was a child, in 1990, I was a very, very different person than I am now in 2010,
and it is very probable that I will be a different person still when I am much older in 2050. Luke

1990
,

Luke
2010

 and Luke
2050

 are quite different people—you could go as far as to say that they don’t have that
many similarities at all. And yet, they do have a relationship, a constant identity—they are all me, Luke
VanderHart.

In Clojure’s logical terminology, Luke
1990

, Luke
2010

 and Luke
2050

 are all distinct values—distinct states.
My name, Luke VanderHart, is the identity that links them all together. Like Clojure’s values, these
states are immutable. I may be able to change future versions of myself, but Luke

1990
is set in stone. I can

no longer do anything to change who that person was or is. Currently, the identity Luke VanderHart has
Luke

2010
 as its state. Next year, it will have a new state: Luke

2011
, which will likely be very similar to Luke

2010

but with subtle differences. Actually, in Clojure’s model, every time I change at all, it generates a new
state: millisecond by millisecond, I have new values associated with my identity as I have different
thoughts, feelings, and motions. I am a near infinity of distinct, unchangeable persons, all slightly
different, all linked by a common identity.

Another example is my bank account, a much less philosophical example and one more likely to be
modeled in an actual program. As I spend money and receive paychecks, the balance of my bank
account fluctuates. Clearly, it is something that needs to be modeled as changeable state. In this case,
the identity which remains constant throughout the program is “my account”—call the identity account-
balance. The state, then, is the amount of money in the account at a given time. For example, it might
start at $1000. If I deposit a check for $100, then the account-balance identity is updated to point to a
new state, $1100. Note that I have not changed the value of the state—changing the integer 1000 to 1100
is a clear impossibility: 1000 and 1100 are distinct mathematical values. The state has not changed,
rather, the identity of account-balance now points to a new state. The update takes place atomically;
there is no intermediate state where the value of account-balance is half-set. At any point in the
program, it is safe to query the current state of account-balance.

State and Identity in Clojure
In Clojure code, states are simply any of Clojure’s data types. They can be primitives, such as numbers or
strings, or more complex structures built out of lists, maps, and sets. The only limitation on values that
can be used as states is that they ought to be immutable. If you use a mutable structure (such as a Java
object) as a state, you haven’t actually accomplished anything: Clojure’s state management system is
founded on the premise that values themselves are immutable, and it can provide no guarantees of
consistency or isolation for mutable objects.

Identities are modeled using one of the three reference types: refs, agents, atoms and vars. Each
implements the conceptual model outlined previously; each represents an identity and points to a state.

1 For the definitive discussion of state and identity, see Rich Hickey’s essay “On State and Identity” at
http://clojure.org/state.

 CHAPTER 6 ̈ STATE MANAGEMENT

97

They differ in the semantics of how they can be updated to refer to new state values and are useful in
different situations. Between them, they can handle just about any state management task:

• Use refs to manage synchronous, coordinated state

• Use agents to manage asynchronous, independent state

• Use atoms to manage synchronous, independent state

Coordinated vs. Independent State

One requirement common to many systems is that updates to certain identities be coordinated to
ensure data integrity. Coordinated updates can’t just take one identity into account—they have to
manage the states of several interdependent identities to ensure that they are all updated at the same
time and that none are left out. The most common example of coordinated state is a transfer of funds
between two bank accounts: money deposited into one account must also be subtracted from the other,
and these two actions must occur as a single, coordinated event, or not at all. Clojure uses refs to provide
coordinated state.

The alternative to coordinated state is independent state. Independent identities stand on their own
and can have their state updated without concern for other identities. This still needs to be controlled in
some way, but internally, this is usually a more efficient process than coordinating changes to multiple
identities. Therefore, updates to independent identities are usually faster than updates to coordinated
identities; use them in preference to refs unless coordinated access is required. Clojure provides agents
and atoms as independent identity reference types.

Synchronous vs. Asynchronous Updates

Synchronous updates to the values identities occur immediately, in the same thread from which they are
invoked. The execution of the code does not continue until the update has taken place, as most
programmers would expect. This is the default way instructions execute in most programming
languages. Updates to the values of refs and atoms are both handled synchronously in Clojure.

Asynchronous updates do not occur immediately, but at some unspecified point in the (near)
future, usually in another thread. The code execution continues immediately from the point at which the
update was invoked, without waiting for it to complete. Extensive use of asynchronous updates is useful
for introducing concurrency into programs, and for more flexible event-based programming models.
However, there is no guarantee when the effect of an asynchronous update will actually be in place. It
will nearly always be instantaneous from a human scale, but from a code perspective, it might not be.
For example, if one line of code updates an asynchronous identity, and the very next line of code in the
same thread reads its state, it will probably get the old state. Don’t use asynchronous identities where
your code depends on the update happening right away. Agents are Clojure’s implementation of
asynchronously updated identities.

Refs and Transactions
Refs are Clojure’s implementation of synchronous, coordinated identities. Each is a distinct identity, but
operations on them can be run inside a transaction, guaranteeing that multiple identities whose values
depend on each other are always in a consistent state. Refs provide access to Clojure’s state-of-the-art
Software Transactional Memory (STM) system.

CHAPTER 6 ̈ STATE MANAGEMENT

98

Creating and Accessing refs
To create a ref, use the built-in ref function, which takes a single argument: the initial value of the ref:

user=> (def my-ref (ref 5))

#'user/my-ref

This code does two things: creates a ref with an initial state of the integer 5 and binds the ref to a var,
my-ref. It is an important distinction: the var is not the ref itself, it is just bound to the ref. If you try to get
the value of the var, you get the following:

user=> my-ref

#<Ref@1010058: 5>

my-ref is a var like any other. It just has a ref as its bound value, which is seen here. "#<Ref@1010058:
5>" is the string debugging representation of a ref. To actually get the current state of the ref, it is
necessary to use the dereference function deref:

user=> (deref my-ref)

5

The deref function always takes a single argument, which must resolve to a ref and returns the
current state of the ref. Because the deref function is used so frequently, there is a shorthand for it: the @
symbol. Prefixing an expression with @ is identical to calling deref on it:

user=> (deref my-ref)
5
user=> @my-ref

5

The shorthand form makes it easier to dereference symbols within expressions:

user=> (+ 1 @my-ref)

6

Dereferencing a ref always returns its state, immediately. Refs are never locked (at least, not in a
traditional sense) and deref does not block while waiting for a transaction to complete. It always just
returns a snapshot of the ref’s current state. This means that if you call deref twice, outside of a
transaction, it is possible that you will get two different values.

Updating refs

There are several different functions which can be used to update the values of refs. They differ in their
performance implications, and are explained in detail in the following sections, but they have one thing
in common: they are designed exclusively for use within transactions. Executing any of them outside a
transaction always throws an error.

 CHAPTER 6 ̈ STATE MANAGEMENT

99

Transactions

For anyone who has worked with relational databases, Clojure’s transactions will be a familiar concept:
they operate in almost exactly the same way as their database counterparts. Essentially, all updates
contained within a single transaction are committed to the application state atomically, at the same
time. Either all the updates occur at the same time, or none do. Consistency across ref values is
guaranteed.

Transactions are also isolated, which means that no transaction can see the effects of any other
transaction while it is running. When a transaction begins, it takes a snapshot of all the ref values
involved. Subsequent updates to those values from outside the transaction are invisible to code within
the transaction, just as changes made within the transaction are invisible to the outside world until it is
finished and committed. Of course, changes made within a transaction are visible within the same
transaction. Dereferencing a ref within a transaction always returns the “in-transaction” value of the ref,
which reflects any updates that have been made since the beginning of the transaction.

Additionally, transactions nest. If a transaction is initiated while already inside a transaction, the
inner transaction simply becomes part of the outer transaction and will not commit until the outer
transaction commits.

Transactions are conceptually lock-free and optimistic. This means that transactions don’t wait for
other transactions to complete before they begin. Transactions will never block a thread while waiting
for another update. However, it doesn’t remove the possibility that multiple transactions updating the
same ref can conflict. A transaction might complete, only to find that the refs it is trying to update are
stale and have already been updated by another transaction. In this case, the transaction simply retries,
taking a snapshot of the new values and running itself again. The system prioritizes commits, insuring
that no matter how much contention there is for a particular ref, each transaction is guaranteed to
complete eventually.

High-concurrency, high-contention scenarios will result in a slowdown of the STM system as many
transactions are retried. However, in most cases it will still end up faster than the equivalent system
using locks. Even in the worst case, where a perfectly designed system of locks is provably faster than
STM, Clojure argues that STM is still worthwhile due to the decreased cognitive load and simplicity of
the solutions.

Many consider the benefits of STM to be roughly analogous to managed memory and garbage
collection: most the time they are more than fast enough, and they save so much effort from
programmers and software architects that the occasional scenario where they underperform the
meticulously, complicated manual solution can be accepted.

Tools for Updating refs

The most important form when working with refs is the dosync macro. dosync initiates a transaction and
takes any number of additional forms. Each provided form is evaluated sequentially within a
transaction. The value of the final form is returned after committing the transaction. If an exception is
thrown from any of the provided forms, the transaction is terminated without committing.

For actually updating the state of a ref, the most basic function is ref-set. ref-set takes two
arguments: a ref and a value. It sets the state of the reference to be the value, and then returns the value.
Of course, it must be run within a transaction established by dosync.

For example, the following code:

user=> (def my-ref (ref 5))
#’user/my-ref
user=> @my-ref
5

CHAPTER 6 ̈ STATE MANAGEMENT

100

user=> (dosync (ref-set my-ref 6))
6
user=> @my-ref

6

To emphasize, ref-set and all other ref functions may only be called from within a transaction.
Trying to call ref-set outside of a transaction throws the following error:

user=> (ref-set my-ref 7)

java.lang.IllegalStateException: No transaction running

Another common function for updating refs is alter. alter takes a ref, a function, and any number
of additional arguments. It calls the provided function with the in-transaction value of the ref as its first
argument and the other provided arguments as additional arguments. It sets the value of the ref to the
return value of the function and returns the same value.

user=> (def my-ref (ref 5))
#’user/my-ref
user=> @my-ref
5
user=> (dosync (alter my-ref + 3))
8
user=> @my-ref

8

̈ Note The function provided to alter must be free of side effects and return a purely functional transformation

of the ref value. This is because the function may be executed multiple times as the STM retries the transaction. If

the function has side effects, including updates to other identities, they will be executed at least once, but

potentially an arbitrary number of times if the update is highly contentious., Almost always, this will have

unexpected and undesired results. Double check that all functions passed to alter are pure.

Some might wonder why both ref-set and alter are provided, given that they’re essentially just
different ways of doing the same thing—setting the state of a ref. The distinction is not so much in their
actual functionality as in what they imply to someone reading the code. alter usually indicates that the
new value of the ref is a function of the old, that it is an update that is related to it in some way. ref-set
implies that the old value is being obliterated and replaced with the new. Under the hood, there isn’t any
difference, but when trying to understand a program, it can be a great help to see at a glance whether the
value being set is tied to the old value or not.

The final function used to update refs is commute. commute has the same signature and basic
functionality of alter, but with one important difference: in a contended transaction, rather than
restarting the whole transaction as it normally would, it goes ahead and uses the new value instead of
the in-transaction value when performing its calculation. This means that commute operations are less
contentious, and will achieve much better performance in high-contention scenarios.

It also means that commute operations are not perfectly isolated within a transaction. However, if the
function passed to commute is logically or mathematically commutative, it makes no difference.

 CHAPTER 6 ̈ STATE MANAGEMENT

101

Commutative functions are those which may be applied in any order without impacting the end result.
In contentious transactions which use commute, that is exactly what happens. commute buys efficiency
by making the assumption that it can apply the update in any order relative to other updates. Therefore,
you should only use commute if the provided function can be applied in any order without affecting the
outcome (or if you don’t care whether it does). If you use commute with a function that isn’t guaranteed to
be logically commutative, you will likely see inconsistent, unpredictable behavior.

An example of using commute appropriately (since + is a naturally commutative operation):

user=> (def my-ref (ref 5))
#’user/my-ref
user=> @my-ref
5
user=> (dosync (commute my-ref + 3))
8
user=> @my-ref

8

There is one more function that operates on refs: ensure. It takes a single argument, a ref. Like the
other ref functions, it can only be used inside a transaction. Unlike other ref functions, it doesn’t actually
change the state of a ref. What it does do is to force a transaction retry if the ensured ref changes during
the transaction, just as it would if it were a ref you updated. Of course, you wouldn’t see such changes
inside the transaction in any case, due to transaction isolation. But normally, if you don’t update a ref in
a transaction, that ref is not included in the consistency guarantees of the final commit. If you want to
ensure that a ref you don’t update is nevertheless unchanged after a transaction for coordination
reasons, use ensure on it within the transaction.

Examples

Listing 6-1 illustrates the classic example of transactional behavior previously mentioned, transferring
money from one bank account to another. This is a scenario in which coordination between the two
pieces of state—the two accounts—is vitally important. If the values were not coordinated, it would be
possible, however briefly, to be in a state in which the money was added to one account but not yet
subtracted from the other (or vice versa). Using refs and transactions ensures that the account addition
and subtraction occur atomically.

Listing 6-1. Bank Accounts in STM

(def account1 (ref 1000))
(def account2 (ref 1500))

(defn transfer
 "transfers amount of money from a to b"
 [a b amount]
 (dosync
 (alter a - amount)
 (alter b + amount)))

(transfer account1 account2 300)
(transfer account2 account1 50)

CHAPTER 6 ̈ STATE MANAGEMENT

102

(println “Account #1:” @account1)

(println “Account #2:” @account2)

Running this code yields the expected output after the two transactions. Because the transaction is
guaranteed by Clojure’s STM, the results would be the consistent no matter how many threads were
concurrently updating the accounts. In this case, the output is:

Account #1: 750

Account #2: 1750

The following example is much more complex, and demonstrates how refs can be stored in any data
structure (not just def’d at the top level), how they can have any data structure as their value, not just
integers, and how even refs can be part of the value of another ref. It is just a basic example of using refs:
you will probably want to approach the ref structure in an actual program with a great deal more
thought. In general, it’s better to be judicious and use as few refs as will meet your needs.

The program represents a rudimentary address book. The main data structure is a vector of
contacts. It is contained in a ref, since you need to be able to update it and it starts out empty. Each
contact is a map containing first name and last name. Rather than storing the entries directly, though,
they are each stored as a ref themselves, since each is an individually updateable piece of state (see
Listing 6-2).

Lilsting 6-2. An Address Book in STM

(def my-contacts (ref []))

(defn add-contact
 "adds a contact to the provided contact list"
 [contacts contact]
 (dosync
 (alter contacts conj (ref contact))))

(defn print-contacts
 "prints a list of contacts"
 [contacts]
 (doseq [c @contacts]
 (println (str "Name: " (@c :lname) ", " (@c :fname)))
))

(add-contact my-contacts {:fname "Luke" :lname "VanderHart"})
(add-contact my-contacts {:fname "Stuart" :lname "Sierra"})
(add-contact my-contacts {:fname "John" :lname "Doe"})

(print-contacts my-contacts)

Running the scripts creates a list of contacts, adds several contacts to it (as refs), and then prints the
list, yielding:

Name: VanderHart , Luke
Name: Sierra, Stuart

Name: Doe, John

 CHAPTER 6 ̈ STATE MANAGEMENT

103

Note how the print-contacts function needs to dereference the contacts list and also each contact
before it can use it, since both are references.

Now, as an example of coordinated access to multiple refs, consider the task of adding an “initials”
field to each contact, but doing it in a coordinated way so there is no chance that any contact might be
left out. This is slightly contrived, but is similar to many real-world tasks: the goal is to make it
impossible for there to be a state in which some contacts have initials and not others. This can be done
with Listing 6-3’s code added after the previous code. It is split into multiple functions for greater clarity.

Listing 6-3. Adding Initials to the Address Book

(defn add-initials
 "adds initials to a single contact and returns it"
 [contact]
 (assoc contact :initials
 (str (first (contact :fname)) (first (contact :lname)))))

(defn add-all-initials
 "adds initials to each of the contacts in a list of contacts"
 [contacts]
 (dosync
 (doseq [contact (ensure contacts)]
 (alter contact add-initials))))
(defn print-contacts-and-initials
 "prints a list of contacts, with initials"
 [contacts]
 (dorun (map (fn [c]
 (println (str "Name: " (@c :lname) ", " (@c :fname) " (" (@c
:initials) ")")))
 @contacts)))

(defn print-contacts-and-initials
 "prints a list of contacts, with initials"
 [contacts]
 (doseq [c @contacts]
 (println (str "Name: " (@c :lname) ", " (@c :fname) " (" (@c :initials) ")"))))

(add-all-initials my-contacts)

(print-contacts-and-initials my-contacts)

When executed the code prints off the same names as before, with their initials added:

Name: VanderHart , Luke (LV)
Name: Sierra, Stuart (SS)

Name: Doe, John (JD)

The key function which actually deals with the refs is add-all-initials. It first opens a transaction,
and then calls ensure on the contacts ref. This is to make sure that if contacts is updated while the
transaction is running, it will be restarted. I want to include all of the contacts, and without the ensure, if
contacts were updated with a new contact after the transaction had begun it would not be included.

CHAPTER 6 ̈ STATE MANAGEMENT

104

Then, for each contact (using doseq), it alters it using the add-initials function, setting it to a map
containing an initials key. Because all the alter statements are run in the same transaction, the update
to all the contacts is atomic: from outside the transaction, all the contacts are updated to a value with the
new field instantaneously.

 Because the whole operation never blocks, other threads involved in reading the contacts list
continue to do so at full speed. If another transaction in another thread tries to write to a contact at the
same time, one transaction or the other might have to retry, but in the end, it’s still guaranteed that
everything that needs to happen will eventually happen to each contact, and that they will remain in a
coordinated state.

Atoms
Atoms are Clojure’s implementation of synchronous, uncoordinated identities. When updated the
change is applied before proceeding with the current thread and the update occurs atomically. All future
dereferences to the atom from all threads will resolve to the new value.

 Atoms are based on the atomic classes in the Java java.util.concurrent.atomic package. They
provide a way to update values atomically with no chance of race conditions corrupting the update.
Unlike the Java atomic package, however, they are lock-free. Therefore, reads of atoms are guaranteed
never to block and updates will retry if the atom’s value is updated while they are in progress, just like
refs.

In practice, atoms are used almost exactly like refs, except that since they are uncoordinated they do
not need to participate in transactions.

Using Atoms

To create an atom, use the atom function, which takes a single argument and returns an atom with the
argument as its initial state. To retrieve the value of an atom, use the deref function (the same one used
for refs) or the @ shorthand.

user=> (def my-atom (atom 5))
#'user/my-atom
user=> @my-atom

5

As with refs, there are two ways to update the value of an atom: swap! and reset!.The swap!
function takes an atom, a function, and any number of additional arguments. It updates (swaps) the
value of the atom for the value obtained by calling the supplied function with the current value of the
atom as the first argument, and the other provided arguments as additional arguments. It returns the
new value of the atom. Like the function provided to alter the function passed to swap! may be
executed multiple times and should therefore be free of side effects.

The following example uses the atom set up in the previous snippet and passes the addition
function, along with an additional argument of 3.

user=> (swap! my-atom + 3)
8
user=> @my-atom

8

 CHAPTER 6 ̈ STATE MANAGEMENT

105

The reset! function sets the value of an atom regardless of the current value. It takes two arguments
(the atom and a value) and returns the new value of the atom.

user=> (reset! my-atom 1)
1
user=> @my-atom

1

When to Use Atoms

In practice, atoms aren’t used as frequently as refs in programs. Since they can’t coordinate with other
pieces of state, their usefulness is limited to scenarios in which an identity is truly, logically independent
from other identities in the system.

For cases where an identity is independent, however, atoms are the right choice. They avoid much
of the overhead associated with refs and are very fast, particularly to read. They don’t have the
parallelism implications of agents (discussed in the next section), and overall are the most lightweight of
Clojure’s identity types.

One example of a case where atoms are very useful is for caching values. Cached values need to be
accessible quickly, but aren’t dependent on the rest of the system’s state. Clojure’s memoize function
(which caches the results of calling a function and is described more fully in Chapter 14 uses atoms
internally to maintain its cache.

Asynchronous Agents
Agents are one of Clojure’s more unique and powerful features. Like refs and atoms, they are identities
and adhere to Clojure’s philosophy of identity and state. Unlike refs and atoms, however, updates to
their values occur asynchronously in a separate system managed thread pool dedicated to managing
agent state.

This implies that agents are not only a means of storing and managing state in a concurrent
environment (although they certainly are that), but are also a tool for introducing concurrency into a
program. Using agents, there is no need to manually spawn threads, manage thread pools, or explicitly
cause any other kind of concurrency. Agents are identity types, and just as easy to use and update as refs
or atoms, but have concurrency thrown in “for free.”

Creating and Updating Agents
Agents can be created by using the agent function, which takes a single value as the initial value of the
agent. Like other Clojure identities, the value ought to be immutable.

user=> (def my-agent (agent 5))

#'user/my-agent

Also, like the other Clojure identities, the current value of an agent can always be obtained
immediately without blocking by dereferencing it using the deref (or @) function.

user=> @my-agent

5

CHAPTER 6 ̈ STATE MANAGEMENT

106

The value of an agent can be updated by dispatching an action function using the send or send-off
function. The call to send returns immediately in the current thread (returning the agent itself). At some
undetermined point in the future, in another thread, the action function provided to send will be applied
to the agent and its return value will be used as new the value of the agent.

send takes any number of arguments. The first two are the agent and the action function, the rest
are additional arguments to be passed to the update function whenever it executes. For example, to send
an update to the agent previously defined:

user=> (send my-agent + 3)

#'user/my-agent

Then, at some point in the future, the new value of the agent can be retrieved:

user=> @my-agent

8

There is no hard guarantee about when the update action will be applied, although usually it is
nearly immediate from a human perspective. Don’t write code that depends on an agent’s value being
updated at any given time: agents are asynchronous and can’t provide guarantees about exactly when
their actions will occur.

send-off has an identical signature and behavior as send. The only difference is that the two
functions hint at different performance implications to the underlying agent runtime. Use send for
actions that are mostly CPU-intensive, and send-off for actions that are expected to spend time blocking
on IO. This allows the agent runtime to optimize appropriately. If you use the “wrong” method,
everything will still work, but the overall throughput of the agent system will be lower, since it will be
optimizing for the wrong type of action.

Update Semantics

Although agents provide no guarantee as to when an action will take effect, update dispatches do follow
certain rules that can be relied upon:

• Actions to any individual agent are applied serially, not concurrently. Multiple
updates to the same agent won’t overwrite each other or encounter race
conditions.

• Multiple actions sent to an agent from the same thread will be applied in the order
in which they were sent. Obviously, no such guarantees can be made about
actions sent from different threads.

• If an action function contains additional dispatches to agents, either to itself or
other agents, dispatches are saved and are not actually called until after the action
function returns and the agent’s value has been updated. This allows actions on
an agent to trigger further actions without having the updates conflict.

• If an update is dispatched to an agent within a STM transaction (for example, a
dosync expression), the dispatch is not sent until the transaction is committed.
This means that it is safe to dispatch updates to atoms from within STM
transactions.

 CHAPTER 6 ̈ STATE MANAGEMENT

107

Errors and Agents

Because action functions dispatched to agents occur asynchronously in a separate thread, they need a
special error-handling mechanism. Normally, exceptions are thrown from the location in the thread in
which they occur, but if an action function throws an exception, there’s no way of determining that it
occurred, except for the built-in agent error handling.

Agents have one of two possible failure modes :fail or :continue. If an exception is thrown while
processing an action, and the agent’s failure mode is :continue, the agent continues as if the action
which caused the error had never happened, after calling an optional error-handler function. If, on the
other hand, its failure mode is :fail, the agent is put into a failed state, and will not accept any more
actions until it is restarted (although it saves its current action queue).

By default, agents with an error handler defined have a failure mode of :continue. If they don’t, then
the default is :fail. The failure mode of an agent can also be set explicitly using the set-error-mode!
function, which takes two arguments: an agent and a mode keyword. For example, the following code:

user=> (set-error-mode! my-agent :continue)

nil

You can check the current failure mode of an agent using the error-mode function:

user=> (error-mode my-agent)

:continue

Agents can be assigned an error handler using the set-error-handler! function, which takes an
agent and an error function as arguments. The error function will be called whenever an action causes
an exception to be thrown or sets the agent to an invalid value. It must itself take two arguments: an
agent and the exception. For example, the code that follows:

user=> (set-error-handler! my-agent (fn [agt ex] (…))

nil

Typically, the error handler is used to log an error, or implement some correction to ensure that it
doesn’t happen again. You can also retrieve the current error handler for an agent using the error-
handler function, which takes a single agent as an argument and returns its error handler function.

Dealing with Agents in a Failed State

Agents currently in a failure state throw an exception on any attempt to call send or send-off on them
(although dereferencing will still return the last good value of the agent). For example, dividing by zero
throws the agent into a failed state in the following example:

user=> (def an-agent (agent 10))
#'user/an-agent
user=> (send an-agent / 0)
#<Agent@1afa486: 10>
user=> (send an-agent + 1)

java.lang.RuntimeException: Agent is failed, needs restart

To inspect the current errors on an agent, use the agent-error function and pass it the agent as a
single argument:

CHAPTER 6 ̈ STATE MANAGEMENT

108

user=> (agent-error an-agent)

#<ArithmeticException java.langArithmeticException: Divide by zero>

In order to put the agent back into a working state, you must call the restart-agent function.
restart-agent takes as its arguments an agent, a new state, and any number of additional keyword
option/value pairs. The only currently implemented option is :clear-actions with a boolean value.

When restart-agent is called, it resets the value of the agent to the provided state and takes away
the agent’s failure state so the agent can accept new actions. If the :clear-actions true option is
provided, the agent’s action queue is cleared; otherwise, pending actions will be called sequentially.
restart-agent returns the new state of the agent.

To reset the agent in the preceding example:

user=> (restart-agent my-agent 5 :clear-actions true)

5

And now, the agent can be sent more actions:

user=> (send my-agent + 1)
#<Agent@1365360: 5>
user=> @my-agent

6

Waiting for Agents

Although agents are by their nature asynchronous, it is occasionally necessary to force a certain degree
of synchronicity. For example, if a long-running action is being performed on an agent, a result might be
required in the original thread before computation can continue. For this purpose, Clojure provides the
await and await-for functions, both of which block a thread until an agent has finished processing its
actions.

await takes any number of agents as its arguments and blocks the current thread indefinitely until
all actions to the provided agent(s) which were dispatched from the current thread) are complete. It
always returns nil.

await-for is nearly identical, except that it takes a timeout (in milliseconds) as its first argument and
any number of agents as additional arguments. If the timeout expires before all the agents are finished,
await-for returns nil. If the agents did finish before the timeout, it returns a non-nil value.

Shutting Down Agents

Whenever agents are used in a Clojure program, the Clojure runtime creates a thread pool in which to
run agent actions behind the scenes. Normally, it isn’t necessary to concern yourself about this, except
that a Java/Clojure program will not gracefully terminate while there is still an active thread pool. To
deactivate the agent thread pool, call the shutdown-agents function with no arguments. All currently
running actions will complete, but no more will actions to agents will be accepted, and when all actions
are complete the pool will shut down, allowing the program to terminate.

Never call shutdown-agents unless you intend to terminate the running program. shutdown-agents is
irreversible without restarting your application, and after calling it agents can no longer be updated: all
calls to send or send-off will throw exceptions.

