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Preface 

While creativity plays an important role in the advancement of computer science, 
great ideas are built on a foundation of practical experience and knowledge. This 
book presents programming techniques which will be useful in both AI projects and 
more conventional software engineering endeavors. My primary goal is to enter­
tain, to introduce new technologies and to provide reusable software modules for 
the computer programmer who enjoys using programs as models for solutions to 
hard and interesting problems. If this book succeeds in entertaining, then it will 
certainly also educate. 

I selected the example application areas covered here for their difficulty and have 
provided both program examples for specific applications and (I hope) the method­
ology and spirit required to master problems for which there is no obvious solution. 

I developed the example programs on a Macintosh ™ using the Macintosh 
Common LISP ™ development system capturing screen images while the example 
programs were executing. To ensure portability to all Common LISP environments, 
I have provided a portable graphics library in Chapter 2. 

All programs in this book are copyrighted by Mark Watson. They can be freely 
used in any free or commercial software systems if the following notice appears in 
the fine print of the program's documentation: "This program contains software 
written by Mark Watson." No royalties are required. 

The program miniatures contained in this book may not be distributed by posting 
in source code form on public information networks, or in printed form without my 
written permission. 

I will provide Floppy disks (Macintosh ™ or IBM PC'" format) containing the 
source code to all example programs listed in this book for $12 (order from my 
address below). This software contained in this book is "as is" with no warranties 
or proof of correctness; the user of this software accepts all liabilities for its use. I 
also welcome other correspondence (preferably via electronic mail). I can be 
contacted on the following public information services: 

Compuserve address: 75765,556 

BIX: wmark 

Home address: 535 Mar Vista Dr. Solana Beach, CA 92075 
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1 
Introduction 

Computer programmers have tried to simulate intelligent behavior with programs 
since the invention of computers. It is easy to be sympathetic with pioneering 
computer scientists who predicted human-class cognitive performance out of 
computers when their first experiences showed that even early computers' arithmetic 
ability far surpassed that of humans. With the benefit of hindsight, it is clear that 
artificial intelligence (AI) practitioners promised too much too soon. 

We now know that human beings far outclass even supercomputers in pattern 
recognition and associative memory recall. A common (and much enjoyed) debate 
deals with the likelihood of AI hardware/software systems rivaling humans in 
cognitive tasks. This debate will not be covered in this book! The reader of this book 
will gain insight into the creative process needed to break down old technology 
barriers and will develop an optimistic "can do" attitude. 

1.1 Overview 

Except where noted, the chapters in this book can be referenced independently. 
Chapter 2 contains the device independent graphics primitives used in this book. 
The neural network simulator developed in chapter 3 forms a conceptual basis for 
all subsequent treatment of neural networks in chapters 4 through 7. The material 
in chapter 9 is based on the natural language parsing techniques presented in chapter 
8. 

Each chapter is generally structured as: background information, theory, a 
discussion of sample programs, program listings, program output, additional 
information on the execution of the sample programs, and suggested projects. There 
are five sections in this book: 

1.1.1 Neural networks 

Chapter 3 provides background to the theory and usefulness of neural networks, and 
presents a neural network simulator which will be used in a speech recognition 
system in chapter 5 and a handwriting recognition system in Chapter 6. Chapter 4 
introduces associative memory systems using Hopfield neural networks. Chapter 7 
introduces the biologically inspired neural network model ART2 of Stephen 
Grossberg and Gail Carpenter. 
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1.1.2 Natural language processing 

Chapter 8 introduces syntax-based parsing techniques with an animated parsing 
program. Chapter 9 adds semantic processing to syntactic analysis and compares 
and contrasts the example library database query program to programs using 
Conceptual Dependency theory. 

1.1.3 Expert-systems 

Expert-systems, usually embedded in larger software systems, are becoming a 
standard software engineering tool. Sample programs in chapter 10 demonstrate 
forward and backward chaining techniques. Advice is offered in the evaluation of 
commercial expert-system shells. 

1.1.4 Search 

A software module for performing A· heuristic network searches is developed in 
chapter 11. A simple but effective chess playing program is developed in chapter 
12. 

1.1.5 Chaos theory 

Chapter 13 introduces chaos theory. Chapter 14 contains sample programs for 
generating Mandelbrot set plots and iterated function system plots. 

1.2 Prerequisites 

Ideally this book should be read with the benefit of a computer system with a LISP 
compiler since all chapters contain, as program miniatures, small programs written 
to illustrate an idea or concept. Note: All programs are implemented in Common 
LISP. However, the examples should be easily portable to other LISP dialects. The 
neural network, and fractal examples can be ported to other languages like C and 
Pascal since they do not rely on the symbolic features of the LISP programming 
language. 

This book assumes a reading knowledge of LISP and the implementation of a set 
of graphics primitives described in chapter 2 for creating a graphics window and 
performing simple graphics operations in this window. This set of primitives can be 
written in about two pages of code in any Common LISP system that provides 
simple graphics support; once this library is written, all of the miniatures presented 
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in this book should execute in all Common LISP environments using a LISP listener 
window for user interaction with graphics going to a separate window. 

1.3 Conventions 

Key words appear in bold when first introduced. All program literals will be in italic 
when they appear in text and in comments in the program listings. All program test 
outputs have user responses in bold text with program output shown in normal 
typeface. Long program comments will be blocked off separately and indented to 
the same column as the surrounding text. Short comments appear on the same line 
as LISP code. Example programs are printed in Helvetica type. 



2 
Basic Software Tools: 
Machine-Independent Graphics 

One of the best uses for a high-level language like Common LISP is in the rapid 
proto typing of window-based user interfaces, now an accepted part of the software 
development process. Common LISP is especially appropriate for developing user 
interfaces when augmented with one of the current object oriented programming 
(OOP) packages: Object Lisp, Common LISP object system (CLOS), or Portable 
Common Loops (PCL). 

However, one requirement for a programming language book is to enable readers 
to effortlessly get the sample programs in a book up and running (with no 
modifications!) on their computer and within their language environment. For this 
reason, the example programs in this book will use a simple set of graphic primitives 
and will not use any OOP language extensions despite their obvious benefit. Once 
the graphics library described below is implemented, all example programs should 
execute without modification on any system. 

The examples in this book use the following graphics primitives: 

init-plot - Creates a graphics window 
plot-fill-reel - Fills a rectangle with a gray-scale value 
plot-size-reet - Plots a rectangle whose size is specified by a gray-scale value 
clear-plot - Clears the graphics window 
pen-width - Sets the default line-plotting width 
plot-frame-reet - Draws a rectangle 
plot-line - Draws a line 
show-plot - Makes visible and unobscured the graphics window 
plot-string - Plots a string of text 
plot-string-bold - Plots a string of bold text 
plot-string-italie - Plots a string of italic text 
plot-mouse-down - If the mouse is clicked, returns the x-y click position 

Here is an example implementation of these primitives for the Macintosh running 
Macintosh Common LISP: 
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.. 
" 
; Common plot routines for Common LISP Compatibility - for MACINTOSH 

; Externally callable functions: 

; init-plot( ) 
; plot-fill-rect(x y xsize ysize value) 
; plot-size-rect(x y xsize ysize value) 
; clear-plot( ) 
; pen-width (nibs) 
; plot-frame-rect(x y xsize ysize) 
; plot-line(x1 y1 x2 y2) 
; show-plot( ) 
; plot-string(x y str) 
; plot-string-bold(x y str) 
; plot-string-italic(x y str) 
; plot-mouse-down( ) 
.. 
" 

.. 
" 
; Initializes a standard plot window: 
.. 
" 

;; creates a graphics window 
;; fills a rectangle with a gray-scale value 
;; plots a rectangle value pixels wide 
;; clears the graphics window 
;; sets the pen drawing width 
;; plots a frame rectangle 
;; plots a line between two pOints 
;; shows graphics window 
;; plots a string at position (x n 
;; plots a bold string at position (x n 
;; plots a italic string at position (x n 
;; returns position of mouse click 

(defun init-plot (&optional (title ·Plot Window") (xSize 250) (ySize 250) ) 
(setq *W* 

.. 
" 

(oneof *window* :window-title title 
:window-size (make-point xSize ySize) 
:window-type :document-with-zoom))) 

; Fills in a rectangle with one of five gray-scale values: 
.. 
" 

(defun plot-fill-rect (x y xsize ysize pattern) 
(setq pattern (truncate pattern» 
(let «ppp *black-pattern*» 

(if « pattern 1) 
(setq ppp *white-pattern*) 
(if (equal pattern 1) 
(setq ppp *Iight-gray-pattern*) 
(if (equal pattern 2) 

(setq ppp *gray-pattern*) 
(if (equal pattern 3) 

(setq ppp *dark-gray-pattern*) 
(setq ppp *black-pattern*»)))) 
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(ask *w* (fill-rect ppp x y (+ x xsize) (+ y yslze))))) 

.. 
" 
; Makes a black rectangle of size proportional to val. This is an alternative 
; to using function plot-fill-rectfor showing graphically the value of a number . 
.. 
" 

(defun plot-size-rect (x y xsize ysize val) 
(setq val (min val xsize» 
(ask *w* (erase-rect x y (+ x xsize) (+ y ysize))) 
(ask *w* (fill-rect *black-pattern* x y (+ x val) (+ y val)))) 

.. 
" 
; Clears (erases) the plot window: 
.. 
" 

(defun clear-plot 0 
(ask *w* (fill-rect *white-pattern* 0 0 400 400))) 

.. 
" 
; Sets the drawing size for the pen: 
.. 
" 

(defun pen-width (nibs) 
(ask *w* (set-pen-size (make-point nibs nibs»))) 

.. 
" 
; Frames a rectangle of size (xsize ysize) at position (x }1: 
.. 
" 

(defun plot-frame-rect (x y xsize ysize) 
(let «x2 (+ x xsize» 

(y2 (+ Y ysize))) 
(ask *w* (frame-rect x y x2 y2)))) 

.. 
" 
; Draws a line between two points: .. 
" 

(defun plot-line (x1 y1 x2 y2) 
(ask *w* (move-to x1 y1» 
(ask *w* (line-to x2 y2))) 
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.. 
" ; Shows plot window if it is obscured: 
.. 
" 

(detun show-plot 0 
(ask *w* (window-select))) 

.. 
" 
; Plots a string at position (x y): 
.. 
" 

(defun plot-string (x y str &optional (size 10» 
(setq x (truncate x) y (truncate y» 

" 

(ask *w* (set-window-font (list "Times" :plain size))) 
(ask *w* (move-to x y» 
(princ str *w*» 

; Plots a string in bold font at position (x y): 
.. 
" 

(detun plot-string-bold (x y str &optional (size 12» 
(setq x (truncate x) y (truncate y» 

.. 
" 

(ask *w* (set-window-font (list "Times" :plain :bold size))) 
(ask *w* (move-to x y» 
(princ str *w*) 

; Plots a string in italic font at position (x}1: 

" 

(detun plot-string-italic (x y str) 
(setq x (truncate x) y (truncate y» 

.. 
" 

(ask *w* (set-window-font '("Times" :plain :italic 12))) 
(ask *w* (move-to x y» 
(princ str *w*) 

; Tests for a mouse down event (retums nil if the mouse button Is 
; not being held down when this function is called; retums a list 
; of the x and y screen coordinates relative to the plot window 
; origin If the mouse button is being held down while this 
; function is being called): .. 
" 



(detun plot-mouse-down 0 
(mouse-down-p» 

; A simple test program: 
.. 
II 

(detun test 0 
(show-plot) 
(clear-plot) 

(dotimes (i 6) 
(plot-fill-rect 
(* i 9) 
(* i 9) 

88 
i) 

(plot-frame-rect (* i 9) (* I 9) 8 8» 
(dotimes (i 50) 

(plot-size-rect 
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(+ 160 (random 200» (random 100) (random 20) (random 20) (random 5))) 
(dotimes (i 4) 

(plot-string (* i 10) (+ 150 (* i 22» "Mark's plot utilities .... » 

(plot-string-bold 20 260 "This is a test... of BOLD") 
(plot-string-italic 20 280 "This is a test ... of ITALIC"» 

Before you implement these primitives within your Common LISP environment, 
note the following: 

1. If you are not using Macintosh Common LISP, it will be necessary to recode each 
of the above functions using graphics functions provided by your Common LISP 
vendor. You can start by implementing init-plot,plot-line, and plot-string. The 
remaining functions can be "stubbed" and implemented later as you need them. 

2. If the graphics library provided with your Common LISP environment does not 
support different fonts, use the function plot-string for drawing characters on the 
screen. 

The screen image in Figure 2.1 shows the results of executing the function test at 
the end of the preceeding listing. 
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III • • 

Plot Window 

• • 
• • 

Mark's plot utilities ... 

• 

• • 
• . .. . 

Mar k' s plot utilities ... 

• 

This is a test ... of BOLD 
This is a test ... of rrAUC 

.. • • • 
• 

• 

• 

Figure 2.1. Sample screen image showing the execution of function test in the graphics 
primitives plot library. 



3 
The Substrates of Intelligence, 
a Neural Network Primer 

What is an artificial neural network? How do artificial neural networks compare 
with conventional computers and traditional massively parallel computers, and 
when are they more useful? What are possible applications of neural network 
technology? These questions will be answered in the beginning of this chapter, 
followed by the presentation of an engineering model based on equations which 
characterize the behavior of one popular class of neural networks for supervised 
learning. Supervised learning uses both input training patterns and desired system 
output patterns for neural network training. This chapter then provides a simple 
program demonstrating how to write and run artificial neural network simulators 
followed by a listing of a complete production-capable neural network simulator. 
Examples show how to set up training data for and run this complete simulator 
(which is used for speech recognition in chapter 5 and reading handwritten 
characters in chapter 6). This chapter ends with more suggested projects and hints 
for their solution. 

3.1 Background 

Neural networks are systems of very simple processing elements that are massively 
interconnected. Long term memory or information content in neural networks is 
typically stored in the state of the interconnections, not the processing elements 
themselves. Currently artificial neural systems are computer simulations of systems 
containing large numbers of massively interconnected processors. Neural networks 
are not programmed in the traditional sense; they are trained by exposure to data 
values specifying desired system outputs for given system inputs. 

Many AI problems can be solved in principle with known algorithms, but not in 
practice because ofthe limited processing capabilities of the Von Neuman computer 
model (as implemented in single processor IBM PCs, Apple Macintoshs, DEC 
V AXs, CRAYs, etc.). These conventional computer systems are best used for 
applications which are procedurally oriented like business and nonparallel scien­
tific calculations. By contrast, neural systems exploit the inherent parallelism in 
many pattern-matching and recognition tasks. In the future they will be used to 
augment conventional computers, greatly speeding up pattern matching and cogni­
tive tasks. 

Neural systems are very fault tolerant; they can be partially destroyed and still 
function with some degradation of performance. This fault tolerance will someday 
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make it possible to construct neural computers with millions of neurons with tens 
of millions of interconnections using three-dimensional integrated circuits. In 
addition to increased processing speed, an advantage of building a system using 
neural network chips over conventional integrated circuits is the tolerance these 
chips have for fabrication defects. If proposed neural network chips had to have 
perfectly functioning components (like the digital VLSI chips in your microcom­
puter), it would be impossible to manufacture neural chips with enough compo­
nents to solve interesting problems with sufficient chip yield. 

3.1.1 Existing Parallel Computers 

The idea of using a large number of processors working in parallel is not new. 
Currently, under DARPA sponsorship, several interesting parallel machines are 
being constructed. These machines range from modest parallelism (e.g., the BBN 
Butterfly machine with 16, 64, or 256 processors) to massive parallelism (e.g., the 
Thinking Machines Inc. Connection machine with 64,000 to 1,000,000 individual 
processors). The construction of real neural computers in the future will be another 
alternative approach to parallelism. 

Every computer system which uses a large number of individual processors must 
be able to quickly transfer information between those processors. It is this transfer 
of data between processors which prevents N processors from solving most appli­
cation problems N times faster than a single processor. Several clever topologies 
have been devised for connecting many Von Neuman-type processors together. The 
BBN Butterfly machine connects its processors in a "butterfly" pattern similar to the 
order of calculations in a radix four Fast Fourier Transform (FFT). Figure 3.1 shows 
a Butterfly topology in which processing elements with local memory appear as 
rectangles and communication links appear as straight lines; the processors are laid 
out so that those on the right edge of the diagram have connections back to the 
processors on the left edge of the diagram, as if they were on the curved surface of 
a cylinder. 

The maximum communication time between any two processing nodes in a 
Butterfly computer is proportional to 10g(N), where N is the total number of pro­
cessors in the system. The Butterfly computer has the rather nice property of worst­
case communication time between processors degrading slowly as more processors 
are added to the system. Its disadvantage is that whenever you add processors to a 
system, you must do so by multiplying the number of processors by 4. 

The Connection Machine computer handles the interprocessor communication 
problem by organizing the processing cells around a grid of communication centers 
connected via a packet switched network. Each communication center services 16 
processing cells. The processors in the Connection Machine are configured in 
software to match the data structures used in calculations. Two examples of 
logically reconfiguring the Connection Machine to match data structure requirements 
are simulation of cellular automata (processors logically configured to lie in a two­
dimensional grid with direct communication between adjacent processors) and the 
configuration of the processors into a binary tree for algorithms that calculate values 
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Figure 3.1. A Partial Butterfly Topology: processors on the right side of the figure are 
connected back to the column of processors on the left side of the figure 

at tree leaves and that back up the results of these calculations to the root of the binary 
tree. 

Both the Butterfly and Connection Machines have ingenious software support 
systems to help software developers handle the complexity of data communication 
between processors. However, it is often difficult to write software to take full 
advantage of highly parallel computers. Neural networks offer a technology for 
dealing with large numbers of parallel processing elements without specialized 
software requirements. 

3.1.2 Neural Network Applications 

The training of a neural network to recognize spoken words as in the chapter 5 
example program is an example of a good neural network application, that is, one 
that takes advantage of the characteristics of this technology. The spectral features 
from speech data can be extracted for use as the input to a neural network while the 
training output pattern is a specification of the word currently being spoken. Once 
spectral features are extracted from speech, phoneme or word recognition is an 
example of the type of fine-grained data parallelism neural networks are good at. 

Another example of fine-grain data parallelism in a pattern-matching application 
is the recognition of handwritten characters. Preprocessing is required to isolate and 
center individual characters, which neural networks can then recognize. A complete 
handwriting recognition system for recognizing the numbers from 0 to 9 appears in 
chapter 6. This system can be extended to recognize additional characters like the 
letters of the alphabet. 

Both of these application examples show the importance of using neural network 
technology where it is appropriate to do so, and to combine neural networks with 
conventional procedural/algorithmic processing to build larger systems. Neural 
networks can be best used as components of large systems to handle pattern 
matching tasks. It is important to avoid the use of neural network technology in cases 
like algorythmic processing where conventional software solutions are easier to 
implement .and offer better performance. 
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3.2 Model for Supervised Learning 

To begin our discussion of a model for supervised learning neural networks, we will 
define several terms. A neuron is a simple processor which sums the output from 
one or more other neurons, applies some form of transfer function to this sum, and 
outputs this transformed sum to the inputs of other neurons. The output of a neuron 
is called its activation energy. A connection weight is a numeric quantity which 
determines how much of a neuron's output value reaches the input to the next neuron 
to which it is connected. A connection weight is defined by a source neuron, a target 
neuron, and a numeric weighting factor. In our model, we use real or floating point 
(noninteger) numbers to characterize activation energies and connection weights. 
For example, a connection weight of 0.5 allows more activation energy to flow 
between the output of one neuron and the input of another than a connection weight 
of 0.012. Connection weights are often referred to simply as weights or connec­
tions. A layer of neurons is a set of logically grouped neurons. Layers of neurons 
are frequently referred to as slabs. Our neural models developed in this chapter will 
always have at least one input layer and one output layer; often, they will have one 
or more hidden layers, which are defined as having no direct connections to neural 
network input or output signals. 

Our model of a neural network has input neurons, which accept input information 
(or data), and output neurons, which provide external output information. We view 
a neuron as having an activation energy in the range (0.0, 1.0). One way to visualize 
what our neural model is doing is to imagine that we have N input neurons which 
form a space ofN dimensions. We are in effect building a nearest-neighbor classifier 
in N dimensions. 

Imagine that before we start giving the system any training examples each point 
in this N-dimensional space has the same constant value. As the system self-adapts 
during training, we form minima in our N-dimensional space centered around points 
whose coordinates correspond to input data sets (each sample input vector contain­
ing N values defines a single point in this N-dimensional space). These minima are 
often called basins of attraction. When we give the system a new set of inputs, we 
are in effect specifying a point in this N-dimensional space which lies on a curved 
hyper-surface; we "roll down hill" to a minima formed by the training data set which 
(we hope) is the closest match to this new input. Figure 3.2 shows this process in one 
dimension, a neural network with only one input neuron, which can have an output 
activation energy in the range (0.0, 1.0) before training. Three basins of attraction 
are created during the training process from three training data values. 

After training, any input neuron value in zone 1 will "fall into" minima 1, any value 
in zone 2 will fall into minima 2, and any input value in zone 3 will fall into minima 
3. For example, zone 2 corresponds to an input activation value in the range (0.25, 
0.4); when the activation energy of the single input neuron is set to 0.3, it is 
categorized as being in zone 2. If we have 100 input neurons, the process is exactly 
the same, only we have 100 directions in a 100-dimensional space. 
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Before Training 
Activation energy 

1.0] 

0.0+-------------------, 
0.0 

Possible input neuron values (one-dimensional case) 1.0 

After Training 
Activation energy 

1.0 zone 1 zone 2 zone 3 

O.O+-----.;-----;.------------....... """-t 
0.0 0.25 0.4 1.0 

Possible input neuron values (one-dimensional case) 

Figure 3.2. Nearest Neighbor Match (One-dimensional case) 

3.3 Simple Neural Network 

To quickly get an idea of how feed-forward and backwards error propagation (or 
Delta Rule) networks learn to recognize patterns, we will look at a simple two-layer 
(one input and one output layer, with no hidden layers) network in which each output 
neuron is directly connected to each input neuron by a connection characterized by 
a weight, as seen in Figure 3.3. The larger the value of a weight, the stronger the 
connection is between the two connected neurons. The following equation gives a 
value commonly referred to as the sum of products for output neuron number 
output: 

sizelnpUI 

SumProductsoulPUI = . 2: Input;npul * Weight;npuI,ouIpuI 
mpUl-O 

Here, Weight input, output is the numerical value for the connection strength between 
input neuron input and output neuron output. The output activation energy is ob-
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tained by applying the Sigmoid squashing function to the sum of products: 

Outputoulpfd = Sigmoid (SumProducts oulpfd) 

The shape in Figure 3.4 of the Sigmoid curve shows why this is referred to as a 
squashing function. The Sigmoid function can be implemented as follows: 

(defun Sigmoid (x) 
(/ 1.0 (+ 1.0 (exp (-x))))) 

Delta rule neural networks initially have all weights set to small random numbers. 
The networks are trained by setting the activation energy of each input neuron to a 
specified training value. Each input neuron passes its activation energy through a 
weight to an output neuron as seen in Figure 3.3. The weights in a network are slowly 
modified in response to training data. The learning rules for modifying the weights 
in a network in response to training data are quite straight forward; for every output 
neuron (in the output slab), calculate its error signal (a small error signal at an output 
neuron indicates that the output activation energy closely matches the target output 
activation value): 

Erro'"oulpKt - (targetOllIpKt - Output 0II1pKt ) * Sigmoid P (SumProducts OIIlpKt ) 

The target output for each output neuron is specified in the training data with the 
corresponding input neuron activation values. SigmoidP is the derivative of the 
squashing Sigmoid function as seen in Figure 3.5. The derivative of the Sigmoid 
function can be implemented as follows: 

Input Slab Output Slab 
weight(l,l) 

input(l) output(l 

input(2) output(2) 

weight(2,2) 

Figure 3.3. Two Layer Delta Rule Network: weight(iJ) connects input neuron with index i 
to output neuron with index j 
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Figure 3.4. Sigmoid Activation Function. 

(defun dSigmoid (x) 
(let «temp (Sigmoid x))) 

(* temp (- 1.0 temp)))) 

5 

The shape of the derivative of the squashing function reduces the effective 
calculated error when the sum of products term for a neuron is very small or very 
large. Given this error signal, the delta weight change between input neuron input 
and output neuron output is simply: 

Delta Weight. = LearningRate * Erroroutput * OU'Put output mput, output 

3.3.1 Implementation of the 2-Layer Delta Rule Model 

The short example program in this section is an implementation of the equations 
presented in section 3.3 for activation energy flow through a delta rule neural 
network and for calculating the weight modifications needed to learn the desired 
training patterns. 

The function makeDelta2 has two input arguments: the size (in neurons) of the 
input layer and the size of the output layer. It returns as its value a list containing 
arrays of: network size, input activation values, output activation values, connection 
strength weights, storage for calculating the sum of products for each output neuron, 

0.3-.----------------------,-----------------------, 

g 
:s! 
~ 0.15 

~ 
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-.5 o 

X 

Figure 3.5. Derivative of the Sigmoid Function 
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storage for calculating the error signal at each output neuron, and storage to sum up 
the calculated weight changes over all training data sets. 

The function Train2 takes two arguments: a network description list (as returned 
from makeDeLta2) and a list of input/ouput training data values. Function Train2 
returns a value for the average error signal at each output neuron; call function 
Train2 repetitively until this error signal gets small. The example code fragment at 
the end of this program listing calls function Train2 51 times. 

The function RecaLL2 takes two arguments: a network description list (as returned 
from makeDelta2) and a list of input neuron values. This function propagates these 
input values from the input layer neurons to the output layer neurons using the 
equation for the sum of products and the sigmoid function. 

Study the preceeding equations for delta rule learning in neural networks and the 
short example program in this section. Later a complete simulator for delta rule 
neural networks will be presented that is more suitable for general experimentation 
and production use. As you will see, using this general purpose simulation package 
is fairly straightforward, but the program is complex and will be easier to understand 
once you study the simple program listed below . 

.. 
" 

.. 
" 

.. 
" 

Simple Delta Rule Neural Network Simulator. 
This model supports only input and out layers, 
with no hidden layers as seen in figure 3.3. 

Copyright 1990 by Mark Watson . 

; In order to make this example simulator modular and 
; reusable, we encapsulate all data for a 2-layer 
; delta rule neural network in one LISP data value. 
; The following function creates a new network given 
; the desired number of input and output neurons . 
.. 
" 

(proclaim '(special *Iearning-rate* temp» 

(defun makeDelta2 (numlnputs numOutputs &aux theNetwork) 
(setq 
theNetwork 
(list 
(list numlnputs numOutputs) 
(make-array numlnputs :element-type 'float) ; Input[numlnputs] 
(make-array numOutputs :element-type 'float) ; Output[numOutputs] 
(make-array (list numlnputs numOutputs) ; Weight[numlnputs][numOutputs] 

:element-type 'float) 
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(make-array numOutputs :element-type 'float) ; SumProduct[numOutputs] 
(make-array numOutputs :element-type 'float) ; Error[numOutputs] 
(make-array (list numlnputs numOutputs) 

.. 
" 

:element-type 'float))) ; DeltaWeight[numlnputs][numOutputs] 
.. 
" 
; Initialize the network connection strength weight values to random values: 
.. 
" 

(dotimes (in numlnputs) 
(dotimes (out numOutputs) 

(setf (aref (Weight theNetwork) in out) (- (* (random 1000) 0.001) 0.5)))) 
theNetwork) 

; Functions to return network components from the list structure 
; defining our 2-layer delta rule networks: 
.. 
" 

(defun NetWorkSize (theNetwork) (car theNetwork)) 
(detun Input (theNetwork) (cadr theNetwork)) 
(defun Weight (theNetwork) (cadddr theNetwork)) 
(detun Output (theNetwork) (caddr theNetwork)) 
(defun SumProduct (theNetwork) (cadddr (cdr theNetwork))) 
(defun aError (theNetwork) (cadr (cddddr theNetwork))) 
(detun DeltaWeight (theNetwork) (caddr (cddddr the Network))) 

(setq *Learning-Rate* 0.6) ;; rate of connection-strength modification 

.. 
" 
; Add a small am out of random noise to a list of numbers: 
.. 
" 

(defun addNoiseToListOfNumbers (I) 

.. 
" 

(defun tweak (x) 
(+ 
x 
(- (* (random 1000) 0.0001) 0.05))) 

(mapcar #'tweak I)) 

Perform training on our neural network data object using 
; the list of lists of training values supplied in the second argument: 
.. 
" 

(detun Train2 (theNetwork trainingValues 
&aux (numlnputs (car (NetWorkSize theNetwork))) 

(numOutputs (cadr (NetWorkSize theNetwork))) 
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.. 
" 

(Inputs (Input theNetwork» 
(Outputs (Output theNetwork» 
(Weights (Weight theNetwork» 
(SumProducts (SumProduct theNetwork» 
(Errors (aError theNetwork» 
(DeltaWeights (DeltaWeight theNetwork» 
(RMSerror 0.0» 

; Start out by zeroing the DeltaWeightarray. DeltaWeightwill be 
; used to accumulate the delta weight changes for each connection 
; strength weight over all supplied training values; the Weight 
; atray is updated after one pass through all supplied training 
; values (this is the optimum methodology. Modifying the weights 
; after each individual training input/output example would require 
; far more training time) . 
.. 
" 
(dotimes (in numlnputs) 
(dotimes (out numOutputs) 

(self (aref DeltaWeights in out) 0.0))) 
.. 
" 
; Loop over each input/output training example: 
.. 
" 
(dolist (inputOutputPair trainingValues) 

(let «inputList (car inputOutputPair» 
(targetOutput (cadr inputOutputPair» 
tempError) 

.. 
" 
; Add some random noise to the training inputs: 
.. 
" 

(setq inputUst (add NoiseToListOf Numbers inputUst» 

.. 
" 

Recal12 propagates these input values 
; through the network and calculate the output activation values: 
.. 
" 

(Recall2 theNetwork inputList) 

.. 
" 
; Calculate an error for each output neuron scaled 
; (using the derivative of the Sigmoid function) 
; by the magnitude of the Sumproducts: 
.. 
" 

(dotimes (out numOutputs) 
(setq tempError (- (nth out targetOutput) (aref Outputs out))) 



.. 
" 

(setf 
(aref Errors out) 
(* 
tempError 
(SigmoidP (aref SumProducts out»» 

3.3 Simple Neural Network 21 

(setq RMSerror (+ RMSerror (* tempError tempError»» 

.. 
" 

.. 
" 
; Save the delta connection-strength contribution due 
; to this input/output training pair: 
.. 
" 

(dotimes (in numlnputs) 
(dotimes (out numOutputs) 

(setf 
(aref DeltaWeights in out) 
(+ 
(aref DeltaWeights in out) 
(* 
*Learning-Rate* 
(aret Errors out) 

(aret Inputs in»»»» 

; After processing all input/output training examples. modify 
; the connection strength weights: 
.. 
" 

(dotimes (in numlnputs) 
(dotimes (out numOutputs) 

(setf 

.. 
" 

(aret Weights in out) 
(+ 
(aref Weights in out) 
(aref DeltaWeights in out»») 

; Return the current RMS error for this training set: 
.. 
" 

RMSerror) 

; Recal/2 propagates an input pattern through the network 
; and returns an array of output layer neuron activation values 
.. 
" 

(detun Recall2 (theNetwork inputList 
&aux (numillputs (car (NetWorkSize the Network») 
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" 

" 

" 
" 

(numOutputs (cadr (NetWorkSize theNetwork))) 
(Inputs (Input theNetwork)) 
(Outputs (Output theNetwork)) 
(Weights (Weight theNetwork)) 
(Sum Products (SumProduct theNetwork))) 

; Copy the input values to the input neurons: 
.. 
" 

(dotimes (in numlnputs) 
(setf (aref Inputs in) (nth in inputList))) 

" 

" 
; Calculate the Sum Products array for the output neurons: 
" 

" 
(dotimes (out numOutputs) 

(setf (aref SumProducts out) 0.0) ;; zero accumulator 
(dotimes (in numlnputs) 

" 

" 

(setf 
(aref SumProducts out) 
(+ 
(aref SumProducts out) 
(* 
(aref Inputs in) 
(aref Weights in out)))))) 

; Use the Sigmoid function to convert the Sum Products array to 
; the array Outputs (output activation energy): 
" 

" 
(dotimes (out numOutputs) 

(setf 
(aref Outputs out) 
(Sigmoid (aref SumProducts out)))) 

Outputs) 

; Sigmoid and derivative of Sigmoid functions: 
" 

" 

(defun Sigmoid (x) 
(/ 1.0 (+ 1.0 (exp (- x))))) 

(defun SigmoidP (x) 
(let ((temp (Sigmoid x))) 

(* temp (- 1.0 temp)))) 
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.. 
" 
;THROW AWAY TEST CODE: 
; (specify 2 input and 2 output neurons as seen in figure 3.3) 
.. 
" 
(setq temp (makeDelta2 2 2)) 

.. 
n 

; Train the network and print total output error every 10 trining steps: 
.. 
n 

(let (rms) 
(dotimes (n 51) 

(setq rms 
(Train2 temp 

'(((10) (01)) ((010) (01))))) 
(if (equal (mod n 10) 0) 

(progn 
(princ "Current RMS error: ") ;; This error signnal should decrease 
(princ rms) (terpri))))) ;; during training. 

Once you load this short example program to obtain a network like the one shown 
in Figure 3.3, you will see the following output: 

((22) #(0.0 0.0) #(0.0 0.0) 
#2a( (-7 .2000000000000008e-2 

0.26800000000000002) 
(0.36699999999999999 
-0.14700000000000002» 

#(0.0 0.0) #(0.0 0.0) 
#2a((0.0 0.0) (0.0 0.0») 
Current RMS error: 1.0610914686801591 
Current RMS error: 0.5182104730027558 
Current RMS error: 0.27674694940559991 
Current RMS error: 0.19533180994390642 
Current RMS error: 0.15563273843058725 
Current RMS error: 0.1165165556781852 
nil 

3.3.2 Limitations of the 2-Layer Delta Rule Model 

The preceeding program listing presented an implementation of a 2-layer neural 
network simulator, based on the learning equations presented in section 3.3, that 
consists of two layer networks as seen in Figure 3.3; each layer (input and output) 
can have any number of neurons. 

The addition of hidden slabs (layers) in a network allows it to learn to recognize 
more complex types of patterns. Figure 3.6 shows the typical capabilities of delta 
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No hidden layer One hidden layer Two hidden layers 

1.0 I / 1.0 I ~ 
0.0lL- o.o~ 

0.0 1.0 0.0 1.0 0.0 1.0 

Figure 3.6. Pattern Matching Capability of Two Input Neural Networks with 0, 1, and 2 
Hidden Layers. These two dimensional plots represent the range of input values that can be 
expressed by two input neurons with a range of activation energy values of (0.0, 1.0) 

rule networks with zero, one and two layers of hidden neurons. A network with no 
hidden slabs forms a hyperplane decision-making surface. For example, a system 
with two inputs can be represented by a two-dimensional plane; the decision surface 
consists of a one dimensional decision surface (one dimension less than the number 
of input neurons), or in this case a straight line: these networks can categorize inputs 
into two sets of points, each set being on one side of the straight line. One hidden 
slab allows a curved decision surface, but the surface is continuous (unbroken): 
these networks can separate points into 2 sets separated by an arbitrarily complex 
unbroken curved line. Two or more hidden slabs allow arbitrary decision surfaces 
with separate islands: these networks can create arbitrary decision surfaces and 
implement mappings of arbitrary complexity. 

In general, networks with one hidden layer (i.e., three slabs consisting of input 
neurons, hidden neurons, and output neurons) are the most widely used delta rule 
networks. Occasionally, two or more hidden slabs are used for complex mappings 
between network inputs and outputs. 

3.4 A Complete Delta Rule Neural Network Simulator 

The complete delta rule neural network simulator listed in this section contains 
several short test functions. An example execution run of one of these functions, 
test2, is shown after the program listing. The test functions test2, test3, and test4 
contain respectively two, three and four layers. The screen dump shown in figure 
3.7 (from an Apple Macintosh computer) was created while the test function test3 
was executing. 

The neurons in this model have activation energies scaled from 0.0 to 1.0; a neuron 
with an activation energy of 0.0 appears as an empty box on the display. A neuron 
with a value of 1.0 is shown as a black filled box. Values between 0.0 and 1.0 appear 
as partially filled boxes (area proportional to value). For example, the four slab2 
neurons have values of about 1.0, 0.0, 0.5, and 0.0. 

The connection weights are initialized to small random numbers before a neural 
network is trained. As we will see, the values of these weights change slowly during 
the training process. When a pattern is input to a neural network (that is, when the 
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Figure 3.7. Annotated Execution of Complete Delta Rule Simulator 

activation values ofthe input neurons in slabl are set equal to the values in an input 
pattern), the values flow through the connection weights connecting the slabl and 
slab2 neurons and cause the activation energy values of the slab2 neurons to be 
recalculated. In a similar way, the slab2 neuron activation energy values flow 
through the weights connecting the slab 2 and slab3 neurons affecting the values of 
the activation values of the slab3 (output) neurons in Figure 3.7. 

The magnitude of the two sets of connection-strength weights is shown in the 
lower left-hand side of the display, while the derivative (rate of change) of the 
weight sets appears on the right-hand side of the display and is labeled Delta Weight. 
Note that in general, a slab withN neurons is connected to another slab ofM neurons 
with a connection strength weight array of sizeNby M. For example, in Figure 3.7, 
the output of the four slab2 neurons is obtained by first multiplying the 5 values in 
the slabl array by the 5x4 weight array forming the sum of products one­
dimensional array; application of the Sigmoid function converts the one-dimen-
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sional sum of products array to the one-dimensional output values for the slab2 
neurons. The output for the slab3 neurons is calculated in the same way. 

3.4.1 Listing of the Complete Delta Rule Neural Network 
Simulator 

In the following example program, the function NewDeltaNetwork is called with a 
list of integer values, each of which specifies the number of neurons in a simulated 
layer of neurons. For example, the list (120 75) would indicate thatN ewDeltaN etwork 
will create a new neural network with three layers (the length of the list), that the 
input layer has 120 neurons, the hidden layer has 7 neurons, and the output layer has 
5 neurons. Function NewDeltaNetworkreturns a list of arrays which maintain state 
information for the neural network. Note that the entire state of a network is 
maintained in the data structure returned by NewDeltaNetwork. 