 CHAPTER 6 ̈ STATE MANAGEMENT

109

When to Use Agents

When deciding when to use agents, it is very important to realize that agents are not only a means of
managing state, but also managing program execution. Using agents doesn’t just imply managed state
with identities, but also splitting up computational processes across multiple threads.

As state management tools, agents are effective although they don’t have all the features that refs
do, such as transactions and ensuring data consistency. They are an uncoordinated identity type. For
data that really needs these things, definitely consider using refs. Likewise, agents don’t offer much more
than atoms for simple uncoordinated state management. If all you need to do is ensure the integrity of
individual pieces of state, atoms are probably a better choice than agents.

The important feature of agents is not only that they protect state, but that updates to that state
occur concurrently with the thread that initiated the update. If, as in the previous examples, the only
action functions being passed to agents are simple and blindingly fast, like +, there isn’t much benefit to
using an agent. But when the functions are more processing intensive, or when they perform IO
(something that isn’t even possible within transactions), there can be huge benefit to having it occur
out-of-band. Every action function passed to an agent is offloaded from the calling thread, freeing it up
for other important tasks.

This concurrency is the most important feature of agents. Their state management is convenient
and works very well in concert with the concurrency features, but concurrency is the primary motivation
behind choosing agents as opposed to one of Clojure’s other identity types.

Vars and Thread-Local State
In addition to refs, atoms, and agents, Clojure has a fourth way of “changing” state: thread local var
bindings. Since they are thread-local, they’re not useful for shared access to state from different threads.

Rather, vars are ordinary bindings (the same ones discussed in Chapter 1, those created by def)
which can be rebound on a per-thread basis and obey stack discipline. This allows for some level of
imperative-style coding. I=It’s the only way in Clojure to “change” a variable other than using a full-
blown reference type.

To establish a thread-local binding for a var, use the binding form. binding takes a vector of bindings
and one or more body expressions. The binding vector consists of a series of pairs of symbols and values.
Then, the body expressions are evaluated within an implicit do, using the provided values whenever their
matching symbols are encountered. binding may only be used on vars which are already defined by def
on the top level. For example, the following code:

user=> (def x 5)
#’user/x
user=> (def y 3)
#’user/y
user=> (binding [x 2 y 1] (+ x y))
3
user=> (+ x y)

8

Within the context of the binding expression, (+ x y) yields 3. Outside the binding expression, (+ x
y) uses the original values of the vars, yielding 8.

So far, binding might just look similar to let. The difference is, rather than establishing a local
symbol, it actually rebinds it for all uses, so long as it’s used at a lower position within the same call
stack. For example, consider the following REPL session:

CHAPTER 6 ̈ STATE MANAGEMENT

110

user=> (def x 5)
#’user/x
user=> (def y 3)
#’user/y
user=> (defn get-val [] (+ x y))
#’user/get-val
user=> (get-val)
8
user=> (binding [x 1 y 2] (get-val))

3

Binding actually reestablishes the values of x and y for all uses. When the get-val function is used
within the stack context of the binding form, it picks up on the thread-local bindings of x and y
established by binding and uses them.

Additionally, symbol bindings established by binding can be updated using the set! function,
similar to imperative variables in most other programming languages. The following example is lengthy,
but it demonstrates how independent code can update the same binding:

user=> (def x 5)
#'user/x
user=> (def y 3)
#'user/y
user=> (defn set-val [] (set! x 10))
#'user/set-val
user=> (defn get-val [] (+ x y))
#'user/get-val
 user=> (binding [x 1 y 2] (set-val) (get-val))

12

Notice how set-val was called first, and resets the value of x to 10, so that when get-val comes
along later, it uses the updated value. Within the binding form, all references to bound symbols will see
changes made by set!, just as if, for that limited context, they were ordinary, imperative, mutable
variables.

When to Use Thread-Local Vars

There are very few cases where it is appropriate to use thread-local state in Clojure. Extensive use of it
goes against the spirit of functional programming, and is it only provided as a concession to the very few
cases where it is necessary for performance or practicality.

Scenarios where thread-local vars are useful tend to fall into two categories:

• Algorithms where it is much more logical and convenient to keep track of some
state as a mutable variable. Examples include some parsers and state machines.
Usually, however, an equivalent, purely functional algorithm does exist, even if it’s
not apparent to a programmer from an imperative background.

• Places where the semantics truly indicate a thread-local, context-based value that
can be changed, such as a settings toggle. For example, many of Clojure’s runtime
settings are stored in var bindings, where they are easily accessible from all code
and can be set! to new values conveniently. One example is *out*, which points
to the standard output stream.

 CHAPTER 6 ̈ STATE MANAGEMENT

111

Keeping Track of Identities
There is more to managing state than just updating it, and so Clojure provides two very useful “hooks”
into its state management system, which make it easy to write code that keeps track of states and
identities.

Validators

Validators are functions that can be attached to any state type (refs, atoms, agents, and vars) and which
validate any update before it is committed as the new value of the identity. If a new value is not approved
by the validator function, the state of the identity is not changed.

To add a validator to an identity, use the set-validator! function. It takes two arguments: an
identity and a function. The function must not have side effects, must take a single argument, and must
return a boolean.

Then, whenever the state of the identity is about to be updated, the provided validator function will
be passed the new value of the identity. If it returns true, the identity is updated normally. If it returns
false or throws an exception, an exception is thrown from the identity update function.

For example, the following code sets a validator on a ref, ensuring that all values must be greater
than zero:

user=> (def my-ref (ref 5))
#'user/my-ref
user=> (set-validator! my-ref (fn [x] (< 0 x)))
nil
user=> (dosync (alter my-ref – 10))
#<CompilerException java.lang.IllegalStateException: Invalid Reference State>
user=> (dosync (alter my-ref – 10) (alter my-ref + 15))
10
user=> @my-ref

5

And on an agent:

user=> (def my-agent (agent 5))
#'user/my-agent
user=> (set-validator! my-agent (fn [x] (< 0 x)))
nil
user=> (send my-agent – 10)
#<Agent 5>
user=> (agent-errors my-agent)

(#<CompilerException java.lang.IllegalStateException: Invalid Reference State>)

Note that on agents, the error is trapped and logged using the agent error-handling system, rather
than being thrown immediately as it is with refs.

If the value of an identity is already invalid according to the given validator function when setting a
validator, an exception is thrown and the validator is not set:

user=> (def my-atom (atom -5))
#'user/my-atom

CHAPTER 6 ̈ STATE MANAGEMENT

112

user=> (set-validator! my-atom (fn [x] (< 0 x)))

 #<CompilerException java.lang.RuntimeException java.lang.IllegalStateException: Invalid

Reference State>

The current validator function for an identity may be retrieved using the get-validator function,
which takes a single identity as an argument:

user=> (def my-agent (agent 5))
#'user/my-agent
user=> (get-validator my-agent)

 #<user$eval__4868$fn__4870 user$eval__4868$fn_4870@1dc518b>

As can be seen, the string representation of a function isn’t very useful. However, since functions are
first-class entities in Clojure, you can use the returned function however you wish—use it as a validator
on another identity, call it with a value to see what it returns, or anything.

To remove a validator, just pass nil instead of a validator function to set-validator!

Watches

Watches are functions which are called whenever a state changes. They work on refs, atoms, agents, and
vars (although with vars, they are only called with root binding changes, not when updated with set!).

Unlike validators, they are called immediately after the state has changed (for agents, this is in the
same thread). Each identity may have multiple watches: each watch has an arbitrary key that can be
used to identify it later. Watches are useful for structuring program flow that logically depends on the
value of an identity—they easily provide a form of event-based or reactive programming.

To add a watch, use the add-watch function. It takes three arguments: an identity, a key, and a
function. The key may be any value, provided it is unique among an identity’s watchers.

The watch function itself takes four arguments: the key, the identity, the old state of the identity, and
the new state.

For example, the following code uses watches to print the old and new values of a ref whenever it is
updated:

user=> (defn my-watch [key identity old-val new-val]
 (println (str "Old: " old-val))
 (println (str "New: " new-val)))
#'user/my-watch
user=> (def my-ref (ref 5))
#'user/my-ref
user=> (add-watch my-ref "watch1" my-watch)
#<Ref 5>
user=> (dosync (alter my-ref inc))
Old: 5

 CHAPTER 6 ̈ STATE MANAGEMENT

113

New: 6

6

Note that if an identity is being updated in rapid succession, it may have been updated again by the
time the first watch function is called. This is why watch functions are passed the old and new value of
the identity: they reflect the state change from the update that actually triggered the watch.
Dereferencing the identity within the watch function may yield a different value than the new value
passed in if there are a lot of updates occurring.

 To remove a watch, use the remove-watch function. It is very simple: it just takes an identity and a
key, and removes watchers associated with that key from the identity.

user=> (remove-watch my-ref "watch1")

#<Ref 6>

Summary
Clojure’s state management systems provide an array of effective ways to manage state. They combine a
more sophisticated philosophical approach to state with state-of-the-art Software Transactional
Memory and agent-based systems to make state management clean and effective to use. Managing state
in Clojure is usually much less error prone than in other languages and works the same in single or
multithreaded programs. With four distinct tools state management strategies, there should always be
something that meets your needs:

• Use refs provide synchronous, coordinated updates, and allow direct access to the
STM system.

• Use atoms to manage synchronous, independent state (such as cached or
memorized values) with maximum efficiency.

• Use agents to manage asynchronous state as well as introduce concurrency into
your program.

• Use vars to maintain state within a stack discipline to efficiently simulate mutable
variables for algorithms that require it.

• Use validator functions to maintain data integrity.

• Use watches to trigger events dependent on an identity’s values.

C H A P T E R 7

 ̈ ̈ ̈

Namespaces and Libraries

Organizing Clojure Code
Namespaces are the means by which you divide your Clojure code into logical groups, similar to
packages in Java or modules in other languages. Almost every Clojure source file begins with a
namespace declaration using the ns macro. The following code is an example of a namespace
declaration:

(ns clojure.contrib.gen-html-docs
 (:require [clojure.contrib.duck-streams :as duck-streams])
 (:use (clojure.contrib seq-utils str-utils repl-utils def prxml))
 (:import (java.lang Exception)

 (java.util.regex Pattern)))

Fundamentally, a namespace is just a Clojure map. The keys of the map are Clojure symbols and
the values are either Clojure Vars or Java classes. The Clojure compiler uses that map to figure out the
meaning of each symbol in your source code. Special functions allow you to add, remove, or change
entries in the namespace map.

Namespace Basics
The ns macro has dozens of options for configuring a namespace, so before tackling it you should
understand the lower level functions on which it is based.

Switching Namespaces with in-ns

Whenever you are working at the Clojure REPL, the REPL prompt tells you that you are “in” a particular
namespace. Clojure always starts in the user namespace:

user=>

Any symbols you define will be created in the user namespace. You can switch to a different namespace
with the in-ns function:

user=> (in-ns 'greetings)
#<Namespace greetings>

greetings=>

115

CHAPTER 7 ̈ NAMESPACES AND LIBRARIES

in-ns takes a symbol argument, and switches to the namespace named by the symbol, creating it if
it does not already exist. Please notice in the example that the symbol greetings was quoted to prevent
Clojure from trying to evaluate it.

Referring to Other Namespaces

A newly-created namespace does not have any symbols in it, not even the core language functions. If
you try to call a built-in Clojure function, you will get an error:

greetings=> (println "Hello, World!")

java.lang.Exception: Unable to resolve symbol: println in this context

Clojure's built-in functions are defined in the namespace clojure.core, and you can refer to them
from your new namespace by qualifying the symbols with their namespace:

greetings=> (clojure.core/println "Hello, World!")
Hello, World!

nil

To avoid having to qualify all the symbols you use, you can refer another namespace with the refer
function, which is also defined in clojure.core:

greetings=> (clojure.core/refer 'clojure.core)

nil

Now you can call functions in clojure.core directly, without qualification:

greetings=> (println "Hello, World!")
Hello, World!

nil

refer takes a symbol argument and maps all the public symbols from that namespace into the
current namespace. (We will cover the difference between public and private symbols later in the
section “Public and Private Vars.”) The symbols are still mapped to the values in their original
namespace. By calling refer in the example, you created a namespace mapping from the symbol
greetings/println to the Var #'clojure.core/println.

refer takes additional options that specify filters for the symbols to be referred. The options take the
form of a keyword followed by a list or map of symbols. The :exclude option is followed by a (quoted) list
of symbols that should not be referred into the current namespace. For example, the following code:

(refer 'clojure.core :exclude '(map set))

This refers all the symbols in the clojure.core namespace, except map and set. You can then define your
own versions of map and set that do not clash with the original definitions in clojure.core.

The :only option is also followed by a list of symbols, but it specifies that only the symbols in the list
you specify should be referred into the current namespace. For example, the following code:

(refer 'clojure.core :only '(println prn))

This refers only the two symbols println and prn from clojure.core; other symbols in clojure.core
must still be namespace-qualified, like clojure.core/def.

116

 CHAPTER 7 ̈ NAMESPACES AND LIBRARIES

Lastly, refer allows you to rename some symbols when referring them, by including the :rename
keyword followed by a map from symbols in the original namespace to symbols in the current
namespace.

(refer 'clojure.core :rename {'map 'core-map, 'set 'core-set})

This refers all symbols from clojure.core, but makes the symbol clojure.core/map available in the
current namespace as core-map and clojure.core/set available as core-set. This might be useful if you
want to define your own version of a built-in function that calls the original version.

As an alternative to copying the mappings from one namespace, you can create a local alias to
another namespace, so you can refer to it by a shorter name. Namespace aliases are created with the
alias function:

(alias local-name namespace-name)

The arguments local-name and namespace-name are both (quoted) symbols. alias creates an alias in the
current namespace to the named namespace. After calling alias, you can reference symbols in the other
namespace using local-name, instead of the full namespace name. For example, the following code:

greetings> (alias 'set 'clojure.set)
nil
greetings> (set/union #{1 3 5} #{2 3 4})

#{1 2 3 4 5}

Loading Other Namespaces
refer and alias allow you to reference symbols in namespaces that already exist. But what about
namespaces defined in other files, including files that haven’t been loaded yet? Clojure provides a variety
of functions for loading code from files.

Loading from a File or Stream

The simplest load function is load-file:

(load-file name)

load-file takes one argument, a file name, and attempts to read and evaluate every Clojure form in the
file. The file name is given as a String, including any directories, and is interpreted in the context of the
current working directory (the directory in which you started Clojure). On a Unix-like system, it might
look like the following:

(load-file "path/to/file.clj")

On Windows, back-slashes must be escaped, because the file name is a String:

(load-file "C:\\Documents\\file.clj")

If you want to load code from some other source, such as a network connection, you can use the
load-reader function, which takes a java.io.Reader as its argument, and reads and evaluates code from
the Reader.

117

CHAPTER 7 ̈ NAMESPACES AND LIBRARIES

Loading from the Classpath

The Java Virtual Machine uses a special variable called the classpath, a list of directories from which to
load executable code. Clojure programs also use the classpath to search for source files.

The classpath is normally specified on the Java command line as a set of directories and JAR files.
The following example, for Unix-like systems, creates a classpath consisting of the Clojure JAR and the
/code/sources directory.

java -cp clojure.jar:/code/sources clojure.main

Java development environments and build-management tools usually have their own methods for
configuring the classpath; consult your tools' documentation for more information.

Namespace Names vs. File Names

Clojure namespaces follow similar naming conventions to Java packages: they are organized
hierarchically with parts separated by periods. A popular convention is to name your libraries using the
reversed form of an Internet domain name that you control. So if you work for www.example.com, your
namespaces might be named com.example.one, com.example.two, and so on.

When translating between namespace names and file names, periods become directory separators
and hyphens become underscores. So, on Unix-like systems, the Clojure namespace com.example.my-
cool-library would be defined in the file com/example/my_cool_library.clj. In order to load the
namespace, the directory containing com must be on the classpath.

Loading Resources from the Classpath

The load function takes any number of String arguments, each of which names a resource on the
classpath. A resource name is like a file name, but without the .clj extension. If the resource name
begins with a forward slash (/), it is interpreted as being in some directory on the classpath. For example,
the following code:

(load "/com/example/my_library")

This call will search each location on the classpath for the file com/example/my_library.clj. (It will also
search for the precompiled class file com/example/my_library.class. Compilation will be covered in
Chapter 10.)

If an argument to load does not begin with a slash, it is interpreted as being relative to the directory
of the current namespace.

greetings=> (load "hello")

This call to load, from within the greetings namespace, will search the classpath for the file
greetings/hello.clj.

Loading Namespaces from the Classpath

You will rarely use the load function in normal code. Instead, Clojure provides two higher level
functions, require and use, to load namespaces.

118

 CHAPTER 7 ̈ NAMESPACES AND LIBRARIES

The require function takes any number of arguments, each of which is a symbol, a vector libspec, a
prefix list, or a flag. Arguments are typically quoted to prevent evaluation. The simplest case, a symbol,
converts the symbol to a file name, searches the classpath for that file, loads it, and verifies that a
namespace with the given name was, in fact, created.

(require 'com.example.lib)

This loads the file com/example/lib.clj from the classpath. After loading the file, if the namespace
com.example.lib does not exist, require will throw an exception. If the namespace has already been
loaded, require will ignore it.

A libspec argument to require allows you to specify options for loading the namespace. It takes the
form of a vector, starting with a symbol, followed by keyword options. The only option it accepts (for
now) is :as, which creates a local alias to the namespace.

(require '[com.example.lib :as lib])

This loads the namespace com.example.lib and aliases it as lib in the current namespace.
Often several namespaces share a common prefix. In that case, you can use prefix lists to load

several namespaces. A prefix list is a list starting with the symbol shared by all the namespaces, followed
by the remaining parts of each namespace name. For example, instead of writing:

(require 'com.example.one 'com.example.two 'com.example.three)

You can write this equivalent:

(require '(com.example one two three))

Prefix lists and libspecs can be combined, as in this example:

(require '(com.example one [two :as t]))

This loads the namespaces com.example.one and com.example.two, and creates an alias t for
com.example.two.

Lastly, the require function accepts any number of flags, given as keywords anywhere in its
arguments. The :reload flag causes require to load all namespaces in the arguments, even if they have
already been loaded. For example, the following code:

(require 'com.example.one 'com.example.two :reload)

Another flag, :reload-all, will reload the listed namespaces and all dependent namespaces
require'd by those namespaces. The :reload and :reload-all flags are useful when you are
experimenting at the REPL and want to load changes you have made in your source files.

The :verbose flag prints debugging information about the lower-level function calls being made by
require.

user=> (require '(clojure zip [set :as s]) :verbose)
(clojure.core/load "/clojure/zip")
(clojure.core/load "/clojure/set")
(clojure.core/in-ns 'user)
(clojure.core/alias 's 'clojure.set)

nil

119

CHAPTER 7 ̈ NAMESPACES AND LIBRARIES

Loading and Referring Namespaces in One Step

Frequently, you may want to require a namespace and also refer certain symbols in it. The use function
makes this a one-step operation. Calling use is equivalent to calling require and then refer. use accepts
the :reload, :reload-all, and :verbose flags of require; and also the :exclude, :only, and :rename
options of refer, grouped in a vector with the namespace they affect. For example, see the following line
of code:

(use '[com.example.library :only (a b c)] :reload-all :verbose)

This (re)loads the namespace com.example.library and refers the three symbols a, b, and c into the
current namespace. Note that you do not need to quote the list (a b c) because the entire vector is
already quoted.

̈ Caution Except when experimenting at the REPL, it is almost always a bad idea to use a namespace without

limiting the symbols it refers with :only. Calling use without :only makes it impossible for readers of your code

to know where a particular symbol comes from and can also lead to unexpected name clashes if the use'd

namespace changes.

Importing Java Classes

The last namespace function deals with Java classes. You can always refer to a Java class by its fully-
qualified name, such as java.util.Date. To refer to a class without its package, you can import it.

user=> (import 'java.util.Date) nil
user=> (new Date)

#<Date Fri Oct 23 16:31:28 EDT 2009>

In Clojure 1.0, import is a function, so you must quote its arguments, as in the example. Starting
with Clojure 1.1, import is a macro, and its arguments do not need to be quoted. import also accepts
prefix lists similar to require and use. The prefix must be a complete Java package name; the class name
may not contain periods.

(import '(java.util.regex Pattern Matcher))

As a special case, nested Java classes (sometimes called “inner classes”) must be imported using
their binary class name, which the JVM uses internally. The binary class name of an inner class consists
of the outer class name, followed by a $ sign, followed by the inner class name. For example, the binary
name of a class Wheel nested inside a class Truck is Truck$Wheel.

In Clojure, a nested Java class cannot be named without its enclosing class. For example, to import
the nested class javax.swing.Box.Filler, you must do this:

(import '(javax.swing Box$Filler))

After that import, you can refer to the class as Box$Filler.

120

 CHAPTER 7 ̈ NAMESPACES AND LIBRARIES

Bringing It All Together: Namespace Declarations
When writing normal Clojure code, you will not call the in-ns, refer, alias, load, require, use, and
import functions directly. Instead, you will typically start your Clojure source file with a namespace
declaration using the ns macro, like the example at the start of this chapter.

(ns name & references)

The ns macro takes a symbol as its first argument; it creates a new namespace with that name and sets it
to be the current namespace. Because ns is a macro that does not evaluate its arguments, the name does
not need to be quoted.

The remaining arguments to the ns macro take the same form as the refer, load, require, use, and
import functions, with two differences:

• Arguments are never quoted.

• The function name is given as a keyword.

Here's an example.

(ns com.example.library
 (:require [clojure.contrib.sql :as sql])
 (:use (com.example one two))
 (:import (java.util Date Calendar)

 (java.io File FileInputStream)))

This creates a new namespace, com.example.library, and automatically refers the clojure.core
namespace. It loads the clojure.contrib.sql namespace and aliases it as sql. It loads the namespaces
com.example.one and com.example.two and refers all the symbols from them into the current namespace.
Finally, it imports the Java classes Date, Calendar, File, and FileInputStream.

Unlike the in-ns function, the ns macro automatically refers the clojure.core namespace, as
previously mentioned. If you want to control which core symbols get referred in your namespace, use
the :refer-clojure argument to ns, like this:

(ns com.example.library

 (:refer-clojure :exclude (map set)))

The :refer-clojure form takes the same arguments that you would use with (refer 'clojure.core). If
you don't want any symbols referred from clojure.core, you can pass an empty list to :only, like
(:refer-clojure :only ()).

Symbols and Namespaces
As previously mentioned, namespaces are essentially maps from symbols to Vars, but they have a few
unique properties. Symbols can have properties that tie them to specific namespaces.

121

CHAPTER 7 ̈ NAMESPACES AND LIBRARIES

Namespace Metadata

Like most Clojure objects, namespaces can have metadata (see Chapter 8) attached to them. You can
add metadata to the namespace by placing read-time metadata on the symbol in the ns macro, like this:

(ns #^{:doc "This is my great library."
 :author "Mr. Quux <quux@example.com>"

 com.example.my-great-library)

While Clojure does not specify any “official” metadata keys for namespaces (like :tag and :arglists
for functions) many Clojure library developers have adopted the convention of using :doc metadata to
describe the general purpose of a namespace and :author metadata for the author's name and e-mail
address.

Forward Declarations

The Clojure compiler requires that symbols be defined before they are used. Usually this leads to
organizing your source files with simple, low-level functions at the top and more complex functions at
the bottom. But sometimes, you need to use a symbol before it can be defined. To prevent the compiler
from throwing an Exception, you must use a forward declaration.

(declare & symbols)

A forward declaration is created with the declare macro, which simply tells the compiler, "This symbol
exists, it will be defined later." Here is a contrived, and very inefficient, example:

(declare is-even? is-odd?)

(defn is-even? [n]
 (if (= n 2) true
 (is-odd? (dec n))))

(defn is-odd? [n]
 (if (= n 3) true
 (is-even? (dec n))))

Namespace-Qualified Symbols and Keywords

As you saw earlier, symbols can be qualified with a namespace. The functions name and namespace return
the strings representing each part of the symbol:

user=> (name 'com.example/thing)
"thing"
user=> (namespace 'com.example/thing)

"com.example"

Notice that the symbol is quoted to prevent Clojure from trying to resolve it as a class or Var.
The namespace function returns nil for unqualified symbols, which have no namespace:

122

 CHAPTER 7 ̈ NAMESPACES AND LIBRARIES

user=> (namespace 'stuff)

nil

Keywords, too, can be namespace-qualified; the name and namespace functions work as on symbols:

user=> (name :com.example/mykey)
"mykey"
user=> (namespace :com.example/mykey)
"com.example"
user=> (namespace :unqualified)

nil

As a syntactic convenience, you can create keywords in the current namespace by preceding their
names with two colons instead of one. In the "user" namespace, the keyword ::thing expands to
:user/thing.

user=> (namespace ::keyword)

"user"

Although not explicitly for this purpose, the backquote ` reader macro can be used to create
qualified symbols in the current namespace:

user=> `sym

user/sym

Constructing Symbols and Keywords

The name and namespace functions convert from symbols or keywords to strings. The symbol and keyword
functions go the other way: given Strings for the name and, optionally, a namespace, they construct a
symbol or keyword.

user=> (symbol "hello")
hello
user=> (symbol "com.example" "hello")
com.example/hello
user=> (keyword "thing")
:thing
user=> (keyword "user" "goodbye")

:user/goodbye

Note that the name given to the keyword function does not include the leading colon.

Public and Private Vars

By default, all definitions in a namespace are public, meaning they can be referenced from other
namespaces and copied with refer or use. But many namespaces can be divided into two parts: one set
of “internal” functions that should never be called from any other namespace and another set of

123

CHAPTER 7 ̈ NAMESPACES AND LIBRARIES

“public” functions meant for use by other namespaces. These correspond, loosely, to the private and
public methods of object-oriented languages like Java.

Private Vars in Clojure will never be copied by refer or use, and they cannot be referenced with a
namespace-qualified symbol. In effect, they can only be used in the namespace in which they were
defined.

There are two ways to create a private Var. The first is the defn- macro, which works exactly like defn
but creates a private function definition. The second, which works for any definition, is to add :private
metadata to the symbol you are defining.

(def #^{:private true} *my-private-value* 123)

Note that private Vars are never truly hidden; any code can get the value of the Var with
(deref (var namespace/name)). But private Vars prevent you from inadvertently calling a function that
you did not mean to be used by other parts of your application.

Advanced Namespace Operations
Unlike Java packages, which are simply a naming device, Clojure namespaces are first-class objects, with
dedicated functions to query and manipulate them.

Querying Namespaces

The special Var *ns* is always bound to the current namespace. It is changed with in-ns.
The function all-ns takes no arguments and returns a sequence of all namespaces currently defined.

̈ Note The set of namespaces is global; you cannot have multiple “instances” of Clojure loading different

namespaces in the same JVM. It doesn't really make sense to talk about an “instance” of Clojure, since Clojure is

just a compiler, not an interpreter like Jython or JRuby. You can create independent execution contexts using Java

classloaders, an advanced Java topic outside the scope of this book.

Two functions help you get from a symbol naming a namespace to the namespace object itself. The
find-ns function takes a symbol argument and returns the namespace with that name; or nil if no such
namespace exists.

Often, you don’t care if you’re dealing with a namespace object directly or just the symbol naming
it. For this purpose, a function called the-ns will accept either a namespace object, in which case it just
returns the namespace; or a symbol, in which case it calls find-ns. Unlike find-ns, the-ns throws an
Exception if the namespace does not exist. Most of the functions in this section call the-ns on their
argument, so they may be called with either a namespace object (such as *ns*) or a quoted symbol.

The ns-name function returns the name of a namespace as a symbol.
The ns-aliases function returns a map, from symbols to namespaces, representing all the

namespace aliases defined in a namespace.
The ns-map function returns a map, from symbols to objects (Vars or classes), representing all the

mappings in a namespace. Usually, this is more information than you want, so Clojure provides several
auxiliary functions that return a subset of the mappings for a namespace. ns-publics returns mappings

124

 CHAPTER 7 ̈ NAMESPACES AND LIBRARIES

for all public Vars; ns-interns returns mappings for all Vars (both public and private); ns-refers returns
mappings for all symbols referred from other namespaces; and ns-imports returns mappings for all Java
classes.

For example, to get a list of all the public symbols in the clojure.core namespace, you can run:

(keys (ns-publics 'clojure.core))

Finally, you may want to find out what a symbol will resolve to when it is encountered in a particular
context. The ns-resolve function takes a namespace and a symbol, and returns the Var or class to which
that symbol is mapped in the namespace. For example, clojure.core imports the java.math.BigDecimal
class, which you can discover by calling:

user> (ns-resolve 'clojure.core 'BigDecimal)

java.math.BigDecimal

As a shortcut, the resolve function is equivalent to ns-resolve for the current namespace.

Manipulating Namespaces

The in-ns function and ns macro both create a namespace and make it the current namespace.
Likewise, def and its relatives all operate in the current namespace. There are some special cases, like
code generation, where you want to create a namespace and define things in it without switching to it.
You may be tempted to write something like this:

;; Bad code!
(let [original (ns-name *ns*)]
 (ns other)
 (defn f [] (println "Function f")

 (in-ns original)))

That won't work, because Clojure reads the symbol f in the current namespace before evaluating the
ns form. You'll end up with f defined in the current namespace, not the other namespace.

Instead, you can use the create-ns function, which takes a symbol argument and returns a new
namespace with that name (or returns an existing namespace with that name). Then you can use the
intern function to define Vars in that namespace. Here's a version of the previous example that actually
works:

(let [other-ns (create-ns 'other)]
 (intern other-ns 'f

 (fn [] (println "Function f"))))

The act of creating a Var and mapping it to a symbol in a namespace is called interning the Var, and
that's exactly what the intern function does.

(intern namespace symbol value)

The value is optional; if it is omitted, the Var is created with no root value, similar to a forward
declaration. The symbol must be a bare symbol, that is, without a namespace-qualifying prefix. The
namespace argument may be either a symbol or a namespace.

The ns-unmap function is the opposite of intern; it removes a mapping from a namespace. For
example, every Clojure namespace, regardless of how it is created, starts with mappings for all the

125

CHAPTER 7 ̈ NAMESPACES AND LIBRARIES

126

classes in the java.lang package. If you wanted a completely empty namespace, you could create one
like this:

(let [empty-ns (create-ns 'empty)]
 (doseq [sym (keys (ns-map empty-ns))]
 (ns-unmap empty-ns sym))

 empty-ns)

Finally, the remove-ns function will delete a namespace entirely, including all the Vars interned in it.
Note that code in other namespaces may still hold references to those Vars in closures, but the Vars
themselves are cleared, so any attempt to use them will throw an “unbound Var” Exception.

Namespaces As References
As I said at the beginning of the chapter, a namespace is basically a map from symbols to Vars or classes.
It would be more accurate to say it is a reference to a map, because namespaces are mutable. All
operations on namespaces are atomic, like Clojure Atoms. For example, if you redefine an existing
function with defn, Clojure guarantees that the old and new definitions will never “overlap.”

However, Clojure does not provide a way to coordinate namespace operations the way you can with
Refs. If you redefine several functions, Clojure cannot guarantee that the “new” functions will all be
updated at the same time. There may be a short time in which both old and new definitions are present.

In general, the problem of “hot-swapping” entire modules in a running program is very difficult,
and requires support at the deepest levels of the language. Erlang, for example, is designed to support
hot-swapping of modules. Java does not have built-in support for hot-swapping, although some Java
application servers attempt to provide it.

Summary
There's a lot you can do with namespaces, and they may seem overwhelming at first. But in normal, day-
to-day coding you only need a few features and conventions.

First, start every source file with a namespace declaration using ns, using :import and :use
expressions to describe the classes and namespaces it depends on. Always use the :only option of :use
to make it clear which symbols you need from the other namespace. Here is a complete example:

(ns com.example.apps.awesome
 (:use [clojure.set :only (union intersection)]
 [com.example.library :only (foo bar baz)]
 [com.example.logger :only (log)])
 (:import (java.io File InputStream OutputStream)

 (java.util Date)))

Don’t be afraid to reuse good names just because they are part of clojure.core. Add the :refer-
clojure expression to ns if needed.

Structure your source files to avoid the need for forward declarations. This usually means placing
“primitive” definitions near the top and the “composite” definitions that depend on them toward the
bottom.

C H A P T E R 8

 ̈ ̈ ̈

Metadata

Describing Your Code, in Code

Programmers often talk about metadata, or data about data. The definition of metadata varies in
different contexts. Clojure provides mechanisms to attach metadata to objects, but it has a very specific
definition: metadata is a map of data attached to an object that does not affect the value of the object.

Two objects with the same value and different metadata are considered equal (and have the same
hash code). However, metadata has the same immutable semantics as Clojure's other data structures;
modifying an object's metadata yields a new object, with the same value (and the same hash code) as the
original object.

When updating a value, some operations preserve metadata and some do not, which this chapter
discusses.

Reading and Writing Metadata
By default, metadata is not printed at the REPL. You can change this by setting *print-meta* to true, as
we did for all the examples in this chapter.

(set! *print-meta* true)

You can attach metadata to a symbol or any of Clojure's built-in data structures with the with-meta
function, and retrieve it using the meta function:

(with-meta obj meta-map)

(meta obj)

with-meta returns a new object, with the same value as obj, that has meta-map as its metadata. meta
returns the metadata map of obj. For example, the following code:

user=> (with-meta [1 2] {:about "A vector"})

#^{:about "A vector"} [1 2]

You can also modify the metadata map of an object with the vary-meta function:

(vary-meta obj function & args)

vary-meta takes a function and applies it to the current metadata map of the object plus any
arguments. It returns a new object with the updated metadata. For example, the following code:

127

CHAPTER 8 ̈ METADATA

user=> (def x (with-meta [3 4] {:help "Small vector"}))
user=> x
#^{:help "Small vector"} [3 4]
user=> (vary-meta x assoc :help "Tiny vector")

#^{:help "Tiny vector"} [3 4]

Notice that two objects with the same value and different metadata are equal (tested with Clojure's =
function), but they are not the same object in memory (tested with Clojure's identical? function):

user=> (def v [1 2 3])
user=> (= v (with-meta v {:x 1}))
true
user=> (identical? v (with-meta v {:x 1}))

false

Also, note that you can only add metadata to Clojure-specific types such as lists, vectors, maps, and
symbols (and functions in Clojure 1.2). Java classes, such as String and Number, do not support
metadata.

1

Metadata-Preserving Operations
Some operations that “modify” an immutable data structure preserve its metadata, others do not. For
example, conj on a list preserves its metadata, but cons does not:

user=> (def x (with-meta (list 1 2) {:m 1}))
user=> x
#^{:m 1} (1 2)
user=> (conj x 3)
#^{:m 1} (3 1 2)
user=> (cons 3 x)

(3 1 2) ;; no metadata!

In general, collection functions (conj, assoc, dissoc, and so on) are supposed to preserve metadata,
while sequence functions (cons, take, drop, etc.) are not. But there are exceptions. In Clojure 1.0, conj on
a vector does not preserve metadata (this is a bug) but in Clojure 1.1 it does. The moral is this: be careful
with operations on data structures that have metadata, and don't assume that metadata will be
preserved. Always test first.

1
 Why not? Conceivably, metadata could be stored in a global hash table, allowing metadata to be

attached to arbitrary Java objects. However, this design has serious drawbacks with regard to
performance and memory usage, so it is not supported.

128

 CHAPTER 8 ̈ METADATA

̈ Caution Metadata is quite an unusual feature of Clojure; few programming languages have anything like it.

Whenever you consider using metadata, think very carefully about its semantics: metadata is not part of the value

of an object. In general, any data that is relevant to users of your application should not be considered metadata.

Metadata is information that only you, the programmer, care about.

Read-Time Metadata
The Clojure reader (described in Chapter 2) allows you to attach metadata to forms as they are read
using the #^ reader macro. #^ is followed by a map of metadata, which will be attached to the next form
read. When *print-meta* is true, Clojure prints metadata using the same syntax. For example, you can
attach metadata to a literal vector like this:

user=> #^{:m 1} [1 2]

#^{:m 1} [1 2]

However, be very careful: #^ is not a substitute for with-meta! #^ attaches metadata to literal forms.
Consider the following:

user=> #^{:m 1} (list 1 2)

(1 2) ;; no metadata!

In this example, the #^ reader macro attaches the metadata map {:m 1} to the literal form (list 1 2).
When that form is evaluated, it returns the list (1 2) with no metadata.

The #^ reader macro is normally used to attach metadata to symbols, not data structures. Special
forms such as def can make use of this read-time metadata (see the following section).

̈ Note Clojure 1.0 provided the ^ reader macro as a shortcut for meta. However, this shortcut was not very

useful and is deprecated in Clojure 1.1. Clojure 1.2 uses ^ in place of #^ for setting read-time metadata.

Metadata on Vars
The most common use of metadata in Clojure is to attach descriptive information to Vars. The def, defn,
and defmacro forms attach some default metadata to every Var. For example, the following code:

user=> (meta (var or))
{:ns #<Namespace clojure.core>
 :name or
 :file "clojure/core.clj"
 :line 504
 :doc "Evaluates exprs one at a time..."
 :arglists ([] [x] [x & next])

 :macro true}

129

CHAPTER 8 ̈ METADATA

In addition, def and its kin will copy metadata from the symbol used to name the Var onto the Var
itself. Combined with the #^ reader macro, this provides a convenient way to attach metadata to Vars
when they are created:

user=> (def #^{:doc "My cool thing"} *thing*)
#'user/*thing*
user=> (:doc (meta (var *thing*)))

"My cool thing"

Clojure's doc macro uses a Var's :doc and :arglists metadata to print a description of it:

user=> (doc *thing*)

user/*thing*
nil

 My cool thing

The documentation string in the defn and defmacro forms is automatically set as :doc metadata on
the Var being defined. defn and defmacro also accept an optional metadata map between the
documentation string and the parameter list:

(defn name doc-string meta-map [params] ...)

(defmacro name doc-string meta-map [params] ...)

Clojure uses several standard metadata keys for global Vars. These are described in Table 8-1. If you
are adding application-specific metadata, it is recommended that you use namespace-qualified
keywords, such as :my-app/meta, as keys to avoid potential name clashes.

Table 8-1. Standard Var Metadata

Metadata Key Value Type

:name The Var's name Symbol

:ns The Var's namespace Namespace

:file File from which it was loaded String

:line Line on which it was defined Integer

:doc Documentation string String

:arglists Function/macro arguments List of Vectors of Symbols

:macro True for macros; false by default Boolean

:private True for private Vars, false by default Boolean

:tag Type of the value or function return value Class or Symbol

130

 CHAPTER 8 ̈ METADATA

Type Tags

The :tag metadata key is used to attach type “hints” to symbols and Vars. This helps the Clojure
compiler optimize the bytecode it generates. Type hints are described in detail in Chapter 15.

Private Vars

As described in Chapter 7, Vars with :private true in their metadata are private. Private Vars cannot be
referred from namespaces other than the one in which they were defined. The defn- macro creates
private functions; to create private macros or other Vars, add metadata to the Var like this:

(def #^{:private true} *my-private-var*) ;; for Vars

(defmacro my-private-macro {:private true} [args] ...) ;; for macros

Metadata on Reference Types
Clojure's mutable reference types—Var, Ref, Agent, Atom, and also Namespaces—all support metadata.
You can change the metadata map for any reference type with the alter-meta! function:

(alter-meta! iref f & args)

alter-meta! works like alter does for Refs; it calls function f on the current metadata map of iref, with
addition arguments args. For example, you can add metadata to an existing Var like this:

user=> (alter-meta! (var for) assoc :note "Not a loop!")
{:note "Not a loop!", :macro true, ...
user=> (:note (meta (var for)))

"Not a loop!"

alter-meta! is an atomic operation, but it does not require a transaction like alter.
The ref, agent, and atom functions accept a :meta option specifying an initial metadata map. For

example, the following code:

user=> (def r (ref nil :meta {:about "This is my ref"}))
user=> (meta r)

{:about "This is my ref"}

Summary
Metadata is an unusual feature, not something you will make frequent use of in day-to-day
programming. Many things that might be reasonably described as "metadata" within in application,
such as timestamps or user names, turn out to be a bad fit for Clojure metadata. Metadata is most useful
for metaprogramming, where it can describe one piece of code for use by another piece of code. In that
sense, it fills a role similar to Java's annotations. The full capabilities of metadata are still being explored
by Clojure programmers. Metadata already plays a role in the Clojure compiler (for type hinting) and
that role will likely be expanded in future Clojure releases.

131

C H A P T E R 9

 ̈ ̈ ̈

Multimethods and Hierarchies

Runtime Polymorphism Without Classes

Clojure is not an object-oriented language in the traditional sense of classes and methods, although it is
built on Java's object-oriented foundation.

Most mainstream object-oriented languages, such as Java and C++, use classes to define a tree-like
hierarchy of types and to provide implementations of the methods supported by those types.

Clojure separates type hierarchies from method implementations, which greatly simplifies thorny
issues such as multiple inheritance. In addition, it permits you to define multiple, independent
hierarchies over the same types. This makes it possible to define IS-A relationships that more closely
model the real world.

Multimethods
Clojure multimethods provide runtime polymorphic dispatch. That is, they permit you to define a
function with multiple implementations. At runtime, the implementation that executes is determined
based on the arguments to the function.

Most object-oriented languages have single-argument, type-based dispatch, meaning that the
method to be run is determined solely by the type, or class, of the first argument. The method is called
“on” that first argument. Both Java and C++ place that first argument before the method name to denote
its special significance.

Clojure multimethods are more flexible. They support multiple dispatch, meaning the
implementation can be determined by any and all arguments to the function. Also, the dispatch can be
based on any feature of the arguments, not just type.

Multimethods are created with defmulti and implemented with defmethod.

(defmulti name dispatch-fn)

(defmethod multifn dispatch-value [args...] & body)

You call a multimethod like an ordinary function. When you call it, the dispatch function is
immediately called with the same arguments that you gave to the multimethod. The value returned by
the dispatch function is called the dispatch value. Clojure then searches for a method (defined with
defmethod) with a matching dispatch value.

Suppose you are writing a fantasy role-playing game populated with different species of creatures:
humans, elves, orcs, and so on. Each creature could be represented by a map, like the following:

(def a {:name "Arthur", :species ::human, :strength 8})
(def b {:name "Balfor", :species ::elf, :strength 7})

133

CHAPTER 9 ̈ MULTIMETHODS AND HIERARCHIES

(def c {:name "Calis", :species ::elf, :strength 5})

(def d {:name "Drung", :species ::orc, :strength 6})

I used namespace-qualified keywords for species (::human instead of :human) for reasons that will be
important later. (See Chapter 7 for an explanation of qualified keywords.)

Now you can define a multimethod that dispatches on the particular species of creature. For
example, you can give each species a different style of movement:

(defmulti move :species)

(defmethod move ::elf [creature]
 (str (:name creature) " runs swiftly."))

(defmethod move ::human [creature]
 (str (:name creature) " walks steadily."))

(defmethod move ::orc [creature]

 (str (:name creature) " stomps heavily."))

When you call move, the appropriate method is invoked:

user=> (move a)
"Arthur walks steadily."
user=> (move b)
"Balfor runs swiftly."
user=> (move c)

"Calis runs swiftly."

What's happening here? When you call (move a), Clojure first calls the dispatch function for the move
multimethod, which you have defined to be the keyword :species. Remember that a keyword, called on
a map, returns the value of that key in the map. So (move a) calls (:species a), which returns ::human.
Clojure then searches for a method of move with the dispatch value ::human, and invokes that method.

The same behavior could be implemented with a conditional. The advantage of the multimethod is
that you can add new methods at any time. If you were to add a new species of creature, you could
simply define another move method without changing any existing code.

The dispatch function doesn't have to be a simple keyword; it can be any arbitrary function. For
example, you could use a dispatch function that categorizes creatures based on their strength:

(defmulti attack (fn [creature]
 (if (> (:strength creature) 5)
 :strong
 :weak)))

(defmethod attack :strong [creature]
 (str (:name creature) " attacks mightily."))

(defmethod attack :weak [creature]

 (str (:name creature) " attacks feebly."))

When you call the attack multimethod, it first calls the anonymous fn, which returns either :strong
or :weak. That keyword (the dispatch value) determines which attack method gets called:

134

 CHAPTER 9 ̈ MULTIMETHODS AND HIERARCHIES

user=> (attack c)
"Calis attacks feebly."
user=> (attack d)

"Drung attacks mightily."

Multiple Dispatch

As I said at the beginning of this chapter, multimethods support dispatching on multiple arguments. To
do this, the dispatch function returns a vector. For example, in this game, you can define a multimethod
that describes how two different creatures react when they meet. Let's say elves and orcs are enemies,
but elves are friendly to one another:

(defmulti encounter (fn [x y]
 [(:species x) (:species y)]))
(defmethod encounter [::elf ::orc] [elf orc]
 (str "Brave elf " (:name elf)
 " attacks evil orc " (:name orc)))
(defmethod encounter [::orc ::elf] [orc elf]
 (str "Evil orc " (:name orc)
 " attacks innocent elf " (:name elf)))
(defmethod encounter [::elf ::elf] [orc1 orc2]
 (str "Two elves, " (:name orc1)
 " and " (:name orc2)

 ", greet each other."))

Notice that the the method arguments do not have to have the same names as the multimethod's
arguments, but the dispatch function and the methods must all accept the same number of arguments.

Now you can call the encounter multimethod on two creatures and see what happens:

user=> (encounter b c)
"Two elves, Balfor and Calis, greet each other."
user=> (encounter d b)

"Evil orc Drung attacks innocent elf Balfor"

Default Dispatch Values

Notice that you haven't defined encounter methods for all possible combinations of creatures. If you try
to call encounter on an undefined combination, you get an error:

user=> (encounter a c)
java.lang.IllegalArgumentException:
No method in multimethod 'encounter'

for dispatch value: [:user/human :user/elf]

You could keep defining methods for each possible combination, but instead you can provide a
default method implementation, which uses the keyword :default as the dispatch value.

135

CHAPTER 9 ̈ MULTIMETHODS AND HIERARCHIES

(defmethod encounter :default [x y]
 (str (:name x) " and " (:name y)

 " ignore each other."))

The default method will be called when no other method matches:

user=> (encounter a c)

"Arthur and Calis ignore each other."

You can specify an alternate default dispatch value by adding the :default option to defmulti, like
this:

(defmulti talk :species :default "other")
(defmethod talk ::orc [creature]
 (str (:name creature) " grunts."))
(defmethod talk "other" [creature]

 (str (:name creature) " speaks."))

Hierarchies
In most object-oriented languages, type hierarchies are implicitly defined by the inheritance
relationships of classes and subclasses. Since classes also define method implementations, the
relationships can get tricky rather quickly, especially in languages that permit multiple inheritance, such
as C++. Java avoids that problem by disallowing multiple inheritance, but that in turn makes it harder to
model some real-world problems.

In Clojure, type hierarchies are completely independent from method implementations, so they are
more flexible than class-based inheritance. They can support almost any combination of relationships,
including multiple inheritance and multiple roots.

Clojure defines one “global” hierarchy, which we will describe first. You can also create independent
hierarchies, which will be covered at the end of this section.

(derive child parent)

derive creates an IS-A relationship between child and parent. The child and parent are referred to
as tags, because they are used to identify a type or category. Tags may be either keywords or symbols,
and (in the global hierarchy) must be namespace-qualified (see Chapter 7).

Continuing with your fantasy game, you can define “types” of creatures that share certain attributes.
For example, you could say that humans and elves are “good” whereas orcs are “evil”:

user=> (derive ::human ::good)
user=> (derive ::elf ::good)

user=> (derive ::orc ::evil)

You might further say that elves and orcs are “magical” creatures:

user=> (derive ::elf ::magical)

user=> (derive ::orc ::magical)

Just to make things interesting, let's add a special kind of human, a “hero”:

136

 CHAPTER 9 ̈ MULTIMETHODS AND HIERARCHIES

user=> (derive ::hero ::human)

We have created the graph of relationships shown in Figure 9-1.

Figure 9-1. Example hierarchy with arrows pointing from children to parents

Querying Hierarchies

Once you have defined these relationships, you can query them with the isa? function:

(isa? child parent)

isa? returns true if the child is derived (directly or indirectly) from the parent. For example, the following
code:

user=> (isa? ::orc ::good)
false
user=> (isa? ::hero ::good)
true
user=> (isa? ::hero ::magical)

false

isa? also returns true if the parent and child are the same (as defined by Clojure's = function):

user=> (isa? ::human ::human)

true

Hierarchies with Multimethods
When a multimethod is searching for the correct method to invoke, it uses the isa? function to compare
dispatch values. This means that multimethods can dispatch not only on explicit types, but on derived
types as well. Here's a multimethod that only works on “magical” creatures:

(defmulti cast-spell :species)

(defmethod cast-spell ::magical [creature]
 (str (:name creature) " casts a spell."))

137

CHAPTER 9 ̈ MULTIMETHODS AND HIERARCHIES

(defmethod cast-spell :default [creature]
 (str "No, " (:name creature) " is not magical!"))

user=> (cast-spell c)
"Calis casts a spell."
user=> (cast-spell a)

"No, Arthur is not magical!"

When the dispatch value is a vector, the multimethod compares each vector element, from left to
right, using isa?. This combines multiple-argument dispatch with hierarchies. For example, you could
redefine your encounter multimethod based on “good” and “evil” creatures.

(defmulti encounter (fn [x y]
 [(:species x) (:species y)]))

(defmethod encounter [::good ::good] [x y]
 (str (:name x) " and " (:name y) " say hello."))

(defmethod encounter [::good ::evil] [x y]
 (str (:name x) " is attacked by " (:name y)))

(defmethod encounter [::evil ::good] [x y]
 (str (:name x) " attacks " (:name y)))

(defmethod encounter :default [x y]
 (str (:name x) " and " (:name y)
 " ignore one another."))

user=> (encounter c a)
"Calis and Arthur say hello."
user=> (encounter a d)

"Arthur is attacked by Drung"

Hierarchies with Java Classes

Clojure's hierarchies can integrate with and extend Java's class hierarchy. In addition to symbols and
keywords, the child argument to derive can also be a Java class. There aren't really any classes in the JDK
that fit into your fantasy world, but you could make the (plausible) assertion that the Java Date class is
evil:

user=> (derive java.util.Date ::evil)

The isa? function understands both hierarchies and Java class relationships:

user=> (isa? java.util.Date ::evil)
true
user=> (isa? Float Number)

true

138

 CHAPTER 9 ̈ MULTIMETHODS AND HIERARCHIES

As a result, you can define multimethods that dispatch on class, just like Java methods. This
example, the invert multimethod, is defined to work on both Numbers (by negating them) and Strings
(by reversing them):

(defmulti invert class)
(defmethod invert Number [x]
 (- x))
(defmethod invert String [x]
 (apply str (reverse x)))
user=> (invert 3.14)
-3.14
user=> (invert "hello")

"olleh"

More Hierarchy Queries

Three functions provide additional information about hierarchies.

(parents tag)
(ancestors tag)

(descendants tag)

All three return sets. parents returns the immediate parents of tag, ancestors returns all immediate and
indirect parents. descendants returns all immediate and indirect children of tag.

parents and ancestors work on Java classes; descendants does not (this is a limitation of the Java
type system).

user=> (parents ::orc)
#{:user/magical :user/evil}
user=> (descendants ::good)
#{:user/elf :user/hero :user/human}
user=> (parents ::hero)
#{:user/human}
user=> (ancestors ::hero)
#{:user/good :user/human}
user=> (parents java.util.Date)
#{java.lang.Object java.lang.Cloneable
 java.io.Serializable java.lang.Comparable

 :user/evil}

Note that the parents of java.util.Date include both the relationships defined by the Java class hierarchy
and those you created with derive.

Resolving Conflicts

Since Clojure's hierarchies permit multiple inheritance, situations may arise in which there is more than
one valid choice for a multimethod. Clojure does not know which one to choose, so it throws an
exception.

139

CHAPTER 9 ̈ MULTIMETHODS AND HIERARCHIES

As an example, consider a multimethod in your fantasy game that has dispatch values for both
::good and ::magical creatures:

(defmulti slay :species)

(defmethod slay ::good [creature]
 (str "Oh no! A good creature was slain!"))

(defmethod slay ::magical [creature]

 (str "A magical creature was slain!"))

If you slay a human or an orc, you know what happens:

user=> (slay a) ;; human
"Oh no! A good creature was slain!"
user=> (slay d) ;; orc

"A magical creature was slain!"

But what happens if you slay an elf?

user=> (slay b)
java.lang.IllegalArgumentException:
Multiple methods in multimethod 'slay' match
dispatch value: :user/elf -> :user/magical

and :user/good, and neither is preferred

The exception tells us that ::elf is derived from both ::magical and ::good and that there are methods
for both.

To deal with this problem, you must specify the order in which dispatch values should be tried. The
prefer-method function takes a multimethod and specifies that one dispatch value is preferred over
another:

(prefer-method multimethod preferred-value other-value)

In this example, you would say:

user=> (prefer-method slay ::good ::magical)
user=> (slay b)

"Oh no! A good creature was slain!"

The second solution (which isn't really a solution at all) is simply to remove one of the offending
methods. The remove-method function takes a multimethod and a dispatch value then deletes the
method with that dispatch value.

(remove-method multimethod dispatch-value)

In this example, it might be:

user=> (remove-method slay ::magical)
user=> (slay b)

"Oh no! A good creature was slain!"

140

 CHAPTER 9 ̈ MULTIMETHODS AND HIERARCHIES

Type Tags

The type function is a more general version of class. First, type looks for :type metadata (see Chapter 8)
on its argument, and returns that. If the object has no :type metadata, or if it does not support metadata,
type returns the object's class:

user=> (type (with-meta {:name "Bob"} {:type ::person}))
:user/person
user=> (type 42)
java.lang.Integer
user=> (type {:name "Alice"})

clojure.lang.PersistentArrayMap

If you were to redefine your game creatures using :type metadata for the species:

(def a (with-meta {:name "Arthur", :strength 8}
 {:type ::human}))
(def b (with-meta {:name "Balfor", :strength 7}

 {:type ::elf}))

You could redefine the move multimethod to dispatch on type:

(defmulti move type)

(defmethod move ::elf [creature]
 (str (:name creature) " runs swiftly."))

(defmethod move ::human [creature]

 (str (:name creature) " walks steadily."))

This would permit the move multimethod to work with both metadata-enabled Clojure data structures
and ordinary Java objects:

(defmethod move Number [n]
 (str "What?! Numbers don't move!"))

user=> (move a)
"Arthur walks steadily."
user=> (move b)
"Balfor runs swiftly."
user=> (move 6.022)

"What?! Numbers don't move!"

User-Defined Hierarchies
In addition to the global hierarchy, you can create your own independent hierarchies. The make-
hierarchy function returns a new hierarchy (essentially a map of parent/child relationships). The derive,
isa?, parents, ancestors, and descendants functions all accept an extra first argument that specifies the
hierarchy to use.