The function DeltaLearn is called with two required arguments and two optional 
arguments. The first argument is the network description list that was returned as 
the value of function NewDeltaNetwork. The second required argument is a list of 
training data. The first optional argument is an automatic plot flag; if this value is 
specified as a non-nil value, then the state of the network is plotted in the graphics 
window during training. The second optional argument identifies a format specifi­
cation for plotting the layer of input neurons; this option will be used in chapter 6 
for recognizing hand-drawn characters (the input neurons will be plotted as a two­
dimensional grid so the character being recognized will be seen in the pattern of 
input neuron activation energies). The returned value from function DeltaLearn is 
the average of the squared error at each output neuron; this returned value will 
decrease as the network is trained. 

The function DeltaRecall is called with two required arguments. The first argu­
ment is the network description list returned as a value from function NewDel­
taNetwork. The second argument is a list of input neuron activation energies to 
propagate through the network. The returned value of function DeltaRecall is a list 
of output neuron activation energies. 

The following functions in the listing are not usually called directly from your 
application programs: plotActivations (plots activation energies of a specified layer 
of neurons at a specified location in the graphics window), DeltaPlot (plots the state 
of the entire network in the graphics window), Sigmoid (calculates the value of the 
Sigmoid function), dSigmoid (calculates the value of the derivative of the Sigmoid 
function), andfrandom (returns a random number for initializing weight values). 

The function WriteDeltaNetwork saves the state of a neural network as a disk file. 
Two required arguments for this function are a disk file name and a network 
description list. The function ReadDeltaNetwork reads a network save file created 
by function WriteDeltaNetwork and returns as its value a network description list. 
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;; File DeltaRule.Lisp 
;; Copyright 1990 by Mark Watson 

;;;;;;;;;;;;; Externally (callable) functions in this file: ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

; (NewDeltaNetwork sizeList) 
Args: sizeList = list of sizes of slabs. This also defines 

the number of slabs in the network. 
(e.g., '(1054) ==> a 3-slab network with 10 
input neurons, 5 hidden neurons, and 4 output 
neurons). 

Returned value = a list describing the network: 
(nLayers sizeList 
(activation-array[1] .. activation-array[nLayersJ) 
(weight-array[2] .. weight-array[nLayersJ) 
(sum-of-products[2] .. sum-of-products[nLayers[nLayersJ) 
(back-prop-error[2] .. back-prop-error[nLayers])) 
(0Id-delta-weights[2] .. for momentum term 

; (DeltaLearn networkList training List) 
Args: networkList = list returned from function NewDeltaNetwork 

training List = a list of lists of training exemplars. 
For example, a list might be: 
«(01) (1 0)) ; first exemplar 
«1 0) (0 1))) ; second exemplar 

Note: the inner sUb-lists can also be arrays. 
nlterations = number of complete training iterations 

Returned value = average error at output neurons for last 
training cycle. 

; (DeltaRecall networkList inputList) 
Args: networkList = list returned from function 'NewDeltaNetwork' 

inputList = list OR array of input activation values 

Returned value = list of output neuron values 

; (DeltaPlot network List) ==> plots a network. Must call '(init-plot) first. 

; (WriteDeltaNetwork fileName networkList) ==> saves a network to disk 

; (ReadDeltaNetwork fileName) ==> returns a network list 
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;;;;;;;;;;;;;;;;;;; End of list of externally callable functions ;;;;;;;;;;;;; 

(proclaim '(special eidaList defaultEidaList *delta-default-input-noise-value* 
*delta-rule-debug-f1ag* » 

;; Define default learning rates for each layer of neurons: 

(setq defaultEidaList '(0.5 0.4 0.3 0.2 0.08 0.07») 

;; Define the default noise to add to each input neuron: 

(setq *delta-default-input-noise-value* 0.08) 
(setq *delta-rule-debug-flag* nil) 

.. 
" 
; Create a new delta network: 
.. 
" 

;; alpha = coefficient for new weight change 
;; beta = coefficient for adding in last weight change 

(defun NewDeltaNetwork (sizeList &optional (alpha 0.2) (beta 0.8» 
(let ((numLayers (length sizeList» 

(w-list nil) ; weights 
(dw-list nil) ; delta weights 
(old-dw-Iist nil) ; old delta weights for momentum terms 
(a-list nil) ; activation values 
(s-Iist nil) ; sum of products 
(d-Iist nil)) ; back propagated deltas 

(setq eidaList defaultEidaList) 

.. 
" 
; Initialize storage for activation energy for all slabs: 
.. 
" 

(setq a-list 
(mapcar 

.. 
" 

'(lambda (size) (make-array (list size) :element-type :f1oat)) 

size List» 

; Initialize storage for sum of products arrays: 
.. 
" 

(setq s-Iist 
(mapcar 



.. 
II 
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'(lambda (size) (make-array (list size) :element-type :float)) 
(cdr size List))) 

; Initialize storage for delta arrays: 
.. 
II 

(setq d-list 
(mapcar 

.. 
II 

'(lambda (size) (make-array (list size) :element-type :float)) 
(cdr sizeList))) 

; Initialize storage for the weights: 
.. 
II 

(dotimes (i (- numLayers 1)) 
(setq 
w-list 
(cons (list (nth i size List) (nth (+ i 1) sizeList)) w-list))) 

(setq w-list 
(mapcar 

.. 
II 

'(lambda (size) (make-array size :element-type :float)) 
(reverse w-list))) 

; Initialize the storage for delta weights: 
.. 
II 

(dotimes (i (- numLayers 1)) 
(setq 
dw-list 
(cons (list (nth i sizeList) (nth (+ i 1) sizeList)) dw-list))) 

(setq dw-list 
(mapcar 

.. 
II 

'(lambda (size) (make-array size :element-type :float)) 
(reverse dw-list))) 

; Initialize the storage for old delta weights: 
.. 
II 

(dotimes (i (- numLayers 1)) 
(setq 
old-dw-list 
(cons (list (nth i sizeList) (nth (+ i 1) size List)) old-dw-list))) 

(setq old-dw-list 
(mapcar 
'(lambda (size) (make-array size :element-type :float 
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.. .. 

.. .. 
.. .. 

:Initial-element 0.0» 
(reverse old-dw-list))) 

Initialize values for all activations: 

(mapc 
'(lambda (x) 

(let «num (array-dimension x 0))) 
(dotimes (n num) 

(setf (arefx n) (frandom 0.Q1 0.1))))) 
a-list) 

.. .. 
Initialize values for all weights: 

.. .. 
(mapc 
'(lambda (x) 

(let «numl (array-dimension x 0)) 
(numJ (array-dimension x 1))) 

(dotimes 0 numJ) 
(dotimes (i numl) 
(setf (aref x i j) (frandom -0.5 0.5)))))) 

w-list) 
(list numLayers sizeList a-list s-list w-list dw-list 

d-list old-dw-list alpha beta))) 

Utility function for training a delta rule neural network. 
; The first argument is a network definition (as returned from 
; NewDeltaNetwork), the second argument is a list of training 
; data cases (see the example test functions at the end of this 
; file for examples, the third (optional) argument is a flag 
; for automatic plotting of the state of the network (activated 

by holding down the mouse button while this function is 
; executing, and the fourth (optional) argument is formatting 
; information passed to function DeltaPlot to specify plotting 
; the input neuron activation values as a two dimentional array 
; instead of the (default) format of a one dimensional array . 
.. .. 

(defun DeltaLearn (netList trainList 
&optional (autoPlot 'no) (input-format nil)) 

(let «nLayers (car netList)) 
(sizeList (cadr netList)) 



.. 
" 
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(activation List (caddr netList)) 
(sumOtProductsList (car (cdddr netList))) 
(weightList (cadr (cdddr netList))) 
(deltaWeightList (caddr (cdddr netList))) 
(deltaList (cadddr (cdddr netList))) 
(oldDeltaWeightList (cadddr (cdddr (cdr netList)))) 
(alpha (cadddr (cdddr (cddr netList)))) 
(beta (cadddr (cdddr (cdddr netList)))) 
(inputs nil) 
(targetOutputs nil) 
(iDimension nil) 
ODimension nil) 
(iActivationVector nil) 
OActivationVector nil) 
(n nil) 
(weightArray nil) 
(sumOtProductsArray nil) 
(iDeltaVector nil) 
ODeltaVector nil) 
(deltaWeightArray nil) 
(oldDeltaWeightArray nil) 
(sum nil) 
(iSumOtProductsArray nil) 
(error nil) 
(output Error 0) 
(delta nil) 
(eida nil) 
(inputNoise 0)) 

; Zero out deltas: 
.. 
" 

(dotimes (n (- nLayers 1)) 
(Iet* «dw (nth n deltaList)) 

.. 
" 

(len1 (array-dimension dw 0))) 
(dotimes (i len1) 

(setf (aret dw i) 0)))) 

; Zero out delta weights: 
.. 
" 

(dotimes (n (- nLayers 1)) 
(Iet* «dw (nth n deltaWeightList)) 

(len1 (array-dimension dw 0)) 
(len2 (array-dimension dw 1))) 

(dotimes (i len1) 
(dotimes 0 len2) 
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(setf (aref dw i j) 0))))) 

(setq inputNoise *delta-default-input-noise-value*) 

.. .. 
Main loop on training examples: 

.. .. 
(dolist (tl trainList) 

(setq inputs (car tl)) 
(setq targetOutputs (cadr tl)) 

(if *delta-rule-debug-flag* 
(print (list ·Current targets:" targetOutputs))) 

(setq iDimension (car sizeList)) ; get the size of the input slab 
(setq iActivationVector (car activation List)) ; get array of input activations 
(dotimes (i iDimension) ; copy training inputs to input slab 

(setf 
(aref iActivationVector i) 
(+ (nth i inputs) (frandom (- inputNoise) inputNoise)))) 

.. .. 
; Propagate activation through all of the slabs: 
.. .. 
(dotimes (n-1 (- nLayers 1)) ; update layer i to layer flowing to layer j 
(setq n (+ n-1 1)) 

.. .. 

(setq jDimension (nth n sizeList)) ; get the size of the j'th layer 
(setq jActivationVector (nth n activation List)) ; activation array for slab j 
(setq weightArray (nth n-1 weightList)) 
(setq sumOfProductsArray (nth n-1 sumOtProductsList)) 
(dotimes 0 jDimension) ; process each neuron in slab j 

(setq sum 0.0) ; init sum of products to zero 
(dotimes (i iDimension) ; to get activation from each neuron in previous slab 

(setq 
sum 
(+ sum (* (aref weightArray i j) (aref iActivationVector i))))) 

(setf (aref sumOtProductsArray j) sum) ; save sum of products 
(setf (aref jActivationVector j) (Sigmoid sum))) 

(setq iDimension jDimension) ; reset index for next slab pair 
(setq iActivationVector jActivationVector)) 

; Activation is spread through the network and sum of products calculated. 
; Now modify the weights in the network using back error propagation. Start 
; by calculating the error signal for each neuron in the output layer: 
.. .. 
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(setq jDimension (nth (- nLayers 1) sizeList)) ; size of last layer 
(setq jActivationVector (nth (- nLayers 1) activationList)) 
(setq jDeltaVector (nth (- nLayers 2) deltaList)) 
(setq sumOfProductsArray (nth (- nLayers 2) sumOfProductsList)) 
(setq outputError 0) 
(dotimes 0 jDimension) 

(setq delta (- (nth j targetOutputs) (aref jActivationVector j))) 
(setq outputError (+ outputError (abs delta))) 
(setf 
(aref jDeltaVector j) 
(+ 
(aref jDeltaVector j) 
(* delta (dSigmoid (aref sumOfProductsArray j)))))) 

.. .. 
; Now calculate the backpropagated error signal for all hidden slabs: 
.. .. 
(dotimes (nn (- nLayers 2)) 

(setq n (- nLayers 3 nn)) 

.. .. 

(setq iDimension (nth (+ n 1) sizelist)) 
(setq iSumOfProductsArray (nth n sumOfProductslist)) 
(setq iDeltaVector (nth n deltalist)) 
(dotimes (i iDimension) 

(setf (aref iDeltaVector i) 0.0)) 
(setq weightArray (nth (+ n 1) weightlist)) 
(dotimes (i iDimension) 

(setq error 0.0) 
(dotimes 0 jDimension) 

(setq error (+ error (* (aref jDeltaVector j) (aref weightArray i j))))) 
(setf 
(aref iDeltaVector i) 
(+ 
(aref iDeltaVector i) 
(* error (dSigmoid (aref iSumOfProductsArray i)))))) 

(setq jDimension iDimension) 
(setq jDeltaVector iDeltaVector)) 

; Update all delta weights in the network: 
.. .. 

(setq iDimension (car sizelist)) 
(dotimes (n (- nLayers 1)) 

(setq iActivationVector (nth n activationlist)) 
(setq jDimension (nth (+ n 1) sizelist)) 
(setq jDeltaVector (nth n deltaList)) 
(setq deltaWeightArray (nth n deltaWeightList)) 
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.. .. 

.. .. 

(setq weightArray (nth n weightList» 
(setq eida (nth n eidaList» 

(dotimes 0 jDimension) 
(dotimes (I IDlmenslon) 

(setq delta (* elda (aref jDeltaVector j) (aref iActlvationVector I))) 
(setf 
(aref DeltaWelghtArray I j) 
(+ (aref DeltaWelghtArray i j) delta»» ; remember delta weight change 

(setq IDimension jDlmenslon» 

(If (not (equal autoPlot 'no» 
(DeltaPlot netList Input-format))) 

; Update all weights in the network: 
.. .. 
(setq iDimenslon (car size List» 
(dotlmes (n (- nLayers 1» 

(setq IActlvatlonVector (nth n activation List» 
(setq jDlmenslon (nth (+ n 1) sizeList» 
(setq jDeltaVector (nth n deltaList» 
(setq deltaWelghtArray (nth n deltaWelghtList» 
(setq oldDeltaWelghtArray (nth n oldDeltaWelghtList» 
(setq weightArray (nth n welghtList» 
(dotlmes 0 jDimenslon) 

(dotlmes (I IDlmenslon) 
(setf 
(aref welghtArray i j) 
(+ (aref welghtArray I j) 

(* alpha (aref deltaWeightArray I j» 
(* beta (aref oldDeltaWelghtArray I j)))) 

(setf (aref oldDeltaWeightArray I j) ; save current delta weights 
(aref deltaWelghtArray I j)))) ; .. .for next momentum term. 

(setq IDimenslon jDimenslon» 

(/ outputError jDimension))) 

Utility for using a trained neural network in the recall mode. 
; The first argument to this function Is a network definition (as 
; returned from NewDeltaNetwork) and the second argument Is a list 
; of input neuron activation values to drive through the network . 
.. .. 
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(defun DeltaRecall (netList inputs) 
(let «nLayers (car netList» 

.. .. 

(sizeList (cadr netList» 
(activation List (caddr netList» 
(weightList (cadr (cdddr netList))) 
(iDimension nil) 
ODimension nil) 
(iActivationVector nil) 
OActivationVector nil) 
(n nil) 
(weightArray nil) 
(returnList nil) 
(sum nil» 

(setq iDimension (car size List» ; get the size of the input slab 
(setq iActivationVector (car activation List» ; get array of input activations 
(dotimes (i iDimension) ; copy training inputs to input slab 

(setf (aref iActivationVector i) (nth i inputs))) 
(dotimes (n-1 (- nLayers 1» ; update layer j to layer i 

(setq n (+ n-1 1» 
(setq jDimension (nth n size List» ; get the size of the j'th layer 
(setq jActivationVector (nth n activationList» ; activation array for slab j 
(setq weightArray (nth n-1 weightList» 
(dotimes 0 jDimension) ; process each neuron in slab j 

(setq sum 0.0) ; init sum of products to zero 
(dotimes (i iDimension) ; to get activation from each neuron in previous slab 

(setq 
sum 
(+ sum (* (aref weightArray i j) (aref iActivationVector i»))) 

(if *delta-rule-debug-flag* 
(print (list ·sum=" sum))) 

(setf (aref jActivationVector j) (Sigmoid sum))) 
(setq iDimension jDimension) ; get ready for next slab pair 
(setq iActivationVector jActivationVector» 
(dotimes 0 jDimension) 

(setq returnList (append returnList (list (aref jActivationVector j))))) 
return List» 

; Utilities to plot a network 
.. .. 

(defun plotActivations (title x y data dmin dmax &optional (input-format nil» 
(let «size (array-dimension data 0» (ypos 0) (xpos x» 
(plot-string x (- Y 10) title) 
(if input-format 
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(let «x-size (car input-format» (y-size (cadr input-format))) 
(dotimes (yy v-size) 

(dotimes (xx x-size) 
(plot-size-rect 

(truncate (+ xpos (* 9 xx))) 

(truncate (+ ypos (* 9 yy) 20» 
88 
(truncate 
(* 
(j 
(- (aref data (+ (* yy x-size) xx» dmin) 

(- dmax dmin» 8»))))) 
(dotimes (i size) 

(if « size 20) 
(setq ypos y xpos (+ x (* i 9))) 

(if « i (j size 2» 
(setq ypos (- y 7) xpos (+ x (* i 9))) 
(setq ypos (+ y 2) xpos (+ x (* (- i (j size 2» 9))))) 

(plot -size-rect 
(truncate xpos) (truncate ypos) 8 8 
(truncate (* (j (- (aret data i) dmin) (- dmax dmin» 8))) 

(plot-frame-rect (truncate xpos) (truncate ypos) 8 8»)))) 

(defun plotWeights (title x y data dmin dmax deltaWeights) 
(let «Xsize (array-dimension data 0» 

(YSize (array-dimension data 1))) 
(it « (* Xsize Ysize) 200) ;; don't try to plot very large weight sets 

(progn 
(plot-string (+ x 20) (- Y 10) title) 
(dotimes (i Xsize) 

(dotimes (j Ysize) 

(plot-size-rect 

(+ x (* i 9» (+ y (* j 9» 8 8 
(truncate (* (j (- (aref data i j) dmin) (- dmax dmin» 8))) 

(plot-trame-rect (+ x (* i 9» (+ y (* j 9» 88) 

(plot-size-reet 

(+ (* Xsize 8) 30 x (* i 9» (+ y (* j 9» 88 
(truncate (* (j (- (aref deltaWeights i j) -.05) (- .05 -.05» 8))) 

(plot-trame-rect (+ (* Xsize 8) 30 x (* i 9» (+ y (* j 9» 8 8»»))) 

(defun DeltaPlot (netList input-tormat &optional (plotOnlylfMouseClick 'yes» 
(if (or 

(not (equal plotOnlylfMouseClick 'yes» 

(plot-mouse-down» ;; only plot if mouse is clicked! 

(13t «nLayers (car netList» 
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(size List (cadr netList)) 
(activation List (caddr netList)) 
(sumOfProductsList (car (cdddr netList))) 
(weightList (cadr (cdddr netList))) 
(deltaWeightList (caddr (cdddr netList))) 
(minScale -0.3) 
(maxScale 0.3) 

(y-start 0)) 
(show-plot) 
(plot-string-bold 20 15 "Delta Network") 
(plot-string 20 30 "Activation slabs:") 
(plotActivations "slab1" 

10 
60 
(nth 0 ActivationList) 
-0.5 
0.5 
input-format) 

(if input-format 
(setq y-start (+ 30 (* (cadr input-format) 11))) 
(setq y-start 60)) 

(dotimes (n-1 (- nLayers 1)) 
(setq n (+ n-1 1)) 
(if (equal n (- nLayers 1)) 

(setq minScale -0.1 maxScale 0.1)) ; scale up output display 
(plotActivations 
(nth n '("slab1" "slab2" "slab3" "slab4" "slabS")) ; title 
1 0 ; x location for subplot 
(+ y-start (* n 35)) ; y location for subplot 
(nth n ActivationList) ; data to plot as gray scale 
minScale 
maxScale 
nil)) 

(if « nLayers 4) 
(progn 

(setq y-start (+ y-start 100)) 
(plot-string 20 y-start "Weights and Delta Weights:") 

(setq y-start (+ y-start 20)) 

(dotimes (n (- nLayers 1)) 

(plotWeights 

(nth n '("slab1 -> slab2" "slab2 -> slab3" "slab3 -> slab4")) 
1 0 (+ y-start (* n 70)) ; x,y position of subplot 

(nth n WeightList) 

-1.01.0 

(nth n deltaWeightList)))))))) 
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.. 
" 
; Calculate Sigmoid and derivative of Sigmoid functions: 
.. 
" 

(defun Sigmoid (x) 
(J 1.0 (+ 1.0 (exp (- x))))) 

(defun dSigmoid (x) 
(let «temp (Sigmoid x))) 
(* temp (- 1.0 temp)))) 

.. 
" 
; Generate floating point random numbers: 
.. 
" 

(defun frandom (low high) 
(let «range (- high low))) 

(+ (* (J (random 1000) 1000.0) range) low))) 

.. 
" 
; Save a Delta Network to a disk file: 
.. 
" 

(defun WriteDeltaNetwork (fileName netList) 
(let «fileStream (open fileName :direction :output)) 

(nLayers (car netList)) 

.. 
" 

(sizeList (cadr netList)) 
(activation List (caddr netList)) 
(weightList (cadr (cdddr netList))) 
(deltaWeightList (caddr (cdddr netList))) 

(oldDeltaWeightList (car (cddddr (cdddr netList)))) 
(alpha (cadr (cddddr (cdddr netList)))) 

(beta (caddr (cddddr (cdddr netList))))) 

; Write out header: 
.. 
" 

(print nLayers fileStream) 
(print sizeList file Stream) 
.. 
" 
; Write out activations: 
.. 
" 

(dotimes (n nLayers) 
(dotimes (i (nth n sizeList)) 
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(print (aref (nth n activation List) i) fileStream))) 
.. .. 
; Write out weights: 
.. .. 
(dotimes (n (- nLayers 1» 

.. .. 

(let «w (nth n weightList))) 
(dotimes (i (array-dimension w 0» 

(dotimes 0 (array-dimension w 1» 
(print (aref wi j) fileStream))))) 

; Write out delta weights: 
.. .. 

(dotimes (n (- nLayers 1» 

.. .. 

(let «w (nth n deltaWeightList))) 
(dotimes (i (array-dimension w 0» 

(dotimes 0 (array-dimension w 1» 
(print (aref wi j) fileStream»))) 

; Write out old delta weights: 
.. .. 
(dotimes (n (- nLayers 1» 

.. .. 

(let «w (nth n oldDeltaWeightList))) 
(dotimes (i (array-dimension w 0» 

(dotimes 0 (array-dimension w 1» 
(print (aref wi j) fileStream»))) 

; Write alpha, beta terms (used for momentum): 
.. .. 
(print alpha fileStream) 
(print beta fileStream) 

(close fileStream))) 

; Read a delta detwork from a disk file: 
.. .. 

(defun ReadDeltaNetwork (fileName) 
(let «file Stream (open fileName :direction :input» 

(numLayers nil) 
(sizeList nil) 
(a-list nil) 
(s-list nil) 
(w-list nil) 
(dw-list nil) 
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.. 
" 

(old-dw-list) 
(d-list nil) 
alpha beta) 

; Read in header: 
.. 
" 

(setq numLayers (read fileStream)) 
(setq sizeList (read fileStream)) 

.. 
" 
; Allocate array storage: 
.. 
" 

(setq a-list 
(mapcar 
'(lambda (size) (make-array (list size))) 
sizeList)) 

(setq s-list 
(mapcar 
'(lambda (size) (make-array (list size))) 
(cdr sizeList))) 

(setq d-list 
(mapcar 
'(lambda (size) (make-array (list size))) 
(cdr size List))) 

(dotimes (i (- numLayers 1)) 
(setq 
w-list 
(cons (list (nth i sizeList) (nth (+ i 1) sizeList)) w-list))) 

(setq w-list 
(mapcar 
'(lambda (size) (make-array size)) 
(reverse w-list))) 

(dotimes (i (- numLayers 1)) 
(setq 
dw-list 
(cons (list (nth i sizeList) (nth (+ i 1) sizeList)) dW-list))) 

(dotimes (i (- numLayers 1)) 
(setq 
old-dw-list 
(cons (list (nth i sizeList) (nth (+ i 1) sizeList)) old-dw-list))) 

(setq dw-list 
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(mapcar 
'(lambda (size) (make-array size)) 
(reverse dw-list))) 

(setq old-dw-list 
(mapcar 

.. 
" 

'(lambda (size) (make-array size» 
(reverse old-dw-list))) 

; Read in activations: 
.. 
" 

(dotimes (n numLayers) 
(dotimes (i (nth n sizeList)) 

(setf (aref (nth n a-list) i) (read fileStream)))) 

.. 
" 
; Read in weights: 
.. 
" 

(dotimes (n (- numLayers 1» 
(let «w (nth n w-list))) 

.. 
" 

(dotimes (i (array-dimension w 0)) 
(dotimes Q (array-dimension w 1» 
(setf (aref wi j) (read fileStream)))))) 

; Read in delta weights: 
.. 
" 

(dotimes (n (- numLayers 1)) 
(let «w (nth n dW-list))) 

.. 
" 

(dotimes (i (array-dimension w 0)) 
(dotimes Q (array-dimension w 1)) 

(setf (aref wi j) (read fileStream)))))) 

; Read in old delta weights: 
.. 
" 

(dotimes (n (- numLayers 1» 
(let «w (nth n old-dw-list))) 
(dotimes (i (array-dimension w 0» 

(dotimes Q (array-dimension w 1» 
(setf (aref wi j) (read fileStream)))))) 

(setq alpha (read fileStream) 
beta (read fileStream» 
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.. .. 

(close fileStream) 
(list numLayers sizeList a-list s-list w-list dw-list d-list 

old-dw-list alpha beta))) 

; Throwaway test functions for two, three and four layer networks: 
.. 
" 

(proclaim '(special temp)) ; temp will be used to hold the network data 

(defun test2 (&optional (restart 'yes) &aux RMSerror) 
(if 
(equal restart 'yes) 
(setq temp (newdeltanetwork '(2 2)))) ; specify a two layer network (2x2) 

(dotimes (ii 10000) 
(setq 
RMSerror 
(deltalearn 
temp 
'(((1 0) (01)) 

((01) (1 0)))) 
'yes)) ; autoplot mode 

(if (equal (mod ii 50) 0) ;; print out every 50 cycles 
(progn 

(princ • .... training cycle \#") 
(princ ii) 
(princ .. RMS error = '1 
(princ RMSerror) 
(terpri)) ))) 

(defun test3 (&optional (restart 'yes) &aux RMSerror) ; three layer network 
(if 

(equal restart 'yes) 
(setq temp (newdeltanetwork '(5 4 5)))) 

(dotimes (ii 10000) 
(setq 
RMSerror 
(deltalearn 
temp 
'(((1 0 0 0 0) (0 1 0 0 0)) 

((0 1 000) (00 1 00)) 
((0 0 1 0 0) (0 0 0 1 0)) 
((0 0 0 1 0) (0 0 0 0 1)) 
((00001) (1 0000))) 
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'yes)) ; auto plot mode 
(if (equal (mod ii 50) 0) ;; print out every 50 cycles 

(progn 
(princ " .... training cycle \#") 
(princ ii) 
(princ .. RMS error = ") 
(princ RMSerror) 

(terpri»)))) 

(defun test4 (&optional (restart 'yes) &aux RMSerror) ; four layer network 

(if 
(equal restart 'yes) 
(setq temp (newdeltanetwork '(4 554)))) 

(dotimes (ii 10000) 
(setq 
RMSerror 

(deltalearn 

temp 
'((1 0 0 0) (0 1 0 0)) 

«(0 1 0 0) (0 0 1 0)) 
((0 0 1 0) (0 0 0 1)) 
«000 1) (1 000))) 

'yes)) ; autoplot mode 
(if (equal (mod ii 50) 0) ;; print out every 50 cycles 

(progn 
(princ " .... training cycle \#") 

(princ ii) 
(princ " RMS error = ") 
(princ RMSerror) 
(terpri))))) 

3.4.2 Running the Complete Delta Rule Simulator 

Before running any of the sample test functions (Le., test2, test3, or test4) at the end 
of the above listing, remember to initialize a graphics window on your system by 
loading the device-independent plotting library and executing (he function init-plot. 
Note: holding down the mouse button while the sample test programs are running 
will update the display in the graphics window ifDeltaLearn is called in the autoplot 
mode (third argument = yes). 

The following example was obtained after executing the function test2 (text in a 
bold typeface is user input in the Lisp listener window, while text in normal 
typeface is the program output): 

? (test2) 
.... training cycle #0 RMS error = 0.5009396286537473 
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.... training cycle #50 RMS error = 0.2816511201933224 

.... training cycle #100 RMS error = 0.2070144326479426 

.... training cycle #150 RMS error = 0.1594081687333126 

.... training cycle #200 RMS error = 0.1078002482272793 
nil 
? (deltaRecall temp '(0 1» ;; global variable temp defined in test2 
(0.8829278986163372 
0.1226715742976734) 
? (deltaRecall temp '(1 0» 
(8.036152662989635E-2 
0.9165891912418624) 
? (test2 'no) ;; retrain the same network stored in the list temp. no = no restart 
.... training cycle #0 RMS error = 0.1514774882974489 
.... training cycle #50 RMS error = 0.1110860207023915 
.... training cycle #100 RMS error = 7.343453188164262E-2 
.... training cycle #150 RMS error = 8.759386766194083E-2 
.... training cycle #200 RMS error = 8.340545162724894E-2 
nil 
?( delta Recall temp' (0 1» ;; results after more training will be more accurate!! 
(0.9222244615723154 
7.938495304694376E-2) 
?( delta Recall temp' (1 0» ;; results after more training will be more accurate!! 
(5.520507817649352E-2 
0.9437721804513303) 
? 

The LISP variable temp is the returned value from the function NewDeltaNetwork 
which creates a new delta rule neural network in our LISP environment; 
N ewDeltaN etwork takes one argument: a list of integers whose length specifies the 
number oflayers (or slabs) in the network, the values in the list specifying the size 
of each layer of neurons in the network. By performing a Common LISP "pretty 
print" (pprint) operation on the variable temp, you can inspect the numerical values 
for each activation value and weight. 

The function DeltaRecall can be used to test a network; its two arguments are a 
neural network data definition (e.g., the data structure stored in the variable temp in 
the above example) and a list of values for the input neurons. The function 
DeltaRecall returns a list of output neuron activation values. 

This small example function test2 shows how to train a two-layer neural network 
to map the input pattern (1.0, 0.0) into the pattern (0.0, 1.0), and to map the pattern 
(0.0, 1.0) into the output pattern (1.0, 0.0). If this example program was also given 
the training data to map the pattern (1.0, 1.0) mapping into the output pattern (0.0, 
0.0) and to map the input pattern (0.0, 0.0) into the output pattern (1.0, 1.0), then the 
neural network would have been trained to take an input pattern and map it to its 
complement (or opposite) value. 
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Function test3 trains a larger network with three layers (input, hidden and output). 
Function test4 trains a four-layer network that uses two hidden layers of neurons 
between the input and output layers. 

3.4.3 Preparing Training Data for the Delta Rule Simulator 

There are several techniques that can contribute to the successful training of a delta 
rule network: adding random noise to the input training data, using a large set of 
training data, performing algorithmic preprocessing of training data when possible, 
and allowing the network to learn by processing the training data set thousands of 
times with a small learning rate. 

3.4.3.1 Addition of Random Noise 

The addition of random noise facilitates training a delta rule neural network for at 
least two reasons: simulation of a larger training data set and allowing a network 
to break out of local minima during early training. Sometimes a network will 
develop a weight set which minimizes the error for (Le., can recognize) most of the 
input training vectors, but fails to learn all input patterns. Since delta rule learning 
is a steepest-descent learning process, it can sometimes (but not often) get stuck in 
local minima; you have seen the same phenomenon in high school math when using 
Newton's method for finding the roots for polynomials: if you start in the wrong 
position, the iteration to calculate a root "gets stuck" in a local minima. 

3.4.3.2 Large Training Data Set 

It is almost impossible to have too much training data for a neural network. There 
is usually noise in training data sets. A network which is forced to learn from a large 
set of examples generalizes the important features in the data and ignores noise and 
occasional errors in the training input data. A common error is to train a neural 
network with only a few examples; when the network tries to match a new pattern 
that is very similar to one of the training inputs, the desired match may not occur. 
A simple example makes this clear: if you only show a small child two houses and 
they are both blue, the child will assume that a house has to be blue; if the child is 
shown hundreds of houses, she will learn to make generalizations based on what 
features are really important in differentiating a house from a barn or office building. 

When many training examples are available, randomly choose a small percentage 
of the training examples and train the network with this small initial set. After a short 
initial training interval, add the remaining training examples. This technique will 
often reduce total training time when dealing with many training examples. 
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3.4.3.3 Algorithmic Preprocessing 

Often training can be greatly facilitated by appropriate preprocessing of input data. 
Good examples of this processing are the example in chapter 5 for speech 
recognition where spectral components of raw speech data are calculated as input 
to the neural network, and the example in chapter 6 for recognition of handwritten 
characters where spatial registration and resizing of characters for input to a neural 
network facilitates training the network. Do not use neural networks for computa­
tional tasks which are more easily performed using other methods. 

3.4.3.4 Use a Small Learning Rate 

Use a small learning rate when training networks. The variables *learning-rate* (in 
the short example program in section 3.3.1) and defaultEidaList (in the complete 
delta rule simulator) are used to set the learning rate. Be patient when training neural 
networks; set up overnight training runs to train networks while you are not using 
your computer for other work. If your computer does not have hardware for floating 
point arithmetic, you should experiment with small networks as larger networks 
could potentially take days to train. 

Figure 3.8 shows the decreasing error rate when the test function test4 was ex­
ecuted. FunctionDeltaLearn returns the average root-mean-square (RMS) error for 
the output neurons; this is a measure of how closely the network's output pattern 
matches the training output pattern. DeltaLearn was called 5000 times in function 
test4 and the RMS error is plotted against number of calls to DeltaLearn in Figure 
3.8. If the learning rate is too large, the output error will not continue to decrease. 
Do not expect the output error to monotonically decrease; you will see some 
fluctuation, like that in Figure 3.8. 

3.5 Projects 

1. Using the neural network simulator provided at the end of this chapter, try 
to train a neural network with 4 input neurons and 4 output neurons to show 
the complement of the input neurons in the Output neurons. Try networks with 
the following structure (not all of which will solve this mapping problem): 

• 4 input and 4 output neurons (no hidden layer) 
• 4 input, 1 hidden, and 4 output neurons 
• 4 input, 2 hidden, and 4 output neurons 
• 4 input, 3 hidden, and 4 output neurons 
• 4 input, 4 hidden, and 4 output neurons 
• 4 input, 20 hidden, and 4 output neurons 
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Figure 3.8. The average error for each output neuron decreases during training 

Answer the following questions: 

• How many unique inputs do I have? 
• What is the minimum number of hidden neurons that the network 

can have and still theoretically learn all of the input patterns? 

NOTE: If you computer does not have hardware to support floating point 
arithmetic, scale down this problem to 3 input and 3 output neurons to reduce 
training time. The time required to train a network increases with the size of the 
network. Reducing the number of input and output neurons in a network will 
thus decrease the required training time. 

2. Collect training data for any application that interests you. 
Possible ideas are: raw data for weather prediction, attributes of winning race 
horses, and maintenance data and repair records for automobiles. You will 
need to scale the input training data to a dynamic range from 0.0 to 1.0. Since 
delta rule neural networks require supervised training, you will need to 
categorize the training data into output categories. The input layer of your 
neural network will have one input neuron for each input parameter. The output 
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layer will have one neuron for each output category that you create for your 
data. After training your network, use new data to test its accuracy in 
categorizing this new data which it has not seen before. 

Hints: Start with a 2 layer (input and output, no hidden layers) since the training 
will not take as long as networks with hidden layers. Then add one hidden 
layer, and test it with new data to evaluate its accuracy relative to the simpler 
2 layer network. Remember, complicated problems require a large number of 
input/output training patterns. 



4 
Pattern Recognition Using Hopfield 
Neural Networks 

In the last chapter, we saw how a generalized delta rule (backwards error propaga­
tion) network could slowly learn to recognize a series of patterns. The delta rule 
network adapted slowly while training repetitively on a set of examples (sometimes 
a set of training examples passes through the network over 100,000 times!). 

In this chapter we will study an example program which implements a class of 
networks commonly known as Hopfield networks, after John Hopfield, who is a 
member of the National Academy of Science and who has helped popularize neural 
networks. Unlike delta rule networks, the training time for Hopfield networks is 
linear with the number of training examples and is predictable. Hopfield neural 
networks are appropriate for solving application problems requiring associative 
memory recall, such as retrieving digitized images from an image database when the 
recall key is a low-resolution or partially destroyed copy of the original. For 
example, if your company issued picture identification cards to employees, these 
photographs could be stored in a Hopfield neural network and used by a video 
security system to admit personnel into you building; a Hopfield network can 
recognize video images even if they are incomplete or taken at a slightly different 
angle than the original training image. Training Hopfield networks is simple both 
in the ease of programming and in reduced machine resources. The ability to recall 
patterns which are partially destroyed by noise is demonstrated by the example 
program presented in this chapter. 

4.1 Mathematical Model 

Hopfield neural networks are simple to implement in software and to embed in 
larger application programs. In the following design description for Hopfield 
network implementation, the symbol J refers to an input image to be stored in a 
Hopfield network. If the input patterns to the network are vectors of length N, the 
weight matrix for the Hopfield neural network is simply aNxN autocorrelation matrix 
of all the input patterns. On associative recall of a vector of length N, the training 
input pattern which most closely matches the new input is returned. The input image 
in the example program is a one-dimensional image of alternating light and dark 
patches of differing widths. The following analysis and software is equally valid 
for higher dimensional images: for example, if you are storing 60x40 pixel (two­
dimensional) images in a Hopfield network, the input training imageJ can be treated 
as a 2400 element one-dimensional array. 
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The weight matrix for a Hopfield neural network is calculated as: 

NT T 

W . . = ~ I P 
I,} .tJ 

Where: 

p 
[ = training input number p 

T 
[p = training input number p, transposed 

NT = the number of pixels in a training image 

The output of the Hopfield network is simply given by: 

o i = clip ( ~ W i,/ j ) 
j .. i 

I . () {1 if (x >0 ) 
C lp X = 

-1 if (x'" 0) 

1 = element number j of the recalled input 

The function clip returns a value of 1 if its argument is greater than zero, and returns 
-1 if its argument is less than or equal to zero. The weight matrix is also known as 
an autocorrelation matrix, which is defined for a matrix as the product of a matrix 
with its transposition (i.e., reversing its row and column indices). 