141

CHAPTER 9 ̈ MULTIMETHODS AND HIERARCHIES

142

Unlike the global hierarchy, user-defined hierarchies allow unqualified (no namespace) keywords or
symbols as tags.

Be careful when creating user-defined hierarchies with derive, because its behavior is slightly
different. When called with two arguments, derive modifies the global hierarchy. But user-defined
hierarchies are immutable, like Clojure's other data structures, so the three-argument version of derive
returns the modified hierarchy. This can be seen in the following example:

user=> (def h (make-hierarchy))
user=> (derive h :child :parent)
user=> (isa? h :child :parent)

false

Therefore, to construct a user-defined hierarchy, you must thread it through the derive statements, as in
this example:

user=> (def h (-> (make-hierarchy)
 (derive :one :base)
 (derive :two :base)
 (derive :three :two)))
user=> (isa? h :three :base)

true

Another alternative is to use one of Clojure's mutable reference types, such as a Var:

user=> (def h (make-hierarchy))
user=> (isa? h :child :parent)
false
user=> (alter-var-root (var h) derive :child :parent)
user=> (isa? h :child :parent)

true

By default, multimethods use the global hierarchy. The defmulti form accepts an optional
argument, :hierarchy, followed by a different hierarchy to use.

Summary
Multimethods are very flexible, but that flexibility comes at a cost: they are not very efficient. Consider
what happens every time you invoke a multimethod: it has to call the dispatch function, look up the
dispatch value in a hash table, then perform one or more isa? comparisons to find the correct method.
Even a smart compiler like Hotspot has trouble optimizing that sequence.

As a result, multimethods are probably not suitable for “low-level” functions that get called very
frequently. That's why none of Clojure's built-in functions are multimethods. They are, however, an
excellent tool for building extensible “high-level” APIs. Protocols, introduced in Clojure 1.2 and
described in Chapter 13, offer a more restricted form of method dispatch with better performance.

C H A P T E R 10

 ̈ ̈ ̈

Java Interoperability

Calling Java from Clojure
Clojure is built on Java not only because it is a portable, feature-rich platform, but because thousands of
libraries, both open-source and commercial, are written in Java. Clojure can leverage all this existing
code to get past the “library problem” that plagues most new programming languages.

Clojure does not come packaged with libraries to handle common tasks like file I/O, networking,
and database connections. While the number of extant Clojure libraries is growing rapidly, it is still quite
small. Fortunately, for any task you might have in mind, there almost certainly exists a Java library to
help you with it. The JVM itself comes with over 4000 classes covering everything from networking to
GUIs. Clojure is designed to make working with Java libraries as seamless as possible.

Java Interop Special Forms

Clojure uses just three special forms to handle all interactions with Java classes. The new special form
creates an instance of a class.

(new classname & constructor-arguments)

new takes the name of a class (a symbol, which will not be evaluated) as its first argument, followed by
any arguments for the class's constructor function. The following are some examples:

user> (new String)
""
user> (new java.util.Date)
#<Date Thu Oct 29 17:04:19 EDT 2009>
user> (new java.util.Date 55 10 12)

#<Date Sat Nov 12 00:00:00 EST 1955>

The . (dot) special form calls Java methods or fields.

(. target name & arguments)

The target argument may be either a class name or an arbitrary expression. If the target argument is a
class name, then the name should be a symbol (which is not evaluated) naming a public static method or
field of that class. For example, the following code:

user=> (. Integer valueOf "42")
42

143

CHAPTER 10 ̈ JAVA INTEROPERABILITY

user=> (. Integer MAX_VALUE)

2147483647

These are equivalent to this Java code:

Integer.valueOf(42);

Integer.MAX_VALUE;

If target is not a class name, then it will be evaluated normally, and name should be the name of a
public instance method or field of the resulting object. Here are some examples:

user=> (def s "Hello, World!")
#'user/s
user=> (. s substring 0 5)

"Hello"

The second expression is equivalent to the Java code:

s.substring(0, 5);

To set the value of public fields, you can use the set! special form like this:

(set! (. target name) value)

As shown, target is an object or symbol naming a class, name is a symbol naming a public field of that
class or object, and value is any expression. This is equivalent to the Java code:

target.name = value;

The new, . (dot), and set! special forms are just that, special. They do not obey the same rules for
evaluation as normal Clojure functions and macros. In particular, the name argument is never evaluated,
so it cannot be determined at run-time. You cannot, for example, do the following:

;; bad code!
(defn call-method [object method-name]

 (. object method-name))

That will try to call a method named “method-name” on the object—probably not what you wanted. If
you need to determine the name of a method at run-time, there are two ways to achieve it: the Java
Reflection API and Clojure's eval function. The former is preferred, but consult the Reflection API
documentation for details.

1

Java Interop Preferred Forms

While the new and . (dot) special forms are sufficient for Java interop, some additional syntax helps Java
fit better with Clojure's Lisp-based syntax.

First, Java method calls can be made to look more like Clojure function calls by putting the method
name at the head of a list, prefixed by a period:

1 http://java.sun.com/docs/books/tutorial/reflect/

144

 CHAPTER 10 ̈ JAVA INTEROPERABILITY

(.method object arguments)

The .method form will be processed by the Clojure compiler as if it were a macro that expands to:

(. object method arguments)

By “as if it were a macro,” I mean that this feature is a purely syntactic abstraction or “syntactic sugar.” It
does not magically transform Java methods into first-class functions.

2
 For example, you cannot use

.method as a function argument to map. Instead, you must wrap the method in a Clojure function:

user=> (map #(.toUpperCase %) ["one" "two" "three"])

("ONE" "TWO" "THREE")

The Clojure macro memfn was created for this purpose before the anonymous function syntax #()
existed. memfn takes a symbol and expands to an anonymous function that calls the method named by
that symbol. The anonymous function in the preceding example could have been written
(memfn toUpperCase), but the #() form is shorter and preferred.

New instances of Java classes can be constructed by placing the class name at the head of a list,
followed by a period:

user=> (java.util.Date. 110 3 12)
#<Date Mon Apr 12 00:00:00 EDT 2010>
user=> (StringBuilder. "Hello")

#<StringBuilder Hello>

You can call static methods with the syntax (ClassName/method arguments) and retrieve the value of
a static field with ClassName/field. For example, the following code:

user=> (Integer/parseInt "101")
101
user=> Integer/MIN_VALUE

-2147483648

Since these “syntactic sugar” expansions happen in the same compilation phase as macro-
expansion, macros that do complex code-generation may need to avoid them and use the new and . (dot)
special forms directly. In all other cases, the “syntactic sugar” forms are preferred.

Clojure Types and Java Interfaces

One of Java's strengths as a platform is the provision of generic interfaces for common datatypes such as
lists and sets. Clojure's data structures implement these interfaces where appropriate, so if you need to
call a Java method that expects, for example, a java.util.List, you can pass it a Clojure data structure
without any conversion. Table 10-1 shows which interfaces are implemented by each of the built-in
Clojure types.

2
 Method names as first-class functions has been suggested for a future version of Clojure.

145

CHAPTER 10 ̈ JAVA INTEROPERABILITY

Table 10-1.Standard Java Interfaces Implemented by Clojure Types

Java interface list vector map set function

java.util.Collection X X -- X --

java.util.List X X -- -- --

java.util.Map -- -- X -- --

java.util.Set -- -- -- X --

java.util.RandomAccess -- X -- -- --

java.lang.Iterable X X X X --

java.lang.Comparable -- X -- -- --

java.lang.Runnable -- X X X X

java.util.concurrent.Callable -- X X X X

java.util.Comparator -- -- -- -- X

Be aware that Clojure's collection types (list, vector, map, and set) are still immutable, so they only

implement the read-only portions of the java.util.Collection interfaces. Calling a mutating method (such
as List.add or Map.put) on an immutable object will throw an UnsupportedOperationException.

What about Java generics like List<String> or Map<Integer,Object>? Fortunately, Clojure code
never needs to worry about generics due to the way they are implemented in the JVM. Generic types are
ignored in Java bytecode; they exist only as hints to the Java language compiler.

3
 The Java type

List<String>, when compiled, is just plain List. What this means for Clojure is that you can call a Java
method expecting a generic type (e.g., List<String>) with an instance of the base collection type (List).
As long as the collection contains objects of the correct type (String), it just works.

Java Arrays

Java arrays lack the concurrency safety of Clojure's collection types; they are mutable and non-thread-
safe. However, some Java APIs use arrays for function arguments or return values, so it is necessary to
work with them.

3
 In contrast, the .NET Common Language Runtime has strongly-typed generics, which are more difficult

to implement in a dynamically-typed language like Clojure. This was one reason for the choice of Java as
the primary platform for Clojure.

146

 CHAPTER 10 ̈ JAVA INTEROPERABILITY

In addition, some algorithms can be implemented more efficiently with primitive arrays, especially
algorithms that deal with very large collections of primitive types. Using primitive arrays for
performance will be discussed in Chapter 14.

Creating Arrays

You can create a Java array with the make-array function:

(make-array type & dimensions)

The type argument must be a class. If you want an array of a Java primitive type, such as int or
double, you can use the TYPE field of the corresponding class:

(make-array Double/TYPE 40) ;; creates a double[40] array

If you give only one dimension to make-array, you get a normal Java array of that length. If you give
multiple dimensions, you get a multidimensional array, which is implemented in Java as an array of
pointers to other arrays.

In addition to make-array, there are convenience functions for creating arrays of Java primitive
types: int-array, long-array, float-array, and double-array. Each can be called in several argument
forms:

• (int-array size) creates an int[] array of size elements.

• (int-array size initial-value) does the same and also sets every element to
initial-value.

• (int-array collection) creates an int[] array of the same size as collection,
filled with the elements of collection converted to ints.

• (int-array size collection) creates an int[] array of size elements and fills it
with elements from collection; any unused array elements will be initialized to
zero.

The Clojure function to-array takes any Clojure collection type and returns a Java Object[] array. If
you have a two-dimensional matrix represented as a collection of collections, you can use the to-array-
2d function to produce a 2-dimensional Java array. For example, the following code:

user=> (def matrix [[1 0 0] [0 1 0] [0 0 1]])
#'user/matrix
user=> (to-array-2d matrix)

#<Object[][] [[Ljava.lang.Object;@540984b>

If you need to convert a collection into an array of a specific type, you can use the into-array
function:

(into-array collection)

(into-array type collection)

Called with one argument, a collection, into-array returns an array of the same type as the first item in
the collection. Called with two arguments, the first argument is a class specifying the type of the array.
For example, the following code:

147

CHAPTER 10 ̈ JAVA INTEROPERABILITY

user=> (into-array Comparable ["aa" "bb" "cc"])

#<Comparable[] [Ljava.lang.Comparable;@a00185>

Manipulating Arrays

You can retrieve a single value from an array (of any dimensionality) with the aget function:

(aget array & indices)

Setting elements in an array is complicated by the need for special functions for primitive arrays. The
aset function works on any arrays of any Object type:

(aset array index value)

(aset array & indices value)

The setter functions for arrays of primitive types work the same way: aset-boolean, aset-byte, aset-
char, aset-short, aset-int, aset-long, aset-float, and aset-double. Note that these functions are not
very efficient; in fact, they are slower than aset on type-hinted arrays (see Chapter 14). Use them only
when you need to deal with small arrays for Java interop purposes, not for performance.

You can copy an array with the aclone function, and get its length with the alength function
(although count also works).

Iterating Over Arrays

The map and reduce functions will work on Java arrays, but they work by converting the arrays to
sequences. For slightly greater efficiency, you can iterate over arrays directly using array-specific
macros.

(amap a idx ret expr)

The amap macro initializes ret (a symbol) as a clone of the array a, then evaluates expr repeatedly with
idx bound to successive indexes of a. Whatever value is returned by expr, it will be assigned to the same
index of ret. Finally, amap returns ret.

(areduce a idx ret init expr)

The areduce macro assigns ret (a symbol) the value of init, then evaluates expr repeatedly with idx
bound to successive indexes of the array a. Whatever value is returned by expr becomes the new value of
ret. Finally, areduce returns the last value of ret.

Note that both amap and areduce are macros implemented in terms of loop/recur, so they take
expressions as arguments instead of the functions used by map and reduce.

Calling Clojure from Java
Clojure code can generate real Java classes and methods that can be called like any other Java class.
However, if you need to call just a few Clojure functions from your Java code, it may be simpler to user
Clojure's Java API, which consists of static methods of the classes clojure.lang.RT, clojure.lang.Compiler,
and clojure.lang.Var.

148

 CHAPTER 10 ̈ JAVA INTEROPERABILITY

Loading and Evaluating Clojure Code

clojure.lang.RT is the Clojure “runtime” class. Remember, Clojure has no interpreter; there cannot be
multiple “instances” of Clojure in a single JVM.

4
 As a result, most methods of RT are static.

class RT {
 ...
 public static void load(String name);
 public static void loadResourceScript(String filename);
 public static void maybeLoadResourceScript(String filename);
 ...

}

The RT.load method behaves just like the Clojure load function described in Chapter 7. The name
argument is the name of a file on the classpath, minus the ".clj" or ".class" extension.

The RT.loadResourceScript method is similar to load, except that filename must include the ".clj"
extension. RT.maybeLoadResourceScript is the same, but will not throw an exception if the file does not
exist.

class RT {
 ...
 public static Object readString(String code);
 ...
}
class Compiler {
 ...
 public static Object eval(Object obj);
 ...

}

The RT.readString method is equivalent to the Clojure read-string function; it takes a string of
Clojure source code and returns the data structure represented by that string. The Compiler.eval
method will evaluate that data structure just like the Clojure eval function and return the result.

Using Clojure Functions and Vars

class RT {
 ...
 public static Var var(String ns, String name);
 public static Var var(String ns, String name, Object value);
 ...

}

The RT.var method returns the Clojure Var with the given namespace and name, creating the
namespace and interning the Var (see Chapter 7) as needed. The optional third argument sets the initial
value, or root binding, of the Var.

4
 Java Classloaders, however, permit you to create multiple, independent execution contexts within a

single JVM. Classloaders are an advanced Java topic outside the scope of this book.

149

CHAPTER 10 ̈ JAVA INTEROPERABILITY

Once you have a Var object, you can retrieve its value with Var.get, or call it as a function with
Var.invoke:

class Var {
 ...
 public Object get();
 public Object invoke(Object args...);
 ...

}

Creating Java Classes
Often, Clojure's Java API will not be sufficient for integrating Java code with Clojure code. Many Java
libraries require you to implement a particular interface or extend a particular base class. Fortunately,
Clojure can create real Java classes, with methods that can be called like any other Java method, without
requiring you to write any “wrapper” code in Java.

Proxying Java Classes

If you need to implement a Java interface or extend a base class for Java interop purposes, the proxy
macro should be the first place you look. Each time proxy is evaluated, it creates a new instance of a
proxy class, an anonymous class that inherits from the base class and/or interfaces you specify.

(proxy [base-class-and-interfaces...] [constructor-args...]
 (methodName [params...] method-body...)

 (methodName ...))

The first argument to proxy is a vector of class and interface names. There may be at most one class
(because Java only allows single-class inheritance) and any number of interfaces. If no base class is
specified, the proxy class will extend java.lang.Object.

The second argument is a vector of values that should be passed as arguments to the base-class
constructor. If the constructor takes no arguments, the vector will be empty, but it must be supplied.

The remaining arguments to proxy are lists of the form (method [args] body), where method is the
name of a public or protected member of one of the base classes, args are the arguments to that method,
and body is the Clojure code that you want to use to implement the method. In effect, you're defining a
Clojure function that will be called by the proxy class whenever the named method is invoked.

Multiple-arity methods (methods that take different numbers of arguments) may be implemented
like multiple-arity Clojure functions:

 (method ([arg] body...) ([arg1 arg2] body...))

All of this sounds complicated, but it's really not. Let's look at a real example. The Java SAX classes
implement stream-based XML processing with a “push” interface. To use them, you must provide an
instance of a class that implements the org.xml.sax.ContentHandler interface. Clojure's own XML
libraries use proxy for this. Here's a simpler example, a proxy ContentHandler that prints out all the text
nodes in the XML document, one per line.

(import '(javax.xml.parsers SAXParserFactory)
 '(org.xml.sax ContentHandler)

150

 CHAPTER 10 ̈ JAVA INTEROPERABILITY

 '(org.xml.sax.ext DefaultHandler2)
 '(java.io File))

(defn proxy-handler []
 (proxy [DefaultHandler2]
 [] ;; DefaultHandler2 constructor takes no args
 (characters [ch start length]
 (println (String. ch start length)))))

(defn extract-text [filename]
 (let [parser (.newSAXParser (SAXParserFactory/newInstance))]

 (.parse parser (File. filename) (proxy-handler))))

The proxy-handler function returns an instance of a proxy for the class
org.xml.sax.ext.DefaultHandler2, which provides no-op implementations of all the
org.xml.sax.ContentHandler methods. The proxy class overrides the characters method, which receives
a char array, and prints the String form of that array. The extract-text function creates a new instance
of SAXParser using the SAXParserFactory class, then calls the parse method with the input file and the
proxy handler. After loading this code, you can run it like this:

user=> (extract-text "path/to/some/file.xml")

This will print all the text in the XML file. There will be a lot of blank lines, because your implementation
does not ignore text elements consisting entirely of whitespace.

Proxy methods can access the object on which they were called as the special local variable this.
For example, to access the value of a public instance field named foo in the current object, a proxy
method could call (.foo this).

It is important to remember that proxies are not true subclasses. Although proxies can override
protected methods, they cannot access private or protected fields of their “parent” class. They cannot
provide their own constructor functions, and they cannot add new methods that are not defined in a
parent class or interface. Proxy instances have generated class names like
clojure.proxy.org.xml.sax.ext.DefaultHandler2.

Proxy methods do not have direct access to the superclass object as with Java's super keyword.
However, proxies can call superclass methods with the proxy-super macro:

(proxy-super method & args)

method is a symbol (unevaluated) naming a superclass method, args are the arguments to that method.
The corresponding method in the proxied superclass will be invoked on the current object (this).

Generating Java Classes

While proxy is usually sufficient for dealing with Java APIs, there are occasions when nothing but a real,
concrete Java class will do. You can create such classes in Clojure with the gen-class macro, which takes
a series of key-value pairs as arguments:

(gen-class
 :name generated-name
 :extends base-class-name
 :implements [interfaces ...]
 :init initialization-function

151

CHAPTER 10 ̈ JAVA INTEROPERABILITY

 :constructors {[types ...] [super-types ...], ...}
 :post-init post-initialization-function
 :methods [[name [types ...] return-type], ...]
 :main boolean
 :factory factory-name
 :state state-field-name
 :exposes {field {:get name, :set name}, ...}
 :exposes-methods {method exposed, ...}
 :prefix string
 :impl-ns namespace

 :load-impl-ns boolean)

No way around it, gen-class has a ton of parameters. Fortunately, they're all optional except :name,
and you rarely need more than a few of them. Before you get into the options, let's look at how gen-class
works with Java.

When you compile a Java source file with javac, you get a Java .class file containing Java bytecode.
The bytecode defines the fields and methods of that class and their implementations. When you run
java, the Java Virtual Machine loads the .class file and executes the bytecode it contains.

5

Clojure, by contrast, generates bytecode at run time. You can type an expression at the Clojure
REPL, or load a .clj file, and Clojure will compile it on-the-fly into Java bytecode, then pass that bytecode
to the Java Virtual Machine for execution. This is fine when all your code is in Clojure, but becomes a
problem when you want Java code to be able to call Clojure code, because the executable bytecode for
Clojure functions doesn't exist until runtime!

Conceivably, you could write a small “wrapper” class in Java, whose methods invoke Clojure
functions through Clojure's API, like this:

import clojure.lang.RT;

class MyWrapper {
 public static Object doStuff() {
 return RT.var("my-namespace", "do-stuff").invoke();
 }

}

Then, your Java code could call the method MyWrapper.doStuff(), which invokes the Clojure function
my-namespace/do-stuff.

Essentially, gen-class does the same thing, without you having to write any Java code. It generates a
Java .class file containing “stub” methods that call Clojure functions.

Because gen-class needs to generate a .class file, which will presumably be used by other statically-
compiled Java classes, it cannot be used at runtime. Instead, it must be invoked in a separate
compilation step. Clojure normally compiles code at runtime, so compiling Clojure code before it is run
is called ahead-of-time, or AOT, compilation.

Ahead-of-Time Compilation

Any Clojure namespace can be AOT-compiled. There is usually little reason to do so unless gen-class is
involved. AOT-compiled Clojure code is not faster than dynamically-compiled code, and it still requires

5
 Early JVMs were implemented as bytecode interpreters. Modern JVM implementations use just-in-time

compilation to convert the platform-independent Java bytecode into optimized machine code.

152

 CHAPTER 10 ̈ JAVA INTEROPERABILITY

the Clojure runtime libraries (clojure.jar). However, AOT-compiled code will start up slightly faster,
because the Clojure compiler does not need to compile all the source code when it is loaded, which may
be beneficial for large programs.

To compile a namespace, use the compile function:

(compile name)

The name argument is a quoted symbol naming the namespace you want to compile. Clojure will load the
source file for that namespace, using the same rules as require for converting namespace names to file
names (see Chapter 7); compile it to Java bytecode and write the bytecode out to .class files in a target
directory. One namespace will produce many .class files, one for each function.

The tricky part of AOT-compilation is getting the classpath configured correctly. The target directory
where compile writes .class files is stored in the Var *compile-path*. When you call compile, both this
directory and the source .clj file must be available on the Java classpath. The default *compile-path* is
“classes”, assumed to be a directory within the current working directory. You can change it on the Java
command line by setting the Java system property “clojure.compile.path”.

Here's an example. Suppose you have a project containing three directories: source code in
“source”, compiled code in “target”, and libraries in “lib”. Your Clojure code is in the file
“source/com/example/my_library.clj”, with the following namespace declaration:

(ns com.example.my-library)

To compile this namespace, you can start Clojure from the root directory of your project like this (all
on one line):

java -cp lib/clojure.jar:sources:target È

 -Dclojure.compile.path=target clojure.main

Note that the classpath contains three elements: the Clojure JAR file, the "sources" directory, and
the "target" directory. (You would add JAR files for any other libraries your project uses.) In addition, the
system property clojure.compile.path is set to “target”. The “target” directory must exist! Then, at the
Clojure REPL, you can run:

user=> (compile 'com.example.my-library)

This will load the source file from “source/com/example/my_library.clj”, compile it, and write a bunch
of .class files in the directory “target/com/example/”.

Once this is done, you can load and use the namespace com.example.my-library without the
original source files. All you need are the .class files and clojure.jar. Obviously, you shouldn't delete your
source files, because you might want to change them and recompile later.

To make it easier to integrate AOT-compilation into build scripts, you can start Java with the class
clojure.lang.Compile instead of clojure.main, setting up the classpath and system property as before,
passing the namespaces to be compiled as arguments on the command line. In the Apache Ant build
system, for example, the XML configuration would contain something like the following snippet:

<java classname="clojure.lang.Compile"
 classpath="clojure.jar:target:source">
 <sysproperty key="clojure.compile.path"
 value="target"/>
 <arg value="my.first.namespace"/>
 <arg value="my.second.namespace"/>

</java>

153

CHAPTER 10 ̈ JAVA INTEROPERABILITY

How does gen-class fit into this? When compile is compiling a file that calls gen-class, it generates
the additional .class files described by the gen-class configuration options. At any other time, i.e., when
not AOT compiling, gen-class does nothing.

Basic gen-class Options

Now you're ready to tackle the options to gen-class. You will usually only need the first three options,
:name, :extends, and :implements, but we cover them all here. Wherever the arguments call for a class or
interface name, that name may be given as either a symbol (which will not be evaluated) or a String, and
must be fully-qualified with the Java package name.

The :name argument is the name of the class to be generated. Remember that this is a Java-style
package + class name, so you must use underscores or CamelCase instead of hyphens.

The :extends argument is the fully-qualified name of a Java class (not an interface) as either a String
or a symbol. The generated class will be a subclass of that class.

The :implements argument is a vector of Java interface names. The generated class will be declared
to implement those interfaces and will include stub methods for all the methods defined in those
interfaces.

Defining Methods for the Generated Class

As explained earlier, the class generated by gen-class will only contain stub methods. The
implementations of those methods are normal Clojure functions in a namespace. Each Clojure function
will have the same name as its corresponding method, with an added prefix. The prefix defaults to “-“,
and can be changed with the :prefix argument to gen-class. The functions will be called with the
object instance as their first argument. For example, if your generated class implements a Java interface
with the methods doStuff(int i) and doMoreStuff(String s), your namespace should contain the
following function definitions:

(defn -doStuff [this i] ...)

(defn -doMoreStuff [this s] ...)

By default, gen-class uses the current namespace to look up method definitions; this can be changed
with the :impl-ns argument to gen-class.

Adding State to the Generated Class

You may want to create a class that can be called by Java code but preserves Clojure's notions of
immutable state. The :state argument names a public instance field (of type Object) that will be added
to the generated class. Within your methods, you can access the value of this field just like any other Java
field. Note that the :state field is declared final, so it may not be set outside of the object constructor.
Typically, the value of the :state field will be one of Clojure's mutable reference types (Ref, Agent, or
Atom). In this way, you can create stateful Java objects that take advantage of Clojure's transactional
semantics.

If your object has :state, you must provide a way to initialize it. The :init argument names an
“initialization function” that is called before the superclass constructor, with the same arguments as the
constructor. The initialization function must return a vector like [[args...] state], where state is the
value of the :state field and args are the arguments that will be passed back to the superclass
constructor.

154

 CHAPTER 10 ̈ JAVA INTEROPERABILITY

To do additional computation after the superclass constructor, the :post-init argument names a
function that will be called immediately after the superclass constructor(s), with the newly-constructed
object as its argument. The :post-init function's return value is ignored.

Adding Methods to the Generated Class

By default, the generated class contains stub methods for all non-private methods of the parent class
and interfaces. If you want to add to this set of methods, you can do so with the :methods option to
gen-class. Its argument is a vector of method signatures, each of the form
[name [arg-types...] return-type]. Those methods are then implemented by Clojure functions with
prefixed names just like superclass methods. To create a static method, add :static true metadata to
the signature vector.

For example, suppose you want to add two methods to your class with the following Java signatures:

public int add(int a, int b);

public static String getNextID();

You would use gen-class like this:

(gen-class ...
 :methods [[add [int int] int]
 #^{:static true} [getNextID [] String]])
...
(defn -add [this a b] ...)

(defn -getNextID [] ...)

Remember that :methods is only used for adding methods that do not exist in the
superclass/superinterfaces. You do not need to redefine the signatures of existing Java methods.

Adding Constructors and Factories

The generated class will automatically have public constructors with type signatures matching those of
the superclass constructors. You can add additional constructors with the :constructors option to
gen-class. The argument to :constructors is a map of the form {[types...] [super-types...], ...}.
The keys of the map are vectors of argument types for the added constructors, which must map to an
existing superclass constructor, identified by a vector of its argument types. For example, if your
generated class :extends a class Foo with a constructor Foo(int, int), and you want to add a constructor
that takes a single String argument, you can do so with the following gen-class form:

(gen-class ...

 :constructors {[String] [int int]} ...)

You must also supply an :init function that accepts and returns the appropriate types.
Some Java development styles encourage static factory methods instead of public constructors. You

can add static factory methods to your generated class with the :factory option to gen-class. Its
argument is the name of the generated factory method; this method will be overloaded to accept all the
same argument types as the constructors.

155

CHAPTER 10 ̈ JAVA INTEROPERABILITY

Exposing Superclass Members

Because your method implementations are Clojure functions, not true Java methods, they do not have
access to protected fields of the superclass, nor can they call superclass methods. To work around this,
you can add the :exposes and :exposes-methods options to gen-class.