4.2 Listing of the Hopfield Simulator 

The following sample program implements the equations for calculating Hopfield 
neural network connection strength weights presented in section 4.l. The first 
function defined in this listing (Hopfield-Init) sets up global variables for the 
number of input neurons, the number of training examples, a list containing the 
training data, storage for the input neuron activation values, and storage for the 
connection-strength weights. The weights (stored in variable *Hopfield-Weights*) 
are calculated as the autocorrelation of the input patterns. 

The second function defined in the following listing is HopfieldNetRecall which 
has two arguments: a list of data arrays specifying the state of the neural network, 
and the number of relaxation iterations to use (5 is a good value) in recognizing the 
pattern in the *inputCells* component of the network description list. 
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.. 
" 
; Common LISP Hopfield Network for associative memory recall. 

Copyright 1989 by Mark Watson 

; The fOllowing function is passed a list 
; of lists of training examples. A Hopfield 
; network is built in memory to recognize 
; patterns similar to the training examples. 
; This function returns a list containing the 
; data defining a Hopfield neural network. 
; All data for the network is encapsulated 
; in the list returned by this function, so 
; multiple Hopfield neural networks can be 
; used in an application program . 
.. 
" 

(defun Hopfield-Init (training-data 

.. 
" 

&aux temp *num-inputs* *num-training-examples* 
*training-list* *inputCells* *tempStorage* 
*HopfieldWeights*) 

; Allocate global arrays for data storage: 
.. 
" 

(setq *num-inputs* (length (car training-data))) 
(setq *num-training-examples* (length training-data)) 

(setq *training-list* (make-array (list *num-training-examples* *num-inputs*))) 
(setq *inputCells* (make-array (list *num-inputs*))) 
(setq *tempStorage* (make-array (list *num-inputs*))) 
(setq *HopfieldWeights* (make-array (list *num-inputs* *num-inputs*))) 

.. 
" 

Copy training data: 
.. 
" 

(dotimes 0 *num-training-examples*) 
(dotimes (i *num-inputs*) 

(sett 
(aref *training-list* j i) 
(nth i (nth j training-data))))) 

.. 
" 
; Utility to adjust data values to values of -1.0 or + 1.0 only: 
.. 
" 



52 Pattern Recognition using Hopfield Neural Networks 

(detun adjustlnput (value) ;; this tunction is lexically scoped 
(it « value 0.1) 

-1.0 
+1.0» 

.. 
" 
; Adjust training data to -1.0 and + 1.0 values: 
.. 
" 

(dotimes (i *num-inputs*) 
(dotimes (n *num-training-examples*) 

(setf 
(aret *training-list* n i) 
(adjustlnput (a ret *training-list* n i»)))) 

(dotimes (i *num-inputs*) 
(dotimes 0 *num-inputs*) 

(setf (aret *HoptieldWeights* i j) 0))) 

.. 
" 
; Calculate the autocorrelation weight matrix trom the input test patterns: 
.. 
" 

(dotimes 0-1 (- *num-inputs* 1» 
(let (Q (+ ]-1 1))) 

(dotimes (i j) 
(dotimes (s *num-training-examples*) 

(setq temp 
(truncate 
(+ 
(* ;; 2 it's truncate values to -1 or 1 : 
(adjustlnput (aret *training-list* s i» 
(adjustlnput (aret *training-list* s j))) 
(aret *HoptieldWeights* i j)))) 

(setf (aret *HoptieldWeights* i j) temp) 
(setf (aret *HoptieldWeights* j i) temp))))) 

(dotimes (i *num-inputs*) 
(setf (aret *tempStorage* i) 0) 
(dotimes 0 i) 

(setf (a ret *tempStorage* i) 
(+ (aret *tempStorage* i) (a ret *HoptieldWeights* i j»)))) 

.. 
" 
; Return the value ot the Hopfield network data object: 
.. 
" 
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" 
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(list 
*num-inputs* *num-training-examples* *training-list* 
*inputCells* *tempStorage* *HopfieldWeights*)) 

; Iterate the network to let it settle in a stable pattern 
; which will (we hope) be the original training pattern 
; most closely resembling the noisy test pattern: 
.. 
" 

(defun HopfieldNetRecall (aHopfieldNetwork numberOflterations) 

; Define a block of code in which all data components of our 
; test Hopfield neural network are defined as lexically scoped: 
(let «*num-inputs* (nth 0 aHopfieldNetwork)) 

(*num-training-examples* (nth 1 aHopfieldNetwork)) 
(*training-list* (nth 2 aHopfieldNetwork)) 
(*inputCells* (nth 3 aHopfieldNetwork)) 
(*tempStorage* (nth 4 aHopfieldNetwork)) 
(*HopfieldWeights* (nth 5 aHopfieldNetwork))) 

.. 
" 
; Calculate a change in energy from old input 
; values and the autocorrelation weight matrix: 
.. 
" 

(defun deltaEnergy (k y &aux (temp 0.0)) ;; this function is lexically scoped 
(dotimes Q *num-inputs*) 

(setq temp (+ temp (* (a ref *HopfieldWeights* k j) (aref y j))))) 
(- (* 2.0 temp) (a ref *tempStorage* k))) 

.. 
" 
; Main code for HopfieldNetRecall: 
.. 
" 

(dotimes (ii numberOflterations) 
(dotimes (i *num-inputs*) 

(setf (a ref *inputCells* i) 
(if (> (deltaEnergy i *inputCells*) 0) 

1 
0)))))) 
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.. 
" 

Throwaway test code: to run, execute: (tsst) 

You can edit the following value p/ot-sizsto 
change the size of the cells in the output graph: 

.. 
" 

(setq plot-size 8) 
(setq plot-size+1 (+ plot-size 1)) 

.. 
" 
; Main test program: execute (tsst) in your Lisp listener window 
.. 
" 

(detun test (&aux aHopfieldNetwork) 
(init -plot "Hopfield pattern classifier" 280 160) 
(let «tdata '( ;; sample sine wave data with different periods: 

00001000100010001000001100~ 

~1100000100100000100011001~ 

(000110000001100000110011011)))) 

; Set up network: 
(setq aHopfieldNetwork (Hopfield-Init tdata)) 

.. 
" 
; Define a block of code in which all data components of our 
; test Hopfield neural network are defined as lexically scoped 
; variables to make writing the test code easier: 
.. 
" 

(let «*num-inputs* (nth 0 aHopfieldNetwork)) 
(*num-training-examples* (nth 1 aHopfieldNetwork)) 
(*training-list* (nth 2 aHopfieldNetwork)) 
(*inputCells* (nth 3 aHopfieldNetwork)) 
(*tempStorage* (nth 4 aHopfieldNetwork)) 
(*HopfieldWeights* (nth 5 aHopfieldNetwork))) 

.. 
" 
; Define debug functions for plotting data values. Note that 
; these plot functions are all lexically scoped inside function tsst . 
.. 
" 

(defun plotExemplar (row &aux (dmin 0.0) (dmax 1.0) (x 20) (y 30)) 
(let «Xsize (array-dimension *training-list* 0)) 

(YSize (array-dimension *training-list* 1))) 
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(plot-string-italic (+ X 20) (- Y 10) "Original Training Exemplar") 
(dotimes 0 Ysize) 

(plot-fill-rect 
(+ x (* j plot-size+1)) y plot-size plot-size 
(truncate (* (/ (- (aref *training-list* row j) dmin) (- dmax dmin)) 5))) 

(plot-frame-rect (+ x (* j plot-size+1)) y plot-size plot-size)))) 

(defun plot-*original-inputCells* (&aux (dmin 0.0) (dmax 1.0) (x 20) (y 70)) 
(let (Xsize (array-dimension *inputCells* 0))) 

(plot-string-italic (+ x 20) (- Y 10) "Scrambled Inputs") 
(dotimes 0 Xsize) 

(plot-fill-rect 
(+ x (* j plot-size+1)) y plot-size plot-size 
(truncate (* (/ (- (aref *inputCells* j) dmin) (- dmax dmin)) 5))) 
(plot-frame-rect (+ x (* j plot-size+1)) y plot-size plot-size)))) 

(defun plot-*inputCells* (&aux (dmin 0.0) (dmax 1.0) (x 20) (y 110)) 
(let ((Xsize (array-dimension *inputCells* 0))) 

.. 
" 

(plot-string-italic (+ x 20) (- Y 10) "Reconstructed Inputs") 
(dotimes 0 Xsize) 

(plot-fill-reet 
(+ x (* j plot-size+1)) y plot-size plot-size 
(truncate (* (/ (- (aref *inputCells* j) dmin) (- dmax dmin)) 5))) 

(plot-frame-reet (+ x (* j plot-size+1)) y plot-size plot-size)))) 

; Define a utility function to scramble training inputs 
; for use in testing the Hopfield network. This function is lexically scoped: 

.. 
" 

(defun modifylnput (arrSize arr) ;; modify input array for testing 
(dotimes (i arrSize) 

.. 
" 

(if « (random 50) 5) 
(if (> (a ref arr i) 0) 

(setf (aref arr i) -1) 
(setf (aref arr i) 1))))) 

; Test network on training data that is randomly modified: 
.. 
" 

(dotimes (iter 1000) ;; user can break out early 

(dotimes (s *num-training-examples*) 
(dotimes (i *num-inputs*) 
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(setf (aref *inputCells* i) (aref *training-list* s i))) 
(plotExemplar s) 
(modifylnput *num-inputs* *inputCells*) 
(plot-*original-inputCells*) 

.. 
" 
; NOTE: usually you will want to call function HopfieldNetRecall 

with a second argument of 5 (to indicate 5 iterations 

.. 
" 

to allow the network to relax into the correct state). 
However, here we call it with a second argument of 1 
in a loop so we can plot the network activation values 
in between relaxation cycles: 

(dotimes (call-net 5) ;; iterate Hopfield net 5 times 
(HopfieldNetRecall aHopfieldNetwork 1) ;; calling with 1 iteration 
(plot-*inputCells*)) 

; delay a while for viewing the activation energy plots: 
(dotimes (delay 100000) nil)))))) ;; change delay for your system 

Note that the example program is divided into two sections. The first section con­
tains a reusable software module that can be used in larger application programs. 
The second section is throwaway code to demonstrate the use of the Hopfield neural 
network module. 

4.3 Executing the Hopfield Simulator 

The program uses the generic plotting library listed in the second chapter. This plotting 
library will be used frequently in this book, so you may want to compile it and set 
it up to auto-load whenever you boot your LISP environment. After loading in the 
sample program listing in section 4.2, execute the function test to start the program. 

The "throwaway" code at the bottom of the example program defines initial 
training patterns and forms the autocorrelation weight matrix to store these patterns 
in the network. The program then runs forever (until you break out of it) by cycling 
through the original training patterns creating new test patterns by randomly 
flipping bits in the input patterns. The data in the sample program is specified as 
values of zero or 1. The function Hopfield-Init converts these input values to the 
range of values from -1 to + 1; this conversion is done automatically by the example 
program since it is easier to specify training data as values of zero or 1. While the 
program runs (see Figures 4.1, 4.2, and 4.3), you will see the original training 
exemplar as a row of data labeled Original Training Exemplar at the top of the 
graphics window, a row of scrambled data labeled Scrambled Inputs in the middle 
of the graphics window, and the recalled pattern labeled Reconstructed Inputs at the 
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bottom of the graphics window. As the Hopfield network settles into a stable state, 
you will see the bottom pattern start to match up with the top reference pattern. Since 
the testing patterns are randomly generated, sometimes the generated pattern is so 
different from the reference pattern that the network settles in a stable state which 
is not quite equal to the original training reference pattern. 

Figures 4.1, 4.2, and 4.3 show scrambled input patterns being reconstructed 
correctly into the original training exemplar pattern they most closely match. Figure 
4.4 illustrates the failure to reconstruct the original image when the test input does 
not match any of the training exemplar patterns. 

Familiarity with Hopfield neural networks will allow you to easily solve associa­
tive memory recall operations in your application programs. Simulated neural 
network components are relatively simple to modify when system requirements 
change. For example, if you build a face recognition security system for your 
company, new employees can be added to the system by adding a digitized image 
of their face to an image database and then recalculating the Hopfield network 
weight matrix used in the system. The weights that form the run-time behavior of 
neural networks can be treated as system data that can be recalculated off line to 
change the performance of neural network software modules. 

~D~ Hopfield pattern classifier ~0~ 

OrigUud Training Exsmplar 
000 •• 000000 •• 00000 •• 00 •• 0 •• 

ScrarnhllJd Inputs 
000 •• 000.00 •• 00000.000 •• 0 •• 

&constructIJd Inputs 
000 •• 000000 •• 00000 •• 00 •• 0 •• 

Figure 4.1. Successful program execution with two pixels reversed. When the original 
training pattern is correctly recognized, the top and bottom rows of data should be identical. 
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§D~ Hopfield pattern classifier ~0§ 

Original Training Exsmplar 
.000.000.000.000.00000 •• 000 

Scramh14d Inputs 
.000.000.000 •• 0 •• 00000 •• 000 

&constructIJd Inputs 
.000.000.000.000.00000 •• 000 

Figure 4.2. Successful program execution with two pixels reversed. 

§D~ Hopfield pattern classifier ~0§ 

Original Training Exsmplar 
0 •• 00000.00.00000.000 •• 00.0 

Scramh14d Inputs 
00 •• 0000.0000.00 •• 000 •• 00.0 

&constructIJd Inputs 
0 •• 00000.00.00000.000 •• 00.0 

Figure 4.3. Successful program execution with five pixels reversed. 
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~D~ Hopfield pattern classifier ~0~ 

Original Training Exsmplar 
0 •• 00000.00.00000.000 •• 00.0 

Scramb14d lnpw:s 
0.000 •• 0.00.0000.0000 ••• 0.0 

&constructed lnpw:s 
000 •• 000000 •• 00000 •• 00 •• 0 •• 

Figure 4.4. Failed program execution with six pixels reversed. The reconstructed inputs do 
not match the original training pattern. 

4.4 Projects 

1. Use the Hopfield network simulator provided in this chapter to learn to recognize 
pictures. The pictures can be small digitized images. For example, you might 
have 10xlO pixel images represented by a 0 or a 1 for each pixel: 

0001111000 
0010000100 
0100000010 
1101101101 
1000010001 
1000000011 
0101111010 
0010001100 
0001111000 
0000000000 

The Hopfield network simulator assumes a one-dimensional input vector, so 
treat the 10xlO pixel two-dimensional picture array in this example as a single 
100-pixel one dimensional array. 
If you have a high-performance computer (megabytes of memory with a fast 
floating point processor), you might try processing high-resolution digitized 
images. If you can capture digitized images and display them on your computer, 
write a program to convert the image data into a two-dimensional array of 0 and 
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1 pixel values and use this data to train a Hopfield neural network. Adjust the 
contrast and brightness of the images so that most of the pixel values are 0, and 
relatively few are 1. 

2. Chapter 6 contains sample code for capturing the motion of the mouse cursor in 
a graphics window and converting that captured image into a list of s c r e e n 
coordinate points converting these points into a two-dimensional data array 
representing pixels that are black or white. After reading chapter 6 on handwriting 
recognition, combine the example program code provided therewith the Hopfield 
network software module provided in this chapter to build a system that uses 
Hopfield networks for recognition of hand-drawn characters. How do the 
training times between the two systems differ? Which system is the most 
accurate? 



5 
Speech Recognition Using 
Neural Networks 

It is generally agreed that natural language will become the most common method 
for interacting with computers, increasing ourreliance on natural language processing, 
the task of understanding written human language, and speech recognition, the task 
of converting human speech into written form. This chapter will focus on speech 
recognition - what it is, what speech features are used for recognition, its associated 
problems, and possible applications. We will also review a sample program for 
speech recognition, examining what it does, how it works, show sample data, create 
the training data for a neural network based speech recognition system, and consider 
ideas for expanding the system. 

5.1 Problems Associated with Speech Recognition 

Neural network speech recognizers suffer from the same lack of perfect understand­
ing as human beings. In general, when we listen to speech, we do not understand 
every word. We use our knowledge of proper English syntax and grammar and our 
ability to guess what is forthcoming in a conversation to reduce the high error rate 
in recognizing speech by other people. The error rate is a measurement of the 
percentage of words that the neural network fails to recognize correctly. (One of 
my current research interests is the use of hybrid systems based on a neural network 
"front end" speech recognizer with "back end" natural language processing system 
to reduce the error rate of a speech recognition system). 

Neural networks provide a new approach for solving the difficult problem of 
speech recognition. Unlike most general-purpose speech recognition systems 
which understand speaker-independent continuous speech, our system accepts as 
input digitized speech from a single speaker with clear breaks between the words. 
Our goal is to create a system that can be implemented easily using existing software 
modules using inexpensive computer hardware. 

5.2 How Do Speech Recognition Systems Work? 

Speech recognition systems extract spectral (frequency) information from speech 
data, and use these features to identify words provided in training examples. The 
sample program plot in Figure 5.1 shows raw speech data with the extracted 
frequency information appearing as black boxes at the bottom of the graphics 
window. This set of boxes represents a frequency range, with low frequency, or 
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bass, on the left. The height of each individual bar indicates the amount of power 
in each part ofthe range. The scatterplot filling the graphics window shows the raw 
data when the two words Yes and No are spoken. The boxes within the graphics 
window enclose the raw data the sample program identifies as containing the actual 
words spoken; raw data outside the rectangles is discarded. 

We will develop software to find the starting position of words, extract spectral 
features, and to use a delta rule neural network to classify the extracted spectral 
features as one ofthe words that the network has been trained to recognize. Several 
useful software techniques will be used in this chapter: the conversion of time 
domain data to frequency domain using Fourier Spectral Analysis, and 
downsampling data for low-resolution scatter plots to quickly view large amounts 
of data. Fourier Spectral Analysis extracts frequency (or spectral) information from 
time-series data. Either a Fast Fourier Transform (FFT) or a Direct Fourier 
Transform (OFT) can be used to extract frequency information from raw amplitude 
data. That information is displayed like the bass, mid-range, and high-frequency 
components of music that appear on a stereo mixer. 

The example presented in this chapter can be duplicated with the use of an analog 
to digital converter to capture speech data. Typically these digitizers cost about 
$100 and work by accepting input from an amplified audio source such as the ear 
phone output from a small cassette tape recorder. The example system used a 
digitizer that captured about 6000 samples per second (6 KHz). A 6 KHz sampling 
rate allows resolution of sound to a frequency of 3 KHz (very low frequency 

e:o Raw Speech Data: 'Yes ' and 'No' 

:. '. I • : • 

~ ~~;~ij·b.I;;~"~'\(':' :~>;~(r~);::; ; 1 . • " . . , , --b ";!"·';'·~' · :""~i;'·i:')t. ·"·· ,~ -:;l~; ';:; .: .. . .:~'~:, .. ~~~,;'.~ ~.o '· ,to 

~i~!!}~}1i·$f~F .. , " "", ,~~tp;.~VI(; t;' rr. ;. 
. !'" 

11111111111.1111. 111111 III 1111111111111111111111.1.111 

Figure 5.1. Scatter plot of raw speech data and spectral features from sample program. The 
spectral features (seen as vertical bars) calculated from the raw speech data will be input to 
the 'slabl' input neurons while training the neural network speech recognizer. 
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fidelity). Thus the example system uses only low frequency features of speech data. 
Raw data is processed by finding the word breaks. Each individual word is 
processed by calculating spectral features in a sampling window that is passed 
through the raw data for the word. The spectral features for each position of the 
sampling window are saved for input to the neural network. 

The frequency information for each training example of a word requires storing 
only 28 integers which are scaled to the range 0.0 to 1.0 and used as input to a delta 
rule neural network. Figure 5.2 shows the delta rule simulator used with 28 input 
slabl neurons. The two output neurons correspond to the two words in the smaller 
two word training set. When the sample system was trained to recognize the 
numbers from zero to nine, the network had ten output neurons. 

AG1imoa slabs: 

slab I 

slab3 

~f) 

W.~ks ard dlb. .. ~ks : 

slabl ·) slaD2 

slab2 .) slab3 

Yes/No Speech ion neural network 

Figure 5.2. Delta rule neural network simulation module developed in chapter 3 is being 
trained to recognize spectral features extracted from raw speech data. 
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The speech recognition software developed in this chapter has been used for two 
sets of trained words: the two words yes and no and the words for the range of single­
digit numbers zero through nine. The simpler example is used in this chapter since 
it requires minimal computer resources (less than a half a megabyte of raw data for 
training examples and a training time of less than twenty minutes on a Mac II) and 
is reproducible by readers with minimal systems. 

5.3 Example Program For Speech Recognition 

The sample program listed in this section is very short since it uses the reusable 
software modules for plotting and delta rule neural network simulation developed 
in chapters 2 and 3 . 

.. 
" 
; Speech Recognition Software. Requires Delta Rule module and Plotting Module 

; Copyright 1990 by Mark Watson 
.. 
" 

.. 
" ; Utility for finding word breaks in raw speech data: function word-breaks 
; is called with an array of data values between 0 and 255. Raw data values of 
; 128 indicate that at the time the data value was sampled, there was no sound 
; amplitude. Sound amplitude values are averaged over 50 raw data values: .. 
" 

(defun word-breaks (data) 
(defun off-mean (start-index) 
(let ((retVal 0)) 

(dotimes (i 50) 
(setq retVal (+ retVal 

(abs (- (aref data (+ start-index i)) 128))))) 
(j retVal 50))) 

(let ((len (length data)) 
(word-boundaries) 
start stop (inside-word? nil)) 

(dotimes (nn (truncate (/ (- len 50) 10))) 
(let ((n (* nn 1 0))) 

(if inside-word? 
(if «= (off-mean n) 3) 

(setq inside-word? nil 
stop n 
word-boundaries (cons (list start stop) word-boundaries))) 

(if (>= (off-mean n) 11) 
(setq inside-word? t 

start (- n 50)))))) 
(reverse word-boundaries))) 



.. 
" 

.. 
" 
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Plot a highly downsampled plot of raw data with word breaks: function 
raw-plot has two required arguments. The first is an array of raw speech 
data. The second argument is a list of word break boundaries. Raw data 
is plotted on a compressed horizontal axis producing a scatter plot: 

(defun raw-plot (data word-boundaries) 
(Iet* «len (length data)) 

.. 
" 

(num-words (length word-boundaries)) 
(plot-width 400) 
retVal ; used to return the spectral features 
(data-points-per-pixel (truncate (J len plot-width)))) 

(init-plot "Raw Speech Data: 'Yes' and 'No'" 430 292) 
(dotimes (i len) 

(let «x (truncate (J i data-points-per-pixel))) 
(y (+ (aref data i) 5))) 

(plot-line x y x y))) 
(dotimes (i num-words) 

(let «start-of-word 
(truncate (/ (car (nth i word-boundaries)) 

data-points-per-pixel» ) 
(end-of-word 
(truncate (/ (cadr (nth i word-boundaries)) 

data-points-per-pixel») ) 
(let «spectra 

(spectral-features 
data 
(car (nth i word-boundaries)) 
(cadr (nth i word-boundaries))))) 

(setq retVal (cons spectra retVal)) 
(plot-spectra spectra start-of-word 285)) 

(plot-line start-of-word 5 start-of-word 260) 
(plot-line start-of-word 260 end-of-word 260) 
(plot-line end-of-word 260 end-of-word 5) 
(plot-line end-of-word 5 start-of-word 5))) 

retVal)) 

Process raw data: function spectra calls function word-breaks to calculate 
; the starting position of each word in the raw times series data. Then 
; function raw-plot is called to calculate the spectra and produce data plots: .. 
" 

(defun spectra (data-set) 
(raw-plot data-set (word-breaks data-set))) 
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.. .. 
Extract spectral features: function spectral-features is called with an array 

; of raw data values and the starting and ending array indexes for a word. 
; A OFT is calculated to provide spectral energy levels (normalized 
; between 0.0 and 1.0): .. .. 
(defun spectral-features (data-set start stop) ; use a OFT to calculate the 

.. 
" 

(defun clamp (value) ; spectral features in desired 
(if (> value 0.5) ; frequency bins. 
(setq value 0.5) 
(if « value -0.5) 
(setq value -0.5))) 

(+ value 0.5)) ; range of returned data: (0.0 1.0) 
(Iet* ((len (- stop start)) 

(sample-size 256) 
(nSamples 4) 
(nBins 7) 
retVal temp tempList 
(x-offset (truncate (j (- len sample-size) nSamples)))) 

(dotimes (ns nSamples) 
(setq tempList nil) 
(dotimes (nb nBins) 
(let «k (* nb 40))) 
(setq temp (complex 0 0)) 
(dotimes (nn sample-size) ; loop to calculate the OFT 

(let «n (+ start (* nb 40) (truncate (j (* ns sample-size) 2))))) 
(setq temp 

(+ temp 
(* (aref data-set n) 

(complex 

(setq temp 
(clamp 
(-
(log 

(cos (/ (* -6.28318 n k) sample-size)) 
(sin (/ (* -6.28318 n k) sample-size)))))))) 

(+ (* (real part temp) (realpart temp)) 
(* (imagpart temp) (imagpart temp)) 
0.0001)) 

20.5)))) 
(setq tempList (cons temp temp List))) 

(setq retVal (append tempList retVal))) 
(reverse retVal))) 

; Function plot-spectra plots a spectra at a given x y position: .. 
" 

(defun plot-spectra (spectra x y) ; plot vertical bar chart of spectral features at x,y 



.. 
" 
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(dolist (sf spectra) 
(let «height (truncate (* 18 sf»))) 

(plot-fill-rect x (- y height) 3 height 100» 
(setq x (+ x 4)))) 

Function train trains a 3 layer backprop network. 
; This function has one optional argument; if this argument is not 
; supplied, then the network is initialized. This function assumes the 
; global variables spec1, spec2, specS, spec4, specS, and spec6have been 
; defined using the function spectra. The function DeltaLearn (defined 

in the neural network software module in chapter 3) is called in the autoplot 
; mode so neural network state plots can be examined by holding down the 
; mouse button during training . .. 
" 

(defun train (&optional (restart 'yes» 
(in it-plot 'Training Yes/No Speech recognition neural network" 500 290) 
(if 

(equal restart 'yes) 
(setq temp (newdeltanetwork '(28 5 2»» 

(dotimes (ii 10000) 
(print (list" .............. " ii» 
(print 
(deltalearn 
temp 
(list 
(list (car spec1) '(1.0 0.0» 
(list (cadr spec1) '(0.0 1.0» 
(list (car spec2) '(1.0 0.0» 
(list (cadr spec2) '(0.0 1.0» 
(list (car spec3) '(1.00.0» 
(list (cadr spec3) '(0.0 1.0» 
(list (car spec4) '(1.0 0.0» 
(list (cadr spec4) '(0.0 1.0))) 

'yes»» ; autoplot mode 

5.4 Running the Speech Recognition System 

There are two phases to running the example speech recognition system: training 
the system and testing it to recognize spoken words. 

5.4.1 Procedure for Training the Example System 

The training and testing data can be captured and copied to data files for later use 
to avoid repeating the time consuming process of capturing speech data and 
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preprocessing the data to extract spectral features. The digitizer used in this 
example outputs unsigned 8-bit values (represented by integers ranging in value 
from 0 to 255). Raw data from an audio digitizer must be read into your LISP 
programming environment. One easy method for importing numeric data values 
(which will work in any LISP environment) is to use the software that controls your 
audio digitizer to dump out speech data as ASCII text with a space character used 
to separate the numbers. You can then edit this ASCII file adding the LISP code to 
bind the numbers in the file to a LISP variable. As an example, if you have the six 
numbers 120 105 202 13724099 in a file, you can edit the file to look like: 

(setq aVariable '#(12010520213724099)) 

Then loading this file will define the variable aVariable for use in your program. 
Another method for reading raw numeric data into your LISP environment would 
be to use the Common LISP macro with-open-file. 

The following steps were used to prepare data for and train the example system: 

1. Digitize six samples of the words yes and no. Set two examples aside for testing 
the trained neural network (testing a neural network with the original training 
data is meaningless). Copy each yes/no sample into a text file and read the data 
into your LISP environment setting the variables datal, data2, dataJ, data4, data5, 
and data6 to the six raw training arrays. 

2. Use the function spectra in the example program to calculate spectral features 
from the training data to use as training input to the neural network. You can do 
this by evaluating: 

(setq spec1 (spectra datal» 
(setq spec2 (spectra data2» 
(setq spec3 (spectra data3» 
(setq spec4 (spectra data4» 
(setq spec5 (spectra data5» 
(setq spec6 (spectra data6» 

in your LISP listener window. Note that the function spectra in the example 
program produces a downsampled plot of the raw speech input data as seen in 
the graphics window in Figure 5.1. In order to view the large number of raw data 
points in a single plot, every point in the sample data sets was plotted with the 
x-coordinate of the point downsampled: for example, if the the x-coordinates 
range in value from 1 to 1000, the x-coordinate can be divided by 10 to compress 
the plot by a factor of 10 in the x (horizontal) direction. The function spectra 
also returns a list of extracted spectral features so after evaluating these six 
statements, the LISP variables spec1 ,spec2, spec3, spec4, spec5, and spec6 will 
be defined in your LISP environment. These spectral features will be used as the 
input training data for the speech recognition delta rule neural network. 
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3. Execute the function train in the sample program to train the speech recognition 
neural network. While the delta rule neural network simulator is executing, you 
can hold down the mouse button to get graphical snapshots showing the state of 
the network such as the one in Figure 5.2. 

Creating the data and training this neural network is easy because of the small size 
of our recognized word set. As we increase the number of words to be recognized, 
not only do we require more training data, but time-warping of the input speech 
data starts to degrade the performance of the system. (Time warping refers to 
speaking slowly or quickly). 

This example system works for a single speaker. It is fairly robust (given a small 
vocabulary) for continuous speech (running words together when we speak) 
because we calculate word breaks starting at a position in each word with a fairly 
high minimum volume (often losing interesting spectral features at the beginning 
of words). 

With an audio digitizing board (which usually costs about $100 for either a 
Macintosh or an IBM-compatible), you can build simple speech recognition 
capabilities into your own software. It is left as an exercise to interface the software 
supplied with audio digitizers to your LISP environment. 

5.4.2 Testing the Speech Recognition Program 

The follow text was captured from the LISP listener window after executing the 
function train (bold text is user input): 

? (deUaRecall temp (car spec1)) 
(0.9495446829902793 0.1470095102413525) 
? (deUaRecaJl temp (cadr spec1)) 
(0.13667153471859660.9266094433725993) 
? (deUaRecaJl temp (car specS)) 
(0.912298760199873 0.1167470797627841) 
? (deUaRecaJl temp (cadr specS)) 
(0.2021959468513246 0.8044567381986862) 
? 
The LISP variable spec1 contains the data for the first offour training data sets. The 
LISP variable spec5 contains the data for the first testing data set. The function 
deltaRecall takes two arguments: a neural network object (as returned from the 
function NewDeltaNetwork) and a list of activation input values for the network. 
Function deltaRecall initializes the activation energy values of the input layer 
neurons and propagates these values through the network; a list of resulting output 
neuron activation energies is returned. Note that the neural network easily recog­
nizes the words yes and no in the test data: we expect function deltaRecall to return 
a list with approximate values of (1.0, 0.0) when its input is a list of the spectral 
features of the word yes and a list with approximate values (0.0,1.0) when its input 
is a list of the spectral features of the word no. 
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5.5 Expanding the Sample Speech Recognition System 

The example system can be expanded in two ways: allowing for time-warping of 
input data and increasing the number of training examples to decrease the system 
error rate. 

The example system works when words are spoken at a constant rate. For 
example, if you train the system by speaking the words in the training data set 
quickly, the system will only recognize words spoken quickly. Research at the A TR 
laboratory in Japan and at Carnegie-Mellon University has shown that adding time 
delays to delta rule networks allows for temporal irregularities in speech input 
(Waibel, 1987). 

The second improvement to the example system is to increase the amount of 
training data used. For a larger (perhaps 10 to 20 word) vocabulary system, a good 
training strategy would be to record a 100 samples of each word and record the 
frequency information to disk files for future use. Of the 100 examples of each 
word, set aside ten samples of each word for later testing of the system. Of the 
remaining 90 samples, use only two or three samples for each word to perform your 
initial delta rule neural network training. After the neural network has learned to 
recognize this small number of training cases, add a few more training cases from 
your set of 90 and retrain the network. Continue this process until your network can 
recognize all 90 training cases, then test it on the ten test cases. 

5.6 Project 

If you have access to an audio digitizer, first try repeating the experiment described 
in this chapter. Then choose an application which can be largely controlled by a 
small number of keyword commands and build a speech recognition module for this 
application. 



6 
Recognition Of Handwritten 
Characters 

In this chapter, we will use a neural network pattern matcher to recognize 
handwritten characters. We will discuss required preprocessing of input data, 
present the sample program, show sample program output, and compare the neural 
network approach to a more conventional software approach to solving this 
problem. 

The example program presented in this chapter illustrates the recognition of the 
handwritten numbers 0 through 9. As with the speech recognition system in chapter 
5, the smaller the number of recognized symbols (or words), the easier it is to design 
and train a neural network discriminator. 

There are many practical applications for the recognition of hand written characters 
such as reading the dollar amount from checks or entering data without requiring the 
use of a keyboard. The goal of this chapter is to show how neural networks can easily 
solve a pattern-matching task which would otherwise be difficult using traditional 
software approaches. 

6.1 Capturing Data and Preprocessing 

The data captured for hand-drawn characters must be preprocessed for input into the 
delta rule neural network module which was developed in chapter 3. We use a 
mouse pointing device to capture data for handwritten characters in a graphics 
window; as a character is drawn while holding down the button on the mouse 
pointing device, the mouse's path in the graphics window is drawn in black. The 
resolution of this data collected from the graphic window is much higher than we 
want to use as input to a neural network, so we downsample the data for a single 
character onto a small grid. 

Although a neural network could be trained to recognize characters that were not 
centered in the input grid, many more training examples would have to be provided 
to the network. Since the software required to center a character in a grid is simple, 
we will perform this alignment task as a data preprocessing step. The diagram in 
Figure 6.1 shows this initial data preprocessing performed in the example program. 

The example program records the coordinates of points drawn with a mouse in the 
graphics window and downsamples these points, centers them in a small input grid, 
and provides them as input to a neural network. 
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Figure 6.1. Preprocessing Hand-drawn Characters by centering and downsampling onto a 
uniform grid. 

6.2 Handwriting Recognition Program 

The example program is less than 100 lines of code since it uses the software 
modules developed in chapters 2 and 3 for graphics and neural network simulation. 
To train a neural network to recognize handwritten numbers, the input data can be 
organized as a two-dimensional array. If we consider our system input to be a two­
dimensional field of 32x32 pixels, we can center the image of a hand-drawn number 
(which we will do by shifting and resizing the pattern) and then down sample 
(average or discard some data elements) the data to a smaller size, 6 by 6 pixels; each 
of the resulting 36 (= 6 • 6) pixels is represented by one of the 36 input neurons in 
our system. Furthermore, since we want our system to learn to recognize the ten 
digits 0 through 9, we will design our neural network to have ten neurons in the 
output slab. When we train the system with sample images of the number 1, we will 
force the activation level of neuron number one in the output slab to a high value and 
every other output slab neuron's activation will be set to zero. We will then allow 
the system to self-adapt its internal state to produce this desired output given the 
training image. This process is repeated for many different training examples. 

The example program uses the global variable *symbols* to hold the print names 
for the symbols the network will be trained to recognize. The global variables 
xScale and yScale specify the size of the neural network input slab: the hand-drawn 
characters are centered and downsampled to a grid of dimensions xScale by yScale 
pixels. The function start sets up the data for a new delta rule neural network and 
saves the network description list in the global variable * H-network*. Function start 
also initializes a new graphics window (using the functions defined in chapter 2) and 
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sets the global variable *training-list* to nil (setting the number of recorded training 
examples to zero). 

The function capturePoints is used to capture the motion of the mouse cursor in 
the graphics window while the path of the mouse (while the mouse button is held 
down) is plotted in the graphics window. Function capturePoints discards points 
that are too close together and returns a list of x-y coordinate pairs specifying the 
points captured while the mouse button is held down. 

The function record loops over all of the print names in the global variable list 
*symbol* prompting the user to draw the specified character in the graphics window 
by moving the mouse cursor with the mouse button held down to capture points. The 
global variable *training-list* is used to store the captured points of the entire set 
of symbols. The function record should be called many times to capture multiple 
training examples and store them on the list *training-list*. 

The function train uses the complete delta rule neural network simulator listed at 
the end of chapter 3 to train the neural network stored in the variable *H-network*. 
Notice that both the learning rates and magnitude of random input noise are being 
adjusted to decreasing values after 100, 500, and 1500 training cycles through the 
training data stored in *training-list*. 

The function recall is used to test the neural network after training is completed. 
This function first calls function capturePoints to collect the points for a hand­
drawn character; then the function DeltaRecall (defined in the delta rule simulator) 
is used for pattern matching. If there is a good match to one of the training symbols, 
the appropriate training symbol print name is echoed in the Lisp listener window . 

.. 
" 
; Capture hand-drawn numbers from 0 to 9 and train a neural network 
; to recognize them. 

; Copyright 1990 by Mark Watson .. 
" 

(setq *symbols* '("0" "1" "2" "3" "4" "5" "6" "7" "8" "9")) 
(setq xScale 7) 
(setq yScale 9) 

(defun start 0 
(setq *H-network* 

(newdeltanetwork 
(list (* xScale yScale) 8 (length *symbols*»» 

(init-plot "Handwritten numbers") 
(setq *training-list* nil)) 

(detun capturePoints () 
(detun difterentPoints (p1 p2) 
(let ((xdif (- (car p1) (car p2))) 

(ydif (- (cadr p1) (cadr p2)))) 
(> (+ (* xdifxdif) (* ydif ydif» 5))) 
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.. 
" 

(clear-plot) 
(show-plot) 
(let «xmin 9999) (ymin 99999) (xmax -9999) (ymax -9999) 

retList picList pos (oldPos '(-100 -100))) 
(dotimes (i 40000) 

(setq pos (plot-mouse-down» 
(if pos 

(if (differentPoints pos oldPos) 
(let «x (car pos» (y (cadr pos))) 

(plot-fill-rect (- x 2) (- Y 2) 5 5 100) 
(if « x xmin) (setq xmin x) 

(if (> x xmax) (setq xmax x))) 
(if « y ymin) (setq ymin y) 

(if (> y ymax) (setq ymax V))) 
(setq retList 

(cons pos retList) 
oldPos pos»))) 

(if « (abs (- xmin xmax» 30) ;; special case for 1 
(setq xmin (- xmin 200) 

xmax (+ xmax 200») 
(let «xminB 4) (yminB 20) 

(xmaxB (+ 4 xScale» (ymaxB (+ 20 yScale))) 
.. 
" 
; Define a return picture list with the correct number of elements: 
.. 
" 
(dotimes (x xScale) 
(dotimes (y yScale) 

(setq picList (cons -0.4 picList)))) 
(plot-line (- xminB 3) (- yminB 3) (+ xmaxB 3) (- yminB 3» 
(plot-line (+ xmaxB 3) (- yminB 3) (+ xmaxB 3) (+ ymaxB 3» 
(plot-line (+ xmaxB 3) (+ ymaxB 3) (- xminB 3) (+ ymaxB 3» 
(plot-line (- xminB 3) (+ ymaxB 3) (- xminB 3) (- yminB 3» 
(dolist (pos retList) 

(let «x (car pos» (y (cadr pos))) 
(Iet* «xp (truncate (* 0.999 (* (/ (- x xmin) (- xmax xmin» xScale)))) 

(yp (truncate (* 0.999 (* (/ (- y ymin) (- ymax ymin» yScale»))) 
(index (+ xp (* yp xScale»» 

(setf (nth index picList) 0.4) 
(plot-line (+ 4 xp) (+ 20 yp) (+ 4 xp) (+ 20 yp»))))) 

(dotimes (delay 200000) nil) ;; delay a bit.. 
picList» 

; Utility for recording training examples: 
.. 
" 

(defun record 0 
(let (retVal (count 0) inputs) 

(dolist (sym *symbols*) 



.. 
" 

(princ "Draw the character ") 
(princ sym) 
(princ " in the graphics window.") 
(terpri) 
(setq inputs (capturePoints)) 
(setq *target-output* nil) 
(dotimes (ii (length *symbols*)) 

(if (equal ii count) 
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(setq *target-output* (cons 0.4 *target-output*)) 
(setq *target-output* (cons -0.4 *target-output*»))) 

(setq *target-output* (reverse *target-output*)) 
(setq count (+ count 1)) 
(setq retVal (cons (list inputs *target-output*) retVal))) 

(setq *training-list* (cons (reverse retVal) *training-list*)))) 

Utility for training the network using the complete delta rule 
module developed in chapter 3: .. 

" 

(defun train (&optional (restart 'yes)) 

.. 
" 

(princ "Starting training session. Hold down mouse for plots") 
(terpri) 
(setq defaultEidaList '(0.2 0.2 0.2 0.2)) 
(setq defaultNoise 0.15) 
(if 

(equal restart 'yes) 
(setq temp (newdeltanetwork '(4 5 4)))) 

(dotimes (ii 500000) 
(if (equal ii 100) 

(setq defaultEidaList '(0.1 0.1 0.1 0.1) 
defaultNoise 0.1)) 

(if (equal ii 500) 
(setq defaultEidaList '(0.05 0.05 0.05 0.05) 

defaultNoise 0.08)) 
(if (equal ii 1500) 

(setq defaultEidaList '(0.03 0.03 0.03 0.03) 
defaultNoise 0.03)) 

(princ "RMS error = ") 
(prine 
(delta learn 
*H-network* 
(car *training-list*) 
'yes)) ; autoplot mode 

(terpri))) 

Utility for testing the network after training: 
.. 
" 
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(detun recall 0 
(Iet* ((pattern (capturePoints» 

(retVal (DeltaReeall *H-network* pattern))) 
(dotimes (i (length *symbols*» 
(if (> (nth i retVal) 0.1) 

(progn (prine "Symbol was ") (prine i) (terpri)))))) 

6.3 Training and Executing the Example Program 

The hand writing recognition neural network uses both the generic plotting library 
and the complete delta rule simulator presented in chapters 2 and 3, so be sure to load 
these files before attempting to execute the sample program. 

A training data base is created and tested by: 

1. Execute the function start to initialize the neural network data structures and 
create a graphics window. 

2. Execute the function record to define one complete set of training examples; 
repeat the execution of record several more times. Executing record saves samples 
of your hand writing for training the neural network. 

3. Execute function train to train your network; the total error for each training 
cycle is printed after every pass through the training examples. Stop the 
execution of function train when this error becomes small and stops decreasing. 

4. To test your neural network, execute the function recall. 

The screen dump in Figure 6.2 shows the handwriting recognition neural network 
recalling stored patterns when shown new hand-drawn numbers. The preprocessing 
software allows the characters to be drawn in any position in the graphics window 
and in any size. 

6.4 Alternate Problem-Solving Methodologies 

This sample program is a good example of what current neural network technology 
does best: recognize (classify) patterns similar to patterns that the network has 
processed during a training cycle. It is interesting to compare and contrast the steps 
required for solving this example handwriting problem using both a neural network 
and a conventional software development approach. Neural networks provide a 
methodology for building pattern classifiers quickly without specialized program­
ming. Given the problem of writing a conventional computer program for recog­
nizing the characters for the numbers 0 through 9, we might take the fOllowing steps: 

1. Write the software to track mouse movements on your computer system and 
store the path that the mouse followed. 
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Figure 6.2. Screen dump from the example program showing a hand-drawn character in the 
top window and the sample program output in the bottom window correctly classifying the 
character. 

2. Write the simple functions to center the hand-drawn character and down sample 
it onto a smaller grid. 

3. Display many example down sampled characters and decide which features most 
clearly differentiate the different characters. 

4. Use rules such as: 0 and 8 are vertically symmetric, if the height of the character 
is much greater than the width the character is a 1, if no pixels are recorded in 
the lower right part of the down sampled grid, the character is probably a 7, etc. 

5. Prototype/refine the system. 
6. Test the system performance. 
7. Repeat steps 3, 4, 5, and 6 as many times as necessary. 

Note that we had to perform steps 1 and 2 in our neural network example, but then 
we used available software packages (in this case examples developed earlier in this 
book) to engineer a good recognition system without any further programming 
effort. 

Remember that trained neural network systems can be easily embedded in larger 
LISP programs either by using the ReadDeltaNetworkfunction presented in chapter 
3, storing trained networks as disk files and loading them into memory as needed, 
or by embedding them directly in LISP (or any other language) by allocating storage 
for the connection weights directly in the source code and then initializing the values 
for the weights as constants in the program. I have embedded neural networks in 
C programs by writing the network weights out to a disk file in the same format used 
to initialize static arrays, then editing the neural network (as represented by the 
connection weights) into an application program as statically initialized data. A 
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run-time delta network interpreter requires less than fifty lines of code to process the 
network inputs. 

A further advantage of building recognition systems with neural networks is that 
if the problem domain changes (e.g., the letters A throughF need to be scanned from 
a consumer information questionnaire, or the dollar sign ($) and period (. ) are needed 
for reading the dollar amounts from handwritten checks), the system can be 
retrained by simply recording more training data and repeating the training process. 

Even though the training time can be considerable, recall time (to recognize 
patterns after the training has been finished) is fast: one forward pass through the 
delta rule network. To calculate this response time of a trained network, write down 
the size of each slab of neurons in the network and multiply these numbers together: 
the result will be the required number of multiplication and addition operations. The 
Sigmoid function must also be evaluated once for every neuron in the network; 
using a table lookup will speed up the Sigmoid calculations significantly (if you use 
tables for the Sigmoid and derivative of Sigmoid functions, each table should have 
at least 2000 elements). If you know how long it takes for these operations on your 
computer, you can get a good estimate of the time required for pattern recognition. 
Often preprocessing steps (such as extracting spectral features from speech data) are 
also computationally expensive. 

6.5 Project 

Build a system that can read handwritten numbers from checks. You will need to 
write preprocessing code to figure out where the breaks are between characters and 
pass each character to a neural network character classifier. Try to catch errors 
dealing with illegal entries. This is a difficult project because ofthe requirement of 
isolating the individual characters before processing with a neural network. 
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Adaptive Neural Networks 

The neural networks studied in previous chapters have had a simple flow of 
information from input to hidden to output neurons through connections without 
loops and feedback. They were trained by supervised learning techniques where 
the desired system output was provided during training. Another interesting type 
of neural network performs unsupervised learning where the system is shown 
inputs with no desired outputs. The system searches for similar features in the 
training inputs to group them into categories where members of a single category 
share common features. These networks are called adaptive resonance theory 
(ART) networks (Carpenter and Grossberg, 1987). Carpenter and Grossberg have 
extended their theory to process inputs with a dynamic range. The sample program 
listed in this chapter uses this newer gray-scale Adaptive Resonance Theory (ARTI) 
which allows inputs to have any value between 0.0 and 1.0 (thus the name gray-scale). 
This sample program uses the variable naming conventions originated by Gail 
Carpenter and Stephen Grossberg in their paper introducing the theory for ARTI 
(Carpenter and Grossberg, 1987). The real time dynamic behavior of ARTI net­
works is fascinating to watch; they exhibit interesting behavior when they have few 
output neurons and are shown a large number of input patterns. The network will 
reshuffle existing categorizations when necessary. 

7.1 Theory 

When an ARTI neural network remembers an input pattern in long-term memory 
(i.e., the weights in the network, not the neuron activation values), it stores the 
pattern in the weights. When several patterns are classified as belonging to the same 
category, the weights store an average of the input patterns in that category. An 
ARTI model creates new categories when a new input pattern is initially classified 
as belonging to an existing category but there is a mismatch between the recalled 
average pattern for the existing category and the new input pattern. The network 
disallows the current categorization (Le., the network classification is reset) and forces 
a different output category. 

In ARTI networks, each possible output category used for classifications is 
represented by one output neuron in the network. Learning and recall are the same 
operation in an ARTI network: long-term memory is slightly modified when 
classifying a new input pattern into an existing category. A rough analogy is our 
ability to recognize a building in a foreign country as being a house; our categorization 
of a new structure as a house slightly changes our perception of what houses look 
like. 
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7.2 ART2 Dynamics 

When an ART2 neural network categorizes an input pattern, a generic pattern is 
recalled for that category which is a rough average of the input patterns forming the 
category. Figure 7.1 shows the input pattern (0.0, 0.3, 0.9, 0.3, 0.0) being placed in 
category 2 with no mismatch between it and existing patterns in category 2. If there 
is a significant mismatch (the allowed magnitude of this mismatch is controlled by 
the vigilance parameter) between the input pattern being categorized and the 
recalled pattern, a reset condition occurs. The screen image in Figure 7.2 shows an 
example of an input pattern not being accepted into either category 1 or category 3. 
The example program first started to classify the pattern as being in category 3, but 
there was too large a mismatch between the generic recalled category 3 pattern and 
the new input pattern being tested. Similarly, an attempt to classify the new input 
pattern as a category 1 pattern triggered a reset condition. The pattern is accepted 
into category 2 although the match is not perfect (notice that the reset indicator is 
nonzero) signifying that the new pattern differs slightly from previous patterns 
categorized as belonging to category 2. 

§D§ Adaptiue Resonance Theory §t!J§ 
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Figure 7.1. Example ART2 Screen Image. The ART2 model selects category 2 for an input 
pattern. 
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Figure 7.2. ART2 Selection of Category 2. Initial classification as categories 1 and 2 resulted 
in a mismatch between input pattern and stored memory of categories 1 and 3. 

ART2 networks are fundamentally different from feed forward delta rule net­
works. Certainly the action of delta rule networks is more predictable since the 
network training is supervised by supplying both system inputs and outputs. ART2 
neural networks self-organize their weights internally to define a classification 
scheme for patterns which they process in real time. Learning and recall occur 
simultaneously whenever a pattern is input to the network. Patterns which closely 
match an existing category do not disturb the internal state of the network very 
much. A pattern very dissimilar to any seen before has a major impact on both the 
internal state of the network and its functional properties that will be manifested in 
the future: a new pattern dissimilar to previous ones will often initially be classified 
as being similar to an old pattern. The classification of a pattern causes an 
associative memory recall (using the output category code as a key) of a rough 
average of all previous inputs which have been placed in this category. 

Figure 7.3 shows the input pattern (0.0, 0.25, 0.9, 0.1, 0.0) being categorized as 
belonging to category 2. There is a slight mismatch to the input pattern (0.0, 0.3, 
0.9,0.3,0.0) seen in Figure 1, but both patterns are placed in the same category. 
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Figure 7.3. Selection of Category 2 for Input Pattern. Partial mismatch between the input 
pattern and the stored memory image for category 2 is indicated by the nonzero reset neuron 
in the lower right corner of window. 

7.3 ART2 Model Equations 

Figure 7.4 shows the Carpenter and Grossberg ARTI model equations used later 
in the sample ARTI program. The model constants (a, b, c, d, e,f, theta, alpha, and 
vigilance) should not in general be modified. The one-dimensional arraysp, q, U, 

v, W, andx are used to calculate the short-term memory (Le., the activation energy) 
in the output neurons (stored in array y). The one-dimensional array Iholds an input 
pattern. The two dimensional arrays wDown and wUp are used to store the weights 
in the network which are the network's long-term memory. The function L2NORM 
is calculated as the sum ofthe squares ofthe elements of an array plus a small value 
to prevent divide by zero error conditions if the array elements are all zero. 
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Figure 7.4. Carpenter and Grossberg ART2 Model Equations. 

7.4 ART2 Program Listing 

The following listing shows the example program which produced the screen 
images used in this chapter (some of the comments refer to citations in Carpenter 
and Grossberg, 1987). The example program uses several global variables to store 
model constants, the network size (nlnputs and nOutputs), and learning rates (upLR 
and downLR). The use of global variables makes the debugging of complex 
mathematical models like ART2 easier in an interactive environment, but is in 
general not recommended. Any bad effects of the use of global variables are 
mitigated by placing the AR 1'2 model program in it's own Common LISP package. 
In the example program, only the functionsART2-init,ART2, andART2-postprocess 
are exported to the default Common LISP package user. 

This program uses the variable naming conventions used by Carpenter and 
Grossberg in their published papers on ART and ART2. They often use single-letter 
variable names. The reader who is interested in adaptive neural networks will find 
it easier to understand and modify the example program because of the use of the 
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same naming conventions used in the ART2 literature. 
The functionART2-init accepts two arguments: the number of input neurons and 

the number of output neurons. This function allocates floating point array storage 
for the model. 

The function frandom has two arguments: a lower bound and an upper bound 
between which a random floating point number is generated and returned as the 
value of the function. 

The function JindLargestOutput examines each output neuron and returns the 
index of the output neuron with the largest activation energy (as defined in chapter 
3). The ART2 model uses the array reset as a flag array for indicating which output 
neurons are illegal (because of a reset condition). This function ignores output 
neurons which have their reset flag set to true. 

The function g is called with one argument (the index of an output neuron) and 
returns as its value the model parameter d if the indexed output neuron has the largest 
value, has not been reset, and has an activation energy greater than the model 
constant resetThreshold. Otherwise, this function returns 0.0 as its value. 

The function sigmoid in the sample program is not the same sigmoid function that 
we saw in chapter 3. This function returns the value of zero if its argument is less 
than the model cutoff value of theta, otherwise it returns its input argument as the 
return value for this function. 

The function L2NORM has as input, a vector, and the length of the vector. This 
function calculates the sum of the square of each element in the input vector and 
returns the square root of this sum as the functions return value. 

The function F1STMcycle updates the Fl short-term memory arrays p, q, u, v, w, 
x, and r. 

The function F2STMcycle updates the short-term memory array y which is the 
output of the network indicating the classification of the input pattern. 

The function updateWeights updates the model weight arrays: wDown and wUp. 
The function competitiveF2 finds the index of the output neuron with the largest 

activation energy (using function JindLargestOutput) and if the value of the array 
y for this index is greater than the model constant resetThreshold, every other el­
ement of the array y is set to zero. 

The function OneCycle executes one complete learning/recall cycle. 
The function testResetchecks for an F2 short-term memory reset condition caused 

by too large of a mismatch between an input pattern and the recalled pattern 
triggered by this input. If a reset condition exists, the index of the output neuron with 
the largest activation energy is used to set the corresponding element of the reset 
array to a value of true. 

The function zeroActivations zeros out all short -term memory arrays in the ART2 
model. 

The function set Pattern has a single input argument: a list containing nInputs 
floating point numbers with values between 0.0 and 1.0. The function zero Activations 
is called to zero out all short-term memory arrays and the input pattern is copied into 
the model array p which is used to hold the input activation values. 

The function in it Network zeros all short-term memory arrays and resets long-term 
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memory (Le., the weight arrays wUp and wDown) to small random numbers. 
Calling this function completely resets the simulated ART2 network. 

The function learnPatterns uses a set of input patterns stored in the list testPatterns 
to train the network. The variable testPatterns is defined before the definition for 
function learnPatterns in the sample program. The main program ART2 calls this 
function, so new sample inputs can be used by changing the definition of test Patterns . 

The function plotActivations is a utility function for plotting the activation values 
stored in a one-dimensional array with a title at a specified location in the graphics 
window. This function uses the graphics utilities developed in chapter 2. 

The function updateScreen calls function plotActivations for every short-term 
memory model array to get the plots shown in Figures 7.1,7.2, and 7.3. 

The functionART2 is the main test function in the sample program. It is called with 
no arguments and cycles through the training patterns stored in the variable 
testPatterns 50 times. 

The functionART2-Postprocess produces the output summary plots . 

.. 
" 

.. 
" 

.. 
" 

Adaptive Resonance 2 Model in Common Lisp. 
Copyright 1990 by Mark Watson. 

Based on the Adaptive Resonance Theory 
by Gail Carpenter and Stephen Grossberg . 

; Define a separate name space package for this software module: 
.. 
" 

(make-package :art2) 
(export '(ART2 ART2-postprocess ART2-init) :user) 

(defun ART2-init (numlnputs numOutputs &optional training Patterns) 
; Check for specified training patterns: 
(if training Patterns 
; Make sure the number of input neurons agrees with 
; the size of the training patterns: 
(if (equal (length (car trainingPatterns)) numlnputs) 
(setq test Patterns training Patterns) 
(print 
(list 
"ERROR: bad input to ART2-init. numlnputs should have been" 
(length (car training Patterns))))) 

; No specified training patterns: use the default set 
; defined in this package: 
(if (not (equal (length (car testPatterns)) numlnputs)) 

(print 
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(list 
"ERROR: bad input to ART2-init. numlnputs should have been" 
(length (car testPatterns)))) 

; Specified number of input neurons agrees with 
; the size of the default training patterns defined 
; in this package; proceed with defining network data: 
(progn 
; Define the network size: 
(setq nlnputs numlnputs) 
(setq nOutputs numOutputs) 
; Array storage allocation: 
(setq input (make-array (list nlnputs))) 
(setq w (make-array (list nlnputs))) 
(setq x (make-array (list nlnputs))) 
(setq v (make-array (list nlnputs))) 
(setq r (make-array (list nlnputs))) 
(setq u (make-array (list nlnputs))) 
(setq q (make-array (list nlnputs))) 
(setq p (make-array (list nlnputs))) 
(setq temp (make-array (list nlnputs))) 
(setq resetVal (make-array (list 1))) 
(setq y (make-array (list nOutputs))) 
(setq reset (make-array (list nOutputs))) 
(setq resetCounter (make-array (list nOutputs))) 
(setq nCategories (make-array (list nOutputs))) 
(setq temp2 (make-array (list nOutputs))) 
(setq wUp (make-array (list nlnputs nOutputs))) 
(setq wDown (make-array (list nOutputs nlnputs))) 
; Global variable to remember input patterns and 
; their associated output category code for plotting 
; by function ART2-Postprocess: 
(setq *Iearned-categories* nil))))) 

; Neuron size for plots: 

(setq PEsize 18) 
(setq PEsizem1 (- PEsize 1)) 
(setq PEsizep1 (+ PEsize 1)) 

; Model constants: 

(setq a 0.5) 
(setq b 0.2) 
(setq c -1.0) 
(setq d 0.4) 



(setq e 0.04) 
(setq theta 0.3) ;; 1 / (sqrt(nlnputs)) 
(setq vigilance 0.94) 
(setq alpha 1.0) 

(setq resetThreshold 0.05) 

(setq upLR 0.12) 
(setq downLR 0.12) 

; Floating point random numbers: 

(detun frandom (low high) 
(let «range (- high low))) 

(+ (* (I (random 1000) 1000.0) range) low))) 
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(defun findLargestOutput (&aux (maxlndex 0) (mVal (aref y 0))) 
(dotimes 0 nOutputs) 

(if (and 
(> (aref y j) mVal) 
(not (aref reset j))) 

(setq mVal (aref y j) 
maxlndex j))) 

maxlndex) 

; The following function returns d if (aref y index) is the 
; largest value in array y AND (aref y index) has not been reset: 

(detun g (index &aux j mVal (maxlndex (findLargestOutput))) 
(if (and 

(equal index maxlndex) 
(not (aref reset maxlndex)) 
(> (aref y maxlndex) resetThreshold)) 

d 
0.0)) 

; Threshold function: 

(defun sigmoid (x) 
(if (> x theta) 
x 
0.0)) 

; L2 Norm of a vector: 
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(detun L2NORM (v vLength &aux (sum 0.0) i j) 
(dotimes (i vLength) 

(setq sum (+ sum (* (aref v i) (aref vi))))) 
(+ (sqrt sum) 0.001)) 

; Update F1 STM arrays: 

(detun F1STMcycle (&aux i j sum norm max1 max2) 
; Calculate p from u input and backwards feed back: 
(dotimes (i nlnputs) 
(setq sum 0.0) 
(dotimes 0 nOutputs) 

(setq sum (+ sum (* (g j) (aref wDown j i))))) 
(setf (aref pi) (+ (a ref u i) sum))) 

; Update q using eq. 5 
(setq norm (+ (L2NORM p nlnputs) e)) 
(dotimes (i nlnputs) 

(setf (aref q i) (/ (aref p i) norm))) 
; Update u using eq. 6: 
(setq norm (L2NORM v nlnputs)) 
(dotimes (i nlnputs) 

(setf (aref u i) (J (aref v i) norm))) 
; Update v using eq. 7: 
(dotimes (i nlnputs) 

(setf (aref v i) (sigmoid (+ (aref x i) (* b (sigmoid (aref q i))))))) 
; Update w using eq. 8: 
(dotimes (i nlnputs) 

(setf (aref w i) (* alpha (+ (aref input i) (* a (sigmoid (aref u i))))))) 
; Update x using eq. 9: 
(setq norm (+ (L2NORM w nlnputs) e)) 
(dotimes (i nlnputs) 

(setf (aref x i) (J (aref w i) norm))) 

; Calculate reset r from eq. 20: 
(setq max1 -1000.0 max2 -1000.0) 
(dotimes 0 nlnputs) 

(progn 
(if « max1 (aref u j)) (setq max1 (aref u j))) 
(if « max2 (aref p j)) (setq max2 (aref p j))))) 

(setq max1 (+ max1 0.001)) 
(setq max2 (+ max2 0.001)) 
(dotimes (i nlnputs) 

(setf 
(aref r i) 

(- (/ (aref u i) max1) (J (aref pi) max2))))) 



; Update F2 STM storage: 

(defun F2STMcycie (&aux i j sum) 
(dotimes 0 nOutputs) 

(progn 
(setq sum 0.0) 
(dotimes (i nlnputs) 

(setq sum (+ sum (* (aref pi) (aref wUp i D)))) 
(setf (aref y D sum) 
(if (aref reset D (setf (aref y D -0.1))))) 

; Update weights: 

(defun updateWeights (&aux i 0 (findLargestOutput))) 

(if (> (g j) 0.02) 
(dotimes (i nlnputs) 

(setf 
(aref wDown j i) 
(+ (aref wDown j i) 

(* 
downLR 

d 
(- (aref p i) (aref wDown j i))))) 

(setf 
(aref wUp i j) 
(+ 
(aref wUp i j) 
(* 
upLR 
d 
(- (aref p i) (aref wUp i j)))))))) 

; Competitive learning at slab F2: 

(defun competitiveF2 (&aux i OJ (findLargestOutput))) 

(if (> (aref y ll) resetThreshold) 

(dotimes (i nOutputs) 

(if (not (equal i li)) 
(setf (aref y i) 0.0))))) 

; Run one full cycle: 

(defun OneCycle (&aux i j) 
(F1 STMcycle) 

(testReset) 
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( competitiveF2) 
(F2STMcycle) 
(updateWeights) 
( competitiveF2) 
(updateScreen)) 

; Check for an F2 reset condition: 

(setq skipReset nil) 

(defun testReset (&aux (res 0.0) (norm1 0.0) (norm20.0) 
(n1 (+ (l2NORM p nlnputs) e)) n2 temp) 

(if (and 
(> n1 0.2) 
(not skipReset)) 

(if (> learningCycleCounter 1) 
(if (> (aref y (findLargestOutput)) 0.25) 

(setq res (* 3.0 (l2NORM r nlnputs)))) ; was 3.0 
(setq skip Reset nil))) 

(setf (aref resetVal 0) res) 
(plotActivations "reset flag" 190 220 resetVal 0.0 1.0) 
(if (> res 1.0) 

(progn 
(print (list "Vigilance reset =" res· Learning cycle =" 

learningCycleCounter)) 
(setq maxlndex (findLargestOutput)) 
(setf (aref reset maxlndex) 1) 
(setf (aref resetCounter maxlndex) 80)) 

(dotimes (i nOutputs) 
(setf (aref resetCounter i) (- (aref resetCounter i) 1)) 
(if « (aref resetCounter i) 0) 

(progn 

(if (aref reset i) (setq skip Reset t)) 
(setf (aref reset i) nil))))) 

(setq skip Reset nil)) ;; temporary 

; Zero activations: 

(detun zeroActivations 0 
(dotimes (i nlnputs) 

(setf (aref w i) 0.0) 
(setf (aref x i) 0.0) 
(setf (aref v i) 0.0) 
(setf (aref ri) 0.0) 

(setf (aref u i) 0.0) 



(setf (aref q i) 0.0) 
(setf (aref p i) 0.0» 

(dotimes (i nOutputs) 
(setf (aref y i) 0) 
(setf (aref reset i) 0) 
(setf (aref resetCounter i) 0))) 

; Set up a learning pattern in the input neurons: 

(defun set Pattern (pi &aux (len (length pi))) 
(if (not (equal len nlnputs» 

(print (list "Error in setPattern input" pi» 
(progn 

(setq learningCycleCounter 0) 
(zeroActivations) 
(dotimes (i len) 
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(setf (aref input i) (+ (pop pi) (frandom -0.080.08))))))) 

; Initialize the network: 

(defun initNetwork 0 
(zeroActivations) 
(dotimes 0 nOutputs) 

(progn 
(dotimes (i nlnputs) 

(setf 
(aref wUp i j) (frandom 0.05 0.1) 
(aref wDown j i) (frandom 0.Q1 0.03))) 

(setf (aref nCategories j) 0»» 

; Define some test patterns: 

(setq test Patterns 
'( 

(0.0 0.4 0.9 0.4 0.0) 
(1.0 0.3 0.0 0.3 1.0) 
(0.75 0.5 0.02 0.05 0.07) 
(0.02 0.41 0.91 0.36 0.08) 
(1.10.120.00.31.0) 
(0.00.20.90.40.0) 
(0.93 0.31 0.0 0.78 1.0) 
(0.6 0.6 0.02 0.05 0.07) 
(0.790.540.020.080.07) 
(0.00.450.70.250.0) 
(1.00.30.00.30.65) 



92 Adaptive Neural Networks 

(0.00.40.90.40.0) 
(0.00.50.750.50.0) 
(1.00.20.00.40.8) 
(0.82 0.46 0.02 0.09 0.01))) 

; Cycle through all training patterns once: 

(detun learn Patterns (num) 
(dolist (p testPatterns) 

(print (list "Inputs:" p» 
(set Pattern p) 
(dotimes (i num) 

(setq learningCycleCounter (1 + learningCycleCounter» 
(OneCycle) 
(updateScreen» 

(setq *Iearned-categories* 
(cons (list p (tindLargestOutput» 

*Iearned-categories*») ) 

; Graphics support: 

(detun plotActivations (title x y data dmin dmax) 
(let «size (array-dimension data 0» (ypos 0) (xpos x» 

(plot-string-italic (- x 47) (+ Y 7) title) 
(dotimes (i size) 

(it « size 20) 
(setq ypos y xpos (+ x (* i PEsizep1))) 
(it « i (j size 2» 

(setq ypos (- y 7) xpos (+ x (* i PEsizep1))) 
(setq ypos (+ y 2) xpos (+ x (* (- i (j size 2» PEsizep1»))) 

(plot-size-rect 
xpos ypos PEsizem1 PEsizem1 
(max 
1 
(truncate (* (j (- (aref data i) dmin) (- dmax dmin» PEsize»» 

(plot-trame-rect xpos ypos PEsize PEsize»» 

(detun updateScreen 0 
(plotActivations "inputs" 50 10 input 0.0 1.0) 
(plotActivations "w" 50 30 w 0.0 1.0) 
(plotActivations "x" 50 50 x 0.0 1.0) 

(plotActivations "v" 50 70 v 0.0 1.0) 
(plotActivations "r" 50 90 r 0.0 1.0) 
(plotActivations "U" 50 110 u 0.0 1.0) 
(plotActivations "q" 50 130 q 0.0 1.0) 



(plotActivations "p" 50 150 P 0.0 1.0) 
(plotActivations "outputs" 50 200 Y 0.0 1.0) 
(dotimes (i nOutputs) 
(if (aref reset i) 

(setf (aref temp2 i) 1.0) 
(setf (aref temp2 i) 0.0))) 

(plotActivations "reset" 50 220 temp2 0.0 1.0» 

; Main test program: 

(detun ART2 0 

.. 
" 

(setq *Iearned-categories* nil) 
(init-plot "Adaptive Resonance Theory" 250 290) 

(initNetwork) 

(learn Patterns 50» 

Standalone program to plot the input 
patterns and associated output category 
codes produced by executing program ART2: 

.. 
" 
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(detun ART2-Postprocess (&aux (width 130) category-counts) 

(defun plot-input (x-org y-org values) 
(let «delta-x (/ (- width 20) (length values)))) 

(plot-line x-org y-org x-org (- y-org 20» 
(plot-line x-org y-org (+ x-org (- width 40» y-org) 
(dotimes (n (- (length values) 1» 

(plot-line 
(+ x-org (* n delta-x» 
(- y-org (* 20 (nth n values))) 

(+ x-org (* (1 + n) delta-x» 
(- y-org (* 20 (nth (1 + n) values»»))) 

(setq category-counts (copy-tree '(0 0 0))) 
(init-plot "ART2: Category codes for input patterns" 382 270) 

(plot-string-italic 20 15 "Category 1") 

(plot-string-italic (+ 20 width) 15 "Category 2") 

(plot-string-italic (+ 20 width width) 15 "Category 3") 

(dolist (p *Iearned-categories*) 

(print (list "inputs:" (car p) "category:" (cadr p))) 

(let «pattern (car P» 
(category-code (cadr p))) 

(plot-input 
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(+ 20 (* category-code width» ;; x coord of plot origin 
(+ 40 (* (nth category-code category-counts) 40» ;; y coord 
pattern) 
(setf (nth category-code category-counts) 

(1 + (nth category-code category-counts»))))) 

7.5 Running the ART2 Program 

The example program defines 15 sample patterns (the global variable test Patterns 
is set equal to a list of the sample patterns in the ART2 program). The sample 
program listing contains three programs that are executed by typing (ART2 -init 53), 
(ART2) and then (ART2-postprocess) in your Lisp listener window. Figure 7.4 
shows the output graphics produced by function ART2-postprocess; the autom;itic 
categorization (performed by the ART2 program) of the fifteen sample input pat­
terns into three categories is illustrated by dividing the fifteen input patterns into 
three categories ordered in Figure 7.4 by column. 

The sample program uses two global variables nInputs and nOutputs to define the 
number of values in each input pattern and the number of categories to sort the inputs 
into. Figure 7.4 shows six input patterns being sorted into category 1, five input 
patterns into category 2, and four input patterns into category 3. 

The following text was captured from the Lisp listener window while executing 
the example program (user input in bold): 

? (ART2-init 5 3);; 5 inputs, 3 output categories, use default training data 
nil 
? (ART2) ;; execute the pattern classifier until user resets 
("Inputs:" (0.00.4 0.9 0.4 0.0» 
("Inputs:" (1.00.30.00.3 1.0» 
("Inputs:" (0.75 0.5 0.020.050.07» 
("Vigilance reset =" 1.0538614441512 " Learning cycle =" 5) 
("Vigilance reset =" 1.73225324598681 " Learning cycle =" 6) 
("Inputs:" (0.020.41 0.91 0.360.08» 
<Aborted by control C> 
?(ART2-postprocess) ;; execute the postprocessor 
("inputs:" (0.750.5 0.020.050.07) "category:" 0) 
("inputs:" (1.00.3 0.0 0.3 1.0) "category:" 1) 
("inputs:" (0.00.4 0.9 0.4 0.0) "category:" 2) 
nil 
? 

Since the initial state of the ART2 neural network in our example program is random 
(the connection weights held in the global variables wUp and wDown are initialized 
to small random numbers), the example system will create different categories in 
different execution runs. Furthermore, often one or two input patterns will seem to 
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§D~ RRT2: Category codes for input patterns ~0§ 

Category] Category 2 Category 3 

I~ ~~ b:.. 

I~ ~~ ~ 

I~ t':>..L D 
I~ t\-..../ ~ 
~ ~./ 

I~ 
~ 

Figure 7.4. Screen dump showing the execution of the ART2 model postprocessor. 
Automatic categorization of 15 patterns into 3 categories. 

be sorted into the "wrong" (different from where most would sort them) category. 
The ART2 neural network model is very sensitive to the model constants and as 
stated earlier, changing them is to be avoided. The model constant vigilance is the 
only constant in the sample program which you are likely to change: increasing the 
value for vigilance (maximum value should be 1.0) causes the ART2 network to 
more exacting in sorting new patterns into existing categories, and decreasing its 
value (minimum value of 0.0) allows patterns with larger feature differences to be 
grouped into the same category. 

7.6 Project 

Choose an application domain that you are familiar with in which input data sets are 
manually sorted into categories. Without classifying the inputs, use them to train 
an ART2 neural network. Are the categories created by the ART2 neural network 
based on the same features you would choose? (For example, if you have a home 
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weather station, try scaling the inputs from your instruments to the dynamic range 
(0.0, 1.0) and use an ART2 neural network to classify the inputs into a few 
categories. What features did the neural network use to form the calculated 
categories?) 



8 
Representing Natural Language as LISP 
Data Structures and LISP Code 

Natural language processing (NLP) systems allow interaction with a computer 
using natural language. NLP systems are practical to build when the system 
vocabulary is small and the domain of discourse limited. In section 8.1, the basic 
techniques will be developed for parsing Natural Language (NL) text using 
syntactical analysis by starting with a simple parser which recognizes noun phrases. 
We will use this first simple noun phrase parser to introduce the notation for 
augmented transition networks (ATNs). 

In section 8.2 we will use both a bubble diagram and LISP notation to write down 
a parser that can recognize entire sentences. In section 8.3, we will then re-write the 
parser for animating the parsing process by graphically displaying the bubble 
diagrams while the parser is running. In section 8.4 we will show how to run the 
animated parser. Section 8.5 presents suggested projects. In chapter 9, we will add 
semantic processing to syntactic analysis to build a NL interface for a hypothetical 
library database. 

There are two principle approaches to modern NLP systems: syntax directed 
parsing (Woods, 1968) using ATNs and semantic directed systems such as those 
using conceptual dependency (CD) Theory (Schank and Reisbeck, 1981). CD 
systems work on language primitives as defined as atomic actions and thoughts 
(e.g., actions like the transfer of possession and moving an object). CD parsers have 
a nice feature that they yield the same output for different sentences if the semantics 
(i.e., the meaning) of the sentences is the same. A TN systems are simpler to 
implement than CD systems, so we will start by using a syntax directed approach 
for NLP. CD seems to be emerging as a more powerful formalism for systems 
requiring operation with a less constrained domain of discourse (including un­
grammatical input). 

8.1 Introduction: UsingATNs to Parse Noun Phrases 

A TNs can be expressed using both bubble diagrams as in Figure 8.1 and in the next 
Common LISP program. Bubble diagrams are state transition diagrams in which 
states are represented as a state name enclosed in an oval and transitions between 
states are represented as arrows. Transitions usually have an associated condition 
which must be true for the transition from one state to another to occur. The 
operation of the noun phrase parser will be demonstrated using lists of words as 
input to the parser; we will see how the parser removes words from the input list as 
it recognizes noun phrases. The development of the noun phrase parser is meant to 
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be a tutorial introduction for writing recursive parsers (i.e., they can call themselves 
while parsing). 

A TN parsers are pattern matchers for natural language sentences. We will see that 
this pattern matching is recursive so that the grammar that can be recognized is 
extensive. We will examine A TNs in two steps: first we will examine a simple A TN 
to build a conceptual understanding of how they work, then we will develop a more 
complex A TN which parses complete sentences. 