:exposes takes a map of the form {field {:get getter, :set setter}, ...}. Each key is the name
of a protected instance field of the superclass, the value specifies the names of public getter and setter
methods that will be added to the generated class. You do not need to provide implementations for these
methods; they are generated automatically.

:exposes-methods takes a map of the form {super exposed, ...}, where super is the name of a
superclass method, and exposed is the name of a public method that will be added to the generated
class. The exposed method calls the super method. You can use this feature when, for example, your
implementation of a method needs to call the superclass version of the same method.

Generating Command-Line Programs

Java allows any class to be run as command-line executable, provided it has a method declared public
static void main(String[] args). You can specify :main true in gen-class to add the static main
method to your generated class. The function implementing this method should be called -main (unless
you changed the prefix). Rather than a single array argument, it will be called with however many
arguments are present on the command line. An easy way to handle this is to define the function to take
a variable number of arguments:

(gen-class ...
 :main true ...)

(defn -main [& args] ...)

Once you have compiled a namespace with a :main method, you can execute it at the command line
like this:

java -cp ... your.class.name arguments...

Remember that your compiled .class files and the Clojure JAR must be on the classpath.

Loading the Implementation

By default, any class generated with gen-class will automatically load its implementing namespace from
the classpath the first time it is used, just as if you had require'd the namespace. If you are using some
alternative code loading mechanism and you do not want the generated class to interfere, add the
:load-impl-ns false option to gen-class.

Namespace Declarations with gen-class

gen-class can appear as part of a namespace declaration in the ns macro. In this case, it is written as
(:gen-class options...). Within ns, the :name and :impl-ns options default to the namespace being
declared and :main defaults to true. Everything else is the same. However, remember that you need not
limit yourself to one namespace per generated class. You could generate several classes, with different
:prefix options, and put all the method implementations in the same Clojure namespace.

156

 CHAPTER 10 ̈ JAVA INTEROPERABILITY

Simple Command-Line Program

If all you need is a program that can be run at the command line, you only need a -main function and an
ns declaration containing (:gen-class), as in this example:

(ns com.example.app
 (:gen-class))

(defn -main [& args]

 (println "Hello, World!"))

When AOT-compiled into a directory named classes, this example can be run with the command:

java -cp classes:clojure.jar com.example.app

Summary
Clojure is not intended to replace the Java language. Rather, it is designed to augment the capabilities of
the Java platform with a different style of programming. Newcomers to Clojure may dislike the intrusion
of Java class and method names into their Clojure code, and rush to wrap every Java method call in a
Clojure function. More experienced Clojure programmers appreciate the power offered by Java libraries
and are comfortable mixing Java methods and Clojure functions. The world is too big to implement
everything from scratch. Clojure takes advantage of the vast ecosystem of Java libraries and lives
comfortably in a Java-based environment.

157

C H A P T E R 11

 ̈ ̈ ̈

159

Parallel Programming

Parallelism in Clojure
Chapter 6 spends a lot of time discussing how Clojure manages state safely in a concurrent environment.
State management is definitely the trickiest part of concurrent programming, and the attention Clojure
pays to getting state management right is well spent.

However, discussions of state management do not address how a program becomes parallel to
begin with, and the best strategies for splitting the execution of a program among various threads.
Although it’s not as sticky a problem, it’s still important to understand. Knowing how and when to
distribute execution among multiple threads will allow you to maximize concurrency in your program,
making it faster and guaranteeing scalability as it is run on machines with more and more processors.

Clojure offers a variety of techniques for introducing concurrency, ranging in levels of abstraction
from high-level concepts such as agents all the way down to JVM primitives, accessible through the Java
interoperability features. Some techniques are more suitable for data-centric concurrency while others
for a more hands-on approach to threading.

This chapter will outline the various ways you can introduce concurrency into a Clojure program
and the pros and cons of each.

Agents
Agents are discussed in Chapter 6, although primarily in their aspect as identities used for managing
state. Agents are interesting because they bridge the gap between managing state and managing
execution: they do both. Again, review Chapter 6 for a detailed discussion on how to create and send
actions to agents. This section deals primarily with their concurrency characteristics and implications.

Agent Thread Pools
In their execution aspect, agents are run in thread pools managed by the Clojure runtime. Actions sent
to agents will be queued and then executed in one of two thread pools, depending on whether the action
was dispatched using the send or send-off function.

The thread pool used by the send function is sized and tuned to match the number of physical
processors available to the JVM. This optimizes throughput for CPU-intensive actions: the number of
actions executing concurrently will be roughly equal to the number of physical CPUs. If an action is
dispatched while all threads in the thread pool (and, therefore, CPUs) are busy, it is queued and will
execute in turn.

The thread pool used by the send-off function is not limited to the number of physical processes
available, but can contain an arbitrarily larger number of processes. The reasoning behind this is that

CHAPTER 11 ̈ PARALLEL PROGRAMMING

160

high-latency tasks such as accessing a remote resource will spend most of their time waiting. As such, it’s
more efficient to allow many processes to time-share on the same processor.

If you send where send-off would be appropriate, or vice-versa, it’s not the end of the world. Your
program will still be correct: the action will still execute, it just won’t be as efficient as possible. If a high-
latency action is dispatched with send, it will utilize one of the send-threads until the action completes
without actually doing much work. If a CPU-intensive action is dispatched with send-off, it could be
pre-empted by the operating system thread scheduler much more often than it would otherwise be, but
will still eventually complete.

Agent Example
For an example of a processing-intensive agent, say you had an agent that maintained an average of a
list of numbers. The value of the agent could be a map with two keys: the list of numbers, and the current
average.

user=> (def my-average (agent {:nums [] :avg 0}))

#’user/my-average

Now, let’s define a function which you’ll use as the action function for the agent. It takes two
arguments: the current value of an agent, and the number to add, and returns a new agent value.

(defn update-average [current n]
 (let [new-nums (conj (:nums current) n)]
 {:nums new-nums

 :avg (/ (reduce + new-nums) (count new-nums))}))

In this case, because the action is straightforward processing, with no IO, you’ll definitely want to
use send and not send-off. Let’s send it a few values and see what happens.

user=> (send my-average update-average 10)

#<Agent @4cdac8 {:nums [], :avg 0}>

user=> (send my-average update-average 20)

#<Agent @4cdac8 {:nums [10], :avg 10}>

user=> (send my-average update-average 10)

#<Agent @4cdac8 {:nums [10 20], :avg 15}>

user=> (send my-average update-average 20)

#<Agent @4cdac8 {:nums [10 20 10], :avg 40/3}>

Finally, let’s check the result:

user=> @my-average

{:nums [10 20 10 20], :avg 15}

It seems to work. However, because you used send, and because the update-average involves just
processing and waiting for IO, you can be sure that the agent processes its sends at full speed.

 CHAPTER 11 ̈ PARALLEL PROGRAMMING

161

Concurrent Agent Performance
Agents scale very well with the number of CPUs in a machine. If an algorithm or process consists of
discrete “tasks” (or if it can be broken down that way), agents are an excellent choice. There are
anecdotes of agent-based programs scaling nearly linearly to systems with hundreds of CPUs without
any code modification. Of course, your mileage will vary based on exactly what the agents are doing.

Concurrency Functions
There are certain functions and macros in the Clojure standard library which initiate parallel processing.
They are extremely convenient, because they require no work to set up and are often a drop-in
replacement for their serial counterparts.

There are three built-in concurrent tools: pmap, pvalues, and pcalls. They provide similar
functionality: in fact, under the hood, the other two are defined in terms of pmap. From this simple basis,
it is possible to build a wide array of very useful concurrency tools.

To provide meaningful examples of concurrency, it is necessary to use a function that takes a non-
trivial amount of time to execute. It’s rarely worth it to parallelize a task which takes only a few processor
instructions. To do this, you can create a function which takes another function as an argument, and
returns a “heavy” version of it—a version which waits for one second then returns. This transformation
function is defined as follows:

(defn make-heavy [f]
 (fn [& args]
 (Thread/sleep 1000)
 (apply f args)))

You can verify that this works by using it instead of a normal function and using the built-in time
macro to time how long an expression takes to evaluate. For example, a normal call to + takes almost no
time at all:

user=> (time (+ 5 5))
"Elapsed time: 2.0E-6 msecs"

10

As expected, wrapping the + function in make-heavy takes just about a second.

user=> (time ((make-heavy +) 5 5))
"Elapsed time: 1001.128155 msecs"

10

You will use this technique to observe what kind of advantages using parallel functions can actually
give.

pmap

pmaps’ signature and functionality are identical to the normal map function. The only difference is that the
supplied function is applied to the supplied sequence in parallel, utilizing a number of threads
corresponding to the number of CPUs on the system.

pmap is partially lazy in that the entire result set is not realized unless required, but the parallel
computation does run ahead of the consumption to some degree.

CHAPTER 11 ̈ PARALLEL PROGRAMMING

162

An example follows, demonstrating similarity to map:

user=> (pmap inc [1 2 3 4])

(2 3 4 5)

To see how this introduces parallelism, let’s use the heavy function, and first see how long it takes
using the standard version of map. You’ll also use the doall function to force evaluation of the entire
value.

user=> (time (doall (map (make-heavy inc) [1 2 3 4 5])))
"Elapsed time: 5002.96291 msecs"

(2 3 4 5 6)

This shows that the normal map runs the heavy version of the inc function five times. Since it’s in
the same thread, and each function call takes a full second, this adds up to just about five seconds.

Now, using pmap instead of map:

user=> (time (doall (pmap (make-heavy inc) [1 2 3 4 5])))
"Elapsed time: 1031.941815 msecs"

(2 3 4 5 6)

It takes only about a second, because although it is still calling the heavy version of inc five times,
the calls are happening in parallel. The extra 30 milliseconds observed are the extra time required to set
up the additional threads.

pvalues

pvalues takes any number of expressions and returns a lazy sequence of the values of each expression,
evaluated in parallel.

user=> (pvalues (+ 5 5) (- 5 3) (* 2 4))

(10 2 8)

pcalls

pcalls takes any number of no-argument functions and returns a lazy sequence of their return values,
executing them in parallel.

user=> (pcalls #(+ 5 2) #(* 2 5))

(7 10)

Overhead and Performance
For computationally expensive operations, these concurrency functions can provide huge speedups for
almost no effort. However, for less expensive computations, they may not be appropriate.

When concurrency functions run, they break the arguments into units of work and dispatch them
for execution. This process carries its own computational load, and if the actual computations specified
are faster than the overhead involved in setting up their execution, the net result will be slower than the
non-parallel version.

This means that whether using a concurrency function is beneficial depends on the “weight” of the
execution involved. If it’s lightweight, such as a basic math operation (as in the preceding examples),

 CHAPTER 11 ̈ PARALLEL PROGRAMMING

163

don’t bother. The cost of setting up the parallel execution exceeds the benefit. If it’s very heavyweight,
with each computation performing a significant amount of work, parallelizing is a no-brainer and will
almost always provide great gains. For the middle ground, experimentation is sometimes necessary to
determine whether using the parallel version of a function is worthwhile. You can try increasing the size
of each parallel execution, for example, by grouping multiple items together and distributing the
processing across the groups, rather than across each item.

To demonstrate, compare the time required to use pmap as opposed to map on a lightweight
operation: for example, the normal, light version of inc.

user=> (time (dorun (map inc (range 1 1000))))

"Elapsed time: 9.150946 msecs"

user=> (time (dorun (pmap inc (range 1 1000))))

"Elapsed time: 182.349073 msecs"

This shows clearly how the extra cost of assigning threads and farming out work cost vastly more
than the benefits of performing the work in parallel.

Futures and Promises
Futures and promises are two slightly more low-level threading constructs, inspired by the similar
features available in the Java 6 concurrency API. They are simple to understand, simple to use, and
provide a very direct way to spawn threads using native Clojure syntax.

Futures
A Clojure future represents a computation, running in a single thread. As soon as the future is created, a
new thread is created and starts executing the computation. When the computation finishes, the thread
is recycled and the resulting value can be retrieved from the future by dereferencing it. Alternatively, if
the computation is not yet finished when the future is dereferenced, the dereferencing thread will block
until the computation is complete.

To create a future, use the future macro, which takes any number of expressions, and yields a future
which will evaluate all the expressions and return the last value. For example, the following code:

user=> (def my-future (future (* 100 100)))
#'user/my-future
user=> @my-future

10000

In this example, the actual value of (* 100 100) is calculated in a separate thread. In a real program,
such a trivial expression probably wouldn’t be worth putting in a future. To create a simulation of a long-
running process, use Java’s Thread.sleep() method, which can be invoked from Clojure by
Thread/sleep. It pauses execution of the current thread for the specified number of milliseconds.

user=> (def my-future (future (Thread/sleep 10000)))

'#user/my-future

CHAPTER 11 ̈ PARALLEL PROGRAMMING

164

This future will take ten seconds to complete. If you enter the following at the REPL within ten
seconds of the previous statement, you can witness how dereferencing a future blocks the dereferencing
thread if it isn’t yet complete.

user=> @my-future

nil

The system will pause visibly for the remainder of the ten seconds of the future’s execution before
returning the future’s result. In this case, nil.

You can also create a future using the future-call function. It works similarly to the future macro,
only instead of taking expressions as parameters, it takes a single no-argument function and calls the
function in a separate thread while returning a future. You can dereference and inspect the future in
exactly the same way as futures created by the basic future macro.

Controlling Futures

Clojure includes several functions that can be used to inspect and control futures.

future-cancel

It is possible to attempt to cancel a future that hasn’t yet finished executing. This only works under
certain circumstances, because the cancellation uses Java’s thread interruption mechanism. In order for
a computation to be canceled, it needs to internally check the thread’s interruption status from time to
time or call a method that does (for example, Thread/sleep). For details on how to do this, see the Java
threading documentation.

future-cancel takes a single argument, the future itself. If the future is already complete, cancelling
has no effect. If a future has been cancelled before it completed, attempting to dereference the future
will cause a CancellationException error.

future-cancelled?

future-cancelled? takes a single future as an argument and returns true if it has been cancelled. It may be
used to check if a call to future-cancel succeeded, and therefore if a future is safe to dereference or not.

future-done?

future-done? takes a single future as an argument and returns true if the future’s execution is complete,
otherwise false. This function is useful for determining if dereferencing a future will cause blocking or
not.

future?

future? takes a single value as an argument and returns true if it is a future, otherwise false.

Promises
A promise is a value that may not yet exist. If a promise is dereferenced before its value is set, the
dereferencing thread blocks until a value is delivered to the promise. Unlike the other features described
in this chapter, promises do not actually cause concurrent execution, but they are often useful to
manage execution flow (particularly in concert with futures) and so they are covered here.

When a promise’s value is set, all threads waiting for a promise get the value and are released. Any
dereferences of the promise after its value is delivered.

 CHAPTER 11 ̈ PARALLEL PROGRAMMING

165

To create a promise, simply call the promise function with no arguments.

user=> (def my-promise (promise))

'#user/my-promise

To deliver a value to a promise, use the deliver function, which takes two arguments, a promise and
a value, and returns the promise. The deliver function may only be called once per promise: it throws
an exception if called a second time on for the same promise.

user=> (deliver my-promise 5)

#<AFn$IDeref&db53459f@1465272: 5>

The promise can then be dereferenced as follows:

user=> @my-promise

5

̈ Caution Be careful! It is entirely possible to throw your program into a deadlock with promises. Make sure that

promises eventually do get a value delivered to them, otherwise, they will block forever. In the preceding example,

if you were to dereference my-promise at the REPL before you call deliver, the REPL thread would block,

preventing you from ever giving the promise a value. You’d be forced to restart the whole program.

Promises have limited usefulness within a Clojure program: usually, it’s better to use a higher level
concurrency construct. But for scenarios where it’s desirable to manually cause threads to wait, or to
hand off execution between threads, promises provide an easy mechanism for doing so.

Java-based Threading
If none of Clojure’s other concurrency tools meet your needs for any reason, there’s always the option of
falling back to Java’s native threading capabilities. Through Clojure’s Java interoperability features, these
work just as well as they do in Java. In some ways, they’re even easier to use due to the fact that all
Clojure functions implement the java.lang.Runnable interface, so they can be passed directly to threads.
Also, Clojure’s macros can be used to eliminate a lot of Java’s boilerplate code.

A complete discussion of Java concurrency is beyond the scope of this chapter (or this book).
However, this section will demonstrate a common task: creating a single thread. The same methods can
be applied to the rest of Java’s concurrency API. For information and a tutorial on Java’s concurrency
API, see http://java.sun.com/docs/books/tutorial/essential/concurrency/.

Creating a Thread
The most basic way to create a thread in Java is by instantiating a new java.lang.Thread object, passing
it a runnable in its constructor, and calling its start() method. The same can be accomplished in
Clojure. The following code demonstrates:

CHAPTER 11 ̈ PARALLEL PROGRAMMING

166

user=> (def value (atom 0))

#’user/value

First, you create an atom that stores a value. This isn’t actually part of the thread code, but you need
some way to obtain evidence that the thread actually ran, and you can do that by updating the value of
an atom.

user=> (def my-thread (Thread. #(swap! value inc)))

#'user/my-thread

This creates a thread object by invoking the java.lang.Thread constructor, which takes a single
runnable as its argument. In this case, you provide a simple inline function—all functions are runnables
in Clojure. Then, to start the thread, simply call the start() method:

user=> (.start my-thread)

nil

And, to verify that the thread actually ran:

user=> @value

1

It’s worth mentioning that this is far from the best way to create a thread in Java. Usually, you’ll want
to use the executor framework, explained in the previous URL link. However, the same techniques of
creating threads and passing them Clojure functions as Runnables apply.

Summary
Clojure has a variety of mechanisms for introducing concurrency, and they follow a rough hierarchy of
abstraction:

• The lowest level concurrency feature set in Clojure is Java’s built-in concurrency
library. It can do everything Java can, but lacks the ease of use of some of Clojure’s
more advanced features.

• For very simple control of spawning threads, use Clojure’s Futures. If you
need to force threads to wait for each other in a certain pattern, you can force
threads to block using Promises.

• For executing the same action on multiple pieces of data in parallel, it’s hard
to beat Clojure’s parallel functions. If an algorithm uses the map function,
then it can often be made parallel simply by replacing map with pmap.

• For a high-level, pool-based thread management system that handles both state
and execution, use Clojure’s Agents.

Successfully writing a highly parallel Clojure program consists of choosing the correct threading model,
using the methods previously listed, and managing state safely (as described in Chapter 10). Clojure
provides the tools, making it as easy as possible to do both.

C H A P T E R 12

 ̈ ̈ ̈

Macros and Metaprogramming

What Is Metaprogramming?
Metaprogramming is the use of code to modify or create other code. It is primarily a developer tool and
acts as a force multiplier, allowing large amounts of predictable code to be generated from just a few
statements in the host language (or “metalanguage”). It is extremely useful for automating repetitive,
boilerplate code.

Most programming languages support some form of metaprogramming. C has a preprocessor and
C++ has templates. Java has annotations and aspect-oriented programming extensions. Scripting
languages have “eval” statements. Most languages have some sort of API that can be used to introspect
or modify the core language features (such as classes and methods). As a last resort, any language can be
used to build source code using string manipulation and then feed it to a compiler.

Code vs. Data
Whatever the implementation, metaprogramming systems have one feature in common: they
manipulate code as data. Conceptually, programs execute code and consume or produce data as input
and output. By definition, metaprogramming inverts this relationship. Programs consume or produce
code (as their data), so when the generated program runs, it is executing data (as its code).

For most languages, treating code as data or data as code is a more or less a cumbersome process,
depending on the type of data which represents the code.

One common strategy is to treat code as a textual string. Code can be created by concatenating
keywords, variable names, and textual symbols, witht4 the resulting text fed back to the languages parser
or evaluator. Needless to say, this can be quite messy and confusing for all but the simplest
metaprogramming tasks.

Another strategy is to provide a set of APIs that expose the concepts of a programming language as
objects within the language, allowing the programmer to make calls such as createClass() or
addMethod(), to build code structures programmatically. This is much more effective than writing and
parsing strings, and is used extensively in many object-oriented languages. In this case, the data is
objects, which have a special relationship with the language runtime.

Homoiconicity
Clojure (and other Lisps) provide a third way of handling the code/data distinction: there is no
distinction. In Clojure, all code is data and all data is code.

This property is called homoiconicity, which means that the language’s code is represented in terms
of the language’s data structures. For example, this is a line of code in Clojure:

(println "Hello, world")

167

CHAPTER 12 ̈ MACROS AND METAPROGRAMMING

And this is a sequence (data):

'(println "Hello, world")

There is only one slight difference—the leading single quote. This is simply an instruction to Clojure
that itshould only read the list, instead of reading it and immediately evaluating it, as it would in the first
snippet. Forms like this (called quoted forms) stop after reading, rather than going on to be evaluated.

Clojure Reader (parser)

(println “Hello World”)

String Representation

110101010110101

Executable Bytecode

println

(symbol)

“Hello World”

(string literal)

List Representation

(abstract syntax tree)

Clojure Compiler

Figure 12-1. How Clojure code is loaded

The key point is that Clojure source code isn't fundamentally comprised of strings: Clojure source
code is comprised of data structure literals—vectors, maps, and sequences of symbols, literals, and other
sequences. In Clojure, data structures are very, very easy to work with, thanks to the sequence
abstraction. Metaprogramming is no more difficult than creating a list.

Macros
Macros are the primary means of metaprogramming in Clojure. A Clojure macro is a construct which
can be used to transform or replace code before it is compiled. Syntactically, they look a lot like
functions, but with several crucial distinctions:

• Macros shouldn't return values directly, but a form.

• Arguments to macros are passed in without being evaluated. They can then be
altered, ignored, or added to the macro's output.

• Macros are evaluated only at compile-time.

When you use a macro in your code, what you are really telling Clojure to do is to replace your
macro expression with the expression returned by the macro. This is a powerful means of abstraction,
and is very useful for implementing control structures or eliminating boilerplate or "wrapper" code.

For example, it is possible to define a macro called triple-do which takes one expression as an
argument, and replaced it with a do form which evaluates the expression three times. The programmer
would only type the following expression:

(triple-do (println "Hello"))

However, this would actually be compiled as this expression:

(do (println "Hello") (println "Hello") (println "Hello"))

168

 CHAPTER 12 ̈ MACROS AND METAPROGRAMMING

Aside from debugging it, there's no need for the programmer ever to need to see or worry about this
intermediate form. They can use it directly in their programs, and not worry about the complexity
tucked underneath:

user=> (triple-do (println "Hello"))
Hello
Hello
Hello

nil

Working with Macros
To create a macro, use the defmacro macro. This defines a function and registers it as a macro with the
Clojure compiler. From then on, when the compiler encounters the macro, it will call the function and
use the return value instead of the original expression.

defmacro takes basically the same arguments as defn: a name, an optional documentation string, a
vector of arguments, and a body. As previously mentioned, the body should evaluate to a valid Clojure
form. If the form returned by the macro function is syntactically invalid, it will cause an error wherever it
is used.

For example, the following code defines the very simple triple-do macro already mentioned:

(defmacro triple-do [form]

 (list 'do form form form))

This simply uses the built-in list function to create a list of four items: the do special form and three
repetitions of the provided form. Note that do is quoted, so it is added to the resultant list as a symbol,
rather than being evaluated in place in the body of the macro. If the provided form is (println "test"),
this list will be (do (println "test") (println "test") (println "test")). This list is valid Clojure
syntax, and so the macro works:

user=> (triple-do (println "test"))
test
test
test

nil

As another example of the possibilities of macros, it is possible write a macro that rewrites an infixed
mathematical expression as a standard Clojure prefixed expression, so it can be evaluated. For example,
it might transform (1 + 1) to the more standard (in Clojure) (+ 1 1). Prefix notation is the Lisp standard
and is preferable for all programming tasks. Don't use something like this in your main Clojure code.
However, this type of functionality could be useful for writing Domain Specific Languages (DSLs) for
people who didn't know Lisp.

When developing, it's first helpful to have a clear idea of what you want the input and output
expression to be. For this macro, you want to convert expressions like:

(infix (2 + 3))

to:

 (+ 2 3)

The macro definition is:

169

CHAPTER 12 ̈ MACROS AND METAPROGRAMMING

 (defmacro infix [form]

 (cons (second form) (cons (first form) (nnext form))))

It introspects the provided form, and uses cons to build a new expression, starting with the second
item (the operator), then the first item (the first number), then any additional items. You can verify that
it works using the following code:

user=> (infix (2 + 3))

5

Again, in general, it's bad form to go around redefining the standard way forms are evaluated.
Typically, users should get consistent behavior whether their expression is within a macro or not. Still,
this example demonstrates the power of macros, and occasionally there are good reasons to do such
drastic transformations on expressions.

Debugging Macros

Using macros can be somewhat mind-bending, since you have to keep in mind not only the code you're
writing, but the code you're generating. Clojure provides two functions that help debug macros as you
write them: macroexpand and macroexpand-1. They both take a single quoted form as an argument. If the
form is a macro expression, they return the expanded result of the macro without evaluating it, making it
possible to inspect and see exactly what a macro is doing. macroexpand expands the given form
repeatedly until it is no longer a macro expression. macroexpand-1 expands the expression only once.
Both of them expand only the macro forms present in the original expression; they don't recursively
expand additional macros present in the output.

The following example shows macroexpand applied to the macros defined in the previous section:

user=> (macroexpand '(triple-do (println "test")))

 (do (println "test") (println "test") (println "test")))

user=> (macroexpand '(infix (2 + 3)))

 (+ 2 3)

You can use different expressions with macroexpand, to see what the output for any arguments to
your macro looks like, even though it can quickly become complicated:

user=> (macroexpand '(triple-do (do (println "a") (println "b"))))

 (do (do (println "a") (println "b")) (do (println "a") (println "b")) (do (println "a")

(println "b")))

Sometimes, you can see errors before they occur. For example, if you pass an expression to the
infix macro that is already prefixed, it will actually reverse the process and infix the result, which is:

user=> (macroexpand '(infix (+ 1 2)))

 (1 + 2)

Using macroexpand gives an opportunity to see potential problems before you actually try evaluating
them. You can also run unit tests against the output of macroexpand to verify that your macros are
behaving as expected.

170

 CHAPTER 12 ̈ MACROS AND METAPROGRAMMING

Code Templating
Manually creating forms to return from macro functions can sometimes be tedious. Worse, with
complex macros it can be difficult to determine what the output form will actually be.

To alleviate this problem, Clojure provides a code templating system. Effectively, it allows macro
developers to enter the return forms of macros as literals, splicing in values where necessary.

 The templating system is based around the syntax-quote character, a backquote: `. Syntax quoting
works almost exactly the same as regular quoting with single-quote, with one major exception: you can
use the unquote symbol (the tilde, ~) to insert a value at any point within the syntax-quoted expression.
Also, symbols directly referenced within a syntax quote are assumed to be top level, namespace-
qualified symbols and will be expanded as such.

For example, take the macro body of triple-do. It explicitly uses the list function to construct a list
for return. Of course, the easier way to represent a list in code is to enter it as a literal, using the single
quote. However, it’s then impossible to modify it. By using syntax-quote, and by using unquote within it
to insert values, it is possible.

The templated version of the triple-do macro looks like the following:

(defmacro template-triple-do [form]

 `(do ~form ~form ~form))

The do expression is represented as a list literal, and the return value of the macro function. It uses
the syntax-quote character to ensure that it is treated as a literal and not evaluated right away. Inside the
syntax-quote are three unquotes; they actually insert the value of the form parameter at that point inside
the literal value.

The expansion of template-triple-do is identical to the original version:

user=> (macroexpand '(template-triple-do (println "test")))

 (do (println "test") (println "test") (println "test"))

Splicing Unquotes

Unquoting sequences within a syntax-quote doesn't always work out quite as intended. Sometimes, it is
desirable to insert the contents of a sequence the templated list, rather than the list itself. To see why, try
implementing the infix macro described previously, using templating:

(defmacro template-infix [form]

 `(~(second form) ~(first form) ~(nnext form)))

It looks like it should work fine. But try expanding it:

user=> (macroexpand '(template-infix (1 + 3)))

 (+ 1 (3))

There's an extra set of parenthesis around the 3, which will cause problems. The reason is that the
~(nnext form) expression resolves to a list, not an individual symbol. In this case, you want to insert the
contents of the sequence returned by (nnext form), not the sequence itself.

To insert the contents of a list, use the splicing unquote, denoted by ~@. ~@ inserts the values of a
sequence consecutively into a parent sequence. Using it instead of the normal unquote in the template-
infix macro yields the correct results:

171

CHAPTER 12 ̈ MACROS AND METAPROGRAMMING

(defmacro template-infix [form]

 `(~(second form) ~(first form) ~@(nnext form)))

user=> (macroexpand '(template-infix (1 + 3)))

 (+ 1 3)

Generating Symbols
One very important rule of Clojure macros is that while it is possible to create and bind local symbols in
macro-generated code, the names of such locals may not conflict with any existing symbols. But this is
problematic: when writing a macro, it is impossible to know all of the potential contexts in which a
macro might later be run. So Clojure enforces the rule: don't bind named symbols in macros.

Still, sometimes it's necessary to define local symbols in a macro. To get around this restriction,
Clojure provides a feature called auto gensym within syntax quoted forms. Within any syntax-quoted
form (forms using the back-tick, `), you can append the # character to the end of any local symbol name,
and when the macro is expanded, it will replace the symbol with a randomly generated symbol that is
guaranteed not to conflict with anything, and which will match any other symbol created with auto
gensym in the same syntax-quote template. As long as you use the auto gensym feature on them, you
can define as many local symbols as you like within your macros.

To see an example of this, consider a macro called debug-println which performs the same function
as println, but instead of returning nil, it returns the value of the expression. This allows it to be used
inside expressions and debug them. You want to be able to use it like this:

(+ 5 (* 4 (debug-println (/ 4 3)))

First, determine what you want the generated code to look like. In this case, it's as follows:

(let [result (/ 4 3)]
 (println (str "Value is: " result))

 result)

Then build the macro definition. Note how the result symbol is using the auto gensym feature:

(defmacro debug-println [expr]
 `(let [result# ~expr]
 (println (str "Value is: " result#))

 result#))

Calling macroexpand-1 shows the generated symbol name:

user=> (macroexpand '(debug-println (/ 4 3)))
(clojure.core/let [result_2349_auto (/ 4 3)]
 (clojure.core/println (clojure.core/str "Value is: " result_2349_auto)

 result_2349_auto)

With the exception of the alternate name for the result symbol, and the fully qualified function
names, it looks exactly like what we originally wanted. And it works!

user=> (+ 5 (* 4 (debug-println (/ 4 3)))
Value is: 4/3

31/3

172

 CHAPTER 12 ̈ MACROS AND METAPROGRAMMING

When to Use Macros
Macros are extremely powerful and allow you to control and abstract code in ways that would not be
otherwise possible. However, using them does come at a cost. They operate at a higher level of
abstraction, and so they are significantly more difficult to reason about then normal code. If a problem
occurs, it can be much trickier to debug, since there's an extra level of indirection between where the
problem actually is, and where the error message originates.

Therefore, the best way to use macros is to use them as little as possible. A few macros go a long
way. Most things you need macros for (including some of the examples in this chapter) could also be
accomplished with first-class functions. When you can, do that instead, and don't use macros.

That said, there are certain situations where using a macro is the best, easiest, or the only way to
accomplish a given task. Usually, they fall into one of the following categories:

• Implement control structures: One of the main differences between macros and
functions is that the arguments of macros are not evaluated. If you need to write a
control structure that might not evaluate some of its parameters, it has to be a
macro.

• Wrap def or defn: Usually, you only want to call def or defn at compile time.
Calling them programmatically while a program is running is usually a recipe for
disaster. So, if you need to wrap their behavior in additional logic, the best place to
do it is usually a macro.

• Performance: Because they are expanded at compile time, using a macro can be
faster than calling a function. Usually, this doesn't make much of a difference, but
in extremely tight loops, you can sometimes eke out performance by eliminating a
function call or two and using macros instead.

• Codify reoccurring patterns: Macros can be used to formalize any commonly
occurring pattern in your code. In essence, macros are your means of modifying
the language itself to suit your needs. Macros aren't the only way to do this, but
they can sometimes do it in a way that is least invasive to other parts of your code.

Using Macros
Understanding macros and knowing when to use them can be a daunting proposition, so it is helpful to
look at a range of examples to gain a sense of what macros can be used for. Unfortunately, no selection
of examples can entirely cover the types of things you can do with macros: macros represent no less than
an ability to change the language itself, and the potential ways one might want to do so are limitless.
However, there are some common patterns that are often implemented with macros and being familiar
with them can give you a head start in understanding when they can be useful.

Implementing a Control Structure

As mentioned, one of the important distinctions between macros and functions is that since macros are
expanded before compilation, rather than at runtime, it is possible that their arguments might not be
evaluated at all. This is an essential component of control structures, where it is necessary that only some
of the provided expressions actually evaluate, not all of them.

Consider a control form which takes two expressions and executes only one of them randomly. This
might be used in a game, or in an artificial intelligence implementation. You want it to look something
like the following:

173

CHAPTER 12 ̈ MACROS AND METAPROGRAMMING

(rand-expr (println "A") (println "B"))

This cannot be implemented as a function, since both println statements are evaluated as
arguments before rand-expr is even called. But you want only one of the expressions to evaluate at
random. This can only be accomplished with a macro.

The first thing to do is to plan out the form to which you want the macro to expand. In this case, it
has to include the logic for picking an expression at random from those provided. The expansion should
look something like this:

(let [n (rand-int 2)]

 (if (zero? n) (println "A") (println "B")))

First, the macro needs to pick a random number between 0 and 1. Then, if the number is 0, it
executes the first expression, otherwise the second.

The macro for this is fairly straightforward, given the syntax described:

(defmacro rand-expr [form1 form2]
 `(let [n# (rand-int 2)]

 (if (zero? n#) ~form1 ~form2)))

And, it works as expected, with the same expression sometimes evaluating (println "A") and
sometimes (println "B"), never both.

user=> (rand-expr (println "A") (println "B"))
B
nil
user=> (rand-expr (println "A") (println "B"))
B
nil
user=> (rand-expr (println "A") (println "B"))
A

nil

Implementing a Macro with Variadic Arguments

Macros can take variable numbers of arguments. An example of this would be the preceding macro, but
with the requirement that it randomly evaluate one of any number of expressions, rather than just one of
two.

(rand-expr-multi (println "A") (println "B") (println "C"))

Creating a macro which takes a variable number of forms as "arguments" is easily done, the same
way as it is for a function:

(defmacro rand-expr-multi [& forms] …)

What about the macro body? How to handle the variable number of arguments? Obviously, since
you don't know how many there are, you can't just reference them by name and slot them into place in
an if expression as was done in the first draft of rand-expr. You might be tempted to use something like
the nth function to select a random expression from the list, but consider: At macro-expansion time,
when you're building the structure, you don't have access to the random value. It has to be generated

174

 CHAPTER 12 ̈ MACROS AND METAPROGRAMMING

within the expansion at runtime. If you generate it at compile time, it will effectively become a constant.
Without access to the random value at expansion-time, you need to list all the possible expressions as
options in one of Clojure's more primitive control structures. Macro expansion is a process purely of
code transformation—keeping that fact firmly in mind will help avoid a lot of confusion about what is
available at expansion time as opposed to run time.

One viable solution would be to try and generate an expansion of something along these lines:

(let [ct (count <number of expressions>))]
 (case (rand-int ct)
 0 (println "A")
 1 (println "B")

 2 (println "C")))

The most succinct way is to use splicing unquote to splice in the list of forms that constitute the
body of the case. Noticing that these forms are alternating indexes and expressions lets you use the
interleave function to generate the list to splice in, which shortens the code considerably:

(defmacro rand-expr-multi [& exprs]
 `(let [ct# ~(count exprs)]
 (case (rand-int ct#)

 ~@(interleave (range (count exprs)) exprs))))

It generates the expected expansion:

user=> (macroexpand-1 '(rand-expr-multi (println "A") (println "B") (println "C")))

(clojure.core/let [ct__2188__auto__ 3]
 (clojure.core/case (clojure.core/rand-int ct__2188__auto__)
 0 (println "A")
 1 (println "B")

 2 (println "C")))

Upon testing, it works as expected:

user=> (rand-expr (println "A") (println "B"))
B
nil
user=> (rand-expr (println "A") (println "B"))
A
Nil
user=> (rand-expr (println "A") (println "B"))
C
nil
user=> (rand-expr (println "A") (println "B"))
B
nil
user=> (rand-expr (println "A") (println "B"))
B

nil

175

CHAPTER 12 ̈ MACROS AND METAPROGRAMMING

Implementing a Macro Using Recursion

Macros can also be applied recursively. As an example, consider a custom macro, ++, which can be used
instead of +, and which automatically replaces multiargument addition expressions with nested binary
expressions which perform slightly better in Clojure (see Chapter 14 for a more comprehensive
discussion of this issue). In other words, it takes easy-to-read expressions such as (++ 1 2 3 4 5) and
transforms them to slightly better performing, but more complex expressions like (+ 1 (+ 2 (+ 3 (+ 4
5)))).

Like recursive functions, recursive macros must have a base case at which they no longer recur, or
else they will continue recursing forever and cause a stack overflow error, though at compile time
instead of runtime. For the ++ macro, the base case is when it is passed only one or two arguments. In
that scenario, it merely emits a standard + expression. When given three or more arguments, it applies
itself recursively to its argument list, emitting an additional nested expression with each level of
recursion.

It's easiest to look at the code:

(defmacro ++ [& exprs]
 (if (>= 2 (count exprs)
 `(+ ~@exprs)

 `(+ ~@(first exprs) (++ ~@(rest exprs)))))

It is very straightforward. There is one if condition, which differentiates between the base and
recursive case. In the base case, it simply splices the provided expressions into a straightforward
application of the + function. In the recursive case, it also creates a + function application and splices in
the first expression as the first argument. For the second argument, it recursively inserts ++, splicing in
the rest of the expressions as its arguments.

When the macro is expanded, the first layer is unwrapped and shows that it is correct, at least so far.

user=> (macroexpand '(++ 1 2 3 4))

(clojure.core/+ 1 (user/++ 2 3 4))

To see the entire recursive expansion, you can use Stuart Sierra's clojure.walk library, which is
packaged with Clojure. It includes a macroexpand-all which, unlike macroexpand or macroexpand-1, does
recursively expand all the macros it can find until there are none left. Importing and running
macroexpand-all gives the complete, final expansion:

user=> (clojure.walk/macroexpand-all '(++ 1 2 3 4))

(clojure.core/+ 1 (clojure.core/+ 2 (clojure.core/+ 3 4)))

Actually using the macro shows it has the same semantics as +. It should be ever so slightly faster, as
well, although the difference isn't detectable without an elaborate benchmark.

user=> (++ 1 2 3 4)

10

Using Macros to Create DSLs
One common use of macros is to generate custom DSLs. Using macros, a few simple, intuitive
expressions can generate much more bulky, complex code without exposing it to the user.

176

 CHAPTER 12 ̈ MACROS AND METAPROGRAMMING

The potential use for DSLs in Clojure is unlimited. Enclojure (the web framework for Clojure
currently in vogue) allows the user to define web application paths and restful APIs using a simple,
immediately understandable DSL syntax. Another Clojure project, Incanter, provides a DSL based on the
R programming language that is incredibly succinct and useful for doing statistics and building charts.

Clojure's DSLs are particularly effective because there is no sharp distinction between an API and a
DSL. Every well-designed Clojure API automatically ends up looking a lot like a DSL, and as Clojure
programs get more complex they tend to evolve high-level functions and macros that are extremely easy
to read.

The following macro demonstrates a very rudimentary Clojure DSL, one that uses Clojure
expressions to build something very similar to XML (minus complexities such as attributes and
namespaces).

The xml macro shown here is slightly different from the previous examples of macros; its expansion
is a string, rather than a collection of forms. A macro is used instead of a function because the DSL works
by overriding the normal processing of the provided forms, rendering them to a string instead of
evaluating them. It isn't the best way to process XML in Clojure, by a long shot—for that, look at the
clojure.xml, clojure.zip, and Stuart Sierra's clojure.contrib.prxml libraries. This is just a small,
manageable example that will show some of the versatility that macros provide.

The input of the macro is just a series of nested forms. The forms don't have to resolve: they will be
transformed into a string by the macro without ever being evaluated. The macro transforms input like
this:

(xml
 (book
 (authors
 (author "Luke")

 (author "Stuart"))))

Into output like this:

 <book><authors><author>Luke</author><author>Stuart</author></authors></book>

The code itself is as follows:

(defn xml-helper [form]
 (if (not (seq? form))
 (str form)
 (let [name (first form)
 children (rest form)]
 (str "<" name ">"
 (apply str (map xml-helper children))

 "</" name ">"))))

(defmacro xml [form]

 (xml-helper form))

The macro is very lightweight. It is passed a single form which it immediately passes off to a helper

function. Macro helper functions are a common idiom. Often, as in this case, the macro itself doesn't do
any work at all, but only serves to obtain the original form as a sequence. From there, functions can do
all the actual work of transformation. When this is possible, it is usually desirable, since functions are
often much easier to reason about than macros. Just remember, the function will be evaluated at

177

CHAPTER 12 ̈ MACROS AND METAPROGRAMMING

178

compile time, as the macro is expanded, so it will not have access to the full runtime state of your
program.

The helper function is a simple recursive function. The base case is when the provided form is a
primitive (not a sequence). It simply returns it as a string. When the form is a sequence, it creates and
returns an XML string, using the first item as the element name and the rest of the items as children
which it processes recursively.

Running the macro shows that it is working:

user=> (xml (book (authors (author "Luke") (author "Stuart"))))

"<book><authors><author>luke</author><author>Stuart</author></authors></book>"

From an XML processing perspective, it is terribly primitive and should not be used for any real
work. As a demonstration of the power of macros, it is beautiful. The conversion from nested
expressions to XML string happens at compile time. Because xml is a macro which returns a string, a
program using it will actually "see" the xml expression as a string literal! The mini-XML DSL shown here
is now an extension of the Clojure compiler itself.

Obviously such power can be abused, and it is possible to use macros to build incredibly obtuse and
convoluted expressions. When used correctly, they provide nearly unlimited power to change the
language to suit any need.

Summary
Through macros, Clojure provides powerful, elegant metaprogramming facilities. In Clojure, code and
data are interchangeable, and macros are compile-time functions which emit data that becomes code.

Macros can either build code directly, or use syntax-quoting to template their output. They are
hygienic, in that symbols bound by macros must use the auto gensym feature to avoid potential
collisions with existing symbols.

Although they can add complexity to a program, when used judiciously macros provide the means
to eliminate nearly all repeated and boilerplate code. They allow the developer to create language-level
control structures and abstractions, extending the language exactly as needed to fit the problem domain.
Tasteful and restrained use of macros, along with Clojure's other dynamic features such as first-class
functions, allows developers to create custom DSLs, organically adapting their systems to fit a problem
domain, rather than being forced to restate their problems just to meet the demands of an inflexible
system.

C H A P T E R 13

 ̈ ̈ ̈

179

Datatypes and Protocols

Clojure is built on abstractions: sequences, references, macros, and so forth. However, most of those
abstractions are implemented in Java, as classes and interfaces. It is difficult to add new abstractions to
the language (for example, a queue data structure) without implementing them in Java.

Clojure 1.2 introduces several new features to make it easier to implement new abstractions directly
in Clojure, while still taking full advantage of the performance optimizations in the Java platform.
Datatypes and protocols are roughly analogous to Java's classes and interfaces, but they are more
flexible.

̈ Note As of this writing, Clojure 1.2 has not yet been released. Although the concepts will remain the same,

there may be minor changes in naming or syntax from what we describe in this chapter.

Protocols
A protocol is a set of methods. The protocol has a name and an optional documentation string. Each
method has a name, one or more argument vectors, and an optional documentation string. That's it!
There are no implementations, no actual code.

Protocols are created with defprotocol:

(defprotocol MyProtocol
 "This is my new protocol"
 (method-one [x] "This is the first method.")

 (method-two ([x] [x y]) "The second method."))

If you were to execute this example in the namespace my.code, the following Vars would be created:

• my.code/MyProtocol: A protocol object.

• my.code/method-one: A function of one argument.

• my.code/method-two: A function of one or two arguments.

method-one and method-two are polymorphic functions, meaning they can have different
implementations for different types of objects. You can call method-one or method-two immediately after
defprotocol, but they will throw an exception because no implementations have been defined.

CHAPTER 13 ̈ DATATYPES AND PROTOCOLS

180

What is a protocol? It's a contract, a set of capabilities. An object or a datatype (described in the next
section) can declare that it supports a particular protocol, meaning that it has implementations for the
methods in that protocol.

Protocols As Interfaces

Conceptually, a protocol is similar to a Java interface. In fact, defprotocol creates a Java interface with
the same methods. You can AOT-compile the Clojure source file containing defprotocol and use the
interface in Java code. The Java interface will be in a package matching the namespace in which the
protocol was defined. The package, interface, and method names will be adjusted to obey Java naming
rules, such as replacing hyphens with underscores. Each method in the interface will have one argument
fewer than the protocol method: that argument is the this pointer in Java. The previous example would
create an interface matching the following Java code:

package my.code;

public interface MyProtocol {
 public Object method_one();
 public Object method_two(Object y);

}

There is one important difference between protocols and interfaces: protocols have no inheritance.
You cannot create “subprotocols” like Java's subinterfaces.

Protocols are also similar to “mix-in” facilities provided by languages such as Ruby, with another
important difference: protocols have no implementation. As a result, protocols never conflict with one
another, unlike mix-ins.

Datatypes
Although Clojure is not, strictly-speaking, an object-oriented language, sometimes it is tempting to think
in object-oriented terms when dealing with the real world. Most applications have many “records” of the
same “type” with similar “fields.”

Prior to Clojure 1.2, the standard way to handle records was to use maps. This worked, but did not
permit any performance optimizations from reusing the same keys in many maps.

StructMaps were one solution, but they had several problems. StructMaps have a predefined set of
keys, but no actual “type” that can be queried at runtime. They cannot be printed and read back as
StructMaps. They cannot have primitive-typed fields, and they cannot match the performance of
instance fields in plain old Java objects.

Clojure 1.2 introduces datatypes as a replacement for StructMaps. A datatype is a named record
type, with a set of named fields that can implement protocols and interfaces. Datatypes are created with
defrecord:

(defrecord name [fields...])

For example, a datatype might store an employee record with two fields, name and room number:

user> (defrecord Employee [name room])

 CHAPTER 13 ̈ DATATYPES AND PROTOCOLS

181

In this example, defrecord creates a new class named Employee It has a default constructor that
takes arguments matching the fields of the type, in the same order. You can construct an instance of the
datatype by adding a dot to the end of its name.

user> (def emp (Employee. "John Smith" 304))

Datatype instances behave like Clojure maps. You can retrieve the fields of a datatyped object by
using keywords as accessor functions:

user> (:name emp)
"John Smith"
user> (:room emp)

304

This is much faster than map lookups and even faster than StructMap accessor functions. Datatype
instances also support the assoc and dissoc functions.

user=> (defrecord Scientist [name iq])
user.Scientist
user=> (def x (Scientist. "Albert Einstein" 190))
#'user/x
user=> (assoc x :name "Stephen Hawking")

#:user.Scientist{:name "Stephen Hawking", :iq 190}

You can even assoc additional fields that were not part of the original datatype, without changing the
object's type.

user=> (assoc x :field "physics")

#:user.Scientist{:name "Albert Einstein", :iq 190, :field "physics"}

However, if you dissoc one of the original datatype keys, you get an ordinary map as the result.

user=> (dissoc x :iq)

{:name "Albert Einstein"}

Implementing Protocols and Interfaces
A datatype, by itself, just stores data. A protocol, by itself, doesn't do anything at all. Together they form a
powerful abstraction. Once a protocol has been defined, it can be extended to support any datatype. We
say the datatype implements the protocol. At that point, the protocol's methods can be called on
instances of that datatype.

In-Line Methods

When creating a datatype with defrecord, you can supply method implementations for any number of
protocols. The syntax is as follows:

(defrecord name [fields...]
 SomeProtocol

CHAPTER 13 ̈ DATATYPES AND PROTOCOLS

182

 (method-one [args] ... method body ...)
 (method-two [args] ... method body ...)
 AnotherProtocol

 (method-three [args] ... method body ...))

You can chain any number of protocols and methods after the fields vector. Each method
implementation has the same number of arguments as the corresponding protocol method. Fields of the
instance are available as local variables in the method bodies, using the same names.

(defrecord name [x y z]
 SomeProtocol
 (method-one [args]

 ...do stuff with x, y, and z...))

These are the only locals available in the method bodies: defrecord does not close over its lexical scope
like fn, proxy, or reify, which is described in the section “Reifying Anonymous Datatypes.”

Extending Java Interfaces

Datatypes can also implement methods from Java interfaces. For example, you could implement the
java.lang.Comparable interface, allowing your new datatype to support the Clojure compare function:

user> (defrecord Pair [x y]
 java.lang.Comparable
 (compareTo [this other]
 (let [result (compare x (:x other))]
 (if (zero? result)
 (compare y (:y other))
 result))))
#'user/Pair
user> (compare (Pair 1 2) (Pair 1 2))
0
user> (compare (Pair 1 3) (Pair 1 100))

-1

Note that the this argument, representing the object on which the method was called, must be explicitly
included. This means that Clojure implementations of Java methods will have one more argument than
appears in the Java method signature.

Since most of Clojure's core functions are defined to operate on interfaces, they can be extended to
support new datatypes. Clojure defines too many interfaces to list here, but they can be found in the
Clojure source code. Some examples are clojure.lang.Seqable and clojure.lang.Reversible for the seq and
rseq functions, respectively. In a future release (2.0 or later), these interfaces will likely be redefined as
protocols.

defrecord does not support Java class inheritance, so it cannot override methods of Java classes,
even abstract classes. However, it does permit you to override methods of java.lang.Object such as
hashCode, equals, and toString. Simply include java.lang.Object in the defrecord as if it were an
interface. Clojure will generate good value-based implementations of the hashCode and equals methods,
so it is rarely necessary to implement them yourself.

Java interfaces sometimes define overloaded methods with the same name but different argument
types. If the methods have different numbers of arguments (arities), just define each arity as if it were a

 CHAPTER 13 ̈ DATATYPES AND PROTOCOLS

183

distinct method. (Do not use the multiple-arity syntax of fn.) If the methods have arguments of different
types, add type tags (Chapter 8) to disambiguate them.

Datatypes As Classes

A datatype is equivalent to a Java class containing public final instance fields and implementing any
number of interfaces. It does not extend any base class except java.lang.Object.

Unlike Java classes, a datatype is not required to provide implementations for every method of its
protocols or interfaces. Methods lacking an implementation will throw an AbstractMethodError when
called on instances of that datatype.

When AOT-compiled, defrecord will generate a Java class with the same name as the datatype and a
package name matching the current namespace (subject to Java name rules, as with protocols). The
generated class will have two constructors: one with just the fields as arguments and one with two extra
arguments; a metadata map and a map of additional fields, either of which may be nil.

You cannot add additional constructors to a datatype, nor can you add methods that are not defined
in a protocol or interface.

To optimize the memory usage of your datatype, you can add primitive type hints to the fields. You
can also type-hint fields with class names; this will not affect memory usage (all pointers are the same
size) but can prevent reflection warnings.

user> (defrecord Point [#^double x #^double y])
#'user/Point
user> (Point. 1 5)

#:Point{:x 1.0, :y 5.0}

Extending Protocols to Pre-Existing Types
Sometimes you may want to create a new protocol that operates on an existing datatype. Assume, for
now, that you cannot modify the source code of the defrecord. You can still extend the protocol to
support that datatype, using the extend function:

(extend DatatypeName
 SomeProtocol
 {:method-one (fn [x y] ...)
 :method-two existing-function}
 AnotherProtocol

 {...})

extend takes a datatype name followed by any number of protocol/method map pairs. A method
map is an ordinary map from method names, given as keywords, to their implementations. The
implementations can be anonymous functions created with fn or symbols naming existing functions.

Because extend is an ordinary function, all its arguments are evaluated. This means you could store
a method map in a Var and reuse it to extend several datatypes, providing functionality very similar to
mix-ins.

(def defaults
 {:method-one (fn [x y] ...)
 :method-two (fn [] ...)})

CHAPTER 13 ̈ DATATYPES AND PROTOCOLS

184

(extend DefaultType
 SomeProtocol
 defaults)
(extend AnotherType
 SomeProtocol

 (assoc defaults :method-two (fn ...)))

There are two convenience macros that simplify the extension syntax, extend-type and
extend-protocol. Use extend-type when you want to implement several protocols for the same datatype;
use extend-protocol when you want to implement the same protocol for several datatypes.

(extend-type DatatypeName
 SomeProtocol
 (method-one [x] ... method body ...)
 (method-two [x] ...)
 AnotherProtocol
 (method-three [x] ...))

(extend-protocol SomeProtocol
 SomeDatatype
 (method-one [x] ...)
 (method-two [x y] ...)
 AnotherType
 (method-one [x] ...)

 (method-two [x y] ...))

Methods added using extend and its associated macros are attached to the protocol, not the
datatype itself. This makes them more flexible (they work on standard Java classes, described in the
following section) but slightly less efficient than methods embedded directly within defrecord.

Extending Java Classes and Interfaces

Datatypes and protocols are a powerful abstraction, but often you have to deal with Java classes for
which you do not have the source code. Java does not provide a way to add new interfaces to an existing
class (known as interface injection), but Clojure protocols can be extended to support existing Java
classes.

extend, extend-type, and extend-protocol all accept Java classes as “types.” This works on
interfaces, too. You can write (extend-type SomeInterface...) to extend a protocol to all classes that
implement SomeInterface. This opens up the possibility of multiple inheritance of implementation,
because a class can implement more than one interface; the result is currently undefined and should be
avoided.

Reifying Anonymous Datatypes
Sometimes you need an object that implements certain protocols or interfaces, but you do not want to
create a named datatype. Clojure 1.2 supports this with the reify macro:

(reify
 SomeProtocol

 CHAPTER 13 ̈ DATATYPES AND PROTOCOLS

185

 (method-one [] ...)
 (method-two [y] ...)
 AnotherProtocol

 (method-three [] ...))

reify's syntax is very similar to defrecord without the fields vector. Also, like defrecord, reify can
extend methods of Java interfaces and java.lang.Object.

Unlike defrecord, the method bodies of reify are lexical closures, like anonymous functions created
with fn, so they can capture local variables:

user> (def thing (let [s "Capture me!"]
 (reify java.lang.Object
 (toString [] s))))
#'user/thing
user> (str thing)

"Capture me!"

Many situations that formerly required the use of proxy can be handled with reify. In those cases,
reify will be faster and simpler than proxy. However, reify is limited to implementing interfaces; it
cannot override base class methods like proxy.