8.1.1 A TN Data Structures 

Before presenting A TNs which are capable of recognizing complete sentences, we 
will examine a small A TN for recognizing noun phrases. Figure 8.1 shows a bubble 
diagram for an example noun phrase A TN. The A TN diagram in Figure 8.1 has three 
states: Start, Sl, and Done. Transitions can be made between the Start state and state 
Sl if either of two tests are true: the next word in the input list to the A TN is an 
adjective, or a "no test" condition; in other words, there can always be a transition 
between state Start and state Sl in Figure 8.1 because if the first word is not an 
adjective, the second test is always true (no condition). ATN parsers are recursive; 
notice in Figure 8.1 that ATN np? calls itself (arcs between nodes represent if tests 
which can be calls to A TN networks) via the top arc between stateSl and Done. There 
can be a transition between state Sl and state Done if either the recursive call to the 
np? network returns a true value, or if the next word in the input list is a noun. If 
the np? network reaches the state Done, then the network returns a true value, 
otherwise it returns a false value. A TNs are augmented by arbitrary program code 
that is executed on successful completion of the if tests represented by arcs; these 
code fragments typically record the current word in a variable. 

8.1.2 Implementing ATNs in LISP 

ATNs take as input a stream (or list) of words and return a true value if they 
recognize the word stream. The A TN bubble diagram in Figure 8.1 recognizes noun 
phrases like '(large dog). As an example, if the ATN in Figure 8.1 was called with 
the input word list (large dog ran), then the if test for the top arc between state Start 
and state Sl would be satisfied since the first input word is an adjective. In 

no test: this transition 
can always occur 

Figure 8.1 Am Bubble Diagram Demonstrating the Recognition of Noun Phrases 
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transitioning to state Sl, the first word would be removed from the input list. Note 
that if the first input word was not an adjective, the transition between Start and Sl 
would not "eat" a word since arcs without conditional if tests by convention do not 
remove words from the input list. 
Am bubble diagrams can also be easily represented in LISP programming 

notation, as seen in the following program listing (again, note the recursion in 
function np?). The function word? checks the next word in the input stream (first 
element of list *sentence*) for being a specified word type. The recursive function 
np? implements the Am shown in Figure 8.1. 

;; Example ATN parser: recognize noun phrases 

;; Word desciminators: use global noun (*nouns*) and adjective (*adjs*) 
;; lists to check if a given word is a noun or adjective: 

(detun isNoun? (word) (member word *nouns*)) 

(detun isAdj? (word) (member word *adjs*)) 

;;;;;; Test for word type: 
(detun word? (type) 

(let ( (w (if (null *sentence*) nil (car *sentence*))) ; next word in sentence 
(tunc ; the tunction definition of a word discriminator 

(assoc 
type 
'«noun isNoun?) (adj isAdj?))))) ; set tunc to isAdj? of isNoun? 

(if func ; see if we found a word type discriminator for this word 
; apply the word discriminator to the word (eg. (isAdj? w)) 
(if (tuncall (cadr func) w) 

(let 0 ; word is of correct type, so remove it from word stream 
(setq *sentence* (cdr *sentence*)) 
t) ; .. and return the value of true for the value of this tunction 

nil) ; return value of false 
nil))) ; return value of false 

;;;;;; Parsing network for a noun phrase: 
(detun np? 0 
; save the current word stream in case of failure to match a np? 
(let «save *sentence*)) 

(if 
; succeed if: 1. adj followed by np, or: 2. current word in word stream is a noun 
(or 
(and; case: 1. adj followed by np 
(word? 'adj) 
(or (np?) (word? 'noun))) 
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(word? 'noun» ; case: 2. current word in word stream is a noun 
t;; accept this word stream as a noun phrase 
(let 0 ; failed test: return word stream to its original state and return nil 
(setq *sentence* save) 
nil)))) 

;; Define test nouns and adjectives: 
(setq *nouns* '(block dog» 
(setq *adjs* '(blue green large red the» 

The following output listing shows this simple A TN being tested by defining the 
word stream variable *sentence* and executing function np?: 

? (setq *sentence* '(large dog» ;; initialize the word stream 
(large dog) 
? (np?) ;; execute the np? ATN 
t 
? *sentence* ;; print out the contents of the word stream 
nil 
? (setq *sentence* '(large dog ran» ;; initialize the word stream 
(large dog ran) 
? (np?) ;; execute the np? ATN 
t 
? *sentence* ;; print out the contents of the word stream 
(ran) 
? (setq *sentence* '(I saw the large dog» ;; initialize the word stream 
(i saw the large dog) 
? (np?) ;; execute the np? ATN 
t 
? *sentence* ;; print out the contents of the word stream 
(saw the large dog) 
? (setq *sentence '(saw the large dog» ;; initialize the word stream 
(saw the large dog) 
? (np?) ;; execute the np? ATN (will fail on this example) 
nil 
? 

8.2 Parsing English Sentences Using ATNs 

To parse complete sentence, we will use the A TNs developed in section 8.1 to parse 
noun-phrases and add additional networks for parsing prepositional-phrases, verb­
phrases, and simple sentences. 

ATNs are very easy to implement once the bubble diagrams are designed. Some 
systems will automatically compile the data from ATN diagrams into LISP or C 
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code. Each of the connected diagrams in Figure 8.2 should be thought of as a 
separate A TN. There is a strong correspondence between an A TN and a function in 
a procedural programming language like LISP as seen in the example in Figure 8.1 
and the corresponding Lisp code in the last program listing. 

The following complete program listing implements ATNs for a simple grammar 
to recognize complete sentences. 

The functions isNoun?, isVerb?, isAdj?, and isPrep? check a word for being a 
noun, verb, adjective, or preposition. 

The functions np?, prepp?, vp?, and sentence? recognize noun phrases, preposi­
tional phrases, verb phrases and sentences respectively. 

The function word? is called with a word type and checks the next word in the input 

Noun Phrase Recognizer: np? 

next word np? 8 =adj? ~1) :e 
next word=noun? 

next word 

Prepositional Phrase Recognizer: prepp? 
next word 

k::::\ = prep ? ~ 
~'--------:~---~ 

Verb Phrase Recognizer: vp? 
next word 

(9 = verb? 

next word 
= verb? 

np? 

~-----~~~ --0 

Sentence Recognizer: sentence? 
np? vp? 
~ ~)----~------~ 

np? vp? 

Figure 8.2. "Bubble diagram" for an Augmented Transition Network (AlN) parser 
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list *sentence* by applying one of the appropriate functions: isNoun?, isVerb?, 
isPrep?, or isAdj ? If word? accepts the next word in the variable *sentence* as being 
ofthe same type as its argument, then the global variable *sentence* is modified by 
removing the first element. The value of *sentence* is set to a list of words at the 
end of the following listing. The Common LISP trace function is used to show the 
call structure of the parsing functions during execution . 

.. .. 
;File: ATN.LlSP 

; Copyright 1990 by Mark Watson . 
.. .. 

.. .. 
; Word descriminators: 
.. .. 
(detun isNoun? (word) 
(it (member word "'nouns"') 
(setq "'last-noun'" word))) 

(detun isVerb? (word) 
(member word *Verbs"')) 

(detun isAdj? (word) 
(member word "'adjs"')) 

(detun isPrep? (word) 
(member word "'preps"')) 

.. .. 
; Parsing networks: 
.. .. 
(detun np? 0 
(let ((save "'sentence"')) 
(it 
(or 
(and 
(word? 'adj) 
(or (np?) (word? 'noun))) 
(word? 'noun)) 

(let 0 
(it (null "'subject"') (setq "'subject'" "'last-noun"')) 



t) 
(let 0 

(setq *sentence* save) 
nil)))) 

(defun prepp? () 
(let «save *sentence*)) 

(if (and 

t 

(word? 'prep) 
(np?)) 

(let 0 
(setq *sentence* save) 
nil)))) 

(defun vp? () 
(let «save *sentence*)) 
(if (or 

t 

(and (word? 'verb) (np?)) 
(let () 

(setq *sentence* save) 
(word? 'verb))) 

(let 0 
(setq *sentence* save) 
nil)))) 

(defun sentence? () 
(let «save *sentence*)) 
(if (or 

t 

(and 
(np?) 
(vp?) 
(prepp?)) 
(let 0 

(setq *sentence* save) 
(and (np?) 

(vp?)))) 

(let () 
(setq *sentence* save) 
nil)))) 
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.. 
" 
; Test for word type: 
.. 
" 

(detun word? (type) 
(let ((save *sentence*) 

.. 
" 

(w (if (null *sentence*) nil (car *sentence*))) 
(tunc 
(assoc 
type 
'((noun isNoun?) (verb isVerb?) (prep isPrep?) (adj isAdj?))))) 

(if tunc 
(if (funcall (cadr tunc) w) 

(let () 
(setq *sentence* (cdr *sentence*)) 
t) 

nil) 
nil))) 

; Test words: 
.. 
" 

(setq *nouns* '(block dog I)) 
(setq *verbs* '(grab see)) 
(setq *adjs* '(blue green large red the)) 
(setq *preps* '(behind under)) 

(setq *subject* nil) 

.. 
" 
; Test sentence: 
.. 
" 

(setq *sentence* '(I see the large red block under the large dog)) 

.. 
" 
; Turn on tracing: 
.. 
" 

(trace isNoun? isVerb? isAdj? isPrep? np? prepp? vp? sentence?) 

.. 
" 
; Run system: 
.. 
" 

(sentence?) 
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8.3 Animated ATN Program 

The program listed in this section implements an animatedATN parser which draws 
network diagrams and animates them during the parsing process. This animated 
example ATN shows the recursive nature of parsing networks: they show the 
"calling" of a given ATN by increasing the line thickness of the bubbles in the 
animated A TN by one pixel; when we "return from" an ATN, we will reduce the 
line thickness by one pixel. 

The functions isN oun ?, is Verb?, isAdj ?, isPrep ?, np ?, prepp?, vp?, and sentence? 
have been modified from the example program in section 8.2 to re-draw the 
animated bubble diagrams in a graphics window using line thickness in the plot to 
indicate entry into a parsing function. 

The following listing shows the program used to generate the animated A TN 
diagrams that will be seen in Figures 8.3 and 8.4 . 

.. 
" 
; File: ATNanimation.LlSP 

.. 
" 

.. 
" 

To execute this sample program, load this file into your 
Lisp workspace after loading the plotting library. Then 
execute the function test. This example program plots sample 
ATN networks graphically and iIIustraies the execution of the 
networks by hilighting each node in the network when the 
incoming arc (if test) accepts the next word in the sentence. 

Copyright 1989 by Mark Watson 

; Word desciminators: 
.. 
" 

(defun isNoun? (word) 
(if (member word *nouns*) 
(setq *Iast-noun* word))) 

(defun isVerb? (word) 
(member word *verbs*)) 

(defun isAdj? (word) 
(member word *adjs*)) 

(defun isPrep? (word) 
(member word *preps*)) 
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00 

" 
; Parsing networks: 
.. 
" 

(setq *s1-np2?-thickness* 1) 
(setq *done-np2?-thickness* 1) 
(setq *start-np2?-thickness* 1) 

(detun np? 0 
(let «save *sentence*) 

(save-s1 *s1-np2?-thickness*) 

(save-done *done-np2?-thickness*) 
(save-start *start-np2? -thickness*)) 

(draw-start-np? 1) 
(if 

(and 
(if (word? 'adj) 

(let 0 
(draw-s1-np? 1) 
(draw-start-np? -1)) 

(let 0 
(draw-start-np? -1) 
nil)) 

(if (np?) 

T 

(let 0 
(draw-done1-np? 1) 
(draw-s1-np? -1) 
(A TN-delay) 
(draw-done1-np? -1)) 

(let 0 
(draw-start-np? -1) 
(draw-s 1-np? -1) 

(setq *sentence* save 
*s1-np2?-thickness* save-s1 

*done-np2? -thickness* save-done 

*start-np2?-thickness* save-start) 
nil))) 

(let 0 
(draw-start-np2? 1) 
(if (word? 'noun) 

(let 0 
(draw-done1-np2? 1) 
(draw-start-np2? -1) 

(ATN-delay) 



(draw-done1-np2? -1» 
(draw-start-np2? -1»»» 

(detun prepp? 0 
(let «save *sentence*» 

(it (and 

t 

(word? 'prep) 
(np?» 

(let 0 
(setq *sentence* save) 
nil)))) 

(detun vp? 0 
(let «save *sentence*) 

(save-s1 *s1-vp?-thickness*) 
(save-done *done-vp?-thickness*) 
(save-start *start-vp?-thickness*» 

(draw-start-vp? 1) 
(it (or 

(and 
(if (word? 'verb) 

(let 0 
(draw-s1-vp? 1) 
(draw-start-vp? -1))) 

(it (np?) 
(let 0 

(draw-done1-vp? 1) 
(draw-s1-vp? -1) 
(setq *s1-vp?-thickness* save-s1 

*done-vp?-thickness* save-done 
*start-vp?-thickness* save-start) 

(A TN-delay) 
(draw-done1-vp? -1) 
T)) 

(let 0 
(setq *sentence* save 

*s1-vp?-thickness* save-s1 
*done-vp?-thickness* save-done 
*start-vp?-thickness* save-start) 

(if (word? 'verb) 
(let 0 

(draw-done1-vp? 1) 
(setq *s1-vp?-thickness* save-s1 

*done-vp?-thickness* save-done 
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t 

*start-vp? -thickness* save-start) 
(draw-start-vp? -1) 
(A TN-delay) 
(draw-done1-vp? -1))))) 

(let 0 
(setq *sentence* save 

*s1-vp?-thickness* save-s1 
*done-vp?-thickness* save-done 
*start-vp?-thickness* save-start) 

nil»» 

(defun sentence? 0 

00 

" 

(let «save *sentence*» 
(draw-start 1) 
(if (or 

(and 
(if (np?) 

(let 0 
(draw-s1 1) 
(draw-start -1))) 

(if (vp?) 
(draw-s2 1) 
(let 0 

(draw-s1 -1) 
(draw-s21))) 

(if (prepp?) 
(draw-done1 1) 
(draw-s2 -1))) 

(let 0 
(setq *sentence* save) 
(and (np?) 

(vp?)))) 

(let 0 
(draw-done1 1) 
(draw-s2 -1) 
(draw-done1 -1) 
(draw-s1 -1) 
T) 

(let 0 
(setq *sentence* save) 

nil»))) 

; Test for word type: 



" 

" 
(defun word? (type) 

(let «save *sentence*) 

" 

" 

(w (if (null *sentence*) nil (car *sentence*))) 
(func 
(assoc 
type 
'«noun isNoun?) (verb isVerb?) 

(prep isPrep?) (adj isAdj?))))) 
(princ ·Processing word: ") (princ w) 
(princ II sentence: ") (princ *sentence*) (terpri) 
(if func 
(if (funcall (cadr func) w) 

(let 0 
(setq *sentence* (cdr *sentence*)) 
t) 

nil) 
nil))) 

; Define test words: 
" 

" 
(setq *nouns* '(block dog I)) 

(setq *verbs* '(grab see)) 

(setq *adjs* '(blue green large red the)) 

(setq *preps* '(behind under)) 

(setq *subject* nil) 

(setq *Iast-noun* nil) 

;; turn on tracing: 
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(trace isNoun? isVerb? isAdj? isPrep? np? prepp? vp? sentence?) 

" 
" 
; Run the system: 
" 

" 
(setq nodeSizeX 40) 
(setq nodeSizeY 20) 

(defun plot-node (name x y thickness) 
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(A TN-delay) 
;; erase old node: 
(plot-fill-rect x y nodeSizeX nodeSizeY 0) 
(plot-string (+ x 8) (+ Y nodeSizeY -7) name) 
(it « thickness 1) (setq thickness 1» 
(dotimes (n thickness) 
(let «xmin (+ x n» 

(ymin (+ y n» 
(xsize (- nodeSizeX (* n 2))) 
(ysize (- nodeSizeY (* n 2)))) 

(plot-trame-rect xmin ymin xsize ysize)))) 

(detun plot-arrow (x1 y1 x2 y2) 
(plot-line x1 y1 x2 y2) 

.. 
" 

(plot-line x2 y2 (- x2 4) (- y2 4» 
(plot-line x2 y2 (- x2 4) (+ y2 4))) 

; Animation code tor sentence? network: 
" 

" 
(setq *s1-thickness* 1) 
(setq *s2-thickness* 1) 
(setq *done-thickness* 1) 
(setq *start-thickness* 1) 

(detun draw-start (delta) 
(setq *start-thickness* (+ *start-thickness* delta» 
(plot-node ·sent?" 35 20 *start-thickness*) 
T) 

(detun draw-s1 (delta) 
(setq *s1-thickness* (+ *s1-thickness* delta» 
(plot-node 's1 85 20 *s1-thickness*) 
T) 

(detun draw-s2 (delta) 
(setq *s2-thickness* (+ *s2-thickness* delta» 
(plot-node 's2 135 20 *s2-thickness*) 
T) 

(detun draw-done1 (delta) 
(setq *done-thickness* (+ *done-thickness* delta» 
(plot-node 'done 185 20 *done-thickness*) 
T) 



(detun draw-sentence 0 
(setq *sl-thickness* 1) 
(setq *s2-thickness* 1) 
(setq *done-thickness* 1) 
(setq *start-thickness* 1) 
(plot-arrow 46 27 85 27) 
(plot-arrow 100 27 135 27) 
(plot-arrow 150 27 185 27) 
(draw-start 0) 

.. 
" 

(draw-sl 0) 
(draw-s2 0) 
(plot-string-italic 70 15 "np?") 
(plot-string-italic 120 15 "vp?") 
(plot-string-italic 165 15 "prepp?") 
(draw-donel 0» 

; Animation code tor np? network number 1 : 
.. 
" 

(setq *sl-np? -thickness* 1) 
(setq *done-np?-thickness* 1) 
(setq *start-np?-thickness* 1) 

(detun draw-start-np? (delta) 
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(setq *start-np?-thickness* (+ *start-np?-thickness* delta» 
(plot-node "np?" 35 60 *start-np?-thickness*) 
T) 

(detun draw-sl-np? (delta) 
(setq *sl-np?-thickness* (+ *sl-np?-thickness* delta» 
(plot-node 'sl 85 60 *sl-np?-thickness*) 
T) 

(detun draw-donel-np? (delta) 
(setq *done-np?-thickness* (+ *done-np?-thickness* delta» 
(plot-node 'done 13560 *done-np?-thickness*) 
T) 

(detun draw-np? 0 
(setq *sl-np?-thickness* 1) 
(setq *s2-np?-thickness* 1) 
(setq *done-np?-thickness* 1) 
(setq *start-np?-thickness* 1) 
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.. 
" 

(plot-arrow 46 67 85 67) 
(plot-arrow 100 67 135 67) 
(plot-string-italic 68 55 "adj?") 
(plot-string-italic 120 55 "np?") 
(draw-start-np? 0) 
(draw-s1-np? 0) 
(draw-done1-np? 0)) 

; Animation code for np? network number 2: 
.. 
" 

(setq *s1-np2?-thickness* 1) 
(setq *done-np2?-thickness* 1) 
(setq *start-np2?-thickness* 1) 

(detun draw-start-np2? (delta) 
(setq *start-np2?-thickness* (+ *start-np2?-thickness* delta)) 
(plot-node "np?" 35100 *start-np2?-thickness*) 
T) 

(detun draw-s1-np2? (delta) 
(setq *s1-np2?-thickness* (+ *s1-np2?-thickness* delta)) 
(plot-node 's1 85 100 *s1-np2?-thickness*) 
T) 

(detun draw-done1-np2? (delta) 
(setq *done-thickness* (+ *done-thickness* delta)) 
(plot-node 'done 85100 *done-np2?-thickness*) 
T) 

(defun draw-np2? 0 

.. 
" 

(setq *s1-np2?-thickness* 1) 
(setq *s2-np2?-thickness* 1) 
(setq *done-np2?-thickness* 1) 
(setq *start-np2?-thickness* 1) 
(plot-arrow 46 107 85 107) 
(plot-string-italic 65 95 "noun?") 
(draw-start-np2? 0) 
(draw-done1-np2? 0)) 

; Animation code for vp? network: 
.. 
" 

(setq *s1-vp?-thickness* 1) 



(setq *done-vp?-thickness* 1) 
(setq *start-vp?-thickness* 1) 

(defun draw-start-vp? (delta) 
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(setq *start-vp?-thickness* (+ *start-vp?-thickness* delta)) 
(plot-node "vp?" 35 140 *start-vp?-thickness*) 
T) 

(defun draw-s1-vp? (delta) 

(setq *s1-vp?-thickness* (+ *s1-vp?-thickness* delta)) 
(plot-node 's1 85 140 *s1-vp?-thickness*) 
T) 

(defun draw-done1-vp? (delta) 
(setq *done-vp?-thickness* (+ *done-vp?-thickness* delta)) 
(plot-node 'done 135 140 *done-vp?-thickness*) 
T) 

(defun draw-vp? () 

.. 
10 

(setq *s1-vp?-thickness* 1) 
(setq *s2-vp?-thickness* 1) 

(setq *done-vp?-thickness* 1) 
(setq *start-vp?-thickness* 1) 
(plot-arrow 46147 85147) 
(plot-arrow 100 147135 147) 
(plot-string-italic 68 135 "verb?") 
(plot-string-italic 120 135 "np?") 
(draw-start-vp? 0) 
(draw-s1-vp? 0) 
(draw-done1-vp? 0)) 

; Delay function to slow down the animation 

; (ADJUST FOR THE SPEED OF YOUR MACHINE): 
.. 
10 

(setq *ATN-delay* 185000) 

(defun ATN-delay 0 
(dotimes (delay *ATN-delay*) nil)) 

.. 
10 

; Initialize graphics: 
.. 
10 

(defun in it-diagrams 0 
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.. 
" 

(setq *ATN-delay* 0) 
(init-plot "Animated ATN" 290 200) 
(draw-sentence) 
(draw-np?) 
(draw-np2?) 
(draw-vp?) 
(setq *ATN-delay* 80000» ; set delay for your machine II 

MAIN test function: 
.. 
" 

(defun test () 
;; Reset the test sentence: 
(setq *sentence* 

'(I see the large red block under the large dog» 
(init-diagrams) 
(sentence?» 

8.4 Running the Animated ATN Parser 

By using the LISP trace function, the recursive nature of the A TN parsing process 
becomes apparent. Notice that the LISP functions which simulate arcs in our ATN 
diagrams (e.g., isVerb?) consume words in the sentence being parsed if their test 
conditions are met and otherwise fail (return the LISP value nil), returning the 
sentence to the same state that it was in when the function was first entered. 

We now will run the modified version of the above A TN parser to develop a better 
understanding of the recursive parsing process. When we execute the animated 
ATN parser, it is necessary to set the delay in function delay to a sufficiently large 
value so that the animation executes slowly so the animation is visible. 

Figures 8.3 and 8.4 show the execution of the animated A TN example program. 
This program plots four ATNs: sent?, np?, np? (noun only), and vp? When an A TN 
network is entered (i.e., the LISP function which implements the network is called), 
the first node in the network is highlighted. The arcs between nodes are imple­
mented as if tests which check the next word or group of words in the sentence being 
parsed; this check usually involves calling another ATN. In the screen image in 
Figure 8.3, the ATN sent? has been called, which in turn has called the ATN np? 
The A TN np? has been successfully been traversed because the second node S 1 in 
ATN sent? is highlighted. The screen image was captured while ATN vp? is ex­
ecuting (being called from ATN sent?). 

The screen image in Figure 8.4 was captured after the A TN sentence? successfully 
parsed the example sentence. 

ThisATN parser stops when it finds one path though its subnetworks which legally 
parses a sentence. Production A TN parsers often produce dozens of legal parses 
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~D Rnimated RTN 0~ 

np? 1:P? prepp? 
sent? ~sl H s2 H dons 

adJ? 
£'Il? H sl 

np? 
r----iH-do-ns---. 

noun? 
£'Il? H dons 

verb? 
vp? t1 sl 

np? ...--...... Hr--do- ns--, 

Figure 8.3. Animated A TN Diagram. Shows the sentence "I see a large red block under the 
large dog." being parsed. The words "I see a large red" have already been processed. 

Rnimated RTN 

np? 1:P? prepp? 
sent? Hsl H s2 ~ dons 

adJ? np? 
£'Il? Hsl H dons 

noun? 
£'Il? H dons 

verb? np? 
vp? H s1 H dons 

Figure 8.4. Animated A TN after Successful Parse of the Test Sentence. 
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from a single sentence; the ensuing processing which eliminates all but one parse 
tree is difficult and involves the use of semantic processing. 

Handling ambiguity in NLP is one of the central problems in computational 
linguistics. The A TN parser that is developed in chapter 9 is similar to conceptual 
dependency parsers in that it uses semantic processing during the parsing process 
to both collect the semantics of the processed sentence and to avoid ambiguity by 
reducing the number of legal parses output by the parser. 

8.5 Projects 

1. Using the sentence parser from section 8.2, experiment with increasing the 
vocabulary by adding more nouns, verbs and adjectives.This is a simple exercise 
until you start to add words which can be different parts of speech depending on 
context (for example, consider the word "vote"). 

2. In experimenting with the sentence parser, note sentences that are not recognized. 
Modify the LISP A TN code to accept a new type of sentence structure. 
Make sure that the new parser also recognizes all previous test cases that the 
previous version of the parser recognized. In developing NLP parsers, it is 
useful to have a large library of test sentences and set up the parser to process 
every sentence in the library; this development aid will save much typing! 



9 
Natural Language Interface to a 
Library Database 

For many software systems (e.g., computer aided design and computer aided 
software engineering tools), high-resolution graphical windowing interfaces are the 
appropriate userinterface technology. However, for systems like a library database, 
inexpensive "dumb" terminals that accept natural language (NL) commands and 
that respond in natural language provide a much more usable interaction for those 
who care most about getting their data management tasks done quickly. Clearly, 
natural language processing systems augmented by reliable speech recognition 
systems will, in the near future, provide the most natural possible man-machine 
interface for low-bandwidth interactions. 

In this chapter we will design and build a database management tool with a natural 
language interface tailored specifically to the application domain of keeping track 
of books in a library. We will discuss design, data integrity requirements, and the 
grammar necessary for understanding natural language commands to update and 
query information in the database. Our primary design goal is to build a database 
system controlled exclusively by simple natural language commands. 

The NLP program in this chapter deals with semantics (or meaning) of processed 
text. In chapter 8, the NLP program performed syntactical processing of text. We 
will use the sentence parser developed in chapter 8 and add a layer of software for 
extracting semantic information. 

9.1 Design for Library Database Natural Language Interface 

We want to design an interface to a database system with the following features: 

• Support for natural language queries 
• Frame data representation 
• Modular system design 
• Efficient operation in a LISP environment 
• No requirement for an external database system 

9.1.1 Natural Language Queries 

In designing a grammar for parsing simple domain-specific natural language 
commands and queries, it often helps to write down some examples of the type of 



118 Natural Language Interface to a Library Database 

text we would like our system to be able to handle. The following are examples of 
the range of natural language interaction our system will support: 

List all books by Yukio Mishima. 
Show books by Mishima. 
Mark Watson checked out "Colossus and the Crab". 
Julie Kimmel got "The Sound and the Fury". 
"The Sound and the Fury" was returned by Mark Watson. 

The parser will need help in determining what parts of the queries are book titles. 
For this reason, interactions with the NL interface will require that book titles be 
typed in as strings (that is, embedded in quotation marks). Note that this grammar 
is extended from the grammar used in chapter 8 (shown in Figure 8.2) in that a 
sentence can also be a verb phrase followed by a noun phrase. This extended 
grammar allows the system to parse commands beginning with verbs. All of the 
ATN parsing functions are similar to those developed in the last chapter, with the 
addition of code to extract the semantic information. 

You can test a parsing system by having independent testers try different sen­
tences. Record sentences which are not correctly parsed (or not parsed at all) and 
iteratively augment the A TN parser until it can parse a sufficiently large percentage 
of test sentences in the target domain. 

Also bear in mind that not all reasonable sentences must be processed by a NL 
system. Since a NL system usually paraphrases the perceived semantic content of 
commands back to users, failure of the system is instantly noted by users and they 
can rephrase their request. The example program in Section 9.2 replies to user 
requests for information by paraphrasing the query and then listing the requested 
information. In practice, users quickly learn what is an acceptable grammar for 
interacting with a given NL system to the extent that we can reasonably expect user 
adaptation to a restricted grammar and domain of discourse to occur on almost a 
subliminal level. 

9.1.2 Frame Data Representation 

Semantic information in this system will be kept in frame data structures. A frame 
is a single data element with an internal structure consisting of one or more attribute/ 
value pairs. Consider the following data definition: 

(setq test-frame 
'«type 'command) 

(action 'list-info) 
(object 'book) 
(author 'faulkner))) 

The definition of the variable test-frame defines a list in which each sublist is an 
attribute/value pair. To retrieve the value of the attributeauhor, the system searches 
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each sub list until it finds a list in which the first element is equal to author. The 
second element in the sub list is the desired value for author. 

9.1.3 Modular System Design 

The bubble diagram in Figure 9.1 shows both the design for information and control 
flow in the natural language interface developed in this chapter. It should be noted 
that this high-level design does not depend specifically on our library data base 
application. 

9.1.4 Efficient Operation 

So that our system can efficiently handle very large databases quickly accessing 
both books stored in the library and authors, we will use two hash tables to reference 
the two semantic structure formats used in the system. Hash tables are a mechanism 
for quickly locating data items given a key or index value. Most Common LISP 

System User enters 
facts or makes queries 

Response to 
System 

User 

Matches 
Query 
against 
Semantic 
Memory 

ATN Parser with 
Semantic Analysis 
produces Semantic 
Memory Structure 
for the input text 

Analysis of Semantic 
Memory Structure 

Yes Add or delete 
Semantic Memory 
Structures to 
Database 

Figure 9.1. Design for a Natural Language Interface to a Library data base system 



120 Natural Language Interface to a Library Database 

implementations have very efficient hashing mechanisms. For readers using older 
dialects of LISP which do not support hash tables directly in the language, it is left 
as an exercise to implement the functions make-hash-table and gethash (note that 
gethash must work as an argument to set/). 

The organization for authors is obvious: we will use the author's last name to hash 
into a list containing semantic memory structures for everyone with this same last 
name. To calculate the hashing index for books, we will use the first word of the 
book title which is neither an article or a preposition and all characters in the title 
will be mapped to upper case. For example, the book title The Sound and the Fury 
would be stored using a hash index of "SOUND AND FURY". 

9.1.5 Use of LISP Data Dtructures Instead of an External Database 

In our library database application, the information for books and authors is stored 
in the same format as the semantic memory structures that result from parsing NL 
input but it is represented as frames. Data modification natural language commands 
(for example, The book "The Sound and the Fury" was check out by Betsy Forest) 
modify the semantic memory structures which make up our database. There are just 
two frame memory structures used in this system: one to represent books and the 
other to represent people with library cards. 

To make our demonstration system usable in a production mode, we need the 
capability to save and restore semantic memory to and from disk. This symbolic 
storage of the system data is done in case the system data (LISP memory structures) 
become corrupted. For Common LISP environments with the capability of 
dumping the entire LISP image to disk, a production system could work by keeping 
three dump image files on disk: these dump files will be called the grandfather, 
father, and son dump files. In a production environment, these files could be rotated 
to provide a secure backup system. A further requirement for data integrity which 
must be reflected in our design is an incremental logging of changes to semantic 
memory between system dumps to protect the system from machine crashes. An 
excellent fail-safe logging mechanism could also be a low-cost printer which logs 
all data changes in a terse format; in the eventuality of a system crash (for example, 
due to a power failure), the database could be manually updated back to the point 
in time when the last system save was performed. 
It is important to design in data integrity and backup procedures into a database 

system. Fortunately, it is very easy to handle file input/output in Common LISP, so 
that adding symbolic file save, data logging, and systematic backup functionality 
into our system would require very few lines of code. Symbolic file save code is not 
in the example program in section 9.2. Different Common LISP environments have 
built in capabilities for saving both individual data objects and the entire LISP 
environment. Although we usually try to write totally portable Common LISP code, 
implementation specific data storage facilities should probably be used for efficiency 
in this case. The following output from a LISP listener window does show a 
portable, if not efficient, way to save LISP data objects to external data files: 
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? (setq xl '(I (2 (3456)))) ;; example list 
(1 (2 (3 45 6») 
? (setq x2 '(the cat (ate the mouse (quantity 0»» ;; example list 
(the cat (ate the mouse (quantity 0») 
? (setq x-lists (list xl x2» ;; example list to save to disk 
«1 (2 (3 45 6») 
(the cat (ate the mouse (quantity 0»» 
? (with-open-file (out "test.dat" :direction :output) ;; write to file "test.dat" 

(print x-lists out» 
«1 (2 (3 45 6») 
(the cat (ate the mouse (quantity 0»» 
? (setq 

new-list 
(with-open-file (in "test.dat" :direction :input) ;; read from file "test.dat" 

(read in))) 
«1 (2 (3 4 5 6») 
(the cat (ate the mouse (quantity 0»» 

? new-list 
«1 (2 (3 4 5 6») 
(the cat (ate the mouse (quantity 0»» 
? (car new-list) 
(1 (2 (3 4 5 6») 
? (cadr new-list) 
(the cat (ate the mouse (quantity 0») 
? 

9.2 Example Natural Language Interface Program 

In the example program in this section, function parse processes the list of words 
passed to it as a function argument. Functionparse first initializes global variables 
used as semantic processing registers; for example the global variable ·book-list· 
holds the name of any book title encountered in the syntactic parsing process. The 
variable ·action· holds the semantic query type extracted from the input sentence; 
the possible values are list-info, return-book, and check-out-book. Function parse 
calls the A TN parsing function sentence? (similar to the function sentence? defined 
in the last chapter with additional code to extract semantic information). After 
parsing the sentence and extracting semantic information, function parse uses the 
value of the variable ·action· to respond to the user's query or statement. Our 
system performs some "preprocessing" on input text (for example, it converts 
names to a canonical list form: (last first middle». 

The functions pp-author and pp-book are utility functions to print out English 
responses for queries on author and book information. The functions isNoun?, 
isVerb?, isAdj?, isPrep?, and isBook? are utility functions to determine word types 
(a book title is treated as a single token by the parser). 
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The ATN parsing functions are similar to those defined in the last chapter with the 
addition of code to extract semantic information. The A TN parsing functions are 
np?, prepp?, vp?, sentence?, and card-holder-name? As these ATN functions 
recognize word streams, they set the semantic parsing registers. The ATN function 
card-holder-name? accepts a word stream as being a card holder name if the word 
stream starts with a legal name in the global list *library-card-holders*. Function 
word? is passed a word type (values of: noun, verb, prep, or adj) and calls the word 
type discriminator function for the requested word type. 

The sample database is defined initially in the global lists *book-list* and *library­
card-holders*. The function init-database creates two hash tables for books and 
authors and initializes them by inserting author and book names. 

The following listing shows the library database system: 

.. 
" ; File: LibraryATN.Lisp 

; This is a natural language interface for a library database system 
; Copyright 1990 by Mark Watson .. 
" 

(proclaim '(special *library-card-holders* *sentence* *author-hash-table*)) 

.. 
" ; Main interface function: 

Parse(sentence) - sentence is the sentence to process 
- returned value is a semantic memory structure .. 

" 

(detun parse (sentence &aux original-sentence) 
(setq *subject* nil 

*verb* nil 
*book-title* nil 
*object-1* nil 
*modifier-1* nil 
*number-1* nil 
*modifier-type-1* nil 
*card-holder* nil 
*action* nil 
*Iast-noun* nil 
*Iast-verb* nil 
*Iast-prep* nil 
*Iast-word* nil 
*response* nil 
*response-type* nil) 

(setq *sentence* sentence original-sentence (copy-list sentence)) 
(if (not (sentence?)) ;; cheap trick: if you fall to parse, 
(let 0 ;; discard the first word and try again 
(setq *Iast-word* (car *sentence*» 
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(setq *sentence* (cdr *sentence*» 
(sentence?))) 

;; if *object-1* has not been set, look for a book title: 
(if (null *object-1 *) 

(do list (woriginal-sentence) 
(if (stringp w) 

(setq *object-1* w)))) 
(princ "Semantic memory structure:j (terpri) 
(princ" Subject : ") (princ *subject*) (terpri) 
(princ" Action : ") (princ *action*) (terpri) 
(princ" Ubrary card holder :") (princ *card-holder*) (terpri) 
(princ" Action object : ") (princ *object-1*) (terpri) 
(princ" Object modifier type: ") (princ *modifier-type-1*) (terpri) 
(princ" Object modifier : ") (princ *modifier-1*) (terpri) 
(princ " Number modifier : ") (princ *number-1 *) (terpri) 
(terpri) 
;; Use semantics of user prompt to perform data base query 
;; or update operation: 
(case *action* 

(nil (terpri)) 
(list-info 
(if *response* 

(case *response-type* 
(nil (princ "What?") (terpri» 
(author (pp-author *response*)) 
(book (pp-book *response*»))) 

(return-book 
(princ "Returning the book: ,,) 
(princ *object-1 *) 
(princ ".") (terpri) 
(princ "Returned by") 
(dolist (x *card-holder*) 

(princ x) 
(princ ."» 