Conceptually, reify fills the same role as anonymous inner classes in Java.

Working with Datatypes and Protocols
Datatypes and protocols are a significant new feature in Clojure, and they will have a major impact on
how most Clojure programs are written. Standards and best practices are still developing, but a few
guidelines have emerged:

• Prefer reify to proxy unless you need to override base class methods.

• Prefer defrecord to gen-class unless you need gen-class features for Java
interoperability.

• Prefer defrecord to defstruct in all cases.

• Specify your abstractions as protocols, not interfaces.

• Prefer protocols to multimethods for the case of single-argument type-based
dispatch.

• Add type hints only where necessary for disambiguation or performance (Chapter
14); most types will be inferred automatically.

Datatypes and protocols do not remove any existing features: defstruct, gen-class, proxy, and
multimethods are all still there. Only defstruct is likely to be deprecated.

The major difference between Java classes and protocols/datatypes is the lack of inheritance. The
protocol extension mechanism is designed to enable method reuse without concrete inheritance and its
associated problems.

CHAPTER 13 ̈ DATATYPES AND PROTOCOLS

186

A Complete Example

Here's a version of the classic “payroll” example using protocols and datatypes. Your payroll system will
have one method that calculates employees' monthly paychecks based on how many hours they work:

(defprotocol Payroll

 (paycheck [emp hrs]))

Then there are two kinds of employees: “hourly” employees who are paid by the hour and “salaried”
employees who are paid a fixed portion of their annual salary each month, regardless of how many
hours they work:

(defrecord HourlyEmployee [name rate]
 Payroll
 (paycheck [hrs] (* rate hrs)))

(defrecord SalariedEmployee [name salary]
 Payroll

 (paycheck [hrs] (/ salary 12.0)))

Notice that you have not defined an IS-A relationship. There is no “Employee” base type; none is
needed. All you have said is: these two types exist, and both support the paycheck method of Payroll.

Now you can define a couple of employees and calculate their paychecks:

user=> (def emp1 (HourlyEmployee. "Devin" 12))
user=> (def emp2 (SalariedEmployee. "Casey" 30000))
user=> (paycheck emp1 105)
1260
user=> (paycheck emp2 120)

2500.0

You might also need to send paychecks to contractors: in that case, the contractor's payment is
specified before they start working. This could be another datatype, but you can also implement it using
reify:

(defn contract [amount]

 (reify Payroll (paycheck [hrs] amount)))

As shown in the following example:

user=> (def con1 (contract 5000))
user=> (paycheck con1 80)

5000

Advanced Datatypes
Datatypes defined with defrecord are useful for storing structured data, but fundamentally they always
act like maps. If you want to define a completely new type, one that doesn't behave like a map, use the
deftype macro instead. deftype is a “lower-level” version of defrecord.

 CHAPTER 13 ̈ DATATYPES AND PROTOCOLS

187

(deftype name [fields...]
 SomeProtocol
 (some-method [this x y] ...)
 SomeInterface

 (aMethod [this] ...))

The syntax is the same as defrecord, but deftype will not create any default method
implementations for you. You must suppply all the method implementations, even standard Object
methods such as equals and hashCode. deftype creates a “bare” Java class; it is intended to allow the
redefinition of core data structures, such as vectors or maps, in Clojure itself.

Summary
Datatypes and protocols are two of the most exciting new features planned for Clojure 1.2. They provide
a powerful solution to many of the same problems that object-oriented programming was intended to
solve, but without the baggage of implementation inheritance. In fact, datatypes and protocols bear a
remarkable similarity to early research in object-oriented design. They elegantly handle the problem of
adding new functions to existing types, sometimes called the “expression problem.” Because they are
built on the Java platform's heavily-optimized method dispatch, they also provide excellent
performance.

C H A P T E R 14

 ̈ ̈ ̈

Performance

In principle, Clojure can be just as fast as Java: both are compiled to Java bytecode instructions, which
are executed by a Java Virtual Machine. Clojure's design is careful to avoid features—such as
continuations or a Common Lisp-like condition system—that would severely compromise performance
on the JVM. But Clojure is still a young language, and has not had the benefit of hundreds of thousands
of programmer-hours spent optimizing the compiler. As a result, Clojure code will generally run slower
than equivalent Java code. However, with some minor adjustments, Clojure performance can usually be
brought near Java performance. Don't forget that Java is always available as a fallback for performance-
critical sections of code.

Profiling on the JVM
The number one rule when evaluating performance of any programming language or algorithm is: test!
Do not assume that one technique will necessarily be faster because it appears to have fewer steps or use
fewer variables. This is especially true on modern JVMs such as Hotspot, which constantly measure code
performance and dynamically recompile critical sections while your application is running.

So-called microbenchmarks that measure a single operation in isolation are meaningless in this
environment. Also meaningless are benchmarks where the start-up time of the JVM dominates the
measurement (this is a frequent error in comparisons between Java and C++). Modern JVMs are typically
optimized for throughput, maximizing the total number of operations that can be performed over a long
period of time.

General Tips for Java Performance

Java Virtual Machines have a number of options that affect performance. First, for JVMs that distinguish
between “client” and “server” modes, the “server” mode will always offer better overall performance (at
the expense of longer start-up time).

Second, the size of the Java heap space and the choice of garbage collection strategy impact
performance. This is especially true for Clojure, which because of its use of immutable data, tends to use
more heap space and put more stress on the garbage collector than Java.

There are many more tuning parameters in modern JVMs that can affect performance. Make sure
you are familiar with the “knobs” offered by your VM and experiment to see how they affect your
particular application.

189

CHAPTER 14 ̈ PERFORMANCE

Simple Profiling with Time

Clojure has a very simple profiling tool built-in, the time macro. time takes a single expression, evaluates
it, and prints how long it took in milliseconds:

user=> (time (reduce + (range 100)))
"Elapsed time: 1.005 msecs"

4950

As previously noted, such microbenchmarks are all but meaningless in the context of the JVM. A
slightly better measurement can be obtained by repeating the same calculation thousands of times in a
tight loop:

user=> (time (dotimes [i 100000]
 (reduce + (range 100))))
"Elapsed time: 252.594 msecs"

nil

However, this still does not present the whole picture, as the JVM might reoptimize the calculation
between executions of the loop. A more accurate result can be obtained by repeating the loop several
times:

user=> (dotimes [j 5]
 (time (dotimes [i 100000]
 (reduce + (range 100)))))
"Elapsed time: 355.759 msecs"
"Elapsed time: 239.404 msecs"
"Elapsed time: 217.362 msecs"
"Elapsed time: 221.168 msecs"

"Elapsed time: 217.753 msecs"

As you can see, in this example, the time bounces around for a couple of iterations before converging
around 220 milliseconds. This pattern is typical of the JVM.

However, even with this information, you cannot predict exactly how the calculation
(reduce + (range 100)) will perform in the context of a large application. Only further testing will tell.

Also, be aware of the impact of lazy sequences. If the expression you are testing uses lazy sequences
(for example, using map), the time macro may only report the time to initialize the sequence. To measure
the time to realize the entire sequence, you must use doall, which can be difficult to do in a complex
data structure and is probably not representative of how the structure will actually be used.

Using Java Profiling Tools

Since Clojure compiles to Java bytecode, Java profiling tools will work on Clojure, but a discussion of
such tools is outside the scope of this book.

The best rule-of-thumb is this: write your code in the simplest, most direct way possible, then test to
see if it meets your performance expectations. If it does not, use profiling tools to identify the critical
sections that matter most to performance, and tweak or rewrite those sections until they meet your
performance goals. The following pages describe some techniques for optimizing critical sections of
Clojure code.

190

 CHAPTER 14 ̈ PERFORMANCE

Memoization
One simple technique for speeding up large, complex functions is memoization, which is a form of
caching. Each time it is called, a memoized function will store its return value in a table, along with the
input arguments. If that function is called again with the same arguments, it can return the value stored
in the table without repeating the calculation.

Clojure has built-in support for memoization with the memoize function, which takes a function as
its argument and returns a memoized version of that function.

(defn really-slow-function [x y z] ...)

(def faster-function (memoize really-slow-function))

Memoization is a classic example of trading increased memory usage for faster execution time. If a
function takes longer to calculate its result than a hash table lookup, and it will be called frequently with
the same inputs, it is a good candidate for memoization. Only pure functions—that is, functions that
always return the same output for a particular input—can be memoized.

Reflection and Type Hints
As you know, Java is a statically typed language: it knows the types of all objects at compile time. Clojure
is dynamically typed, meaning the types of some objects may not be known until runtime.

To implement dynamically-typed function calls on top of statically-typed Java, Clojure uses a Java
feature called reflection. Reflection allows code to inspect Java classes at runtime and call methods by
name. However, reflective method calls are much slower than compiled method calls.

Clojure allows you to add type hints to symbols and expressions to help the compiler avoid reflective
method calls. Type hints are indicated through read-time metadata (see Chapter 8) using the :tag
keyword. A type-hinted symbol would be written as #^{:tag hint} symbol, this is usually abbreviated as
#^hint symbol. The type hint is a Java class name. (The class name may also be a string, which is only
rarely needed to handle obscure Java interoperability problems.)

To find out whether a method call is reflective or not, set the compiler flag *warn-on-reflection* to
true. After that, evaluating any code that contains a reflective call will cause the Clojure compiler to print
a warning message.

user=> (set! *warn-on-reflection* true)
true
user=> (defn nth-char [s n]
 (.charAt s n))

Reflection warning - call to charAt can't be resolved.

The warning can usually be eliminated by adding a type hint to the symbol on which you are calling the
method. This works for both function parameters and locals bound with let.

;; No reflection warnings:
user=> (defn nth-char [#^String s n]
 (.charAt s n))
#'user/nth-char
user=> (defn nth-char [s n]
 (let [#^String st s]

191

CHAPTER 14 ̈ PERFORMANCE

 (.charAt st n)))

#'user/nth-char

In the case of Java methods overloaded on different argument types, further type hints may be
needed. For example, the String.replace method accepts either char or CharSequence arguments. You
have to type hint all three arguments to avoid reflection.

user=> (defn str-replace [#^String s a b]
 (.replace s a b))
Reflection warning - call to replace can't be resolved.
#'user/str-replace
user=> (defn str-replace [#^String s
 #^CharSequence a
 #^CharSequence b]
 (.replace s a b))

#'user/str-replace

Note that type hints are not type coercions, they cannot convert one type into another. Calling a
type-hinted method with the wrong types will result in a runtime error:

user=> (str-replace "Hello" \H \J)
java.lang.ClassCastException: java.lang.Character cannot

be cast to java.lang.CharSequence

Also, note that incorrect type hints will cause a reflection warning:

user=> (defn str-replace [#^String s #^Integer a #^Integer b]
 (.replace s a b))
Reflection warning - call to replace can't be resolved.

#'user/str-replace

You can type-hint the return value of a function by adding a type tag to its Var when it is defined.
This works for any Var, such as those used as global values.

user=> (defn greeting [] "Hello, World!") ;; no type hint
#'user/greeting
user=> (.length (greeting))
Reflection warning - reference to field length can't be resolved.
13
user=> (defn #^String greeting [] "Hello, World!")
#'user/greeting
user=> (.length (greeting)) ;; no reflection warning
13

user=> (defn greeting {:tag String} [] "Hello, World!") ;; same as above

In rare cases, type hinting symbols will not be sufficient to avoid reflection. In that case, you can
type-hint an entire expression:

user=> (.length (identity "Hello, World!"))
Reflection warning - reference to field length can't be resolved.
13

192

 CHAPTER 14 ̈ PERFORMANCE

user=> (.length #^String (identity "Hello, World!"))

13

The Clojure compiler is pretty clever about tracking the types of objects. For example, the return
types of Java methods are always known and never need to be hinted. Given just a few hints, the
compiler can usually infer most of the other type information it needs. In general, you should write your
code first without any type hints, then set *warn-on-reflection* and add them only where necessary for
performance.

Working with Primitives
Java's type system is not 100% object-oriented; it supports the primitive types boolean, char, byte, short,
int, long, float, and double. These primitive types do not fit into the standard Java class hierarchy.
When used with methods that expect an Object, primitives must be boxed in the classes Boolean,
Character, Byte, Short, Integer, Long, Float, and Double. Starting with Java 1.5, the Java compiler
automatically boxes and unboxes primitives as needed.

In Clojure, everything is an Object, so numbers are always boxed. This can be seen by inspecting the
results of simple arithmetic:

user=> (class (+ 1 1))

java.lang.Integer

However, in the JVM, operations on boxed numbers are slower than operations on unboxed
primitives. So for math-intensive applications, Clojure code with boxed numbers will be slower than
Java code that works directly with primitives.

Loop Primitives

Clojure supports primitive types where it matters most: in the body of a loop. In the bindings vector of
loop (or let) you can coerce values to primitive types with the functions boolean, char, byte, short, int,
float, and double. Here is an example of Euclid's algorithm for computing the greatest common
denominator of two integers:

(defn gcd [a b]
 (loop [a (int a), b (int b)]
 (cond (zero? a) b
 (zero? b) a
 (> a b) (recur (- a b) b)

 :else (recur a (- b a)))))

The primitive coercions to int happen in the initialization vector of the loop. This version is about
twelve times faster than the non-primitive version. But, be careful! Suppose you had chosen to
implement the same algorithm using the mod (modulo) function. That code would be slower using
primitives, because arguments to Clojure functions (except arithmetic) are always boxed. Therefore,
when using loop primitives, you should only call the following primitive-aware functions:

• Arithmetic functions +, -, *, and /

• Comparison functions ==, <, >, <=, and >=

193

CHAPTER 14 ̈ PERFORMANCE

• Predicate functions pos?, neg?, and zero?

• Java methods with primitive argument and return types

• Unchecked arithmetic functions (described in the following section)

Notice that the general-purpose = function is not on this list. Instead, use the == function, which
only works on numbers. Full primitive support for all Clojure functions, including user-defined
functions, is planned for a future release.

Numeric literals must also be coerced to primitive types to use primitive operations. For example,
the following code computes the sum of the integers from 1 to 100:

(let [max (int 100)]
 (loop [sum (int 0)
 i (int 1)]
 (if (> i max)
 sum

 (recur (+ sum i) (inc i)))))

The initial values of the loop variables sum and i must be coerced into primitives with int. The primitive
coercion of max is outside the loop because it only needs to be done once. If you used the literal number
100 instead of the local variable max, the code would still work, but it would not be quite as fast.

Unchecked Integer Arithmetic

Clojure's primitive arithmetic operations are defined to be safe, meaning they will throw an error if the
result of an operation is too big for the result type. For example, this loop, designed to calculate 2^64,
throws an exception:

user=> (let [max (int 64)
 two (int 2)]
 (loop [total (int 1), n (int 0)]
 (if (== n max)
 total
 (recur (* total two) (inc n)))))

java.lang.ArithmeticException: integer overflow

However, there are certain algorithms (such as hashing) where the silent overflow behavior of
integer arithmetic is desirable. For these cases, Clojure provides a set of functions that perform integer
arithmetic exactly like Java's arithmetic operators. They all accept Integer or Long arguments, and are
primitive-aware.

The following functions are subject to integer overflow: unchecked-add, unchecked-subtract,
unchecked-multiply, unchecked-negate, unchecked-inc, and unchecked-dec.

user=> (unchecked-inc Integer/MAX_VALUE)
-2147483648
user=> (unchecked-negate Integer/MIN_VALUE)

-2147483648

The unchecked-divide and unchecked-remainder functions are subject to lossy truncation.

194

 CHAPTER 14 ̈ PERFORMANCE

user=> (unchecked-divide 403 100)

4

The unchecked operations will be slightly faster than the standard arithmetic functions when used
with loop primitives. However, make certain you can accept the loss of safety before switching to
unchecked arithmetic.

Primitive Arrays

Starting with Clojure 1.1, you can type-hint arrays of primitives: Java boolean[], char[], byte[], short[],
int[], long[], float[], and double[] can be hinted as #^booleans, #^chars, #^bytes, #^shorts, #^ints,
#^longs, #^floats, and #^doubles, respectively. (There is also #^objects for Object[].)

Type-hinted arrays support primitive operations using aget and aset. There is no need to use the
type-specific setter functions such as aset-int and aset-double; in fact, those functions will be slower
than aset for type-hinted primitive arrays. For aset, the new value must also be the correct primitive
type. For both aget and aset, the array index must be a primitive int. The amap and areduce macros
(described in Chapter 10) are an excellent way to perform fast operations on primitive arrays while
retaining a functional style.

Transients
As you know by now, all of Clojure's built-in data structures are immutable and persistent to ensure safe
concurrent access from multiple threads. But what if you have a data structure that you know will only
be used by a single thread? Should you still have to pay the immutable/persistent performance penalty?
Clojure's answer is: No!

Clojure 1.1 introduced transients, temporary mutable data structures, as a performance
optimization. They are useful when you are building up a large data structure through a series of steps.

The key feature of transients is that they do not change the functional style of your code.
Importantly, they do not give you a truly mutable data structure (like Java's collection classes) that you
can bash at with imperative code. The mutable nature of transients is largely an implementation detail.

Transients are best explained by an example. The following code creates a map from ASCII
characters to their decimal values:

(loop [m {}, i 0]
 (if (> i 127)
 m

 (recur (assoc m (char i) i) (inc i))))

Here is the same loop using transients:

(loop [m (transient {}), i 0]
 (if (> i 127)
 (persistent! m)

 (recur (assoc! m (char i) i) (inc i))))

Notice that very little changes. This example shows the three code modifications required to use
transients:

195

CHAPTER 14 ̈ PERFORMANCE

1. Initialize a transient version of the data structure with the transient function.
Vectors, hash maps, and hash sets are supported.

2. Replace all uses of conj, assoc, dissoc, disj, and pop with their transient
versions: conj!, assoc!, dissoc!, disj!, and pop!.

3. Call persistent! on the result to return a normal persistent data structure.

One important feature of transients is that the transient and persistent! functions run in constant
time, regardless of the size of the input. Therefore, it is very efficient to call transient on a large data
structure, manipulate it using transient-specific functions, and then call persistent! before returning
the structure.

Remember, transients are not mutable data structures like Java collections. Just like persistent data
structures, you must use the return value of any function that modifies the structure. The following
imperative-style code will not work:

;; bad code!
(let [m (transient {})]
 (dotimes [i 127]
 (assoc! m (char i) i))

 (persistent! m))

The dotimes macro creates an imperative loop; on each iteration, the return value of assoc! is discarded.
The exact results of this code are unpredictable, but always wrong.

Generally, transients are used within a single function or loop/recur block. They can be passed
around to other functions, but they impose several restrictions:

• Thread isolation is enforced. Accessing the transient structure from another
thread will throw an exception.

• After calling persistent!, the transient version of the structure is gone.
Attempts to access it will throw an exception.

• Intermediate versions of the transient structure cannot be stored or used;
only the latest version is available (unlike persistent data structures).

The advantage to transients is that their modifying operations are much faster than those of
persistent data structures. In general, anywhere you are building up a large data structure recursively,
transients will offer a performance boost. But use of transients should almost always be limited to the
body of a single function, not spread across different sections of code.

Var Lookups
Every time you use a Var, Clojure has to look up the Var's value. If you are repeatedly using the same Var
in a loop, those lookups can slow down the code. To avoid this performance penalty, use let to bind the
Var's value to a local for the duration of the loop, as in this example:

(def *var* 100)
(let [value *var*]

 ... loop using value instead of *var* ...)

196

 CHAPTER 14 ̈ PERFORMANCE

Use this technique with caution: it does not always yield a performance improvement and may
become unnecessary in a future Clojure release.

Inlining
Inlining—replacing a function call with the compiled body of the function—is a common optimization
technique in compilers. The Hotspot JVM does extensive inlining of performance-critical code.

Clojure automatically inlines operations on primitives. However, arithmetic functions that take a
variable number of arguments, such as +, will only be inlined in the two-argument case. That means this
code:

(+ a b c d)

will be faster when written as:

(+ a (+ b (+ c d)))

especially when the values involved are primitives. This may also become unnecessary in a future
release.

Macros and definline

In a sense, macros are a kind of inlining, because they are expanded at compile time. However, macros
cannot be used as arguments to higher-order functions like map and reduce.

As an alternative, Clojure offers the definline form. definline looks, and works, like defmacro: its
body should return a data structure representing the code to be compiled. Unlike defmacro, it creates a
real function that can be used anywhere a normal function can. Here's an example.

;; a normal function:
(defn square [x] (* x x))
;; an inlined function:

(definline square2 [x] `(* ~x ~x))

definline is labeled “experimental” in Clojure. It exists primarily to work around the problem that
functions cannot receive primitive arguments or return primitive values. When that feature is added, the
JVM will do the inlining for you and definline will be unnecessary.

Summary
As Donald Knuth famously said, “Premature optimization is the root of all evil.” The key word is
premature. Trying to optimize a function before you have tested it is pointless. Trying to optimize an
application before you have identified the performance-critical sections is worse than useless. In a just-
in-time compiled, self-optimizing runtime such as the JVM, the situation is even more precarious,
because it is difficult to look at a piece of code and predict how fast it will run.

The best approach is to step back and consider performance from two different angles. First, high-
level performance considerations, such as avoiding bottlenecks or unnecessary I/O, should be

197

CHAPTER 14 ̈ PERFORMANCE

198

considered during the design phase of an application. Low-level performance optimizations should be
postponed until after the first draft of the code, when performance-critical sections can be identified
through profiling.

Clojure provides many tools to optimize code without sacrificing its functional style. When those
tools are insufficient, you can always fall back on imperative programming techniques, either in Clojure
code (using arrays) or by writing Java code and calling it from Clojure.

199

Index

̈ Symbols

+ (addition) function, 53
` (backquote) character, 171
\ (backslash character), 57
{} (curly braces), 66, 71
[] (square brackets), 64
character, 33, 71, 172
#() function syntac, 145
#^ reader macro, 129–130
. (dot) special form, 143, 145
@ symbol, 98, 104
^ reader macro, 129
~@ (splicing unquote), 171
= function, 194
== function, 56, 194

̈ A

abstraction
datatypes and, 181
macros and, 168
protocols and, 181

AbstractMethodError, 183
accessor function, 68
aclone function, 148
action functions, 106–107
addition function (+), 53
add-watch function, 112
agent function, 105
agent thread pools, 159–160
agent-based processing, 1
agent-error function, 107
agents, 97, 159–161

about, 105
asynchronous, 105–109
creating and updating, 105–106
errors and, 107
failure modes, 107
in failed state, 107–108

shutting down, 108
update semantics, 106
waiting for, 108
when to use, 109

aget function, 148, 195
ahead-of-time (AOT) compilation, 152–154
alength function, 148
alias function, 117
aliases, 117
all-ns function, 124
alter function, 100
alter-meta! function, 131
amap macro, 148
ancestors function, 139
and macro, 60
anonymous inner classes, 185
apply function, 93
areduce macro, 148
arguments

functions with multiple, 31
functions with variable, 32

arithmetic functions, 193–195
arities, 31–32, 182–183
array maps, 67
arrays

Java, 146–148
creating, 147
iterating over, 148
manipulating, 148

primitive, 195
artificial intelligence, 45
aset function, 148, 195
aset-boolean function, 148
aset-byte function, 148
aset-char function, 148
aset-double function, 148, 195
aset-float function, 148
aset-int function, 148, 195
aset-long function, 148
aset-short function, 148
:as keyword, 26

̈ INDEX

200

association function (assoc), 66, 69, 181
asynchronous agents, 105–109
asynchronous updates, 97
atom function, 104
atoms, 97, 104–105
attack multimethod, 134
:author metadata, 122
auto gensym, 172
await function, 108
await-for function, 108

̈ B

backquote (`) character, 171
backquote ` reader macro, 123
backslash character (\), 57
base case, 36
base condition, 36
binary class name, 120
binding form, 109–110
binding vector, 35
Boolean functions, 60
Boolean values, 60–61
boxed numbers, 193
built-in functions, 116, 142
built-in types, 51, 145
bytecode, 152

̈ C

cached values, 105
char argument, 192
char array, 151
character coercion function (char), 61
characters, 61
characters method, 151
CharSequence argument, 192
Church, Alonzo, 4
classes, 10

anonymous inner, 185
creating Java, 150–157
datatypes as, 183
extending Java, 184
hierarchies and, 136–138
in object-oriented languages, 133
See also Java classes; specific classes

Classloaders, 149
classpaths, 26

configuring, in AOT compulation, 153
loading namespaces from, 118–119

loading resources from, 118
Clojure

code, loading, 149, 168
as dynamically typed language, 51
environment, 17–27
calling from Java, 148–150
calling Java from, 143–148
features, 1
flexibility of, 11
as functional language, 2–9
immutable data structures and, 7–9
JVM and, 2
Lisp and, 1
loading, 17
as next-generation language, 1, 9
object-oriented programming and, 9–10
popularity of, 1
program structure, 10–14
starting, 17

Clojure 1.2, 179
Clojure source code, 168
Clojure types. See datatypes
clojure.core namespace, 116, 121
clojure.lang.Compile class, 153
clojure.lang.Reversible interface, 182
clojure.lang.RT class, 149
clojure.lang.Seqable interface, 182
clojure.set/difference function, 72
clojure.set/intersection function, 72
clojure.set/union function, 72
clojure.walk library, 176
clojure.xml namespace, 26
CLOS (Common Lisp Object System), 11
closures, 46
code

dynamically compiled, 152
functional, 5–6
loading and evaluating Clojure, 149, 168
vs. data, 167

code abstraction, 9
code compilation, 152

ahead-of-time, 152–154
just-in-time, 152

code encapsulation, pure functions and, 5
code templating, 171
coercions, 192
collection functions, metadata preservation

and, 128
collections datatypes, 62–72

lists, 63–64
maps, 66–71

 ̈ INDEX

201

properties of, 62
sets, 71–72
vectors, 64,–66

comma character, 66
command-line programs, 156–157
Common Lisp Object System (CLOS), 11
commutative functions, 101
commute function, 14, 100–101
comp function, 47–48
compare function, 182
comparison functions, 193
Compile class, 153
compile function, 153
compile-path Var, 153
Compiler.eval method, 149
composing functions, 47–48
composite forms, 19
concat function, 87
concurrency, 12, 159–166

agents and, 105, 109, 159, 161
futures and, 163–164
Java-based threading, 165–166
promises and, 164–165

concurrency functions, 161–163
cond form, 34–35
conditional expressions, 34–35
conditional logic, 48
conditionals, 134
conjoin function (conj), 65, 70, 76–77
cons function, 76–77, 87
constructors, adding to generated classes,

155
:constructors option, gen-class marco, 155
contains function (contains?), 71
:continue mode, 107
control structures, 173–174
coordinated state, 97
create-ns function, 125
curly braces {}, 66, 71
currying, 46–47
cycle function, 88

̈ D

data, 51–72
vs. code, 167

data structures, 168
immutable, 7–9
Java interfaces and, 145–146
persistence of, 7

transients, 195–196
datatypes, 51, 180–183

advanced, 186
built-in, 51
as classes, 183
collections, 62–72

lists, 63–64
maps, 66–71
properties of, 62
sets, 71–72
vectors, 64–66

extending protocols to preexisting, 183–184
in-line methods, 181
Java interfaces and, 145–146, 182–183
Java types, 51
reifying anonymous, 184–185
primitive types, 52–62