(princ "and ") (princ *object-1 *) 
(princ" is returned to circulation.") 
(terpri» 
(check-out-book 
(princ "Checking out the book: ") 
(princ *objeet-1 *) (prine".") (terpri) 
(prine "Checked out by confirmed library card holder") 
(terpri) 
(dolist (x *eard-holder*) 

(prine x) 
(prine" "» 

(prine "and data base is modified to show") (terpri) 
(prine "that this volume is checked out.") 
(terpri))) ) 
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.. 
" 
; Print out information about author: 
.. 
" 

(defun pp-author (data) 

.. 
" 

(princ "The following book(s) are by") 
(dolist (x (cadaar data)) 

(princ x) 
(if (equal x (car (cadaar data))) (princ ",")) 
(princ" ")) 

(princ ":") (terpri) 
(dolist (book (car data)) 

(princ (car book)) 
(terpri))) 

; Print out information about a book: .. 
" 

(defun pp-book (data) 
(princ (cadaaar data)) 
(princ "is the author.") 
(terpri)) 

.. 
" 
; Word disciminators: .. 
" 

(defun isNoun? (word) 
(if (member word *nouns*) 

(let 0 
(setq *Iast-noun* word) 
(if (or 

*subject* ;; already defined 
*Iast-verb*) ;; must be an imperative 

(setq *object-1* word)) 
t))) 

(defun isVerb? (word) 
(if (member word *verbs* :test #'equal) 

(let 0 
(if (null *subject*) ;; assume that sentence is an imperative 

(setq *subject* 'computer)) . 
;; semantic hooks to set *action* == 'list-info: 
(if (or 

(member word '(list show)) 
(and 
(equal word 'are) 
(equal *Iast-word* 'what))) 

(setq *action* 'list-info)) 
;; semantic hooks to set *action* == 'return-book 
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(if (or 
(member word '(return returned) :test #'equal) 
(and 
(member word '(check checked) :test #'equal) 
(if (> (length *sentence*) 1) 

(equal (cadr *sentence*) '(in back))))) 
(setq *action* 'return-book 

*sentence* (cdr *sentence*))) 
;; semantic hooks to set *action* == 'check-aut-book 
(if (or 

(member word '(got receive received withdrew) :test #'equal) 
(and 
(member word '(check checked) :test #'equal) 
(if (> (length *sentence*) 1) 

(member (cadr *sentence*) '(out) :test #'equal)))) 
(setq *action* 'check-aut-book 

*sentence* (cdr *sentence*))) 
(setq *Iast-verb* word)))) 

(defun isAdj? (word) 
(if (member word *adjs*) 
(if (null *modifier-1*) 

(setq *modifier-1* word) 
t))) 

(defun isPrep? (word) 
(if (member word *preps*) 

(let 0 
(setq *Iast-prep* word) 
(if (member word '(a an one this that)) 

(setq *number-1* 1) 
(if (member word '(all every)) 

(setq *number-1* 999999) 
t))))) 

(defun isBookTitle? (sentence Element) 
(stringp sentence Element)) 

.. 
" 
; Parsing networks: .. 
" 

(defun np? 0 
(let ((save *sentence*) temp) 

(if 
(or 
;; name of member of the library?: 
(and 
;; imbedded semantics: do not allow parse to generate 
;; a form like: 'by <author name>' if known action in 



126 Natural Language Interface to a Library Database 

;; the sentence is 'list-info': 
(not (equal *action* 'list-info» 
(setq temp (card-holder-name?» 
(if (and 

temp 
(null *card-holder*» 

(setq *card-holder* temp))) 
(and 
(word? 'adj) 
(or (np?) (word? 'noun))) 
(word? 'noun» 

(let 0 
(if (null *subject*) (setq *subject* *Iast-noun*» 
t) 

(let 0 
(setq *sentence* save) 
nil)))) 

(defun prepp? 0 
(let «save *sentence*) 

(Iast-author-name nil) 
(Iast-card-holder-name nil) 
(temp nil» 

.. .. 
; Define an ATN to detect author names. Since this ATN is 
; is only called from inside the 'prepp?' ATN, we will define 
; its LISP function lexically inside 'prepp?' . 
.. .. 
(defun author-name? 0 

(if (gethash (car *sentence*) *author-hash-table*) 
(let () 

(setq last-author-name (car *sentence*» 
(setq *sentence* (cdr *sentence*» ;; throwaway processed word 
t) ;; return True: ATN successfully traversed 

;; check to see if the second word left in the sentence 
;; is a known author's last name: 
(if (> (length *sentence*) 1) ;; more than 1 word left? 

(if (gethash (cadr *sentence*) *author-hash-table*) 
(let () 

(setq last-author-name (cadr *sentence*» 
(setq *sentence* (cddr *sentence*» ;; throwaway processed words 
t»))) ;; return True: ATN successfully traversed 

(if (or 
(and 
(word? 'prep) 
(np?» 

(and ;; special check for 'by <author name>' 
(setq *sentence* save) 



t 

(word? 'prep) 
(equal *Iast-prep* 'by) 
(author-name?) 
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(let 0 ;; we found a form like: 'by <author name>' 
(setq *modifier-type-1* 'by) 
(setq *modifier-1* last-author-name) 
t)) 

(and ;; special check for 'by <card holder name>' 
(setq *sentence* save) 
(word? 'prep) 
(equal *Iast-prep* 'by) 
;; imbedded semantics: do not allow parse to generate 
;; a form like: 'by <author name>' if known action in 
;; the sentence is 'list-info': 
(not (equal *action* 'list-info)) 
(setq temp (card-holder-name?)) 
(let 0 ;; we found a form like: 'by <card holder name>' 

(setq *modifier-type-1 * 'by) 
(setq *modifier-1* temp) 
t))) 

(let 0 
(setq *sentence* save) 
nil)))) 

(defun vp? 0 
(let ((save *sentence*)) 

(if (or 
(and (word? 'verb) (np?)) 
(let 0 

(setq *sentence* save) 
(word? 'verb))) 

(let 0 
(if (null *action*) (setq *action* *Iast-verb*)) 
t) 

(let 0 
(setq *sentence* save) 
nil)))) 

(defun sentence? 0 
(let ((save *sentence*)) 

(if (or 
(and 
(vp?) ;; imperative 
(prepp?) 
(prepp?)) 
(and 
(vp?) ;; imperative 
(prepp?)) 

(let 0 
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.. 
" 

t 

(setq *sentence* save) 
(and 
(np?) 
(vp?) 
(prepp?))) 

(let 0 
(setq *sentence* save) 
(and (np?) 

(vp?))) 
(let 0 

(setq *sentence* save) 
(if (vp?) 
(setq *subject* 'computer) ;; imperative (command) 
nil))) 

(let 0 
(setq *sentence* save) 
nil»))) 

; Define an ATN to detect card holder names: 
.. 
" 

(defun card-holder-name? 0 

.. 
" 

;; sentence must be long enough for a first and last name: 
(if (> (length *sentence*) 1) 

(let «name-list (list (car *sentence*) (cadr *sentence*)))) 
(if (member name-list *Iibrary-card-holders* :test #'equal) 

(let 0 
(setq last-card-holder-name name-list) 
(setq *sentence* (cddr *sentence*» ;; throwaway processed word 
name-list»))) ;; return True: ATN successfully traversed 

; Test for word type: .. 
" 
(dafun word? (type) 

;; grab semantic information on book/author if appropriate: 
(if (not *response*) 

(if (member *Iast-prep* '(by» 
(let «author-data1 

(gethash (car *sentence*) *author-hash-table*» 
(author-data2 
(if (> (length *sentence*) 1) 

(gethash (cadr *sentence*) *author-hash-table*»))) 
(if author-data1 

(setq *response-type* 'author 
*modifier-1* (car *sentence*) 
*response* 
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*response*» 

(if author-data2 
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(setq *response-type* 'author 
*modifier-1 * (cadr *sentence*) 
*response* 
(cons author-data2 

*response*»»» ) 
(let «save *sentence*) 

.. .. 

(w (if (null *sentence*) nil (car *sentence*))) 
(func 
(assoc 
type 
'«noun isNoun?) (verb isVerb?) (prep isPrep?) (adj isAdj?»))) 

(if func 
(if (funcall (cadr func) w) 

(let () 
(remove-word) 
t) 

nil) 
nil))) 

; Utility to remove first word remaining in sentence AND to 
; save the discarded word in *Iast-word*: 
.. .. 

(detun remove-word 0 

., .. 

(setq *Iast-word* (car *sentence*» 
(setq *sentence* (cdr *sentence*))) 

; Define words in the system: 
.. .. 
(setq *nouns* '(I book books library» 

(setq *verbs* '(list show are is add was see check checked 
got returned» 

(setq *adjs* '(what the a an one this that all every» 

(setq *preps* '(in behind under by» 

.. .. 
; Turn on tracing for debug output: .. .. 

(trace isNoun? isVerb? isAdj? isPrep? np? prepp? vp? sentence? 
card-holder-name?) 
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.. 
" ; Sample Data Base: .. 
" 
(setq *book-list* 

'( 
("The Sound And The Fury" (Faulkner William» 
("The Sound of Rain" (Pee body Alfred» 
("Broca's Brain" (Sagan Carl» 
("Dragons of Eden" (Sagan Carl»))) 

(setq *Iibrary-card-holders* 

.. 
" 

'( 
(Mark Watson) 
(Carol Watson) 
(Julie Kimmel) 
(David Kimmel))) 

; Utilities to pre-process book list to remove prepositions 
; Book titles for more robust pattern matching. Also convert 
; from a string to a list of words: .. 
" 

(defun shrink-title (title-string) 
(let (retUst) 

.. 
" 

(with-input-from-string (aStream (string-upcase title-string» 
(dotimes (i 20) 

(let ((token (read aStream nil nil nil))) 
(if token 

(if (not 
(member token '(a an the that this))) 

(setq retUst (cons token retUst))))))) 
(cons 'book\: (reverse retUst»» 

; Data management functions: Initialize the database by 
; shrinking down book titles and building two hash tables: 

1. *book-hash-table* - key is the first word of the 
shrunken book title. 

2. *author-hash-table* - key is the author's last name. 

*Iibrary-card-holders* = list of members of the library .. 
" 

(defun in it-database () 
(setq *book-hash-table* (make-hash-table» 
(setq *author-hash-table* (make-hash-table» 
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(dolist (aBook *book-list*) 
(let ((title-hash-key (cadr (shrink-title (car aBook)))) 

(author-hash-key (caadr aBook))) 
(setf 
(gethash title-hash-key *book-hash-table*) 
(cons aBook (gethash title-hash-key *book-hash-table*))) 

(setf 
(gethash author-hash-key *author-hash-table*) 
(cons aBook (gethash author-hash-key *author-hash-table*)))))) 

(init-database) ;; initialize the system when this file is loaded. 

9.3 Example Execution Runs Of NLP Program 

This program uses a syntax directed A TN parser with embedded semantic hooks to 
capture the user's request. The following listing shows a sample system query: 

? (parse '(list all books by Sagan» 
Calling (VP?) 
Calling (NP?) 
Calling (ISADJ? ALL) 
ISADJ? returned NIL 

NP? returned NIL 
VP? returned T 
Calling (PREPP?) 
Calling (NP?) 
Calling (ISADJ? BOOKS) 
ISADJ? returned NIL 

NP? returned T 
PREPP? returned T 
Calling (PREPP?) 
Calling (NP?) 
Calling (ISADJ? SAGAN) 
ISADJ? returned NIL 

NP? returned NIL 
PREPP? returned NIL 
Calling (VP?) 
VP? returned NIL 
Calling (NP?) 
Calling (ISADJ? LIST) 
ISADJ? returned NIL 

NP? returned NIL 
Calling (NP?) 
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Calling (ISADJ? LIST) 
ISADJ? returned NIL 

NP? returned NIL 
Calling (VP?) 
Calling (NP?) 
Calling (ISADJ? ALL) 
ISADJ? returned NIL 

NP? returned NIL 
VP? returned T 

Semantic memory structure: 
Subject : COMPUTER 
Action : LIST 
Library card holder : NIL 

Action object : BOOKS 
Object modifier type: BY 

Object modifier: SAGAN 
Number modifier: 999999 

The following books are by SAGAN, CARL: 
Dragons of Eden 
Broca's Brain 
NIL 
? 

The sample program file contains a Common LISP trace call to tum on the tracing 
mechanism so that the execution through the individual LISP functions (which are 
the A TN sub-networks) can be seen. The following example program output shows 
a brief interaction (with user input typed in bold characters) with the NLP system 
with the LISP function call tracing turned off: 

? (untrace) 
nil 
? (parse '(list all books by William Faulkner» 
Semantic memory structure: 

Subject : COMPUTER 
Action : LIST-INFO 
Library card holder : NIL 

Action object : BOOKS 
Object modifier type: BY 
Object modifier : FAULKNER 
Number modifier : 999999 

The following books are by FAULKNER, WILLIAM: 
The Sound And The Fury 
NIL 
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? (parse '(Show books by Faulkner» 
Semantic memory structure: 

Subject : COMPUTER 
Action : LIST-INFO 
Library card holder : NIL 

Action object : BOOKS 
Object modifier type: BY 
Object modifier : FAULKNER 
Number modifier : NIL 

The following books are by FAULKNER, WILLIAM: 
The Sound And The Fury 
NIL 
? (parse '(Mark Watson checked out "The Sound and the Fury"» 
Semantic memory structure: 

Subject : COMPUTER 
Action : CHECK-OUT-BOOK 
Library card holder : (MARK WATSON) 

Action object : The Sound and the Fury 
Object modifier type: NIL 
Object modifier : NIL 
Number modifier : NIL 

Checking out the book: The Sound and the Fury. 
Checked out by confirmed library card holder 
MARK WATSON and data base is modified to show 
that this volume is checked out. 
NIL 
? (parse '(Mark Watson returned "The Sound and the Fury"» 
Semantic memory structure: 

Subject : COMPUTER 
Action : RETURN-BOOK 
Library card holder : (MARK WATSON) 

Action object : The Sound and the Fury 
Object modifier type: NIL 
Object modifier : NIL 
Number modifier : NIL 

Returning the book: The Sound and the Fury. 
Returned by MARK WATSON and The Sound and the Fury is returned to 
circulation. 
NIL 
? (parse '(List the books by Carl Sagan» 
Semantic memory structure: 

Subject : COMPUTER 
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Action : LIST-INFO 
Library card holder : NIL 

Action object : BOOKS 
Object modifier type: BY 
Object modifier : SAGAN 
Number modifier : NIL 

The following books are by SAGAN, CARL: 
Dragons of Eden 
Broca's Brain 
NIL 
? (parse '(David Kimmel got "The Dragons of Eden"» 
Semantic memory structure: 

Subject : COMPUTER 
Action : CHECK-OUT-BOOK 
Library card holder : (DAVID KIMMEL) 

Action object : The Dragons of Eden 
Object modifier type: NIL 
Object modifier : NIL 
Number modifier : NIL 

Checking out the book: The Dragons of Eden. 
Checked out by confirmed library card holder 
DAVID KIMMEL and data base is modified to show 
that this volume is checked out. 
NIL 
? 

Note that the parser knows the names of people holding valid library cards. As seen 
in the A TN parsing program listing, the parser is augmented with program code to 
extract and record semantic features. The parsing networks use information in the 
book, author, and library card holder databases to make decisions on accepting a 
legal syntactic form (e.g., prepositional phrase). The use of semantic processing in 
the A TN parser allows us to write a useful system without backtracking or 
generating multiple hypothesized sentence structures. Probably the largest problem 
in Computational Linguistics today is the proper handling of the ambiguity which 
results in the generation of multiple legal syntactical parses from a single sentence. 
In this example, we front load the parsing process by augmenting it with all of the 
domain knowledge that we have: our A TN parsing networks only accept sentences 
that both fit syntactical requirements of the grammar that we implemented and that 
contain word combinations that contain extractable semantic content. The flavor 
of the parser is similar to Conceptual Dependency parsers (Schank and Riesbeck, 
1981). 
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9.4 Project 

Extend the grammar for this system by adding a new type of query. Start by writing 
down several example sentences with a common syntactic sentence structure. 
Assuming that the parser will not accept the grammar of your new query, extend the 
parser to syntactically accept sentences using your new expanded grammar. Make 
sure that the parser can still process sentences of the old grammar! Finally, add 
semantic hooks to your new parser to extract the necessary information from user 
queries. Modify the output code at the bottom offunction parse so that users of your 
new system can see that the program understands their queries. 
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Expert-Systems 

Expert-system technology, now widely used as a component of larger software 
systems, is characterized by the separation of heuristic knowledge (i.e., a set of if­
then rules) in a program from the rest ofthe system. An expert -system shell provides 
a higher level language for expressing problem-solving knowledge in the form of 
if-then rules. Expert -system construction is facilitated by the use of an existing shell 
tool. Both public domain and commercial expert-system building shells are available 
in many programming languages (e.g., LISP, C, Fortran, and Ada). This chapter 
begins with a definition of terms used to discuss expert-systems, then presents 
example shells suitable for educational use; they can be extended in your 
application programs to build a customized high-level programming language 
environment for adding modular knowledge bases to the systems that you build. 
Then a backward-chaining expert-system shell is developed which starts with a goal 
and searches backwards until an initial state is found. This chapter also discusses 
features to look for in commercial expert-system shells, and recommends two 
public domain tools now widely used for building expert-systems, then ends with 
suggested expert-system projects. 

The use of expert-system technology is now common practice. Expert-systems are 
used in such diverse application areas as: oil exploration, business planning, and 
factory automation. I have participated in the use of embedded expert-system 
technology for the automatic control of remote computer networks and for tracking 
targets from incomplete and possibly contradictory sensor data. 

Expert-systems are most useful for solving problems for which there is no known 
algorithmic solution, or if a known algorithm solution is too time consuming. 
Expert-systems are characterized as providing good solutions to problems but not 
optimal solutions. 

Since the knowledge in expert-systems is kept in separate modules of heuristic 
rules, it is often useful to use expert-systems in control applications in which the 
heuristic rules can be quickly modified to tune system performance. 

Heuristic rules are statements that we accept as true as the result of experience and 
that can be generally applied to solve problems. For example, when a car does not 
start, we apply rules learned through experience for figuring out why the car will not 
start: "if the starter does not run when we turn the key, then the battery might be 
dead" and "if the starter turns the engine and the engine does not start, then the gas 
supply supply is low". While heuristic rules are not always true, in dealing with an 
uncertain and vague world they provide a starting point for solving problems. 

Expert-system rules are statements processed by software so they must have a 
well-defined syntax, that is, they are heuristic rules written in a form that can be 
processed by a computer program. The programs developed in this chapter process 
rules in the general form: 
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IF condition-} AND condition-2 ... AND condition-n THEN DO action-} AND 
action-2 ... AND action-m. 

As will be seen in Section 10.1, our rules will have a LISP type syntax. Heuristic 
rules are often referred to as production rules and an expert -system shell tool is also 
called a production system interpreter since it works on production rules. A 
production system interpreter processes if- then rules (for example, if(in jeep) then 
(leave jeep» by finding rules whose if clause matches a fact in the system and 
executing the corresponding then clause in the rule which adds a new fact to the 
system. 

Facts in an expert-system are data items describing some state of the system that 
we are building. 

An expert-system shell is a program which operates on heuristic rules and facts as 
data. If there are known facts that match every condition in a rule, then our shell 
program can execute the actions in this rule. Often many rules have all of their 
conditions satisfied by facts in a system so the shell must choose the order in which 
to execute the rules. 

An expert-system is forward-chaining if it matches the conditional parts of the 
rules against known facts and then executes the actions. A forward-chaining 
production system starts at an initial state (as defined by the initial facts in the fact 
database) and executes rules which have all of their conditions met until either no 
further rules are eligible to execute or the system has reached some predefined goal 
state and the shell halts. 

An expert-system is backward-chaining if it matches goals against the actions in 
the rules and attempts to backtrack from a goal state to the current state of a system 
as represented by the current facts in a system. 

10.1 Simple Forward-chaining Production System Interpreter 

The following example shows the implementation of a simple forward-chaining 
expert-system. The main limitation of this first example is the absence of matching 
variables; this limitation will be removed in the example in section 10.3. The first 
example uses a set of rules stored in the LISP variable rules and a set of current facts 
stored in the LISP variable facts. 

Consider the following data for our first simple expert-system tool: 

(setq rules '( 
«in jeep) (leave jeep» 
«leave jeep) (walk)))) 

(setq facts '( (in jeep) (has keys))) 

The following simple program will use the fact and rule lists as data. The function 
forward is called with two arguments, a list of rules, and a list of facts. Function 
forward repeatedly matches facts to the ifclauses in the rule list; whenever a match 
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occurs for a fact and a rule, the then clause of the rule is asserted as a fact. Function 
not-fact returns a true value if the fact being tested is not in the fact database. 
Function make-fact adds new facts to the fact database . 

.. 
" 
; File: FPS.LlSP 

; Simple forward-chaining production system interpreter (without variables) 

; Copyright 1990 Mark Watson . .. 
" 

(defun forward (ruleList FactList) 
(let «keep-going t)) 

(loop 
(if (not keep-going) (return)) 
(dolist (rule ruleList) 

(setq keep-going nil) 
(and 
(member (car rule) FactList :test #'equal) 
(not-fact (cadr rule) FactList) 
(progn 

(princ "Next rule to execute: ") 
(print rule) 
(terpri) 
t) 

(setq keep-going t) 
(make-fact (cadr rule) FactList)))))) 

(defun not-fact (testFact Facts) 
(not (member test Fact Facts))) 

(defun make-fact (fact Facts) 
(setf (cdr Facts) (cons fact (cdr Facts))) 
(princ "New fact: ") 
(print fact) 
(terpri)) 
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10.2 Executing the Simple Forward-chaining Production 
System Interpreter 

The following text shows a sample execution of the simple production system 
interpreter listed in Section 10.1 (text in bold type is entered in the listener window 
to start the program): 

? (forward rules facts) 
Next rule to execute: 
«IN JEEP) (LEAVE JEEP)) 
New fact: 
(LEAVE JEEP) 
Next rule to execute: 
«LEAVE JEEP) (WALK)) 
New fact: 
(WALK) 

In this example execution run, function forward found two rules eligible to execute. 
The development technique in this example is typical for writing LISP programs: 

start simple and incrementally build up the system. When modifying a system, start 
by making quick program changes that implement desired features, then rework 
your code to make it more readable and reusable after adding the new functionality. 
One of the advantages of working in a good LISP programming environment is the 
speed with which program changes can be implemented and tested. The time to 
decide whether it is worth while spending the time to make the code modules more 
maintainable is immediately after adding new functionality and testing. 

In designing an expert-system, a good starting point is the construction of a 
decision tree which covers the domain (or problem area) of the proposed expert­
system. In practice, systems built exclusively with decision trees tend to annoy 
system users by asking too many irrelevant questions. The run time performance of 
decision tree systems also tends to be poor. Once a decision tree has been built to 
cover your application area, then the heuristic rules of an expert-system can reduce 
both required user interaction and execution time. 

10.3 Complete Forward-chaining Production System 
Interpreter 

Our first improvement to the program in Section 10.1 will be the extension of the 
rule syntax to allow matching variables; for example, we want to be able to write 
rules such as: 
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(setq rules '( 
(if (in ?vehicle) 

(automobile ?vehicle) 
then (leave ?vehicle)) 
(if (leave ?anything) 
then (walk)))) 

Note that this new rule fonnat offers several advantages: 

• Multiple if -then clauses are allowed in rules. 
• Variables (starting with a question mark) will match anything in the fact database. 
• The "noise words" if and then make the rules more readable. 

These improvements are implemented in a new function fireRule? which strips off 
the if-then keywords in rules and tests each if clause against the current fact list 
(second argument to fireRule ?). The matching of if clauses to facts uses the new 
function varMatchAll to test for variables in the if clauses and sets the value of the 
variables to the matched values (that is, it binds, or sets the value of the variable to 
the value). For example, the ifclause (in ?vehicle) would match the fact (in jeep) 
with the variable ?vehicle bound to the value jeep. When new facts are asserted by 
a then clause, variable names are replaced by the values bound to them in the 
matching process. For example, the then clause (leave ?vehicle) would create a new 
fact (leave jeep) if the variable ?vehicle is bound to the value jeep. 

The following program listing implements these improvements: 

.. .. 
; File: FPS2.LlSP 

; Forward-chaining production system interpreter (with variables) 

; Copyright 1990 by Mark Watson .. .. 
(defun forward (ruleUst FactUst) 

(let ((keep-going t)) 
(loop 

(if (not keep-going) (return)) 
(dolist (rule ruleUst) 

(setq keep-going nil) 
(setq var-list nil) ;; reset current variable binding list 
(and 
(fire Rule? rule FactUst var-list) 
(progn 

(princ "From rule:") 
(print rule) 
(terpri) 
t) 

(setq keep-going t)))))) 
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; Check to see if a new fact has already been added to the fact database: 
.. 
" 

(defun not-fact (testFact Facts) (not (member test Fact Facts :test #'equal))) 

.. 
" ; Add a new fact to the fact database. Note that this function 
; alters the value of the second argument with setf . 
.. 
" 

(defun make-fact (fact Facts) 
(if fact ;; make sure that fact is not just nil 

.. 
" 

(let 0 
(setf (cdr Facts) (cons fact (cdr Facts))) 
(princ "New fact: ") 
(print fact) 
(terpri))) ) 

; Functions for variable matching: 
.. 
" 

(defun isVar? (x) ;; check to see if the first character in name is a ? 
(and (symbolp x) (char-equal (char (symbol-name x) 0) #\?))) 

(defun varMatch (v-list fact var-list) ;; wild-card pattern match 
;; Make sure the lists are the same length: 
(if (equal (length v-list) (length fact» 

(let «match-ok t» 
(dolist (v v-list) 

(if (not (equal v (car fact))) ;; no match, but check for a variable: 
(if (isVar? v) 

(setq var-list (cons (list v (car fact» var-list) 
fact (cdr fact» 

(return (setq match-ok nil))) ;; no match and no variable 
(setq fact (cdr fact»))) 

(if match-ok 
(if var-Iist ;; we need to return a non-nil value so return the 
var-list ;; new updated variable list 
T»)))) ;; or return T to signal a match to the calling function. 

(defun varMatchAII (v-list theFacts var-Iist &aux ret) 
(dolist (fact theFacts) 
(setq ret (varMatch v-list fact var-Iist» 
(if ret 

(if (not (equal ret var-Iist» 
(return ret) 
ret»))) 
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.. 
" ; Test for valid rule-firing. Return updated variable binding list 
; if the rule is eligible to execute: 
.. 
" 

(defun fireRule? (rule FactUst var-list) 
(if (not (equal (car rule) 'if» ;; simple check on rule syntax 

(let 0 

.. 
" 

(princ "Illegal rule:") 
(print rule» 

(let ((valid t) added-fact) 
(setq rule (cdr rule» 
(do ((check (car rule») ; check = if clauses 

((or 
(null rule) 
(equal check 'then))) 

(let (new-var-bindings) 
(setq new-var-bindings 

(varMatchAIl check FactUst var-list» 
(if new-var-bindings 

(if (not (equal new-var-bindings T» 
(setq var-list (append new-var-bindings var-list))) 

(return (setq valid nil)))) ;; if clause that does not match 
(setq check (car rule))) 

(if (equal (car rule) 'then) 
(if valid ;; execute the then clauses of the rule: 

(let (new-fact) 
(setq rule (cdr rule» 
(dolist (thenClause rule) 
(setq new-fact (substituteVariables thenClause var-list» 
(if (not-fact new-fact FactUst) 

(let 0 
;; Surgically insert new-fact 

(make-fact new-fact FactUst) 
(setq added-fact t)))) 

added-fact»»» 

; Use the variable binding list to substitute values for variables: .. 
" 

(defun substituteVariables (fact var-list) 
(dolist (var var-list) 

(let ((variable-name (car var» 
(bound-value (cadr var))) 

(setq fact 
(mapcar 
#'(Iambda (x) 

(if (equal x variable-name) 
bound-value 
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.. 
II 

fact) 

x» 
fact)))) 

; Test data: .. 
II 

(setq rules '( 
(if (in jeep) (has ?object) then (drive jeep)) 
(if (has ?x) then (drop ?x» 
(if (drive jeep) then (be-at store)) 
(if (in jeep) then (leave jeep)) 
(if (leave jeep) then (walk)))) 

(setq facts '( (in jeep) (has keys))) 

.. 
II 

; Test execution of the system automatically as this file is loaded: .. 
II 

(forward rules facts) 

IDA Executing the Complete Forward-chaining Production 
System Interpreter 

The following listing shows the output from the example program listed in section 
10.3. Notice that the rules used in the example contain variables starting with a 
question mark. In the following text listing, text with bold type was typed as input 
to the production system interpreter and text in a normal typeface was output from 
the program: 
? (setq rules '( 

(if (in jeep) (has ?object) tben (drive jeep» 
(if (has ?x) tben (drop ?x» 
(if (drive jeep) tben (be-at store» 
(if (in jeep) tben (leave jeep» 
(if (leave jeep) tben (walk»» 

«IF (IN JEEP) (HAS ?OBJECf) THEN (DRIVE JEEP» 
(IF (HAS ?X) THEN (DROP ?X» 
(IF(DRIVE JEEP) THEN (BE-AT STORE» 
(IF (IN JEEP) THEN (LEAVE JEEP» 
(IF (LEAVE JEEP) THEN (WALK») 

? (setq facts '( 
(in jeep) 
(has keys))) 
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? (forward rules facts) 
New fact: 
(DRIVE JEEP) 
From rule: 
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(IF (IN JEEP) (HAS ?OBJECf) THEN (DRIVE JEEP» 
New fact: 
(DROP KEYS) 
From rule: 
(IF (HAS ?X) THEN (DROP ?X» 
New fact: 
(BE-AT STORE) 
From rule: 
(IF (DRIVE JEEP) THEN (BE-AT STORE» 
New fact: 
(LEAVE JEEP) 
From rule: 
(IF (IN JEEP) THEN (LEAVE JEEP» 
New fact: 
(WALK) 
From rule: 
(IF (LEAVE JEEP) THEN (WALK» 
NIL 
? 

10.5 Backward-chaining Expert-systems 

Both forward and backward-chaining expert systems solve search problems. The 
next example program demonstrates the techniques for writing recursive backwards 
chaining search programs, that is, systems which start with one or more goal states 
and apply the rule database to attempt to work backwards to the present state of the 
system (as encoded in the fact database). The next example program uses the same 
rule and fact database format as the first example in this chapter; in addition, a target 
goal state is specified. For example, the initial state of the system could be specified 
with the following data: 

(setq rules '( 
((in jeep) (leave jeep» 
((leave jeep) (walk)))) 

(setq facts '( (in jeep) » 

(setq goal '(walk» 
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The first example in this chapter started with the fact (in jeep) and used the above 
rules to produce the following facts: (leave jeep) and (walk). The next example 
program starts with a goal state (walk) and one initial fact (in jeep) and forms a plan 
by searching backwards from the goal state until a path is found to the initial state 
of the system. Here a path is defined as an ordered set of rule executions which 
produce the initial state of the system (that is the initial facts) starting at the goal 
state. The ordered set of rule executions that transitions the system from the goal 
state to the initial state of the system is called an inference chain. The first rule if 
(in jeep) then do (leave jeep) operating on the state: (leave jeep) allows the tran­
sition backwards from the state: (leave jeep) to (in jeep) to occur. The program is 
a fairly simple backward-chaining production system interpreter; the purpose of 
this example program is to provide an example search program which enumerates 
all possible transitions from a given state and recursively calls itself for each 
possible transition until either a goal state is reached or no further transitions remain 
to be searched. In Chapter 11 we will look at a similar problem: heuristically finding 
cost effective paths through networks using heuristic search. This chapter is both a 
gentle introduction to a complex heuristic search program presented in Chapter 11 
and a reinforcement of the principle of using heuristic rules to limit search space and 
time. 

10.6 Backward-chaining Production System Interpreter 

The following example program starts at the goal state and recursively applies the 
rule database until either the initial state is reached or no more rules can be chained 
backwards. The function backward is called with a list of rules, a list of facts, a 
desired goal state, and a list of current deductions. The list of deductions is nil the 
first time that function backward is called; backward calls itself recursively adding 
to the deduction and fact lists until the goal state is contained in the fact list. The first 
two if tests in function backward are simply for debug printout. The first statement 
in function backward which performs work is a test to see if the current goal is 
already in F actList in which case the function simply returns the value of its current 
inference chain. If the current goal is not in the current fact list, the function loops 
over all rules in the variable ruleList first checking whether a rule with its then 
clause, the (cadr of-the-rule), is equal to the current goal and if its ifclause is in the 
fact list, in which case the search is complete. In the general case, function backward 
will now recursively call itself with a new goal: the if clause of each rule in the rule 
list. 
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.. 
" 
; File: BPS.Usp 

; Simple backward-chaining production system interpreter 
Copyright 1990 by Mark Watson 

.. 
" 

(setq *BT-DEBUG* 1) ;; flag for debug output 

(defun backward (ruleUst FactUst Goal inferenceChain) 

.. .. 

.. 
" 
; Test for desired debug printout: 
.. 
" 

(if *BT-DEBUG* (terpri» 
(if *BT-DEBUG* 

.. .. 
(pprint (list "Entering backward: ruleUst=" ruleUst "FactUst=" FactUst 

"Goal=" Goal "inferenceChain=" inferenceChain))) 

; Test having already found the path from the goal 
; back to the initial state of the system: 
.. .. 
(if (member Goal FactUst :test #'equal) 
inferenceChain ;; done with search 
;; Find a rule with the then clause equal to the goal 
;; and backtrack trying to prove the ifclause in the rule: 
(dolist (rule ruleUst) 

(if (equal (cadr rule) Goal) ;; (cadr rule) equals the then clause in the rule 
(if (member (car rule) FactUst :test #'equal) 

(pprint (list "Solution to backtracking problem:" 
(append (append FactUst (list Goal» 

inferenceChain» ) 
.. .. 

Recursively call this function backward passing the if clause 
; of the current rule being processed as the goal to search 
; backwards from and append the current goal to the inference chain: 
.. .. 

(let ((search (backward ruleList FactList (car rule) 
(cons Goal inferenceChain)))) 

(if search 
(return (cons (list rule FactList) search»))))))) 

;Test data. This example rule set will automatically execute when 
; this sample file is loaded into your Common Lisp environment: 
.. 
" 
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(setq rules '( 
((A) (B» ;; if A then B 
((B) (e» ;; if B then e 
((e) (X» ;; if e then X-not used in inference chain 
((Z) (0» ;; if Z then D-not used in inference chain 
((C) (0» ;; if e then 0 
((0) (E» ;; if 0 then E 
((E) (F»))) ;; if E then F 

(setq facts '((A))) 
(setq goal '(F» 

.. .. 
; Run the system: 
.. .. 
(setq *BT-OEBUG* nil) ;; turn off debug output 

(progn 
(terpri) (terpri) (princ """""*""""*"") 
(terpri) 
(terpri) 
(backward rules facts goal nil» 

10.7 Executing the Backward-chaining Production System 
Interpreter 

The sample data at the end of this example has two rules that are not used in the 
backward-chaining inference chain for a test: note in the following output from the 
program that the inferences (X) to (C) and (D) to (Z) are never made since the search 
for these two inferences does not lead back to the initial state of the system. The 
following output was captured while executing this example two times: once 
without debug output and one with the debug flag *BT-DEBUG* set to a non-nil 
(true) value. Text in a bold typeface was typed into the Lisp listener window to 
initialize data for the sample program and then to execute it. Text in a normal 
typeface is program output. 

? (setq rules '( 
«A) (B» ;; if A then B 
«B) (C» ;; ifB then C 
«C) (0) ;; ifC then X 
«Z) (D» ;; if Z then D 
«C) (D» ;; ifC then D 
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«D) (E» ;; ifD then E 
«E) (F») 

«(A) (B» «B) (C» «C) (X» «Z) (0» «C) (0» «D) (E» «E) (F») 

? (setq facts '«A») 
«A» 
? (setq goal '(F» 
(F) 
? (setq *BT·DEBUG* nil) 
NIL 
? (backward rules facts goal nil) 

("Solution to backtracking problem:" 
«A) (B) (C) (0) (E) (F)) 

NIL 
? (setq *BT·DEBUG* T) 
T 
? (backward rules facts goal nil) 

("Entering backward: ruleList=" 
«(A) (B» «(B) (C» «C) (X» «Z) (D» «C) (D» «D) (E» «E) (F») 
"FactList=" «A» 
"Goal=" (F) 
"inferenceChain=" NIL) 

("Entering backward: ruleList=" 
«(A) (B» «(B) (C» «C) (X» «Z) (D» «C) (D» «0) (E» «E) (F») 
"FactList=" «A» 
"Goal=" (E) 
"inferenceChain=" «(F)) 

("Entering backward: ruleList=" 
«(A) (B» «B) (C» «C) (X» «Z) (D» «C) (D» «D) (E» «E) (F)) 
"FactList=" «A» 
"Goal=" (0) 
"inferenceChain=" «E) (F)) 

("Entering backward: ruleList=" 
«(A) (B» «B) (C» «C) (X» «Z) (D» «C) (D» «D) (E» «E) (F») 
"FactList=" «A» 
"Goal=" (Z) 
"inferenceChain=" «D) (E) (F») 

("Entering backward: ruleList=" 
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«(A) (B» «B) (C» «C) (X» «Z) (D» «C) (D» «D) (E» «E) (F») 
"FactList=" «A» 
"Goal=" (C) 
"inferenceChain=" «D) (E) (F») 

("Entering backward: ruleList=" 
«(A) (B» «B) (C» «C) (X» «Z) (D» «C) (D» «D) (E» «E) (F») 
"FactList=" «A» 
"Goal=" (B) 
"inferenceChain=" «C) (D) (E) (F») 
("Solution to backtracking problem:" 
«A) (B) (C) (D) (E) (F») 

NIL 

10.8 Public Domain and Commercial Expert-system Shells 

The examples in this chapter were designed to provide insight into the operation of 
production-system interpreters. For serious development of expert-systems, it is 
better to use a standard tool that is integrated with the programming environment 
used for your application development. Because most expert-systems are relatively 
small programs embedded in much larger system, integration with the development 
language and utilities is very important. It is also important for the shell language 
to provide a rich set of utilities for performing partial pattern matching on data 
elements. 

An excellent tool for developing Common LISP applications is the public domain 
OPS5 TN language written at Carnegie-Mellon University by Charles Forgy. OPS5 
is a forward-chaining system like the first two example programs in this chapter and 
its source code is available, giving the system developer full control over the 
production system interpreter. 
If C is the language for project development, the public domain CLIPS ™ system 

is a good choice. CLIPS was developed by NASA for in house use and is distributed 
for a copying charge by the US government COSMIC TN software clearing house. 
CLIPS is distributed as C source code. An excellent commercial shell written in C 
is Nexpert TN from Neuron Data Corporation. 

10.9 Projects 

1. All then actions in both forward-chaining programs in this chapter add a new fact 
to the system. Modify the complete forward-chaining program by adding the 
new action keyword remove which removes a specified fact from the fact 
database. Modify the system to allow rules such as: 



(setq rules '( 

» 

(if (location town) (money ?amount) 
then (remove 2» 
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Note that remove takes one argument which refers to the pattern number in the 
ifpart of the rule. In this case (remove 2) indicates that the fact in the fact database 
which matches the second if pattern (money ?amount) in the rule should be 
removed. 

2. The complete forwards-chaining program performs limited syntax-checking of 
the rules (check the rule for the if noise word). Add the following syntax checks 
to function fileRule ?: 

• Check for the existence of the then noise word. 
• Insure that there is at least one if test in the rule. 
• Insure that there is at least one then action in the rule. 

Note that rule-syntax checking is repeated each time the rule database is 
checked. Remove syntax-checking from functionfireRule? and perform syntax 
checking of all rules once in function feedForward. 

3. Modify the forwards-chaining program to add a new then action: (halt). 
This new action causes the production system interpreter (the function 
feedForward) to immediately halt even if further rules are eligible to execute. 

4. Modify the forwards-chaining program to add an optional rule priority to the 
allowed syntax for a rule. 
Hint: if several rules are eligible to execute, execute those with the highest 
priority first. Also, simply sort the initial rule database in decreasing order of 
priority, and modify feedForward to start searching for a valid rule at the 
beginning of the rule list whenever a rule fires. Why is this second step 
necessary? 

5. Modify the backwards-chaining program to accept multiple if statements in 
rules. 
Hint: at the end of function backward, call backward recursively for each 
if clause, but immediately return false (nil) if the recursive call to backward 
ever returns false. 

6. Modify the backwards-chaining program to allow variables in the rules using the 
same format as the second example program in chapter to. 
Hint: you will need to build variable bindings of the form: «?var-I value-I) 
(?var-2 value-2) and (?var-n value-n» and pass these bindings to backward 
when backward is making recursive calls to itself. 



11 
Heuristic Network Search Algorithm 

Many AI applications require a search for a best (or shortest) path through a net­
work. Applications for network searches include routing problems (such as aircraft 
or sales route planning and terrain traversal for robotic vehicles). 

Three popular search strategies for finding a short path through a network are: 
depth-first, breadth-first, and heuristically directed breadth-first. Depth-first searches 
are very inefficient, in general, because the first available path is searched exhaus­
tively, even if it turns out to be a very long path. The advantages of depth-first 
searches are the ease of implementation and small data storage requirements. 
Breadth-first searches are much better since the search space tends to "fan out" from 
the starting node until the goal node is located. Breadth-first searches have a much 
larger run-time memory requirement than depth-first searches. The heuristically 
directed breadth-first search attempts to search possible paths in the order of paths 
that are heuristically judged to have the highest probability of being the best path. 
This directed search causes the search space to "fan out" preferentially towards the 
goal node. This directed search is very simple to implement since we have an 
accurate cost function for ordering the possible paths for each node being searched: 
the cost of any possible path is taken to be the Cartesian distance from the first node 
on a possible path to the goal node. This chapter will present a good technique for 
performing an efficient heuristic breadth-first network search, the A * search (Hart, 
Nilsson, and Raphael, 1968). 

11.1 Theory of the A * Search 

We will discuss the theory of A * search in the framework of a practical application: 
calculating the shortest path between cities that are connected by roads. The data 
that the A * algorithm uses is a set of nodes (the cities in this example), a set of edges 
or paths between nodes (the roads), a starting node (or city) and a goal node (the city 
we want to reach). 

The computational steps used in the in the A * algorithm are simple to describe. At 
the starting node, we build a list of all nodes that are directly connected to the starting 
node by a path. We sort this list of nodes in order of proximity to the goal node (list 
the cities closest to the target city first). We then start a breadth-first search of all 
nodes in this list; at each node we search from, we sort the list of connected nodes 
by proximity to the goal node. The search terminates as soon as we search a node 
directly connected to the goal node. 

This last step of sorting possible path segments by proximity to the goal node, in 
combination with hashing (storing computed information with an index key to find 
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it quickly) the calculated distance between directly or indirectly connected nodes 
makes a single search through the network much faster. The hashing of precom­
puted distances greatly speeds up subsequent searches through the network. Our 
example makes use of both of these tricks. 

11.2 A * Network Search Program 

The function A *search is called with the names of the starting and goal nodes for 
the search. Function A *search uses the local list possible-paths to cache the Car­
tesian distances between nodes in the network as they are calculated. The helper 
function a *-helper performs a breadth-first search by starting with the first possible 
path (this list is kept sorted so that the possible paths with an ending node closest 
to the goal node are kept first on the list) and fanning the search out preferentially 
towards the goal node. Note that this search stops when the first path segment on 
the possible path list contains the goal node. 

The function init-network precalculates the lengths of all path segments in the 
network. The function init-path-list puts calculated path lists as a property value on 
each node. By caching precalculated path costs for each node, the example program 
avoids recalculating any path sequence. For example, if after calculating the path 
between nodes nl and nll in Figure 11.1, function A *search is then asked to cal­
culate the best path between nodes n2 and nIl, no real search is necessary since the 
path sequence from n2 to nll will already be cached at node n2. 

R* Search 

Figure 11.1. Sample Network with 11 Nodes and 12 Edges 
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The function enumerate-children collects all path segments from a specified 
starting node to the goal node. If a stored path is found cached on the starting node, 
function consider-best-path uses the stored information; if a stored path is not found 
cached in the starting node, function consider-all-nodes is called to search for a best 
path. 

The function Collect-ascending-search-list-order places the possible paths fan­
ning out from a node in a "best-first" order using previously calculated direct 
distances ("as the crow flies") from each node to the goal node. 

The function testl in the sample program demonstrates the initialization of data for 
the A'" search program. Two variables define the network used by the example 
program: nodes and paths. In testl, eleven test nodes are created as global data items 
with values of Cartesian coordinates. For example, node nl is defined to be at the 
location specified by the coordinates (30, 201) in some arbitrary coordinate system. 
The global variable paths is set to a list of node pairs defining the connections in the 
network. 

Function testl calls function init-network to calculate and cache the path lengths 
of all path segments in the network. Function testl then plots the nodes in a graphics 
window (assuming the graphics library from chapter 2 has been loaded). 

Function test2 calls the function A *search which returns a path list for the best 
route from node nl to node nil. The best path is plotted in a graphics window . 
.. 
" 
; FileA*.lisp 

; Perform a heuristic A* search between the start and goal nodes: 

; Copyright 1990 by Mark Watson 

(defun A*search (start goal &aux possible-paths best) 
(setq possible-paths 

(list 
(list 
(dist-between-points 

(eval start) 
(eval goal)) 
o 
(list start)))) 

(defun a*-helper 0 ;; Note: this function is nested inside of function A* 
(if possible-paths ;; so its lexical scoping makes it invisible outside A* 

(let 0 
(setq best (car possible-paths)) 
(setq possible-paths (cdr possible-paths)) 
(if (equal (first (caddr best)) goal) 
best 
(let 0 
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00 

" 

(dolist (child (enumerate-children best goal» 
(setq possible-paths 

(Collect-ascending-search-list-order 
child possible-paths))) 

(a*-helper)))))) 
(a*-helper» 

; Define memo nics to fetch x,y coordinates from nodes: 
00 

" 

(defun V-coord (x) (truncate (cadr x))) 
(defun X-coord (x) (truncate (car x))) 

00 

" 
; Initialize the network by calculating path lengths 
; of all path segments and caching this information 
; at each node for future use: 
00 

" 

(defun init-network 0 
(setq paths (in it-lengths paths» 
(init-path-list nodes paths» 

00 

" 
; Add the length of the path to each path in the path list: 
00 

" 

(defun in it-lengths (pathlist) 
(let (new-path-list pathlength path-with-Iength) 

00 

" 

(dolist (path path list) 
(setq path length (slow-path-Iength path» 
(setq path-with-Iength (append path (list pathlength))) 
(setq new-path-list (cons path-with-Iength new-path-list))) 

new-path-list» 

; Place the path-list property on each node : 
00 

" 

(defun init-path-list (nodes paths) 
(dolist (node nodes) 

(put node 'path-list 
;; let returns all paths connected to node: 
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(let (path-list) 
(do list (path paths) 

(if (equal node (start-node-name path)) 
(setq path-list 

.. 
" 

(cons (list (end-node-name path) 
(path-length path)) 

path-list)) 
(if (equal node (end-node-name path)) 

(setq path-list (cons (list (start-node-name path) 
(path-length path)) 

path-list)))) ) 
path-list))) ) 

; "As the crow flies· distance between 
; the starting and ending nodes on a path: 
.. 
" 

(defun slow-path-Iength (path) 
(dist-between-points (start-node path) (end-node path))) 

.. 
" 
; Define mnemonic for getting path-length from a node: 
.. 
" 

(defun path-length (x) (caddr x)) 

.. 
" 
; Calculate the Cartesian distance between points: 
.. 
" 

(defun dist-between-points (point1 point2) 

.. 
" 

(let «x-dif (- (X-coord point2) (X-coord point1))) 
(y-dif (- (V-coord point2) (V-coord point1)))) 

(sqrt (+ (* x-dif x-dif) (* y-dif y-dif))))) 

; Define memonics for accessing data in lists: 
.. 
" 

(detun start-node (path) (eval (car path))) 
(detun end-node (path) (eval (cadr path))) 
(defun start-node-name (x) (car x)) 
(detun end-node-name (x) (cadr x)) 
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(detun first-on-path (x) (caddr x» 
(detun goal-node (x) (car x» 
(detun distance-to-that-node (x) (cadr x» 

.. 
" 
; Generate all child paths from a node to the goal: 
" 
" 

(detun enumerate-children (node goal) 
(Iet* ( 

.. 
" 

(start-to-Iead-node-dist (cadr node» ;; distance already calculated 
(path (caddr node» 
(lead-node (car path))) 

(if (get-stored-path lead-node goal) 
(consider-best-path lead-node goal path start-to-Iead-node-dist) 
(consider-all-nodes lead-node goal path start-to-Iead-node-dist»» 

; Set "best-first" search towards next node: 
.. 
" 

(defun consider-best-path (lead-node goal path distance-to-here) 
(Iet* ( 

(stored-path (get-stored-path lead-node goal» 
(stored-dist (distance-to-that-node stored-path» 
(first-node (get-first-node-in-path lead-node goal» 
(dist-to-first (+ distance-to-here 

(get-stored-dist lead-node first-node))) 
(total-estimate (+ distance-to-here 

(get-stored-dist lead-node goal))) 
(new-path (cons first-node path))) 

(list (list total-estimate dist-to-first new-path)))) 

.. 
" 
; Return optimum path between two nodes (if available): 
.. 
" 

(detun get-stored-path (start goal) 

(if (equal start goal) 
(list start 0) 
(assoc goal (get start 'path-list»))) 
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.. .. 
; If optimum path between nodes has not been calculated 
; already, consider all nodes connected to lead-node: 
.. .. 

(defun consider-all-nodes (lead-node goal path start-to-Iead-node-dist) 
(let (dist-to-first total-estimate new-path new-nodes) 

.. .. 

(dolist (node (collect-linked-nodes lead-node» 
(if (node-not-in-path node path) 

(let 0 
(setq dist-to-first (+ start-to-Iead-node-dist 

(get-stored-dist lead-node node))) 
(setq total-estimate (+ dist-to-first 

(dist-between-points 
(eval node) 
(eval goal»» 

(setq new-path (cons node path» 
(setq new-nodes (cons (list total-estimate 

dist-to-first 

new-nodes» 

new-path) 
new-nodes))) » 

; Collect all nodes connected to node: 
.. .. 
(detun collect-linked-nodes (node) 

(let (links) 

.. .. 

(dolist (link (get node 'path-list» 
(if (null (first-on-path link» 

(setq links (cons (goal-node link) links)))) 
links» 

; Check to see if a node is on a given path: 
.. .. 

(detun node-not-in-path (node path) 
(if (null path) 

t 
(if (equal node (car path» 
nil 

(node-not-in-path node (cdr path))))) 
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.. 
" 
; Retrieve the distance between nodes: 
.. 
" 

(defun get-stored-dist (node1 node2) 
(distance-to-that-node (get-stored-path node1 node2))) 

.. 
" 
; Order the paths leading out of a node in "best-first" order: 

.. 
" 

(defun Collect-ascending-search-list-order (a I) 
(if (null I) 

.. 
" 

(list a) 
(if « (car a) (caar I» 

(cons a I) 
(cons (car I) (Collect-ascending-search-list-order a (cdr I»))))) 

; Return the first node in a path towards the goal node: 
.. 
" 

(defun get-first-node-in-path (start goal) 
(let (first -node) 

.. 
" 

.. 
" 

(setq first-node (first-on-path (get-stored-path start goal))) 
(if first-node first-node goal))) 

Throwaway test code: Execute (test1) then (test2) to display 
a network and performs an A* search between two nodes: 

(defun test1 0 
(setq 

n1 '(30201) 
n2 '(25140) 
n3 '(5530) 
n4 '(105190) 
n5 '(95110) 
n6 '(140 22) 
n7 '(160 150) 
n8 '(170 202) 
n9 '(189130) 
n10 '(200 55) 



n11 '(205 201)) 
(setq nodes 
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'(n1 n2 n3 n4 n5 n6 n7 nB n9 n10 n11)) 
(setq paths 

'((n1 n2) (n2 n3) (n3 n5) (n3 n6) (n6 n1 0) 
(n9 n10) (n7 n9) (n1 n4) (n4 n2) (n5 nB) 
(nB n4) (n7 n11))) 

(init-network) 
(init-plot) 
(dolist (p paths) 

(let ((from (eval (car P))) 
(to (eval (cadr p)))) 

(plot-line 
(x-coord from) 
(y-coord from) 
(x-coord to) 
(y-coord to)))) 

(dolist (n nodes) 
(let ((n-val (eval n))) 

(plot-string 
(+ 2 (x-coord n-val)) 
(y-coord n-val) 
(princ-to-string n))))) 

(defun test2 0 
(defun draw-path (pi) 

(print pi) 
(pen-width 3) 
(let ((node1 (car pi))) 

(setq pi (cdr pi)) 
(dolist (p pi) 
(plot-line (x-coord (eval node1)) (y-coord (eval node1)) 

(x-coord (eval p)) (y-coord (eval p))) 
(setq node1 p)))) 

(draw-path (caddr (A*search 'n1 'n11)))) 

11.3 Executing the A * Search Program 

Executing function testl generates the plot seen in Figure 11.1 showing 11 nodes 
in a sparsely connected network. The graphics library from chapter 2 must be loaded 
before running function testl. 

Executing function test2 in the sample program calculates the best path between 
nodes N1 and NIl and hilights the path in the graphics display as seen in Figure 11.2. 
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RIf< Search 

Figure 11.2. The Best Path between Nodes nl and n11 

The program presented in this chapter can search a network with a 100 nodes for 
a path in a few seconds on a Mac II running Macintosh Common LISP. Notice that 
in our example, the heuristically directed breadth-first search algorithm is "misled" 
rather badly since this cost function will cause the search to proceed first to node N4 
and then to node N8; the program still finds the correct shortest path, but the search 
is more expensive computationally. 

11.4 Projects 

1. Write a program to calculate best paths between cities in the USA. Superimpose 
a Cartesian grid over a map with units in miles. Then enter the location of each 
major city as a point (x, y). Enter a list of roads where each road is defined as 
a city pair. Using this data, plot the cities in the graphics window. Your program 
should accept two cities as input (use the mouse pointing device, or require 
typing in the names) and plot out the best path between the cities using the 
available roads. Reuse the test functions testl and test2 , changing the data 
initialization code. 

2. Modify the example program to allow each path to have a speed-cost attribute. 
The cost function dist-between-points in the program in section 11.2 uses the 
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Cartesian distance between two nodes as the cost for traveling on a path directly 
connecting the nodes. Modify the cost function to calculate the cost as path 
length divided by the speed attribute. The cost function would then be time-to­
travel, not distance. 

3. Simulate the traversal of a robot vehicle over rough terrain. Use the program 
modifications from the second project in this section. Create a two dimensional 
array that has lOxlO grid cells and fill each grid cell with a random value between 
I and 5; this random value will be a speed-cost attribute for moving through the 
grid cell. Allow movement of the vehicle to be between adjacent grid cells only 
(not between diagonally connected cells). Set up your simulation to plot the grid 
cells with gray-scale values (indicating the speed at which the vehicle can move 
through a grid cell) and the calculated best path from the upper left to the lower 
right grid cell. Every time your simulation program executes, fill the grid cells 
with new random speed-cost attributes. Set your simulation program up to 
continuously loop over new terrains. 
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A Chess-Playing Program 

Computer chess programs have long been a testing ground for developing search 
techniques. Chess programs use some form of lookahead (prediction of future 
moves) search combined with static evaluation Gudging the relative worth of a 
chess position without lookahead, that is by counting material worth of both black 
and white pieces and comparing the relative mobility of those pieces). We will develop 
a chess playing program in this chapter which relies mostly on static evaluation 
using heuristic chess knowledge. The program will usually give the impression of 
strong positional play although it plays a poor tactical game. The advantages of this 
heuristic approach (as compared to brute force search) are: faster execution in a 
LISP environment, easier to add and test new chess heuristics, and a simpler 
program. The static evaluation function, in calculating which pieces are subject to 
capture, effectively performs a two-ply (that is, half moves, by either the white or 
black pieces) lookahead search. 

12.1 Computer Chess History 

Claude Shannon described two search techniques that he called type A and type 
B (Shannon 1950). The type A search technique looked at all possible moves from 
a given position. For example, there are usually about 40 possible (legal) chess 
moves from a typical board position; to look three moves ahead (two moves for each 
player) requires the examination of about 40(3*2), or 4()6 (4,096,000,000) board po­
sitions. Because of the impracticality of deep searches using the type A search 
strategy, Shannon predicted that high-performance game-playing programs would 
instead use the human-style type B strategy in which the program would not 
examine all possibilities, but use heuristic rules derived from consultation with 
human chess experts. In this way a program would be able to examine only "good" 
moves, without, it was hoped, overlooking many strong moves. If a chess program 
examines only six plausible moves per turn, then a three-move lookahead requires 
the examination of 6(3*2), or 66 (46656) board positions. 

While he was a student at MIT, Richard Greenblatt, a world class LISP program­
mer, wrote an excellent chess-playing program (which used to clobber me when I 
was learning to play chess) that used Shannon's type B strategy. However, 
Greenblatt's program and all other type B search strategy chess programs never 
considered, and thus missed, many good moves. 

Human chess masters are capable of very fine evaluation of static board position 
Gudging the relative value of a chess position without lookahead by counting both 
material worth of both black and white pieces on the board and the relative mobility 
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and usefulness of the pieces) because a given board position triggers many 
associative memory recalls (as mentioned in chapter 3) based on the study of 
thousands of games with many thousands of unique board positions. Hardware 
neural network chips will certainly be useful in refining static evaluation functions 
in the future. Unfortunately, software static evaluation functions for complex games 
like chess and Go are not adequate by themselves; they must be augmented by deep 
lookahead. 

Lookahead is accomplished by using a min-max search where each side is as­
sumed to choose its moves to minimize or maximize the static evaluation of the 
board position at the end of a lookahead search. All legal moves are generated for 
the side to move. These moves are tried one at a time while all the possible moves 
for the other side are generated. As discussed in chapter 11, there are two general 
types of search strategies: depth-first and breadth-first. Chess programs usually use 
a depth-first search to eliminate the extra storage requirements for implementing a 
breadth-first search. The depth of the min-max search is the number of plies (that 
is, half moves, of either the white or black pieces) searched. 

The heart of any game-playing program using a min-max lookahead is the static 
evaluation function, which given any board position will return a numeric rating of 
how good the board position is for each player (the value for player A is equal to 
minus the value for player B). 

Chess programs that use deep lookahead require an inexpensive static evaluation 
function since it must be applied to every board position occurring in the search and 
superior chess-playing programs use the simpler Shannon type A search strategy 
exclusively. However, the static evaluation function is still very important for two 
reasons. The first reason is obvious: even though the program generates all possible 
board positions looking several moves into the future, the ultimate move choice is 
calculated by the application of the static evaluation function to each terminal 
board position (that is, to those board positions for which there is no further 
searching). The second reason the evaluation function is so important is that the 
min-max search method makes use of it when performing alpha-beta pruning, that 
is, by ordering the search of each possible move from a given position to search the 
best moves first. Frequently, a refutation move is found early which allows the 
elimination of the search of large segments of the search tree, without affecting the 
calculated move choice. The percentage of the potential move tree pruned using 
alpha-beta cutoffs is in general a function of how good the static evaluator is. The 
chess-playing program developed in section 12.3 uses an expensive but very 
accurate static evaluation function. This has the disadvantage of drastically reducing 
the number of board positions that can be searched in a reasonable amount of time 
but the advantage of the quality of the chess moves selected from a good positional 
evaluation. Positional considerations include mobility of chess-pieces, control of 
the center and control of the squares around the kings. 
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12.2 Design of the Example Chess Program 

Commercial chess-playing programs are certainly not written in LISP for perform­
ance reasons. Even with a good compiler, a chess-playing program written in LISP 
will play much slower than one coded in assembler language. However, in 1978, I 
enjoyed working on a chess-playing program written in interpreted Basic on an 
Apple II computer even though the program took about ten minutes per move. I now 
use a Macintosh running Macintosh Common LISP which runs about 200 times 
faster (about 2 seconds per move) than interpreted Basic on the Apple II. Combined 
with a good LISP compiler and a fast microcomputer, the example program in 
section 12.3 should provide hours of enjoyment since it is very easy to modify and 
experiment with. 

The design of the program is fairly simple in that it has just three main modules: 
a static evaluation function, a move generator, and board database update module 
which uses the first two modules to calculate aand make a move. 

The static evaluation function works by calculating a static evaluation value 
(zero if the white and black sides are equal, positive for a superior black position, 
and negative for a superior white position). The following parameters are used in 
this calculation: 

• Material (value of pieces left on the board) 
• Number of times pieces are guarded 
• Mobility of playing pieces 
• Control of central squares by pawns 
• Control of central squares by pieces 
• Control of squares adjacent to both kings 
• Attack on pieces by less valuable pieces 

The function value implements the calculation of the static evaluation value for a 
given board position. 

The user interface for the chess-playing program is a simple read loop with a text 
display of the board. For the sake of simplicity, the program only plays the black 
pieces. It is left as a simple exercise in section 12.5 to modify the example program 
to play either side. 

12.3 Example Chess Program 

This program is only about five pages of code (not including comments): it has 
been designed and implemented with the objective of being short and easy to 
understand and modify. The chess program uses a clever indexing scheme for board 
squares to make move generation easier. The comments in the second page of the 
program listing show the mapping between this indexing scheme and the squares 
on the board. If a piece on square number N is to move forward one square, its new 
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square index can be calculated by adding 10 to the old value. Rook moves can thus 
be calculated by adding or subtracting either 10 or 1 to the current square value until 
the rook attempts to move to a non-empty square. Bishop moves can also be 
calculated in a simple loop by adding the increment values -9, -11, 9, or 11 to the 
square index. The increment values for a given piece type are calculated in function 
goto by setting piece Type to the absolute value of the board value and using 
pieceType as an index into the list *index*, which is used as an index into the move 
increment list *piece*. As a simple example, suppose that function goto is called 
with a square index of 66: the value of (aref *board* 66) equals 3 (Bishop), which 
is used as an index into the *index* list. The value of (nth 3 *index*) equals 10, which 
is an index into the piece movement increment counter list *piece*. Legal piece 
increments for bishops are the numbers starting at index 10 in list *piece* and ending 
with an entry of zero in list *piece*. The data declarations and initialization for these 
lists and arrays are in the first 15 lines of the chess program. 

The chess program uses a global variable ·board* to hold the current board po­
sition. For a given board position, the computer keeps track of the number of times 
both sides control each square on the board; the counter array *bcon* is used to 
count the number of times the black (computer) pieces control each square on the 
board; the array *wcon* is used for the corresponding white (human opponent) 
pieces. 

The function initChess sets flags indicating that neither king has moved, sets the 
move number counter *move-num* to zero, and initializes the *board* array. 

The functions print Piece and printBoard are used to print out the current board 
position. When printing the value of a piece, if the value of the piece is zero, then 
an empty square is printed as either aX or a period (.) to represent black and white 
squares on the chessboard. 

The function posib calculates a list of all possible moves on the board. The utility 
function goto is used to calculate all possible moves by a piece on a specified square 
of the chessboard. 

The function goto returns a list of squares that a piece on a desired square number 
can move to. Most of the complexity of calculating piece moves in function goto is 
in the code for pawn moves since pawns' behavior depends on their square number 
(pawns on their original squares can move one or two squares forward and if they 
are capturing then make diagonal moves). 

The function value returns a static evaluation using the seven heuristic rules listed 
in section 12.2. Function value is passed the square number that is being moved to. 

The function board-pr is a utility function printing the name of a square index. For 
example, square index 22 would be converted to the stringAl and printed. Function 
board-sq returns a list containing the print name of a square index in algebraic chess 
notation. Note that in algebraic notation, the squares on a chess board are labeled 
as shown in Figure 12.1. 

When executing the sample program, enter moves in algebraic notation. For 
example, to move the white kings's pawn forward two squares to start the game, 
enter the algebraic notation E2-E4. 
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A8 B8 C8 D8 E8 F8 G8 H8 

A7 B7 C7 D7 E7 F7 G7 H7 

A6 B6 C6 06 E6 F6 G6 H6 

AS B5 C5 05 E5 F5 G5 H5 

A4 B4 C4 D4 E4 F4 G4 H4 

A3 B3 C3 03 E3 F3 G3 H3 

A2 B2 C2 02 E2 F2 G2 H2 

Al Bl Cl 01 El Fl Gl HI 

Figure 12.1 Algebraic Chess Notation used in Chess Program 

The function mover is called by the main function chess to calculate and make a 
good move for the computer (black pieces). Function mover calls function posib to 
calculate all possible moves for the computer pieces and return these moves in a list. 
Mover then loops through all possible moves calling function value to calculate a 
static evaluation score. Note that internally, function value calculates all opponent 
responses so the equivalent of a two-ply lookahead is used for move selection. 
Function posib returns individual moves in one of three formats: a list containing 
"from" and "to" squares, the symbol 00 (for king side castle), or the symbol 000 
(for queen side castle). Much of the complexity in function mover is in handling 
castling. Notice that after mover evaluates a possible move, it restores the state of 
the board array *board* to its original state. 

Function chess is the main driver for the chess program, looping to ask the 
opponent for a move and making a response computer move. As with function 
mover, most of the (limited) complexity in function chess lies in handling castling. 
Note that function chess takes an optional argument: if chess is called with a non­
nil value, the game is continued without reinitializing the game state; this is useful 
for modifying and testing the program . 

.. 
" 

Chess Program by Mark Watson 

; Bug list: (does not handle en passant capture) 

; Copyright 1978-1990 by Mark Watson 
.. 
" 

(proclaim 
'(special 
*wking-moved* *wrook1-moved* *wrook2-moved* *bking-moved* 
*brook1-moved* *brook2-moved* *move-num* *board* 
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.. 
n 

*human-square-control* *computer -square-control* 
*index* *piece* *Value* *debug* *old-board* *old-moves* 
*moves-for -current-piece*)) 

; Define global variables: 
.. 
" 
(setq *board* (make-array (list 120))) ;; board 
(setq *computer-square-control* (make-array (list 120))) 
(setq *human-square-control* (make-array (list 120))) 
(setq *moves-for-current-piece* nil) 
(setq *index* '(01215101 60006)) ;; piece index into move table 
(setq *piece* '(0 -1 1 10 -10 01 -1 10 -10 -9 -1191108 -812 -12 

19 -19 21 -21 0102000000)) ;; piece move table 

.. 
" 
; Set value of the pieces: pawn, knight, bishop, rook, queen, and king: 
.. 
" 

(setq *Value* '(0 1 33 5 9 0 0 0 25)) .. 
" 
; Turn on debug output: .. 
" 
(setq *debug* t) 

.. 
" 
; Remember last board state to allow replaying the last move 
; when modifying the program: 
., 
" 
(setq *old-board* (make-array (list 120)) *old-moves* 0) 

.. 
" 

Use constants to define piece values: .. 
" 
(defconstant PAWN 1) 
(defconstant KNIGHT 2) 
(defconstant BISHOP 3) 
(defconstant ROOK 4) 
(defconstant QUEEN 5) 
(defconstant KING 9) 

.. 
" 
; Format of the board (e.g., square A 1 is square 22 and 
; square H8 is square 99 in the indexing scheme used 
; for the board squares): .. 
" 



12.3 Example Chess Program 171 

; Square index: Board with pieces: 

; 9293949596979899 BR BN BB BO BK BB BN BR 
; 8283848586878889 BP BP BP BP BP BP BP BP 
; 727374757677 78 79 X X X X 
; 6263646566676869 X X X X 
; 5253545556575859 X X X X 
; 42 43 45 45 46 47 48 49 X X X X 
; 32 33 34 35 36 37 38 39 WP WP WP WP WP WP WP WP 
; 22 23 24 25 26 27 28 29 WR WN WB WO WK 

Note: Human (white) pieces are positive numbers and 
computer (black pieces) are negative numbers. For 
example, if (aref *board* 55) equals -2, then square 
number 55 (04 or Oueen 4 in chess notation) has a 
black knight. If it equals 2, then the piece on square 
55 is a white knight. 

, Initialize the board: 

(detun initChess 0 

WB WN WR 

(setq *wking-moved* nil *wrook1-moved* nil *wrook2-moved* nil) 
(setq *bking-moved* nil *brook1-moved* nil *brook2-moved* nil) 
(setq *move-num* 0) 
(dotimes (i 120) 
(setf (aref *board* i) 

(nth i '( 
7 7 7 7 7 7 7 7 7 7 7 ; empty squares around outside of board 
7 7 7 7 7 7 7 7 7 7 7 ; empty squares around outside of board 
4 2 3 5 9 3 2 4 7 7 ; white pieces 
1 1 1 1 1 1 1 1 7 7 ; white pawns 
o 0 0 0 0 0 0 0 7 7 ; 8 blank squares and 2 empty squares 
o 0 0 0 0 0 0 0 7 7 ; 8 blank squares and 2 empty squares 
o 0 0 0 0 0 0 0 7 7 ; 8 blank squares and 2 empty squares 
o 0 0 0 0 0 0 0 7 7 ; 8 blank squares and 2 empty squares 

-1 -1 -1 -1 -1 -1 -1 -1 7 7 ; black pawns 
-4 -2 -3 -5 -9 -3 -2 -4 7 7 ; black pieces 
7 7 7 7 7 7 7 7 7 7 7 7 7 7 ; empty squares 
7 7 7 7 7 7 7 7 7 7 7»») ; empty squares 
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.. 
" 

Print a piece. It the piece happens to be an empty square 
; then print the representation tor a black or white square on the board: 
.. 
" 

(detun printPiece (piece blackSquare?) 
(it (zerop piece) 

.. 
" 

.. 
" 

(it blackSquare? (princ " X ") (princ II . ")) 
(let 0 

(it « piece 0) 
(princ" B") 
(princ " W")) 

(princ (nth (- (abs piece) 1) 
'("PII "N" liB" "R" "0" "" nil nil "K")))))) 

Print out the entire board: 

(detun printBoard 0 
(let «startColumnUst '(92 82 72 62 52 42 32 22))) 

(dotimes (i 8) 

.. 
" 

(terpri) 
(dotimes 0 8) 

(Iet* «boardPos (+ (nth i startColumnList) j)) 
(blackSquare? 
(member boardPos 

'(22242628333537394244 46 48 
53 55 57 59 62 64 66 68 73 75 77 79 
8284868893959799)))) 

(printPiece (aret *board* boardPos) blackSquare?)))) 
(terpri))) 

; Calculate all possible moves from all squares: .. 
" 

(detun posib (&aux returnedMoveUst) 
(dotimes (ii 78) 

(Iet* ((i (+ ii 22)) 
(boardVal (aret *board* i))) 

(it « boardVal 0) ;; valid piece to move? 
;; collect all squares to which piece on 
;; square i can move to: 
(dolist (aMove (goto i t)) 
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(if (and 
;; check for either an empty space or opponent piece: 
(>= (aref *board* (cadr aMove» 0) 
(neq 7 (aref *board* (cadr aMove)))) 

(setq returnedMoveList 
(cons aMove returnedMoveList»»))) 

(if (and 
(not *bking-moved*) 
(not *brook2-moved*) 
(equal (aref *board* 97) 0) 
(equal (aref *board* 98) 0) 
« (aref *human-square-control* 96) 1) 
« (aref *human-square-control* 97) 1) 
« (aref *human-square-control* 98) 1» 

(setq returnedMoveList (cons '00 returnedMoveList))) 
(if (and 

(not *bking-moved*) 
(not *brook1-moved*) 
(equal (aref *board* 95) 0) 
(equal (aref *board* 94) 0) 
(equal (aref *board* 93) 0) 
« (aref *human-square-control* 96) 1) 
« (aref *human-square-control* 95) 1) 
« (aref *human-square-control* 94) 1» 

(setq returnedMoveList (cons '000 returned Move List))) 
returned Move List) 

; For a given square, return a list of all moves the 
; piece on that square can move to: 
.. 
" 

(defun goto (squareNum captureFlag 
&aux piece retUst ivai pieceType 
piecelndex pieceMovementindex) 

(setq piece (aref *board* squareNum) 
ivai '(8 0 3) 

pieceType (abs piece) 
piecelndex (nth pieceType *index*) 

pieceMovementindex (nth piece Index *piece*» 
(if (not (equal piece 0» ; make sure that there is a piece on squrae 

(case pieceType 
((1) ; PAWN 

(let ((sid~lndex (if « piece 0) -1 +1») 
(dolist (captureDelta '(11 9» ;; check for diagonal captures 
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(Iet* «movementOffsetlnBoard (+ squareNum (* sidelndex captureDelta))) 
(targetPiece (aref *board* movementOffsetlnBoard))) 

(if (or 
(and 
«= targetPiece -1) ; enemy piece --> legal capture 
(neq targetPiece 7) ; not off of board 
(> piece 0» ; computer piece moving 

(and 
(>= target Piece 1) ; computer piece 
(neq targetPiece 7) ; not off of board 
« piece 0))) ; player piece moving 

(setq retList (cons 
(list 
squareNum 
(+ squareNum (* sidelndex captureDelta))) 

retList»» ) 
;; Check for initial pawn move of two squares forward: 
(Iet* «movementOffsetinBoard (+ squareNum (* sidelndex 20»))) 

(if (and 
captureFlag 
(equal (aref *board* movementOffsetinBoard) 0) ; move-to sq empty? 
(equal (truncate (j squareNum 10» (if « piece 0) 8 3» 
(if « piece 0) 

(equal (aref*board* (- squareNum 10» 0) 
(equal (aref *board* (+ squareNum 10» 0))) 

(setq retList (cons (list squareNum 
(+ squareNum (* sidelndex 20))) 

ret List))) ) 
(Iet* «movementOffsetlnBoard (+ squareNum (* sidelndex 10)))) 

(if (and 
capture Flag 
(equal (aref *board* movementOffsetinBoard) 0» ; move-to sq empty? 