Boolean values, 60–61
characters, 61
keywords, 61
numbers, 52–57
strings, 57–60

state and, 96
working with, 185–186

deadlocks, 14
debugging, macros, 170
decimal numbers, 53
declare macro, 122
decrement function (dec), 55
:default keyword, 135
def form, 21, 125, 129, 173
definline form, 197
defmacro form, 129–130, 169
defmethod function, 133
defmulti function, 133, 142
defn form, 31, 129–130, 173
defn- macro, 124, 131
defprotocol function, 179–180
defrecord function, 180,–185
defstruct function, 68, 185
deftype macro, 186
deleting namespaces, 126
deliver function, 165
dependencies, order of, 22
deref function, 98, 104
dereferencing, 98–99
derive function, 136, 142
descendants function, 139
difference function, 72
disassociation function (dissoc), 69
dispatch function, 133–134

̈ INDEX

202

dispatch values, 133
default, 135
specifying order of, 140

dissoc function, 181
distinct function, 85
division function (/), 54
do special form, 42
doall function, 95, 162, 190
doc function, 31
:doc metadata, 122
doc-strings, 31
Domain Specific Languages (DSLs), 2, 177–178
dorun function, 94–95
dosync macro, 99
dotimes macro, 196
dot (.) special form, 143, 145
double-array function, 147
double-quotes, 57
drop function, 89
drop-last function, 90
drop-while function, 89
dynamically typed languages, 51, 191
dynamically-compiled code, 152

̈ E

Eclipse, 26
else keyword, 34
empty? function, 93
encapsulation, 10
Enclojure, 177
encounter multimethod, 135, 138
end function, 159
ensure function, 101
equality semantics, 62
equals function (==), 56, 194
error-handler function, 107
error-mode function, 107
errors, agents and, 107
eval function, 144, 149
every? function, 94
:exclude option, 116
execution tree, in functional programming, 6
expansions, 175
explicitly managed state, 95
exponents, calculating, 38
:exposes method, 156
:exposes-methods options, gen-class macro,

156
extend function, 183–184

extend-protocol function, 184
extends argument, gen-class macro, 154
extend-type function, 184
extract-text function, 151

̈ F

factories, adding to generated classes, 155
:factory option, gen-class macro, 155
:fail mode, 107
failure state, agents in, 107–108
file names, vs. namespace names, 118
filter function, 85
filters, 116
find-ns function, 124
first function, 73, 92
first-class functions, 29, 43–45

consuming, 44– 45
producing, 45

flags, 119
float-array function, 147
floating-point decimals, 52–53
fn special form, 29–30
forms, 18–20

composite, 19
evaluating individual, 26
literals, 18
quoted, 168
special, 19
symbols, 19
See also specific forms

forward declarations, 122
fully-qualified names, 25
function calls, lists evaluated as, 19
function composition, 3–4, 47–48
function definitions, 43
functional code, 5–6
functional programming, 2–9

closures, 46
currying, 46–47
first-class functions, 43–45
function composition, 47–48
immutability and, 7–9
imperative programming and, 4
program structure, 4
pure functions, 4–6
techniques, 43–48

functions, 29–34
binding to symbols, 31
Boolean, 60

 ̈ INDEX

203

functions (cont.)
built-in, 116, 142
collection, 128
communtative, 101
comparison, 193
composing, 47–48
concurrency, 161–163
currying, 46– 47
defined, 3
defining

with defn, 31
with fn, 29–30

dynamically generating, 45
first-class, 29, 43–45
higher-order, 44
list, 63
map, 69–71
of multiple arities, 31–32
nested, 3
non-pure, 5
numeric, 53–57
pure, 4–6
regular expression, 58–60
sequence, 73–95
sequence generator, 81
set, 72
shorthand form of declaring, 33–34
string, 57–58
symbols and, 30
with variable arguments, 32
vector, 64–66
See also specific functions

future macro, 163–164
future? function, 164
future-call function, 164
future-cancel function, 164
future-cancelled function, 164
future-done function, 164
futures, 163–164

̈ G

garbage collection, 15
gen-class macro, 151–156, 185
generated classes

adding contructors and factories,
55

adding methods to, 155
adding state to, 154
defining methods for, 154

exposing superclass members, 156
loading implementation, 156

generic types, 146
get function (get), 65, 70
get-val function, 110
global environment, 21–22
global hierarchy, 136–137, 142
global symbols, 23–24
global variables, 24
greater-than function (<), 56
greater-than-or-equals function (<=), 56

̈ H

hash maps, 8, 67
hashed sets, 8
Haskell, 6
Hello World program, 17–21
hexadecimal notation, 52
Hickey, Rich, 11
hierarchies

about, 136
conflict resolution and, 139–140
global hierarchy, 142
independent, 141–142
inheritance and, 136
with Java classes, 138
with multimethods, 137–141
querying, 137–139
user-defined, 141–142

:hierarchy argument, 142
higher-order functions, 44
homoiconicity, 167–168
Hotspot, 189
hot-swapping, 126
hyphens (-), 118

̈ I

identities
independent, 97
keeping track of, 111–113
synchronous vs. asynchronous updates, 97
state and, 96– 97
updates to, 97

if form, 34
if-not form, 34
immutability, 7–9
immutable data structures, 7–9
imperative languages, 2–3

̈ INDEX

204

imperative programming, 3–4
:implements argument, gen-class macro, 154
:impl-ns argument, gen-class macro, 154
import function, 120
Incanter, 177
increment function (inc), 55, 162
independent hierarchies, 141–142
independent state, 97
indexes, 64
infinite sequences, 81
infix macro, 171
inheritance, 9

hierarchies and, 136
multiple, 133, 136
protocols/datatypes and, 180, 185

:init function, 155
in-line methods, 181
inlining, 197
inner classes, 120
in-ns function, 115–116, 121, 124–125
int-array function, 147
integers, 52–53
interface injection, 184
interfaces

extending, 184
protocols as, 180

interleave function, 88
intern function, 125
interning Vars, 125
interpose function, 88
intersection function, 72
into-array function, 147
invert multimethod, 139
IS-A relationships, 133
isa? function, 137–138
iterate function, 84
iteration, over arrays, 148

̈ J

Java
calling Clojure from, 148–150
calling from Clojure, 143–148
libraries, 38, 143
objects, 7
profiling tools, 190
types, 51

Java API, 148
Java arrays, 146–148

creating, 147

iterating over, 148
manipulating, 148
as sequences, 75

Java bytecode, 152
Java classes

creating, 150–157
extending, 184
generating command-line programs, 156
hierarchies with, 138
importing, 120
loading implementation, 156
proxying, 150–151

Java Classloaders, 149
Java collections, as sequences, 75
Java generics, 146
Java interfaces

Clojure types and, 145–146
extending, 182–184

Java interoperability, 143–157
calling Clojure from Java, 148–150
calling Java from Clojure, 143–148
convenience forms, 144–145
special forms, 143–144

Java Reflection API, 144
Java Virtual Machine (JVM), 2, 152

performance tips, 189
profiling on, 189–190

java.lang.IndexOutOfBounds exception, 64
java.lang.Object, 182
java.lang.Runnable interface, 165
java.lang.String class, 57
java.lang.Thread object, 165
java.math.BigDecimal class, 53
java.util.Collections framework, 62
java.util.concurrent.atomic package, 104
Java-based threading, 165–166
just-in-time compilation, 152

̈ K

keys function (keys), 71, 83
key-value pairs, 66
keyword function (keyword), 61, 123
keyword test function (keyword?), 62
keywords, 61

constructing, 123
as map keys, 67
namespaced, 61, 122–134

 ̈ INDEX

205

̈ L

last function, 92
lazy sequences, 77–83, 190

constructing, 80–81
example, 78–80
memory management and, 82–83

lazy-cat macro, 87
lazy-seq macro, 80–81, 84
less-than function (>), 56
less-than-or-equals function (>=), 56
let form, 35–36
libraries, 143
libspec argument, 119
libspecs, 119
linked lists, 8, 63
Lisp programming language, 1, 19
list function (list), 63, 169
list literals, declaring, 63
list test function (list?), 64
lists, 19, 63–64

as data structures, 63
constructing recursively, 77
linked, 63

literal forms, 129
literals, 18, 63
load function, 118, 149
load-file function, 117, 121
:load-impl-ns false option, gen-class macro,

156
local bindings, 35–36
local symbols, defining in macro, 172
local-name argument, 117
locking policies, 11
locks, 95, 99
long-array function, 147
lookups, Var, 196
loop primitives, 193–194
loop special form, 41–42
looping, 36–42

̈ M

macroexpand function, 170
macroexpand-1 function, 170
macros, 168–178

about, 168–169
code templating, 171
creating, 169
creating DSLs using, 177–178

debugging, 170
generating symbols, 172
implementing control structures, 173–174
implementing, using recursion, 176
implementing, with variadic arguments,

174–175
inlining and, 197
reader, 33
splicing unquotes, 171
using, 173–176
when to use, 173
working with, 169–170

-main function, 157
:main true option, gen-class macro, 156
make-array function, 147
make-hierarchy function, 141
map association function (assoc), 69
map disassociation function (dissoc), 69
map functions, 69–71, 78–80, 92
map keys, 67–68
map keys function (keys), 71
map merge function (merge), 70
map test function (map?), 71
mapcat function, 87
mappings, removing from namespace, 125
maps, 66–71, 180–181

array, 67
hash, 67
key-value pairs, 66
method, 183
as objects, 69–71
sorted, 67
struct, 68–69

mathematic operations, 53–57
maximum function (max), 55
memfn macro, 145
memoization, 191
memoize function, 105
memory

access to, 11
management, 82–83
software transactional memory (STM), 12–

15
merge function (merge), 70
merge-with function (merge-with), 70
meta function, 127
metadata, 127–131

defined, 127
metadata-perserving operations, 128
namespace, 122
reading and writing, 127–128

̈ INDEX

206

metadata (cont.)
read-time, 129
on reference types, 131
on Vars, 129–131

metalanguage, 167
metaprogramming

about, 167–168
code vs. data, 167
homoiconicity and, 167–168

method implementations, 136
method-one function, 179
methods

adding to generated classes, 155
overloaded, 182

methods maps, 183
:methods option, gen-class macro, 155
method-two function, 179
microbenchmarks, 189
minimum function (min), 55
modularity, 9
modularization, 9
modulus function, 55
move multimethod, 134, 141
multimethods, 9, 35, 133–142, 185

about, 133–136
conflict resolution and, 139–140
default dispatch values, 135–136
global hierarchy and, 142
hierarchies with, 137–141
multiple dispatch, 135

multiple dispatch, 133–135
multiple inheritance, 133, 136
multiple-arity methods, 150
multiplication function (*), 46–47, 54
multithreaded programs, 11
my-ref Var, 98

̈ N

name argument, 144, 149
:name argument, gen-class macro, 154
name function, 123
names

fully-qualified, 25
namespace names vs. file names, 118

namespace function, 122–123
namespace-name argument, 117
namespace-qualified keywords, 61, 122–123,

134
namespace-qualified symbols, 122–123

namespaces, 24–26
about, 115
advanced operations, 124–126
basics of, 115–117
common prefixes, 119
declaring, 25–26, 115, 121, 156
deleting, 126
importing Java classes, 120
loading, 117–120

from file or stream, 117
from the classpath, 118–119
in one step, 120

manipulating, 125–126
metadata, 122
names, vs. file names, 118
naming conventions, 26
querying, 124–125
as references, 126
referring

in one step, 120
to other, 116–117

removing mapping from, 125
switching, with in-ns, 115–116
symbols and, 121–124

namespacing mechanism, 9
negative test function (neg?), 57
nested Java classes, 120
NET Common Language Runtime, 146
Netbeans, 26
new special form, 143–145
next function, 88
nil, 52
non-pure functions, 5
not function (not), 60
ns macro, 121, 125–156
ns-aliases function, 124
ns-imports function, 125
ns-map function, 124
ns-name function, 124
ns-publics function, 124
ns-refers function, 125
ns-resolve function, 125
ns-unmap function, 125
ns Var, 124
nth function, 79, 92
number test function (number?), 57
numbers, 52–57
numeric functions, 53–57
numeric literals, 52, 194

 ̈ INDEX

207

̈ O

object-oriented languages, 133, 180
object-oriented programming (OOP), 9–10
object-oriented programs, 10
objects, 5

first-class, 29
maps as, 69–71

octal notation, 52
On Computable Numbers (Turing), 4
:only option, 116, 120
or macro, 61
overloaded methods, 182

̈ P

parallel processing, 1, 5
parallel programming, 159–166
parallelism, 159, 162
parents function, 139
parse method, 151
partial function, 46–47
partition function, 91
patterns, in code, 173
pcalls function, 161–162
peek function (peek), 63–65
performance

concurrency functions and, 162–163
inlining and, 197
macros and, 173
memoization and, 191
primitives and, 193
reflection and, 191–193
STM and, 14
tips for Java, 189
transients and, 195–196
type hints and, 191–193
Var lookups and, 196

performance, 189–198
periods (.), 118, 144
Perlis, Alan, 10
persistence, 7
persistent collections, as sequences, 75
persistent! function, 196
pmap function, 161–163
polymorphic functions, 179
polymorphism, 9, 133
pop function (pop), 64–66
positive test function (pos?), 57, 89
:post-init function, 155

pound sign (#), 33, 71, 172
predicate functions, 89, 194
prefer-method function, 140
:prefix argument, gen-class macro, 154
prefix lists, 119
primitive arrays, 195
primitive types, 52–62

Boolean values, 60–61
characters, 61
keywords, 61
loop primitives, 193–194
numbers, 52–57
strings, 57–60

primitive-aware functions, 193
print-contacts function, 103
printing functions (print & println), 42, 58
print-meta, 127
:private metadata, 124
private Vars, 123–124, 131
profiling, on JVM, 189–190
program flow, controlling, 29–49
program state. See state
promise function, 165
promises, 164–165
protocols, 179–181

for preexisting datatypes, 183–184
working with, 185–186

proxy classes, Java, 150–151
proxy macro, 150–151, 185
proxy methods, 151
proxy-handler function, 151
proxy-super macro, 151
public symbols, 116, 125
public Vars, 123–124
pure functions, 4–6, 10
pvalues function, 161–162

̈ Q

querying hierarchies, 137–139
querying namespaces, 124–125
quote form, 63
quoted forms, 168
quotient function (quot), 55

̈ R

range function, 85
-rangechecker function, 46
ratios, 52

̈ INDEX

208

reader macros, 33
read-string function, 149
read-time metadata, 129
recur form, 39–40
recursion, 3, 36–42

guidelines for, 36
implementing macros using, 176
tail, 39–42
using cons or conj functions, 77
using loop, 41–42

recursive macros, 176
reduce function, 93
ref function, 98
:refer-clojure form, 121
refer function, 116–117, 120
reference types

metadata on, 131
of identities, 96

references, namespaces as, 126
re-find function, 59
reflection, 191–193
refs, 97

coorindated access to multiple, 103
creating and accessing, 98
defined, 97
updating, 98–104

examples, 101–104
tools for, 99–101

ref-set function, 99– 100
regex pattern, 59
re-groups function, 60
regular expression functions, 58– 60
reify macro, 184–186
:reload flag, 119
:reload-all flag, 119
remainder function (rem), 55
re-matcher function, 59
re-matches function, 59
remove function, 86
remove-method function, 140
remove-ns function, 126
remove-watch function, 113
re-pattern function, 59
repeat function, 84
repeatedly function, 84
REPL (Read Evaluate Print Loop), 17–18
require function, 119
:require keyword, 26
re-seq function, 60
reset! function, 105
resolve function, 125

rest function, 73, 88
restart-agent function, 108
return values, 196
reusability, 5, 10
reverse function, 90
Reversible interface, 182
root binding, 149
rseq function, 83, 182
RT class, 149
RT.load method, 149
RT.loadResourceScript method, 149
RT.maybeLoadResourceScript method,

149
RT.readString method, 149
RT.var method, 149
running source files, 20–21
runtime polymorphic dispatch, 133

̈ S

scope, symbol, 24
second function, 92
send function, 106, 160
send-off function, 106, 159–160
Seqable interface, 182
seq function, 32, 75, 83, 182
sequence API, 83–95
sequence functions, 128
sequence generator functions, 81
sequences, 73–95

constructing, 76–77
creating, 83–95
infinite, 81
introduction to, 73– 75
lazy, 77–83
sequencable types, 75
structure of, 75–76

set difference function, 72
set functions, 72
set intersection function, 72
set union function, 72
set! function, 110, 144
set-error-handler! function, 107
sets, 8, 71–72
setter functions, 148
set-val function, 110
set-validator! function, 111
shorthand functions, 33–34
shutdown-agents function, 108
side effects, 4–6, 42–43

 ̈ INDEX

209

single quote character, 63, 168
software transactional memory (STM), 1,

12–15, 97
some function, 94
sort function, 90
sort-by function, 90
sorted maps, 8, 67
sorted sets, 8
source code, 168
source files

structuring, 26
writing and running, 20–21

special forms, 19
splicing unquote, 171
split-at function, 91
split-wth function, 91
sqrt function, 38
square brackets [], 64
square function, 79
square roots, 37, 41
stack size, 39
StackOverflowError, 81
start() method, 165
state, 5– 6

adding, to generated classes, 154
coordinated vs. independent, 97
eliminating, 95
failure, 107–108
identity and, 12–13, 96–97
reality of, 95
synchronous vs. asynchronous updates,

97
thread-local, 109–111
vars, 109–111

:state argument, 154
state effects, 4
state management, 11–12, 95–113, 159

ansynchronous agents, 105–109
atoms, 104–105
explicit, 95
refs, 97–104
validators, 111–112
watches, 112–113

static methods, 145, 155
statically types languages, 191
string concatenation function (str), 58
string functions, 57–58
string printing functions (print & println),

58
string test function (string?), 58
String.replace method, 192

strings, 57–60, 75
struct maps, 68–69
struct-map function, 68
StructMaps, 180
stub methods, 154
subroutines, 3
substring function (subs), 58
subtraction function (–), 54
sub-vector function (subvec), 66
superclass members, exposing, 156
superclass methods, 151
swap! function, 104
symbol bindings, 110
symbol function, 123
symbol resolution, 23–24
symbols, 19, 23–24, 27

binding functions to, 31
constructing, 123
defining within namespace, 25
forward declarations and, 122
functions and, 30
generating, 172
global, 24
names, 23
namespaces and, 121–124
public, 116, 125
redefinition of, 23
scope of, 24
unqualified, 122

synchronous updates, 97
synchronous, coordinated identities, 97
syntax quoting, 171
syntax-quote character, 171

̈ T

:tag keyword, 191
:tag metadata key, 131
tags, 136
tail position, 39
tail recursion, 39–42
tail-call optimization, 39–42
take function, 89
take-nth function, 89
take-while function, 90
target argument, 143
the-ns function, 124
this argument, 182
thread pools, 108, 159–160
threading, Java-based, 165–166

̈ INDEX

210

thread-local state, 109–111
thread-local var bindings, 109
threads, creating in Java, 165–166
time macro, 161, 190
to-array function, 147
transactional behavior, 101–104
transactions, 14, 97–100
transient function, 196
transients, 195–196
Turing Machine, 4
Turing, Alan, 4
type argument, 147
type coercions, 192
type function, 141
type hierarchies, 136
type hints, 131, 185, 191–193
:type metadata, 141
type tags, 131, 141

̈ U

unchecked arithmetic functions, 194–
195

unchecked-add function, 194
unchecked-dec function, 194
unchecked-divide function, 194
unchecked-inc function, 194
unchecked-multiply function, 194
unchecked-negate function, 194
unchecked-remainder function, 194
unchecked-subtract function, 194
union funtion, 72
unit testing, pure functions and, 6
unqualified symbols, 122
Unsolvable Problem of Elementary Number

Theory, An (Church), 4
updates, semantics of, 106
use function, 120
:use parameter, 25
user namespace, 25
user-defined hierarchies, 141–142

̈ V

validators, 111–112
vals function (vals), 71, 83
Var.invoke function, 150
variable arity, 32
variables, 23–24
variadic arguments, 174–175
var-name, 21
Vars, 21–24, 27, 109–111

evaluating, 25
interning, 125
Java and, 149
lookups, 196
metadata on, 129–131
private, 123–124, 131
public, 123–124
root binding of, 149

var-value, 21
vary-meta function, 127
vector association function (assoc), 66
vector conversion function (vec), 65
vector creation function (vector), 64
vector functions, 64–66
vector test function (vector?), 65
vectors, 8, 30, 64–66
:verbose flag, 119

̈ W

watches, 112–113
with-meta function, 127

̈ X

xml macro, 177–178

̈ Z

zero test function (zero?), 56

	Prelim
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	The Clojure Way
	Clojure’s Philosophy and Special Features
	A Next-Generation Language
	Dynamic and Powerful (Yes, It’s a Lisp)
	The Java Platform

	Functional Programming
	Purely Functional Programming
	Clojure’s Compromise
	Immutability
	What about Object-Oriented Programming?
	Structure of a Clojure Program
	State Management
	State and Identity
	Software Transactional Memory

	Summary

	The Clojure Environment
	"Hello World" in Clojure
	Clojure Forms
	Literals
	Symbols
	Composite Forms
	Special Forms

	Writing and Running Source Files
	Vars, Namespaces, and the Environment
	Symbols and Symbol Resolution
	Symbol Names
	Symbol Resolution and Scope

	Namespaces
	Declaring Namespaces
	Referencing Namespaces
	Structuring Source Files

	Summary

	Controlling Program Flow
	Functions
	First-Class Functions
	Defining Functions with
	fn
	Defining Functions with defn
	Functions of Multiple Arities
	Functions with Variable Arguments
	Shorthand Function Declaration

	Conditional Expressions
	Local Bindings
	Looping and Recursion
	Tail Recursion
	recur
	Clojure’s
	Using loop

	Deliberate Side Effects
	U
	Side Effects in Function Definitions

	Functional Programming Techniques
	First-Class Functions
	Consuming First-Class Functions
	Producing First-Class Functions
	Closures
	Currying and Composing Functions
	Using partial to Curry Functions
	Using comp to Compose Functions
	Putting It All Together

	Data in Clojure
	How to Represent and Manipulate Data
	Nil

	Primitive Types
	Numbers
	Common Numeric Functions
	Strings
	Common String Functions
	Regular Expression Functions
	Boolean
	Common Boolean Functions
	Characters
	char
	Keywords
	keyword
	keyword?

	Collections
	Lists
	list
	peek
	pop
	list?
	Vectors
	vector
	vec
	get
	peek
	vector
	conj
	assoc
	pop
	subvec
	Maps
	Struct Maps
	Maps As Objects
	Sets
	Common Set Functions

	Summary

	Sequences
	What Are Sequences?
	Sequenceable Types

	Anatomy of a Sequence
	Constructing Sequences
	Lazy Sequences
	An Example of Laziness
	Constructing Lazy Sequences
	Constructing Lazy Sequences Directly
	Constructing Lazy Sequences Using Sequence Generator Functions
	Lazy Sequences and Memory Management

	The Sequence API
	Sequence Creation
	seq
	vals
	keys
	rseq
	lazy-seq
	repeatedly
	iterate
	repeat
	range
	distinct
	filter
	remove
	cons
	concat
	lazy-cat
	mapcat
	cycle
	interleave
	interpose
	rest
	next
	drop
	drop-while
	take
	take-nth
	take-while
	drop-last
	reverse
	sort
	sort-by
	split-at
	split-with
	partition
	map

	Summary

	State Management
	State in an Immutable World
	The Old Way
	State and Identity
	State and Identity in Clojure
	Coordinated vs. Independent State
	Synchronous vs. Asynchronous Updates

	Refs and Transactions
	Creating and Accessing refs
	Updating refs
	Transactions
	Tools for Updating refs
	Examples

	Atoms
	Using Atoms
	When to Use Atoms

	Asynchronous Agents
	Creating and Updating Agents
	Update Semantics
	Errors and Agents
	Dealing with Agents in a Failed State
	Waiting for Agents
	Shutting Down Agents
	When to Use Agents

	Vars and Thread-Local State
	When to Use Thread-Local Vars

	Keeping Track of Identities
	Validators
	Watches

	Summary

	Namespaces and Libraries
	Organizing Clojure Code
	Namespace Basics
	Switching Namespaces with in-ns
	Referring to Other Namespaces

	Loading Other Namespaces
	Loading from a File or Stream
	Loading from the Classpath
	Namespace Names vs. File Names
	Loading Resources from the Classpath
	Loading Namespaces from the Classpath
	Loading and Referring Namespaces in One Step
	Importing Java Classes

	Bringing It All Together: Namespace Declarations
	Symbols and Namespaces
	Namespace Metadata
	Forward Declarations
	Namespace-Qualified Symbols and Keywords
	Constructing Symbols and Keywords
	Public and Private Vars

	Advanced Namespace Operations
	Querying Namespaces
	Manipulating Namespaces

	Namespaces As References
	Summary

	Metadata
	Describing Your Code, in Code
	Reading and Writing Metadata
	Metadata-Preserving Operations
	Read-Time Metadata
	Metadata on Vars
	Type Tags
	Private Vars

	Metadata on Reference Types
	Summary

	Multimethods and Hierarchies
	Runtime Polymorphism Without Classes
	Multimethods
	Multiple Dispatch
	Default Dispatch Values

	Hierarchies
	Querying Hierarchies

	Hierarchies with Multimethods
	Hierarchies with Java Classes
	More Hierarchy Queries
	Resolving Conflicts
	Type Tags

	User-Defined Hierarchies
	Summary

	Java Interoperability
	Calling Java from Clojure
	Java Interop Special Forms
	Java Interop Preferred Forms
	Clojure Types and Java Interfaces
	Java Arrays
	Creating Arrays
	Manipulating Arrays
	Iterating Over Arrays

	Calling Clojure from Java
	Loading and Evaluating Clojure Code
	Using Clojure Functions and Vars

	Creating Java Classes
	Proxying Java Classes
	Generating Java Classes
	Ahead-of-Time Compilation
	Basic gen-class Options
	Defining Methods for the Generated Class
	Adding State to the Generated Class
	Adding Methods to the Generated Class
	Adding Constructors and Factories
	Exposing Superclass Members
	Generating Command-Line Programs
	Loading the Implementation
	Namespace Declarations with gen-class
	Simple Command-Line Program

	Summary

	Parallel Programming
	Parallelism in Clojure
	Agents
	Agent Thread Pools
	Agent Example
	Concurrent Agent Performance

	Concurrency Functions
	Overhead and Performance

	Futures and Promises
	Futures
	Controlling Futures
	Promises

	Java-based Threading
	Creating a Thread

	Summary

	Macros and Metaprogramming
	What Is Metaprogramming?
	Code vs. Data
	Homoiconicity

	Macros
	Working with Macros
	Debugging Macros
	Code Templating
	Splicing Unquotes
	Generating Symbols
	When to Use Macros
	Using Macros
	Implementing a Control Structure
	Implementing a Macro with Variadic Arguments
	Implementing a Macro Using Recursion
	Using Macros to Create DSLs

	Summary

	Datatypes and Protocols
	Protocols
	Protocols As Interfaces

	Datatypes
	Implementing Protocols and Interfaces
	In-Line Methods
	Extending Java Interfaces
	Datatypes As Classes

	Extending Protocols to Pre-Existing Types
	Extending Java Classes and Interfaces

	Reifying Anonymous Datatypes
	Working with Datatypes and Protocols
	A Complete Example

	Advanced Datatypes
	Summary

	Performance
	Profiling on the JVM
	General Tips for Java Performance
	Simple Profiling with Time
	Using Java Profiling Tools

	Memoization
	Reflection and Type Hints
	Working with Primitives
	Loop Primitives
	Unchecked Integer Arithmetic
	Primitive Arrays

	Transients
	Var Lookups
	Inlining
	Macros and definline

	Summary

	Index
	Symbols
	A
	B
	C
	D
	F
	E
	H
	I G
	J K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	U
	W
	X
	Z