(setq retList (cons (list squareNum 
(+ squareNum (* sidelndex 10))) 

retList»))) ) 
«2 3 4 5 9) ;; KNIGHT BISHOP ROOK QUEEN KING 
(Iet* «pieceType (abs piece» 

(movementTablelndex (nth pieceType *index*» 

(nextToSquare (+ squareNum (nth movementTablelndex *piece*»))) 
(loop;; over movement indices 

(loop 
(if (or 

(> nextToSquare 99) 

« nextToSquare 22) 
(equal (aref *board* nextToSquare) 7» 
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(return» ;; break out of loop if OFF OF BOARD 
(setq retUst (cons (list squareNum nextToSquare ) retUst» 
(if (neq (aref *board* nextToSquare) 0) ; last move was a capture, 

(return» so break out of the loop. 
(if (and 

(equal pieceType 1) 
(equal (truncate (I squareNum 10» 3» 

(return» 
(if (or 

(equal pieceType KNIGHT) 
(equal pieceType KING» 

(return» 
(setq nextToSquare 

(+ nextToSquare 
(nth movementTablelndex *piece*)))) 

(setq movementTablelndex (+ movementTablelndex 1» 
;; Lack of further move segments is indicated 
;; by a zero in the next element of the move 
;; index table: 
(if (equal (nth movementTablelndex *piece*) 0) 

(return» ;; no more move segments 
(setq nextToSquare 

(+ squareNum 
(nth movementTablelndex *piece*»))))))) 

retUst) 

; Return the static evaluation value for a given board position: 
.. .. 
(defun value (toSq &aux retVal) 

(setq retVal 0) 
(dotimes (i 100) 

(sett (aref *computer-square-control* i) 0) 
(sett (aref *human-square-control* i) 0» 

;; Calculate the number of times the computer's 
;; pieces control each board square: 
(dotimes (ii 78) 

(let «i (+ ii 22))) 
(if « (aref *board* i) 0) ;; computer piece 

(let «moveList (goto i nil» pawnFudge) 
(dolist (move move List) 

(if (equal (abs (aref *board* (car move))) 1) 
(setq pawnFudge 1.15) 
(setq pawnFudge 1» 
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(setf (aret *computer-square-control* (cadr move» 
(+ (aret *computer-square-control* (cadr move» pawnFudge))))))) 

;; Calculate the number of times the player's 
;; pieces control each square: 
(dotimes (ii 78) 

(let ((i (+ ii 22))) 
(it (> (aref *board* i) 0) ;; computer piece 

(let «move List (goto i nil» ;; generate moves from square # i 
pawnFudge) 

(dolist (move move List) 
(if (equal (abs (aref *board* (car move))) 1) 

(setq pawnFudge 1.25) 
(setq pawnFudge 1)) 

(setf (aref *human-square-control* (cadr move)) 
(+ (aref *human-square-control* (cadr move)) pawnFudge))))))) 

;; Subtract 1 from the control array 
;; for the square being moved to: 
(setf (aref *computer-square-control* toSq) 

(max 0 (- (aref *computer-square-control* toSq) 1))) 
;; Set initial value based on board control: 
(dotimes (ii 78) 

(let ((i (+ ii 22))) 
(setq retVal 

(+ retVal (* 0.1 
(- (aret *computer-square-control* i) 

(aret *human-square-control* i))))))) 
;; Modify the value based on material advantage, 
;; square control, and center control: 
(dotimes (ii 78) 

(let ((i (+ ii 22))) 
(it (and 

(neq 7 (aret *board* i)) ;; not off of the board 
(neq 0 (aref *board* i))) ;; not a blank square 

(let «control (- (aret *computer-square-control* i) 
(aret *human-square-control* i)))) 

;; Piece value: 
(if « (aret *board* i) 0) 

(setq retVal ;; computer piece 
(+ retVal 

(* (nth (abs (aret *board* i)) *value*) 
8))) 

(setq retVal ;; human piece 
(- retVal 

(* (nth (abs (aret *board* i)) *value*) 
8)))) 
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;; Check for black piece on white-controlled square: 
(if (and « control 0) « (aref *board* i) 0» 

(setq retVal 
(- retval 

(* 14 
(nth (abs (aref *board* i» *Value*))))) 

;; Check for white piece on black-controlled square: 
(if (and (> control 0) (> (aref *board* i) 0» 

(setq retval 
(+ retVal 

(*2 
(min; limit value of attacked piece to 3 
3 ; pOints since this side to move next 
(nth (abs (aref *board* i» *Value*)))))) 

;; King attacked: 
(it (and (> (aret *human-square-control* i) 0) (equal (aret *board* i) -9» 

(setq retVal (- retVal 5000))) 
;; Queen attacked: 
(it (and (> (aref *human-square-control* i) 0) (equal (aref *board* i) -5» 
(setq retVal (- retVal 50»»))) 

;; Pawn placement heuristics: 
(dolist (sq '(55 56 65 66» ; loop over central four squares 
(if (equal (aref*board* sq) -1) 

(setq retVal (+ retVaI2») ; black pawn 
(if (equal (aref*board* sq) 1) 

(setq retVal (- retVaI2»» ; white pawn 
; Loop over central 16 squares: 
(dolist (sq 

'(44454647545556576465666774757677» 
(if (equal (aref*board* sq) -1) (setq retVal (+ retval1))) ; black pawn 
(if (equal (aref *board* sq) 1) (setq retVal (- retVaI1»» ; white pawn 

;; Decrease value of moving queen in the first five moves: 
(if (and « *move-num* 5) (equal (aref *board* toSq) -5» 
(setq retVal (- retVal1 0))) 

;; Decrease value of moving king in the first 15 moves: 
(if (and « *move-num* 15) (equal (aret *board* toSq) -9» 

(setq retVal (- retVal 20») 
(+ retVal (random 2))) 

; Convert internal square number to algrabraic notation: 
.. 
II 

(defun board-pr (sq) 
(Iet* «rank (truncate (/ sq 10))) 
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.. 
" 

(file (- sq (* rank 10»))) 
(setq file (- file 2» 
(setq rank (- rank 1» 
(princ (nth file '("A" "S" "C" "0" "E" "F" "G" "H"))) 
(princ rank))) 

; Return a list containing the algrabraic notation for a square. 
; For example, square number 22 would be converted to (A 1) . 
.. 
" 

(defun board-sq (sq) 

.. 
" 

(Iet* «rank (truncate (f sq 10))) 
(file (- sq (* rank 1 0»» 

(setq file (- file 2» 
(setq rank (- rank 1» 
(list (nth file '("A" "S" "C" "0" "E" "F" "G" "H"» 

rank))) 

; Find the "best" move: 
.. 
" 

(defun Mover 0 
(setq *move-num* (+ *move-num* 1» 
(let «possibleMoves (posib)) 

(bestMove nil) 
(bestValue -100000) 
(to nil) 
moveValues ;; for debug output only 
tosave from save newVal) 

(dolist (pm possibleMoves) 
(setq tosave 0) 
(if (equal pm '00) 

(let 0 
(setf (aref *board* 96) 0) 
(setf (aret *board* 97) -4) 

(setf (aret *board* 98) -9) 
(setf (aret *board* 99) 0) 
(setq to 10)) ; off ot board 

(it (equal pm '000) 

(let 0 
(setf (aret *board* 96) 0) 

(setf (aref *board* 95) -4) 
(setf (aref *board* 94) -9) 



(setq to 10) ; off ot board 
(setf (aret *board* 92) 0)) 

(let 0 
(setq tromsave (aret *board* (car pm))) 
(setq tosave (aret *board* (cadr pm))) 
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(setf (aret *board* (cadr pm)) (aret *board* (car pm))) 
(setf (aret *board*(car pm» 0) 
(setq to (cadr pm))))) 

;; Call value to calculate a numeric score tor 
;; how "good" this board position is for the computer: 
(setq newVal (value to)) 
;; increase the score slightly for captures: 
(it (> tosave 0) 

(setq newVal 
(+ newVal12 (* 11 (nth tosave *value*))))) 

(it (member pm '(00 000» (setq newVal (+ newVal10))) 
(it*debug* 

(it (member pm '(00 000)) 
(setq moveValues 

(cons 
(list (list pm) newVal) 
moveValues» 

(setq moveValues 
(cons 
(list 
(append 
(board-sq (car pm)) '(" to ") 
(board-sq (cadr pm))) 

newVal) 
moveValues»))) 

(it (> newVal bestValue) 

(let 0 
(setq bestValue newVal) 
(setq bestMove pm))) 

(it (equal pm '00) 

(let 0 
(setf (aret *board* 96) -9) 
(setf (aret *board* 97) 0) 
(setf (aret *board* 98) 0) 
(setf (aret *board* 99) -4)) 

(it (equal pm '000) 
(let 0 

(setf (aret *board* 96) -9) 
(setf (aret *board* 95) 0) 
(setf (aret *board* 94) 0) 
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.. 
" 

(setf (aref *board* 92) -4)) 
(let 0 

(setf (aref *board* (car pm)) fromsave) 
(setf (aref *board* (cadr pm)) tosave))))) 

(if*debug* 
(let 0 

(dolist (x 
(sort moveValues 

H'(lambda (x y) (> (cadr x) (cadr y»)))) 
(terpri) 
(dolist (y (car x)) 

(princ y» 
(princ· : ") 
(princ (truncate (cadr x»))) 

(terpri») 
(it « bestValue -1000) 

'checkmate 
bestMove))) 

; Main driver program: 
.. 
" 
(defun chess (&optional restart) 

(if (not restart) (initChess» 
(if (equal restart 'backup) ;; debug option to back up one move on restart 

(let 0 
(princ "Backing up the game by one move") 
(terpri) 
(dotimes (i 120) 
(setf (aref *board* i) (aref *old-board* i))) 

(setq *moves-for-current-piece* *old-moves*»)) 
(printBoard) 
(loop 
(princ "Enter your move (e.g., d2-d4) : ") 
(Iet* «response (princ-to-string (read») 

(moved? nil» 
(it (equal response "00") ;; Common LISP converts reads to uppercase 

(it 
(and ;; let us be sure that casting king side is legal 
(not *wking-moved*) 
(not *wrook2-moved*) 
(equal (aret *board* 27) 0) 
(equal (aret *board* 28) 0) 
« (aret *computer-square-control* 26) 1) 
« (aret *computer-square-control* 27) 1) 



« (aref *computer-square-control* 27) 1» 

(let 0 
(setq moved? t) 
(princ "Castle King side") (terpri) 
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(setf (aref *board* 26) 0) ; blank old king square 
(setf (aref *board* 29) 0) ; blank old rook square 
(setf (aref *board* 27) 4) ; rook 
(setf (aref *board* 28) 9))) ; king 

(if (equal response "000") ;; Common LISP converts reads to uppercase 
(if 

(and ;; be sure that a queen side castle is legal 
(not *wking-moved*) 
(not *wrook1-moved*) 

(equal (aref *board* 23) 0) 
(equal (aref *board* 24) 0) 
(equal (aref *board* 25) 0) 
« (aref *computer-square-control* 26) 1) 
« (aref *computer-square-control* 25) 1) 
« (aref *computer-square-control* 24) 1)) 

(let 0 
(setq moved? t) 
(princ "Castle Queen side") (terpri) 
(setf (aref *board* 26) 0) ; blank old king square 
(setf (aref *board* 22) 0) ; blank old rook square 
(setf (aref *board* 25) 4) ; rook 

(setf (aref *board* 24) 9))))) ; king 
(if (equal (length response) 5) 

(Iet* 
«fromCol (- (char-code (char response 0)) 63)) 

(fromRow (- (char-code (char response 1)) 47» 
(toCol (- (char-code (char response 3)) 63)) 
(toRow (- (char-code (char response 4)) 47)) 
(from (+ (* from Row 10) fromCol)) 
(to (+ (* toRow 1 0) toCol))) 

(setq moved? t) 

(setf (aref *board* to) (aref *board* from)) 
(setf (aref *board* from) 0))) 

(if (not moved?) 

(print ·What???") 

(let 0 
(printBoard) 

;; Remember last state of the board to allow backing up 
;; one move for debug by running: (chess 'backup): 

(dotimes (i 120) 

(setf (aref *old-board* i) (aref *board* i))) 
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(setq *old-moves* *moves-for-current-piece*) 
;; Calculate the "best" computer move: 
(let «bestMove (Mover))) 

(if (equal bestMove 'checkmate) 
(let 0 

(princ "Checkmate!!") 
(terpri) 
(return))) 

(if (equal bestMove '00) 

(let 0 
(setf (aref *board* 96) 0) 
(setf (aref *board* 97) -4) 
(setf (aref *board* 98) -9) 
(setf (aref *board* 99) 0) 
(setf *bking-moved* t) 
(setf *brook2-moved* t) 
(terpri) (princ ·00·) (terpri» 

(if (equal bestMove '000) 

(let 0 
(setf (aref *board* 96) 0) 
(setf (aref *board* 95) -4) 
(setf (aref *board* 94) -9) 
(setf (aref *board* 92) 0) 
(setf *bking-moved* t) 
(setf *brook1-moved* t) 
(terpri) (princ "000") (terpri» 

(let 0 
(setf (aref *board* (cadr bestMove» (aref *board* (car bestMove))) 
(setf (aref *board* (car bestMove» 0) 
(terpri) (princ "Computer move: ") 
(board-pr (car bestMove» 
(princ "_H) 

(board-pr (cadr bestMove» 
(terpri»))) ) 

(printBoard»») ) 

12.4 Executing the Chess Program 

Since the heuristics that are used to control move selection are sound, most of the 
moves that this program makes are good. However, the program easily succumbs 
to tactical traps such as knight forks (that is, positioning a knight so that it 
simultaneously attacks two pieces of greater value). The following output from a 
LISP listener window shows the beginning of a game with the variable *debug* set 
to a true value: 



? (setq *debug* t) 
T 
? (chess) 

BR BN BB BQ BK BB BN BR 
BP BP BP BP BP BP BP BP 

X X X X 
X X X X 

X X X X 
X X X X 

WP WP WP WPWPWP WP WP 
WRWNWBWQWKWB WN WR 

Enter your move (e.g., d2-d4) : e2-e4 

BR BN BB BQ BK BB BN BR 
BP BP BP BP BP BP BP BP 

X X X X 
X X X X 

X X WP X X 
X X X X 
WPWPWPWP .WP WP WP 
WRWNWBWQWKWBWN WR 

E7 to E5: 0 
G8 to F6:-1 
C7 to C5:-1 
C7to C6:-1 
E7 to E6:-2 
B8 to C6:-2 
07 to 06:-2 
B7 to B6:-2 
G7 to G6:-2 
G7 to G5:-2 
A7 toA6:-2 
F7 to F6:-2 
G8 to H6 :-3 
A7 to AS :-3 
H7 to H6:-3 

07 to 05 :-11 
F7 to F5 : -14 
B7to B5: -16 

H7to H5: -16 
B8 to A6: -45 

Computer move: E7-E5 
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BR BN BB BQ BK BB BN BR 
BP BP BP BP X BP BP BP 

X X X X 
X X BP X 

X X WP X X 
X X X X 
WPWPWPWP .WP WP WP 
WR WN WB WQ WK WB WN WR 

Enter your move (e.g., d2-d4) : 

In this output, the value of each possible move is printed in sorted order, with best 
moves listed first. The following output from a LISP listener window shows the 
beginning of a game with the variable "debug" set to a false value: 
? (setq ·debug· nil) 

NIL 
? (chess) 

BR BN BB BQ BK BB BN BR 

BP BP BP BP BP BP BP BP 
X X X X 

X X X X 
X X X X 

X X X X 
WP WP WP WPWPWP WPWP 
WR WNWBWQWKWBWNWR 

Enter your move (e.g., d2-d4) : c2-c4 

BR BN BB BQ BK BB BN BR 
BP BP BP BP BP BP BP BP 

X X X X 
X X X X 

X WP X X X 

X X X X 
WP WP . WPWPWP WPWP 
WR WN WB WQ WK WB WN WR 

Computer move: E7-E5 



BR BN BB BQ BK BB BN BR 
BP BP BP BP X BP BP BP 

X X X X 
X X BP X 

X WP X X X 
X X X X 

WP WP. WPWPWP WPWP 
WR WN WB WQ WK WB WN WR 
Enter your move (e.g., d2-d4): bl-c3 

BR BN BB BQ BK BB BN BR 
BP BP BP BP X BP BP BP 

X X X X 
X X BP X 

X WP X X X 
X WN X X 
WP WP . WPWPWP WPWP 
WR . WBWQWKWBWNWR 

Computer move: F8-B4 

BR BN BB BQ BK X BN BR 
BP BP BP BP X BP BP BP 

X X X X 
X X BP X 

BB WP X X X 
X WN X X 
WP WP. WPWPWP WPWP 
WR. WBWQWKWBWNWR 
Enter your move (e.g., d2-d4): 

12.5 Projects 185 

To castle king side, enter 00 when asked for a move, to castle queen side, enter 
000. The chess-playing program has little input error checking so enter your 
moves carefully. Note that you can stop the program at any time, modify it, and 
restart it in the current game position by executing (chess T). 

12.5 Projects 

1. The example program only plays the black pieces. Modify the program to ask 
the human player which side to play. The easiest way to make this modification 
is to change the printing functions to reverse the board, while keeping the same 
internal representation for the squares and pieces. 
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2. This program does not allow en passant pawn captures. Modify the program to 
playa legal game of chess by removing this deficiency adding en passant move 
generation logic to function posib. 

3. If you have a good LISP compiler and a fast computer, you may want to try 
expanding the limited lookahead capability of this program. 

The following project is not too difficult and will prevent the program from 
falling into most simple tactical traps: 

Add a Shannon type B heuristic search to this program. Only add one ply to the 
search by using the following approach: the example program sorts the moves 
in descending order of merit when the debug option is turned on. Use this logic 
to capture the best N moves for the computer. For each of these N moves, make 
the move and switch white and black pieces in the array *board*, then evaluate 
the "best" move for the opponent. For each of the best original N moves being 
evaluated, set the merit score for the move to its original value minus the merit 
score for the best opponent response. 

4. Modify the debug printout in the sample program to print out the numeric rating 
for each possible computer move under evaluation and also the factors that 
contribute to the rating. For example, calculate the rating value in the static 
evaluation function as 

(setq value 
(+ materialValue mobilityValue centerControlValue 

kingControlValue» 

and print out each value term. 

5. Add heuristics to detect pawn weaknesses (e.g., doubled pawns, backward 
pawns, and pawns around both kings when they are not on their original squares) 
to the evaluation function. 

6. Modify the sample program to play against itself. Use the same functions for 
both sides except for the move evaluation function value. When you alter the 
move heuristics, you can play the new set of heuristics against the previous set 
of heuristics. 



13 
Introduction to Chaos Theory 

This chapter provides a short overview of Chaos theory. We will see how even 
simple systems that are modeled with nonlinear equations, that is, those containing 
polynomial or exponential terms, can show surprising behavior. A simple popula­
tion growth model will demonstrate a chaotic system. 

13.1 Modeling the Physical World 

The advancement of science includes not only a refinement of our understanding of 
the physical world, but also the improved understanding of what it is that we do not 
know. Newtonian physicists viewed the universe as if it were a complex clock: if 
we study it hard enough, master the physical laws of nature, and can measure the 
initial conditions of the universe with sufficient accuracy then total understanding 
and predictability are possible. The Heisenburg uncertainty principle and Einstein's 
theory of relativity shattered this hope and desire for the predictable nature of the 
universe by forcing us to accept that the universe is not measurable with sufficient 
precision and that instantaneous travel to conduct remote measurements is impos­
sible. With the benefit of hindsight, we now see that science has often concentrated 
on problems that can be accurately represented by linear systems of equations (and 
thus solved) and stayed away from difficult (and often unsolvable) nonlinear 
problems. 

Chaos theory is a new science (Gleick, 1987) which attempts to illuminate the 
nonlinear processes involved in predicting natural phenomena such as weather and 
population growth. Nonlinear systems are characterized by extreme sensitivity to 
initial conditions; making a very small change in one of the initial conditions of a 
nonlinear system often results in radically different behavior. For example, a small 
change in the atmosphere in one part of the world can have major and unpredictable 
effects elsewhere. There is hope of understanding nonlinear systems. In dealing 
with nonlinear systems, the emerging science of Chaos theory gives us a framework 
for understanding what we can and can not successfully model. 

13.2 Example Population Model Programs 

As a simple example of a chaotic (nonlinear) system, biologist Robert May modeled 
fish population (Gleick, 1987) with the simple equation: 

Population N +1 - lambda * Population N * (1 - Population N ) 
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The parameter lambda controls the rate of population growth. The truly amazing 
thing about this simple equation is its chaotic behavior as lambda is slowly increased 
in value. 

The first sample program produced the diagram in Figure 13.1. (The graphics 
library from chapter 2 must be loaded to run this program.) The main loop in the 
first example program iterates the value ofthe y-coordinate in the graphics window 
(y-axis). 

The population growth rate lambda increases in value with the y-coordinate y-axis. 
For every y-plotting coordinate, the first example program iterates setting the 
population value population using the above equation for population growth. The 
x-plotting coordinate is calculated for each iteration of the above population growth 
equation by scaling the population, multiplying it by 500.02 . 

.. 
" ; File: May-modeUisp 

; Population growth model of Robert May: generates a bifurcation diagram 
; showing large scale effect of the population growth rate. 
; Note: the area to the upper right of the initial curve indicates 
; extinction due to the rate of population growth being too small 
; (the variable lambda). 

; Copyright 1990 by Mark Watson 
.. 
" 

{defun bifur 0 
(init-plot "Global Population Growth Bifurcation Diagram" 502 230) 
(clear-plot) 
(show-plot) 
{plot-string 236 22 "Extinction1 
(plot-string 16 41 "Steady state") 
{plot-string 334 123 "Period doubledj 
{plot-string 190 215 "Chaos1 
{let {(x-axis) 

(lambda) (x 0.1) (population)) 
(dotimes (y-axis 198) 
(setq lambda (* 4 (+ 0.20 (j y-axis 250.0)))) 
(dotimes (iter 198) 
(setq population (* lambda x (- 1 x))) 
(setq x-axis (truncate (* population 500.02))) 
(if (and (> x-axis 0) « x-axis 501)) 
(plot-line x-axis y-axis x-axis y-axis)) 

(setq x population))))) 

The example of population growth shows the extreme sensitivity of nonlinear 
systems to initial conditions. In Figure 13.1, the top of the diagram illustrates the 
area of small growth rate where population increases gradually. As the growth rate 
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Global Population Growth Bifurcation Diagram 

ExliMtion 

Figure13.1. Effect of population growth rate on population. Vertical axis shows lambda 
increasing from 0 (top of plot) to the value of 1 (at the bottom of the plot). Horizontal axis 
represents the simulated population (larger values to the right side of the plot). 

lambda increases, frequency doubling occurs: the population tends to oscillate 
between two values. As the growth rate continues to increase (lower in the picture), 
frequency doubling occurs again: the population oscillates between four values. As 
lambda continues to increase, the population becomes chaotic and unpredictable. 

The following program listing generated the diagram in Figure 13.2 which 
magnifies the region around the area where the period of population growth 
oscillation doubles, and the area where the population growth becomes chaotic. The 
graphics library from chapter 2 must be loaded before running this program. This 
second example program is nearly identical to the first. The plot title is different and 
the growth rate calculation for lambda is different. 

.. .. 
; File: May-model-closeup.lisp 

; Generates a magnified bifurcation diagram magnifying the area 
; where period doubling turns into chaos. 

; Copyright 1990 by Mark Watson .. .. 
(defun bifur 0 

(in it-plot "Magnification of Bifurcation around Period Doubling/Chaotic area" 
502237) ;; specify title and x,y size of plot window 

(clear-plot) 
(show-plot) 
(let ((x-axis) 

(lambda) (x 0.1) (population)) 



190 Introduction to Chaos Theory 

(dotimes (y-axis 220) 
(setq lambda (* 4 (+ 0.85 (/ y-axis 1500.0)))) ;;; change the growth rate 
(dotimes (iter 198) 
(setq population (* lambda x (- 1 x))) 
(setq x-axis (truncate (* population 500.02))) 
(if (and (> x-axis 0) « x-axis 501)) 

(plot-line x-axis y-axis x-axis y-axis)) 
(setq x population))))) 

In Figure 13.2, notice the clear, nonchaotic areas near the bottom of the diagram. 
These are regimes in which the system becomes stable and oscillates between three 
possible values. If the sample program which created Figure 13.2 is modified to 
magnify this stable regime, the resulting plot will look surprisingly like the original 
diagram in Figure 13.1. Indeed, this repeatability is infinitely deep as we keep 
magnifying areas of the plot where there is a stable regime. This self-similarity will 
be seen again in the Fractal images produced by the example programs in Chapter 
14. 

The example of population growth shows both how quickly a nonlinear system 
becomes unpredictable and how brute force numerical techniques will sometime 
fail. Experiments with the constants embedded in the sample programs (that is, the 
198 iterations on the population equation and the expression setting the value for 
lambda) like those suggested below will convince the reader just how radically the 
output of nonlinear models varies with the input parameters! 

Figure 13.2. Effect of population growth rate on population. Magnification of the area 
showing frequency doubling (top of the picture) and chaotic behavior (bottom of picture). 
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13.3 Projects 

1. Modify the program which produced Figure 13.2 to magnify the stable regime 
near the bottom of the diagram. You should see three structures each looking 
similar to the diagram in Figure 13.1. Repeat this process a couple of times to 
convince yourself that the frequency doubling/chaotic structure is infinitely 
repeatable and self-similar. 

2. Delta rule neural networks display chaotic behavior in organizing their internal 
states. Use the complete neural network simulator listed at the end of 
chapter 3 to perform the following experiment: 

a. Create a small neural network using: (NewDeltaNetwork '(232». 
b. Make a copy of this network. Make small changes to a few of the initial 

random weights in the copied network. 
c. Train both neural networks using the same training data. How do the 

weights in the two networks compare? How does the pattern recognition 
performance of the two networks compare? 



14 
Fractal Images 

We are accustomed to thinking of the dimensionality of space as being an integer 
number. Distance along a line is measured in one dimension, as position on a piece 
of paper is measured in two dimensions, and a point in space is measured in three 
dimensions. For IBM mathematician Benoit Mandlebrot, space can have fractional 
dimension in the study of fractals. Fractal plots can be seen in generated images in 
motion pictures and they find practical applications in the modeling of blood vessels 
and turbulence. Blood vessels form a fractal space. Mapped out, they fit in a three­
dimensional space but they take up relatively little volume in our bodies. Like the 
population growth plots seen in chapter 13, the pattern of blood vessels seems 
infinitely repeatable as large arteries branch into increasingly smaller capillaries. 
However, there is a lower limit to the size of blood vessels while a mathematical 
model of a fractals repeats forever as we magnify its fractal space. 

Mathematicians Michael Barnsley and Alan Sloan use fractal iterated function 
systems (IFS) to compact digitized images. Their company (appropriately named 
IFS Systems) is developing technology using IFS encoding to obtain data compres­
sion ratios much larger than traditional compression schemes. Data compression 
techniques will become increasingly important when the digital ISDN (integrated 
services digital networks) communications standard is implemented and all infor­
mation (television, radio, information services) received in our homes and offices 
will be digital. Effective methods for data compression will help to make person­
alized television and information retrieval both possible and affordable. Image 
reconstruction given compact IFS codes is computationally inexpensive; however, 
converting images to IFS codes (Barnsley, 1988) is computationally expensive. 

Two types of fractal plots will be presented in this chapter: Mandelbrot set plots 
and IFS plots. As the two example programs illustrate, both types of plots are self­
similar, that is, like the images produced by the popUlation growth model in Chapter 
13, image features repeat with surprising regularity as they are magnified. 

14.1 Mandelbrot Set 

The fractal geometries that Benoit Mandlebrot has made a popular pastime for so 
many personal computer owners solve a very simple iterative function. This 
function is simply: 

Z is a complex variable and C is a complex constant. Complex numbers contain two 
numbers. a real and an imaginary component. The easiest way to understand a 
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complex number is to think of it as representing a single point on an x-y plot; by 
convention the x-coordinate of the point is the real value, and the y-coordinate of 
the point is the imaginary value. 

Consider a point C on the complex plane. In the above equation, set Z equal to 
C. The next value for the complex variable is calculated by squaringZ and then adding 
the point C. If we can iterate in this way forever without the magnitude of Z 
exploding to infinity, the original point C on the complex plane is a member of the 
Mandlebrot set. To plot this set of points, we will show every point C in the region 
around the complex number zero as black if the point is in this set; for points C that 
are not in the Mandelbrot set we will count the number of iterations required to reach 
a large threshold value and use this number of iterations to select a gray-scale or 
color value to plot the point C on the complex plane. 

The graphics library listed in chapter 2 provides the capability to plot in five gray­
scale values. The variable MAX_COLORS should be set to 5 for compatibility with 
the library listed in chapter 2. If your computer can produce a larger number of 
discrete colors or gray-scale values, modify the functionplot-Jill-reetin the graphics 
library to support the maximum number of gray-scale values your system supports 
and modify the value of MAX_COLORS. For example, if your computer supports 
16 colors, modify function plot-Jill-reet to take a range of colors between 0 and 15 
and set the value of MAX_COLORS in the first sample program in this chapter to 16. 

The first sample program, which plots the Mandelbrot set, has two modifiable 
parameters: num-x-eells and num-y-eells. Increasing these parameters increases the 
number of grid cells in the horizontal and vertical directions in the plots. The 
parameter cell-width sets the number of pixels to use to represent each complex 
number that we test for membership in the Mandelbrot set. 

Function M is the main function for calculating and plotting the Mandelbrot set. 
It loops over a range of points on the complex plane and iterates a maximum of 60 
times for each point to test for set membership. 

A single run of the following program generated the Mandelbrot set plots in Figures 
14.1 and 14.2 . 

.. 
" 
; File: Mandelbrot.lisp 

; Calculate and plot the Mandelbrot set 
; Copyright 1990 by Mark Watson 
.. 
" 

.. 
" 
; Define the maximum number of gray-scale or color values 
; that function plot-fill-rect uses as a pattern (or color) range: 
; (Plot-fill-rect is defined in the graphics library in Chapter 2.) 
.. 
" 
(setq MAX_COLORS 5) 
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§D§ Mandelbrot Set §0§ 

Figure 14.1. Low-resolution Mandelbrot Set Plot. This was produced by settingnum-x-cells 
to 90 and num-y-cells. 

§D Mandelbrot Set 

Figure 14.2. Medium-resolution Mandelbrot Set Plot. This was produced by setting num­
x-cells to 220 and num-y-cells to 130. 



196 Fractal Images 

.. .. 
; Define the number of complex points to evaluate for Mandelbrot 
; set membership: a rectangle of points num-x-cells by num-y-cells: 
.. .. 
(setq num-x-cells 90 num-y-cells 65) 

.. .. 
; Set the cell width and height for plotting a single point 
; on the complex plane: 
.. .. 
(setq cell-width 2) 
(setq delta-x-cell (/ 3.2 num-x-cells) delta-y-cell (/ 3.2 num-y-cells)) 

.. .. 
Function M is called to calculate the Mandelbrot set 

; for complex points around the complex number zero . 
.. .. 

(detun M (&optional (debug nil)) 
(init-plot "Mandelbrot Plot" 

(+ 10 (* cell-width num-x-cells)) 
(+ 25 (* cell-width num-y-cells))) 

(clear-plot) 
(show-plot) 
(let «x 0.5) (y 0.5) (z (complex 0 0))) 

(dotimes (ix num-x-cells) 
(setq x (- (* ix delta-x-cell) 2.0)) 
(dotimes (iy num-y-cells) 

(setq y (- (* iy delta-y-cell) 1.6)) 
(setq z (complex x y)) 
(let «index nil)) 

(dotimes (i 60) 

(setq z (+ (complex x y) (* z z))) 
(setq index i) 

(if (> (+ (* (real part z) (real part z)) (* (imagpart z) (imagpart z))) 4) 
(setq i 1000))) 

(plot-fill-rect 
(+ 1 0 (* ix cell-width)) 

(+ 10 (* iy cell-width)) 
cell-width cell-width (mod index MAX_COLORS))))))) 
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14.2 Iterated Function Systems 

Iterated function systems (IFS) can be used to greatly compress digital images. In 
a sense, generating IFS plots is similar to generating Mandelbrot set plots. Random 
points are selected on a complex plane and moved by iterating a simple set of 
functions which determine the path of this point on the complex plane. The 
randomly chosen points are allowed to move around the complex plane for several 
cycles, then each point on the path is plotted (in the program listed in this section) 
as a black dot on the screen. Michael Barnsley's book on fractals (Barnsley, 1988) 
provides many examples of iterated function systems. 

The following program uses affine (Barnsley, 1988) transformations in two­
dimensions to recreate complex images from a simple set of coefficients. In one 
dimension, an affine transformation is of the form: f{x) = ax + b, where a and bare 
constants. The one-dimensional affine transformation/transforms an interval [O,L] 
to an interval [b, b+a*L] if a>O or the interval [b-a*L,b] if a<O. As an example, if 
a=-l and b=2, then the interval [0,1] is mapped to [1,2] with the order of the points 
in the interval reversed. 

A two-dimensional affine transformation (Barnsley, 1988) is used in the following 
program and is of the form: g(x,y) = (ax + by + e, ex + dy + D, where a, b, c, d, e, and 
/ are constants. This transformation will convert any point on a two-dimensional 
plane to a new point. The following program uses four distinct affine transforma­
tions to draw an image. At each iteration though the main plotting loop, one of the 
four affine transformations is randomly selected. 

The following program uses IFS codes (sets of the coefficients a, b, c, d, e, and D 
for producing two simple geometric images: a sunflower and a fern. Data is defined 
at the top of the program for these two images. The variable LIMIT defines the 
number of iterations used to restore the images. Setting LIMIT to a small value 
generates a dim outline of the image. As LIMIT is increased, the image is filled in. 
The function IFS uses the graphics library from chapter 2 to plot the restored IFS 
images. Function IFS magnifies a small portion of the restored image to illustrate 
the self-similarity of IFS images. After copying the data for either the sunflower or 
fern, the main program loop draws LIMIT points in the graphics window. To draw 
each point, a random number between 0 and 1 is generated and compared to the 
entries in probability-table to determine which of four affine transforms to use for 
the current iteration. The IFS coefficients a, b, c, d, e, and/ are used to calculate x 
and y plot coordinates newx and newy. The first 20 times through the main loop, the 
x and y plot coordinates are updated with no plotting performed. After the first 20 
iterations in the main loop, the x-y plot coordinates are scaled to the size of the 
graphics window and a single point is plotted. 
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; ; File: IFS.lisp 

; Iterated function system for recreating images from IFS tables 

; Copyright 1990 by Mark Watson 
.. 
" 

.. 
" 
; Data specification for two IFS designs: a Sunflower 
; and a Fern. Set one flag (only) from the following 
; list to a non-nil value to produce either the Sunflower 
; or Fern design: 
.. 
" 

(setq SUNFLOWER nil) 
(setq FERN T) 

(if SUNFLOWER 
(setq title "IFS Example - Sunflower with Magnification" 

XSCALE40 
YSCALE 26 
XORG 260 
YORG 180 
maxTable4 
a '(-0.30 -0.30 0.02 0.00) 
b '(-0.60 -1.00 0.01 0.02) 
c '(1.1 0 1.0 0.00 0.00) 
d '(0.11 0.010 -0.2 0.00) 
e '(4.00 4.00 0.00 0.01) 
f '(0.00 0.00 0.00 0.02) 
P '(0.02 0.95 0.01 0.02) 
x1 1.2 y1 0.8 x2 1.8 y2 2.1 ;; define zoom box 
XZOOMORG -270 YZOOMORG 340 
zx1 (+ (* x1 XSCALE 6) XZOOMORG) 

zy1 (- YZOOMORG (* y1 YSCALE 6)) 

zx2 (+ (* x2 XSCALE 6) XZOOMORG) 
zy2 (- YZOOMORG (* y2 YSCALE 6)))) 

(if FERN 
(setq title "IFS Example - Fern with Magnification of Leaf" 

XSCALE75 
YSCALE21 
XORG250 
YORG 260 
maxTable 4 



a '(0.85 -0.15 0.2 0.0) 
b '(0.04 0.28 -0.260.0) 
c '(-0.04 0.26 0.23 0.0) 
d '(0.85 0.24 0.22 0.16) 
e '(0.0 0.0 0.0 0.0) 
f '(1.6 0.44 1.6 0.0) 
P '(0.85 0.065 0.065 0.02) 
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x1 -0.85 y1 6.1 x2 -0.6 y2 7.1 ;; define zoom box 
XZOOMORG 390 YZOOMORG 900 
zx1 (+ (* x1 XSCALE 6) XZOOMORG) 
zy1 (- YZOOMORG (* y1 YSCALE 6)) 
zx2 (+ (* x2 XSCALE 6) XZOOMORG) 
zy2 (- YZOOMORG (* y2 YSCALE 6)))) 

(setq LIMIT 150000) ;; limit on iterations 

.. 
" 
; IFS program: 
.. 
" 

(detun IFS 0 
(let «pt 0.0) 

(probability-table '(0 0 0 0 0 0)) 

x Y pk newx newy) 

;; Ppen a graphics window: 
(init-plot title 470 270) 

;; Plot a small "capture" box to enlarge in the zoom box: 
(plot-line 

(+ (* x1 XSCALE) XORG) (- YORG (* y1 YSCALE)) 
(+ (* x2 XSCALE) XORG) (- YORG (* y1 YSCALE))) 

(plot-line 

(+ (* x2 XSCALE) XORG) (- YORG (* y1 YSCALE)) 
(+ (* x2 XSCALE) XORG) (- YORG (* y2 YSCALE))) 

(plot-line 

(+ (* x2 XSCALE) XORG) (- YORG (* y2 YSCALE)) 
(+ (* x1 XSCALE) XORG) (- YORG (* y2 YSCALE))) 

(plot-line 

(+ (* x1 XSCALE) XORG) (- YORG (* y2 YSCALE)) 
(+ (* x1 XSCALE) XORG) (- YORG (* y1 YSCALE))) 

;; Plot the outline of the enlarged zoom box: 
(plot-line zx1 zy1 zx2 zy1) 

(plot-line zx2 zy1 zx2 zy2) 
(plot-line zx2 zy2 zx1 zy2) 



200 Fractal Images 

(plot-line zx1 zy2 zx1 zy1) 

;; Scale the probabilities: 
(dotimes (i maxTable) 

(setq pt (+ pt (nth i p))) 
(setf (nth i probability-table) pt)) 

;; Set the initial position of a pOint: 
(setq x 0.0 y 0.0) 

;; Main iteration loop: 
(dotimes (i LIMIT) 

(setq pk (random 1.01» 
(if «= pk (nth 0 probability-table)) 

(setq k 0) 
(if «= pk (nth 1 probability-table» 

(setq k 1) 
(if «= pk (nth 2 probability-table)) 

(setq k 2) 

(setq k 3»))) 
(setq newx (+ 

(* (nth k a) x) 
(* (nth k b) y) 
(nth k e))) 

(setq newy (+ 
(* (nth k c) x) 
(* (nth k d) y) 
(nth k f))) 

(setq x newx y newy) 

;; Throw way the first 20 pOints to wait for stabilization: 
(if (> i 19) 

(let ((ix (truncate (+ (* x XSCALE) XORG))) 

(iy (truncate (- YORG (* y YSCALE))))) 

Plot only the first 30000 points for the entire 
design to prevent over-saturation of paints. 
Note that we plot more points in the 
enlarged zoom box since the points are 
spread out on the screen by a factor of 6. 
in each direction. 

(if « I 30000) 
(plot-line ix iy ix iy)) 

;; Check to see if point (ix,iy) is inside the zoom box: 
(if (and 

(> x x1) 



« X x2) 
(> Y y1) 
« y y2)) 
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(let ((ixx (truncate (+ (* X XSCALE 6) XZOOMORG))) 
(iyy (truncate (- YZOOMORG (* Y YSCALE 6))))) 

(plot-line ixx iyy ixx iyy)))))))) 

The data for two designs is provided at the top of the example program listing; 
changing the values of the LISP variables FERN to nil and SUNFLOWER to Tin this 
example program creates the sunflower design shown in Figure 14.3. 

The screen dump in Figure 14.4 shows a picture of a fern produced by reconstruc­
tion using four IFS codes (see the variables a, b, c, d, e,/, andp in the program listed 
above). Note that in the upper left comer of both plots displays a magnification of 
part of the larger image. Both IFS generated plots are self-similar: any small 
segment of the plot is made up of features that resemble the larger segment. 

. ' : 

.... 

. ': ':', " 
~. " 

" : 

IFS [Hample - Sunflower with Magnification 

.' .' ',-.,':'.. , . 
" '~ . 

: ' . ,,' 

" "': ~ . , 
~ .. ~'.' :: . :. '. 
.: ....... " .. :.: .. . " 

Figure 14.3. A Sunflower Produced by an IFS. 
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IFS [Hample - Fern with Magnification of leaf 

Figure 14.4. A Fern Produced by an IFS. 

14.3 Projects 

1. The first example program plots the entire Mandelbrot set. By changing the 
initial values for x and y, and the delta-x and delta-y values in the program, you 
can enlarge any portion of the complex plane. Choose a complex point (as 
specified by anx andy coordinate pair) of interest in the Mandelbrot set plot and 
modify the example program to magnify the Mandelbrot set plot in an area 
centered at your selected point and with any specified size. 

2. Experiment with the constants a, b, c, d, e, and/used in the IFS program for 
generating the sunflower and fern images. If you make small changes to the 
constants you will notice that the IFS is fairly stable, that is, in general the images 
will not change drastically in appearance as the constants are slowly changed. 
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